MCP2551T-E/SNVAO [MICROCHIP]

Interface Circuit, PDSO8;
MCP2551T-E/SNVAO
型号: MCP2551T-E/SNVAO
厂家: MICROCHIP    MICROCHIP
描述:

Interface Circuit, PDSO8

光电二极管
文件: 总26页 (文件大小:451K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Not Recommended for New Designs  
Please use MCP2561  
MCP2551  
High-Speed CAN Transceiver  
Features  
Package Types  
PDIP/SOIC  
• Supports 1 Mb/s operation  
• Implements ISO-11898 standard physical layer  
requirements  
• Suitable for 12V and 24V systems  
TXD  
VSS  
1
2
8
7
RS  
• Externally-controlled slope for reduced RFI  
emissions  
CANH  
• Detection of ground fault (permanent Dominant)  
on TXD input  
VDD  
3
4
6
5
CANL  
VREF  
• Power-on Reset and voltage brown-out protection  
RXD  
• An unpowered node or brown-out event will not  
disturb the CAN bus  
• Low current standby operation  
• Protection against damage due to short-circuit  
conditions (positive or negative battery voltage)  
• Protection against high-voltage transients  
• Automatic thermal shutdown protection  
• Up to 112 nodes can be connected  
• High-noise immunity due to differential bus  
implementation  
Temperature ranges:  
- Industrial (I): -40°C to +85°C  
- Extended (E): -40°C to +125°C  
Block Diagram  
VDD  
TXD  
Dominant  
Detect  
Thermal  
Shutdown  
VDD  
Driver  
Control  
TXD  
Slope  
Power-On  
Reset  
CANH  
RS  
RXD  
VREF  
Control  
0.5 VDD  
GND  
CANL  
Receiver  
Reference  
Voltage  
VSS  
2001-2016 Microchip Technology Inc.  
DS20001667G-page 1  
MCP2551  
NOTES:  
DS20001667G-page 2  
2001-2016 Microchip Technology Inc.  
MCP2551  
1.4  
Operating Modes  
1.0  
DEVICE OVERVIEW  
The RS pin allows three modes of operation to be  
selected:  
The MCP2551 is a high-speed CAN, fault-tolerant  
device that serves as the interface between a CAN  
protocol controller and the physical bus. The MCP2551  
device provides differential transmit and receive  
capability for the CAN protocol controller, and is fully  
compatible with the ISO-11898 standard, including 24V  
requirements. It will operate at speeds of up to 1 Mb/s.  
• High-Speed  
• Slope-Control  
• Standby  
These modes are summarized in Table 1-1.  
Typically, each node in a CAN system must have a  
device to convert the digital signals generated by a  
CAN controller to signals suitable for transmission over  
the bus cabling (differential output). It also provides a  
buffer between the CAN controller and the high-voltage  
spikes that can be generated on the CAN bus by  
outside sources (EMI, ESD, electrical transients, etc.).  
When in High-Speed or Slope-Control mode, the  
drivers for the CANH and CANL signals are internally  
regulated to provide controlled symmetry in order to  
minimize EMI emissions.  
Additionally, the slope of the signal transitions on  
CANH and CANL can be controlled with a resistor  
connected from pin 8 (RS) to ground. The slope must  
be proportional to the current output at RS, which will  
further reduce EMI emissions.  
1.1  
Transmitter Function  
The CAN bus has two states: Dominant and  
Recessive. Dominant state occurs when the  
1.4.1  
HIGH-SPEED  
A
High-Speed mode is selected by connecting the RS pin  
to VSS. In this mode, the transmitter output drivers have  
fast output rise and fall times to support high-speed  
CAN bus rates.  
differential voltage between CANH and CANL is  
greater than a defined voltage (e.g.,1.2V). A Recessive  
state occurs when the differential voltage is less than a  
defined voltage (typically 0V). The Dominant and  
Recessive states correspond to the Low and High state  
of the TXD input pin, respectively. However, a  
Dominant state initiated by another CAN node will  
override a Recessive state on the CAN bus.  
1.4.2  
SLOPE-CONTROL  
Slope-Control mode further reduces EMI by limiting the  
rise and fall times of CANH and CANL. The slope, or  
slew rate (SR), is controlled by connecting an external  
resistor (REXT) between RS and VOL (usually ground).  
The slope is proportional to the current output at the RS  
pin. Since the current is primarily determined by the  
slope-control resistance value REXT, a certain slew rate  
is achieved by applying  
Figure 1-1 illustrates typical slew rate values as a  
function of the slope-control resistance value.  
1.1.1  
MAXIMUM NUMBER OF NODES  
The MCP2551 CAN outputs will drive a minimum load  
of 45, allowing a maximum of 112 nodes to be  
connected (given  
a
minimum differential input  
a specific resistance.  
resistance of 20 kand a nominal termination resistor  
value of 120  
1.2  
Receiver Function  
1.4.3  
STANDBY MODE  
The RXD output pin reflects the differential bus voltage  
between CANH and CANL. The Low and High states of  
the RXD output pin correspond to the Dominant and  
Recessive states of the CAN bus, respectively.  
The device may be placed in Standby or SLEEP mode  
by applying a high-level to the RS pin. In SLEEP mode,  
the transmitter is switched off and the receiver operates  
at a lower current. The receive pin on the controller side  
(RXD) is still functional, but will operate at a slower  
rate. The attached microcontroller can monitor RXD for  
CAN bus activity and place the transceiver into normal  
operation via the RS pin (at higher bus rates, the first  
CAN message may be lost).  
1.3  
Internal Protection  
CANH and CANL are protected against battery short  
circuits and electrical transients that can occur on the  
CAN bus. This feature prevents destruction of the  
transmitter output stage during such a fault condition.  
The device is further protected from excessive current  
loading by thermal shutdown circuitry that disables the  
output drivers when the junction temperature exceeds  
a nominal limit of 165°C. All other parts of the chip  
remain operational, and the chip temperature is low-  
ered due to the decreased power dissipation in the  
transmitter outputs. This protection is essential to  
protect against bus line short-circuit-induced damage.  
2001-2016 Microchip Technology Inc.  
DS20001667G-page 3  
MCP2551  
TABLE 1-1:  
Mode  
MODES OF OPERATION  
Current at Rs Pin  
-IRS < 10 µA  
Resulting Voltage at RS Pin  
Standby  
VRS > 0.75 VDD  
Slope-Control  
High-Speed  
10 µA < -IRS < 200 µA  
-IRS < 610 µA  
0.4 VDD < VRS < 0.6 VDD  
0 < VRS < 0.3VDD  
TABLE 1-2:  
TRANSCEIVER TRUTH TABLE  
(
VDD  
VRS  
TXD  
CANH  
CANL  
Bus State( 1)  
RXD 1)  
0
HIGH  
LOW  
Dominant  
Recessive  
Recessive  
Dominant  
Recessive  
Recessive  
0
1
1
0
1
1
VRS < 0.75 VDD  
VRS > 0.75 VDD  
VRS < 0.75 VDD  
VRS > 0.75 VDD  
X
4.5V VDD 5.5V  
1 or floating  
Not Driven  
Not Driven  
HIGH  
Not Driven  
Not Driven  
LOW  
X
0
1 or floating  
X
VPOR < VDD < 4.5V  
Not Driven  
Not Driven  
Not Driven  
Not Driven  
(See Note 3)  
Not Driven/  
No Load  
Not Driven/  
No Load  
0 < VDD < VPOR  
X
High Impedance  
X
Note 1: If another bus node is transmitting a Dominant bit on the CAN bus, then RXD is a logic ‘0’.  
2: X = “don’t care”.  
3: Device drivers will function, although outputs are not ensured to meet the ISO-11898 specification.  
FIGURE 1-1:  
SLEW RATE VS. SLOPE-CONTROL RESISTANCE VALUE  
25  
20  
15  
10  
5
0
10 20 30 40 49 60 70 76 90 100 110 120  
Resistance (kŸ)  
DS20001667G-page 4  
2001-2016 Microchip Technology Inc.  
MCP2551  
1.7.1  
TRANSMITTER DATA INPUT (TXD)  
1.5  
TXD Permanent Dominant  
Detection  
TXD is a TTL-compatible input pin. The data on this pin  
is driven out on the CANH and CANL differential output  
pins. It is usually connected to the transmitter data  
output of the CAN controller device. When TXD is low,  
CANH and CANL are in the Dominant state. When TXD  
is high, CANH and CANL are in the Recessive state,  
provided that another CAN node is not driving the CAN  
bus with a Dominant state. TXD has an internal pull-up  
resistor (nominal 25 kto VDD).  
If the MCP2551 detects an extended Low state on the  
TXD input, it will disable the CANH and CANL output  
drivers in order to prevent the corruption of data on the  
CAN bus. The drivers are disabled if TXD is Low for  
more than 1.25 ms (minimum). This implies  
a
maximum bit time of 62.5 µs (16 kb/s bus rate),  
allowing up to 20 consecutive transmitted Dominant  
bits during a multiple bit error and error frame scenario.  
The drivers remain disabled as long as TXD remains  
Low. A rising edge on TXD will reset the timer logic and  
enable the CANH and CANL output drivers.  
1.7.2  
GROUND SUPPLY (VSS)  
Ground supply pin.  
1.7.3  
SUPPLY VOLTAGE (VDD)  
1.6  
Power-on Reset  
Positive supply voltage pin.  
When the device is powered on, CANH and CANL  
remain in a high-impedance state until VDD reaches the  
voltage level VPORH. In addition, CANH and CANL will  
remain in a high-impedance state if TXD is Low when  
VDD reaches VPORH. CANH and CANL will become  
active only after TXD is asserted High. Once powered  
on, CANH and CANL will enter a high-impedance state  
if the voltage level at VDD falls below VPORL, providing  
voltage brown-out protection during normal operation.  
1.7.4  
RECEIVER DATA OUTPUT (RXD)  
RXD is a CMOS-compatible output that drives high or  
low depending on the differential signals on the CANH  
and CANL pins and is usually connected to the receiver  
data input of the CAN controller device. RXD is High  
when the CAN bus is Recessive and Low in the  
Dominant state.  
1.7.5  
REFERENCE VOLTAGE (VREF)  
1.7  
Pin Descriptions  
Reference Voltage Output (defined as VDD/2).  
The 8-pin pinout is listed in Table 1-3.  
1.7.6  
CAN LOW (CANL)  
TABLE 1-3:  
Pin  
MCP2551 PINOUT  
The CANL output drives the low side of the CAN  
differential bus. This pin is also tied internally to the  
receive input comparator.  
Pin  
Pin Function  
Number Name  
1
2
3
4
5
6
7
8
TXD  
VSS  
VDD  
Transmit Data Input  
Ground  
1.7.7  
CAN HIGH (CANH)  
The CANH output drives the high side of the CAN  
differential bus. This pin is also tied internally to the  
receive input comparator.  
Supply Voltage  
RXD Receive Data Output  
Reference Output Voltage  
VREF  
1.7.8  
SLOPE RESISTOR INPUT (RS)  
CANL CAN Low-Level Voltage I/O  
CANH CAN High-Level Voltage I/O  
The RS pin is used to select High-Speed, Slope-Control  
or Standby modes via an external biasing resistor.  
RS  
Slope-Control Input  
2001-2016 Microchip Technology Inc.  
DS20001667G-page 5  
MCP2551  
NOTES:  
DS20001667G-page 6  
2001-2016 Microchip Technology Inc.  
MCP2551  
2.1.5  
DIFFERENTIAL VOLTAGE, VDIFF   
(OF CAN BUS)  
2.0  
2.1  
ELECTRICAL  
CHARACTERISTICS  
Differential voltage of the two-wire CAN bus, value  
VDIFF = VCANH – VCANL.  
Terms and Definitions  
A number of terms are defined in ISO-11898 that are  
used to describe the electrical characteristics of a CAN  
transceiver device. These terms and definitions are  
summarized in this section.  
2.1.6  
INTERNAL CAPACITANCE, CIN   
(OF A CAN NODE)  
Capacitance seen between CANL (or CANH) and  
ground during the Recessive state when the CAN node  
is disconnected from the bus (see Figure 2-1).  
2.1.1  
BUS VOLTAGE  
VCANL and VCANH denote the voltages of the bus line  
wires CANL and CANH relative to ground of each  
individual CAN node.  
2.1.7  
INTERNAL RESISTANCE, RIN   
(OF A CAN NODE)  
Resistance seen between CANL (or CANH) and  
ground during the Recessive state when the CAN node  
is disconnected from the bus (see Figure 2-1).  
2.1.2  
COMMON MODE BUS VOLTAGE  
RANGE  
Boundary voltage levels of VCANL and VCANH with  
respect to ground, for which proper operation will occur,  
if up to the maximum number of CAN nodes are  
connected to the bus.  
FIGURE 2-1:  
PHYSICAL LAYER  
DEFINITIONS  
ECU  
2.1.3  
DIFFERENTIAL INTERNAL  
CAPACITANCE, CDIFF   
(OF A CAN NODE)  
RIN  
RIN  
CANL  
Capacitance seen between CANL and CANH during  
the Recessive state when the CAN node is  
disconnected from the bus (see Figure 2-1).  
CDIFF  
RDIFF  
CANH  
CIN  
CIN  
2.1.4  
DIFFERENTIAL INTERNAL  
RESISTANCE, RDIFF   
(OF A CAN NODE)  
GROUND  
Resistance seen between CANL and CANH during the  
Recessive state when the CAN node is disconnected  
from the bus (see Figure 2-1).  
2001-2016 Microchip Technology Inc.  
DS20001667G-page 7  
MCP2551  
Absolute Maximum Ratings†  
VDD.............................................................................................................................................................................7.0V  
DC Voltage at TXD, RXD, VREF and VS............................................................................................ -0.3V to VDD + 0.3V  
DC Voltage at CANH, CANL (Note 1)..........................................................................................................-42V to +42V  
Transient Voltage on Pins 6 and 7 (Note 2).............................................................................................-250V to +250V  
Storage temperature ...............................................................................................................................-55°C to +150°C  
Operating ambient temperature ..............................................................................................................-40°C to +125°C  
Virtual Junction Temperature, TVJ (Note 3).............................................................................................-40°C to +150°C  
Soldering temperature of leads (10 seconds) .......................................................................................................+300°C  
ESD protection on CANH and CANL pins (Note 4) ...................................................................................................6 kV  
ESD protection on all other pins (Note 4) ..................................................................................................................4 kV  
Note 1:Short-circuit applied when TXD is High and Low.  
2: In accordance with ISO-7637.  
3: In accordance with IEC 60747-1.  
4: Classification A: Human Body Model.  
† NOTICE: Stresses above those listed under “Maximum ratings” may cause permanent damage to the device. This  
is a stress rating only and functional operation of the device at those or any other conditions above those indicated in  
the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
DS20001667G-page 8  
2001-2016 Microchip Technology Inc.  
MCP2551  
2.2  
DC Characteristics  
Electrical Characteristics:  
DC Specifications  
Industrial (I): TAMB = -40°C to +85°C VDD = 4.5V to 5.5V  
Extended (E): TAMB = -40°C to +125°C VDD = 4.5V to 5.5V  
Param  
Sym  
No.  
Characteristic  
Min  
Max  
Units  
Conditions  
Supply  
D1  
75  
10  
mA  
mA  
Dominant; VTXD = 0.8V; VDD  
Recessive; VTXD = +2V;  
RS = 47 kW  
D2  
IDD  
Supply Current  
-40°C TAMB +85°C, Standby;  
(Note 2)  
365  
465  
4.3  
4.0  
0.8  
µA  
µA  
V
D3  
-40°C TAMB +125°C,  
Standby; (Note 2)  
High-level of the Power-on  
Reset comparator  
CANH, CANL outputs are active  
when VDD > VPORH  
D4  
D5  
D6  
VPORH  
VPORL  
VPORD  
3.8  
3.4  
0.3  
Low-level of the Power-on  
Reset comparator  
CANH, CANL outputs are not  
active when VDD < VPORL  
V
Hysteresis of Power-on  
Reset comparator  
V
Note 1  
Bus Line (CANH; CANL) Transmitter  
VCANH  
VCANL  
CANH, CANL Recessive  
bus voltage  
(r);  
(r)  
D7  
D8  
2.0  
-2  
3.0  
+2  
V
mA  
mA  
V
VTXD = VDD; no load.  
-2V < V(CAHL,CANH) < +7V,  
0V <VDD < 5.5V  
IO(CANH)(reces)  
IO(CANL)(reces)  
Recessive output current  
-5V < V(CANL,CANH) < +40V,  
0V <VDD < 5.5V  
D9  
-10  
2.75  
0.5  
+10  
4.5  
CANH Dominant   
output voltage  
D10  
D11  
D12  
VO(CANH)  
VO(CANL)  
VTXD = 0.8V  
CANL Dominant   
output voltage  
2.25  
+50  
V
VTXD = 0.8V  
Recessive differential   
output voltage  
VDIFF(r)(o)  
VDIFF(d)(o)  
-500  
mV  
VTXD = 2V; no load  
Dominant differential   
output voltage  
VTXD = 0.8V; VDD = 5V  
40W < RL < 60W (Note 2)  
D13  
D14  
D15  
1.5  
3.0  
V
-200  
mA  
mA  
VCANH = -5V  
CANH short-circuit   
output current  
IO(SC)(CANH)  
IO(SC)(CANL)l  
-100  
(typical)  
VCANH = -40V, +40V. (Note 1)  
CANL short-circuit   
output current  
D16  
D17  
200  
+0.5  
+0.4  
mA  
V
VCANL = -40V, +40V. (Note 1)  
-2V < V(CANL, CANH) < +7V  
(Note 3)  
-1.0  
-1.0  
Recessive differential   
input voltage  
VDIFF(r)(i)  
-12V < V(CANL, CANH) < +12V  
(Note 3)  
V
Note 1: This parameter is periodically sampled and not 100% tested.  
2: ITXD = IRXD = IVREF = 0 mA; 0V < VCANL < VDD; 0V < VCANH < VDD; VRS = VDD  
.
3: This is valid for the receiver in all modes; High-speed, Slope-control and Standby.  
2001-2016 Microchip Technology Inc.  
DS20001667G-page 9  
MCP2551  
2.2  
DC Characteristics (Continued)  
Electrical Characteristics:  
DC Specifications (Continued)  
Industrial (I): TAMB = -40°C to +85°C VDD = 4.5V to 5.5V  
Extended (E): TAMB = -40°C to +125°C VDD = 4.5V to 5.5V  
Param  
Sym  
No.  
Characteristic  
Min  
Max  
Units  
Conditions  
Bus Line (CANH; CANL) Receiver: [TXD = 2V; pins 6 and 7 externally driven]  
-2V < V(CANL, CANH) < +7V  
(Note 3)  
0.9  
5.0  
V
Dominant differential   
input voltage  
D18  
VDIFF(d)(i)  
-12V < V(CANL, CANH) < +12V  
(Note 3)  
1.0  
100  
5
5.0  
200  
50  
V
D19  
D20  
VDIFF(h)(i)  
RIN  
Differential input hysteresis  
mV  
kW  
See Figure 2-3 (Note 1)  
CANH, CANL Common-  
mode input resistance  
Deviation between CANH  
and CANL Common-mode  
input resistance  
D21  
RIN(d)  
-3  
+3  
%
VCANH = VCANL  
Bus Line (CANH; CANL) Receiver: [TXD = 2V; pins 6 and 7 externally driven]  
D22  
RDIFF  
Differential input resistance  
20  
100  
kW  
CANH, CANL input leakage  
current  
VDD < VPOR;  
VCANH = VCANL = +5V  
D24  
ILI  
150  
µA  
Transmitter Data Input (TXD)  
D25  
D26  
D27  
D28  
VIH  
VIL  
IIH  
High-level input voltage  
Low-level input voltage  
High-level input current  
Low-level input current  
2.0  
VSS  
-1  
VDD  
+0.8  
+1  
V
V
Output Recessive  
Output Dominant  
VTXD = VDD  
µA  
µA  
IIL  
-100  
-400  
VTXD = 0V  
Receiver Data Output (RXD)  
0.7 VD  
D
D31  
D32  
VOH  
High-level output voltage  
Low-level output voltage  
V
V
IOH = 8 mA  
IOL = 8 mA  
VOL  
0.8  
Voltage Reference Output (VREF)  
D33 Reference output voltage  
Standby/Slope-Control (RS pin)  
0.45 V 0.55 VD  
VREF  
V
-50 µA < IVREF < 50 µA  
DD  
D
Input voltage for standby  
mode  
0.75 V  
DD  
D34  
D35  
D36  
VSTB  
ISLOPE  
VSLOPE  
V
µA  
V
Slope-control mode current  
-10  
-200  
0.4 VD  
D
Slope-control mode voltage  
0.6 VDD  
Thermal Shutdown  
Shutdown junction   
temperature  
oC  
oC  
D37  
D38  
TJ  
155  
20  
180  
30  
Note 1  
(sd)  
Shutdown temperature  
hysteresis  
-12V < V(CANL, CANH) < +12V  
(Note 3)  
TJ  
(h)  
Note 1: This parameter is periodically sampled and not 100% tested.  
2: ITXD = IRXD = IVREF = 0 mA; 0V < VCANL < VDD; 0V < VCANH < VDD; VRS = VDD  
.
3: This is valid for the receiver in all modes; High-speed, Slope-control and Standby.  
DS20001667G-page 10  
2001-2016 Microchip Technology Inc.  
MCP2551  
FIGURE 2-1:  
TEST CIRCUIT FOR ELECTRICAL CHARACTERISTICS  
0.1µF  
VDD  
CANH  
TXD  
VREF  
CAN  
60   
100 pF  
Transceiver  
RXD  
CANL  
30 pF  
RS  
Rext  
GND  
Note:  
RS may be connected to VDD or GND via a load resistor depending on desired  
operating mode as described in Section 1.7.3 “Supply Voltage (VDD)”.  
FIGURE 2-2:  
TEST CIRCUIT FOR AUTOMOTIVE TRANSIENTS  
500 pF  
CANH  
TXD  
Schaffner  
CAN  
VREF  
RXD  
60  
Generator  
Transceiver  
CANL  
500 pF  
RS  
GND  
Note:  
RS may be connected to VDD or  
GND via a load resistor depending  
on desired operating mode as  
described in Section 1.7.8 “Slope  
Resistor Input (Rs)”.  
Rext  
The wave forms of the applied transients shall be in accordance with “ISO-7637, Part 1”, test pulses 1, 2, 3a and 3b.  
FIGURE 2-3:  
HYSTERESIS OF THE RECEIVER  
RXD (receive data  
output voltage)  
VOH  
VOL  
VDIFF (r)(i)  
VDIFF (d)(i)  
hysteresis  
D19  
0.5  
0.9  
VDIFF (V)  
2001-2016 Microchip Technology Inc.  
DS20001667G-page 11  
MCP2551  
2.3  
AC Characteristics  
Electrical Characteristics:  
AC Specifications  
Industrial (I): TAMB = -40°C to +85°C VDD = 4.5V to 5.5V  
Extended (E): TAMB = -40°C to +125°C VDD = 4.5V to 5.5V  
Param  
Sym  
No.  
Characteristic  
Min  
Max  
Units  
Conditions  
1
2
tBIT  
fBIT  
Bit time  
Bit frequency  
1
62.5  
µs  
VRS = 0V  
VRS = 0V  
16  
1000  
kHz  
-40°C TAMB +125°C,  
VRS = 0V  
3
TtxL2bus(d) Delay TXD to bus active  
70  
ns  
ns  
-40°C TAMB +85°C,   
VRS = 0V  
125  
170  
130  
250  
175  
225  
235  
400  
8.5  
4
TtxH2bus(r) Delay TXD to bus inactive  
-40°C TAMB +125°C,  
VRS = 0V  
ns  
-40°C TAMB +125°C,  
VRS = 0V  
ns  
5
6
TtxL2rx(d) Delay TXD to receive active  
-40°C TAMB +125°C,  
RS = 47 k  
ns  
-40°C TAMB +85°C,   
VRS = 0V  
ns  
-40°C TAMB +85°C,   
RS = 47 k  
ns  
Delay TXD to receiver  
TtxH2rx(r)  
inactive  
-40°C TAMB +125°C,  
VRS = 0V  
ns  
-40°C TAMB +125°C,  
RS = 47 k  
ns  
Refer to Figure 2-1;  
RS = 47 kNote 1)  
7
SR  
CANH, CANL slew rate  
5.5  
V/µs  
µs  
ns  
Wake-up time from standby  
(Rs pin)  
10  
11  
12  
13  
14  
tWAKE  
5
See Figure 2-5  
Bus Dominant to RXD Low  
(Standby mode)  
TbusD2rx(s)  
550  
VRS = +4V; (See Figure 2-6)  
CIN(CANH)  
CIN(CANL)  
CANH; CANL input  
capacitance  
20  
(typical)  
1 Mb/s data rate;  
VTXD = VDD, (Note 1)  
pF  
pF  
ms  
Differential input  
capacitance  
10  
(typical)  
1 Mb/s data rate  
(Note 1)  
CDIFF  
TX Permanent Dominant  
Timer Disable Time  
TtxL2busZ  
1.25  
4
Rising edge on TXD while  
device is in permanent  
Dominant state  
TX Permanent Dominant  
Timer Reset Time  
15  
TtxR2pdt(res)  
1
µs  
Note 1: This parameter is periodically sampled and not 100% tested.  
DS20001667G-page 12  
2001-2016 Microchip Technology Inc.  
MCP2551  
2.4  
Timing Diagrams and Specifications  
TIMING DIAGRAM FOR AC CHARACTERISTICS  
FIGURE 2-4:  
VDD  
0V  
TXD (transmit data  
input voltage)  
VDIFF (CANH,  
CANL differential  
voltage)  
0.5V  
0.9V  
RXD (receive data  
output voltage)  
0.7 VDD  
0.3 VDD  
3
4
5
6
FIGURE 2-5:  
TIMING DIAGRAM FOR WAKE-UP FROM STANDBY  
VRS Slope resistor  
input voltage  
VDD  
0V  
0.6 VDD  
VRXD Receive data  
output voltage  
0.3 VDD  
10  
VTXD = 0.8V  
FIGURE 2-6:  
TIMING DIAGRAM FOR BUS DOMINANT TO RXD LOW (STANDBY MODE)  
1.5V  
0.9V  
VDIFF, Differential  
voltage  
0V  
Receive data  
output voltage  
0.3 VDD  
11  
VRS = 4V; VTXD = 2V  
2001-2016 Microchip Technology Inc.  
DS20001667G-page 13  
MCP2551  
NOTES:  
DS20001667G-page 14  
2001-2016 Microchip Technology Inc.  
MCP2551  
3.0  
3.1  
PACKAGING INFORMATION  
Package Marking Information  
8-Lead PDIP (300 mil)  
Example:  
MCP2551  
e
3
E/P256  
1642  
8-Lead SOIC (150 mil)  
Example:  
MCP2551E  
e
3
SN^1642  
256  
NNN  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC® designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator ( )  
e
3
can be found on the outer packaging for this package.  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2001-2016 Microchip Technology Inc.  
DS20001667G-page 15  
MCP2551  
8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
A
N
B
E1  
NOTE 1  
1
2
TOP VIEW  
E
A2  
A
C
PLANE  
L
c
A1  
e
eB  
8X b1  
8X b  
.010  
C
SIDE VIEW  
END VIEW  
Microchip Technology Drawing No. C04-018D Sheet 1 of 2  
DS20001667G-page 16  
2001-2016 Microchip Technology Inc.  
MCP2551  
8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
ALTERNATE LEAD DESIGN  
(VENDOR DEPENDENT)  
DATUM A  
DATUM A  
b
b
e
2
e
2
e
e
Units  
Dimension Limits  
INCHES  
NOM  
8
.100 BSC  
-
MIN  
MAX  
Number of Pins  
Pitch  
N
e
A
Top to Seating Plane  
-
.210  
.195  
-
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
Tip to Seating Plane  
Lead Thickness  
Upper Lead Width  
A2  
A1  
E
E1  
D
L
c
b1  
b
eB  
.115  
.015  
.290  
.240  
.348  
.115  
.008  
.040  
.014  
-
.130  
-
.310  
.250  
.365  
.130  
.010  
.060  
.018  
-
.325  
.280  
.400  
.150  
.015  
.070  
.022  
.430  
Lower Lead Width  
Overall Row Spacing  
§
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or  
protrusions shall not exceed .010" per side.  
4. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing No. C04-018D Sheet 2 of 2  
2001-2016 Microchip Technology Inc.  
DS20001667G-page 17  
MCP2551  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20001667G-page 18  
2001-2016 Microchip Technology Inc.  
MCP2551  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2001-2016 Microchip Technology Inc.  
DS20001667G-page 19  
MCP2551  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢍꢓꢔꢆꢕꢆꢓꢄꢖꢖꢗꢘꢙꢆꢚꢛꢜꢝꢆꢎꢎꢆꢞꢗꢅꢟꢆꢠꢍꢏꢡꢢꢣ  
ꢓꢗꢊꢃꢤ ꢀꢁꢂꢃꢄꢅꢆꢃ!ꢁ"ꢄꢃꢇ#ꢂꢂꢆꢈꢄꢃꢉꢊꢇ$ꢊꢋꢆꢃ%ꢂꢊ&ꢌꢈꢋ"'ꢃꢉꢍꢆꢊ"ꢆꢃ"ꢆꢆꢃꢄꢅꢆꢃꢎꢌꢇꢂꢁꢇꢅꢌꢉꢃ(ꢊꢇ$ꢊꢋꢌꢈꢋꢃꢏꢉꢆꢇꢌ)ꢌꢇꢊꢄꢌꢁꢈꢃꢍꢁꢇꢊꢄꢆ%ꢃꢊꢄꢃ  
ꢅꢄꢄꢉ*++&&&ꢐ!ꢌꢇꢂꢁꢇꢅꢌꢉꢐꢇꢁ!+ꢉꢊꢇ$ꢊꢋꢌꢈꢋ  
DS20001667G-page 20  
2001-2016 Microchip Technology Inc.  
MCP2551  
APPENDIX A: REVISION HISTORY  
Revision G (December 2016)  
The following is the list of modifications:  
• Added note to page 1 header: “Not recommended  
for new designs”.  
• Updated Section 3.1 “Package Marking Infor-  
mation”.  
• Minor typographical corrections.  
Revision F (July 2010)  
The following is the list of modifications:  
• Updates to the packaging diagrams.  
Revision E (January 2007)  
The following is the list of modifications:  
• Updates to the packaging diagrams.  
Revision A (June 2001)  
• Original Release of this Document.  
2001-2016 Microchip Technology Inc.  
DS20001667G-page 21  
MCP2551  
NOTES:  
DS20001667G-page 22  
2001-2016 Microchip Technology Inc.  
MCP2551  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
-X  
/XX  
XXX  
Examples:  
Temperature  
Range  
Package  
Pattern  
a) MCP2551-I/P:  
Industrial temperature,  
PDIP package.  
b) MCP2551-E/P:  
Extended temperature,  
PDIP package.  
Device:  
MCP2551: High-Speed CAN Transceiver  
MCP2551T: High-Speed CAN Transceiver   
(Tape and Reel)  
c) MCP2551-I/SN: Industrial temperature,  
SOIC package.  
d) MCP2551T-I/SN: Tape and Reel,   
Industrial Temperature,  
Temperature  
Range:  
I
=
=
-40°C to +85°C  
-40°C to +125°C  
SOIC package.  
E
e) MCP2551T-E/SN: Tape and Reel,   
Extended Temperature,  
SOIC package.  
Package:  
P
SN  
=
=
Plastic DIP (300 mil Body) 8-lead  
Plastic SOIC (150 mil Body) 8-lead  
f)  
MCP2551-E/SN: Extended Temperature,  
SOIC package.  
2001-2016 Microchip Technology Inc.  
DS20001667G-page 23  
MCP2551  
NOTES:  
DS20001667G-page 24  
2001-2016 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate, AVR,  
AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory,  
CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ,  
KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus,  
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,  
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip  
Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST  
Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
and other countries.  
ClockWorks, The Embedded Control Solutions Company,  
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,  
mTouch, Precision Edge, and Quiet-Wire are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo,  
CodeGuard, CryptoAuthentication, CryptoCompanion,  
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average  
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial  
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,  
KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF,  
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,  
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,  
PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple  
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,  
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,  
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and  
ZENA are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
Silicon Storage Technology is a registered trademark of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip Technology  
Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
© 2001-2016, Microchip Technology Incorporated, All Rights  
Reserved.  
ISBN: 978-1-5224-1198-7  
== ISO/TS 16949 ==  
2001-2016 Microchip Technology Inc.  
DS20001667G-page 25  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Finland - Espoo  
Tel: 358-9-4520-820  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
France - Saint Cloud  
Tel: 33-1-30-60-70-00  
India - Pune  
Tel: 91-20-3019-1500  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Germany - Garching  
Tel: 49-8931-9700  
Germany - Haan  
Austin, TX  
Tel: 512-257-3370  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Boston  
Tel: 49-2129-3766400  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
Germany - Heilbronn  
Tel: 49-7131-67-3636  
China - Dongguan  
Tel: 86-769-8702-9880  
Germany - Karlsruhe  
Tel: 49-721-625370  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Guangzhou  
Tel: 86-20-8755-8029  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Korea - Seoul  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Israel - Ra’anana  
Tel: 972-9-744-7705  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Detroit  
Novi, MI  
Tel: 248-848-4000  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Houston, TX  
Tel: 281-894-5983  
Italy - Padova  
Tel: 39-049-7625286  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Shanghai  
Tel: 86-21-3326-8000  
Fax: 86-21-3326-8021  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Norway - Trondheim  
Tel: 47-7289-7561  
Los Angeles  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Poland - Warsaw  
Tel: 48-22-3325737  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Romania - Bucharest  
Tel: 40-21-407-87-50  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Raleigh, NC  
Tel: 919-844-7510  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
New York, NY  
Tel: 631-435-6000  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
DS20001667G-page 26  
2001-2016 Microchip Technology Inc.  
11/07/16  

相关型号:

MCP2551T-I/SN

DATACOM, INTERFACE CIRCUIT, PDSO8, 0.150 INCH, LEAD FREE, PLASTIC, SOIC-8
MICROCHIP

MCP2551T-I/SNG

DATACOM, INTERFACE CIRCUIT, PDSO8, 0.150 INCH, LEAD FREE, PLASTIC, SOIC-8
MICROCHIP

MCP2551T-I/SNVAO

Interface Circuit, PDSO8
MICROCHIP

MCP2551_07

High-Speed CAN Transceiver
MICROCHIP

MCP2551_10

High-Speed CAN Transceiver
MICROCHIP

MCP2557FD-H/SN

DATACOM, INTERFACE CIRCUIT
MICROCHIP

MCP2557FDT-H/MF

DATACOM, INTERFACE CIRCUIT
MICROCHIP

MCP2557FDT-H/MNY

DATACOM, INTERFACE CIRCUIT
MICROCHIP

MCP2558FD-H/MNY

DATACOM, INTERFACE CIRCUIT
MICROCHIP

MCP2558FD-H/SN

DATACOM, INTERFACE CIRCUIT
MICROCHIP

MCP2558FDT-H/MF

DATACOM, INTERFACE CIRCUIT
MICROCHIP

MCP2561

High-Speed CAN Transceiver
MICROCHIP