MCP2562FD-H/P [MICROCHIP]

High-Speed CAN Flexible Data Rate Transceiver;
MCP2562FD-H/P
型号: MCP2562FD-H/P
厂家: MICROCHIP    MICROCHIP
描述:

High-Speed CAN Flexible Data Rate Transceiver

文件: 总32页 (文件大小:1322K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP2561/2FD  
High-Speed CAN Flexible Data Rate Transceiver  
Features:  
Description:  
• Optimized for CAN FD (Flexible Data rate) at 2, 5  
and 8 Mbps Operation  
The MCP2561/2FD is a second generation high-speed  
CAN transceiver from Microchip Technology Inc. It  
offers the same features as the MCP2561/2.  
Additionally, it guarantees Loop Delay Symmetry in  
order to support the higher data rates required for CAN  
FD. The maximum propagation delay was improved to  
support longer bus length.  
The device meets the automotive requirements for  
CAN FD bit rates exceeding 2 Mbps, low quiescent  
current, electromagnetic compatibility (EMC) and  
electrostatic discharge (ESD).  
- Maximum Propagation Delay: 120 ns  
- Loop Delay Symmetry: -10%/+10% (2 Mbps)  
• Implements ISO-11898-2 and ISO-11898-5  
Standard Physical Layer Requirements  
• Very Low Standby Current (5 µA, typical)  
• VIO Supply Pin to Interface Directly to  
CAN Controllers and Microcontrollers with   
1.8V to 5.5V I/O  
• SPLIT Output Pin to Stabilize Common Mode in  
Biased Split Termination Schemes  
• CAN Bus Pins are Disconnected when Device is  
Unpowered  
Package Types  
MCP2561FD  
MCP2562FD  
PDIP, SOIC  
PDIP, SOIC  
- An Unpowered Node or Brown-Out Event will  
Not Load the CAN Bus  
• Detection of Ground Fault:  
TXD  
VSS  
STBY  
CANH  
1
2
8
7
TXD  
VSS  
STBY  
CANH  
1
2
8
7
- Permanent Dominant Detection on TXD  
- Permanent Dominant Detection on Bus  
• Power-on Reset and Voltage Brown-Out  
Protection on VDD Pin  
VDD 3  
6
5
CANL  
SPLIT  
VDD 3  
6
5
CANL  
VIO  
4
RXD  
4
RXD  
MCP2561FD  
MCP2562FD  
3x3 DFN*  
3x3 DFN*  
• Protection Against Damage Due to Short-Circuit  
Conditions (Positive or Negative Battery Voltage)  
• Protection Against High-Voltage Transients in  
Automotive Environments  
• Automatic Thermal Shutdown Protection  
• Suitable for 12V and 24V Systems  
• Meets or exceeds stringent automotive design  
requirements including “Hardware Requirements  
for LIN, CAN and FlexRay Interfaces in  
Automotive Applications”, Version 1.3, May 2012  
- Radiated emissions @ 2 Mbps with Common  
Mode Choke (CMC)  
TXD  
VSS  
STBY  
CANH  
1
2
8
7
TXD  
VSS  
STBY  
CANH  
1
2
8
7
EP  
9
EP  
9
VDD  
RXD  
CANL  
SPLIT  
3
4
6
5
VDD  
RXD  
CANL  
VIO  
3
4
6
5
* Includes Exposed Thermal Pad (EP); see Table 1-2  
- DPI @ 2 Mbps with CMC  
• High ESD Protection on CANH and CANL,  
meeting IEC61000-4-2 up to ±14 kV  
• Available in PDIP-8L, SOIC-8L and 3x3 DFN-8L  
Temperature ranges:  
- Extended (E): -40°C to +125°C  
- High (H): -40°C to +150°C  
MCP2561/2FD Family Members  
Device  
Feature  
Description  
MCP2561FD  
MCP2562FD  
SPLIT pin  
VIO pin  
Common mode stabilization  
Internal level shifter on digital I/O pins  
Note: For ordering information, see the “Product Identification System” section on page 29.  
2014 Microchip Technology Inc.  
DS20005284A-page 1  
MCP2561/2FD  
Block Diagram  
SPLIT(2)  
V
IO(3)  
VDD  
Digital I/O  
Supply  
Thermal  
Protection  
POR  
UVLO  
VDD/2  
V
IO  
Permanent  
Dominant Detect  
T
XD  
CANH  
CANL  
Driver  
and  
Slope Control  
V
IO  
Mode  
Control  
STBY  
CANH  
Wake-Up  
Filter  
LP_RX(1)  
HS_RX  
CANL  
Receiver  
R
XD  
CANH  
CANL  
VSS  
Note 1: There is only one receiver implemented. The receiver can operate in Low-Power or High-Speed mode.  
2: Only MCP2561FD has the SPLIT pin.  
3: Only MCP2562FD has the VIO pin. In MCP2561FD, the supply for the digital I/O is internally connected  
to VDD.  
DS20005284A-page 2  
2014 Microchip Technology Inc.  
MCP2561/2FD  
1.1.1  
NORMAL MODE  
1.0  
DEVICE OVERVIEW  
Normal mode is selected by applying low-level voltage  
to the STBY pin. The driver block is operational and  
can drive the bus pins. The slopes of the output signals  
on CANH and CANL are optimized to produce minimal  
electromagnetic emissions (EME).  
The MCP2561/2FD is a high-speed CAN device,  
fault-tolerant device that serves as the interface  
between a CAN protocol controller and the physical  
bus. The MCP2561/2FD device provides differential  
transmit and receive capability for the CAN protocol  
controller, and is fully compatible with the ISO-11898-2  
and ISO-11898-5 standards.  
The high speed differential receiver is active.  
1.1.2  
STANDBY MODE  
The Loop Delay Symmetry is guaranteed to support  
data rates that are up to 5 Mbps for CAN FD (Flexible  
Data rate). The maximum propagation delay was  
improved to support longer bus length.  
The device may be placed in Standby mode by  
applying high-level voltage to the STBY pin. In Standby  
mode, the transmitter and the high-speed part of the  
receiver are switched off to minimize power  
consumption. The low-power receiver and the wake-up  
filter blocks are enabled to monitor the bus for activity.  
The receive pin (RXD) will show  
representation of the CAN bus, due to the wake-up  
filter.  
Typically, each node in a CAN system must have a  
device to convert the digital signals generated by a  
CAN controller to signals suitable for transmission over  
the bus cabling (differential output). It also provides a  
buffer between the CAN controller and the high-voltage  
spikes that can be generated on the CAN bus by  
outside sources.  
a
delayed  
The CAN controller gets interrupted by a negative edge  
on the RXD pin (Dominant state on the CAN bus). The  
CAN controller must put the MCP2561/2FD back into  
Normal mode, using the STBY pin, in order to enable  
high speed data communication.  
1.1  
Mode Control Block  
The MCP2561/2FD supports two modes of operation:  
• Normal Mode  
• Standby Mode  
The CAN bus wake-up function requires both supply  
voltages, VDD and VIO, to be in valid range.  
These modes are summarized in Table 1-1.  
TABLE 1-1:  
Mode  
MODES OF OPERATION  
RXD Pin  
STBY Pin  
LOW  
HIGH  
Normal  
LOW  
Bus is Dominant  
Bus is Recessive  
Standby  
HIGH  
Wake-up request is detected  
No wake-up request detected  
1.2  
Transmitter Function  
1.4  
Internal Protection  
The CAN bus has two states:  
CANH and CANL are protected against battery  
short-circuits and electrical transients that can occur on  
the CAN bus. This feature prevents destruction of the  
transmitter output stage during such a fault condition.  
• Dominant State  
• Recessive State  
A Dominant state occurs when the differential voltage  
between CANH and CANL is greater than VDIFF(D)(I).  
A Recessive state occurs when the differential voltage  
is less than VDIFF(R)(I). The Dominant and Recessive  
states correspond to the Low and High state of the TXD  
input pin, respectively. However, a Dominant state  
The device is further protected from excessive current  
loading by thermal shutdown circuitry that disables the  
output drivers when the junction temperature exceeds  
a nominal limit of +175°C. All other parts of the chip  
remain operational, and the chip temperature is  
lowered due to the decreased power dissipation in the  
transmitter outputs. This protection is essential to  
protect against bus line short-circuit-induced damage.  
initiated by another CAN node will override  
Recessive state on the CAN bus.  
a
1.3  
Receiver Function  
In Normal mode, the RXD output pin reflects the  
differential bus voltage between CANH and CANL. The  
Low and High states of the RXD output pin correspond  
to the Dominant and Recessive states of the CAN bus,  
respectively.  
2014 Microchip Technology Inc.  
DS20005284A-page 3  
MCP2561/2FD  
1.5  
Permanent Dominant Detection  
1.6  
Power-On Reset (POR) and  
Undervoltage Detection  
The MCP2561/2FD device prevents two conditions:  
The MCP2561/2FD has undervoltage detection on  
both supply pins: VDD and VIO. Typical undervoltage  
thresholds are 1.2V for VIO and 4V for VDD.  
• Permanent Dominant condition on TXD  
• Permanent Dominant condition on the bus  
In Normal mode, if the MCP2561/2FD detects an  
extended Low state on the TXD input, it will disable the  
CANH and CANL output drivers in order to prevent the  
corruption of data on the CAN bus. The drivers will  
remain disabled until TXD goes High.  
When the device is powered on, CANH and CANL  
remain in a high-impedance state until both VDD and  
VIO exceed their undervoltage levels. Once powered  
on, CANH and CANL will enter a high-impedance state  
if the voltage level at VDD drops below the undervoltage  
level, providing voltage brown-out protection during  
normal operation.  
In Standby mode, if the MCP2561/2FD detects an  
extended Dominant condition on the bus, it will set the  
RXD pin to Recessive state. This allows the attached  
controller to go to Low-Power mode until the Dominant  
issue is corrected. RXD is latched High until a  
Recessive state is detected on the bus, and the  
wake-up function is enabled again.  
In Normal mode, the receiver output is forced to  
Recessive state during an undervoltage condition on  
VDD. In Standby mode, the low-power receiver is only  
enabled when both VDD and VIO supply voltages rise  
above their respective undervoltage thresholds. Once  
these threshold voltages are reached, the low-power  
receiver is no longer controlled by the POR comparator  
and remains operational down to about 2.5V on the  
VDD supply (MCP2561/2FD). The MCP2562FD  
transfers data to the RXD pin down to 1.8V on the VIO  
supply.  
Both conditions have a time-out of 1.25 ms (typical).  
This implies  
a maximum bit time of 69.44 µs  
(14.4 kHz), allowing up to 18 consecutive dominant bits  
on the bus.  
1.7  
Pin Descriptions  
Table 1-2 describes the pinout.  
TABLE 1-2:  
MCP2561/2FD PIN DESCRIPTIONS  
MCP2561FD MCP2561FD MCP2562FD MCP2562FD  
Symbol  
Pin Function  
Transmit Data Input  
3x3 DFN  
PDIP, SOIC  
3x3 DFN  
PDIP, SOIC  
1
2
1
2
1
2
1
2
TXD  
VSS  
VDD  
RXD  
Ground  
3
3
3
3
Supply Voltage  
Receive Data Output  
4
4
4
4
5
5
5
5
SPLIT Common Mode Stabilization - MCP2561FD only  
Digital I/O Supply Pin - MCP2562FD only  
6
6
VIO  
6
6
CANL CAN Low-Level Voltage I/O  
CANH CAN High-Level Voltage I/O  
STBY Standby Mode Input  
7
7
7
7
8
8
8
8
9
9
EP  
Exposed Thermal Pad  
DS20005284A-page 4  
2014 Microchip Technology Inc.  
MCP2561/2FD  
1.7.1  
TRANSMITTER DATA  
1.7.6  
VIO PIN (MCP2562FD ONLY)  
INPUT PIN (TXD)  
Supply for digital I/O pins. In the MCP2561FD, the  
supply for the digital I/O (TXD, RXD and STBY) is  
internally connected to VDD.  
The CAN transceiver drives the differential output pins  
CANH and CANL according to TXD. It is usually  
connected to the transmitter data output of the CAN  
controller device. When TXD is Low, CANH and CANL  
are in the Dominant state. When TXD is High, CANH  
and CANL are in the Recessive state, provided that  
another CAN node is not driving the CAN bus with a  
Dominant state. TXD is connected to an internal pull-up  
resistor (nominal 33 k) to VDD or VIO, in the  
MCP2561FD or MCP2562FD, respectively.  
1.7.7  
CAN LOW PIN (CANL)  
The CANL output drives the Low side of the CAN  
differential bus. This pin is also tied internally to the  
receive input comparator. CANL disconnects from the  
bus when MCP2561/2FD is not powered.  
1.7.8  
CAN HIGH PIN (CANH)  
The CANH output drives the high-side of the CAN  
differential bus. This pin is also tied internally to the  
receive input comparator. CANH disconnects from the  
bus when MCP2561/2FD is not powered.  
1.7.2  
GROUND SUPPLY PIN (VSS)  
Ground supply pin.  
1.7.3  
SUPPLY VOLTAGE PIN (VDD)  
1.7.9  
STANDBY MODE INPUT PIN (STBY)  
Positive supply voltage pin. Supplies transmitter and  
receiver, including the wake-up receiver.  
This pin selects between Normal or Standby mode. In  
Standby mode, the transmitter, high speed receiver and  
SPLIT are turned off, only the low power receiver and  
wake-up filter are active. STBY is connected to an  
internal MOS pull-up resistor to VDD or VIO, in the  
MCP2561FD or MCP2562FD, respectively. The value  
of the MOS pull-up resistor depends on the supply volt-  
age. Typical values are 660 kfor 5V, 1.1 Mfor 3.3V  
and 4.4 Mfor 1.8V  
1.7.4  
RECEIVER DATA   
OUTPUT PIN (RXD)  
RXD is a CMOS-compatible output that drives High or  
Low depending on the differential signals on the CANH  
and CANL pins, and is usually connected to the  
receiver data input of the CAN controller device. RXD is  
High when the CAN bus is Recessive, and Low in the  
Dominant state. RXD is supplied by VDD or VIO, in the  
MCP2561FD or MCP2562FD, respectively.  
1.7.10  
EXPOSED THERMAL PAD (EP)  
It is recommended that this pad is connected to VSS for  
the enhancement of electromagnetic immunity and  
thermal resistance.  
1.7.5  
SPLIT PIN (MCP2561FD ONLY)  
Reference Voltage Output (defined as VDD/2). The pin  
is only active in Normal mode. In Standby mode, or  
when VDD is off, SPLIT floats.  
2014 Microchip Technology Inc.  
DS20005284A-page 5  
MCP2561/2FD  
1.8  
Typical Applications  
In order to meet the EMC/EMI requirements, a  
Common Mode Choke (CMC) might be required for  
data rates greater than 1 Mbps.  
FIGURE 1-1:  
MCP2561FD WITH SPLIT PIN  
VBAT  
5V LDO  
0.1 μF  
CANH  
CANL  
VDD  
VSS  
VDD  
CANH  
SPLIT  
CANL  
CANTX  
TXD  
60  
PIC®  
300  
CANRX  
MCU  
RXD  
4700 pF  
Optional(1)  
RBX  
STBY  
60  
VSS  
Note 1: Optional resistor to allow communication during bus failure (CANL shorted to ground).  
FIGURE 1-2:  
MCP2562FD WITH VIO PIN  
VBAT  
5V LDO  
1.8V LDO  
0.1 μF  
0.1 μF  
CANH  
CANL  
VDD  
VIO  
TXD  
VDD  
CANH  
CANTX  
PIC®  
CANRX  
MCU  
RXD  
120  
RBX  
STBY  
CANL  
VSS  
Vss  
DS20005284A-page 6  
2014 Microchip Technology Inc.  
MCP2561/2FD  
2.1.5  
DIFFERENTIAL VOLTAGE, VDIFF   
(OF CAN BUS)  
2.0  
2.1  
ELECTRICAL  
CHARACTERISTICS  
Differential voltage of the two-wire CAN bus, value  
VDIFF = VCANH – VCANL.  
Terms and Definitions  
A number of terms are defined in ISO-11898 that are  
used to describe the electrical characteristics of a CAN  
transceiver device. These terms and definitions are  
summarized in this section.  
2.1.6  
INTERNAL CAPACITANCE, CIN   
(OF A CAN NODE)  
Capacitance seen between CANL (or CANH) and  
ground during the Recessive state, when the CAN  
node is disconnected from the bus (see Figure 2-1).  
2.1.1  
BUS VOLTAGE  
VCANL and VCANH denote the voltages of the bus line  
wires CANL and CANH relative to ground of each  
individual CAN node.  
2.1.7  
INTERNAL RESISTANCE, RIN   
(OF A CAN NODE)  
Resistance seen between CANL (or CANH) and  
ground during the Recessive state, when the CAN  
node is disconnected from the bus (see Figure 2-1).  
2.1.2  
COMMON MODE BUS VOLTAGE  
RANGE  
Boundary voltage levels of VCANL and VCANH with  
respect to ground, for which proper operation will occur,  
if up to the maximum number of CAN nodes are  
connected to the bus.  
FIGURE 2-1:  
PHYSICAL LAYER  
DEFINITIONS  
ECU  
2.1.3  
DIFFERENTIAL INTERNAL  
CAPACITANCE, CDIFF   
(OF A CAN NODE)  
RIN  
RIN  
CANL  
Capacitance seen between CANL and CANH during  
the Recessive state, when the CAN node is  
disconnected from the bus (see Figure 2-1).  
CDIFF  
RDIFF  
CANH  
CIN  
CIN  
2.1.4  
DIFFERENTIAL INTERNAL  
RESISTANCE, RDIFF   
(OF A CAN NODE)  
GROUND  
Resistance seen between CANL and CANH during the  
Recessive state when the CAN node is disconnected  
from the bus (see Figure 2-1).  
2014 Microchip Technology Inc.  
DS20005284A-page 7  
MCP2561/2FD  
2.2  
Absolute Maximum Ratings†  
VDD.............................................................................................................................................................................7.0V  
VIO..............................................................................................................................................................................7.0V  
DC Voltage at TXD, RXD, STBY and VSS.............................................................................................-0.3V to VIO + 0.3V  
DC Voltage at CANH, CANL and SPLIT ......................................................................................................-58V to +58V  
Transient Voltage on CANH, CANL (ISO-7637) (See Figure 2-5)............................................................-150V to +100V  
Storage temperature ...............................................................................................................................-55°C to +150°C  
Operating ambient temperature ..............................................................................................................-40°C to +150°C  
Virtual Junction Temperature, TVJ (IEC60747-1) ....................................................................................-40°C to +190°C  
Soldering temperature of leads (10 seconds) .......................................................................................................+300°C  
ESD protection on CANH and CANL pins for MCP2561FD (IEC 61000-4-2)........................................................±14 kV  
ESD protection on CANH and CANL pins for MCP2562FD (IEC 61000-4-2)..........................................................±8 kV  
ESD protection on CANH and CANL pins (IEC 801; Human Body Model)..............................................................±8 kV  
ESD protection on all other pins (IEC 801; Human Body Model).............................................................................±4 kV  
ESD protection on all pins (IEC 801; Machine Model)............................................................................................±300V  
ESD protection on all pins (IEC 801; Charge Device Model)..................................................................................±750V  
† NOTICE: Stresses above those listed under “Maximum ratings” may cause permanent damage to the device. This  
is a stress rating only and functional operation of the device at those or any other conditions above those indicated in  
the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
DS20005284A-page 8  
2014 Microchip Technology Inc.  
MCP2561/2FD  
2.3  
DC Characteristics  
Electrical Characteristics: Extended (E): TAMB = -40°C to +125°C and High (H): TAMB = -40°C to +150°C;   
VDD = 4.5V to 5.5V, VIO = 1.8V to 5.5V (Note 2), RL = 60, CL = 100 pF; unless otherwise specified.  
Characteristic  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
SUPPLY  
VDD Pin  
Voltage Range  
Supply Current  
4.5  
5.5  
VDD  
IDD  
5
45  
5
10  
70  
15  
15  
4.3  
Recessive; VTXD = VDD  
Dominant; VTXD = 0V  
MCP2561FD  
mA  
µA  
Standby Current  
IDDS  
5
MCP2562FD; Includes IIO  
High Level of the POR   
Comparator  
3.8  
VPORH  
VPORL  
VPORD  
V
V
V
Low Level of the POR   
Comparator  
3.4  
0.3  
4.0  
0.8  
Hysteresis of POR   
Comparator  
VIO Pin  
Digital Supply Voltage Range  
1.8  
5.5  
VIO  
IIO  
V
Supply Current on VIO  
4
30  
500  
1
Recessive; VTXD = VIO  
Dominant; VTXD = 0V  
(Note 1)  
µA  
85  
0.3  
Standby Current  
IDDS  
µA  
V
Undervoltage detection on VIO  
1.2  
(Note 1)  
VUVD(IO)  
BUS LINE (CANH; CANL) TRANSMITTER  
CANH; CANL:   
Recessive Bus Output Voltage  
2.0  
0.5VDD  
0.0  
3.0  
VTXD = VDD; No load  
VO(R)  
V
V
CANH; CANL:   
Bus Output Voltage in Standby  
-0.1  
+0.1  
STBY = VTXD = VDD; No load  
VO(S)  
Recessive Output Current  
IO(R)  
-5  
+5  
mA -24V < VCAN < +24V  
CANH: Dominant   
Output Voltage  
2.75  
3.50  
4.50  
TXD = 0; RL = 50 to 65  
VO(D)  
V
CANL: Dominant   
Output Voltage  
0.50  
-400  
1.50  
0
2.25  
RL = 50 to 65  
Symmetry of Dominant   
Output Voltage  
(VDD – VCANH – VCANL)  
+400  
mV  
V
VTXD = VSS (Note 1)  
VO(D)(M)  
VO(DIFF)  
Dominant: Differential   
Output Voltage  
1.5  
2.0  
0
3.0  
12  
50  
VTXD = VSS; RL = 50 to 65  
Figure 2-2, Figure 2-4  
Recessive:   
Differential Output Voltage  
-120  
-500  
mV VTXD = VDD  
Figure 2-2, Figure 2-4  
0
mV VTXD = VDD no load.  
,
Figure 2-2, Figure 2-4  
Note 1: Characterized; not 100% tested.  
2: Only MCP2562FD has VIO pin. For the MCP2561FD, VIO is internally connected to VDD.  
3: -12V to 12V is ensured by characterization, tested from -2V to 7V.  
2014 Microchip Technology Inc.  
DS20005284A-page 9  
MCP2561/2FD  
2.3  
DC Characteristics (Continued)  
Electrical Characteristics: Extended (E): TAMB = -40°C to +125°C and High (H): TAMB = -40°C to +150°C;   
VDD = 4.5V to 5.5V, VIO = 1.8V to 5.5V (Note 2), RL = 60, CL = 100 pF; unless otherwise specified.  
Characteristic  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
CANH: Short Circuit   
Output Current  
IO(SC)  
-120  
85  
mA VTXD = VSS; VCANH = 0V;  
CANL: floating  
-100  
75  
mA same as above, but  
VDD=5V, TAMB = 25°C (Note 1)  
CANL: Short Circuit   
Output Current  
+120  
+100  
mA VTXD = VSS; VCANL = 18V;  
CANH: floating  
mA same as above, but  
VDD=5V, TAMB = 25°C (Note 1)  
BUS LINE (CANH; CANL) RECEIVER  
Recessive Differential   
Input Voltage  
VDIFF(R)(I)  
-1.0  
-1.0  
0.9  
1.0  
0.5  
0.4  
0.7  
+0.5  
+0.4  
VDD  
VDD  
0.9  
V
V
V
Normal Mode;  
-12V < V(CANH, CANL) < +12V;  
See Figure 2-6 (Note 3)  
Standby Mode;  
-12V < V(CANH, CANL) < +12V;  
See Figure 2-6 (Note 3)  
Dominant Differential   
Input Voltage  
VDIFF(D)(I)  
VTH(DIFF)  
Normal Mode;  
-12V < V(CANH, CANL) < +12V;  
See Figure 2-6 (Note 3)  
Standby Mode;  
-12V < V(CANH, CANL) < +12V;  
See Figure 2-6 (Note 3)  
Differential   
Receiver Threshold  
Normal Mode;  
-12V < V(CANH, CANL) < +12V;  
See Figure 2-6 (Note 3)  
1.15  
Standby Mode;  
-12V < V(CANH, CANL) < +12V;  
See Figure 2-6 (Note 3)  
Differential   
Input Hysteresis  
VHYS(DIFF)  
RIN  
50  
10  
-1  
0
200  
30  
mV Normal mode, see Figure 2-6,  
(Note 1)  
Common Mode   
Input Resistance  
k(Note 1)  
Common Mode   
Resistance Matching  
RIN(M)  
RIN(DIFF)  
CIN(CM)  
CIN(DIFF)  
ILI  
+1  
%
VCANH = VCANL, (Note 1)  
Differential Input   
Resistance  
10  
-5  
100  
20  
k(Note 1)  
Common Mode   
Input Capacitance  
pF VTXD = VDD; (Note 1)  
VTXD = VDD; (Note 1)  
Differential   
Input Capacitance  
10  
CANH, CANL:   
Input Leakage  
+5  
µA VDD = VTXD = VSTBY = 0V.  
For MCP2562FD, VIO = 0V.  
VCANH = VCANL = 5 V.  
Note 1: Characterized; not 100% tested.  
2: Only MCP2562FD has VIO pin. For the MCP2561FD, VIO is internally connected to VDD.  
3: -12V to 12V is ensured by characterization, tested from -2V to 7V.  
DS20005284A-page 10  
2014 Microchip Technology Inc.  
MCP2561/2FD  
2.3  
DC Characteristics (Continued)  
Electrical Characteristics: Extended (E): TAMB = -40°C to +125°C and High (H): TAMB = -40°C to +150°C;   
VDD = 4.5V to 5.5V, VIO = 1.8V to 5.5V (Note 2), RL = 60, CL = 100 pF; unless otherwise specified.  
Characteristic  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
COMMON MODE STABILIZATION OUTPUT (SPLIT)  
Output Voltage  
Vo  
IL  
0.3VDD 0.5VDD 0.7VDD  
0.45VDD 0.5VDD 0.55VDD  
V
V
Normal mode;   
ISPLIT = -500 µA to +500 µA  
Normal mode; RL 1 M  
Leakage Current  
-5  
+5  
µA Standby mode;   
VSPLIT = -24V to + 24V   
(ISO 11898: -12V ~ +12V)  
DIGITAL INPUT PINS (TXD, STBY)  
High-Level Input Voltage  
VIH  
VIL  
0.7VIO  
-0.3  
-1  
VIO + 0.3  
0.3VIO  
+1  
V
Low-Level Input Voltage  
V
High-Level Input Current  
IIH  
µA  
µA  
µA  
TXD: Low-Level Input Current  
STBY: Low-Level Input Current  
IIL(TXD)  
IIL(STBY)  
-270  
-30  
-150  
-30  
-1  
RECEIVE DATA (RXD) OUTPUT  
High-Level Output Voltage  
VOH  
VDD - 0.4  
VIO - 0.4  
V
IOH = -2 mA (MCP2561FD);  
typical -4 mA  
IOH = -1 mA (MCP2562FD);  
typical -2 mA  
Low-Level Output Voltage  
VOL  
0.4  
V
IOL = 4 mA; typical 8 mA  
THERMAL SHUTDOWN  
Shutdown   
Junction Temperature  
TJ(SD)  
165  
20  
175  
185  
30  
°C -12V < V(CANH, CANL) < +12V,  
(Note 1)  
Shutdown   
Temperature Hysteresis  
TJ(HYST)  
°C -12V < V(CANH, CANL) < +12V,  
(Note 1)  
Note 1: Characterized; not 100% tested.  
2: Only MCP2562FD has VIO pin. For the MCP2561FD, VIO is internally connected to VDD.  
3: -12V to 12V is ensured by characterization, tested from -2V to 7V.  
2014 Microchip Technology Inc.  
DS20005284A-page 11  
MCP2561/2FD  
FIGURE 2-2:  
PHYSICAL BIT REPRESENTATION AND SIMPLIFIED BIAS IMPLEMENTATION  
Normal Mode  
CANH  
Standby Mode  
SPLIT  
SPLIT  
floating  
CANL  
Recessive  
Dominant  
Recessive  
Time  
V
DD  
CANH  
Normal  
VDD/2  
R
XD  
Standby  
Mode  
CANL  
DS20005284A-page 12  
2014 Microchip Technology Inc.  
MCP2561/2FD  
2.4  
AC Characteristics  
Electrical Characteristics: Extended (E): TAMB = -40°C to +125°C and High (H): TAMB = -40°C to +150°C;   
VDD = 4.5V to 5.5V, VIO = 1.8V to 5.5V (Note 2), RL = 60CL = 100 pF; unless otherwise specified.  
Param.  
No.  
Sym  
Characteristic  
Min Typ  
Max Units  
Conditions  
1
2
3
4
5
6
7
tBIT  
fBIT  
Bit Time  
Bit Frequency  
0.2  
14.4  
69.44  
µs  
5000 kHz  
tTXD-BUSON Delay TXD Low to Bus Dominant  
tTXD-BUSOFF Delay TXD High to Bus Recessive  
tBUSON-RXD Delay Bus Dominant to RXD  
tBUSOFF-RXD Delay Bus Recessive to RXD  
65  
90  
60  
65  
90  
120  
ns  
ns  
ns  
ns  
ns  
ns  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
tTXD - RXD  
Propagation Delay TXD to RXD  
120  
180  
RL = 120CL = 200 pF,  
(Note 1)  
8a  
450 485  
400 460  
550  
550  
tBIT(TXD) = 500 ns,  
see Figure 2-10  
tBIT(RXD),2M Recessive bit time on RXD -  
2 Mbps, Loop Delay Symmetry  
ns  
ns  
tBIT(TXD) = 500 ns,  
see Figure 2-10,   
RL = 120CL = 200 pF,  
(Note 1)  
8b  
8c  
160 185  
220  
140  
tBIT(TXD) = 200 ns,  
see Figure 2-10  
tBIT(RXD),5M Recessive bit time on RXD -  
5 Mbps, Loop Delay Symmetry  
ns  
ns  
85  
105  
tBIT(TXD) = 120 ns,  
see Figure 2-10  
(Note 1)  
tBIT(RXD),8M Recessive bit time on RXD -  
8 Mbps, Loop Delay Symmetry  
9
tFLTR(WAKE) Delay Bus Dominant to RXD   
0.5  
5
1
4
µs Standby mode  
µs Negative edge on STBY  
ms TXD = 0V  
(Standby mode)  
10  
tWAKE  
Delay Standby   
25  
40  
to Normal Mode  
11  
12  
tPDT  
Permanent Dominant Detect Time  
Permanent Dominant Timer Reset  
1.25  
100  
tPDTR  
ns  
The shortest Recessive  
pulse on TXD or CAN bus  
to reset Permanent  
Dominant Timer  
Note 1: Characterized, not 100% tested.  
FIGURE 2-3:  
TEST LOAD CONDITIONS  
Load Condition 1  
Load Condition 2  
VDD/2  
RL  
CL  
CL  
Pin  
Pin  
RL = 464   
VSS  
VSS  
CL = 50 pF for all digital pins  
2014 Microchip Technology Inc.  
DS20005284A-page 13  
MCP2561/2FD  
FIGURE 2-4:  
TEST CIRCUIT FOR ELECTRICAL CHARACTERISTICS  
0.1 µF  
VDD  
CANH  
RL  
TXD  
SPLIT  
CAN  
Transceiver  
CL  
RXD  
CANL  
15 pF  
STBY  
GND  
Note: On MCP2562FD, VIO is connected to VDD.  
FIGURE 2-5:  
TEST CIRCUIT FOR AUTOMOTIVE TRANSIENTS  
500 pF  
CANH  
TXD  
Transient  
Generator  
CAN  
Transceiver  
SPLIT  
RXD  
RL  
CANL  
500 pF  
STBY  
GND  
Note 1: On MCP2562FD, VIO is connected to VDD.  
2: The wave forms of the applied transients shall be in accordance with ISO-7637,  
Part 1, test pulses 1, 2, 3a and 3b.  
FIGURE 2-6:  
HYSTERESIS OF THE RECEIVER  
RXD (receive data  
output voltage)  
VOH  
VOL  
VDIFF (r)(i)  
VDIFF (d)(i)  
VDIFF (h)(i)  
VDIFF (V)  
0.5  
0.9  
DS20005284A-page 14  
2014 Microchip Technology Inc.  
MCP2561/2FD  
2.5  
Timing Diagrams and Specifications  
TIMING DIAGRAM FOR AC CHARACTERISTICS  
FIGURE 2-7:  
VDD  
0V  
TXD (transmit data  
input voltage)  
VDIFF (CANH,  
CANL differential  
voltage)  
RXD (receive data  
output voltage)  
3
5
6
7
4
7
FIGURE 2-8:  
TIMING DIAGRAM FOR WAKEUP FROM STANDBY  
VSTBY  
Input Voltage  
VDD  
0V  
VDD/2  
VCANH/VCANL  
0
VTXD = VDD  
10  
FIGURE 2-9:  
PERMANENT DOMINANT TIMER RESET DETECT  
Minimum pulse width until CAN bus goes to Dominant state after the falling edge.  
TXD  
VDIFF (VCANH-VCANL)  
Driver is off  
11  
12  
2014 Microchip Technology Inc.  
DS20005284A-page 15  
MCP2561/2FD  
FIGURE 2-10:  
TIMING DIAGRAM FOR LOOP DELAY SYMMETRY  
TXD  
5*tBIT(TXD)  
tBIT(TXD)  
RXD  
8
tBIT(RXD)  
Note:  
The bit time of a recessive bit after five dominant bits is measured on the RXD pin. Due  
to asymmetry of the loop delay, and the CAN transceiver not being a push pull driver,  
the recessive bits tend to shorten.  
2.6  
Thermal Specifications  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Test Conditions  
Temperature Ranges  
Specified Temperature Range  
TA  
-40  
-40  
-40  
-65  
+125  
+150  
+150  
+155  
C  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 8L-DFN 3x3  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
TA  
TA  
C  
C  
JA  
JA  
JA  
56.7  
89.3  
C/W  
C/W  
C/W  
149.5  
DS20005284A-page 16  
2014 Microchip Technology Inc.  
MCP2561/2FD  
3.0  
3.1  
PACKAGING INFORMATION  
Package Marking Information  
8-Lead DFN (3x3 mm)  
Example:  
Part Number  
Code  
MCP2561FD-E/MF  
MCP2561FDT-E/MF  
MCP2561FD-H/MF  
MCP2561FDT-H/MF  
MCP2562FD-E/MF  
MCP2562FDT-E/MF  
MCP2562FD-H/MF  
MCP2562FDT-H/MF  
DADY  
DADY  
DADZ  
DADZ  
DAEA  
DAEA  
DAEB  
DAEB  
DADY  
1307  
256  
8-Lead PDIP (300 mil)  
Example:  
XXXXXXXX  
XXXXXNNN  
YYWW  
2561FD  
OR  
2561FD  
E/P ^256  
1307  
e
3
e
3
H/P ^256  
1307  
8-Lead SOIC (150 mil)  
Example:  
OR  
2561FDE  
2561FDH  
e
3
SN 1246  
e3  
SN 1246  
256  
256  
NNN  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (   
e
3
can be found on the outer packaging for this package.  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2014 Microchip Technology Inc.  
DS20005284A-page 17  
MCP2561/2FD  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20005284A-page 18  
2014 Microchip Technology Inc.  
MCP2561/2FD  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2014 Microchip Technology Inc.  
DS20005284A-page 19  
MCP2561/2FD  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20005284A-page 20  
2014 Microchip Technology Inc.  
MCP2561/2FD  
8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
A
N
B
E1  
NOTE 1  
1
2
TOP VIEW  
E
A2  
A
C
PLANE  
L
c
A1  
e
eB  
8X b1  
8X b  
.010  
C
SIDE VIEW  
END VIEW  
Microchip Technology Drawing No. C04-018D Sheet 1 of 2  
2014 Microchip Technology Inc.  
DS20005284A-page 21  
MCP2561/2FD  
8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
ALTERNATE LEAD DESIGN  
(VENDOR DEPENDENT)  
DATUM A  
DATUM A  
b
b
e
2
e
2
e
e
Units  
Dimension Limits  
INCHES  
NOM  
8
.100 BSC  
-
MIN  
MAX  
Number of Pins  
Pitch  
N
e
A
Top to Seating Plane  
-
.210  
.195  
-
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
Tip to Seating Plane  
Lead Thickness  
Upper Lead Width  
A2  
A1  
E
E1  
D
L
c
b1  
b
eB  
.115  
.015  
.290  
.240  
.348  
.115  
.008  
.040  
.014  
-
.130  
-
.310  
.250  
.365  
.130  
.010  
.060  
.018  
-
.325  
.280  
.400  
.150  
.015  
.070  
.022  
.430  
Lower Lead Width  
Overall Row Spacing  
§
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or  
protrusions shall not exceed .010" per side.  
4. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing No. C04-018D Sheet 2 of 2  
DS20005284A-page 22  
2014 Microchip Technology Inc.  
MCP2561/2FD  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2014 Microchip Technology Inc.  
DS20005284A-page 23  
MCP2561/2FD  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20005284A-page 24  
2014 Microchip Technology Inc.  
MCP2561/2FD  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢍꢓꢔꢆꢕꢆꢓꢄꢖꢖꢗꢘꢙꢆꢚꢛꢜꢝꢆꢎꢎꢆꢞꢗꢅꢟꢆꢠꢍꢏꢡꢢꢣ  
ꢓꢗꢊꢃꢤ ꢀꢁꢂꢃꢄꢅꢆꢃ!ꢁ"ꢄꢃꢇ#ꢂꢂꢆꢈꢄꢃꢉꢊꢇ$ꢊꢋꢆꢃ%ꢂꢊ&ꢌꢈꢋ"'ꢃꢉꢍꢆꢊ"ꢆꢃ"ꢆꢆꢃꢄꢅꢆꢃꢎꢌꢇꢂꢁꢇꢅꢌꢉꢃ(ꢊꢇ$ꢊꢋꢌꢈꢋꢃꢏꢉꢆꢇꢌ)ꢌꢇꢊꢄꢌꢁꢈꢃꢍꢁꢇꢊꢄꢆ%ꢃꢊꢄꢃ  
ꢅꢄꢄꢉ*++&&&ꢐ!ꢌꢇꢂꢁꢇꢅꢌꢉꢐꢇꢁ!+ꢉꢊꢇ$ꢊꢋꢌꢈꢋ  
2014 Microchip Technology Inc.  
DS20005284A-page 25  
MCP2561/2FD  
NOTES:  
DS20005284A-page 26  
2014 Microchip Technology Inc.  
MCP2561/2FD  
APPENDIX A: REVISION HISTORY  
Revision A (March 2014)  
Original Release of this Document.  
2014 Microchip Technology Inc.  
DS20005284A-page 27  
MCP2561/2FD  
NOTES:  
DS20005284A-page 28  
2014 Microchip Technology Inc.  
MCP2561/2FD  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, contact the factory or one of the sales offices listed on the back page.  
PART NO.  
Device  
-X  
/XX  
Examples:  
Temperature  
Range  
Package  
a) MCP2561FD-E/MF:Extended Temperature,  
8LD 3x3 DFN package.  
b) MCP2561FDT-E/MF:Tape and Reel,  
Extended Temperature,  
Device:  
MCP2561FD:High-Speed CAN Transceiver with SPLIT  
MCP2561FDT:High-Speed CAN Transceiver with SPLIT  
(Tape and Reel) (DFN and SOIC only)  
MCP2562FD:High-Speed CAN Transceiver with VIO  
MCP2562FDT:High-Speed CAN Transceiver with VIO  
(Tape and Reel) (DFN and SOIC only)  
8LD 3x3 DFN package.  
c) MCP2561FD-E/P: Extended Temperature,  
8LD PDIP package.  
d) MCP2561FD-E/SN:Extended Temperature,  
8LD SOIC package.  
e) MCP2561FDT-E/SN:Tape and Reel,  
Extended Temperature,  
Temperature  
Range:  
E
H
=
=
-40°C to +125°C (Extended)  
-40°C to +150°C (High)  
8LD SOIC package.  
a) MCP2561FD-H/MF:High Temperature,  
8LD 3x3 DFN package.  
Package:  
MF = Plastic Dual Flat, No Lead Package -  
3x3x0.9 mm Body, 8-lead  
b) MCP2561FDT-H/MF:Tape and Reel,  
High Temperature,  
P
= Plastic Dual In-Line - 300 mil Body, 8-lead  
8LD 3x3 DFN package.  
SN = Plastic Small Outline - Narrow, 3.90 mm Body,   
8-lead  
c) MCP2561FD-H/P:High Temperature,  
8LD PDIP package.  
d) MCP2561FD-H/SN:High Temperature,  
8LD SOIC package.  
e) MCP2561FDT-H/SN:Tape and Reel,  
High Temperature,  
8LD SOIC package.  
2014 Microchip Technology Inc.  
DS20005284A-page 29  
MCP2561/2FD  
NOTES:  
DS20005284A-page 30  
2014 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, PIC logo, rfPIC, SST, SST Logo, SuperFlash  
and UNI/O are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
32  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MTP, SEEVAL and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
Analog-for-the-Digital Age, Application Maestro, BodyCom,  
chipKIT, chipKIT logo, CodeGuard, dsPICDEM,  
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O,  
Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA  
and Z-Scale are trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
GestIC and ULPP are registered trademarks of Microchip  
Technology Germany II GmbH & Co. KG, a subsidiary of  
Microchip Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2014, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-63276-020-3  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2014 Microchip Technology Inc.  
DS20005284A-page 31  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-3019-1500  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Germany - Dusseldorf  
Tel: 49-2129-3766400  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Austin, TX  
Tel: 512-257-3370  
Germany - Pforzheim  
Tel: 49-7231-424750  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Korea - Seoul  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Italy - Venice  
Tel: 39-049-7625286  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
Poland - Warsaw  
Tel: 48-22-3325737  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Houston, TX  
Tel: 281-894-5983  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
Los Angeles  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
New York, NY  
Tel: 631-435-6000  
San Jose, CA  
Tel: 408-735-9110  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Canada - Toronto  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
03/25/14  
DS20005284A-page 32  
2014 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY