MCP3201T-CI/ST [MICROCHIP]

2.7V 12-Bit A/D Converter with SPI Serial Interface; 2.7V 12位A / D转换器,带有SPI串行接口
MCP3201T-CI/ST
型号: MCP3201T-CI/ST
厂家: MICROCHIP    MICROCHIP
描述:

2.7V 12-Bit A/D Converter with SPI Serial Interface
2.7V 12位A / D转换器,带有SPI串行接口

转换器 模数转换器 光电二极管
文件: 总36页 (文件大小:685K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP3201  
2.7V 12-Bit A/D Converter with SPI Serial Interface  
Features  
Description  
• 12-bit resolution  
The Microchip Technology Inc. MCP3201 device is a  
successive approximation 12-bit Analog-to-Digital  
(A/D) Converter with on-board sample and hold  
circuitry. The device provides a single pseudo-differen-  
tial input. Differential Nonlinearity (DNL) is specified at  
±1 LSB, and Integral Nonlinearity (INL) is offered in  
±1 LSB (MCP3201-B) and ±2 LSB (MCP3201-C)  
versions. Communication with the device is done using  
a simple serial interface compatible with the SPI  
protocol. The device is capable of sample rates of up to  
100 ksps at a clock rate of 1.6 MHz. The MCP3201  
device operates over a broad voltage range (2.7V -  
5.5V). Low-current design permits operation with  
typical standby and active currents of only 500 nA and  
300 µA, respectively. The device is offered in 8-pin  
MSOP, PDIP, TSSOP and 150 mil SOIC packages.  
• ±1 LSB max DNL  
• ±1 LSB max INL (MCP3201-B)  
• ±2 LSB max INL (MCP3201-C)  
• On-chip sample and hold  
• SPI serial interface (modes 0,0 and 1,1)  
• Single supply operation: 2.7V - 5.5V  
• 100 ksps maximum sampling rate at VDD = 5V  
• 50 ksps maximum sampling rate at VDD = 2.7V  
• Low power CMOS technology  
• 500 nA typical standby current, 2 µA maximum  
• 400 µA maximum active current at 5V  
• Industrial temp range: -40°C to +85°C  
• 8-pin MSOP, PDIP, SOIC and TSSOP packages  
Package Types  
Applications  
• Sensor Interface  
MSOP, PDIP, SOIC, TSSOP  
• Process Control  
• Data Acquisition  
VREF  
1
8
VDD  
• Battery Operated Systems  
IN+  
IN–  
VSS  
2
3
4
7
6
5
CLK  
Functional Block Diagram  
DOUT  
CS/SHDN  
V
V
SS  
DD  
V
REF  
DAC  
Comparator  
12-Bit SAR  
IN+  
IN-  
Sample  
and  
Hold  
Shift  
Register  
Control Logic  
CS/SHDN CLK  
D
OUT  
© 2008 Microchip Technology Inc.  
DS21290E-page 1  
MCP3201  
NOTES:  
DS21290E-page 2  
© 2008 Microchip Technology Inc.  
MCP3201  
†Notice: Stresses above those listed under “Maximum  
ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
1.1  
ELECTRICAL  
CHARACTERISTICS  
Maximum Ratings†  
VDD...................................................................................7.0V  
All inputs and outputs w.r.t. VSS ................ -0.6V to VDD +0.6V  
Storage temperature .....................................-65°C to +150°C  
Ambient temp. with power applied................-65°C to +125°C  
ESD protection on all pins (HBM) .................................> 4 kV  
ELECTRICAL CHARACTERISTICS  
Electrical Specifications: All parameters apply at VDD = 5V, VSS = 0V, VREF = 5V, TA = -40°C to +85°C, fSAMPLE = 100 ksps, and  
fCLK = 16*fSAMPLE, unless otherwise noted.  
Parameter  
Conversion Rate:  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Conversion Time  
tCONV  
1.5  
12  
clock  
cycles  
Analog Input Sample Time  
Throughput Rate  
tSAMPLE  
fSAMPLE  
clock  
cycles  
100  
50  
ksps  
ksps  
VDD = VREF = 5V  
DD = VREF = 2.7V  
V
DC Accuracy:  
Resolution  
12  
bits  
Integral Nonlinearity  
INL  
±0.75  
±1  
±1  
±2  
LSB  
LSB  
MCP3201-B  
MCP3201-C  
Differential Nonlinearity  
DNL  
±0.5  
±1  
LSB  
No missing codes over  
temperature  
Offset Error  
±1.25  
±1.25  
±3  
±5  
LSB  
LSB  
Gain Error  
Dynamic Performance:  
Total Harmonic Distortion  
THD  
-82  
72  
dB  
dB  
VIN = 0.1V to 4.9V@1 kHz  
VIN = 0.1V to 4.9V@1 kHz  
Signal to Noise and Distortion  
(SINAD)  
SINAD  
Spurious Free Dynamic Range  
Reference Input:  
Voltage Range  
SFDR  
86  
dB  
VIN = 0.1V to 4.9V@1 kHz  
0.25  
VDD  
V
Note 2  
Current Drain  
100  
.001  
150  
3
µA  
µA  
CS = VDD = 5V  
Analog Inputs:  
Input Voltage Range (IN+)  
Input Voltage Range (IN-)  
Leakage Current  
IN+  
IN-  
IN-  
VSS-100  
VREF+IN-  
V
mV  
µA  
W
VSS+100  
0.001  
1K  
±1  
Switch Resistance  
RSS  
See Figure 4-1  
See Figure 4-1  
Sample Capacitor  
CSAMPLE  
20  
pF  
Digital Input/Output:  
Data Coding Format  
High Level Input Voltage  
Low Level Input Voltage  
Straight Binary  
VIH  
VIL  
0.7 VDD  
V
V
0.3 VDD  
Note 1: This parameter is established by characterization and not 100% tested.  
2: See graph that relates linearity performance to VREF level.  
3: Because the sample cap will eventually lose charge, effective clock rates below 10 kHz can affect linearity performance,  
especially at elevated temperatures. See Section 6.2 “Maintaining Minimum Clock Speed” for more information.  
© 2008 Microchip Technology Inc.  
DS21290E-page 3  
MCP3201  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: All parameters apply at VDD = 5V, VSS = 0V, VREF = 5V, TA = -40°C to +85°C, fSAMPLE = 100 ksps, and  
fCLK = 16*fSAMPLE, unless otherwise noted.  
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
Output Leakage Current  
VOH  
VOL  
4.1  
0.4  
10  
10  
10  
V
IOH = -1 mA, VDD = 4.5V  
IOL = 1 mA, VDD = 4.5V  
VIN = VSS or VDD  
V
ILI  
-10  
-10  
µA  
µA  
pF  
ILO  
VOUT = VSS or VDD  
Pin Capacitance  
CIN, COUT  
VDD = 5.0V (Note 1)  
(all inputs/outputs)  
TA = +25°C, f = 1 MHz  
Timing Parameters:  
Clock Frequency  
fCLK  
1.6  
0.8  
MHz  
MHz  
VDD = 5V (Note 3)  
V
DD = 2.7V (Note 3)  
Clock High Time  
tHI  
tLO  
tSUCS  
tDO  
312  
312  
100  
ns  
ns  
ns  
ns  
ns  
ns  
Clock Low Time  
CS Fall To First Rising CLK Edge  
CLK Fall To Output Data Valid  
CLK Fall To Output Enable  
CS Rise To Output Disable  
200  
200  
100  
See Test Circuits, Figure 1-2  
See Test Circuits, Figure 1-2  
tEN  
tDIS  
See Test Circuits, Figure 1-2  
(Note 1)  
CS Disable Time  
DOUT Rise Time  
tCSH  
tR  
625  
ns  
ns  
100  
See Test Circuits, Figure 1-2  
(Note 1)  
DOUT Fall Time  
tF  
100  
5.5  
ns  
V
See Test Circuits, Figure 1-2  
(Note 1)  
Power Requirements:  
Operating Voltage  
Operating Current  
VDD  
IDD  
2.7  
300  
210  
400  
µA  
µA  
VDD = 5.0V, DOUT unloaded  
V
DD = 2.7V, DOUT unloaded  
Standby Current  
IDDS  
0.5  
2
µA  
CS = VDD = 5.0V  
Note 1: This parameter is established by characterization and not 100% tested.  
2: See graph that relates linearity performance to VREF level.  
3: Because the sample cap will eventually lose charge, effective clock rates below 10 kHz can affect linearity performance,  
especially at elevated temperatures. See Section 6.2 “Maintaining Minimum Clock Speed” for more information.  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = +2.7V to +5.5V, VSS = GND.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 8L-TSSOP  
TA  
TA  
TA  
-40  
-40  
-65  
+85  
+85  
°C  
°C  
°C  
+150  
θJA  
θJA  
θJA  
θJA  
211  
89.5  
149.5  
139  
°C/W  
°C/W  
°C/W  
°C/W  
DS21290E-page 4  
© 2008 Microchip Technology Inc.  
MCP3201  
tCSH  
CS  
tSUCS  
tHI  
tLO  
CLK  
tEN  
tDO  
tDIS  
tR  
tF  
HI-Z  
HI-Z  
LSB  
DOUT  
MSB OUT  
NULL BIT  
FIGURE 1-1:  
Serial Timing.  
Load circuit for tDIS and tEN  
Load circuit for tR, tF, tDO  
1.4V  
Test Point  
VDD  
tDIS Waveform 2  
3 k  
Test Point  
VDD/2  
3 kΩ  
DOUT  
tEN Waveform  
DOUT  
30 pF  
t
DIS Waveform 1  
CL = 30 pF  
VSS  
Voltage Waveforms for tR, tF  
Voltage Waveforms for tEN  
VOH  
VOL  
DOUT  
CS  
tF  
tR  
1
2
3
4
CLK  
B9  
DOUT  
tEN  
Voltage Waveforms for tDO  
Voltage Waveforms for tDIS  
VIH  
CS  
DOUT  
CLK  
90%  
tDO  
Waveform 1*  
tDIS  
DOUT  
10%  
DOUT  
Waveform 2†  
* Waveform 1 is for an output with internal condi-  
tions such that the output is high, unless disabled  
by the output control.  
† Waveform 2 is for an output with internal condi-  
tions such that the output is low, unless disabled  
by the output control.  
FIGURE 1-2:  
Test Circuits.  
© 2008 Microchip Technology Inc.  
DS21290E-page 5  
MCP3201  
NOTES:  
DS21290E-page 6  
© 2008 Microchip Technology Inc.  
MCP3201  
2.0  
TYPICAL PERFORMANCE CHARACTERISTICS  
Note: The graphs provided following this note are a statistical summary based on a limited number of samples  
and are provided for informational purposes only. The performance characteristics listed herein are not  
tested or guaranteed. In some graphs, the data presented may be outside the specified operating range  
(e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100 ksps, fCLK = 16*fSAMPLE, TA = +25°C.  
1.0  
0.8  
0.6  
0.4  
0.2  
2.0  
1.5  
VDD = VREF = 2.7V  
Positive INL  
Negative INL  
1.0  
Positive INL  
0.5  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.5  
-1.0  
-1.5  
-2.0  
Negative INL  
0
25  
50  
75  
100  
125  
150  
0
20  
40  
60  
80  
100  
Sample Rate (ksps)  
Sample Rate (ksps)  
FIGURE 2-1:  
Integral Nonlinearity (INL)  
FIGURE 2-4:  
Integral Nonlinearity (INL)  
vs. Sample Rate.  
vs. Sample Rate (V = 2.7V).  
DD  
2.0  
1.5  
2.0  
1.5  
VDD = 2.7V  
FSAMPLE = 50 ksps  
1.0  
0.5  
Positive INL  
1.0  
Positive INL  
0.5  
0.0  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
Negative INL  
Negative INL  
0
1
2
3
4
5
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
VREF (V)  
VREF (V)  
FIGURE 2-2:  
Integral Nonlinearity (INL)  
FIGURE 2-5:  
Integral Nonlinearity (INL)  
vs. V  
vs. V  
(V = 2.7V).  
REF.  
REF  
DD  
1.0  
0.8  
1.0  
0.8  
0.6  
0.4  
0.2  
VDD = VREF = 2.7V  
FSAMPLE = 50 ksps  
0.6  
0.4  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
512 1024 1536 2048 2560 3072 3584 4096  
0
512 1024 1536 2048 2560 3072 3584 4096  
Digital Code  
Digital Code  
FIGURE 2-3:  
Integral Nonlinearity (INL)  
FIGURE 2-6:  
Integral Nonlinearity (INL)  
vs. Code (Representative Part).  
vs. Code (Representative Part, V = 2.7V).  
DD  
© 2008 Microchip Technology Inc.  
DS21290E-page 7  
MCP3201  
Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100 ksps, fCLK = 16*fSAMPLE, TA = +25°C.  
1.0  
0.8  
1.0  
0.8  
VDD = VREF = 2.7V  
FSAMPLE = 50 ksps  
Positive INL  
Positive INL  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
Negative INL  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
Negative INL  
25  
-50  
-25  
0
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-7:  
Integral Nonlinearity (INL)  
FIGURE 2-10:  
Integral Nonlinearity (INL)  
vs. Temperature.  
vs. Temperature (V = 2.7V).  
DD  
1.0  
0.8  
0.6  
2.0  
VDD = VREF = 2.7V  
1.5  
1.0  
0.4  
0.2  
Positive DNL  
Positive DNL  
0.5  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.5  
-1.0  
-1.5  
-2.0  
Negative DNL  
Negative DNL  
0
25  
50  
75  
100  
125  
150  
0
20  
40  
60  
80  
100  
Sample Rate (ksps)  
Sample Rate (ksps)  
FIGURE 2-8:  
Differential Nonlinearity  
FIGURE 2-11:  
Differential Nonlinearity  
(DNL) vs. Sample Rate.  
(DNL) vs. Sample Rate (V = 2.7V).  
DD  
3.0  
2.0  
3.0  
VDD = 2.7V  
FSAMPLE = 50 ksps  
2.0  
1.0  
Positive DNL  
1.0  
0.0  
Positive DNL  
Negative DNL  
0.0  
-1.0  
-2.0  
-3.0  
Negative DNL  
-1.0  
-2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
1
2
3
4
5
VREF(V)  
VREF (V)  
FIGURE 2-9:  
(DNL) vs. V  
Differential Nonlinearity  
FIGURE 2-12:  
(DNL) vs. V  
Differential Nonlinearity  
(V = 2.7V).  
.
REF  
REF  
DD  
DS21290E-page 8  
© 2008 Microchip Technology Inc.  
MCP3201  
Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100 ksps, fCLK = 16*fSAMPLE, TA = +25°C.  
1.0  
1.0  
0.8  
0.6  
VDD = VREF = 2.7V  
0.8  
0.6  
FSAMPLE = 50 ksps  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
512 1024 1536 2048 2560 3072 3584 4096  
Digital Code  
0
512 1024 1536 2048 2560 3072 3584 4096  
Digital Code  
FIGURE 2-13:  
Differential Nonlinearity  
FIGURE 2-16:  
Differential Nonlinearity  
(DNL) vs. Code (Representative Part).  
(DNL) vs. Code (Representative Part,  
V
= 2.7V).  
DD  
1.0  
1.0  
0.8  
0.6  
VDD = 2.7V  
SAMPLE = 50ksps  
0.8  
0.6  
F
Positive DNL  
Negative DNL  
0.4  
0.4  
0.2  
Positive DNL  
Negative DNL  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-14:  
Differential Nonlinearity  
FIGURE 2-17:  
Differential Nonlinearity  
(DNL) vs. Temperature.  
(DNL) vs. Temperature (V = 2.7V).  
DD  
20  
18  
5
4
16  
14  
12  
10  
8
VDD = 5V  
SAMPLE = 100 ksps  
VDD = 2.7V  
3
F
FSAMPLE = 50 ksps  
2
1
VDD = 2.7V  
FSAMPLE = 50ksps  
6
0
VDD = 5V  
SAMPLE = 100 ksps  
4
-1  
-2  
F
2
0
0
1
2
3
4
5
0
1
2
3
4
5
VREF(V)  
VREF (V)  
FIGURE 2-15:  
Gain Error vs. V  
.
FIGURE 2-18:  
Offset Error vs. V  
.
REF  
REF  
© 2008 Microchip Technology Inc.  
DS21290E-page 9  
MCP3201  
Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100 ksps, fCLK = 16*fSAMPLE, TA = +25°C.  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
VDD = VREF = 5V  
FSAMPLE = 100 ksps  
VDD = VREF = 2.7V  
SAMPLE = 50 ksps  
F
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
VDD = VREF = 2.7V  
FSAMPLE = 50 ksps  
VDD = VREF = 5V  
SAMPLE = 100 ksps  
F
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-19:  
Gain Error vs. Temperature.  
FIGURE 2-22:  
Offset Error vs.  
Temperature.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD = VREF = 5V  
SAMPLE = 100 ksps  
VDD = VREF = 5V  
F
FSAMPLE = 100 ksps  
VDD = VREF = 2.7V  
VDD = VREF = 2.7V  
SAMPLE = 50 ksps  
FSAMPLE = 50 ksps  
F
1
10  
Input Frequency (kHz)  
100  
1
10  
100  
Input Frequency (kHz)  
FIGURE 2-20:  
Signal-to-Noise Ratio (SNR)  
FIGURE 2-23:  
Signal-to-Noise and  
vs. Input Frequency.  
Distortion (SINAD) vs. Input Frequency.  
0
-10  
-20  
-30  
80  
VDD = VREF = 5V  
SAMPLE = 100 ksps  
70  
F
60  
50  
40  
30  
20  
10  
0
VDD = VREF = 2.7V  
FSAMPLE = 50 ksps  
-40  
-50  
VDD = VREF = 2.7V  
SAMPLE = 50 ksps  
F
-60  
-70  
-80  
VDD = VREF = 5V, FSAMPLE = 100 ksps  
-90  
-100  
-40  
-35  
-30  
-25  
-20  
-15  
-10  
-5  
0
1
10  
100  
Input Signal Level (dB)  
Input Frequency (kHz)  
FIGURE 2-21:  
Total Harmonic Distortion  
FIGURE 2-24:  
Signal-to-Noise and  
(THD) vs. Input Frequency.  
Distortion (SINAD) vs. Input Signal Level.  
DS21290E-page 10  
© 2008 Microchip Technology Inc.  
MCP3201  
Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100 ksps, fCLK = 16*fSAMPLE, TA = +25°C.  
12.0  
12.00  
11.75  
11.50  
11.25  
11.00  
10.75  
10.50  
10.25  
10.00  
9.75  
VDD = 5V  
11.5  
11.0  
10.5  
10.0  
9.5  
FSAMPLE = 100 ksps  
VDD = VREF = 5V  
FSAMPLE =100 ksps  
VDD = VREF = 2.7V  
FSAMPLE = 50 ksps  
9.0  
VDD = 2.7V  
9.50  
9.25  
8.5  
FSAMPLE = 50 ksps  
9.00  
8.0  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
1
10  
100  
VREF (V)  
Input Frequency (kHz)  
FIGURE 2-25:  
Effective Number of Bits  
FIGURE 2-28:  
Effective Number of Bits  
(ENOB) vs. V  
.
(ENOB) vs. Input Frequency.  
REF  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD = VREF = 5V, FSAMPLE = 100 ksps  
VDD = VREF = 2.7V  
SAMPLE = 50 ksps  
F
1
10  
100  
1000  
10000  
1
10  
Input Frequency (kHz)  
100  
Ripple Frequency (kHz)  
FIGURE 2-26:  
Spurious Free Dynamic  
FIGURE 2-29:  
Power Supply Rejection  
Range (SFDR) vs. Input Frequency.  
(PSR) vs. Ripple Frequency.  
0
-10  
-20  
-30  
-40  
0
-10  
-20  
-30  
-40  
VDD = VREF = 2.7V  
FSAMPLE = 50 ksps  
FINPUT = 998.76 Hz  
4096 points  
VDD = VREF = 5V  
FSAMPLE = 100 ksps  
FINPUT = 9.985kHz  
4096 points  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
0
10000  
20000  
30000  
40000  
50000  
0
5000  
10000  
15000  
20000  
25000  
Frequency (Hz)  
Frequency (Hz)  
FIGURE 2-27:  
Frequency Spectrum of  
FIGURE 2-30:  
Frequency Spectrum of  
10 kHz input (Representative Part).  
1 kHz input (Representative Part, V = 2.7V).  
DD  
© 2008 Microchip Technology Inc.  
DS21290E-page 11  
MCP3201  
Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100 ksps, fCLK = 16*fSAMPLE, TA = +25°C.  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VREF = VDD  
All points at FCLK = 1.6 MHz, except  
at VREF = VDD = 2.5V, FCLK = 800 kHz  
VREF = VDD  
All points at FCLK = 1.6 MHz, except  
at VREF = VDD = 2.5V, FCLK = 800 kHz  
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
VDD (V)  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
6.0  
FIGURE 2-31:  
I
vs. V  
.
FIGURE 2-34:  
I
vs. V  
.
DD  
DD  
DD  
REF  
100  
90  
80  
70  
60  
50  
40  
30  
20  
400  
350  
300  
250  
200  
150  
100  
50  
VDD = VREF = 5V  
VDD = VREF = 5V  
VDD = VREF = 2.7V  
VDD = VREF = 2.7V  
10  
0
0
10  
100  
1000  
10000  
10  
100  
1000  
10000  
Clock Frequency (kHz)  
Clock Frequency (kHz)  
FIGURE 2-32:  
I
vs. Clock Frequency.  
FIGURE 2-35:  
I
vs. Clock Frequency.  
DD  
REF  
400  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD = VREF = 5V  
VDD = VREF = 5V  
CLK = 1.6 MHz  
350  
300  
250  
200  
150  
100  
50  
FCLK = 1.6 MHz  
F
VDD = VREF = 2.7V  
CLK = 800 kHz  
F
VDD = VREF = 2.7V  
CLK = 800 kHz  
F
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-33:  
I
vs. Temperature.  
FIGURE 2-36:  
I
vs. Temperature.  
DD  
REF  
DS21290E-page 12  
© 2008 Microchip Technology Inc.  
MCP3201  
Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100 ksps, fCLK = 16*fSAMPLE, TA = +25°C.  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VREF = CS = VDD  
VDD = VREF = 5V  
FCLK = 1.6 MHz  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
-50  
-25  
0
25  
50  
75  
100  
VDD (V)  
Temperature (°C)  
FIGURE 2-37:  
I
vs. V  
.
FIGURE 2-39:  
Analog Input Leakage  
DDS  
DD  
Current vs. Temperature.  
100.00  
VDD = VREF = CS = 5V  
10.00  
1.00  
0.10  
0.01  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
FIGURE 2-38:  
I
vs. Temperature.  
DDS  
© 2008 Microchip Technology Inc.  
DS21290E-page 13  
MCP3201  
NOTES:  
DS21290E-page 14  
© 2008 Microchip Technology Inc.  
MCP3201  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
Additional descriptions of the device pins follows.  
TABLE 3-1:  
PIN FUNCTION TABLE  
MCP3201  
Symbol  
Description  
MSOP, PDIP, SOIC,  
TSSOP  
1
2
3
4
5
6
7
8
VREF  
IN+  
Reference Voltage Input  
Positive Analog Input  
Negative Analog Input  
Ground  
IN-  
VSS  
CS/SHDN  
DOUT  
CLK  
Chip Select/Shutdown Input  
Serial Data Out  
Serial Clock  
VDD  
+2.7V to 5.5V Power Supply  
3.1  
Positive Analog Input (IN+)  
3.4  
Serial Clock (CLK)  
Positive analog input. This input can vary from IN- to  
VREF + IN-.  
The SPI clock pin is used to initiate a conversion and to  
clock out each bit of the conversion as it takes place.  
See Section 6.2 “Maintaining Minimum Clock  
Speed” for constraints on clock speed.  
3.2  
Negative Analog Input (IN-)  
Negative analog input. This input can vary ±100 mV  
3.5  
Serial Data Output (DOUT)  
from VSS  
.
The SPI serial data output pin is used to shift out the  
results of the A/D conversion. Data will always change  
on the falling edge of each clock as the conversion  
takes place.  
3.3  
Chip Select/Shutdown (CS/SHDN)  
The CS/SHDN pin is used to initiate communication  
with the device when pulled low and will end a  
conversion and put the device in low power standby  
when pulled high. The CS/SHDN pin must be pulled  
high between conversions.  
© 2008 Microchip Technology Inc.  
DS21290E-page 15  
MCP3201  
NOTES:  
DS21290E-page 16  
© 2008 Microchip Technology Inc.  
MCP3201  
4.2  
Reference Input  
4.0  
DEVICE OPERATION  
The reference input (VREF) determines the analog input  
voltage range and the LSB size, as shown below.  
The MCP3201 A/D Converter employs a conventional  
SAR architecture. With this architecture, a sample is  
acquired on an internal sample/hold capacitor for  
1.5 clock cycles starting on the first rising edge of the  
serial clock after CS has been pulled low. Following this  
sample time, the input switch of the converter opens  
and the device uses the collected charge on the  
internal sample and hold capacitor to produce a serial  
12-bit digital output code. Conversion rates of 100 ksps  
are possible on the MCP3201 device. See Section 6.2  
“Maintaining Minimum Clock Speed” for information  
on minimum clock rates. Communication with the  
device is done using a 3-wire SPI-compatible interface.  
EQUATION 4-1:  
VREF  
LSB Size = ------------  
4096  
As the reference input is reduced, the LSB size is  
reduced accordingly. The theoretical digital output code  
produced by the A/D Converter is a function of the  
analog input signal and the reference input as shown  
below.  
EQUATION 4-2:  
4.1  
Analog Inputs  
4096*VIN  
Digital Output Code = ------------------------  
VREF  
The MCP3201 device provides a single pseudo-differ-  
ential input. The IN+ input can range from IN- to VREF  
(VREF + IN-). The IN- input is limited to ±100 mV from  
the VSS rail. The IN- input can be used to cancel small  
signal common-mode noise which is present on both  
the IN+ and IN- inputs.  
Where:  
VIN  
=
=
Analog Input Voltage = V(IN+) - V(IN-)  
Reference Voltage  
VREF  
For the A/D Converter to meet specification, the charge  
holding capacitor (CSAMPLE) must be given enough  
time to acquire a 12-bit accurate voltage level during  
the 1.5 clock cycle sampling period. The analog input  
model is shown in Figure 4-1.  
When using an external voltage reference device, the  
system designer should always refer to the  
manufacturer’s recommendations for circuit layout.  
Any instability in the operation of the reference device  
will have a direct effect on the operation of the  
A/D Converter.  
In this diagram, it is shown that the source impedance  
(RS) adds to the internal sampling switch (RSS  
)
impedance, directly affecting the time that is required to  
charge the capacitor (CSAMPLE). Consequently, a  
larger source impedance increases the offset, gain,  
and integral linearity errors of the conversion.  
Ideally, the impedance of the signal source should be  
near zero. This is achievable with an operational  
amplifier such as the MCP601, which has a closed loop  
output impedance of tens of ohms. The adverse affects  
of higher source impedances are shown in Figure 4-2.  
If the voltage level of IN+ is equal to or less than IN-, the  
resultant code will be 000h. If the voltage at IN+ is equal  
to or greater than {[VREF + (IN-)] - 1 LSB}, then the  
output code will be FFFh. If the voltage level at IN- is  
more than 1 LSB below VSS, then the voltage level at  
the IN+ input will have to go below VSS to see the 000h  
output code. Conversely, if IN- is more than 1 LSB  
above VSS, then the FFFh code will not be seen unless  
the IN+ input level goes above VREF level.  
© 2008 Microchip Technology Inc.  
DS21290E-page 17  
MCP3201  
VDD  
Sampling  
Switch  
VT = 0.6V  
VT = 0.6V  
RS = 1 kΩ  
CHx  
RSS  
SS  
CSAMPLE  
= DAC capacitance  
= 20 pF  
CPIN  
7 pF  
ILEAKAGE  
±1 nA  
VA  
VSS  
LEGEND  
VA  
RSS  
CHx  
=
=
=
=
=
=
Signal Source  
Source Impedance  
Input Channel Pad  
CPIN  
VT  
ILEAKAGE  
Input Pin Capacitance  
Threshold Voltage  
Leakage Current At The Pin  
Due To Various Junctions  
Sampling Switch  
SS  
RS  
CSAMPLE  
=
=
=
Sampling Switch Resistor  
Sample/hold Capacitance  
FIGURE 4-1:  
Analog Input Model.  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
VDD = VREF = 5V  
VDD = VREF = 2.7V  
0.0  
100  
1000  
10000  
Input Resistance (Ohms)  
FIGURE 4-2:  
Maximum Clock Frequency  
vs. Input Resistance (R ) to maintain less than a  
S
0.1 LSB deviation in INL from nominal  
conditions.  
DS21290E-page 18  
© 2008 Microchip Technology Inc.  
MCP3201  
5.0  
SERIAL COMMUNICATIONS  
Communication with the device is done using a  
standard SPI-compatible serial interface. Initiating  
communication with the MCP3201 device begins with  
the CS going low. If the device was powered up with the  
CS pin low, it must be brought high and back low to  
initiate communication. The device will begin to sample  
the analog input on the first rising edge after CS goes  
low. The sample period will end in the falling edge of the  
second clock, at which time the device will output a low  
null bit. The next 12 clocks will output the result of the  
conversion with MSB first, as shown in Figure 5-1. Data  
is always output from the device on the falling edge of  
the clock. If all 12 data bits have been transmitted and  
the device continues to receive clocks while the CS is  
held low, the device will output the conversion result  
LSB first, as shown in Figure 5-2. If more clocks are  
provided to the device while CS is still low (after the  
LSB first data has been transmitted), the device will  
clock out zeros indefinitely.  
tCYC  
T
CSH  
CS  
POWER  
DOWN  
T
SUCS  
CLK  
T
tDATA**  
HI-Z  
SAMPLE  
tCONV  
HI-Z  
NULL  
NULL  
DOUT  
B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0*  
B11 B10 B9 B8  
BIT  
BIT  
* After completing the data transfer, if further clocks are applied with CS low, the A/D Converter will output LSB first data, followed  
by zeros indefinitely. See Figure 5-2 below.  
** t  
: during this time, the bias current and the comparator power down and the reference input becomes a high-impedance  
DATA  
node, leaving the CLK running to clock out the LSB-first data or zeros.  
FIGURE 5-1:  
Communication with MCP3201 device using MSB first Format.  
tCYC  
tCSH  
CS  
tSUCS  
POWER DOWN  
CLK  
tSAMPLE  
tDATA**  
B11B10B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10B11*  
tCONV  
HI-Z  
HI-Z  
NULL  
BIT  
DOUT  
* After completing the data transfer, if further clocks are applied with CS low, the A/D Converter will output zeros indefinitely.  
** t : during this time, the bias current and the comparator power down and the reference input becomes a high-impedance  
DATA  
node, leaving the CLK running to clock out the LSB-first data or zeros.  
FIGURE 5-2:  
Communication with MCP3201 device using LSB first Format.  
© 2008 Microchip Technology Inc.  
DS21290E-page 19  
MCP3201  
NOTES:  
DS21290E-page 20  
© 2008 Microchip Technology Inc.  
MCP3201  
been sent to the device, the microcontroller’s receive  
buffer will contain two unknown bits (the output is at  
high-impedance for the first two clocks), the null bit and  
the highest order five bits of the conversion. After the  
second eight clocks have been sent to the device, the  
MCU receive register will contain the lowest-order  
seven bits and the B1 bit repeated as the A/D  
Converter has begun to shift out LSB first data with the  
extra clock. Typical procedure would then call for the  
lower-order byte of data to be shifted right by one bit to  
remove the extra B1 bit. The B7 bit is then transferred  
from the high-order byte to the lower-order byte, and  
then the higher-order byte is shifted one bit to the right  
as well. Easier manipulation of the converted data can  
be obtained by using this method.  
6.0  
6.1  
APPLICATIONS INFORMATION  
Using the MCP3201 Device with  
Microcontroller SPI Ports  
With most microcontroller SPI ports, it is required to  
clock out eight bits at a time. If this is the case, it will be  
necessary to provide more clocks than are required for  
the MCP3201. As an example, Figure 6-1 and  
Figure 6-2 show how the MCP3201 device can be  
interfaced to a microcontroller with a standard SPI port.  
Since the MCP3201 always clocks data out on the  
falling edge of clock, the MCU SPI port must be  
configured to match this operation. SPI Mode 0,0  
(clock idles low) and SPI Mode 1,1 (clock idles high)  
are both compatible with the MCP3201. Figure 6-1  
depicts the operation shown in SPI Mode 0,0, which  
requires that the CLK from the microcontroller idles in  
the ‘low’ state. As shown in the diagram, the MSB is  
clocked out of the A/D Converter on the falling edge of  
the third clock pulse. After the first eight clocks have  
Figure 6-2 shows the same thing in SPI Mode 1,1  
which requires that the clock idles in the high state. As  
with mode 0,0, the A/D Converter outputs data on the  
falling edge of the clock and the MCU latches data from  
the A/D Converter in on the rising edge of the clock.  
CS  
MCU latches data from A/D  
Converter on rising edges of SCLK  
CLK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
Data is clocked out of A/D  
Converter on falling edges  
HI-Z  
HI-Z  
B2  
B1  
NULL  
BIT  
B11 B10 B9  
B7  
B6  
B5 B4 B3 B2 B1 B0  
B8  
D
OUT  
LSB first data begins  
to come out  
?
?
0
B11 B10 B9 B8 B7  
B6 B5 B4 B3 B2 B1 B0 B1  
Data stored into MCU receive register  
after transmission of first 8 bits  
Data stored into MCU receive register  
after transmission of second 8 bits  
FIGURE 6-1:  
SPI Communication using 8-bit segments (Mode 0,0: SCLK idles low).  
CS  
MCU latches data from A/D  
Converter on rising edges of SCLK  
CLK  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
Data is clocked out of A/D  
Converter on falling edges  
HI-Z  
HI-Z  
NULL  
BIT  
B11 B10 B9 B8  
B7  
B6 B5 B4 B3 B2 B1 B0  
B1  
D
OUT  
LSB first data begins  
to come out  
?
?
0
B11 B10 B9 B8 B7  
B6 B5 B4 B3 B2 B1 B0 B1  
Data stored into MCU receive register  
after transmission of first 8 bits  
Data stored into MCU receive register  
after transmission of second 8 bits  
FIGURE 6-2:  
SPI Communication using 8-bit segments (Mode 1,1: SCLK idles high).  
© 2008 Microchip Technology Inc.  
DS21290E-page 21  
MCP3201  
6.2  
Maintaining Minimum Clock Speed  
V
DD  
When the MCP3201 initiates the sample period, charge  
is stored on the sample capacitor. When the sample  
period is complete, the device converts one bit for each  
clock that is received. It is important for the user to note  
that a slow clock rate will allow charge to bleed off the  
sample cap while the conversion is taking place. At  
85°C (worst case condition), the part will maintain  
proper charge on the sample capacitor for at least  
1.2 ms after the sample period has ended. This means  
that the time between the end of the sample period and  
the time that all 12 data bits have been clocked out  
must not exceed 1.2 ms (effective clock frequency of  
10 kHz). Failure to meet this criteria may induce  
linearity errors into the conversion outside the rated  
specifications. It should be noted that during the entire  
conversion cycle, the A/D Converter does not require a  
constant clock speed or duty cycle, as long as all timing  
specifications are met.  
10 µF  
4.096V  
Reference  
10 µF  
0.1 µF  
MCP1541  
C
L
1 µF  
V
REF  
IN+  
MCP3201  
C
1
IN-  
MCP601  
R
1
V
+
-
IN  
R
2
C
2
R
4
R
3
FIGURE 6-3:  
The MCP601 Operational  
Amplifier is used to implement a 2nd order anti-  
aliasing filter for the signal being converted by  
the MCP3201 device.  
6.3  
Buffering/Filtering the Analog  
Inputs  
If the signal source for the A/D Converter is not a low  
impedance source, it will have to be buffered  
or inaccurate conversion results may occur.  
See Figure 4-2. It is also recommended that a filter be  
used to eliminate any signals that may be aliased back  
into the conversion results. This is illustrated in  
Figure 6-3 where an op amp is used to drive the analog  
input of the MCP3201 device. This amplifier provides a  
low impedance source for the converter input and a  
low-pass filter, which eliminates unwanted high-  
frequency noise.  
Low-pass (anti-aliasing) filters can be designed using  
Microchip’s interactive FilterLab® software. FilterLab  
will calculate capacitor and resistor values, as well as  
determine the number of poles that are required for the  
application. For more information on filtering signals,  
see the application note AN699 “Anti-Aliasing Analog  
Filters for Data Acquisition Systems.”  
DS21290E-page 22  
© 2008 Microchip Technology Inc.  
MCP3201  
6.4  
Layout Considerations  
When laying out a printed circuit board for use with  
analog components, care should be taken to reduce  
noise wherever possible. A bypass capacitor should  
always be used with this device and should be placed  
as close as possible to the device pin. A bypass  
capacitor value of 1 µF is recommended.  
Digital and analog traces should be separated as much  
as possible on the board and no traces should run  
underneath the device or the bypass capacitor. Extra  
precautions should be taken to keep traces with high-  
frequency signals (such as clock lines) as far as  
possible from analog traces.  
Use of an analog ground plane is recommended in  
order to keep the ground potential the same for all  
devices on the board. Providing VDD connections to  
devices in a “star” configuration can also reduce noise  
by eliminating current return paths and associated  
errors. See Figure 6-4. For more information on layout  
tips when using A/D Converter, refer to AN688 “Layout  
Tips for 12-Bit A/D Converter Applications”.  
V
DD  
Connection  
Device 4  
Device 1  
Device 3  
Device 2  
FIGURE 6-4:  
V
traces arranged in a  
DD  
‘Star’ configuration in order to reduce errors  
caused by current return paths.  
© 2008 Microchip Technology Inc.  
DS21290E-page 23  
MCP3201  
NOTES:  
DS21290E-page 24  
© 2008 Microchip Technology Inc.  
MCP3201  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
Example:  
8-Lead MSOP  
XXXXXX  
3201CI  
820256  
YWWNNN  
8-Lead PDIP (300 mil)  
Example:  
3201-B  
XXXXXXXX  
XXXXXNNN  
e
3
I/P 256  
YYWW  
0820  
8-Lead SOIC (150 mil)  
Example:  
XXXXXXXX  
3201-BI  
XXXXYYWW  
SN 0820  
e
3
NNN  
256  
Example:  
8-Lead TSSOP  
201C  
I820  
256  
XXXX  
YYWW  
NNN  
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e
3
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2008 Microchip Technology Inc.  
DS21290E-page 25  
MCP3201  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢋꢌꢎꢏꢆꢐꢑꢄꢈꢈꢆꢒꢓꢊꢈꢋꢔꢃꢆꢇꢄꢌꢕꢄꢖꢃꢆꢗꢍꢐꢘꢆꢙꢍꢐꢒꢇꢚ  
ꢛꢏꢊꢃꢜ 1ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ2ꢇꢔꢉꢅ"ꢊꢇ)ꢃꢄꢔ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢒꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ2ꢇꢔꢃꢄꢔꢅꢖꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ033)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ2ꢇꢔꢃꢄꢔ  
D
N
E
E1  
NOTE 1  
2
b
1
e
c
φ
A2  
A
L
L1  
A1  
4ꢄꢃ%  
ꢒꢚ55ꢚꢒ*ꢘ*ꢙꢖ  
ꢐꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢒꢚ6  
67ꢒ  
ꢒꢕ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
9
ꢓꢁ:+ꢅ.ꢖ/  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢉꢃꢔꢎ%  
ꢒꢌꢈ"ꢉ"ꢅꢂꢇꢍ2ꢇꢔꢉꢅꢘꢎꢃꢍ2ꢄꢉ    
ꢖ%ꢇꢄ"ꢌ$$ꢅ  
7ꢆꢉꢊꢇꢈꢈꢅ=ꢃ"%ꢎ  
ꢒꢌꢈ"ꢉ"ꢅꢂꢇꢍ2ꢇꢔꢉꢅ=ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢔ%ꢎ  
1ꢌꢌ%ꢅ5ꢉꢄꢔ%ꢎ  
M
ꢓꢁꢛ+  
ꢓꢁꢓꢓ  
M
ꢓꢁ9+  
ꢀꢁꢀꢓ  
ꢓꢁꢜ+  
ꢓꢁꢀ+  
ꢕꢏ  
ꢕꢀ  
*
*ꢀ  
M
ꢗꢁꢜꢓꢅ.ꢖ/  
,ꢁꢓꢓꢅ.ꢖ/  
,ꢁꢓꢓꢅ.ꢖ/  
ꢓꢁ:ꢓ  
5
ꢓꢁꢗꢓ  
ꢓꢁ9ꢓ  
1ꢌꢌ%ꢑꢊꢃꢄ%  
1ꢌꢌ%ꢅꢕꢄꢔꢈꢉ  
5ꢀ  
ꢓꢁꢜ+ꢅꢙ*1  
M
ꢓꢝ  
9ꢝ  
5ꢉꢇ"ꢅꢘꢎꢃꢍ2ꢄꢉ    
5ꢉꢇ"ꢅ=ꢃ"%ꢎ  
(
ꢓꢁꢓ9  
ꢓꢁꢏꢏ  
M
M
ꢓꢁꢏ,  
ꢓꢁꢗꢓ  
ꢛꢏꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢐꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢐꢅꢇꢄ"ꢅ*ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢒꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢓꢁꢀ+ꢅ&&ꢅꢑꢉꢊꢅ ꢃ"ꢉꢁ  
,ꢁ ꢐꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢔꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢔꢅꢑꢉꢊꢅꢕꢖꢒ*ꢅ-ꢀꢗꢁ+ꢒꢁ  
.ꢖ/0 .ꢇ ꢃꢍꢅꢐꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢘꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢙ*10 ꢙꢉ$ꢉꢊꢉꢄꢍꢉꢅꢐꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢒꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢔꢋ ꢐꢊꢇ)ꢃꢄꢔ /ꢓꢗꢞꢀꢀꢀ.  
DS21290E-page 26  
© 2008 Microchip Technology Inc.  
MCP3201  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢝꢓꢄꢈꢆ ꢔꢁꢂꢋꢔꢃꢆꢗꢇꢘꢆMꢆ"##ꢆꢑꢋꢈꢆ$ꢏꢅ%ꢆꢙꢇꢝ ꢇꢚ  
ꢛꢏꢊꢃꢜ 1ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ2ꢇꢔꢉꢅ"ꢊꢇ)ꢃꢄꢔ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢒꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ2ꢇꢔꢃꢄꢔꢅꢖꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ033)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ2ꢇꢔꢃꢄꢔ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
A1  
c
e
eB  
b1  
b
4ꢄꢃ%  
ꢚ6/;*ꢖ  
ꢐꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢒꢚ6  
67ꢒ  
9
ꢁꢀꢓꢓꢅ.ꢖ/  
M
ꢁꢀ,ꢓ  
M
ꢁ,ꢀꢓ  
ꢁꢏ+ꢓ  
ꢁ,:+  
ꢁꢀ,ꢓ  
ꢁꢓꢀꢓ  
ꢁꢓ:ꢓ  
ꢁꢓꢀ9  
M
ꢒꢕ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
ꢑꢅ%ꢌꢅꢖꢉꢇ%ꢃꢄꢔꢅꢂꢈꢇꢄꢉ  
ꢒꢌꢈ"ꢉ"ꢅꢂꢇꢍ2ꢇꢔꢉꢅꢘꢎꢃꢍ2ꢄꢉ    
.ꢇ ꢉꢅ%ꢌꢅꢖꢉꢇ%ꢃꢄꢔꢅꢂꢈꢇꢄꢉ  
ꢖꢎꢌ!ꢈ"ꢉꢊꢅ%ꢌꢅꢖꢎꢌ!ꢈ"ꢉꢊꢅ=ꢃ"%ꢎ  
ꢒꢌꢈ"ꢉ"ꢅꢂꢇꢍ2ꢇꢔꢉꢅ=ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢔ%ꢎ  
6
ꢕꢏ  
ꢕꢀ  
*
*ꢀ  
5
(ꢀ  
(
ꢉ.  
M
ꢁꢏꢀꢓ  
ꢁꢀꢜ+  
M
ꢁꢀꢀ+  
ꢁꢓꢀ+  
ꢁꢏꢜꢓ  
ꢁꢏꢗꢓ  
ꢁ,ꢗ9  
ꢁꢀꢀ+  
ꢁꢓꢓ9  
ꢁꢓꢗꢓ  
ꢁꢓꢀꢗ  
M
ꢁ,ꢏ+  
ꢁꢏ9ꢓ  
ꢁꢗꢓꢓ  
ꢁꢀ+ꢓ  
ꢁꢓꢀ+  
ꢁꢓꢛꢓ  
ꢁꢓꢏꢏ  
ꢁꢗ,ꢓ  
ꢘꢃꢑꢅ%ꢌꢅꢖꢉꢇ%ꢃꢄꢔꢅꢂꢈꢇꢄꢉ  
5ꢉꢇ"ꢅꢘꢎꢃꢍ2ꢄꢉ    
4ꢑꢑꢉꢊꢅ5ꢉꢇ"ꢅ=ꢃ"%ꢎ  
5ꢌ)ꢉꢊꢅ5ꢉꢇ"ꢅ=ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅꢙꢌ)ꢅꢖꢑꢇꢍꢃꢄꢔꢅꢅꢟ  
ꢛꢏꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢟꢅꢖꢃꢔꢄꢃ$ꢃꢍꢇꢄ%ꢅ/ꢎꢇꢊꢇꢍ%ꢉꢊꢃ %ꢃꢍꢁ  
,ꢁ ꢐꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢐꢅꢇꢄ"ꢅ*ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢒꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢁꢓꢀꢓ@ꢅꢑꢉꢊꢅ ꢃ"ꢉꢁ  
ꢗꢁ ꢐꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢔꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢔꢅꢑꢉꢊꢅꢕꢖꢒ*ꢅ-ꢀꢗꢁ+ꢒꢁ  
.ꢖ/0ꢅ.ꢇ ꢃꢍꢅꢐꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢘꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢒꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢔꢋ ꢐꢊꢇ)ꢃꢄꢔ /ꢓꢗꢞꢓꢀ9.  
© 2008 Microchip Technology Inc.  
DS21290E-page 27  
MCP3201  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢐꢑꢄꢈꢈꢆꢒꢓꢊꢈꢋꢔꢃꢆꢗꢐꢛꢘꢆMꢆꢛꢄꢎꢎꢏ&'ꢆ"()#ꢆꢑꢑꢆ$ꢏꢅ%ꢆꢙꢐꢒ *ꢚ  
ꢛꢏꢊꢃꢜ 1ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ2ꢇꢔꢉꢅ"ꢊꢇ)ꢃꢄꢔ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢒꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ2ꢇꢔꢃꢄꢔꢅꢖꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ033)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ2ꢇꢔꢃꢄꢔ  
D
e
N
E
E1  
NOTE 1  
1
2
3
α
h
b
h
c
φ
A2  
A
L
A1  
L1  
β
4ꢄꢃ%  
ꢒꢚ55ꢚꢒ*ꢘ*ꢙꢖ  
ꢐꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢒꢚ6  
67ꢒ  
ꢒꢕ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
9
ꢀꢁꢏꢛꢅ.ꢖ/  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢉꢃꢔꢎ%  
M
ꢀꢁꢏ+  
ꢓꢁꢀꢓ  
M
M
M
ꢀꢁꢛ+  
M
ꢓꢁꢏ+  
ꢒꢌꢈ"ꢉ"ꢅꢂꢇꢍ2ꢇꢔꢉꢅꢘꢎꢃꢍ2ꢄꢉ    
ꢖ%ꢇꢄ"ꢌ$$ꢅꢅ  
ꢕꢏ  
ꢕꢀ  
*
7ꢆꢉꢊꢇꢈꢈꢅ=ꢃ"%ꢎ  
:ꢁꢓꢓꢅ.ꢖ/  
ꢒꢌꢈ"ꢉ"ꢅꢂꢇꢍ2ꢇꢔꢉꢅ=ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢔ%ꢎ  
/ꢎꢇ&$ꢉꢊꢅAꢌꢑ%ꢃꢌꢄꢇꢈB  
1ꢌꢌ%ꢅ5ꢉꢄꢔ%ꢎ  
*ꢀ  
,ꢁꢜꢓꢅ.ꢖ/  
ꢗꢁꢜꢓꢅ.ꢖ/  
ꢓꢁꢏ+  
ꢓꢁꢗꢓ  
M
M
ꢓꢁ+ꢓ  
ꢀꢁꢏꢛ  
5
1ꢌꢌ%ꢑꢊꢃꢄ%  
1ꢌꢌ%ꢅꢕꢄꢔꢈꢉ  
5ꢉꢇ"ꢅꢘꢎꢃꢍ2ꢄꢉ    
5ꢉꢇ"ꢅ=ꢃ"%ꢎ  
ꢒꢌꢈ"ꢅꢐꢊꢇ$%ꢅꢕꢄꢔꢈꢉꢅ  
ꢒꢌꢈ"ꢅꢐꢊꢇ$%ꢅꢕꢄꢔꢈꢉꢅ.ꢌ%%ꢌ&  
5ꢀ  
ꢀꢁꢓꢗꢅꢙ*1  
ꢓꢝ  
ꢓꢁꢀꢛ  
ꢓꢁ,ꢀ  
+ꢝ  
M
M
M
M
M
9ꢝ  
(
ꢓꢁꢏ+  
ꢓꢁ+ꢀ  
ꢀ+ꢝ  
+ꢝ  
ꢀ+ꢝ  
ꢛꢏꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢟꢅꢖꢃꢔꢄꢃ$ꢃꢍꢇꢄ%ꢅ/ꢎꢇꢊꢇꢍ%ꢉꢊꢃ %ꢃꢍꢁ  
,ꢁ ꢐꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢐꢅꢇꢄ"ꢅ*ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢒꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢓꢁꢀ+ꢅ&&ꢅꢑꢉꢊꢅ ꢃ"ꢉꢁ  
ꢗꢁ ꢐꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢔꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢔꢅꢑꢉꢊꢅꢕꢖꢒ*ꢅ-ꢀꢗꢁ+ꢒꢁ  
.ꢖ/0 .ꢇ ꢃꢍꢅꢐꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢘꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢙ*10 ꢙꢉ$ꢉꢊꢉꢄꢍꢉꢅꢐꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢒꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢔꢋ ꢐꢊꢇ)ꢃꢄꢔ /ꢓꢗꢞꢓ+ꢛ.  
DS21290E-page 28  
© 2008 Microchip Technology Inc.  
MCP3201  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢐꢑꢄꢈꢈꢆꢒꢓꢊꢈꢋꢔꢃꢆꢗꢐꢛꢘꢆMꢆꢛꢄꢎꢎꢏ&'ꢆ"()#ꢆꢑꢑꢆ$ꢏꢅ%ꢆꢙꢐꢒ *ꢚ  
ꢛꢏꢊꢃꢜ 1ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ2ꢇꢔꢉꢅ"ꢊꢇ)ꢃꢄꢔ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢒꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ2ꢇꢔꢃꢄꢔꢅꢖꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ033)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ2ꢇꢔꢃꢄꢔ  
© 2008 Microchip Technology Inc.  
DS21290E-page 29  
MCP3201  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ+,ꢋꢔꢆꢐ,ꢎꢋꢔꢕꢆꢐꢑꢄꢈꢈꢆꢒꢓꢊꢈꢋꢔꢃꢆꢗꢐ+ꢘꢆMꢆ-(-ꢆꢑꢑꢆ$ꢏꢅ%ꢆꢙ+ꢐꢐꢒꢇꢚ  
ꢛꢏꢊꢃꢜ 1ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ2ꢇꢔꢉꢅ"ꢊꢇ)ꢃꢄꢔ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢒꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ2ꢇꢔꢃꢄꢔꢅꢖꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ033)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ2ꢇꢔꢃꢄꢔ  
D
N
E
E1  
NOTE 1  
1
2
b
e
c
φ
A
A2  
A1  
L
L1  
4ꢄꢃ%  
ꢒꢚ55ꢚꢒ*ꢘ*ꢙꢖ  
ꢐꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢒꢚ6  
67ꢒ  
ꢒꢕ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
9
ꢓꢁ:+ꢅ.ꢖ/  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢉꢃꢔꢎ%  
ꢒꢌꢈ"ꢉ"ꢅꢂꢇꢍ2ꢇꢔꢉꢅꢘꢎꢃꢍ2ꢄꢉ    
ꢖ%ꢇꢄ"ꢌ$$ꢅ  
M
ꢓꢁ9ꢓ  
ꢓꢁꢓ+  
M
ꢀꢁꢓꢓ  
M
ꢀꢁꢏꢓ  
ꢀꢁꢓ+  
ꢓꢁꢀ+  
ꢕꢏ  
ꢕꢀ  
*
7ꢆꢉꢊꢇꢈꢈꢅ=ꢃ"%ꢎ  
:ꢁꢗꢓꢅ.ꢖ/  
ꢒꢌꢈ"ꢉ"ꢅꢂꢇꢍ2ꢇꢔꢉꢅ=ꢃ"%ꢎ  
ꢒꢌꢈ"ꢉ"ꢅꢂꢇꢍ2ꢇꢔꢉꢅ5ꢉꢄꢔ%ꢎ  
1ꢌꢌ%ꢅ5ꢉꢄꢔ%ꢎ  
*ꢀ  
5
ꢗꢁ,ꢓ  
ꢏꢁꢜꢓ  
ꢓꢁꢗ+  
ꢗꢁꢗꢓ  
,ꢁꢓꢓ  
ꢓꢁ:ꢓ  
ꢗꢁ+ꢓ  
,ꢁꢀꢓ  
ꢓꢁꢛ+  
1ꢌꢌ%ꢑꢊꢃꢄ%  
1ꢌꢌ%ꢅꢕꢄꢔꢈꢉ  
5ꢉꢇ"ꢅꢘꢎꢃꢍ2ꢄꢉ    
5ꢉꢇ"ꢅ=ꢃ"%ꢎ  
5ꢀ  
ꢀꢁꢓꢓꢅꢙ*1  
ꢓꢝ  
ꢓꢁꢓꢜ  
ꢓꢁꢀꢜ  
M
M
M
9ꢝ  
(
ꢓꢁꢏꢓ  
ꢓꢁ,ꢓ  
ꢛꢏꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢐꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢐꢅꢇꢄ"ꢅ*ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢒꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢓꢁꢀ+ꢅ&&ꢅꢑꢉꢊꢅ ꢃ"ꢉꢁ  
,ꢁ ꢐꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢔꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢔꢅꢑꢉꢊꢅꢕꢖꢒ*ꢅ-ꢀꢗꢁ+ꢒꢁ  
.ꢖ/0 .ꢇ ꢃꢍꢅꢐꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢘꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢙ*10 ꢙꢉ$ꢉꢊꢉꢄꢍꢉꢅꢐꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢒꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢔꢋ ꢐꢊꢇ)ꢃꢄꢔ /ꢓꢗꢞꢓ9:.  
DS21290E-page 30  
© 2008 Microchip Technology Inc.  
MCP3201  
APPENDIX A: REVISION HISTORY  
Revision E (November 2008)  
The following is the list of modifications:  
1. Updated Section 7.0 “Packaging Informa-  
tion”  
2. Updated Section “Product Identification  
System”.  
Revision D (January 2007)  
The following is the list of modifications:  
1. This revision includes updates to the packaging  
diagrams.  
diagrams.Revision C (August 2001)  
The following is the list of modifications:  
1. This revision includes undocumented changes.  
Revision B (August 1999)  
The following is the list of modifications:  
1. This revision includes undocumented changes.  
Revision A (September 1998)  
• Original Release of this Document.  
© 2008 Microchip Technology Inc.  
DS21290E-page 31  
MCP3201  
NOTES:  
DS21290E-page 32  
© 2008 Microchip Technology Inc.  
MCP3201  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
X
/XX  
a)  
b)  
c)  
d)  
e)  
f)  
MCP3201-BI/P:  
B Grade,  
Industrial Temperature,  
8LD PDIP package.  
Grade  
Temperature  
Range  
Package  
MCP3201-BI/SN: B Grade,  
Industrial Temperature,  
Device  
Grade  
MCP3201:  
MCP3201T:  
12-Bit A/D Converter w/SPI Interface  
12-Bit A/D Converter w/SPI Interface  
(Tape and Reel)  
8LD SOIC package.  
MCP3201-CI/P:  
C Grade,  
Industrial Temperature,  
8LD PDIP package.  
B:  
C:  
=
=
± LSB max INL (MSOP and TSSOP not available)  
± LSB max INL  
MCP3201-CI/MS: C Grade,  
Industrial Temperature,  
8LD MSOP package.  
MCP3201-CI/SN: C Grade,  
Temperature Range  
Package  
I
=
-40°C to+85°C(Industrial)  
Industrial Temperature,  
8LD SOIC package.  
MS  
P
SN  
ST  
=
=
=
=
Plastic Micro Small Outline (MSOP), 8-lead  
Plastic DIP (300 mil Body), 8-lead  
Plastic SOIC (150 mil Body), 8-lead  
Plastic TSSOP (4.4 mm), 8-lead  
MCP3201-CI/ST:  
C Grade,  
Industrial Temperature,  
8LD TSSOP package.  
g)  
h)  
i)  
MCP3201T-BI/SN: Tape and Reel,B Grade,  
Industrial Temperature,  
8LD SOIC package.  
MCP3201T-CI/MS: Tape and Reel, C Grade,  
Industrial Temperature,  
8LD MSOP package.  
MCP3201T-CI/SN: Tape and Reel, C Grade,  
Industrial Temperature,  
8LD SOIC package.  
j)  
MCP3201T-CI/ST: Tape and Reel, C Grade,  
Industrial Temperature,  
8LD TSSOP package.  
© 2008 Microchip Technology Inc.  
DS21290E-page 33  
MCP3201  
NOTES:  
DS21290E-page 34  
© 2008 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, rfPIC, SmartShunt and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
FilterLab, Linear Active Thermistor, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, In-Circuit Serial  
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,  
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,  
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total  
Endurance, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2008, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2008 Microchip Technology Inc.  
DS21290E-page 35  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
01/02/08  
DS21290E-page 36  
© 2008 Microchip Technology Inc.  

相关型号:

MCP3201T-I/MS

2.7V 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3201T-I/P

2.7V 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3201T-I/SN

2.7V 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3201T-I/ST

2.7V 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3201_07

2.7V 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3201_08

2.7V 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3202

2.7V Dual Channel 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3202-BI/MS

2.7V Dual Channel 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3202-BI/P

2.7V Dual Channel 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3202-BI/SN

2.7V Dual Channel 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3202-BI/ST

2.7V Dual Channel 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3202-BIP

2.7V Dual Channel 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP