MCP3221A2-I/OT [MICROCHIP]

Low Power 12-Bit A/D Converter With I2C⑩ Interface; 低功耗12位A / D转换器, I2C⑩接口
MCP3221A2-I/OT
型号: MCP3221A2-I/OT
厂家: MICROCHIP    MICROCHIP
描述:

Low Power 12-Bit A/D Converter With I2C⑩ Interface
低功耗12位A / D转换器, I2C⑩接口

转换器
文件: 总28页 (文件大小:663K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP3221  
Low Power 12-Bit A/D Converter With I2C™ Interface  
Features  
Description  
• 12-bit resolution  
The Microchip Technology Inc. MCP3221 is a  
successive approximation A/D converter with 12-bit  
resolution. Available in the SOT-23-5 package, this  
device provides one single-ended input with very low  
power consumption. Based on an advanced CMOS  
technology, the MCP3221 provides a low maximum  
conversion current and standby current of 250 µA and  
1 µA, respectively. Low current consumption,  
combined with the small SOT-23 package, make this  
device ideal for battery-powered and remote data  
acquisition applications.  
• ±1 LSB DNL, ±2 LSB INL max.  
• 250 µA max conversion current  
• 5 nA typical standby current, 1 µA max.  
• I2C™-compatible serial interface  
- 100 kHz I2C Standard Mode  
- 400 kHz I2C Fast Mode  
• Up to 8 devices on a single 2-Wire bus  
• 22.3 ksps in I2C Fast Mode  
• Single-ended analog input channel  
• On-chip sample and hold  
Communication to the MCP3221 is performed using a  
2-wire, I2C compatible interface. Standard (100 kHz)  
and Fast (400 kHz) I2C modes are available with the  
device. An on-chip conversion clock enables  
independent timing for the I2C and conversion clocks.  
The device is also addressable, allowing up to eight  
devices on a single 2-wire bus.  
• On-chip conversion clock  
• Single-supply specified operation: 2.7V to 5.5V  
Temperature range:  
- Industrial: -40°C to +85°C  
- Extended: -40°C to +125°C  
• Small SOT-23-5 package  
The MCP3221 runs on a single supply voltage that  
operates over a broad range of 2.7V to 5.5V. This  
device also provides excellent linearity of ±1 LSB  
differential non-linearity and ±2 LSB integral non-lin-  
earity, maximum.  
Applications  
• Data Logging  
• Multi-zone Monitoring  
Functional Block Diagram  
• Hand-Held Portable Applications  
• Battery-Powered Test Equipment  
• Remote or Isolated Data Acquisition  
VDD  
VSS  
Package Type  
5-Pin SOT-23  
DAC  
Comparator  
+
12-bit SAR  
Sample  
and  
Hold  
SCL  
SDA  
5
4
1
2
VDD  
AIN  
Clock  
VSS  
I2C™ Interface  
SCL SDA  
Control Logic  
3
AIN  
© 2006 Microchip Technology Inc.  
DS21732C-page 1  
MCP3221  
† Stresses above those listed under “Maximum ratings” may  
cause permanent damage to the device. This is a stress rating  
only and functional operation of the device at those or any  
other conditions above those indicated in the operational list-  
ings of this specification is not implied. Exposure to maximum  
rating conditions for extended periods may affect device  
reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
VDD...................................................................................7.0V  
Analog input pin w.r.t. VSS.......... ............. -0.6V to VDD +0.6V  
SDA and SCL pins w.r.t. VSS........... .........-0.6V to VDD +1.0V  
Storage temperature .....................................-65°C to +150°C  
Ambient temp. with power applied ................-65°C to +125°C  
Maximum Junction Temperature...................................150°C  
ESD protection on all pins (HBM) .................................4 kV  
DC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise noted, all parameters apply at VDD = 5.0V, VSS = GND, RPU = 2 kΩ  
TAMB = -40°C to +85°C, I2C Fast Mode Timing: fSCL = 400 kHz (Note 3).  
Parameters  
DC Accuracy  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Resolution  
12  
±0.75  
±0.5  
±0.75  
-1  
bits  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
±2  
±1  
±2  
±3  
LSB  
DNL  
LSB No missing codes  
LSB  
LSB  
Gain Error  
Dynamic Performance  
Total Harmonic Distortion  
Signal-to-Noise and Distortion  
Spurious-Free Dynamic Range  
Analog Input  
THD  
SINAD  
SFDR  
-82  
72  
86  
dB  
dB  
dB  
V
IN = 0.1V to 4.9V @ 1 kHz  
VIN = 0.1V to 4.9V @ 1 kHz  
IN = 0.1V to 4.9V @ 1 kHz  
V
Input Voltage Range  
Leakage Current  
V
SS-0.3  
VDD+0.3  
+1  
V
2.7V VDD 5.5V  
-1  
µA  
SDA/SCL (open-drain output):  
Data Coding Format  
High-level input voltage  
Low-level input voltage  
Low-level output voltage  
Straight Binary  
VIH  
VIL  
0.7 VDD  
0.3 VDD  
0.4  
V
V
-1  
-1  
VOL  
V
IOL = 3 mA, RPU = 1.53 kΩ  
fSCL = 400 kHz only  
Hysteresis of Schmitt trigger inputs VHYST  
0.05 VDD  
V
Input leakage current  
Output leakage current  
ILI  
+1  
µA  
µA  
VIN = 0.1 VDD and 0.9 VDD  
ILO  
+1  
VOUT = 0.1 VSS and  
0.9 VDD  
Pin capacitance  
CIN,  
10  
pF  
TAMB = 25°C, f = 1 MHz;  
(all inputs/outputs)  
COUT  
(Note 2)  
Bus Capacitance  
CB  
400  
pF  
SDA drive low, 0.4V  
Note 1: “Sample time” is the time between conversions once the address byte has been sent to the converter.  
Refer to Figure 5-6.  
2: This parameter is periodically sampled and not 100% tested.  
3: RPU = Pull-up resistor on SDA and SCL.  
4: SDA and SCL = VSS to VDD at 400 kHz.  
5: tACQ and tCONV are dependent on internal oscillator timing. See Figure 5-5 and Figure 5-6 for relation to  
SCL.  
DS21732C-page 2  
© 2006 Microchip Technology Inc.  
MCP3221  
DC ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise noted, all parameters apply at VDD = 5.0V, VSS = GND, RPU = 2 kΩ  
TAMB = -40°C to +85°C, I2C Fast Mode Timing: fSCL = 400 kHz (Note 3).  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Power Requirements  
Operating Voltage  
Conversion Current  
Standby Current  
VDD  
IDD  
2.7  
175  
0.005  
5.5  
250  
1
V
µA  
µA  
µA  
IDDS  
IDDA  
SDA, SCL = VDD  
Active bus current  
Conversion Rate  
Conversion Time  
120  
Note 4  
tCONV  
tACQ  
8.96  
1.12  
µs  
µs  
Note 5  
Analog Input Acquisition Time  
Sample Rate  
Note 5  
fSAMP  
22.3  
ksps  
fSCL = 400 kHz (Note 1)  
Note 1: “Sample time” is the time between conversions once the address byte has been sent to the converter.  
Refer to Figure 5-6.  
2: This parameter is periodically sampled and not 100% tested.  
3: RPU = Pull-up resistor on SDA and SCL.  
4: SDA and SCL = VSS to VDD at 400 kHz.  
5:  
t
ACQ and tCONV are dependent on internal oscillator timing. See Figure 5-5 and Figure 5-6 for relation to  
SCL.  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise noted, all parameters apply at VDD = 5.0V, VSS = GND.  
Parameters  
Temperature Ranges  
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
Industrial Temperature Range  
Extended Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 5L-SOT23  
TA  
TA  
TA  
TA  
-40  
-40  
-40  
-65  
+85  
°C  
°C  
°C  
°C  
+125  
+125  
+150  
θJA  
256  
°C/W  
© 2006 Microchip Technology Inc.  
DS21732C-page 3  
MCP3221  
TIMING SPECIFICATIONS  
Electrical Characteristics: All parameters apply at VDD = 2.7V - 5.5V, VSS = GND, TAMB = -40°C to +85°C.  
Parameters  
I2C Standard Mode  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Clock frequency  
fSCL  
THIGH  
TLOW  
TR  
0
100  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock high time  
4000  
4700  
Clock low time  
SDA and SCL rise time  
SDA and SCL fall time  
START condition hold time  
START condition setup time  
Data input setup time  
STOP condition setup time  
STOP condition hold time  
Output valid from clock  
Bus free time  
1000  
300  
From VIL to VIH (Note 1)  
From VIL to VIH (Note 1)  
TF  
THD:STA  
TSU:STA  
TSU:DAT  
TSU:STO  
THD:STD  
TAA  
4000  
4700  
250  
4000  
4000  
3500  
TBUF  
4700  
Note 2  
Input filter spike suppression  
I2C Fast Mode  
TSP  
50  
SDA and SCL pins (Note 1)  
Clock frequency  
FSCL  
THIGH  
TLOW  
TR  
0
600  
400  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ns  
ns  
ns  
ns  
ns  
ns  
Clock high time  
Clock low time  
1300  
20 + 0.1CB  
20 + 0.1CB  
600  
SDA and SCL rise time  
SDA and SCL fall time  
START condition hold time  
START condition setup time  
Data input hold time  
Data input setup time  
STOP condition setup time  
STOP condition hold time  
Output valid from clock  
Bus free time  
300  
300  
From VIL to VIH (Note 1)  
From VIL to VIH (Note 1)  
TF  
THD:STA  
TSU:STA  
THD:DAT  
TSU:DAT  
TSU:STO  
THD:STD  
TAA  
600  
0
0.9  
100  
600  
600  
900  
TBUF  
1300  
Note 2  
Input filter spike suppression  
TSP  
50  
SDA and SCL pins (Note 1)  
Note 1: This parameter is periodically sampled and not 100% tested.  
2: Time the bus must be free before a new transmission can start.  
THIGH  
VHYS  
TF  
TR  
SCL  
TSU:STA  
TSU:STO  
THD:DAT  
TSU:DAT  
TLOW  
SDA  
IN  
THD:STA  
TSP  
TBUF  
TAA  
SDA  
OUT  
FIGURE 1-1:  
Standard and Fast Mode Bus Timing Data.  
DS21732C-page 4  
© 2006 Microchip Technology Inc.  
MCP3221  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VDD = 5V, VSS = 0V, I2C Fast Mode Timing (SCL = 400 kHz), Continuous Conversion  
Mode (fSAMP = 22.3 ksps), TA = +25°C.  
1
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
Positive INL  
Negative INL  
Positive INL  
Negative INL  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
100  
200  
300  
400  
0
100  
200  
I2C Bus Rate (kHz)  
300  
400  
I2C Bus Rate (kHz)  
FIGURE 2-1:  
INL vs. Clock Rate.  
FIGURE 2-4:  
INL vs. Clock Rate  
(V = 2.7V).  
DD  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
Positive INL  
Positive INL  
Negative INL  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
Negative INL  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
V
DD (V)  
2
2
FIGURE 2-2:  
INL vs. V - I C™  
FIGURE 2-5:  
INL vs. V - I C™ Fast  
DD  
DD  
Standard Mode (f  
= 100 kHz).  
Mode (f  
= 400 kHz).  
SCL  
SCL  
2
1.5  
1
2
1.5  
1
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
-1.5  
-2  
-1.5  
-2  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
Digital Code  
Digital Code  
FIGURE 2-3:  
INL vs. Code  
FIGURE 2-6:  
INL vs. Code  
(Representative Part).  
(Representative Part, V = 2.7V).  
DD  
© 2006 Microchip Technology Inc.  
DS21732C-page 5  
MCP3221  
Note: Unless otherwise indicated, VDD = 5V, VSS = 0V, I2C Fast Mode Timing (SCL = 400 kHz), Continuous Conversion  
Mode (fSAMP = 22.3 ksps), TA = +25°C.  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
Positive INL  
Positive INL  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
Negative INL  
Negative INL  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-7:  
INL vs. Temperature.  
FIGURE 2-10:  
INL vs. Temperature  
(V = 2.7V).  
DD  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
Positive DNL  
Negative DNL  
Positive DNL  
Negative DNL  
0
100  
200  
300  
400  
0
100  
200  
300  
400  
I2C Bus Rate (kHz)  
I2C Bus Rate (kHz)  
FIGURE 2-8:  
DNL vs. Clock Rate.  
FIGURE 2-11:  
DNL vs. Clock Rate  
(V = 2.7V).  
DD  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
Positive DNL  
Negative DNL  
Positive DNL  
Negative DNL  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
V
DD (V)  
VDD (V)  
2
2
FIGURE 2-9:  
DNL vs. V - I C™  
FIGURE 2-12:  
DNL vs. V - I C™ Fast  
DD  
DD  
Standard Mode (f  
= 100 kHz).  
Mode (f  
= 400 kHz).  
SCL  
SCL  
DS21732C-page 6  
© 2006 Microchip Technology Inc.  
MCP3221  
Note: Unless otherwise indicated, VDD = 5V, VSS = 0V, I2C Fast Mode Timing (SCL = 400 kHz), Continuous Conversion  
Mode (fSAMP = 22.3 ksps), TA = +25°C.  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
125  
5.5  
Digital Code  
Digital Code  
FIGURE 2-13:  
(Representative Part).  
DNL vs. Code  
FIGURE 2-16:  
(Representative Part, V = 2.7V).  
DNL vs. Code  
DD  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
1
0.8  
0.6  
0.4  
0.2  
0
Positive DNL  
Positive DNL  
Negative DNL  
-0.2  
Negative DNL  
-0.4  
-0.6  
-0.8  
-1  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-14:  
DNL vs. Temperature.  
FIGURE 2-17:  
(V = 2.7V).  
DNL vs. Temperature  
DD  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1  
fSCL = 100 kHz & 400 kHz  
Fast Mode  
(fSCL= 100 kHz)  
Standard Mode  
(fSCL= 400 kHz)  
2.5  
3
3.5  
4
4.5  
5
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
VDD (V)  
FIGURE 2-15:  
Gain Error vs. V  
.
DD  
FIGURE 2-18:  
Offset Error vs. V  
.
DD  
© 2006 Microchip Technology Inc.  
DS21732C-page 7  
MCP3221  
Note: Unless otherwise indicated, VDD = 5V, VSS = 0V, I2C Fast Mode Timing (SCL = 400 kHz), Continuous Conversion  
Mode (fSAMP = 22.3 ksps), TA = +25°C.  
3
2
2
1.8  
1.6  
1.4  
1.2  
1
VDD = 2.7V  
1
VDD = 5V  
0
0.8  
0.6  
0.4  
0.2  
0
-1  
-2  
-3  
VDD = 5V  
-25  
VDD = 2.7V  
-50  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-19:  
Gain Error vs. Temperature.  
FIGURE 2-22:  
Offset Error vs.  
Temperature.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD = 5V  
VDD = 5V  
VDD = 2.7V  
VDD = 2.7V  
1
10  
1
10  
Input Frequency (kHz)  
Input Frequency (kHz)  
FIGURE 2-20:  
SNR vs. Input Frequency.  
FIGURE 2-23:  
SINAD vs. Input Frequency.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
1
80  
70  
60  
50  
40  
30  
20  
10  
VDD = 5V  
VDD = 2.7V  
VDD = 5V  
VDD = 2.7V  
0
10  
-40  
-30  
-20  
-10  
0
Input Frequency (kHz)  
Input Signal Level (dB)  
FIGURE 2-21:  
THD vs. Input Frequency.  
FIGURE 2-24:  
SINAD vs. Input Signal  
Level.  
DS21732C-page 8  
© 2006 Microchip Technology Inc.  
MCP3221  
Note: Unless otherwise indicated, VDD = 5V, VSS = 0V, I2C Fast Mode Timing (SCL = 400 kHz), Continuous Conversion  
Mode (fSAMP = 22.3 ksps), TA = +25°C.  
12  
11.95  
11.9  
12  
11.5  
11  
11.85  
11.8  
VDD = 2.7V  
VDD = 5V  
11.75  
11.7  
10.5  
10  
11.65  
11.6  
9.5  
9
11.55  
11.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
1
10  
VDD (V)  
Input Frequency (kHz)  
FIGURE 2-25:  
ENOB vs. V  
.
FIGURE 2-28:  
ENOB vs. Input Frequency.  
DD  
100  
90  
80  
70  
60  
10  
-10  
VDD = 5V  
fSAMP = 5.6 ksps  
-30  
VDD = 2.7V  
-50  
50  
40  
30  
20  
10  
0
-70  
-90  
-110  
-130  
0
500  
1000  
1500  
2000  
2500  
1
10  
Frequency (Hz)  
Input Frequency (kHz)  
2
FIGURE 2-26:  
SFDR vs. Input Frequency.  
FIGURE 2-29:  
Spectrum Using I C™  
Standard Mode (Representative Part, 1 kHz  
Input Frequency).  
250  
200  
150  
100  
50  
10  
-10  
-30  
-50  
-70  
-90  
-110  
0
-130  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
2000  
4000  
6000  
8000  
10000  
VDD (V)  
Frequency (Hz)  
2
FIGURE 2-30:  
I
(Conversion) vs. V  
.
FIGURE 2-27:  
Spectrum Using I C™ Fast  
DD  
DD  
Mode (Representative Part, 1 kHz Input  
Frequency).  
© 2006 Microchip Technology Inc.  
DS21732C-page 9  
MCP3221  
Note: Unless otherwise indicated, VDD = 5V, VSS = 0V, I2C Fast Mode Timing (SCL = 400 kHz), Continuous Conversion  
Mode (fSAMP = 22.3 ksps), TA = +25°C.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
200  
180  
160  
140  
120  
100  
80  
VDD = 5V  
VDD = 5V  
60  
VDD = 2.7V  
40  
VDD = 2.7V  
20  
0
0
100  
200  
300  
400  
0
100  
200  
I2C Clock Rate (kHz)  
300  
400  
I2C Clock Rate (kHz)  
FIGURE 2-31:  
I
(Conversion) vs. Clock  
FIGURE 2-34:  
I
(Active Bus) vs. Clock  
DD  
DDA  
Rate.  
Rate.  
250  
200  
150  
100  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD = 5V  
VDD = 5V  
VDD = 2.7V  
VDD = 2.7V  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-32:  
I
(Conversion) vs.  
FIGURE 2-35:  
I
(Active Bus) vs.  
DD  
DDA  
Temperature.  
Temperature.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
VDD (V)  
FIGURE 2-33:  
I
(Active Bus) vs. V  
.
FIGURE 2-36:  
I
(Standby) vs. V  
DD  
.
DDA  
DD  
DDS  
DS21732C-page 10  
© 2006 Microchip Technology Inc.  
MCP3221  
Note: Unless otherwise indicated, VDD = 5V, VSS = 0V, I2C Fast Mode Timing (SCL = 400 kHz), Continuous Conversion  
Mode (fSAMP = 22.3 ksps), TA = +25°C.  
2.1  
Test Circuits  
1000  
100  
VDD = 5V  
10  
1
0.1  
10 µF 0.1 µF  
0.01  
0.001  
0.0001  
2 kΩ 2 kΩ  
DDSDA  
V
AIN  
-50  
-25  
0
25  
50  
75  
100 125  
MCP3221  
V
SSSCL  
Temperature (°C)  
VIN  
FIGURE 2-37:  
I
(Standby) vs.  
DDS  
Temperature.  
VCM = 2.5V  
2
1.8  
1.6  
1.4  
1.2  
1
FIGURE 2-39:  
Typical Test Configuration.  
0.8  
0.6  
0.4  
0.2  
0
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
FIGURE 2-38:  
Analog Input Leakage vs.  
Temperature.  
© 2006 Microchip Technology Inc.  
DS21732C-page 11  
MCP3221  
3.3  
Serial Data (SDA)  
3.0  
PIN FUNCTIONS  
SDA is a bidirectional pin used to transfer addresses  
and data into and out of the device. Since it is an open-  
drain terminal, the SDA bus requires a pull-up resistor  
to VDD (typically 10 kΩ for 100 kHz and 2 kΩ for  
400 kHz SCL clock speeds). Refer to Section 6.2  
“Connecting to the I2C Bus”, “Connecting to the I2C  
Bus”, for more information.  
TABLE 3-1:  
Name  
PIN FUNCTION TABLE  
Function  
VDD  
VSS  
AIN  
+2.7V to 5.5V Power Supply  
Ground  
Analog Input  
SDA  
SCL  
Serial Data In/Out  
Serial Clock In  
For normal data transfer, SDA is allowed to change only  
during SCL low. Changes during SCL high are reserved  
for indicating the START and STOP conditions. Refer to  
Section 5.1 “I2C Bus Characteristics”, “I2C Bus  
Characteristics”.  
3.1  
VDD and VSS  
The VDD pin, with respect to VSS, provides power to the  
device as well as a voltage reference for the conversion  
process. Refer to Section 6.4 “Device Power and  
Layout Considerations”, “Device Power and Layout  
Considerations”, for tips on power and grounding.  
3.4  
Serial Clock (SCL)  
SCL is an input pin used to synchronize the data trans-  
fer to and from the device on the SDA pin and is an  
open-drain terminal. Therefore, the SCL bus requires a  
pull-up resistor to VDD (typically 10 kΩ for 100 kHz and  
2 kΩ for 400 kHz SCL clock speeds. Refer to  
Section 6.2 “Connecting to the I2C Bus”, “Connect-  
ing to the I2C Bus”).  
3.2  
Analog Input (AIN)  
AIN is the input pin to the sample-and-hold circuitry of  
the Successive Approximation Register (SAR) con-  
verter. Care should be taken in driving this pin. Refer to  
Section 6.1 “Driving the Analog Input”, “Driving the  
Analog Input”. For proper conversions, the voltage on  
For normal data transfer, SDA is allowed to change  
only during SCL low. Changes during SCL high are  
reserved for indicating the START and STOP  
conditions. Refer to Section 6.1 “Driving the Analog  
Input”, “Driving the Analog Input”.  
this pin can vary from VSS to VDD  
.
DS21732C-page 12  
© 2006 Microchip Technology Inc.  
MCP3221  
4.2  
Conversion Time (tCONV)  
4.0  
DEVICE OPERATION  
The conversion time is the time required to obtain the  
digital result once the analog input is disconnected  
from the holding capacitor. With the MCP3221, the  
specified conversion time is typically 8.96 µs. This time  
is dependent on the internal oscillator and is  
independent of SCL.  
The MCP3221 employs a classic SAR architecture.  
This architecture uses an internal sample and hold  
capacitor to store the analog input while the conversion  
is taking place. At the end of the acquisition time, the  
input switch of the converter opens and the device uses  
the collected charge on the internal sample-and-hold  
capacitor to produce a serial 12-bit digital output code.  
The acquisition time and conversion is self-timed using  
an internal clock. After each conversion, the results are  
stored in a 12-bit register that can be read at any time.  
4.3  
Acquisition Time (tACQ)  
The acquisition time is the amount of time the sample  
cap array is acquiring charge.  
Communication with the device is accomplished with a  
2-wire, I2C interface. Maximum sample rates of  
22.3 ksps are possible with the MCP3221 in a continu-  
ous-conversion mode and an SCL clock rate of  
400 kHz.  
The acquisition time is, typically, 1.12 µs. This time is  
dependent on the internal oscillator and independent of  
SCL.  
4.4  
Sample Rate  
4.1  
Digital Output Code  
Sample rate is the inverse of the maximum amount of  
time that is required from the point of acquisition of the  
first conversion to the point of acquisition of the second  
conversion.  
The digital output code produced by the MCP3221 is a  
function of the input signal and power supply voltage,  
VDD. As the VDD level is reduced, the LSB size is  
reduced accordingly. The theoretical LSB size is shown  
below.  
The sample rate can be measured either by single or  
continuous conversions. A single conversion includes  
a Start Bit, Address Byte, Two Data Bytes and a Stop  
bit. This sample rate is measured from one Start Bit to  
the next Start Bit.  
EQUATION  
V
DD  
For continuous conversions (requested by the Master  
by issuing an acknowledge after a conversion), the  
maximum sample rate is measured from conversion to  
conversion or a total of 18 clocks (two data bytes and  
two Acknowledge bits). Refer to Section 5.2 “Device  
Addressing”, “Device Addressing”.  
LSB SIZE = ------------  
4096  
VDD = Supply voltage  
The output code of the MCP3221 is transmitted serially  
with MSB first. The format of the code is straight binary.  
Output Code  
1111 1111 1111 (4095)  
1111 1111 1110 (4094)  
0000 0000 0011(3)  
0000 0000 0010(2)  
0000 0000 0001(1)  
0000 0000 0000(0)  
AIN  
.5 LSB  
V
DD-1.5 LSB  
1.5 LSB  
2.5 LSB  
VDD-2.5 LSB  
FIGURE 4-1:  
Transfer Function.  
© 2006 Microchip Technology Inc.  
DS21732C-page 13  
MCP3221  
4.5  
Differential Non-Linearity (DNL)  
4.8  
Gain Error  
In the ideal A/D converter transfer function, each code  
has a uniform width. That is, the difference in analog  
input voltage is constant from one code transition point  
to the next. Differential nonlinearity (DNL) specifies the  
deviation of any code in the transfer function from an  
ideal code width of 1 LSB. The DNL is determined by  
subtracting the locations of successive code transition  
points after compensating for any gain and offset  
errors. A positive DNL implies that a code is longer than  
the ideal code width, while a negative DNL implies that  
a code is shorter than the ideal width.  
The gain error determines the amount of deviation from  
the ideal slope of the A/D converter transfer function.  
Before the gain error is determined, the offset error is  
measured and subtracted from the conversion result.  
The gain error can then be determined by finding the  
location of the last code transition and comparing that  
location to the ideal location. The ideal location of the  
last code transition is 1.5 LSBs below full-scale or VDD  
.
4.9  
Conversion Current (IDD)  
The average amount of current over the time required  
to perform a 12-bit conversion.  
4.6  
Integral Non-Linearity (INL)  
4.10 Active Bus Current (IDDA  
)
Integral nonlinearity (INL) is a result of cumulative DNL  
errors and specifies how much the overall transfer  
function deviates from a linear response. The method  
of measurement used in the MCP3221 A/D converter  
to determine INL is the “end-point” method.  
The average amount of current over the time required  
to monitor the I2C bus. Any current the device con-  
sumes while it is not being addressed is referred to as  
“Active Bus” current.  
4.7  
Offset Error  
4.11 Standby Current (IDDS  
)
Offset error is defined as a deviation of the code transi-  
tion points that are present across all output codes.  
This has the effect of shifting the entire A/D transfer  
function. The offset error is measured by finding the dif-  
ference between the actual location of the first code  
transition and the desired location of the first transition.  
The ideal location of the first code transition is located  
The average amount of current required while no con-  
version is occurring and while no data is being output  
(i.e., SCL and SDA lines are quiet).  
4.12 I2C Standard Mode Timing  
I2C specification where the frequency of SCL is  
100 kHz.  
at 1/2 LSB above VSS  
.
4.13 I2C Fast Mode Timing  
I2C specification where the frequency of SCL is  
400 kHz.  
DS21732C-page 14  
© 2006 Microchip Technology Inc.  
MCP3221  
Each data transfer is initiated with a START condition  
and terminated with a STOP condition. The number of  
data bytes transferred between the START and STOP  
conditions is determined by the master device and is  
unlimited.  
5.0  
5.1  
SERIAL COMMUNICATIONS  
I2C Bus Characteristics  
The following bus protocol has been defined:  
• Data transfer may be initiated only when the bus  
is not busy.  
5.1.5  
ACKNOWLEDGE  
• During data transfer, the data line must remain  
stable whenever the clock line is high. Changes in  
the data line while the clock line is high will be  
interpreted as a START or STOP condition.  
Each receiving device, when addressed, is obliged to  
generate an acknowledge bit after the reception of  
each byte. The master device must generate an extra  
clock pulse which is associated with this acknowledge  
bit.  
Accordingly, the following bus conditions have been  
defined (refer to Figure 5-1).  
The device that acknowledges has to pull down the  
SDA line during the acknowledge clock pulse in such a  
way that the SDA line is stable-low during the high  
period of the acknowledge-related clock pulse. Setup  
and hold times must be taken into account. During  
reads, a master device must signal an end of data to  
the slave by not generating an acknowledge bit on the  
last byte that has been clocked out of the slave (NAK).  
In this case, the slave (MCP3221) will release the bus  
to allow the master device to generate the STOP  
condition.  
5.1.1  
BUS NOT BUSY (A)  
Both data and clock lines remain high.  
5.1.2  
START DATA TRANSFER (B)  
A high-to-low transition of the SDA line while the clock  
(SCL) is high determines a START condition. All  
commands must be preceded by a START condition.  
5.1.3  
STOP DATA TRANSFER (C)  
The MCP3221 supports a bidirectional, 2-wire bus and  
data transmission protocol. The device that sends data  
onto the bus is the transmitter and the device receiving  
data is the receiver. The bus has to be controlled by a  
master device which generates the serial clock (SCL),  
controls the bus access and generates the START and  
STOP conditions, while the MCP3221 works as a slave  
device. Both master and slave devices can operate as  
either transmitter or receiver, but the master device  
determines which mode is activated.  
A low-to-high transition of the SDA line while the clock  
(SCL) is high determines a STOP condition. All  
operations must be ended with a STOP condition.  
5.1.4  
DATA VALID (D)  
The state of the data line represents valid data when,  
after a START condition, the data line is stable for the  
duration of the clock signal’s high period.  
The data on the line must be changed during the low  
period of the clock signal. There is one clock pulse per  
bit of data.  
(A)  
(B)  
(D)  
(D)  
(C) (A)  
SCL  
SDA  
START  
CONDITION  
STOP  
CONDITION  
ADDRESS OR  
ACKNOWLEDGE ALLOWED  
VALID TO CHANGE  
DATA  
FIGURE 5-1:  
Data Transfer Sequence on the Serial Bus.  
© 2006 Microchip Technology Inc.  
DS21732C-page 15  
MCP3221  
5.2  
Device Addressing  
5.3  
Executing a Conversion  
The address byte is the first byte received following the  
START condition from the master device. The first part  
of the control byte consists of a 4-bit device code, which  
is set to 1001for the MCP3221. The device code is fol-  
lowed by three address bits: A2, A1 and A0. The default  
address bits are 101. Contact the Microchip factory for  
additional address bit options. The address bits allow  
up to eight MCP3221 devices on the same bus and are  
used to determine which device is accessed.  
This section will describe the details of communicating  
with the MCP3221 device. Initiating the sample-and-  
hold acquisition, reading the conversion data and  
executing multiple conversions will be discussed.  
5.3.1  
INITIATING THE SAMPLE AND  
HOLD  
The acquisition and conversion of the input signal  
begins with the falling edge of the R/W bit of the  
address byte. At this point, the internal clock initiates  
the sample, hold and conversion cycle, all of which are  
internal to the ADC.  
The eighth bit of the slave address determines if the  
master device wants to read conversion data or write to  
the MCP3221. When set to a ‘1’, a read operation is  
selected. When set to a ‘0’, a write operation is  
selected. There are no writable registers on the  
MCP3221. Therefore, this bit must be set to a ’1’ in  
order to initiate a conversion.  
tACQ + tCONV is  
initiated here  
The MCP3221 is a slave device that is compatible with  
the I2C 2-wire serial interface protocol. A hardware  
connection diagram is shown in Figure 6-2. Communi-  
cation is initiated by the microcontroller (master  
device), which sends a START bit followed by the  
address byte.  
Address Byte  
SCL  
SDA  
1
1
2
0
3
0
4
1
5
6
7
8
9
A2 A1 A0 R/W  
On completion of the conversion(s) performed by the  
MCP3221, the microcontroller must send a STOP bit to  
end communication.  
Start  
Bit  
Device bits Address bits  
The last bit in the device address byte is the R/W bit.  
When this bit is a logic ‘1’, a conversion will be exe-  
cuted. Setting this bit to logic ‘0’ will also result in an  
“acknowledge” (ACK) from the MCP3221, with the  
device then releasing the bus. This can be used for  
device polling. Refer to Section 6.3 “Device Polling”,  
“Device Polling”, for more information.  
FIGURE 5-3:  
Address Byte.  
Initiating the Conversion,  
tACQ + tCONV is  
initiated here  
START  
READ/WRITE  
Lower Data Byte (n)  
SLAVE ADDRESS  
R/W A  
17 18 19 20 21 22 23 24 25  
26  
SCL  
1
1
0
0
1
0
1
SDA D8  
D7 D6 D5 D4 D3 D2 D2 D0  
Device Code  
Address Bits(1)  
FIGURE 5-4:  
Initiating the Conversion,  
Continuous Conversions.  
Note 1: Contact Microchip for additional address bits.  
FIGURE 5-2:  
Device Addressing.  
DS21732C-page 16  
© 2006 Microchip Technology Inc.  
MCP3221  
The input signal will initially be sampled with the first  
falling edge of the clock following the transmission of a  
logic-high R/W bit. Additionally, with the rising edge of  
the SCL, the ADC will transmit an acknowledge bit  
(ACK = 0). The master must release the data bus dur-  
ing this clock pulse to allow the MCP3221 to pull the  
line low (refer to Figure 5-3).  
5.3.2  
READING THE CONVERSION DATA  
Once the MCP3221 acknowledges the address byte,  
the device will transmit four ‘0’ bits followed by the upper  
four data bits of the conversion. The master device will  
then acknowledge this byte with an ACK = Low. With the  
following 8 clock pulses, the MCP3221 will transmit the  
lower eight data bits from the conversion. The master  
then sends an ACK = high, indicating to the MCP3221  
that no more data is requested. The master can then  
send a stop bit to end the transmission.  
For consecutive samples, sampling begins on the fall-  
ing edge of the LSB of the conversion result, which is  
two bytes long. Refer to Figure 5-6 a for timing diagram.  
t
+ t  
is  
6
ACQ  
CONV  
initiated here  
1
2
0
3
4
5
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  
SCL  
SDA  
S
T
A
R
T
S
T
O
P
Address Byte  
Upper Data Byte  
Lower Data Byte  
A
C
K
A
C
K
R
/
N
A
K
D
D
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
A
2
A
1
A
0
S
1
0
1
0
0
0
0
P
11 10  
W
Device bits Address bits  
FIGURE 5-5:  
Executing a Conversion.  
5.3.3  
CONSECUTIVE CONVERSIONS  
For consecutive samples, sampling begins on the fall-  
ing edge of the LSB of the conversion result. See  
Figure 5-6 for timing.  
t
+ t  
is  
6
t
+ t  
is  
ACQ  
CONV  
ACQ  
CONV  
initiated here  
initiated here  
f
= 22.3 ksps (f  
CLK  
= 400 kHz)  
SAMP  
1
2
3
4
5
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28  
SCL  
S
T
A
R
T
Address Byte  
Upper Data Byte (n)  
Lower Data Byte (n)  
A
C
K
A
C
K
A
C
K
R
/
D
10  
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
D
11  
SDA  
S
1
0
0
1
A2 A1 A0  
0
0
0
0
0
W
Device bits Address bits  
FIGURE 5-6:  
Continuous Conversion.  
© 2006 Microchip Technology Inc.  
DS21732C-page 17  
MCP3221  
The analog input model is shown in Figure 6-1. In this  
diagram, the source impedance (RSS) adds to the inter-  
nal sampling switch (RS) impedance, directly affecting  
the time required to charge the capacitor (CSAMPLE).  
Consequently, a larger source impedance increases  
the offset error, gain error and integral linearity errors of  
the conversion. Ideally, the impedance of the signal  
source should be near zero. This is achievable with an  
operational amplifier, such as the MCP6022, which has  
a closed-loop output impedance of tens of ohms.  
6.0  
6.1  
APPLICATIONS INFORMATION  
Driving the Analog Input  
The MCP3221 has a single-ended analog input (AIN).  
For proper conversion results, the voltage at the AIN  
pin must be kept between VSS and VDD. If the converter  
has no offset error, gain error, INL or DNL errors, and  
the voltage level of AIN is equal to or less than  
VSS + 1/2 LSB, the resultant code will be 000h. Addi-  
tionally, if the voltage at AIN is equal to or greater than  
VDD - 1.5 LSB, the output code will be FFFh.  
VDD  
Sampling  
Switch  
VT = 0.6V  
AIN  
RS = 1 kΩ  
SS  
RSS  
CSAMPLE  
= DAC capacitance  
= 20 pF  
CPIN  
7 pF  
ILEAKAGE  
±1 nA  
VA  
VT = 0.6V  
VSS  
Legend  
VA  
RSS  
AIN  
CPIN  
VT  
=
=
=
=
=
=
signal source  
source impedance  
analog input pad  
analog input pin capacitance  
threshold voltage  
leakage current at the pin  
due to various junctions  
sampling switch  
sampling switch resistor  
sample/hold capacitance  
ILEAKAGE  
SS  
RS  
CSAMPLE  
=
=
=
FIGURE 6-1:  
Analog Input Model, A .  
IN  
Connecting to the I2C Bus  
The number of devices connected to the bus is limited  
only by the maximum bus capacitance of 400 pF. A  
possible configuration using multiple devices is shown  
in Figure 6-3.  
6.2  
The I2C bus is an open-collector bus, requiring pull-up  
resistors connected to the SDA and SCL lines. This  
configuration is shown in Figure 6-2.  
SDA  
SCL  
VDD  
PIC16F876  
Microcontroller  
MCP3221  
RPU RPU  
24LC01  
EEPROM  
SDA  
AIN  
SCL  
Analog  
Input  
MCP3221  
12-bit ADC  
Signal  
TC74  
Temperature  
Sensor  
RPU is typically: 10 kΩ for fSCL = 100 kHz  
2 kΩ for fSCL = 400 kHz  
2
FIGURE 6-2:  
Pull-up Resistors on I C  
2
FIGURE 6-3:  
Bus.  
Multiple Devices on I C™  
Bus.  
DS21732C-page 18  
© 2006 Microchip Technology Inc.  
MCP3221  
Digital and analog traces should be separated as much  
as possible on the board, with no traces running  
underneath the device or the bypass capacitor. Extra  
precautions should be taken to keep traces with high-  
frequency signals (such as clock lines) as far as  
possible from analog traces.  
6.3  
Device Polling  
In some instances, it may be necessary to test for  
MCP3221 presence on the I2C bus without performing  
a conversion. This operation is described in Figure 6-4.  
Here we are setting the R/W bit in the address byte to  
a zero. The MCP3221 will then acknowledge by pulling  
SDA low during the ACK clock and then release the  
bus back to the I2C master. A stop or repeated start bit  
can then be issued from the master and I2C  
communication can continue.  
Use of an analog ground plane is recommended in  
order to keep the ground potential the same for all  
devices on the board. Providing VDD connections to  
devices in a “star” configuration can also reduce noise  
by eliminating current return paths and associated  
errors (Figure 6-6). For more information on layout tips  
when using the MCP3221 or other ADC devices, refer  
to AN688, “Layout Tips for 12-Bit A/D Converter  
Applications”.  
Address Byte  
SCL  
SDA  
1 2 3 4 5 6 7 8 9  
VDD  
Connection  
1
0 0  
1 A2 A1A0 0  
R/W  
Address bits  
Start  
Bit  
Start  
Bit  
Device bits  
MCP3221 response  
Device Polling.  
Device 4  
Device 1  
FIGURE 6-4:  
6.4  
Device Power and Layout  
Considerations  
Device 3  
6.4.1  
POWERING THE MCP3221  
Device 2  
VDD supplies the power to the device as well as the ref-  
erence voltage. A bypass capacitor value of 0.1 µF is  
recommended. Adding a 10 µF capacitor in parallel is  
recommended to attenuate higher frequency noise  
present in some systems.  
FIGURE 6-6:  
V
traces arranged in a  
DD  
‘Star’ configuration in order to reduce errors  
caused by current return paths.  
VDD  
6.4.3  
USING A REFERENCE FOR  
SUPPLY  
VDD  
The MCP3221 uses VDD as both power and a refer-  
ence. In some applications, it may be necessary to use  
a stable reference to achieve the required accuracy.  
Figure 6-7 shows an example using the MCP1541 as a  
4.096V, 2% reference.  
10 µF  
0.1 µF  
AIN  
VDD  
RPU RPU  
To  
SCL  
SDA  
MCP3221  
Microcontroller  
VDD  
VDD  
1 µF  
FIGURE 6-5:  
Powering the MCP3221.  
MCP1541  
CL  
4.096V  
Reference  
6.4.2  
LAYOUT CONSIDERATIONS  
VDD  
SCL  
RPU  
When laying out a printed circuit board for use with  
analog components, care should be taken to reduce  
noise wherever possible. A bypass capacitor from V  
AIN  
MCP3221  
SDA  
DD  
to ground should always be used with this device and  
should be placed as close as possible to the device pin.  
A bypass capacitor value of 0.1 µF is recommended.  
FIGURE 6-7:  
Stable Power and  
Reference Configuration.  
© 2006 Microchip Technology Inc.  
DS21732C-page 19  
MCP3221  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Pin SOT-23A (EIAJ SC-74) Device  
3
2
1
cdef  
4
5
Part Number  
Address Option  
SOT-23  
MCP3221A0T-I/OT  
MCP3221A1T-I/OT  
MCP3221A2T-I/OT  
MCP3221A3T-I/OT  
MCP3221A4T-I/OT  
MCP3221A5T-I/OT  
MCP3221A6T-I/OT  
MCP3221A7T-I/OT  
000  
001  
010  
011  
100  
101  
110  
111  
EE  
EH  
EB  
EC  
ED  
S1 *  
EF  
EG  
MCP3221A0T-E/OT  
MCP3221A1T-E/OT  
MCP3221A2T-E/OT  
MCP3221A3T-E/OT  
MCP3221A4T-E/OT  
MCP3221A5T-E/OT  
MCP3221A6T-E/OT  
MCP3221A7T-E/OT  
000  
001  
010  
011  
100  
101  
110  
111  
GE  
GH  
GB  
GC  
GD  
GA *  
GF  
GG  
* Default option. Contact Microchip Factory for other  
address options.  
Legend:  
1
2
3
4
Part Number code + temperature range  
Part Number code + temperature range  
Year and work week  
Lot ID  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard device marking consists of Microchip part number, year code, week code, and traceability  
code.  
DS21732C-page 20  
© 2006 Microchip Technology Inc.  
MCP3221  
5-Lead Plastic Small Outline Transistor (OT) (SOT23)  
E
E1  
p
B
p1  
D
n
1
α
c
A
A2  
φ
L
A1  
β
Units  
INCHES  
NOM  
*
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
5
5
.038  
0.95  
p1  
Outside lead pitch (basic)  
Overall Height  
.075  
.046  
.043  
.003  
.110  
.064  
.116  
.018  
1.90  
1.18  
1.10  
0.08  
2.80  
1.63  
2.95  
0.45  
A
A2  
A1  
E
.035  
.057  
0.90  
1.45  
Molded Package Thickness  
Standoff  
.035  
.000  
.102  
.059  
.110  
.014  
.051  
.006  
.118  
.069  
.122  
.022  
10  
0.90  
0.00  
2.60  
1.50  
2.80  
0.35  
1.30  
0.15  
3.00  
1.75  
3.10  
0.55  
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Foot Length  
L
f
Foot Angle  
0
5
0
5
10  
c
Lead Thickness  
Lead Width  
.004  
.014  
.006  
.017  
.008  
.020  
10  
0.09  
0.35  
0.15  
0.43  
0.20  
0.50  
B
a
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
0
5
5
0
5
5
10  
10  
b
10  
0
*
Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.  
EIAJ Equivalent: SC-74A  
Revised 09-12-05  
Drawing No. C04-091  
© 2006 Microchip Technology Inc.  
DS21732C-page 21  
MCP3221  
NOTES:  
DS21732C-page 22  
© 2006 Microchip Technology Inc.  
MCP3221  
APPENDIX A: REVISION HISTORY  
Revision C (July 2006)  
• Section 5.2 Device Address: Changed 4-bit  
device code to “1001”. Changed three address  
bits to “101”.  
Revision B (May 2003)  
• Numerous changes throughout document.  
Revision A (November 2005)  
• Original Release of this Document.  
© 2006 Microchip Technology Inc.  
DS21732C-page 23  
MCP3221  
NOTES:  
DS21732C-page 24  
© 2006 Microchip Technology Inc.  
MCP3221  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
XX  
X
/XX  
a)  
b)  
c)  
d)  
e)  
f)  
MCP3221A0T-I/OT: Industrial, A0 Address,  
Tape and Reel  
Address Temperature Package  
Options  
Range  
MCP3221A1T-I/OT: Industrial, A1 Address,  
Tape and Reel  
MCP3221A2T-I/OT: Industrial, A2 Address,  
Tape and Reel  
Device:  
MCP3221T: 12-Bit 2-Wire Serial A/D Converter  
(Tape and Reel)  
MCP3221A3T-I/OT: Industrial, A3 Address,  
Tape and Reel  
Temperature Range:  
Address Options:  
I = -40°C to +85°C  
E = -40°C to +125°C  
MCP3221A4T-I/OT: Industrial, A4 Address,  
Tape and Reel  
MCP3221A5T-I/OT: Industrial, A5 Address,  
Tape and Reel  
XX  
A0  
A1  
A2  
A3  
A4  
A5 *  
A6  
A7  
A2  
0
A1  
0
A0  
0
=
=
=
=
=
=
=
=
g)  
h)  
MCP3221A6T-I/OT: Industrial, A6 Address,  
Tape and Reel  
0
0
1
MCP3221A7T-I/OT: Industrial, A7 Address,  
Tape and Reel  
0
1
0
0
1
1
a)  
b)  
c)  
d)  
e)  
f)  
MCP3221A0T-E/OT: Extended, A0 Address,  
Tape and Reel  
1
0
0
1
0
1
MCP3221A1T-E/OT: Extended, A1 Address,  
Tape and Reel  
1
1
0
1
1
1
MCP3221A2T-E/OT: Extended, A2 Address,  
Tape and Reel  
* Default option. Contact Microchip factory for other  
address options  
MCP3221A3T-E/OT: Extended, A3 Address,  
Tape and Reel  
MCP3221A4T-E/OT: Extended, A4 Address,  
Tape and Reel  
Package:  
OT = SOT-23, 5-lead (Tape and Reel)  
MCP3221A5T-E/OT: Extended, A5 Address,  
Tape and Reel  
g)  
h)  
MCP3221A6T-E/OT: Extended, A6 Address,  
Tape and Reel  
MCP3221A7T-IE/OT: Extended, A7 Address,  
Tape and Reel  
© 2006 Microchip Technology Inc.  
DS21732C-page 25  
MCP3221  
NOTES:  
DS21732C-page 26  
© 2006 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart, rfPIC, and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active  
Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2006, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The  
Company’s quality system processes and procedures are for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial  
EEPROMs, microperipherals, nonvolatile memory and analog  
products. In addition, Microchip’s quality system for the design and  
manufacture of development systems is ISO 9001:2000 certified.  
© 2006 Microchip Technology Inc.  
DS21732C-page 27  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-3910  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-5160-8631  
Fax: 91-11-5160-8632  
China - Chengdu  
Tel: 86-28-8676-6200  
Fax: 86-28-8676-6599  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Habour City, Kowloon  
Hong Kong  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Atlanta  
Korea - Seoul  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Boston  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Singapore  
Tel: 65-6334-8870  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Fax: 65-6334-8850  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Detroit  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
San Jose  
Mountain View, CA  
Tel: 650-215-1444  
Fax: 650-961-0286  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
06/08/06  
DS21732C-page 28  
© 2006 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY