MCP3221A2T-I/OT [MICROCHIP]

Low Power 12-Bit A/D Converter With I2C⑩ Interface; 低功耗12位A / D转换器, I2C⑩接口
MCP3221A2T-I/OT
型号: MCP3221A2T-I/OT
厂家: MICROCHIP    MICROCHIP
描述:

Low Power 12-Bit A/D Converter With I2C⑩ Interface
低功耗12位A / D转换器, I2C⑩接口

转换器
文件: 总27页 (文件大小:522K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP3221  
M
Low Power 12-Bit A/D Converter With I2C™ Interface  
Features  
Description  
• 12-bit resolution  
The Microchip Technology Inc. MCP3221 is a succes-  
sive approximation A/D converter with 12-bit resolu-  
tion. Available in the SOT-23 package, this device  
provides one single-ended input with very low power  
consumption. Based on an advanced CMOS technol-  
ogy, the MCP3221 provides a low maximum conver-  
sion current and standby current of 250 µA and 1 µA,  
respectively. Low current consumption, combined with  
the small SOT-23 package, make this device ideal for  
battery-powered and remote data acquisition  
applications.  
Communication to the MCP3221 is performed using a  
2-wire, I2C compatible interface. Standard (100 kHz)  
and Fast (400 kHz) I2C modes are available with the  
device. An on-chip conversion clock enables indepen-  
dent timing for the I2C and conversion clocks. The  
device is also addressable, allowing up to eight devices  
on a single 2-wire bus.  
• ±1 LSB DNL, ±2 LSB INL max.  
• 250 µA max conversion current  
• 5 nA typical standby current, 1 µA max.  
• I2C™ compatible serial interface  
- 100 kHz I2C Standard Mode  
- 400 kHz I2C Fast Mode  
• Up to 8 devices on a single 2-Wire bus  
• 22.3 ksps in I2C Fast Mode  
• Single-ended analog input channel  
• On-chip sample and hold  
• On-chip conversion clock  
• Single-supply specified operation: 2.7V to 5.5V  
Temperature range:  
- Industrial: -40°C to +85°C  
- Extended: -40°C to +125°C  
• Small SOT-23 package  
The MCP3221 runs on a single supply voltage that  
operates over a broad range of 2.7V to 5.5V. This  
device also provides excellent linearity of ±1 LSB differ-  
ential non-linearity and ±2 LSB integral non-linearity,  
maximum.  
Applications  
• Data Logging  
• Multi-zone Monitoring  
• Hand-Held Portable Applications  
• Battery-Powered Test Equipment  
• Remote or Isolated Data Acquisition  
Functional Block Diagram  
VDD  
VSS  
Package Type  
5-Pin SOT-23A  
DAC  
Comparator  
+
12-bit SAR  
Sample  
and  
SCL  
AIN  
5
4
1
2
VDD  
VSS  
Hold  
Clock  
Control Logic  
I2C™ Interface  
SCL SDA  
SDA  
3
AIN  
2003 Microchip Technology Inc.  
DS21732B-page 1  
MCP3221  
1.0  
ELECTRICAL  
PIN FUNCTION TABLE  
CHARACTERISTICS  
Name  
Function  
Absolute Maximum Ratings †  
VDD  
VSS  
AIN  
SDA  
SCL  
+2.7V to 5.5V Power Supply  
Ground  
Analog Input  
Serial Data In/Out  
Serial Clock In  
VDD...................................................................................7.0V  
Analog input pin w.r.t. VSS.......... ............. -0.6V to VDD +0.6V  
SDA and SCL pins w.r.t. VSS........... .........-0.6V to VDD +1.0V  
Storage temperature .....................................-65°C to +150°C  
Ambient temp. with power applied ................-65°C to +125°C  
Maximum Junction Temperature...................................150°C  
ESD protection on all pins (HBM) .................................4 kV  
† Stresses above those listed under “Maximum ratings” may  
cause permanent damage to the device. This is a stress rating  
only and functional operation of the device at those or any  
other conditions above those indicated in the operational list-  
ings of this specification is not implied. Exposure to maximum  
rating conditions for extended periods may affect device reli-  
ability.  
DC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise noted, all parameters apply at VDD = 5.0V, VSS = GND, RPU = 2 kΩ  
TAMB = -40°C to +85°C, I2C Fast Mode Timing: fSCL = 400 kHz (Note 3).  
Parameters  
DC Accuracy  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Resolution  
12  
±0.75  
±0.5  
±0.75  
-1  
bits  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
DNL  
±2  
±1  
±2  
±3  
LSB No missing codes  
LSB  
LSB  
Gain Error  
Dynamic Performance  
Total Harmonic Distortion  
Signal-to-Noise and Distortion  
Spurious-Free Dynamic Range  
Analog Input  
THD  
SINAD  
SFDR  
-82  
72  
86  
dB  
dB  
dB  
VIN = 0.1V to 4.9V @ 1 kHz  
VIN = 0.1V to 4.9V @ 1 kHz  
IN = 0.1V to 4.9V @ 1 kHz  
V
Input Voltage Range  
Leakage Current  
V
SS-0.3  
-1  
VDD+0.3  
+1  
V
µA  
2.7V VDD 5.5V  
SDA/SCL (open-drain output):  
Data Coding Format  
High-level input voltage  
Low-level input voltage  
Low-level output voltage  
Straight Binary  
VIH  
VIL  
VOL  
0.7 VDD  
0.3 VDD  
0.4  
V
V
V
V
IOL = 3 mA, RPU = 1.53 kΩ  
fSCL = 400 kHz only  
Hysteresis of Schmitt trigger inputs VHYST  
0.05 VDD  
Note 1: “Sample time” is the time between conversions once the address byte has been sent to the converter.  
Refer to Figure 5-6.  
2: This parameter is periodically sampled and not 100% tested.  
3: RPU = Pull-up resistor on SDA and SCL.  
4: SDA and SCL = VSS to VDD at 400 kHz.  
5: tACQ and tCONV are dependent on internal oscillator timing. See Figure 5-5 and Figure 5-6 for relation to  
SCL.  
DS21732B-page 2  
2003 Microchip Technology Inc.  
 
 
 
 
 
MCP3221  
DC ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise noted, all parameters apply at VDD = 5.0V, VSS = GND, RPU = 2 kΩ  
TAMB = -40°C to +85°C, I2C Fast Mode Timing: fSCL = 400 kHz (Note 3).  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input leakage current  
Output leakage current  
ILI  
ILO  
-1  
-1  
+1  
+1  
10  
µA  
µA  
pF  
VIN = 0.1 VDD and 0.9 VDD  
VOUT = 0.1 VSS and 0.9 VDD  
Pin capacitance  
CIN,  
TAMB = 25°C, f = 1 MHz;  
(all inputs/outputs)  
COUT  
(Note 2)  
Bus Capacitance  
CB  
400  
pF  
SDA drive low, 0.4V  
Power Requirements  
Operating Voltage  
Conversion Current  
Standby Current  
Active bus current  
Conversion Rate  
Conversion Time  
VDD  
IDD  
IDDS  
IDDA  
2.7  
175  
0.005  
5.5  
250  
1
V
µA  
µA  
µA  
SDA, SCL = VDD  
Note 4  
120  
tCONV  
tACQ  
fSAMP  
8.96  
1.12  
22.3  
µs  
µs  
ksps  
Note 5  
Note 5  
fSCL = 400 kHz (Note 1)  
Analog Input Acquisition Time  
Sample Rate  
Note 1: “Sample time” is the time between conversions once the address byte has been sent to the converter.  
Refer to Figure 5-6.  
2: This parameter is periodically sampled and not 100% tested.  
3: RPU = Pull-up resistor on SDA and SCL.  
4: SDA and SCL = VSS to VDD at 400 kHz.  
5: tACQ and tCONV are dependent on internal oscillator timing. See Figure 5-5 and Figure 5-6 for relation to  
SCL.  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise noted, all parameters apply at VDD = 5.0V, VSS = GND.  
Parameters  
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Industrial Temperature Range  
Extended Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 5L-SOT23A  
TA  
TA  
TA  
TA  
-40  
-40  
-40  
-65  
+85  
°C  
°C  
°C  
°C  
+125  
+125  
+150  
θJA  
256  
°C/W  
2003 Microchip Technology Inc.  
DS21732B-page 3  
MCP3221  
TIMING SPECIFICATIONS  
Electrical Characteristics: All parameters apply at VDD = 2.7V - 5.5V, VSS = GND, TAMB = -40°C to +85°C.  
Parameters  
I2C Standard Mode  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Clock frequency  
fSCL  
THIGH  
TLOW  
TR  
0
100  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock high time  
4000  
4700  
Clock low time  
SDA and SCL rise time  
SDA and SCL fall time  
START condition hold time  
START condition setup time  
Data input setup time  
STOP condition setup time  
STOP condition hold time  
Output valid from clock  
Bus free time  
1000  
300  
From VIL to VIH (Note 1)  
From VIL to VIH (Note 1)  
TF  
THD:STA  
TSU:STA  
TSU:DAT  
TSU:STO  
THD:STD  
TAA  
4000  
4700  
250  
4000  
4000  
3500  
TBUF  
4700  
Note 2  
Input filter spike suppression  
I2C Fast Mode  
TSP  
50  
SDA and SCL pins (Note 1)  
Clock frequency  
FSCL  
THIGH  
TLOW  
TR  
0
600  
400  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ns  
ns  
ns  
ns  
ns  
ns  
Clock high time  
Clock low time  
1300  
20 + 0.1CB  
20 + 0.1CB  
600  
SDA and SCL rise time  
SDA and SCL fall time  
START condition hold time  
START condition setup time  
Data input hold time  
Data input setup time  
STOP condition setup time  
STOP condition hold time  
Output valid from clock  
Bus free time  
300  
300  
From VIL to VIH (Note 1)  
From VIL to VIH (Note 1)  
TF  
THD:STA  
TSU:STA  
THD:DAT  
TSU:DAT  
TSU:STO  
THD:STD  
TAA  
600  
0
0.9  
100  
600  
600  
900  
TBUF  
1300  
Note 2  
Input filter spike suppression  
TSP  
50  
SDA and SCL pins (Note 1)  
Note 1: This parameter is periodically sampled and not 100% tested.  
2: Time the bus must be free before a new transmission can start.  
THIGH  
VHYS  
TF  
TR  
SCL  
TSU:STA  
TSU:STO  
THD:DAT  
TSU:DAT  
TLOW  
SDA  
IN  
THD:STA  
TSP  
TBUF  
TAA  
SDA  
OUT  
FIGURE 1-1:  
Standard and Fast Mode Bus Timing Data.  
DS21732B-page 4  
2003 Microchip Technology Inc.  
 
 
MCP3221  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VDD = 5V, VSS = 0V, I2C Fast Mode Timing (SCL = 400 kHz), Continuous Conversion  
Mode (fSAMP = 22.3 ksps), TA = +25°C.  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
Positive INL  
Negative INL  
Positive INL  
Negative INL  
0
100  
200  
300  
400  
0
100  
200  
300  
400  
I2C Bus Rate (kHz)  
I2C Bus Rate (kHz)  
FIGURE 2-1:  
INL vs. Clock Rate.  
FIGURE 2-4:  
INL vs. Clock Rate  
(V = 2.7V).  
DD  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
Positive INL  
Positive INL  
Negative INL  
Negative INL  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
VDD (V)  
2
2
FIGURE 2-2:  
INL vs. V - I C™  
SCL  
FIGURE 2-5:  
INL vs. V - I C™ Fast  
DD  
DD  
Standard Mode (f  
= 100 kHz).  
Mode (f  
= 400 kHz).  
SCL  
2
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
2
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
Digital Code  
Digital Code  
FIGURE 2-3:  
INL vs. Code  
FIGURE 2-6:  
INL vs. Code  
(Representative Part).  
(Representative Part, V = 2.7V).  
DD  
2003 Microchip Technology Inc.  
DS21732B-page 5  
MCP3221  
Note: Unless otherwise indicated, VDD = 5V, VSS = 0V, I2C Fast Mode Timing (SCL = 400 kHz), Continuous Conversion  
Mode (fSAMP = 22.3 ksps), TA = +25°C.  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
Positive INL  
Positive INL  
Negative INL  
Negative INL  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-7:  
INL vs. Temperature.  
FIGURE 2-10:  
INL vs. Temperature  
(V = 2.7V).  
DD  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
Positive DNL  
Negative DNL  
Positive DNL  
Negative DNL  
0
100  
200  
300  
400  
0
100  
200  
300  
400  
I2C Bus Rate (kHz)  
I2C Bus Rate (kHz)  
FIGURE 2-8:  
DNL vs. Clock Rate.  
FIGURE 2-11:  
DNL vs. Clock Rate  
(V = 2.7V).  
DD  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
Positive DNL  
Negative DNL  
3.5  
Positive DNL  
Negative DNL  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
4.5  
5.5  
VDD (V)  
VDD (V)  
2
2
FIGURE 2-9:  
DNL vs. V - I C™  
SCL  
FIGURE 2-12:  
DNL vs. V - I C™ Fast  
DD  
DD  
Standard Mode (f  
= 100 kHz).  
Mode (f  
= 400 kHz).  
SCL  
DS21732B-page 6  
2003 Microchip Technology Inc.  
MCP3221  
Note: Unless otherwise indicated, VDD = 5V, VSS = 0V, I2C Fast Mode Timing (SCL = 400 kHz), Continuous Conversion  
Mode (fSAMP = 22.3 ksps), TA = +25°C.  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
Digital Code  
Digital Code  
FIGURE 2-13:  
DNL vs. Code  
FIGURE 2-16:  
DNL vs. Code  
(Representative Part).  
(Representative Part, V = 2.7V).  
DD  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
1
0.8  
0.6  
Positive DNL  
0.4  
Positive DNL  
Negative DNL  
0.2  
0
-0.2  
Negative DNL  
-0.4  
-0.6  
-0.8  
-1  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-14:  
DNL vs. Temperature.  
FIGURE 2-17:  
DNL vs. Temperature  
(V = 2.7V).  
DD  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1  
fSCL = 100 kHz & 400 kHz  
Fast Mode  
(fSCL=100 kHz)  
Standard Mode  
(fSCL=400 kHz)  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
VDD (V)  
FIGURE 2-15:  
Gain Error vs. V  
.
DD  
FIGURE 2-18:  
Offset Error vs. V  
.
DD  
2003 Microchip Technology Inc.  
DS21732B-page 7  
MCP3221  
Note: Unless otherwise indicated, VDD = 5V, VSS = 0V, I2C Fast Mode Timing (SCL = 400 kHz), Continuous Conversion  
Mode (fSAMP = 22.3 ksps), TA = +25°C.  
3
2
2
1.8  
1.6  
1.4  
1.2  
1
VDD = 2.7V  
1
VDD = 5V  
0
0.8  
0.6  
0.4  
0.2  
0
-1  
-2  
-3  
VDD = 5V  
VDD = 2.7V  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-19:  
Gain Error vs. Temperature.  
FIGURE 2-22:  
Offset Error vs.  
Temperature.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD = 5V  
VDD = 5V  
VDD = 2.7V  
VDD = 2.7V  
1
10  
1
10  
Input Frequency (kHz)  
Input Frequency (kHz)  
FIGURE 2-20:  
SNR vs. Input Frequency.  
FIGURE 2-23:  
SINAD vs. Input Frequency.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
1
80  
70  
60  
50  
40  
30  
20  
10  
VDD = 5V  
VDD = 2.7V  
VDD = 5V  
VDD = 2.7V  
0
10  
-40  
-30  
-20  
-10  
0
Input Frequency (kHz)  
Input Signal Level (dB)  
FIGURE 2-21:  
THD vs. Input Frequency.  
FIGURE 2-24:  
SINAD vs. Input Signal  
Level.  
DS21732B-page 8  
2003 Microchip Technology Inc.  
MCP3221  
Note: Unless otherwise indicated, VDD = 5V, VSS = 0V, I2C Fast Mode Timing (SCL = 400 kHz), Continuous Conversion  
Mode (fSAMP = 22.3 ksps), TA = +25°C.  
12  
11.95  
11.9  
11.85  
11.8  
12  
11.5  
11  
VDD = 2.7V  
VDD = 5V  
11.75  
11.7  
11.65  
11.6  
11.55  
11.5  
10.5  
10  
9.5  
9
2.5  
3
3.5  
4
4.5  
5
5.5  
1
10  
V
DD (V)  
Input Frequency (kHz)  
FIGURE 2-25:  
ENOB vs. V  
.
FIGURE 2-28:  
ENOB vs. Input Frequency.  
DD  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
-10  
VDD = 5V  
fSAMP = 5.6 ksps  
-30  
VDD = 2.7V  
-50  
-70  
-90  
-110  
-130  
0
500  
1000  
Frequency (Hz)  
1500  
2000  
2500  
1
10  
Input Frequency (kHz)  
2
FIGURE 2-26:  
SFDR vs. Input Frequency.  
FIGURE 2-29:  
Spectrum Using I C™  
Standard Mode (Representative Part, 1 kHz  
Input Frequency).  
250  
200  
150  
100  
50  
10  
-10  
-30  
-50  
-70  
-90  
-110  
-130  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
0
2000  
4000  
6000  
8000  
10000  
VDD (V)  
Frequency (Hz)  
2
FIGURE 2-30:  
I
(Conversion) vs. V  
.
DD  
FIGURE 2-27:  
Spectrum Using I C™ Fast  
DD  
Mode (Representative Part, 1 kHz Input  
Frequency).  
2003 Microchip Technology Inc.  
DS21732B-page 9  
MCP3221  
Note: Unless otherwise indicated, VDD = 5V, VSS = 0V, I2C Fast Mode Timing (SCL = 400 kHz), Continuous Conversion  
Mode (fSAMP = 22.3 ksps), TA = +25°C.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
200  
180  
160  
140  
120  
100  
80  
VDD = 5V  
VDD = 5V  
60  
VDD = 2.7V  
40  
VDD = 2.7V  
20  
0
0
100  
200  
300  
400  
0
100  
200  
300  
400  
I2C Clock Rate (kHz)  
I2C Clock Rate (kHz)  
FIGURE 2-31:  
I
(Conversion) vs. Clock  
FIGURE 2-34:  
I
(Active Bus) vs. Clock  
DD  
DDA  
Rate.  
Rate.  
250  
200  
150  
100  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD = 5V  
VDD = 5V  
VDD = 2.7V  
VDD = 2.7V  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-32:  
I
(Conversion) vs.  
FIGURE 2-35:  
I
(Active Bus) vs.  
DD  
DDA  
Temperature.  
Temperature.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
VDD (V)  
FIGURE 2-33:  
I
(Active Bus) vs. V  
.
FIGURE 2-36:  
I
(Standby) vs. V  
.
DD  
DDA  
DD  
DDS  
DS21732B-page 10  
2003 Microchip Technology Inc.  
MCP3221  
Note: Unless otherwise indicated, VDD = 5V, VSS = 0V, I2C Fast Mode Timing (SCL = 400 kHz), Continuous Conversion  
Mode (fSAMP = 22.3 ksps), TA = +25°C.  
2.1  
Test Circuits  
1000  
100  
VDD = 5V  
10  
1
0.1  
10 µF 0.1 µF  
AIN  
0.01  
0.001  
0.0001  
2 k2 kΩ  
VDD  
SDA  
SCL  
MCP3221  
-50  
-25  
0
25  
50  
75  
100 125  
VSS  
Temperature (°C)  
VIN  
FIGURE 2-37:  
I
(Standby) vs.  
DDS  
Temperature.  
VCM = 2.5V  
2
1.8  
1.6  
1.4  
1.2  
1
FIGURE 2-39:  
Typical Test Configuration.  
0.8  
0.6  
0.4  
0.2  
0
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
FIGURE 2-38:  
Analog Input Leakage vs.  
Temperature.  
2003 Microchip Technology Inc.  
DS21732B-page 11  
MCP3221  
3.3  
Serial Data (SDA)  
3.0  
PIN FUNCTIONS  
SDA is a bidirectional pin used to transfer addresses  
and data into and out of the device. Since it is an open-  
drain terminal, the SDA bus requires a pull-up resistor  
to VDD (typically 10 kfor 100 kHz and 2 kfor  
400 kHz SCL clock speeds). Refer to Section 6.2,  
“Connecting to the I2C Bus”, for more information.  
For normal data transfer, SDA is allowed to change only  
during SCL low. Changes during SCL high are reserved  
for indicating the START and STOP conditions. Refer to  
Section 5.1, “I2C Bus Characteristics”.  
TABLE 3-1:  
Name  
PIN FUNCTION TABLE  
Function  
+2.7V to 5.5V Power Supply  
Ground  
Analog Input  
Serial Data In/Out  
Serial Clock In  
VDD  
VSS  
AIN  
SDA  
SCL  
3.1  
VDD and VSS  
3.4  
Serial Clock (SCL)  
The VDD pin, with respect to VSS, provides power to the  
device as well as a voltage reference for the conversion  
process. Refer to Section 6.4, “Device Power and  
Layout Considerations”, for tips on power and  
grounding.  
SCL is an input pin used to synchronize the data trans-  
fer to and from the device on the SDA pin and is an  
open-drain terminal. Therefore, the SCL bus requires a  
pull-up resistor to VDD (typically 10 kfor 100 kHz and  
2 kfor 400 kHz SCL clock speeds. Refer to  
Section 6.2, “Connecting to the I2C Bus”).  
For normal data transfer, SDA is allowed to change  
only during SCL low. Changes during SCL high are  
reserved for indicating the START and STOP  
conditions. Refer to Section 6.1, “Driving the Analog  
Input”.  
3.2  
Analog Input (AIN)  
AIN is the input pin to the sample-and-hold circuitry of  
the Successive Approximation Register (SAR) con-  
verter. Care should be taken in driving this pin. Refer to  
Section 6.1, “Driving the Analog Input”. For proper con-  
versions, the voltage on this pin can vary from VSS to  
VDD  
.
DS21732B-page 12  
2003 Microchip Technology Inc.  
MCP3221  
4.2  
Conversion Time (tCONV)  
4.0  
DEVICE OPERATION  
The conversion time is the time required to obtain the  
digital result once the analog input is disconnected  
from the holding capacitor. With the MCP3221, the  
specified conversion time is typically 8.96 µs. This time  
is dependent on the internal oscillator and is  
independent of SCL.  
The MCP3221 employs a classic SAR architecture.  
This architecture uses an internal sample and hold  
capacitor to store the analog input while the conversion  
is taking place. At the end of the acquisition time, the  
input switch of the converter opens and the device uses  
the collected charge on the internal sample-and-hold  
capacitor to produce a serial 12-bit digital output code.  
The acquisition time and conversion is self-timed using  
an internal clock. After each conversion, the results are  
stored in a 12-bit register that can be read at any time.  
Communication with the device is accomplished with a  
2-wire, I2C interface. Maximum sample rates of  
22.3 ksps are possible with the MCP3221 in a continu-  
ous-conversion mode and an SCL clock rate of  
400 kHz.  
4.3  
Acquisition Time (tACQ)  
The acquisition time is the amount of time the sample  
cap array is acquiring charge.  
The acquisition time is, typically, 1.12 µs. This time is  
dependent on the internal oscillator and independent of  
SCL.  
4.4  
Sample Rate  
4.1  
Digital Output Code  
Sample rate is the inverse of the maximum amount of  
time that is required from the point of acquisition of the  
first conversion to the point of acquisition of the second  
conversion.  
The sample rate can be measured either by single or  
continuous conversions. A single conversion includes  
a Start Bit, Address Byte, Two Data Bytes and a Stop  
bit. This sample rate is measured from one Start Bit to  
the next Start Bit.  
For continuous conversions (requested by the Master  
by issuing an acknowledge after a conversion), the  
maximum sample rate is measured from conversion to  
conversion or a total of 18 clocks (two data bytes and  
two Acknowledge bits). Refer to Section 5-2, “Device  
Addressing”.  
The digital output code produced by the MCP3221 is a  
function of the input signal and power supply voltage,  
VDD. As the VDD level is reduced, the LSB size is  
reduced accordingly. The theoretical LSB size is shown  
below.  
EQUATION  
V
DD  
------------  
LSB SIZE =  
4096  
VDD = Supply voltage  
The output code of the MCP3221 is transmitted serially  
with MSB first. The format of the code is straight binary.  
Output Code  
1111 1111 1111 (4095)  
1111 1111 1110 (4094)  
0000 0000 0011(3)  
0000 0000 0010(2)  
0000 0000 0001(1)  
0000 0000 0000(0)  
AIN  
DD-1.5 LSB  
.5 LSB  
V
1.5 LSB  
2.5 LSB  
VDD-2.5 LSB  
FIGURE 4-1:  
Transfer Function.  
2003 Microchip Technology Inc.  
DS21732B-page 13  
MCP3221  
4.5  
Differential Non-Linearity (DNL)  
4.8  
Gain Error  
In the ideal A/D converter transfer function, each code  
has a uniform width. That is, the difference in analog  
input voltage is constant from one code transition point  
to the next. Differential nonlinearity (DNL) specifies the  
deviation of any code in the transfer function from an  
ideal code width of 1 LSB. The DNL is determined by  
subtracting the locations of successive code transition  
points after compensating for any gain and offset  
errors. A positive DNL implies that a code is longer than  
the ideal code width, while a negative DNL implies that  
a code is shorter than the ideal width.  
The gain error determines the amount of deviation from  
the ideal slope of the A/D converter transfer function.  
Before the gain error is determined, the offset error is  
measured and subtracted from the conversion result.  
The gain error can then be determined by finding the  
location of the last code transition and comparing that  
location to the ideal location. The ideal location of the  
last code transition is 1.5 LSBs below full-scale or VDD  
.
4.9  
Conversion Current (IDD)  
The average amount of current over the time required  
to perform a 12-bit conversion.  
4.6  
Integral Non-Linearity (INL)  
4.10 Active Bus Current (IDDA  
)
Integral nonlinearity (INL) is a result of cumulative DNL  
errors and specifies how much the overall transfer  
function deviates from a linear response. The method  
of measurement used in the MCP3221 A/D converter  
to determine INL is the “end-point” method.  
The average amount of current over the time required  
to monitor the I2C bus. Any current the device con-  
sumes while it is not being addressed is referred to as  
“Active Bus” current.  
4.7  
Offset Error  
4.11 Standby Current (IDDS  
The average amount of current required while no con-  
version is occurring and while no data is being output  
(i.e., SCL and SDA lines are quiet).  
)
Offset error is defined as a deviation of the code transi-  
tion points that are present across all output codes.  
This has the effect of shifting the entire A/D transfer  
function. The offset error is measured by finding the dif-  
ference between the actual location of the first code  
transition and the desired location of the first transition.  
The ideal location of the first code transition is located  
4.12 I2C Standard Mode Timing  
I2C specification where the frequency of SCL is  
100 kHz.  
at 1/2 LSB above VSS  
.
4.13 I2C Fast Mode Timing  
I2C specification where the frequency of SCL is  
400 kHz.  
DS21732B-page 14  
2003 Microchip Technology Inc.  
MCP3221  
Each data transfer is initiated with a START condition  
and terminated with a STOP condition. The number of  
data bytes transferred between the START and STOP  
conditions is determined by the master device and is  
unlimited.  
5.0  
5.1  
SERIAL COMMUNICATIONS  
I2C Bus Characteristics  
The following bus protocol has been defined:  
• Data transfer may be initiated only when the bus  
5.1.5  
ACKNOWLEDGE  
is not busy.  
• During data transfer, the data line must remain  
stable whenever the clock line is high. Changes in  
the data line while the clock line is high will be  
interpreted as a START or STOP condition.  
Accordingly, the following bus conditions have been  
defined (refer to Figure 5-1).  
Each receiving device, when addressed, is obliged to  
generate an acknowledge bit after the reception of  
each byte. The master device must generate an extra  
clock pulse which is associated with this acknowledge  
bit.  
The device that acknowledges has to pull down the  
SDA line during the acknowledge clock pulse in such a  
way that the SDA line is stable-low during the high  
period of the acknowledge-related clock pulse. Setup  
and hold times must be taken into account. During  
reads, a master device must signal an end of data to  
the slave by not generating an acknowledge bit on the  
last byte that has been clocked out of the slave (NAK).  
In this case, the slave (MCP3221) will release the bus  
to allow the master device to generate the STOP  
condition.  
The MCP3221 supports a bidirectional, 2-wire bus and  
data transmission protocol. The device that sends data  
onto the bus is the transmitter and the device receiving  
data is the receiver. The bus has to be controlled by a  
master device which generates the serial clock (SCL),  
controls the bus access and generates the START and  
STOP conditions, while the MCP3221 works as a slave  
device. Both master and slave devices can operate as  
either transmitter or receiver, but the master device  
determines which mode is activated.  
5.1.1  
Both data and clock lines remain high.  
5.1.2 START DATA TRANSFER (B)  
BUS NOT BUSY (A)  
A high-to-low transition of the SDA line while the clock  
(SCL) is high determines a START condition. All  
commands must be preceded by a START condition.  
5.1.3  
STOP DATA TRANSFER (C)  
A low-to-high transition of the SDA line while the clock  
(SCL) is high determines a STOP condition. All  
operations must be ended with a STOP condition.  
5.1.4  
DATA VALID (D)  
The state of the data line represents valid data when,  
after a START condition, the data line is stable for the  
duration of the clock signal’s high period.  
The data on the line must be changed during the low  
period of the clock signal. There is one clock pulse per  
bit of data.  
(A)  
(B)  
(D)  
(D)  
(C) (A)  
SCL  
SDA  
START  
STOP  
ADDRESS OR  
DATA  
CONDITION  
CONDITION  
ACKNOWLEDGE ALLOWED  
VALID  
TO CHANGE  
FIGURE 5-1:  
Data Transfer Sequence on the Serial Bus.  
2003 Microchip Technology Inc.  
DS21732B-page 15  
 
MCP3221  
5.2  
Device Addressing  
5.3  
Executing a Conversion  
The address byte is the first byte received following the  
START condition from the master device. The first part  
of the control byte consists of a 4-bit device code,  
which is set to 1010for the MCP3221. The device code  
is followed by three address bits: A2, A1 and A0. The  
default address bits are 1001. Contact the Microchip  
factory for additional address bit options. The address  
bits allow up to eight MCP3221 devices on the same  
bus and are used to determine which device is  
accessed.  
The eighth bit of the slave address determines if the  
master device wants to read conversion data or write to  
the MCP3221. When set to a ‘1’, a read operation is  
selected. When set to a ‘0’, a write operation is  
selected. There are no writable registers on the  
MCP3221. Therefore, this bit must be set to a ’1’ in  
order to initiate a conversion.  
The MCP3221 is a slave device that is compatible with  
the I2C 2-wire serial interface protocol. A hardware  
connection diagram is shown in Figure 6-2. Communi-  
cation is initiated by the microcontroller (master  
device), which sends a START bit followed by the  
address byte.  
On completion of the conversion(s) performed by the  
MCP3221, the microcontroller must send a STOP bit to  
end communication.  
This section will describe the details of communicating  
with the MCP3221 device. Initiating the sample-and-  
hold acquisition, reading the conversion data and  
executing multiple conversions will be discussed.  
5.3.1  
INITIATING THE SAMPLE AND  
HOLD  
The acquisition and conversion of the input signal  
begins with the falling edge of the R/W bit of the  
address byte. At this point, the internal clock initiates  
the sample, hold and conversion cycle, all of which are  
internal to the ADC.  
tACQ + tCONV is  
initiated here  
Address Byte  
SCL  
SDA  
1
1
2
0
3
0
4
1
5
6
7
8
9
A2 A1 A0 R/W  
Start  
Bit  
Device bits Address bits  
The last bit in the device address byte is the R/W bit.  
When this bit is a logic ‘1’, a conversion will be exe-  
cuted. Setting this bit to logic ‘0’ will also result in an  
“acknowledge” (ACK) from the MCP3221, with the  
device then releasing the bus. This can be used for  
device polling. Refer to Section 6.3, “Device Polling”,  
for more information.  
FIGURE 5-3:  
Initiating the Conversion,  
Address Byte.  
tACQ + tCONV is  
initiated here  
START  
READ/WRITE  
SLAVE ADDRESS  
R/W  
Lower Data Byte (n)  
17 18 19 20 21 22 23 24 25  
26  
A
SCL  
SDA D8  
D7 D6 D5 D4 D3 D2 D2 D0  
1
1
0
0
1
0
1
FIGURE 5-4:  
Initiating the Conversion,  
Address Bits(1)  
Device Code  
Continuous Conversions.  
Note 1: Contact Microchip for additional address bits.  
FIGURE 5-2:  
Device Addressing.  
DS21732B-page 16  
2003 Microchip Technology Inc.  
 
MCP3221  
The input signal will initially be sampled with the first  
falling edge of the clock following the transmission of a  
logic-high R/W bit. Additionally, with the rising edge of  
the SCL, the ADC will transmit an acknowledge bit  
(ACK = 0). The master must release the data bus dur-  
ing this clock pulse to allow the MCP3221 to pull the  
line low (refer to Figure 5-3).  
For consecutive samples, sampling begins on the fall-  
ing edge of the LSB of the conversion result, which is  
two bytes long. Refer to Figure 5-6 a for timing diagram.  
5.3.2  
READING THE CONVERSION DATA  
Once the MCP3221 acknowledges the address byte,  
the device will transmit four ‘0’ bits followed by the upper  
four data bits of the conversion. The master device will  
then acknowledge this byte with an ACK = Low. With the  
following 8 clock pulses, the MCP3221 will transmit the  
lower eight data bits from the conversion. The master  
then sends an ACK = high, indicating to the MCP3221  
that no more data is requested. The master can then  
send a stop bit to end the transmission.  
t
+ t  
is  
6
ACQ  
CONV  
initiated here  
1
1
2
0
3
4
5
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  
SCL  
SDA  
S
T
A
R
T
S
Address Byte  
Upper Data Byte  
Lower Data Byte  
T
O
P
A
C
K
A
C
K
R
/
N
A
K
D
D
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
A
2
A
1
A
0
S
0
1
0
0
0
0
P
11 10  
W
Device bits Address bits  
FIGURE 5-5:  
Executing a Conversion.  
5.3.3  
CONSECUTIVE CONVERSIONS  
For consecutive samples, sampling begins on the fall-  
ing edge of the LSB of the conversion result. See  
Figure 5-6 for timing.  
t
+ t  
is  
t
+ t  
is  
ACQ  
CONV  
ACQ  
CONV  
initiated here  
initiated here  
f
= 22.3 ksps (f  
CLK  
= 400 kHz)  
SAMP  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28  
SCL  
S
T
A
R
T
Address Byte  
Upper Data Byte (n)  
Lower Data Byte (n)  
A
C
K
A
C
K
A
C
K
R
/
D
D
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
SDA  
S
1
0
0
1
A2 A1 A0  
0
0
0
0
0
11  
10  
W
Device bits Address bits  
FIGURE 5-6:  
Continuous Conversion.  
2003 Microchip Technology Inc.  
DS21732B-page 17  
 
MCP3221  
The analog input model is shown in Figure 6-1. In this  
diagram, the source impedance (RSS) adds to the inter-  
nal sampling switch (RS) impedance, directly affecting  
the time required to charge the capacitor (CSAMPLE).  
Consequently, a larger source impedance increases  
the offset error, gain error and integral linearity errors of  
the conversion. Ideally, the impedance of the signal  
source should be near zero. This is achievable with an  
operational amplifier, such as the MCP6022, which has  
a closed-loop output impedance of tens of ohms.  
6.0  
APPLICATIONS INFORMATION  
6.1  
Driving the Analog Input  
The MCP3221 has a single-ended analog input (AIN).  
For proper conversion results, the voltage at the AIN  
pin must be kept between VSS and VDD. If the converter  
has no offset error, gain error, INL or DNL errors, and  
the voltage level of AIN is equal to or less than  
VSS + 1/2 LSB, the resultant code will be 000h. Addi-  
tionally, if the voltage at AIN is equal to or greater than  
VDD - 1.5 LSB, the output code will be FFFh.  
VDD  
Sampling  
Switch  
VT = 0.6V  
RS = 1 kΩ  
AIN  
RSS  
SS  
CSAMPLE  
= DAC capacitance  
= 20 pF  
CPIN  
7 pF  
ILEAKAGE  
±1 nA  
VA  
VT = 0.6V  
VSS  
Legend  
VA  
RSS  
=
=
=
=
=
=
signal source  
source impedance  
AIN  
analog input pad  
analog input pin capacitance  
threshold voltage  
leakage current at the pin  
due to various junctions  
sampling switch  
sampling switch resistor  
sample/hold capacitance  
CPIN  
VT  
ILEAKAGE  
SS  
RS  
CSAMPLE  
=
=
=
FIGURE 6-1:  
Analog Input Model, AIN.  
Connecting to the I2C Bus  
The number of devices connected to the bus is limited  
only by the maximum bus capacitance of 400 pF. A  
possible configuration using multiple devices is shown  
in Figure 6-3.  
6.2  
The I2C bus is an open-collector bus, requiring pull-up  
resistors connected to the SDA and SCL lines. This  
configuration is shown in Figure 6-2.  
SDA  
SCL  
VDD  
PIC16F876  
Microcontroller  
MCP3221  
RPU RPU  
24LC01  
EEPROM  
SDA  
SCL  
AIN  
Analog  
MCP3221  
12-bit ADC  
Input  
Signal  
TC74  
Temperature  
Sensor  
RPU is typically: 10 kfor fSCL = 100 kHz  
2 kfor fSCL = 400 kHz  
2
FIGURE 6-2:  
Pull-up Resistors on I C  
2
FIGURE 6-3:  
Bus.  
Multiple Devices on I C™  
Bus.  
DS21732B-page 18  
2003 Microchip Technology Inc.  
 
 
 
MCP3221  
Digital and analog traces should be separated as much  
as possible on the board, with no traces running under-  
neath the device or the bypass capacitor. Extra precau-  
tions should be taken to keep traces with high-  
frequency signals (such as clock lines) as far as  
possible from analog traces.  
Use of an analog ground plane is recommended in  
order to keep the ground potential the same for all  
devices on the board. Providing VDD connections to  
devices in a “star” configuration can also reduce noise  
by eliminating current return paths and associated  
errors (Figure 6-6). For more information on layout tips  
when using the MCP3221 or other ADC devices, refer  
to AN688, “Layout Tips for 12-Bit A/D Converter  
Applications”.  
6.3  
Device Polling  
In some instances, it may be necessary to test for  
MCP3221 presence on the I2C bus without performing  
a conversion. This operation is described in Figure 6-4.  
Here we are setting the R/W bit in the address byte to  
a zero. The MCP3221 will then acknowledge by pulling  
SDA low during the ACK clock and then release the  
bus back to the I2C master. A stop or repeated start bit  
can then be issued from the master and I2C  
communication can continue.  
Address Byte  
SCL  
SDA  
1 2 3 4 5 6 7 8 9  
VDD  
1
0 0  
1 A2 A1A0 0  
R/W  
Address bits  
Connection  
Start  
Bit  
Start  
Bit  
Device bits  
MCP3221 response  
Device Polling.  
Device 4  
Device 1  
FIGURE 6-4:  
6.4  
Device Power and Layout  
Considerations  
Device 3  
6.4.1  
POWERING THE MCP3221  
Device 2  
VDD supplies the power to the device as well as the ref-  
erence voltage. A bypass capacitor value of 0.1 µF is  
recommended. Adding a 10 µF capacitor in parallel is  
recommended to attenuate higher frequency noise  
present in some systems.  
FIGURE 6-6:  
V
traces arranged in a  
DD  
‘Star’ configuration in order to reduce errors  
caused by current return paths.  
VDD  
6.4.3  
USING A REFERENCE FOR  
SUPPLY  
VDD  
The MCP3221 uses VDD as both power and a refer-  
ence. In some applications, it may be necessary to use  
a stable reference to achieve the required accuracy.  
Figure 6-7 shows an example using the MCP1541 as a  
4.096V, 2% reference.  
10 µF  
0.1 µF  
AIN  
VDD  
RPU RPU  
To  
SCL  
SDA  
MCP3221  
Microcontroller  
VDD  
VDD  
1 µF  
CL  
FIGURE 6-5:  
Powering the MCP3221.  
MCP1541  
4.096V  
6.4.2  
LAYOUT CONSIDERATIONS  
VDD  
SCL  
RPU  
Reference  
When laying out a printed circuit board for use with  
analog components, care should be taken to reduce  
noise wherever possible. A bypass capacitor from V  
to ground should always be used with this device aDnDd  
should be placed as close as possible to the device pin.  
A bypass capacitor value of 0.1 µF is recommended.  
AIN  
MCP3221  
SDA  
FIGURE 6-7:  
Stable Power and  
Reference Configuration.  
2003 Microchip Technology Inc.  
DS21732B-page 19  
 
 
 
MCP3221  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Pin SOT-23A (EIAJ SC-74) Device  
3
2
1
cdef  
4
5
Part Number  
Address Option  
SOT-23  
MCP3221A0T-I/OT  
MCP3221A1T-I/OT  
MCP3221A2T-I/OT  
MCP3221A3T-I/OT  
MCP3221A4T-I/OT  
MCP3221A5T-I/OT  
MCP3221A6T-I/OT  
MCP3221A7T-I/OT  
000  
001  
010  
011  
100  
101  
110  
111  
EE  
EH  
EB  
EC  
ED  
S1 *  
EF  
EG  
MCP3221A0T-E/OT  
MCP3221A1T-E/OT  
MCP3221A2T-E/OT  
MCP3221A3T-E/OT  
MCP3221A4T-E/OT  
MCP3221A5T-E/OT  
MCP3221A6T-E/OT  
MCP3221A7T-E/OT  
000  
001  
010  
011  
100  
101  
110  
111  
GE  
GH  
GB  
GC  
GD  
GA *  
GF  
GG  
* Default option. Contact Microchip Factory for other  
address options.  
Legend:  
1
2
3
4
Part Number code + temperature range  
Part Number code + temperature range  
Year and work week  
Lot ID  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard device marking consists of Microchip part number, year code, week code, and traceability  
code.  
DS21732B-page 20  
2003 Microchip Technology Inc.  
MCP3221  
5-Lead Plastic Small Outline Transistor (OT) (SOT23)  
E
E1  
p
B
p1  
D
n
1
α
c
A
A2  
φ
A1  
L
β
Units  
INCHES*  
NOM  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
p1  
A
A2  
A1  
E
E1  
D
L
φ
c
B
α
β
Number of Pins  
Pitch  
5
5
.038  
.075  
.046  
.043  
.003  
.110  
.064  
.116  
.018  
5
0.95  
1.90  
1.18  
1.10  
0.08  
2.80  
1.63  
2.95  
0.45  
5
Outside lead pitch (basic)  
Overall Height  
Molded Package Thickness  
.035  
.035  
.000  
.102  
.059  
.110  
.014  
0
.057  
0.90  
1.45  
.051  
.006  
.118  
.069  
.122  
.022  
10  
0.90  
0.00  
2.60  
1.50  
2.80  
0.35  
0
1.30  
0.15  
3.00  
1.75  
3.10  
0.55  
10  
Standoff  
§
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
Foot Angle  
Lead Thickness  
Lead Width  
.004  
.014  
0
.006  
.017  
5
.008  
.020  
10  
0.09  
0.35  
0
0.15  
0.43  
5
0.20  
0.50  
10  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-178  
Drawing No. C04-091  
2003 Microchip Technology Inc.  
DS21732B-page 21  
MCP3221  
NOTES:  
DS21732B-page 22  
2003 Microchip Technology Inc.  
MCP3221  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
XX  
X
/XX  
a)  
b)  
c)  
d)  
e)  
f)  
MCP3221A0T-I/OT: Industrial, A0 Address,  
Address Temperature Package  
Tape and Reel  
Options  
Range  
MCP3221A1T-I/OT: Industrial, A1 Address,  
Tape and Reel  
MCP3221A2T-I/OT: Industrial, A2 Address,  
Tape and Reel  
MCP3221A3T-I/OT: Industrial, A3 Address,  
Tape and Reel  
MCP3221A4T-I/OT: Industrial, A4 Address,  
Tape and Reel  
MCP3221A5T-I/OT: Industrial, A5 Address,  
Tape and Reel  
MCP3221A6T-I/OT: Industrial, A6 Address,  
Tape and Reel  
MCP3221A7T-I/OT: Industrial, A7 Address,  
Tape and Reel  
Device:  
MCP3221T: 12-Bit 2-Wire Serial A/D Converter  
(Tape and Reel)  
Temperature Range:  
Address Options:  
I
=
-40°C to +85°C  
E = -40°C to +125°C  
XX  
A0  
A1  
A2  
A3  
A4  
A5 *  
A6  
A7  
A2  
0
0
0
0
1
1
1
1
A1  
0
0
1
1
0
0
1
1
A0  
0
1
0
1
0
1
0
1
=
=
=
=
=
=
=
=
g)  
h)  
a)  
b)  
c)  
d)  
e)  
f)  
MCP3221A0T-E/OT: Extended, A0 Address,  
Tape and Reel  
MCP3221A1T-E/OT: Extended, A1 Address,  
Tape and Reel  
MCP3221A2T-E/OT: Extended, A2 Address,  
Tape and Reel  
MCP3221A3T-E/OT: Extended, A3 Address,  
Tape and Reel  
MCP3221A4T-E/OT: Extended, A4 Address,  
Tape and Reel  
* Default option. Contact Microchip factory for other  
address options  
Package:  
OT = SOT-23, 5-lead (Tape and Reel)  
MCP3221A5T-E/OT: Extended, A5 Address,  
Tape and Reel  
g)  
h)  
MCP3221A6T-E/OT: Extended, A6 Address,  
Tape and Reel  
MCP3221A7T-IE/OT: Extended, A7 Address,  
Tape and Reel  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and  
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2003 Microchip Technology Inc.  
DS21732B-page 23  
MCP3221  
NOTES:  
DS21732B-page 24  
2003 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical  
components in life support systems is not authorized except  
with express written approval by Microchip. No licenses are  
conveyed, implicitly or otherwise, under any intellectual  
property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, MPLAB, PIC, PICmicro, PICSTART, PRO MATE and  
PowerSmart are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL  
and The Embedded Control Solutions Company are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Accuron, Application Maestro, dsPICDEM, dsPICDEM.net,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-  
Circuit Serial Programming, ICSP, ICEPIC, microPort,  
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,  
PICC, PICkit, PICDEM, PICDEM.net, PowerCal, PowerInfo,  
PowerMate, PowerTool, rfLAB, rfPIC, Select Mode,  
SmartSensor, SmartShunt, SmartTel and Total Endurance are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2003, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999  
and Mountain View, California in March 2002.  
The Company’s quality system processes and  
procedures are QS-9000 compliant for its  
®
PICmicro 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals,  
non-volatile memory and analog products. In  
addition, Microchip’s quality system for the  
design and manufacture of development  
systems is ISO 9001 certified.  
DS21732B-page 25  
2003 Microchip Technology Inc.  
M
WORLDWIDE SALES AND SERVICE  
Japan  
AMERICAS  
ASIA/PACIFIC  
Microchip Technology Japan K.K.  
Benex S-1 6F  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Microchip Technology Australia Pty Ltd  
Marketing Support Division  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
Australia  
Korea  
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755  
Atlanta  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
China - Beijing  
3780 Mansell Road, Suite 130  
Alpharetta, GA 30022  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Beijing Liaison Office  
Unit 915  
Tel: 770-640-0034 Fax: 770-640-0307  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Boston  
Bei Hai Wan Tai Bldg.  
Singapore  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
#07-02 Prime Centre  
Chicago  
China - Chengdu  
Singapore, 188980  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Chengdu Liaison Office  
Rm. 2401-2402, 24th Floor,  
Tel: 65-6334-8870 Fax: 65-6334-8850  
Taiwan  
Tel: 630-285-0071 Fax: 630-285-0075  
Microchip Technology (Barbados) Inc.,  
Taiwan Branch  
Ming Xing Financial Tower  
Dallas  
No. 88 TIDU Street  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
11F-3, No. 207  
Chengdu 610016, China  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 86-28-86766200 Fax: 86-28-86766599  
Tel: 972-818-7423 Fax: 972-818-2924  
China - Fuzhou  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Detroit  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Fuzhou Liaison Office  
Unit 28F, World Trade Plaza  
Tri-Atria Office Building  
EUROPE  
Austria  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
No. 71 Wusi Road  
Microchip Technology Austria GmbH  
Durisolstrasse 2  
Fuzhou 350001, China  
Kokomo  
Tel: 86-591-7503506 Fax: 86-591-7503521  
A-4600 Wels  
2767 S. Albright Road  
Kokomo, IN 46902  
China - Hong Kong SAR  
Austria  
Microchip Technology Hongkong Ltd.  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
Denmark  
Tel: 765-864-8360 Fax: 765-864-8387  
Los Angeles  
Kwai Fong, N.T., Hong Kong  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Microchip Technology Nordic ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Tel: 852-2401-1200 Fax: 852-2401-3431  
China - Shanghai  
Tel: 949-263-1888 Fax: 949-263-1338  
Microchip Technology Consulting (Shanghai)  
Co., Ltd.  
Ballerup DK-2750 Denmark  
Phoenix  
Tel: 45-4420-9895 Fax: 45-4420-9910  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-4338  
Room 701, Bldg. B  
France  
Far East International Plaza  
No. 317 Xian Xia Road  
Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
San Jose  
Shanghai, 200051  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
Batiment A - ler Etage  
China - Shenzhen  
91300 Massy, France  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Shenzhen Liaison Office  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Tel: 408-436-7950 Fax: 408-436-7955  
Germany  
Rm. 1812, 18/F, Building A, United Plaza  
No. 5022 Binhe Road, Futian District  
Shenzhen 518033, China  
Toronto  
Microchip Technology GmbH  
Steinheilstrasse 10  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
D-85737 Ismaning, Germany  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-755-82901380 Fax: 86-755-8295-1393  
China - Qingdao  
Rm. B505A, Fullhope Plaza,  
Italy  
No. 12 Hong Kong Central Rd.  
Qingdao 266071, China  
Microchip Technology SRL  
Via Quasimodo, 12  
20025 Legnano (MI)  
Milan, Italy  
Tel: 86-532-5027355 Fax: 86-532-5027205  
India  
Tel: 39-0331-742611 Fax: 39-0331-466781  
Microchip Technology Inc.  
India Liaison Office  
United Kingdom  
Marketing Support Division  
Divyasree Chambers  
Microchip Ltd.  
505 Eskdale Road  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44-118-921-5869 Fax: 44-118-921-5820  
05/30/03  
DS21732B-page 26  
2003 Microchip Technology Inc.  
This datasheet has been download from:  
www.datasheetcatalog.com  
Datasheets for electronics components.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY