MCP33111-05-E/MS [MICROCHIP]

ADC, Successive Approximation;
MCP33111-05-E/MS
型号: MCP33111-05-E/MS
厂家: MICROCHIP    MICROCHIP
描述:

ADC, Successive Approximation

光电二极管 转换器
文件: 总54页 (文件大小:2643K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP33131/21/11-XX  
1 Msps/500 kSPS 16/14/12-Bit Single-Ended Input SAR ADC  
Features  
Typical Applications  
• Sample Rate (Throughput):  
• High-Precision Data Acquisition  
• Medical Instruments  
- MCP33131/21/11-10: 1 Msps  
- MCP33131/21/11-05: 500 kSPS  
Test Equipment  
• 16/14/12-Bit Resolution with No Missing Codes  
• No Latency Output  
• Electric Vehicle Battery Management Systems  
• Motor Control Applications  
• Wide Operating Voltage Range:  
- Analog Supply Voltage (AVDD): 1.8V  
• Switch-Mode Power Supply Applications  
• Battery-Powered Equipment  
- Digital Input/Output Interface Voltage (DVIO):  
1.7V - 5.5V  
System Design Supports  
- External Reference (VREF): 2.5V - 5.1V  
The MCP331x1-XX Evaluation Kit demonstrates the  
performance of the MCP331x1-XX SAR ADC family  
devices. The evaluation kit includes: (a) MCP331x1-XX  
Evaluation Board, (b) PIC32MZ EF Curiosity Board for  
data collection, and (c) SAR ADC Utility PC GUI.  
• Pseudo-Differential Input Operation with  
Single-Ended Configuration:  
- Input Full-Scale Range: 0V to +VREF  
• Ultra Low Current Consumption (typical):  
- During Input Acquisition (Standby): ~ 0.8 µA  
- During Conversion:  
Contact Microchip Technology Inc. for the evaluation  
tools and the PIC32 MCU firmware example codes.  
MCP331x1-10: ~1.6 mA  
MCP331x1-05: ~1.4 mA  
Package Types  
VREF  
AVDD  
AIN+  
1
2
3
10 DVIO  
9 SDI  
• SPI-Compatible Serial Communication:  
- SCLK Clock Rate: up to 100 MHz  
MSOP-10  
Top View  
• ADC Self-Calibration for Offset, Gain, and  
Linearity Errors:  
8 SCLK  
AIN- 4  
SDO  
7
- During Power-Up (automatic)  
GND  
5
6 CNVST  
- On-Demand via user’s command during  
normal operation  
VREF  
AVDD  
DV  
IO  
1
2
10  
• AEC-Q100 Qualified:  
Top View  
TDFN-10  
SDI  
9
8
7
6
- Temperature Grade 1: -40°C to +125°C  
• Package Options: MSOP-10 and TDFN-10  
AIN+  
AIN-  
SCLK  
3
4
5
SDO  
CNVST  
GND  
MCP331x1-XX Device Offering (Note 1):  
Performance (Typical)  
Sample  
Rate  
Input Range  
Part Number Resolution  
Input Type  
SNR  
(dBFS)  
SFDR  
THD  
(dB)  
INL  
DNL  
(dB)  
(LSB)  
(LSB)  
MCP33131-10  
MCP33121-10  
MCP33111-10  
MCP33131-05  
MCP33121-05  
MCP33111-05  
16-bit  
14-bit  
12-bit  
16-bit  
14-bit  
12-bit  
1 Msps  
1 Msps  
1 Msps  
Single-Ended  
Single-Ended  
Single-Ended  
0V to 5.1V  
0V to 5.1V  
0V to 5.1V  
0V to 5.1V  
0V to 5.1V  
0V to 5.1V  
86.7  
83.5  
73.8  
86.7  
83.5  
73.8  
98.9  
98.8  
95.9  
98.9  
98.8  
95.9  
-97.4  
-97.2  
-93.7  
-97.4  
-97.2  
-93.7  
±2.2  
±0.55  
±0.12  
±2.2  
±0.9  
±0.25  
±0.06  
±0.9  
500 kSPS Single-Ended  
500 kSPS Single-Ended  
500 kSPS Single-Ended  
±0.55  
±0.12  
±0.25  
±0.06  
Note 1:  
SNR, SFDR, and THD are measured with fIN = 10 kHz, VIN = -1 dBFS, VREF = 5.1V.  
2018 Microchip Technology Inc.  
DS20006122A-page 1  
MCP33131/21/11-XX  
Application Diagram  
2.5V to 5.1V 1.8V 1.7V to 5.5V  
VREF AVDD DVIO  
22  
AIN  
MCP331x1-XX  
AIN  
+
Analog Input  
1.7 nF  
(0V to VREF  
)
SDI  
CNVST  
SCLK  
Host Device  
(PIC32MZ)  
-
SDO  
Ground Reference of  
Analog Input  
GND  
During Standby, most of the internal analog circuitry is  
shutdown in order to reduce current consumption.  
Typically, the device consumes less than 1 µA during  
Standby. A new conversion is started on the rising edge  
of CNVST. When the conversion is complete and the  
host lowers CNVST, the output data is presented on  
SDO, and the device enters Standby to begin acquiring  
the next input sample. The user can clock out the ADC  
output data using the SPI-compatible serial clock  
during Standby.  
Description  
The MCP33131/MCP33121/MCP33111-10 and  
MCP33131/MCP33121/MCP33111-05 are  
single-ended 16, 14, and 12-bit, single-channel 1 Msps  
and 500 kSPS ADC family devices, respectively,  
featuring low power consumption and high  
performance, using  
register (SAR) architecture.  
a
successive approximation  
The device operates with a 2.5V to 5.1V external  
reference (VREF), which supports a wide range of input  
full-scale range from 0V to VREF. The reference voltage  
setting is independent of the analog supply voltage  
(AVDD) and is higher than AVDD. The conversion output  
is available through an easy-to-use simple SPI-  
compatible 3-wire interface.  
The ADC system clock is generated by an internal  
on-chip clock, therefore the conversion is performed  
independent of the SPI serial clock (SCLK).  
This device can be used for various high-speed and  
high-accuracy analog-to-digital data conversion  
applications, where design simplicity, low power, and  
no output latency are needed.  
The device requires a 1.8V analog supply voltage  
(AVDD) and a 1.7V to 5.5V digital I/O interface supply  
voltage (DVIO). The wide digital I/O interface supply  
(DVIO) range (1.7V - 5.5V) allows the device to  
interface with most host devices (Master) available in  
the current industry such as the PIC32  
microcontrollers, without using external voltage level  
shifters.  
The device is AEC-Q100 qualified for automotive  
applications and operates over the extended  
temperature range of -40°C to +125°C. The available  
package options are Pb-free TDFN-10 and MSOP-10.  
When the device is first powered-up, it performs a  
self-calibration to minimize offset, gain and linearity  
errors. The device performance stays stable across the  
specified temperature range. However, when extreme  
changes in the operating environment, such as in the  
reference voltage, are made with respect to the initial  
conditions (e.g. the reference voltage was not fully  
settled during the initial power-up sequence), the user  
may send a recalibrate command anytime to initiate  
another  
self-calibration  
to  
restore  
optimum  
performance.  
When the initial power-up sequence is completed, the  
device enters a low-current input acquisition mode,  
where sampling capacitors are connected to the input  
pins. This mode is called Standby.  
DS20006122A-page 2  
2018 Microchip Technology Inc.  
MCP33131/MCP33121/MCP33111-XX  
†Notice: Stresses above those listed under “Absolute  
1.0  
1.1  
KEY ELECTRICAL  
CHARACTERISTICS  
Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification is not  
implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
Absolute Maximum Ratings†  
External Analog Supply Voltage (AV ) ................... -0.3V to 2.0V  
DD  
External Digital Supply Voltage (DV ) ..................... -0.3V to 5.8V  
IO  
External Reference Voltage (V  
) .......................... -0.3V to 5.8V  
REF  
Analog Inputs w.r.t GND .............................. –0.3V to V  
+0.3V  
REF  
Current at Input Pins ...........................................................±2 mA  
Current at Output and Supply Pins .................................±250 mA  
Storage Temperature...........................................-65°C to +150°C  
Maximum Junction Temperature (T ) ................................+150°C  
J
ESD protection on all pins.... 2kV HBM, 2kV CDM, 200V MM  
1.2  
Electrical Specifications  
KEY ELECTRICAL CHARACTERISTICS  
TABLE 1-1:  
Electrical Specifications: Unless otherwise specified, all parameters apply for TA = -40°C to +125°C, AVDD = 1.8V, DVIO = 3.3V, VREF = 5V,  
GND = 0V, Analog Input (VIN) = -1 dBFS sine wave, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP331x1-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP331x1-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Power Supply Requirements  
Analog Supply Voltage Range  
AVDD  
DVIO  
1.7  
1.7  
1.8  
1.9  
5.5  
V
V
(Note 3)  
(Note 3)  
Digital Input/Output Interface Voltage  
Range  
Analog Supply Current at AVDD pin:  
During Conversion  
IDDAN  
1.6  
1.4  
0.8  
2.4  
2.0  
mA  
mA  
µA  
f
f
s = 1 Msps (MCP331x1-10)  
s = 500 kSPS (MCP331x1-05)  
During Standby  
IDDAN_STBY  
During input acquisition (tACQ)  
Digital Supply Current At DVDD pin:  
During Output Data Reading  
IIO_DATA  
IIO_STBY  
290  
200  
30  
A  
A  
nA  
f
f
s = 1 Msps (MCP331x1-10)  
s = 500 kSPS (MCP331x1-05)  
During Standby  
During input acquisition (tACQ)  
External Reference Voltage Input  
Reference Voltage  
(Note 2), (Note 3)  
VREF  
2.5  
2.7  
5.1  
5.1  
V
-40°C TA 85°C  
85°C < TA 125°C  
Reference Load Current at VREF pin:  
During Conversion  
IREF  
450  
220  
240  
600  
360  
µA  
µA  
nA  
f
f
s = 1 Msps (MCP331x1-10)  
s = 500 kSPS (MCP331x1-05)  
During Standby  
IREF_STBY  
During input acquisition (tACQ)  
Total Power Consumption (Including AV , DV , V  
pins)  
DD  
IO  
REF  
MCP331x1-10  
at 1 Msps  
at 500 ksps  
at 100 ksps  
During Standby  
PDISS_TOTAL  
6.2  
3.1  
0.6  
2.6  
mW  
mW  
mW  
W  
Averaged power for tACQ + tCNV  
PDISS_STBY  
During input acquisition (tACQ)  
MCP331x1-05  
at 500 ksps  
at 100 ksps  
During Standby  
PDISS_TOTAL  
PDISS_STBY  
4.2  
0.8  
2.6  
mW  
mW  
W  
Averaged power for tACQ + tCNV  
During input acquisition (tACQ  
)
Note 1: This parameter is ensured by design and not 100% tested.  
2: This parameter is ensured by characterization and not 100% tested.  
3: Decoupling capacitor is recommended on the following pins:  
(a) AVDD pin: 1 F ceramic capacitor, (b) DVIO pin: 0.1 F ceramic capacitor, (c) VREF pin: 10 F tantalum capacitor.  
4: PSRR (dB) = -20 log (DVOUT/AVDD), where DVOUT = change in conversion result.  
5: ENOB = (SINAD - 1.76)/6.02  
2018 Microchip Technology Inc.  
DS20006122A-page 3  
MCP33131/MCP33121/MCP33111-XX  
TABLE 1-1:  
KEY ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all parameters apply for TA = -40°C to +125°C, AVDD = 1.8V, DVIO = 3.3V, VREF = 5V,  
GND = 0V, Analog Input (VIN) = -1 dBFS sine wave, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP331x1-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP331x1-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Analog Inputs  
Input Voltage Range  
VIN+  
FSR  
-0.1  
0
VREF+0.1  
V
VPP  
pF  
(Note 2)  
(Note 2)  
(Note 1)  
(Note 1)  
Input Full-Scale Voltage Range  
Input Sampling Capacitance  
-3dB Input Bandwidth  
+VREF  
CS  
31  
25  
2.5  
BW-3dB  
MHz  
ns  
Aperture Delay  
(Note 1)  
Time delay between CNVST rising  
edge and when input is sampled  
Leakage Current at Analog Input Pin ILEAK_AN_INPUT  
±2  
±200  
nA  
During input acquisition (tACQ)  
System Performance  
Sample Rate  
(Throughput rate)  
fs  
1
500  
Msps  
kSPS  
Bits  
MCP331x1-10  
MCP331x1-05  
Resolution  
(No Missing Codes)  
16  
14  
12  
-6  
MCP33131-10 and MCP33131-05  
MCP33121-10 and MCP33121-05  
MCP33111-10 and MCP33111-05  
MCP33131-10 and MCP33131-05  
MCP33121-10 and MCP33121-05  
MCP33111-10 and MCP33111-05  
MCP33131-10 and MCP33131-05  
MCP33121-10 and MCP33121-05  
MCP33111-10 and MCP33111-05  
MCP33131-10 and MCP33131-05  
MCP33121-10 and MCP33121-05  
MCP33111-10 and MCP33111-05  
Bits  
Bits  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
±2.2  
±0.55  
±0.12  
±0.9  
±0.25  
±0.06  
±0.1  
±0.125  
±0.8  
±0.8  
±4  
+6  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
mV  
-1.5  
+1.5  
DNL  
-0.98  
-0.8  
+1.8  
+0.8  
+0.3  
±2.3  
±3  
-0.3  
mV  
±3.66  
mV  
Offset Error Drift with Temperature  
Gain Error  
V/oC  
LSB  
LSB  
LSB  
V/oC  
dB  
GER  
MCP33131-10 and MCP33131-05  
MCP33121-10 and MCP33121-05  
MCP33111-10 and MCP33111-05  
±1  
±0.2  
±0.35  
84  
Gain Error Drift with temperature  
Input Common-Mode  
Rejection Ratio  
CMRR  
PSRR  
Power Supply Rejection Ratio  
60  
dB  
(Note 4)  
Note 1: This parameter is ensured by design and not 100% tested.  
2: This parameter is ensured by characterization and not 100% tested.  
3: Decoupling capacitor is recommended on the following pins:  
(a) AVDD pin: 1 F ceramic capacitor, (b) DVIO pin: 0.1 F ceramic capacitor, (c) VREF pin: 10 F tantalum capacitor.  
4: PSRR (dB) = -20 log (DVOUT/AVDD), where DVOUT = change in conversion result.  
5: ENOB = (SINAD - 1.76)/6.02  
DS20006122A-page 4  
2018 Microchip Technology Inc.  
MCP33131/MCP33121/MCP33111-XX  
TABLE 1-1:  
KEY ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all parameters apply for TA = -40°C to +125°C, AVDD = 1.8V, DVIO = 3.3V, VREF = 5V,  
GND = 0V, Analog Input (VIN) = -1 dBFS sine wave, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP331x1-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP331x1-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Dynamic Performance  
Signal-to-Noise Ratio  
SNR  
MCP33131-10 and MCP33131-05: 16-bit ADC  
86.8  
80.9  
86.7  
80.9  
dBFS  
V
V
V
V
REF = 5V, fIN = 1 kHz  
REF = 2.5V, fIN = 1 kHz  
REF = 5V, fIN = 10 kHz  
REF = 2.5V, fIN = 10 kHz  
83.5  
MCP33121-10 and MCP33121-05: 14-bit ADC  
83.6  
79.8  
83.5  
79.8  
dBFS  
V
V
V
V
REF = 5V, fIN = 1 kHz  
REF = 2.5V, fIN = 1 kHz  
REF = 5V, fIN = 10 kHz  
REF = 2.5V, fIN = 10 kHz  
81.5  
MCP33111-10 and MCP33111-05: 12-bit ADC  
73.8  
73.2  
73.8  
73.2  
dBFS  
V
V
V
V
REF = 5V, fIN = 1 kHz  
REF = 2.5V, fIN = 1 kHz  
REF = 5V, fIN = 10 kHz  
REF = 2.5V, fIN = 10 kHz  
71.1  
Signal-to-Noise and Distortion Ratio  
SINAD  
MCP33131-10 and MCP33131-05: 16-bit ADC  
(Note 5)  
86.9  
80.9  
86.6  
80  
dBFS  
V
V
V
V
REF = 5V, fIN = 1 kHz  
REF = 2.5V, fIN = 1 kHz  
REF = 5V, fIN = 10 kHz  
REF = 2.5V, fIN = 10 kHz  
MCP33121-10 and MCP33121-05: 14-bit ADC  
83.6  
79.8  
83.4  
79.1  
dBFS  
V
V
V
V
REF = 5V, fIN = 1 kHz  
REF = 2.5V, fIN = 1 kHz  
REF = 5V, fIN = 10 kHz  
REF = 2.5V, fIN = 10 kHz  
MCP33111-10 and MCP33111-05: 12-bit ADC  
73.8  
73.2  
73.8  
73  
dBFS  
V
V
V
V
REF = 5V, fIN = 1 kHz  
REF = 2.5V, fIN = 1 kHz  
REF = 5V, fIN = 10 kHz  
REF = 2.5V, fIN = 10 kHz  
Note 1: This parameter is ensured by design and not 100% tested.  
2: This parameter is ensured by characterization and not 100% tested.  
3: Decoupling capacitor is recommended on the following pins:  
(a) AVDD pin: 1 F ceramic capacitor, (b) DVIO pin: 0.1 F ceramic capacitor, (c) VREF pin: 10 F tantalum capacitor.  
4: PSRR (dB) = -20 log (DVOUT/AVDD), where DVOUT = change in conversion result.  
5: ENOB = (SINAD - 1.76)/6.02  
2018 Microchip Technology Inc.  
DS20006122A-page 5  
MCP33131/MCP33121/MCP33111-XX  
TABLE 1-1:  
KEY ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all parameters apply for TA = -40°C to +125°C, AVDD = 1.8V, DVIO = 3.3V, VREF = 5V,  
GND = 0V, Analog Input (VIN) = -1 dBFS sine wave, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP331x1-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP331x1-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Spurious Free Dynamic Range  
SFDR  
MCP33131-10 and MCP33131-05: 16-bit ADC  
99.4  
94.4  
98.9  
93.9  
dBc  
V
V
V
V
REF = 5V, fIN = 1 kHz  
REF = 2.5V, fIN = 1 kHz  
REF = 5V, fIN = 10 kHz  
REF = 2.5V, fIN = 10 kHz  
MCP33121-10 and MCP33121-05: 14-bit ADC  
99.3  
94.4  
98.8  
93.9  
dBc  
V
V
V
V
REF = 5V, fIN = 1 kHz  
REF = 2.5V, fIN = 1 kHz  
REF = 5V, fIN = 10 kHz  
REF = 2.5V, fIN = 10 kHz  
MCP33111-10 and MCP33111-05: 12-bit ADC  
97.4  
94.2  
95.9  
93.7  
dBc  
V
V
V
V
REF = 5V, fIN = 1 kHz  
REF = 2.5V, fIN = 1 kHz  
REF = 5V, fIN = 10 kHz  
REF = 2.5V, fIN = 10 kHz  
Total Harmonic Distortion  
(first five harmonics)  
THD  
MCP33131-10 and MCP33131-05: 16-bit ADC  
-97.6  
-92.5  
-97.4  
-92.4  
dBc  
V
V
V
V
REF = 5V, fIN = 1 kHz  
REF = 2.5V, fIN = 1 kHz  
REF = 5V, fIN = 10 kHz  
REF = 2.5V, fIN = 10 kHz  
MCP33121-10 and MCP33121-05: 14-bit ADC  
-97.4  
-92.4  
-97.2  
-92.3  
dBc  
V
V
V
V
REF = 5V, fIN = 1 kHz  
REF = 2.5V, fIN = 1 kHz  
REF = 5V, fIN = 10 kHz  
REF = 2.5V, fIN = 10 kHz  
MCP33111-10 and MCP33111-05: 12-bit ADC  
-94.4  
-91.7  
-93.7  
-91.5  
dBc  
V
V
V
V
REF = 5V, fIN = 1 kHz  
REF = 2.5V, fIN = 1 kHz  
REF = 5V, fIN = 10 kHz  
REF = 2.5V, fIN = 10 kHz  
Note 1: This parameter is ensured by design and not 100% tested.  
2: This parameter is ensured by characterization and not 100% tested.  
3: Decoupling capacitor is recommended on the following pins:  
(a) AVDD pin: 1 F ceramic capacitor, (b) DVIO pin: 0.1 F ceramic capacitor, (c) VREF pin: 10 F tantalum capacitor.  
4: PSRR (dB) = -20 log (DVOUT/AVDD), where DVOUT = change in conversion result.  
5: ENOB = (SINAD - 1.76)/6.02  
DS20006122A-page 6  
2018 Microchip Technology Inc.  
MCP33131/MCP33121/MCP33111-XX  
TABLE 1-1:  
KEY ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all parameters apply for TA = -40°C to +125°C, AVDD = 1.8V, DVIO = 3.3V, VREF = 5V,  
GND = 0V, Analog Input (VIN) = -1 dBFS sine wave, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP331x1-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP331x1-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
System Self-Calibration  
Self-Calibration Time  
tCAL  
500  
650  
ms  
(Note 2)  
Number of SCLK Clocks for  
Recalibrate Command  
ReCalNSCLK  
1024  
clocks  
Includes clocks for data bits  
Serial Interface Timing Information: See Table 1-2  
Digital Inputs/Outputs  
High-level Input voltage  
Low-level input voltage  
VIH  
VIL  
0.7 * DVIO  
0.9 * DVIO  
-0.3  
DVIO + 0.3  
DVIO + 0.3  
0.3 * DVIO  
0.2 * DVIO  
V
V
V
V
V
V
V
DVIO 2.3V  
DVIO < 2.3V  
DVIO 2.3V  
-0.3  
0.2 * DVIO  
DVIO < 2.3V  
Hysteresis of Schmitt Trigger Inputs  
Low-level output voltage  
High-level output voltage  
Input leakage current  
VHYST  
VOL  
VOH  
ILI  
All digital inputs  
IOL = 500 µA (sink)  
IOL = - 500 µA (source)  
0.2 * DVIO  
0.8 * DVIO  
±1  
±1  
µA  
µA  
CNVST/SDI/SCLK = GND or DVIO  
Output leakage current  
ILO  
Output is high-Z, SDO = GND or  
DVIO  
Internal capacitance  
CINT  
7
pF  
TA = 25°C (Note 1)  
(all digital inputs and outputs)  
Note 1: This parameter is ensured by design and not 100% tested.  
2: This parameter is ensured by characterization and not 100% tested.  
3: Decoupling capacitor is recommended on the following pins:  
(a) AVDD pin: 1 F ceramic capacitor, (b) DVIO pin: 0.1 F ceramic capacitor, (c) VREF pin: 10 F tantalum capacitor.  
4: PSRR (dB) = -20 log (DVOUT/AVDD), where DVOUT = change in conversion result.  
5: ENOB = (SINAD - 1.76)/6.02  
2018 Microchip Technology Inc.  
DS20006122A-page 7  
MCP33131/MCP33121/MCP33111-XX  
TABLE 1-2:  
SERIAL INTERFACE TIMING SPECIFICATIONS  
Electrical Specifications: Unless otherwise specified, all parameters apply for TA = -40°C to +125°C, AVDD = 1.8V, DVIO = 3.3V, GND = 0V,  
Analog Input (AIN) = -1 dBFS sine wave, Resolution = 16-bit (MCP33131-10), fIN = 10 kHz, CLOAD_SDO = 20 pF, +25°C is applied for typical value. All  
timings are measured at 50%. See Figure 1-1 for timing diagram.  
MCP331x1-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP331x1-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
Parameters  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
Serial Clock frequency  
SCLK Period  
fSCLK  
tSCLK  
10  
12  
16  
3
100  
MHz  
ns  
See tSCLK specification  
DVIO 3.3V, fSCLK = 100 MHz (Max)  
DVIO 2.3V, fSCLK = 83.3 MHz (Max)  
DVIO 1.7V, fSCLK = 62.5 MHz (Max)  
DVIO 2.3V  
ns  
ns  
SCLK Low Time  
tSCLK_L  
tSCLK_H  
tDO  
ns  
4.5  
ns  
DVIO 1.7V  
DVIO 2.3V  
DVIO 1.7V  
DVIO 3.3V  
DVIO 2.3V  
DVIO 1.7V  
(Note 2)  
SCLK High Time  
3
ns  
ns  
ns  
ns  
ns  
ns  
4.5  
10  
Output Valid from SCLK Low  
9.5  
12  
16  
Quiet time  
tQUIET  
3-Wire Operation:  
SDI Valid Setup time  
CNVST Pulse Width High Time  
Output Enable Time  
tSU_SDIH_CNV  
tCNVH  
5
10  
15  
15  
ns  
ns  
ns  
ns  
ns  
SDI High to CNVST Rising Edge  
10  
tEN  
DVIO 2.3V  
DVIO 1.7V  
(Note 2)  
Output Disable Time  
MCP331x1-10  
tDIS  
Sample Rate  
fs  
1
Msps Throughput rate  
Input Acquisition Time  
(Note 2)  
tACQ  
290  
250  
300  
ns  
ns  
µs  
-40°C TA 85°C  
85°C < TA 125°C  
Data Conversion Time  
tCNV  
tCYC  
700  
710  
750  
-40°C TA 85°C  
85°C < TA 125°C  
Time between Conversions  
MCP331x1-05  
1
tCYC = tACQ + tCNV, fS = 1 Msps  
Sample Rate  
fs  
700  
800  
1200  
500  
kSPS Throughput rate  
Input Acquisition Time (Note 2)  
Data Conversion Time  
Time between Conversions  
tACQ  
tCNV  
tCYC  
ns  
ns  
µs  
-40°C TA 125°C  
1300  
-40°C TA 125°C  
2
tCYC = tACQ + tCNV, fS = 500 kSPS  
Note 1:  
2:  
This parameter is ensured by design and not 100% tested.  
This parameter is ensured by characterization and not 100% tested.  
TABLE 1-3:  
TEMPERATURE CHARACTERISTICS  
Parameters  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
Temperature Ranges  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistance  
Thermal Resistance, MSOP-10  
Thermal Resistance, TDFN-10  
TA  
TA  
-40  
-65  
+125  
+150  
°C  
°C  
(Note 1)  
(Note 1)  
JA  
JA  
202  
68  
°C/W  
°C/W  
Note 1:  
The internal junction temperature (Tj) must not exceed the absolute maximum specification of +150oC.  
DS20006122A-page 8  
2018 Microchip Technology Inc.  
MCP33131/MCP33121/MCP33111-XX  
t
= 1/f  
CYC  
S
SDI = “High”  
tCNVH  
tSU_SDIH_CNV  
CNVST  
tSCLK  
(Note 1)  
1
n
3
n-1  
2
SCLK  
tDO  
tQUIET  
tSCLK_L  
tSCLK_H  
tDIS  
Hi-Z  
Dn-1  
(MSB)  
Hi-Z  
SDO  
D1  
D0  
Dn-2  
Dn-3  
tCNV (MAX)  
tEN  
(Note 2)  
(Note 3)  
tEN  
ADC State  
Input Acquisition  
Conversion  
Input Acquisition  
(tACQ  
)
(tCNV  
)
(tACQ  
)
Note 1: n = 16 for 16-bit, 14 for 14-bit device, and 12 for 12-bit device.  
2: tEN when CNVST is lowered after tCNV (MAX).  
3: tEN when CNVST is lowered before tCNV (MAX).  
FIGURE 1-1:  
Interface Timing Diagram. CNVST is used as chip select. See Figure 7-2 for More  
Details.  
2018 Microchip Technology Inc.  
DS20006122A-page 9  
MCP33131/MCP33121/MCP33111-XX  
NOTES:  
DS20006122A-page 10  
2018 Microchip Technology Inc.  
MCP33131/MCP33121/MCP33111-XX  
2.0  
TYPICAL PERFORMANCE CURVES FOR 16-BIT DEVICES (MCP33131-XX)  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33131-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33131-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
2
1
4
V
= 5V  
V
= 2.5V  
REF  
REF  
2
0
0
-1  
-2  
-4  
-2  
0
16,384  
32,768  
Code  
49,152  
65,536  
0
16,384  
32,768  
Code  
49,152  
65,536  
FIGURE 2-1:  
INL vs. Output Code.  
FIGURE 2-4:  
INL vs. Output Code.  
2
1.5  
1
2
1.5  
1
V
= 5V  
V
= 2.5V  
REF  
REF  
0.5  
0
0.5  
0
-0.5  
-0.5  
-1  
0
-1  
0
16,384  
32,768  
Code  
49,152  
65,536  
16,384  
32,768  
Code  
49,152  
65,536  
FIGURE 2-2:  
DNL vs. Output Code.  
FIGURE 2-5:  
DNL vs. Output Code.  
3
2
1.5  
1
Max INL (LSB)  
Max DNL (LSB)  
1
0.5  
0
0
V
= 5V  
REF  
V
= 5V  
REF  
-1  
-2  
Min INL (LSB)  
-0.5  
Min DNL (LSB)  
-3  
-1  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
FIGURE 2-3:  
INL vs. Temperature.  
FIGURE 2-6:  
DNL vs. Temperature.  
2018 Microchip Technology Inc.  
DS20006122A-page 11  
MCP33131/MCP33121/MCP33111-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33131-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33131-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
2
8
6
Max DNL (LSB)  
1.5  
Max INL (LSB)  
4
1
2
0.5  
0
-2  
-4  
-6  
0
Min INL (LSB)  
-0.5  
-1  
Min DNL (LSB)  
-8  
2
2
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
Reference Voltage (V)  
Reference Voltage (V)  
FIGURE 2-7:  
INL vs. Reference Voltage.  
FIGURE 2-10:  
DNL vs. Reference Voltage.  
MCP33131-10  
MCP33131-10  
0
0
V
= 2.5V  
V
= 5V  
REF  
REF  
-20  
-40  
f = 1 Msps  
s
-20  
-40  
f = 1 Msps  
s
SNR = 81.7 dBFS  
SINAD = 81.6 dBFS  
SFDR = 98.0 dBc  
THD = -95.8 dBc  
Resolution = 16-bit  
SNR = 86.7 dBFS  
SINAD = 86.6 dBFS  
SFDR = 103.6 dBc  
THD = -101.4 dBc  
Resolution = 16-bit  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
Frequency (kHz)  
Frequency (kHz)  
FIGURE 2-11:  
fS = 1 Msps, VIN = -1 dBFS, VREF = 2.5V.  
FFT for 10 kHz Input Signal:  
FIGURE 2-8:  
fS = 1 Msps, VIN = -1 dBFS, VREF = 5V.  
FFT for 10 kHz Input Signal:  
MCP33131-05  
MCP33131-05  
0
0
V
= 2.5V  
V
= 5V  
REF  
REF  
-20  
-40  
f = 0.5 Msps  
s
-20  
-40  
f = 0.5 Msps  
s
SNR = 81.8 dBFS  
SINAD = 81.7 dBFS  
SFDR = 98.9 dBc  
THD = -96.0 dBc  
Resolution = 16-bit  
SNR = 86.7 dBFS  
SINAD = 86.6 dBFS  
SFDR = 105.0 dBc  
THD = -101.5 dBc  
Resolution = 16-bit  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Frequency (kHz)  
Frequency (kHz)  
FIGURE 2-12:  
fS = 500 kSPS, VIN = -1 dBFS, VREF = 2.5V.  
FFT for 10 kHz Input Signal:  
FIGURE 2-9:  
fS = 500 kSPS, VIN = -1 dBFS, VREF = 5V.  
FFT for 10 kHz Input Signal:  
DS20006122A-page 12  
2018 Microchip Technology Inc.  
MCP33131/MCP33121/MCP33111-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33131-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33131-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
-90  
-92  
100  
98  
96  
94  
92  
90  
90  
88  
86  
84  
82  
80  
78  
76  
14  
13.5  
13  
-94  
THD (dB)  
SFDR (dB)  
-96  
ENOB  
SNR (dB)  
SINAD (dB)  
12.5  
-98  
-100  
74  
2
12  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
Reference Voltage (V)  
Reference Voltage (V)  
FIGURE 2-13:  
SNR/SINAD/ENOB vs. V  
FIGURE 2-16:  
SFDR/THD vs. VREF  
REF  
84  
83  
82  
81  
80  
79  
78  
77  
88  
87  
86  
85  
V
= 2.5V  
V
= 5V  
REF  
REF  
SNR (dB)  
SINAD (dB)  
SNR (dB)  
SINAD (dB)  
76  
75  
74  
84  
83  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
FIGURE 2-17:  
Temperature: VREF = 2.5V.  
SNR/SINAD vs.  
FIGURE 2-14:  
Temperature: VREF = 5V.  
SNR/SINAD vs.  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
V
= 2.5V  
V
= 5V  
REF  
REF  
SNR (dBFS)  
SNR (dBFS)  
SINAD(dBFS)  
SINAD(dBFS)  
75  
80  
-30  
-25  
-20  
-15  
-10  
-5  
0
-30  
-25  
-20  
-15  
-10  
-5  
0
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
FIGURE 2-18:  
Amplitude: FIN = 10 kHz.  
SNR/SINAD vs. Input  
FIGURE 2-15:  
Amplitude: FIN = 10 kHz.  
SNR/SINAD vs. Input  
2018 Microchip Technology Inc.  
DS20006122A-page 13  
MCP33131/MCP33121/MCP33111-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33131-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33131-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
90  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
V
= 2.5V  
V
= 5V  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
REF  
REF  
SNR (dB)  
SNR (dB)  
SINAD (dB)  
SINAD (dB)  
100  
101  
102  
103  
100  
101  
102  
103  
Input Frequency (kHz)  
Input Frequency (kHz)  
FIGURE 2-19:  
SNR/SINAD vs.Input  
FIGURE 2-22:  
SNR/SINAD vs.Input  
Frequency: VIN = -1 dBFS.  
Frequency: VIN = -1 dBFS.  
-90  
100  
-92  
104  
THD (dB)  
SFDR (dB)  
THD (dB)  
SFDR (dB)  
-91  
-92  
-93  
-94  
-95  
-96  
99  
98  
97  
96  
95  
94  
-94  
-96  
102  
100  
98  
-98  
-100  
96  
V
= 5V  
V
= 2.5V  
REF  
REF  
-102  
94  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
FIGURE 2-20:  
THD/SFDR vs.  
FIGURE 2-23:  
THD/SFDR vs.  
Temperature: VREF = 5V.  
Temperature: VREF = 2.5V.  
-75  
110  
105  
100  
95  
-75  
110  
105  
100  
95  
THD (dB)  
SFDR (dB)  
THD (dB)  
SFDR (dB)  
-80  
-85  
-80  
-85  
-90  
-90  
-95  
90  
-95  
90  
-100  
-105  
-110  
85  
-100  
-105  
-110  
85  
80  
80  
V
= 5V  
V
= 2.5V  
REF  
REF  
75  
75  
100  
101  
102  
103  
100  
101  
102  
103  
Input Frequency (kHz)  
Input Frequency (kHz)  
FIGURE 2-21:  
THD/SFDR vs. Input  
FIGURE 2-24:  
THD/SFDR vs. Input  
Frequency: VREF = 5V.  
Frequency: VREF = 2.5V.  
DS20006122A-page 14  
2018 Microchip Technology Inc.  
MCP33131/MCP33121/MCP33111-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33131-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33131-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
-60  
-65  
105  
100  
95  
-60  
-65  
105  
100  
95  
THD (dB)  
SFDR (dB)  
THD (dB)  
SFDR (dB)  
-70  
-70  
-75  
90  
-75  
90  
V
= 5V  
-80  
85  
V
= 2.5V  
-80  
85  
REF  
REF  
-85  
80  
-85  
80  
-90  
75  
-90  
75  
-95  
70  
-95  
70  
-100  
-105  
65  
-100  
-105  
65  
60  
60  
-30  
-25  
-20  
-15  
-10  
-5  
0
-30  
-25  
-20  
-15  
-10  
-5  
0
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
FIGURE 2-25:  
THD/SFDR vs. Input  
FIGURE 2-28:  
THD/SFDR vs. Input  
Amplitude: VREF = 5V.  
Amplitude: VREF = 2.5V.  
105  
105  
10  
5
V
= 5V  
V
= 2.5V  
REF  
REF  
402464  
757379  
8
6
4
4
3
2
1
0
2
119771  
93862  
59995  
14132  
3224  
65  
5
143  
0
-5 -3 -1  
1
3
5
7
9
11 13 15  
0
1
2
3
4
5
6
7
8
9
10  
Output Code  
Output Code  
FIGURE 2-26:  
Shorted Input Histogram:  
FIGURE 2-29:  
Shorted Input Histogram:  
VREF = 5V.  
V
REF = 2.5V.  
400  
300  
200  
100  
0
10.49  
7.86  
800  
700  
600  
500  
400  
300  
200  
100  
0
10.49  
9.18  
7.86  
Offset Error  
Gain Error  
5.24  
2.62  
0
Offset Error  
Gain Error  
6.55  
5.24  
3.93  
2.62  
1.31  
0
-100  
-200  
-300  
-400  
-2.62  
-5.24  
-7.86  
-10.49  
-13.11  
V
= 2.5V  
V
= 5V  
REF  
REF  
-500  
-100  
-1.31  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
FIGURE 2-27:  
Offset and Gain Error vs.  
FIGURE 2-30:  
Offset and Gain Error vs.  
Temperature: VREF = 5V.  
Temperature: VREF = 2.5V.  
2018 Microchip Technology Inc.  
DS20006122A-page 15  
MCP33131/MCP33121/MCP33111-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33131-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33131-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
86  
84  
82  
80  
78  
76  
8
16  
12  
8
VREF = 5V  
6
Total Power Consumption  
4
IIO_STBY (DVIO = 3.3V)  
2
4
IREF_STBY (VREF = 5V)  
0
0
74  
10-3  
10-2  
10-1  
Input Frequency (kHz)  
100  
101  
102  
103  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
FIGURE 2-31:  
CMRR vs. Input Frequency:  
FIGURE 2-34:  
Power Consumption vs.  
VREF = 5V.  
Temperature During Shutdown.  
2
8
6
4
2
0
2
8
6
4
MCP331x1-05  
MCP331x1-10  
1.5  
1
1.5  
1
Total Power Consumption  
= 5V)  
0.5  
0.5  
0
2
(V  
I
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Sample Rate (Msps)  
1
Sample Rate (Msps)  
FIGURE 2-32:  
Power Consumption vs.  
FIGURE 2-35:  
Power Consumption vs.  
Sample Rate: CLOAD_SDO = 20 pF.  
Sample Rate: CLOAD_SDO = 20 pF.  
2.5  
10  
8
2
8
6
4
2
0
MCP331x1-10  
MCP331x1-05  
2
1.5  
1
1.5  
1
6
4
IREF (VREF = 5V)  
0.5  
0.5  
0
2
IREF (VREF = 5V)  
IIO_DATA (DVIO = 3.3V)  
IIO_DATA (DVIO = 3.3V)  
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
FIGURE 2-33:  
Temperature: CLOAD_SDO = 20 pF.  
Power Consumption vs.  
FIGURE 2-36:  
Temperature: CLOAD_SDO = 20 pF.  
Power Consumption vs.  
DS20006122A-page 16  
2018 Microchip Technology Inc.  
MCP33131/MCP33121/MCP33111-XX  
3.0  
TYPICAL PERFORMANCE CURVES FOR 14-BIT DEVICES (MCP33121-XX)  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33121-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33121-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
1
0.5  
0
1
V
= 5V  
V
= 2.5V  
REF  
REF  
0.5  
0
-0.5  
-0.5  
-1  
-1  
0
4,096  
8,192  
Code  
12,288  
16,384  
0
4,096  
8,192  
Code  
12,288  
16,384  
FIGURE 3-1:  
INL vs. Output Code.  
FIGURE 3-4:  
INL vs. Output Code.  
1
0.5  
0
1
0.5  
0
V
= 2.5V  
V
= 5V  
REF  
REF  
-0.5  
-0.5  
-1  
0
-1  
0
4,096  
8,192  
Code  
12,288  
16,384  
4,096  
8,192  
Code  
12,288  
16,384  
FIGURE 3-2:  
DNL vs. Output Code.  
FIGURE 3-5:  
DNL vs. Output Code.  
1
0.5  
0
1
0.8  
0.6  
0.4  
0.2  
0
Max INL (LSB)  
Max DNL (LSB)  
V
= 5V  
V
= 5V  
REF  
REF  
-0.2  
-0.4  
-0.6  
-0.8  
Min DNL (LSB)  
-0.5  
Min INL (LSB)  
-1  
-1  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
FIGURE 3-3:  
INL vs. Temperature.  
FIGURE 3-6:  
DNL vs. Temperature.  
2018 Microchip Technology Inc.  
DS20006122A-page 17  
MCP33131/MCP33121/MCP33111-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33121-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33121-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
2
1.5  
1
1
Max DNL (LSB)  
Max INL (LSB)  
Min INL (LSB)  
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
Min DNL (LSB)  
-1.5  
-2  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Reference Voltage (V)  
Reference Voltage (V)  
FIGURE 3-7:  
INL vs. Reference Voltage.  
FIGURE 3-10:  
DNL vs. Reference Voltage.  
MCP33121-10  
MCP33121-10  
0
0
V
= 2.5V  
V
= 5V  
REF  
REF  
-20  
-40  
f = 1 Msps  
s
-20  
-40  
f = 1 Msps  
s
SNR = 80.3 dBFS  
SINAD = 80.2 dBFS  
SFDR = 97.9 dBc  
THD = -95.8 dBc  
Resolution = 14-bit  
SNR = 83.6 dBFS  
SINAD = 83.6 dBFS  
SFDR = 104.3 dBc  
THD = -100.8 dBc  
Resolution = 14-bit  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
Frequency (kHz)  
Frequency (kHz)  
FIGURE 3-8:  
FFT for 10 kHz Input Signal:  
FIGURE 3-11:  
FFT for 10 kHz Input Signal:  
fS = 1 Msps, VIN = -1 dBFS, VREF = 5V.  
fS = 1 Msps, VIN = -1 dBFS, VREF = 2.5V.  
MCP33121-05  
MCP33121-05  
0
0
V
= 5V  
V
= 2.5V  
REF  
REF  
-20  
-40  
f = 0.5 Msps  
s
-20  
-40  
f = 0.5 Msps  
s
SNR = 83.5 dBFS  
SINAD = 83.4 dBFS  
SFDR = 105.0 dBc  
THD = -101.6 dBc  
Resolution = 14-bit  
SNR = 80.6 dBFS  
SINAD = 80.5 dBFS  
SFDR = 99.4 dBc  
THD = -96.4 dBc  
Resolution = 14-bit  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Frequency (kHz)  
Frequency (kHz)  
FIGURE 3-9:  
FFT for 10 kHz Input Signal:  
FIGURE 3-12:  
FFT for 10 kHz Input Signal:  
fS = 500 kSPS, VIN = -1 dBFS, VREF = 5V.  
fS = 500 kSPS, VIN = -1 dBFS, VREF = 2.5V.  
DS20006122A-page 18  
2018 Microchip Technology Inc.  
MCP33131/MCP33121/MCP33111-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33121-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33121-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
86  
84  
82  
80  
78  
14  
-90  
-92  
100  
98  
96  
94  
92  
90  
13.5  
13  
-94  
THD (dB)  
SFDR (dB)  
12.5  
12  
-96  
ENOB  
SNR (dB)  
SINAD (dB)  
-98  
76  
2
11.5  
-100  
2.5  
3
3.5  
4
4.5  
5
5.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Reference Voltage (V)  
Reference Voltage (V)  
FIGURE 3-13:  
SNR/SINAD/ENOB vs. V  
FIGURE 3-16:  
SFDR/THD vs. VREF.  
REF.  
85  
84  
83  
82  
82  
81  
80  
79  
78  
77  
76  
75  
V
= 5V  
V
= 2.5V  
REF  
REF  
SNR (dB)  
SINAD (dB)  
81  
SNR (dB)  
SINAD (dB)  
74  
73  
72  
80  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
FIGURE 3-17:  
SNR/SINAD vs.  
FIGURE 3-14:  
SNR/SINAD vs.  
Temperature: VREF = 2.5V.  
Temperature: VREF = 5V.  
86  
85  
84  
83  
82  
81  
80  
86  
85  
84  
83  
82  
81  
80  
V
= 2.5V  
V
= 5V  
REF  
REF  
79  
78  
77  
79  
78  
77  
SNR (dBFS)  
SNR (dBFS)  
SINAD(dBFS)  
SINAD(dBFS)  
76  
76  
-30  
-25  
-20  
-15  
-10  
-5  
0
-30  
-25  
-20  
-15  
-10  
-5  
0
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
FIGURE 3-18:  
SNR/SINAD vs. Input  
FIGURE 3-15:  
SNR/SINAD vs. Input  
Amplitude: FIN = 10 kHz.  
Amplitude: FIN = 10 kHz.  
2018 Microchip Technology Inc.  
DS20006122A-page 19  
MCP33131/MCP33121/MCP33111-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33121-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33121-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
90  
V
= 5V  
V
= 2.5V  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
REF  
REF  
SNR (dB)  
SNR (dB)  
SINAD (dB)  
SINAD (dB)  
100  
101  
102  
103  
100  
101  
102  
103  
Input Frequency (kHz)  
Input Frequency (kHz)  
FIGURE 3-19:  
SNR/SINAD vs.Input  
FIGURE 3-22:  
SNR/SINAD vs.Input  
Frequency: VIN = -1 dBFS.  
Frequency: VIN = -1 dBFS.  
-92  
104  
-90  
100  
THD (dB)  
SFDR (dB)  
THD (dB)  
SFDR (dB)  
-91  
-92  
-93  
-94  
-95  
-96  
99  
98  
97  
96  
95  
94  
-94  
-96  
102  
100  
98  
-98  
-100  
96  
V
= 5V  
V
= 2.5V  
REF  
REF  
-102  
94  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
-40 -20  
0
20 40 60 80 100 120 140  
o
Temperature ( C)  
FIGURE 3-20:  
THD/SFDR vs.  
FIGURE 3-23:  
THD/SFDR vs.  
Temperature: VREF = 5V.  
Temperature: VREF = 2.5V.  
-75  
110  
105  
100  
95  
-75  
110  
105  
100  
95  
THD (dB)  
SFDR (dB)  
THD (dB)  
SFDR (dB)  
-80  
-85  
-80  
-85  
-90  
-90  
-95  
90  
-95  
90  
-100  
-105  
-110  
85  
-100  
-105  
-110  
85  
80  
80  
V
= 2.5V  
V
= 5V  
REF  
REF  
75  
75  
100  
101  
102  
103  
100  
101  
102  
103  
Input Frequency (kHz)  
Input Frequency (kHz)  
FIGURE 3-21:  
THD/SFDR vs. Input  
FIGURE 3-24:  
THD/SFDR vs. Input  
Frequency: VREF = 5V.  
Frequency: VREF = 2.5V.  
DS20006122A-page 20  
2018 Microchip Technology Inc.  
MCP33131/MCP33121/MCP33111-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33121-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33121-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
-60  
-65  
105  
100  
95  
90  
85  
80  
75  
70  
65  
60  
-60  
-65  
105  
100  
95  
THD (dB)  
SFDR (dB)  
THD (dB)  
SFDR (dB)  
-70  
-70  
-75  
-75  
90  
V
= 2.5V  
V
= 5V  
-80  
-80  
85  
REF  
REF  
-85  
-85  
80  
-90  
-90  
75  
-95  
-95  
70  
-100  
-105  
-100  
-105  
65  
60  
-30  
-25  
-20  
-15  
-10  
-5  
0
-30  
-25  
-20  
-15  
-10  
-5  
0
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
FIGURE 3-25:  
THD/SFDR vs. Input  
FIGURE 3-28:  
THD/SFDR vs. Input  
Amplitude: VREF = 5V.  
Amplitude: VREF = 2.5V.  
105  
105  
12  
10  
V
= 5V  
V
= 2.5V  
REF  
REF  
985144  
10  
8
8
6
4
719460  
6
4
234082  
2
2
79234  
63284  
15798  
148  
2
0
0
-3  
-2  
-1  
0
1
2
3
4
5
-4 -3 -2 -1  
0
1
2
3
4
5
6
Output Code  
Output Code  
FIGURE 3-26:  
Shorted Input Histogram:  
FIGURE 3-29:  
VREF = 2.5V.  
Shorted Input Histogram:  
VREF = 5V.  
700  
600  
500  
400  
300  
200  
100  
2.29  
1.97  
400  
300  
200  
100  
0
2.62  
1.97  
1.31  
1.64  
Offset Error  
Offset Error  
1.31  
0.98  
0.66  
0
Gain Error  
Gain Error  
0.66  
0.33  
0
-100  
-200  
-300  
-0.66  
-1.31  
-1.97  
V
= 5V  
V
= 2.5V  
REF  
REF  
0
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
FIGURE 3-27:  
Offset and Gain Error vs.  
FIGURE 3-30:  
Offset and Gain Error vs.  
Temperature: VREF = 5V.  
Temperature: VREF = 2.5V.  
2018 Microchip Technology Inc.  
DS20006122A-page 21  
MCP33131/MCP33121/MCP33111-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33121-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33121-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
86  
84  
82  
80  
78  
76  
8
16  
12  
8
VREF = 5V  
6
Total Power Consumption  
4
IIO_STBY (DVIO = 3.3V)  
2
4
IREF_STBY (VREF = 5V)  
74  
0
0
10-3  
10-2  
10-1  
100  
101  
102  
103  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Input Frequency (kHz)  
Temperature (°C)  
FIGURE 3-31:  
CMRR vs. Input Frequency:  
FIGURE 3-34:  
Temperature During Shutdown.  
Power Consumption vs.  
VREF = 5V.  
2
8
6
4
2
8
6
4
2
0
MCP331x1-10  
MCP331x1-05  
1.5  
1
1.5  
1
= 5V)  
0.5  
0
2
(V  
I
0.5  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Sample Rate (Msps)  
1
0.1  
0.2  
0.3  
0.4  
0.5  
Sample Rate (Msps)  
FIGURE 3-32:  
Sample Rate: CLOAD_SDO = 20 pF.  
Power Consumption vs.  
FIGURE 3-35:  
Sample Rate: CLOAD_SDO = 20 pF.  
Power Consumption vs.  
2.5  
10  
8
2
8
6
4
2
0
MCP331x1-10  
MCP331x1-05  
2
1.5  
1
1.5  
1
6
4
IREF (VREF = 5V)  
0.5  
0
2
0.5  
IREF (VREF = 5V)  
IIO_DATA (DVIO = 3.3V)  
IIO_DATA (DVIO = 3.3V)  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
FIGURE 3-33:  
Temperature: CLOAD_SDO = 20 pF.  
Power Consumption vs.  
FIGURE 3-36:  
Power Consumption vs.  
DS20006122A-page 22  
2018 Microchip Technology Inc.  
MCP33131/MCP33121/MCP33111-XX  
4.0  
TYPICAL PERFORMANCE CURVES FOR 12-BIT DEVICES (MCP33111-XX)  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33111-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33111-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
0.5  
0.3  
0.5  
V
= 5V  
V
= 2.5V  
REF  
REF  
0.3  
0.1  
0.1  
-0.1  
-0.3  
-0.1  
-0.3  
-0.5  
-0.5  
0
1,024  
2,048  
Code  
3,072  
4,096  
0
1,024  
2,048  
Code  
3,072  
4,096  
FIGURE 4-1:  
INL vs. Output Code.  
FIGURE 4-4:  
INL vs. Output Code.  
0.5  
0.3  
0.5  
0.3  
V
= 5V  
V
= 2.5V  
REF  
REF  
0.1  
0.1  
-0.1  
-0.3  
-0.1  
-0.3  
-0.5  
0
-0.5  
0
1,024  
2,048  
Code  
3,072  
4,096  
1,024  
2,048  
Code  
3,072  
4,096  
FIGURE 4-2:  
DNL vs. Output Code.  
FIGURE 4-5:  
DNL vs. Output Code.  
0.2  
0.15  
0.1  
0.2  
0.15  
0.1  
Max INL (LSB)  
Max DNL (LSB)  
0.05  
0
0.05  
0
V
= 5V  
V
= 5V  
REF  
REF  
-0.05  
-0.1  
-0.15  
-0.05  
-0.1  
-0.15  
Min DNL (LSB)  
Min INL (LSB)  
-0.2  
-0.2  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
FIGURE 4-3:  
INL vs. Temperature.  
FIGURE 4-6:  
DNL vs. Temperature.  
2018 Microchip Technology Inc.  
DS20006122A-page 23  
MCP33131/MCP33121/MCP33111-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33111-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33111-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
0.6  
0.4  
0.2  
0
0.5  
Max INL (LSB)  
Min INL (LSB)  
Max DNL (LSB)  
Min DNL (LSB)  
0
-0.2  
-0.4  
-0.6  
-0.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Reference Voltage (V)  
Reference Voltage (V)  
FIGURE 4-7:  
INL vs. Reference Voltage.  
FIGURE 4-10:  
DNL vs. Reference Voltage.  
MCP33111-10  
MCP33111-10  
0
0
V
= 5V  
V
= 2.5V  
REF  
REF  
f
= 1 Msps  
f
= 1 Msps  
s
s
-20  
-40  
-20  
-40  
SNR = 73.8 dBFS  
SINAD = 73.7 dBFS  
SFDR = 99.7 dBc  
THD = -98.4 dBc  
Resolution = 12-bit  
SNR = 73.4 dBFS  
SINAD = 73.4 dBFS  
SFDR = 99.0 dBc  
THD = -95.1 dBc  
Resolution = 12-bit  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
Frequency (kHz)  
Frequency (kHz)  
FIGURE 4-8:  
FFT for 10 kHz Input Signal:  
FIGURE 4-11:  
FFT for 10 kHz Input Signal:  
fS = 1 Msps, VIN = -1 dBFS, VREF = 5V.  
fS = 1 Msps, VIN = -1 dBFS, VREF = 2.5V.  
MCP33111-05  
MCP33111-05  
0
0
V
= 2.5V  
V
= 5V  
REF  
REF  
f
= 0.5 Msps  
f
= 0.5 Msps  
s
s
-20  
-40  
-20  
-40  
SNR = 73.4 dBFS  
SINAD = 73.4 dBFS  
SFDR = 100.1 dBc  
THD = -96.4 dBc  
SNR = 73.8 dBFS  
SINAD = 73.8 dBFS  
SFDR = 99.9 dBc  
THD = -97.5 dBc  
Resolution = 12-bit  
Resolution = 12-bit  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Frequency (kHz)  
Frequency (kHz)  
FIGURE 4-9:  
FFT for 10 kHz Input Signal:  
FIGURE 4-12:  
FFT for 10 kHz Input Signal:  
fS = 500 kSPS, VIN = -1 dBFS, VREF = 5V.  
fS = 500 kSPS, VIN = -1 dBFS, VREF = 2.5V.  
DS20006122A-page 24  
2018 Microchip Technology Inc.  
MCP33131/MCP33121/MCP33111-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33111-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33111-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
73.5  
73  
11.9  
11.8  
11.7  
11.6  
11.5  
-90  
-91  
-92  
-93  
-94  
-95  
100  
98  
96  
94  
92  
90  
THD (dB)  
SFDR (dB)  
72.5  
72  
ENOB  
SNR (dB)  
SINAD (dB)  
71.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Reference Voltage (V)  
Reference Voltage (V)  
FIGURE 4-13:  
SNR/SINAD/ENOB vs. V  
FIGURE 4-16:  
SFDR/THD vs. VREF  
REF  
73.2  
73  
74  
73.5  
73  
V
= 5V  
REF  
V
= 2.5V  
REF  
72.5  
72  
72.8  
72.6  
71.5  
71  
SNR (dB)  
SINAD (dB)  
72.4  
SNR (dB)  
SINAD (dB)  
70.5  
70  
72.2  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
FIGURE 4-14:  
SNR/SINAD vs.  
FIGURE 4-17:  
SNR/SINAD vs.  
Temperature: VREF = 5V.  
Temperature: VREF = 2.5V.  
75  
74  
73  
72  
75  
74  
73  
72  
V
= 5V  
V
= 2.5V  
REF  
REF  
SNR (dBFS)  
71  
SNR (dBFS)  
71  
SINAD(dBFS)  
SINAD(dBFS)  
70  
70  
-30  
-25  
-20  
-15  
-10  
-5  
0
-30  
-25  
-20  
-15  
-10  
-5  
0
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
FIGURE 4-15:  
SNR/SINAD vs. Input  
FIGURE 4-18:  
SNR/SINAD vs. Input  
Amplitude: FIN = 10 kHz.  
Amplitude: FIN = 10 kHz.  
2018 Microchip Technology Inc.  
DS20006122A-page 25  
MCP33131/MCP33121/MCP33111-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33111-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33111-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
80  
V
= 5V  
V
= 2.5V  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
REF  
REF  
SNR (dB)  
SNR (dB)  
SINAD (dB)  
SINAD (dB)  
100  
101  
102  
103  
100  
101  
102  
103  
Input Frequency (kHz)  
Input Frequency (kHz)  
FIGURE 4-19:  
SNR/SINAD vs. Input  
FIGURE 4-22:  
SNR/SINAD vs. Input  
Frequency: VIN = -1 dBFS.  
Frequency: VIN = -1 dBFS.  
-90  
100  
-90  
100  
THD (dB)  
SFDR (dB)  
THD (dB)  
SFDR (dB)  
-91  
-92  
-93  
-94  
-95  
-96  
99  
98  
97  
96  
95  
94  
-91  
-92  
-93  
-94  
-95  
-96  
99  
98  
97  
96  
95  
94  
V
= 2.5V  
V
= 5V  
REF  
REF  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
FIGURE 4-20:  
THD/SFDR vs.  
FIGURE 4-23:  
THD/SFDR vs.  
Temperature: VREF = 5V.  
Temperature: VREF = 2.5V.  
-75  
110  
105  
100  
95  
-75  
110  
105  
100  
95  
THD (dB)  
SFDR (dB)  
THD (dB)  
SFDR (dB)  
-80  
-85  
-80  
-85  
-90  
-90  
-95  
90  
-95  
90  
-100  
-105  
-110  
85  
-100  
-105  
-110  
85  
80  
80  
V
= 5V  
V
= 2.5V  
REF  
REF  
75  
75  
100  
101  
102  
103  
100  
101  
102  
103  
Input Frequency (kHz)  
Input Frequency (kHz)  
FIGURE 4-21:  
THD/SFDR vs. Input  
FIGURE 4-24:  
THD/SFDR vs. Input  
Frequency: VREF = 5V.  
Frequency: VREF = 2.5V.  
DS20006122A-page 26  
2018 Microchip Technology Inc.  
MCP33131/MCP33121/MCP33111-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33111-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33111-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
105  
100  
95  
90  
85  
80  
75  
70  
65  
60  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
105  
100  
95  
THD (dB)  
SFDR (dB)  
THD (dB)  
SFDR (dB)  
90  
V
= 5V  
V
= 2.5V  
REF  
85  
REF  
80  
75  
70  
65  
60  
-30  
-25  
-20  
-15  
-10  
-5  
0
-30  
-25  
-20  
-15  
-10  
-5  
0
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
FIGURE 4-25:  
THD/SFDR vs. Input  
FIGURE 4-28:  
THD/SFDR vs. Input  
Amplitude: VREF = 5V.  
Amplitude: VREF = 2.5V.  
105  
105  
12  
12  
1048574  
V
= 5V  
1048576  
V
= 2.5V  
REF  
REF  
10  
8
10  
8
6
6
4
4
2
2
2
0
0
-3  
-2  
-1  
0
1
2
3
-3  
-2  
-1  
0
1
2
3
Output Code  
Output Code  
FIGURE 4-26:  
Shorted Input Histogram:  
FIGURE 4-29:  
Shorted Input Histogram:  
VREF = 5V.  
V
REF = 2.5V.  
500  
400  
300  
200  
100  
0
0.41  
0.33  
300  
200  
100  
0
0.49  
0.33  
0.16  
Gain Error  
0.25  
0.16  
0.08  
0
Offset Error  
0
Gain Error  
-100  
-200  
-0.16  
-0.33  
-0.49  
Offset Error  
V
= 5V  
V
= 2.5V  
REF  
REF  
-100  
-0.08  
-300  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (oC)  
FIGURE 4-27:  
Offset and Gain Error vs.  
FIGURE 4-30:  
Offset and Gain Error vs.  
Temperature: VREF = 5V.  
Temperature: VREF = 2.5V.  
2018 Microchip Technology Inc.  
DS20006122A-page 27  
MCP33131/MCP33121/MCP33111-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33111-10: Sample Rate (fS) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
MCP33111-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
86  
84  
82  
80  
78  
76  
8
16  
12  
8
VREF = 5V  
6
Total Power Consumption  
4
IIO_STBY (DVIO = 3.3V)  
2
4
IREF_STBY (VREF = 5V)  
0
0
74  
10-3  
10-2  
10-1  
Input Frequency (kHz)  
100  
101  
102  
103  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
FIGURE 4-31:  
CMRR vs. Input Frequency:  
FIGURE 4-34:  
Power Consumption vs.  
VREF = 5V.  
Temperature During Shutdown.  
2
8
6
4
2
0
2
8
6
4
MCP331x1-05  
MCP331x1-10  
1.5  
1
1.5  
1
= 5V)  
0.5  
0
0.5  
0
2
(V  
I
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Sample Rate (Msps)  
1
0.1  
0.2  
0.3  
0.4  
0.5  
Sample Rate (Msps)  
FIGURE 4-32:  
Power Consumption vs.  
FIGURE 4-35:  
Power Consumption vs.  
Sample Rate: CLOAD_SDO = 20 pF.  
Sample Rate: CLOAD_SDO = 20 pF.  
MCP331x1D-10  
2
8
6
4
2
0
2.5  
10  
8
MCP331x1-05  
MCP331x1-10  
2
1.5  
1
1.5  
1
6
4
IREF (VREF = 5V)  
0.5  
0.5  
0
2
IREF (VREF = 5V)  
IIO_DATA (DVIO = 3.3V)  
IIO_DATA (DVIO = 3.3V)  
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
FIGURE 4-33:  
Power Consumption vs.  
FIGURE 4-36:  
Power Consumption vs.  
Temperature: CLOAD_SDO = 20 pF.  
Temperature: CLOAD_SDO = 20 pF.  
DS20006122A-page 28  
2018 Microchip Technology Inc.  
MCP33131/MCP33121/MCP33111-XX  
5.0  
PIN FUNCTION DESCRIPTIONS  
TABLE 5-1:  
Pin Number  
1
PIN FUNCTION TABLE  
Pin Name  
Function  
VREF  
Reference voltage input (2.5V - 5.1V).  
This pin should be decoupled with a 10 F tantalum capacitor.  
2
AVDD  
DC supply voltage input for analog section (1.8V).  
This pin should be decoupled with a 1 F ceramic capacitor.  
3
4
AIN+  
AIN-  
Analog input.  
Ground reference pin for analog input. Connect this pin to the ground reference of the  
analog input.  
5
6
GND  
Power supply ground reference. This pin is a common ground for both the analog  
power supply (AVDD) and digital I/O supply (DVIO).  
CNVST  
Conversion-start control and active-low SPI chip-select digital input.  
A new conversion is started on the rising edge of CNVST.  
When the conversion is complete, output data is available at SDO by lowering CNVST.  
7
8
SDO  
SPI-compatible serial digital data output: ADC conversion data is shifted out by SCLK  
clock, with MSB first.  
SCLK  
SPI-compatible serial data clock digital input.  
The ADC output is synchronously shifted out by this clock.  
9
SDI  
SPI-compatible serial data digital input. Tie to DVIO for normal operation.  
10  
DVIO  
DC supply voltage for digital input/output interface (1.7V - 5.5V).  
This pin should be decoupled with a 0.1 F ceramic capacitor.  
5.1  
Supply Voltages (AV , DV )  
DD IO  
Note:  
Note:  
The reference pin needs a tantalum  
decoupling capacitor (10 F, 10V rating).  
Additional multiple ceramic capacitors can  
be added in parallel to decouple  
high-frequency noises.  
The device has two power supply pins:  
(a) Analog power supply (AVDD): 1.8V  
(b) Digital input/output interface power supply (DVIO):  
1.7V to 5.5V.  
The large supply voltage range of DVIO allows the  
device to interface with various host devices that are  
operating with different supply voltages. See Table 1-2  
for timing specifications for I/O interface signal  
parameters depending on DVIO voltage.  
During the initial power-up sequence, the  
reference voltage (VREF  
provided prior to supplying AVDD or within  
about 64 ms after supplying AVDD  
Otherwise, it is strongly recommended to  
send recalibrate command. See  
)
must be  
.
a
Note:  
Proper decoupling capacitors (1 F to  
AVDD, 0.1 F to DVIO) should be mounted  
as close as possible to the respective  
pins. See Figure 6-1 for example circuit.  
Section 7.1 “Recalibrate Command” for  
more details.  
5.2.1  
VOLTAGE REFERENCE  
SELECTION  
5.2  
Reference Voltage (V  
)
REF  
The performance of the voltage reference has a large  
impact on the accuracy of high-precision data  
acquisition systems. The voltage reference should  
have high-accuracy, low-noise, and low-temperature  
drift. A ±0.1% output accuracy of the reference directly  
corresponds to ±0.1% absolute accuracy of the ADC  
output. The RMS output noise voltage of the reference  
should be less than 1/2 LSB of the ADC.  
The device requires a single-ended external reference  
voltage (VREF). The external input reference range is  
from 2.5V to 5.1V. This reference voltage sets the  
input full-scale range from 0V to VREF. See Figure 6-1  
to Figure 6-2 for example application circuit and  
reference voltage settings.  
2018 Microchip Technology Inc.  
DS20006122A-page 29  
MCP33131/MCP33121/MCP33111-XX  
time. Although the device can be driven directly with a  
low impedance source, using a low noise input driver is  
highly recommended.  
6.0  
DEVICE OVERVIEW  
The device converts unipolar single-ended analog  
input into unipolar straight binary codes.  
When the MCP33131/MCP33121/MCP33111-XX is  
first powered-up, it performs a self-calibration and  
enters a low current input acquisition mode (Standby)  
by itself.  
MCP331x1-XX  
V
REF  
V
= 0.6V  
T
The external reference voltage (VREF) ranging from  
2.5V to 5.1V sets the input full-scale range (FSR) from  
Sample VIN  
+
D
1
+
SW1  
+
SW2  
+
R
C
S
SON  
AIN  
+
0V to +VREF  
.
C
PIN  
(200 )  
(31 pF)  
During input acquisition (Standby), the internal input  
sampling capacitors are connected to the input signal,  
while most of the internal analog circuits are shutdown  
to save power. During this input acquisition time  
(tACQ), the device consumes less than 1 A.  
I
LEAKAGE  
D
2
(~ ±1 nA)  
V
REF  
V
= 0.6V  
T
The user can operate the device with an easy-to-use  
SPI-compatible 3-wire interface.  
Sample VIN  
-
D
1
-
SW1  
-
SW2  
-
R
C
SON  
S
AIN  
-
The device initiates data conversion on the rising edge  
of the conversion-start control (CNVST). The data con-  
version time (tCNV) is set by the internal clock. Once  
the conversion is complete, the device starts the next  
input acquisition. During this input acquisition time  
(tACQ), the user can clock out the output data by pro-  
viding the external SPI serial clock (SCLK).  
C
PIN  
(200 )  
(31 pF)  
I
LEAKAGE  
D
2
(~ ±1 nA)  
where:  
+
-
, C  
S
C
S
= Input sample and hold capacitor 31 pF.  
The device provides conversion data with no missing  
codes. This ADC device family has a large input  
full-scale range, high precision, high throughput with  
no output latency, and is an ideal choice for various  
ADC applications.  
R
SON  
= On-resistance of the sampling switch 200   
= Package pin + ESD capacitor 2 pF.  
= Analog input.  
CPIN  
AIN  
AIN  
+
= Ground reference of analog input.  
-
Simplified Equivalent Analog Input Circuit.  
6.1  
Analog Input  
Note:  
The ESD diodes at the analog input pins  
are biased from VREF. Any input voltage  
outside the absolute maximum range can  
turn on the input ESD protection diodes  
and results in input leakage current which  
may cause conversion errors and  
permanent damage to the device. Care  
must be taken in setting the input voltage  
ranges so that the input voltage does not  
exceed the absolute maximum input  
voltage range.  
Figure shows a simplified equivalent circuit of the  
input architecture with a switched capacitor input stage.  
The input sampling capacitor (CS+) is about 31 pF. The  
back-to-back diodes (D1 - D2) at each input pin are  
ESD protection diodes. Note that these ESD diodes are  
tied to VREF, so that each input signal can swing from  
0V to VREF  
.
The input sampling and hold circuit in AIN+ path is also  
repeated in AIN- path. This allows the device to perform  
a pseudo-differential conversion of the input signal.  
Therefore, the common mode signal presented at both  
input pins is rejected. In applications, AIN+ pin is for the  
input signal and AIN- pin is for the ground reference of  
the input signal. The user must connect the AIN- pin to  
a clean ground plane of the input signal externally.  
During input acquisition phase (Standby), the sampling  
switches are closed and each input sees the sampling  
capacitor (31 pF) in series with the on-resistance of  
the sampling switch, RSON (200).  
For high-precision data conversion applications, the  
input voltage needs to be fully settled within 1/2 LSB  
during the input acquisition period (tACQ). The settling  
time is directly related to the source impedance: A  
lower impedance source results in faster input settling  
DS20006122A-page 30  
2018 Microchip Technology Inc.  
MCP33131/MCP33121/MCP33111-XX  
6.1.1  
INPUT VOLTAGE RANGE  
6.2  
Analog Input Conditioning Circuit  
The device has two analog input pins: AIN+ and AIN-  
pins. The analog input signal is applied to the AIN+ pin,  
and the ground reference of the input signal is tied to  
the AIN- pin.  
The MCP33131/MCP33121/MCP33111-XX can be  
driven directly when the source impedance of the input  
driver is low.  
Large source impedance of the input signal may affect  
the ADC’s performance. In general, the source imped-  
ance is less sensitive to the ADC’s DC performances  
such as INL and DNL. However, it affects significantly  
to the dynamic performances such as THD, SFDR and  
SNR.  
The voltage difference between AIN+ and AIN- is the  
ADC input (VIN) and needs to be between 0V and  
+VREF to produce unsaturated output codes.  
Equation 6-4 shows the input full-scale range (FSR)  
and input range.  
The device will output unipolar straight binary codes for  
the analog input. If the input (VIN) is greater than the  
reference voltage (VREF), the output code will be  
saturated. If the input (VIN) is less than or equals to 0V,  
the output will be all 0’s.  
Therefore, it is a good design practice to isolate the  
ADC input from the high impedance source using a low  
noise input driver amplifier. Figure 6-1 shows an input  
configuration example using a low-noise OP amplifier  
such as MCP6286 and Figure 6-2 shows the transfer  
function of the MCP33131/MCP33121/MCP33111-XX.  
EQUATION 6-1:  
FSR AND INPUT RANGE  
VREF  
0V VIN  VREF 1LSB  
Input Full-Scale Range (FSR)  
=
Input Range:  
where VIN = AIN+ - AIN-  
VREF  
2.5V to 5.1V 1.8V  
1.7V to 5.5V  
0.1 F  
Voltage  
Reference  
V
DC  
C
R
0.1 F  
MCP1501  
(Note 2)  
10 F  
(Tantalum)  
1
fC  
=
2R C  
V
1
1
REF  
V
REF  
R1  
VREF  
AVDD  
DVIO  
0V  
AIN  
+
0V  
(22 ±0.1%  
)
Analog Input  
C1  
SDI  
(1.7nF, NPO)  
Host Device  
VIN  
MCP6286  
(Note 1)  
MCP331x1-XX  
CNVST  
SCLK  
SDO  
(PIC32MZ)  
0V  
AIN  
-
Ground Reference of  
Analog Input  
GND  
Note 1: Contact Microchip Technology Inc. for more selections of the low-noise input driver amplifiers.  
2: Contact Microchip Technology Inc. for the MCP1501 application circuit.  
FIGURE 6-1:  
Unipolar-Input Application Example  
Digital Output Code  
2n - 1  
2n/2  
V
IN (V)  
0
+VREF/2 +VREF  
range  
Analog Input Voltage  
V
IN  
FIGURE 6-2:  
Transfer Function for Figure 6-1.  
2018 Microchip Technology Inc.  
DS20006122A-page 31  
MCP33131/MCP33121/MCP33111-XX  
• ADC Input-Referred Noise:  
6.3  
ADC Input Driver Selection  
When the ADC is operating with a full-scale input  
range, the ADC input-referred RMS noise for a  
single-ended input configuration is approximated as  
shown in Equation 6-4.  
The noise and distortion of the ADC input driver can  
degrade the dynamic performance (SNR, SFDR, and  
THD) of the overall ADC application system. Therefore,  
the ADC input driver needs better performance specifi-  
cations than the ADC itself. The data sheet of the driver  
typically shows the output noise voltage and harmonic  
distortion parameters.  
EQUATION 6-4:  
ADC INPUT-REFERRED  
NOISE  
SNR  
20  
Figure 6-3 shows  
presentation block diagram for the front-end driver and  
ADC.  
a
simplified system noise  
-----------  
VREF  
(V)  
VN_ADC Input-Referred Noise  
=
-------------- 10  
2
2
Noise Contribution from the Front-End Driver:  
ADC Input Driver  
R
The noise from the input driver can degrade the ADC’s  
SNR performance. Therefore, the selected input driver  
should have the lowest possible broadband noise den-  
sity and 1/f noise. When an anti-aliasing filter is used  
after the input driver, the output noise density of the  
input driver is integrated over the -3 dB bandwidth of  
the filter.  
- +  
- +  
ADC  
C
V
V
N_ADC Input-Referred Noise  
N_RMS_Driver Noise  
FIGURE 6-3:  
Simplified System Noise  
Equation 6-5 shows the RMS output noise voltage cal-  
culation using the RC filter’s bandwidth and noise den-  
sity (eN) of the input driver. GN in Equation 6-5 is the  
noise gain of the driver amplifier and becomes 1 for a  
unity gain buffer driver.  
Representation.  
• Unity-Gain Bandwidth:  
An input driver with higher bandwidth usually results in  
better overall linearity performance. Typically, the driver  
should have the unity-gain bandwidth greater than 5  
times the -3 dB cutoff frequency of the anti-aliasing fil-  
ter:  
EQUATION 6-5:  
NOISE FROM FRONT-END  
DRIVER AMPLIFIER  
eN  
VN_RMS_Driver Noise  
(V)  
GN------ f  
B
EQUATION 6-2:  
BANDWIDTH  
2
REQUIREMENT FOR ADC  
INPUT DRIVER  
where eN is the broadband noise density (V/Hz) of the  
front-end driver amplifier and is typically given in its  
data sheet. In Equation 6-5, 1/f noise (eNFlicker) is  
ignored assuming it is very small compared to the  
broadband noise (eN).  
BW  
Input Driver  
5 x f  
(Hz)  
B
5
--------------  
for a single-pole RC filter  
2RC  
where, fB = -3 dB bandwidth of RC anti-aliasing filter as  
shown in Figure 6-3.  
For high precision ADC applications, the noise  
contribution from the front-end input driver amplifier is  
typically constrained to be less than about 20% (or 1/5  
times) of the ADC input-referred noise as shown in  
Equation 6-6:  
Distortion:  
The nonlinearity characteristics of the input driver  
cause distortions in the ADC output. Therefore, the  
input driver should have less distortion than the ADC  
itself. The recommended total harmonic distortion  
(THD) of the driver is at least 10 dB less than that of the  
ADC:  
EQUATION 6-6:  
RECOMMENDED ADC  
INPUT DRIVER NOISE  
1
5
VN_RMS_Driver Noise  
V
--  
N_ADC Input-Referred Noise  
EQUATION 6-3:  
RECOMMENDED THD  
FOR ADC INPUT DRIVER  
Using Equation 6-4 to Equation 6-6, the recommended  
noise voltage density (eN) limit of the ADC input driver  
is expressed in Equation 6-7:  
THD  
THD  
-10  
ADC  
(dB)  
Input Buffer  
DS20006122A-page 32  
2018 Microchip Technology Inc.  
MCP33131/MCP33121/MCP33111-XX  
EQUATION 6-7:  
NOISE DENSITY FOR ADC  
INPUT DRIVER  
TABLE 6-2:  
Noise Voltage Density (eN) of  
Input Driver for MCP33121-XX  
ADC  
(Note 1)  
RC  
ADC Input Driver  
eN  
1
--  
5
GN ------ f  
VN_ADC Input-Referred Noise  
Filter Amplifier (G = 1)  
N
B
2
SNR  
ADC  
-----------  
SNR  
Noise Voltage  
Density (e )  
N
f
B
1
eN ------  
10  
1
V
V
Input-Referred  
Noise  
20  
REF  
----------  
(Note 2)  
(dBFS)  
------------------------- VREF 10  
Hz  
GN f  
B
3 MHZ  
4 MHz  
5 MHZ  
3 MHZ  
4 MHz  
5 MHZ  
3 MHZ  
4 MHz  
5 MHZ  
8.1 nV/Hz  
7.1 nV/Hz  
6.3 nV/Hz  
9.0 nV/Hz  
7.8 nV/Hz  
7.0 nV/Hz  
10.9 nV/Hz  
9.4 nV/Hz  
8.4 nV/Hz  
2.5V  
3.3V  
5V  
80  
88.4V  
98.2 V  
118.1 V  
Using Equation 6-7, the recommended maximum  
noise voltage density limit for unity gain input driver for  
single-ended input ADC can be estimated. Table 6-1 to  
Table 6-3 show a few example results with GN = 1. The  
user may use these tables as a reference when  
selecting the ADC input driver amplifier.  
81.5  
83.5  
TABLE 6-1:  
Noise Voltage Density (eN) of  
Input Driver for MCP33131-XX  
Note 1:  
2:  
See Equation 6-4 for the ADC input-referred noise  
calculation for single-ended input.  
fB is -3dB bandwidth of the RC anti-aliasing filter.  
RC  
Filter  
ADC Input Driver  
Amplifier (G = 1)  
N
ADC  
(Note 1)  
TABLE 6-3:  
Noise Voltage Density (eN) of  
Input Driver for MCP33111-XX  
ADC  
Input-Referred  
Noise  
SNR  
(dBFS)  
Noise Voltage  
Density (e )  
N
f
B
V
REF  
(Table 2)  
RC  
ADC Input Driver  
ADC  
(Note 1)  
3 MHZ  
4 MHz  
5 MHZ  
3 MHZ  
4 MHz  
5 MHZ  
3 MHZ  
4 MHz  
5 MHZ  
7.3 nV/Hz  
6.3 nV/Hz  
5.6 nV/Hz  
7.6 nV/Hz  
6.6 nV/Hz  
5.9 nV/Hz  
7.3 nV/Hz  
6.3 nV/Hz  
5.6 nV/Hz  
Filter  
Amplifier (G = 1)  
N
2.5V  
3.3V  
5V  
81  
83  
87  
78.8V  
82.6 V  
79 V  
ADC  
Input-Referred  
Noise  
SNR  
(dBFS)  
Noise Voltage  
Density (e )  
N
f
B
V
REF  
(Note 2)  
3 MHZ  
4 MHz  
5 MHZ  
3 MHZ  
4 MHz  
5 MHZ  
3 MHZ  
4 MHz  
5 MHZ  
17.8 nV/Hz  
15.4 nV/Hz  
13.8 nV/Hz  
22.7 nV/Hz  
19.7 nV/Hz  
17.6 nV/Hz  
33.3 nV/Hz  
28.8 nV/Hz  
25.8 nV/Hz  
2.5V  
3.3V  
5V  
73.2  
73.5  
73.8  
193.3V  
246.6 V  
360.9 V  
Note 1:  
2:  
See Equation 6-4 for the ADC input-referred noise  
calculation for single-ended input.  
B is -3dB bandwidth of the RC anti-aliasing filter.  
f
Note 1:  
2:  
See Equation 6-4 for the ADC input-referred noise cal-  
culation for single-ended input.  
fB is -3dB bandwidth of the RC anti-aliasing filter.  
2018 Microchip Technology Inc.  
DS20006122A-page 33  
MCP33131/MCP33121/MCP33111-XX  
6.4.2  
DATA CONVERSION PHASE  
6.4  
Device Operation  
The start of the conversion is controlled by CNVST. On  
the rising edge of CNVST, the sampled charge is  
locked (sample switches are opened) and the ADC  
performs the conversion. Once a conversion is started,  
it will not stop until the current conversion is complete.  
When the MCP33131/MCP33121/MCP33111-XX is  
first powered-up, it self-calibrates internal systems and  
enters input acquisition mode by itself. The device  
operates in two phases: (a) Input Acquisition (Standby)  
and (b) Data Conversion. Figure 6-4 shows the ADC  
operating sequence.  
The data conversion time (tCNV  
)
is not  
user-controllable. After the conversion is complete and  
the host lowers CNVST, the output data is presented on  
SDO.  
6.4.1  
INPUT ACQUISITION PHASE  
(STANDBY)  
Any noise injection during the conversion phase may  
affect the accuracy of the conversion. To reduce  
environment noise, minimize I/O events and running  
clocks during the conversion time.  
During the input acquisition phase (tACQ), also called  
+
Standby, the two input sampling capacitors, CS and  
-
CS , are connected to the AIN+ and AIN- pins,  
respectively. The input voltage is sampled until a rising  
edge on CNVST is detected. The input voltage should  
The output data is clocked out MSB first. While the out-  
put data is being transferred, the device enters the next  
input acquisition phase.  
be fully settled within 1/2 LSB during tACQ  
During this input acquisition time (tACQ), the ADC  
consumes less than 1 A. The acquisition time (tACQ  
.
)
Note:  
Transferring output data during the  
acquisition phase can disturb the next  
input sample. It is highly recommended to  
allow at least tQUIET (10 ns, typical)  
between the last edge on the SPI  
interface and the rising edge on CNVST.  
is user-controllable. This acquisition time (tACQ) can be  
increased as long as needed for additional power  
savings.  
See Figure 1-1 for tQUIET  
.
tCYC = 1/fS  
Input Acquisition  
Input Acquisition  
(Standby)  
Data Conversion  
tCNV  
(Standby)  
Operating  
Condition  
tACQ  
tACQ  
MCP331x1-10: 300 ns (typical)  
MCP331x1-05: 800 ns (typical)  
MCP331x1-10: 700 ns (typical)  
MCP331x1-05: 1200 ns (typical)  
MCP331x1-10: 300 ns (typical)  
MCP331x1-05: 800 ns (typical)  
(a) At the falling edge of CNVST,  
ADC output is available at SDO.  
(a) ADC acquires input sample #1. (a) Conversion is initiated at the rising edge of CNVST.  
(b) No ADC output is available yet.  
(b) All circuits are turned-on.  
(b) ADC output can be clocked out  
by providing clocks.  
(c) Most analog circuits are  
turned off.  
(c) ADC output is not available yet.  
(c) ADC acquires input sample #2.  
MCP331x1-10: ~ 1.6 mA  
MCP331x1-05: ~ 1.4 mA  
(d) Most analog circuits are turned off.  
IDDAN  
I
~ 0.8 A  
Off  
(a) Device is first powered-up and  
(b) Performs a power-up self-calibration.  
Output Data  
SDO  
FIGURE 6-4:  
Device Operating Sequence.  
DS20006122A-page 34  
2018 Microchip Technology Inc.  
MCP33131/MCP33121/MCP33111-XX  
6.4.3  
SAMPLE (THROUGHPUT) RATE  
EQUATION 6-9: SPI CLOCK FREQUENCY  
REQUIREMENT  
The device completes data conversion within the  
maximum specification of the data conversion time  
(tCNV). The continuous input sample rate is the inverse  
of the sum of input acquisition time (tACQ) and data  
conversion time (tCNV). Equation 6-8 shows the  
continuous sample rate calculation using the minimum  
and maximum specifications of the input acquisition  
time (tACQ) and data conversion time (tCNV).  
tACQ = N TSCLK + tQUIET + tEN  
1
fSCLK = ---------------  
TSCLK  
N
=
-----------------------------------------------------  
tACQ tQUIET + tEN  
where N is the number of output data bits, given by  
N
=
=
=
=
=
=
16-bit for MCP33131-XX  
14-bit for MCP33121-XX  
12-bit for MCP33111-XX  
Period of SPI clock  
EQUATION 6-8:  
SAMPLE RATE  
1
T
N x T  
t
----------------------------------  
SCLK  
SCLK  
Sample Rate =  
tACQ + tCNV  
Output data window  
(a) MCP331x1-10:  
Sample Rate =  
Quiet time between the last output bit  
and beginning of the next  
conversion start.  
QUIET  
1
---------------------------------------- = 1 Msps  
290ns + 710ns  
(b) MCP331x1-05:  
Sample Rate =  
=
=
10 ns (min)  
1
------------------------------------------- = 500 kSPS  
700ns + 1300ns  
Output enable time = 10 ns (max), with  
t
EN  
DV 2.3V  
IO  
6.4.4  
SERIAL SPI CLOCK FREQUENCY  
REQUIREMENT  
Note:  
See Figure 1-1 for digital interface timing dia-  
gram.  
The ADC output is collected during the input acquisition  
time (tACQ). For continuous input sampling and data  
conversion sequence, the SPI clock frequency should  
be fast enough to clock out all output data bits during  
the input acquisition time (tACQ). For the continuous  
sampling rate (fS), the minimum SPI clock frequency  
requirement is determined by the following equation:  
where fSCLK is the minimum SPI serial clock frequency  
required to transfer all N-bits of output data during input  
acquisition time (tACQ).  
Table 6-4 and Table 6-5 show the examples of calcu-  
lated minimum SPI clock (fSCLK) requirements for vari-  
ous input acquisition times for 1 Msps and 500 kSPS  
family devices, respectively.  
TABLE 6-4:  
SPI CLOCK SPEED VS. INPUT ACQUISITION TIME (TACQ) FOR MCP331X1-10  
SPI Clock (f  
) Speed Requirement  
SCLK  
Input  
Acquisition Time:  
Data  
Conversion Time:  
(Note 1), (Note 2)  
Sample Rate:  
Conditions  
f
(Msps)  
t
(nS)  
(Note 4)  
t
(nS)  
S
ACQ  
CNV  
MCP33131-10  
MCP33121-10  
(14-bit)  
MCP33111-10  
(12-bit)  
(Note 5)  
(16-bit)  
250  
270  
69.57 MHz  
64 MHz  
60.87 MHz  
56 MHz  
52.17 MHz  
48 MHz  
1
85°C < TA 125°C  
0.98  
0.97  
1
750  
(Note 3)  
280  
61.54 MHz  
59.26 MHz  
57.15 MHz  
53.33 MHz  
42.11 MHz  
30.77 MHz  
22.86 MHz  
17.2 MHz  
12.6 MHz  
9.04 MHz  
6.15 MHz  
3.75 MHz  
1.73 MHz  
53.85 MHz  
51.85 MHz  
50 MHz  
46.15 MHz  
44.44 MHz  
42.86 MHz  
40 MHz  
290  
300  
0.99  
0.97  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
-40°C TA 85°C  
320  
46.67 MHz  
36.84 MHz  
26.92 MHz  
20 MHz  
400  
30 MHz  
540  
23.08 MHz  
17.14 MHz  
12.9 MHz  
9.45 MHz  
6.78 MHz  
4.62 MHz  
2.81 MHz  
1.3 MHz  
710  
720  
720  
15.05 MHz  
11.02 MHz  
7.91 MHz  
5.39 MHz  
3.28 MHz  
1.51 MHz  
1290  
1750  
2620  
4290  
9290  
Note 1:  
This is the minimum SPI clock speed requirement to collect all N-bits of the ADC output during the input acquisition time (tACQ), when the  
ADC is operating in continuous input sampling mode.  
2:  
3:  
See Equation 6-9 for the calculation of the SPI clock speed requirement.  
In extended temperature range, the device takes longer data conversion time (tCNV: 750 nS, max). Using a shorter input acquisition time  
is recommended (tACQ: 250 nS) for 1 Msps throughput rate.  
4:  
5:  
Input acquisition time (tACQ) is user-controllable.  
Data conversion time (tCNV) is not user-controllable.  
2018 Microchip Technology Inc.  
DS20006122A-page 35  
MCP33131/MCP33121/MCP33111-XX  
TABLE 6-5:  
SPI CLOCK SPEED VS. INPUT ACQUISITION TIME (TACQ) FOR MCP331X1-05  
SPI Clock (f  
) Speed Requirement  
SCLK  
Input  
Acquisition Time:  
Data  
Conversion Time:  
(Note 1), (Note 2)  
Sample Rate:  
Conditions  
f
(kSPS)  
t
(nS)  
(Note 3)  
t
(nS)  
S
ACQ  
CNV  
MCP33131-05  
MCP33121-05  
(14-bit)  
MCP33111-05  
(12-bit)  
(Note 4)  
(16-bit)  
700  
740  
23.53MHz  
22.22 MHz  
20.78 MHz  
17.58 MHz  
13.56 MHz  
10.39 MHz  
7.96 MHz  
5.97 MHz  
4.35 MHz  
2.99 MHz  
1.84 MHz  
20.59 MHz  
19.44 MHz  
18.18 MHz  
15.39 MHz  
11.86 MHz  
9.09 MHz  
6.97 MHz  
5.22MHz  
17.65 MHz  
16.67 MHz  
15.58 MHz  
13.19 MHz  
10.17 MHz  
7.79 MHz  
5.97 MHz  
4.48 MHz  
3.26 MHz  
2.25 MHz  
1.38 MHz  
500  
490  
480  
450  
400  
350  
300  
250  
200  
150  
100  
-40°C TA 125°C  
790  
930  
1300  
1200  
1560  
2030  
2700  
3700  
5370  
8700  
3.8 MHz  
2.62 MHz  
1.61 MHz  
Note 1:  
This is the minimum SPI clock speed requirement to collect all N-bits of the ADC output during the input acquisition time (tACQ), when the  
ADC is operating in continuous input sampling mode.  
2:  
3:  
4:  
See Equation 6-9 for the calculation of the SPI clock speed requirement.  
Input acquisition time (tACQ) is user-controllable.  
Data conversion time (tCNV) is not user-controllable.  
6.5  
Transfer Function  
5.1  
77.8 V  
311.3 V  
1.2451 mV  
Figure 6-5 shows the ideal transfer function and  
Table 6-7 shows the digital output codes for the  
MCP33131/MCP33121/MCP33111-XX.  
The pseudo-differential analog input is:  
VIN = (VIN+) - (VIN-)  
where VIN+ is the analog input voltage at AIN+ pin with  
respect to the ground reference (GND), and Vin- is the  
voltage at AIN- pin, which is 0V when tied to the analog  
input ground reference (GND).  
Digital Output Code (Unipolar Straight Binary)  
111 ...111  
111 ...110  
The LSB size is given by Equation 6-10. and an  
example of LSB size vs. reference voltage is  
summarized in Table 6-6.  
EQUATION 6-10: LSB SIZE - EXAMPLE  
100 ...000  
VREF  
LSB = ------------  
2N  
where N is the resolution of the ADC in bits.  
000 ...001  
TABLE 6-6:  
LSB SIZE VS. REFERENCE  
000 ...000  
0V  
VREF  
LSB Size  
Reference  
Voltage  
2
0V+ 1 LSB  
VREF - 1.5 LSB  
VREF - 1 LSB  
MCP33131-XX  
(16-bit)  
MCP33121-XX  
(14-bit)  
MCP33111-XX  
(12-bit)  
0V + 0.5 LSB  
(V  
)
REF  
2.5V  
2.7V  
3V  
38.2V  
41.2 V  
45.8 V  
50.4 V  
53.4 V  
61.0 V  
68.7 V  
76.3 V  
152.6 V  
164.8 V  
183.1 V  
201.4 V  
213.6 V  
244.1 V  
274.7 V  
305.2 V  
0.6104 mV  
0.6592 mV  
0.7324 mV  
0.8057 mV  
0.8545 mV  
0.9766 mV  
1.0986 mV  
1.2207 mV  
Analog Input Voltage  
FIGURE 6-5:  
Ideal Transfer Function.  
3.3V  
3.5V  
4V  
4.5V  
5V  
DS20006122A-page 36  
2018 Microchip Technology Inc.  
MCP33131/MCP33121/MCP33111-XX  
6.6  
Digital Output Code  
The digital output code is proportional to the input  
voltage. The output data is in unipolar straight binary  
format. The following is an example of the output code:  
(a) for a zero or negative input:  
Analog Input: VIN 0 (V)  
Output Code: 0000...0000  
(b) for a mid-scale input:  
Analog Input: VIN = +VREF /2 (V)  
Output Code: 1000...0000  
(c) for a positive full-scale input:  
Analog Input: VIN = +VREF (V)  
Output Code: 1111...1111  
The code will be locked at 1111...11 for all voltages  
greater than (VREF - 1 LSB) and 0000...00 for  
voltages less than 0V. Table 6-7 shows an example of  
output codes of various input levels.  
TABLE 6-7:  
DIGITAL OUTPUT CODE  
Digital Output Codes  
Input Voltage (V)  
MCP33131-XX  
(16-bit)  
MCP33121-XX  
(14-bit)  
MCP33111-XX  
(12-bit)  
VREF  
1111-1111-1111-1111  
1111-1111-1111-1111  
11-1111-1111-1111  
11-1111-1111-1111  
1111-1111-1111  
1111-1111-1111  
VREF - 1 LSB  
.
.
.
.
.
.
.
.
VREF/2  
1000-0000-0000-0000  
10-0000-0000-0000  
1000-0000-0000  
.
.
.
.
.
.
.
.
2 LSB  
1 LSB  
0V  
0000-0000-0000-0010  
0000-0000-0000-0001  
0000-0000-0000-0000  
00-0000-0000-0010  
00-0000-0000-0001  
00-0000-0000-0000  
0000-0000-0010  
0000-0000-0001  
0000-0000-0000  
2018 Microchip Technology Inc.  
DS20006122A-page 37  
MCP33131/MCP33121/MCP33111-XX  
SDO returns to high-Z state after the last data bit is  
clocked out or when CNVST goes high, whichever  
occurs first.  
7.0  
DIGITAL SERIAL INTERFACE  
The device has  
a SPI-compatible serial digital  
interface using four digital pins: CNVST, SDI, SDO and  
SCLK.  
Figure 7-1 shows the connection diagram with the host  
device and Figure 7-2 shows the SPI-compatible serial  
interface timing diagram.  
CS  
DV  
IO  
DV  
IO  
CNVST  
SDI  
The SDI pin can be tied to the digital I/O interface  
supply voltage (DVIO) or just maintain logic “High” level  
by the host. The CNVST pin is used for both chip select  
(CS) and conversion-start control.  
SDO  
SDI  
10 k  
(Note 1)  
SCLK  
A rising edge on CNVST initiates the conversion  
process. Once the conversion is initiated, the device  
will complete the conversion regardless of the state of  
CNVST. This means the CNVST pin can be used for  
other purposes during tCNV.  
SCLK  
(b) Host Device (Master)  
(a) MCP33131/21/11-XX  
Note 1: Adding this pull-up is needed when monitoring  
status of Recalibrate.  
When the conversion is complete, the output is  
available at SDO by lowering CNVST. Data is sent  
MSB-first and changes on the falling edge of SCLK.  
FIGURE 7-1:  
Digital Interface Connection  
Output data can be sampled on either edge of SCLK.  
However, a digital host capturing data on the falling  
edge of SCLK can achieve a faster read out rate.  
Diagram.  
t
= 1/f  
CYC  
S
SDI = DV  
IO  
(Note 1)  
tCNVH  
(a) Exit input acquisition mode and  
(b) Enter new conversion mode  
tSU_SDIH_CNV  
CNVST  
tSCLK  
(Note 2)  
4
14  
1
16  
3
15  
2
SCLK  
SDO  
tDO  
tQUIET  
tDIS  
tSCLK_L  
(Note 5)  
tSCLK_H  
Hi-Z  
D15  
(MSB)  
Hi-Z  
D12  
D2  
D0  
D1  
D14  
D13  
tCNV (MAX)  
tEN  
(Note 3)  
tEN  
(Note 4)  
ADC State  
Input Acquisition  
Conversion  
Input Acquisition  
(tACQ  
)
(tCNV  
)
(tACQ  
)
Note 1: SDI must maintain “High” during the entire t  
.
CYC  
2: Any SCLK toggling events (dummy clocks) before CNVST is changed to “Low” are ignored.  
3: tEN when CNVST is lowered after tCNV (Max).  
4: tEN when CNVST is lowered before tCNV (Max).  
5: Recommended data detection: Detect SDO on the falling edge of SCLK.  
FIGURE 7-2:  
SPI Compatible Serial Interface Timing Diagram (16-bit device).  
DS20006122A-page 38  
2018 Microchip Technology Inc.  
MCP33131/MCP33121/MCP33111-XX  
A self-calibration is initiated by sending the recalibrate  
7.1  
Recalibrate Command  
command. The host device sends a recalibrate  
command by transmitting 1024 SCLK pulses (including  
the clocks for data bits) while the device is in the  
acquisition phase (Standby).  
The user may use the recalibrate command in the  
following cases:  
• When the reference voltage was not fully settled  
during the first-power sequence.  
The device drives SDO low during the recalibration  
procedure, and returns to high-Z once completed. The  
status of the recalibration procedure can be monitored  
by placing a pull-up on SDO, so that SDO goes high  
when the recalibration is complete.  
• During operation, to ensure optimum performance  
across varying environment conditions, such as  
reference voltage and temperature.  
Figure 7-3 shows the recalibrate command timing  
diagram. The calibration takes approximately 500 ms  
(tCAL).  
(Note 1)  
SDI = DV  
IO  
Start recalibration  
Finish recalibration  
Complete data reading  
Device Recalibration  
CNVST  
1024 clocks  
(SPI Recalibrate command)  
TM  
1024  
1
2
3
15 16  
tCAL  
SCLK  
SDO  
(Note 2)  
“High” with Pull-up  
Hi-Z  
“High” with Pull-up  
Hi-Z  
“Low”  
ADC Output Data Stream  
Hi-Z  
(Note 3)  
ADC State  
(Note 4)  
tCNV  
Note  
1: SDI must remain “High” during the entire recalibration cycle.  
2: The 1024 clocks include the clocks for data bits.  
3: SDO outputs “Low” during calibration, and Hi-Z when exiting the calibration.  
4: After finishing the recalibration procedure, the device is ready for a new input sampling immediately.  
FIGURE 7-3:  
Note:  
Recalibrate Command Timing Diagram.  
When the device performs a self-calibration, it is important to note that both AVDD and the reference  
voltage (VREF) must be stabilized for a correct calibration. This is also true when the device is first  
powered-up, the reference voltage (VREF) must be stabilized before self-calibration begins. This means  
the VREF must be provided prior to supplying AVDD or within about 64 ms after supplying AVDD  
.
2018 Microchip Technology Inc.  
DS20006122A-page 39  
MCP33131/MCP33121/MCP33111-XX  
NOTES:  
DS20006122A-page 40  
2018 Microchip Technology Inc.  
MCP33131/MCP33121/MCP33111-XX  
TERMINOLOGY  
EQUATION 8-2:  
8.0  
P
S
SINAD = 10log ---------------------  
Analog Input Bandwidth (Full-Power  
Bandwidth)  
P
+ P  
D
N
SNR  
-----------  
10  
THD  
------------  
10  
The analog input frequency at which the spectral power  
of the fundamental frequency (as determined by FFT  
analysis) is reduced by 3 dB.  
= 10log 10  
10  
SINAD is either given in units of dBc (dB to carrier),  
when the absolute power of the fundamental is used as  
the reference, or dBFS (dB to full-scale), when the  
power of the fundamental is extrapolated to the  
converter full-scale range.  
Aperture Delay or Sampling Delay  
This is the time delay between the rising edge of the  
CNVST input and when the input signal is held for a  
conversion.  
Effective Number of Bits (ENOB)  
Differential Nonlinearity  
(DNL, No Missing Codes)  
The effective number of bits for a sine wave input at a  
given input frequency can be calculated directly from its  
measured SINAD using the following formula:  
An ideal ADC exhibits code transitions that are exactly  
1 LSB apart. DNL is the deviation from this ideal value.  
No missing codes to 16-bit resolution indicates that all  
65,536 codes (16,384 codes for 14-bit, 4096 codes for  
12-bit) must be present over all the operating  
conditions.  
EQUATION 8-3:  
SINAD 1.76  
ENOB = ----------------------------------  
6.02  
Gain Error  
Integral Nonlinearity (INL)  
Gain error is the deviation of the ADC’s actual input  
full-scale range from its ideal value. The gain error is  
given as a percentage of the ideal input full-scale  
range. Gain error is usually expressed in LSB or as a  
percentage of full-scale range (%FSR).  
INL is the maximum deviation of each individual code  
from an ideal straight line drawn from negative full  
scale through positive full scale.  
Signal-to-Noise Ratio (SNR)  
SNR is the ratio of the power of the fundamental (PS) to  
the noise floor power (PN), below the Nyquist frequency  
and excluding the power at DC and the first nine  
harmonics.  
Offset Error  
Offset error is the difference between the ideal voltage  
(0V + 0.5 LSB) that produces the first code transition  
(“000... 000” to “000... 001”) and the actual voltage pro-  
ducing that code.  
EQUATION 8-1:  
P
S
Temperature Drift  
SNR = 10log -------  
P
N
The temperature drift for offset error and gain error  
specifies the maximum change from the initial (+25°C)  
value to the value at across the TMIN to TMAX range.  
The value is normalized by the reference voltage and  
expressed in V/oC or ppm/oC.  
SNR is either given in units of dBc (dB to carrier), when  
the absolute power of the fundamental is used as the  
reference, or dBFS (dB to full-scale), when the power  
of the fundamental is extrapolated to the converter  
full-scale range.  
Maximum Conversion Rate  
Signal-to-Noise and Distortion (SINAD)  
The maximum clock rate at which parametric testing is  
performed.  
SINAD is the ratio of the power of the fundamental (PS)  
to the power of all the other spectral components  
including noise (PN) and distortion (PD) below the  
Nyquist frequency, but excluding DC:  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the ratio of the power of the fundamental to the  
highest other spectral component (either spur or  
harmonic). SFDR is typically given in units of dBc (dB  
to carrier) or dBFS.  
2018 Microchip Technology Inc.  
DS20006122A-page 41  
MCP33131/MCP33121/MCP33111-XX  
Total Harmonic Distortion (THD)  
THD is the ratio of the power of the fundamental (PS) to  
the summed power of the first 13 harmonics (PD).  
EQUATION 8-4:  
P
S
THD = 10log -------  
P
D
THD is typically given in units of dBc (dB to carrier).  
THD is also shown by:  
EQUATION 8-5:  
2
2
2
3
2
4
2
n
V
+ V + V + + V  
THD = 20log-----------------------------------------------------------------  
2
V
1
Where:  
V1 = RMS amplitude of the  
fundamental frequency  
V1 through Vn = Amplitudes of the second  
through nth harmonics  
Common-Mode Rejection Ratio (CMRR)  
Common-mode rejection is the ability of a device to  
reject a signal that is common to both sides of a  
differential or pseudo-differential input pair. The  
common-mode signal can be an AC or DC signal or a  
combination of the two. CMRR is measured using the  
ratio of the differential signal gain to the common-mode  
signal gain and expressed in dB with the following  
equation:  
EQUATION 8-6:  
A
DIFF  
CMRR = 20log ------------------  
A
CM  
Where:  
ADIFF = Output Code/Differential Voltage  
ADIFF = Output Code/Common-Mode Voltage  
DS20006122A-page 42  
2018 Microchip Technology Inc.  
MCP33131/MCP33121/MCP33111-XX  
9.0  
9.1  
PACKAGING INFORMATION  
Package Marking Information  
10-Lead MSOP (3x3 mm)  
Example  
Corresponding Part Number:  
31-10 = MCP33131-10  
31-05 = MCP33131-05  
21-10 = MCP33121-10  
21-05 = MCP33121-05  
11-10 = MCP33111-10  
11-05 = MCP33111-05  
31-10  
839256  
10-Lead TDFN (3x3x0.9 mm)  
Example  
Corresponding Part Number:  
311 = MCP33131-10  
310 = MCP33131-05  
211 = MCP33121-10  
210 = MCP33121-05  
111 = MCP33111-10  
110 = MCP33111-05  
311  
1839  
256  
XXXX  
YYWW  
NNN  
PIN 1  
PIN 1  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC® designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2018 Microchip Technology Inc.  
DS20006122A-page 43  
MCP33131/MCP33121/MCP33111-XX  
10-Lead Plastic Micro Small Outline Package (MS) [MSOP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
0.20 H  
D
D
2
A
N
E
2
E1  
2
E1  
E
0.20 H  
0.25 C  
1
2
e
B
8X b  
0.13  
C A B  
TOP VIEW  
H
C
A2  
A
SEATING  
PLANE  
8X  
0.10 C  
A1  
SEE DETAIL A  
SIDE VIEW  
END VIEW  
Microchip Technology Drawing C04-021D Sheet 1 of 2  
DS20006122A-page 44  
2018 Microchip Technology Inc.  
MCP33131/MCP33121/MCP33111-XX  
10-Lead Plastic Micro Small Outline Package (MS) [MSOP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
4X Ĭ1  
c
C
SEATING  
PLANE  
Ĭ
L
(L1)  
4X Ĭ1  
DETAIL A  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
10  
0.50 BSC  
Overall Height  
Molded Package Thickness  
Standoff  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
A
-
-
1.10  
0.95  
0.15  
A2  
A1  
E
E1  
D
0.75  
0.00  
0.85  
-
4.90 BSC  
3.00 BSC  
3.00 BSC  
0.60  
L
0.40  
0.80  
Footprint  
L1  
0.95 REF  
Mold Draft Angle  
Foot Angle  
Lead Thickness  
Lead Width  
0°  
5°  
0.08  
0.15  
-
-
-
-
8°  
15°  
0.23  
0.33  
Ĭ
Ĭ1  
c
b
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or  
protrusions shall not exceed 0.15mm per side.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-021D Sheet 2 of 2  
2018 Microchip Technology Inc.  
DS20006122A-page 45  
MCP33131/MCP33121/MCP33111-XX  
10-Lead Plastic Micro Small Outline Package (MS) [MSOP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
G
SILK SCREEN  
Z
C
G1  
Y1  
X1  
E
RECOMMENDED LAND PATTERN  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
0.50 BSC  
4.40  
MAX  
Contact Pitch  
E
C
Contact Pad Spacing  
Overall Width  
Contact Pad Width (X10)  
Contact Pad Length (X10)  
Distance Between Pads (X5)  
Distance Between Pads (X8)  
Z
X1  
Y1  
G1  
G
5.80  
0.30  
1.40  
3.00  
0.20  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing No. C04-2021B  
DS20006122A-page 46  
2018 Microchip Technology Inc.  
MCP33131/MCP33121/MCP33111-XX  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2018 Microchip Technology Inc.  
DS20006122A-page 47  
MCP33131/MCP33121/MCP33111-XX  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20006122A-page 48  
2018 Microchip Technology Inc.  
MCP33131/MCP33121/MCP33111-XX  
APPENDIX A: REVISION HISTORY  
Revision A (November 2018)  
• Original release of this document.  
2018 Microchip Technology Inc.  
DS20006122A-page 49  
MCP33131/MCP33121/MCP33111-XX  
NOTES:  
2018 Microchip Technology Inc.  
DS20006122A-page 50  
MCP33131/MCP33121/MCP33111-XX  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
X
X  
/XX  
XX  
PART NO.  
Device  
X
Examples:  
a)  
MCP33131-10-I/MS:  
1 Msps, 10LD MSOP,  
16-bit device  
Input Type  
Tape  
and  
Reel  
Temperature Package  
Range  
Sample Rate  
b)  
MCP33131-10T-I/MS: 1 Msps, 10LD MSOP,  
Tape and Reel,  
16-bit device  
Device:  
MCP33131-10: 1 Msps 16-Bit Single-Ended Input SAR ADC  
MCP33121-10: 1 Msps 14-Bit Single-Ended Input SAR ADC  
MCP33111-10: 1 Msps 12-Bit Single-Ended Input SAR ADC  
c)  
d)  
MCP33131-10-I/MN:  
1 Msps, 10LD TDFN,  
16-bit device  
MCP33131-10T-I/MN: 1 Msps, 10LD TDFN,  
Tape and Reel,  
16-bit device  
MCP33131-05:  
MCP33121-05:  
MCP33111-05:  
500 kSPS 16-Bit Single-Ended Input SAR ADC  
500 kSPS 14-Bit Single-Ended Input SAR ADC  
500 kSPS 12-Bit Single-Ended Input SAR ADC  
e)  
f)  
MCP33121-10-I/MS:  
1 Msps, 10LD MSOP,  
14-bit device  
MCP33121-10T-I/MS: 1 Msps, 10LD MSOP,  
Tape and Reel,  
14-bit device  
Input Type  
Blank  
= Single-Ended Input  
g)  
h)  
MCP33121-10-I/MN:  
1 Msps, 10LD TDFN,  
14-bit device  
Sample Rate: 10  
= 1 Msps  
= 500 kSPS  
MCP33121-10T-I/MN: 1 Msps, 10LD TDFN,  
Tape and Reel,  
05  
14-bit device  
Tape and  
Reel Option:  
Blank  
=
=
Standard packaging (tube or tray)  
Tape and Reel  
i)  
j)  
MCP33111-10-I/MS:  
1 Msps, 10LD MSOP,  
12-bit device  
T
MCP33111-10T-I/MS: 1 Msps, 10LD MSOP,  
Tape and Reel,  
Temperature  
Range:  
E
I
= -40C to +125C (Extended)  
= -40C to +85C (Industrial)  
12-bit device  
k)  
l)  
MCP33111-10-I/MN:  
1 Msps, 10LD TDFN,  
12-bit device  
Package:  
MS  
MN  
=
=
Plastic Micro Small Outline Package (MSOP), 10-Lead  
MCP33111-10T-I/MN: 1 Msps, 10LD TDFN,  
Tape and Reel,  
Thin Plastic Dual Flat No Lead Package (TDFN),  
10-Lead  
12-bit device  
m) MCP33131-05-I/MS:  
500 kSPS, 10LD MSOP,  
16-bit device  
n)  
MCP33131-05T-I/MS: 500 kSPS, 10LD MSOP,  
Tape and Reel,  
16-bit device  
o)  
p)  
MCP33131-05-I/MN:  
500 kSPS, 10LD TDFN,  
16-bit device  
Note 1:  
Tape and Reel identifier appears only in the catalog part number  
description. This identifier is used for ordering purposes and is not  
printed on the device package. Check with your Microchip Sales Office  
for package availability with the Tape and Reel option.  
MCP33131-05T-I/MN: 500 kSPS, 10LD TDFN,  
Tape and Reel,  
16-bit device  
q)  
r)  
MCP33121-05-I/MS:  
500 kSPS, 10LD MSOP,  
14-bit device  
MCP33121-05T-I/MS: 500 kSPS, 10LD MSOP,  
Tape and Reel,  
14-bit device  
s)  
t)  
MCP33121-05-I/MN:  
500 kSPS, 10LD TDFN,  
14-bit device  
MCP33121-05T-I/MN: 500 kSPS, 10LD TDFN,  
Tape and Reel,  
14-bit device  
u)  
v)  
MCP33111-05-I/MS:  
500 kSPS, 10LD MSOP,  
12-bit device  
MCP33111-05T-I/MS: 500 kSPS, 10LD MSOP,  
Tape and Reel,  
12-bit device  
w)  
x)  
MCP33111-05-I/MN:  
500 kSPS, 10LD TDFN,  
12-bit device  
MCP33111-05T-I/MN: 500 kSPS, 10LD TDFN,  
Tape and Reel,  
12-bit device  
DS20006122A-page 51  
2018 Microchip Technology Inc.  
MCP33131/MCP33121/MCP33111-XX  
NOTES:  
2018 Microchip Technology Inc.  
DS20006122A-page 52  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate, AVR,  
AVR logo, AVR Freaks, BeaconThings, BitCloud, chipKIT, chipKIT  
logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR,  
Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK  
MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST  
logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32  
logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC,  
SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are  
registered trademarks of Microchip Technology Incorporated in  
the U.S.A. and other countries.  
ClockWorks, The Embedded Control Solutions Company,  
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,  
mTouch, Precision Edge, and Quiet-Wire are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard,  
CryptoAuthentication, CryptoCompanion, CryptoController,  
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM,  
ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-  
Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi,  
MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB,  
MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation,  
PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix,  
RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial  
Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II,  
Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan,  
WiperLock, Wireless DNA, and ZENA are trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
Silicon Storage Technology is a registered trademark of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip Technology  
Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2018, Microchip Technology Incorporated, All Rights Reserved.  
ISBN: 978-1-5224-3911-0  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
== ISO/TS 16949 ==  
2018 Microchip Technology Inc.  
DS20006122A-page 53  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Australia - Sydney  
Tel: 61-2-9868-6733  
India - Bangalore  
Tel: 91-80-3090-4444  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
China - Beijing  
Tel: 86-10-8569-7000  
India - New Delhi  
Tel: 91-11-4160-8631  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8665-5511  
India - Pune  
Tel: 91-20-4121-0141  
Finland - Espoo  
Tel: 358-9-4520-820  
China - Chongqing  
Tel: 86-23-8980-9588  
Japan - Osaka  
Tel: 81-6-6152-7160  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
China - Dongguan  
Tel: 86-769-8702-9880  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Guangzhou  
Tel: 86-20-8755-8029  
Korea - Daegu  
Tel: 82-53-744-4301  
Germany - Garching  
Tel: 49-8931-9700  
China - Hangzhou  
Tel: 86-571-8792-8115  
Korea - Seoul  
Tel: 82-2-554-7200  
Germany - Haan  
Tel: 49-2129-3766400  
Austin, TX  
Tel: 512-257-3370  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Malaysia - Kuala Lumpur  
Tel: 60-3-7651-7906  
Germany - Heilbronn  
Tel: 49-7131-67-3636  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
China - Nanjing  
Tel: 86-25-8473-2460  
Malaysia - Penang  
Tel: 60-4-227-8870  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Qingdao  
Philippines - Manila  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-532-8502-7355  
Tel: 63-2-634-9065  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shanghai  
Tel: 86-21-3326-8000  
Singapore  
Tel: 65-6334-8870  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Shenyang  
Tel: 86-24-2334-2829  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Shenzhen  
Tel: 86-755-8864-2200  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Suzhou  
Tel: 86-186-6233-1526  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Wuhan  
Tel: 86-27-5980-5300  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Italy - Padova  
Tel: 39-049-7625286  
Houston, TX  
Tel: 281-894-5983  
China - Xian  
Tel: 86-29-8833-7252  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
China - Xiamen  
Tel: 86-592-2388138  
Norway - Trondheim  
Tel: 47-7289-7561  
China - Zhuhai  
Tel: 86-756-3210040  
Poland - Warsaw  
Tel: 48-22-3325737  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
DS20006122A-page 54  
2018 Microchip Technology Inc.  
10/25/17  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY