MCP33141D-05T-E/MN [MICROCHIP]

1 Msps/500 kSPS, 14/12-Bit Differential Input SAR ADC;
MCP33141D-05T-E/MN
型号: MCP33141D-05T-E/MN
厂家: MICROCHIP    MICROCHIP
描述:

1 Msps/500 kSPS, 14/12-Bit Differential Input SAR ADC

光电二极管 转换器
文件: 总66页 (文件大小:3209K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP33151D/41D-XX  
1 Msps/500 kSPS, 14/12-Bit Differential Input SAR ADC  
Features  
Typical Applications  
• Sample Rate (Throughput):  
- MCP33151D/41D-10: 1 Msps  
- MCP33151D/41D-05: 500 kSPS  
• High-Precision Data Acquisition  
• Medical Instruments  
Test Equipment  
• 14/12-Bit Resolution with No Missing Codes  
• No Latency Output  
• Electric Vehicle Battery Management Systems  
• Motor Control Applications  
• Wide Operating Voltage Range:  
- Analog supply voltage (AVDD): 1.8V  
- Digital input/output interface voltage (DVIO):  
1.7-5.5V  
• Switch-Mode Power Supply Applications  
• Battery-Powered Equipment  
System Design Supports  
The MCP331x1D-XX Evaluation Kit demonstrates the  
performance of the MCP331x1D-XX SAR ADC family  
devices. The evaluation kit includes: (a) MCP331x1D  
Evaluation Board, (b) PIC32MZ EF Curiosity Board for  
data collection, and (c) SAR ADC Utility PC GUI.  
- Externalreferencevoltage(VREF):AVDD - 5.1V  
• Differential Input Operation  
- Input full-scale range: -VREF to +VREF  
• Ultra Low Current Consumption (typical):  
- During input acquisition (standby): ~1.5 µA  
- During conversion:  
Contact Microchip Technology Inc. for the evaluation  
tools and the PIC32 firmware example codes.  
MCP33151D/41D-10: ~0.66 mA  
MCP33151D/41D-05: ~0.33 mA  
Package Types  
• SPI-Compatible Serial Communication:  
- SCLK clock rate: up to 100 MHz  
- 3-wire with optional BUSY indicator  
MSOP-10  
• ADC Self-Calibration for Offset, Gain, and  
Linearity Errors:  
- During power-up (automatic)  
- On-Demand via user’s command during  
normal operation  
• Built In Data Accumulator  
- Integrate up to 1024 consecutive converted  
samples  
TDFN-10 *  
- Increase ENOB up to 18.5 bits by  
automatically averaging conversion results  
• AEC-Q100 Qualified:  
- Temperature grade 1: -40°C to +125°C  
• Package Options: MSOP-10 and TDFN-10  
* Includes Exposed Thermal Pad (see Table 4-1).  
MCP331x1D-XX Device Offering (Note 1)  
Performance (Typical)  
Input Range  
Sample  
Rate  
Part Number Resolution  
Input Type  
SNR  
SFDR THD  
INL  
DNL  
(Differential)  
(dBFS) (dB)  
(dB) (LSB) (LSB)  
MCP33151D-10  
MCP33141D-10  
MCP33151D-05  
MCP33141D-05  
14-bit  
12-bit  
14-bit  
12-bit  
1 Msps  
1 Msps  
Differential  
Differential  
±5.1V  
±5.1V  
±5.1V  
±5.1V  
83.8  
73.8  
83.7  
73.8  
107.3 -104.7 ±0.27 ±0.11  
100.0 -101.5 ±0.07 ±0.05  
103.8 -100.9 ±0.27 ±0.11  
500 kSPS Differential  
500 kSPS Differential  
99.8  
-98.9 ±0.07 ±0.05  
Note 1: SNR, SFDR, and THD are measured with f = 10 kHz, V = -1 dBFS, V = 5.1V.  
REF  
IN  
IN  
2019 Microchip Technology Inc.  
DS20006219A-page 1  
MCP33151D/41D-XX  
Application Diagram  
AVDD to 5.1V  
1.8V  
AVDD  
1.8V to 5.5V  
DVIO  
VREF  
15Ω  
AIN  
MCP331x1D-XX  
AIN  
+
0V to VREF  
2.2nF  
SDI  
CNVST  
SCLK  
Host Device  
15Ω  
-
(PIC32MZ)  
SDO  
0V to VREF  
2.2nF  
GND  
During Standby, most of the internal analog circuitry is  
shutdown in order to reduce current consumption.  
Typically, the device consumes approximately 1.5 µA  
during Standby. A new conversion is started on the  
rising edge of CNVST. When the conversion is  
complete and the host lowers CNVST, the output data  
is presented on SDO, and the device enters Standby to  
begin acquiring the next input sample. The user can  
clock out the ADC output data using the  
SPI-compatible serial clock during Standby.  
Description  
The MCP33151D/41D-10 and MCP33151D/41D-05  
are fully-differential, 14-bit and 12-bit, single-channel,  
1 Msps and 500 kSPS ADC family devices,  
respectively, featuring low power consumption and  
high performance, using a successive approximation  
register (SAR) architecture.  
The device operates with an external voltage reference  
(VREF) from AVDD to 5.1V, which supports a wide range  
of input full-scale range from -VREF to +VREF. The  
reference voltage setting is independent of the analog  
supply voltage (AVDD). The conversion output is  
available through an easy-to-use simple SPI-  
compatible 3-wire interface.  
The ADC system clock is generated by the internal  
on-chip clock, therefore the conversion is performed  
independent of the SPI serial clock (SCLK).  
This device can be used for various high-speed and  
high-accuracy analog-to-digital data conversion  
applications, where design simplicity, low power, and  
no output latency are needed.  
The device requires a 1.8V analog supply voltage  
(AVDD) and a 1.7V to 5.5V digital I/O interface supply  
voltage (DVIO). The wide digital I/O interface supply  
(DVIO) range (1.7-5.5V) allows the device to interface  
with most host devices (Master) available in the current  
industry such as the PIC32 microcontrollers, without  
using external voltage level shifters.  
The device is AEC-Q100 qualified for automotive  
applications and operates over the extended  
temperature range of -40°C to +125°C. The available  
package options are Pb-free small 3 mm × 3 mm  
TDFN-10 and MSOP-10.  
Once all supply voltages are connected, the device will  
power-up and perform an automatic calibration to  
minimize offset, gain and linearity errors. The  
automatic calibration takes place approximately 40 ms  
following power-up, and it is necessary to ensure that  
all power supplies are fully settled and stable after this  
time. See Section 4.3 “Power-Up Sequence and  
Auto-Calibration” for more details. The device  
performance stays stable across the specified  
temperature range. However, when extreme changes  
in the operating environment, such as in the reference  
voltage, are made with respect to the initial conditions  
(e.g. the reference voltage did not fully settle during the  
initial power-up sequence), the user may send a  
recalibrate command anytime to initiate another  
self-calibration and restore optimum performance.  
When the initial power-up sequence is completed, the  
device enters a low-current input acquisition mode  
(also referred to as ‘Standby mode’), where sampling  
capacitors are connected to the input pins.  
DS20006219A-page 2  
2019 Microchip Technology Inc.  
MCP33151D/41D-XX  
1.0  
1.1  
KEY ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
External Analog Supply Voltage (AVDD) ...................................................................................................... -0.3V to 2.0V  
External Digital Supply Voltage (DVIO)......................................................................................................... -0.3V to 5.8V  
External Reference Voltage (VREF).............................................................................................................. -0.3V to 5.8V  
Analog Inputs w.r.t GND ................................................................................................................. -0.3V to VREF + 0.3V  
Current at Input Pins ..............................................................................................................................................±2 mA  
Current at Output and Supply Pins ....................................................................................................................±250 mA  
Storage Temperature ..............................................................................................................................-65°C to +150°C  
Maximum Junction Temperature (TJ) ................................................................................................................... +150°C  
ESD Protection on All Pins ......................................................................................................4 kV HBM, 2 kV CDM  
† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
1.2  
Electrical Specifications  
ELECTRICAL CHARACTERISTICS  
TABLE 1-1:  
Electrical Specifications: Unless otherwise specified, all parameters apply for T = -40°C to +125°C, AV = 1.8V, DV = 3.3V, V  
= 5V,  
A
DD  
IO  
REF  
GND = 0V, Differential Analog Input (V ) = -1 dBFS sine wave, f = 10 kHz, C  
= 20 pF, +25°C is applied  
IN  
IN  
LOAD_SDO  
for typical values.  
MCP331x1D-10: Sample Rate (f ) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
S
MCP331x1D-05: Sample Rate (f ) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
S
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Power Supply Requirements  
Analog Supply Voltage Range  
AVDD  
DVIO  
1.7  
1.7  
1.8  
1.9  
5.5  
V
Note 3  
Note 3  
Digital Input/Output Interface  
Voltage Range  
Analog Supply Current at AVDD  
Pin:  
During Conversion  
IDDAN  
660  
330  
1.5  
900  
600  
µA fS = 1 Msps (MCP331x1D-10)  
µA fS = 500 kSPS (MCP331x1D-05)  
µA During Input Acquisition (tACQ  
During Standby  
IDDAN_STBY  
)
Average Digital Supply Current  
at DVIO Pin:  
400  
343  
200  
171  
120  
µA fS = 1 Msps (MCP33151D-10)  
µA fS = 1 Msps (MCP33141D-10)  
µA fS = 500 kSPS (MCP33151D-05)  
µA fS = 500 kSPS (MCP33141D-05)  
During Data Transfer  
IIO_DATA  
During Standby  
IIO_STBY  
nA During Input Acquisition (tACQ  
)
External Reference Voltage Input  
Reference Voltage (Note 2,  
Note 3)  
VREF  
AVDD  
5.1  
V
Note 1: This parameter is ensured by design and not 100% tested.  
2: This parameter is ensured by characterization and not 100% tested.  
3: Decoupling capacitor is recommended on the following pins:  
(a) AVDD pin: 1 µF ceramic capacitor, (b) DVIO pin: 0.1 µF ceramic capacitor,  
(c) VREF pin: 10 µF tantalum capacitor.  
4: Differential Input Full-Scale Range (FSR) = 2 × VREF  
.
5: PSRR (dB) = -20 log(DVOUT/AVDD), where DVOUT = change in conversion result.  
6: ENOB = (SINAD - 1.76)/6.02.  
2019 Microchip Technology Inc.  
DS20006219A-page 3  
MCP33151D/41D-XX  
TABLE 1-1:  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all parameters apply for T = -40°C to +125°C, AV = 1.8V, DV = 3.3V, V  
= 5V,  
A
DD  
IO  
REF  
GND = 0V, Differential Analog Input (V ) = -1 dBFS sine wave, f = 10 kHz, C  
= 20 pF, +25°C is applied  
IN  
IN  
LOAD_SDO  
for typical values.  
MCP331x1D-10: Sample Rate (f ) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
S
MCP331x1D-05: Sample Rate (f ) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
S
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Reference Load Current at  
VREF Pin:  
During Conversion  
IREF  
220  
110  
40  
290  
180  
µA fS = 1 Msps (MCP331x1D-10)  
µA fS = 500 kSPS (MCP331x1D-05)  
nA During Input Acquisition (tACQ  
During Standby  
IREF_STBY  
)
Total Power Consumption (Including AVDD, DVIO, VREF pins)  
MCP331x1D-10  
at 1 Msps  
PDISS_TOTAL  
3.6  
1.8  
0.4  
3.3  
mW Averaged power for tACQ + tCNV  
mW  
mW  
at 500 kSPS  
at 100 kSPS  
During Standby  
PDISS_STBY  
PDISS_TOTAL  
PDISS_STBY  
µW Input acquisition (tACQ)  
MCP331x1D-05  
at 500 kSPS  
at 100 kSPS  
During Standby  
1.8  
0.4  
3.3  
mW Averaged power for tACQ + tCNV  
mW  
µW Input acquisition (tACQ  
)
Analog Inputs  
Input Voltage Range  
(Note 2)  
VIN+  
VIN-  
FSR  
VCM  
-0.1  
-0.1  
-VREF  
0
VREF + 0.1  
VREF + 0.1  
+VREF  
V
Differential Input:  
VIN = VIN+ – VIN-  
Input Full-Scale Voltage Range  
VPP Differential Input (Note 2, Note 4)  
Input Common-mode Voltage  
Range  
VREF/2  
VREF  
Note 2  
Input Sampling Capacitance  
-3dB Input Bandwidth  
CS  
10  
45  
pF  
MHz Note 1  
ns Time delay between CNVST rising  
edge and when input is sampled  
Note 1  
BW-3dB  
Aperture Delay  
(Note 1)  
2.5  
I
Leakage Current at Analog  
Input Pin  
±2.2  
±200  
nA During Standby  
LEAK_AN_INPUT  
System Performance  
Sample Rate  
(Throughput Rate)  
fS  
1
Msps MCP331x1D-10  
kSPS MCP331x1D-05  
bits MCP33151D-XX  
bits MCP33141D-XX  
LSB MCP33151D-XX  
LSB MCP33141D-XX  
LSB MCP33151D-XX  
LSB MCP33141D-XX  
500  
Resolution  
(No Missing Codes)  
14  
12  
Integral Nonlinearity  
INL  
-1.5  
±0.27  
±0.07  
±0.11  
±0.05  
+1.5  
Differential Nonlinearity  
DNL  
-0.8  
-0.3  
+0.8  
+0.3  
Note 1: This parameter is ensured by design and not 100% tested.  
2: This parameter is ensured by characterization and not 100% tested.  
3: Decoupling capacitor is recommended on the following pins:  
(a) AVDD pin: 1 µF ceramic capacitor, (b) DVIO pin: 0.1 µF ceramic capacitor,  
(c) VREF pin: 10 µF tantalum capacitor.  
4: Differential Input Full-Scale Range (FSR) = 2 × VREF  
.
5: PSRR (dB) = -20 log(DVOUT/AVDD), where DVOUT = change in conversion result.  
6: ENOB = (SINAD - 1.76)/6.02.  
DS20006219A-page 4  
2019 Microchip Technology Inc.  
MCP33151D/41D-XX  
TABLE 1-1:  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all parameters apply for T = -40°C to +125°C, AV = 1.8V, DV = 3.3V, V  
= 5V,  
A
DD  
IO  
REF  
GND = 0V, Differential Analog Input (V ) = -1 dBFS sine wave, f = 10 kHz, C  
= 20 pF, +25°C is applied  
IN  
IN  
LOAD_SDO  
for typical values.  
MCP331x1D-10: Sample Rate (f ) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
S
MCP331x1D-05: Sample Rate (f ) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
S
Parameters  
Offset Error  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
-1.62  
-1.33  
±0.4  
±0.4  
±0.1  
±1  
1.62  
1.33  
mV MCP33151D-XX  
mV MCP33141D-XX  
µV/°C  
Offset Error Drift with Temperature  
Gain Error  
GER  
LSB MCP33151D-XX  
LSB MCP33141D-XX  
µV/°C  
±0.2  
±8  
Gain Error Drift with  
Temperature  
Input Common-mode Rejection  
Ratio  
CMRR  
PSRR  
84  
75  
dB  
Power Supply Rejection Ratio  
Dynamic Performance  
Signal-to-Noise Ratio  
dB Note 5  
SNR  
MCP33151D-10 and MCP33151D-05: 14-bit ADC  
83.9  
79.2  
83.7  
78.8  
dBFS VREF = 5V, fIN = 1 kHz  
VREF = 1.8V, fIN = 1 kHz  
VREF = 5V, fIN = 10 kHz  
VREF = 1.8V, fIN = 10 kHz  
82.6  
MCP33141D-10 and MCP33141D-05: 12-bit ADC  
73.8  
73.1  
73.8  
73.0  
dBFS VREF = 5V, fIN = 1 kHz  
VREF = 1.8V, fIN = 1 kHz  
VREF = 5V, fIN = 10 kHz  
VREF = 1.8V, fIN = 10 kHz  
73.4  
Signal-to-Noise Distortion Ratio  
SINAD  
MCP33151D-10 and MCP33151D-05: 14-bit ADC  
(Note 6)  
83.9  
79.2  
83.6  
77.8  
dBFS VREF = 5V, fIN = 1 kHz  
VREF = 1.8V, fIN = 1 kHz  
VREF = 5V, fIN = 10 kHz  
VREF = 1.8V, fIN = 10 kHz  
MCP33141D-10 and MCP33141D-05: 12-bit ADC  
73.8  
73.1  
73.8  
73.0  
dBFS VREF = 5V, fIN = 1 kHz  
VREF = 1.8V, fIN = 1 kHz  
VREF = 5V, fIN = 10 kHz  
VREF = 1.8V, fIN = 10 kHz  
Note 1: This parameter is ensured by design and not 100% tested.  
2: This parameter is ensured by characterization and not 100% tested.  
3: Decoupling capacitor is recommended on the following pins:  
(a) AVDD pin: 1 µF ceramic capacitor, (b) DVIO pin: 0.1 µF ceramic capacitor,  
(c) VREF pin: 10 µF tantalum capacitor.  
4: Differential Input Full-Scale Range (FSR) = 2 × VREF  
.
5: PSRR (dB) = -20 log(DVOUT/AVDD), where DVOUT = change in conversion result.  
6: ENOB = (SINAD - 1.76)/6.02.  
2019 Microchip Technology Inc.  
DS20006219A-page 5  
MCP33151D/41D-XX  
TABLE 1-1:  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all parameters apply for T = -40°C to +125°C, AV = 1.8V, DV = 3.3V, V  
= 5V,  
A
DD  
IO  
REF  
GND = 0V, Differential Analog Input (V ) = -1 dBFS sine wave, f = 10 kHz, C  
= 20 pF, +25°C is applied  
IN  
IN  
LOAD_SDO  
for typical values.  
MCP331x1D-10: Sample Rate (f ) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
S
MCP331x1D-05: Sample Rate (f ) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
S
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Spurious Free Dynamic Range  
SFDR  
MCP33151D-10 and MCP33151D-05: 14-bit ADC  
110.5  
107.2  
105.9  
96.3  
dBc VREF = 5V, fIN = 1 kHz  
REF = 1.8V, fIN = 1 kHz  
V
VREF = 5V, fIN = 10 kHz  
VREF = 1.8V, fIN = 10 kHz  
MCP33141D-10 and MCP33141D-05: 12-bit ADC  
99.8  
99.4  
99.9  
95.2  
dBc VREF = 5V, fIN = 1 kHz  
VREF = 1.8V, fIN = 1 kHz  
VREF = 5V, fIN = 10 kHz  
VREF = 1.8V, fIN = 10 kHz  
Total Harmonic Distortion  
(first five harmonics)  
THD  
MCP33151D-10 and MCP33151D-05: 14-bit ADC  
-105.0  
-105.2  
103.2  
95.2  
dBc VREF = 5V, fIN = 1 kHz  
VREF = 1.8V, fIN = 1 kHz  
VREF = 5V, fIN = 10 kHz  
VREF = 1.8V, fIN = 10 kHz  
MCP33141D-10 and MCP33141D-05: 12-bit ADC  
-100.7  
-100.3  
-100.4  
-94.2  
dBc VREF = 5V, fIN = 1 kHz  
VREF = 1.8V, fIN = 1 kHz  
VREF = 5V, fIN = 10 kHz  
VREF = 1.8V, fIN = 10 kHz  
System Self-Calibration  
Self-Calibration Time  
tCAL  
400  
550  
ms Note 2  
Number of SCLK Clocks for  
Recalibrate Command  
ReCalNSCLK  
1024  
clocks Includes clocks for data bits  
Serial Interface Timing Information: See Serial Interface Timing Specifications  
Digital Inputs/Outputs  
High-level Input Voltage  
VIH  
0.7 × D  
VIO  
DVIO + 0.3  
V
DVIO 2.3V  
0.9 × D  
VIO  
DVIO < 2.3V  
Low-level Input Voltage  
VIL  
-0.3  
-0.3  
0.3 × DVIO  
0.2 × DVIO  
V
V
DVIO 2.3V  
DVIO < 2.3V  
All digital inputs  
Hysteresis of Schmitt Trigger  
Inputs  
VHYST  
0.2 ×  
DVIO  
Note 1: This parameter is ensured by design and not 100% tested.  
2: This parameter is ensured by characterization and not 100% tested.  
3: Decoupling capacitor is recommended on the following pins:  
(a) AVDD pin: 1 µF ceramic capacitor, (b) DVIO pin: 0.1 µF ceramic capacitor,  
(c) VREF pin: 10 µF tantalum capacitor.  
4: Differential Input Full-Scale Range (FSR) = 2 × VREF  
.
5: PSRR (dB) = -20 log(DVOUT/AVDD), where DVOUT = change in conversion result.  
6: ENOB = (SINAD - 1.76)/6.02.  
DS20006219A-page 6  
2019 Microchip Technology Inc.  
MCP33151D/41D-XX  
TABLE 1-1:  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all parameters apply for T = -40°C to +125°C, AV = 1.8V, DV = 3.3V, V  
= 5V,  
A
DD  
IO  
REF  
GND = 0V, Differential Analog Input (V ) = -1 dBFS sine wave, f = 10 kHz, C  
= 20 pF, +25°C is applied  
IN  
IN  
LOAD_SDO  
for typical values.  
MCP331x1D-10: Sample Rate (f ) = 1 Msps, SPI Clock Input (SCLK) = 60 MHz.  
S
MCP331x1D-05: Sample Rate (f ) = 500 kSPS, SPI Clock Input (SCLK) = 30 MHz.  
S
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Low-level Output Voltage  
High-level Output Voltage  
VOL  
VOH  
0.2 × DVIO  
V
V
IOL = 500 µA (source)  
IOH = -500 µA (sink)  
0.8 × D  
VIO  
Input Leakage Current  
Output Leakage Current  
ILI  
±1  
±1  
µA CNVST/SDI/SCLK = GND or DVIO  
ILO  
µA Output is high-Z, SDO = GND or  
DVIO  
Internal Capacitance  
CINT  
7
pF  
TA = +25°C  
(all digital inputs and outputs)  
Note 1: This parameter is ensured by design and not 100% tested.  
2: This parameter is ensured by characterization and not 100% tested.  
3: Decoupling capacitor is recommended on the following pins:  
(a) AVDD pin: 1 µF ceramic capacitor, (b) DVIO pin: 0.1 µF ceramic capacitor,  
(c) VREF pin: 10 µF tantalum capacitor.  
4: Differential Input Full-Scale Range (FSR) = 2 × VREF  
.
5: PSRR (dB) = -20 log(DVOUT/AVDD), where DVOUT = change in conversion result.  
6: ENOB = (SINAD - 1.76)/6.02.  
TABLE 1-2:  
SERIAL INTERFACE TIMING SPECIFICATIONS  
Electrical Specifications: Unless otherwise specified, all parameters apply for TA = -40°C to +125°C, AVDD = 1.8V,  
DVIO = 3.3V, GND = 0V,  
Differential Analog Input (AIN) = -1 dBFS sine wave, Resolution = 14-bit (MCP33151D-10), fIN = 10 kHz, Sample Rate (fS) = 1  
Msps, +25°C is applied for typical values. All timings are measured at 50%. See Figure 1-1 for timing diagram.  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Serial Clock Frequency  
SCLK Period  
fSCLK  
tSCLK  
100  
MHz See tSCLK specification  
10  
ns  
DVIO 3.3V, fSCLK = 100 MHz  
(Max.)  
12  
16  
DVIO 2.3V, fSCLK = 83.3 MHz  
(Max.)  
DVIO 1.7V, fSCLK = 62.5 MHz  
(Max.)  
SCLK Low Time  
tSCLK_L  
tSCLK_H  
tDO  
3
4.5  
3
10  
12  
16  
ns  
ns  
ns  
DVIO 2.3V  
DVIO 1.7V  
DVIO 2.3V  
SCLK High Time  
4.5  
10  
DVIO 1.7V  
Output Valid from SCLK Low  
DVIO 3.3V  
DVIO 2.3V  
DVIO 1.7V  
Quiet Time  
tQUIET  
ns  
3-wire Operation:  
Note 1: This parameter is ensured by design and not 100% tested.  
2: This parameter is ensured by characterization and not 100% tested.  
2019 Microchip Technology Inc.  
DS20006219A-page 7  
MCP33151D/41D-XX  
TABLE 1-2:  
SERIAL INTERFACE TIMING SPECIFICATIONS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all parameters apply for TA = -40°C to +125°C, AVDD = 1.8V,  
DVIO = 3.3V, GND = 0V,  
Differential Analog Input (AIN) = -1 dBFS sine wave, Resolution = 14-bit (MCP33151D-10), fIN = 10 kHz, Sample Rate (fS) = 1  
Msps, +25°C is applied for typical values. All timings are measured at 50%. See Figure 1-1 for timing diagram.  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
SDI Valid Setup Time  
CNVST Pulse Width Time  
Output Enable Time  
tSU_SDIH_CNV  
tCNVH  
5
10  
15  
15  
ns  
SDI High to CNVST Rising Edge  
10  
tEN  
DVIO 2.3V  
DVIO 1.7V  
Output Disable Time  
MCP331x1D-10  
tDIS  
Note 2  
Sample Rate  
fS  
250  
490  
510  
1
Msps Throughput Rate  
Input Acquisition Time  
Data Conversion Time  
Time Between Conversions  
MCP331x1D-05  
tACQ  
tCNV  
tCYC  
ns  
ns  
750  
1
µs  
tCYC = tACQ + tCNV, fS = 1 Msps  
Sample Rate  
fS  
600  
800  
1200  
500  
kSPS Throughput Rate  
Input Acquisition Time  
Data Conversion Time  
Time Between Conversions  
tACQ  
tCNV  
tCYC  
ns  
ns  
1400  
2
µs  
tCYC = tACQ + tCNV, fS = 500 kSPS  
Note 1: This parameter is ensured by design and not 100% tested.  
2: This parameter is ensured by characterization and not 100% tested.  
TCYC = 1/fs  
SDI = 1  
tSU_SDIH_CNV  
tCNVH  
tEN (late CNV) (Note 1)  
CNV (CS)  
tSCLK  
tQUIET  
SC>K  
1
tDO  
2
3
4
5
12  
13  
14  
tDIS  
tSCLK_L  
tSCLK_H  
D9  
“High” (with pull-up)  
SDO  
D13  
EN (early CNV) (Note 2)  
D12  
D11  
D10  
D2  
D1  
D0  
Hi-Z (with no pull-up)  
t
ADC  
State  
Converting Phase  
Input Acquisition  
(tACQ  
)
(tCNV  
)
Note 1:  
tEN when CNVST is lowered after tCNV (MAX).  
2: tEN when CNVST is lowered before tCNV (MAX).  
FIGURE 1-1:  
Interface Timing Diagram (14-bit device). CNVST is Used as Chip Select. See  
Section 6.0 “Digital Serial Interface” for More Details.  
DS20006219A-page 8  
2019 Microchip Technology Inc.  
MCP33151D/41D-XX  
TABLE 1-3:  
TEMPERATURE CHARACTERISTICS  
Parameters  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
Temperature Ranges  
Operating Temperature  
Range  
TA  
TA  
-40  
-65  
+125  
+150  
°C  
°C  
Note 1  
Note 1  
Storage Temperature  
Range  
Thermal Package Resistance  
Thermal Resistance,  
MSOP-10  
JA  
JA  
202  
68  
°C/W  
°C/W  
Thermal Resistance,  
TDFN-10  
Note 1: The internal junction temperature (Tj) must not exceed the absolute maximum specification of +150oC.  
2019 Microchip Technology Inc.  
DS20006219A-page 9  
MCP33151D/41D-XX  
NOTES:  
DS20006219A-page 10  
2019 Microchip Technology Inc.  
MCP33151D/41D-XX  
2.0  
TYPICAL PERFORMANCE CURVES FOR 14-BIT DEVICES (MCP33151D-XX)  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V, VREF = 5V,  
GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33151D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input = 60 MHz.  
MCP33151D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input = 30 MHz.  
0.25  
0.5  
V
= 5V  
V
= 5V  
REF  
REF  
0.25  
0
0.1  
0
-0.1  
-.25  
-0.5  
-0.25  
0
4,096  
8,192  
Code  
12,288  
16,384  
0
4,096  
8,192  
Code  
12,288  
16,384  
FIGURE 2-1:  
VREF = 5V.  
INL vs. Output Code:  
FIGURE 2-4:  
DNL vs. Output Code:  
V
REF = 5V.  
0.5  
0.25  
0
0.25  
V
= 1.8V  
V
= 1.8V  
REF  
REF  
0.10  
0
-0.10  
-0.25  
-0.5  
0
-0.25  
0
4,096  
8,192  
Code  
12,288  
16,384  
4,096  
8,192  
Code  
12,288  
16,384  
FIGURE 2-2:  
VREF = 1.8V.  
INL vs. Output Code:  
FIGURE 2-5:  
VREF = 1.8V.  
DNL vs. Output Code:  
1.5  
0.5  
0.3  
Max DNL (LSB)  
1
Max INL (LSB)  
0.5  
0
0.1  
-0.1  
-0.3  
-0.5  
-0.5  
-1  
Min INL (LSB)  
Min DNL (LSB)  
-1.5  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Reference Voltage (V)  
Reference Voltage (V)  
FIGURE 2-3:  
INL vs. Reference Voltage.  
FIGURE 2-6:  
DNL vs. Reference Voltage.  
2019 Microchip Technology Inc.  
DS20006219A-page 11  
MCP33151D/41D-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V, VREF = 5V,  
GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33151D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input = 60 MHz.  
MCP33151D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input = 30 MHz.  
1
0.5  
0
0.3  
0.2  
Max INL (LSB)  
Max DNL (LSB)  
Min DNL (LSB)  
0.1  
0
V
= 5V  
V
= 5V  
REF  
REF  
-0.1  
-0.2  
-0.3  
Min INL (LSB)  
-0.5  
-1  
-40 -20  
0
20  
40  
60  
80 100 120 140  
-40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-7:  
INL vs. Temperature.  
FIGURE 2-10:  
DNL vs. Temperature.  
MCP33151D-10  
MCP33151D-10  
0
0
V
= 5V  
V
= 1.8V  
REF  
REF  
-20  
-40  
f
= 1 Msps  
-20  
-40  
f = 1 Msps  
s
s
SNR = 83.8 dBFS  
SINAD = 83.8 dBFS  
SFDR = 109.2 dBc  
THD = -104.9 dBc  
Offset = -1 LSB  
SNR = 79.1 dBFS  
SINAD = 79.0 dBFS  
SFDR = 105.6 dBc  
THD = -102.6 dBc  
Offset = -2 LSB  
-60  
-60  
-80  
-80  
Resolution = 14-bit  
Resolution = 14-bit  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
Frequency (kHz)  
Frequency (kHz)  
FIGURE 2-8:  
FFT for 10 kHz Input Signal:  
FIGURE 2-11:  
FFT for 10 kHz Input Signal:  
fS = 1 Msps, VIN = -1 dBFS, VREF = 5V.  
fS = 1 Msps, VIN = -1 dBFS, VREF = 1.8V.  
MCP33151D-05  
MCP33151D-05  
0
0
V
= 5V  
V
= 1.8V  
REF  
REF  
-20  
-40  
f
= 0.5 Msps  
-20  
-40  
f = 0.5 Msps  
s
s
SNR = 83.8 dBFS  
SINAD = 83.7 dBFS  
SFDR = 106.9 dBc  
THD = -102.4 dBc  
Offset = -1 LSB  
SNR = 79.0 dBFS  
SINAD = 78.9 dBFS  
SFDR = 101.8 dBc  
THD = -98.8 dBc  
Offset = -2 LSB  
-60  
-60  
-80  
-80  
Resolution = 14-bit  
Resolution = 14-bit  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Frequency (kHz)  
Frequency (kHz)  
FIGURE 2-9:  
FFT for 10 kHz Input Signal:  
FIGURE 2-12:  
FFT for 10 kHz Input Signal:  
fS = 500 kSPS, VIN = -1 dBFS, VREF = 5V.  
fS = 500 kSPS, VIN = -1 dBFS, VREF = 1.8V.  
DS20006219A-page 12  
2019 Microchip Technology Inc.  
MCP33151D/41D-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V, VREF = 5V,  
GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33151D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input = 60 MHz.  
MCP33151D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input = 30 MHz.  
85  
14  
-95  
-100  
-105  
-110  
110  
105  
100  
95  
82.5  
80  
13.5  
13  
THD (dB)  
SFDR(dB)  
SNR (dB)  
SINAD(dB)  
ENOB  
77.5  
12.5  
12  
75  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
2
3
4
5
Reference Voltage (V)  
Reference Voltage (V)  
FIGURE 2-13:  
Reference Voltage.  
SNR/SINAD/ENOB vs.  
FIGURE 2-16:  
Voltage.  
THD/SFDR vs. Reference  
84.1  
84  
79.8  
79.6  
79.4  
79.2  
79  
SNR (dB)  
SNR (dB)  
SINAD(dB)  
SINAD(dB)  
83.9  
83.8  
78.8  
V
= 5V  
0
V
= 1.8V  
0
83.7  
83.6  
REF  
REF  
78.6  
78.4  
-50  
-50  
50  
Temperature (°C)  
100  
150  
50  
100  
150  
Temperature (°C)  
FIGURE 2-14:  
SNR/SINAD vs.  
FIGURE 2-17:  
SNR/SINAD vs.  
Temperature: VREF = 5V.  
Temperature: VREF = 1.8V.  
-93  
-94  
-95  
-96  
-97  
-98  
-99  
-100  
103  
102  
101  
100  
99  
-105  
114  
THD(dB)  
SFDR(dB)  
THD(dB)  
SFDR(dB)  
-106  
-107  
-108  
112  
110  
108  
V
= 1.8V  
REF  
98  
97  
V
= 5V  
REF  
96  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
FIGURE 2-15:  
THD/SFDR vs.  
FIGURE 2-18:  
THD/SFDR vs.  
Temperature: VREF = 5V.  
Temperature: VREF = 1.8V.  
2019 Microchip Technology Inc.  
DS20006219A-page 13  
MCP33151D/41D-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V, VREF = 5V,  
GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33151D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input = 60 MHz.  
MCP33151D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input = 30 MHz.  
85  
84  
83  
82  
81  
80  
79  
SNR (dB)  
SNR (dB)  
78.5  
78  
SINAD(dB)  
SINAD(dB)  
77.5  
77  
76.5  
76  
V
= 1.8V  
V
= 5V  
REF  
REF  
1
10  
Input Frequency (kHz)  
100  
200  
1
10  
Input Frequency (kHz)  
100  
200  
FIGURE 2-19:  
SNR/SINAD vs.Input  
FIGURE 2-22:  
SNR/SINAD vs.Input  
Frequency: VREF = 5V.  
Frequency: VREF = 1.8V.  
-70  
-75  
110  
105  
100  
95  
-80  
-85  
115  
110  
105  
100  
95  
THD (dB)  
THD (dB)  
SFDR (dB)  
SFDR (dB)  
-80  
-90  
-85  
-95  
-90  
90  
-100  
-105  
-95  
85  
90  
-100  
-105  
80  
-110  
-115  
85  
75  
V
= 1.8V  
V
= 5V  
REF  
REF  
-110  
70  
80  
1
10  
100  
200  
1
10  
Input Frequency (kHz)  
100  
200  
Input Frequency (kHz)  
FIGURE 2-20:  
THD/SFDR vs. Input  
FIGURE 2-23:  
THD/SFDR vs. Input  
Frequency: VREF = 5V.  
Frequency: VREF = 1.8V.  
85  
80  
SNR (dB)  
SINAD(dB)  
SNR (dB)  
SINAD(dB)  
84.5  
84  
79.5  
79  
83.5  
78.5  
V
= 5V  
V
= 1.8V  
REF  
REF  
83  
-30  
78  
-30  
-25  
-20  
-15  
-10  
-5  
0
-25  
-20  
-15  
-10  
-5  
0
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
FIGURE 2-21:  
SNR/SINAD vs. Input  
FIGURE 2-24:  
SNR/SINAD vs. Input  
Amplitude: VREF = 5V.  
Amplitude: VREF = 1.8V.  
DS20006219A-page 14  
2019 Microchip Technology Inc.  
MCP33151D/41D-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V, VREF = 5V,  
GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33151D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input = 60 MHz.  
MCP33151D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input = 30 MHz.  
-95  
-100  
-105  
-110  
115  
110  
105  
100  
-99  
-100  
-101  
-102  
-103  
107  
106  
105  
104  
103  
THD (dB)  
SFDR(dB)  
THD (dB)  
SFDR(dB)  
V
= 5V  
V
= 1.8V  
REF  
REF  
-30  
-25  
-20  
-15  
-10  
-5  
0
-30  
-25  
-20  
-15  
-10  
-5  
0
Amplitude (dBFS)  
Amplitude (dBFS)  
FIGURE 2-25:  
THD/SFDR vs. Input  
FIGURE 2-28:  
THD/SFDR vs. Input  
Amplitude: VREF = 5V.  
Amplitude: VREF = 1.8V.  
80  
14  
85  
14  
79.2  
78.4  
77.6  
76.8  
76  
13.4  
12.8  
12.2  
11.6  
11  
84.2  
83.4  
82.6  
81.8  
81  
13.6  
13.2  
12.8  
12.4  
12  
SNR (dB)  
SINAD(dB)  
ENOB  
SNR (dB)  
SINAD(dB)  
ENOB  
V
= 5V  
V
= 1.8V  
REF  
REF  
25  
50  
100  
250  
500  
1000  
25  
50  
100  
250  
500  
1000  
Sample Rate (kSPS)  
Sample Rate (kSPS)  
FIGURE 2-26:  
SNR/SINAD/ENOB vs.  
FIGURE 2-29:  
SNR/SINAD/ENOB vs.  
Sample Rate: VREF = 5V.  
Sample Rate: VREF = 1.8V.  
-90  
112  
108  
104  
100  
96  
-90  
114  
110  
106  
102  
98  
THD(dB)  
SFDR(dB)  
THD(dB)  
SFDR(dB)  
-94  
-98  
-94  
-98  
-102  
-106  
-102  
-106  
-110  
V
= 5V  
V
= 1.8V  
REF  
REF  
92  
-110  
25  
94  
25  
50  
100  
250  
500  
1000  
50  
100  
250  
500  
1000  
Sample Rate (kSPS)  
Sample Rate (kSPS)  
FIGURE 2-27:  
REF = 5V.  
THD/SFDR vs Sample Rate:  
FIGURE 2-30:  
VREF = 1.8V.  
THD/SFDR vs Sample Rate:  
V
2019 Microchip Technology Inc.  
DS20006219A-page 15  
MCP33151D/41D-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V, VREF = 5V,  
GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33151D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input = 60 MHz.  
MCP33151D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input = 30 MHz.  
5
86  
84  
82  
80  
78  
76  
74  
72  
10  
10  
V
= 5V  
841918  
REF  
8
6
4
2
0
184932  
V
= 5V  
REF  
21725  
1
10-3  
10-2  
10-1  
100  
101  
102  
103  
-3  
-2  
-1  
0
1
2
3
Frequency (kHz)  
Output Code  
FIGURE 2-31:  
Shorted Input Histogram:  
FIGURE 2-34:  
CMRR vs. Input Frequency:  
V
REF = 5V.  
V
REF = 5V.  
1000  
750  
500  
250  
0
1.6  
1.2  
0.8  
850  
3.9  
OFFSET ERROR  
GAIN ERROR  
650  
450  
250  
50  
3.0  
2.0  
1.1  
0.2  
-0.7  
0.4  
OFFSET ERROR  
GAIN ERROR  
0.0  
-250  
-500  
-750  
-0.4  
-0.8  
-1.2  
-150  
V
= 5V  
60  
V
= 1.8V  
60  
REF  
REF  
40  
-1000  
-1.6  
80 100 120 140  
-350  
-1.6  
80 100 120 140  
-40 -20  
0
20  
40  
-40 -20  
0
20  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-32:  
Offset and Gain Error vs.  
FIGURE 2-35:  
Offset and Gain Error vs.  
Temperature: VREF = 5V.  
Temperature: VREF = 1.8V.  
MCP33151D-10  
MCP33151D-05  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
3
2.4  
1.8  
1.2  
0.6  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Sample Rate (Msps)  
1
0.1  
0.2  
0.3  
0.4  
0.5  
Sample Rate (Msps)  
FIGURE 2-33:  
Power Consumption vs.  
FIGURE 2-36:  
Sample Rate, MCP33151D-05:  
CLOAD_SDO = 20 pF.  
Power Consumption vs.  
Sample Rate, MCP33151D-10:  
CLOAD_SDO = 20 pF.  
DS20006219A-page 16  
2019 Microchip Technology Inc.  
MCP33151D/41D-XX  
Note:  
Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V, VREF = 5V,  
GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33151D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input = 60 MHz.  
MCP33151D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input = 30 MHz.  
MCP33151D-10  
MCP33151D-05  
1
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
3
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2.4  
1.8  
1.2  
0.6  
0
I
(DV = 3.3V)  
IO  
I
(DV = 3.3V)  
IO  
IO_DATA  
IO_DATA  
I
(V  
= 5V)  
REF  
I
(V  
= 5V)  
REF  
REF  
REF  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
FIGURE 2-37:  
Power Consumption vs.  
FIGURE 2-39:  
Power Consumption vs.  
Temperature, MCP33151D-10:  
Temperature, MCP33151D-05:  
CLOAD_SDO = 20 pF.  
C
LOAD_SDO = 20 pF.  
8
7
16  
14  
12  
10  
8
I
(AV = 1.8V)  
DD  
6
5
4
3
2
1
0
DDAN_STBY  
Total Power Consumption  
(DV = 3.3V)  
6
I
IO_STBY  
IO  
4
2
I
(V  
= 5V)  
REF  
REF_STBY  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
FIGURE 2-38:  
Power Consumption vs.  
Temperature during Shutdown (Standby).  
2019 Microchip Technology Inc.  
DS20006219A-page 17  
MCP33151D/41D-XX  
NOTES:  
DS20006219A-page 18  
2019 Microchip Technology Inc.  
MCP33151D/41D-XX  
3.0  
TYPICAL PERFORMANCE CURVES FOR 12-BIT DEVICES (MCP33141D-XX)  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note:  
Note: Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33141D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input = 60 MHz.  
MCP33141D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input = 30 MHz.  
0.2  
0.2  
V
= 5V  
V
= 5V  
REF  
REF  
0.1  
0
0.1  
0
-0.1  
-0.2  
-0.1  
-0.2  
0
1,024  
2,048  
Code  
3,072  
4,096  
0
1,024  
2,048  
Code  
3,072  
4,096  
FIGURE 3-1:  
VREF = 5V.  
INL vs. Output Code:  
FIGURE 3-4:  
DNL vs. Output Code:  
V
REF = 5V.  
0.2  
0.1  
0
0.2  
V
= 1.8V  
V
= 1.8V  
REF  
REF  
0.1  
0
-0.1  
-0.1  
-0.2  
0
-0.2  
0
1,024  
2,048  
Code  
3,072  
4,096  
1,024  
2,048  
Code  
3,072  
4,096  
FIGURE 3-2:  
VREF = 1.8V.  
INL vs. Output Code:  
FIGURE 3-5:  
VREF = 1.8V.  
DNL vs. Output Code:  
0.5  
0.25  
0
0.3  
0.15  
0
Max INL (LSB)  
Min INL (LSB)  
Max DNL (LSB)  
Min DNL (LSB)  
-0.25  
-0.5  
-0.15  
-0.3  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Reference Voltage (V)  
Reference Voltage (V)  
FIGURE 3-3:  
INL vs. Reference Voltage.  
FIGURE 3-6:  
DNL vs. Reference Voltage.  
2019 Microchip Technology Inc.  
DS20006219A-page 19  
MCP33151D/41D-XX  
Note:  
Note: Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33141D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input = 60 MHz.  
MCP33141D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input = 30 MHz.  
0.5  
0.25  
0
0.5  
V
= 5V  
V
= 5V  
REF  
REF  
0.25  
0
Max INL (LSB)  
Min INL (LSB)  
Max DNL (LSB)  
Min DNL (LSB)  
-0.25  
-0.5  
-0.25  
-0.5  
-40 -20  
0
20  
40  
60  
80 100 120 140  
-40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (°C)  
Temperature (°C)  
FIGURE 3-7:  
INL vs. Temperature.  
FIGURE 3-10:  
DNL vs. Temperature.  
MCP33141D-10  
MCP33141D-10  
0
0
V
= 5V  
V
= 1.8V  
REF  
REF  
f
= 1 Msps  
f = 1 Msps  
s
s
-20  
-40  
-20  
-40  
SNR = 73.9 dBFS  
SINAD = 73.9 dBFS  
SFDR = 100.6 dBc  
THD = -98.7 dBc  
Offset = 0 LSB  
SNR = 73.0 dBFS  
SINAD = 73.0 dBFS  
SFDR = 101.0 dBc  
THD = -100.0 dBc  
Offset = -1 LSB  
-60  
-60  
Resolution = 12-bit  
Resolution = 12-bit  
-80  
-80  
-100  
-120  
-100  
-120  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
Frequency (kHz)  
Frequency (kHz)  
FIGURE 3-8:  
FFT for 10 kHz Input Signal:  
FIGURE 3-11:  
FFT for 10 kHz Input Signal:  
fS = 1 Msps, VIN = -1 dBFS, VREF = 5V.  
fS = 1 Msps, VIN = -1 dBFS, VREF = 1.8V.  
MCP33141D-05  
MCP33141D-05  
0
0
V
= 5V  
V
= 1.8V  
REF  
REF  
f
= 0.5 Msps  
f = 0.5 Msps  
s
s
-20  
-40  
-20  
-40  
SNR = 73.8 dBFS  
SINAD = 73.8 dBFS  
SFDR = 99.6 dBc  
THD = -99.9 dBc  
Offset = -1 LSB  
SNR = 73.0 dBFS  
SINAD = 73.0 dBFS  
SFDR = 100.7 dBc  
THD = -94.9 dBc  
Offset = -1 LSB  
-60  
-60  
Resolution = 12-bit  
Resolution = 12-bit  
-80  
-80  
-100  
-120  
-100  
-120  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Frequency (kHz)  
Frequency (kHz)  
FIGURE 3-9:  
FFT for 10 kHz Input Signal:  
FIGURE 3-12:  
FFT for 10 kHz Input Signal:  
fS = 500 kSPS, VIN = -1 dBFS, VREF = 5V.  
fS = 500 kSPS, VIN = -1 dBFS, VREF = 1.8V.  
DS20006219A-page 20  
2019 Microchip Technology Inc.  
MCP33151D/41D-XX  
Note:  
Note: Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33141D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input = 60 MHz.  
MCP33141D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input = 30 MHz.  
-96  
-97  
100.5  
100  
99.5  
99  
74  
12.5  
12  
-98  
73  
72  
71  
-99  
THD (dB)  
SFDR(dB)  
-100  
-101  
-102  
-103  
98.5  
98  
11.5  
SNR (dB)  
SINAD(dB)  
ENOB  
97.5  
97  
11  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
2
3
4
5
Reference Voltage (V)  
Reference Voltage (V)  
FIGURE 3-13:  
Reference Voltage.  
SNR/SINAD/ENOB vs.  
FIGURE 3-16:  
Voltage.  
THD/SFDR vs. Reference  
73.86  
73.84  
73.82  
73.8  
73.2  
73.15  
73.1  
73.05  
73  
SNR (dB)  
SNR (dB)  
SINAD(dB)  
SINAD(dB)  
72.95  
V
V
= 5V  
REF  
73.78  
73.76  
= 1.8V  
0
REF  
72.9  
72.85  
-50  
-50  
0
50  
100  
150  
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
FIGURE 3-14:  
SNR/SINAD vs.  
FIGURE 3-17:  
SNR/SINAD vs.  
Temperature: VREF = 5V.  
Temperature: VREF = 1.8V.  
-98.2  
99  
-92  
99  
THD(dB)  
SFDR(dB)  
-93  
-94  
-95  
-96  
-97  
98  
97  
96  
95  
94  
-98.4  
-98.6  
-98.8  
-99  
98.5  
98  
THD(dB)  
SFDR(dB)  
V
= 1.8V  
REF  
97.5  
97  
V
= 5V  
REF  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
-40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
FIGURE 3-15:  
THD/SFDR vs.  
FIGURE 3-18:  
THD/SFDR vs.  
Temperature: VREF = 5V.  
Temperature: VREF = 5V.  
2019 Microchip Technology Inc.  
DS20006219A-page 21  
MCP33151D/41D-XX  
Note:  
Note: Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33141D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input = 60 MHz.  
MCP33141D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input = 30 MHz.  
73  
72.6  
SNR (dB)  
SINAD(dB)  
72.4  
72.2  
72  
SNR (dB)  
SINAD(dB)  
72.9  
72.8  
72.7  
72.6  
72.5  
71.8  
71.6  
71.4  
71.2  
71  
V
= 1.8V  
V
= 5V  
REF  
REF  
1
10  
Input Frequency (kHz)  
100  
200  
1
10  
Input Frequency (kHz)  
100  
200  
FIGURE 3-19:  
SNR/SINAD vs. Input  
FIGURE 3-22:  
SNR/SINAD vs. Input  
Frequency: VREF = 5V.  
Frequency: VREF = 1.8V.  
-80  
105  
100  
95  
-75  
-80  
105  
100  
95  
THD (dB)  
SFDR (dB)  
THD (dB)  
SFDR (dB)  
-85  
-90  
-95  
-85  
-90  
90  
90  
-95  
85  
-100  
85  
-100  
80  
V
= 5V  
V
= 1.8V  
REF  
REF  
-105  
80  
-105  
75  
1
10  
Input Frequency (kHz)  
100  
200  
1
10  
100  
200  
Input Frequency (kHz)  
FIGURE 3-20:  
THD/SFDR vs. Input  
FIGURE 3-23:  
THD/SFDR vs. Input  
Frequency: VREF = 5V.  
Frequency: VREF = 1.8V.  
75  
74  
SNR (dB)  
SINAD(dB)  
SNR (dB)  
SINAD(dB)  
74.5  
74  
73.5  
73  
73.5  
72.5  
V
= 5V  
V
= 1.8V  
REF  
REF  
73  
-30  
72  
-30  
-25  
-20  
-15  
-10  
-5  
0
-25  
-20  
-15  
-10  
-5  
0
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
FIGURE 3-21:  
SNR/SINAD vs. Input  
FIGURE 3-24:  
SNR/SINAD vs. Input  
Amplitude: VREF = 5V.  
Amplitude: VREF = 1.8V.  
DS20006219A-page 22  
2019 Microchip Technology Inc.  
MCP33151D/41D-XX  
Note:  
Note: Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33141D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input = 60 MHz.  
MCP33141D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input = 30 MHz.  
-90  
-95  
105  
100  
95  
-90  
-95  
105  
100  
95  
THD (dB)  
SFDR(dB)  
THD (dB)  
SFDR(dB)  
-100  
-105  
-100  
-105  
V
= 1.8V  
-15  
REF  
V
= 5V  
REF  
90  
90  
-30  
-25  
-20  
-15  
-10  
-5  
0
-30  
-25  
-20  
-10  
-5  
0
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
FIGURE 3-25:  
THD/SFDR vs. Input  
FIGURE 3-28:  
THD/SFDR vs. Input  
Amplitude: VREF = 5V.  
Amplitude: VREF = 1.8V.  
74  
13  
73  
13  
73.4  
72.8  
72.2  
71.6  
71  
12.6  
12.2  
11.8  
11.4  
11  
72.4  
71.8  
71.2  
70.6  
70  
12.4  
11.8  
11.2  
10.6  
10  
SNR (dB)  
SINAD(dB)  
ENOB  
SNR (dB)  
SINAD(dB)  
ENOB  
V
= 5V  
V
= 1.8V  
REF  
REF  
25  
50  
100  
250  
500  
1000  
25  
50  
100  
250  
500  
1000  
Sample Rate (kSPS)  
Sample Rate (kSPS)  
FIGURE 3-26:  
SNR/SINAD/ENOB vs.  
FIGURE 3-29:  
SNR/SINAD/ENOB vs.  
Sample Rate: VREF = 5V.  
Sample Rate: VREF = 1.8V.  
-88  
110  
106  
102  
98  
-86  
109  
105  
101  
97  
THD(dB)  
SFDR(dB)  
THD(dB)  
SFDR(dB)  
-92  
-96  
-90  
-94  
-98  
-100  
-104  
-108  
-102  
93  
94  
V
= 1.8V  
V
= 5V  
REF  
REF  
-106  
25  
89  
90  
50  
100  
250  
500  
1000  
25  
50  
100  
250  
500  
1000  
Sample Rate (kSPS)  
Sample Rate (kSPS)  
FIGURE 3-27:  
Rate: VREF = 5V.  
THD/SFDR vs. Sample  
FIGURE 3-30:  
Rate: VREF = 1.8V.  
THD/SFDR vs. Sample  
2019 Microchip Technology Inc.  
DS20006219A-page 23  
MCP33151D/41D-XX  
Note:  
Note: Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33141D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input = 60 MHz.  
MCP33141D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input = 30 MHz.  
105  
86  
10  
V
= 5V  
84  
82  
80  
78  
76  
74  
72  
REF  
779082  
8
6
4
2
0
269494  
V
= 5V  
100  
REF  
10-3  
10-2  
10-1  
101  
102  
103  
-3  
-2  
-1  
0
1
2
3
Frequency (kHz)  
Output Code  
FIGURE 3-31:  
Shorted Input Histogram:  
FIGURE 3-34:  
CMRR vs. Input Frequency:  
V
REF = 5V.  
V
REF = 5V.  
1500  
1000  
500  
0.6  
1000  
800  
600  
400  
200  
0
1.1  
OFFSET ERROR  
OFFSET ERROR  
GAIN ERROR  
0.9  
GAIN ERROR  
0.4  
0.7  
0.2  
0.5  
0
0.0  
0.2  
-500  
-1000  
-1500  
-2000  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0.0  
-200  
-400  
-600  
-800  
-0.2  
-0.5  
-0.7  
-0.9  
-1.1  
V
= 5V  
60  
V
= 1.8V  
60  
REF  
40  
REF  
-2500  
-1000  
-40 -20  
0
20  
80 100 120 140  
-40 -20  
0
20  
40  
80 100 120 140  
Temperature (°C)  
Temperature (°C)  
FIGURE 3-32:  
Offset and Gain Error vs.  
FIGURE 3-35:  
Offset and Gain Error vs.  
Temperature: VREF = 5V.  
Temperature: VREF = 1.8V.  
MCP33141D-10  
MCP33141D-05  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
3
2.4  
1.8  
1.2  
0.6  
0
Total Power Conon  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Sample Rate (Msps)  
1
0.1  
0.2  
0.3  
0.4  
0.5  
Sample Rate (Msps)  
FIGURE 3-33:  
Sample Rate, MCP33141D-10:  
LOAD_SDO = 20 pF.  
Power Consumption vs.  
FIGURE 3-36:  
Sample Rate, MCP33141D-05:  
CLOAD_SDO = 20 pF.  
Power Consumption vs.  
C
DS20006219A-page 24  
2019 Microchip Technology Inc.  
MCP33151D/41D-XX  
Note:  
Note: Unless otherwise specified, all parameters apply for TA = +25°C, AVDD = 1.8V, DVIO = 3.3V,  
VREF = 5V, GND = 0V, Differential Analog Input (VIN) = -1 dBFS, fIN = 10 kHz, CLOAD_SDO = 20 pF.  
MCP33141D-10: Sample Rate (fS) = 1 Msps, SPI Clock Input = 60 MHz.  
MCP33141D-05: Sample Rate (fS) = 500 kSPS, SPI Clock Input = 30 MHz.  
MCP33141D-10  
MCP33141D-05  
1
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
3
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2.4  
1.8  
1.2  
0.6  
0
I
(V  
= 5V)  
REF  
REF  
I
(V  
= 5V)  
REF  
REF  
I
(DV = 3.3V)  
IO  
IO_DATA  
I
(DV = 3.3V)  
IO  
IO_DATA  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
FIGURE 3-37:  
Power Consumption vs.  
FIGURE 3-39:  
Power Consumption vs.  
Temperature, MCP33141D-10:  
Temperature, MCP33141D-05:  
CLOAD_SDO = 20 pF.  
C
LOAD_SDO = 20 pF.  
8
7
16  
14  
12  
10  
8
I
(AV = 1.8V)  
DD  
6
DDAN_STBY  
5
Total Power Consumption  
(DV = 3.3V)  
4
3
2
1
0
6
I
IO_STBY  
IO  
4
2
I
(V  
= 5V)  
REF  
REF_STBY  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
FIGURE 3-38:  
Power Consumption vs.  
Temperature during Shutdown (Standby).  
2019 Microchip Technology Inc.  
DS20006219A-page 25  
MCP33151D/41D-XX  
NOTES:  
DS20006219A-page 26  
2019 Microchip Technology Inc.  
MCP33151D/41D-XX  
4.0  
PIN DESCRIPTIONS  
MSOP-10  
TDFN-10 *  
* Includes Exposed Thermal Pad (see Table 4-1).  
FIGURE 4-1:  
Pin Configurations.  
TABLE 4-1:  
PIN FUNCTION TABLE  
Pin Number  
MSOP-10 TDFN-10  
Pin Name  
Description  
1
1
VREF  
AVDD  
Reference voltage input (AVDD - 5.1V).  
This pin should be decoupled with a 10 F tantalum capacitor.  
2
2
DC supply voltage input for analog section (1.8V).  
This pin should be decoupled with a 1 F ceramic capacitor.  
3
4
5
3
4
5
AIN+  
AIN-  
Differential positive analog input.  
Differential negative analog input.  
GND  
Power supply ground reference. This pin is a common ground for both the  
analog power supply (AVDD) and digital I/O supply (DVIO).  
6
6
CNVST  
Conversion-start control and active-low SPI chip-select digital input.  
A new conversion is started on the rising edge of CNVST.  
When the conversion is complete, output data is available at SDO by lowering  
CNVST.  
7
8
7
8
SDO  
SPI-compatible serial digital data output: ADC conversion data is shifted out  
by SCLK clock, with MSB first.  
SCLK  
SPI-compatible serial data clock digital input.  
The ADC output is synchronously shifted out by this clock.  
9
9
SDI  
SPI-compatible serial data digital input. Tie to DVIO for normal operation.  
10  
10  
DVIO  
DC supply voltage for digital input/output interface (1.7V - 5.5V).  
This pin should be decoupled with a 0.1 µF ceramic capacitor.  
11  
EP  
Exposed Thermal Pad. Not internally bonded (NC).  
2019 Microchip Technology Inc.  
DS20006219A-page 27  
MCP33151D/41D-XX  
4.1  
Supply Voltages (AV , DV )  
4.3  
Power-Up Sequence and  
Auto-Calibration  
DD  
IO  
The device has two power supply pins: (a) 1.8V  
analog power supply (AVDD), and (b) 1.7V to 5.5V  
digital input/output interface power supply (DVIO).  
Since DVIO has a very wide voltage range, some I/O  
interface signal parameters have slightly different  
timing specifications depending on the DVIO value.  
See Serial Interface Timing Specifications for details.  
The device will perform an automatic calibration on  
power-up approximately 40 ms after all three power  
rails (AVDD, DVIO, and VREF) are powered by their  
respective voltage supplies. The calibration process  
will take approximately 400 ms to complete before the  
device will be ready for acquisition. To avoid potential  
auto-calibration issues, all supplies must be fully  
stabilized < 40 ms from the moment power is initially  
supplied. All digital activity must be avoided prior to  
and during device calibration. At higher operating  
temperatures (>85°C) it may be necessary to provide  
additional time for the device to complete calibration  
(up to 550ms at 125°C). Therefore it is advisable to  
wait at least 450-500 ms following power-on before  
initiating any other activity. Otherwise, it may be  
necessary to send a manual recalibration command to  
ensure proper operation. See Figure 4-2 for example  
power-on operation timing, and refer to Section 6.2  
“Recalibrate Command” for more details regarding  
initiating manual recalibration. Once the device  
finishes calibration it will automatically enter  
Acquisition (ACQ) mode.  
Note:  
Proper decoupling capacitors (1 µF to  
AVDD, 0.1 µF to DVIO) should be mounted  
as close as possible to the respective  
pins.  
4.2  
Reference Voltage (V  
)
REF  
The device requires a single-ended external reference  
voltage (VREF). The external input reference range is  
from AVDD to 5.1V. This reference voltage sets the  
differential input full-scale range from -VREF to +VREF  
.
The reference pin needs a tantalum decoupling  
capacitor (10 F, 10V rating). Additional multiple  
ceramic capacitors can be added in parallel to  
decouple high-frequency noise.  
4.2.1  
VOLTAGE REFERENCE  
SELECTION  
The performance of the voltage reference has a large  
impact on the accuracy of high-precision data  
acquisition systems. The voltage reference should  
have high accuracy, low-noise, and low-temperature  
drift. A ±0.1% output accuracy of the reference directly  
corresponds to ±0.1% absolute accuracy of the ADC  
output. The RMS output noise voltage of the reference  
must be less than 1/2 LSB of the ADC.  
Device Calibration (tCAL = ~ϰ00ms)  
Wait (tWAIT = ~40 ms)  
ADC  
State  
ACQUISITION MODE  
WAIT  
CALIBRATION  
AVDD  
VREF  
DVIO  
FIGURE 4-2:  
Note:  
Power-Up Sequence and Auto-Calibration Timing Diagram.  
Unlike manual recalibration, there will be no activity on SDO to indicate completion of auto-calibration.  
Refer to Section 6.2 “Recalibrate Command” for more details.  
DS20006219A-page 28  
2019 Microchip Technology Inc.  
MCP33151D/41D-XX  
5.0  
DEVICE OVERVIEW  
When the MCP33151D/41D-XX is first powered-up, it  
automatically performs a self-calibration and enters a  
low-current input acquisition mode (Standby).  
VREF  
+
Sample VIN  
VT = 0.6V  
D1  
+
+
+
SW1  
RSON  
CS  
SW2  
+
The external reference voltage (VREF), ranging from  
AVDD to 5.1V, sets the differential input full-scale range  
AIN  
(350Ω) (10 pF)  
CPIN  
(FSR) from -VREF to +VREF  
.
D2  
ILEAKAGE  
(~ 1 nA)  
The differential input signal needs an appropriate input  
common-mode voltage from 0V to VREF, depending on  
the input signal condition. VREF/2 is typically used for a  
symmetric differential input.  
VREF  
VT = 0.6V  
-
Sample VIN  
D1  
During input acquisition (Standby), the internal input  
sampling capacitors are connected to the input signal,  
while most of the internal analog circuits are shutdown  
to save power. During this input acquisition time  
(tACQ), the device consumes a typical current of  
1.5 µA.  
-
-
-
SW1  
RSON  
CS  
SW2  
-
AIN  
(350Ω) (10 pF)  
CPIN  
D2  
ILEAKAGE  
(~ 1 nA)  
The user can operate the device with an easy-to-use,  
SPI-compatible, 3-wire interface.  
Where:  
CS+, CS  
The device initiates data conversion on the rising edge  
of the conversion-start control (CNVST). The data  
conversion time (tCNV) is set by the internal clock.  
Once the conversion is complete and the host lowers  
CNVST, the output data is available on SDO and the  
device automatically starts the next input acquisition.  
During this input acquisition time (tACQ), the user can  
clock out the output data by providing the  
SPI-compatible serial clock (SCLK).  
-
=
=
=
input sample and hold capacitor 10 pF,  
On-resistance of the sampling switch 350  
Package pin + ESD capacitor 2 pF.  
RSON  
CPIN  
FIGURE 5-1:  
Analog Input Circuit.  
Simplified Equivalent  
5.1.1 ABSOLUTE MAXIMUM INPUT  
VOLTAGE RANGE  
The device provides conversion data with no missing  
codes. This ADC device family has a large input  
full-scale range, high precision, high throughput with  
no output latency, and is an ideal choice for various  
ADC applications.  
The input voltage at each input pin (AIN+ and AIN-)  
must meet the following absolute maximum input  
voltage limits:  
• (VIN+, VIN-) < VREF + 0.1V  
• (VIN+, VIN-) > GND - 0.1V  
5.1  
Analog Inputs  
Note:  
The ESD diodes at the analog input pins  
are biased from VREF. Any input voltage  
outside the absolute maximum range can  
turn on the input ESD protection diodes  
and results in input leakage current which  
may cause conversion errors and  
permanent damage to the device. Care  
must be taken in setting the input voltage  
ranges so that the input voltage does not  
exceed the absolute maximum input  
voltage range.  
Figure 5-1 shows a simplified equivalent circuit of the  
differential input architecture with a switched capacitor  
input stage. The input sampling capacitors  
(CS+ and CS ) are about 10 pF each. The back-to-back  
-
diodes (D1 – D2) at each input are ESD protection  
diodes. Note that these ESD diodes are tied to VREF, so  
that each input signal can swing from 0V to +VREF and  
from -VREF to +VREF differentially.  
During input acquisition (Standby), the sampling  
switches are closed and each input sees the sampling  
capacitor (10 pF) in series with the on-resistance of  
the sampling switch, RSON (350).  
For high-precision data conversion applications, the  
input voltage needs to be fully settled within 1/2 LSB  
during the input acquisition period (tACQ). The settling  
time is directly related to the source impedance: A  
lower impedance source results in faster input settling  
time. Although the device can be driven directly with a  
low impedance source, using a low-noise input driver,  
such as the MCP6D11, is highly recommended.  
2019 Microchip Technology Inc.  
DS20006219A-page 29  
MCP33151D/41D-XX  
The front-end differential driver provides a low output  
impedance, which provides fast settling of the analog  
inputs during the acquisition phase and provides  
isolation between the signal source and the ADC. The  
RC low-pass anti-aliasing filter band-limits the output  
noise of the input driver and attenuates the kick-back  
noise spikes from the ADC during conversion.  
5.1.2  
INPUT VOLTAGE RANGE  
The differential input (VIN) and common-mode voltage  
(VCM) at the input pins are defined by Equation 5-1:  
EQUATION 5-1:  
DIFFERENTIAL INPUT  
VIN = VIN+ VIN-  
Figure 5-2 is the reference circuit that is used to collect  
most of the linearity performance data shown in  
Section 1.0 “Key Electrical Characteristics”.  
VIN+ + VIN-  
VCM = ---------------------------  
2
The differential input driver shown in Figure 5-2 can be  
replaced with a low noise dual-channel op-amp. See  
Section 5.3 “ADC Input Driver Selection” for the  
driver selection.  
Where:  
VIN+  
VIN-  
=
=
the input at the AIN+ pin,  
the input at the AIN- pin.  
5.2.2  
ARBITRARY WAVEFORM INPUT  
SIGNALS  
The input signal swings around an input  
common-mode voltage (VCM), typically centered at  
VREF/2 for the best performance.  
The MCP33151D/41D-XX can convert input signals  
with arbitrary waveforms at the inputs AIN+ and AIN-.  
These inputs can be symmetric, non-symmetric or  
independent with respect to each other.  
The absolute value of the differential input (VIN) needs  
to be less than the reference voltage. The device will  
output saturated output codes if the absolute value of  
the input (VIN) is greater than the reference voltage.  
In the arbitrary input configuration, each ADC analog  
input is connected to a single ended source ranging  
from 0V to VREF. In this case, the ADC converts the  
voltage difference between the two input signals.  
Figure 5-4 shows the configuration example for the  
arbitrary input signals.  
Note:  
Saturation output codes:  
01111111111111 for VIN > VREF  
10000000000000 for VIN < -VREF  
The differential input full-scale voltage range (FSR) is  
given by the external reference voltage (VREF) setting  
(see Equation 5-2).  
5.2.3  
SINGLE-ENDED INPUT SIGNALS  
Although the MCP33151D/41D-10 is a fully-differential  
input device, it can also convert single-ended input  
signals. The most commonly recommended  
single-ended configurations are:  
EQUATION 5-2:  
Input Full-Scale Range (FSR) = 2VREF  
Input Range:  
FSR AND INPUT RANGE  
VREF VIN VREF 1 LSB  
• pseudo-differential bipolar configuration, and  
• pseudo-differential unipolar configuration.  
5.2  
Analog Input Conditioning  
Circuits  
5.2.3.1  
Pseudo-Differential Bipolar  
Configuration  
In the pseudo-differential bipolar configuration, one of  
the ADC analog inputs (typically AIN-) is driven with a  
fixed DC voltage (typically VREF/2), while the other  
(AIN+) is connected to a single-ended signal in the  
The MCP33151D/41D-XX supports various input  
types, such as: fully-differential inputs, arbitrary  
waveform inputs and single-ended inputs.  
range 0V to VREF  
.
5.2.1  
FULLY-DIFFERENTIAL INPUT  
SIGNALS  
In this case, the ADC converts the voltage difference  
between the single-ended signal and the DC voltage.  
Figure 5-5 shows the configuration example and  
Figure 5-6 shows its transfer function.  
The MCP33151D/41D-XX provides the best linearity  
performance with fully-differential inputs. Figure 5-2  
shows an example of  
a
fully-differential input  
conditioning circuit with a differential input driver  
followed by an RC anti-aliasing filter. Figure 5-3 shows  
its transfer function.  
The differential input (VIN) between the two differential  
ADC analog input pins (AIN+, AIN-) swings from -VREF  
to +VREF centered at the input common-mode voltage  
(VOCM).  
DS20006219A-page 30  
2019 Microchip Technology Inc.  
MCP33151D/41D-XX  
5.2.3.2  
Pseudo-Differential Unipolar  
Configuration  
In the pseudo-differential unipolar input configuration,  
one of the ADC analog inputs (typically AIN-) is  
connected to ground, while the other (AIN+) is  
connected to a single ended signal in the range 0V to  
VREF  
.
In this case, the ADC converts the voltage difference  
between the single ended signal and ground.  
Figure 5-7 shows the configuration example and  
Figure 5-8 shows its transfer function.  
VREF  
Voltage Reference  
(MCP1501)  
VDC  
CR  
10 μF  
1.8V  
AVDD  
1.8V to 5.5V  
DVIO  
(Note 2)  
RF  
Differential  
Inputs  
VREF  
VREF/2  
0V  
VREF  
RG  
VREF/2  
RG  
VREF  
R1  
AIN  
MCP331x1D-XX  
AIN  
+
0V  
SDI  
CNVST  
SCLK  
C1  
VOCM  
Host Device  
R1  
VREF  
0V  
-
(PIC32MZ)  
VREF  
VREF/2  
0V  
SDO  
C1  
GND  
RF  
1
fc =  
Input Driver  
(Note 1)  
2πR1C1  
Note 1: Contact Microchip Technology Inc. for availability of MCP6D11 differential driver application circuits.  
2: Contact Microchip Technology Inc. for the MCP1501 voltage reference application circuit.  
FIGURE 5-2:  
Input Conditional Circuit for Fully-Differential Input.  
Digital Output Code (Two’s Complement)  
2n/2 - 1  
-VREF  
+VREF - 1 LSB  
VIN  
Differential Input Voltage  
0
- 2n/2  
Available V range  
IN  
FIGURE 5-3:  
Transfer Function for Figure 5-2.  
2019 Microchip Technology Inc.  
DS20006219A-page 31  
MCP33151D/41D-XX  
VREF  
Voltage Reference  
(MCP1501)  
VDC  
CR  
1.8V  
1.8V to 5.5V  
DVIO  
(Note 2)  
10 μF  
Arbitrary Waveform  
Differential Input  
VREF  
AVDD  
R1  
VREF  
0V  
AIN  
MCP331x1D-XX  
AIN  
+
SDI  
CNVST  
SCLK  
C1  
Host Device  
R1  
VREF  
0V  
-
(PIC32MZ)  
SDO  
C1  
GND  
Low Noise Input Buffer  
1
(Note 1)  
fc =  
2πR1C1  
Note 1: Contact Microchip Technology Inc. for availability of the low-noise driver application circuits.  
2: Contact Microchip Technology Inc. for the MCP1501 voltage reference application circuit.  
FIGURE 5-4:  
Input Configuration for Arbitrary Waveform Input Signals.  
VREF  
Voltage Reference  
(MCP1501)  
VDC  
CR  
1.8V  
1.8V to 5.5V  
(Note 2)  
10 μF  
Low Noise Input Buffer  
(Note 1)  
VREF  
VREF  
AVDD  
DVIO  
VREF/2  
0V  
Single-Ended Input  
R1  
VREF  
AIN  
MCP331x1D-XX  
AIN  
+
SDI  
CNVST  
SCLK  
C1  
0V  
Host Device  
R1  
-
(PIC32MZ)  
SDO  
VREF/2  
C1  
GND  
1 μF  
1
fc =  
2πR1C1  
Note 1: Contact Microchip Technology Inc. for availability of the low-noise driver application circuits.  
2: Contact Microchip Technology Inc. for the MCP1501 voltage reference application circuit.  
FIGURE 5-5:  
Pseudo-Differential Bipolar-Input Configuration for Single-Ended Input Signal.  
Digital Output Code (Two’s Complement)  
2n/2 - 1  
2n/4  
-VREF/2  
-VREF  
VIN  
+VREF - 1 LSB  
0
+VREF/2  
Analog Input Voltage  
- 2n/4  
Available V range  
IN  
- 2n/2  
FIGURE 5-6:  
Transfer Function for Figure 5-5.  
DS20006219A-page 32  
2019 Microchip Technology Inc.  
MCP33151D/41D-XX  
VREF  
Voltage Reference  
(MCP1501)  
VDC  
CR  
1.8V  
1.8V to 5.5V  
(Note 2)  
10 μF  
Low Noise Input Buffer  
(Note 1)  
VREF  
VREF  
AVDD  
DVIO  
VREF/2  
0V  
Single-Ended Input  
R1  
VREF  
VREF/2  
0V  
AIN  
MCP331x1D-XX  
AIN  
+
SDI  
CNVST  
SCLK  
C1  
Host Device  
R1  
-
(PIC32MZ)  
SDO  
C1  
GND  
1
fc =  
2πR1C1  
Note 1: Contact Microchip Technology Inc. for availability of the low-noise driver application circuits.  
2: Contact Microchip Technology Inc. for the MCP1501 voltage reference application circuit.  
FIGURE 5-7:  
Pseudo-Differential Unipolar-Input Configuration for Single-Ended Input Signal.  
Digital Output Code (Two’s Complement)  
2n/2 - 1  
2n/4  
-VREF/2  
-VREF  
VIN  
0
+VREF/2 +VREF  
Analog Input Voltage  
Available V range  
IN  
- 2n/4  
- 2n/2  
FIGURE 5-8:  
Transfer Function for Figure 5-7.  
2019 Microchip Technology Inc.  
DS20006219A-page 33  
MCP33151D/41D-XX  
When the ADC is operating with a full-scale input  
range, the ADC input-referred RMS noise is  
approximated as shown in Equation 5-5:  
5.3  
ADC Input Driver Selection  
The noise and distortion of the ADC input driver can  
degrade the dynamic performance (SNR, SFDR, and  
THD) of the overall ADC application system. Therefore,  
the ADC input driver needs better performance  
specifications than the ADC itself. The data sheet of the  
driver typically shows the output noise voltage and  
harmonic distortion parameters.  
EQUATION 5-5:  
ADC INPUT-REFERRED  
NOISE  
VN_ADC Input-Referred Noise (V)  
SNR  
----------  
Figure 5-9 shows a simplified system noise presenta-  
tion block diagram for the front-end driver and ADC.  
FSR  
20  
= --------- 1 0  
2 2  
SNR  
----------  
20  
VREF  
= -----------10  
2
Front-End Driver  
, for differential input;  
VN_ADC  
Input-Referred Noise  
SNR  
----------  
20  
R
VREF  
= -----------10  
2 2  
, for single-ended input.  
-
-
+
ADC  
+
C
VN_RMS_Driver  
Noise  
Where FSR is the input full-scale range of the ADC.  
Noise Contribution from the Front-End Driver:  
FIGURE 5-9:  
Representation.  
Simplified System Noise  
The noise from the input driver can degrade the ADC’s  
SNR performance. Therefore, the selected input driver  
should have the lowest possible broadband noise  
density and 1/f noise. When an anti-aliasing filter is  
used after the input driver, the output noise density of  
the input driver is integrated over the -3 dB bandwidth  
of the filter.  
• Unity Gain Bandwidth:  
An input driver with higher bandwidth usually results in  
better overall linearity performance. Typically, the  
driver should have the unity gain bandwidth greater  
than 5 times the -3 dB cutoff frequency of the  
anti-aliasing filter:  
Equation 5-6 shows the RMS output noise voltage  
calculation using the RC filter’s bandwidth and noise  
density (eN) of the input driver. GN in Equation 5-6 is  
the noise gain of the driver amplifier and becomes 1 for  
a unity gain buffer driver.  
EQUATION 5-3:  
BANDWIDTH  
REQUIREMENT FOR ADC  
INPUT DRIVER  
(Hz)  
BW  
5 f  
Input Driver  
B
EQUATION 5-6:  
NOISE FROM FRONT-END  
DRIVER AMPLIFIER  
5
, for a single-pole RC filter.  
--------------  
2RC  
Where:  
eN  
VN_RMS_Driver_Noise = GN------ fB  
V  
fB = -3 dB bandwidth of RC anti-aliasing  
2
filter, as shown in Figure 5-9.  
Where eN is the broadband noise density (V/Hz) of  
the front-end driver amplifier and is typically given in  
its data sheet.  
Distortion:  
The nonlinearity characteristics of the input driver  
cause distortions in the ADC output. Therefore, the  
input driver should have less distortion than the ADC  
itself. The recommended total harmonic distortion  
(THD) of the driver is at least 10 dB less than that of the  
ADC:  
In Equation 5-6, 1/f noise (eNFlicker) is ignored  
assuming it is very small compared to the broadband  
noise (eN).  
For high precision ADC applications, the noise  
contribution from the front-end input driver amplifier is  
typically constrained to be less than about 20% (or 1/5  
times) of the ADC input-referred noise as shown in  
Equation 5-7:  
EQUATION 5-4:  
RECOMMENDED THD  
FOR ADC INPUT DRIVER  
THDInput Driver THDADC 10  
(dB)  
EQUATION 5-7:  
RECOMMENDED ADC  
INPUT DRIVER NOISE  
• ADC Input-Referred Noise:  
1
5
V
--V  
N_RMS_Driver_Noise  
N_ADC_Input-Referred_Noise  
DS20006219A-page 34  
2019 Microchip Technology Inc.  
MCP33151D/41D-XX  
Using Equation 5-5 to Equation 5-7, the recommended  
noise voltage density (eN) limit of the ADC input driver  
is expressed in Equation 5-8:  
TABLE 5-2:  
NOISE VOLTAGE DENSITY  
(eN) OF INPUT DRIVER FOR  
MCP33141D-XX  
ADC Input  
EQUATION 5-8:  
NOISE DENSITY FOR ADC  
INPUT DRIVER  
RC  
Filter  
Driver  
Amplifier  
(GN = 1)  
ADC (Note 1)  
eN  
1
5
GN------ fB --VN_ADC_Input_Referred_Noise  
2
ADC  
Input-Referred  
Noise  
Noise  
Voltage  
SNR  
(dBFS)  
fB  
(Note 2)  
(a) eN for differential input ADC:  
V
REF  
Density (e )  
N
SNR  
----------  
1
1
20  
V
Hz  
1.8V  
3V  
72  
319.7 µV  
443.2 µV  
721.9 µV  
3 MHz 29.5 nV/Hz  
4 MHz 25.5 nV/Hz  
5 MHz 22.8 nV/Hz  
3 MHz 40.8 nV/Hz  
4 MHz 35.4 nV/Hz  
5 MHz 31.6 nV/Hz  
3 MHz 66.5 nV/Hz  
4 MHz 57.6 nV/Hz  
5 MHz 51.5 nV/Hz  
eN ---------------------- V REF10  
5GN  
----------  
fB  
(a) eN for single-ended input ADC:  
73.6  
73.8  
SNR  
----------  
1
1
20  
V
eN ------------------------- V REF10  
10GN  
----------  
fB  
Hz  
5V  
Using Equation 5-8, the recommended maximum  
noise voltage density limit for unity gain input driver for  
differential input ADC can be estimated. Table 5-1 and  
Table 5-2 show a few example results with GN = 1.  
These tables may be used as a reference when  
selecting the ADC input driver amplifier.  
Note 1: See Equation 5-5 for the ADC  
input-referred noise calculation for  
differential input.  
2: fB is -3dB bandwidth of the RC anti-aliasing  
filter.  
TABLE 5-1:  
NOISE VOLTAGE DENSITY  
(EN) OF INPUT DRIVER FOR  
MCP33151D-XX  
ADC Input  
RC  
Filter  
Driver  
Amplifier  
(GN = 1)  
ADC (Note 1)  
ADC  
Input-Referred  
Noise  
Noise  
Voltage  
Density (e )  
SNR  
(dBFS)  
fB  
(Note 2)  
V
REF  
N
1.8V 78.8  
146 µV  
172 µV  
231 µV  
3 MHz 13.5 nV/Hz  
4 MHz 11.7 nV/Hz  
5 MHz 10.4 nV/Hz  
3 MHz 15.9 nV/Hz  
4 MHz 13.8 nV/Hz  
5 MHz 12.3 nV/Hz  
3 MHz 21.3 nV/Hz  
4 MHz 18.4 nV/Hz  
5 MHz 16.5 nV/Hz  
3V  
5V  
81.8  
83.7  
Note 1: See Equation 5-5 for the ADC  
input-referred noise calculation for  
differential input.  
2: fB is -3dB bandwidth of the RC anti-aliasing  
filter.  
2019 Microchip Technology Inc.  
DS20006219A-page 35  
MCP33151D/41D-XX  
5.4.2  
DATA CONVERSION PHASE  
5.4  
Device Operation  
The start of the conversion is controlled by CNVST. On  
the rising edge of CNVST, the sampled charge is  
locked (sample switches are opened) and the ADC  
performs the conversion. Once a conversion is started,  
it will not stop until the current conversion is complete.  
When the MCP33151D/41D-XX is first powered-up, it  
self-calibrates internal systems and automatically  
enters Input Acquisition mode. The device operates in  
two phases: (a) Input Acquisition (Standby) and (b)  
Data Conversion. Figure 5-10 shows the ADC’s  
operating sequence.  
The data conversion time (tCNV  
) is not user  
controllable. After the conversion is complete and the  
host lowers CNVST, the output data is presented on  
SDO.  
5.4.1  
INPUT ACQUISITION PHASE  
(STANDBY)  
Any noise injection during the conversion phase may  
affect the accuracy of the conversion. To reduce  
external environment noise, minimize I/O events and  
running clocks during the conversion time.  
During the input acquisition phase (tACQ), also called  
+
Standby, the two input sampling capacitors, CS and  
-
CS , are connected to the AIN+ and AIN- pins,  
respectively. The input voltage is sampled until a rising  
edge on CNVST is detected. The input voltage should  
The output data is clocked out MSB first. While the  
output data is being transferred, the device enters the  
next input acquisition phase.  
be fully settled within 1/2 LSB during tACQ  
.
The acquisition time (tACQ) is user-controllable. The  
system designer can increase the acquisition time  
(tACQ) as much as needed to reduce sampling rate for  
additional power savings.  
Note:  
Transferring output data during the  
acquisition phase can disturb the next  
input sample. It is highly recommended to  
allow at least tQUIET (10 ns, typical)  
between the last edge on the SPI interface  
and the rising edge on CNVST. See  
Figure 1-1 for tQUIET  
.
tCYC = 1/fS  
Input Acquisition  
Input Acquisition  
(Standby)  
Data Conversion  
tCNV  
(Standby)  
Operating  
Condition  
tACQ  
tACQ  
MCP331x1D-10: 490 ns (typical)  
MCP331x1D-05: 800 ns (typical)  
MCP331x1D-10: 510 ns (typical)  
MCP331x1D-05: 1200 ns (typical)  
MCP331x1D-10: 490 ns (typical)  
MCP331x1D-05: 800 ns (typical)  
(a) At the falling edge of CNVST,  
ADC output is available at SDO.  
(a) ADC acquires input sample #1. (a) Conversion is initiated at the rising edge of CNVST.  
(b) No ADC output is available yet.  
(b) All circuits are turned-on.  
(b) ADC output can be clocked out  
by providing clocks.  
(c) Most analog circuits are  
turned off.  
(c) ADC output is not available yet.  
(c) ADC acquires input sample #2.  
MCP331x1D-10: ~0.66 mA  
MCP331x1D-05: ~0.33 mA  
(d) Most analog circuits are turned off.  
IDDAN  
I
~ 1.5 µA  
Off  
(a) Device is first powered-up and  
(b) Performs a power-up self-calibration.  
Output Data  
SDO  
FIGURE 5-10:  
Device Operating Sequence.  
DS20006219A-page 36  
2019 Microchip Technology Inc.  
MCP33151D/41D-XX  
5.4.3  
SAMPLE THROUGHPUT RATE  
EQUATION 5-10: SPI CLOCK FREQUENCY  
REQUIREMENT  
The device completes data conversion within the  
maximum specification of the data conversion time  
(tCNV). The continuous input sample rate is the inverse  
of the sum of input acquisition time (tACQ) and data  
conversion time (tCNV). Equation 5-9 shows the  
continuous sample rate calculation using the minimum  
and maximum specifications of the input acquisition  
time (tACQ) and data conversion time (tCNV).  
tACQ = N TSCLK + tQUIET + tEN  
1
N
fSCLK = -------------- = ----------------------------------------------------  
TSCLK tACQ tQUIET + tEN  
Where:  
fSCLK  
=
minimum SPI serial clock  
frequency required to transfer all  
N-bits of output data during tACQ  
EQUATION 5-9:  
SAMPLE RATE  
N
TSCLK  
=
=
=
=
number of output data bits  
Period of SPI clock  
1
Sample Rate = ----------------------------------  
tACQ + tCNV  
N × TSCLK  
tQUIET  
Output data window  
(a) MCP331X1D-10:  
Quiet time between the last output  
bit and beginning of the next  
conversion start  
1
Sample Rate = ------------------------------------------- = 1 Msps  
250 ns + 750 ns  
=
=
=
10 ns (Min.)  
(b) MCP331X1D-05:  
tEN  
Output enable time  
10 ns (Max.) with DVIO 2.3V  
1
Sample Rate = ---------------------------------------------- = 500 kSPS  
600 ns + 1400 ns  
Note:  
Refer to Serial Interface Timing  
Specifications for relevant timing  
information and see Figure 1-1 for  
interface timing diagram.  
5.4.4  
SERIAL SPI CLOCK FREQUENCY  
REQUIREMENT  
The ADC output is collected during the input acquisition  
time (tACQ). For continuous input sampling and data  
conversion sequence, the SPI clock frequency should  
be fast enough to clock out all output data bits during  
the input acquisition time (tACQ). For the continuous  
sampling rate (fS), the minimum SPI clock frequency  
requirement is determined by Equation 5-10:  
5.4.5  
SERIAL SPI CLOCK FREQUENCY  
REQUIREMENT  
The ADC output is collected during the input acquisition  
time (tACQ). For continuous input sampling and data  
conversion sequence, the SPI clock frequency should  
be fast enough to clock out all output data bits during  
the input acquisition time (tACQ). For the continuous  
sampling rate (fS), the minimum SPI clock frequency  
requirement is determined by Equation 5-10:  
2019 Microchip Technology Inc.  
DS20006219A-page 37  
MCP33151D/41D-XX  
5.5  
Transfer Function  
5.6  
Digital Output Code  
The differential analog input is VIN = (VIN+) – (VIN-).  
The LSB size is given by Equation 5-11. and an  
example of LSB size vs. reference voltage is  
summarized in Table 5-3.  
The digital output code is proportional to the input  
voltage. The output data is in binary two’s complement  
format. With this coding scheme the MSB can be  
considered a sign indicator. When the MSB is a logic  
0’, the input is positive. When the MSB is a logic ‘1’, the  
input is negative. The following is an example of the  
output code:  
EQUATION 5-11: LSB SIZE (EXAMPLE)  
2VREF  
(a) for a negative full-scale input:  
Analog Input: (VIN+) – (VIN-) = -VREF  
Output Code: 1000...0000  
(b) for a zero differential input:  
Analog Input: (VIN+) – (VIN-) = 0V  
Output Code: 0000...0000  
(c) for a positive full-scale input:  
Analog Input: (VIN+) – (VIN-) = +VREF  
Output Code: 0111...1111  
LSB = --------------  
2N  
Where N is the resolution of the ADC in bits.  
TABLE 5-3:  
LSB SIZE VS. REFERENCE  
LSB Size  
Reference  
Voltage  
MCP33151D-XX MCP33141D-XX  
(VREF  
)
(14-bit)  
(12-bit)  
1.8V  
2V  
219.7 µV  
244 µV  
879.8 µV  
976.6 µV  
The MSB (sign bit) is always transmitted first through  
the SDO pin.  
The code will be locked at 0111...11 for all voltages  
greater than (VREF - 1 LSB) and 1000...00 for  
voltages less than -VREF. Table 5-4 shows an example  
of output codes of various input levels.  
2.5V  
3V  
305.2 µV  
366.2 µV  
402.8 µV  
427.3 µV  
488.3 µV  
549.3 µV  
610.4 µV  
622.6 µV  
1.2207 mV  
1.4648 mV  
1.6113 mV  
1.7090 mV  
1.9531 mV  
2.1973 mV  
2.4414 mV  
2.4902 mV  
3.3V  
3.5V  
4V  
4.5V  
5V  
5.1V  
Figure 5-11 shows the ideal transfer function and  
Table 5-4 shows the digital output codes for the  
MCP33151D/41D-XX.  
011 … 111  
011 … 110  
000 … 000  
100 … 001  
100 … 000  
0V  
-VREF + 1 LSB  
+VREF - 2 LSB  
-VREF + 0.5 LSB  
+VREF - 1.5 LSB  
-VREF  
+VREF - 1 LSB  
Differential Analog Input Voltage  
FIGURE 5-11:  
Ideal Transfer Function for  
Fully-Differential Input Signal.  
DS20006219A-page 38  
2019 Microchip Technology Inc.  
MCP33151D/41D-XX  
TABLE 5-4:  
DIGITAL OUTPUT CODE  
Digital Output Codes  
Input Voltage (V)  
MCP33151D-XX  
MCP33141D-XX  
(12-bit)  
(14-bit)  
VREF  
01-1111-1111-1111  
01-1111-1111-1111  
0111-1111-1111  
0111-1111-1111  
V
REF - 1 LSB  
.
.
.
.
.
.
2 LSB  
1 LSB  
0V  
00-0000-0000-0010  
00-0000-0000-0001  
00-0000-0000-0000  
11-1111-1111-1111  
11-1111-1111-1110  
0000-0000-0010  
0000-0000-0001  
0000-0000-0000  
1111-1111-1111  
1111-1111-1110  
-1 LSB  
-2 LSB  
.
.
.
.
.
.
-VREF  
10-0000-0000-0000  
10-0000-0000-0000  
1000-0000-0000  
1000-0000-0000  
< -VREF  
5.7  
Data Accumulator  
120  
115  
110  
105  
100  
95  
-75  
The MCP33151D/41D-XX devices feature an internal  
integrator capable of accumulating consecutive sample  
data and transmitting the accumulated data directly  
from the ADC, without requiring any special SPI  
settings to operate. This enables the user to achieve a  
higher ENOB through consecutive sample integration  
utilizing the ADC hardware, without requiring any  
external computational resources and reducing the  
amount of data transmitted on the serial bus. See  
Figure 5-12 for an example FFT performance plot after  
1024 integrated samples while sampling a 75Hz input  
signal with a 5V reference voltage. Refer to Figure 5-13  
for an example of FFT performance across possible  
integration lengths.  
-80  
-85  
-90  
-95  
SNR (dB)  
SINAD(dB)  
SFDR(dBc)  
THD (dB)  
-100  
-105  
-110  
-115  
-120  
90  
85  
80  
75  
1
4
16  
64  
256  
1024  
Integration Length  
FIGURE 5-13:  
FFT with 1024 integrated  
samples: Input Freq = 75Hz.  
0
f
= 1/1024 Msps  
-20  
-40  
5.7.1  
DATA ACCUMULATOR USAGE  
s
V
= 5V  
REF  
SNR = 116.7 dBFS  
SINAD = 111.5 dBFS  
SFDR = 117.2 dBc  
THD = -113.5 dBc  
ENOB = 18-bit  
Data accumulation is performed automatically within  
the  
device  
between  
each  
sequential  
-60  
Conversion/Acquisition cycle (TCYC) whenever the  
current conversion results are not read out, up to a total  
of 1024 consecutive conversions for an ENOB increase  
of up to 5 bits above typical. To begin data  
accumulation, the user simply avoids transmitting any  
SCLK pulses during each sequential conversion cycle.  
-80  
Resolution = 24-bit  
-100  
-120  
-140  
-160  
Note:  
If a sample has been converted but not  
read out, the sample can be discarded by  
providing at least 1 SCLK pulse before ini-  
tiating the next conversion. Providing at  
least 1 SCLK will reset the system for sin-  
gle acquisition. Otherwise all consecutive  
conversions without an SCLK pulse will  
automatically be integrated with the previ-  
ous conversion results.  
0
0.1  
0.2  
0.3  
0.4  
0.5  
Frequency (kHz)  
FIGURE 5-12:  
FFT with 1024 integrated  
samples: Input Freq = 75Hz.  
2019 Microchip Technology Inc.  
DS20006219A-page 39  
MCP33151D/41D-XX  
After completing the desired number of conversions to  
achieve the target ENOB, the user can begin  
transferring the total accumulated data by transmitting  
the necessary number of SCLK pulses to transfer all  
stored bits. Refer to Table 5-5 for number of  
conversions, bit size and ENOB relationship. See  
Note:  
The discrepancy between the output data  
size and the actual ENOB is a result of  
sample integration doubling both the signal  
amplitude and the noise power for each  
factor of two that the samples are inte-  
grated. By integrating 2 samples, the signal  
amplitude increases SNR by 6 dB, and the  
noise power decreases SNR by 3 dB,  
resulting in an overall SNR increase of 3 dB  
(+0.5 ENOB).  
Figure 6-5  
and  
Figure 6-8  
for  
example  
Conversion/Acquisition control and SPI timing  
operation.  
Consecutive sample integration increases the bit size  
of the output data, up to the maximum output size of the  
ADC (24-bits / 18.5 ENOB at 1024 samples for a 14-bit  
ADC).  
TABLE 5-6:  
INPUT SIGNAL ROLL-OFF  
FREQUENCY VS  
INTEGRATION LENGTH  
Because the addition of two binary values can produce  
a sum with an increased bit size, the ADC will need to  
output data proportional to the amount of samples  
being integrated. See Table 5-5 for an estimate of the  
data size and ENOB capability depending on the  
number of conversions the user chooses to integrate.  
Roll-Off (Hz @ 1MSPS)  
Integration  
Length  
0.1 dB  
0.01 dB  
0.001 dB  
2
4
41781.9  
20890.9  
10445.5  
5222.7  
2611.4  
1305.7  
652.8  
13226.3  
6613.2  
3306.6  
1653.3  
826.6  
413.3  
206.7  
103.3  
51.7  
4183.0  
2091.5  
1045.7  
522.9  
261.4  
130.7  
65.4  
When using the accumulator, it is important to consider  
the frequency content of the input signal being  
sampled. Because the accumulator is averaging all  
consecutive conversions over the accumulated time  
period, the input frequency must be low enough to  
ensure that no signal information is being filtered out.  
This means that there is a performance trade-off  
between sample integration length (and resulting  
ENOB improvement) and the maximum input  
frequency that can be sampled. Refer to Table 5-6 to  
understand the roll-off frequencies for various  
integration lengths, and refer to Figure 5-14 for an  
example of the dB attenuation across integration  
lengths.  
8
16  
32  
64  
128  
256  
512  
1024  
326.4  
32.7  
163.2  
16.3  
81.6  
25.8  
8.2  
0.02  
0
TABLE 5-5:  
ACCUMULATED DATA SIZE  
AND ENOB FOR 14-BIT ADC  
-0.02  
-0.04  
-0.06  
ADC  
transmission  
size (bits)  
Effective  
Number of bits  
(ENOB) (1)  
Number of  
Conversions  
1
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
13.5  
2
14  
-0.08  
1
3 - 4  
14 - 14.5  
14.5 - 15  
15 - 15.5  
15.5 - 16  
16 - 16.5  
16.5 - 17  
17 - 17.5  
17.5 - 18  
18 - 18.5  
4
16  
64  
256  
1024  
Integration Length  
5 - 8  
FIGURE 5-14:  
Fundamental Frequency (dB) vs Integration  
Length: Input Freq = 75 Hz.  
Measured Attenuation of  
9 - 16  
17 - 32  
33 - 64  
65 - 128  
129 - 256  
257 - 512  
513 - 1024  
Note 1: ENOB values based on typical 14b device  
characteristics under nominal conditions  
and setting N to the maximum value in the  
corresponding row.  
DS20006219A-page 40  
2019 Microchip Technology Inc.  
MCP33151D/41D-XX  
6.1  
Serial Interface Options and Serial  
Communications  
6.0  
DIGITAL SERIAL INTERFACE  
The device has an SPI compatible serial digital  
interface using four digital interface pins: CNV, SDI,  
SDO and SCLK.  
The device offers a CS mode with 3-wire interface,  
and can operate either with or without a BUSY  
indicator status output. This BUSY status output bit is  
followed by the conversion output bits, and can be  
used as an interrupt request (IRQ) input for the digital  
host device.  
The following sections describe the operation of the  
MCP33151D/41D-XX using the digital serial interface.  
Table 6-1 summarizes the descriptions of both digital  
interface pins and interface options, respectively. The  
communication is always started by the host device  
(Master).  
The 3-Wire CS mode (using CNV, SCLK, SDO)  
interface is simple and useful when the host device  
handles a single MCP33151D/41D-XX device.  
Note:  
This device supports a standard SPI  
Mode 0,0 only.  
The following sections detail the serial communication  
of the 3-Wire CS modes with or without a BUSY output.  
SPI MODE 0,0: In this mode, the SCLK  
Idle state is “Low”. Data is clocked out on  
the SDO pin on the falling edge of the  
SCLK pin.  
For the MCP33151D/41D-XX, this means  
that there will be a rising edge before  
there is a falling edge.  
TABLE 6-1:  
INTERFACE MODE SELECTION SUMMARY  
SDI Pin  
SCLK at  
CNV  
Rising  
Edge  
CNV Pin at tCNV  
(recommended)  
BUSY bit  
at SDO  
Interface Mode  
At CNV  
Rising Edge  
After CNV  
Rising Edge  
3-Wire CS Mode without  
BUSY output bit  
“High”  
“Low”  
Transition from “High” to  
“Low” after tCNV (Max)  
No  
3-Wire CS Mode with  
BUSY output bit  
Transition from “High” to  
“Low” before tCNV (Max)  
Yes  
completes the conversion regardless of the state of the  
CNV pin. This means the CNV pin can be used for  
other SPI devices after the conversion is initiated.  
6.1.1  
CS MODES  
Note:  
The timing diagram examples in the  
following subsections are shown for 14-bit  
mode only. The examples are applicable  
for 12-bit mode in the same way with  
reduced bits.  
When conversion is complete, the device enters the  
acquisition phase (Power-Down state), and SDO  
comes out of the high-Z state when CNV is lowered.  
The device exits the acquisition phase when CNV goes  
“High”. SDO returns to a high-Z state after the 14th  
SCLK falling edge or when CNV goes high, whichever  
occurs first.  
6.1.1.1  
3-Wire CS MODE WITHOUT BUSY  
OUTPUT BIT  
This interface option is most useful when a single  
MCP33151D/41D-XX is connected to an  
SPI-compatible digital host. Figure 6-1 shows the  
connection diagram with the host device. In this mode,  
CNV functions as both conversion control and chip  
select (CS).  
The device will output the MSB on the SDO pin  
following the falling edge of CNV, or once the  
Converting Phase (tCNV  
)
completes, whichever  
happens later. The remaining data bits are then  
clocked out on the subsequent SCLK falling edges.  
Data is valid on both edges of SCLK and can be  
captured on either edge. However, a digital host  
capturing data on the SCLK falling edge can achieve a  
faster read out rate.  
To enable this interface option, SDI can either be tied  
to VIO, or otherwise permanently held in a Logic = 1  
state. By doing so, the device will never output a BUSY  
status bit.  
It is recommended to use this mode only when the ADC  
Converting Phase (tCNV) will complete before the fall-  
ing edge of CNV.  
As shown in Figure 6-2, at the rising edge of CNV, the  
conversion is initiated. The SDO pin becomes high-Z  
state (if no external pull-up is used). Once the  
conversion is initiated, it continues and the ADC  
Figure 6-2 and Figure 6-3 show the timing diagrams for  
both early and late CNV lowering scenarios.  
2019 Microchip Technology Inc.  
DS20006219A-page 41  
MCP33151D/41D-XX  
VIO  
CNVST  
VIO  
CNV  
SDISDO
SC>K  
47 kΩ  
SDI  
(Data In)  
SC>K  
(a) MCP331xx  
(b) Digital Host (Master)  
FIGURE 6-1:  
Connection Diagram for  
3-Wire CS Mode without BUSY Status Indicator  
Output Bit.  
TCYC = 1/fs  
SDI = 1  
tCNVH  
tSU_SDIH_CNV  
CNV (CS  
)
tSCLK  
tEN  
tQUIET  
SC>K  
1
tDO  
2
3
4
5
12  
13  
14  
tDIS  
tSCLK_L  
D11  
tSCLK_H  
“High” (with pull-up)  
SDO  
D13  
D12  
D10  
D9  
D2  
D1  
D0  
,ŝŐŚ-Z (with no pull-up)  
ADC  
State  
Converting Phase  
Input Acquisition  
(tACQ  
)
(tCNV  
)
FIGURE 6-2:  
Interface Timing Diagram for 3-Wire CS Mode without BUSY Status Indicator Output  
Bit, Late CNV (Recommended).  
DS20006219A-page 42  
2019 Microchip Technology Inc.  
MCP33151D/41D-XX  
TCYC = 1/fs  
SDI = 1  
tCNVH  
tSU_SDIH_CNV  
CNV (CS)  
SC>K  
tSCLK  
tQUIET  
1
tDO  
2
3
4
5
12  
13  
14  
tDIS  
tSCLK_L  
tSCLK_H  
“High” (with pull-up)  
SDO  
D13  
D12  
D11  
D10  
D9  
D2  
D1  
D0  
HŝŐŚ-Z (with no pull-up)ꢀ  
tEN  
ADC  
State  
Converting Phase  
Input Acquisition  
(tACQ  
)
(tCNV  
)
FIGURE 6-3:  
Interface Timing Diagram for 3-Wire CS Mode without BUSY Status Indicator Output  
Bit, Early CNV.  
TCYC(1)  
= 1/fs  
TCYC(2)  
= 1/fs  
TCYC(3) … TCYC(N-1)  
TCYC(N) = 1/fs  
SDI = 1  
tCNVH  
tCNVH  
tCNVH  
tSU_SDIH_CNV  
CNV (CS)  
tSCLK  
tEN  
tQUIET  
2
3
4
M-2  
M-1  
D1  
M
SCLK  
SDO  
1
tDO  
tSCLK_L  
DM-4  
tSCLK_H  
tDIS  
D0  
DM-2  
DM-3  
D2  
D14  
D15  
DM-1  
ADC  
State  
tCNV  
tACQ  
tCNV  
tACQ  
tACQ  
tCNV  
tACQ  
Legend  
No signal transitions during compressed time  
Signal transitions during compressed time  
FIGURE 6-4:  
Interface Timing Diagram for Accumulator Operation in 3-Wire CS Mode without  
BUSY Status Indicator Output Bit.  
Note:  
Refer to Section 5.7, Data Accumulator for more details about using the data accumulator feature.  
2019 Microchip Technology Inc.  
DS20006219A-page 43  
MCP33151D/41D-XX  
6.1.1.2  
3-Wire CS Mode with BUSY Output  
Bit  
CNVST  
This interface option is typically used when a single  
MCP33151D/41D-XX is connected to an  
SPI-compatible digital host that has an interrupt (IRQ)  
input.  
VIO  
CNV  
SDISDO
SC>K  
47 kΩ  
SDI  
(Data In)  
IRQ  
Figure 6-5 shows the connection diagram with the host  
device. In this mode, CNV functions as both conversion  
control and chip select (CS).  
SC>K  
To enable this interface option, SDI can either be tied  
to GND, or otherwise permanently held in a Logic = 0  
state. By doing so, the device will output a BUSY bit  
before each conversion data sample.  
(a) MCP331xx  
FIGURE 6-5:  
(b) Digital Host (Master)  
Connection Diagram for  
3-Wire CS Mode with BUSY Status Indicator  
Output Bit. IRQ Pin in the Host Device Is Used  
for Interrupt Event.  
As shown in Figure 6-6, at the rising edge of CNV,  
conversion is initiated. The SDO pin becomes high-Z  
state (if no external pull-up is used). Once the  
conversion is initiated, it continues and the ADC  
completes the conversion regardless of the state of the  
CNV pin. This means the CNV pin can be used for  
other SPI devices after the conversion is initiated.  
Note:  
The pull-up resistor on the SDO pin is  
required in this mode as it ensures that the  
IRQ pin of the digital host is held high  
when SDO goes to high-Z state.  
When conversion is complete, the device enters an  
acquisition phase and Power-Down state, SDO comes  
out of the high-Z state, and outputs a BUSY status indi-  
cator bit (“Low” level). The device exits the acquisition  
phase when CNV once again returns to a “High” state.  
SDO then returns to a high-Z state after the 15th SCLK  
falling edge or when CNV goes high, whichever occurs  
first.  
Note:  
It is recommended that CNV be driven low  
before the minimum conversion time  
(tCNV) expires, and remain “Low” until the  
maximum possible conversion time  
(tCONV) expires. A “Low” level on the CNV  
input at the end of a conversion ensures  
the device generates a BUSY status  
indicator bit when the ADC has finished  
converting.  
This configuration provides a high-to-low transition on  
the IRQ pin of the digital host caused by the BUSY bit.  
The data bits are clocked out, MSB first, on the subse-  
quent SCLK falling edges. Data are valid on both edges  
of SCLK and can be captured on either edge. However,  
a digital host capturing data on the SCLK falling edge  
can achieve a faster reading rate.  
Figure 6-6 and Figure 6-7 show the timing diagrams for  
both early and late CNV lowering scenarios.  
DS20006219A-page 44  
2019 Microchip Technology Inc.  
MCP33151D/41D-XX  
TCYC = 1/fs  
SDI = 0  
tSU_SDIL_CNV  
tCNVH  
CNV (CS)  
tSCLK  
tQUIET  
SC>K  
1
tDO  
2
3
4
5
13  
14  
15  
tDIS  
tSCLK_L  
tSCLK_H  
D10  
“High” (with pull-up)ꢀ  
SDO  
BUSY  
D13  
D12  
D11  
D2  
D1  
D0  
HiŐŚ-Z (with no pull-up)ꢀ  
tEN  
ADC  
State  
Converting Phase  
Input Acquisition  
(tACQ  
)
(tCNV  
)
FIGURE 6-6:  
Timing Diagram for 3-Wire CS Mode with BUSY Status indicator Output Bit, Early  
CNV (Recommended).  
TCYC = 1/fs  
SDI = 0  
tSU_SDIL_CNV  
tCNVH  
CNV (CS  
SC>K  
)
tSCLK  
tEN  
tQUIET  
1
tDO  
2
3
4
5
13  
14  
15  
tDIS  
tSCLK_L  
D12  
tSCLK_H  
“High” (with pull-up)  
SDO  
BUSY  
D2  
D1  
D0  
D13  
D11  
D10  
HiŐŚ-Z (with no pull-up)  
ADC  
State  
Converting Phase  
Input Acquisition  
(tACQ  
)
(tCNV  
)
FIGURE 6-7:  
Timing Diagram for 3-Wire CS Mode with BUSY Status Indicator Output Bit, Late  
CNV.  
2019 Microchip Technology Inc.  
DS20006219A-page 45  
MCP33151D/41D-XX  
TCYC(1)  
= 1/fs  
TCYC(2)  
= 1/fs  
TCYC(3) … TCYC(N-1)  
TCYC(N) = 1/fs  
SDI = 1  
tCNVH  
tCNVH  
tCNVH  
tSU_SDIH_CNV  
CNV (CS)  
tSCLK  
tQUI  
2
3
4
M-2  
M-1  
D1  
M
SCLK  
SDO  
1
tDO  
tSCLK_L  
DM-4  
tSCLK_H  
tDIS  
D0  
BUSY  
BUSY  
BUSY  
DM-2  
DM-3  
D2  
BUSY  
tEN  
ADC  
State  
tCNV  
tACQ  
tCNV  
tACQ  
tACQ  
tCNV  
tACQ  
Legend  
No signal transitions during compressed time  
Signal transitions during compressed time  
FIGURE 6-8:  
Timing Diagram for Accumulator Operation in 3-Wire CS Mode with BUSY Status  
Indicator Output Bit.  
Note: Refer to Section 5.7, Data Accumulator for more details about using the data accumulator feature.  
DS20006219A-page 46  
2019 Microchip Technology Inc.  
MCP33151D/41D-XX  
A self-calibration is initiated by sending the recalibrate  
command. The host device sends a recalibrate  
command by transmitting 1024 SCLK pulses (including  
the clocks for data bits) while the device is in the  
acquisition phase (Standby).  
6.2  
Recalibrate Command  
The recalibrate command may be used in the following  
cases:  
• When the reference voltage was not fully settled  
during the initial power-on sequence.  
The device drives SDO low during the recalibration  
procedure, and returns to high-Z once completed. The  
status of the recalibration procedure can be monitored  
by placing a pull-up on SDO, so that SDO goes high  
when the recalibration is complete.  
• During operation, to ensure optimum performance  
across varying environment conditions, such as  
reference voltage and temperature.  
Figure 6-9 shows the recalibrate command timing  
diagram. The calibration takes approximately 500 ms  
(tCAL).  
(Note 1)  
SDI = 1  
Start recalibration  
Finish recalibration  
Device Recalibration  
Complete data reading  
CNV (CS)  
1024 clocks  
(SPITM Recalibrate command)  
...  
1
2
3
...  
13  
14  
1023  
1024  
tCAL  
SC>K  
(Note 2)  
“High” (with pull-up)  
“Low”  
SDO  
ADC Output Data Stream  
HiŐŚ-Z (with no pull-up)  
(Note 3)  
ADC  
State  
(Note 4)  
tCNV  
Note 1: SDI must remain “High” during the entire recalibration cycle.  
2: The 1024 clocks include the clocks for data bits.  
3: SDO outputs “Low” during calibration, and high-Z when exiting the calibration. This SDO activity is only present during manual reca-  
libration and is not present during initial power-on auto-calibration. (See Section 4.3 “Power-Up Sequence and Auto-Calibration”  
for more details)  
4: After finishing the recalibration procedure, the device is ready for a new input sampling immediately.  
FIGURE 6-9:  
Note:  
Recalibrate Command Timing Diagram.  
When the device performs a calibration, it is important to note that the analog supply voltage (AVDD), the  
reference voltage (VREF) and the digital I/O interface supply voltage (DVIO) must be stabilized for a correct  
calibration. This is particularly relevant during the initial power-on sequence. Refer to Section 4.3  
“Power-Up Sequence and Auto-Calibration” for more details.  
2019 Microchip Technology Inc.  
DS20006219A-page 47  
MCP33151D/41D-XX  
NOTES:  
DS20006219A-page 48  
2019 Microchip Technology Inc.  
MCP33151D/41D-XX  
Figure 7-1 and Figure 7-2 show this evaluation tool.  
This evaluation platform allows users to quickly  
evaluate the ADC's performance for their specific  
application requirements.  
7.0  
7.1  
DEVELOPMENT SUPPORT  
Device Evaluation Board  
Microchip Technology Inc. offers a high speed/high  
precision SAR ADC evaluation platform which can be  
used to evaluate Microchip’s latest high speed/high  
resolution SAR ADC products. The platform consists of  
an MCP331x1D-XX evaluation board, a data capture  
board (PIC32 MZ EF Curiosity Board), and a PC-based  
Graphical User Interface (GUI) software.  
Note:  
Contact Microchip Technology Inc. for the  
PIC32 MCU firmware and the  
MCP331x1D-XX Evaluation Kit.  
(a) MCP331x1D-XX Evaluation Board  
(b) PIC32MZ EF Curiosity Board  
FIGURE 7-1:  
MCP331x1D-XX Evaluation Kit.  
FIGURE 7-2:  
PC-Based Graphical User Interface Software.  
2019 Microchip Technology Inc.  
DS20006219A-page 49  
MCP33151D/41D-XX  
The following four layers are recommended:  
7.2  
PCB Layout Guidelines  
(a) Top Layer: Most of the noise-sensitive  
analog components are populated on the top  
layer. Use all unused surface area as ground  
planes: analog ground plane in analog circuit  
section and digital ground in digital circuit  
section. These ground planes need to be tied to  
the corresponding ground planes in the second  
and bottom layers using multiple vias.  
Microchip provides the schematics and PCB layout of  
the MCP331x1D-XX Evaluation Board (P/N:  
ADM00873). It is strongly recommended that the user  
references the example circuits and PCB layouts.  
A good schematic with low noise PCB layout is critical  
for high performing ADC application system designs. A  
few guidelines are listed below:  
• Use low noise supplies (AVDD, DVIO, and VREF).  
(b) 2nd Layer: Use this layer as the ground  
plane: Analog ground plane under the analog  
circuit section of the top layer and digital ground  
plane under the digital circuit section on the top  
layer. Each ground plane is tied to its  
• All supply voltage pins, including reference  
voltage, need decoupling capacitors. Decoupling  
capacitor requirements for each supply pin are  
shown in Figure 4-1.  
corresponding ground plane of top and bottom  
layers using multiple vias.  
• Use NPO or COG type capacitor for the RC  
anti-aliasing filters in the analog input network.  
• Keep the analog circuit section (analog input  
driver amplifiers, filters, voltage reference, ADC,  
etc.) with an analog ground plane, and the digital  
circuit section (MCU, digital I/O interface) with a  
digital ground plane. Keep these sections as  
much apart as possible. This will minimize any  
digital switching noise coupling into the analog  
section.  
(c) 3rd Layer: This layer is used to distribute  
various power supplies of the circuits. Use  
separate trace paths for the power supplies of  
analog and digital sections. Do not use the same  
power supply source for both analog and digital  
circuits.  
(d) Bottom Layer: This layer is mostly used as  
a solid ground plane: Analog ground plane  
under the analog circuit section of the top layer  
and digital ground plane under the digital circuit  
section on the top layer. Each ground plane is  
tied to its corresponding ground plane of all  
layers using multiple vias.  
• Connect the analog and digital ground planes at a  
single point (away from the sensitive analog  
sections) with a 0resistor or with a ferrite bead.  
See Figure 7-3 as an example of separated  
ground planes.  
• Keep the clock and digital output data lines short  
and away from the sensitive analog sections as  
much as possible.  
Figure 7-3 and Figure 7-4 show brief examples of the  
PCB layout. See more details of the schematics and  
PCB layout in the MCP331x1D-XX Evaluation Board  
User’s Guide.  
PCB Material and Layers: Low-loss FR-4  
material is most commonly used.  
Analog Ground Plane  
(GND)  
MCP331x1D-XX  
Analog Ground Plane  
Note: Analog and digital  
(GND)  
ground planes are  
connected via R56.  
SCLK  
SDO  
R56  
Digital Interface  
Connectors for MCU  
Digital Ground Plane  
(DGND)  
(DGND)  
Digital Ground Plane  
FIGURE 7-3:  
PCB Layout Example: Analog and Digital Ground Planes.  
DS20006219A-page 50  
2019 Microchip Technology Inc.  
MCP33151D/41D-XX  
SDI  
V
V
SCLK  
SDO  
REF  
AV  
IO  
DD  
A
A
+
-
IN  
IN  
GND  
MCP331x1D-XX  
CNVST  
(a) PCB layout example  
(b) Schematic example from the MCP331x1D-XX Evaluation Board  
FIGURE 7-4:  
PCB Layout Example: See More Details in the MCP331x1D-XX EV Kit User’s Guide.  
2019 Microchip Technology Inc.  
DS20006219A-page 51  
MCP33151D/41D-XX  
NOTES:  
DS20006219A-page 52  
2019 Microchip Technology Inc.  
MCP33151D/41D-XX  
EQUATION 8-2:  
8.0  
TERMINOLOGY  
P
S
SINAD = 10log ---------------------  
Analog Input Bandwidth (Full-Power  
Bandwidth)  
P
+ P  
D
N
SNR  
-----------  
10  
THD  
------------  
10  
The analog input frequency at which the spectral power  
of the fundamental frequency (as determined by FFT  
analysis) is reduced by 3 dB.  
= 10log 10  
10  
SINAD is either given in units of dBc (dB to carrier),  
when the absolute power of the fundamental is used as  
the reference, or dBFS (dB to full-scale), when the  
power of the fundamental is extrapolated to the  
converter full-scale range.  
Aperture Delay or Sampling Delay  
This is the time delay between the rising edge of the  
CNVST input and when the input signal is held for a  
conversion.  
Effective Number of Bits (ENOB)  
Differential Nonlinearity  
(DNL, No Missing Codes)  
The effective number of bits for a sine wave input at a  
given input frequency can be calculated directly from its  
measured SINAD using the following formula:  
An ideal ADC exhibits code transitions that are exactly  
1 LSB apart. DNL is the deviation from this ideal value.  
No missing codes indicates that all 16384 codes for  
14-bit (4096 codes for 12-bit) must be present over all  
the operating conditions.  
EQUATION 8-3:  
SINAD 1.76  
ENOB = ----------------------------------  
6.02  
Integral Nonlinearity (INL)  
Gain Error  
INL is the maximum deviation of each individual code  
from an ideal straight line drawn from negative full  
scale through positive full scale.  
Gain error is the deviation of the ADC’s actual input  
full-scale range from its ideal value. The gain error is  
given as a percentage of the ideal input full-scale  
range. Gain error is usually expressed in LSB or as a  
percentage of full-scale range (%FSR).  
Signal-to-Noise Ratio (SNR)  
SNR is the ratio of the power of the fundamental (PS)  
to the noise floor power (PN), below the Nyquist  
frequency and excluding the power at DC and the first  
nine harmonics.  
Offset Error  
The major carry transition should occur for an analog  
value of ½ LSB below AIN+ = AIN. Offset error is  
defined as the deviation of the actual transition from  
that point.  
EQUATION 8-1:  
P
S
SNR = 10log -------  
P
N
Temperature Drift  
The temperature drift for offset error and gain error  
specifies the maximum change from the initial (+25°C)  
value to the value at across the TMIN to TMAX range.  
The value is normalized by the reference voltage and  
expressed in µV/oC or ppm/oC.  
SNR is either given in units of dBc (dB to carrier), when  
the absolute power of the fundamental is used as the  
reference, or dBFS (dB to full-scale), when the power  
of the fundamental is extrapolated to the converter  
full-scale range.  
Maximum Conversion Rate  
Signal-to-Noise and Distortion (SINAD)  
The maximum clock rate at which parametric testing is  
performed.  
SINAD is the ratio of the power of the fundamental (PS)  
to the power of all the other spectral components  
including noise (PN) and distortion (PD) below the  
Nyquist frequency, but excluding DC:  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the ratio of the power of the fundamental to the  
highest other spectral component (either spur or  
harmonic). SFDR is typically given in units of dBc (dB  
to carrier) or dBFS.  
2019 Microchip Technology Inc.  
DS20006219A-page 53  
MCP33151D/41D-XX  
Total Harmonic Distortion (THD)  
THD is the ratio of the power of the fundamental (PS) to  
the summed power of the first 13 harmonics (PD).  
EQUATION 8-4:  
P
S
THD = 10log -------  
P
D
THD is typically given in units of dBc (dB to carrier).  
THD is also shown by:  
EQUATION 8-5:  
2
2
2
3
2
4
2
n
V + V + V + + V  
THD = 20log-----------------------------------------------------------------  
2
V
1
Where:  
V1 = RMS amplitude of the  
fundamental frequency  
V1 through Vn = Amplitudes of the second  
through nth harmonics  
Common-Mode Rejection Ratio (CMRR)  
Common-mode rejection is the ability of a device to  
reject a signal that is common to both sides of a  
differential input pair. The common-mode signal can be  
an AC or DC signal or a combination of the two. CMRR  
is measured using the ratio of the differential signal  
gain to the common-mode signal gain and expressed in  
dB with Equation 8-6:  
EQUATION 8-6:  
A
DIFF  
CMRR = 20log ------------------  
A
CM  
Where:  
ADIFF = Output Code/Differential Voltage  
ADIFF = Output Code/Common-Mode Voltage  
DS20006219A-page 54  
2019 Microchip Technology Inc.  
MCP33151D/41D-XX  
9.0  
9.1  
PACKAGING INFORMATION  
Package Marking Information  
10-Lead MSOP (3 × 3 mm)  
Example  
Part Number  
Code  
MCP33151D-10-E/MS  
MCP33151D-05-E/MS  
MCP33141D-10-E/MS  
MCP33141D-05-E/MS  
51D-10  
51D-10  
922256  
51D-05  
41D-10  
41D-05  
Note:  
Applies to 10-Lead MSOP.  
10-Lead TDFN (3 × 3 × 0.8 mm)  
Example  
Part Number  
Code  
MCP33151D-10-E/MN  
MCP33151D-05-E/MN  
MCP33141D-10-E/MN  
MCP33141D-05-E/MN  
51D1  
51D0  
41D1  
41D0  
XXXX  
YYWW  
NNN  
PIN 1  
51D1  
1922  
256  
NNN  
Note:  
Applies to 10-Lead TDFN.  
PIN 1  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC® designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2019 Microchip Technology Inc.  
DS20006219A-page 55  
MCP33151D/41D-XX  
10-Lead Plastic Micro Small Outline Package (MS) [MSOP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
0.20 H  
D
D
2
A
N
E
2
E1  
2
E1  
E
0.20 H  
0.25 C  
1
2
e
B
8X b  
0.13  
C A B  
TOP VIEW  
H
C
A2  
A
SEATING  
PLANE  
8X  
0.10 C  
A1  
SEE DETAIL A  
SIDE VIEW  
END VIEW  
Microchip Technology Drawing C04-021D Sheet 1 of 2  
DS20006219A-page 56  
2019 Microchip Technology Inc.  
MCP33151D/41D-XX  
10-Lead Plastic Micro Small Outline Package (MS) [MSOP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
4X Ĭ1  
c
C
SEATING  
PLANE  
Ĭ
L
(L1)  
4X Ĭ1  
DETAIL A  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
10  
0.50 BSC  
Overall Height  
Molded Package Thickness  
Standoff  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
A
-
-
1.10  
0.95  
0.15  
A2  
A1  
E
E1  
D
0.75  
0.00  
0.85  
-
4.90 BSC  
3.00 BSC  
3.00 BSC  
0.60  
L
0.40  
0.80  
Footprint  
L1  
0.95 REF  
Mold Draft Angle  
Foot Angle  
Lead Thickness  
Lead Width  
0°  
5°  
0.08  
0.15  
-
-
-
-
8°  
15°  
0.23  
0.33  
Ĭ
Ĭ1  
c
b
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or  
protrusions shall not exceed 0.15mm per side.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-021D Sheet 2 of 2  
2019 Microchip Technology Inc.  
DS20006219A-page 57  
MCP33151D/41D-XX  
10-Lead Plastic Micro Small Outline Package (MS) [MSOP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
G
SILK SCREEN  
Z
C
G1  
Y1  
X1  
E
RECOMMENDED LAND PATTERN  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
0.50 BSC  
4.40  
MAX  
Contact Pitch  
E
C
Contact Pad Spacing  
Overall Width  
Contact Pad Width (X10)  
Contact Pad Length (X10)  
Distance Between Pads (X5)  
Distance Between Pads (X8)  
Z
X1  
Y1  
G1  
G
5.80  
0.30  
1.40  
3.00  
0.20  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing No. C04-2021B  
DS20006219A-page 58  
2019 Microchip Technology Inc.  
MCP33151D/41D-XX  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2019 Microchip Technology Inc.  
DS20006219A-page 59  
MCP33151D/41D-XX  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20006219A-page 60  
2019 Microchip Technology Inc.  
MCP33151D/41D-XX  
APPENDIX A: REVISION HISTORY  
Revision A (June 2019)  
• Initial release of this document  
2019 Microchip Technology Inc.  
DS20006219A-page 59  
MCP33151D/41D-XX  
NOTES:  
2019 Microchip Technology Inc.  
DS20006219A-page 60  
MCP33151D/41D-XX  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
(1)  
X
/XX  
XX  
[X]  
PART NO.  
X
a) MCP33151D-10-E/MS:  
14-bit, 1 Msps,  
10-LD MSOP package  
Temperature Package  
Range  
Device Input Type Sample Rate Tape and Reel  
Option  
b) MCP33151D-10T-E/MS: 14-bit, 1 Msps,  
Tape and Reel,  
10-LD MSOP package  
Device:  
MCP33151D-10 = 1 Msps, 14-Bit Differential Input SAR ADC  
MCP33141D-10 = 1 Msps, 12-Bit Differential Input SAR ADC  
c) MCP33151D-10-E/MN:  
14-bit, 1 Msps,  
MCP33151D-05 = 500 kSPS, 14-Bit Differential Input SAR ADC  
MCP33141D-05 = 500 kSPS, 12-Bit Differential Input SAR ADC  
10-LD TDFN package  
d) MCP33151D-10T-E/MN: 14-bit, 1 Msps,  
Tape and Reel,  
Input Type:  
D
= Differential Input  
10-LD TDFN package  
e) MCP33141D-10-E/MS:  
f) MCP33141D-10T-E/MS:  
12-bit, 1 Msps,  
10-LD MSOP package  
Sample Rate:  
10  
05  
= 1 Msps  
= 500 kSPS  
12-bit, 1 Msps,  
Tape and Reel,  
10-LD MSOP package  
Tape and Reel  
Option:  
Blank  
T
=
=
Standard packaging (tube or tray)  
Tape and Reel (Note 1)  
g) MCP33141D-10-E/MN:  
12-bit, 1 Msps,  
10-LD TDFN package  
Temperature  
Range:  
E
=
-40C to +125C (Extended)  
h) MCP33141D-10T-E/MN: 12-bit, 1 Msps,  
Tape and Reel,  
10-LD TDFN package  
Package:  
MS  
MN  
=
=
Plastic Micro Small Outline Package (MSOP),  
10-Lead  
i) MCP33151D-05-E/MS:  
j) MCP33151D-05T-E/MS:  
14-bit, 500 kSPS,  
10-LD MSOP package  
Thin Plastic Dual Flat No Lead Package (TDFN),  
10-Lead (Note 2)  
14-bit, 500 kSPS,  
Tape and Reel,  
10-LD MSOP package  
k) MCP33151D-05T-E/MN: 14-bit, 500 kSPS,  
Tape and Reel,  
10-LD TDFN package  
l) MCP33141D-05-E/MS:  
12-bit, 500 kSPS,  
10-LD MSOP package  
m) MCP33141D-05T-E/MN: 12-bit, 500 kSPS,  
Tape and Reel,  
10-LD TDFN package  
Note 1:  
Tape and Reel identifier only appears in  
the catalog part number description. This  
identifier is used for ordering purposes and  
is not printed on the device package.  
Check with your Microchip Sales Office for  
package availability with the Tape and Reel  
option.  
2:  
Contact Microchip Technology Inc. for  
availability.  
2019 Microchip Technology Inc.  
DS20006219A-page 61  
MCP33151D/41D-XX  
NOTES:  
DS20006219A-page 62  
2019 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, Adaptec,  
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT,  
chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex,  
flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck,  
LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi,  
Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer,  
PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire,  
Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST,  
SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,  
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA  
are registered trademarks of Microchip Technology Incorporated in  
the U.S.A. and other countries.  
APT, ClockWorks, The Embedded Control Solutions Company,  
EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load,  
IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision  
Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire,  
SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,  
TimePictra, TimeProvider, Vite, WinPath, and ZL are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard,  
CryptoAuthentication, CryptoAutomotive, CryptoCompanion,  
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average  
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial  
Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker,  
KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,  
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,  
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,  
PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple  
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,  
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,  
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and  
ZENA are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
The Adaptec logo, Frequency on Demand, Silicon Storage  
Technology, and Symmcom are registered trademarks of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology Germany  
II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in  
other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2019, Microchip Technology Incorporated, All Rights Reserved.  
ISBN: 978-1-522-4701-6  
For information regarding Microchip’s Quality Management Systems,  
please visit www.microchip.com/quality.  
2019 Microchip Technology Inc.  
DS20006219A-page 63  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Australia - Sydney  
Tel: 61-2-9868-6733  
India - Bangalore  
Tel: 91-80-3090-4444  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
China - Beijing  
Tel: 86-10-8569-7000  
India - New Delhi  
Tel: 91-11-4160-8631  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8665-5511  
India - Pune  
Tel: 91-20-4121-0141  
Finland - Espoo  
Tel: 358-9-4520-820  
China - Chongqing  
Tel: 86-23-8980-9588  
Japan - Osaka  
Tel: 81-6-6152-7160  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
China - Dongguan  
Tel: 86-769-8702-9880  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Guangzhou  
Tel: 86-20-8755-8029  
Korea - Daegu  
Tel: 82-53-744-4301  
Germany - Garching  
Tel: 49-8931-9700  
China - Hangzhou  
Tel: 86-571-8792-8115  
Korea - Seoul  
Tel: 82-2-554-7200  
Germany - Haan  
Tel: 49-2129-3766400  
Austin, TX  
Tel: 512-257-3370  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Malaysia - Kuala Lumpur  
Tel: 60-3-7651-7906  
Germany - Heilbronn  
Tel: 49-7131-72400  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
China - Nanjing  
Tel: 86-25-8473-2460  
Malaysia - Penang  
Tel: 60-4-227-8870  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Qingdao  
Philippines - Manila  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-532-8502-7355  
Tel: 63-2-634-9065  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shanghai  
Tel: 86-21-3326-8000  
Singapore  
Tel: 65-6334-8870  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Shenyang  
Tel: 86-24-2334-2829  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Shenzhen  
Tel: 86-755-8864-2200  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Suzhou  
Tel: 86-186-6233-1526  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Wuhan  
Tel: 86-27-5980-5300  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Italy - Padova  
Tel: 39-049-7625286  
Houston, TX  
Tel: 281-894-5983  
China - Xian  
Tel: 86-29-8833-7252  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
China - Xiamen  
Tel: 86-592-2388138  
Norway - Trondheim  
Tel: 47-7288-4388  
China - Zhuhai  
Tel: 86-756-3210040  
Poland - Warsaw  
Tel: 48-22-3325737  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
DS20006219A-page 64  
2019 Microchip Technology Inc.  
05/14/19  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY