MCP37D21-80 [MICROCHIP]

80 Msps, 16/14-Bit High-Pr ecision Pipelined ADC;
MCP37D21-80
型号: MCP37D21-80
厂家: MICROCHIP    MICROCHIP
描述:

80 Msps, 16/14-Bit High-Pr ecision Pipelined ADC

文件: 总141页 (文件大小:3534K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP37D31-80 AND MCP37D21-80  
80 Msps, 16/14-Bit High-Precision Pipelined ADC  
• Digital Signal Post-Processing (DSPP) Options:  
- Decimation filters for improved SNR  
- Fractional Delay Recovery (FDR) for time-  
delay corrections in multi-channel operations  
- Phase, Offset and Gain adjust of individual  
channels  
- Digital Down-Conversion (DDC)  
- Continuous wave beamforming for octal-  
channel mode  
Features  
• Sample Rates:  
- 80 Msps for single-channel operation  
- 80 Msps/number of channels used  
• SNR with fIN = 15 MHz and -1 dBFS:  
- 73.9 dBFS (typical) at 80 Msps  
• SFDR with fIN = 15 MHz and -1 dBFS:  
- 93 dBc (typical) at 80 Msps  
• Power Dissipation Excluding Digital I/O (80 Msps):  
Serial Peripheral Interface (SPI)  
- 229 mW  
• Auto Sync Mode to synchronize multiple devices  
to the same clock  
• Power Dissipation with CMOS Digital I/O (80 Msps):  
- MCP37D31-80: 257 mW  
• TFBGA-121 Package  
- MCP37D21-80: 253 mW  
- Dimension: 8 mm x 8 mm x 1.08 mm  
• Power Dissipation with LVDS Digital I/O (80 Msps):  
- MCP37D31-80: 329 mW  
- MCP37D21-80: 320 mW  
• Power-Saving Modes:  
- 79 mW during Standby  
- Includes embedded decoupling capacitors for  
reference pins and bandgap output pin  
AEC-Q100 Qualified (Automotive Applications)  
- Temperature Grade 1: -40°C to +125°C  
- 22 mW during Shutdown  
Typical Applications  
• Supply Voltage:  
- Digital Section: 1.2V, 1.8V  
- Analog Section: 1.2V, 1.8V  
• Selectable Full-Scale Input Range: up to 2.975 VP-P  
• Communication Instruments  
• Microwave Digital Radio  
• Lidar and Radar  
• Configurable 8-Channel Input MUX:  
• High-Speed Test Equipment  
- Single-Channel or Sequential Multi-Channel  
Sampling  
• Ultrasound and Sonar Imaging  
• Scanners and Low-Power Portable Instruments  
• Industrial and Consumer DataAcquisition Systems  
• Input Channel Bandwidth: 500 MHz  
• Output Data Format:  
- Parallel CMOS, DDR LVDS  
- Serialized DDR LVDS (16-bit, octal-channel mode)  
• Optional Output Data Randomizer  
Built-In ADC Linearity Calibration Algorithms:  
- Harmonic Distortion Correction (HDC)  
- DAC Noise Cancellation (DNC)  
- Dynamic Element Matching (DEM)  
- Flash Error Calibration  
MCP37Dx1-80 Family Comparison(1):  
Digital  
Decimation  
Digital  
Down-Conversion  
CW  
Beamforming  
Noise-Shaping  
Requantizer  
Part Number Sample Rate Resolution  
(3)  
(3)  
(4)  
(2)  
(5)  
MCP37D31-80  
MCP37D21-80  
MCP37D11-80  
80 Msps  
80 Msps  
80 Msps  
16  
14  
12  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
Yes  
Note 1: All devices are pin-to-pin compatible.  
2: Available in single and dual-channel modes.  
3: Available in single and dual-channel modes, and octal-channel mode when CW beamforming is enabled.  
4: Available in octal-channel mode.  
5: 18-bit output is available in MCP37D31-80 with high-order decimation filter setting.  
2020 Microchip Technology Inc.  
DS20006382A-page 1  
MCP37D31-80 AND MCP37D21-80  
Functional Block Diagram  
AVDD12  
AVDD18  
GND  
DVDD12  
DVDD18  
Duty Cycle  
Correction  
DLL  
PLL  
CLK+  
CLK-  
Clock  
Selection  
DCLK+  
DCLK-  
Output Clock Control  
Digital Signal Post-Processing:  
(Selectable using Configuration Register Bits)  
AIN0  
+
- Digital Down-Converter (DDC)  
- Decimation Filter  
AIN0  
-
Pipelined  
ADC  
- Fractional Delay Recovery (FDR)  
- Continuous Wave (CW) Beamforming  
- Phase/Offset/Gain Adjustment  
AIN7  
+
AIN7  
-
VREF+  
VREF-  
WCK  
OVR  
Output Control:  
(0.9V)  
VCM  
Output  
- CMOS, DDR LVDS  
Data  
- Serialized LVDS  
[15:0]  
Q
Reference Generator  
SENSE  
Configuration Registers  
DM1  
DM2  
Note 2  
VBG  
SYNC  
SLAVE  
REF1+ REF1-  
REF0- SDIO SCLK CS  
REF0+  
Note 1  
Note 1: All external circuit components for REF0/1 and V pins are already embedded in the TFBGA-121 package.  
BG  
Note 2: DM1 and DM2 are extra output data pins for the 18-bit output mode, which is only available with the MCP37D31-80.  
DS20006382A-page 2  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
Description  
The MCP37D31-80 and MCP37D21-80 are 80 Msps,  
16-bit and 14-bit high-precision analog-to-digital  
converter, respectively, with configurable input MUX.  
The ADC output data can be coded in two's  
complement or offset binary representation, with or  
without the data randomizer option. The output data is  
available as full-rate CMOS or Double-Data-Rate  
(DDR) LVDS. Additionally, a serialized LVDS option is  
also available for the 16-bit octal-channel mode.  
Abuilt-in 8-input multiplexer (MUX) is used to select the  
active analog input(s) depending on the user  
configuration. In single-channel operation, the MUX  
can be configured to select one of the 8-inputs. In multi-  
channel operation, the selected inputs are sequentially  
sampled. The input channel selection and the channel  
order are configured using the user-programmable  
configuration register bits.  
The device also includes various features designed to  
maximize flexibility in the user’s applications and  
minimize system cost, such as a programmable PLL  
clock, output data rate control and phase alignment,  
and programmable digital pattern generation. The  
device’s operational modes and feature sets are  
configured using the user-programmable registers.  
The ADC core operates at up to an 80 Msps rate. In  
single-channel operation, the analog input is sampled  
at full speed. In multi-channel operation, the effective  
sample rate per channel is the full speed divided by the  
number of selected channels. For example, if all 8-input  
channels are used, each input channel is sampled at  
10 Msps when the ADC core is running at 80 Msps.  
Similarly, if only 4-input channels are selected, each  
input channel is sampled at 20 Msps when the ADC  
core is running at 80 Msps.  
AutoSync mode offers a great design flexibility when  
multiple devices are used in applications. It allows  
multiple devices to sample input synchronously at the  
same clock source.  
The high dynamic performance with built-in digital  
signal post-processing (DSPP) features makes the  
device ideal for various high-performance data  
acquisition systems, including communication and test  
equipment, ultrasound imaging equipment, Lidar,  
Radar and portable instrumentation.  
The device features harmonic distortion correction,  
DAC noise cancellation, power-up calibration, and  
always-on background calibration which enable high  
performance to be maintained consistently across the  
extended temperature range.  
The device is available in a lead-free TFBGA-121  
package. The device is AEC-Q100 qualified for  
automotive applications and operates over the  
extended temperature range of -40°C to +125°C.  
In addition to the data conversion, the device offers  
exceptional user-selectable built-in digital signal post-  
processing (DSPP) features that include high-order  
digital decimation filters, digital down-conversion  
(DDC), fractional delay recovery (FDR), gain and offset  
adjustment per channel, and continuous wave (CW)  
beamforming capability.  
Package Type  
Bottom View  
The output decimation filter option improves SNR  
performance significantly up to 90’s dBFS with the  
512x decimation setting. The built-in digital down-  
conversion (DDC) option can offer great flexibility in  
advanced RF and digital communication system  
designs.  
Gain, phase and DC offset can be adjusted  
independently for each input channel, allowing for  
simplified implementation of continuous wave (CW)  
beamforming and ultrasound Doppler imaging  
applications.  
Dimension: 8 mm x 8 mm x 1.08 mm  
Ball Pitch: 0.65 mm  
Ball Diameter: 0.4 mm  
In dual or octal-channel mode, the Fractional Delay  
Recovery (FDR) feature digitally corrects the difference  
in sampling instance between different channels, so  
that all inputs appear to have been sampled at the  
same time.  
TFBGA-121 Package  
The differential full-scale analog input range is  
programmable up to 2.975 VP-P  
.
The input is sampled on the rising edge of the clock.  
The digital output code is available after 28 clock cycles  
of data latency. Latency will increase if any of the digital  
signal post-processing (DSPP) options are enabled.  
2020 Microchip Technology Inc.  
DS20006382A-page 3  
MCP37D31-80 AND MCP37D21-80  
NOTES:  
DS20006382A-page 4  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
1.0  
PACKAGE PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
Top View  
(Not to Scale)  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
SDIO VCM  
REF1+ REF1- VBG REF0+ REF0- GND  
GND  
AIN4-  
AIN2+  
SCLK  
WCK/  
CS  
GND GND SENSE AVDD12 AVDD12 AVDD18 AVDD18 AIN4+  
AIN2-  
AIN0+  
AIN0-  
WCK/  
OVR- OVR+  
(WCK) (OVR)  
GND GND AVDD12 AVDD12 AVDD12 GND  
GND  
AIN6-  
C
D
E
F
Q14/Q7- Q15/Q7  
+
GND GND AVDD12 AVDD12 AVDD12 GND  
GND GND AVDD12 AVDD12 AVDD12 GND  
GND  
GND  
AIN6+  
Q12/Q6- Q13/Q6  
+
AIN5+ AIN1+  
Q10/Q5- Q11/Q5+ DVDD18 DVDD18 AVDD12 AVDD12 AVDD12 GND  
GND  
AIN5-  
AIN1-  
G
H
J
Q8/Q4- Q9/Q4+DVDD18 DVDD18 GND GND AVDD12 AVDD12 GND  
AIN7-  
AIN3+  
AIN7+  
AIN3-  
Q6/Q3- Q7/Q3+ DVDD12 DVDD12 GND GND  
Q4/Q2- Q5/Q2+ DVDD12 DVDD12 GND GND  
GND  
GND  
GND  
GND  
GND  
GND VCMIN  
+
VCMIN  
-
K
L
Q2/Q1- Q3/Q1+ DM1/DM+ DCLK- CAL  
GND SLAVE ADR0 ADR1 GND  
GND  
Q0/Q0- Q1/Q0+ DM2/DM- DCLK+ RESET SYNC GND  
CLK+  
CLK-  
GND AVDD18  
Analog  
Digital  
All others: Supply Voltage  
Notes:  
• Die dimension: 8 mm x 8 mm x 1.08 mm.  
• Ball dimension: (a) Ball Pitch = 0.65 mm, (b) Ball Diameter = 0.4 mm.  
• Flip-chip solder ball composition: Sn with Ag 1.8%.  
• Solder sphere composition: SAC-405 (Sn/Au 4%/Cu 0.5%).  
FIGURE 1-1:  
TFBGA-121 Package. See Table 1-1 for the pin descriptions and Table 1-2 for active  
and inactive ADC output pins for various ADC resolution modes.  
2020 Microchip Technology Inc.  
DS20006382A-page 5  
MCP37D31-80 AND MCP37D21-80  
TABLE 1-1:  
Ball No.  
A1  
PIN FUNCTION TABLE  
Name  
I/O Type  
Description  
SDIO  
Digital Input/ SPI data input/output  
Output  
A2  
VCM  
Analog  
Output  
Common-mode output voltage (900 mV) for analog input signal  
Connect a decoupling capacitor (0.1 µF)(1)  
A3  
A4  
A5  
REF1+  
REF1-  
VBG  
Differential reference voltage 1 (+/-). Decoupling capacitors are embedded in  
the TFBGA package. Leave these pins floating.  
Internal bandgap output voltage  
A decoupling capacitor (2.2 μF) is embedded in the TFBGA package. Leave  
this pin floating.  
A6  
A7  
A8  
A9  
REF0+  
REF0-  
GND  
Differential reference 0 (+/-) voltage. Decoupling capacitors are embedded in  
the TFBGA package. Leave these pins floating.  
Supply  
Common ground for analog and digital sections  
Analog Input Channel 4 differential analog input (-)  
A10  
AIN4-  
A11  
B1  
AIN2+  
Channel 2 differential analog input (+)  
Digital Input SPI serial clock input  
SCLK  
B2  
B3  
B4  
B5  
CS  
SPI Chip Select input  
GND  
Supply  
Common ground for analog and digital sections  
SENSE  
AVDD12  
Analog  
Input  
Analog input range selection. See Table 4-2 for SENSE voltage settings.  
Supply voltage input (1.2V) for analog section  
B6  
B7  
B8  
B9  
Supply  
AVDD18  
Supply voltage input (1.8V) for analog section  
Channel 4 differential analog input (+)  
Channel 2 differential analog input (-)  
B10  
B11  
AIN4+  
AIN2-  
Analog Input  
C1  
WCK/OVR-  
(WCK)  
Digital  
Output  
WCK: Word clock sync digital output  
OVR: Input overrange indication digital output(2)  
C2  
WCK/OVR+  
(OVR)  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
GND  
Supply  
Common ground for analog and digital sections  
Supply voltage input (1.2V) for analog section  
AVDD12  
GND  
AIN6-  
Common ground pin for analog and digital sections  
Channel 6 differential analog input (-)  
Channel 0 differential analog input (+)  
Digital data output(3)  
C10  
Analog Input  
C11  
D1  
AIN0+  
Q14/Q7-  
Digital  
Output  
CMOS = Q14  
DDR LVDS = Q7- (Even bit first), Q15- (MSb byte first)  
Serialized LVDS = Q- for the first selected channel (n = 1)  
D2  
Q15/Q7+  
Digital data output(3)  
CMOS = Q15  
DDR LVDS = Q7+ (Even bit first), Q15+ (MSb byte first)  
Serialized LVDS = Q+ for the first selected channel (n = 1)  
DS20006382A-page 6  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
TABLE 1-1:  
Ball No.  
PIN FUNCTION TABLE  
Name  
I/O Type  
Description  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
GND  
Supply  
Common ground for analog and digital sections  
AVDD12  
Supply  
Supply voltage input (1.2V) for analog section  
Common ground for analog and digital sections  
GND  
Channel 6 differential analog input (+)  
Channel 0 differential analog input (-)  
Digital data output(3)  
D10  
D11  
E1  
AIN6+  
AIN0-  
Analog Input  
Q12/Q6-  
Digital  
Output  
CMOS = Q12  
DDR LVDS = Q6- (Even bit first), Q14- (MSb byte first)  
Serialized LVDS = Q- for channel order (n) = 2  
E2  
Q13/Q6+  
Digital data output(3)  
CMOS = Q13  
DDR LVDS = Q6+ (Even bit first), Q14+ (MSb byte first)  
Serialized LVDS = Q+ for channel order (n) = 2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
GND  
Supply  
Common ground for analog and digital sections  
AVDD12  
Supply voltage input (1.2V) for analog section  
GND  
Common ground for analog and digital sections  
Channel 5 differential analog input (+)  
Channel 1 differential analog input (+)  
Digital data output(3)  
E10  
E11  
F1  
AIN5+  
AIN1+  
Analog Input  
Q10/Q5-  
Digital  
Output  
CMOS = Q10  
DDR LVDS = Q5- (Even bit first), Q13- (MSb byte first)  
Serialized LVDS = Q- for channel order (n) = 3  
F2  
Q11/Q5+  
Digital data output(3)  
CMOS = Q11  
DDR LVDS = Q5+ (Even bit first), Q13+ (MSb byte first)  
Serialized LVDS = Q+ for channel order (n) = 3  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
DVDD18  
AVDD12  
Supply  
Supply voltage input (1.8V) for digital section.  
All digital input pins are driven by the same DVDD18 potential.  
Supply voltage input (1.2V) for analog section  
GND  
Common ground for analog and digital sections  
Channel 5 differential analog input (-)  
Channel 1 differential analog input (-)  
F10  
F11  
AIN5-  
AIN1-  
Analog Input  
2020 Microchip Technology Inc.  
DS20006382A-page 7  
MCP37D31-80 AND MCP37D21-80  
TABLE 1-1:  
Ball No.  
G1  
PIN FUNCTION TABLE  
Name  
I/O Type  
Description  
Q8/Q4-  
Digital  
Output  
Digital data output(3)  
CMOS = Q8  
DDR LVDS = Q4- (Even bit first), Q12- (MSb byte first)  
Serialized LVDS = Q- for channel order (n) = 4  
G2  
Q9/Q4+  
Digital data output(3)  
CMOS = Q9  
DDR LVDS = Q4+ (Even bit first), Q12+ (MSb byte first)  
Serialized LVDS = Q+ for channel order (n) = 4  
G3  
G4  
G5  
G6  
DVDD18  
GND  
Supply  
Supply voltage input (1.8V) for digital section  
All digital input pins are driven by the same DVDD18 potential  
Common ground for analog and digital sections  
Supply voltage input (1.2V) for analog section  
G7  
G8  
G9  
AVDD12  
Supply  
GND  
AIN7-  
Common ground for analog and digital sections  
Channel 7 differential analog input (-)  
G10  
G11  
H1  
Analog Input  
AIN3+  
Channel 3 differential analog input (+)  
Digital data output(3)  
CMOS = Q6  
Q6/Q3-  
Digital  
Output  
DDR LVDS = Q3- (Even bit first), Q11- (MSb byte first)  
Serialized LVDS = Q- for channel order (n) = 5  
H2  
Q7/Q3+  
Digital data output(3)  
CMOS = Q7  
DDR LVDS = Q3+ (Even bit first), Q11+ (MSb byte first)  
Serialized LVDS = Q+ for channel order (n) = 5  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
DVDD12  
GND  
Supply  
Supply voltage input (1.2V) for digital section  
Common ground for analog and digital sections  
Channel 7 differential analog input (+)  
Channel 3 differential analog input (-)  
Digital data output(3)  
H10  
H11  
J1  
AIN7+  
AIN3-  
Analog Input  
Q4/Q2-  
Digital  
Output  
CMOS = Q4  
DDR LVDS = Q2- (Even bit first), Q10- (MSb byte first)  
Serialized LVDS = Q- for channel order (n) = 6  
J2  
Q5/Q2+  
Digital data output(3)  
CMOS = Q5  
DDR LVDS = Q2+ (Even bit first), Q10+ (MSb byte first)  
Serialized LVDS = Q+ for channel order (n) = 6  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
DVDD12  
GND  
Supply  
DC supply voltage input pin for digital section (1.2V)  
Common ground for analog and digital sections  
DS20006382A-page 8  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
TABLE 1-1:  
Ball No.  
PIN FUNCTION TABLE  
Name I/O Type  
Description  
VCMIN+  
VCMIN-  
Q2/Q1-  
Analog Input Common-mode voltage input for auto-calibration(4)  
These two pins should be tied together and connected to VCM voltage.  
J10  
J11  
K1  
Digital  
Output  
Digital data output(3)  
CMOS = Q2  
DDR LVDS = Q1- (Even bit first), Q9- (MSb byte first)  
Serialized LVDS = Q- for channel order (n) = 7  
K2  
Q3/Q1+  
Digital data output(3)  
CMOS = Q3  
DDR LVDS = Q1+ (Even bit first), Q9+ (MSb byte first)  
Serialized LVDS = Q+ for channel order (n) = 7  
K3  
K4  
K5  
DM1/DM+  
DCLK-  
CAL  
18-bit mode: Digital data output. DM1 and DM2 are the last two LSb bits(5)  
Other modes: Not used  
LVDS: Differential digital clock output (-)  
CMOS: Not used (leave floating)  
Calibration status flag digital output(6)  
High: Calibration is complete  
Digital  
Output  
Low: Calibration is not complete  
K6  
K7  
GND  
Supply  
Common ground pin for analog and digital sections  
)
Slave or Master selection pin in AutoSync (10 . If not used, tie to GND.  
SLAVE  
Digital Input  
K8  
K9  
ADR0  
ADR1  
GND  
SPI address selection pin (A0 bit). Tie to GND or DVDD18(7)  
SPI address selection pin (A1 bit). Tie to GND or DVDD18(7)  
Common ground for analog and digital sections  
K10  
K11  
L1  
Supply  
Q0/Q0-  
Digital  
Output  
Digital data output(3)  
CMOS = Q0  
DDR LVDS = Q0- (Even bit first), Q8- (MSb byte first)  
Serialized LVDS = Q- for the last selected channel (n=8)  
L2  
Q1/Q0+  
Digital data output(8)  
CMOS = Q1  
DDR LVDS = Q0+ (Even bit first), Q8+ (MSb byte first)  
Serialized LVDS = Q+ for the last selected channel (n=8)  
18-bit mode: Digital data output. DM1 and DM2 are the last two LSb bits(5  
)
L3  
L4  
DM2/DM-  
DCLK+  
Other modes: Not used  
LVDS: Differential digital clock output (+)  
CMOS: Digital clock output(8)  
L5  
L6  
RESET  
SYNC  
Digital Input Reset control input:  
High: Normal operating mode  
Low: Reset mode(9)  
Digital Input/ Digital synchronization pin for AutoSync(10  
)
Output  
If not used, leave it floating.  
L7  
L8  
L9  
GND  
CLK+  
CLK-  
GND  
Supply  
Common ground for analog and digital sections  
Analog Input Differential clock input (+)  
Differential clock input (-)  
Supply  
Common ground for analog and digital sections  
L10  
L11  
AVDD18  
Analog Input Supply voltage input (1.8V) for analog section  
2020 Microchip Technology Inc.  
DS20006382A-page 9  
MCP37D31-80 AND MCP37D21-80  
Notes:  
1. When the VCM output is used for the Common-mode voltage of analog inputs (i.e. by connecting to the center-tap of  
a balun), the VCM pin should be decoupled with a 0.1 µF capacitor, and should be directly tied to the VCMIN+ and VCMIN  
-
pins.  
2. CMOS output mode: WCK/OVR- is WCK and WCK/OVR+ is OVR.  
DDR LVDS output mode: The rising edge of DCLK+ is WCK and the falling edge is OVR.  
OVR: OVR will be held “High” when analog input overrange is detected. Digital signal post-processing will cause  
OVR to assert early relative to the output data. See Figure 2-2 for LVDS timing of these bits.  
WCK: WCK is normally “Low”. WCK is “High” while data from the first channel is sent out. In single-channel  
mode, WCK stays “High” except when in I/Q output mode. In serialized LVDS (octal) output mode, the WCK out-  
put is asserted “High” on the MSb bit. See Section 4.12.5 “Word Clock (WCK)” for further WCK description.  
3. DDR LVDS: Two data bits are multiplexed onto each differential output pair. The output pins shown here are for  
the “Even bit first”, which is the default setting of OUTPUT_MODE<1:0> in Address 0x62 (Register 5-20). The  
even data bits (Q0, Q2, Q4, Q6, Q8, Q10, Q12, Q14) appear when DCLK+ is “High”. The odd data bits (Q1, Q3,  
Q5, Q7, Q9, Q11, Q13, Q15) appear when DCLK+ is “Low”. See Addresses 0x65 (Register 5-23) and 0x68  
(Register 5-26) for output polarity control. See Figures 2-2 to 2-6 for LVDS output timing diagrams.  
4.  
VCMIN is used for Auto-Calibration only. VCMIN+ and VCMIN- should be tied together always. There should be no  
voltage difference between the two pins. Typically both VCMIN+ and VCMIN- are tied to the VCM output pin  
together, but they can be tied to another Common-mode voltage if external VCM is used. This pin has High Z input  
in Shutdown, Standby and Reset modes.  
5. Available for the MCP37D31-80 device only.  
Leave these pins floating (No Connect) if not used.  
18-bit mode: DM1/DM+ and DM2/DM- are the last LSb bits. DM2/DM- is the LSb. In LVDS output, DM1/DM+ and  
DM2/DM- are the LSb pair. DM1/DM+ appears at the falling edge and DM2/DM- is at the rising edge of the DCLK+.  
Other than 18-bit mode: DM1/DM+ and DM2/DM- are High Z in LVDS mode.  
6. CAL pin stays “Low” at power-up until the first power-up calibration is completed. When the first calibration has  
completed, this pin has “High” output. It stays “High” until the internal calibration is restarted by hardware or a  
soft reset command. In Reset mode, this pin is “Low”. In Standby and Shutdown modes, this pin will maintain the  
prior condition.  
7. If the SPI address is dynamically controlled, the Address pin must be held constant while CS is “Low”.  
8. The phase of DCLK relative to the data output bits may be adjusted depending on the operating mode. This is  
controlled differently depending on the configuration of the digital signal post-processing, PLL and/or DLL. See  
also Addresses 0x52, 0x64 and 0x6D (Registers 5-7, 5-22 and 5-28) for more details.  
9. The device is in Reset mode while this pin stays “Low”. On the rising edge of RESET, the device exits Reset  
mode, initializes all internal user registers to default values, and begins power-up calibration.  
10. (a) SLAVE = “High”: The device is selected as slave and the SYNC pin becomes input pin.  
(b) SLAVE = “Low”: The device is selected as master and the SYNC pin becomes output pin. In SLAVE/SYNC  
operation, master and slave devices are synchronized to the same clock.  
DS20006382A-page 10  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
TABLE 1-2:  
DATA OUTPUT PINS FOR EACH RESOLUTION OPTION  
Output Pin Name  
ADC  
Q15/ Q14/ Q13/ Q12/ Q11/ Q10/ Q9/ Q8/  
Q7+ Q7- Q6+ Q6- Q5+ Q5- Q4+ Q4-  
Q7/  
Q3+  
Q6/  
Q3-  
Q5/  
Q4/  
Q3/  
Q2/  
Q1-  
Q1/  
Q0/ DM1/ DM2  
Resolution  
Q2+ Q2- Q1+  
Q0+ Q0- DM+ /DM-  
Q15 pin is MSb (bit 17), and DM2 is LSb (bit 0)  
Q15 pin is MSb, and Q0 is LSb  
18-bit mode  
16-bit mode  
14-bit mode(1)  
12-bit mode  
10-bit mode  
Notused(2)  
Not used(2)  
Not used(2)  
Not used(2)  
Q15 pin is MSb, and Q2 is LSb  
Q15 pin is MSb, and Q4 is LSb  
Q15 pin is MSb, and Q6 is LSb  
Note 1: The MCP37D21-80 has the 14-bit mode option only, while the MCP37D31-80 has all listed resolution  
options (from 10-bit to 18-bit).  
2: Output condition at “not-used” output pin:  
-
-
0’ in CMOS mode. Leave these pins floating.  
High Z state in LVDS mode  
2020 Microchip Technology Inc.  
DS20006382A-page 11  
MCP37D31-80 AND MCP37D21-80  
NOTES:  
DS20006382A-page 12  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
2.0  
2.1  
ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings†  
Analog and Digital Supply Voltage (AV  
Analog and Digital Supply Voltage (AV  
DV  
DV  
)......................................................................................................-0.3V to 1.32V  
)......................................................................................................-0.3V to 1.98V  
DD12,  
DD18,  
DD12  
DD18  
All Inputs and Outputs with respect to GND....................................................................................................... -0.3V to AV  
+ 0.3V  
- GND|  
DD18  
Differential Input Voltage ................................................................................................................................................|AV  
DD18  
Current at Input Pins .................................................................................................................................................................... ±2 mA  
Current at Output and Supply Pins ......................................................................................................................................... ±250 mA  
Storage Temperature ................................................................................................................................................... -65°C to +150°C  
Ambient Temperature with Power Applied (T )............................................................................................................ -55°C to +125°C  
A
Maximum Junction Temperature (T )..........................................................................................................................................+150°C  
J
ESD Protection on all Pins................................................................................................................................................... 2 kV HBM  
Solder Reflow Profile...............................................................................................See Microchip Application Note AN233 (DS00233)  
Notice†: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at those or any other conditions above those indicated in  
the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
2.2  
Electrical Specifications  
ELECTRICAL CHARACTERISTICS  
TABLE 2-1:  
Electrical Specifications: Unless otherwise specified, all parameters apply for T = -40°C to +125°C, AV  
= DV  
= 1.8V,  
DD18  
A
DD18  
AV  
= DV  
= 1.2V, GND = 0V, SENSE = AV  
, Single-channel mode, Differential Analog Input (A ) = Sine wave with  
DD12 IN  
DD12  
DD12  
amplitude of -1 dBFS, f = 15 MHz, Clock Input = 80 MHz, f = 80 Msps (ADC Core), Resolution = 16-bit, PLL and decimation  
IN  
S
filters are disabled, Output load: CMOS data pin = 10 pF, LVDS = 100termination, LVDS driver current setting = 3.5 mA, +25°C is  
applied for typical value.  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Power Supply Requirements  
Analog Supply Voltage  
AVDD18  
AVDD12  
DVDD18  
DVDD12  
1.71  
1.14  
1.71  
1.14  
1.8  
1.2  
1.8  
1.2  
1.89  
1.26  
1.89  
1.26  
V
V
V
V
Note 1  
Digital Supply Voltage  
Analog Supply Current During Conversion  
at AVDD18 pin  
at AVDD12 pin  
IDD_A18  
IDD_A12  
12.5  
20  
mA  
mA  
T
T
= -40°C to +85°C  
= +85°C to +125°C  
132  
132  
170  
173  
A
A
Digital Supply Current  
T
T
= -40°C to +85°C  
= +85°C to +125°C  
During Conversion  
at DVDD12 pin  
IDD_D12  
IDD_D18  
58  
58  
105  
149  
mA  
A
A
Digital I/O Current in  
CMOS Output Mode  
Measured at DVDD18 Pin, DCLK = 80 MHz, T = -40°C to +125°C  
A
13  
11  
20  
16  
mA MCP37D31-80  
MCP37D21-80  
Digital I/O Current in  
LVDS Mode  
IDD_D18  
MCP37D31-80, Measured at DVDD18 Pin, T = -40°C to +125°C  
A
51  
36  
66  
mA LVDS_IMODE<2:0> = 3.5 mA  
LVDS_IMODE<2:0> =1.8mA  
LVDS_IMODE<2:0> =5.4mA  
MCP37D21-80, Measured at DVDD18 Pin, T = -40°C to +125°C  
A
46  
33  
59  
mA LVDS_IMODE<2:0> = 3.5 mA  
LVDS_IMODE<2:0> =1.8mA  
LVDS_IMODE<2:0> =5.4mA  
DS20006382A-page 13  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
TABLE 2-1:  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all parameters apply for T = -40°C to +125°C, AV  
= DV  
= 1.8V,  
DD18  
A
DD18  
AV  
= DV  
= 1.2V, GND = 0V, SENSE = AV  
, Single-channel mode, Differential Analog Input (A ) = Sine wave with  
DD12 IN  
DD12  
DD12  
amplitude of -1 dBFS, f = 15 MHz, Clock Input = 80 MHz, f = 80 Msps (ADC Core), Resolution = 16-bit, PLL and decimation  
IN  
S
filters are disabled, Output load: CMOS data pin = 10 pF, LVDS = 100termination, LVDS driver current setting = 3.5 mA, +25°C is  
applied for typical value.  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Supply Current during Power-Saving Modes  
During Standby Mode  
During Shutdown Mode  
ISTANDBY_AN  
ISTANDBY_DIG  
IDD_SHDN  
43  
23  
23  
mA Address 0x00<4:3> = 1,1(2)  
mA Address 0x00<7,0> = 1,1(3)  
PLL Circuit  
PLL Circuit Current  
IDD_PLL  
17  
mA PLL enabled. Included in  
analog supply current  
specification.  
Total Power Dissipation(4)  
Power Dissipation  
During Conversion,  
Excluding Digital I/O  
PDISS_ADC  
PDISS_CMOS  
PDISS_LVDS  
229  
mW  
Total Power Dissipation  
During Conversion with  
CMOS Output Mode  
257  
253  
mW MCP37D31-80  
MCP37D21-80  
@DCLK = 80 MHz  
Total Power Dissipation  
During Conversion with  
LVDS Output Mode  
329  
320  
mW MCP37D31-80  
MCP37D21-80  
@LVDS_IMODE<2:0> = 3.5 mA  
(2)  
Address 0x00<4:3> = 1,1  
P
During Standby Mode  
During Shutdown Mode  
79  
22  
mW  
DISS_STANDBY  
(3)  
Address 0x00<7,0> = 1,1  
PDISS_SHDN  
mW  
Power-on Reset (POR) Voltage  
Threshold Voltage  
Hysteresis  
VPOR  
800  
40  
mV Applicable to AVDD12 only  
VPOR_HYST  
mV (POR tracks AVDD12)  
SENSE Input(5,7)  
SENSE Input Voltage  
VSENSE  
GND  
AVDD12  
V
VSENSE selects reference  
To virtual ground at 0.55V.  
SENSE Pin Input  
Resistance  
RIN_SENSE  
500  
400 mV < V  
< 800 mV  
SENSE  
Current Sink into SENSE  
Pin  
ISENSE  
4.5  
636  
-2  
µA  
SENSE = 1.2V  
SENSE = 0.8V  
SENSE = 0V  
Reference and Common-Mode Voltages  
Internal Reference Voltage  
VREF  
VREF1  
VREF0  
VBG  
0.74  
1.49  
V
V
V
V
VSENSE = GND  
(Selected by VSENSE  
)
VSENSE = AVDD12  
1.86 x VSENSE  
400 mV < V  
< 800 mV  
< 800 mV  
< 800 mV  
SENSE  
Reference Voltage  
Output(7,8)  
0.4  
0.8  
VSENSE = GND  
SENSE = AVDD12  
400 mV < V  
V
0.4 - 0.8  
0.7  
SENSE  
VSENSE = GND  
1.4  
VSENSE = AVDD12  
0.7 - 1.4  
0.55  
400 mV < V  
SENSE  
Bandgap Voltage Output  
Available at VBG pin  
2020 Microchip Technology Inc.  
DS20006382A-page 14  
MCP37D31-80 AND MCP37D21-80  
TABLE 2-1:  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all parameters apply for T = -40°C to +125°C, AV  
= DV  
= 1.8V,  
DD18  
A
DD18  
AV  
= DV  
= 1.2V, GND = 0V, SENSE = AV  
, Single-channel mode, Differential Analog Input (A ) = Sine wave with  
DD12 IN  
DD12  
DD12  
amplitude of -1 dBFS, f = 15 MHz, Clock Input = 80 MHz, f = 80 Msps (ADC Core), Resolution = 16-bit, PLL and decimation  
IN  
S
filters are disabled, Output load: CMOS data pin = 10 pF, LVDS = 100termination, LVDS driver current setting = 3.5 mA, +25°C is  
applied for typical value.  
Parameters  
Common-Mode  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
VCM  
0.9  
V
Available at VCM pin  
Voltage Output  
Analog Inputs  
Full-Scale Differential  
Analog Input Range(5,7)  
AFS  
1.4875  
2.975  
VP-P VSENSE = GND  
VSENSE = AVDD12  
3.71875 x  
VSENSE  
400 mV < V  
< 800 mV  
SENSE  
Analog Input Bandwidth  
fIN_3dB  
CIN  
5
500  
6
7
MHz AIN = -3 dBFS  
Note 5, Note 9  
Differential Input  
Capacitance  
pF  
Analog Input Leakage  
Current (AIN+, AIN- pins)  
ILI_AH  
ILI_AL  
-1  
+1  
µA  
µA  
VIH = AVDD12  
VIL = GND  
)
ADC Conversion Rate(10  
Conversion Rate  
fS  
80  
Msps Optimized at 80 Msps  
)
Clock Inputs (CLK+, CLK-)(11  
Note 5  
Note 5  
Note 5  
Clock Input Frequency  
fCLK  
300  
80  
250  
800  
MHz  
mV  
Differential Input Voltage  
VCLK_IN  
P
-P  
Clock Jitter  
Clock Input Duty Cycle(5)  
CLKJITTER  
175  
50  
f
SRMS  
49  
51  
%
Duty cycle correction  
disabled  
30  
50  
70  
%
Duty cycle correction  
enabled  
Input Leakage Current at  
CLK input pin  
ILI_CLKH  
ILI_CLKL  
+180  
µA  
µA  
VIH = AVDD12  
VIL = GND  
T
T
= -40°C to +85°C  
= +85°C to +125°C  
-20  
-30  
A
A
Converter Accuracy(6)  
ADC Resolution  
(with no missing code)  
16  
14  
bits MCP37D31-80  
bits MCP37D21-80  
LSb MCP37D31-80  
Offset Error  
OffsetER  
±5  
LSb  
±1.25  
±0.5  
±2  
MCP37D21-80  
% of FS  
Gain Error  
GER  
INL  
Integral Nonlinearity  
LSb MCP37D31-80  
LSb MCP37D21-80  
LSb MCP37D31-80  
LSb MCP37D21-80  
±0.5  
±0.4  
±0.1  
70  
Differential Nonlinearity  
DNL  
Analog Input  
CMRRDC  
dB  
DC measurement  
Common-Mode  
Rejection Ratio  
DS20006382A-page 15  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
TABLE 2-1:  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all parameters apply for T = -40°C to +125°C, AV  
= DV  
= 1.8V,  
DD18  
A
DD18  
AV  
= DV  
= 1.2V, GND = 0V, SENSE = AV  
, Single-channel mode, Differential Analog Input (A ) = Sine wave with  
DD12 IN  
DD12  
DD12  
amplitude of -1 dBFS, f = 15 MHz, Clock Input = 80 MHz, f = 80 Msps (ADC Core), Resolution = 16-bit, PLL and decimation  
IN  
S
filters are disabled, Output load: CMOS data pin = 10 pF, LVDS = 100termination, LVDS driver current setting = 3.5 mA, +25°C is  
applied for typical value.  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
)
Dynamic Accuracy(6,14  
Spurious Free Dynamic  
Range  
SFDR  
76.2  
93  
dBc fIN = 15 MHz  
MCP37D31-80, MCP37D21-80  
Signal-to-Noise Ratio  
SNR  
fIN = 15 MHz  
71  
71  
73.9  
73.5  
12  
dBFS MCP37D31-80  
dBFS MCP37D21-80  
bits MCP37D31-80  
bits MCP37D21-80  
Effective Number of Bits  
ENOB  
fIN = 15 MHz  
)
(ENOB)(12  
11.9  
-89  
Total Harmonic Distortion  
(for all resolutions, first 13  
harmonics)  
THD  
-78  
dBc  
fIN = 15 MHz  
MCP37D31-80, MCP37D21-80  
Worst Second or  
Third Harmonic Distortion  
HD2 or HD3  
IMD  
-93  
85  
dBc fIN = 15 MHz  
MCP37D31-80, MCP37D21-80  
Two-Tone Intermodulation  
Distortion  
dBc  
AIN = -7 dBFS,  
with two input frequencies  
f
f
IN1 = 17.6 MHz,  
IN2 = 20.4 MHz  
Digital Logic Input and Output (Except LVDS Output)  
0.7 DV  
Schmitt Trigger High-Level  
Input Voltage  
VIH  
DV  
V
V
V
DD18  
DD18  
Schmitt Trigger Low-Level  
Input Voltage  
VIL  
GND  
0.3 DV  
DD18  
Hysteresis of Schmitt  
Trigger Inputs  
VHYST  
0.05 DVDD18  
(All digital inputs)  
Low-Level Output Voltage  
High-Level Output Voltage  
VOL  
VOH  
0.3  
V
V
IOL = -3 mA, all digital I/O pins  
IOL = +3 mA, all digital I/O pins  
DVDD18 – 0.5  
1.8  
Input Leakage Current on Digital I/O Pins  
V
= DV  
DD18  
Data Output Pins  
ILI_DH  
ILI_DL  
+1  
µA  
µA  
IH  
IL  
V
T
= GND  
= -40°C to +85°C  
-1  
-1.2  
A
T
= +85°C to +125°C  
A
V
V
= DV  
I/O Pins except Data  
Output Pins  
ILI_DH  
ILI_DL  
+6  
µA  
µA  
IH  
DD18  
(13)  
= GND  
-35  
IL  
2020 Microchip Technology Inc.  
DS20006382A-page 16  
MCP37D31-80 AND MCP37D21-80  
TABLE 2-1:  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all parameters apply for T = -40°C to +125°C, AV  
= DV  
= 1.8V,  
DD18  
A
DD18  
AV  
= DV  
= 1.2V, GND = 0V, SENSE = AV  
, Single-channel mode, Differential Analog Input (A ) = Sine wave with  
DD12 IN  
DD12  
DD12  
amplitude of -1 dBFS, f = 15 MHz, Clock Input = 80 MHz, f = 80 Msps (ADC Core), Resolution = 16-bit, PLL and decimation  
IN  
S
filters are disabled, Output load: CMOS data pin = 10 pF, LVDS = 100termination, LVDS driver current setting = 3.5 mA, +25°C is  
applied for typical value.  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Digital Data Output (CMOS Mode)  
Maximum External Load  
Capacitance  
CLOAD  
CINT  
10  
4
pF  
pF  
From output pin to GND  
Note 5  
Internal I/O Capacitance  
Digital Data Output (LVDS Mode)(5)  
LVDS High-Level  
Differential Output Voltage  
VH_LVDS  
VL_LVDS  
VCM_LVDS  
CINT_LVDS  
RLVDS  
200  
-400  
1
300  
-300  
1.15  
4
400  
-200  
1.4  
mV 100differential termination,  
LVDS_IMODE<2:0> = 3.5 mA  
LVDS Low-Level  
Differential Output Voltage  
mV 100differential termination,  
LVDS_IMODE<2:0> = 3.5 mA  
LVDS Common-Mode  
Voltage  
V
Output Capacitance  
pF  
Internal capacitance from  
output pin to GND  
Differential Load  
100  
Across LVDS output pairs  
Resistance (LVDS)  
Notes:  
1. This1.8V digitalsupplyvoltageis usedfor thedigitalI/Ocircuit, includingSPI, CMOSandLVDSdataoutputdrivers.  
2. Standby Mode: Most of the internal circuits are turned off, except the internal reference, clock, bias circuits and  
SPI interface.  
3. Shutdown Mode: All circuits including reference and clock are turned off except the SPI interface.  
4. Power dissipation (typical) is calculated by using the following equation:  
(a) During operation:  
PDISS = VDD18 x (IDD_A18 + IDD_D18) + VDD12 x (IDD_A12 + IDD_D12), where IDD_D18 is the digital I/O current for  
LVDS or CMOS output. VDD18 = 1.8V and VDD12 = 1.2V are used for typical value calculation.  
(b) During Standby mode:  
P
DISS_STANDBY = (ISTANDBY_AN + ISTANDBY_DIG) x 1.2V  
(c) During Shutdown mode:  
DISS_SHDN = IDD_SHDN x 1.2V  
P
5. This parameter is ensured by design, but not 100% tested in production.  
6. This parameter is ensured by characterization, but not 100% tested in production.  
7. See Table 4-2 for details.  
8. Differential reference voltage output at REF1+/- and REF0+/- pins. VREF1 = VREF1+ – VREF1-.  
VREF0 = VREF0+ – VREF0-. These references should not be driven.  
9. Input capacitance refers to the effective capacitance between one differential input pin pair.  
10. The ADC core conversion rate. In multi-channel mode, the conversion rate of an individual channel is fS/N, where  
N is the number of input channels used.  
11. See Figure 4-8 for the details of the clock input circuit.  
12. ENOB = (SINAD - 1.76)/6.02.  
13. This leakage current is due to the internal pull-up resistor.  
14. Dynamic performance is characterized with CH(n)_DIG_GAIN<7:0> = 0011-1000.  
DS20006382A-page 17  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
TABLE 2-2:  
TIMING REQUIREMENTS - LVDS AND CMOS OUTPUTS  
Electrical Specifications: Unless otherwise specified, all parameters apply for T = -40°C to +125°C, AV  
= DV  
= 1.8V,  
A
DD18  
DD18  
AV  
= DV  
= 1.2V, GND = 0V, SENSE = AV  
, Single-channel mode, Differential Analog Input (A ) = Sine wave with  
DD12 IN  
DD12  
DD12  
amplitude of -1 dBFS, F = 15 MHz, Clock Input = 80 MHz, f = 80 Msps (ADC Core), Resolution = 16-bit, PLL and decimation  
IN  
S
filters are disabled, Output load: CMOS data pin = 10 pF, LVDS = 100termination, LVDS driver current setting = 3.5 mA,  
DCLK_PHDLY_DLL<2:0> = 000, +25°C is applied for typical value.  
Parameter  
Aperture Delay  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
Note 1  
Note 1  
Note 1  
tA  
1
1
ns  
Clocks  
%
Out-of-Range Recovery Time  
Output Clock Duty Cycle  
Pipeline Latency  
tOVR  
50  
28  
TLATENCY  
Clocks Note 2, Note 4  
System Calibration(1)  
Power-Up Calibration Time  
TPCAL  
TBCAL  
227  
230  
Clocks First 227 sample clocks after  
power-up  
Clocks Per 230 sample clocks after  
Background Calibration Update  
Rate  
TPCAL  
RESET Low Time  
TRESET  
5
ns  
See Figure 2-8 for details(1)  
AutoSync (1,6)  
Sync Output Time Delay  
TSYNC_OUT  
1
Clocks  
MHz  
Maximum Recommended ADC  
Clock Rate for AutoSync  
80  
)
LVDS Data Output Mode(1,5  
Input Clock to  
Output Clock Propagation Delay  
tCPD  
tDC  
5.7  
0.5  
5.8  
ns  
ns  
ns  
Output Clock to  
Data Propagation Delay  
Input Clock to  
tPD  
Output Data Propagation Delay  
CMOS Data Output Mode(1)  
Input Clock to  
Output Clock Propagation Delay  
tCPD  
tDC  
3.8  
0.7  
4.5  
ns  
ns  
ns  
Output Clock to  
Data Propagation Delay  
Input Clock to  
tPD  
Output Data Propagation Delay  
Note 1: This parameter is ensured by design, but not 100% tested in production.  
2: This parameter is ensured by characterization, but not 100% tested in production.  
3: RISE = approximately less than 10% of duty cycle.  
t
4: Output latency is measured without using fractional delay recovery (FDR), decimation filter or digital  
down-converter options.  
5: The time delay can be adjusted with the DCLK_PHDLY_DLL<2:0> setting.  
6: Characterized with a single slave device. The maximum ADC sample rate for AutoSync mode may be  
reduced if multiple slave devices are used. See Figure 2-9 - Figure 2-11, and Figure 4-27 for details.(  
2020 Microchip Technology Inc.  
DS20006382A-page 18  
MCP37D31-80 AND MCP37D21-80  
S-1  
Input Signal:  
S+1  
S+L  
S+L-1  
S
*S = Sample Point  
tA  
Latency = L Cycles  
Input Clock:  
CLK-  
CLK+  
tCPD  
Digital Clock Output:  
DCLK  
tDC  
tPD  
Output Data:  
Q<N:0>  
S-L-1  
S-L-1  
S-L  
S-1  
S-1  
S-L+1  
S-L+1  
S
S
Over-Range Output:  
OVR  
S-L  
Note:  
FIGURE 2-1:  
If the output resolution is selected for less than 16-bit, unused bits are ‘0’s.  
Timing Diagram - CMOS Output.  
S-1  
Input Signal:  
S+1  
S+L  
S+L-1  
S
*S = Sample Point  
tA  
Latency = L Cycles  
Input Clock:  
CLK-  
CLK+  
Digital Clock Output:  
tCPD  
DCLK-  
DCLK+  
tDC  
tPD  
Output Data:  
Q-[N:0]  
EVEN  
S-L-1  
ODD  
S-L-1  
EVEN ODD  
EVEN  
S-L+1  
EVEN  
S-1  
ODD  
S-1  
EVEN  
S
S-L  
S-L  
Q+[N:0]  
Word-CLK/  
Over-Range Output:  
WCK/OVR-  
WCK/OVR+  
WCK  
S-L-1  
OVR  
S-L-1  
WCK  
S-L  
OVR  
S-L  
WCK  
S-L+1  
WCK  
S-1  
OVR  
S-1  
WCK  
S
Note:  
FIGURE 2-2:  
If the output resolution is selected for less than 16-bit, unused bits are High Z.  
Timing Diagram - LVDS Output with Even Bit First Option.  
DS20006382A-page 19  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
S-1  
Input Signal:  
S+1  
S+L  
S+L-1  
S
tA  
Latency = L Cycles  
Input Clock:  
CLK Output:  
CLK-  
CLK+  
tCPD  
DCLK-  
DCLK+  
tDC  
tPD  
Output Data:  
Q-[N:0]  
b[15:8] b[7:0] b[15:8] b[7:0] b[15:8]  
b[15:8] b[7:0] b[15:8]  
S-L-1  
S-L-1  
S-L  
S-L  
S-L+1  
S-1  
S-1  
S
Q+[N:0]  
Word-CLK/  
Over-Range Output:  
WCK/OVR-  
WCK  
OVR  
WCK  
S-L  
OVR  
S-L  
WCK  
S-L+1  
OVR  
S-1  
WCK  
S
WCK  
S-1  
S-L-1 S-L-1  
WCK/OVR+  
FIGURE 2-3:  
Timing Diagram - LVDS Output with MSb Byte First Option. This output option is  
available for 16-bit mode only.  
2020 Microchip Technology Inc.  
DS20006382A-page 20  
MCP37D31-80 AND MCP37D21-80  
Ch.7  
Input Signal:  
Ch.1  
Ch.0  
tA  
Ch.7  
Ch.0  
Latency = L Cycles  
Input Clock:  
CLK-  
CLK+  
CLK Output:  
tCPD  
DCLK-  
DCLK+  
tDC  
tPD  
Output Data:  
Q-[0]  
b[1]  
b[0]  
b[15]  
b[14]  
Ch.0  
b[13]  
Ch.0  
b[1]  
b[0]  
b[15]  
Ch.0  
Ch.0  
Ch.0  
Ch.0  
Ch.0  
Ch.0  
Q+[0]  
Q-[1]  
b[1]  
Ch.1  
b[0]  
Ch.1  
b[15]  
Ch.1  
b[14]  
Ch.1  
b[13]  
Ch.1  
b[1]  
Ch.1  
b[0]  
Ch.1  
b[15]  
Ch.1  
Q+[1]  
Q-[7]  
b[1]  
Ch.7  
b[0]  
Ch.7  
b[15]  
Ch.7  
b[14]  
Ch.7  
b[13]  
Ch.7  
b[1]  
Ch.7  
b[0]  
Ch.7  
b[15]  
Ch.7  
Q+[7]  
Word-CLK/  
Over-Range Output:  
WCK/OVR-  
WCK/OVR+  
WCK  
1”  
WCK  
1”  
OVR  
OVR  
OVR  
0”  
0”  
0”  
Note: Q+/Q-[7] is the first channel selected data, and Q+/Q-[0] is the last channel selected data.  
FIGURE 2-4:  
Timing Diagram - LVDS Serial Output in Octal-Channel Mode. This output is available  
for octal-channel with 16-bit mode only. Note that although the eight input channels are sampled  
sequentially (auto-scan with 1 cycle separation), all channels are output simultaneously with the MSb (bit  
15) synchronized with the rising edge of WCK.  
DS20006382A-page 21  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
TABLE 2-3:  
SPI SERIAL INTERFACE TIMING SPECIFICATIONS  
Electrical Specifications: Unless otherwise specified, all parameters apply for T = -40°C to +125°C, AV  
= DV  
= 1.8V,  
A
DD18  
DD18  
AV  
= DV  
= 1.2V, GND = 0V, SENSE = AV  
, Single-channel mode, Differential Analog Input (A ) = Sine wave with  
DD12  
DD12  
DD12 IN  
amplitude of -1 dBFS, F = 15 MHz, Clock Input = 80 MHz, f = 80 Msps (ADC Core), Resolution = 16-bit, PLL and decimation  
IN  
S
filters are disabled, Output load: CMOS data pin = 10 pF, LVDS = 100termination, LVDS driver current setting = 3.5 mA, +25°C is  
applied for typical value. All timings are measured at 50%.  
Parameters  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
Serial Clock frequency, fSCK = 50 MHz  
CS Setup Time  
tCSS  
10  
20  
20  
2
20  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS Hold Time  
tCSH  
tCSD  
tSU  
tHD  
CS Disable Time  
Data Setup Time  
Data Hold Time  
4
Serial Clock High Time  
Serial Clock Low Time  
Output Valid from SCK Low  
Output Disable Time  
tHI  
8
tLO  
8
tDO  
tDIS  
tCSD  
CS  
tSCK  
tLO  
tCSS  
tCSH  
tHI  
SCLK  
tHD  
tSU  
SDIO  
(SDI)  
MSb in  
LSb in  
FIGURE 2-5:  
SPI Serial Input Timing Diagram.  
CS  
tSCK  
tCSH  
tHI  
tLO  
SCLK  
tDO  
tDIS  
SDIO  
MSb out  
LSb out  
(SDO)  
FIGURE 2-6:  
SPI Serial Output Timing Diagram.  
2020 Microchip Technology Inc.  
DS20006382A-page 22  
MCP37D31-80 AND MCP37D21-80  
Power-on Reset (POR)  
AVDD12  
227 cycles  
(TPCAL  
)
Power-Up calibration complete.  
• Registers are initialized  
• Device is ready for correct conversion  
FIGURE 2-7:  
POR-Related Events: Register Initialization and Power-Up Calibration.  
RESET Pin  
tRESET  
Power-Up Calibration Time  
(TPCAL  
)
Stop ADC conversion  
Start register initialization  
and ADC recalibration  
Recalibration complete:  
CAL Pin: High  
ADC_CAL_STAT = 1  
FIGURE 2-8:  
RESET Pin Timing Diagram.  
A. Master Device (SLAVE Pin = 0)  
POR (Power-On Reset)  
(~ 220 clock cycles)  
Toggle to High at the 2nd rising edge of Clock Input  
TSYNC_OUT  
SYNC Output  
CAL Pin (Output)  
TPCAL  
Valid Data  
Invalid Data  
Data Output  
Clock Input  
1
2
B. Slave Device(s)  
(SLAVE Pin = 1)  
SYNC Input  
CAL Pin (Output)  
Data Output  
TPCAL  
Invalid Data  
2
Valid Data  
1
Clock Input  
FIGURE 2-9:  
Sync Timing Diagram with Power-On Reset.  
DS20006382A-page 23  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
(SLAVE Pin = 0)  
A. Master Device  
RESET Pin  
TSYNC_OUT  
SYNC Output  
CAL Pin (Output)  
Data Output  
TPCAL  
Invalid Data  
Valid Data  
1
2
Clock Input  
B. Slave Device(s)(SLAVE Pin = 1)  
SYNC Input  
CAL Pin (Output)  
Data Output  
TPCAL  
Invalid Data  
Valid Data  
Clock Input  
FIGURE 2-10:  
Sync Timing Diagram with RESET Pin Operation.  
A. Master Device (SLAVE Pin = 0)  
POR  
(~ 220 clock cycles)  
Toggle to High at the 2nd rising edge of Clock Input after POR  
Toggle to High at the 2nd rising edge of Clock Input  
after SOFT_RESET = 1  
SYNC Output  
T
SYNC_OUT  
SPI SOFT RESET Control  
SOFT_RESET = 0  
SOFT_RESET = 1  
T
PCAL  
CAL Pin (Output)  
Data Output  
T
PCAL  
No Output  
Invalid  
Data  
Valid  
Data  
Valid Data  
Invalid Data  
2
1
2
1
Clock Input  
B. Slave Device(s)  
(SLAVE Pin = 1)  
SYNC Input  
T
PCAL  
CAL Pin (Output)  
Data Output  
T
PCAL  
No Output  
Valid  
Data  
Invalid  
Data  
Invalid Data  
2
Valid Data  
1
2
1
Clock Input  
FIGURE 2-11:  
Sync Timing Diagram with SOFT_RESET Bit Setting.  
2020 Microchip Technology Inc.  
DS20006382A-page 24  
MCP37D31-80 AND MCP37D21-80  
TABLE 2-4:  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise specified, all parameters apply for T = -40°C to +125°C, AV  
= DV  
= 1.8V,  
A
DD18  
DD18  
AV  
= DV  
= 1.2V, GND = 0V, SENSE = AV  
, Single-channel mode, Differential Analog Input (A ) = Sine wave with  
DD12  
DD12  
DD12 IN  
amplitude of -1 dBFS, F = 15 MHz, Clock Input = 80 MHz, f = 80 Msps (ADC Core), Resolution = 16-bit, PLL and decimation  
IN  
S
filters are disabled, Output load: CMOS data pin = 10 pF, LVDS = 100termination, LVDS driver current setting = 3.5 mA, +25°C is  
applied for typical value.  
Parameters  
Temperature Ranges(1)  
Sym.  
Min.  
Typ. Max. Units Conditions  
Operating Temperature Range  
TA  
-40  
+125  
°C  
Thermal Package Resistances(2)  
Junction-to-Ambient Thermal Resistance  
Junction-to-Case Thermal Resistance  
JA  
JC  
40.2  
8.4  
°C/W  
°C/W  
Note 1: Maximum allowed power-dissipation (PDMAX) = (TJMAX - TA)/JA  
.
2: This parameter value is achieved by package simulations.  
DS20006382A-page 25  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
3.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise specified, all plots are at 25°C, AVDD18 = DVDD18 = 1.8V, AVDD12 = DVDD12 = 1.2V, GND = 0V,  
SENSE = AVDD12, single-channel mode, differential analog input (AIN) = sine wave with amplitude of -1 dBFS, fIN = 14.7 MHz,  
clock input = 80 MHz, fS = 80 Msps (ADC Core), MCP37D31-80 (16-bit), PLL and decimation filters are disabled.  
0
-20  
0
-20  
Mode = Single-Channel  
Mode = Single-Channel  
f
f
f
= 80 MHz  
= 80 Msps  
= 4.3 MHz @ -1.0 dBFS  
CLK  
f
f
f
= 80 MHz  
= 80 Msps  
= 4.3 MHz @ -4.0 dBFS  
CLK  
S
S
-40  
IN  
-40  
IN  
SNR = 73.7 dB (74.7 dBFS)  
SFDR = 91.4 dBc  
SNR = 71.0 dB (75 dBFS)  
SFDR = 96.0 dBc  
-60  
THD = -90.2 dBc  
-60  
THD = -92.3 dBc  
Resolution = 16-bit  
Resolution = 16-bit  
-80  
-80  
3
2
3
8
2
-100  
-120  
-100  
-120  
6
5
7
9
8
5
4
7
6
4
9
0
10  
20  
Frequency (MHz)  
30  
40  
0
10  
20  
Frequency (MHz)  
30  
40  
FIGURE 3-1:  
Signal: fS = 80 Msps, Single-Ch., AIN = -1 dBFS.  
FFT for 4.3 MHz Input  
FIGURE 3-4:  
Signal: fS = 80 Msps, Single-Ch., AIN = -4 dBFS.  
FFT for 4.3 MHz Input  
0
0
Mode = Dual-Channel  
Mode = Dual-Channel  
f
f
f
= 80 MHz  
-20  
-40  
-20  
-40  
f
f
f
= 80 MHz  
CLK  
CLK  
= 40 Msps  
= 40 Msps  
S
S
= 4.3 MHz @ -1.0 dBFS  
= 4.3 MHz @ -4.0 dBFS  
IN  
IN  
SNR = 73.9 dB (74.9 dBFS)  
SFDR = 90.3 dBc  
SNR = 70.9 dB (74.9 dBFS)  
SFDR = 95.3 dBc  
-60  
-60  
THD = -88.6 dBc  
THD = -91.4 dBc  
Resolution = 16-bit  
Resolution = 16-bit  
-80  
-80  
3
2
2
3
-100  
-120  
-100  
-120  
4
7
7
4
8
5
6
5
9
6
8
9
0
5
10  
15  
20  
0
5
10  
15  
20  
Frequency (MHz)  
Frequency (MHz)  
FIGURE 3-2:  
FFT for 4.3 MHz Input  
FIGURE 3-5:  
FFT for 4.3 MHz Input  
Signal: fS = 40 Msps, Dual-Ch., AIN = -1 dBFS.  
Signal: fS = 40 Msps, Dual-Ch., AIN = -4 dBFS.  
0
Mode = Quad-Channel  
f
f
f
= 80 MHz  
-20  
-40  
CLK  
= 20 Msps  
S
= 4.3 MHz @ -1.0 dBFS  
IN  
SNR = 73.6 dB (74.6 dBFS)  
SFDR = 90.0 dBc  
-60  
THD = -87.9 dBc  
Resolution = 16-bit  
-80  
3
2
4
-100  
-120  
7
9
6
8
5
0
2
4
6
8
10  
Frequency (MHz)  
FIGURE 3-3:  
FFT for 4.3 MHz Input  
FIGURE 3-6:  
FFT for 4.3 MHz Input  
Signal: fS = 20 Msps, Quad-Ch., AIN = -1 dBFS.  
Signal: fS = 20 Msps, Quad-Ch., AIN = -4 dBFS.  
2020 Microchip Technology Inc.  
DS20006382A-page 26  
MCP37D31-80 AND MCP37D21-80  
0
0
-20  
Mode = Octal-Channel  
Mode = Octal-Channel  
f
f
f
= 80 MHz  
= 10 Msps  
= 4.3 MHz @ -1.0 dBFS  
-20  
-40  
CLK  
f
f
f
= 80 MHz  
= 10 Msps  
= 4.3 MHz @ -4.0 dBFS  
CLK  
S
S
IN  
-40  
IN  
SNR = 73.7 dB (74.7 dBFS)  
SFDR = 90.5 dBc  
SNR = 71.0 dB (75 dBFS)  
SFDR = 95.8 dBc  
-60  
-60  
THD = -88.3 dBc  
THD = -91.8 dBc  
Resolution = 16-bit  
Resolution = 16-bit  
-80  
-80  
3
2
8
6
3
4
2
-100  
-120  
-100  
-120  
6
5
7
8
9
5
9
7
4
0
1
2
3
4
5
0
1
2
3
4
5
Frequency (MHz)  
Frequency (MHz)  
FIGURE 3-7:  
Signal: fS = 10 Msps, Octal-Ch., AIN = -1 dBFS.  
FFT for 4.3 MHz Input  
FIGURE 3-10:  
Signal: fS = 10 Msps, Octal-Ch, AIN = -4 dBFS.  
FFT for 4.3 MHz Input  
0
Mode = Single-Channel  
-20  
-40  
f
f
f
= 80 MHz  
= 80 Msps  
= 14.7 MHz @ -4.0 dBFS  
CLK  
S
IN  
SNR = 70.3 dB (74.3 dBFS)  
SFDR = 95.2 dBc  
-60  
THD = -94.0 dBc  
Resolution = 16-bit  
-80  
2
9
-100  
-120  
6
7
8
3
4
0
10  
20  
30  
40  
Frequency (MHz)  
FIGURE 3-8:  
FFT for 14.7 MHz Input  
FIGURE 3-11:  
FFT for 14.7 MHz Input  
Signal: fS = 80 Msps, Single-Ch., AIN = -1 dBFS.  
Signal: fS = 80 Msps, Single-Ch., AIN = -4 dBFS.  
0
0
Mode = Dual-Channel  
Mode = Dual-Channel  
f
f
f
= 80 MHz  
= 40 Msps  
= 14.7 MHz @ -1.0 dBFS  
-20  
-40  
-20  
-40  
f
f
f
= 80 MHz  
CLK  
CLK  
= 40 Msps  
= 14.7 MHz @ -4.0 dBFS  
S
S
IN  
IN  
SNR = 72.8 dB (73.8 dBFS)  
SFDR = 92.3 dBc  
SNR = 70.4 dB (74.4 dBFS)  
SFDR = 97.2 dBc  
-60  
-60  
THD = -90.0 dBc  
THD = -95.9 dBc  
Resolution = 16-bit  
Resolution = 16-bit  
-80  
-80  
2
3
5
2
-100  
-120  
-100  
-120  
9
3
5
7
6
4
9
7
8
6
0
5
10  
Frequency (MHz)  
15  
20  
0
5
10  
Frequency (MHz)  
15  
20  
FIGURE 3-9:  
Signal: fS = 40 Msps, Dual-Ch., AIN = -1 dBFS.  
FFT for 14.7 MHz Input  
FIGURE 3-12:  
Signal: fS = 40 Msps, Dual-Ch., AIN = -4 dBFS.  
FFT for 14.7 MHz Input  
DS20006382A-page 27  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
Note: Unless otherwise specified, all plots are at 25°C, AVDD18 = DVDD18 = 1.8V, AVDD12 = DVDD12 = 1.2V, GND = 0V,  
SENSE = AVDD12, single-channel mode, differential analog input (AIN) = sine wave with amplitude of -1 dBFS,  
fIN = 14.7 MHz, clock input = 80 MHz, fS = 80 Msps (ADC Core), MCP37D21-80 (14-bit), PLL and decimation filters are  
disabled.  
0
-20  
0
-20  
Mode = Single-Channel  
Mode = Single-Channel  
f
f
f
= 80 MHz  
= 80 Msps  
f
= 80 MHz  
CLK  
CLK  
f
f
= 80 Msps  
= 4.3 MHz @ -1.0 dBFS  
S
S
= 4.3 MHz @ -4.0 dBFS  
-40  
-40  
IN  
IN  
SNR = 73.7 dB (74.7 dBFS)  
SNR = 70.7 dB (74.7 dBFS)  
SFDR = 93.8 dBc  
THD = -92.6 dBc  
Resolution = 14-bit  
SFDR = 97.6 dBc  
THD = -96.7 dBc  
Resolution = 14-bit  
-60  
-60  
-80  
-80  
3
5
-100  
-120  
2
3
-100  
-120  
4
9
2
4
7
6
5
6
8
7
8
9
0
10  
20  
Frequency (MHz)  
30  
40  
0
10  
20  
Frequency (MHz)  
30  
40  
FIGURE 3-13:  
Signal: fS = 80 Msps, Single-Ch., AIN = -1 dBFS.  
FFT for 4.3 MHz Input  
FIGURE 3-16:  
Signal: fS = 80 Msps, Single-Ch., AIN = -4 dBFS.  
FFT for 4.3 MHz Input  
0
0
-20  
Mode = Dual-Channel  
Mode = Dual-Channel  
-20  
-40  
f
f
f
= 80 MHz  
= 40 Msps  
= 4.3 MHz @ -4.0 dBFS  
f
f
f
= 80 MHz  
= 40 Msps  
= 4.3 MHz @ -1.0 dBFS  
CLK  
CLK  
S
S
-40  
IN  
IN  
SNR = 70.7 dB (74.7 dBFS)  
SFDR = 97.5 dBc  
SNR = 73.6 dB (74.6 dBFS)  
SFDR = 92.1 dBc  
-60  
-60  
THD = -93.2 dBc  
THD = -91.0 dBc  
Resolution = 14-bit  
Resolution = 14-bit  
-80  
-80  
3
3
6
2
5
-100  
-120  
2
-100  
-120  
9
4
8
7
6
8
4
7
9
5
0
5
10  
Frequency (MHz)  
15  
20  
0
5
10  
15  
20  
Frequency (MHz)  
FIGURE 3-14:  
FFT for 4.3 MHz Input  
FIGURE 3-17:  
FFT for 4.3 MHz Input  
Signal: fS = 40 Msps, Dual-Ch., AIN = -1 dBFS.  
Signal: fS = 40 Msps, Dual-Ch., AIN = -4 dBFS.  
FIGURE 3-15:  
FFT for 4.3 MHz Input  
FIGURE 3-18:  
FFT for 4.3 MHz Input  
Signal: fS = 20 Msps, Quad-Ch., AIN = -1 dBFS.  
Signal: fS = 20 Msps, Quad-Ch., AIN = -4 dBFS.  
2020 Microchip Technology Inc.  
DS20006382A-page 28  
MCP37D31-80 AND MCP37D21-80  
0
0
-20  
Mode = Octal-Channel  
Mode = Octal-Channel  
-20  
-40  
f
f
f
= 80 MHz  
= 10 Msps  
= 4.3 MHz @ -1.0 dBFS  
CLK  
f
f
f
= 80 MHz  
CLK  
S
= 10 Msps  
= 4.3 MHz @ -4.0 dBFS  
S
IN  
-40  
IN  
SNR = 73.5 dB (74.5 dBFS)  
SFDR = 91.7 dBc  
SNR = 70.8 dB (74.8 dBFS)  
SFDR = 97.0 dBc  
-60  
THD = -89.8 dBc  
-60  
THD = -95.0 dBc  
Resolution = 14-bit  
Resolution = 14-bit  
-80  
-80  
3
4
8
7
6
-100  
-120  
2
5
9
3
4
-100  
-120  
8
2
5
9
7
6
0
1
2
3
4
5
0
1
2
3
4
5
Frequency (MHz)  
Frequency (MHz)  
FIGURE 3-19:  
Signal: fS = 10 Msps, Octal-Ch., AIN = -1 dBFS.  
FFT for 4.3 MHz Input  
FIGURE 3-22:  
Signal: fS = 10 Msps, Octal-Ch, AIN = -4 dBFS.  
FFT for 4.3 MHz Input  
Mode = Single-Channel  
f
f
f
= 80 MHz  
= 80 Msps  
= 14.7 MHz @ -1.0 dBFS  
-20  
-40  
CLK  
S
IN  
SNR = 72.5 dB (73.5 dBFS)  
SFDR = 93.6 dBc  
-60  
THD = -90.1 dBc  
Resolution = 14-bit  
-80  
2
3
5
-100  
-120  
7
4
9
8
6
10  
20  
Frequency (MHz)  
30  
40  
FIGURE 3-20:  
FFT for 14.7 MHz Input  
FIGURE 3-23:  
FFT for 14.7 MHz Input  
Signal: fS = 80 Msps, Single-Ch., AIN = -1 dBFS.  
Signal: fS = 80 Msps, Single-Ch., AIN = -4 dBFS.  
0
-20  
0
Mode = Dual-Channel  
Mode = Dual-Channel  
-20  
f
f
f
= 80 MHz  
f
f
f
= 80 MHz  
CLK  
CLK  
= 40 Msps  
= 14.7 MHz @ -4.0 dBFS  
= 40 Msps  
= 14.7 MHz @ -1.0 dBFS  
S
S
-40  
-40  
-60  
IN  
IN  
SNR = 70.0 dB (74.0 dBFS)  
SFDR = 94.7 dBc  
SNR = 72.7 dB (73.7 dBFS)  
SFDR = 93.9 dBc  
-60  
THD = -93.6 dBc  
THD = -90.9 dBc  
Resolution = 14-bit  
Resolution = 14-bit  
-80  
-80  
2
3
2
5
7
-100  
-120  
-100  
-120  
5
3
4
9
4
8
6
7
6
9
0
5
10  
Frequency (MHz)  
15  
20  
0
5
10  
Frequency (MHz)  
15  
20  
FIGURE 3-21:  
Signal: fS = 40 Msps, Dual-Ch., AIN = -1 dBFS.  
FFT for 14.7 MHz Input  
FIGURE 3-24:  
Signal: fS = 40 Msps, Dual-Ch., AIN = -4 dBFS.  
FFT for 14.7 MHz Input  
DS20006382A-page 29  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
Note: Unless otherwise specified, all plots are at 25°C, AVDD18 = DVDD18 = 1.8V, AVDD12 = DVDD12 = 1.2V, GND = 0V,  
SENSE = AVDD12, single-channel mode, differential analog input (AIN) = sine wave with amplitude of -1 dBFS, fIN = 14.7 MHz,  
clock input = 80 MHz, fS = 80 Msps (ADC Core), MCP37D31-80 (16-bit), PLL and decimation filters are disabled.  
120  
110  
100  
90  
120  
110  
100  
90  
SFDR (dBFS)  
SNR (dBFS)  
SFDR (dBFS)  
SFDR (dBc)  
SNR (dBFS)  
SFDR (dBc)  
80  
80  
70  
70  
60  
50  
60  
50  
SNR (dBc)  
SNR (dBc)  
40  
30  
20  
40  
30  
20  
SENSE = 1.2V  
= 14.7 MHz  
SENSE = 1.2V  
f = 4.3 MHz  
IN  
Resolution = 16-bit  
f
IN  
Resolution = 16-bit  
10  
10  
-50  
-40  
-30  
-20  
-10  
0
-50  
-40  
-30  
-20  
-10  
0
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
FIGURE 3-25:  
SNR/SFDR vs. Analog Input  
FIGURE 3-27:  
SNR/SFDR vs. Analog Input  
Amplitude: fS = 80 Msps, fIN = 14.7 MHz,  
High-Reference Mode (SENSE = AVDD12).  
Amplitude: fS = 80 Msps, fIN = 4.3 MHz,  
High-Reference Mode (SENSE = AVDD12).  
110  
100  
110  
100  
SFDR (dBFS)  
SFDR (dBFS)  
90  
90  
80  
70  
60  
SFDR (dBc)  
80  
70  
60  
50  
40  
30  
20  
10  
SFDR (dBc)  
SNR (dBc)  
SNR (dBFS)  
SNR (dBFS)  
50  
40  
30  
20  
10  
SNR (dBc)  
SENSE = 0V  
= 4.3 MHz  
SENSE = 0V  
= 14.7 MHz  
f
f
IN  
IN  
Resolution = 16-bit  
Resolution = 16-bit  
-40  
-30  
-20  
-10  
-50  
-40  
-30  
-20  
-10  
0
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
FIGURE 3-26:  
SNR/SFDR vs. Analog Input  
FIGURE 3-28:  
SNR/SFDR vs. Analog Input  
Amplitude: fS = 80 Msps, fIN = 14.7 MHz,  
Low-Reference Mode (SENSE = GND).  
Amplitude: fS = 80 Msps, fIN = 4.3 MHz,  
Low-Reference Mode (SENSE = GND).  
2020 Microchip Technology Inc.  
DS20006382A-page 30  
MCP37D31-80 AND MCP37D21-80  
78  
115  
110  
105  
100  
95  
76  
SFDR (dBFS)  
74  
72  
70  
68  
90  
SNR (dBFS)  
66  
64  
62  
60  
85  
80  
f
= 15.3 MHz @ -1 dBFS  
75  
IN  
Resolution = 16-bit  
0.8  
SENSE Pin Voltage (V)  
70  
0
0.2  
0.4  
0.6  
1
1.2  
FIGURE 3-29:  
Two-Tone FFT. MCP37D31-  
FIGURE 3-32:  
SNR/SFDR vs. SENSE Pin  
80.  
Voltage: fIN = 15.3 MHz.  
120  
110  
100  
90  
76  
105  
100  
95  
SNR (dBFS)  
75  
73  
71  
69  
67  
65  
SNR (dBFS)  
74  
72  
70  
68  
SFDR (dBFS)  
SFDR (dBFS)  
90  
80  
85  
80  
70  
fIN = 15.3 MHz @ -1 dBFS  
Resolution = 16-bit  
f
= 4.3 MHz @ -1 dBFS  
IN  
60  
66  
20  
0
0.2  
0.4  
0.6  
External V  
0.8  
(V)  
1
30  
40  
50  
60  
70  
80  
90  
100  
Sample Rate (Msps)  
CM  
FIGURE 3-30:  
Rate (Msps): fIN = 4.3 MHz.  
SNR/SFDR vs. Sample  
FIGURE 3-33:  
Rate (Msps). fIN = 15.3 MHz.  
SNR/SFDR vs. Sample  
120  
110  
100  
90  
76  
100  
90  
SNR (dBFS)  
SFDR (dBFS)  
75  
75  
73  
SNR (dBFS)  
74  
80  
71  
69  
67  
65  
SFDR (dBFS)  
80  
73  
72  
70  
Sample Rate = 80 Msps  
Input Amplitude = -1 dBFS  
Resolution = 16-bit  
70  
f
= 15.3 MHz @ -1 dBFS  
IN  
Resolution = 16-bit  
60  
60  
0
10  
20  
30  
40  
50  
60  
70  
0
0.2  
0.4  
0.6  
External V  
0.8  
(V)  
1
Input Frequency (MHz)  
CM  
FIGURE 3-31:  
Frequency: fS = 80 Msps.  
SNR/SFDR vs. Input  
FIGURE 3-34:  
(Externally Applied): fS = 80 Msps, fIN = 15.3  
MHz.  
SNR/SFDR vs. VCM Voltage  
DS20006382A-page 31  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
1.385  
1.38  
96  
94  
92  
74.8  
74.4  
74  
AV  
AV  
AV  
= 1.9V  
= 1.8V  
= 1.7V  
DD18  
DD18  
DD18  
SFDR (dBFS)  
SNR (dBFS)  
1.375  
1.37  
90  
88  
86  
84  
73.6  
73.2  
72.8  
72.4  
f
= 14.7 MHz @ -1 dBFS  
IN  
Resolution = 16-bit  
1.365  
-55 -35 -15  
5
25  
45  
65  
85 105 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
o
Temperature (°C)  
Temperature ( C)  
FIGURE 3-35:  
SNR/SFDRvs.Temperature:  
FIGURE 3-38:  
VREF0 vs. Temperature.  
fS = 80 Msps, fIN = 14.7 MHz, VSENSE = AVDD12  
,
AIN = -1 dBFS.  
-90  
-92  
74.2  
74.1  
95  
94  
93  
92  
91  
SFDR (dBFS)  
HD2 (dBFS)  
-94  
-96  
SNR (dBFS)  
74  
73.9  
73.8  
HD3 (dBFS)  
-98  
f
= 14.7 MHz @ -1 dBFS  
f
= 14.7 MHz @ -1 dBFS  
IN  
IN  
-100  
Resolution = 16-bit  
Resolution = 16-bit  
73.7  
90  
-102  
1.08/1.62  
1.14/1.71  
1.2/1.8  
1.26/1.89  
1.32/1.98  
1.08/1.62  
1.14/1.71  
1.2/1.8  
1.26/1.89  
1.32/1.98  
Supply Voltage (V)  
Supply Voltage (V)  
FIGURE 3-36:  
Voltage: fS = 80 Msps, fIN = 14.7 MHz.  
SNR/SFDR vs. Supply  
FIGURE 3-39:  
Voltage: fS = 80 Msps, fIN = 14.7 MHz.  
HD2/HD3 vs. Supply  
0.5  
0.4  
0.3  
0.2  
5
4
3
2
0.1  
1
0
0
-0.1  
-1  
-2  
-3  
Gain Error (%)  
Offset (LSB)  
-0.2  
-0.3  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
FIGURE 3-37:  
Gain and Offset Error Drifts  
Vs. Temperature using Internal Reference, with  
Respect to 25°C: fS = 80 Msps, fIN = 14.7 MHz,  
V
A
SENSE = AVDD12, Resolution = 16-bit,  
IN = -1dBFS.  
2020 Microchip Technology Inc.  
DS20006382A-page 32  
MCP37D31-80 AND MCP37D21-80  
FIGURE 3-40:  
INL Error Vs. Output Code:  
FIGURE 3-43:  
DNL Error Vs. Output Code:  
fS = 80 Msps, fIN = 4.3 MHz, AIN = -1dBFS,  
MCP37D31-80.  
fS = 80 Msps, fIN = 4.3 MHz, AIN = -1dBFS,  
MCP37D31-80.  
0.6  
0.4  
0.2  
0
0.3  
0.2  
0.1  
0
-0.2  
-0.1  
-0.4  
-0.2  
MCP37D21-80  
12288 16384  
MCP37D21-80  
-0.6  
-0.3  
0
4096  
8192  
0
4096  
8192  
12288  
16384  
Output Code  
Output Code  
FIGURE 3-41:  
INL Error Vs. Output Code:  
FIGURE 3-44:  
DNL Error Vs. Output Code:  
fS = 80 Msps, fIN = 4.3 MHz, AIN = -1dBFS,  
MCP37D21-80.  
fS = 80 Msps, fIN = 4.3 MHz, AIN = -1dBFS,  
MCP37D21-80.  
FIGURE 3-45:  
Shorted Input Histogram:  
FIGURE 3-42:  
Shorted Input Histogram:  
fS = 80 Msps, MCP37D21-80.  
fS = 80 Msps, MCP37D31-80.  
DS20006382A-page 33  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
160  
300  
280  
260  
240  
220  
200  
180  
160  
140  
A
= -1 dBFS  
IN  
I
ꢈꢅ  
DD_A12  
140  
120  
100  
80  
Total Power for ADC Core  
(Except I/O)  
IDD_D18  
60  
ꢈꢁꢀ  
ꢈꢁꢅ  
40  
IDD_D12  
IDD_A18  
20  
0
20  
30  
40  
50  
60  
70  
80  
90  
100  
ꢁꢀꢀ  
ꢂꢀꢀ  
ꢃꢀꢀ  
ꢄꢀꢀ  
ꢅꢀꢀ  
ꢆꢀꢀ  
ꢇꢀꢀ  
Sample Rate (Msps)  
)UHTXHQF\ꢉꢊ0+]ꢋ  
FIGURE 3-46:  
Input Bandwidth.  
FIGURE 3-47:  
Power Consumption vs.  
Sample Rate (LVDS Mode).  
2020 Microchip Technology Inc.  
DS20006382A-page 34  
MCP37D31-80 AND MCP37D21-80  
NOTES:  
DS20006382A-page 35  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
The device samples the analog input on the rising edge  
of the clock. The digital output code is available after  
28 clock cycles of data latency. Latency will increase if  
any of the digital signal post-processing (DSPP)  
options are enabled.  
4.0  
THEORY OF OPERATION  
The MCP37D31-80 and MCP37D21-80 device family  
is high-precision 80 Msps, 16-bit and 14-bit,  
a
respectively, analog-to-digital converter (ADC) with  
built-in features including Harmonic Distortion  
Correction (HDC), DAC Noise Cancellation (DNC),  
Dynamic Element Matching (DEM) and flash error  
calibration.  
The output data can be coded in two’s complement or off-  
set binary format, and randomized using the user option.  
Data can be output using either the CMOS or LVDS (Low-  
Voltage Differential Signaling) interface. Serialized LVDS  
output is also available in 16-bit octal-channel mode. In  
this mode, each input channel is output serially over a  
unique LVDS pair.  
In addition to the analog-to-digital data conversion, the  
device offers various built-in digital signal post-  
processing (DSPP) features, such as high-order FIR  
decimation filters, Digital Down-Conversion (DDC),  
Fractional Delay Recovery (FDR), continuous wave  
(CW) beamforming, and digital gain and offset  
corrections per individual channel. These built-in  
advanced digital signal post-processing sub-blocks,  
which are individually controlled using Configuration  
register bit settings, can be used for various special  
applications such as I/Q demodulation, digital down-  
conversion, and ultrasound imaging.  
4.1  
ADC Core Architecture  
Figure 4-1 shows the simplified block diagram of the  
ADC core. The first stage consists of a 17-level flash  
ADC, multi-level Digital-to-Analog Converter (DAC)  
and a residue amplifier with a gain of 8. Stages 2 to 6  
consist of a 9-level (3-bit) flash ADC, multi-level DAC  
and a residue amplifier with a gain of 4. The last stage  
is a 9-level 3-bit flash ADC. Dither is added in each of  
the first three stages.The digital outputs from all seven  
stages are combined in a digital error correction logic  
block and digitally processed for the final output.  
When the device is first powered-up, it performs an  
internal power-up calibration by itself and runs with  
default settings. From this point, the user can configure  
the device registers using the SPI command.  
The first three stages include patented digital  
calibration features:  
The input channel is selected by setting-up the user-  
control configuration register bits. In single-channel  
operation, one of the 8-analog inputs can be selected.  
In multi-channel mode, the inputs are sequentially  
multiplexed by the input MUX defined by the scan  
order. The input channel selection and the sequential  
scan order for the selected input channel are  
programmed using the configuration register bits.  
• Harmonic Distortion Correction (HDC) algorithm  
that digitally measures and cancels ADC errors  
arising from distortions introduced by the residue  
amplifiers  
• DAC Noise Cancellation (DNC) algorithm that  
corrects DAC’s nonlinearity errors  
REF0  
Reference Generator  
REF1  
Clock Generation  
REF1  
REF1  
REF1  
REF0  
REF1  
REF1  
REF1  
AIN0  
+
AIN0  
-
Pipeline  
3-bit Flash  
Pipeline  
Pipeline  
Pipeline  
Pipeline  
Pipeline  
Stage 6  
(2-bit)  
Stage 7  
(3-bit)  
Input  
MUX  
Stage 4  
(2-bit)  
Stage 5  
(2-bit)  
Stage 2  
(2-bit)  
Stage 3  
(2-bit)  
Stage 1  
(3-bit)  
AIN7  
+
HDC1, DNC1  
HDC2, DNC2  
HDC3, DNC3  
AIN7  
-
Digital Error Correction  
Programmable Digital Signal Post-Processing (DSPP)  
User-Programmable Options  
16-Bit Digital Output (MCP37D31-80)  
14-Bit Digital Output (MCP37D21-80)  
FIGURE 4-1:  
ADC Core Block Diagram.  
2020 Microchip Technology Inc.  
DS20006382A-page 36  
MCP37D31-80 AND MCP37D21-80  
4.2  
Supply Voltage (DV , AV , GND)  
4.3  
Input Sample Rate  
DD  
DD  
The device operates from two sets of supplies and a  
common ground:  
In single-channel mode, the device samples the input  
at full speed. In multi-channel mode, the core ADC is  
multiplexed between the selected channels. The  
resulting effective sample rate per channel is shown in  
Equation 4-1.  
• Digital Supplies (DVDD) for the digital section:  
1.8V and 1.2V  
• Analog Supplies (AVDD) for the analog section:  
1.8V and 1.2V  
For example, with 80 Msps operation, the input is  
sampled at the full 80 Msps rate if a single channel is  
used, or at 10 Msps per channel if all eight channels  
are used.  
• Ground (GND): Common ground for both digital  
and analog sections.  
The supply pins require an appropriate bypass  
capacitor (ceramic) to attenuate the high-frequency  
noise present in most application environments. The  
ground pins provide the current return path. These  
ground pins must be connected to the ground plane of  
the PCB through a low-impedance connection. A ferrite  
bead can be used to separate analog and digital supply  
lines if a common power supply is used for both analog  
and digital sections.  
EQUATION 4-1:  
SAMPLE RATE PER  
CHANNEL  
Full ADC Sample Ratefs  
Number of Channel Used  
Sample Rate/Channel= --------------------------------------------------------------------  
4.4  
Analog Input Channel Selection  
The voltage regulators for each supply need to have  
sufficient output current capabilities to support a stable  
ADC operation.  
The analog input is auto-multiplexed sequentially as  
defined by the channel-order selection bit setting. The  
user can configure the input MUX using the following  
registers:  
4.2.1  
POWER-UP SEQUENCE  
• SEL_NCH<2:0> in Address 0x01 (Register 5-2):  
Select the total number of input channels to be  
used.  
Figure 2-7 shows the internal power-up sequence  
events of the device. The power-up sequence of the  
device is initiated by a Power-on Reset (POR) circuit  
which monitors the analog 1.2V supply voltage  
(AVDD12):  
• Addresses 0x7D – 0x7F (Registers 5-375-39):  
Select auto-scan channel order.  
The user can select up to eight input channels. If all  
eight input channels are to be used, SEL_NCH<2:0> is  
set to 000and the input channel sampling order is set  
using Addresses 0x7D – 0x7F (Registers 5-375-39).  
(a) Once the AVDD12 reaches the Power-on Reset  
threshold (~ 0.8V), there will be a Power-on Reset  
stabilization period (218 clock cycles) before triggering  
the power-up calibration (TPCAL).  
Regardless of how many channels are selected, all  
eight channels must be programmed in Addresses  
(b) All other supply voltages (AVDD18  
, DVDD18,  
DVDD12) must be stabilized before or within the POR  
stabilization period (TPOR-S). The order that these  
supply voltages are applied and stabilized will not affect  
the power-up sequence.  
0x7D – 0x7F  
(Registers 5-375-39)  
without  
duplication. Program the addresses of the selected  
channels in sequential order, followed by the unused  
channels. The order of the unused channels has no  
effect. The device samples the first N-Channels listed  
in Addresses 0x7D – 0x7F (Registers 5-375-39)  
sequentially, where N is the total number of channels to  
be used, defined by the SEL_NCH<2:0>. Table 4-1  
shows examples of input channel selection using  
Addresses 0x7D – 0x7F (Registers 5-375-39).  
DS20006382A-page 37  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
TABLE 4-1:  
No. of  
EXAMPLE: CHANNEL ORDER SELECTION USING ADDRESSES 0X7D – 0X7F  
Selected  
Channel  
Order(2)  
Address 0x7F  
Address 0x7E  
Address 0x7D  
Channels(1) Channels  
b
7
b
0
b
7
b
0
b
7
b
0
Channel Order Bit Settings  
5th Ch. 4th Ch. 6th Ch. 3rd Ch. 7th Ch. 2nd Ch. 8th Ch. 1st Ch.  
[0 1 2 3 4 5 6 7] [0 1 2 3 4 5 6 7]  
(Default)  
1
0
0
0
1
1
1
0
1
0
1
0
1
1
0
0
0
1
1
1
1
0
0
0
8
[7 6 5 4 3 2 1 0] [7 6 5 4 3 2 1 0]  
[0 2 4 6 1 3 5 7] [0 2 4 6 1 3 5 7]  
[1 3 5 7 0 2 4 6] [1 3 5 7 0 2 4 6]  
0
0
0
1
0
0
1
1
0
1
1
1
0
1
1
0
0
1
0
0
0
1
1
1
0
1
0
1
1
1
0
0
0
1
0
1
0
1
1
0
0
0
1
1
0
1
0
0
1
1
1
0
0
1
0
1
1
0
1
1
0
1
0
1
0
0
1
0
0
1
0
1
Channel Order Bit Settings  
Unused 4th Ch. 5th Ch. 3rd Ch. 6th Ch. 2nd Ch. 7th Ch. 1st Ch.  
7
6
5
[0 1 2 3 4 5 6] [0 1 2 3 4 5 6 7]  
[0 2 4 6 1 3 5] [0 2 4 6 1 3 5 7]  
1
1
1
1
1
1
0
1
1
1
1
0
1
0
0
0
0
1
0
1
1
0
0
0
1
0
0
1
1
1
0
0
0
1
1
0
1
1
1
0
0
1
0
0
0
0
0
0
Channel Order Bit Settings  
Unused Unused 4th Ch. 3rd Ch. 5th Ch. 2nd Ch. 6th Ch. 1st Ch.  
[0 1 2 3 4 5]  
[0 2 4 6 1 3]  
[0 1 2 3 4 5 6 7]  
[0 2 4 6 1 3 5 7]  
1
1
1
1
1
1
1
1
1
0
0
1
0
1
1
1
1
0
0
1
1
0
0
0
1
0
0
0
0
1
0
0
0
1
1
0
1
0
0
1
1
1
0
0
0
0
0
0
Channel Order Bit Settings  
Unused Unused Unused 3rd Ch. 4th Ch. 2nd Ch. 5th Ch. 1st Ch.  
[0 1 2 3 4]  
[0 2 4 6 1]  
[0 1 2 3 4 5 6 7]  
[0 2 4 6 1 3 5 7]  
1
1
1
0
0
1
1
0
0
1
1
1
1
1
1
1
1
1
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
1
0
0
0
0
1
0
0
0
0
0
0
Channel Order Bit Settings  
Unused Unused Unused Unused 3rd Ch. 2nd Ch. 4th Ch. 1st Ch.  
[0 1 2 3]  
[4 5 6 7]  
[0 2 4 6]  
[1 3 5 7]  
[0 1 2 3 4 5 6 7]  
[4 5 6 7 0 1 2 3]  
[0 2 4 6 1 3 5 7]  
[1 3 5 7 0 2 4 6]  
1
0
1
1
1
1
0
0
0
0
1
0
1
0
0
0
0
0
1
1
1
1
1
0
1
0
1
1
1
1
1
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0
1
0
0
1
1
1
1
1
0
0
0
0
0
1
0
1
0
0
0
0
1
1
1
1
0
1
0
1
1
1
1
1
1
1
1
1
0
1
0
1
0
0
0
0
0
0
0
0
0
1
4
3
2
Channel Order Bit Settings  
Unused Unused Unused Unused Unused 2nd Ch. 3rd Ch. 1st Ch.  
[0 1 2]  
[0 2 4]  
[0 1 2 3 4 5 6 7]  
[0 2 4 6 1 3 5 7]  
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
0
1
1
1
1
0
1
1
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
Channel Order Bit Settings  
Unused Unused Unused Unused Unused Unused 2nd Ch. 1st Ch.  
[0 1]  
[2 3]  
[4 5]  
[6 7]  
[0 1 2 3 4 5 6 7]  
[2 3 0 1 4 5 6 7]  
[4 5 0 1 2 3 6 7]  
[6 7 0 1 2 3 4 5]  
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
1
1
1
1
0
0
1
1
0
1
0
1
0
0
0
0
Note 1: Defined by SEL_NCH<2:0> in Address 0x01 (Register 5-2).  
2: Individual channel order should not be repeated. Unused channels are still assigned after the selected channel  
address. The order of the unused channel addresses has no meaning since they are not used.  
2020 Microchip Technology Inc.  
DS20006382A-page 38  
MCP37D31-80 AND MCP37D21-80  
TABLE 4-1:  
No. of  
EXAMPLE: CHANNEL ORDER SELECTION USING ADDRESSES 0X7D – 0X7F  
Selected  
Channel  
Order(2)  
Address 0x7F  
Address 0x7E  
Address 0x7D  
Channels(1) Channels  
b
7
b
0
b
7
b
0
b
7
b
0
Channel Order Bit Settings  
Unused Unused Unused Unused Unused Unused Unused 1st Ch.  
[0]  
[1]  
[2]  
[0 1 2 3 4 5 6 7]  
[1 0 2 3 4 5 6 7]  
[2 0 1 3 4 5 6 7]  
[3 0 1 2 4 5 6 7]  
[4 0 1 2 3 5 6 7]  
[5 0 1 2 3 4 6 7]  
[6 0 1 2 3 4 5 7]  
[7 0 1 2 3 4 5 6]  
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
[3]  
[4]  
[5]  
[6]  
[7]  
Note 1: Defined by SEL_NCH<2:0> in Address 0x01 (Register 5-2).  
2: Individual channel order should not be repeated. Unused channels are still assigned after the selected channel  
address. The order of the unused channel addresses has no meaning since they are not used.  
DS20006382A-page 39  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
conversion and Common-mode application can be  
accomplished by using an RF transformer or balun with  
a center-tap. Additionally, one or more anti-aliasing  
filters may be added for optimal noise performance and  
should be tuned such that the corner frequency is  
appropriate for the system.  
4.5  
Analog Input Circuit  
The analog input (AIN) of all MCP37DX1-80 devices is  
differential, CMOS switched capacitor  
a
sample-and-hold circuit. Figure 4-2 shows the  
equivalent input structure of the device.  
The input impedance of the device is mostly governed  
by the input sampling capacitor (CS = 6 pF) and input  
sampling frequency (fS). The performance of the  
device can be affected by the input signal conditioning  
network (see Figure 4-3). The analog input signal  
source must have sufficiently low output impedance to  
charge the sampling capacitors (CS = 6 pF) within one  
clock cycle. A small external resistor (e.g., 5) in series  
with each input is recommended, as it helps reduce  
transient currents and dampens ringing behavior. A  
small differential shunt capacitor at the chip side of the  
resistors may be used to provide dynamic charging  
currents and may improve performance. The resistors  
form a low-pass filter with the capacitor and their values  
must be determined by application requirements and  
input frequency.  
Figure 4-3 shows an example of the differential input  
circuit with transformer. Note that the input-driving  
circuits are terminated by 50near the ADC side  
through a pair of 25resistors from each input to the  
Common-mode (VCM) from the device. The RF  
transformer must be carefully selected to avoid  
artificially high harmonic distortion. The transformer  
can be damaged if a strong RF input is applied or an RF  
input is applied while the MCP37DX1-80 is powered-  
off. The transformer has to be selected to handle  
sufficient RF input power.  
Figure 4-4 shows an input configuration example when  
a differential output amplifier is used.  
1  
V
CM  
0.1 µF  
The VCM pin provides a Common-mode voltage  
reference (0.9V), which can be used for a center-tap  
voltage of an RF transformer or balun. If the VCM pin  
voltage is not used, the user may create a Common-  
mode voltage at mid-supply level (AVDD18/2).  
AIN  
+
5  
Analog  
Input  
MABAES0060  
100 pF  
100 pF  
25  
0.1 µF  
10  
6
4
1
3
3
1
6.8 pF  
3.3 pF  
6
4
MABAES0060  
MCP37DX1-80  
10  
25  
AV  
DD18  
A
-
5  
IN  
FIGURE 4-3:  
Configuration.  
Transformer Coupled Input  
Sample  
Hold  
AIN+  
50  
VCM  
C
= 6 pF  
S
50  
0.1 µF  
3 pF  
VCM  
High-Speed  
Differential  
Amplifier  
100  
AIN+  
AV  
DD18  
+
CM  
-
6.8 pF  
Analog  
Input  
Hold  
AIN-  
Sample  
AIN  
-
100  
C
= 6 pF  
MCP6D11  
S
50  
3 pF  
FIGURE 4-4:  
DC-Coupled Input  
Configuration with Preamplifier: the external  
signal conditioning circuit and associated  
component values are for reference only.  
Typically, the amplifier manufacturer provides  
reference circuits and component values.  
FIGURE 4-2:  
Equivalent Input Circuit.  
4.5.1  
ANALOG INPUT DRIVING CIRCUIT  
Differential Input Configuration  
4.5.1.1  
4.5.1.2  
Single-Ended Input Configuration  
The device achieves optimum performance when the  
input is driven differentially, where Common-mode  
noise immunity and even-order harmonic rejection are  
significantly improved. If the input is single-ended, it  
must be converted to a differential signal in order to  
properly drive the ADC input. The differential  
Figure 4-5 shows an example of a single-ended input  
configuration. This single-ended input configuration is  
not recommended for the best performance. SNR and  
SFDR performance degrades significantly when the  
2020 Microchip Technology Inc.  
DS20006382A-page 40  
MCP37D31-80 AND MCP37D21-80  
device is operated in a single-ended configuration. The  
unused negative side of the input should be  
AC-coupled to ground using a capacitor.  
input full-scale range. A comparator detects the  
SENSE pin voltage and configures the full-scale input  
range into one of the three possible modes which are  
summarized in Table 4-2. Figure 4-6 shows an  
example of how the SENSE pin should be driven.  
V
CM  
The SENSE pin can sink or source currents as high as  
500 µA across all operational conditions. Therefore, it  
may require a driver circuit, unless the SENSE  
reference source provides sufficient output current.  
0.1 µF  
10 µF  
Analog  
Input  
1 k  
AIN  
+
R
V
0.1 µF  
CM  
50  
C
MCP1700  
1 k  
0.1 µF  
R1  
AIN-  
R
10 µF  
0.1 µF  
SENSE  
R2  
FIGURE 4-5:  
Configuration.  
Singled-Ended Input  
0.1 µF  
(Note 1)  
Note 1: This voltage buffer can be removed if the SENSE  
reference is coming from a stable source (such as  
MCP1700) which can provide a sufficient output  
current to the SENSE pin.  
4.5.2  
SENSE VOLTAGE AND INPUT  
FULL-SCALE RANGE  
FIGURE 4-6:  
SENSE Pin Voltage Setup.  
The device has a bandgap-based differential internal  
reference voltage. The SENSE pin voltage is used to  
select the reference voltage source and configure the  
TABLE 4-2:  
SENSE PIN VOLTAGE AND INPUT FULL-SCALE RANGE  
Selected  
SENSE Pin  
Voltage  
Full-Scale Input Voltage  
LSb Size  
Reference Voltage  
Condition  
Range (AFS  
)
(Calculated with AFS)  
(VSENSE  
)
(VREF)  
(1)  
Tied to GND  
0.7V  
16-bit mode: 22.7 µV  
14-bit mode: 90.8 µV  
Adjustable  
Low-Reference  
Mode(4)  
1.4875 VP-P  
(2)  
0.4V – 0.8V  
0.7V – 1.4V  
1.4V  
1.4875 VP-P to 2.975 VP-P  
Sense Mode(5)  
(3)  
Tied to AVDD12  
2.975 VP-P  
16-bit mode: 45.4 µV  
High-Reference  
Mode(4)  
14-bit mode: 181.6 µV  
Note 1: AFS = (17/16) x 1.4 VP-P = 1.487 VP-P  
.
2: FS = (17/16) x 2.8 VP-P x (VSENSE)/0.8 = 1.4875 VP-P to 2.975 VP-P  
A
.
3: AFS = (17/16) x 2.8 VP-P = 2.975 VP-P  
.
4: Based on internal bandgap voltage.  
5: Based on VSENSE  
.
DS20006382A-page 41  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
• Low-Reference Mode  
4.5.2.1  
SENSE Selection Vs. SNR/SFDR  
Performance  
This mode is enabled by setting the SENSE pin to  
ground. This mode is suitable for applications which have  
a smaller input full-scale range. This mode provides  
improved SFDR characteristics, but SNR is reduced by  
-6 dB compared to the High-Reference Mode.  
The SENSE pin is used to configure the full-scale input  
range of the ADC. Depending on the application  
conditions, the SNR, SFDR and dynamic range  
performance are affected by the SENSE pin  
configuration. Table 4-3 summarizes these settings.  
Figure 3-32 shows SNR/SFDR performance versus  
SENSE Pin Voltage.  
• SENSE Mode  
This mode is enabled by driving the SENSE pin with an  
external voltage source between 0.4V and 0.8V. This  
mode allows the user to adjust the input full-scale  
range such that SNR and dynamic range are optimized  
in a given application system environment.  
High-Reference Mode  
This mode is enabled by setting the SENSE pin to  
AVDD12 (1.2V). This mode provides the highest input  
full-scale range (2.975 VP-P) and the highest SNR  
performance. Figure 3-25 and Figure 3-27 show  
SNR/SFDR versus input amplitude in High-Reference  
mode.  
TABLE 4-3:  
SENSE  
High-Reference Mode  
SENSE VS. SNR/SFDR PERFORMANCE  
Descriptions  
High-input full-scale range (2.975 VP-P) and optimized SNR  
(SENSE pin = AVDD12  
)
Low-Reference Mode  
(SENSE pin = ground)  
Low-input full-scale range (1.4875 VP-P) and reduced SNR, but optimized SFDR  
Adjustable-input full-scale range (1.4875 VP-P - 2.975 VP-P). Dynamic trade-off  
Sense Mode  
(SENSE pin = 0.4V to 0.8V) between High-Reference and Low-Reference modes can be used.  
2020 Microchip Technology Inc.  
DS20006382A-page 42  
MCP37D31-80 AND MCP37D21-80  
4.5.3  
INTERNAL VOLTAGE REFERENCE  
AND BANDGAP OUTPUT  
4.6  
External Clock Input  
For optimum performance, the MCP37DX1-80 requires  
a low-jitter differential clock input at the CLK+ and  
CLKpins. Figure 4-8 shows the equivalent clock input  
circuit.  
4.5.3.1  
Internal Voltage Reference Output  
Pins (REF0 and REF1 Pins)  
The device has two internal voltage references, and  
these references are available at pins REF0 and REF1.  
REF0 is the internal voltage reference for the ADC  
input stage, and REF1 is for all remaining stages.  
MCP37DX1-80  
AVDD12  
AVDD12  
The decoupling capacitors for each reference pin are  
already embedded in the device’s TFBGA-121  
package. Figure 4-7 shows the embedded circuit for  
the REF1 and REF0 pins. Therefore, no additional  
external circuit is required on the customer’s  
application PCB.  
~300 fF  
CLK+  
300  
100 fF  
Clock  
Buffer  
AVDD12  
2 pF  
4.5.3.2  
Bandgap Output Voltage Pin (VBG)  
12 k  
300  
The bandgap circuit is a part of the reference circuit and  
the output is available at the VBG pin. The package  
includes a 2.2 µF decoupling capacitor for the VBG pin  
as shown in Figure 4-7.  
CLK-  
100 fF  
~300 fF  
MCP37DX1-80 Silicon  
VBG  
REF0+ REF0-  
REF1+ REF1-  
FIGURE 4-8:  
Equivalent Clock Input  
Circuit.  
2.2 µF  
2.2 µF  
2.2 µF  
The clock input amplitude range is between 300 mVP-P  
and 800 mVP-P. When a single-ended clock source is  
used, an RF transformer or balun can be used to  
convert the clock into a differential signal for the best  
ADC performance. Figure 4-9 shows an example clock  
input circuit. The Common-mode voltage is internally  
generated and a center-tap is not required. The  
back-to-back Schottky diodes across the transformer’s  
secondary current limit the clock amplitude to  
approximately 0.8 VP-P differential. This limiter helps  
prevent large voltage swings of the input clock while  
preserving the high slew rate that is critical for low jitter.  
22 nF  
22 nF  
220nF  
220 nF  
220 nF  
220 nF  
TFBGA-121 Embedded External Circuit  
FIGURE 4-7:  
Embedded Decoupling  
Circuit in TFBGA-121 Package for Voltage  
Reference and VBG pins. No external circuit is  
required on an application PCB.  
CLK+  
Clock  
Coilcraft  
Source  
WBC1-1TL  
6
4
1
3
Schottky  
Diodes  
(HSMS-2812)  
50  
0.1 µF  
CLK-  
FIGURE 4-9:  
Transformer-Coupled  
Differential Clock Input Configuration.  
DS20006382A-page 43  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
4.6.1  
CLOCK JITTER AND SNR  
PERFORMANCE  
In a high-speed pipelined ADC, the SNR performance  
is directly limited by thermal noise and clock jitter.  
Thermal noise is independent of input clock and  
dominant term at low-input frequency. On the other  
hand, the clock jitter becomes a dominant term as input  
frequency increases. Equation 4-2 shows the SNR  
jitter component, which is expressed in terms of the  
input frequency (fIN) and the total amount of clock jitter  
(TJitter), where TJitter is a sum of the following two  
components:  
• Input clock jitter (phase noise)  
• Internal aperture jitter (due to noise of the clock  
input buffer).  
EQUATION 4-2:  
SNR VS.CLOCK JITTER  
SNR  
dBc= 20 log 2  f  
10  
T  
Jitter  
IN  
Jitter  
where the total jitter term (Tjitter) is given by:  
2
2
T
=
t  
+ t  
Jitter  
Jitter, Clock Input  
Aperture, ADC  
The clock jitter can be minimized by using a high-  
quality clock source and jitter cleaners as well as a  
band-pass filter at the external clock input, while a  
faster clock slew rate improves the ADC aperture jitter.  
With a fixed amount of clock jitter, the SNR degrades  
as the input frequency increases. This is illustrated in  
Figure 4-10. If the input frequency increases from  
10 MHz to 20 MHz, the maximum achievable SNR  
degrades about 6 dB. For every decade (e.g. 10 MHz  
to 100 MHz), the maximum achievable SNR due to  
clock jitter is reduced by 20 dB.  
160  
Jitter = 0.0625 ps  
140  
Jitter = 0.125 ps  
120  
100  
80  
60  
40  
20  
0
Jitter = 0.25 ps  
Jitter = 0.5 ps  
Jitter = 1 ps  
1
10  
100  
1000  
Input Frequency (fIN, MHz)  
FIGURE 4-10:  
SNR vs. Clock Jitter.  
2020 Microchip Technology Inc.  
DS20006382A-page 44  
MCP37D31-80 AND MCP37D21-80  
4.7  
ADC Clock Selection  
This section describes the ADC clock selection and  
how to use the built-in Delay-Locked Loop (DLL) and  
Phase-Locked Loop (PLL) blocks.  
When the device is first powered-up, the external clock  
input (CLK+/-) is directly used for the ADC timing as  
default. After this point, the user can enable the DLL or  
PLL circuit by setting the register bits. Figure 4-11  
shows the clock control blocks. Table 4-4 shows an  
example of how to select the ADC clock depending on  
the operating conditions.  
TABLE 4-4:  
ADC CLOCK SELECTION (EXAMPLE)  
Features  
Operating Conditions  
Control Bit Settings(1)  
Input Clock Duty  
Cycle Correction  
DCLK Output Phase  
Delay Control  
CLK_SOURCE = 0 (Default)(2)  
• DLL output is not used  
• Decimation is not used  
(Default)(3)  
EN_DLL = 0  
EN_DLL_DCLK = 0  
EN_PHDLY = 0  
Not Available  
Not Available  
Available  
EN_DLL = 1  
EN_DLL_DCLK = 0  
EN_PHDLY = 0  
Available  
Available  
• DLL output is used  
• Decimation is not used  
EN_DLL = 1  
EN_DLL_DCLK = 1  
EN_PHDLY = 1  
• DLL output is not used  
• Decimation is used(4)  
EN_DLL = 0  
EN_DLL_DCLK = X  
EN_PHDLY = 1  
Not Available  
Available  
EN_DLL = 1  
EN_DLL_DCLK = 0  
EN_PHDLY = 1  
CLK_SOURCE = 1(5)  
• Decimation is not used  
• Decimation is used(4)  
EN_DLL = X  
EN_DLL_DCLK = X  
EN_PHDLY = 0  
Not Available  
Available  
EN_DLL = X  
EN_DLL_DCLK = X  
EN_PHDLY = 1  
Note 1: See Addresses 0x52, 0x53, and 0x64 for bit settings.  
2: The sampling frequency (f ) of the ADC core comes directly from the input clock buffer  
S
3: Output data is synchronized with the output data clock (DCLK), which comes directly from the input clock buffer.  
4: While using decimation, output clock rate and phase delay are controlled by the digital clock output control block  
5: The sampling frequency (f ) is generated by the PLL circuit. The external clock input is used as the reference input  
S
clock for the PLL block.  
DS20006382A-page 45  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
fS  
EN_DLL  
RESET_DLL  
EN_DLL_DCLK = 0  
Clock Input (fCLK): < 250 MHz  
EN_DLL = 0  
EN_PHDLY  
DCLK  
DLL Circuit  
DCLK  
if CLK_SOURCE = 0  
Phase Delay  
Duty Cycle Correction (DCC)  
EN_DUTY  
Input Clock Buffer  
EN_CLK  
DCLK_PHDLY_DLL<2:0>  
EN_DLL_DCLK  
DLL Block  
See Address 0x52 and 0x64<7> for details  
if digital decimation is used  
See Address 0x7A, 0x7B, 0x7C, and 0x81  
if CLK_SOURCE = 1  
Digital Output  
Clock Phase Delay Control  
(when decimation filter is used)  
DCLK  
EN_PHDLY  
DCLK_PHDLY_DEC<2:0>  
Digital Output  
Clock Rate Control  
OUT_CLKRATE<3:0>  
Digital Clock Output Control Block  
See Address 0x64 and 0x02  
for control parameters  
fREF  
(5 MHz to 250 MHz)  
EN_PLL  
EN_PLL_BIAS  
Loop Filter Control Parameters:  
if digital decimation is used  
See Address 0x7A, 0x7B, 0x7C, and 0x81  
C : PLL_CAP1<4:0>  
1
C
C : PLL_CAP2<4:0>  
2
C
C
2
1
3
C : PLL_CAP3<4:0>  
3
R
1
R : PLL_RES<4:0>  
1
PLL_REFDIV<9:0>  
EN_PLL_REFDIV  
fS  
(80 MHz - 250 MHz)  
÷R  
EN_PLL_OUT  
f
Q
Current  
fVCO  
DCLK  
Loop Filter  
(3rd Order)  
Phase/Freq.  
Detector  
Output/Div  
Charge  
Pump  
DCLK Delay  
VCO  
EN_PLL_CLK  
PLL_OUTDIV<3:0>  
DCLK_DLY_PLL<2:0>  
Loop Filter Control  
PLL_CHAGPUMP<3:0>  
÷N  
PLL Output Control Block  
See Address 0x55 and 0x6D  
for control parameters  
PLL_PRE<11:0>  
PLL Block  
See Address 0x54 - 0x5D for Control Parameters  
Note:  
VCO output range is 1.075 GHz – 1.325 GHz by setting PLL_REFDIV<10:0> and PLL_PRE<11:0>, with f  
= 5 MHz - 250 MHz range.  
REF  
N
R
f
= --- f  
= 1.075 1.325GHz  
REF  
VCO  
FIGURE 4-11:  
Timing Clock Control Blocks.  
2020 Microchip Technology Inc.  
DS20006382A-page 46  
MCP37D31-80 AND MCP37D21-80  
4.7.1  
USING DLL MODE  
Using the DLL block is the best option when output  
clock phase control is needed while the clock  
multiplication and digital decimation are not required.  
When the DLL block is enabled, the user can control  
the input clock Duty Cycle Correction (DCC) and the  
output clock phase delay.  
See the DLL block in Figure 4-11 for details. Table 4-5  
summarizes the DLL control register bits. In addition,  
see Table 4-21 for the output clock phase control.  
TABLE 4-5:  
DLL CONTROL REGISTER BITS  
Control Parameter  
Register  
Descriptions  
CLK_SOURCE  
EN_DUTY  
0x53  
0x52  
0x52  
0x52  
0x52  
CLK_SOURCE = 0: external clock input becomes input of the DLL block  
Input clock duty cycle correction control bit(1)  
EN_DLL = 1: enable DLL block  
EN_DLL  
EN_DLL_DCLK  
EN_PHDLY<2:0>  
DLL output clock enable bit  
Phase delay control bits of digital output clock (DCLK) when DLL or  
decimation filter is used(2)  
RESET_DLL  
0x52  
Reset control bit for the DLL block  
Note 1: Duty cycle correction is not recommended when a high-quality external clock is used.  
2: If decimation is used, the output clock phase delay is controlled using DCLK_PHDLY_DEC<2:0> in  
Address 0x64.  
4.7.1.1  
Input Clock Duty Cycle Correction  
4.7.1.2  
DLL Block Reset Event  
The ADC performance is sensitive to the clock duty  
cycle. The ADC achieves optimum performance with  
50% duty cycle, and all performance characteristics are  
ensured when the duty cycle is 50% with ±1%  
tolerance.  
The DLL must be reset if the clock frequency is  
changed. The DLL reset is controlled by using the  
RESET_DLL bit in Address 0x52 (Register 5-7). The  
DLL has an automatic reset with the following events:  
• During power-up: Stay in reset until the  
RESET_DLL bit is cleared.  
When CLK_SOURCE = 0, the external clock is used  
as the sampling frequency (fS) of the ADC core. When  
the external input clock is not high-quality (for example,  
duty cycle is not 50%), the user can enable the internal  
clock duty cycle correction circuit by setting the  
EN_DUTY bit in Address 0x52 (Register 5-7). When  
duty cycle correction is enabled (EN_DUTY=1), only  
the falling edge of the clock signal is modified (rising  
edge is unaffected).  
• When a SOFT_RESET command is issued while  
the DLL is enabled: the RESET_DLL bit is  
automatically cleared after reset.  
Because the duty cycle correction process adds  
additional jitter noise to the clock signal, this option is  
recommended only when an asymmetrical input clock  
source causes significant performance degradation or  
when the input clock source is not stable.  
Note: The clock duty cycle correction is only  
applicable when the DLL block is enabled  
(EN_DLL = 1). It is not applicable for the PLL  
output.  
DS20006382A-page 47  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
When the PLL is locked, it tracks the input frequency  
(fREF) with the ratio of dividers (N/R). The PLL operat-  
4.7.2  
USING PLL MODE  
The PLL block is mainly used when clock multiplication  
is needed. When CLK_SOURCE = 1, the sampling  
frequency (fS) of the ADC core is coming from the  
ing status is monitored by the PLL status indication bits:  
<PLL_VCOL_STAT> and <PLL_VCOH_STAT> in  
Address 0xD1 (Register 5-80).  
internal PLL block.  
Equation 4-3 shows the VCO output frequency (fVCO) as  
a function of the two dividers and reference frequency:  
The external clock input is used as the PLL reference  
frequency. The range of the clock input frequency is  
from 5 MHz to 250 MHz.  
EQUATION 4-3:  
VCO OUTPUT  
FREQUENCY  
4.7.2.1  
PLL Output Frequency and Output  
Control Parameters  
N
   
R
   
fVCO  
=
--- fREF = 1.075 GHzto 1.325 GHz  
Where:  
The internal PLL can provide a stable timing output  
ranging from 50 MHz to 250 MHz. Figure 4-11 shows the  
PLL block using a charge-pump-based integer N PLL  
and the PLL output control block. The PLL block  
includes various user control parameters for the desired  
output frequency. Table 4-6 summarizes the PLL control  
register bits and Table 4-7 shows an example of register  
bit settings for the PLL charge pump and loop filter.  
N = 1 to 4095 controlled by PLL_PRE<11:0>  
R = 1 to 1023 controlled by PLL_REFDIV<9:0>  
See Addresses 0x54 to 0x57 (Registers 5-9 5-12)  
for these bits settings.  
The tuning range of the VCO is 1.075 GHz to  
1.325 GHz. N and R values must be chosen so the  
VCO is within this range. In general, lower values of the  
VCO frequency (fVCO) and higher values of the charge  
pump frequency (fQ) should be chosen to optimize the  
clock jitter. Once the VCO output frequency is  
determined to be within this range, set the final ADC  
sampling frequency (fS) with the PLL output divider  
using PLL_OUTDIV<3:0>. Equation 4-4 shows how to  
obtain the ADC core sampling frequency:  
The PLL block consists of:  
• Reference Frequency Divider (R)  
• Prescaler - which is a feedback divider (N)  
• Phase/Frequency Detector (PFD)  
• Current Charge Pump  
• Loop Filter - a 3rd order RC low-pass filter  
• Voltage-Controlled Oscillator (VCO)  
The external clock at the CLK+ and CLK- pins is the  
input frequency to the PLL. The range of input  
frequency (fREF) is from 5 MHz to 250 MHz. This input  
frequency is divided by the reference frequency  
divider (R) which is controlled by the 10-bit-wide  
PLL_REFDIV<9:0> setting. In the feedback loop, the  
VCO frequency is divided by the prescaler (N) using  
PLL_PRE<11:0>.  
EQUATION 4-4:  
SAMPLING FREQUENCY  
fVCO  
fS  
=
------------------------------------- = 50 MHz to 250 MHz  
PLL_OUTDIV  
Table 4-8 shows an example of generating fS = 80 MHz  
output using the PLL control parameters.  
4.7.2.2  
PLL Calibration  
The ADC core sampling frequency (fS) is obtained  
The PLL should be recalibrated following a change in  
clock input frequency or in the PLL Configuration  
register bit settings (Addresses 0x54  
Registers 5-9 5-12).  
after  
the  
output  
frequency  
divider  
(PLL_OUTDIV<3:0>). For stable operation, the user  
needs to configure the PLL with the following limits:  
-
0x57;  
Input clock frequency (f  
)
= 5 MHz to 250 MHz  
= 4 MHz to 50 MHz  
REF  
The PLL can be calibrated by toggling the PLL_-  
CAL_TRIG bit in Address 0x6B (Register 5-27) or by  
sending a SOFT_RESET command (See Address  
0x00, Register 5-1). The PLL calibration status is  
observed by the PLL_CAL_STAT bit in Address 0xD1  
(Register 5-81).  
Charge pump input frequency  
(after PLL reference divider)  
VCO output frequency  
= 1.075 to1.325 GHz  
= 50 MHz to 250 MHz  
PLL output frequency after  
output divider  
4.7.2.3  
Monitoring of PLL Drifts  
The charge pump is controlled by the PFD, and forces  
sink (DOWN) or source (UP) current pulses onto the  
loop filter. The charge pump bias current is controlled  
by the PLL_CHAGPUMP<3:0> bits, approximately  
25 µA per step. The loop filter consists of a 3rd order  
passive RC filter. Table 4-7 shows the recommended  
settings of the charge pump and loop filter parameters,  
depending on the charge pump input frequency range  
(output of the reference frequency divider).  
The PLL drifts can be monitored using the status  
monitoring bits in Address 0xD1 (Register 5-81).  
Under normal operation, the PLL maintains a lock  
across all temperature ranges. It is not necessary to  
actively monitor the PLL unless extreme variations in  
the supply voltage are expected or if the input  
reference clock frequency has been changed.  
2020 Microchip Technology Inc.  
DS20006382A-page 48  
MCP37D31-80 AND MCP37D21-80  
TABLE 4-6:  
PLL CONTROL REGISTER BITS  
Control Parameter  
Register  
Descriptions  
PLL Global Control Bits  
EN_PLL  
0x59  
0x5F  
0x5F  
0x59  
Master enable bit for the PLL circuit  
EN_PLL_OUT  
Master enable bit for the PLL output  
Master enable bit for the PLL bias  
EN_PLL_BIAS  
EN_PLL_REFDIV  
PLL Block Setting Bits  
PLL_REFDIV<9:0>  
PLL_PRE<11:0>  
Master enable bit for the PLL reference divider  
0x54-0x55 PLL reference divider (R) (See Table 4-8)  
0x56-0x57 PLL prescaler (N) (See Table 4-8)  
PLL_CHAGPUMP<3:0>  
PLL_RES<4:0>  
0x58  
0x5A  
0x5B  
0x5D  
0x5C  
PLL charge pump bias current control: from 25 µA to 375 µA, 25 µA per step  
PLL loop filter resistor value selection (See Table 4-7)  
PLL_CAP3<4:0>  
PLL loop filter capacitor 3 value selection (See Table 4-7)  
PLL loop filter capacitor 2 value selection (See Table 4-7)  
PLL loop filter capacitor 1 value selection (See Table 4-7)  
PLL_CAP2<4:0>  
PLL_CAP1<4:0>  
PLL Output Control Bits  
PLL_OUTDIV<3:0>  
DCLK_DLY_PLL<2:0>  
EN_PLL_CLK  
0x55  
0x6D  
0x6D  
PLL output divider (See Table 4-8)  
Delay DCLK output up to 15 cycles of VCO clocks  
EN_PLL_CLK = 1enable PLL output clock to the ADC circuits  
PLL Drift Monitoring Bits  
PLL_VCOL_STAT  
PLL_VCOH_STAT  
PLL Block Calibration Bits  
PLL_CAL_TRIG  
0xD1  
0xD1  
PLL drift status monitoring bit  
PLL drift status monitoring bit  
0x6B  
0x00  
0xD1  
Forcing recalibration of the PLL  
SOFT_RESET  
PLL is calibrated when exiting soft reset mode  
PLL auto-calibration status indication  
PLL_CAL_STAT  
DS20006382A-page 49  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
TABLE 4-7:  
RECOMMENDED PLL CHARGE PUMP AND LOOP FILTER BIT SETTINGS  
fQ = fREF/PLL_REFDIV  
PLL Charge Pump and Loop Filter  
Parameter  
fQ<5 MHz  
5 MHz fQ < 25 MHz  
fQ 25 MHz  
PLL_CHAGPUMP<3:0>  
PLL_RES<4:0>  
0x04  
0x1F  
0x07  
0x07  
0x07  
0x04  
0x1F  
0x02  
0x01  
0x01  
0x04  
0x07  
0x07  
0x08  
0x08  
PLL_CAP3<4:0>  
PLL_CAP2<4:0>  
PLL_CAP1<4:0>  
TABLE 4-8:  
EXAMPLE OF PLL CONTROL BIT SETTINGS FOR fS = 80 MHz WITH fREF = 40 MHz  
PLL Control Parameter  
Value  
Descriptions  
fREF  
40 MHZ  
80 MHZ  
1.2 GHZ  
10 MHZ  
4
fREF is coming from the external clock input  
ADC sampling frequency  
( )  
1
Target fS  
( )  
2
Target fVCO  
Range of fVCO = 1.0375 GHz – 1.325 GHz  
fQ = fREF/PLL_REFDIV (See Table 4-7)  
PLL_REFDIV<9:0> = 0x004  
( )  
3
Target fQ  
PLL Reference Divider (R)  
PLL Prescaler (N)  
120  
PLL_PRE<11:0> = 0x078  
PLL Output Divider  
15  
PLL_OUTDIV<3:0> = 0xF  
Note 1: fS = fVCO/PLL_OUTDIV = 1.2 GHz/15 = 80 MHz  
2: fVCO = (N/R) x fREF = (30) x 40 MHz = 1.2 GHz  
3:  
fQ should be maximized for the best noise performance.  
2020 Microchip Technology Inc.  
DS20006382A-page 50  
MCP37D31-80 AND MCP37D21-80  
4.8  
Digital Signal Post-Processing  
(DSPP) Options  
While the device converts the analog input signals to  
digital output codes, the user can enable various digital  
signal post-processing (DSPP) options for special  
applications. These options are individually enabled or  
disabled by setting the Configuration bits. Table 4-9  
summarizes the digital signal post-processing (DSPP)  
options that are available for each device family.  
TABLE 4-9:  
DIGITAL SIGNAL POST PROCESSING (DSPP) OPTIONS  
Digital Signal Post Processing Option  
Available Operating Mode  
Fractional Delay Recovery (FDR)  
FIR Decimation Filters  
Dual and octal-channel modes  
• Single and dual-channel modes  
• CW octal-channel mode  
• DDC for I and Q data  
Digital Gain and Offset correction per channel  
Digital-Down Conversion (DDC)  
Available for all channels  
• Single and dual-channel modes  
• CW octal-channel mode  
CW octal-channel mode  
Continuous Wave (CW) Beamforming  
4.8.1  
FRACTIONAL DELAY RECOVERY  
FOR DUAL- AND OCTAL-CHANNEL  
MODES  
ADC Output for  
dual- or octal-channel  
FIR  
The fractional delay recovery (FDR) feature is available  
in dual and octal-channel modes only. When FDR is  
enabled, the built-in high-order, band-limited  
interpolation filter compensates for the time delay  
between input samples of different channels. Due to  
the finite bandwidth of the interpolation filter, the  
fractional delay recovery is not guaranteed for input  
frequencies near the Nyquist frequency (fS/2). For  
example, in dual-channel mode, FDR can operate  
correctly for input frequencies in the range from 0 to  
0.45*fS (or from 0.55*fs to fS if the input is in the 2nd  
Nyquist band). In octal-channel mode, FDR can  
operate correctly for input frequencies in the range  
from 0 to 0.38*fS. See Table 4-11 for the summary of  
the input bandwidth requirement for FDR. The FDR  
process takes place in the digital domain and requires  
59 clock cycles of processing time. Therefore, the  
output data latency is also increased by 59 clock  
periods.  
Decimation Filters  
Fractional Delay  
Recovery  
Digital  
Down-Conversion (DDC)  
(FDR)  
Digital Gain/Offset  
FDR Control  
Correction per Channel  
CW  
Beamforming  
ADC output data after  
sampling time delay between  
channels is removed.  
FIGURE 4-12:  
Simplified Block Diagram for  
ADC Output Data Path with Fractional Delay  
Recovery Option. Note that Fractional Delay  
Recovery occurs prior to other DSPP features.  
Figure 4-12 shows the simplified block diagram for the  
ADC output data path with FDR. The related  
Configuration register bits are listed in Table 4-10.  
Table 4-11 shows the input bandwidth limits of the FDR  
feature for distortion less than 0.1 mdB (0.1 × 10-3 dB),  
where fS is the sampling frequency per channel.  
Figures 4-13 and 4-14 show the responses of the dual-  
channel and octal-channel FDRs, respectively.  
DS20006382A-page 51  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
TABLE 4-10: CONTROL PARAMETERS FOR FRACTIONAL DELAY RECOVERY (FDR)  
Channel Operation  
Control Parameter Register  
Descriptions  
Global control for both  
dual and octal-channel  
modes  
EN_FDR = 1  
0x7A  
0x81  
Enable FDR features  
Select 1st or 2nd Nyquist band  
FDR_BAND  
Dual-channel  
Octal-channel  
SEL_FDR = 0  
0x81  
0x81  
Select FDR for dual-channel mode  
EN_DSPP_8 = 0  
Select digital signal post-processing feature for  
dual-channel mode  
EN_DSPP_2 = 1  
0x79  
Enable all digital post-processing functions for  
dual-channel operation  
SEL_FDR = 1  
0x81  
0x81  
Select FDR for octal-channel mode  
EN_DSPP_8 = 1  
Select digital signal post-processing feature for  
octal-channel operation  
TABLE 4-11: INPUT BANDWIDTH  
REQUIREMENT FOR FDR  
In-Band Ripple  
0.0005  
0
Bandwidth  
in percentage  
Nyquist Band (2)  
-0.0005  
0
fS/2  
fS  
(1)  
of fS  
Interpolation Filter Frequency Response  
0
Dual-Channel Mode  
st Nyquist Band (FDR_BAND = 0)  
-30  
0 – 45%  
55 – 100%  
45 – 55%  
1
2
nd Nyquist Band (FDR_BAND = 1)  
-60  
-90  
Avoid  
Octal-Channel Mode  
0 – 38%  
1st Nyquist Band (FDR_BAND = 0)  
-120  
0
fS/2  
Frequency  
fS  
Note 1: fs is sampling frequency per channel.  
Distortion is less than 0.1 mdB.  
FIGURE 4-13:  
Response of the Dual-  
2: See Address 0x81 for FDR_BAND bit  
Channel Fractional Delay Recovery (1st Nyquist  
Band). fS is the Sampling Frequency.  
setting  
In-Band Ripple  
0.0005  
0
-0.0005  
0
fS/2  
fS  
2×fS  
Frequency  
3×fS  
4×fS  
0
-30  
-60  
-90  
-120  
0
fS/2  
fS  
2×fS  
Frequency  
3×fS  
4×fS  
FIGURE 4-14:  
Response of the Octal-  
Channel Fractional Delay Recovery (1st Nyquist  
Band). fS is the Sampling Frequency.  
2020 Microchip Technology Inc.  
DS20006382A-page 52  
MCP37D31-80 AND MCP37D21-80  
4.8.2  
DECIMATION FILTERS  
TABLE 4-12: DECIMATION RATE VS. SNR  
PERFORMANCE  
The decimation feature is available in single and dual-  
channel modes and CW octal-channel mode.  
Figure 4-15 shows a simplified decimation filter block,  
and Table 4-13 shows the register settings. The  
decimation rate is controlled by FIR_A<8:0> and  
FIR_B<7:0> register settings (Addresses 0x7A –  
0x7C: Registers 5-34 - ). These registers are  
thermometer encoded.  
SNR (dBFS)  
Decimation  
16-Bit Output  
Mode  
18-Bit Output  
Rate  
Mode(1)  
1x  
2x  
74.5  
76.7  
79.5  
82.3  
84.8  
87.1  
89.2  
91.0  
92.0  
92.3  
74.5  
76.7  
79.5  
82.3  
84.8  
87.4  
89.7  
91.8  
93.2  
93.5  
4x  
In single-channel mode, FIR B is disabled and only  
FIR A is used. In this mode, the maximum  
programmable decimation rate is 512x using nine  
cascaded decimation stages.  
8x  
16x  
32x  
64x  
128x  
256x  
512x  
In dual-channel mode or when using the Digital Down-  
Conversion (DDC) in I/Q mode, both FIR A and FIR B  
are used (see Figure 4-15). In this case, both channels  
are set to the same decimation rate. Note that stage  
1A in FIR A is unused: the user must clear FIR_A<0>  
in Address 0x7A (Registers 5-34). In dual-channel  
mode, the maximum programmable decimation rate is  
up to 256x, which is half the single-channel decimation  
rate (512x).  
Note 1: DM1DM2 bit is enabled.  
The overall SNR performance can be improved with  
higher decimation rate. In theory, 3 dB improvement is  
expected with each successive stage of decimation  
(2x per stage), but the actual improvement is  
approximately 2.5 dB per stage due to finite  
attenuation in the FIR filters.  
When using a high decimation rate option (128x or  
above) in 16-bit mode, the user may consider enabling  
two additional LSb output bits using the DM1DM2 bit  
setting in Address 0x68 (Register 5-26). This results in  
18-bit resolution. The recommended decimation rates  
for adding these two additional bits are 128x or above.  
This option is available for 16-bit devices only  
(MCP37D31-80).  
Table 4-12 summarizes the decimation rate versus  
SNR performance in 16-bit and 18-bit output modes.  
The results indicate that the SNR is marginally  
improved with higher decimation rates. Therefore, the  
user may benefit from the 18-bit output mode when a  
high decimation rate is used. When a low decimation  
rate is used, there is no benefit to SNR or SFDR  
performance although the 18-bit output is enabled.  
Table 4-13 summarizes the related control parameters  
for using decimation filters.  
DS20006382A-page 53  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
4.8.2.1  
Output Data Rate and Clock Phase  
Control When Decimation is Used  
When decimation is used, it also reduces the output  
clock rate and output bandwidth by a factor equal to  
the decimation rate applied: the output clock rate is  
therefore no longer equal to the ADC sampling clock.  
The user needs to adjust the output clock and data  
rates in Address 0x02 (Register 5-3) based on the  
decimation applied. This allows the output data to be  
synchronized to the output data clock.  
Phase shifts in the output clock can be achieved using  
DCLK_PHDLY_DEC<2:0>  
in  
Address  
0x64  
(Register 5-22). Only four output sampling phases are  
available when a decimation rate of 2x is used, while  
all eight clock phases are available for other  
decimation rates. See Section 4.12.9 “Output Data  
and Clock Rates” for more details.  
4.8.2.2  
Using Decimation with CW  
Beamforming and Digital Down-  
Conversion  
Decimation can be used in conjunction with CW octal-  
channel mode or DDC. In CW octal-channel mode  
operation, the eight input channels are summed into a  
single channel prior to entering the decimation filters.  
When DDC is enabled, the I and Q outputs can be  
decimated using the same signal path for the dual-  
channel mode: I and Q data are fed into Channel A  
and B, respectively.  
In DDC mode, the half-band filter already includes a  
2x decimation rate. Therefore, the maximum  
decimation rate setting for I/Q filtering is 128x for the  
FIR_A<8:1> and FIR_B<7:0>. See Section 4.8.3  
“Digital Down-Conversion” for details.  
Note:  
Fractional Delay Recovery, Digital  
Gain/Offset adjustment and DDC for I/Q  
data options occur prior to the decimation  
filters if they are enabled.  
2020 Microchip Technology Inc.  
DS20006382A-page 54  
MCP37D31-80 AND MCP37D21-80  
TABLE 4-13: REGISTER CONTROL PARAMETERS FOR USING DECIMATION FILTERS  
Control Parameter  
Register  
Descriptions  
Decimation Filter Settings  
FIR_A<8:0>  
0x7A, 0x7B  
0x7C  
Channel A FIR configuration for single- or dual-channel mode  
Channel B FIR configuration for single- or dual-channel mode  
FIR_B<7:0>  
Output Data Rate and Clock Rate Settings(1)  
OUT_DATARATE<3:0>  
0x02  
Output data rate: Equal to decimation rate  
Output clock rate: Equal to decimation rate  
OUT_CLKRATE<3:0>  
0x02  
Output Clock Phase Control Settings(2)  
EN_PHDLY  
0x64  
0x64  
Enable digital output phase delay when decimation filter is used  
Digital output clock phase delay control  
DCLK_PHDLY_DEC<2:0>  
Digital Signal Post-Processing (DSPP) Function Block Settings  
EN_DSPP_2 = 1 0x79 Enable dual-channel decimation  
Note 1: The output data and clock rates must be updated when decimation rates are changed.  
2: Output clock (DCLK) phase control is used when the output clock is divided by OUT_CLKRATE<3:0>  
bit settings.  
I
D2  
Single  
D4  
Single  
D8  
Single  
Single-channel operation  
Single  
Ch.  
Input  
Stage 9A  
FIR  
D512  
Single  
Stage 2A  
FIR  
Stage 3A  
FIR  
Stage 1A  
FIR  
2
2
2
2
2
2
(Note 1)  
(Note 3)  
Ch. A  
Ch. B  
Dual  
Ch.  
Input  
Input  
DeMUX  
Stage 2B  
FIR  
Stage 9B  
FIR  
Output  
MUX  
Stage 3B  
FIR  
2
D256  
Dual  
(Note 2)  
Dual-channel operation  
Output  
MUX  
Output  
MUX  
Output  
MUX  
D4  
Dual  
D128  
I/Q  
D2  
Dual  
Ch. A  
Ch. B  
Input for DDC  
Input  
DeMUX  
DDC I/Q filtering  
Note 1: Stage 1A FIR is the first stage of the FIR A filter.  
2: (a) Single-channel mode: Only Channel A is used and controlled by FIR_A<8:0>.  
(b) Dual-channel mode or I/Q filtering in DDC mode: Both Channel A and Channel B are used: Channel A is used for  
the first channel or I data, and Channel B is used for the second channel or Q data.  
3: Maximum decimation rate:  
(a) When I/Q filtering in DDC mode is not used: 512x for single-channel and 256x for dual-channel mode.  
(b) I/Q filtering in DDC mode: 128x each for FIR_A<8:1> and FIR_B<7:0>.  
FIGURE 4-15:  
Simplified Block Diagram of Decimation Filters.  
DS20006382A-page 55  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
Example:  
4.8.3  
DIGITAL DOWN-CONVERSION  
The Digital Down-Conversion (DDC) feature is  
available in single, dual, and CW octal-channel modes.  
This feature can be optionally combined with the  
decimation filter and used to:  
If the ADC is sampling an input at 80 Msps, but the user  
is only interested in a 2.5 MHz span which is centered  
at 20 MHz, the digital down-conversion may be used to  
mix the sampled ADC data with 20 MHz to convert it to  
DC. The resulting signal can then be decimated by 16x  
such that the bandwidth of the ADC output  
(corresponding to 5 MHz Nyquist bandwidth) is 2.5  
MHz (80 Msps/16x decimation gives 5 Msps with 2.5  
MHz Nyquist bandwidth). If fS/8 mode is selected, then  
a single 10 Msps channel is output, where 2.5 MHz in  
the output data corresponds to 20 MHz at the ADC  
input. If I/Q mode is selected, then two 5 Msps  
channels are output, where DC corresponds to 20 MHz  
and the channels represent in-phase (I) and quadrature  
(Q) components of the down-conversion.  
• translate the input frequency spectrum to a lower  
frequency band  
• remove the unwanted out-of-band portion  
• output the resulting signal as either I/Q data or as  
a real signal centered at 25% of the output data  
rate.  
Figure 4-16 and Figure 4-17 show the DDC  
configuration for single- and dual-channel DDC mode,  
respectively. The DDC includes a 32-bit, complex  
numerically controlled oscillator (NCO), a selectable  
(high/low) half-band filter, optional decimation, and two  
output modes (I/Q or fS/8).  
4.8.3.1  
Single-Channel DDC  
shows the single-channel  
Figure 4-16  
DDC  
Frequency translation is accomplished with the NCO.  
The NCO frequency is programmable from 0 Hz to fS.  
Phase and amplitude dither can be enabled to improve  
spurious performance of the NCO.  
configuration. Each of these processing sub-blocks are  
individually controlled. Examples of setting registers for  
selected output type are shown in Tables 4-14 and 4-15.  
This DDC feature can be used in a variety of high-  
speed signal-processing applications, including digital  
radio, sonar, radar, cable modems, digital video, MRI  
imaging, etc.  
I or I  
(Note 5)  
DEC  
Q or Q  
DEC  
FIR_A<8:1>  
(Note 3)  
I
FIR A  
CH. A  
ADC DATA  
Decimation Filter  
Half-Band Filter A  
LP/HP  
fS/8  
NCO (  
)
Q
FIR B  
Decimation Filter  
DER  
Real  
or  
Real  
EN_DDC_FS/8  
DEC  
COS  
SIN  
HBFILTER_A  
FIR_B<7:0>  
(Note 4)  
EN_DDC2  
EN_NCO  
EN_DDC1  
NCO (32-bit)  
(Note 2)  
(Note 1)  
(Note 1)  
Decimation and Output Frequency Translation  
Down-Converting and Decimation  
Note 1: See Address 0x80 - 0x81 (Registers 5-40 5-41) for the control parameters.  
2: See Figure 4-18 for details of NCO control block.  
3: Half-band Filter A includes a single-stage decimation filter.  
4: See Figure 4-15 for details.  
5: Switches are closed if decimation filter is not used, and open if decimation filter is used.  
FIGURE 4-16:  
Simplified DDC Block Diagram for Single-Channel Mode. See Tables 4-14 and 4-15  
for Using This DDC Block.  
2020 Microchip Technology Inc.  
DS20006382A-page 56  
MCP37D31-80 AND MCP37D21-80  
band filter is up-converted by fS/8 for each channel.  
Otherwise, I/Q of each channel will be output  
separately, similar to a four-channel input device with  
the WCK output pin toggling synchronously with the I-  
data of Channel A. Note that the NCO phase can be  
adjusted uniquely for each of the two input channels  
(see Figure 4-18). Examples of setting registers for  
selected output type are shown in Tables 4-16 and 4-  
17.  
4.8.3.2  
Dual-Channel DDC  
shows the dual-channel  
Figure 4-17  
DDC  
configuration. Each channel includes the same  
processing elements as shown in the single-channel  
DDC, however the I/Q outputs cannot be separately  
decimated since the device only supports two  
channels of decimation (four would be required for I/Q  
of Channel A and I/Q of Channel B). The decimation  
option can be used if the DDC output after the half-  
I
A
Q
ADC  
Data:  
A
(Note 3)  
I
A
Half-Band Filter A  
LP/HP  
CH. A  
Q
A
Real  
A
SIN  
HBFILTER_A  
COS  
EN_NCO  
NCO (32-bit)  
(Note 2)  
EN_DDC_FS/8  
EN_DDC2  
NCO (f /8)  
S
SIN  
COS  
(Note 3)  
CH. B  
Q
I
B
Real  
B
Half-Band Filter B  
LP/HP  
B
I
HBFILTER_B  
B
EN_DDC1  
Q
B
Down-Converting and Decimation (Note 1)  
Note 1: See Address 0x80 – 0x81 for the Control Parameters.  
Output Frequency Translation and Decimation (Note 1)  
2: See Figure 4-18 for details of NCO control block.  
3: Half-band Filter A and B include a single-stage decimation filter.  
FIGURE 4-17:  
Simplified DDC Block Diagram for Dual-Channel Mode. See Tables 4-16 and 4-17 for  
Using this DDC Block.  
DS20006382A-page 57  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
Figure 4-18 shows the control signals associated with  
the NCO. In octal- or dual-channel mode, the NCO  
allows the output phase to be adjusted on a  
per-channel basis.  
4.8.3.3  
Numerically Controlled Oscillator  
(NCO)  
The on-board Numerically Controlled Oscillator (NCO)  
provides the frequency reference for the in-phase and  
quadrature mixers in the digital down-converter (DDC).  
Note: The NCO is only used for DDC or CW octal-  
channel mode. It should be disabled when  
not in use.  
The NCO serves as a quadrature local oscillator,  
capable of producing an NCO frequency of between 0  
Hz and fS with a resolution of fS/232, where fS is the  
ADC core sampling frequency.  
EN_PHSDITH  
EN_AMPDITH  
Phase Offset Control  
CH(n) NCO_PHASE<15:0>  
Phase Dither  
Amplitude Dither  
EN_LFSR  
EN_LFSR  
Sine/Cosine  
Signal Generator  
NCO Tuning  
EN_NCO  
NCO Output  
NCO_TUNE<31:0>  
FIGURE 4-18:  
NCO Block Diagram.  
• NCO Frequency Control:  
4.8.3.4  
NCO Amplitude and Phase Dither  
The EN_AMPDITH and EN_PHSDITH parameters in  
Address 0x80 (Register 5-40) can be used for  
amplitude and phase dithering, respectively. In  
principle, these will dither the quantization error created  
by the use of digital circuits in the mixer and local  
oscillator, thus reducing spurs at the expense of noise.  
In practice, the DDC circuitry has been designed with  
sufficient noise and spurious performance for most  
applications. In the worst-case scenario, the NCO has  
an SFDR of greater than 116 dB when the amplitude  
dither is enabled, and 112 dB when disabled. Although  
the SNR (93 dB) of the DDC is not significantly  
affected by the dithering option, using the NCO with  
dithering options enabled is always recommended for  
the best performance.  
The NCO frequency is programmed from 0 Hz to fS,  
using the 32-bit-wide unsigned register variable  
NCO_TUNE<31:0>  
in Addresses  
0x82 – 0x85  
(Registers 5-42 5-45).  
The following equation is used to set the  
NCO_TUNE<31:0> register:  
EQUATION 4-5:  
NCO FREQUENCY  
ModfNCOfS  
32  
NCO_TUNE<31:0>= round 2 -----------------------------------  
fS  
Where:  
f
=
=
=
sampling frequency (Hz)  
S
f
desired NCO frequency (Hz)  
gives the remainder of fNCO/fS  
NCO  
Mod (f  
, f )  
NCO  
S
4.8.3.5  
NCO for fS/8 and fS/(8xDER)  
The output of the first down-conversion block (DDC1)  
is a complex signal (comprising I and Q data) which can  
then be optionally decimated further up to 128x to  
provide both a lower output data rate and input channel  
filtering. If fS/8 mode is enabled, a second mixer stage  
(DDC2) will convert the I/Q signals to a real signal  
centered at half of the current Nyquist frequency; i.e., if  
the output data rate in I/Q mode is 10 Msps per channel  
(5 MHz Nyquist), then in fS/8 mode the output data rate  
would be 20 Msps (10 Msps each for I and Q), and the  
signal would be re-centered around 5 MHz. In  
single-channel mode, this is done at the output of the  
decimation filters (if used). In dual-channel mode, this  
must be done prior to the decimation.  
Mod() is  
a
remainder function. For example,  
Mod(5,2) = 1 and Mod(1.999, 2) = 1.999.  
Example 1:  
If fNCO is 40 MHz and fS is 80 MHz:  
Modf  
f = Mod4080= 40  
S
NCO  
32  
Mod4080  
NCO_TUNE<31:0>= round 2 ---------------------------------  
80  
= 0x8000 0000  
Example 2:  
If fNCO is 79.99999994 MHz and fS is 80 MHz:  
When decimation is enabled, the I/Q outputs are up-  
converted by fS/(8xDER), where DER is the additional  
decimation rate added by the FIR decimation filters.  
This provides a decimated output signal centered at  
fS/8 or fS/(8xDER) in the frequency domain.  
Modf  
f = Mod79.9999999480= 79.99999994  
S
NCO  
32 Mod79.9999999480  
NCO_TUNE<31:0>= round 2 ----------------------------------------------------------------  
80  
= 0xFFFF FFFD  
2020 Microchip Technology Inc.  
DS20006382A-page 58  
MCP37D31-80 AND MCP37D21-80  
4.8.3.6  
NCO Phase Offset Control  
4.8.3.8  
Half-Band Filter  
The frequency translation is followed by a half-band  
digital filter, which is used to reduce the sample rate by  
a factor of two while rejecting aliases that fall into the  
band of interest.  
The user can add phase offset to the NCO frequency  
using the NCO phase offset control registers  
(Addresses 0x86 to 0x95, Registers 5-46 5-61).  
CH(n)_NCO_PHASE<15:0> is the 16-bit-wide NCO  
phase offset control parameter for Channel n. A  
0x0000 value in the register corresponds to no offset,  
and a 0xFFFF corresponds to an offset of 359.995°.  
The phase offset can be controlled with 0.005° per  
step. The following equation is used to program the  
NCO phase offset register:  
The user can select high- or low-pass half-band filter  
using the HBFILTER_A and HBFILTER_B bits in  
Address 0x80 (Register 5-40). These filters provide  
greater than 90 dB of attenuation in the attenuation  
band and less than 1 mdB (10-3 dB) of ripple in the  
passband region of 20% of the input sampling rate.  
For example, for an ADC sample rate of 80 MSPS,  
these filters provide less than 1 mdB of ripple over a  
bandwidth of 16 MHz.  
EQUATION 4-6:  
NCO PHASE OFFSET  
Offset Value (  
CH(n)_NCO_PHASE<15:0>= 216 ---------------------------------------  
The filter responses shown in Figures 4-15 and 4-16  
indicate a ripple of 0.5 mdB and an alias rejection of  
90 dB. The output of the half-band filter is a DC-cen-  
tered complex signal (I and Q). This I and Q signal is  
then carried to the next down-conversion stage  
(DDC2) for frequency translation (up-conversion), if  
the DDC is enabled.  
360  
Where:  
n
=
=
channel number  
Offset Value ()  
desired phase offset value in  
degrees  
A decimal number is used for the binary contents of  
CH(n)_NCO_PHASE<15:0>.  
Note:  
The half-band filter delays the data output  
by 80 clock cycles: 2 (due to decimation) x  
40 cycles (due to group delay)  
4.8.3.7  
In-Phase and Quadrature Signals  
When the first down-conversion is enabled, it produces  
In-phase (I) and Quadrature (Q) components as shown  
in Equation 4-7:  
In-Band Ripple  
0.0005  
0
-0.0005  
0
0.1  
0.2  
0.3  
0.4  
0.5  
EQUATION 4-7:  
I AND Q SIGNALS  
Half-Band Filter Frequency Response  
0
I = ADC COS2fNCOt +   
Q = ADC SIN2fNCOt +   
(a)  
(b)  
-30  
-60  
-90  
where:  
CH(n)_NCO_PHASE<15:0>  
(c)  
= 360 ----------------------------------------------------------------------  
216  
-120  
0
= 0.005493164  CH(n)_NCO_PHASE<15:0>  
where:  
0.1  
0.2  
0.3  
0.4  
0.5  
Fraction of Input Sample Rate  
FIGURE 4-19:  
of Half-Band Filter.  
High-Pass (HP) Response  
ADC  
=
=
output of the ADC block  
NCO phase offset of selected channel, which  
is defined by CH(n)_NCO_PHASE<15:0> in  
Addresses 0x86 - 0x95  
In-Band Ripple  
0.0005  
0
t
=
=
k/f , with k =1, 2, 3,..., n  
S
-0.0005  
f
NCO frequency  
NCO  
0
0.1  
0.2  
0.3  
0.4  
0.5  
Half-Band Filter Frequency Response  
0
I and Q outputs are interleaved where I data is output  
on the rising edge of the WCK. If I and Q outputs are  
selected in dual-channel mode with DDC enabled, I  
data of Channel 0 is output at the rising edge of WCK,  
followed by Q data of Channel 0, then I and Q data of  
Channel 1 in the same way.  
-30  
-60  
-90  
-120  
0
0.1  
0.2  
0.3  
0.4  
0.5  
Fraction of Input Sample Rate  
FIGURE 4-20:  
Low-Pass (LP) Response of  
Half-Band Filter.  
DS20006382A-page 59  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
4.8.4  
EXAMPLES OF REGISTER  
SETTINGS FOR USING DDC AND  
DECIMATION  
The following tables show examples of setting registers  
for using decimation and digital down-conversion  
(DDC) depending on the output type selection.  
TABLE 4-14: REGISTER SETTINGS FOR DECIMATION AND DDC OPTIONS  
FOR SINGLE-CHANNEL MODE – EXAMPLE  
Dual-Channel  
DSPP Control  
FIR A Filter  
FIR B Filter DDC1  
DDC2  
DDC  
Mode  
Addr.  
0x02  
Output  
(2)  
0
8
Disabled  
Disabled  
0x00  
0x33  
0
1
0x00  
0x00  
0x00  
0,0,0  
0,0,0  
0,0,0  
0,0,0  
0
0
ADC  
0x03  
ADC with decimation  
(÷8)  
512  
Disabled  
0x99  
1
0xFF  
0x00  
0,0,0  
0,0,0  
0
ADC with decimation  
(÷512)  
(5)  
0
8
0
I/Q  
I/Q  
0x00  
0x33  
0
0
0
0x00  
0x07  
0x00  
0x00  
0x07  
0x00  
1,0,1  
1,0,1  
1,1,1  
0,0,0  
0,0,0  
0,0,0  
0
0
0
I/Q Data  
Decimated I/Q (÷8)  
(6)  
f /8  
0x11  
Real without  
S
additional decimation  
8
f /8  
0x44  
0
0x07  
0x07  
1,0,1  
1,0,0  
0
Real with decimation  
(÷16)  
S
Note 1: When DDC is used, the actual total decimation is 2x larger since 2x is included from the DDC Half-Band Filter.  
Example: Decimation = 8x with DDC-I/Q option actually has 16x decimation with 8x provided by the decimation filter  
and 2x from the DDC Half-Band Filter.  
2: Output data and clock rate control register.  
3: 0x80<5,1,0> = <EN_NCO, EN_DDC_FS/8, EN_DDC1>.  
4: 0x81<6,3,2> = <EN_DDC2, EN_DSPP_8, 8CH_CW>.  
5: Each of I/Q has 1/2 of f bandwidth. The combined bandwidth is the same as the f bandwidth. Therefore the data rate  
S
S
adjustment is not needed.  
6: The Half-Band Filter A includes decimation of 2.  
2020 Microchip Technology Inc.  
DS20006382A-page 60  
MCP37D31-80 AND MCP37D21-80  
TABLE 4-15: OUTPUT TYPE VS. CONTROL PARAMETERS FOR SINGLE-CHANNEL DDC  
(EXAMPLE)  
Output Type  
Control Parameter  
Register  
Descriptions  
Complex: I and Q EN_DDC1 = 1  
EN_NCO = 1  
0X80  
0X80  
0X80  
0X80  
0X81  
0X7B  
0X7C  
0X02  
0X80  
0X80  
0X80  
0X80  
0X81  
0X7B  
0X7C  
0X02  
0X80  
0X80  
0X80  
0X80  
Enable DDC1 block  
Enable 32-bit NCO  
HBFILTER_A = 1  
Enable Half-Band Filter A, includes 2x decimation  
NCO(fS/8/DER) is disabled  
EN_DDC_FS/8 = 0  
EN_DDC2 = 0  
DDC2 is disabled  
FIR_A<8:1> = 0x00  
FIR_B<7:0> = 0x00  
OUT_CLKRATE<3:0>  
FIR A decimation filter is disabled  
FIR B decimation filter is disabled  
Output clock rate is not affected (no need to change)  
Enable DDC1 block  
Decimated I and  
Q:IDEC, QDEC  
EN_DDC1 = 1  
EN_NCO = 1  
Enable 32-bit NCO  
HBFILTER_A = 1  
EN_DDC_FS/8 = 0  
EN_DDC2 = 0  
FIR_A<8:1>  
Enable Half-Band Filter A, includes 2x decimation  
NCO(fS/8/DER) is disabled  
DDC2 is disabled  
Program FIR A filter for extra decimation(1)  
Program FIR B filter for extra decimation(1)  
Adjust the output clock rate to the decimation rate  
Enable DDC1 block  
FIR_B<7:0>  
OUT_CLKRATE<3:0>  
EN_DDC1 = 1  
EN_NCO = 1  
Real: Real after  
DDC(fS/8/DER)  
without using  
A
Enable 32-bit NCO  
HBFILTER_A = 1  
EN_DDC_FS/8 = 1  
Enable Half-Band Filter A, includes 2x decimation  
Decimation Filter  
NCO(fS/8/DER) is enabled. This translates the input signal  
from dc to fS/8(2)  
EN_DDC2 = 1  
0X81  
0X7B  
0X7C  
0X02  
DDC2 is enabled  
FIR_A<8:1> = 0x00  
FIR_B<7:0> = 0x00  
Decimation filter FIR A is disabled  
Decimation filter FIR B is disabled  
Adjust the output clock rate to divided by 2(3)  
OUT_CLKRATE<3:0>  
= 0001  
Decimated Real: EN_DDC1 = 1  
0X80  
0X80  
0X80  
0X80  
Enable DDC1 block  
Real  
after Decimation  
Filter and  
A_DEC  
EN_NCO = 1  
Enable 32-bit NCO  
HBFILTER_A = 1  
EN_DDC_FS/8 = 1  
Enable Half-Band Filter A, includes 2x decimation  
NCO(fS/8/DER) is enabled. This translates the input signal  
from dc to fS/8/DER(2)  
DDC(fS/8/DER)  
EN_DDC2 = 1  
FIR_A<8:1>  
0X81  
0X7B  
0X7C  
0X02  
DDC2 is enabled  
Program FIR B filter for extra decimation(4)  
Program FIR B filter for extra decimation(4)  
FIR_B<7:0>  
OUT_CLKRATE<3:0>  
Adjust the output clock rate to the total decimation rate  
including the 2x decimation by the Half-Band Filter A  
Note 1: For I/Q decimation, the maximum decimation rate for the FIR A and FIR B filters is 128x each since the  
input is already decimated by 2x in the Half-Band Filter. See Figure 4-15 for details.  
2: DER is the decimation rate setting of the FIR A and FIR B filters.  
3: Divided by 2 is due to the 2x decimation included in the Half-Band Filter A.  
4: When this filter is used, the up-conversion frequency is reduced by the extra decimation rates (DER).  
DS20006382A-page 61  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
TABLE 4-16: REGISTER SETTINGS FOR DECIMATION AND DDC OPTIONS FOR DUAL-CHANNEL  
MODE EXAMPLE  
Dual-Channel  
FIR A Filter  
FIR B Filter DDC1  
DDC2  
DSPP  
Control  
Output  
0
8
Disabled  
Disabled  
Disabled  
I/Q  
0x00  
0x33  
0x88  
0
0
0
0
0
0x00  
0x00  
0x07  
0xFF  
0x00  
0x00  
0,0,0 0,0,0  
0,0,0 0,0,0  
0,0,0 0,0,0  
1,0,1 0,0,0  
1,1,1 0,0,0  
0
0
0
1
1
ADC  
0x07  
0xFF  
0x00  
0x00  
ADC with decimation (÷8)  
ADC with decimation (÷256)  
I/Q data  
256  
0
(5)  
0x00  
0x11  
(6)  
0
f /8  
Real without additional  
decimation  
S
(7)  
8
f /8  
0x44  
0
0x0E  
0x0E  
1,1,1 0,0,0  
1
Real with decimation filter  
(÷16)  
S
Note 1: When DDC is used, the actual total decimation is 2x larger since 2x is included from the DDC Half-Band Filter.  
Example: Decimation = 8x with DDC-f /2 option actually has 16x decimation with 8x provided by the decimation filter  
S
and 2x from the DDC Half-Band Filter.  
2: Output data and clock rate control register.  
3: 0x80<5,1,0> = <EN_NCO, EN_DDC_FS/8, EN_DDC1>.  
4: 0x81<6,3,2> = <EN_DDC2, EN_DSPP_8, 8CH_CW>.  
5: Each of I/Q has 1/2 of f bandwidth. The combined bandwidth is the same as the f bandwidth. Therefore the data rate  
S
S
adjustment is not needed.  
6: The Half-Band Filter A/B includes decimation of 2.  
7: 0x0E takes into account the stages 1 and 2 are bypassed. See Figure 4-15 for “dual-channel Input” for DDC.  
2020 Microchip Technology Inc.  
DS20006382A-page 62  
MCP37D31-80 AND MCP37D21-80  
TABLE 4-17: OUTPUT TYPE VS. CONTROL PARAMETERS FOR DUAL-CHANNEL DDC EXAMPLE  
Output Type  
Control Parameter Register  
Descriptions  
Complex: I and Q  
EN_DSPP_2 = 1  
0X79  
Enable all digital post-processing functions for dual-channel  
operations  
EN_DDC1 = 1  
0X80  
0X80  
0X80  
0X80  
0X80  
0X81  
Enable DDC1 block  
EN_NCO = 1  
Enable 32-bit NCO  
HBFILTER_A = 1  
HBFILTER_B = 1  
EN_DDC_FS/8 = 0  
EN_DDC2 = 0  
Enable Half-Band Filter A, includes 2x decimation  
Enable Half-Band Filter B, includes 2x decimation  
NCO(fS/8/DER) is disabled  
DDC2 is disabled  
FIR_A<8:1> = 0x00  
FIR_B<7:0> = 0x00  
OUT_CLKRATE<3:0>  
EN_DSPP_2 = 1  
0X7B FIR A decimation filter is disabled  
0X7C  
0X02  
0X79  
FIR B decimation filter is disabled  
Output clock rate is not affected (no need to change)  
Real: RealA for  
Channel A  
Enable all digital post-processing functions for dual-channel  
operations  
and RealB for  
Channel B after  
NCO(fS/8/DER)  
Without Using  
Decimation Filter  
EN_DDC1 = 1  
0X80  
0X80  
0X80  
0X80  
0X80  
Enable DDC1 block  
EN_NCO = 1  
Enable 32-bit NCO  
HBFILTER_A = 1  
HBFILTER_B = 1  
EN_DDC_FS/8 = 1  
Enable Half-Band Filter A, includes 2x decimation  
Enable Half-Band Filter B, includes 2x decimation  
NCO(fS/8/DER) is enabled. This translates the input signal  
from DC to fS/8(1)  
EN_DDC2 = 1  
0X81  
DDC2 is enabled  
FIR_A<8:1> = 0x00  
FIR_B<7:0> = 0x00  
0X7B Decimation filter FIR A is disabled  
0X7C  
0X02  
Decimation filter FIR B is disabled  
Adjust the output clock rate to divided by 2(2)  
OUT_CLKRATE<3:0>  
= 0001  
Decimated Real:  
RealA_DEC for  
EN_DSPP_2 = 1  
0X79  
Enable all digital signal post-processing functions for dual-  
channel operation  
Channel A and  
RealB_DEC for  
Channel B after  
NCO(fS/8/DER)and  
Decimation Filter  
EN_DDC1 = 1  
0X80  
0X80  
0X80  
0X80  
0X80  
Enable DDC1 block  
EN_NCO = 1  
Enable 32-bit NCO  
HBFILTER_A = 1  
HBFILTER_B = 1  
EN_DDC_FS/8 = 1  
Enable Half-Band Filter A, includes 2x decimation  
Enable Half-Band Filter B, includes 2x decimation  
NCO(fS/8/DER) is enabled. This translates the input signal  
from DC to fS/8/DER(1)  
EN_DDC2 = 1  
FIR_A<8:1>  
0X81  
DDC2 is enabled  
0X7B Program FIR A filter for extra decimation(3)  
FIR_B<7:0>  
0X7C  
0X02  
Program FIR B filter for extra decimation(3)  
OUT_CLKRATE<3:0>  
Adjust the output clock rate to the total decimation rate  
including the 2x decimation by the Half-Band Filter A  
Note 1: DER is the decimation rate setting of the FIR A and FIR B filters.  
2: Divided by 2 is due to the 2x decimation included in the Half-Band Filter A.  
3: When this filter is used, the up-conversion frequency is reduced by the extra decimation rates (DER).  
DS20006382A-page 63  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
4.9.2  
DIGITAL GAIN SETTINGS  
4.9  
Digital Offset and Digital Gain  
Settings  
CH(N)_DIG_GAIN<7:0> in Addresses 0x96 – 0x9D  
(Registers 5-62 5-69) is used to adjust the digital gain  
per channel.  
Figure 4-21 shows a simplified block diagram of the  
digital offset and gain settings. Offset is applied prior to  
the gain. Offset and gain adjustments occur prior to  
DDC, Decimation or FDR when these features are  
used.  
Note 1: Digital Offset Setting: Register mapping  
(0x9E – 0xA7) to the corresponding  
channel is not sequential to the channel  
order defined by CH_ORDER<23:0>,  
except for the octal-channel mode. See  
Table 4-18 for details.  
4.9.1  
DIGITAL OFFSET SETTINGS  
The offset can be corrected using a 16-bit-wide global  
offset correction register (0x66) for all channels, offset  
correction registers for individual channels (0x9E-  
0xA7) or by combining both global and individual offset  
correction registers. The offset control for individual  
channels can be used with DIG_OFFSET_WEIGHT  
<1:0> in 0xA7. The corresponding registers for each  
correction are shown in Figure 4-21.  
2: Gain and NCO Phase Offset: Register  
mapping to the corresponding channel is  
sequential to the channel order defined  
by CH_ORDER<23:0>.  
Note that, except for the octal-channel mode, the offset  
setting registers for individual channels, 0x9E-0xA7  
(Registers 5-70 5-78),  
do  
not  
sequentially  
correspond to the channel order defined by  
CH_ORDER<23:0>. Table 4-18 shows the details of  
the offset registers that correspond to the actual  
channels, depending on the number of channels used.  
Corrected  
ADC Output  
ADC  
Output  
Global Digital Offset Control  
for all channels  
Digital Offset Control  
for individual channel  
Digital Gain Control  
for individual channel  
CH(n)_DIG_GAIN<7:0>  
(See Addresses 0x96 – 0x9D)  
DIG_OFFSET_GLOBAL<15:0>  
(See Address 0x66)  
CH(n)_DIG_OFFSET<7:0>  
(See Addresses 0x9E – 0xA5)  
DIG_OFFSET_WEIGHT<1:0>  
(See Address 0xA7)  
FIGURE 4-21:  
Simplified Block Diagram for Digital Offset and Gain Settings.  
TABLE 4-18: REGISTER ASSIGNMENT FOR OFFSET SETTING  
Register Address for Offset Setting  
st  
nd  
rd  
th  
th  
th  
th  
th  
1
Channel  
2
Channel  
3
Channel  
4
Channel  
5
Channel  
6
Channel  
7
Channel  
8
Channel  
1
2
3
4
5
6
7
8
0x9F  
0xA0  
0xA1  
0xA2  
0xA3  
0xA4  
0xA5  
0x9E  
0x9F  
0x9F  
0x9F  
0x9F  
0x9F  
0x9F  
0x9F  
0xA0  
0xA0  
0xA0  
0xA0  
0xA0  
0xA0  
0xA1  
0xA1  
0xA1  
0xA1  
0xA1  
0xA2  
0xA2  
0xA2  
0xA2  
0xA3  
0xA3  
0xA3  
0xA4  
0xA4  
0xA5  
2020 Microchip Technology Inc.  
DS20006382A-page 64  
MCP37D31-80 AND MCP37D21-80  
Along with beamforming, many modern medical  
4.10 Continuous Wave (CW)  
Beamforming and Ultrasound  
Doppler Signal Processing Using  
CW Octal-Channel Mode  
ultrasound devices support Doppler imaging, which  
processes phase information in addition to the classical  
magnitude detection (for brightness imaging).  
Ultrasound Doppler signal processing is used to  
determine movement in the body as represented by  
blood flow, which can help diagnose the functioning of  
a heart valve or blood vessel, etc. In a traditional  
ultrasound system, all of these functions are typically  
accomplished with discrete components. Figure 4-23  
shows an example of an ultrasound system  
implementation using various specialized components.  
In modern ultrasound medical applications, large  
numbers of transducers are often used. The signals  
from these sensors are then coherently combined for  
higher transducer gain and directivity. The signals from  
each sensor arrive at the detection device with a  
different time delay. Also, in multi-channel scanning  
operations using the MUX, there is a time delay  
between acquiring input signals (see Section 4.8.1  
“Fractional Delay Recovery for Dual- and Octal-  
Channel Modes”). These time delays may need to be  
corrected before all input signals are combined for the  
signal processing.  
The device has a built-in feature that can perform some  
of the functions that are done traditionally using extra  
components. Continuous wave (CW) digital  
beamforming and Doppler signal processing features  
are available, but these are offered in octal-channel  
operation only.  
Digital beamforming is a digital signal processing  
technique that requires summing all input signals from  
different channels after correcting for time delay. The  
time-delay correction involves the phase alignment of  
the detected signals with respect to a reference.  
Figure 4-22 shows a simplified block diagram for the  
ultrasound CW beamforming with DDC I/Q decimation.  
Note that the sub-blocks shown after the MUX are  
commonly used for all input channels.  
Beamformer Central  
Control Processor  
HV  
Amp  
Isolation  
DAC  
LNA-VGA-ADC Array (up to 256 Channels)  
AAF  
HV MUX and  
T/R Switches  
T/R  
Switcher  
ADC  
LNA  
VGA  
Digital RX Beamformer  
Clocks  
Transducer  
Array  
Amp  
Amp  
ADC  
ADC  
Image and  
Motion  
Processing  
(B Mode)  
Color  
CW  
Doppler  
I/Q  
Processing  
Doppler  
Video  
Compression  
Processing  
(F Mode)  
Processing  
Video DAC/  
Video Encoder  
Amp/  
Filter  
Audio  
DAC  
Amp  
FIGURE 4-22:  
Example of Ultrasound System Building Block.  
DS20006382A-page 65  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
4.10.1  
BEAMFORMING  
4.10.2  
ULTRASOUND DOPPLER SIGNAL  
PROCESSING  
Beamforming is achieved by scanning all inputs while  
correcting the phase of each channel with respect to a  
reference. This can be done using:  
Doppler shift measurement requires summing the input  
signals from multiple transducer channels and mixing  
them with a phase-controlled local oscillator frequency.  
The resulting low-frequency output is then centered  
near DC and can measure a Doppler shift produced by  
moving objects, such as blood flow and changes in  
blood pressure in arteries, etc. In traditional Doppler  
measurement, many discrete analog components are  
typically used along with a high-resolution ADC.  
• Fractional Delay Recovery (FDR)  
• Phase offset settings of each individual channel  
• Gain setting per channel  
While the CW input channel is multiplexed sequentially,  
the phase offset can be added to the NCO output (each  
channel individually). CH(n)_NCO_PHASE<15:0>, in  
Addresses 0x86 to 0x95 (Registers 5-46 5-61),  
corrects the time delay of the incoming signals with  
respect to the reference.  
This device has unique built-in features that are  
suitable for ultrasound Doppler shift measurements. By  
utilizing these features, system engineers can reduce  
many discrete components which are otherwise  
necessary for an ultrasound Doppler measurement  
system.  
The phase-compensated input signal is then down-  
converted by a wide dynamic range I/Q demodulator.  
The digital beamforming of the inputs is then obtained  
by summing I and Q data from individual channels. The  
combined I and Q data are fed to the half-band filter.  
Equation 4-8 shows the I and Q data of an individual  
channel with phase correction (phase offset), and the  
resulting digital beamforming signal.  
The following built-in digital signal post-processing  
(DSPP) features can be effectively used for the  
ultrasound Doppler signal processing applications:  
Fractional Delay Recovery (FDR): Correct the  
time delay of signal sampled between channels.  
See details in Section 4.8.1 “Fractional Delay  
Recovery for Dual- and Octal-Channel  
Modes”.  
The processing blocks after the digital beamforming  
are the same as the sub-blocks used in single-channel  
operation described in Section 4.8.3.1 “Single-  
Channel DDC”, except only limited decimation rates of  
the FIR A and FIR B filters are used due to the  
processing time requirement for summing the input  
signals from all channels.  
Digital Gain and Offset adjustment for each  
channel: See details in Section 4.9 “Digital  
Offset and Digital Gain Settings”.  
Down-Conversion for each channel with a  
unique phase of the same NCO frequency prior to  
summing the eight channels as shown in  
Figure 4-23.  
EQUATION 4-8:  
BEAMFORMING SIGNALS  
ICHn= ADC COS2fNCOt + n  
• After down-conversion by the DDC, the resulting  
signal can then be decimated to achieve very high  
SNR in a narrow bandwidth.  
QCHn= ADC SIN2fNCOt + n  
N
I =  
I
CHn  
n = 0  
N
Q =  
Q
CHn  
n = 0  
CH(n)_NCO_PHASE<15:0>  
n= 360  ----------------------------------------------------------------------  
216  
= 0.005493164  CH(n)_NCO_PHASE<15:0>  
Where:  
(n) = NCO phase offset of channel n  
ADC = the output of the ADC block  
The NCO phase offset can be controlled by  
0.005493164° per step. See Section 4.8.3.6 “NCO  
Phase Offset Control” for details.  
2020 Microchip Technology Inc.  
DS20006382A-page 66  
MCP37D31-80 AND MCP37D21-80  
I
I or IDEC  
Q or QDEC  
(67)  
MUX  
FIR_A<8:1>  
HBFILTER_A  
ICH(n)  
ADC  
Data:  
FIR A  
Decimation Filter  
fS/8  
Half-Band Filter A  
LP/HP  
CH. 0  
CH. 1  
CH. 2  
NCO (  
)
FIR B  
Decimation Filter  
DER  
Real  
or  
EN_DDC_FS/8  
QCH(n)  
COS  
SIN  
RealDEC  
FIR_B<7:0>  
EN_DDC2  
EN_AMPDITH  
EN_LFSR  
NCO Amplitude Dither  
Decimation and Output Frequency Translation  
Sine/Cosine  
Signal Generator  
EN_PHSDITH  
EN_LFSR  
NCO Phase Dither  
CH. 7  
NCO Phase Offset Control  
EN_NCO  
CH(n) NCO_PHASE<15:0>  
NCO (32-bit)  
NCO_TUNE<31:0>  
EN_DDC1  
Channel Multiplexing/Down-Converting/Digital Beamforming/Decimation (2x)(2)  
Note 1: Switches are closed if a decimation filter is not used, and open if a decimation filter is used.  
2: Digital Gain and Offset adjustments are applied prior to the Digital Down-Converter and  
are not shown here.  
FIGURE 4-23:  
Simplified Block Diagram of CW Beamforming and I/Q Signal Processing.  
DS20006382A-page 67  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
Table 4-19 shows the relationship between the analog  
4.11 Output Data format  
input voltage, the digital data output bits and the  
overrange bit. By default, the output data format is  
two’s complement.  
The device can output the ADC data in offset binary or  
two’s complement. The data format is selected by the  
DATA_FORMAT bit in Address 0x62 (Register 5-20).  
TABLE 4-19: ADC OUTPUT CODE VS. INPUT VOLTAGE (16-BIT MODE)  
Input Range  
IN > AFS  
Offset Binary(1)  
Two’s Complement(1)  
Overrange (OVR)  
A
1111-1111-1111-1111  
1111-1111-1111-1111  
1111-1111-1111-1110  
1111-1111-1111-1100  
0111-1111-1111-1111  
0111-1111-1111-1111  
0111-1111-1111-1110  
0111-1111-1111-1100  
1
0
0
0
AIN = AFS  
A
IN = AFS – 1 LSb  
AIN = AFS – 2 LSb  
AIN = AFS/2  
AIN = 0  
1100-0000-0000-0000  
1000-0000-0000-0000  
0011-1111-1111-1111  
0100-0000-0000-0000  
0000-0000-0000-0000  
1011-1111-1111-1111  
0
0
0
AIN = -AFS/2  
AIN = -AFS + 2 LSb  
AIN = -AFS + 1 LSb  
AIN = -AFS  
0000-0000-0000-0010  
0000-0000-0000-0001  
0000-0000-0000-0000  
0000-0000-0000-0000  
1000-0000-0000-0010  
1000-0000-0000-0001  
1000-0000-0000-0000  
1000-0000-0000-0000  
0
0
0
1
AIN < -AFS  
Note 1: MSb is sign bit  
4.12.2  
DOUBLE DATA RATE LVDS MODE  
4.12  
Digital Output  
In double-data-rate LVDS mode, the output is a  
parallel data stream which changes on each edge of  
the output clock. See Figure 2-2 for details.  
The device can operate in one of the following three  
digital output modes:  
• Full-Rate CMOS  
• Double-Data-Rate (DDR) LVDS  
• Serialized DDR LVDS: Available in octal-channel  
with 16-bit mode only)  
• Even-bit first option: Available for all resolution  
options including 18-bit option. See Figure 2-2 for  
details.  
• MSb-first option: Available for the 16-bit option  
only. See Figure 2-3 for details.  
The outputs are powered by DVDD18 and GND. The  
digital  
output  
mode  
is  
selected  
by  
the  
In multi-channel configuration, the data is output  
sequentially with the WCK that is synchronized to the  
first sampled channel.  
OUTPUT_MODE<1:0> bits in Address 0x62  
(Register 5-20). Figures 2-1 2-6 show the timing  
diagrams of the digital output.  
The device outputs the following LVDS output pairs:  
4.12.1  
FULL RATE CMOS MODE  
• Output Data:  
In full-rate CMOS mode, the data outputs (Q15 to Q0,  
DM1 and DM2), overrange indicator (OVR), word  
clock (WCK) and the data output clock (DCLK+,  
DCLK–) have CMOS output levels. The digital output  
should drive minimal capacitive loads. If the load  
capacitance is larger than 10 pF, a digital buffer should  
be used.  
- 16-/18-bit mode: Q7+/Q7- through Q0+/Q0-  
- DM+/DM- (18-bit mode only)  
- 14-bit mode: Q6+/Q6- through Q0+/Q0-  
• OVR/WCK  
• DCLK+/DCLK-  
A 100differential termination resistor is required for  
each LVDS output pin pair. See <LVDS_LOAD> bit  
option in Register 0x63 for using internal terminator.  
The termination resistor should be located as close as  
possible to the LVDS receiver. By default, the outputs  
are standard LVDS levels: 3.5 mA output current with  
a 1.15V output Common-mode voltage on a 100dif-  
ferential load. See Address 0x63 (Register 5-21) for  
more details of the LVDS mode control.  
2020 Microchip Technology Inc.  
DS20006382A-page 68  
MCP37D31-80 AND MCP37D21-80  
multiplexed with the OVR bit. See Address 0x07  
(Register 5-5) and Address 0x68 (Register 5-26) for  
OVR and WCK control options.  
Note:  
Output Data Rate in LVDS Mode: In  
octal-channel mode, the input sample rate  
per channel is fS/8. Therefore, the output  
data rate required to shift out all 16 bits in  
DDR is still equivalent to fS. For example,  
if fS = 80 Msps, each channel’s sample  
rate is fS/8 = 10 Msps, and the output  
clock rate (DCLK) for 16-bit DDR output is  
80 MHz.  
4.12.6  
LVDS OUTPUT POLARITY  
CONTROL  
In LVDS mode, the output polarity can be controlled  
independently for each LVDS pair. Table 4-20  
summarizes the LVDS output polarity control register bits.  
TABLE 4-20: LVDS OUTPUT POLARITY  
CONTROL  
4.12.3  
SERIALIZED LVDS MODE  
Control  
Parameter  
This output mode is only available for octal-channel  
operation with 16-bit data output, and uses eight output  
lanes: a single LVDS pair for each channel output as  
shown in Figure 2-6.  
Register  
Descriptions  
POL_LVDS<7:0>  
0x65  
Control polarity of LVDS  
data pairs  
POL_WCK_OVR  
POL_DM1DM2  
0x68  
0x68  
Control polarity of WCK  
and OVR bit pair  
Each channel’s data is serialized by the data serializer,  
and the outputs are available through eight LVDS  
output lanes. Each differential LVDS output pair holds  
a single input channel's data, and clocks out data with  
double data rate (DDR), which is synchronized with  
WCK/OVR bit:  
Control polarity of DM+  
and DM- pair  
4.12.7  
PROGRAMMABLE LVDS OUTPUT  
• Q7+/Q7- pair: 1st channel selected  
In LVDS mode, the default output driver current is  
3.5 mA. This current can be adjusted by using the  
LVDS_IMODE<2:0> bit setting in Address 0x63  
(Register 5-20). Available output drive currents are  
1.8 mA, 3.5 mA, 5.4 mA and 7.2 mA.  
• Q6+/Q6- pair: 2nd channel selected  
• Q0+/Q0- pair: last channel selected  
4.12.8  
OPTIONAL LVDS DRIVER  
INTERNAL TERMINATION  
4.12.4  
OVERRANGE BIT (OVR)  
The input overrange status bit is asserted (logic high)  
when the analog input has exceeded the full-scale  
range of the ADC in either the positive or negative  
direction. In LVDS DDR Output mode, the OVR bit is  
multiplexed with the word clock (WCK) output bit such  
that OVR is output on the falling edge of the data output  
clock and WCK on the rising edge.  
In most cases, using an external 100termination  
resistor will give excellent LVDS signal integrity. In  
addition, an optional internal 100termination resistor  
can be enabled by setting the LVDS_LOAD bit in  
Address 0x63 (Register 5-21). The internal termination  
helps absorb any reflections caused by imperfect  
impedance termination at the receiver.  
The OVR bit has the same pipeline latency as the  
ADC data bits. In multi-channel mode, the OVR is out-  
put independently for each input channel and is syn-  
chronized to the data. In serialized LVDS mode (for  
16-bit octal channel), the MSb is asserted coincident  
with the WCK rising edge. OVR will be asserted if any  
of the channels are overranged, but it does not specify  
which channel is overranged. See Address 0x68  
(Register 5-26) for OVR and WCK control options.  
4.12.9  
OUTPUT DATA AND CLOCK RATES  
The user can reduce output data and output clock rates  
using Address 0x02 (Register 5-3). When decimation  
or digital down-conversion (DDC) is used, the output  
data rate has to be reduced to synchronize with the  
reduced output clock rate.  
4.12.10 PHASE SHIFTING OF OUTPUT  
CLOCK (DCLK)  
If DSPP options are enabled, OVR pipeline latency will  
be unaffected; however, the data will incur additional  
delay. This has the effect of allowing the OVR indicator  
to precede the affected data.  
In full-rate CMOS mode, the data output bit transition  
occurs at the rising edge of DCLK+, so the falling edge  
of DCLK+ can be used to latch the output data.  
In double-data-rate LVDS mode, the data transition  
occurs at both the rising and falling edges of DCLK+.  
For adequate setup and hold time when latching the  
data into the external host device, the user can shift the  
phase of the digital clock output (DCLK+/DCLK-)  
relative to the data output bits.  
4.12.5  
WORD CLOCK (WCK)  
The word clock output bit indicates the start of a new  
data set. In single-channel mode, this bit is disabled  
except for I/Q output mode. In DDR output with multi-  
channel mode, it is always asserted coincidentally with  
the data from the first sampled channel, and  
DS20006382A-page 69  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
The output phase shift (delay) is controlled by each  
unique register depending on which timing source is  
used or if decimation is used. Table 4-21 shows the  
output clock phase control registers for each  
Configuration mode: (a) when DLL is used, (b) when  
decimation is used, and (c) when PLL is used.  
Figure 4-24 shows an example of the output clock  
phase delay control using the DCLK_PHD-  
LY_DLL<2:0> when DLL is used.  
TABLE 4-21: OUTPUT CLOCK (DCLK) PHASE CONTROL PARAMETERS  
Control Parameter  
Register  
Operating Condition(1)  
When DLL is used:  
EN_PHDLY  
0x64  
0x52  
EN_PHDLY = 1: Enable output clock phase delay control  
DCLK phase delay control when DLL is used. Decimation is not used.  
When decimation is used:  
DCLK_PHDLY_DLL<2:0>  
EN_PHDLY  
0x64  
EN_PHDLY = 1: Enable output clock phase delay control  
DCLK_PHDLY_DEC<2:0>  
DCLK phase delay control when decimation filter is used. The phase delay  
is controlled in digital clock output control block.  
When PLL is used:  
DCLK_DLY_PLL<2:0>  
0x6D  
DCLK delay control when PLL is used.  
Note 1: See Figure 4-11 for details.  
LVDS Data Output:  
Phase Shift:  
DCLK_PHDLY_DLL<2:0>  
0° (Default)(1)  
=
0
0
0
0
0
0
0
1
1
1
0
1
45° + Default  
90° + Default  
135° + Default  
Output Clock  
(DCLK+)  
180° + Default  
1
1
1
1
0
0
1
1
0
1
0
1
225° + Default  
270° + Default  
315° + Default  
Note 1: Default value may not be 0° in all operations.  
Example of Phase Shifting of Digital Output Clock (DCLK+) When DLL is Used.  
FIGURE 4-24:  
2020 Microchip Technology Inc.  
DS20006382A-page 70  
MCP37D31-80 AND MCP37D21-80  
To decode the randomized data, the reverse operation  
4.12.11 DIGITAL OUTPUT RANDOMIZER  
is applied: an exclusive-OR operation is applied  
between the LSb (D0) and all other bits. The DCLK,  
OVR, WCK, DM1, DM2 and LSb (D0) outputs are not  
affected. Figure 4-25 shows the block diagram of the  
data randomizer and decoder logic. The output ran-  
domizer is enabled by setting the EN_OUT_RANDOM  
bit in Address 0x07 (Register 5-5).  
Depending on PCB layout considerations and power  
supply coupling, SFDR may be improved by  
decorrelating the ADC input from the ADC digital output  
data. The device includes an output data randomizer  
option. When this option is enabled, the digital output is  
randomized by applying an exclusive-OR logic  
operation between the LSb (D0) and all other data  
output bits.  
MCP37D31/21-80  
Data Acquisition Device  
DCLK  
OVR  
WCK  
Q0  
DCLK  
OVR  
WCK  
DCLK  
OVR  
WCK  
Q15  
Q15  
Q15  
Q14  
Q14 Q0  
Q14  
Q2 Q0  
Q2  
Q2  
Q1  
Q1  
Q0  
Q1  
EN_OUT_RANDOM  
Enable  
Q0  
Q0  
Q0  
(b) Data Decoder  
(a) Data Randomizer  
FIGURE 4-25:  
Logic Diagram for Digital Output Randomizer and Decoder (16-Bit mode).  
4.12.12 OUTPUT DISABLE  
The digital output can be disabled by setting  
OUTPUT_MODE<1:0>  
=
00 in Address 0x62  
(Register 5-20). All digital outputs are disabled,  
including OVR, WCK, DCLK, etc.  
4.12.13 OUTPUT TEST PATTERNS  
To facilitate testing of the I/O interface, the device can  
produce various predefined or user-defined patterns on  
the digital outputs. See TEST_PATTERNS<2:0> in  
Address 0x62 (Register 5-20) for the predefined test  
patterns. For the user-defined patterns, Addresses  
0x74 – 0x77 (Registers 5-29 5-32) can be pro-  
grammed using the SPI interface. When an output test  
mode is enabled, the ADC’s analog section can still be  
operational, but does not drive the digital outputs. The  
outputs are driven only with the selected test pattern.  
DS20006382A-page 71  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
4.12.13.1 Pseudo-random Number (PN)  
Sequence Output  
4.13 System Calibration  
The built-in system calibration algorithm includes:  
• Harmonic Distortion Correction (HDC)  
• DAC Noise Cancellation (DNC)  
When TEST_PATTERNS<2:0> = 111, the device out-  
puts a pseudo-random number (PN) sequence which is  
defined by the polynomial of degree 16, as shown in  
Equation 4-9. Figure 4-26 shows the block diagram of  
a 16-bit Linear Feedback Shift Register (LFSR) for the  
PN sequence.  
• Dynamic Element Matching (DEM)  
HDC and DNC correct the nonlinearity in the residue  
amplifier and DAC, respectively. The system  
calibration is performed by:  
• Power-up calibration, which takes place during  
the Power-on Reset sequence (requires 227 clock  
cycles)  
EQUATION 4-9:  
POLYNOMIAL FOR PN  
Px= 1 + x4 + x13 + x15 + x16  
• Background calibration, which takes place during  
normal operation (per 230 clock cycles).  
• 16-Bit Mode:  
The output PN[15:0] is directly applied to the output pins  
Qn[15:0]. In addition to the output at the Qn[15:0] pins, the  
two MSbs, PN[15] and PN[14], are copied to OVR and  
WCK pins, respectively. The two LSbs, PN[1] and PN[0],  
are also copied to DM1 and DM2 pins, respectively.  
Background calibration time is invisible to the user,  
and primarily affects the ADC's ability to track  
variations in ambient temperature.  
The calibration status is monitored by the CAL pin or  
the ADC_CAL_STAT bit in Address 0xC0 (Register 5-  
79). See Address 0x07 (Register 5-5) and 0x1E  
(Register 5-6) for time delay control of the auto-  
calibration. Table 4-22 shows the calibration time for  
various ADC core sample rates.  
• 14-Bit Mode:  
The output PN[15:2] is directly applied to the output  
pins Qn[13:0]. In addition to the output at the Qn[13:0]  
pins, the two MSbs, PN[15] and PN[14], are copied to  
OVR and WCK pins, respectively.  
TABLE 4-22: CALIBRATION TIME VS. ADC  
CORE SAMPLE RATE  
In CMOS output mode, the pattern is always applied to  
all CMOS I/O pins, regardless whether or not they are  
enabled. In LVDS output mode, the pattern is only  
applied to the LVDS pairs that are enabled.  
f
(Msps)  
90  
80  
70  
60  
50  
S
Power-Up  
Calibration Time (sec)  
1.5  
1.7  
1.9  
2.2  
2.7  
1
Refresh Time (sec) of  
Background Calibration  
11.9 13.4 15.3 17.9 21.5  
2
PN[3]  
PN[12]  
PN[14]  
PN[15]  
Note 1: It takes 227 clock cycles.  
Z-4  
Z-9  
Z-2  
Z-1  
2: It takes place every 230 clock cycles by itself during  
normal operation.  
4.13.1  
RESET COMMAND  
XOR  
Although the background calibration will track changes  
in temperature or supply voltage, changes in clock  
frequency or register configuration should be followed  
FIGURE 4-26:  
for Pseudo-Random Number (PN) Sequence for  
Block Diagram of 16-Bit LFSR  
by  
a
recalibration of the ADC. This can be  
accomplished via either the Hard or Soft Reset  
command. The recalibration time is the same as the  
power-up calibration time (227 clock cycles). Resetting  
the device is highly recommended when exiting from  
Shutdown or Standby mode after an extended amount  
of time. During the reset, the device has the following  
state:  
Output Test Pattern.  
• No ADC output  
• No change in power-on condition of internal  
reference  
• Most of the internal clocks are not distributed  
• Contents of internal user registers:  
- Not affected by Soft Reset  
- Reset to default values by Hardware Reset  
• Current consumption of the digital section is  
negligible, but no change in the analog section.  
2020 Microchip Technology Inc.  
DS20006382A-page 72  
MCP37D31-80 AND MCP37D21-80  
This will perform a fast recalibration of the ADC. The  
contents of the internal registers are not affected by the  
Soft Reset.  
4.13.1.1  
Hardware Reset  
A hard reset is triggered by toggling the RESET pin. On  
the rising edge, all internal calibration registers and  
user registers are initialized to their default states and  
recalibration of the ADC begins. The recalibration time  
is the same as the power-up calibration time. See  
Figure 2-8 for the timing details of the hardware  
RESET pin.  
In Standby mode, most of the internal circuitry is  
disabled except for the reference, clock and SPI  
interface. If the device has been in standby for an  
extended period of time, the current calibration value  
may not be accurate. Therefore, when exiting from  
Standby mode, executing the device Soft Reset at the  
same time is highly recommended.  
4.13.1.2  
Soft Reset  
The user can issue a Soft Reset command for a fast  
recalibration of the ADC by setting the SOFT_RESET  
bit to ‘0’ in Address 0x00 (Register 5-1). During Soft  
Reset, all internal calibration registers are initialized to  
their initial default states. User registers are unaffected.  
When exiting the Soft Reset (changing from ‘0’ to ‘1’),  
an automatic device calibration takes place.  
4.15 AutoSync Mode: Synchronizing  
Multiple ADCs at the same Clock  
using Master and Slave  
Configuration  
AutoSync allows multiple devices to sample analog  
inputs synchronously at the same clock edge. Output  
data is also presented synchronously if they are using  
the same digital post-processing options. Figure 4-27  
shows the system configuration using the AutoSync  
feature. Three examples with timing diagram are  
shown in Figure 2-9 Figure 2-11.  
4.14 Power Dissipation and Power  
Savings  
The power dissipation of the ADC core is proportional  
to the sample rate (fS). The digital power dissipation of  
the CMOS outputs are determined primarily by the  
strength of the digital drivers and the load condition on  
each output pin. The maximum digital load current  
(ILOAD) can be calculated as:  
Once the devices are synchronized, each device  
performs internal calibration (TPCAL) before sending out  
valid data output. Any ADC data output before the  
calibration is complete should be ignored.  
Note that the calibration time varies slightly from device  
to device, and the internal calibration status can be  
monitored using the CAL pin or ADC_CAL_STAT bit in  
the Register Address 0xC0.  
EQUATION 4-10: CMOS OUTPUT LOAD  
CURRENT  
ILOAD = DVDD1.8 fDCLK N CLOAD  
The valid synchronized output is available when all  
devices complete their own internal calibration. For  
this reason, the user has two options for the  
synchronized output: (a) monitor the calibration status  
of individual devices and wait until all devices  
complete calibrations or (b) use an external AND gate  
as shown in Figure 4-26. Master and all Slave devices  
are synchronized when the AND gate output toggles  
to “High”.  
Where:  
N = Number of bits  
C
= Capacitive load of output pin  
LOAD  
The capacitive load presented at the output pins needs  
to be minimized to minimize digital power consumption.  
The output load current of the LVDS output is constant,  
since it is set by LVDS_IMODE<2:0> in Address 0x63  
(Register 5-21).  
The AutoSync feature can be used with the following  
steps:  
• Master device is selected by setting SLAVE pin to  
“GND”: SYNC pin becomes output pin.  
4.14.1  
POWER-SAVING MODES  
This device has two power-saving modes:  
• Slave device is selected by setting SLAVE pin to  
“High” (or tie to DVDD): SYNC pin becomes input  
pin.  
• Shutdown  
• Standby  
• Feed the Master’s SYNC pin output to Slave’s  
SYNC pin.  
They are set by the SHUTDOWN and STANDBY bits in  
Address 0x00 (Register 5-1).  
• Use AutoSync mode using (a) Power-On Reset  
(Figure 2-9), (b) RESET Pin (Figure 2-10), or (c)  
SOFT RESET bit (Figure 2-11).  
In Shutdown mode, most of the internal circuitry,  
including the reference and clock, are turned off with  
the exception of the SPI interface. During Shutdown,  
the device consumes 23 mA (typical), primarily due to  
digital leakage. When exiting from Shutdown, issuing a  
Soft Reset at the same time is highly recommended.  
DS20006382A-page 73  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
DV  
DD18  
Pull-up  
(> 360  
DV  
DD18  
)
SYNC Pin Output  
SLAVE  
SYNC  
CAL  
SYNC  
SLAVE  
CAL  
MCP37Dx1-80  
MCP37Dx1-80  
Master  
Slave 1  
DV  
DD18  
SYNC  
SLAVE  
CAL  
MCP37Dx1-80  
Slave 2  
DV  
DD18  
“High” when  
all devices  
complete  
SYNC  
SLAVE  
CAL  
calibration  
MCP37Dx1-80  
Slave N  
AND Gate  
Note:  
For optimum operation, it is highly recommended to use the same digital supply voltage (DVDD18,  
DVDD12) (i.e., tie all DVDD12 together and tie all DVDD18 together) for Master and Slave devices.  
FIGURE 4-27:  
Synchronizing Multiple ADCs Using AutoSync Feature.  
2020 Microchip Technology Inc.  
DS20006382A-page 74  
MCP37D31-80 AND MCP37D21-80  
NOTES:  
DS20006382A-page 75  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
5.0  
SERIAL PERIPHERAL  
INTERFACE (SPI)  
TABLE 5-1:  
SPI PIN FUNCTIONS  
Descriptions  
Pin  
Name  
The user can configure the ADC for specific functions  
or optimized performance by setting the device’s  
internal registers through the serial peripheral interface  
(SPI). The SPI communication uses three pins: CS,  
SCLK and SDIO. Table 5-1 summarizes the SPI pin  
functions. The SCLK is used as a serial timing clock  
and can be used up to 50 MHz. SDIO (Serial Data  
Input/Output) is a dual-purpose pin that allows data to  
be sent or read from the internal registers. The Chip  
Select pin (CS) enables SPI communication when  
active-low. The falling edge of CS followed by a rising  
edge of SCLK determines the start of the SPI  
communication. When CS is tied to high, SPI  
communication is disabled and the SPI pins are placed  
in high-impedance mode. The internal registers are  
accessible by their address.  
Chip Select pin. SPI mode is initiated at  
the falling edge. It needs to maintain  
active-low for the entire period of the  
SPI communication. The device exits the  
SPI communication at the rising edge.  
CS  
Serial clock input pin.  
• Writing to the device: Data is latched  
at the rising edge of SCLK  
SCLK  
• Reading from the device: Data is  
latched at the falling edge of SCLK  
Serial data input/output pin. This pin is  
initially an input pin (SDI) during the first  
16-bit instruction header. After the  
instruction header, its I/O status can be  
changed depending on the R/W bit:  
Figures 5-1 and 5-2 show the SPI data communication  
protocols for this device with MSb-first and LSb-first  
options, respectively. It consists of:  
SDIO  
• if R/W = 0: Data input pin (SDI) for  
writing  
• if R/W = 1: Data output pin (SDO) for  
reading  
• 16-bit wide instruction header + Data byte 1 +  
Data byte 2 + . . . + Data Byte N  
Table 5-2 summarizes the bit functions. The R/W bit of  
the instruction header indicates whether the command  
is a read (‘1’) or a write (‘0’):  
TABLE 5-2:  
SPI DATA PROTOCOL BIT  
FUNCTIONS  
Bit Name  
R/W  
Descriptions  
• If the R/W bit is ‘1’, the SDIO pin changes  
direction from an input (SDI) to an output (SDO)  
after the 16-bit wide instruction header.  
1= Read Mode  
0= Write Mode  
By selecting the R/W bit, the user can write the register  
or read back the register contents. The W1 and W2 bits  
in the instruction header indicate the number of data  
bytes to transmit or receive in the following data frame.  
W1, W0  
(Data  
Length)  
00= Data for one register (1 byte)  
01= Data for two registers (2 bytes)  
10= Data for three registers (3 bytes)  
11= Continuous reading or writing by  
)
clocking SCLK(1  
Bits A2 – A0 are the SPI device address bits. These  
bits are used when multiple devices are used in the  
same SPI bus. A2 is internally hardcoded to ‘0’. Bits A1  
and A0 correspond to the logic level of the ADR1 and  
ADR0 pins, respectively.  
A2 - A0  
Device SPI Address for multiple  
devices in SPI bus  
A2: Internally hardcoded to ‘0’  
A1: Logic level of ADR1 pin  
A0: Logic level of ADR0 pin  
The R9 – R0 bits represent the starting address of the  
Configuration register to write or read. The data bytes  
following the instruction header are the register data.  
All register data is eight bits wide. Data can be sent in  
MSb-first mode (default) or in LSb-first mode, which is  
determined by the <LSb_ FIRST> bit setting in Address  
0x00 (Register 5-1). In Write mode, the data is clocked  
in at the rising edge of the SCLK. In the Read mode, the  
data is clocked out at the falling edge of the SCLK.  
R9 - R0  
D7 - D0  
Address of starting register  
Register data. MSb or LSb first,  
depending on the LSb_FIRST bit  
setting in 0x00  
Note 1: The register address counter is incremented  
by one per step. The counter does not  
automatically reset to 0x00 after reaching the  
last address (0x15D). Be aware that the user  
registers are not sequentially allocated.  
2020 Microchip Technology Inc.  
DS20006382A-page 76  
MCP37D31-80 AND MCP37D21-80  
CS  
SCLK  
SDIO  
R/W W1 W0 A2 A1 A0 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0  
D2  
D1 D0  
Register Data N  
Register Data 2  
Address of  
Starting Register  
Register Data of  
starting register  
defined by R9 - R0  
Device Address  
16-Bit Instruction Header  
Register Data  
FIGURE 5-1:  
SPI Serial Data Communication Protocol with MSb-first. See Figures 2-5 and 2-6 for  
Timing Specifications.  
CS  
SCLK  
SDIO  
R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 A0 A1 A2 W0 W1 R/W D0 D1 D2 D3 D4  
D6 D7 D0 D1 D2 D3 D4  
D6 D7  
D5  
D5  
D5 D6  
D7  
Address of  
Starting Register  
Register Data N  
Register Data 2  
Register Data of  
starting register  
defined by R9 - R0  
Device Address  
16-Bit Instruction Header  
Register Data  
FIGURE 5-2:  
SPI Serial Data Communication Protocol - with LSb-First. See Figures 2-5 and 2-6 for  
Timing Specifications.  
5.1  
Register Initialization  
Note 1: All address and bit locations that are not  
included in the following register map  
table should not be written or modified by  
the user.  
The internal Configuration registers are initialized to  
their default values under two different conditions:  
• After 220 clock cycles of delay from the Power-on  
Reset (POR).  
2: Some registers include factory-controlled  
• Resetting the hardware reset pin (RESET).  
Figures 2-5 and 2-6 show the timing details.  
bits (FCB). Do not overwrite these bits.  
5.2  
Configuration Registers  
The internal registers are mapped from Addresses  
0x00 0x15D. These user registers are not  
sequentially located. Some user Configuration  
registers include factory-controlled bits. The factory-  
controlled bits should not be overwritten by the user.  
All user Configuration registers are read/write, except  
for the last four registers, which are read-only. Each  
register is made of an 8-bit-wide volatile memory, and  
their default values are loaded during the power-up  
sequence or by using the hardware RESET pin. All  
registers are accessible by the SPI command using the  
register address. Table 5-3 shows the user-register  
memory map, and Registers 5-1 5-82 show the  
details of the register bit functions.  
DS20006382A-page 77  
2020 Microchip Technology Inc.  
TABLE 5-3:  
REGISTER MAP TABLE  
Bits  
Default  
Value  
Addr.  
Register Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
0x00 SPI Bit Ordering and ADC  
Mode Selection  
SHUTDOWN  
LSb-FIRST  
SOFT_RESET  
STANDBY  
1= Standby  
STANDBY  
SOFT_RESET  
0=Soft Reset  
LSb-FIRST  
SHUTDOWN  
0x24  
1= Shutdown  
1= LSb first  
0= MSb first  
0= Soft Reset  
1= Standby  
1= LSb first  
0= MSb first  
1= Shutdown  
0x01 No. of Channel Selection and  
Independency Control of  
EN_DATCLK_IND  
FCB<3> = 0  
SEL_NCH<2:0>  
FCB<2:0> = 111  
0x0F  
0x00  
Output Data and Clock Divider  
0x02 Output Data and  
Clock Rate Control  
OUT_DATARATE<3:0>  
OUT_CLKRATE<3:0>  
0x04 SPI SDO Timing Control  
SDO_TIME  
POL_WCK  
FCB<6:0> = 0011111  
FCB<4:0> = 10001  
0x9F  
0x62  
0x07 Output Randomizer  
and WCK Polarity Control  
EN_AUTOCAL_  
TIMEDLY  
EN_OUT_  
RANDOM  
0x1E Auto-Calibration  
Time Delay Control  
AUTOCAL_TIMEDLY<7:0>  
0x80  
0x52  
DLL Control  
EN_DUTY  
DCLK_PHDLY_DLL<2:0>  
EN_DLL_DCLK  
EN_DLL  
EN_CLK  
RESET_DLL  
0x0A  
0x45  
0x00  
0x48  
0x53 Clock Source Selection  
0x54 PLL Reference Divider  
FCB<6:4>= 010  
CLK_SOURCE  
PLL_REFDIV<7:0>  
FCB<3:0>= 0101  
0x55 PLL Output and  
Reference Divider  
PLL_OUTDIV<3:0>  
FCB<1:0> = 10  
PLL_REFDIV<9:8>  
0x56 PLL Prescaler (LSb)  
0x57 PLL Prescaler (MSb)  
0x58 PLL Charge Pump  
PLL_PRE (LSB)<7:0>  
0x78  
0x40  
0x12  
0x41  
0x2F  
0x27  
0x27  
0x27  
0xF1  
0x10  
FCB<3:0> = 0100  
FCB<2:0> = 000  
PLL_PRE (MSB)<11:8>  
PLL_CHAGPUMP<3:0>  
PLL_BIAS  
0x59 PLL Enable Control 1  
0x5A PLL Loop Filter Resistor  
0x5B PLL Loop Filter Cap3  
0x5C PLL Loop Filter Cap1  
0x5D PLL Loop Filter Cap2  
0x5F PLL Enable Control 2  
U
U
U
U
U
FCB<4:3> = 10  
FCB<1:0> = 01  
FCB<1:0> = 01  
FCB<1:0> = 01  
FCB<1:0> = 01  
FCB<5:2> = 1111  
EN_PLL_REFDIV  
FCB<2:1> = 00  
PLL_RES<4:0>  
EN_PLL  
FCB<0> = 1  
PLL_CAP3<4:0>  
PLL_CAP1<4:0>  
PLL_CAP2<4:0>  
EN_PLL_BIAS  
EN_PLL_OUT  
OUTPUT_MODE<1:0>  
FCB<1:0> = 01  
0x62 Output Data Format and  
Output Test Pattern  
U
LVDS_8CH  
DATA_FORMAT  
TEST_PATTERNS<2:0>  
0x63 ADC Output Bits  
(Resolution) and LVDS  
Output Load  
OUTPUT_BIT<3:0>  
LVDS_LOAD  
LVDS_IMODE<2:0>  
0x01  
0x03  
0x00  
0x64 Output Clock Phase  
Control when Decimation  
Filter is used  
EN_PHDLY  
DCLK_PHDLY_DEC<2:0>  
FCB<3:0> = 0011  
0x65 LVDS Output Polarity Control  
POL_LVDS<7:0>  
1 = bit is set 0 = bit is cleared  
Legend:  
2:  
U = Unimplemented bit, read as ‘0’  
Read-only register. Preprogrammed at the factory for internal use.  
FCB = Factory-Controlled Bits. Do not program  
x = bit is unknown  
TABLE 5-3:  
REGISTER MAP TABLE (CONTINUED)  
Bits  
Default  
Value  
Addr.  
Register Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
0x66 Digital Offset  
Correction - Lower Byte  
DIG_OFFSET_GLOBAL<7:0>  
DIG_OFFSET_GLOBAL<15:8>  
0x00  
0x00  
0x67 Digital Offset  
Correction - Upper Byte  
0x68 WCK/OVR and DM1/DM2  
0x6B PLL Calibration  
FCB<3:0> = 0010  
POL_WCK_OVR  
EN_WCK_OVR  
PLL_CAL_TRIG  
DM1DM2  
POL_DM1DM2  
0x24  
0x08  
0x00  
FCB<6:2> = 00001  
FCB<1:0> = 00  
0x6D PLL Output and Output Clock  
Phase  
U<1:0>  
EN_PLL_CLK  
FCB<1> = 0  
PATTERN A<7:0>  
DCLK_DLY_PLL<2:0>  
FCB<0> = 0  
0x74 User-Defined Output  
Pattern A - Lower Byte  
0x00  
0x00  
0x00  
0x00  
0x75 User-Defined Output  
Pattern A - Upper Byte  
PATTERN A<15:8>  
PATTERN B<7:0>  
PATTERN B<15:8>  
0x76 User-Defined Output  
Pattern B - Lower Byte  
0x77 User-Defined Output  
Pattern B - Upper Byte  
0x79 Dual-Channel DSPP Control  
0x7A FDR and FIR_A0  
0x7B FIR A Filter  
EN_DSPP_2  
FCB<6:0> = 000 0000  
0x00  
0x00  
0x00  
0x00  
0x78  
FCB<5> = 0  
FIR_A<0>  
EN_FDR  
FCB<4:0> = 00000  
FIR_A<8:1>  
FIR_B<7:0>  
0x7C FIR B Filter  
0x7D Auto-Scan Channel Order -  
Lower Byte  
CH_ORDER<7:0>  
0x7E Auto-Scan Channel Order -  
Middle Byte  
CH_ORDER<15:8>  
CH_ORDER<23:16>  
0xAC  
0x8E  
0x00  
0x00  
0x00  
0x7F Auto-Scan Channel Order -  
Upper Byte  
0x80 Digital Down-Converter  
Control 1  
HBFILTER_B  
FDR_BAND  
HBFILTER_A  
EN_DDC2  
EN_NCO  
EN_AMPDITH  
SEL_FDR  
NCO_TUNE<7:0>  
EN_PHSDITH  
EN_LFSR  
8CH_CW  
EN_DDC_FS/8  
EN_DDC1  
0x81 Digital Down-Converter  
Control 2  
GAIN_HBF_DDC  
EN_DSPP_8  
GAIN_8CH<1:0>  
0x82 Numerically Controlled  
Oscillator (NCO) Tuning -  
Lower Byte  
0x83 Numerically Controlled  
Oscillator (NCO) Tuning -  
Middle Lower Byte  
NCO_TUNE<15:8>  
NCO_TUNE<23:16>  
0x00  
0x00  
0x84 Numerically Controlled  
Oscillator (NCO) Tuning -  
Middle Upper Byte  
Legend:  
2:  
U = Unimplemented bit, read as ‘0’  
Read-only register. Preprogrammed at the factory for internal use.  
FCB = Factory-Controlled Bits. Do not program  
1 = bit is set  
0 = bit is cleared  
x = bit is unknown  
TABLE 5-3:  
REGISTER MAP TABLE (CONTINUED)  
Bits  
Default  
Value  
Addr.  
Register Name  
b7  
b6  
b5  
b4  
NCO_TUNE<31:24>  
b3  
b2  
b1  
b0  
0x85 Numerically Controlled  
Oscillator (NCO) Tuning -  
Upper Byte  
0x00  
0x86 CH0 NCO Phase Offset in CW  
or DDC Mode - Lower Byte  
CH0_NCO_PHASE<7:0>  
CH0_NCO_PHASE<15:8>  
CH1_NCO_PHASE<7:0>  
CH1_NCO_PHASE<15:8>  
CH2_NCO_PHASE<7:0>  
CH2_NCO_PHASE<15:8>  
CH3_NCO_PHASE<7:0>  
CH3_NCO_PHASE<15:8>  
CH4_NCO_PHASE<7:0>  
CH4_NCO_PHASE<15:8>  
CH5_NCO_PHASE<7:0>  
CH5_NCO_PHASE<15:8>  
CH6_NCO_PHASE<7:0>  
CH6_NCO_PHASE<15:8>  
CH7_NCO_PHASE<7:0>  
CH7_NCO_PHASE<15:8>  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x87 CH0 NCO Phase Offset in CW  
or DDC Mode - Upper Byte  
0x88 CH1 NCO Phase Offset in CW  
or DDC Mode - Lower Byte  
0x89 CH1 NCO Phase Offset in CW  
or DDC Mode - Upper Byte  
0x8A CH2 NCO Phase Offset in CW  
or DDC Mode - Lower Byte  
0x8B CH2 NCO Phase Offset in CW  
or DDC Mode - Upper Byte  
0x8C CH3 NCO Phase Offset in CW  
or DDC Mode - Lower Byte  
0x8D CH3 NCO Phase Offset in CW  
or DDC Mode - Upper Byte  
0x8E CH4 NCO Phase Offset in CW  
or DDC Mode - Lower Byte  
0x8F CH4 NCO Phase Offset in CW  
or DDC Mode - Upper Byte  
0x90 CH5 NCO Phase Offset in CW  
or DDC Mode - Lower Byte  
0x91 CH5 NCO Phase Offset in CW  
or DDC Mode - Upper Byte  
0x92 CH6 NCO Phase Offset in CW  
or DDC Mode - Lower Byte  
0x93 CH6 NCO Phase Offset in CW  
or DDC Mode - Upper Byte  
0x94 CH7 NCO Phase Offset in CW  
or DDC Mode - Lower Byte  
0x95 CH7 NCO Phase Offset in CW  
or DDC Mode - Upper Byte  
0x96 CH0 Digital Gain  
0x97 CH1 Digital Gain  
0x98 CH2 Digital Gain  
0x99 CH3 Digital Gain  
CH0_DIG_GAIN<7:0>  
CH1_DIG_GAIN<7:0>  
CH2_DIG_GAIN<7:0>  
CH3_DIG_GAIN<7:0>  
0x3C  
0x3C  
0x3C  
0x3C  
Legend:  
2:  
U = Unimplemented bit, read as ‘0’  
Read-only register. Preprogrammed at the factory for internal use.  
FCB = Factory-Controlled Bits. Do not program  
1 = bit is set  
0 = bit is cleared  
x = bit is unknown  
TABLE 5-3:  
REGISTER MAP TABLE (CONTINUED)  
Bits  
Default  
Value  
Addr.  
Register Name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
0x9A CH4 Digital Gain  
0x9B CH5 Digital Gain  
0x9C CH6 Digital Gain  
0x9D CH7 Digital Gain  
0x9E CH0 Digital Offset  
0x9F CH1 Digital Offset  
0xA0 CH2 Digital Offset  
0xA1 CH3 Digital Offset  
0xA2 CH4 Digital Offset  
0xA3 CH5 Digital Offset  
0xA4 CH6 Digital Offset  
0xA5 CH7 Digital Offset  
0xA7 Digital Offset Weight Control  
CH4_DIG_GAIN<7:0>  
CH5_DIG_GAIN<7:0>  
CH6_DIG_GAIN<7:0>  
CH7_DIG_GAIN<7:0>  
0x3C  
0x3C  
0x3C  
0x3C  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x47  
CH0_DIG_OFFSET<7:0>  
CH1_DIG_OFFSET<7:0>  
CH2_DIG_OFFSET<7:0>  
CH3_DIG_OFFSET<7:0>  
CH4_DIG_OFFSET<7:0>  
CH5_DIG_OFFSET<7:0>  
CH6_DIG_OFFSET<7:0>  
CH7_DIG_OFFSET<7:0>  
DIG_OFFSET_WEIGHT<1:0>  
FCB<6:0> = 000-0000  
FCB<5:3> = 010  
FCB<2:0> = 111  
0xC0 Calibration Status  
Indication (Read only)  
ADC_CAL_STAT  
0xD1 PLL Calibration Status  
and PLL Drift Status Indication  
(Read only)  
FCB<4:3> = xx  
PLL_CAL_STAT  
FCB<2:1> = xx  
PLL_VCOL_STAT PLL_VCOH_STAT  
FCB<0> = x  
0x15C CHIP ID - Lower Byte(2)  
(Read only)  
0x15D CHIP ID - Upper Byte(2)  
(Read only)  
CHIP_ID<7:0>  
CHIP_ID<15:8>  
Legend:  
2:  
U = Unimplemented bit, read as ‘0’  
Read-only register. Preprogrammed at the factory for internal use.  
FCB = Factory-Controlled Bits. Do not program  
1 = bit is set  
0 = bit is cleared  
x = bit is unknown  
MCP37D31-80 AND MCP37D21-80  
)
REGISTER 5-1:  
ADDRESS 0X00 – SPI BIT ORDERING AND ADC MODE SELECTION(1  
R/W-0  
R/W-0  
LSb_FIRST  
R/W-1  
R/W-0  
R/W-0  
R/W-1  
R/W-0  
R/W-0  
SHUTDOWN  
bit 0  
SHUTDOWN  
bit 7  
SOFT_RESET  
STANDBY  
STANDBY  
SOFT_RESET  
LSb_FIRST  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
-n = Value at POR  
‘0’ = Bit is cleared  
x = Bit is unknown  
(2)  
bit 7  
bit 6  
bit 5  
SHUTDOWN: Shutdown mode setting for power-saving  
1= ADC in Shutdown mode  
0= Not in Shutdown mode (Default)  
LSb_FIRST: Select SPI communication bit order  
1= Start SPI communication with LSb first  
0= Start SPI communication with MSb first (Default)  
(3)  
SOFT_RESET: Soft Reset control bit  
1= Not in Soft Reset mode (Default)  
0= ADC in Soft Reset  
(4)  
(4)  
bit 4  
bit 3  
bit 2  
STANDBY: Send the device into a power-saving Standby mode  
1= ADC in Standby mode  
0= Not in Standby mode (Default)  
STANDBY: Send the device into a power-saving Standby mode  
1= ADC in Standby mode  
0= Not in Standby mode (Default)  
(3)  
SOFT_RESET: Soft Reset control bit  
1= Not in Soft Reset mode (Default)  
0= ADC in Soft Reset  
bit 1  
bit 0  
LSb_FIRST: Select SPI communication bit order  
1= Start SPI communication with LSb first  
0= Start SPI communication with MSb first (Default)  
(2)  
SHUTDOWN: Shutdown mode setting for power-saving  
1= ADC in Shutdown mode  
0= Not in Shutdown mode (Default)  
Note 1:  
2:  
Upper and lower nibble are mirrored, which makes the MSb- or LSb-first mode interchangeable. The lower nibble (bit <3:0>)  
has a higher priority when the mirrored bits have different values.  
During Shutdown mode, most of the internal circuits including the reference and clock are turned-off except for the SPI  
interface. When exiting from Shutdown (changing from ‘1’ to ‘0’), executing the device Soft Reset simultaneously is highly  
recommended for a fast recalibration of the ADC. The internal user registers are not affected.  
This bit forces the device into Soft Reset mode, which initializes the internal calibration registers to their initial default states.  
The user-registers are not affected. When exiting Soft Reset mode (changing from ‘0’ to ‘1’), the device performs an automatic  
device calibration including PLL calibration if PLL is enabled. DLL is reset if enabled. During Soft Reset, the device has the  
following states:  
3:  
-
-
no ADC output  
no change in power-on condition of internal reference  
- most of the internal clocks are not distributed  
- power consumption: (a) digital section - negligible, (b) analog section - no change  
During Standby mode, most of the internal circuits are turned off except for the reference, clock and SPI interface. When exiting  
from Standby mode (changing from ‘1’ to ‘0’) after an extended amount of time, executing Soft Reset simultaneously is highly  
recommended. The internal user registers are not affected.  
4:  
2020 Microchip Technology Inc.  
DS20006382A-page 82  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-2:  
ADDRESS 0X01 – NUMBER OF CHANNELS, INDEPENDENCY CONTROL OF OUTPUT  
DATA AND CLOCK DIVIDER  
R/W-0  
EN_DATCLK_IND  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
FCB<3>  
SEL_NCH<2:0>  
FCB<2:0>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7  
EN_DATCLK_IND: Enable data and clock divider independently  
1= Enabled  
0= Disabled (Default)  
bit 6  
FCB<3>: Factory-Controlled Bit. This is not for the user. Do not change default setting.  
(2)  
bit 5-3  
SEL_NCH<2:0>: Select the total number of input channels to be used  
111= 7 inputs  
110= 6 inputs  
101= 5 inputs  
100= 4 inputs  
011= 3 inputs  
010= 2 inputs  
001= 1 input (Default)  
000= 8 inputs  
bit 2-0  
FCB<2:0>: Factory-Controlled Bits. This is not for the user. Do not change default settings.  
Note 1:  
2:  
EN_DATCLK_IND = 1enables OUT_CLKRATE<3:0> settings in Address 0x02 (Register 5-3).  
See Addresses 0x7D – 0x7F (Registers 5-37 5-39) for selecting the input channel order.  
DS20006382A-page 83  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-3:  
ADDRESS 0X02 – OUTPUT DATA AND CLOCK RATE CONTROL(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
OUT_DATARATE<3:0>  
OUT_CLKRATE<3:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-4  
OUT_DATARATE<3:0>: Output data rate control bits  
1111= Output data is all 0’s  
1110= Output data is all 0’s  
1101= Output data is all 0’s  
(2)  
1100= Internal test only  
1011= Internal test only  
1010= Internal test only  
(2)  
(2)  
1001= Full speed divided by 512  
1000= Full speed divided by 256  
0111= Full speed divided by 128  
0110= Full speed divided by 64  
0101= Full speed divided by 32  
0100= Full speed divided by 16  
0011= Full speed divided by 8  
0010= Full speed divided by 4  
0001= Full speed divided by 2  
0000= Full-speed rate (Default)  
(3,4)  
bit 3-0  
OUT_CLKRATE<3:0>: Output clock rate control bits  
1111= Full-speed rate  
1110= No clock output  
1101= No clock output  
1100= No clock output  
1011= No clock output  
1010= No clock output  
1001= Full speed divided by 512  
1000= Full speed divided by 256  
0111= Full speed divided by 128  
0110= Full speed divided by 64  
0101= Full speed divided by 32  
0100= Full speed divided by 16  
0011= Full speed divided by 8  
0010= Full speed divided by 4  
0001= Full speed divided by 2  
0000= No clock output (Default)  
Note 1:  
2:  
This register should be used to realign the output data and clock when the decimation or digital down-conversion (DDC) option  
is used.  
1100 - 1010: Do not reprogram. These settings are used for the internal test only. If these bits are reprogrammed with differ-  
ent settings, the outputs will be in an undefined state.  
3:  
4:  
Bits <3:0> become active if EN_DATCLK_IND = 1in Address 0x01 (Register 5-2).  
When no clock output is selected (Bits 1110 - 1010): clock output is not available at the DCLK+/DCLK- pins.  
2020 Microchip Technology Inc.  
DS20006382A-page 84  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-4:  
ADDRESS 0X04 – SPI SDO OUTPUT TIMING CONTROL  
R/W-1  
SDO_TIME  
bit 7  
R/W-0  
R/W-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
FCB<6:0>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
SDO_TIME: SPI SDO output timing control bit  
1= SDO output at the falling edge of clock (Default)  
0= SDO output at the rising edge of clock  
bit 6-0  
FCB<6:0>: Factory-Controlled Bits. This is not for the user. Do not change default settings.  
REGISTER 5-5:  
ADDRESS 0X07 – OUTPUT RANDOMIZER AND WCK POLARITY CONTROL  
R/W-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-1  
R/W-0  
POL_WCK  
EN_AUTOCAL_-  
TIMEDLY  
FCB<4:0>  
EN_OUT_RANDOM  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
(1)  
bit 7  
bit 6  
POL_WCK: WCK polarity control bit  
1= Inverted  
0= Not inverted (Default)  
(2)  
EN_AUTOCAL_TIMEDLY: Auto-calibration starter time delay counter control bit  
1= Enabled (Default)  
0= Disabled  
bit 5-1  
bit 0  
FCB<4:0>: Factory-Controlled Bits. This is not for the user. Do not change default settings.  
EN_OUT_RANDOM: Output randomizer control bit  
1= Enabled: ADC data output is randomized  
0= Disabled (Default)  
Note 1:  
2:  
See Address 0x68 (Register 5-26) for WCK/OVR pair control.  
This bit enables the AUTOCAL_TIMEDLY<7:0> settings. See Address 0x1E (Register 5-6).  
DS20006382A-page 85  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-6:  
ADDRESS 0X1E – AUTOCAL TIME DELAY CONTROL(1)  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
AUTOCAL_TIMEDLY<7:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
AUTOCAL_TIMEDLY<7:0>: Auto-calibration start time delay control bits  
1111-1111= Maximum value  
• • •  
1000-0000= (Default)  
• • •  
0000-0000= Minimum value  
Note 1:  
EN_AUTOCAL_TIMEDLY in Address 0x07 (Register 5-5) enables this register setting. This register controls the time delay  
before the auto-calibration starts. The value increases linearly with the bit settings, from minimum to maximum values.  
REGISTER 5-7:  
ADDRESS 0X52 – DLL CONTROL  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-1  
R/W-0  
R/W-1  
R/W-0  
EN_DUTY  
DCLK_PHDLY_DLL<2:0>  
EN_DLL_DCLK  
EN_DLL  
EN_CLK  
RESET_DLL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7  
EN_DUTY: Enable DLL circuit for duty cycle correction (DCC) of input clock  
1= Correction is ON  
0= Correction is OFF (Default)  
(1)  
bit 6-4  
DCLK_PHDLY_DLL<2:0>: Select the phase delay of the digital clock output when using DLL  
111= +315° phase-shifted from default  
110= +270° phase-shifted from default  
101= +225° phase-shifted from default  
100= +180° phase-shifted from default  
011= +135 phase-shifted from default  
010= +90° phase-shifted from default  
001= +45° phase-shifted from default  
000= (Default)  
bit 3  
bit 2  
bit 1  
EN_DLL_DCLK: Enable DLL digital clock output  
1= Enabled (Default)  
0= Disabled: DLL digital clock is turned off. ADC output is not available when DLL is used.  
EN_DLL: Enable DLL circuitry to provide a selectable phase clock to digital output clock.  
1= Enabled  
0= Disabled. DLL block is disabled (Default)  
EN_CLK: Enable clock input buffer  
1= Enabled (Default).  
0= Disabled. No clock is available to the internal circuits, ADC output is not available.  
(2)  
bit 0  
RESET_DLL: DLL circuit reset control  
1= DLL is active  
0= DLL circuit is held in reset (Default)  
Note 1:  
2:  
These bits have an effect only if EN_PHDLY = 1 and decimation is not used.  
DLL reset control procedure: Set this bit to ‘0’ (reset) and then to ‘1’.  
2020 Microchip Technology Inc.  
DS20006382A-page 86  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-8:  
ADDRESS 0X53 – CLOCK SOURCE SELECTION  
R/W-0  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-1  
R/W-0  
R/W-1  
FCB<6:4>  
CLK_SOURCE  
FCB<3:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4  
FCB<6:4>: Factory-Controlled Bits. This is not for the user. Do not change default settings.  
CLK_SOURCE: Select internal timing source  
1= PLL output is selected as timing source  
0= External clock input is selected as timing source (Default)  
bit 3-0  
FCB<3:0>: Factory-Controlled Bits. This is not for the user. Do not change default settings.  
REGISTER 5-9:  
ADDRESS 0X54 – PLL REFERENCE DIVIDER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PLL_REFDIV<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
PLL_REFDIV<7:0>: PLL Reference clock divider control bits  
1111-1111= PLL reference divided by 255 (if PLL_REFDIV<9:8> = 00)  
1111-1110= PLL reference divided by 254 (if PLL_REFDIV<9:8> = 00)  
• • •  
0000-0011= PLL reference divided by 3 (if PLL_REFDIV<9:8> = 00)  
0000-0010= Do not use (No effect)  
0000-0001= PLL reference divided by 1 (if PLL_REFDIV<9:8> = 00)  
0000-0000= PLL reference not divided (if PLL_REFDIV<9:8> = 00) (Default)  
Note 1:  
PLL_REFDIV is a 10-bit wide setting. See Address 0x55 (Register 5-10) for the upper two bits and Table 5-4 for PLL_REF-  
DIV<9:0> bit settings. This setting controls the clock division ratio of the PLL reference clock (external clock input at the CLK  
pin) before the PLL phase-frequency detector circuitry. Note that the divider value of 2 is not supported. EN_PLL_REFDIV in  
Address 0x59 (Register 5-14) must be set.  
DS20006382A-page 87  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-10:  
ADDRESS 0X55 – PLL OUTPUT AND REFERENCE DIVIDER  
R/W-0  
R/W-1  
R/W-0  
R/W-0  
R/W-1  
R/W-0  
FCB<1:0>  
R/W-0  
R/W-0  
PLL_OUTDIV<3:0>  
PLL_REFDIV<9:8>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-4  
PLL_OUTDIV<3:0>: PLL output divider control bits  
1111= PLL output divided by 15  
1110= PLL output divided by 14  
• • •  
0100= PLL output divided by 4 (Default)  
0011= PLL output divided by 3  
0010= PLL output divided by 2  
0001= PLL output divided by 1  
0000= PLL output not divided  
bit 3-2  
bit 1-0  
FCB<1:0>: Factory-Controlled Bits. This is not for the user. Do not change default settings.  
(2)  
PLL_REFDIV<9:8>: Upper two MSb bits of PLL_REFDIV<9:0>  
00= see Table 5-4. (Default)  
Note 1:  
2:  
PLL_OUTDIV<3:0> controls the PLL output clock divider: VCO output is divided by the PLL_OUTDIV<3:0> setting.  
See Address 0x54 (Register 5-9) and Table 5-4 for PLL_REFDIV<9:0> settings. EN_PLL_REFDIV in Address 0x59  
(Register 5-14) must be set.  
TABLE 5-4:  
EXAMPLE – PLL REFERENCE DIVIDER BIT SETTINGS VS. PLL REFERENCE INPUT  
FREQUENCY  
PLL_REFDIV<9:0>  
PLL Reference Frequency  
11-1111-1111  
11-1111-1110  
00-0000-0011  
00-0000-0010  
00-0000-0001  
00-0000-0000  
Reference frequency divided by 1023  
Reference frequency divided by 1022  
Reference frequency divided by 3  
Do not use (not supported)  
Reference frequency divided by 1  
Reference frequency divided by 1  
2020 Microchip Technology Inc.  
DS20006382A-page 88  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-11:  
ADDRESS 0X56 – PLL PRESCALER (LSB)  
R/W-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
bit 0  
PLL_PRE<7:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
(1)  
bit 7-0  
PLL_PRE<7:0>: PLL prescaler selection  
1111-1111= VCO clock divided by 255 (if PLL_PRE<11:8> = 0000)  
• • •  
0111-1000= VCO clock divided by 120 (if PLL_PRE<11:8> = 0000) (Default)  
• • •  
0000-0010= VCO clock divided by 2 (if PLL_PRE<11:8> = 0000)  
0000-0001= VCO clock divided by 1 (if PLL_PRE<11:8> = 0000)  
0000-0000= VCO clock not divided (if PLL_PRE<11:8> = 0000)  
Note 1:  
PLL_PRE is a 12-bit-wide setting. The upper four bits (PLL_PRE<11:8>) are defined in Address 0x57. See Table 5-5 for the  
PLL_PRE<11:0> settings. The PLL Prescaler is used to divide down the VCO output clock in the PLL phase-frequency detector  
loop circuit.  
REGISTER 5-12:  
ADDRESS 0X57 – PLL PRESCALER (MSB)  
R/W-0  
R/W-1  
FCB<3:0>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PLL_PRE<11:8>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-4  
bit 3-0  
FCB<3:0>: Factory-Controlled Bits. This is not for the user. Do not change default settings.  
(1)  
PLL_PRE<11:8>: PLL prescaler selection  
12  
1111= 2 - 1 (max), if PLL_PRE<7:0> = 0xFF  
• • •  
0000= Default)  
Note 1:  
PLL_PRE is a 12-bit-wide setting. See the lower eight bit settings (PLL_PRE<7:0>) in Address 0x56 (Register 5-11). See  
Table 5-5 for the PLL_PRE<11:0> settings for PLL feedback frequency.  
TABLE 5-5:  
Example: PLL Prescaler Bit Settings and PLL Feedback Frequency  
PLL_PRE<11:0>  
PLL Feedback Frequency  
12  
1111-1111-1111  
1111-1111-1110  
VCO clock divided by 4095 (2 - 1)  
12  
VCO clock divided by 4094 (2 - 2)  
0000-0000-0011  
0000-0000-0010  
0000-0000-0001  
0000-0000-0000  
VCO clock divided by 3  
VCO clock divided by 2  
VCO clock divided by 1  
VCO clock divided by 1  
DS20006382A-page 89  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-13:  
ADDRESS 0X58 – PLL CHARGE-PUMP  
R/W-0  
R/W-0  
R/W-0  
R/W-1  
R/W-0  
R/W-0  
R/W-1  
R/W-0  
FCB<2:0>:  
PLL_BIAS  
PLL_CHAGPUMP<3:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4  
FCB<2:0>: Factory-Controlled Bits. This is not for the user. Do not change default settings.  
PLL_BIAS: PLL charge-pump bias source selection bit  
1= Self-biasing coming from AV (Default)  
DD  
0 = Bandgap voltage from the reference generator (1.2V)  
(1)  
bit 3-0  
PLL_CHAGPUMP<3:0>: PLL charge pump bias current control bits  
1111= Maximum current  
• • •  
0010= (Default)  
• • •  
0000= Minimum current  
Note 1:  
PLL_CHAGPUMP<3:0> should be set based on the phase detector comparison frequency. The bias current amplitude  
increases linearly with increasing the bit setting values. The increase is from approximately 25 µA to 375 µA, 25 µA per step.  
See Section 4.7.2.1, "PLL Output Frequency and Output Control Parameters" for more details of the PLL block.  
REGISTER 5-14:  
ADDRESS 0X59 – PLL ENABLE CONTROL 1  
U-0  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-1  
FCB<4:3>  
EN_PLL_REFDIV  
FCB<2:1>  
EN_PLL  
FCB<0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Not used.  
bit 6-5  
bit 4  
FCB<4:3>: Factory-Controlled Bits. This is not for the user. Do not change default settings.  
EN_PLL_REFDIV: Enable PLL Reference Divider (PLL_REFDIV<9:0>).  
1= Enabled  
0= Reference divider is bypassed (Default)  
bit 3-2  
bit 1  
FCB<2:1>: Factory-Controlled Bits. This is not for the user. Do not change default settings.  
EN_PLL: Enable PLL circuit.  
1= Enabled  
0= Disabled (Default)  
bit 0  
FCB<0>: Factory-Controlled Bit. This is not for the user. Do not change default setting.  
2020 Microchip Technology Inc.  
DS20006382A-page 90  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-15:  
ADDRESS 0X5A – PLL LOOP FILTER RESISTOR  
U-0  
R/W-0  
R/W-1  
FCB<1:0>  
R/W-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
PLL_RES<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Not used.  
bit 6-5  
bit 4-0  
FCB<1:0>: Factory-Controlled Bits. This is not for the user. Do not change default settings.  
(1)  
PLL_RES<4:0>: Resistor value selection bits for PLL loop filter  
11111= Maximum value  
• • •  
01111= (Default)  
• • •  
00000= Minimum value  
Note 1:  
PLL_RES<4:0> should be set based on the phase detector comparison frequency. The resistor value increases linearly with the  
bit settings, from minimum to maximum values. See the PLL loop filter section in Section 4.7, "ADC Clock Selection".  
REGISTER 5-16:  
ADDRESS 0X5B – PLL LOOP FILTER CAP3  
U-0  
R/W-0  
R/W-1  
FCB<1:0>  
R/W-0  
R/W-0  
R/W-1  
R/W-1  
R/W-1  
PLL_CAP3<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Not used.  
bit 6-5  
bit 4-0  
FCB<1:0>: Factory-Controlled Bits. This is not for the user. Do not change default settings.  
(1)  
PLL_CAP3<4:0>: Capacitor 3 value selection bits for PLL loop filter  
11111= Maximum value  
• • •  
00111= (Default)  
• • •  
00000= Minimum value  
Note 1:  
This capacitor is in series with the shunt resistor, which is set by PLL_RES<4:0>. The capacitor value increases linearly with the  
bit settings, from minimum to maximum values. This setting should be set based on the phase detector comparison frequency.  
DS20006382A-page 91  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-17:  
ADDRESS 0X5C – PLL LOOP FILTER CAP1  
U-0  
R/W-0  
R/W-1  
FCB<1:0>  
R/W-0  
R/W-0  
R/W-1  
R/W-1  
R/W-1  
PLL_CAP1<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Not used.  
bit 6-5  
bit 4-0  
FCB<1:0>: Factory-Controlled Bits. This is not for the user. Do not change default settings.  
(1)  
PLL_CAP1<4:0>: Capacitor 1 value selection bits for PLL loop filter  
11111= Maximum value  
• • •  
00111= (Default)  
• • •  
00000= Minimum value  
Note 1:  
This capacitor is located between the charge pump output and ground, and in parallel with the shunt resistor which is defined by  
the PLL_RES<4:0>. The capacitor value increases linearly with the bit settings, from minimum to maximum values. This setting  
should be set based on the phase detector comparison frequency.  
REGISTER 5-18:  
ADDRESS 0X5D – PLL LOOP FILTER CAP2  
U-0  
R/W-0  
R/W-1  
FCB<1:0>  
R/W-0  
R/W-0  
R/W-1  
R/W-1  
R/W-1  
PLL_CAP2<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Not used.  
bit 6-5  
bit 4-0  
FCB<1:0>: Factory-Controlled Bits. This is not for the user. Do not change default settings.  
(1)  
PLL_CAP2<4:0>: Capacitor 2 value selection bits for PLL loop filter  
11111= Maximum value  
• • •  
00111= (Default)  
• • •  
00000= Minimum value  
Note 1:  
This capacitor is located between the charge pump output and ground, and in parallel with CAP1 which is defined by the PLL_-  
CAP1<4:0>. The capacitor value increases linearly with the bit settings, from minimum to maximum values. This setting should  
be set based on the phase detector comparison frequency.  
2020 Microchip Technology Inc.  
DS20006382A-page 92  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-19:  
ADDRESS 0X5F – PLL ENABLE CONTROL 2(1)  
R/W-1  
R/W-1  
FCB<5:2>  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-1  
EN_PLL_OUT EN_PLL_BIAS  
FCB<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7-4  
bit 3  
FCB<5:2>: Factory-Controlled Bits. This is not for the user. Do not change the default settings.  
EN_PLL_OUT: Enable PLL output.  
1= Enabled  
0= Disabled (Default)  
bit 2  
EN_PLL_BIAS: Enable PLL bias  
1= Enabled  
0= Disabled (Default)  
bit 1-0  
FCB<1:0>: Factory-Controlled Bits. This is not for the user. Do not change default settings.  
Note 1:  
To enable PLL output, EN_PLL_OUT, EN_PLL_BIAS and EN_PLL in Address 0x59 (Register 5-14) must be set.  
DS20006382A-page 93  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-20:  
ADDRESS 0X62 – OUTPUT DATA FORMAT AND OUTPUT TEST PATTERN  
U-0  
R/W-0  
R/W-0  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
LVDS_8CH  
DATA_FORMAT  
OUTPUT_MODE<1:0>  
TEST_PATTERNS<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Not used.  
(1)  
LVDS_8CH: LVDS data stream type selection for octal-channel mode  
1= Serialized data stream  
0= Interleaved with parallel data stream (Default)  
(2)  
(3)  
bit 5  
DATA_FORMAT: Output data format selection  
1= Offset binary (unsigned)  
0= Two’s complement (Default)  
(4)  
bit 4-3  
OUTPUT_MODE<1:0>: Output mode selection  
(5)  
11= DDR LVDS output mode with MSb byte first  
(6)  
10= DDR LVDS output mode with even bit first (Default)  
01= CMOS output mode  
00= Output disabled  
bit 2-0  
TEST_PATTERNS<2:0>: Test output data pattern selection  
111= Output data is pseudo-random number (PN) sequence  
(7)  
110= Sync Pattern for LVDS output.  
18-bit mode: '11111111 00000000 10'  
16-bit mode: '11111111 00000000'  
14-bit mode: '11111111 000000'  
12-bit mode: '11111111 0000'  
10-bit mode: '11111111 00'  
101= Alternating Sequence for LVDS mode  
16-bit mode: ‘01010101 10101010’  
14-bit mode: ‘01010101 101010’  
100= Alternating Sequence for CMOS.  
Output: ‘11111111 11111111’ alternating with ‘00000000 00000000’  
011= Alternating Sequence for CMOS.  
Output: ‘01010101 01010101’ alternating with ‘10101010 10101010’  
010= Ramp Pattern. Output is incremented by:  
18-bit mode: 1 LSb per clock cycle  
16-bit mode: 1 LSb per 4 clock cycles  
14-bit mode: 1 LSb per 16 clock cycles  
001= Double Custom Patterns.  
Output: Alternating custom pattern A (see Addresses 0X74 – 0X75 - Registers 5-29 5-30) and custom  
(8)  
pattern B (see Address 0X76 - 0X77 - Registers 5-31 5-32)  
000= Normal Operation. Output: ADC data (Default)  
Note 1:  
2:  
This bit setting is valid for the octal-channel mode only. See Addresses 0x7D-0x7F (Registers 5-37 5-39) for channel order selection.  
Serialized LVDS is available in octal-channel with 16-bit mode only: Each LVDS output pair holds a single input channel's data  
and outputs in a serial data stream (synchronized with WCK): Q7+/Q7- is for the first channel’s selected data, and Q0+/Q0- is for  
the last channel’s selected data. This bit function is enabled only when EN_DSPP_8 = 1in Address 0x81 (Register 5-41). See  
Figure 2-4 for the timing diagram.  
3:  
The output is in parallel data stream. The first sampled data bit is clocked out first in parallel LVDS output pins, followed by the  
next sampled channel data bit. See Figures 2-2 and 2-3 for the timing diagram.  
See Figures 2-1 2-4 for the timing diagram.  
4:  
5:  
Only 16-bit mode is available for this option.  
Rising edge: Q15 - Q8.  
Falling edge: Q7 - Q0  
6:  
Rising edge: Q14, Q12, Q10,.... Q0.  
Falling edge: Q15, Q13, Q11,... Q1.  
7:  
8:  
Pseudo-random number (PN) code is generated by the linear feedback shift register (LFSR).  
The alternating patterns A and B are applied to Q<15:0>. Pattern A<15:14> and Pattern B<15:14> are also applied to OVR and  
WCK pins, respectively. Pattern A<1:0> and Pattern B<1:0> are also applied to DM1/DM+ and DM2/DM-.  
2020 Microchip Technology Inc.  
DS20006382A-page 94  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-21:  
ADDRESS 0X63 – ADC OUTPUT BIT (RESOLUTION) AND LVDS LOAD  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-1  
bit 0  
OUTPUT_BIT  
LVDS_LOAD  
LVDS_IMODE<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7-4  
16-Bit Device (MCP37D31-80):  
(1)  
OUTPUT_BIT<3:0>: Select number of output data bits  
1111= 15  
1110= 14  
1101= 13  
1100= 12  
1011= 11  
1010= 10  
1001= 9  
1000= 8  
0111= 7  
0110= 6  
0101= 5  
0100= 4  
0011= 3  
0010= 2  
0001= 1  
0000= 16-bit (Default)  
14-Bit Device (MCP37D21-80):  
(2)  
OUTPUT_BIT<3:0>: These bits have no effect  
bit 3  
LVDS_LOAD: Internal LVDS load termination  
1= Enable internal load termination  
0= Disable internal load termination (Default)  
bit 2-0  
LVDS_IMODE<2:0>: LVDS driver current control bits  
111= 7.2 mA  
011= 5.4 mA  
001= 3.5 mA (Default)  
000= 1.8 mA  
Do not use the following settings  
(3)  
:
110, 101, 100, 010  
Note 1:  
These bits are applicable for the 16-bit device only. See Address 0x68 (Register 5-26) for additional DM1 and DM2 bits.  
In the 14-bit device, ADC resolution is not user selectable.  
These settings can result in unknown output currents.  
2:  
3:  
DS20006382A-page 95  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-22:  
ADDRESS 0X64 – OUTPUT CLOCK PHASE CONTROL WHEN DECIMATION FILTER IS USED  
R/W-0  
EN_PHDLY  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-1  
R/W-1  
DCLK_PHDLY_DEC<2:0>  
FCB<3:0>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
EN_PHDLY: Enable digital output clock phase delay control when DLL or decimation filter is used.  
1= Enabled  
0= Disabled (Default)  
(2)  
bit 6-4  
DCLK_PHDLY_DEC<2:0>: Digital output clock phase delay control when decimation filter is used  
(2)  
111= +315° phase-shifted from default  
110= +270° phase-shifted from default  
101= +225° phase-shifted from default  
(2)  
100= +180° phase-shifted from default  
011= +135° phase-shifted from default  
(2)  
010= +90° phase-shifted from default  
(2)  
001= +45° phase-shifted from default  
(3)  
000= Default  
bit 3-0  
FCB<3:0>: Factory-Controlled Bits. This is not for the user. Do not change default settings.  
Note 1:  
2:  
These bits have an effect only if EN_PHDLY = 1. See Address 0x52 (Register 5-7) for the same feature when DLL is used.  
Only available when the decimation filter setting is greater than 2. When FIR_A/B <8:1> = 0’s (default) and FIR_A<6> = 0, only 4-  
phase shifts are available (+45°, +135°, +225°, +315°) from default. See Addresses 0x7A, 0x7B and 0x7C (Registers 5-34 5-36).  
See Addresses 0x6D and 0x52 (Registers 5-28 and 5-7) for DCLK phase shift for other modes.  
3:  
The phase delay for all other settings is referenced to this default phase.  
REGISTER 5-23:  
ADDRESS 0X65 – LVDS OUTPUT POLARITY CONTROL  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
POL_LVDS<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
(1)  
bit 7-0  
POL_LVDS<7:0>: Control polarity of LVDS data pairs (Q7+/Q7- – Q0+/Q0-)  
1111-1111= Invert all LVDS pairs  
1111-1110= Invert all LVDS pairs except the LSb pair  
• • •  
1000-0000= Invert MSb LVDS pair  
• • •  
0000-0001= Invert LSb LVDS pair  
0000-0000= No inversion of LVDS bit pairs (Default)  
Note 1:  
(a) 14-bit mode: The LSb bit has no effect. (b) 12-bit mode: The last two LSb bits have no effect.  
2020 Microchip Technology Inc.  
DS20006382A-page 96  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-24:  
ADDRESS 0X66 – DIGITAL OFFSET CORRECTION (LOWER BYTE)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DIG_OFFSET_GLOBAL<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
DIG_OFFSET_GLOBAL<7:0>: Lower byte of DIG_OFFSET_GLOBAL<15:0> for all channels  
0000-0000= Default  
Note 1:  
Offset is added to the ADC output. Setting is two’s complement using two combined registers (16-bits wide).  
Setting range: (-2 to 2 - 1) x step size. Step size of each bit setting:  
15  
15  
-
-
-
-
12-bit mode: 0.125 LSb  
14-bit mode: 0.25 LSb  
16-bit mode: 0.5 LSb  
18-bit mode: 1 LSb.  
REGISTER 5-25:  
ADDRESS 0X67 – DIGITAL OFFSET CORRECTION (UPPER BYTE)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DIG_OFFSET_GLOBAL<15:8>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
DIG_OFFSET_GLOBAL<15:8>: Upper byte of DIG_OFFSET_GLOBAL<15:0> for all channels  
0000-0000= Default  
Note 1:  
See Note 1 in Address 0x66 (Register 5-24)  
DS20006382A-page 97  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-26:  
ADDRESS 0X68 – WCK/OVR AND DM1/DM2  
R/W-0  
R/W-0  
R/W-1  
R/W-0  
R/W-0  
R/W-1  
R/W-0  
R/W-0  
FCB<3:0>  
POL_WCK_OVR  
EN_WCK_OVR  
DM1DM2  
POL_DM1DM2  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7-4  
bit 3  
FCB<3:0>: Factory-Controlled Bits. This is not for the user. Do not change default settings.  
POL_WCK_OVR: Polarity control for WCK and OVR bit pair in LVDS mode  
1= Inverted  
0= Not inverted (Default)  
bit 2  
EN_WCK_OVR: Enable WCK and OVR output bit pair  
1= Enabled (Default)  
0= Disabled  
(1)  
bit 1  
DM1DM2: Add two additional LSb bits (DM1/DM+ and DM2/DM- bits) to the output  
1= Added  
0= Not added (Default)  
(1)  
bit 0  
POL_DM1DM2: Polarity control for DM1/DM+ and DM2/DM- pair in LVDS mode  
1= Inverted  
0= Not inverted (Default)  
Note 1:  
Applicable for 16-bit mode only: When this bit is set and the decimation is used, two additional LSb bits (DM1/DM+ and DM2/DM-,  
DM2/DM- is the LSb) can be added and result in 18-bit resolution. See Addresses 0x7B and 0x7C (Registers 5-35 and 5-36) for the  
decimation filter settings. See Address 0x63 (Register 5-21) for the output bit control.  
2020 Microchip Technology Inc.  
DS20006382A-page 98  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-27:  
ADDRESS 0X6B – PLL CALIBRATION  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
FCB<6:2>  
PLL_CAL_TRIG  
FCB<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7-3  
bit 2  
FCB<6:2>: Factory-Controlled Bits. This is not for the user. Do not change default settings.  
(1)  
PLL_CAL_TRIG: Manually force recalibration of the PLL at the state of bit transition  
Toggle from “1” to “0”, or “0” to “1” = Start PLL calibration  
bit 1-0  
FCB<1:0>: Factory-Controlled Bits. This is not for the user. Do not program.  
See PLL_CAL_STAT in Address 0xD1 (Register 5-80) for calibration status indication.  
Note 1:  
REGISTER 5-28:  
U-0 U-0  
ADDRESS 0X6D – PLL OUTPUT AND OUTPUT CLOCK PHASE(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EN_PLL_CLK  
FCB<1>  
DCLK_DLY_PLL<2:0>  
FCB<0>  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5  
Unimplemented: Not used  
EN_PLL_CLK: Enable PLL output clock  
1= PLL output clock is enabled to the ADC core  
0= PLL clock output is disabled (Default)  
bit 4  
FCB<1>: Factory-Controlled Bit. This is not for the user. Do not change default settings.  
(2)  
bit 3-1  
DCLK_DLY_PLL<2:0>: Output clock is delayed by the number of VCO clock cycles from the nominal PLL output  
111= Delay of 15 cycles  
110= Delay of 14 cycles  
• • •  
001= Delay of one cycle  
000= No delay (Default)  
bit 0  
FCB<0>: Factory-Controlled Bit. This is not for the user. Do not change default setting.  
Note 1: This register has effect only when the PLL clock is selected by the CLK_SOURCE bit in Address 0x53  
(Register 5-8) and PLL circuit is enabled by EN_PLL bit in Address 0x59 (Register 5-14).  
2: This bit setting enables the output clock phase delay. This phase delay control option is applicable when PLL is  
used as the clock source and the decimation is not used.  
DS20006382A-page 99  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-29:  
ADDRESS 0X74 – USER-DEFINED OUTPUT PATTERN A (LOWER BYTE)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PATTERN_A<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
PATTERN_A<7:0>: Lower byte of PATTERN_A<15:0>  
Note 1:  
See PATTERN_A<15:8> in Address 0x75 (Register 5-30) and TEST_PATTERNS<2:0> in Address 0x62 (Register 5-20). If ADC  
resolution is less than 16-bit, some LSbs are not used. Unused LSb = 16-n, where n = resolution. Leave the unused LSb bits as 0s.  
REGISTER 5-30:  
ADDRESS 0X75 – USER-DEFINED OUTPUT PATTERN A (UPPER BYTE)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PATTERN_A<15:8>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
PATTERN_A<15:8>: Upper byte of PATTERN_A<15:0>  
Note 1:  
See PATTERN_A<7:0> in Address 0x74 (Register 5-29) and TEST_PATTERNS<2:0> in Address 0x62 (Register 5-20).  
REGISTER 5-31:  
ADDRESS 0X76 – USER-DEFINED OUTPUT PATTERN B (LOWER BYTE)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PATTERN_B<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
PATTERN_B<7:0>: Lower byte of PATTERN_B<15:0>  
Note 1:  
See PATTERN_B<15:8> in Address 0x77 (Register 5-32) and TEST_PATTERNS<2:0> in Address 0x62 (Register 5-20). If ADC  
resolution is less than 16-bit, some LSbs are not used. Unused LSb = 16-n, where n = resolution. Leave the unused LSb bits as 0s.  
REGISTER 5-32:  
ADDRESS 0X77 – USER-DEFINED OUTPUT PATTERN B (UPPER BYTE)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PATTERN_B<15:8>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
PATTERN_B<15:8>: Upper byte of PATTERN_B<15:0>  
Note 1:  
See PATTERN_B<7:0> in Address 0x76 (Register 5-31) and TEST_PATTERNS<2:0> in Address 0x62 (Register 5-20).  
2020 Microchip Technology Inc.  
DS20006382A-page 100  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-33:  
R/W-0  
ADDRESS 0X79 – DUAL-CHANNEL DIGITAL SIGNAL POST-PROCESSING CONTROL  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EN_DSPP_2  
bit 7  
FCB<6:0>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
EN_DSPP_2: Enable all digital post-processing functions for dual-channel operations  
1= Enabled  
0= Disabled (Default)  
bit 6-0  
FCB<6:0>: Factory-Controlled Bits. This is not for the user. Do not change default settings.  
REGISTER 5-34:  
ADDRESS 0X7A – FRACTIONAL DELAY RECOVERY AND FIR_A0(1)  
R/W-0  
R/W-0  
FIR_A<0>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
FCB<5>  
EN_FDR  
FCB<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7  
bit 6  
FCB<5>: Factory-Controlled Bit. This is not for the user. Do not change default setting.  
(2)  
FIR_A<0>: Enable the first 2x decimation (Stage 1A in FIR A) in single-channel mode  
1= Enabled  
0= Disabled (Default)  
bit 5  
EN_FDR: Enable fractional delay recovery (FDR) option  
1= Enabled (with delay of 59 clock cycles).  
0= Disabled (Default)  
bit 4-0  
FCB<4:0>: Factory-Controlled Bits. This is not for the user. Do not change default settings.  
Note 1:  
2:  
This register is used only for single and dual-channel modes.  
This is the LSb for the FIR A filter settings. For the first 2x decimation, set FIR_A<0> = 1for single-channel operation, and  
FIR_A<0> = 0for dual-channel operation. See Address 0x7B (Register 5-35) for FIR_A<8:1> settings.  
DS20006382A-page 101  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-35:  
ADDRESS 0X7B – FIR A FILTER(1,5)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
FIR_A<8:1>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(2)  
bit 7-0  
FIR_A<8:1>: Decimation Filter FIR A settings for Channel A (or I)  
Single-Channel Mode:  
(3)  
FIR_A<8:0> =  
1-1111-1111= Stage 1 - 9 filters (decimation rate: 512)  
0-1111-1111= Stage 1 - 8 filters  
0-0111-1111= Stage 1 - 7 filters  
0-0011-1111= Stage 1 - 6 filters  
0-0001-1111= Stage 1 - 5 filters  
0-0000-1111= Stage 1 - 4 filters  
0-0000-0111= Stage 1 - 3 filters (decimation rate = 8)  
0-0000-0011= Stage 1 - 2 filters (decimation rate = 4)  
0-0000-0001= Stage 1 filter (decimation rate = 2)  
0-0000-0000= Disabled all FIR A filters. (Default)  
(4)  
Dual-Channel Mode:  
FIR_A<8:0> =  
1-1111-1110= Stage 2 - 9 filters (decimation rate: 256)  
0-1111-1110= Stage 2 - 8 filters  
0-0111-1110= Stage 2 - 7 filters  
0-0011-1110= Stage 2 - 6 filters  
0-0001-1110= Stage 2 - 5 filters  
0-0000-1110= Stage 2 - 4 filters  
0-0000-0110= Stage 2 - 3 filters  
0-0000-0010= Stage 2 filter (decimation rate = 2)  
0-0000-0000= Disabled all FIR A filters. (Default)  
Note 1:  
This register is used only for single and dual-channel modes. The register values are thermometer encoded.  
FIR_A<0> is placed in Address 0x7A (Register 5-34).  
In single-channel mode, the 1st stage filter is selected by FIR_A<0> = 1in Address 0x7A (Register 5-34).  
In dual-channel mode, the 1st stage filter is disabled by setting FIR_A<0> = 0in Address 0x7A.  
SNR is improved by approximately 2.5 dB per each filter stage, and output data rate is reduced by a factor of two per stage. The  
data and clock rates in Address 0X02 (Register 5-3) need to be updated accordingly. Address 0x64 (Register 5-22) setting is  
also affected. The maximum decimation rate for the single-channel mode is 512, and 256 for the dual-channel mode.  
2:  
3:  
4:  
5:  
2020 Microchip Technology Inc.  
DS20006382A-page 102  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-36:  
ADDRESS 0X7C – FIR B FILTER(1,2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
FIR_B<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(3)  
bit 7-0  
FIR_B<7:0>:Decimation Filter FIR B settings for Channel B (or Q)  
1111-1111= Stage 2 - 9 filters (decimation rate = 256)  
0111-1111= Stage 2 - 8 filters  
0011-1111= Stage 2 - 7 filters  
0001-1111= Stage 2 - 6 filters  
0000-1111= Stage 2 - 5 filters  
0000-0111= Stage 2 - 4 filters  
0000-0011= Stage 2 - 3 filters  
0000-0001= Stage 2 filter (decimation rate = 2)  
0000-0000= Disabled all FIR B Filters. (Default)  
Note 1:  
This register is used for the dual-channel mode only. The register values are thermometer encoded.  
EN_DSPP_2 bit in Address 0x79 (Register 5-34) must be set when using decimation in dual-channel mode.  
SNR is improved by approximately 2.5 dB per each filter stage, and output data rate is reduced by a factor of two per stage. The  
data and clock rates in Address 0X02 (Register 5-3) need to be updated accordingly. Address 0x64 (Register 5-22) setting is  
also affected. The maximum decimation factor for the dual-channel mode is 256.  
2:  
3:  
REGISTER 5-37:  
ADDRESS 0X7D – AUTO-SCAN CHANNEL ORDER (LOWER BYTE)  
R/W-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
CH_ORDER<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
CH_ORDER<7:0>: Lower byte of CH_ORDER<31:0>  
0111-1000= Default  
Note 1:  
See Table 5-3 for the channel order selection. See SEL_NCH<2:0> in Address 0x01 (Register 5-2) for the number of channels  
to be selected.  
REGISTER 5-38:  
ADDRESS 0X7E – AUTO-SCAN CHANNEL ORDER (MIDDLE BYTE)  
R/W-1  
R/W-0  
R/W-1  
R/W-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
CH_ORDER<15:8>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
CH_ORDER<15:8>: Middle byte of CH_ORDER<31:0>  
1010-1100= Default  
Note 1:  
See Table 5-3 for the channel order selection. See SEL_NCH<2:0> in Address 0x01 (Register 5-2) for the number of channels  
to be selected.  
DS20006382A-page 103  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-39:  
ADDRESS 0X7F – AUTO-SCAN CHANNEL ORDER (UPPER BYTE)  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-1  
R/W-1  
R/W-1  
R/W-0  
CH_ORDER<23:16>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
CH_ORDER<23:16>: Upper byte of CH_ORDER<31:0>  
1000-1110= Default  
Note 1:  
See Table 5-3 for the channel order selection. See SEL_NCH<2:0> in Address 0x01 (Register 5-2) for the number of channels  
to be selected.  
REGISTER 5-40:  
ADDRESS 0X80 – DIGITAL DOWN-CONVETER CONTROL 1(1)  
R/W-0  
R/W-0  
HBFILTER_A  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EN_DDC1  
bit 0  
HBFILTER_B  
bit 7  
EN_NCO  
EN_AMPDITH  
EN_PHSDITH  
EN_LFSR  
EN_DDC_FS/8  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(2)  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
HBFILTER_B: Select half-bandwidth filter at DDC output of channel B in dual-channel mode  
1= Select High-Pass filter at DDC output  
0= Select Low-Pass filter at DDC output (Default)  
(2)  
HBFILTER_A: Select half-bandwidth filter at DDC output of channel A  
1= Select High-Pass filter at DDC output  
0= Select Low-Pass filter at DDC output (Default)  
EN_NCO: Enable NCO of DDC1  
1= Enabled  
0= Disabled (Default)  
(3, 4)  
EN_AMPDITH: Enable amplitude dithering for NCO  
1= Enabled  
0= Disabled (Default)  
(3, 4)  
EN_PHSDITH: Enable phase dithering for NCO  
1= Enabled  
0= Disabled (Default)  
EN_LFSR: Enable linear feedback shift register (LFSR) for amplitude and phase dithering for NCO  
1= Enabled  
0= Disabled (Default)  
(5)  
EN_DDC_FS/8: Enable NCO for the DDC2 to center the DDC output signal to be around f /8/DER  
S
1= Enabled  
0= Disabled (Default)  
EN_DDC1: Enable digital down converter 1 (DDC1)  
(6)  
1= Enabled  
0= Disabled (Default)  
Note 1:  
2:  
This register is used for single-, dual- and octal-channel modes when CW feature is enabled (8CH_CW = 1).  
This filter includes a decimation of 2.  
-Single-channel mode: HBFILTER_A is used.  
-Dual-channel mode: Both HBFILTER_A and HBFILTER_B are used.  
This requires the LFSR to be enabled: EN_LFSR=1  
EN_AMPDITH = 1and EN_PHSDITH = 1are recommended for the best performance.  
DER is the decimation rate defined by FIR A or FIR B filter. If up-converter is not enabled (disabled), output is I/Q data.  
DDC and NCO are enabled. For DDC function, bits 0, 2 and 5 need to be enabled all together.  
3:  
4:  
5:  
6:  
2020 Microchip Technology Inc.  
DS20006382A-page 104  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-41:  
ADDRESS 0X81 – DIGITAL DOWN-CONVERTER CONTROL 2  
R/W-0  
FDR_BAND  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EN_DDC2  
GAIN_HBF_DDC  
SEL_FDR  
EN_DSPP_8  
8CH_CW  
GAIN_8CH<1:0>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1-0  
FDR_BAND: Select 1st or 2nd Nyquist band  
1= 2nd Nyquist band  
0= 1st Nyquist band (Default)  
EN_DDC2: Enable DDC2 after the digital half-band filter (HBF) in DDC.  
1= Enabled  
0= Disabled (Default)  
(1)  
GAIN_HBF_DDC: Gain selection for the output of the digital half-band filter (HBF) in DDC  
1= x2  
0= x1 (Default)  
SEL_FDR: Select fractional delay recovery (FDR)  
1= FDR for 8-channel  
0= FDR for dual-channel (Default)  
(2)  
EN_DSPP_8: Enable digital signal post-processing (DSPP) features for 8-channel operation  
1= Enabled  
0= Disabled (Default)  
(2, 3)  
8CH_CW: Enable CW mode in octal-channel mode  
1= Enabled  
0= Disabled (Default)  
GAIN_8CH<1:0>: Select gain factor for CW signal in octal-channel modes.  
11= x8, 10= x4, 01= x2, 00= x1 (Default)  
Note 1:  
2:  
See Section 4.8.2, "Decimation Filters".  
By enabling this bit, the phase offset corrections in Addresses 0x086 – 0x095 (Registers 5-46 5-61) are also enabled.  
EN_DSPP_8 is a global setting bit to enable SEL_FDR and LVDS_8CH bits (Address 0x62 - Register 5-20).  
When CW mode is enabled, the ADC output is the result of the summation (addition) of all eight channels’ data after each  
3:  
channel’s digital phase offset, digital gain, and digital offset are controlled using the Addresses 0x86 - 0xA7 (Registers 5-46 to  
5-78). The result is similar to the beamforming in the phased-array sensors.  
DS20006382A-page 105  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-42:  
ADDRESS 0X82 – NUMERICALLY CONTROLLED OSCILLATOR TUNING (LOWER BYTE)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
NCO_TUNE<7:0>  
bit 7  
bit 0  
bit 0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
NCO_TUNE <7:0>: Lower byte of NCO_TUNE<31:0>  
0000-0000= DC (0 Hz) when NCO_TUNE<31:0> = 0x00000000(Default)  
Note 1:  
See Note 1 and Note 2 in Address 0x85 (Register 5-45).  
REGISTER 5-43:  
ADDRESS 0X83 – NUMERICALLY CONTROLLED OSCILLATOR TUNING  
(MIDDLE-LOWER BYTE)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
NCO_TUNE<15:8>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
NCO_TUNE<15:8>: Middle lower byte of NCO_TUNE<31:0>  
0000-0000= Default  
Note 1:  
See Note 1 and Note 2 in Address 0x85 (Register 5-45).  
REGISTER 5-44:  
ADDRESS 0X84 – NUMERICALLY CONTROLLED OSCILLATOR TUNING  
(MIDDLE-UPPER BYTE)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
NCO_TUNE<23:16>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
NCO_TUNE<23:16>: Middle upper byte of NCO_TUNE<31:0>  
0000-0000= Default  
Note 1:  
See Note 1 and Note 2 in Address 0x85 (Register 5-45).  
2020 Microchip Technology Inc.  
DS20006382A-page 106  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-45:  
ADDRESS 0X85 – NUMERICALLY CONTROLLED OSCILLATOR TUNING (UPPER BYTE)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
NCO_TUNE<31:24>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1,2)  
bit 7-0  
NCO_TUNE<31:24>: Upper byte of NCO_TUNE<31:0>  
1111-1111= f if NCO_TUNE<31:0> = 0xFFFF FFFF  
S
• • •  
0000-0000= Default  
Note 1:  
2:  
This Register is used only when DDC is enabled: EN_DDC1 = 1in Address 0x80 (Register 5-40). See Section 4.8.3.3,  
"Numerically Controlled Oscillator (NCO)" for the details of NCO.  
32  
NCO frequency = (NCO_TUNE<31:0>/2 ) x f , where f is the sampling clock frequency.  
S
S
REGISTER 5-46:  
ADDRESS 0X86 – CH0 NCO PHASE OFFSET IN CW OR DDC MODE (LOWER BYTE)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH0_NCO_PHASE<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1,2,3)  
bit 7-0  
CH0_NCO_PHASE<7:0>: Lower byte of CH0_NCO_PHASE<15:0>  
1111-1111= 1.4° when CH0_NCO_PHASE<15:0> = 0x00FF  
• • •  
0000-0000= 0° when CH0_NCO_PHASE<15:0> = 0x0000 (Default)  
Note 1:  
This register has an effect when the following modes are used:  
- CW with DDC mode in octal-channel mode  
- Single and dual-channel mode with DDC.  
st  
2:  
3:  
CH0 is the 1 channel selected by CH_ORDER<23:0>.  
16  
CH(n)_NCO_PHASE<15:0> = 2 x Phase Offset Value/360.  
DS20006382A-page 107  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-47:  
ADDRESS 0X87: CH0 NCO PHASE OFFSET IN CW OR DDC MODE (UPPER BYTE)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH0_NCO_PHASE<15:8>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
CH0_NCO_PHASE<15:8>: Upper byte of CH0_NCO_PHASE<15:0>  
1111-1111= 359.995° when CH0_NCO_PHASE<15:0> = 0xFFFF  
• • •  
0000-0000= 0° when CH0_NCO_PHASE<15:0> = 0x0000 (Default)  
Note 1:  
See Note 1 - Note 3 in Register 5-46.  
REGISTER 5-48:  
ADDRESS 0X88 – CH1 NCO PHASE OFFSET IN CW OR DDC MODE (LOWER BYTE)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH1_NCO_PHASE<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
CH1_NCO_PHASE<7:0>: Lower byte of CH1_NCO_PHASE<15:0>  
1111-1111= 1.4° when CH1_NCO_PHASE<15:0> = 0x00FF  
• • •  
0000-0000= 0° when CH1_NCO_PHASE<15:0> = 0x0000 (Default)  
Note 1:  
See Note 1 - Note 3 in Register 5-46. CH1 is the 2nd channel selected by CH_ORDER<23:0> bits.  
REGISTER 5-49:  
ADDRESS 0X89 – CH1 NCO PHASE OFFSET IN CW OR DDC MODE (UPPER BYTE)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH1_NCO_PHASE<15:8>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
CH1_NCO_PHASE <15:8>: Upper byte of CH1_NCO_PHASE<15:0>  
1111-1111= 359.995° when CH1_NCO_PHASE<15:0> = 0xFFFF  
• • •  
0000-0000= 0° when CH1_NCO_PHASE<15:0> = 0x0000 (Default)  
Note 1:  
See Note 1 - Note 3 in Register 5-46. CH1 is the 2nd channel selected by CH_ORDER<23:0> bits.  
2020 Microchip Technology Inc.  
DS20006382A-page 108  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-50:  
ADDRESS 0X8A – CH2 NCO PHASE OFFSET IN CW OR DDC MODE (LOWER BYTE)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH2_NCO_PHASE<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
CH2_NCO_PHASE<7:0>: Lower byte of CH2_NCO_PHASE<15:0>  
1111-1111= 1.4° when CH2_NCO_PHASE<15:0> = 0x00FF  
• • •  
0000-0000= 0° when CH2_NCO_PHASE<15:0> = 0x0000 (Default)  
Note 1:  
See Note 1 - Note 3 in Register 5-46. CH2 is the 3rd channel selected by CH_ORDER<23:0> bits.  
REGISTER 5-51:  
ADDRESS 0X8B – CH2 NCO PHASE OFFSET IN CW OR DDC MODE (UPPER BYTE)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH2_NCO_PHASE<15:8>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
CH2_NCO_PHASE <15:8>: Upper byte of CH2_NCO_PHASE<15:0>  
1111-1111= 359.995° when CH2_NCO_PHASE<15:0> = 0xFFFF  
• • •  
0000-0000= 0° when CH2_NCO_PHASE<15:0> = 0x0000 (Default)  
Note 1:  
See Note 1 - Note 3 in Register 5-46. CH2 is the 3rd channel selected by CH_ORDER<23:0> bits.  
REGISTER 5-52:  
ADDRESS 0X8C – CH3 NCO PHASE OFFSET IN CW OR DDC MODE (LOWER BYTE)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH3_NCO_PHASE<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
CH3_NCO_PHASE<7:0>: Lower byte of CH3_NCO_PHASE<15:0>  
1111-1111= 1.4° when CH3_NCO_PHASE<15:0> = 0x00FF  
• • •  
0000-0000= 0° when CH3_NCO_PHASE<15:0> = 0x0000 (Default)  
Note 1:  
See Note 1 - Note 3 in Register 5-46. CH3 is the 4th channel selected by CH_ORDER<23:0> bits.  
DS20006382A-page 109  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-53:  
ADDRESS 0X8D – CH3 NCO PHASE OFFSET IN CW OR DDC MODE (UPPER BYTE)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH3_NCO_PHASE<15:8>  
bit 7  
bit 0  
bit 0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
CH3_NCO_PHASE <15:8>: Upper byte of CH3_NCO_PHASE<15:0>  
1111-1111= 359.995° when CH3_NCO_PHASE<15:0> = 0xFFFF  
• • •  
0000-0000= 0° when CH3_NCO_PHASE<15:0> = 0x0000 (Default)  
Note 1:  
See Note 1 - Note 3 in Register 5-46. CH3 is the 4th channel selected by CH_ORDER<23:0> bits.  
REGISTER 5-54:  
ADDRESS 0X8E – CH4 NCO PHASE OFFSET IN CW OR DDC MODE (LOWER BYTE)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH4_NCO_PHASE<7:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
CH4_NCO_PHASE<7:0>: Lower byte of CH4_NCO_PHASE<15:0>  
1111-1111= 1.4° when CH4_NCO_PHASE<15:0> = 0x00FF  
• • •  
0000-0000= 0° when CH4_NCO_PHASE<15:0> = 0x0000 (Default)  
Note 1:  
See Note 1 - Note 3 in Register 5-46. CH4 is the 5th channel selected by CH_ORDER<23:0> bits.  
REGISTER 5-55:  
ADDRESS 0X8F – CH4 NCO PHASE OFFSET IN CW OR DDC MODE (UPPER BYTE)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH4_NCO_PHASE<15:8>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
CH4_NCO_PHASE <15:8>: Upper byte of CH4_NCO_PHASE<15:0>  
1111-1111= 359.995° when CH4_NCO_PHASE<15:0> = 0xFFFF  
• • •  
0000-0000= 0° when CH4_NCO_PHASE<15:0> = 0x0000 (Default)  
Note 1:  
See Note 1 - Note 3 in Register 5-46. CH4 is the 5th channel selected by CH_ORDER<23:0> bits.  
2020 Microchip Technology Inc.  
DS20006382A-page 110  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-56:  
ADDRESS 0X90 – CH5 NCO PHASE OFFSET IN CW OR DDC MODE (LOWER BYTE)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH5_NCO_PHASE<7:0>  
bit 7  
bit 0  
bit 0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
CH5_NCO_PHASE<7:0>: Lower byte of CH5_NCO_PHASE<15:0>  
1111-1111= 1.4° when CH5_NCO_PHASE<15:0> = 0x00FF  
• • •  
0000-0000= 0° when CH5_NCO_PHASE<15:0> = 0x0000 (Default)  
Note 1:  
See Note 1 - Note 3 in Register 5-46. CH5 is the 6th channel selected by CH_ORDER<23:0> bits.  
REGISTER 5-57:  
ADDRESS 0X91 – CH5 NCO PHASE OFFSET IN CW OR DDC MODE (UPPER BYTE)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH5_NCO_PHASE<15:8>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
CH5_NCO_PHASE <15:8>: Upper byte of CH5_NCO_PHASE<15:0>  
1111-1111= 359.995° when CH5_NCO_PHASE<15:0> = 0xFFFF  
• • •  
0000-0000= 0° when CH5_NCO_PHASE<15:0> = 0x0000 (Default)  
Note 1:  
See Note 1 - Note 3 in Register 5-46. CH5 is the 6th channel selected by CH_ORDER<23:0> bits.  
REGISTER 5-58:  
ADDRESS 0X92 – CH6 NCO PHASE OFFSET IN CW OR DDC MODE (LOWER BYTE)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH6_NCO_PHASE<7:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
CH6_NCO_PHASE<7:0>: Lower byte of CH6_NCO_PHASE<15:0>  
1111-1111= 1.4° when CH6_NCO_PHASE<15:0> = 0x00FF  
• • •  
0000-0000= 0° when CH6_NCO_PHASE<15:0> = 0x0000 (Default)  
Note 1:  
See Note 1 - Note 3 in Register 5-46. CH6 is the 7th channel selected by CH_ORDER<23:0> bits.  
DS20006382A-page 111  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-59:  
ADDRESS 0X93 – CH6 NCO PHASE OFFSET IN CW OR DDC MODE (UPPER BYTE)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH6_NCO_PHASE<15:8>  
bit 7  
bit 0  
bit 0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
CH6_NCO_PHASE <15:8>: Upper byte of CH6_NCO_PHASE<15:0>  
1111-1111= 359.995° when CH6_NCO_PHASE<15:0> = 0xFFFF  
• • •  
0000-0000= 0° when CH6_NCO_PHASE<15:0> = 0x0000 (Default)  
Note 1:  
See Note 1 - Note 3 in Register 5-46. CH6 is the 7th channel selected by CH_ORDER<23:0> bits.  
REGISTER 5-60:  
ADDRESS 0X94 – CH7 NCO PHASE OFFSET IN CW OR DDC MODE (LOWER BYTE)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH7_NCO_PHASE<7:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
CH7_NCO_PHASE<7:0>: Lower byte of CH7_NCO_PHASE<15:0>  
1111-1111= 1.4° when CH7_NCO_PHASE<15:0> = 0x00FF  
• • •  
0000-0000= 0° when CH7_NCO_PHASE<15:0> = 0x0000 (Default)  
Note 1:  
See Note 1 - Note 3 in Register 5-46. CH7 is the 8th channel selected by CH_ORDER<23:0> bits.  
REGISTER 5-61:  
ADDRESS 0X95 – CH7 NCO PHASE OFFSET IN CW OR DDC MODE (UPPER BYTE)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH7_NCO_PHASE<15:8>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
CH7_NCO_PHASE <15:8>: Upper byte of CH7_NCO_PHASE<15:0>  
1111-1111= 359.995° when CH7_NCO_PHASE<15:0> = 0xFFFF  
• • •  
0000-0000= 0° when CH7_NCO_PHASE<15:0> = 0x0000 (Default)  
Note 1: See Note 1 - Note 3 in Register 5-46. CH7 is the 8th channel selected by CH_ORDER<23:0> bits.  
2020 Microchip Technology Inc.  
DS20006382A-page 112  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-62:  
ADDRESS 0X96 – CH0 DIGITAL GAIN  
R/W-0  
R/W-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
CH0_DIG_GAIN<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1,2)  
bit 7-0  
CH0_DIG_GAIN<7:0>: Digital gain setting for channel 0  
1111-1111= -0.03125  
1111-1110= -0.0625  
1111-1101= -0.09375  
1111-1100= -0.125  
• • •  
1000-0011= -3.90625  
1000-0010= -3.9375  
1000-0001= -3.96875  
1000-0000= -4  
0111-1111= 3.96875 (MAX)  
0111-1110= 3.9375  
0111-1101= 3.90625  
0111-1100= 3.875  
• • •  
0011-1100= 1.875 (Default)  
• • •  
0000-0011= 0.09375  
0000-0010= 0.0625  
0000-0001= 0.03125  
0000-0000= 0.0  
st  
Note 1:  
2:  
CH0 is the 1 channel selected by CH_ORDER<23:0>.  
Max = 0x7F(3.96875), Min = 0x80 (-4), Step size = 0x01 (0.03125). Bits from 0x81-0xFF are two’s complementary of 0x00-  
0x80. Negative gain setting inverts output. See Addresses 0x7D - 0x7F (Registers 5-37 5-39) for channel selection.  
DS20006382A-page 113  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-63:  
ADDRESS 0X97 – CH1 DIGITAL GAIN  
R/W-0  
R/W-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
CH1_DIG_GAIN<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1,2)  
bit 7-0  
CH1_DIG_GAIN<7:0>: Digital gain setting for channel 1  
1111-1111= -0.03125  
1111-1110= -0.0625  
1111-1101= -0.09375  
1111-1100= -0.125  
• • •  
1000-0011= -3.90625  
1000-0010= -3.9375  
1000-0001= -3.96875  
1000-0000= -4  
0111-1111= 3.96875 (MAX)  
0111-1110= 3.9375  
0111-1101= 3.90625  
0111-1100= 3.875  
• • •  
0011-1100= 1.875 (Default)  
• • •  
0000-0011= 0.09375  
0000-0010= 0.0625  
0000-0001= 0.03125  
0000-0000= 0.0  
nd  
Note 1:  
2:  
CH1 is the 2 channel selected by CH_ORDER<23:0>.  
See Note 2 in Register 5-62.  
2020 Microchip Technology Inc.  
DS20006382A-page 114  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-64:  
ADDRESS 0X98 – CH2 DIGITAL GAIN  
R/W-0  
R/W-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
CH2_DIG_GAIN<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1,2)  
bit 7-0  
CH2_DIG_GAIN<7:0>: Digital gain setting for channel 2  
1111-1111= -0.03125  
1111-1110= -0.0625  
1111-1101= -0.09375  
1111-1100= -0.125  
• • •  
1000-0011= -3.90625  
1000-0010= -3.9375  
1000-0001= -3.96875  
1000-0000= -4  
0111-1111= 3.96875 (MAX)  
0111-1110= 3.9375  
0111-1101= 3.90625  
0111-1100= 3.875  
• • •  
0011-1100= 1.875 (Default)  
• • •  
0000-0011= 0.09375  
0000-0010= 0.0625  
0000-0001= 0.03125  
0000-0000= 0.0  
rd  
Note 1:  
2:  
CH2 is the 3 channel selected by CH_ORDER<23:0> bits.  
See Note 2 in Register 5-62.  
DS20006382A-page 115  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-65:  
ADDRESS 0X99 – CH3 DIGITAL GAIN  
R/W-0  
R/W-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
CH3_DIG_GAIN<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1,2)  
bit 7-0  
CH3_DIG_GAIN<7:0>: Digital gain setting for channel 3  
1111-1111= -0.03125  
1111-1110= -0.0625  
1111-1101= -0.09375  
1111-1100= -0.125  
• • •  
1000-0011= -3.90625  
1000-0010= -3.9375  
1000-0001= -3.96875  
1000-0000= -4  
0111-1111= 3.96875 (MAX)  
0111-1110= 3.9375  
0111-1101= 3.90625  
0111-1100= 3.875  
• • •  
0011-1100= 1.875 (Default)  
• • •  
0000-0011= 0.09375  
0000-0010= 0.0625  
0000-0001= 0.03125  
0000-0000= 0.0  
th  
Note 1: CH3 is the 4 channel selected by CH_ORDER<23:0> bits.  
2: See Note 2 in Register 5-62.  
2020 Microchip Technology Inc.  
DS20006382A-page 116  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-66:  
ADDRESS 0X9A – CH4 DIGITAL GAIN  
R/W-0  
R/W-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
CH4_DIG_GAIN<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1,2)  
bit 7-0  
CH4_DIG_GAIN<7:0>: Digital gain setting for channel 4  
1111-1111= -0.03125  
1111-1110= -0.0625  
1111-1101= -0.09375  
1111-1100= -0.125  
• • •  
1000-0011= -3.90625  
1000-0010= -3.9375  
1000-0001= -3.96875  
1000-0000= -4  
0111-1111= 3.96875 (MAX)  
0111-1110= 3.9375  
0111-1101= 3.90625  
0111-1100= 3.875  
• • •  
0011-1100= 1.875 (Default)  
• • •  
0000-0011= 0.09375  
0000-0010= 0.0625  
0000-0001= 0.03125  
0000-0000= 0.0  
th  
Note 1:  
2:  
CH4 is the 5 channel selected by CH_ORDER<23:0>.  
See Note 2 in Register 5-62.  
DS20006382A-page 117  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-67:  
ADDRESS 0X9B – CH5 DIGITAL GAIN  
R/W-0  
R/W-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
CH5_DIG_GAIN<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1,2)  
bit 7-0  
CH5_DIG_GAIN<7:0>: Digital gain setting for channel 5  
1111-1111= -0.03125  
1111-1110= -0.0625  
1111-1101= -0.09375  
1111-1100= -0.125  
• • •  
1000-0011= -3.90625  
1000-0010= -3.9375  
1000-0001= -3.96875  
1000-0000= -4  
0111-1111= 3.96875 (MAX)  
0111-1110= 3.9375  
0111-1101= 3.90625  
0111-1100= 3.875  
• • •  
0011-1100= 1.875 (Default)  
• • •  
0000-0011= 0.09375  
0000-0010= 0.0625  
0000-0001= 0.03125  
0000-0000= 0.0  
th  
Note 1:  
2:  
CH5 is the 6 channel selected by CH_ORDER<23:0>.  
See Note 2 in Register 5-62.  
2020 Microchip Technology Inc.  
DS20006382A-page 118  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-68:  
ADDRESS 0X9C – CH6 DIGITAL GAIN  
R/W-0  
R/W-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
CH6_DIG_GAIN<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1,2)  
bit 7-0  
CH6_DIG_GAIN<7:0>: Digital gain setting for channel 6  
1111-1111= -0.03125  
1111-1110= -0.0625  
1111-1101= -0.09375  
1111-1100= -0.125  
• • •  
1000-0011= -3.90625  
1000-0010= -3.9375  
1000-0001= -3.96875  
1000-0000= -4  
0111-1111= 3.96875 (MAX)  
0111-1110= 3.9375  
0111-1101= 3.90625  
0111-1100= 3.875  
• • •  
0011-1100= 1.875 (Default)  
• • •  
0000-0011= 0.09375  
0000-0010= 0.0625  
0000-0001= 0.03125  
0000-0000= 0.0  
th  
Note 1:  
2:  
CH6 is the 7 channel selected by CH_ORDER<23:0>.  
See Note 2 in Register 5-62.  
DS20006382A-page 119  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-69:  
ADDRESS 0X9D – CH7 DIGITAL GAIN  
R/W-0  
R/W-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
CH7_DIG_GAIN<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1,2)  
bit 7-0  
CH7_DIG_GAIN<7:0>: Digital gain setting for channel 7  
1111-1111= -0.03125  
1111-1110= -0.0625  
1111-1101= -0.09375  
1111-1100= -0.125  
• • •  
1000-0011= -3.90625  
1000-0010= -3.9375  
1000-0001= -3.96875  
1000-0000= -4  
0111-1111= 3.96875 (MAX)  
0111-1110= 3.9375  
0111-1101= 3.90625  
0111-1100= 3.875  
• • •  
0011-1100= 1.875 (Default)  
• • •  
0000-0011= 0.09375  
0000-0010= 0.0625  
0000-0001= 0.03125  
0000-0000= 0.0  
th  
Note 1:  
2:  
CH7 is the 8 channel selected by CH_ORDER<23:0>.  
See Note 2 in Register 5-62.  
2020 Microchip Technology Inc.  
DS20006382A-page 120  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-70:  
ADDRESS 0X9E – CH0 DIGITAL OFFSET  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH0_DIG_OFFSET<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
CH0_DIG_OFFSET <7:0>: Digital offset setting bits for channel 0  
1111-1111= 0xFF x DIG_OFFSET_WEIGHT<1:0>  
• • •  
0000-0001= 0x01 x DIG_OFFSET_WEIGHT<1:0>  
0000-0000= 0 (Default)  
Note 1:  
See Table 4-18 for the corresponding channel. Offset value is two’s complement. This value is multiplied by DIG_OFFSET_-  
WEIGHT<1:0> in Address 0xA7 (Register 5-78).  
REGISTER 5-71:  
ADDRESS 0X9F – CH1 DIGITAL OFFSET  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH1_DIG_OFFSET<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
CH1_DIG_OFFSET <7:0>: Digital offset setting bits for channel 1  
1111-1111= 0xFF x DIG_OFFSET_WEIGHT<1:0>  
• • •  
0000-0001= 0x01 x DIG_OFFSET_WEIGHT<1:0>  
0000-0000= 0 (Default)  
Note 1:  
See Note 1 in Register 5-70.  
REGISTER 5-72:  
ADDRESS 0XA0 – CH2 DIGITAL OFFSET  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH2_DIG_OFFSET<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
CH2_DIG_OFFSET <7:0>: Digital offset setting bits for channel 2  
1111-1111= 0xFF x DIG_OFFSET_WEIGHT<1:0>  
• • •  
0000-0001= 0x01 x DIG_OFFSET_WEIGHT<1:0>  
0000-0000= 0 (Default)  
Note 1:  
See Note 1 in Register 5-70.  
DS20006382A-page 121  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-73:  
ADDRESS 0XA1 – CH3 DIGITAL OFFSET  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH3_DIG_OFFSET<7:0>  
bit 7  
bit 0  
bit 0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
CH3_DIG_OFFSET <7:0>: Digital offset setting bits for channel 3  
1111-1111= 0xFF x DIG_OFFSET_WEIGHT<1:0>  
• • •  
0000-0001= 0x01 x DIG_OFFSET_WEIGHT<1:0>  
0000-0000= 0 (Default)  
Note 1:  
See Note 1 in Register 5-70.  
REGISTER 5-74:  
ADDRESS 0XA2 – CH4 DIGITAL OFFSET  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH4_DIG_OFFSET<7:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
CH4_DIG_OFFSET <7:0>: Digital offset setting bits for channel 4  
1111-1111= 0xFF x DIG_OFFSET_WEIGHT<1:0>  
• • •  
0000-0001= 0x01 x DIG_OFFSET_WEIGHT<1:0>  
0000-0000= 0 (Default)  
Note 1: See Note 1 in Register 5-70.  
REGISTER 5-75:  
ADDRESS 0XA3 – CH5 DIGITAL OFFSET  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH5_DIG_OFFSET<7:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
CH5_DIG_OFFSET <7:0>: Digital offset setting bits for channel 5  
1111-1111= 0x01 x DIG_OFFSET_WEIGHT<1:0>  
• • •  
0000-0001= 0xFF x DIG_OFFSET_WEIGHT<1:0>  
0000-0000= 0 (Default)  
Note 1: See Note 1 in Register 5-70.  
2020 Microchip Technology Inc.  
DS20006382A-page 122  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-76:  
ADDRESS 0XA4 – CH6 DIGITAL OFFSET  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-1  
CH6_DIG_OFFSET<7:0>  
bit 7  
bit 0  
bit 0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
CH6_DIG_OFFSET <7:0>: Digital offset setting bits for channel 6  
1111-1111= 0xFF x DIG_OFFSET_WEIGHT<1:0>  
• • •  
0000-0001= 0x01 x DIG_OFFSET_WEIGHT<1:0>  
0000-0000= 0 (Default)  
Note 1:  
See Note 1 in Register 5-70.  
REGISTER 5-77:  
ADDRESS 0XA5 – CH7 DIGITAL OFFSET  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH7_DIG_OFFSET<7:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
CH7_DIG_OFFSET <7:0>: Digital offset setting bits for channel 7  
1111-1111= 0xFF x DIG_OFFSET_WEIGHT<1:0>  
• • •  
0000-0001= 0x01 x DIG_OFFSET_WEIGHT<1:0>  
0000-0000= 0 (Default)  
Note 1:  
See Note 1 in Register 5-70.  
REGISTER 5-78:  
ADDRESS 0XA7 – DIGITAL OFFSET WEIGHT CONTROL  
R/W-0  
R/W-1  
FCB<5:3>  
R/W-0  
R/W-0  
R/W-0  
R/W-1  
R/W-1  
DIG_OFFSET_WEIGHT<1:0>  
FCB<2:0>  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
-n = Value at POR  
x = Bit is unknown  
bit 7-5  
bit 4-3  
FCB<5:3>: Factory-Controlled Bits. This is not for the user. Do not change default settings.  
(1)  
DIG_OFFSET_WEIGHT<1:0>: Control the weight of the digital offset settings  
11= 2 LSb x Digital Gain  
10= LSb x Digital Gain  
01= LSb/2 x Digital Gain  
00= LSb/4 x Digital Gain, (Default)  
bit 2-0  
FCB<2:0>: Factory-Controlled Bits. This is not for the user. Do not change default settings.  
Note 1:  
This bit setting is used for the digital offset setting registers in Addresses 0x9E - 0xA7 (Registers 5-70 5-78).  
DS20006382A-page 123  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-79:  
ADDRESS 0XC0 – CALIBRATION STATUS INDICATION  
R-0  
ADC_CAL_STAT  
bit 7  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
FCB<6:0>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
ADC_CAL_STAT: Power-up auto-calibration status indication flag bit  
1= Device power-up calibration is completed  
0= Device power-up calibration is not completed  
bit 6-0  
FCB<6:0>: Factory-Controlled Bits. These bits are read only, and have no meaning for the user.  
REGISTER 5-80:  
ADDRESS 0XD1 – PLL CALIBRATION STATUS AND PLL DRIFT STATUS INDICATION  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
FCB<0>  
bit 0  
FCB<4:3>  
PLL_CAL_STAT  
FCB<2:1>  
PLL_VCOL_STAT  
PLL_VCOH_STAT  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7-6  
bit 5  
FCB<4:3>: Factory-controlled bits. These bits are read only, and have no meaning for the user.  
(1)  
PLL_CAL_STAT: PLL auto-calibration status indication flag bit  
1=  
0=  
Complete: PLL auto-calibration is completed  
Incomplete: PLL auto-calibration is not completed  
bit 4-3  
bit 2  
FCB<2:1>: Factory-controlled bits. These bits are read only, and have no meaning for the user.  
PLL_VCOL_STAT: PLL drift status indication bit  
1= PLL drifts out of lock with low VCO frequency  
0= PLL operates as normal  
bit 1  
PLL_VCOH_STAT: PLL drift status indication bit  
1= PLL drifts out of lock with high VCO frequency  
0= PLL operates as normal  
bit 0  
FCB<0>: Factory-Controlled Bit. This bit is readable, but has no meaning for the user.  
Note 1: See PLL_CAL_TRIG bit setting in Address 0x6B (Register 5-27).  
2020 Microchip Technology Inc.  
DS20006382A-page 124  
MCP37D31-80 AND MCP37D21-80  
REGISTER 5-81:  
ADDRESS 0X15C – CHIP ID (LOWER BYTE)  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
CHIP_ID<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
CHIP_ID<7:0>: Device identification number. Lower byte of the CHIP ID<15:0>  
Note 1:  
Read-only register. Preprogrammed at the factory for internal use.  
Example: MCP37D31-80: ‘0000 1010 0110 0000’  
MCP37D21-80: ‘0000 1010 0100 0000’  
MCP37D11-80: ‘0000 1010 0010 0000’  
REGISTER 5-82:  
ADDRESS 0X15D – CHIP ID (UPPER BYTE)  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
CHIP_ID<15:8>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
(1)  
bit 7-0  
CHIP_ID<15:8>: Device identification number. Lower byte of the CHIP ID<15:0>  
Note 1:  
See Note 1 in Register 5-81.  
DS20006382A-page 125  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
Graphical User Interface (GUI) software for ADC  
configuration and evaluation. Figure 6-1 and Figure 6-  
2 show this evaluation tool. This evaluation platform  
allows users to quickly evaluate the ADC’s  
performance for their specific application requirements.  
6.0  
DEVELOPMENT SUPPORT  
Microchip offers a high-speed ADC evaluation platform  
which can be used to evaluate Microchip’s high-speed  
ADC products. The platform consists of an MCP37D31/  
21-80 evaluation board (EV55U36A), an FPGA-based  
data capture card board (ADM00506), and PC-based  
More  
information  
is  
available  
at  
http://  
www.microchip.com.  
80 MHz Clock Signal Source  
ADM00506  
(High-Speed Pipelined ADC Data Capture Card)  
EV55U36A  
(MCP37D31/21-80 EV Board)  
FIGURE 6-1:  
MCP37D31-80 Evaluation Kit.  
FIGURE 6-2:  
PC-Based Graphical User Interface Software.  
2020 Microchip Technology Inc.  
DS20006382A-page 126  
MCP37D31-80 AND MCP37D21-80  
NOTES:  
DS20006382A-page 127  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
Pipeline Delay (LATENCY)  
7.0  
TERMINOLOGY  
LATENCY is the number of clock cycles between the  
initiation of conversion and when that data is presented  
to the output driver stage. Data for any given sample is  
available after the pipeline delay plus the output delay  
after that sample is taken. New data is available at  
every clock cycle, but the data lags the conversion by  
the pipeline delay plus the output delay. Latency is  
increased if digital signal post-processing is used.  
Analog Input Bandwidth (Full-Power  
Bandwidth)  
The analog input frequency at which the spectral power  
of the fundamental frequency (as determined by FFT  
analysis) is reduced by 3 dB.  
Aperture Delay or Sampling Delay  
This is the time delay between the rising edge of the  
input sampling clock and the actual time at which the  
sampling occurs.  
Clock Pulse Width and Duty Cycle  
The clock duty cycle is the ratio of the time the clock  
signal remains at a logic high (clock pulse width) to one  
clock period. Duty cycle is typically expressed as a  
percentage. A perfect differential sine-wave clock  
results in a 50% duty cycle.  
Aperture Uncertainty  
The sample-to-sample variation in aperture delay.  
Aperture Delay Jitter  
Differential Nonlinearity  
(DNL, No Missing Codes)  
The variation in the aperture delay time from  
conversion to conversion. This random variation will  
result in noise when sampling an AC input. The  
signal-to-noise ratio due to the jitter alone will be:  
An ideal ADC exhibits code transitions that are exactly  
1 LSb apart. DNL is the deviation from this ideal value.  
No missing codes to 16-bit resolution indicates that all  
65,536 codes must be present over all the operating  
conditions.  
EQUATION 7-1:  
SNR  
= 20log2  f t  
IN JITTER  
Integral Nonlinearity (INL)  
JITTER  
INL is the maximum deviation of each individual code  
from an ideal straight line drawn from negative full  
scale through positive full scale.  
Calibration Algorithms  
This device utilizes two patented analog and digital  
calibration algorithms, Harmonic Distortion Correction  
(HDC) and DAC Noise Cancellation (DNC), to improve  
the ADC performance. The algorithms compensate  
various sources of linear impairments such as  
capacitance mismatch, charge injection error and finite  
gain of operational amplifiers. These algorithms  
execute in both power-up sequence (foreground) and  
background mode:  
Signal-to-Noise Ratio (SNR)  
SNR is the ratio of the power of the fundamental (PS) to  
the noise floor power (PN), below the Nyquist frequency  
and excluding the power at DC and the first nine  
harmonics.  
EQUATION 7-2:  
P
• Power-Up Calibration: The calibration is  
conducted within the first 227 clock cycles after  
power-up. The user needs to wait this Power-Up  
Calibration period after the device is powered-up  
for an accurate ADC performance.  
S
SNR = 10log -------  
P
N
SNR is either given in units of dBc (dB to carrier) when  
the absolute power of the fundamental is used as the  
reference, or dBFS (dB to full-scale) when the power of  
the fundamental is extrapolated to the converter  
full-scale range.  
• Background Calibration: This calibration is  
conducted in the background while the ADC  
performs conversions. The update rate is about  
every 230 clock cycles.  
Channel Crosstalk  
This is a measure of the internal coupling of a signal  
from an adjacent channel into the channel of interest in  
the multi-channel mode. It is measured by applying a  
full-scale input signal in the adjacent channel.  
Crosstalk is the ratio of the power of the coupling signal  
(as measured at the output of the channel of interest)  
to the power of the signal applied at the adjacent  
channel input. It is typically expressed in dBc.  
2020 Microchip Technology Inc.  
DS20006382A-page 128  
                                                                                                                                   
-
SFDR is the ratio of the power of the fundamental to the  
highest other spectral component (either spur or  
harmonic). SFDR is typically given in units of dBc (dB  
to carrier) or dBFS.  
MCP37D31-80 AND MCP37D21-80  
Signal-to-Noise and Distortion (SINAD)  
Maximum Conversion Rate  
SINAD is the ratio of the power of the fundamental (PS)  
to the power of all the other spectral components  
including noise (PN) and distortion (PD) below the  
Nyquist frequency, but excluding DC:  
The maximum clock rate at which parametric testing is  
performed.  
Minimum Conversion Rate  
The minimum clock rate at which parametric testing is  
performed.  
EQUATION 7-3:  
P
S
SINAD = 10log ---------------------  
P
+ P  
Spurious-Free Dynamic Range (SFDR)  
D
N
SNR  
---------  
10  
THD  
------------  
10  
= 10log 10  
10  
SINAD is either given in units of dBc (dB to carrier)  
when the absolute power of the fundamental is used as  
the reference, or dBFS (dB to full-scale) when the  
power of the fundamental is extrapolated to the  
converter full-scale range.  
Total Harmonic Distortion (THD)  
THD is the ratio of the power of the fundamental (PS) to  
the summed power of the first 13 harmonics (PD).  
Effective Number of Bits (ENOB)  
EQUATION 7-5:  
P
The effective number of bits for a sine wave input at a  
given input frequency can be calculated directly from its  
measured SINAD using the following formula:  
S
THD = 10log -------  
P
D
THD is typically given in units of dBc (dB to carrier).  
THD is also shown by:  
EQUATION 7-4:  
SINAD 1.76  
ENOB = ----------------------------------  
6.02  
EQUATION 7-6:  
2
2
2
3
2
4
2
n
V + V + V + + V  
Gain Error  
THD = 20log-----------------------------------------------------------------  
2
V
Gain error is the deviation of the ADC’s actual input  
full-scale range from its ideal value. The gain error is  
given as a percentage of the ideal input full-scale  
range.  
1
Where:  
V1 = RMS amplitude of the  
fundamental frequency  
Gain error is usually expressed in LSb or as a  
percentage of full-scale range (%FSR).  
V1 through Vn = Amplitudes of the second  
through nth harmonics  
Gain-Error Drift  
Two-Tone Intermodulation Distortion  
(Two-Tone IMD, IMD3)  
Gain-error drift is the variation in gain-error due to a  
change in ambient temperature, typically expressed in  
ppm/°C.  
Two-tone IMD is the ratio of the power of the  
fundamental (at frequencies fIN1 and fIN2) to the power  
of the worst spectral component at either frequency  
2fIN1 – fIN2 or 2fIN2 – fIN1. Two-tone IMD is a function of  
the input amplitudes and frequencies (fIN1 and fIN2). It  
is either given in units of dBc (dB to carrier) when the  
absolute power of the fundamental is used as the  
reference, or dBFS (dB to full-scale) when the power of  
the fundamental is extrapolated to the ADC full-scale  
range.  
Offset Error  
The major carry transition should occur for an analog  
value of 50% LSb below AIN+ = AIN. Offset error is  
defined as the deviation of the actual transition from  
that point.  
Temperature Drift  
The temperature drift for offset error and gain error  
specifies the maximum change from the initial (+25°C)  
value to the value across the TMIN to TMAX range.  
DS20006382A-page 129  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
Common-Mode Rejection Ratio (CMRR)  
Common-mode rejection is the ability of a device to  
reject a signal that is common to both sides of a  
differential input pair. The Common-mode signal can  
be an AC or DC signal or a combination of the two.  
CMRR is measured using the ratio of the differential  
signal gain to the Common-mode signal gain and  
expressed in dB with the following equation:  
EQUATION 7-7:  
A
DIFF  
CMRR = 20log ------------------  
A
CM  
Where:  
ADIFF = Output Code/Differential Voltage  
ADIFF = Output Code/Common-mode Voltage  
2020 Microchip Technology Inc.  
DS20006382A-page 130  
MCP37D31-80 AND MCP37D21-80  
NOTES:  
DS20006382A-page 131  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
8.0  
8.1  
PACKAGING INFORMATION  
Package Marking Information  
128-Ball TFBGA  
Examples:  
Microchip  
MCP37D21  
80/TE  
1
3
e
YYWWNNN  
Microchip  
MCP37D31  
80/TE  
^1  
e
3
YYWWNNN  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC® designator for Matte Tin (Sn)  
1
3
e
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
1
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2020 Microchip Technology Inc.  
DS20006382A-page 132  
MCP37D31-80 AND MCP37D21-80  
121-Ball Thin Fine Pitch Ball Grid Array (TE) - 8x8 mm Body [TFBGA]  
System In Package  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
A
B
NOTE 1  
E
(DATUM B)  
(DATUM A)  
2X  
0.15 C  
2X  
0.15 C  
TOP VIEW  
A
0.10 C  
C
SEATING  
PLANE  
A2  
A1  
0.10 C  
SIDE VIEW  
D1  
eD  
L
K
J
H
G
F
eE  
E1  
E
D
C
B
A
NOTE 1  
1
2
3
4
5
6
7
8
9 10 11  
DETAIL A  
A1 BALL PAD CORNER  
BOTTOM VIEW  
Microchip Technology Drawing C04-212-TE Rev C Sheet 1 of 2  
DS20006382A-page 133  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
121-Ball Thin Fine Pitch Ball Grid Array (TE) - 8x8 mm Body [TFBGA]  
System In Package  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
121X Øb  
0.15  
0.08  
C A B  
C
DETAIL A  
Units  
Dimension Limits  
MILLIMETERS  
NOM  
MIN  
MAX  
Number of Terminals  
Pitch  
Pitch  
Overall Height  
Standoff  
Cap Thickness  
Overall Width  
Overall Pitch  
Overall Length  
Overall Pitch  
Terminal Diameter  
N
eE  
eD  
A
A1  
A2  
E
E1  
D
D1  
b
121  
0.65 BSC  
0.65 BSC  
-
0.32  
0.45  
8.00 BSC  
6.50 BSC  
8.00 BSC  
6.50 BSC  
0.40  
-
1.08  
-
0.50  
0.21  
0.40  
0.35  
0.45  
Notes:  
1. Terminal A1 visual index feature may vary, but must be located within the hatched area.  
2. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-212-TE Rev C Sheet 2 of 2  
2020 Microchip Technology Inc.  
DS20006382A-page 134  
MCP37D31-80 AND MCP37D21-80  
121-Ball Thin Fine Pitch Ball Grid Array (TE) - 8x8 mm Body [TFBGA]  
System In Package  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
C2  
121X ØB  
E
C1  
SILK SCREEN  
RECOMMENDED LAND PATTERN  
Units  
Dimension Limits  
MILLIMETERS  
NOM  
MIN  
MAX  
Contact Pitch  
Contact Pad Spacing  
Contact Pad Spacing  
E
C1  
C2  
0.65 BSC  
6.50  
6.50  
Contact Pad Diameter (X121)  
B
0.35  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing No. C04-2212-TE Rev C  
DS20006382A-page 135  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
APPENDIX A: REVISION HISTORY  
Revision A (June 2020)  
• Original release of this document.  
2020 Microchip Technology Inc.  
DS20006382A-page 136  
MCP37D31-80 AND MCP37D21-80  
NOTES:  
DS20006382A-page 137  
2020 Microchip Technology Inc.  
MCP37D31-80 AND MCP37D21-80  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
(1)  
Examples:  
-XXX  
X
/XX  
PART NO.  
[X]  
a) MCP37D31-80E/TE:  
121 LD TFBGA,  
Tube or Tray  
Extended temperature,  
80 Msps, 16-bit  
Sample Temperature Package  
Rate  
Device Tape and Reel  
Option  
Range  
b) MCP37D31T-80E/TE:  
c) MCP37D21-80E/TE:  
d) MCP37D21T-80E/TE:  
121 LD TFBGA,  
Tape and Reel,  
Extended temperature,  
80 Msps, 16-bit  
Device:  
MCP37D31-80: 16-Bit, 80 Msps High-Precision Pipelined ADC  
with Configurable 8-Channel Input MUX, and  
with built-in Digital Signal Post Processing  
features that include Digital Down-Converter  
(DDC), Decimation Filter, Phase/Gain/Offset  
Adjustment per Channel, and CW  
121 LD TFBGA,  
Tube or Tray  
Extended temperature,  
80 Msps, 14-bit  
Beamforming.  
121 LD TFBGA,  
Tape and Reel,  
Extended temperature,  
80 Msps, 14-bit  
MCP37D21-80: 14-Bit, 80 Msps High-Precision Pipelined ADC  
with Configurable 8-Channel Input MUX, and  
with built-in Digital Signal Post Processing  
features that include Digital Down-Converter  
(DDC), Decimation Filter, Phase/Gain/Offset  
Adjustment per Channel, and CW  
Beamforming.  
Tape and  
Reel Option:  
Blank  
T
=
=
Standard packaging (tube or tray)  
Tape and Reel(1)  
Sample Rate: 80  
= 80 Msps  
Temperature  
Range:  
E
= -40C to +125C (Extended)  
Package:  
TE  
=
Ball Plastic Thin Profile Fine Pitch Ball Grid Array -  
8x8x1.08 mm Body (TFBGA), 121-Lead  
Note 1:  
Tape and Reel identifier appears only in the catalog part number  
description. This identifier is used for ordering purposes and is not  
printed on the device package. Check with your Microchip Sales  
Office for package availability with the Tape and Reel option.  
2020 Microchip Technology Inc.  
DS20006382A-page 138  
MCP37D31-80 AND MCP37D21-80  
NOTES:  
DS20006382A-page 139  
2020 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, Adaptec,  
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT,  
chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex,  
flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck,  
LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi,  
Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer,  
PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire,  
Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST,  
SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,  
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA  
are registered trademarks of Microchip Technology Incorporated in  
the U.S.A. and other countries.  
APT, ClockWorks, The Embedded Control Solutions Company,  
EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load,  
IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision  
Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire,  
SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,  
TimePictra, TimeProvider, Vite, WinPath, and ZL are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard,  
CryptoAuthentication, CryptoAutomotive, CryptoCompanion,  
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average  
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial  
Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker,  
KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,  
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,  
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,  
PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple  
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,  
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,  
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and  
ZENA are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
The Adaptec logo, Frequency on Demand, Silicon Storage  
Technology, and Symmcom are registered trademarks of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology Germany  
II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in  
other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2020, Microchip Technology Incorporated, All Rights Reserved.  
ISBN: 978-1-5224-6323-8  
For information regarding Microchip’s Quality Management Systems,  
please visit www.microchip.com/quality.  
2020 Microchip Technology Inc.  
DS20006382A-page 140  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Australia - Sydney  
Tel: 61-2-9868-6733  
India - Bangalore  
Tel: 91-80-3090-4444  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
China - Beijing  
Tel: 86-10-8569-7000  
India - New Delhi  
Tel: 91-11-4160-8631  
Denmark - Copenhagen  
Tel: 45-4485-5910  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8665-5511  
India - Pune  
Tel: 91-20-4121-0141  
Finland - Espoo  
Tel: 358-9-4520-820  
China - Chongqing  
Tel: 86-23-8980-9588  
Japan - Osaka  
Tel: 81-6-6152-7160  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
China - Dongguan  
Tel: 86-769-8702-9880  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Guangzhou  
Tel: 86-20-8755-8029  
Korea - Daegu  
Tel: 82-53-744-4301  
Germany - Garching  
Tel: 49-8931-9700  
China - Hangzhou  
Tel: 86-571-8792-8115  
Korea - Seoul  
Tel: 82-2-554-7200  
Germany - Haan  
Tel: 49-2129-3766400  
Austin, TX  
Tel: 512-257-3370  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Malaysia - Kuala Lumpur  
Tel: 60-3-7651-7906  
Germany - Heilbronn  
Tel: 49-7131-72400  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
China - Nanjing  
Tel: 86-25-8473-2460  
Malaysia - Penang  
Tel: 60-4-227-8870  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Qingdao  
Philippines - Manila  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-532-8502-7355  
Tel: 63-2-634-9065  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shanghai  
Tel: 86-21-3326-8000  
Singapore  
Tel: 65-6334-8870  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Shenyang  
Tel: 86-24-2334-2829  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Shenzhen  
Tel: 86-755-8864-2200  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Suzhou  
Tel: 86-186-6233-1526  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Wuhan  
Tel: 86-27-5980-5300  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Italy - Padova  
Tel: 39-049-7625286  
Houston, TX  
Tel: 281-894-5983  
China - Xian  
Tel: 86-29-8833-7252  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
China - Xiamen  
Tel: 86-592-2388138  
Norway - Trondheim  
Tel: 47-7288-4388  
China - Zhuhai  
Tel: 86-756-3210040  
Poland - Warsaw  
Tel: 48-22-3325737  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
DS20006382A-page 141  
2020 Microchip Technology Inc.  
02/28/20  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY