MCP42100 [MICROCHIP]

Single/Dual Digital Potentiometer with SPI⑩ Interface; 单/双通道数字电位SPI⑩接口
MCP42100
型号: MCP42100
厂家: MICROCHIP    MICROCHIP
描述:

Single/Dual Digital Potentiometer with SPI⑩ Interface
单/双通道数字电位SPI⑩接口

文件: 总33页 (文件大小:682K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M
MCP41XXX/42XXX  
Single/Dual Digital Potentiometer with SPIInterface  
Features  
Description  
• 256 taps for each potentiometer  
The MCP41XXX and MCP42XXX devices are 256-  
position, digital potentiometers available in 10 k,  
50 kand 100 kresistance versions. The  
MCP41XXX is a single-channel device and is offered in  
an 8-pin PDIP or SOIC package. The MCP42XXX con-  
tains two independent channels in a 14-pin PDIP, SOIC  
or TSSOP package. The wiper position of the  
MCP41XXX/42XXX varies linearly and is controlled via  
an industry-standard SPI interface. The devices con-  
sume <1 µA during static operation. A software shut-  
down feature is provided that disconnects the “A”  
terminal from the resistor stack and simultaneously con-  
nects the wiper to the “B” terminal. In addition, the dual  
MCP42XXX has a SHDN pin that performs the same  
function in hardware. During shutdown mode, the con-  
tents of the wiper register can be changed and the  
potentiometer returns from shutdown to the new value.  
The wiper is reset to the mid-scale position (80h) upon  
power-up. The RS (reset) pin implements a hardware  
reset and also returns the wiper to mid-scale. The  
MCP42XXX SPI interface includes both the SI and SO  
pins, allowing daisy-chaining of multiple devices. Chan-  
nel-to-channel resistance matching on the MCP42XXX  
varies by less than 1%. These devices operate from a  
single 2.7 - 5.5V supply and are specified over the  
extended and industrial temperature ranges.  
• Potentiometer values for 10 k, 50 kand  
100 kΩ  
• Single and dual versions  
• SPI™ serial interface (mode 0,0 and 1,1)  
±1 LSB max INL & DNL  
• Low power CMOS technology  
• 1 µA maximum supply current in static operation  
• Multiple devices can be daisy-chained together  
(MCP42XXX only)  
• Shutdown feature open circuits of all resistors for  
maximum power savings  
• Hardware shutdown pin available on MCP42XXX  
only  
• Single supply operation (2.7V - 5.5V)  
• Industrial temperature range: -40°C to +85°C  
• Extended temperature range: -40°C to +125°C  
Block Diagram  
SHDN  
RS  
VDD  
VSS  
PB0  
Resistor  
Wiper  
Control  
Logic  
Array 0  
Register  
Package Types  
PDIP/SOIC  
PA0  
PW0  
PB1  
PA1  
PW1  
CS  
SI  
CS  
SCK  
SI  
1
2
3
4
VDD  
8
7
6
5
Wiper Resistor  
Register  
16-Bit  
Shift  
Array 1*  
PB0  
PW0  
PA0  
Register  
SCK  
VSS  
S0  
*Potentiometer P1 is only available on the dual  
PDIP/SOIC/TSSOP  
MCP42XXX version.  
14  
1
VDD  
CS  
13  
12  
11  
10  
9
2
3
4
5
6
7
SCK  
SI  
VSS  
PB1  
PW1  
PA1  
SO  
SHDN  
RS  
PB0  
PW0  
PA0  
8
2003 Microchip Technology Inc.  
DS11195C-page 1  
MCP41XXX/42XXX  
1.0  
ELECTRICAL CHARACTERISTICS  
DC CHARACTERISTICS: 10 kVERSION  
Electrical Characteristics: Unless otherwise indicated, V = +2.7V to 5.5V, T = -40°C to +85°C (TSSOP devices are only specified at +25°C and  
DD  
A
+85°C). Typical specifications represent values for V = 5V, V = 0V, V = 0V, T = +25°C.  
DD  
SS  
B
A
Parameters  
Rheostat Mode  
Nominal Resistance  
Rheostat Differential Non Linearity  
Rheostat Integral Non Linearity  
Rheostat Tempco  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
T = +25°C (Note 1)  
A
Note 2  
Note 2  
R
8
10  
±1/4  
±1/4  
800  
52  
73  
0.2  
12  
+1  
+1  
100  
125  
+1  
1
kΩ  
LSB  
LSB  
ppm/°C  
R-DNL  
R-INL  
-1  
-1  
-1  
R /T  
AB  
Wiper Resistance  
R
R
V
V
= 5.5V, I = 1 mA, code 00h  
W
= 2.7V, I = 1 mA, code 00h  
W
W
W
DD  
DD  
Wiper Current  
I
mA  
%
W
Nominal Resistance Match  
Potentiometer Divider  
Resolution  
R/R  
MCP42010 only, P0 to P1; T = +25°C  
A
N
N
DNL  
INL  
8
8
±1/4  
±1/4  
1
-0.7  
-0.7  
+0.7  
+0.7  
+1  
+1  
0
0
+2  
+2  
Bits  
Bits  
LSB  
LSB  
Monotonicity  
Differential Non-Linearity  
Integral Non-Linearity  
Voltage Divider Tempco  
Full Scale Error  
-1  
-1  
-2  
-2  
0
Note 3  
Note 3  
V /T  
ppm/°C Code 80h  
W
V
V
V
V
LSB  
LSB  
LSB  
LSB  
Code FFh, V = 5V, see Figure 2-25  
DD  
Code FFh, V = 3V, see Figure 2-25  
DD  
Code 00h, V = 5V, see Figure 2-25  
DD  
Code 00h, V = 3V, see Figure 2-25  
DD  
WFSE  
WFSE  
WZSE  
WZSE  
Zero Scale Error  
0
Resistor Terminals  
Voltage Range  
Capacitance (C or C )  
Capacitance  
V
0
15  
5.6  
V
Note 4  
A,B,W  
DD  
pF  
pF  
f = 1 MHz, Code = 80h, see Figure 2-30  
f = 1 MHz, Code = 80h, see Figure 2-30  
A
B
CW  
Dynamic Characteristics (All dynamic characteristics use V = 5V)  
DD  
Bandwidth -3dB  
BW  
1
MHz  
µS  
V = 0V, Measured at Code 80h,  
B
Output Load = 30 PF  
= V ,V = 0V, ±1% Error Band, Transition  
Settling Time  
t
2
V
A
S
DD  
B
from Code 00h to Code 80h, Output Load = 30 pF  
= Open, Code 80h, f =1 kHz  
Resistor Noise Voltage  
Crosstalk  
e
9
-95  
nV/Hz  
dB  
V
A
NWB  
C
V = V , V = 0V (Note 5)  
A DD B  
T
Digital Inputs/Outputs (CS, SCK, SI, SO) See Figure 2-12 for RS and SHDN pin operation  
Schmitt Trigger High-Level Input Voltage  
Schmitt Trigger Low-Level Input Voltage  
Hysteresis of Schmitt Trigger Inputs  
Low-Level Output Voltage  
V
V
0.7V  
0.05V  
0.3V  
0.40  
V
V
IH  
DD  
IL  
DD  
V
HYS  
DD  
V
V
V
I
I
= 2.1 mA, V = 5V  
DD  
= -400 µA, V = 5V  
OH DD  
OL  
OL  
High-Level Output Voltage  
V
V
- 0.5  
OH  
DD  
Input Leakage Current  
Pin Capacitance (All inputs/outputs)  
Power Requirements  
I
-1  
10  
+1  
µA  
pF  
CS = V , V = V or V , includes V SHDN=0  
DD IN SS DD A  
LI  
C
, C  
V
= 5.0V, T = +25°C, f = 1 MHz  
A c  
IN  
OUT  
DD  
Operating Voltage Range  
Supply Current, Active  
V
2.7  
340  
5.5  
500  
V
µA  
DD  
I
V
= 5.5V, CS = V , f  
= 10 MHz,  
DDA  
DD  
SS SCK  
SO = Open, Code FFh (Note 6)  
Supply Current, Static  
Power Supply Sensitivity  
I
0.01  
0.0015  
0.0015  
1
µA  
%/%  
%/%  
CS, SHDN, RS = V = 5.5V, SO = Open (Note 6)  
DDS  
DD  
PSS  
PSS  
0.0035  
0.0035  
V
V
= 4.5V - 5.5V, V = 4.5V, Code 80h  
A
DD  
DD  
= 2.7V - 3.3V, V = 2.7V, Code 80h  
A
Note 1:  
2:  
V
= V , no connection on wiper.  
AB DD  
Rheostat position non-linearity R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum  
resistance wiper positions. R-DNL measures the relative step change from the ideal between successive tap positions. I = 50 µA for  
W
V
= 3V and I = 400 µA for V = 5V for 10 kversion. See Figure 2-26 for test circuit.  
W DD  
DD  
3:  
4:  
INL and DNL are measured at V with the device configured in the voltage divider or potentiometer mode. V = V and V = 0V. DNL  
W A DD B  
specification limits of ±1 LSB max are specified monotonic operating conditions. See Figure 2-25 for test circuit.  
Resistor terminals A,B and W have no restrictions on polarity with respect to each other. Full-scale and zero-scale error were measured  
using Figure 2-25.  
5:  
6:  
Measured at V pin where the voltage on the adjacent V pin is swinging full-scale.  
W W  
Supply current is independent of current through the potentiometers.  
DS11195C-page 2  
2003 Microchip Technology Inc.  
 
 
 
 
 
 
MCP41XXX/42XXX  
DC CHARACTERISTICS: 50 kVERSION  
Electrical Characteristics: Unless otherwise indicated, V = +2.7V to 5.5V, T = -40°C to +85°C (TSSOP devices are only specified at +25°C and  
DD  
A
+85°C). Typical specifications represent values for V = 5V, V = 0V, V = 0V, T = +25°C.  
DD  
SS  
B
A
Parameters  
Rheostat Mode  
Nominal Resistance  
Rheostat Differential Non-Linearity  
Rheostat Integral Non-Linearity  
Rheostat Tempco  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
T = +25°C (Note 1)  
A
Note 2  
Note 2  
R
35  
-1  
-1  
-1  
50  
±1/4  
±1/4  
800  
125  
175  
65  
+1  
+1  
175  
250  
+1  
1
kΩ  
LSB  
LSB  
ppm/°C  
R-DNL  
R-INL  
R /T  
AB  
Wiper Resistance  
R
R
V
V
= 5.5V, I = 1 mA, code 00h  
W
= 2.7V, I = 1 mA, code 00h  
W
W
W
DD  
DD  
Wiper Current  
I
mA  
%
W
Nominal Resistance Match  
Potentiometer Divider  
Resolution  
R/R  
0.2  
MCP42050 only, P0 to P1;T = +25°C  
A
N
N
DNL  
INL  
8
8
±1/4  
±1/4  
1
-0.25  
-0.35  
+0.25  
+0.35  
+1  
+1  
0
0
+1  
+1  
Bits  
Bits  
LSB  
LSB  
Monotonicity  
Differential Non-Linearity  
Integral Non-Linearity  
Voltage Divider Tempco  
Full-Scale Error  
-1  
-1  
-1  
-1  
0
Note 3  
Note 3  
V /T  
ppm/°C Code 80h  
W
V
V
V
V
LSB  
LSB  
LSB  
LSB  
Code FFh, V = 5V, see Figure 2-25  
DD  
Code FFh, V = 3V, see Figure 2-25  
DD  
Code 00h, V = 5V, see Figure 2-25  
DD  
Code 00h, V = 3V, see Figure 2-25  
DD  
WFSE  
WFSE  
WZSE  
WZSE  
Zero-Scale Error  
0
Resistor Terminals  
Voltage Range  
Capacitance (C or C )  
Capacitance  
V
0
11  
5.6  
V
Note 4  
A,B,W  
DD  
pF  
pF  
f =1 MHz, Code = 80h, see Figure 2-30  
f =1 MHz, Code = 80h, see Figure 2-30  
A
B
C
W
Dynamic Characteristics (All dynamic characteristics use V = 5V)  
DD  
Bandwidth -3dB  
BW  
280  
MHz  
µS  
V = 0V, Measured at Code 80h,  
B
Output Load = 30 PF  
= V ,V = 0V, ±1% Error Band, Transition  
Settling Time  
t
8
V
A
S
DD  
B
from Code 00h to Code 80h, Output Load = 30 pF  
= Open, Code 80h, f =1 kHz  
Resistor Noise Voltage  
Crosstalk  
e
20  
-95  
nV/Hz  
dB  
V
A
NWB  
C
V = V , V = 0V (Note 5)  
A DD B  
T
Digital Inputs/Outputs (CS, SCK, SI, SO) See Figure 2-12 for RS and SHDN pin operation.  
Schmitt Trigger High-Level Input Voltage  
Schmitt Trigger Low-Level Input Voltage  
Hysteresis of Schmitt Trigger Inputs  
Low-Level Output Voltage  
V
V
0.7V  
0.05V  
0.3V  
0.40  
V
V
IH  
DD  
IL  
DD  
V
HYS  
DD  
V
V
V
I
I
= 2.1 mA, V = 5V  
DD  
OL  
OL  
High-Level Output Voltage  
V
V
- 0.5  
= -400 µA, V = 5V  
OH DD  
OH  
DD  
Input Leakage Current  
Pin Capacitance (All inputs/outputs)  
Power Requirements  
I
-1  
10  
+1  
µA  
pF  
CS = V , V = V or V , includes V SHDN=0  
DD IN SS DD A  
LI  
C
, C  
V
= 5.0V, T = +25°C, f = 1 MHz  
A c  
IN  
OUT  
DD  
Operating Voltage Range  
Supply Current, Active  
V
2.7  
340  
5.5  
500  
V
µA  
DD  
I
V
= 5.5V, CS = V , f  
= 10 MHz,  
DDA  
DD  
SS SCK  
SO = Open, Code FFh (Note 6)  
Supply Current, Static  
Power Supply Sensitivity  
I
0.01  
0.0015  
0.0015  
1
µA  
%/%  
%/%  
CS, SHDN, RS = V = 5.5V, SO = Open (Note 6)  
DDS  
DD  
PSS  
PSS  
0.0035  
0.0035  
V
V
= 4.5V - 5.5V, V = 4.5V, Code 80h  
A
DD  
DD  
= 2.7V - 3.3V, V = 2.7V, Code 80h  
A
Note 1:  
2:  
V
= V , no connection on wiper.  
AB DD  
Rheostat position non-linearity R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum  
resistance wiper positions. R-DNL measures the relative step change from the ideal between successive tap positions. I = V /R for  
W
DD  
+3V or +5V for 50 kversion. See Figure 2-26 for test circuit.  
INL and DNL are measured at V with the device configured in the voltage divider or potentiometer mode. V = V and V = 0V. DNL  
3:  
4:  
W
A
DD  
B
specification limits of ±1 LSB max are specified monotonic operating conditions. See Figure 2-25 for test circuit.  
Resistor terminals A,B and W have no restrictions on polarity with respect to each other. Full-scale and zero-scale error were measured  
using Figure 2-25.  
5:  
6:  
Measured at V pin where the voltage on the adjacent V pin is swinging full scale.  
W W  
Supply current is independent of current through the potentiometers.  
2003 Microchip Technology Inc.  
DS11195C-page 3  
 
MCP41XXX/42XXX  
DC CHARACTERISTICS: 100 kVERSION  
Electrical Characteristics: Unless otherwise indicated, V = +2.7V to 5.5V, T = -40°C to +85°C (TSSOP devices are only specified at +25°C and  
DD  
A
+85°C). Typical specifications represent values for V = 5V, V = 0V, V = 0V, T = +25°C.  
DD  
SS  
B
A
Parameters  
Rheostat Mode  
Nominal Resistance  
Rheostat Differential Non-Linearity  
Rheostat Integral Non-Linearity  
Rheostat Tempco  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
T = +25°C (Note 1)  
A
Note 2  
Note 2  
R
70  
-1  
-1  
-1  
100  
±1/4  
±1/4  
800  
125  
175  
130  
+1  
+1  
175  
250  
+1  
1
kΩ  
LSB  
LSB  
ppm/°C  
R-DNL  
R-INL  
R /T  
AB  
Wiper Resistance  
R
R
V
V
= 5.5V, I = 1 mA, code 00h  
W
= 2.7V, I = 1 mA, code 00h  
W
W
W
DD  
DD  
Wiper Current  
I
mA  
%
W
Nominal Resistance Match  
Potentiometer Divider  
Resolution  
R/R  
0.2  
MCP42010 only, P0 to P1;T = +25°C  
A
N
N
DNL  
INL  
8
8
±1/4  
±1/4  
1
-0.25  
-0.35  
+0.25  
+0.35  
+1  
+1  
0
0
+1  
+1  
Bits  
Bits  
LSB  
LSB  
Monotonicity  
Differential Non-Linearity  
Integral Non-Linearity  
Voltage Divider Tempco  
Full-Scale Error  
-1  
-1  
-1  
-1  
0
Note 3  
Note 3  
V /T  
ppm/°C Code 80h  
W
V
V
V
V
LSB  
LSB  
LSB  
LSB  
Code FFh, V = 5V, see Figure 2-25  
DD  
Code FFh, V = 3V, see Figure 2-25  
DD  
Code 00h, V = 5V, see Figure 2-25  
DD  
Code 00h, V = 3V, see Figure 2-25  
DD  
WFSE  
WFSE  
WZSE  
WZSE  
Zero-Scale Error  
0
Resistor Terminals  
Voltage Range  
Capacitance (CA or CB)  
Capacitance  
V
0
11  
5.6  
V
Note 4  
A,B,W  
DD  
pF  
pF  
f =1 MHz, Code = 80h, see Figure 2-30  
f =1 MHz, Code = 80h, see Figure 2-30  
C
W
Dynamic Characteristics (All dynamic characteristics use V = 5V.)  
DD  
Bandwidth -3dB  
BW  
145  
MHz  
µS  
V = 0V, Measured at Code 80h,  
B
Output Load = 30 PF  
= V ,V = 0V, ±1% Error Band, Transition  
Settling Time  
t
18  
V
A
S
DD  
B
from Code 00h to Code 80h, Output Load = 30 pF  
= Open, Code 80h, f =1 kHz  
Resistor Noise Voltage  
Crosstalk  
e
29  
-95  
nV/Hz  
dB  
V
A
NWB  
C
V = V , V = 0V (Note 5)  
A DD B  
T
Digital Inputs/Outputs (CS, SCK, SI, SO) See Figure 2-12 for RS and SHDN pin operation.  
Schmitt Trigger High-Level Input Voltage  
Schmitt Trigger Low-Level Input Voltage  
Hysteresis of Schmitt Trigger Inputs  
Low-Level Output Voltage  
V
V
0.7V  
0.05V  
0.3V  
0.40  
V
V
IH  
DD  
IL  
DD  
V
HYS  
DD  
V
V
V
I
I
= 2.1 mA, V = 5V  
DD  
OL  
OL  
High-Level Output Voltage  
V
V
- 0.5  
= -400 µA, V = 5V  
OH DD  
OH  
DD  
Input Leakage Current  
Pin Capacitance (All inputs/outputs)  
Power Requirements  
I
-1  
10  
+1  
µA  
pF  
CS = V , V = V or V , includes V SHDN=0  
DD IN SS DD A  
LI  
C
, C  
V
= 5.0V, T = +25°C, f = 1 MHz  
A c  
IN  
OUT  
DD  
Operating Voltage Range  
Supply Current, Active  
V
2.7  
340  
5.5  
500  
V
µA  
DD  
I
V
= 5.5V, CS = V , f  
= 10 MHz,  
DDA  
DD  
SS SCK  
SO = Open, Code FFh (Note 6)  
Supply Current, Static  
Power Supply Sensitivity  
I
0.01  
0.0015  
0.0015  
1
µA  
%/%  
%/%  
CS, SHDN, RS = V = 5.5V, SO = Open (Note 6)  
DDS  
DD  
PSS  
PSS  
0.0035  
0.0035  
V
V
= 4.5V - 5.5V, V = 4.5V, Code 80h  
A
DD  
DD  
= 2.7V - 3.3V, V = 2.7V, Code 80h  
A
Note 1:  
2:  
V
= V , no connection on wiper.  
AB DD  
Rheostat position non-linearity R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum  
resistance wiper positions. R-DNL measures the relative step change from the ideal between successive tap positions. I = 50 µA for  
W
V
= 3V and I = 400 µA for V = 5V for 10 kversion. See Figure 2-26 for test circuit.  
W DD  
DD  
3:  
4:  
INL and DNL are measured at V with the device configured in the voltage divider or potentiometer mode. V = V and V = 0V. DNL  
W A DD B  
specification limits of ±1 LSB max are specified monotonic operating conditions. See Figure 2-25 for test circuit.  
Resistor terminals A,B and W have no restrictions on polarity with respect to each other. Full-scale and zero-scale error were measured  
using Figure 2-25.  
5:  
6:  
Measured at V pin where the voltage on the adjacent V pin is swinging full-scale.  
W W  
Supply current is independent of current through the potentiometers.  
DS11195C-page 4  
2003 Microchip Technology Inc.  
 
MCP41XXX/42XXX  
Absolute Maximum Ratings †  
VDD...................................................................................7.0V  
All inputs and outputs w.r.t. VSS ............... -0.6V to VDD +1.0V  
Storage temperature.....................................-60°C to +150°C  
Ambient temp. with power applied................-60°C to +125°C  
ESD protection on all pins..................................................≥ 2 kV  
† Notice: Stresses above those listed under “maximum rat-  
ings” may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied. Expo-  
sure to maximum rating conditions for extended periods may  
affect device reliability.  
AC TIMING CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, V = +2.7V to 5.5V, T = -40°C to +85°C.  
DD  
A
Parameter  
Sym  
Min.  
Typ.  
Max.  
Units  
Conditions  
= 5V (Note 1)  
Clock Frequency  
Clock High Time  
Clock Low Time  
F
40  
40  
40  
40  
10  
10  
80  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
V
DD  
CLK  
t
HI  
t
LO  
CS Fall to First Rising CLK Edge  
Data Input Setup Time  
Data Input Hold Time  
SCK Fall to SO Valid Propagation Delay  
SCK Rise to CS Rise Hold Time  
SCK Rise to CS Fall Delay  
CS Rise to CLK Rise Hold  
CS High Time  
t
CSSR  
t
t
t
SU  
HD  
DO  
C = 30 pF (Note 2)  
L
t
30  
10  
100  
40  
150  
150  
40  
100  
150  
CHS  
t
t
t
CS0  
CS1  
CSH  
Reset Pulse Width  
t
Note 2  
Note 2  
Note 3  
Note 3  
Note 3  
RS  
RS Rising to CS Falling Delay Time  
CS rising to RS or SHDN falling delay time  
CS low time  
t
RSCS  
t
SE  
t
CSL  
Shutdown Pulse Width  
t
SH  
Note 1:  
When using the device in the daisy-chain configuration, maximum clock frequency is determined by a combination of propagation delay  
time (t ) and data input setup time (t ). Max. clock frequency is therefore ~ 5.8 MHz based on SCK rise and fall times of 5 ns, t  
=
HI  
DO  
SU  
40 ns, t = 80 ns and t = 40 ns.  
DO  
SU  
2:  
3:  
Applies only to the MCP42XXX devices.  
Applies only when using hardware pins to exit software shutdown mode, MCP42XXX only.  
2003 Microchip Technology Inc.  
DS11195C-page 5  
 
 
 
MCP41XXX/42XXX  
tCSH  
CS  
1/FCLK  
tCSSR  
tCHS  
tHI  
tLO  
tCS1  
tCSO  
SCK  
tSU  
tHD  
SI  
msb in  
tDO  
(First 16 bits out are always zeros)  
SO  
VOUT  
tS  
±1% Error Band  
±1%  
FIGURE 1-1:  
Detailed Serial interface Timing.  
Wiper position is changed to  
Code 80h is latched  
on rising edge of RS  
mid-scale (80h) if RS is held  
low for 150 ns  
CS  
RS  
tRSCS  
tRS  
tS  
±1%  
±1% Error Band  
VOUT  
FIGURE 1-2:  
Reset Timing.  
tCSL  
CS  
RS  
tSE  
tRS  
tSE  
tSH  
SHDN  
FIGURE 1-3:  
Software Shutdown Exit Timing.  
DS11195C-page 6  
2003 Microchip Technology Inc.  
 
MCP41XXX/42XXX  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, curve represents 10 k, 50 kand 100 kdevices, VDD = 5V, VSS = 0V, TA = +25°C,  
VB = 0V.  
14  
12  
10  
8
1
0.8  
0.6  
0.4  
0.2  
0
VDD = +3V to +5V  
RAB  
RWB  
Code = 80h  
6
RWB  
RWA  
4
2
MCP41010, MCP42010 (10 kpotentiometers)  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
0
32  
64  
96  
128 160 192 224 256  
Code (Decimal)  
FIGURE 2-1:  
Normalized Wiper to End  
FIGURE 2-4:  
Nominal Resistance 10 kΩ  
Terminal Resistance vs. Code.  
vs. Temperature.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
70  
60  
50  
40  
30  
20  
10  
TA = -40°C to +85°C  
Refer to Figure 2-25  
RAB  
RWB  
Code = 80h  
MCP41050, MCP42050 (50 kpotentiometers)  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
0
32  
64  
96 128 160 192 224 256  
Code (Decimal)  
FIGURE 2-2:  
Potentiometer INL Error vs.  
FIGURE 2-5:  
Nominal Resistance 50 kΩ  
Code.  
vs. Temperature.  
70  
60  
50  
40  
30  
20  
10  
0
140  
120  
100  
80  
TA = -40°C to +85°C  
VA = 3V  
RAB  
RWB  
Code = 80h  
60  
40  
20  
MCP41100, MCP42100 (100 kpotentiometers)  
0
-10  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
32  
64  
96 128 160 192 224 256  
Code (Decimal)  
FIGURE 2-3:  
Potentiometer Mode  
FIGURE 2-6:  
Nominal Resistance 100 kΩ  
Tempco vs. Code.  
vs. Temperature.  
2003 Microchip Technology Inc.  
DS11195C-page 7  
 
MCP41XXX/42XXX  
Note: Unless otherwise indicated, curve represents 10 k, 50 kand 100 kdevices, VDD = 5V, VSS = 0V, TA = +25°C,  
VB = 0V.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
280  
230  
180  
130  
80  
Refer to Figure 2-27  
VDD = 5V  
FCLK = 3 MHz  
Code = FFh  
TA = +85°C  
TA = +25°C  
TA = -40°C  
VDD = 3V  
30  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
0
32  
64  
96 128 160 192 224 256  
Code (Decimal)  
FIGURE 2-7:  
Rheostat INL Error vs.  
FIGURE 2-10:  
Active Supply Current vs.  
Code.  
Temperature.  
1000  
3000  
2500  
2000  
1500  
1000  
500  
A - VDD = 5.5V, Code = AAh  
B - VDD = 3.3V, Code = AAh  
C - VDD = 5.5V, Code = FFh  
D - VDD = 3.3V, Code = FFh  
TA = -40°C to +85°C,  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
A = no connect,  
R
WB measured  
B
C
A
0
0
D
32 64 96 128 160 192 224 256  
Code (Decimal)  
1k  
10k  
100k  
Clock Frequency (Hz)  
1M  
10M  
FIGURE 2-8:  
Rheostat Mode Tempco vs.  
FIGURE 2-11:  
Active Supply Current vs.  
Code.  
Clock Frequency.  
1
0
1000  
100  
10  
VDD = 5.5V  
-1  
-2  
-3  
-4  
-5  
-6  
1
-7  
0
-40 -25 -10  
5
20 35 50 65 80 95 11 12  
0
5
2
4
6
RS & SHDN Pin Voltage (V)  
Temperature (°C)  
FIGURE 2-9:  
Static Current vs.  
FIGURE 2-12:  
Reset & Shutdown Pins  
Temperature.  
Current vs. Voltage.  
DS11195C-page 8  
2003 Microchip Technology Inc.  
 
 
MCP41XXX/42XXX  
Note: Unless otherwise indicated, curve represents 10 k, 50 kand 100 kdevices, VDD = 5V, VSS = 0V, TA = +25°C,  
VB = 0V.  
180  
MCP41010,MCP42010  
CL = 27 pF  
160  
140  
120  
100  
80  
Code = 00h,  
Sample Size = 400  
VOUT  
FFh  
60  
40  
00h  
20  
0
CS  
47 48 49 50 51 52 53 54 55 56 57 58 59  
Wiper Resistance ()  
FIGURE 2-13:  
10 kDevice Wiper  
FIGURE 2-16:  
Full-Scale Settling Time.  
Resistance Histogram.  
140  
120  
100  
80  
MCP41050, MCP41100,  
MCP42050, MCP42100  
Code = 00h,  
CL = 27 pF  
Code = 80h  
Sample Size = 796  
VOUT  
60  
40  
20  
CS  
0
115 117 119 121 123 125 127 129 131 133  
Wiper Resistance ()  
FIGURE 2-17:  
Digital Feed through vs.  
FIGURE 2-14:  
50 k, 100 kDevice Wiper  
Time.  
Resistance Histogram.  
6
0
-6  
-12  
-18  
-24  
-30  
-36  
-42  
-48  
Code = FFh  
Code = 80h  
Code = 40h  
CL = 17 pF  
Code = 80h  
Code = 20h  
Code = 10h  
Code = 08h  
VOUT  
Code = 7Fh  
Code = 04h  
Code = 02h  
Code = 01h  
CS  
CL = 30pF, Refer to Figure 2-29  
MCP41010, MCP42010 (10kpotentiometers)  
-54  
-60  
100 1k 10k 100k  
1M  
10M  
Frequency (Hz)  
FIGURE 2-18:  
Gain vs. Frequency for  
FIGURE 2-15:  
One Position Settling Time.  
10 kPotentiometer.  
2003 Microchip Technology Inc.  
DS11195C-page 9  
MCP41XXX/42XXX  
Note: Unless otherwise indicated, curve represents 10 k, 50 kand 100 kdevices, VDD = 5V, VSS = 0V, TA = +25°C,  
VB = 0V.  
6
0
-6  
40  
Code = FFh  
Code = 80h  
Code = 40h  
Code = 20h  
VDD = 4.5V to 5.5V,  
Code = 80h,  
10 kPotentiometer  
35  
30  
25  
20  
15  
10  
5
CL = 27 pF,  
VA = 4V  
-12  
-18  
-24  
-30  
-36  
-42  
-48  
-54  
-60  
Refer to Figure 2-28  
Code = 10h  
Code = 08h  
Code = 04h  
50 kPotentiometer  
Code = 02h  
100 kPotentiometer  
Code = 01h  
CL = 30pF, Refer to Figure 2-29  
MCP41050, MCP42050 (50kpotentiometers)  
0
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
FIGURE 2-19:  
Gain vs. Frequency for  
FIGURE 2-22:  
Power Supply Rejection  
50kPotentiometer.  
Ratio vs. Frequency.  
6
0
-6  
-12  
-18  
-24  
-30  
-36  
-42  
-48  
700  
600  
500  
400  
300  
200  
100  
0
Code = FFh  
Code = 80h  
MCP41010, MCP42010  
Iw = 1 mA, Code = 00h,  
Refer to Figure 2-27  
VDD = 2.7V  
Code = 40h  
Code = 20h  
Code = 10h  
Code = 08h  
Code = 04h  
Code = 02h  
VDD = 5V  
Code = 01h  
CL = 30pF, Refer to Figure 2-29  
MCP41100, MCP42100 (100kpotentiometers)  
-54  
-60  
0
1
2
3
4
5
100  
1k  
10k  
100k  
1M  
Terminal B Voltage (V)  
Frequency (Hz)  
FIGURE 2-20:  
Gain vs. Frequency for  
FIGURE 2-23:  
10 kWiper Resistance vs.  
100kPotentiometer.  
Voltage.  
0
-6  
450  
400  
350  
300  
250  
200  
150  
100  
50  
Code = 00h  
Refer to Figure 2-27  
1.06 MHz  
145 kHz  
279 kHz  
VDD = 2.7V  
-12  
-18  
-24  
10 kΩ  
VDD = 5V  
50 kΩ  
-30  
CL = 30 pF, Code = 80h  
0
100 kΩ  
Refer to Figure 2-29  
-36  
0
1
2
3
4
5
1k  
10k  
100k  
1M  
10M  
Terminal B Voltage (V)  
Frequency (Hz)  
FIGURE 2-21:  
-3 dB Bandwidths.  
FIGURE 2-24:  
50 k& 100 kWiper  
Resistance vs. Voltage.  
DS11195C-page 10  
2003 Microchip Technology Inc.  
MCP41XXX/42XXX  
2.1  
Parametric Test Circuits  
VA  
V+ = VDD  
1LSB = V+/256  
A
VDD  
A
V+  
V+  
W
W
B
B
DUT  
+
-
DUT  
+
-
VMEAS  
*
VMEAS  
*
*Assume infinite input impedance  
V+ = VDD ± 10%  
FIGURE 2-25:  
Potentiometer Divider Non-  
VDD  
PSRR (dB) = 20LOG  
(
)
Linearity Error Test Circuit (DNL, INL).  
VMEAS  
PSS (%/%) = VDD  
VMEAS  
No Connection  
*Assume infinite input impedance  
FIGURE 2-28:  
Power Supply Sensitivity  
A
IW  
Test Circuit (PSS, PSRR).  
W
B
DUT  
+
-
A
VMEAS  
*
+5V  
W
VIN  
VOUT  
+
~
-
*Assume infinite input impedance  
OFFSET  
GND  
DUT  
B
FIGURE 2-26:  
Resistor Position Non-  
Linearity Error Test Circuit (Rheostat operation  
DNL, INL).  
2.5V DC  
Rsw = 0.1V  
Isw  
FIGURE 2-29:  
Gain vs. Frequency Test  
Circuit.  
A
Code = 00h  
W
DUT  
DUT  
B
+
-
ISW  
B
A
0.1V  
+5V  
VSS = 0 to VDD  
VOUT  
-
+
VIN  
~
MCP601  
2.5V DC  
Offset  
FIGURE 2-27:  
Wiper Resistance Test  
Circuit.  
FIGURE 2-30:  
Capacitance Test Circuit.  
2003 Microchip Technology Inc.  
DS11195C-page 11  
MCP41XXX/42XXX  
3.9  
Shutdown (SHDN)  
3.0  
PIN DESCRIPTIONS  
(MCP42XXX devices only)  
3.1  
PA0, PA1  
The Shutdown pin has a Schmitt Trigger input. Pulling  
this pin low will put the device in a power-saving mode  
where A terminal is opened and the B and W terminals  
are connected for all potentiometers. This pin should  
not be toggled low when the CS pin is low. In order to  
minimize power consumption, this pin has an active  
pull-up circuit. The performance of this circuit is shown  
in Figure 2-12. This pin will draw negligible current at  
logic level ‘0’ and logic level ‘1’. Do not leave this pin  
floating.  
Potentiometer Terminal A Connection.  
3.2  
PB0, PB1  
Potentiometer Terminal B Connection.  
3.3  
PW0, PW1  
Potentiometer Wiper Connection.  
3.4  
Chip Select (CS)  
TABLE 3-1:  
Pin # Name  
MCP41XXX Pins  
Function  
This is the SPI port chip select pin and is used to exe-  
cute a new command after it has been loaded into the  
shift register. This pin has a Schmitt Trigger input.  
1
2
3
4
5
6
7
8
CS Chip Select  
SCK Serial Clock  
SI Serial Data Input  
3.5  
Serial Clock (SCK)  
This is the SPI port clock pin and is used to clock-in  
new register data. Data is clocked into the SI pin on the  
rising edge of the clock and out the SO pin on the falling  
edge of the clock. This pin is gated to the CS pin (i.e.,  
the device will not draw any more current if the SCK pin  
is toggling when the CS pin is high). This pin has a  
Schmitt Trigger input.  
VSS Ground  
PA0 Terminal A Connection For Pot 0  
PW0 Wiper Connection For Pot 0  
PB0 Terminal B Connection For Pot 0  
VDD Power  
3.6  
Serial Data Input (SI)  
TABLE 3-2:  
Pin # Name  
MCP42XXX Pins  
Function  
This is the SPI port serial data input pin. The command  
and data bytes are clocked into the shift register using  
this pin. This pin is gated to the CS pin (i.e., the device  
will not draw any more current if the SI pin is toggling  
when the CS pin is high). This pin has a Schmitt Trigger  
input.  
1
2
CS Chip Select  
SCK Serial Clock  
SI Serial Data Input  
3
4
VSS Ground  
3.7  
Serial Data Output (SO)  
5
PB1 Terminal B Connection For Pot 1  
PW1 Wiper Connection For Pot 1  
PA1 Terminal A Connection For Pot 1  
PA0 Terminal A Connection For Pot 0  
PW0 Wiper Connection For Pot 0  
PB0 Terminal B Connection For Pot 0  
RS Reset Input  
(MCP42XXX devices only)  
6
This is the SPI port serial data output pin used for  
daisy-chaining more than one device. Data is clocked  
out of the SO pin on the falling edge of clock. This is a  
push-pull output and does not go to a high-impedance  
state when CS is high. It will drive a logic-low when CS  
is high.  
7
8
9
10  
11  
12  
13  
14  
3.8  
Reset (RS)  
SHDN Shutdown Input  
(MCP42XXX devices only)  
SO Data Out for Daisy-Chaining  
VDD Power  
The Reset pin will set all potentiometers to mid-scale  
(Code 80h) if this pin is brought low for at least 150 ns.  
This pin should not be toggled low when the CS pin is  
low. It is possible to toggle this pin when the SHDN pin  
is low. In order to minimize power consumption, this pin  
has an active pull-up circuit. The performance of this  
circuit is shown in Figure 2-12. This pin will draw negli-  
gible current at logic level ‘0’ and logic level ‘1’. Do not  
leave this pin floating.  
DS11195C-page 12  
2003 Microchip Technology Inc.  
MCP41XXX/42XXX  
4.0  
APPLICATIONS INFORMATION  
The MCP41XXX/42XXX devices are 256 position  
single and dual digital potentiometers that can be used  
in place of standard mechanical pots. Resistance val-  
ues of 10 k, 50 kand 100 kare available. As  
shown in Figure 4-1, each potentiometer is made up of  
a variable resistor and an 8-bit (256 position) data reg-  
ister that determines the wiper position. There is a  
nominal wiper resistance of 52for the 10 kversion,  
125for the 50 kand 100 kversions. For the dual  
devices, the channel-to-channel matching variation is  
less than 1%. The resistance between the wiper and  
either of the resistor endpoints varies linearly according  
to the value stored in the data register. Code 00h  
effectively connects the wiper to the B terminal. At  
power-up, all data registers will automatically be loaded  
with the mid-scale value (80h). The serial interface pro-  
vides the means for loading data into the shift register,  
which is then transferred to the data registers. The  
serial interface also provides the means to place indi-  
vidual potentiometers in the shutdown mode for maxi-  
mum power savings. The SHDN pin can also be used  
to put all potentiometers in shutdown mode and the RS  
pin is provided to set all potentiometers to mid-scale  
(80h).  
PW0  
PW1  
PA0  
PB0 PA1  
PB1  
D0  
RDAC2  
RDAC1  
Data Register 0  
D7  
Data Register 1  
D7  
D0  
RS  
CS  
Decode  
Logic  
D7  
D0  
16-bit Shift Register  
SCK  
SI  
SO  
SHDN  
FIGURE 4-1:  
Block diagram showing the MCP42XXX dual digital potentiometer. Data register 0 and  
data register 1 are 8-bit registers allowing 256 positions for each wiper. Standard SPI pins are used with  
the addition of the Shutdown (SHDN) and Reset (RS) pins. As shown, reset affects the data register and  
wipers, bringing them to mid-scale. Shutdown disconnects the A terminal and connects the wiper to B,  
without changing the state of the data registers.  
When laying out the circuit for your digital potentiome-  
VDD  
ter, bypass capacitors should be used. These capaci-  
tors should be placed as close as possible to the device  
pin. A bypass capacitor value of 0.1 µF is recom-  
mended. Digital and analog traces should be separated  
as much as possible on the board, with no traces run-  
ning underneath the device or the bypass capacitor.  
Extra precautions should be taken to keep traces with  
high-frequency signals (such as clock lines) as far as  
possible from analog traces. Use of an analog ground  
plane is recommended in order to keep the ground  
potential the same for all devices on the board.  
VDD  
0.1 uF  
0.1 uF  
B
W
A
µC  
Data Lines  
To Application  
Circuit  
2003 Microchip Technology Inc.  
DS11195C-page 13  
 
MCP41XXX/42XXX  
4.1.2  
POTENTIOMETER MODE  
4.1  
Modes of Operation  
In the potentiometer mode, all three terminals of the  
device are tied to different nodes in the circuit. This  
allows the potentiometer to output a voltage propor-  
tional to the input voltage. This mode is sometimes  
called voltage divider mode. The potentiometer is used  
to provide a variable voltage by adjusting the wiper  
position between the two endpoints as shown in  
Figure 4-3. Note that reversing the polarity of the A and  
B terminals will not affect operation.  
Digital potentiometer applications can be divided into  
two categories: rheostat mode and potentiometer, or  
voltage divider, mode.  
4.1.1  
RHEOSTAT MODE  
In the rheostat mode, the potentiometer is used as a  
two-terminal resistive element. The unused terminal  
should be tied to the wiper, as shown in Figure 4-2.  
Note that reversing the polarity of the A and B terminals  
will not affect operation.  
V1  
A
A
V2  
W
W
B
B
MCP4XXXX  
MCP4XXXX  
Resistor  
FIGURE 4-3:  
Three terminal or voltage  
divider mode.  
FIGURE 4-2: Two-terminal or rheostat  
In this configuration, the ratio of the internal resistance  
defines the temperature coefficient of the device. The  
resistor matching of the RWB resistor to the RAB resistor  
performs with a typical temperature coefficient of  
1 ppm/°C (measured at code 80h). At lower codes, the  
wiper resistance temperature coefficient will dominate.  
Figure 2-3 shows the effect of the wiper. Above the  
lower codes, this figure shows that 70% of the states  
will typically have a temperature coefficient of less than  
5 ppm/°C. 30% of the states will typically have a  
ppm/°C of less than 1.  
configuration for the digital potentiometer. Acting  
as a resistive element in the circuit, resistance is  
controlled by changing the wiper setting.  
Using the device in this mode allows control of the total  
resistance between the two nodes. The total measured  
resistance would be the least at code 00h, where the  
wiper is tied to the B terminal. The resistance at this  
code is equal to the wiper resistance, typically 52for  
the 10 kMCP4X010 devices, 125for the 50 kΩ  
(MCP4X050), and 100 k(MCP4X100) devices. For  
the 10 kdevice, the LSB size would be 39.0625Ω  
(assuming 10 ktotal resistance). The resistance  
would then increase with this LSB size until the total  
measured resistance at code FFh would be 9985.94.  
The wiper will never directly connect to the A terminal  
of the resistor stack.  
In the 00h state, the total resistance is the wiper resis-  
tance. To avoid damage to the internal wiper circuitry in  
this configuration, care should be taken to ensure the  
current flow never exceeds 1 mA.  
For dual devices, the variation of channel-to-channel  
matching of the total resistance from A to B is less than  
1%. The device-to-device matching, however, can vary  
up to 30%. In the rheostat mode, the resistance has a  
positive temperature coefficient. The change in wiper-  
to-end terminal resistance over temperature is shown  
in Figure 2-8. The most variation over temperature will  
occur in the first 6% of codes (code 00h to 0Fh) due to  
the wiper resistance coefficient affecting the total resis-  
tance. The remaining codes are dominated by the total  
resistance tempco RAB, typically 800 ppm/°C.  
DS11195C-page 14  
2003 Microchip Technology Inc.  
 
 
MCP41XXX/42XXX  
In order for these circuits to work properly, care must be  
taken in a few areas. For linear operation, the analog  
input and output signals must be in the range of VSS to  
VDD for the potentiometer and input and output rails of  
the op-amp. The circuit in Figure 4-4 requires a virtual  
ground or reference input to the non-inverting input of  
the amplifier. Refer to Application Note 682, “Using  
Single-Supply Operational Amplifiers in Embedded  
Systems” (DS00682), for more details. At power-up or  
reset (RS), the resistance is set to mid-scale, with RA  
and RB matching. Based on the transfer function for the  
circuit, the gain is -1 V/V. As the code is increased and  
the wiper moves towards the A terminal, the gain  
increases. Conversely, when the wiper is moved  
towards the B terminal, the gain decreases. Figure 4-6  
shows this relationship. Notice the pseudo-logarithmic  
gain around decimal code 128. As the wiper  
approaches either terminal, the step size in the gain  
calculation increases dramatically. Due to the  
mismatched ratio of RA and RB at the extreme high and  
low codes, small increments in wiper position can  
dramatically affect the gain. As shown in Figure 4-3,  
recommended gains lie between 0.1 and 10 V/V.  
4.2  
Typical Applications  
4.2.1  
PROGRAMMABLE SINGLE-ENDED  
AMPLIFIERS  
Potentiometers are often used to adjust system refer-  
ence levels or gain. Programmable gain circuits using  
digital potentiometers can be realized in a number of  
different ways. An example of a single-supply, inverting  
gain amplifier is shown in Figure 4-4. Due to the high  
input impedance of the amplifier, the wiper resistance  
is not included in the transfer function. For a single-sup-  
ply, non-inverting gain configuration, the circuit in  
Figure 4-5 can be used.  
.
MCP41010  
B
A
W
VIN  
VDD  
-
-IN  
VOUT  
MCP606  
+IN  
+
VREF  
VSS  
10  
RB  
RA  
RB  
-------  
RA  
VOUT = VIN  
+ VREF 1 + -------  
Where:  
1
R
AB(256 Dn)  
RABDn  
256  
RA = -------------------------------------- RB = ------------------  
256  
RAB = Total Resistance of pot  
Dn = Wiper setting forDn = 0 to 255  
0.1  
0
64  
128  
192  
256  
Decimal code (0-255)  
FIGURE 4-4:  
Single-supply,  
programmable, inverting gain amplifier using a  
digital potentiometer.  
FIGURE 4-6:  
Gain vs. Code for inverting  
and differential amplifier circuits.  
VDD  
4.2.2  
PROGRAMMABLE DIFFERENTIAL  
AMPLIFIER  
+
VIN  
+IN  
-IN  
W
VOUT  
MCP606  
An example of a differential input amplifier using digital  
potentiometers is shown in Figure 4-7. For the transfer  
function to hold, both pots must be programmed to the  
same code. The resistor-matching from channel-to-  
channel within a dual device can be used as an advan-  
tage in this circuit. This circuit will also show stable  
operation over temperature due to the low potentiome-  
ter temperature coefficient. Figure 4-6 also shows the  
relationship between gain and code for this circuit. As  
the wiper approaches either terminal, the step size in  
the gain calculation increases dramatically. This circuit  
is recommended for gains between 0.1 and 10 V/V.  
-
VSS  
RA  
RB  
MCP41010  
RB  
VOUT = VIN 1 + -------  
RA  
Where:  
R
AB(256 Dn)  
RABDn  
RA = -------------------------------------- RB = ------------------  
256  
256  
RAB = Total Resistance of pot  
Dn = Wiper setting forDn = 0 to 255  
FIGURE 4-5:  
Single-supply,  
programmable, non-inverting gain amplifier.  
2003 Microchip Technology Inc.  
DS11195C-page 15  
 
 
 
MCP41XXX/42XXX  
4.3  
Calculating Resistances  
1/2  
When programming the digital potentiometer settings,  
the following equations can be used to calculate the  
resistances. Programming code 00h effectively brings  
the wiper to the B terminal, leaving only the wiper resis-  
tance. Programming higher codes will bring the wiper  
closer to the A terminal of the potentiometer. The equa-  
tions in Figure 4-9 can be used to calculate the terminal  
resistances. Figure 4-10 shows an example calculation  
using a 10 kpotentiometer.  
MCP42010  
VB  
A
B
VDD  
(SIG -)  
+
-IN  
VA  
VOUT  
MCP601  
A
B
(SIG +)  
+IN  
-
VSS  
RB  
RA  
PA  
PW  
VOUT = (VA VB)-------  
VREF  
Where:  
PB  
R
AB(256 Dn)  
RABDn  
256  
RA = -------------------------------------- RB = ------------------  
256  
(RAB)(256 Dn)  
R
R
WA(Dn) = ------------------------------------------- + RW  
RAB = Total Resistance of pot  
Dn = Wiper setting forDn = 0 to 255  
256  
(RAB)(Dn)  
WB(Dn) = --------------------------- + RW  
256  
NOTE: Potentiometer values must be equal  
Where:  
FIGURE 4-7:  
Single Supply  
programmable differential amplifier using digital  
potentiometers.  
PA is the A terminal  
PB is the B terminal  
PW is the wiper terminal  
R
R
R
R
D
is resistance between Terminal A and wiper  
is resistance between Terminal B and Wiper  
is overall resistance for pot (10 k, 50 kor 100 k)  
WA  
WB  
AB  
W
n
4.2.3  
PROGRAMMABLE OFFSET TRIM  
is wiper resistance  
is 8-bit value in data register for pot number n  
For applications requiring only a programmable voltage  
reference, the circuit in Figure 4-8 can be used. This  
circuit shows the device used in the potentiometer  
mode along with two resistors and a buffered output.  
This creates a circuit with a linear relationship between  
voltage-out and programmed code. Resistors R1 and  
R2 can be used to increase or decrease the output volt-  
age step size. The potentiometer in this mode is stable  
over temperature. The operation of this circuit over  
temperature is shown in Figure 2-3. The worst perfor-  
mance over temperature will occur at the lower codes  
due to the dominating wiper resistance. R1 and R2 can  
also be used to affect the boundary voltages, thereby  
eliminating the use of these lower codes.  
FIGURE 4-9:  
Potentiometer resistances  
are a function of code. It should be noted that,  
when using these equations for most feedback  
amplifier circuits (see Figure 4-4 and Figure 4-5),  
the wiper resistance can be omitted due to the  
high impedance input of the amplifier.  
Example:  
PA  
R = 10 kΩ  
Code = C0h = 192d  
PW  
10 kΩ  
PB  
(RAB)(256 Dn)  
R
WA(Dn) = ------------------------------------------- + RW  
VDD  
256  
VDD  
(10k)(256 192)  
R1  
R
R
WA(C0h) = -------------------------------------------------- + 52Ω  
256  
-
-IN  
WA(C0h) = 2552Ω  
MCP606  
+
A
B
OUT  
+IN  
(RAB)(Dn)  
R
WB(Dn) = --------------------------- + RW  
VSS  
256  
0.1 uF  
(10k)(192)  
R
R
WB(C0h) = ---------------------------------- + 52Ω  
R2  
256  
VSS  
WB(C0h) = 7552Ω  
FIGURE 4-8:  
By changing the values of  
Note: All values shown are typical and  
actual results will vary.  
R and R , the voltage output resolution of this  
1
2
programmable voltage reference circuit is  
affected.  
FIGURE 4-10:  
calculations.  
Example Resistance  
DS11195C-page 16  
2003 Microchip Technology Inc.  
 
 
 
MCP41XXX/42XXX  
5.3  
Using The Shutdown Command  
5.0  
SERIAL INTERFACE  
Communications from the controller to the  
MCP41XXX/42XXX digital potentiometers is accom-  
plished using the SPI serial interface. This interface  
allows three commands:  
The shutdown command allows the user to put the  
application circuit into a power-saving mode. In this  
mode, the A terminal is open-circuited and the B and W  
terminals are shorted together. The command select  
bits C1, C0 are set to 1,0. The potentiometer selection  
bits P1 and P0 allow each potentiometer to be shut-  
down independently. If either P1 or P0 are high, the  
respective potentiometer will enter shutdown mode. A  
0’ for P1 or P0 will have no effect. The eight data bits  
following the command byte still need to be transmitted  
for the shutdown command, but they are ‘don’t care’  
bits. See Figure 5-2 for command format summary.  
Once a particular potentiometer has entered the shut-  
down mode, it will remain in this mode until:  
• A new value is written to the potentiometer data  
register, provided that the SHDN pin is high. The  
device will remain in the shutdown mode until the  
rising edge of the CS is detected, at which time  
the device will come out of shutdown mode and  
the new value will be written to the data regis-  
ter(s). If the SHDN pin is low when the new value  
is received, the registers will still be set to the new  
value, but the device will remain in shutdown  
mode. This scenario assumes that a valid com-  
mand was received. If an invalid command was  
received, the command will be ignored and the  
device will remain in the shutdown mode.  
It is also possible to use the hardware shutdown pin  
and reset pin to remove a device from software shut-  
down. To do this, a low pulse on the chip select line  
must first be sent. For multiple devices, sharing a single  
SHDN or RESET line allows you to pick an individual  
device on that chain to remove from software shutdown  
mode. See Figure 1-3 for timing. With a preceding chip  
select pulse, either of these situations will also remove  
a device from software shutdown:  
• A falling edge is seen on the RS pin and held low  
for at least 150 ns, provided that the SHDN pin is  
high. If the SHDN pin is low, the registers will still  
be set to mid-scale, but the device will remain in  
shutdown mode. This condition assumes that CS  
is high, as bringing the RS pin low while CS is low  
is an invalid state and results are indeterminate.  
1. Write a new value to the potentiometer data  
register(s).  
2. Cause a channel to enter low power shutdown  
mode.  
3. NOP (No Operation) command.  
Executing any command is accomplished by setting  
CS low and then clocking-in a command byte followed  
by a data byte into the 16-bit shift register. The com-  
mand is executed when CS is raised. Data is clocked-  
in on the rising edge of clock and out the SO pin on the  
falling edge of the clock (see Figure 5-1). The device  
will track the number of clocks (rising edges) while CS  
is low and will abort all commands if the number of  
clocks is not a multiple of 16.  
5.1  
Command Byte  
The first byte sent is always the command byte, fol-  
lowed by the data byte. The command byte contains  
two command select bits and two potentiometer select  
bits. Unused bits are ‘don’t care’ bits. The command  
select bits are summarized in Figure 5-2. The com-  
mand select bits C1 and C0 (bits 4:5) of the command  
byte determine which command will be executed. If the  
command bits are both 0’s or 1’s, then a NOP com-  
mand will be executed once all 16 bits have been  
loaded. This command is useful when using the daisy-  
chain configuration. When the command bits are 0,1, a  
write command will be executed with the 8 bits sent in  
the data byte. The data will be written to the potentiom-  
eter(s) determined by the potentiometer select bits. If  
the command bits are 1,0, then a shutdown command  
will be executed on the potentiometers determined by  
the potentiometer select bits.  
For the MCP42XXX devices, the potentiometer select  
bits P1 and P0 (bits 0:1) determine which potentiome-  
ters are to be acted upon by the command. A corre-  
sponding ‘1’ in the position signifies that the command  
for that potentiometer will get executed, while a ‘0’ sig-  
nifies that the command will not effect that  
potentiometer (see Figure 5-2).  
• A rising edge on the SHDN pin is seen after being  
low for at least 100 ns, provided that the CS pin is  
high. Toggling the SHDN pin low while CS is low  
is an invalid state and results are indeterminate.  
5.2  
Writing Data Into Data Registers  
When new data is written into one or more of the poten-  
tiometer data registers, the write command is followed  
by the data byte for the new value. The command  
select bits C1, C0 are set to 0,1. The potentiometer  
selection bits P1 and P0 allow new values to be written  
to potentiometer 0, potentiometer 1 (or both) with a sin-  
gle command. A ‘1’ for either P1 or P0 will cause the  
data to be written to the respective data register and a  
0’ for P1 or P0 will cause no change. See Figure 5-2  
for the command format summary.  
• The device is powered-down and back up.  
Note:  
The hardware SHDN pin will always put  
the device in shutdown regardless of  
whether a potentiometer has already been  
put in the shutdown mode using the  
software command.  
2003 Microchip Technology Inc.  
DS11195C-page 17  
MCP41XXX/42XXX  
Data is always latched  
Data is always clocked out  
of the SO pin after the  
falling edge of SCK.  
in on the rising edge  
of SCK.  
Data Registers are  
loaded on rising  
CS†  
edge of CS. Shift  
register is loaded  
with zeros at this time.  
1
2
3
4
5
6
7
8
9
10  
11 12 13 14 15 16  
SCK  
COMMAND Byte  
Data Byte  
Don’t  
Don’t  
Channel  
Select  
Bits  
Care  
Bits  
Command Care  
New Register Data  
Bits  
Bits  
X
X
X
C0  
X
P1*  
P0  
D7 D6 D5 D4 D3 D2 D1 D0  
C1  
SI  
SO pin will always  
drive low when CS  
goes high.  
First 16 bits shifted out will always be zeros  
X
SO‡  
There must always be multiples of 16 clocks while CS is low or commands will abort.  
The serial data out pin (SO) is only available on the MCP42XXX device.  
* P1 is a ‘don’t care’ bit for the MCP41XXX.  
FIGURE 5-1:  
Timing Diagram for Writing Instructions or Data to a Digital Potentiometer.  
COMMAND BYTE  
X
X C1 C0 X X P1* P0  
Potentiometer  
Selection  
Bits  
Command  
Selection  
Bits  
C1 C0 Command  
Command Summary  
P1* P0  
Potentiometer Selections  
0
0
0
1
None  
No Command will be executed.  
0
0
1
1
0
1
0
1
Dummy Code: Neither Potentiometer  
affected.  
Command executed on  
Potentiometer 0.  
Command executed on  
Potentiometer 1.  
Command executed on both  
Potentiometers.  
Write Data Write the data contained in Data Byte to the  
potentiometer(s) determined by the potenti-  
ometer selection bits.  
1
1
0
1
Shutdown  
Potentiometer(s) determined by potentiome-  
ter selection bits will enter Shutdown Mode.  
Data bits for this command are ‘don’t cares’.  
None  
No Command will be executed.  
FIGURE 5-2:  
Command Byte Format.  
DS11195C-page 18  
2003 Microchip Technology Inc.  
 
MCP41XXX/42XXX  
When using the daisy-chain configuration, keep in mind  
that the shift register of each device is automatically  
loaded with zeros whenever a command is executed  
(CS = high). Because of this, the first 16 bits that come  
out of the SO pin once the CS line goes low will always  
be zeros. This means that when the first command is  
being loaded into a device, it will always shift a NOP  
command into the next device on the chain because  
the command bits (and all the other bits) will be zeros.  
This feature makes it necessary only to send command  
and data bytes to the device farthest down the chain  
that needs a new command. For example, if there were  
three devices on the chain and it was desired to send a  
command to the device in the middle, only 32 bytes of  
data need to be transmitted. The last device on the  
chain will have a NOP loaded from the previous device  
so no registers will be affected when the CS pin is  
raised to execute the command. The user must  
always ensure that multiples of 16 clocks are  
always provided (while CS is low), as all commands  
will abort if the number of clocks provided is not a  
multiple of 16.  
5.4  
Daisy-Chain Configuration  
Multiple MCP42XXX devices can be connected in a  
daisy-chain configuration, as shown in Figure 5-4, by  
connecting the SO pin from one device to the SI pin on  
the next device. The data on the SO pin is the output of  
the 16-bit shift register. The daisy-chain configuration  
allows the system designer to communicate with sev-  
eral devices without using a separate CS line for each  
device. The example shows a daisy-chain configura-  
tion with three devices, although any number of  
devices (with or without the same resistor values) can  
be configured this way. While it is not possible to use a  
MCP41XXX at the beginning or middle of a daisy-chain  
(because it does not provide the serial data out (SO)  
pin), it is possible to use the device at the end of a  
chain. As shown in the timing diagram in Figure 5-3,  
data will be clocked-out of the SO pin on the falling  
edge of the clock. The SO pin has a CMOS push-pull  
output and will drive low when CS goes high. SO will  
not go to a high-impedance state when CS is held high.  
When using the daisy-chain configuration, the maxi-  
mum clock speed possible is reduced to ~5.8 MHz,  
because of the propagation delay of the data coming  
out of the SO pin.  
Data Registers for all  
devices are loaded  
on Rising Edge of CS  
CS  
1 2 3 4 5 6 7 8 9 10111213141516  
1 2 3 4 5 6 7 8 9 10111213141516 1 2 3 4 5 6 7 8 9 10111213141516  
SCK  
Command Byte  
for Device 3  
Data Byte  
Command Byte  
for Device 2  
Data Byte  
Command Byte  
for Device 1  
Data Byte  
for Device 3  
for Device 2  
for Device 1  
X X C C X X P P D D D D D D D D  
X X C C X X P P D D D D D D D D  
X X C C X X P P D D D D D D D D  
SI  
Command and Data for Device 3  
Command and Data for Device 2  
start shifting out after the first 16 clocks  
start shifting out after the first 32 clocks  
First 16 bits shifted out  
will always be zeros  
SO  
X X C C X X P P D D D D D D D D  
X X C C X X P P D D D D D D D D  
There must always be multiples of 16 clocks while CS is low or commands will abort.  
The serial data out pin (SO) is only available on the MCP42XXX device.  
FIGURE 5-3:  
Timing Diagram for Daisy-Chain Configuration.  
2003 Microchip Technology Inc.  
DS11195C-page 19  
 
MCP41XXX/42XXX  
CS  
SCK  
SO  
Microcontroller  
CS  
SCK  
SI  
CS  
SCK  
SI  
SO  
CS  
SCK  
SI  
Device 1  
SO  
EXAMPLE:  
Device 2  
If you want to load the following  
command/data into each part  
in the chain.  
Device 3*  
Device 1  
Device 2  
XX10XX11 11001100  
Device 3  
XX01XX10 11110000  
XX10XX00 10101010  
After 16 clocks, Device 2 and  
Device 3 will both have all  
zeros clocked in from the  
previous part’s shift register.  
c
Start by setting CS low and  
clocking in the command and  
data that will end up in Device  
3 (16 clocks).  
Device 1  
Device 2  
XX10XX00 10101010  
Device 3  
00000000 00000000  
00000000 00000000  
After 32 clocks, Device 2 has  
the data previously loaded  
into Device 1 and Device 3  
gets 16 more zeros.  
d
Clock-In the command and  
data for Device 2 (16 more  
clocks). The data that was pre-  
viously loaded gets shifted to  
the next device on the chain.  
Device 1  
Device 2  
XX01XX10 11110000  
Device 3  
XX10XX00 10101010  
00000000 00000000  
e
After 48 clocks, all 3 devices  
have the proper command/  
data loaded into their shift  
registers.  
Clock-In the data for Device 1  
(16 more clocks). The data that  
was previously loaded into  
Device 1 gets shifted into  
Device 2 and Device 3 contains  
the first byte loaded. Raise the  
CS line to execute the com-  
mands for all 3 devices at the  
same time.  
Device 1  
Device 2  
XX10XX11 11001100  
Device 3  
XX01XX10 11110000  
XX10XX00 10101010  
* Last device on a daisy-chain may be a single channel MCP41XXX device.  
FIGURE 5-4:  
Daisy-Chain Configuration.  
DS11195C-page 20  
2003 Microchip Technology Inc.  
MCP41XXX/42XXX  
5.5  
Reset (RS) Pin Operation  
TABLE 5-1:  
TRUTH TABLE FOR LOGIC  
INPUTS  
The Reset pin (RS) will automatically set all potentiom-  
eter data latches to mid-scale (Code 80h) when pulled  
low (provided that the pin is held low at least 150 ns  
and CS is high). The reset will execute regardless of  
the position of the SCK, SHDN and SI pins. It is possi-  
ble to toggle RS low and back high while SHDN is low.  
In this case, the potentiometer registers will reset to  
mid-scale, but the potentiometer will remain in  
shutdown mode until the SHDN pin is raised.  
SCK CS RS SHDN  
Action  
X
Ø
H
H
Communication is initiated with  
device. Device comes out of  
standby mode.  
L
L
H
H
No action. Device is waiting for  
data to be clocked into shift  
register or CS to go high to  
execute command.  
¦
L
L
H
H
X
X
Shift one bit into shift register.  
The shift register can be loaded  
while the SHDN pin is low.  
Shift one bit out of shift register  
on the SO pin. The SO pin is  
active while the SHDN pin is  
low.  
Note:  
Bringing the RS pin low while the CS pin is  
low constitutes an invalid operating state  
and will result in indeterminate results  
when RS and/or CS are brought high.  
Ø
5.6  
Shutdown (SHDN) Pin Operation  
When held low, the shutdown pin causes the applica-  
tion circuit to go into a power-saving mode by open-cir-  
cuiting the A terminal and shorting the B and W  
terminals for all potentiometers. Data register contents  
are not affected by entering shutdown mode (i.e., when  
the SHDN pin is raised, the data register contents are  
the same as before the shutdown mode was entered).  
X
¦
H
H
Based on command bits, either  
load data from shift register into  
data latches or execute shut-  
down command. Neither com-  
mand executed unless  
multiples of 16 clocks have  
been entered while CS is low.  
SO pin goes to a logic low.  
While in shutdown mode, it is still possible to clock in  
new values for the data registers, as well as toggling  
the RS pin to cause all data registers to go to mid-scale.  
The new values will take affect when the SHDN pin is  
raised.  
If the device is powered-up with the SHDN pin held low,  
it will power-up in the shutdown mode with the data reg-  
isters set to mid-scale.  
X
X
H
H
H
Ø
H
H
Static Operation.  
All data registers set and  
latched to code 80h.  
X
X
X
H
H
H
Ø
H
H
L
Ø
¦
All data registers set and  
latched to code 80h. Device is  
in hardware shutdown mode  
and will remain in this mode.  
All potentiometers put into  
hardware shutdown mode;  
terminal A is open and W is  
shorted to B.  
Note:  
Bringing the SHDN pin low while the CS  
pin is low constitutes an invalid operating  
state and will result in indeterminate  
results when SHDN and/or CS are brought  
high.  
All potentiometers exit hard-  
ware shutdown mode. Potenti-  
ometers will also exit software  
shutdown mode if this rising  
edge occurs after a low pulse  
on CS. Contents of data  
5.7  
Power-up Considerations  
latches are restored.  
When the device is powered on, the data registers will  
be set to mid-scale (80h). A power-on reset circuit is  
utilized to ensure that the device powers up in this  
known state.  
2003 Microchip Technology Inc.  
DS11195C-page 21  
MCP41XXX/42XXX  
5.8  
Using the MCP41XXX/42XXX in  
SPI Mode 1,1  
It is possible to operate the devices in SPI modes 0,0  
and 1,1. The only difference between these two modes  
is that, when using mode 1,1, the clock idles in the high  
state, while in mode 0,0, the clock idles in the low state.  
In both modes, data is clocked into the devices on the  
rising edge of SCK and data is clocked out the SO pin  
once the falling edge of SCK. Operations using mode  
0,0 are shown in Figure 5-1. The example in  
Figure 5-5 shows mode 1,1.  
Data is always latched in  
on the rising edge of SCK.  
Data is always clocked out the SO  
pin after the falling edge of SCK.  
Data Registers are  
loaded on rising  
CS†  
edge of CS. Shift  
register is loaded  
with zeros at this time.  
1
2
3
4
5
6
7
8
9
10  
11 12 13 14 15 16  
SCK  
COMMAND BYTE  
DATA BYTE  
Don’t  
Don’t  
Care  
Bits  
Channel  
Select  
Bits  
Care  
Bits  
Command  
Bits  
New Register Data  
X
X
P1*  
P0  
X
C0  
X
D7 D6 D5 D4 D3 D2 D1 D0  
C1  
SI  
SO pin will always  
drive low when CS  
goes high.  
First 16 bits Shifted out will always be zeros  
X
SO‡  
There must always be multiples of 16 clocks while CS is low or commands will abort.  
The serial data out pin (SO) is only available on the MCP42XXX device.  
FIGURE 5-5:  
Timing Diagram for SPI Mode 1,1 Operation.  
DS11195C-page 22  
2003 Microchip Technology Inc.  
 
MCP41XXX/42XXX  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
8-Lead PDIP (300 mil)  
Example:  
XXXXXXXX  
XXXXXNNN  
MCP41010  
I/P256  
YYWW  
0313  
8-Lead SOIC (150 mil)  
Example:  
XXXXXXXX  
XXXXYYWW  
MCP41050  
I/SN0313  
NNN  
256  
14-Lead PDIP (300 mil)  
Example:  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
MCP42010  
I/P  
YYWWNNN  
0313256  
14-Lead SOIC (150 mil)  
Example:  
42050ISL  
XXXXXXXXXXX  
XXXXXXXXXXX  
XXXXXXXXXXX  
YYWWNNN  
0313256  
14-Lead TSSOP (4.4mm) *  
Example:  
XXXXXXXX  
YYWW  
42100I  
0313  
256  
NNN  
Legend: XX...X Customer specific information*  
YY  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard marking consists of Microchip part number, year code, week code, facility code, mask rev#,  
and assembly code.  
2003 Microchip Technology Inc.  
DS11195C-page 23  
MCP41XXX/42XXX  
8-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
β
B1  
B
p
eB  
Units  
Dimension Limits  
INCHES*  
NOM  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
8
MAX  
n
p
A
A2  
A1  
E
E1  
D
L
c
B1  
B
eB  
α
β
Number of Pins  
Pitch  
8
.100  
.155  
.130  
2.54  
3.94  
3.30  
Top to Seating Plane  
.140  
.170  
.145  
3.56  
2.92  
4.32  
3.68  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
Tip to Seating Plane  
Lead Thickness  
.115  
.015  
.300  
.240  
.360  
.125  
.008  
.045  
.014  
.310  
5
0.38  
7.62  
6.10  
9.14  
3.18  
0.20  
1.14  
0.36  
7.87  
5
.313  
.250  
.373  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.385  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
9.46  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
9.78  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
Upper Lead Width  
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-018  
DS11195C-page 24  
2003 Microchip Technology Inc.  
MCP41XXX/42XXX  
8-Lead Plastic Small Outline (SN) – Narrow, 150 mil (SOIC)  
E
E1  
p
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
Dimension Limits  
INCHES*  
NOM  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
A
A2  
A1  
E
E1  
D
h
L
φ
Number of Pins  
Pitch  
8
8
.050  
.061  
.056  
.007  
.237  
.154  
.193  
.015  
.025  
4
1.27  
1.55  
1.42  
0.18  
6.02  
3.91  
4.90  
0.38  
0.62  
4
Overall Height  
.053  
.069  
1.35  
1.75  
Molded Package Thickness  
.052  
.004  
.228  
.146  
.189  
.010  
.019  
0
.061  
.010  
.244  
.157  
.197  
.020  
.030  
8
1.32  
0.10  
5.79  
3.71  
4.80  
0.25  
0.48  
0
1.55  
0.25  
6.20  
3.99  
5.00  
0.51  
0.76  
8
Standoff  
§
Overall Width  
Molded Package Width  
Overall Length  
Chamfer Distance  
Foot Length  
Foot Angle  
Lead Thickness  
Lead Width  
c
.008  
.013  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.33  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-057  
2003 Microchip Technology Inc.  
DS11195C-page 25  
MCP41XXX/42XXX  
14-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
B1  
β
eB  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
14  
MAX  
n
p
A
A2  
A1  
E
E1  
D
L
c
B1  
B
Number of Pins  
Pitch  
14  
.100  
.155  
.130  
2.54  
3.94  
3.30  
Top to Seating Plane  
.140  
.170  
.145  
3.56  
2.92  
0.38  
7.62  
6.10  
18.80  
3.18  
0.20  
1.14  
0.36  
7.87  
5
4.32  
3.68  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
.115  
.015  
.300  
.240  
.740  
.125  
.008  
.045  
.014  
.310  
5
.313  
.250  
.750  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.760  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
19.05  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
19.30  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
Tip to Seating Plane  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-005  
DS11195C-page 26  
2003 Microchip Technology Inc.  
MCP41XXX/42XXX  
14-Lead Plastic Small Outline (SL) – Narrow, 150 mil (SOIC)  
E
E1  
p
D
2
B
n
1
α
h
45°  
c
A2  
A
φ
A1  
L
β
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
A
A2  
A1  
E
E1  
D
Number of Pins  
Pitch  
14  
14  
.050  
.061  
.056  
.007  
.236  
.154  
.342  
.015  
.033  
4
1.27  
1.55  
1.42  
0.18  
5.99  
3.90  
8.69  
0.38  
0.84  
4
Overall Height  
.053  
.069  
1.35  
1.75  
Molded Package Thickness  
.052  
.004  
.228  
.150  
.337  
.010  
.016  
0
.061  
.010  
.244  
.157  
.347  
.020  
.050  
8
1.32  
0.10  
5.79  
3.81  
8.56  
0.25  
0.41  
0
1.55  
0.25  
6.20  
3.99  
8.81  
0.51  
1.27  
8
Standoff  
§
Overall Width  
Molded Package Width  
Overall Length  
Chamfer Distance  
Foot Length  
Foot Angle  
Lead Thickness  
Lead Width  
h
L
φ
c
B
α
.008  
.014  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.36  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-065  
2003 Microchip Technology Inc.  
DS11195C-page 27  
MCP41XXX/42XXX  
14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm (TSSOP)  
E
E1  
p
D
2
1
n
B
α
A
c
φ
A1  
A2  
β
L
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
14  
MAX  
n
p
A
Number of Pins  
Pitch  
14  
.026  
0.65  
Overall Height  
.043  
1.10  
0.95  
0.15  
6.50  
4.50  
5.10  
0.70  
8
Molded Package Thickness  
A2  
A1  
E
E1  
D
L
φ
c
.033  
.002  
.246  
.169  
.193  
.020  
0
.035  
.004  
.251  
.173  
.197  
.024  
4
.037  
.006  
.256  
.177  
.201  
.028  
8
0.85  
0.05  
6.25  
4.30  
4.90  
0.50  
0
0.90  
0.10  
6.38  
4.40  
5.00  
0.60  
4
Standoff  
§
Overall Width  
Molded Package Width  
Molded Package Length  
Foot Length  
Foot Angle  
Lead Thickness  
Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
.004  
.007  
0
.006  
.010  
5
.008  
.012  
10  
0.09  
0.19  
0
0.15  
0.25  
5
0.20  
0.30  
10  
B
α
β
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.005” (0.127mm) per side.  
JEDEC Equivalent: MO-153  
Drawing No. C04-087  
DS11195C-page 28  
2003 Microchip Technology Inc.  
MCP41XXX/42XXX  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
X
/XX  
a)  
b)  
c)  
MCP41010-I/SN:  
MCP41010-E/P:  
I-Temp., 8LD SOIC pkg.  
E-Temp., 8LD PDIP pkg.  
Device  
Temperature  
Range  
Package  
MCP41010T-I/SN: Tape and Reel, I-Temp.,  
8LD SOIC pkg.  
d)  
e)  
f)  
MCP41050-E/SN: E-Temp., 8LD SOIC pkg.  
MCP41050-I/P:  
I-Temp., 8LD PDIP pkg.  
Device:  
MCP41010: Single Digital Potentiometer (10 k)  
MCP41010T: Single Digital Potentiometer (10 k)  
(Tape and Reel)  
MCP41050-E/SN: E-Temp., 8LD SOIC pkg.  
g)  
MCP41100-I/SN:  
I-Temp., 8LD SOIC  
package.  
E-Temp., 8LD PDIP pkg.  
MCP41050: Single Digital Potentiometer (50 k)  
(Tape and Reel)  
h)  
i)  
MCP41100-E/P:  
MCP41100T-I/SN: I-Temp., 8LD SOIC pkg.  
MCP41050T: Single Digital Potentiometer (50 k)  
MCP41100: Single Digital Potentiometer (100 k)  
(Tape and Reel)  
a)  
b)  
c)  
MCP42010-E/P:  
MCP42010-I/SL:  
E-Temp., 14LD PDIP pkg.  
I-Temp., 14LD SOIC pkg.  
MCP41100T: Single Digital Potentiometer (100 k)  
MCP42010-E/ST: E-Temp., 14LD TSSOP  
pkg.  
MCP42010: Dual Digital Potentiometer (10 k)  
MCP42010T: Dual Digital Potentiometer (10 k)  
(Tape and Reel)  
d)  
MCP42010T-I/ST: Tape and Reel, I-Temp.,  
14LD TSSOP pkg.  
MCP42050: Dual Digital Potentiometer (50 k)  
MCP42050T: Dual Digital Potentiometer (50 k)  
(Tape and Reel)  
e)  
f)  
MCP42050-E/P:  
E-Temp., 14LD PDIP pkg.  
MCP42050T-I/SL: Tape and Reel, I-Temp.,  
14LD SOIC pkg.  
MCP42100: Dual Digital Potentiometer (100 k)  
MCP42100T: Dual Digital Potentiometer (100 k)  
(Tape and Reel)  
g)  
h)  
MCP42050-E/SL: E-Temp., 14LD SOIC pkg.  
MCP42050-I/ST:  
I-Temp., 14LD TSSOP  
pkg.  
i)  
j)  
MCP42050T-I/SL: Tape and Reel, I-Temp.,  
14LD SOIC pkg.  
Temperature Range:  
Package:  
I
=
=
-40°C to +85°C  
-40°C to +125°C  
E
MCP42050T-I/ST: Tape and Reel, I-Temp.,  
14LD TSSOP pkg.  
k)  
l)  
MCP42100-E/P:  
MCP42100-I/SL:  
E-Temp., 14LD PDIP pkg.  
I-Temp., 14LD SOIC pkg.  
P
=
=
=
=
Plastic DIP (300 mil Body), 8-lead, 14-lead  
Plastic SOIC (150 mil Body), 8-lead  
Plastic SOIC (150 mil Body), 14-lead  
TSSOP (4.4mm Body), 14-lead  
SN  
SL  
ST  
m) MCP42100-E/ST: E-Temp., 14LD TSSOP  
pkg.  
n)  
MCP42100T-I/SL: Tape and Reel, I-Temp.,  
14LD SOIC pkg.  
MCP42100T-I/ST: Tape and Reel, I-Temp.,  
14LD TSSOP pkg.  
o)  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and  
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2003 Microchip Technology Inc.  
DS11195C-page 29  
MCP41XXX/42XXX  
NOTES:  
DS11195C-page 30  
2003 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical  
components in life support systems is not authorized except  
with express written approval by Microchip. No licenses are  
conveyed, implicitly or otherwise, under any intellectual  
property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, MPLAB, PIC, PICmicro, PICSTART, PRO MATE and  
PowerSmart are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL  
and The Embedded Control Solutions Company are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Accuron, Application Maestro, dsPICDEM, dsPICDEM.net,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-  
Circuit Serial Programming, ICSP, ICEPIC, microPort,  
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,  
PICC, PICkit, PICDEM, PICDEM.net, PowerCal, PowerInfo,  
PowerMate, PowerTool, rfLAB, rfPIC, Select Mode,  
SmartSensor, SmartShunt, SmartTel and Total Endurance are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2003, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999  
and Mountain View, California in March 2002.  
The Company’s quality system processes and  
procedures are QS-9000 compliant for its  
®
PICmicro 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals,  
non-volatile memory and analog products. In  
addition, Microchip’s quality system for the  
design and manufacture of development  
systems is ISO 9001 certified.  
2003 Microchip Technology Inc.  
DS11195C-page 31  
M
WORLDWIDE SALES AND SERVICE  
Korea  
AMERICAS  
ASIA/PACIFIC  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Australia  
Tel: 82-2-554-7200 Fax: 82-2-558-5932 or  
82-2-558-5934  
Fax: 480-792-7277  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Singapore  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
200 Middle Road  
China - Beijing  
#07-02 Prime Centre  
Singapore, 188980  
Unit 915  
Atlanta  
Bei Hai Wan Tai Bldg.  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100  
Fax: 86-10-85282104  
3780 Mansell Road, Suite 130  
Alpharetta, GA 30022  
Tel: 770-640-0034  
Fax: 770-640-0307  
Tel: 65-6334-8870 Fax: 65-6334-8850  
Taiwan  
Kaohsiung Branch  
30F - 1 No. 8  
Boston  
Min Chuan 2nd Road  
Kaohsiung 806, Taiwan  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
China - Chengdu  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848  
Fax: 978-692-3821  
Rm. 2401-2402, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
Taiwan  
Chengdu 610016, China  
Tel: 86-28-86766200  
Taiwan Branch  
Chicago  
11F-3, No. 207  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 630-285-0071  
Fax: 630-285-0075  
Fax: 86-28-86766599  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
China - Fuzhou  
Unit 28F, World Trade Plaza  
No. 71 Wusi Road  
Dallas  
Fuzhou 350001, China  
Tel: 86-591-7503506  
Fax: 86-591-7503521  
EUROPE  
Austria  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
Tel: 972-818-7423  
Fax: 972-818-2924  
Durisolstrasse 2  
China - Hong Kong SAR  
A-4600 Wels  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Austria  
Detroit  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
Denmark  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250  
Fax: 852-2401-3431  
Regus Business Centre  
Lautrup hoj 1-3  
China - Shanghai  
Fax: 248-538-2260  
Room 701, Bldg. B  
Ballerup DK-2750 Denmark  
Tel: 45-4420-9895 Fax: 45-4420-9910  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Kokomo  
France  
2767 S. Albright Road  
Kokomo, IN 46902  
Tel: 765-864-8360  
Fax: 765-864-8387  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Tel: 86-21-6275-5700  
Fax: 86-21-6275-5060  
China - Shenzhen  
Los Angeles  
Rm. 1812, 18/F, Building A, United Plaza  
No. 5022 Binhe Road, Futian District  
Shenzhen 518033, China  
Tel: 86-755-82901380  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Germany  
Tel: 949-263-1888  
Steinheilstrasse 10  
D-85737 Ismaning, Germany  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Fax: 949-263-1338  
Fax: 86-755-8295-1393  
Phoenix  
China - Shunde  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966  
Fax: 480-792-4338  
Room 401, Hongjian Building  
No. 2 Fengxiangnan Road, Ronggui Town  
Shunde City, Guangdong 528303, China  
Tel: 86-765-8395507 Fax: 86-765-8395571  
Italy  
Via Quasimodo, 12  
20025 Legnano (MI)  
Milan, Italy  
China - Qingdao  
San Jose  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Netherlands  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950  
Rm. B505A, Fullhope Plaza,  
No. 12 Hong Kong Central Rd.  
Qingdao 266071, China  
Fax: 408-436-7955  
Tel: 86-532-5027355 Fax: 86-532-5027205  
P. A. De Biesbosch 14  
NL-5152 SC Drunen, Netherlands  
Tel: 31-416-690399  
India  
Toronto  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
Japan  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699  
Fax: 31-416-690340  
United Kingdom  
505 Eskdale Road  
Fax: 905-673-6509  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
07/28/03  
DS11195C-page 32  
2003 Microchip Technology Inc.  
This datasheet has been download from:  
www.datasheetcatalog.com  
Datasheets for electronics components.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY