MCP4231-103I/SN [MICROCHIP]

7/8-Bit Single/Dual SPI Digital POT with Volatile Memory; 7/8位单/双SPI数字电位器具有易失性存储器
MCP4231-103I/SN
型号: MCP4231-103I/SN
厂家: MICROCHIP    MICROCHIP
描述:

7/8-Bit Single/Dual SPI Digital POT with Volatile Memory
7/8位单/双SPI数字电位器具有易失性存储器

转换器 电位器 数字电位计 存储 光电二极管
文件: 总88页 (文件大小:2525K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP413X/415X/423X/425X  
7/8-Bit Single/Dual SPI Digital POT with Volatile Memory  
Features  
Description  
• Single or Dual Resistor Network options  
• Potentiometer or Rheostat configuration options  
• Resistor Network Resolution  
- 7-bit: 128 Resistors (129 Steps)  
- 8-bit: 256 Resistors (257 Steps)  
• RAB Resistances options of:  
- 5 k  
The MCP41XX and MCP42XX devices offer a wide  
range of product offerings using an SPI interface. This  
family of devices support 7-bit and 8-bit resistor  
networks, and Potentiometer and Rheostat pinouts.  
Package Types (top view)  
MCP41X1  
MCP41X2  
Single Potentiometer  
- 10 kΩ  
Single Rheostat  
- 50 kΩ  
CS  
SCK  
SDI  
CS  
SCK  
SDI/SDO  
1
2
3
4
VDD  
P0B  
P0W  
P0A  
1
2
3
4
V
DD  
8
7
6
5
8
7
6
5
SDO  
P0B  
P0W  
- 100 kΩ  
• Zero Scale to Full-Scale Wiper operation  
• Low Wiper Resistance: 75(typical)  
• Low Tempco:  
VSS  
V
SS  
PDIP, SOIC, MSOP  
PDIP, SOIC, MSOP  
- Absolute (Rheostat): 50 ppm typical  
(0°C to 70°C)  
CS  
CS  
VDD  
1
2
8 VDD  
1
2
8
7
SCK  
SDI/SDO  
VSS  
P0B SCK  
SDO  
7
EP  
9
EP  
9
- Ratiometric (Potentiometer): 15 ppm typical  
• SPI Serial Interface (10 MHz, modes 0,0 & 1,1)  
- High-Speed Read/Writes to wiper registers  
- SDI/SDO multiplexing (MCP41X1 only)  
P0W  
P0A  
SDI  
VSS  
P0B  
3
4
6
5
3
4
6
5
P0W  
3x3 DFN*  
3x3 DFN*  
• Resistor Network Terminal Disconnect Feature  
via:  
MCP42X1 Dual Potentiometers  
- Shutdown pin (SHDN)  
- Terminal Control (TCON) Register  
• Brown-out reset protection (1.5V typical)  
• Serial Interface Inactive current (2.5 uA typical)  
• High-Voltage Tolerant Digital Inputs: Up to 12.5V  
• Supports Split Rail Applications  
16 15 14 13  
VDD  
SDO  
CS  
SCK  
SDI  
14  
13  
1
2
3
4
5
6
7
SCK  
SDI  
VSS  
VSS  
WP  
1
12  
11  
10  
9
12 SHDN  
NC  
2
3
4
EP  
17  
VSS  
WP  
11  
10  
9
P0B  
P0W  
P0B  
P0W  
P0A  
P1B  
P1W  
P1A  
• Internal weak pull-up on all digital inputs  
• Wide Operating Voltage:  
8
5
6
7
8
PDIP, SOIC, TSSOP  
- 2.7V to 5.5V - Device Characteristics  
Specified  
4x4 QFN*  
MCP42X2 Dual Rheostat  
- 1.8V to 5.5V - Device Operation  
• Wide Bandwidth (-3 dB) Operation:  
- 2 MHz (typical) for 5.0 kdevice  
CS  
V
DD  
1
2
10  
9
VDD  
CS  
SCK  
SDI  
10  
9
1
2
3
4
5
• Extended temperature range (-40°C to +125°C)  
SDO  
P0B  
P0W  
P1W  
SCK  
SDO  
EP  
11  
8
SDI  
VSS  
P0B  
P0W  
P1W  
3
4
8
7
6
VSS  
7
6
P1B  
P1B 5  
MSOP, DFN  
3x3 DFN*  
* Includes Exposed Thermal Pad (EP); see Table 3-1.  
© 2008 Microchip Technology Inc.  
DS22060B-page 1  
MCP413X/415X/423X/425X  
Device Block Diagram  
VDD  
VSS  
Power-up/  
Brown-out  
Control  
P0A  
Resistor  
Network 0  
(Pot 0)  
P0W  
Wiper 0  
& TCON  
Register  
CS  
SCK  
SDI  
SPI Serial  
Interface  
Module &  
Control  
P0B  
P1A  
SDO  
Logic  
(WiperLock™  
Technology)  
Resistor  
Network 1  
(Pot 1)  
NC  
SHDN  
P1W  
P1B  
For Dual Potentiometer  
Devices Only  
Wiper 1  
& TCON  
Register  
Memory (4x9)  
Wiper0  
Wiper1  
TCON  
STATUS  
For Dual Resistor Network  
Devices Only  
Device Features  
Resistance (typical)  
VDD  
Wiper  
Configuration  
Wiper  
Device  
Operating  
Range (2)  
R
AB Options (k)  
- RW  
()  
MCP4131 (3)  
MCP4132 (3)  
MCP4141  
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
Potentiometer(1) SPI RAM No Mid-Scale 5.0, 10.0, 50.0, 100.0  
Rheostat SPI RAM No Mid-Scale 5.0, 10.0, 50.0, 100.0  
Potentiometer(1) SPI  
Rheostat SPI  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
129 1.8V to 5.5V  
129 1.8V to 5.5V  
129 2.7V to 5.5V  
129 2.7V to 5.5V  
257 1.8V to 5.5V  
257 1.8V to 5.5V  
257 2.7V to 5.5V  
257 2.7V to 5.5V  
129 1.8V to 5.5V  
129 1.8V to 5.5V  
129 2.7V to 5.5V  
129 2.7V to 5.5V  
257 1.8V to 5.5V  
257 1.8V to 5.5V  
257 2.7V to 5.5V  
257 2.7V to 5.5V  
EE  
EE  
Yes NV Wiper 5.0, 10.0, 50.0, 100.0  
Yes NV Wiper 5.0, 10.0, 50.0, 100.0  
MCP4142  
MCP4151 (3)  
MCP4152 (3)  
MCP4161  
Potentiometer(1) SPI RAM No Mid-Scale 5.0, 10.0, 50.0, 100.0  
Rheostat SPI RAM No Mid-Scale 5.0, 10.0, 50.0, 100.0  
Potentiometer(1) SPI  
Rheostat SPI  
EE  
EE  
Yes NV Wiper 5.0, 10.0, 50.0, 100.0  
Yes NV Wiper 5.0, 10.0, 50.0, 100.0  
MCP4162  
MCP4231 (3)  
MCP4232 (3)  
MCP4241  
Potentiometer(1) SPI RAM No Mid-Scale 5.0, 10.0, 50.0, 100.0  
Rheostat SPI RAM No Mid-Scale 5.0, 10.0, 50.0, 100.0  
Potentiometer(1) SPI  
Rheostat SPI  
EE  
EE  
Yes NV Wiper 5.0, 10.0, 50.0, 100.0  
Yes NV Wiper 5.0, 10.0, 50.0, 100.0  
MCP4242  
MCP4251 (3)  
MCP4252 (3)  
MCP4261  
Potentiometer(1) SPI RAM No Mid-Scale 5.0, 10.0, 50.0, 100.0  
Rheostat SPI RAM No Mid-Scale 5.0, 10.0, 50.0, 100.0  
Potentiometer(1) SPI  
Rheostat SPI  
EE  
EE  
Yes NV Wiper 5.0, 10.0, 50.0, 100.0  
Yes NV Wiper 5.0, 10.0, 50.0, 100.0  
MCP4262  
Note 1: Floating either terminal (A or B) allows the device to be used as a Rheostat (variable resistor).  
2: Analog characteristics only tested from 2.7V to 5.5V unless otherwise noted.  
3: Please check Microchip web site for device release and availability.  
DS22060B-page 2  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
Voltage on VDD with respect to VSS ............... -0.6V to +7.0V  
Voltage on CS, SCK, SDI, SDI/SDO, and  
may affect device reliability.  
SHDN with respect to VSS ...................................... -0.6V to 12.5V  
Voltage on all other pins (PxA, PxW, PxB, and  
SDO) with respect to VSS ............................ -0.3V to VDD + 0.3V  
Input clamp current, IIK  
(VI < 0, VI > VDD, VI > VPP ON HV pins)......................±20 mA  
Output clamp current, IOK  
(VO < 0 or VO > VDD) ..................................................±20 mA  
Maximum output current sunk by any Output pin  
......................................................................................25 mA  
Maximum output current sourced by any Output pin  
......................................................................................25 mA  
Maximum current out of VSS pin .................................100 mA  
Maximum current into VDD pin ....................................100 mA  
Maximum current into PXA, PXW & PXB pins ............±2.5 mA  
Storage temperature ....................................-65°C to +150°C  
Ambient temperature with power applied  
.....................................................................-40°C to +125°C  
Total power dissipation (Note 1) ................................400 mW  
Soldering temperature of leads (10 seconds).............+300°C  
ESD protection on all pins .................................. ≥ 4 kV (HBM),  
.......................................................................... 300V (MM)  
Maximum Junction Temperature (TJ) .........................+150°C  
Note 1: Power dissipation is calculated as follows:  
Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOl x IOL)  
© 2008 Microchip Technology Inc.  
DS22060B-page 3  
MCP413X/415X/423X/425X  
AC/DC CHARACTERISTICS  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (extended)  
DC Characteristics  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, 5 k, 10 k, 50 k, 100 kdevices.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Supply Voltage  
VDD  
2.7  
1.8  
5.5  
2.7  
V
V
V
Serial Interface only.  
CS, SDI, SDO,  
SCK, SHDN pin  
Voltage Range  
VHV  
VSS  
12.5V  
VDD  
4.5V  
The CS pin will be at one  
of three input levels  
(VIL, VIH or VIHH). (Note 6)  
VSS  
VDD  
8.0V  
+
V
V
VDD  
<
4.5V  
VDD Start Voltage  
to ensure Wiper  
Reset  
VBOR  
VDDRR  
TBORD  
1.65  
RAM retention voltage (VRAM) < VBOR  
VDD Rise Rate to  
ensure Power-on  
Reset  
(Note 9)  
V/ms  
µs  
Delay after device  
exits the reset  
state  
10  
20  
(VDD > VBOR  
)
Supply Current  
IDD  
450  
µA  
Serial Interface Active,  
(Note 10)  
VDD = 5.5V, CS = VIL, SCK @ 5 MHz,  
write all 0’s to volatile Wiper 0 (address  
0h)  
2.5  
5
1
µA  
Serial Interface Inactive,  
CS = VIH, VDD = 5.5V  
0.55  
mA  
Serial Interface Active,  
VDD = 5.5V, CS = VIHH  
,
SCK @ 5 MHz,  
decrement volatile Wiper 0 (address 0h)  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS  
.
3: MCP4XX1 only.  
4: MCP4XX2 only, includes VWZSE and VWFSE  
.
5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
6: This specification by design.  
7: Non-linearity is affected by wiper resistance (RW), which changes significantly over voltage and  
temperature.  
8: The MCP4XX1 is externally connected to match the configurations of the MCP41X2 and MCP42X2, and  
then tested.  
9: POR/BOR is not rate dependent.  
10: Supply current is independent of current through the resistor network.  
DS22060B-page 4  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
AC/DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (extended)  
DC Characteristics  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, 5 k, 10 k, 50 k, 100 kdevices.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
-502 devices (Note 1)  
Resistance  
(± 20%)  
RAB  
4.0  
8.0  
5
10  
6.0  
12.0  
60.0  
120.0  
kΩ  
kΩ  
kΩ  
kΩ  
-103 devices (Note 1)  
-503 devices (Note 1)  
-104 devices (Note 1)  
40.0  
80.0  
50  
100  
257  
129  
RAB  
Resolution  
N
Taps 8-bit  
Taps 7-bit  
No Missing Codes  
No Missing Codes  
Note 6  
Step Resistance  
RS  
/
8-bit  
(256)  
RAB  
(128)  
/
7-bit  
Note 6  
Nominal  
Resistance Match  
|RAB0 - RAB1  
/ RAB  
|
0.2  
1.25  
1.5  
%
%
MCP42X1 devices only  
|RBW0 - RBW1  
|
0.25  
MCP42X2 devices only,  
/ RBW  
Code = Full-Scale  
Wiper Resistance  
(Note 3, Note 4)  
RW  
75  
75  
160  
300  
VDD = 5.5 V, IW = 2.0 mA, code = 00h  
VDD = 2.7 V, IW = 2.0 mA, code = 00h  
Nominal  
Resistance  
Tempco  
ΔRAB/ΔT  
50  
ppm/°C TA = -20°C to +70°C  
ppm/°C TA = -40°C to +85°C  
ppm/°C TA = -40°C to +125°C  
ppm/°C Code = Midscale (80h or 40h)  
100  
150  
15  
Ratiometeric  
Tempco  
ΔVWB/ΔT  
Resistor Terminal  
Input Voltage  
Range (Terminals  
A, B and W)  
VA,VW,VB  
VSS  
VDD  
2.5  
V
Note 5, Note 6  
Maximum current  
through A, W or B  
IW  
mA  
Note 6, Worst case current through  
wiper when wiper is either Full-Scale or  
Zero Scale.  
Leakage current  
into A, W or B  
IWL  
100  
100  
nA  
nA  
MCP4XX1 PxA = PxW = PxB = VSS  
MCP4XX2 PxB = PxW = VSS  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS  
.
3: MCP4XX1 only.  
4: MCP4XX2 only, includes VWZSE and VWFSE  
.
5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
6: This specification by design.  
7: Non-linearity is affected by wiper resistance (RW), which changes significantly over voltage and  
temperature.  
8: The MCP4XX1 is externally connected to match the configurations of the MCP41X2 and MCP42X2, and  
then tested.  
9: POR/BOR is not rate dependent.  
10: Supply current is independent of current through the resistor network.  
© 2008 Microchip Technology Inc.  
DS22060B-page 5  
MCP413X/415X/423X/425X  
AC/DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (extended)  
DC Characteristics  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, 5 k, 10 k, 50 k, 100 kdevices.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Full-Scale Error  
(MCP4XX1 only)  
(8-bit code =  
100h,  
VWFSE  
-6.0  
-4.0  
-3.5  
-2.0  
-0.8  
-0.5  
-0.5  
-0.5  
-0.1  
-0.1  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
5 kΩ  
8-bit 3.0V VDD 5.5V  
7-bit 3.0V VDD 5.5V  
-0.1  
10 k8-bit 3.0V VDD 5.5V  
7-bit 3.0V VDD 5.5V  
-0.1  
7-bit code = 80h)  
-0.1  
50 k8-bit 3.0V VDD 5.5V  
7-bit 3.0V VDD 5.5V  
-0.1  
-0.1  
100 k8-bit 3.0V VDD 5.5V  
7-bit 3.0V VDD 5.5V  
-0.1  
Zero-Scale Error  
(MCP4XX1 only)  
(8-bit code = 00h,  
7-bit code = 00h)  
VWZSE  
+0.1  
+0.1  
+0.1  
+0.1  
+0.1  
+0.1  
+0.1  
+0.1  
±0.5  
±0.25  
+6.0  
+3.0  
+3.5  
+2.0  
+0.8  
+0.5  
+0.5  
+0.5  
+1  
5 kΩ  
8-bit 3.0V VDD 5.5V  
7-bit 3.0V VDD 5.5V  
10 k8-bit 3.0V VDD 5.5V  
7-bit 3.0V VDD 5.5V  
50 k8-bit 3.0V VDD 5.5V  
7-bit 3.0V VDD 5.5V  
100 k8-bit 3.0V VDD 5.5V  
7-bit 3.0V VDD 5.5V  
Potentiometer  
Integral  
Non-linearity  
INL  
DNL  
BW  
-1  
8-bit  
7-bit  
3.0V VDD 5.5V  
MCP4XX1 devices only  
(Note 2)  
-0.5  
+0.5  
Potentiometer  
Differential  
Non-linearity  
-0.5  
±0.25  
+0.5  
LSb  
LSb  
8-bit  
7-bit  
3.0V VDD 5.5V  
MCP4XX1 devices only  
(Note 2)  
-0.25  
±0.125  
+0.25  
Bandwidth -3 dB  
(See Figure 2-64,  
load = 30 pF)  
2
2
MHz 5 kΩ  
8-bit Code = 80h  
7-bit Code = 40h  
MHz  
1
MHz 10 k8-bit Code = 80h  
1
MHz  
kHz  
kHz  
kHz  
kHz  
7-bit Code = 40h  
50 k8-bit Code = 80h  
7-bit Code = 40h  
200  
200  
100  
100  
100 k8-bit Code = 80h  
7-bit Code = 40h  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS  
.
3: MCP4XX1 only.  
4: MCP4XX2 only, includes VWZSE and VWFSE  
.
5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
6: This specification by design.  
7: Non-linearity is affected by wiper resistance (RW), which changes significantly over voltage and  
temperature.  
8: The MCP4XX1 is externally connected to match the configurations of the MCP41X2 and MCP42X2, and  
then tested.  
9: POR/BOR is not rate dependent.  
10: Supply current is independent of current through the resistor network.  
DS22060B-page 6  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
AC/DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (extended)  
DC Characteristics  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, 5 k, 10 k, 50 k, 100 kdevices.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Rheostat Integral  
Non-linearity  
MCP41X1  
(Note 4, Note 8)  
MCP4XX2  
R-INL  
-1.5  
±0.5  
+4.5  
+1.5  
LSb  
LSb  
5 kΩ  
8-bit 5.5V, IW = 900 µA  
-8.25  
+8.25  
3.0V, IW = 480 µA  
(Note 7)  
Section 2.0  
1.8V  
-1.125  
-6.0  
±0.5  
+4.5  
+1.125  
+6.0  
LSb  
LSb  
7-bit 5.5V, IW = 900 µA  
devices only  
(Note 4)  
3.0V, IW = 480 µA  
(Note 7)  
Section 2.0  
1.8V  
-1.5  
-5.5  
±0.5  
+2.5  
+1.5  
+5.5  
LSb  
LSb  
10 k8-bit 5.5V, IW = 450 µA  
3.0V, IW = 240 µA  
(Note 7)  
Section 2.0  
1.8V  
-1.125  
-4.0  
±0.5  
+2.5  
+1.125  
+4.0  
LSb  
LSb  
7-bit 5.5V, IW = 450 µA  
3.0V, IW = 240 µA  
(Note 7)  
Section 2.0  
1.8V  
-1.5  
-2.0  
±0.5  
+1  
+1.5  
+2.0  
LSb  
LSb  
50 k8-bit 5.5V, IW = 90 µA  
3.0V, IW = 48 µA  
(Note 7)  
Section 2.0  
1.8V  
-1.125  
-1.5  
±0.5  
+1  
+1.125  
+1.5  
LSb  
LSb  
7-bit 5.5V, IW = 90 µA  
3.0V, IW = 48 µA  
(Note 7)  
Section 2.0  
1.8V  
-1.0  
-1.5  
±0.5  
+1.0  
+1.5  
LSb  
LSb  
100 k8-bit 5.5V, IW = 45 µA  
+0.25  
3.0V, IW = 24 µA  
(Note 7)  
Section 2.0  
1.8V  
-0.8  
±0.5  
+0.8  
+1.125  
LSb  
LSb  
7-bit 5.5V, IW = 45 µA  
-1.125  
+0.25  
3.0V, IW = 24 µA  
(Note 7)  
Section 2.0  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
1.8v  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS  
.
3: MCP4XX1 only.  
4: MCP4XX2 only, includes VWZSE and VWFSE  
.
5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
6: This specification by design.  
7: Non-linearity is affected by wiper resistance (RW), which changes significantly over voltage and  
temperature.  
8: The MCP4XX1 is externally connected to match the configurations of the MCP41X2 and MCP42X2, and  
then tested.  
9: POR/BOR is not rate dependent.  
10: Supply current is independent of current through the resistor network.  
© 2008 Microchip Technology Inc.  
DS22060B-page 7  
MCP413X/415X/423X/425X  
AC/DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (extended)  
DC Characteristics  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, 5 k, 10 k, 50 k, 100 kdevices.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Rheostat  
R-DNL  
-0.5  
-1.0  
±0.25  
+0.5  
+0.5  
+1.0  
LSb  
LSb  
5 kΩ  
8-bit 5.5V, IW = 900 µA  
3.0V (Note 7)  
1.8V  
Differential  
Non-linearity  
MCP41X1  
(Note 4, Note 8)  
MCP4XX2  
devices only  
(Note 4)  
Section 2.0  
-0.375  
-0.75  
±0.25  
+0.5  
+0.375  
+0.75  
LSb  
LSb  
7-bit 5.5V, IW = 900 µA  
3.0V (Note 7)  
1.8V  
Section 2.0  
-0.5  
-1.0  
±0.25  
+0.25  
+0.5  
+1.0  
LSb  
LSb  
10 k8-bit 5.5V, IW = 450 µA  
3.0V (Note 7)  
Section 2.0  
1.8V  
-0.375  
-0.75  
±0.25  
+0.5  
+0.375  
+0.75  
LSb  
LSb  
7-bit 5.5V, IW = 450 µA  
3.0V (Note 7)  
Section 2.0  
1.8V  
-0.5  
-0.5  
±0.25  
±0.25  
+0.5  
+0.5  
LSb  
LSb  
50 k8-bit 5.5V, IW = 90 µA  
3.0V (Note 7)  
Section 2.0  
1.8V  
-0.375  
-0.375  
±0.25  
±0.25  
+0.375  
+0.375  
LSb  
LSb  
7-bit 5.5V, IW = 90 µA  
3.0V (Note 7)  
Section 2.0  
1.8V  
-0.5  
-0.5  
±0.25  
±0.25  
+0.5  
+0.5  
LSb  
LSb  
100 k8-bit 5.5V, IW = 45 µA  
3.0V (Note 7)  
Section 2.0  
1.8V  
-0.375  
-0.375  
±0.25  
±0.25  
+0.375  
LSb  
LSb  
7-bit 5.5V, IW = 45 µA  
3.0V (Note 7)  
+0.375  
1.8V  
Capacitance (PA)  
Capacitance (Pw)  
Capacitance (PB)  
CAW  
CW  
75  
120  
75  
pF  
pF  
pF  
f =1 MHz, Code = Full-Scale  
f =1 MHz, Code = Full-Scale  
f =1 MHz, Code = Full-Scale  
CBW  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS  
.
3: MCP4XX1 only.  
4: MCP4XX2 only, includes VWZSE and VWFSE  
.
5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
6: This specification by design.  
7: Non-linearity is affected by wiper resistance (RW), which changes significantly over voltage and  
temperature.  
8: The MCP4XX1 is externally connected to match the configurations of the MCP41X2 and MCP42X2, and  
then tested.  
9: POR/BOR is not rate dependent.  
10: Supply current is independent of current through the resistor network.  
DS22060B-page 8  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
AC/DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (extended)  
DC Characteristics  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, 5 k, 10 k, 50 k, 100 kdevices.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Digital Inputs/Outputs (CS, SDI, SDO, SCK, SHDN)  
Schmitt Trigger  
High Input  
Threshold  
VIH  
0.45 VDD  
V
2.7V VDD 5.5V  
(Allows 2.7V Digital VDD with  
5V Analog VDD  
)
0.5 VDD  
V
V
1.8V VDD 2.7V  
Schmitt Trigger  
Low Input  
VIL  
0.2VDD  
Threshold  
Hysteresis of  
Schmitt Trigger  
Inputs  
VHYS  
0.1VDD  
V
High Voltage Limit  
VMAX  
VOL  
VSS  
12.5 (6)  
0.3VDD  
0.3VDD  
VDD  
V
V
Pin can tolerate VMAX or less.  
IOL = 5 mA, VDD = 5.5V  
IOL = 1 mA, VDD = 1.8V  
IOH = -2.5 mA, VDD = 5.5V  
IOL = -1 mA, VDD = 1.8V  
Output Low  
Voltage (SDO)  
VSS  
V
Output High  
Voltage (SDO)  
VOH  
IPU  
0.7VDD  
0.7VDD  
V
VDD  
V
Weak Pull-up /  
1.75  
mA  
Internal VDD pull-up, VIHH pull-down,  
VDD = 5.5V, VCS = 12.5V  
Pull-down Current  
170  
16  
µA  
CS pin, VDD = 5.5V, VCS = 3V  
VDD = 5.5V, VCS = 3V  
CS Pull-up /  
Pull-down  
RCS  
kΩ  
Resistance  
Input Leakage  
Current  
IIL  
-1  
1
µA  
pF  
VIN = VDD and VIN = VSS  
fC = 20 MHz  
Pin Capacitance  
RAM (Wiper) Value  
Value Range  
CIN, COUT  
10  
N
N
0h  
0h  
1FFh  
1FFh  
hex  
hex  
hex  
hex  
8-bit device  
7-bit device  
8-bit device  
7-bit device  
POR/BOR Value  
80h  
40h  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS  
.
3: MCP4XX1 only.  
4: MCP4XX2 only, includes VWZSE and VWFSE  
.
5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
6: This specification by design.  
7: Non-linearity is affected by wiper resistance (RW), which changes significantly over voltage and  
temperature.  
8: The MCP4XX1 is externally connected to match the configurations of the MCP41X2 and MCP42X2, and  
then tested.  
9: POR/BOR is not rate dependent.  
10: Supply current is independent of current through the resistor network.  
© 2008 Microchip Technology Inc.  
DS22060B-page 9  
MCP413X/415X/423X/425X  
AC/DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (extended)  
DC Characteristics  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, 5 k, 10 k, 50 k, 100 kdevices.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Power Requirements  
Power Supply  
Sensitivity  
(MCP41X2 and  
MCP42X2 only)  
PSS  
0.0015 0.0035  
0.0015 0.0035  
%/% 8-bit  
%/% 7-bit  
VDD = 2.7V to 5.5V,  
VA = 2.7V, Code = 80h  
VDD = 2.7V to 5.5V,  
VA = 2.7V, Code = 40h  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS  
.
3: MCP4XX1 only.  
4: MCP4XX2 only, includes VWZSE and VWFSE  
.
5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
6: This specification by design.  
7: Non-linearity is affected by wiper resistance (RW), which changes significantly over voltage and  
temperature.  
8: The MCP4XX1 is externally connected to match the configurations of the MCP41X2 and MCP42X2, and  
then tested.  
9: POR/BOR is not rate dependent.  
10: Supply current is independent of current through the resistor network.  
DS22060B-page 10  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
1.1  
SPI Mode Timing Waveforms and Requirements  
VIHH  
VIH  
VIH  
84  
CS  
VIL  
70  
72  
SCK  
83  
71  
80  
78  
79  
MSb  
LSb  
SDO  
SDI  
BIT6 - - - - - -1  
77  
75, 76  
MSb IN  
74  
BIT6 - - - -1  
LSb IN  
73  
FIGURE 1-1:  
SPI Timing Waveform (Mode = 11).  
TABLE 1-1:  
#
SPI REQUIREMENTS (MODE = 11)  
Characteristic  
Symbol  
Min  
Max Units  
Conditions  
SCK Input Frequency  
FSCK  
10  
1
MHz VDD = 2.7V to 5.5V  
MHz VDD = 1.8V to 2.7V  
ns  
70 CS Active (VIL or VIHH) to SCKinput  
71 SCK input high time  
TcsA2scH  
TscH  
60  
45  
500  
45  
500  
10  
20  
50  
70  
170  
ns VDD = 2.7V to 5.5V  
ns VDD = 1.8V to 2.7V  
ns VDD = 2.7V to 5.5V  
ns VDD = 1.8V to 2.7V  
ns  
72 SCK input low time  
TscL  
73 Setup time of SDI input to SCKedge  
74 Hold time of SDI input from SCKedge  
77 CS Inactive (VIH) to SDO output hi-impedance  
80 SDO data output valid after SCKedge  
TDIV2scH  
TscH2DIL  
TcsH2DOZ  
TscL2DOV  
ns  
ns Note 1  
ns VDD = 2.7V to 5.5V  
ns VDD = 1.8V to 2.7V  
ns VDD = 2.7V to 5.5V  
ms VDD = 1.8V to 2.7V  
ns  
83 CS Inactive (VIH) after SCKedge  
TscH2csI  
TcsA2csI  
100  
1
84 Hold time of CS Inactive (VIH) to  
50  
CS Active (VIL or VIHH  
)
Note 1: This specification by design.  
© 2008 Microchip Technology Inc.  
DS22060B-page 11  
MCP413X/415X/423X/425X  
VIHH  
VIH  
82  
VIH  
84  
CS  
VIL  
70  
SCK  
83  
80  
71  
72  
MSb  
BIT6 - - - - - -1  
LSb  
SDO  
SDI  
75, 76  
77  
73  
MSb IN  
74  
BIT6 - - - -1  
LSb IN  
FIGURE 1-2:  
SPI Timing Waveform (Mode = 00).  
TABLE 1-2:  
#
SPI REQUIREMENTS (MODE = 00)  
Characteristic  
Symbol  
Min  
Max Units  
Conditions  
SCK Input Frequency  
FSCK  
10  
1
MHz VDD = 2.7V to 5.5V  
MHz VDD = 1.8V to 2.7V  
ns  
70 CS Active (VIL or VIHH) to SCKinput  
71 SCK input high time  
TcsA2scH  
TscH  
60  
45  
500  
45  
500  
10  
20  
50  
70  
170  
70  
ns VDD = 2.7V to 5.5V  
ns VDD = 1.8V to 2.7V  
ns VDD = 2.7V to 5.5V  
ns VDD = 1.8V to 2.7V  
ns  
72 SCK input low time  
TscL  
73 Setup time of SDI input to SCKedge  
74 Hold time of SDI input from SCKedge  
77 CS Inactive (VIH) to SDO output hi-impedance  
80 SDO data output valid after SCKedge  
TDIV2scH  
TscH2DIL  
TcsH2DOZ  
TscL2DOV  
ns  
ns Note 1  
ns VDD = 2.7V to 5.5V  
ns VDD = 1.8V to 2.7V  
ns  
82 SDO data output valid after  
TssL2doV  
TscH2csI  
CS Active (VIL or VIHH  
)
83 CS Inactive (VIH) after SCKedge  
100  
1
ns VDD = 2.7V to 5.5V  
ms VDD = 1.8V to 2.7V  
ns  
84 Hold time of CS Inactive (VIH) to  
TcsA2csI  
50  
CS Active (VIL or VIHH  
)
Note 1: This specification by design.  
DS22060B-page 12  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
(2)  
TABLE 1-3:  
SPIREQUIREMENTSFORSDI/SDOMULTIPLEXED(READOPERATIONONLY)  
Characteristic  
Symbol  
Min  
Max Units  
Conditions  
SCK Input Frequency  
FSCK  
60  
1.8  
1.8  
40  
40  
250 kHz VDD = 2.7V to 5.5V  
CS Active (VIL or VIHH) to SCKinput  
SCK input high time  
TcsA2scH  
TscH  
ns  
us  
SCK input low time  
TscL  
ns  
Setup time of SDI input to SCKedge  
Hold time of SDI input from SCKedge  
CS Inactive (VIH) to SDO output hi-impedance  
SDO data output valid after SCKedge  
SDO data output valid after  
TDIV2scH  
TscH2DIL  
TcsH2DOZ  
TscL2DOV  
TssL2doV  
ns  
ns  
50  
1.6  
50  
ns Note 1  
us  
ns  
CS Active (VIL or VIHH  
)
CS Inactive (VIH) after SCKedge  
Hold time of CS Inactive (VIH) to  
TscH2csI  
TcsA2csI  
100  
50  
ns  
ns  
CS Active (VIL or VIHH  
)
Note 1: This specification by design.  
2: This table is for the devices where the SPI’s SDI and SDO pins are multiplexed (SDI/SDO) and a Read  
command is issued. This is NOT required for SDI/SDO operation with the Increment, Decrement, or Write  
commands. This data rate can be increased by having external pull-up resistors to increase the rising  
edges of each bit.  
© 2008 Microchip Technology Inc.  
DS22060B-page 13  
MCP413X/415X/423X/425X  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = +2.7V to +5.5V, VSS = GND.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 8L-DFN (3x3)  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 10L-DFN (3x3)  
Thermal Resistance, 10L-MSOP  
Thermal Resistance, 14L-PDIP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
Thermal Resistance, 16L-QFN  
TA  
TA  
TA  
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
84.5  
211  
89.3  
149.5  
57  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
211  
70  
95.3  
100  
47  
DS22060B-page 14  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
650  
600  
250  
200  
150  
100  
50  
1000  
800  
600  
400  
200  
0
2.7V -40°C  
2.7V 25°C  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
2.7V 85°C  
2.7V 125°C  
5.5V -40°C  
5.5V 25°C  
5.5V 85°C  
5.5V 125°C  
ICS  
-200  
-400  
-600  
-800  
-1000  
RCS  
0
0
0.00  
2.00  
4.00  
6.00  
fSCK (MHz)  
8.00 10.00 12.00  
2
3
4
5
6
7
8
9
10  
VCS (V)  
FIGURE 2-1:  
Frequency (f  
Device Current (I ) vs. SPI  
) and Ambient Temperature  
FIGURE 2-3:  
Resistance (R ) and Current (I ) vs. CS Input  
CS Pull-up/Pull-down  
DD  
SCK  
CS  
CS  
(V = 2.7V and 5.5V).  
Voltage (V ) (V = 5.5V).  
DD  
CS DD  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
12  
10  
8
5.5V Entry  
5.5V Exit  
5.5V  
2.7V Entry  
6
4
2.7V Exit  
2.7V  
2
0
-40  
25  
85  
125  
-40 -20  
0
20  
40  
60  
80  
100 120  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-2:  
Device Current (I  
) and  
FIGURE 2-4:  
CS High Input Entry/Exit  
SHDN  
V
. (CS = V ) vs. Ambient Temperature.  
Threshold vs. Ambient Temperature and V  
.
DD  
DD  
DD  
© 2008 Microchip Technology Inc.  
DS22060B-page 15  
MCP413X/415X/423X/425X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
120  
100  
80  
0.3  
0.2  
0.1  
0
120  
100  
80  
1.25  
0.75  
0.25  
-0.25  
-0.75  
-1.25  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
INL  
INL  
DNL  
60  
60  
-0.1  
-0.2  
-0.3  
DNL  
-40°C  
40  
40  
-40°C 25°C  
RW  
25°C  
85°C  
85°C  
RW  
125°C  
125°C  
20  
20  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
FIGURE 2-5:  
5 kΩ Pot Mode – R (Ω),  
FIGURE 2-8:  
5 kΩ Rheo Mode – R (Ω),  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 5.5V).  
Ambient Temperature (V = 5.5V).  
DD  
DD  
300  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
300  
0.3  
0.2  
0.1  
0
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
6
260  
220  
180  
140  
100  
60  
260  
220  
180  
140  
100  
60  
INL  
INL  
4
DNL  
2
RW  
RW  
125°C  
-0.1  
-0.2  
-0.3  
0
-40°C  
85°C  
25°C  
25°C  
DNL  
-40°C  
125°C 85°C  
20  
20  
-2  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
FIGURE 2-6:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 3.0V).  
5 kΩ Pot Mode – R (Ω),  
FIGURE 2-9:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 3.0V).  
5 kΩ Rheo Mode – R (Ω),  
W
W
DD  
DD  
118  
98  
78  
58  
38  
18  
-2  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
2500  
2000  
1500  
1000  
500  
2500  
2000  
1500  
1000  
500  
INL  
INL  
-0.1  
-0.2  
-0.3  
DNL  
DNL  
RW  
RW  
0
0
0
64  
128  
192  
256  
0
64  
128  
192  
256  
Wiper Setting (decimal)  
Wiper Setting (decimal)  
Note:  
Refer to AN1080 for additional informa-  
tion on the characteristics of the wiper  
resistance (RW) with respect to device  
voltage and wiper setting value.  
Note:  
Refer to AN1080 for additional informa-  
tion on the characteristics of the wiper  
resistance (RW) with respect to device  
voltage and wiper setting value.  
FIGURE 2-7:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 1.8V).  
5 kΩ Pot Mode – R (Ω),  
FIGURE 2-10:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 1.8V).  
5 kΩ Rheo Mode – R (Ω),  
W
W
DD  
DD  
DS22060B-page 16  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
6000  
5000  
4000  
3000  
2000  
1000  
0
5300  
5250  
5200  
5150  
5100  
5050  
2.7V  
5.5V  
-40°C  
25°C  
85°C  
125°C  
1.8V  
-40  
0
40  
80  
120  
0
32  
64  
96  
128 160 192 224 256  
Ambient Temperature (°C)  
Wiper Setting (decimal)  
FIGURE 2-11:  
5 kΩ – Nominal Resistance  
FIGURE 2-12:  
5 kΩ – R  
(Ω) vs. Wiper  
WB  
(Ω) vs. Ambient Temperature and V  
.
Setting and Ambient Temperature.  
DD  
© 2008 Microchip Technology Inc.  
DS22060B-page 17  
MCP413X/415X/423X/425X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
FIGURE 2-13:  
5 kΩ – Low-Voltage  
FIGURE 2-16:  
5 kΩ – Low-Voltage  
Decrement Wiper Settling Time (V = 5.5V)  
Increment Wiper Settling Time (V = 5.5V)  
DD  
DD  
(1 µs/Div).  
(1 µs/Div).  
FIGURE 2-14:  
5 kΩ – Low-Voltage  
FIGURE 2-17:  
5 kΩ – Low-Voltage  
Decrement Wiper Settling Time (V = 2.7V)  
Increment Wiper Settling Time (V = 2.7V)  
DD  
DD  
(1 µs/Div).  
(1 µs/Div).  
FIGURE 2-15:  
5 kΩ – Power-Up Wiper  
Response Time (20 ms/Div).  
DS22060B-page 18  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
120  
100  
80  
0.3  
0.2  
0.1  
0
120  
100  
80  
1
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
0.5  
0
INL  
INL  
DNL  
60  
60  
-0.1  
-0.2  
-0.3  
-0.5  
-1  
DNL  
40  
40  
-40°C  
RW  
-40°C  
25°C  
85°C  
85°C 25°C  
RW  
125°C  
125°C  
20  
20  
0
25 50 75 100 125 150 175 200 225 250  
Wiper Setting (decimal)  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
FIGURE 2-18:  
10 kΩ Pot Mode – R (Ω),  
FIGURE 2-21:  
10 kΩ Rheo Mode – R (Ω),  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 5.5V).  
Ambient Temperature (V = 5.5V).  
DD  
DD  
300  
4
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
300  
0.3  
0.2  
0.1  
0
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
260  
220  
180  
140  
100  
60  
3
260  
220  
180  
140  
100  
60  
INL  
INL  
DNL  
2
1
0
-0.1  
-0.2  
-0.3  
RW  
DNL  
RW  
-1  
-2  
-40°C  
-40°C  
25°C  
85°C 25°C  
85°C  
125°C  
125°C  
20  
20  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
0
25 50 75 100 125 150 175 200 225 250  
Wiper Setting (decimal)  
FIGURE 2-19:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 3.0V).  
10 kΩ Pot Mode – R (Ω),  
FIGURE 2-22:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 3.0V).  
10 kΩ Rheo Mode – R (Ω),  
W
W
DD  
DD  
98  
88  
78  
68  
58  
48  
38  
28  
18  
8
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
INL  
INL  
DNL  
-0.1  
-0.2  
-0.3  
RW  
64  
DNL  
RW  
0
0
-2  
0
64  
128  
192  
256  
0
128  
192  
256  
Wiper Setting (decimal)  
Wiper Setting (decimal)  
Note:  
Refer to AN1080 for additional informa-  
tion on the characteristics of the wiper  
resistance (RW) with respect to device  
voltage and wiper setting value.  
Note:  
Refer to AN1080 for additional informa-  
tion on the characteristics of the wiper  
resistance (RW) with respect to device  
voltage and wiper setting value.  
FIGURE 2-20:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 1.8V).  
10 kΩ Pot Mode – R (Ω),  
FIGURE 2-23:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 1.8V).  
10 kΩ Rheo Mode – R (Ω),  
W
W
DD  
DD  
© 2008 Microchip Technology Inc.  
DS22060B-page 19  
MCP413X/415X/423X/425X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
12000  
10000  
8000  
6000  
4000  
2000  
0
10300  
10250  
10200  
10150  
10100  
2.7V  
10050  
10000  
-40°C  
25°C  
85°C  
5.5V  
9950  
1.8V  
9900  
9850  
125°C  
-40  
0
40  
80  
120  
0
32  
64  
96 128 160 192 224 256  
Ambient Temperature (°C)  
Wiper Setting (decimal)  
FIGURE 2-24:  
10 kΩ – Nominal Resistance  
FIGURE 2-25:  
10 kΩ – R  
(Ω) vs. Wiper  
WB  
(Ω) vs. Ambient Temperature and V  
.
Setting and Ambient Temperature.  
DD  
DS22060B-page 20  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
FIGURE 2-26:  
10 kΩ – Low-Voltage  
FIGURE 2-28:  
10 kΩ – Low-Voltage  
Decrement Wiper Settling Time (V = 5.5V)  
Increment Wiper Settling Time (V = 5.5V)  
DD  
DD  
(1 µs/Div).  
(1 µs/Div).  
FIGURE 2-27:  
10 kΩ – Low-Voltage  
FIGURE 2-29:  
10 kΩ – Low-Voltage  
Decrement Wiper Settling Time (V = 2.7V)  
Increment Wiper Settling Time (V = 2.7V)  
DD  
DD  
(1 µs/Div).  
(1 µs/Div).  
© 2008 Microchip Technology Inc.  
DS22060B-page 21  
MCP413X/415X/423X/425X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
120  
100  
80  
0.3  
0.2  
0.1  
0
120  
100  
80  
0.3  
0.2  
0.1  
0
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
INL  
INL  
DNL  
DNL  
60  
60  
-0.1  
-0.2  
-0.3  
-0.1  
-0.2  
-0.3  
-40°C  
40  
40  
-40°C  
RW  
25°C  
85°C  
25°C  
85°C  
RW  
125°C  
125°C  
20  
20  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
FIGURE 2-30:  
50 kΩ Pot Mode – R (Ω),  
FIGURE 2-33:  
50 kΩ Rheo Mode – R (Ω),  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 5.5V).  
Ambient Temperature (V = 5.5V).  
DD  
DD  
300  
1
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
300  
0.3  
0.2  
0.1  
0
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
0.75  
0.5  
0.25  
0
260  
220  
180  
140  
100  
60  
260  
220  
180  
140  
100  
60  
INL  
INL  
DNL  
DNL  
-0.25  
-0.5  
-0.75  
-1  
RW  
-0.1  
-0.2  
-0.3  
RW  
-40°C  
-40°C  
25°C  
85°C  
25°C  
85°C  
125°C  
125°C  
20  
20  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
FIGURE 2-31:  
50 kΩ Pot Mode – R (Ω),  
FIGURE 2-34:  
50 kΩ Rheo Mode – R (Ω),  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 3.0V).  
Ambient Temperature (V = 3.0V).  
DD  
DD  
15000  
78.5  
73.5  
68.5  
63.5  
58.5  
53.5  
48.5  
43.5  
38.5  
33.5  
28.5  
23.5  
18.5  
13.5  
8.5  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
15000  
0.5  
0.4  
0.3  
0.2  
0.1  
0
14000  
13000  
12000  
11000  
10000  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
14000  
13000  
12000  
11000  
10000  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
RW  
INL  
DNL  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
INL  
RW  
DNL  
3.5  
-1.5  
0
64  
128  
192  
256  
0
25 50 75 100125150175200225250  
Wiper Setting (decimal)  
Wiper Setting (decimal)  
Note:  
Refer to AN1080 for additional informa-  
tion on the characteristics of the wiper  
resistance (RW) with respect to device  
voltage and wiper setting value.  
Note:  
Refer to AN1080 for additional informa-  
tion on the characteristics of the wiper  
resistance (RW) with respect to device  
voltage and wiper setting value.  
FIGURE 2-35:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 1.8V).  
50 kΩ Rheo Mode – R (Ω),  
W
FIGURE 2-32:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 1.8V).  
50 kΩ Pot Mode – R (Ω),  
W
DD  
DD  
DS22060B-page 22  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
52500  
52000  
51500  
51000  
50500  
50000  
49500  
49000  
60000  
50000  
40000  
30000  
20000  
10000  
0
1.8V  
-40°C  
25°C  
85°C  
125°C  
2.7V  
5.5V  
-40  
0
40  
80  
120  
0
32  
64  
96 128 160 192 224 256  
Ambient Temperature (°C)  
Wiper Setting (decimal)  
FIGURE 2-36:  
50 kΩ – Nominal Resistance  
FIGURE 2-37:  
50 kΩ – R  
(Ω) vs. Wiper  
WB  
(Ω) vs. Ambient Temperature and V  
.
Setting and Ambient Temperature.  
DD  
© 2008 Microchip Technology Inc.  
DS22060B-page 23  
MCP413X/415X/423X/425X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
FIGURE 2-38:  
50 kΩ – Low-Voltage  
FIGURE 2-40:  
50 kΩ – Low-Voltage  
Decrement Wiper Settling Time (V = 5.5V)  
Increment Wiper Settling Time (V = 5.5V)  
DD  
DD  
(1 µs/Div).  
(1 µs/Div).  
FIGURE 2-39:  
50 kΩ – Low-Voltage  
FIGURE 2-41:  
50 kΩ – Low-Voltage  
Decrement Wiper Settling Time (V = 2.7V)  
Increment Wiper Settling Time (V = 2.7V)  
DD  
DD  
(1 µs/Div).  
(1 µs/Div).  
DS22060B-page 24  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
120  
100  
80  
0.2  
0.1  
0
120  
100  
80  
0.3  
0.2  
0.1  
0
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
INL  
INL  
DNL  
DNL  
60  
60  
-0.1  
-0.2  
-0.3  
-0.1  
-0.2  
40  
40  
-40°C  
-40°C  
RW  
25°C  
85°C  
RW  
85°C 25°C  
125°C  
125°C  
20  
20  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
FIGURE 2-42:  
100 kΩ Pot Mode – R (Ω),  
FIGURE 2-45:  
100 kΩ Rheo Mode – R  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
(Ω), INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 5.5V).  
Ambient Temperature (V = 5.5V).  
DD  
DD  
300  
0.6  
0.4  
0.2  
0
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
300  
0.2  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
260  
220  
180  
140  
100  
60  
0.15  
0.1  
260  
220  
180  
140  
100  
60  
INL  
INL  
DNL  
DNL  
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.2  
-0.4  
-0.6  
RW  
RW  
-40°C  
-40°C  
85°C 25°C  
125°C  
85°C  
25°C  
125°C  
20  
20  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
FIGURE 2-43:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 3.0V).  
100 kΩ Pot Mode – R (Ω),  
FIGURE 2-46:  
(Ω), INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 3.0V).  
100 kΩ Rheo Mode – R  
W
W
DD  
DD  
59  
54  
49  
44  
39  
34  
29  
24  
19  
14  
9
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
0.35  
0.25  
0.15  
0.05  
-0.05  
-0.15  
-0.25  
-0.35  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
25000  
20000  
15000  
10000  
5000  
0
25000  
20000  
15000  
10000  
5000  
0
RW  
INL  
DNL  
INL  
RW  
DNL  
4
-1  
0
64  
128  
192  
256  
0
64  
128  
192  
256  
Wiper Setting (decimal)  
Wiper Setting (decimal)  
Note:  
Refer to AN1080 for additional informa-  
tion on the characteristics of the wiper  
resistance (RW) with respect to device  
voltage and wiper setting value.  
Note:  
Refer to AN1080 for additional informa-  
tion on the characteristics of the wiper  
resistance (RW) with respect to device  
voltage and wiper setting value.  
FIGURE 2-44:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 1.8V).  
100 kΩ Pot Mode – R (Ω),  
FIGURE 2-47:  
(Ω), INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 1.8V).  
100 kΩ Rheo Mode – R  
W
W
DD  
DD  
© 2008 Microchip Technology Inc.  
DS22060B-page 25  
MCP413X/415X/423X/425X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
120000  
100000  
80000  
60000  
40000  
20000  
0
103500  
103000  
102500  
102000  
101500  
1.8V  
101000  
100500  
-40°C  
25°C  
85°C  
100000  
2.7V  
99500  
99000  
98500  
5.5V  
125°C  
0
32  
64  
96 128 160 192 224 256  
-40  
0
40  
80  
120  
Ambient Temperature (°C)  
Wiper Setting (decimal)  
FIGURE 2-48:  
100 kΩ – Nominal  
FIGURE 2-49:  
100 kΩ – R  
(Ω) vs. Wiper  
WB  
Resistance (Ω) vs. Ambient Temperature and  
Setting and Ambient Temperature.  
V
.
DD  
DS22060B-page 26  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
FIGURE 2-50:  
100 kΩ – Low-Voltage  
FIGURE 2-52:  
100 kΩ – Low-Voltage  
Decrement Wiper Settling Time (V = 5.5V)  
Increment Wiper Settling Time (V = 2.7V)  
DD  
DD  
(1 µs/Div).  
(1 µs/Div).  
FIGURE 2-51:  
100 kΩ – Low-Voltage  
FIGURE 2-53:  
100 kΩ – Power-Up Wiper  
Decrement Wiper Settling Time (V = 2.7V)  
Response Time (1 µs/Div).  
DD  
(1 µs/Div).  
© 2008 Microchip Technology Inc.  
DS22060B-page 27  
MCP413X/415X/423X/425X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
0.12  
0.1  
0.1  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0.08  
0.06  
0.04  
0.02  
0
5.5V  
5.5V  
3.0V  
0
3.0V  
-40  
40  
80  
120  
-40  
0
40  
Temperature (°C)  
80  
120  
Temperature (°C)  
FIGURE 2-54:  
Resistor Network 0 to  
FIGURE 2-56:  
Resistor Network 0 to  
Resistor Network 1 R (5 kΩ) Mismatch vs. V  
and Temperature.  
Resistor Network 1 R (50 kΩ) Mismatch vs.  
AB  
DD  
AB  
V
and Temperature.  
DD  
0.04  
0.03  
0.02  
0.05  
0.04  
0.03  
0.02  
0.01  
5.5V  
5.5V  
0.01  
0
-0.01  
3.0V  
0
3.0V  
-0.02  
-0.01  
-0.02  
-0.03  
-0.03  
-0.04  
-40  
0
40  
80  
120  
-40  
10  
60  
110  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-55:  
Resistor Network 0 to  
FIGURE 2-57:  
Resistor Network 0 to  
Resistor Network 1 R (10 kΩ) Mismatch vs.  
Resistor Network 1 R (100 kΩ) Mismatch vs.  
AB  
AB  
V
and Temperature.  
V
and Temperature.  
DD  
DD  
DS22060B-page 28  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
2.4  
2.2  
2
0
-5  
5.5V  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
2.7V  
1.8  
1.6  
1.4  
1.2  
1
5.5V  
2.7V  
-40  
0
40  
Temperature (°C)  
80  
120  
-40  
0
40  
Temperature (°C)  
80  
120  
FIGURE 2-58:  
V
(SDI, SCK, CS, and  
FIGURE 2-60:  
I
(SDO) vs. V and  
IH  
OH  
DD  
SHDN) vs. V and Temperature.  
Temperature.  
DD  
1.4  
1.3  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
5.5V  
5.5V  
1.2  
1.1  
1
0.9  
2.7V  
2.7V  
0.8  
0.7  
0.6  
0
-40  
0
40  
Temperature (°C)  
80  
120  
-40  
0
40  
Temperature (°C)  
80  
120  
FIGURE 2-59:  
V
(SDI, SCK, CS, and  
FIGURE 2-61:  
I
(SDO) vs. V and  
IL  
OL DD  
SHDN) vs. V and Temperature.  
Temperature.  
DD  
© 2008 Microchip Technology Inc.  
DS22060B-page 29  
MCP413X/415X/423X/425X  
Note: Unless otherwise indicated, TA = +25°C,  
VDD = 5V, VSS = 0V.  
2.1  
Test Circuits  
1.2  
+5V  
1
5.5V  
A
B
VIN  
0.8  
0.6  
0.4  
0.2  
0
W
VOUT  
+
-
2.7V  
Offset  
GND  
2.5V DC  
-40  
0
40  
80  
120  
Temperature (°C)  
FIGURE 2-64:  
Test.  
-3 db Gain vs. Frequency  
FIGURE 2-62:  
and Temperature.  
POR/BOR Trip point vs. V  
DD  
15.0  
14.5  
14.0  
13.5  
13.0  
12.5  
5.5V  
2.7V  
12.0  
-40  
0
40  
80  
120  
Temperature (°C)  
FIGURE 2-63:  
SCK Input Frequency vs.  
Voltage and Temperature.  
DS22060B-page 30  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
Additional descriptions of the device pins follows.  
TABLE 3-1:  
PINOUT DESCRIPTION FOR THE MCP413X/415X/423X/425X  
Pin  
Weak  
Single  
Dual  
Pot  
Pull-up/  
Standard Function  
Buffer  
Type  
Rheo Pot (1) Rheo  
Symbol  
I/O  
down (2)  
8L  
8L  
10L  
14L  
16L  
1
2
1
2
1
2
1
2
16  
1
CS  
I
I
I
HV w/ST “smart” SPI Chip Select Input  
HV w/ST “smart” SPI Clock Input  
SCK  
3
3
3
3
2
SDI  
HV w/ST “smart” SPI Serial Data Input  
SDI/SDO  
I/O HV w/ST “smart” SPI Serial Data Input/Output  
(Note 1, Note 3)  
4
4
5
4
5
4
5
3, 4 VSS  
A
P
No  
No  
No  
No  
No  
No  
Ground  
5
6
P1B  
P1W  
P1A  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Potentiometer 1 Terminal B  
Potentiometer 1 Wiper Terminal  
Potentiometer 1 Terminal A  
Potentiometer 0 Terminal A  
Potentiometer 0 Wiper Terminal  
Potentiometer 0 Terminal B  
6
6
A
7
7
7
A
8
8
P0A  
A
5
6
9
9
P0W  
P0B  
A
6
7
8
10  
12  
13  
14  
11  
10  
13  
14  
15  
A
8
9
SHDN  
SDO  
VDD  
I
HV w/ST “smart” Hardware Shutdown  
7
O
O
P
No  
SPI Serial Data Out  
Positive Power Supply Input  
No Connection  
8
10  
11  
9
11,12 NC  
17 EP  
9
Exposed Pad (Note 4)  
Legend:  
HV w/ST = High Voltage tolerant input (with Schmidtt trigger input)  
A = Analog pins (Potentiometer terminals)  
O = digital output  
I = digital input (high Z)  
I/O = Input / Output  
P = Power  
Note 1: The 8-lead Single Potentiometer devices are pin limited so the SDO pin is multiplexed with the SDI pin  
(SDI/SDO pin). After the Address/Command (first 6-bits) are received, If a valid Read command has been  
requested, the SDO pin starts driving the requested read data onto the SDI/SDO pin.  
2: The pin’s “smart” pull-up shuts off while the pin is forced low. This is done to reduce the standby and  
shutdown current.  
3: The SDO is an open drain output, which uses the internal “smart” pull-up. The SDI input data rate can be  
at the maximum SPI frequency. the SDO output data rate will be limited by the “speed” of the pull-up,  
customers can increase the rate with external pull-up resistors.  
4: The DFN and QFN packages have a contact on the bottom of the package. This contact is conductively  
connected to the die substrate, and therefore should be unconnected or connected to the same ground as  
the device’s VSS pin.  
© 2008 Microchip Technology Inc.  
DS22060B-page 31  
MCP413X/415X/423X/425X  
3.1  
Chip Select (CS)  
3.7  
Potentiometer Terminal A  
The CS pin is the serial interface’s chip select input.  
Forcing the CS pin to VIL enables the serial commands.  
Forcing the CS pin to VIHH enables the high-voltage  
serial commands.  
The terminal A pin is available on the MCP4XX1  
devices, and is connected to the internal  
potentiometer’s terminal A.  
The potentiometer’s terminal A is the fixed connection  
to the Full-Scale wiper value of the digital  
potentiometer. This corresponds to a wiper value of  
0x100 for 8-bit devices or 0x80 for 7-bit devices.  
3.2  
Serial Data In (SDI)  
The SDI pin is the serial interfaces Serial Data In pin.  
This pin is connected to the Host Controllers SDO pin.  
The terminal A pin does not have a polarity relative to  
the terminal W or B pins. The terminal A pin can  
support both positive and negative current. The voltage  
3.3  
Serial Data In / Serial Data Out  
(SDI/SDO)  
on terminal A must be between VSS and VDD  
.
The terminal A pin is not available on the MCP4XX2  
devices, and the internally terminal A signal is floating.  
On the MCP41X1 devices, pin-out limitations do not  
allow for individual SDI and SDO pins. On these  
devices, the SDI and SDO pins are multiplexed.  
MCP42X1 devices have two terminal A pins, one for  
each resistor network.  
The MCP41X1 serial interface knows when the pin  
needs to change from being an input (SDI) to being an  
output (SDO). The Host Controller’s SDO pin must be  
properly protected from a drive conflict.  
3.8  
Shutdown (SHDN)  
The SHDN pin is used to force the resistor network  
terminals into the hardware shutdown state.  
3.4  
Ground (VSS)  
3.9  
Serial Data Out (SDO)  
The VSS pin is the device ground reference.  
The SDO pin is the serial interfaces Serial Data Out pin.  
This pin is connected to the Host Controllers SDI pin.  
3.5  
Potentiometer Terminal B  
This pin allows the Host Controller to read the digital  
potentiometers registers, or monitor the state of the  
command error bit.  
The terminal B pin is connected to the internal  
potentiometer’s terminal B.  
The potentiometer’s terminal B is the fixed connection  
to the Zero Scale wiper value of the digital  
potentiometer. This corresponds to a wiper value of  
0x00 for both 7-bit and 8-bit devices.  
3.10 Positive Power Supply Input (VDD  
)
The VDD pin is the device’s positive power supply input.  
The input power supply is relative to VSS  
.
The terminal B pin does not have a polarity relative to  
the terminal W or A pins. The terminal B pin can  
support both positive and negative current. The voltage  
While the device VDD < Vmin (2.7V), the electrical  
performance of the device may not meet the data sheet  
specifications.  
on terminal B must be between VSS and VDD  
.
MCP42XX devices have two terminal B pins, one for  
each resistor network.  
3.11 No Connection (NC)  
These pins are not internally connected and should be  
either connected to VDD or VSS to reduce possible  
noise coupling.  
3.6  
Potentiometer Wiper (W) Terminal  
The terminal W pin is connected to the internal  
potentiometer’s terminal W (the wiper). The wiper  
terminal is the adjustable terminal of the digital  
potentiometer. The terminal W pin does not have a  
polarity relative to terminals A or B pins. The terminal  
W pin can support both positive and negative current.  
The voltage on terminal W must be between VSS and  
3.12 Exposed Pad (EP)  
This pad is conductively connected to the device's  
substrate. This pad should be tied to the same potential  
as the VSS pin (or left unconnected). This pad could be  
used to assist as a heat sink for the device when  
connected to a PCB heat sink.  
VDD  
.
MCP42XX devices have two terminal W pins, one for  
each resistor network.  
DS22060B-page 32  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
4.1.2  
BROWN-OUT RESET  
4.0  
FUNCTIONAL OVERVIEW  
When the device powers down, the device VDD will  
cross the VPOR/VBOR voltage.  
This Data Sheet covers a family of thirty-two Digital  
Potentiometer and Rheostat devices that will be  
referred to as MCP4XXX. The MCP4XX1 devices are  
the Potentiometer configuration, while the MCP4XX2  
devices are the Rheostat configuration.  
Once the VDD voltage decreases below the VPOR/VBOR  
voltage the following happens:  
• Serial Interface is disabled  
As the Device Block Diagram shows, there are four  
main functional blocks. These are:  
If the VDD voltage decreases below the VRAM voltage  
the following happens:  
POR/BOR Operation  
Memory Map  
• Volatile wiper registers may become corrupted  
• TCON register may become corrupted  
Resistor Network  
Serial Interface (SPI)  
As the voltage recovers above the VPOR/VBOR voltage  
see Section 4.1.1 “Power-on Reset”.  
The POR/BOR operation and the Memory Map are  
discussed in this section and the Resistor Network and  
SPI operation are described in their own sections. The  
Device Commands commands are discussed in  
Section 7.0.  
Serial commands not completed due to a brown-out  
condition may cause the memory location to become  
corrupted.  
4.2  
Memory Map  
The device memory is 16 locations that are 9-bits wide  
(16x9 bits). This memory space contains four volatile  
locations (see Table 4-1).  
4.1  
POR/BOR Operation  
The Power-on Reset is the case where the device is  
having power applied to it from VSS. The Brown-out  
Reset occurs when a device had power applied to it,  
and that power (voltage) drops below the specified  
range.  
TABLE 4-1:  
Address  
MEMORY MAP  
Function  
Memory Type  
00h  
01h  
02h  
03h  
04h  
05h  
Volatile Wiper 0  
Volatile Wiper 1  
RAM  
RAM  
The devices RAM retention voltage (VRAM) is lower  
than the POR/BOR voltage trip point (VPOR/VBOR). The  
maximum VPOR/VBOR voltage is less then 1.8V.  
Reserved  
Reserved  
When VPOR/VBOR < VDD < 2.7V, the electrical  
performance may not meet the data sheet  
specifications. In this region, the device is capable of  
incrementing, decrementing, reading and writing to its  
volatile memory if the proper serial command is  
executed.  
Volatile TCON Register  
Status Register  
RAM  
RAM  
06h-0Fh Reserved  
4.2.1 VOLATILE MEMORY (RAM)  
4.1.1  
POWER-ON RESET  
There are four Volatile Memory locations. These are:  
• Volatile Wiper 0  
When the device powers up, the device VDD will cross  
the VPOR/VBOR voltage. Once the VDD voltage crosses  
the VPOR/VBOR voltage the following happens:  
• Volatile Wiper 1  
(Dual Resistor Network devices only)  
• Volatile wiper register is loaded with the default  
wiper value  
• Status Register  
Terminal Control (TCON) Register  
• The TCON register is loaded it’s default value  
• The device is capable of digital operation  
The volatile memory starts functioning at the RAM  
retention voltage (VRAM).  
© 2008 Microchip Technology Inc.  
DS22060B-page 33  
MCP413X/415X/423X/425X  
The STATUS register is placed at Address 05h.  
4.2.1.1  
Status (STATUS) Register  
This register contains 5 status bits. These bits show the  
state of the Shutdown bit. The STATUS register can be  
accessed via the READ commands. Register 4-1  
describes each STATUS register bit.  
REGISTER 4-1:  
STATUS REGISTER  
R-1  
R-1  
R-1 R-1  
R-0  
R-x  
R-x  
R-x  
R-x  
D8:D5  
RESV  
RESV  
RESV  
SHDN  
RESV  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 8-5  
bit 4-2  
D8:D5: Reserved. Forced to “1”  
RESV: Reserved  
bit 1  
SHDN: Hardware Shutdown pin Status bit (Refer to Section 5.3 “Shutdown” for further information)  
This bit indicates if the Hardware shutdown pin (SHDN) is low. A hardware shutdown disconnects the  
Terminal A and forces the wiper (Terminal W) to Terminal B (see Figure 5-2). While the device is in Hard-  
ware Shutdown (the SHDN pin is low) the serial interface is operational so the STATUS register may be  
read.  
1= MCP4XXX is in the Hardware Shutdown state  
0= MCP4XXX is NOT in the Hardware Shutdown state  
bit 0  
RESV: Reserved  
DS22060B-page 34  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
4.2.1.2  
Terminal Control (TCON) Register  
This register contains 8 control bits. Four bits are for  
Wiper 0, and four bits are for Wiper 1. Register 4-2  
describes each bit of the TCON register.  
The state of each resistor network terminal connection  
is individually controlled. That is, each terminal  
connection (A, B and W) can be individually connected/  
disconnected from the resistor network. This allows the  
system to minimize the currents through the digital  
potentiometer.  
The value that is written to this register will appear on  
the resistor network terminals when the serial  
command has completed.  
On a POR/BOR this register is loaded with 1FFh  
(9-bits), for all terminals connected. The Host  
Controller needs to detect the POR/BOR event and  
then update the Volatile TCON register value.  
© 2008 Microchip Technology Inc.  
DS22060B-page 35  
MCP413X/415X/423X/425X  
(1, 2)  
REGISTER 4-2:  
TCON BITS  
R-1  
D8  
R/W-1  
R1HW  
R/W-1  
R/W-1  
R1W  
R/W-1  
R1B  
R/W-1  
R0HW  
R/W-1  
R0A  
R/W-1  
R0W  
R/W-1  
R0B  
R1A  
bit 8  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 8  
bit 7  
D8: Reserved. Forced to “1”  
R1HW: Resistor 1 Hardware Configuration Control bit  
This bit forces Resistor 1 into the “shutdown” configuration of the Hardware pin  
1= Resistor 1 is NOT forced to the hardware pin “shutdown” configuration  
0= Resistor 1 is forced to the hardware pin “shutdown” configuration  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
R1A: Resistor 1 Terminal A (P1A pin) Connect Control bit  
This bit connects/disconnects the Resistor 1 Terminal A to the Resistor 1 Network  
1= P1A pin is connected to the Resistor 1 Network  
0= P1A pin is disconnected from the Resistor 1 Network  
R1W: Resistor 1 Wiper (P1W pin) Connect Control bit  
This bit connects/disconnects the Resistor 1 Wiper to the Resistor 1 Network  
1= P1W pin is connected to the Resistor 1 Network  
0= P1W pin is disconnected from the Resistor 1 Network  
R1B: Resistor 1 Terminal B (P1B pin) Connect Control bit  
This bit connects/disconnects the Resistor 1 Terminal B to the Resistor 1 Network  
1= P1B pin is connected to the Resistor 1 Network  
0= P1B pin is disconnected from the Resistor 1 Network  
R0HW: Resistor 0 Hardware Configuration Control bit  
This bit forces Resistor 0 into the “shutdown” configuration of the Hardware pin  
1= Resistor 0 is NOT forced to the hardware pin “shutdown” configuration  
0= Resistor 0 is forced to the hardware pin “shutdown” configuration  
R0A: Resistor 0 Terminal A (P0A pin) Connect Control bit  
This bit connects/disconnects the Resistor 0 Terminal A to the Resistor 0 Network  
1= P0A pin is connected to the Resistor 0 Network  
0= P0A pin is disconnected from the Resistor 0 Network  
R0W: Resistor 0 Wiper (P0W pin) Connect Control bit  
This bit connects/disconnects the Resistor 0 Wiper to the Resistor 0 Network  
1= P0W pin is connected to the Resistor 0 Network  
0= P0W pin is disconnected from the Resistor 0 Network  
R0B: Resistor 0 Terminal B (P0B pin) Connect Control bit  
This bit connects/disconnects the Resistor 0 Terminal B to the Resistor 0 Network  
1= P0B pin is connected to the Resistor 0 Network  
0= P0B pin is disconnected from the Resistor 0 Network  
Note 1: The hardware SHDN pin (when active) overrides the state of these bits. When the SHDN pin returns to the  
inactive state, the TCON register will control the state of the terminals. The SHDN pin does not modify the  
state of the TCON bits.  
2: These bits do not affect the wiper register values.  
DS22060B-page 36  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
5.1  
Resistor Ladder Module  
5.0  
RESISTOR NETWORK  
The resistor ladder is a series of equal value resistors  
(RS) with a connection point (tap) between the two  
resistors. The total number of resistors in the series  
(ladder) determines the RAB resistance (see  
Figure 5-1). The end points of the resistor ladder are  
connected to analog switches which are connected to  
the device Terminal A and Terminal B pins. The RAB  
(and RS) resistance has small variations over voltage  
and temperature.  
The Resistor Network has either 7-bit or 8-bit  
resolution. Each Resistor Network allows zero scale to  
full-scale connections. Figure 5-1 shows a block  
diagram for the resistive network of a device.  
The Resistor Network is made up of several parts.  
These include:  
• Resistor Ladder  
• Wiper  
• Shutdown (Terminal Connections)  
For an 8-bit device, there are 256 resistors in a string  
between terminal A and terminal B. The wiper can be  
set to tap onto any of these 256 resistors thus providing  
257 possible settings (including terminal A and  
terminal B).  
Devices have either one or two resistor networks,  
These are referred to as Pot 0 and Pot 1.  
A
For a 7-bit device, there are 128 resistors in a string  
between terminal A and terminal B. The wiper can be  
set to tap onto any of these 128 resistors thus providing  
129 possible settings (including terminal A and  
terminal B).  
8-Bit  
N =  
257  
7-Bit  
N =  
128  
(100h)  
(80h)  
(1)  
RW  
RS  
RS  
RS  
Equation 5-1 shows the calculation for the step  
resistance.  
256  
(FFh)  
127  
(7Fh)  
(1)  
(1)  
RW  
RW  
EQUATION 5-1:  
R CALCULATION  
255  
(FEh)  
126  
(7Eh)  
S
RAB  
RAB  
RS = -------------  
8-bit Device  
(256)  
W
RAB  
RS = -------------  
(128)  
7-bit Device  
1
1
(01h)  
(01h)  
(1)  
(1)  
RW  
RW  
RS  
0
0
(00h)  
(00h)  
Analog Mux  
B
Note 1: The wiper resistance is dependent on  
several factors including, wiper code,  
device VDD, Terminal voltages (on A, B,  
and W), and temperature.  
Also for the same conditions, each tap  
selection resistance has a small variation.  
This RW variation has greater effects on  
some specifications (such as INL) for the  
smaller resistance devices (5.0 k)  
compared to larger resistance devices  
(100.0 k).  
FIGURE 5-1:  
Resistor Block Diagram.  
© 2008 Microchip Technology Inc.  
DS22060B-page 37  
MCP413X/415X/423X/425X  
A POR/BOR event will load the Volatile Wiper register  
value with the default value. Table 5-2 shows the  
default values offered. Custom POR/BOR options are  
available. Contact the local Microchip Sales Office.  
5.2  
Wiper  
Each tap point (between the RS resistors) is a  
connection point for an analog switch. The opposite  
side of the analog switch is connected to a common  
signal which is connected to the Terminal W (Wiper)  
pin.  
TABLE 5-2:  
DEFAULT FACTORY  
SETTINGS SELECTION  
A value in the volatile wiper register selects which  
analog switch to close, connecting the W terminal to  
the selected node of the resistor ladder.  
Wiper Code  
The wiper can connect directly to Terminal B or to  
Terminal A. A zero-scale connections, connects the  
Terminal W (wiper) to Terminal B (wiper setting of  
000h). A full-scale connections, connects the Terminal  
W (wiper) to Terminal A (wiper setting of 100h or 80h).  
In these configurations the only resistance between the  
Terminal W and the other Terminal (A or B) is that of the  
analog switches.  
8-bit  
7-bit  
-502  
-103  
-503  
-104  
5.0 kΩ  
Mid-scale  
Mid-scale  
Mid-scale  
Mid-scale  
80h  
80h  
80h  
80h  
40h  
40h  
40h  
40h  
10.0 kΩ  
50.0 kΩ  
100.0 kΩ  
A wiper setting value greater than full-scale (wiper  
setting of 100h for 8-bit device or 80h for 7-bit devices)  
will also be a Full-Scale setting (Terminal W (wiper)  
connected to Terminal A). Table 5-1 illustrates the full  
wiper setting map.  
Equation 5-2 illustrates the calculation used to deter-  
mine the resistance between the wiper and terminal B.  
EQUATION 5-2:  
R
CALCULATION  
WB  
RAB  
N
RWB = ------------- + RW  
8-bit Device  
(256)  
N = 0 to 256 (decimal)  
RAB  
N
7-bit Device  
RWB = ------------- + RW  
(128)  
N = 0 to 128 (decimal)  
TABLE 5-1:  
VOLATILE WIPER VALUE VS.  
WIPER POSITION MAP  
Wiper Setting  
7-bit Pot 8-bit Pot  
Properties  
3FFh  
081h  
3FFh  
101h  
Reserved (Full-Scale (W = A)),  
Increment and Decrement  
commands ignored  
080h  
100h  
Full-Scale (W = A),  
Increment commands ignored  
07Fh  
041h  
0FFh  
081  
W = N  
040h  
080h  
W = N (Mid-Scale)  
W = N  
03Fh  
001h  
07Fh  
001  
000h  
000h  
Zero Scale (W = B)  
Decrement command ignored  
DS22060B-page 38  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
5.3.2  
TERMINAL CONTROL REGISTER  
(TCON)  
5.3  
Shutdown  
Shutdown is used to minimize the device’s current  
consumption. The MCP4XXX has two methods to  
achieve this. These are:  
The Terminal Control (TCON) register is a volatile  
register used to configure the connection of each  
resistor network terminal pin (A, B, and W) to the  
Resistor Network. This register is shown in  
Register 4-2.  
Hardware Shutdown Pin (SHDN)  
Terminal Control Register (TCON)  
The Hardware Shutdown pin is backwards compatible  
with the MCP42XXX devices.  
The RxHW bits forces the selected resistor network  
into the same state as the SHDN pin. Alternate  
low-power configurations may be achieved with the  
RxA, RxW, and RxB bits.  
5.3.1  
HARDWARE SHUTDOWN PIN  
(SHDN)  
Note:  
When the RxHW bit forces the resistor  
network into the hardware SHDN state,  
the state of the TCON register RxA, RxW,  
and RxB bits is overridden (ignored).  
When the state of the RxHW bit no longer  
forces the resistor network into the hard-  
ware SHDN state, the TCON register RxA,  
RxW, and RxB bits return to controlling the  
terminal connection state. In other words,  
the RxHW bit does not corrupt the state of  
the RxA, RxW, and RxB bits.  
The SHDN pin is available on the dual potentiometer  
devices. When the SHDN pin is forced active (VIL):  
• The P0A and P1A terminals are disconnected  
• The P0W and P1W terminals are simultaneously  
connect to the P0B and P1B terminals,  
respectively (see Figure 5-2)  
• The Serial Interface is NOT disabled, and all  
Serial Interface activity is executed  
The Hardware Shutdown pin mode does NOT corrupt  
the values in the Volatile Wiper Registers nor the  
TCON register. When the Shutdown mode is exited  
(SHDN pin is inactive (VIH)):  
5.3.3  
INTERACTION OF SHDN PIN AND  
TCON REGISTER  
• The device returns to the Wiper setting specified  
by the Volatile Wiper value  
• The TCON register bits return to controlling the  
terminal connection state  
Figure 5-3 shows how the SHDN pin signal and the  
RxHW bit signal interact to control the hardware  
shutdown of each resistor network (independently).  
Using the TCON bits allows each resistor network (Pot  
0 and Pot 1) to be individually “shutdown” while the  
hardware pin forces both resistor networks to be “shut-  
down” at the same time.  
A
W
SHDN (from pin)  
To Pot x Hardware  
Shutdown Control  
RxHW  
B
(from TCON register)  
FIGURE 5-2:  
Resistor Network Configuration.  
Hardware Shutdown  
FIGURE 5-3:  
Interaction.  
RxHW bit and SHDN pin  
© 2008 Microchip Technology Inc.  
DS22060B-page 39  
MCP413X/415X/423X/425X  
NOTES:  
DS22060B-page 40  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
Typical SPI Interfaces are shown in Figure 6-1. In the  
SPI interface, The Master’s Output pin is connected to  
the Slave’s Input pin and the Master’s Input pin is  
connected to the Slave’s Output pin.  
6.0  
SERIAL INTERFACE (SPI)  
The MCP4XXX devices support the SPI serial protocol.  
This SPI operates in the slave mode (does not  
generate the serial clock).  
The MCP4XXX SPI’s module supports two (of the four)  
standard SPI modes. These are Mode 0,0and 1,1.  
The SPI mode is determined by the state of the SCK  
pin (VIH or VIL) on the when the CS pin transitions from  
inactive (VIH) to active (VIL or VIHH).  
The SPI interface uses up to four pins. These are:  
• CS - Chip Select  
• SCK - Serial Clock  
• SDI - Serial Data In  
• SDO - Serial Data Out  
All SPI interface signals are high-voltage tolerant.  
Typical SPI Interface Connections  
Host  
MCP4XXX  
Controller  
( Master Out - Slave In (MOSI) )  
( Master In - Slave Out (MISO) )  
SDI  
SDO  
SCK  
CS  
SDO  
SDI  
SCK  
I/O (1)  
Typical MCP41X1 SPI Interface Connections (Host Controller Hardware SPI)  
Host  
MCP41X1  
Controller  
SDI/SDO  
SDO  
SDI  
(2)  
R1  
SDI  
SDO  
SCK  
SCK  
CS  
I/O (1)  
Alternate MCP41X1 SPI Interface Connections (Host Controller Firmware SPI)  
Host  
MCP41X1  
Controller  
SDI/SDO  
I/O  
SDI  
(SDO/SDI)  
SDO  
I/O  
SCK  
CS  
(SCK)  
I/O (1)  
Note 1: If High voltage commands are desired, some type of external circuitry needs to be  
implemented.  
2: R1 must be sized to ensure VIL and VIH of the devices are met.  
FIGURE 6-1:  
Typical SPI Interface Block Diagram.  
© 2008 Microchip Technology Inc.  
DS22060B-page 41  
MCP413X/415X/423X/425X  
6.1.3  
Note:  
SDI/SDO  
6.1  
SDI, SDO, SCK, and CS Operation  
MCP41X1 Devices Only .  
The operation of the four SPI interface pins are  
discussed in this section. These pins are:  
For device packages that do not have enough pins for  
both an SDI and SDO pin, the SDI and SDO  
functionality is multiplexed onto a single I/O pin called  
SDI/SDO.  
• SDI (Serial Data In)  
• SDO (Serial Data Out)  
• SCK (Serial Clock)  
• CS (Chip Select)  
The SDO will only be driven for the command error bit  
(CMDERR) and during the data bits of a read command  
(after the memory address and command has been  
received).  
The serial interface works on either 8-bit or 16-bit  
boundaries depending on the selected command. The  
Chip Select (CS) pin frames the SPI commands.  
6.1.3.1  
SDI/SDO Operation  
6.1.1  
SERIAL DATA IN (SDI)  
Figure 6-2 shows a block diagram of the SDI/SDO pin.  
The SDI signal has an internal “smart” pull-up. The  
value of this pull-up determines the frequency that data  
can be read from the device. An external pull-up can be  
added to the SDI/SDO pin to improve the rise time and  
therefore improve the frequency that data can be read.  
The Serial Data In (SDI) signal is the data signal into  
the device. The value on this pin is latched on the rising  
edge of the SCK signal.  
6.1.2  
SERIAL DATA OUT (SDO)  
The Serial Data Out (SDO) signal is the data signal out  
of the device. The value on this pin is driven on the  
falling edge of the SCK signal.  
Note:  
To support the High voltage requirement of  
the SDI function, the SDO function is an  
open drain output.  
Once the CS pin is forced to the active level (VIL or  
VIHH), the SDO pin will be driven. The state of the SDO  
pin is determined by the serial bit’s position in the  
command, the command selected, and if there is a  
command error state (CMDERR).  
Data written on the SDI/SDO pin can be at the  
maximum SPI frequency.  
Note:  
Care must be take to ensure that a Drive  
conflict does not exist between the Host  
Controllers SDO pin (or software SDI/SDO  
pin) and the MCP41x1 SDI/SDO pin (see  
Figure 6-1).  
On the falling edge of the SCK pin during the C0 bit  
(see Figure 7-1), the SDI/SDO pin will start outputting  
the SDO value. The SDO signal overrides the control of  
the smart pull-up, such that whenever the SDI/SDO pin  
is outputting data, the smart pull-up is enabled.  
The SDI/SDO pin will change from an input (SDI) to an  
output (SDO) after the state machine has received the  
Address and Command bits of the Command Byte. If  
the command is a Read command, then the SDI/SDO  
pin will remain an output for the remainder of the  
command. For any other command, the SDI/SDO pin  
returns to an input.  
“smart” pull-up  
SDI/SDO  
SDI  
Open  
Drain  
Control  
Logic  
SDO  
FIGURE 6-2:  
Serial I/O Mux Block  
Diagram.  
DS22060B-page 42  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
6.1.4  
SERIAL CLOCK (SCK)  
6.1.5  
THE CS SIGNAL  
(SPI FREQUENCY OF OPERATION)  
The Chip Select (CS) signal is used to select the device  
and frame a command sequence. To start a command,  
or sequence of commands, the CS signal must  
transition from the inactive state (VIH) to an active state  
(VIL or VIHH).  
The SPI interface is specified to operate up to 10 MHz.  
The actual clock rate depends on the configuration of  
the system and the serial command used. Table 6-1  
shows the SCK frequency for different configurations.  
After the CS signal has gone active, the SDO pin is  
driven and the clock bit counter is reset.  
TABLE 6-1:  
SCK FREQUENCY  
Command  
Write,  
Note:  
There is a required delay after the CS pin  
goes active to the 1st edge of the SCK pin.  
Memory Type Access  
Read  
Increment,  
Decrement  
If an error condition occurs for an SPI command, then  
the Command byte’s Command Error (CMDERR) bit  
(on the SDO pin) will be driven low (VIL). To exit the  
error condition, the user must take the CS pin to the VIH  
level.  
Volatile  
Memory  
SDI, SDO  
10 MHz  
10 MHz  
10 MHz  
SDI/SDO(1) 250 kHz (2)  
Note 1: MCP41X1 devices only.  
2: This is the maximum clock frequency  
When the CS pin returns to the inactive state (VIH) the  
SPI module resets (including the address pointer).  
While the CS pin is in the inactive state (VIH), the serial  
interface is ignored. This allows the Host Controller to  
interface to other SPI devices using the same SDI,  
SDO, and SCK signals.  
without an external pull-up resistor.  
The CS pin has an internal pull-up resistor. The resistor  
is disabled when the voltage on the CS pin is at the VIL  
level. This means that when the CS pin is not driven,  
the internal pull-up resistor will pull this signal to the VIH  
level. When the CS pin is driven low (VIL), the  
resistance becomes very large to reduce the device  
current consumption.  
The high voltage capability of the CS pin allows  
MCP413X/415X/423X/425X devices to be used in  
systems previously designed for the MCP414X/416X/  
424X/426X devices.  
© 2008 Microchip Technology Inc.  
DS22060B-page 43  
MCP413X/415X/423X/425X  
6.2  
The SPI Modes  
6.3  
SPI Waveforms  
The SPI module supports two (of the four) standard SPI  
modes. These are Mode 0,0 and 1,1. The mode is  
determined by the state of the SDI pin on the rising  
edge of the 1st clock bit (of the 8-bit byte).  
Figure 6-3 through Figure 6-8 show the different SPI  
command waveforms. Figure 6-3 and Figure 6-4 are  
read and write commands. Figure 6-5 and Figure 6-6  
are read commands when the SDI and SDO pins are  
multiplexed on the same pin (SDI/SDO). Figure 6-7  
and Figure 6-8 are increment and decrement  
commands.  
6.2.1  
MODE 0,0  
In Mode 0,0: SCK idle state = low (VIL), data is clocked  
in on the SDI pin on the rising edge of SCK and clocked  
out on the SDO pin on the falling edge of SCK.  
6.2.2  
MODE 1,1  
In Mode 1,1: SCK idle state = high (VIH), data is  
clocked in on the SDI pin on the rising edge of SCK and  
clocked out on the SDO pin on the falling edge of SCK.  
(1)  
VIHH  
VIL  
VIH  
CS  
SCK  
Write to  
SSPBUF  
CMDERR bit  
bit15 bit14 bit13 bit12 bit11 bit10 bit9 bit8 bit7 bit6 bit5  
SDO  
SDI  
bit4 bit3 bit2 bit1  
bit0  
AD3 AD2 AD1 AD0  
bit15 bit14 bit13 bit12  
X
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
bit9  
bit8 bit7 bit6 bit5  
bit4 bit3 bit2 bit1  
bit0  
C1  
C0  
Input  
Sample  
Note 1: VIHH is supported for compability with the MCP414X/6X and MCP424X/6X devices high voltage  
operation.  
FIGURE 6-3:  
16-Bit Commands (Write, Read) - SPI Waveform (Mode 1,1).  
(1)  
VIH  
VIHH  
VIL  
CS  
SCK  
Write to  
SSPBUF  
CMDERR bit  
bit15 bit14 bit13 bit12 bit11 bit10 bit9 bit8 bit7 bit6 bit5  
SDO  
SDI  
bit4 bit3 bit2 bit1  
bit0  
AD3 AD2 AD1 AD0  
bit15 bit14 bit13 bit12  
X
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
bit9  
bit8 bit7 bit6 bit5  
bit4 bit3 bit2 bit1  
bit0  
C1  
C0  
Input  
Sample  
Note 1: VIHH is supported for compability with the MCP414X/6X and MCP424X/6X devices high voltage  
operation.  
FIGURE 6-4:  
16-Bit Commands (Write, Read) - SPI Waveform (Mode 0,0).  
DS22060B-page 44  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
(1)  
VIHH  
VIL  
VIH  
CS  
SCK  
Write to  
SSPBUF  
CMDERR bit  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDO  
SDI  
bit9  
bit8 bit7 bit6 bit5  
bit4 bit3 bit2 bit1  
bit0  
AD3 AD2 AD1 AD0  
bit15 bit14 bit13 bit12  
C1  
1
C0  
1
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Input  
Sample  
Note 1: The SDI pin will read the state of the SDI pin which will be the SDO signal, unless overdriven.  
2: VIHH is supported for compability with the MCP414X/6X and MCP424X/6X devices high voltage  
operation.  
FIGURE 6-5:  
16-Bit Read Command for Devices with SDI/SDO multiplexed -  
SPI Waveform (Mode 1,1).  
(1)  
VIHH  
VIL  
VIH  
CS  
SCK  
Write to  
SSPBUF  
CMDERR bit  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X
SDO  
SDI  
bit9  
bit8 bit7 bit6 bit5  
bit4 bit3 bit2 bit1  
bit0  
AD3 AD2 AD1 AD0  
bit15 bit14 bit13 bit12  
C1  
1
C0  
1
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Input  
Sample  
Note 1: The SDI pin will read the state of the SDI pin which will be the SDO signal, unless overdriven.  
2: VIHH is supported for compability with the MCP414X/6X and MCP424X/6X devices high voltage  
operation.  
FIGURE 6-6:  
16-Bit Read Command for Devices with SDI/SDO multiplexed -  
SPI Waveform (Mode 0,0).  
© 2008 Microchip Technology Inc.  
DS22060B-page 45  
MCP413X/415X/423X/425X  
(1)  
VIHH  
VIL  
VIH  
CS  
SCK  
Write to  
SSPBUF  
CMDERR bit  
“1” = “Valid” Command/Address  
“0” = “Invalid” Command/Address  
SDO  
SDI  
bit6  
bit2  
bit5  
bit4  
bit1  
bit0  
bit7  
bit3  
AD1  
AD2  
X
AD0  
C0  
AD3  
bit7  
C1  
X
bit0  
Input  
Sample  
Note 1: VIHH is supported for compability with the MCP414X/6X and MCP424X/6X devices high voltage  
operation.  
FIGURE 6-7:  
(Mode 1,1).  
8-Bit Commands (Increment, Decrement, Modify - SPI Waveform with PIC MCU  
(1)  
VIHH  
VIH  
CS  
VIL  
SCK  
Write to  
SSPBUF  
CMDERR bit  
“1” = “Valid” Command/Address  
“0” = “Invalid” Command/Address  
bit6  
AD2  
bit2  
C0  
bit5  
bit4  
AD0  
bit1  
bit0  
SDO  
SDI  
bit7  
bit3  
C1  
AD1  
X
AD3  
bit7  
X
bit0  
Input  
Sample  
Note 1: VIHH is supported for compability with the MCP414X/6X and MCP424X/6X devices high voltage  
operation.  
FIGURE 6-8:  
8-Bit Commands (Increment, Decrement, Modify - SPI Waveform with PIC MCU  
(Mode 0,0).  
DS22060B-page 46  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
7.1  
Command Byte  
7.0  
DEVICE COMMANDS  
The Command Byte has three fields, the Address, the  
Command, and 2 Data bits, see Figure 7-1. Currently  
only one of the data bits is defined (D8). This is for the  
Write command.  
The MCP4XXX’s SPI command format supports 16  
memory address locations and four commands. Each  
command has two modes. These are:  
• Normal Serial Commands  
The device memory is accessed when the master  
sends a proper Command Byte to select the desired  
operation. The memory location getting accessed is  
contained in the Command Byte’s AD3:AD0 bits. The  
action desired is contained in the Command Byte’s  
C1:C0 bits, see Table 7-1. C1:C0 determines if the  
desired memory location will be read, written,  
Incremented (wiper setting +1) or Decremented (wiper  
setting -1). The Increment and Decrement commands  
are only valid on the volatile wiper registers.  
• High-Voltage Serial Commands  
Normal serial commands are those where the CS pin is  
driven to VIL. High Voltage Serial Commands, CS pin is  
driven to VIHH, for compatibility with systems that also  
support the MCP414X/416X/424X/426X devices. High  
Voltage Serial Commands operate identically to their  
corresponding Normal Serial Command. In each  
mode, there are four possible commands. These  
commands are shown in Table 7-1.  
The 8-bit commands (Increment Wiper and Decre-  
ment Wiper commands) contain a Command Byte,  
see Figure 7-1, while 16-bit commands (Read Data  
and Write Data commands) contain a Command Byte  
and a Data Byte. The Command Byte contains two data  
bits, see Figure 7-1.  
As the Command Byte is being loaded into the device  
(on the SDI pin), the device’s SDO pin is driving. The  
SDO pin will output high bits for the first six bits of that  
command. On the 7th bit, the SDO pin will output the  
CMDERR bit state (see Section 7.3 “Error Condi-  
tion”). The 8th bit state depends on the the command  
selected.  
Table 7-2 shows the supported commands for each  
memory location and the corresponding values on the  
SDI and SDO pins.  
TABLE 7-1:  
COMMAND BIT OVERVIEW  
Table 7-3 shows an overview of all the SPI commands  
and their interaction with other device features.  
C1:C0 Bit  
States  
Command  
# of Bits  
Read Data  
Write Data  
Increment  
Decrement  
16-Bits  
16-Bits  
8-Bits  
11  
00  
01  
10  
8-Bits  
16-bit Command  
Data Byte  
8-bit Command  
Command Byte  
Command Byte  
A A A A C C D D D D D D D D D D  
D D D D 1 0 9 8 7 6 5 4 3 2 1 0  
3 2 1 0  
A A A A C C D D  
D D D D 1 0 9 8  
3 2 1 0  
Command  
Bits  
C C  
1 0  
Data  
Bits  
0 0 = Write Data  
0 1 = INCR  
1 0 = DECR  
Data  
Bits  
Command  
Bits  
Memory  
Address  
Memory  
Address  
Command  
Bits  
1 1 = Read Data  
FIGURE 7-1:  
General SPI Command Formats.  
© 2008 Microchip Technology Inc.  
DS22060B-page 47  
MCP413X/415X/423X/425X  
TABLE 7-2:  
MEMORY MAP AND THE SUPPORTED COMMANDS  
Address  
SPI String (Binary)  
MOSI (SDI pin)  
MISO (SDO pin) (2)  
Data  
Command  
(10-bits) (1)  
Value  
Function  
00h  
Volatile Wiper 0  
Volatile Wiper 1  
Write Data  
Read Data  
Increment Wiper  
Decrement Wiper  
Write Data  
Read Data  
Increment Wiper  
Decrement Wiper  
nn nnnn nnnn  
0000 00nn nnnn nnnn  
0000 11nn nnnn nnnn  
0000 0100  
1111 1111 1111 1111  
1111 111n nnnn nnnn  
1111 1111  
nn nnnn nnnn  
0000 1000  
1111 1111  
01h  
nn nnnn nnnn  
0001 00nn nnnn nnnn  
0001 11nn nnnn nnnn  
0001 0100  
1111 1111 1111 1111  
1111 111n nnnn nnnn  
1111 1111  
nn nnnn nnnn  
0001 1000  
1111 1111  
02h  
03h  
04h  
Reserved  
Reserved  
Volatile  
Write Data  
Read Data  
Read Data  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
0100 00nn nnnn nnnn  
0100 11nn nnnn nnnn  
0101 11nn nnnn nnnn  
1111 1111 1111 1111  
1111 111n nnnn nnnn  
1111 111n nnnn nnnn  
TCON Register  
05h  
Status Register  
06h-0Fh Reserved  
Note 1: The Data Memory is only 9-bits wide, so the MSb is ignored by the device.  
2: All these Address/Command combinations are valid, so the CMDERR bit is set. Any other Address/Command  
combination is a command error state and the CMDERR bit will be clear.  
DS22060B-page 48  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
7.3.1  
ABORTING A TRANSMISSION  
7.2  
Data Byte  
All SPI transmissions must have the correct number of  
SCK pulses to be executed. The command is not  
executed until the complete number of clocks have  
been received. If the CS pin is forced to the inactive  
state (VIH) the serial interface is reset. Partial com-  
mands are not executed.  
Only the Read Command and the Write Command use  
the Data Byte, see Figure 7-1. These commands  
concatenate the 8-bits of the Data Byte with the one  
data bit (D8) contained in the Command Byte to form  
9-bits of data (D8:D0). The Command Byte format  
supports up to 9-bits of data so that the 8-bit resistor  
network can be set to Full-Scale (100h or greater). This  
allows wiper connections to Terminal A and to  
Terminal B.  
SPI is more susceptible to noise than other bus  
protocols. The most likely case is that this noise  
corrupts the value of the data being clocked into the  
MCP4XXX or the SCK pin is injected with extra clock  
pulses. This may cause data to be corrupted in the  
device, or a command error to occur, since the address  
and command bits were not a valid combination. The  
extra SCK pulse will also cause the SPI data (SDI) and  
clock (SCK) to be out of sync. Forcing the CS pin to the  
inactive state (VIH) resets the serial interface. The SPI  
interface will ignore activity on the SDI and SCK pins  
until the CS pin transition to the active state is detected  
(VIH to VIL or VIH to VIHH).  
The D9 bit is currently unused, and corresponds to the  
position on the SDO data of the CMDERR bit.  
7.3  
Error Condition  
The CMDERR bit indicates if the four address bits  
received (AD3:AD0) and the two command bits  
received (C1:C0) are  
a valid combination (see  
Table 4-1). The CMDERR bit is high if the combination  
is valid and low if the combination is invalid.  
SPI commands that do not have a multiple of 8 clocks  
are ignored.  
Note 1: When data is not being received by the  
MCP4XXX, It is recommended that the  
CS pin be forced to the inactive level (VIL)  
Once an error condition has occurred, any following  
commands are ignored. All following SDO bits will be  
low until the CMDERR condition is cleared by forcing  
the CS pin to the inactive state (VIH).  
2: It is also recommended that long  
continuous command strings should be  
broken down into single commands or  
shorter continuous command strings.  
This reduces the probability of noise on  
the SCK pin corrupting the desired SPI  
commands.  
© 2008 Microchip Technology Inc.  
DS22060B-page 49  
MCP413X/415X/423X/425X  
7.4  
Continuous Commands  
Note 1: It is recommended that while the CS pin is  
active, only one type of command should  
be issued. When changing commands, it  
is recommended to take the CS pin  
inactive then force it back to the active  
state.  
The device supports the ability to execute commands  
continuously. While the CS pin is in the active state  
(VIL or VIHH). Any sequence of valid commands may be  
received.  
The following example is a valid sequence of events:  
2: It is also recommended that long  
command strings should be broken down  
into shorter command strings. This  
reduces the probability of noise on the  
SCK pin corrupting the desired SPI  
command string.  
1. CS pin driven active (VIL or VIHH).  
2. Read Command.  
3. Increment Command (Wiper 0).  
4. Increment Command (Wiper 0).  
5. Decrement Command (Wiper 1).  
6. Write Command.  
7. Write Command.  
8. CS pin driven inactive (VIH).  
TABLE 7-3:  
COMMANDS  
Command Name  
High Voltage  
# of Bits  
(VIHH) on CS  
pin?  
Write Data  
16-Bits  
16-Bits  
8-Bits  
Read Data  
Increment Wiper  
Decrement Wiper  
8-Bits  
High Voltage Write Data  
High Voltage Read Data  
High Voltage Increment Wiper  
16-Bits  
16-Bits  
8-Bits  
Yes  
Yes  
Yes  
Yes  
High Voltage Decrement Wiper  
8-Bits  
DS22060B-page 50  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
7.5.1  
SINGLE WRITE  
7.5  
Write Data  
Normal and High Voltage  
The write operation requires that the CS pin be in the  
active state (VILor VIHH). Typically, the CS pin will be in  
the inactive state (VIH) and is driven to the active state  
(VIL). The 16-bit Write Command (Command Byte and  
Data Byte) is then clocked in on the SCK and SDI pins.  
Once all 16 bits have been received, the specified  
volatile address is updated. A write will not occur if the  
write command isn’t exactly 16 clocks pulses. This  
protects against system issues from corrupting the  
memory locations.  
Note:  
The High Voltage Write Data command is  
supported for compatability with system  
that also support MCP414X/416X/424X/  
426X devices.  
The Write command is a 16-bit command. The format  
of the command is shown in Figure 7-2.  
A Write command to a Volatile memory location  
changes that location after a properly formatted Write  
Command (16-clock) have been received.  
Figure 6-3 and Figure 6-4 show possible waveforms  
for a single write.  
COMMAND BYTE  
DATA BYTE  
A
D
3
A
D
2
A
D
1
A
D
0
0
0
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
SDI  
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Valid Address/Command combination  
Invalid Address/Command combination (1)  
SDO  
Note 1: If an Error Condition occurs (CMDERR = L), all following SDO bits will be low until the CMDERR  
condition is cleared (the CS pin is forced to the inactive state).  
FIGURE 7-2:  
Write Command - SDI and SDO States.  
© 2008 Microchip Technology Inc.  
DS22060B-page 51  
MCP413X/415X/423X/425X  
7.5.2  
CONTINUOUS WRITES  
Continuous writes are possible only when writing to the  
volatile memory registers (address 00h, 01h, and 04h).  
Figure 7-3 shows the sequence for three continuous  
writes. The writes do not need to be to the same volatile  
memory address.  
COMMAND BYTE  
DATA BYTE  
A
D
3
A
D
2
A
D
1
A
D
0
0
0
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
SDI  
1
1
1
1
1
0
1
0
1*  
1
1
1
1
1
1
1
1
1
SDO  
A
D
3
A
D
2
A
D
1
A
D
0
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
1
1
1
1
1
0
1
0
1*  
1
1
1
1
1
1
1
1
1
A
D
3
A
D
2
A
D
1
A
D
0
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
1
1
1
1
1
1
1*  
1
1
1
1
1
1
1
1
1
Note 1: If a Command Error (CMDERR) occurs at this bit location (*), then all following SDO bits will be  
driven low until the CS pin is driven inactive (VIH).  
FIGURE 7-3:  
Continuous Write Sequence.  
DS22060B-page 52  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
7.6.1  
SINGLE READ  
7.6  
Read Data  
Normal and High Voltage  
The read operation requires that the CS pin be in the  
active state (VILor VIHH). Typically, the CS pin will be in  
the inactive state (VIH) and is driven to the active state  
(VILor VIHH). The 16-bit Read Command (Command  
Byte and Data Byte) is then clocked in on the SCK and  
SDI pins. The SDO pin starts driving data on the 7th bit  
(CMDERR bit) and the addressed data comes out on  
the 8th through 16th clocks. Figure 6-3 through  
Figure 6-6 show possible waveforms for a single read.  
Note:  
The High Voltage Read Data command is  
supported for compatability with system  
that also support MCP414X/416X/424X/  
426X devices.  
The Read command is a 16-bit command. The format  
of the command is shown in Figure 7-4.  
The first 6-bits of the Read command determine the  
address and the command. The 7th clock will output  
the CMDERR bit on the SDO pin. The remaining  
9-clocks the device will transmit the 9 data bits (D8:D0)  
of the specified address (AD3:AD0).  
Figure 6-5 and Figure 6-6 show the single read  
waveforms when the SDI and SDO signals are  
multiplexed on the same pin. For additional information  
on the multiplexing of these signals, refer to  
Section 6.1.3 “SDI/SDO”.  
Figure 7-4 shows the SDI and SDO information for a  
Read command.  
COMMAND BYTE  
DATA BYTE  
A
D
3
A
D
2
A
D
1
A
D
0
1
1
X
X
X
X
X
X
X
X
X
X
SDI  
1
1
1
1
1
1
1
1
1
0
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D Valid Address/Command combination  
0
SDO  
1
1
1
1
0
0
0
0
0
0
0
0
0
Attempted Memory Read of Reserved  
Memory location.  
READ DATA  
Read Command - SDI and SDO States.  
FIGURE 7-4:  
© 2008 Microchip Technology Inc.  
DS22060B-page 53  
MCP413X/415X/423X/425X  
Figure 7-5 shows the sequence for three continuous  
reads. The reads do not need to be to the same  
memory address.  
7.6.2  
CONTINUOUS READS  
Continuous reads allows the devices memory to be  
read quickly. Continuous reads are possible to all  
memory locations.  
COMMAND BYTE  
DATA BYTE  
A
D
3
A
D
2
A
D
1
A
D
0
1
1
X
X
X
X
X
X
X
X
X
X
SDI  
1
1
1
1
1
1
1*  
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
SDO  
A
D
3
A
D
2
A
D
1
A
D
0
1
1
1
1
X
X
X
X
X
X
X
X
X
X
1
1
1
1
1*  
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
A
D
3
A
D
2
A
D
1
A
D
0
1
1
1
1
X
X
X
X
X
X
X
X
X
X
1
1
1
1
1*  
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
Note 1: If a Command Error (CMDERR) occurs at this bit location (*), then all following SDO bits will be  
driven low until the CS pin is driven inactive (VIH).  
FIGURE 7-5:  
Continuous Read Sequence.  
DS22060B-page 54  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
7.7.1  
SINGLE INCREMENT  
7.7  
Increment Wiper  
Normal and High Voltage  
Typically, the CS pin starts at the inactive state (VIH),  
but may be already be in the active state due to the  
completion of another command.  
Note:  
The High Voltage Increment Wiper  
command is supported for compatability  
with system that also support MCP414X/  
416X/424X/426X devices.  
Figure 6-7 through Figure 6-8 show possible  
waveforms for a single increment. The increment  
operation requires that the CS pin be in the active state  
(VILor VIHH). Typically, the CS pin will be in the inactive  
state (VIH) and is driven to the active state (VILor VIHH).  
The 8-bit Increment Command (Command Byte) is  
then clocked in on the SDI pin by the SCK pins. The  
SDO pin drives the CMDERR bit on the 7th clock.  
The Increment Command is an 8-bit command. The  
Increment Command can only be issued to wiper  
memory locations. The format of the command is  
shown in Figure 7-6.  
An Increment Command to the wiper memory location  
changes that location after a properly formatted  
command (8-clocks) have been received.  
The wiper value will increment up to 100h on 8-bit  
devices and 80h on 7-bit devices. After the wiper value  
has reached Full-Scale (8-bit =100h, 7-bit =80h), the  
wiper value will not be incremented further. If the Wiper  
register has a value between 101h and 1FFh, the  
Increment command is disabled. See Table 7-4 for  
additional information on the Increment Command  
versus the current volatile wiper value.  
Increment commands provide a quick and easy  
method to modify the value of the wiper location by +1  
with minimal overhead.  
COMMAND BYTE  
(INCR COMMAND (n+1) )  
The Increment operations only require the Increment  
command byte while the CS pin is active (VILor VIHH  
for a single increment.  
)
A
D
3
A
D
2
A
D
1
A
D
0
0
1
X
X
SDI  
After the wiper is incremented to the desired position,  
the CS pin should be forced to VIH to ensure that  
unexpected transitions on the SCK pin do not cause  
the wiper setting to change. Driving the CS pin to VIH  
should occur as soon as possible (within device  
specifications) after the last desired increment occurs.  
1
1
1
1
1
1
1
1
1
1
1
1
1*  
0
1
0
Note 1, 2  
Note 1, 3  
SDO  
Note 1: Only functions when writing the volatile  
wiper registers (AD3:AD0) 0h and 1h.  
2: Valid Address/Command combination.  
TABLE 7-4:  
INCREMENT OPERATION VS.  
VOLATILE WIPER VALUE  
3: Invalid Address/Command combination  
all following SDO bits will be low until the  
CMDERR condition is cleared.  
(the CS pin is forced to the inactive  
state).  
Current Wiper  
Setting  
Increment  
Wiper (W)  
Command  
Operates?  
Properties  
7-bit  
Pot  
8-bit  
Pot  
4: If a Command Error (CMDERR) occurs  
at this bit location (*), then all following  
SDO bits will be driven low until the CS  
pin is driven inactive (VIH).  
3FFh  
081h  
3FFh Reserved  
101h (Full-Scale (W = A))  
No  
No  
080h  
100h Full-Scale (W = A)  
07Fh  
041h  
0FFh W = N  
081  
FIGURE 7-6:  
SDI and SDO States.  
Increment Command -  
040h  
080h W = N (Mid-Scale)  
Yes  
Yes  
03Fh  
001h  
07Fh W = N  
001  
000h  
000h Zero Scale (W = B)  
© 2008 Microchip Technology Inc.  
DS22060B-page 55  
MCP413X/415X/423X/425X  
Increment commands can be sent repeatedly without  
raising CS until a desired condition is met. The value in  
the Volatile Wiper register can be read using a Read  
Command.  
7.7.2  
CONTINUOUS INCREMENTS  
Continuous Increments are possible only when writing  
to the wiper registers.  
Figure 7-7 shows a Continuous Increment sequence  
for three continuous writes. The writes do not need to  
be to the same volatile memory address.  
When executing a continuous command string, The  
Increment command can be followed by any other valid  
command.  
When executing an continuous Increment commands,  
the selected wiper will be altered from n to n+1 for each  
Increment command received. The wiper value will  
increment up to 100h on 8-bit devices and 80h on 7-bit  
devices. After the wiper value has reached Full-Scale  
(8-bit =100h, 7-bit =80h), the wiper value will not be  
incremented further. If the Wiper register has a value  
between 101h and 1FFh, the Increment command is  
disabled.  
The wiper terminal will move after the command has  
been received (8th clock).  
After the wiper is incremented to the desired position,  
the CS pin should be forced to VIH to ensure that  
unexpected transitions (on the SCK pin do not cause  
the wiper setting to change). Driving the CS pin to VIH  
should occur as soon as possible (within device  
specifications) after the last desired increment occurs.  
COMMAND BYTE  
COMMAND BYTE  
(INCR COMMAND (n+2) )  
COMMAND BYTE  
(INCR COMMAND (n+1) )  
(INCR COMMAND (n+3) )  
A
D
3
A
D
2
A
D
1
A
D
0
0
1
X
X
A
D
3
A
D
2
A
D
1
A
D
0
0
1
X
X
A
D
3
A
D
2
A
D
1
A
D
0
0
1
X
X
SDI  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1*  
0
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1*  
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1*  
0
1
0
0
0
Note 1, 2  
Note 3, 4  
Note 3, 4  
Note 3, 4  
SDO  
1
0
0
1
1
0
Note 1: Only functions when writing the volatile wiper registers (AD3:AD0) 0h and 1h.  
2: Valid Address/Command combination.  
3: Invalid Address/Command combination.  
4: If an Error Condition occurs (CMDERR = L), all following SDO bits will be low until the CMDERR  
condition is cleared (the CS pin is forced to the inactive state).  
FIGURE 7-7:  
Continuous Increment Command - SDI and SDO States.  
DS22060B-page 56  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
7.8.1  
SINGLE DECREMENT  
7.8  
Decrement Wiper  
Normal and High Voltage  
Typically the CS pin starts at the inactive state (VIH), but  
may be already be in the active state due to the  
completion of another command.  
Note:  
The High Voltage Decrement Wiper  
command is supported for compatability  
with system that also support MCP414X/  
416X/424X/426X devices.  
Figure 6-7 through Figure 6-8 show possible  
waveforms for a single Decrement. The decrement  
operation requires that the CS pin be in the active state  
(VILor VIHH). Typically the CS pin will be in the inactive  
state (VIH) and is driven to the active state (VILor VIHH).  
Then the 8-bit Decrement Command (Command Byte)  
is clocked in on the SDI pin by the SCK pins. The SDO  
pin drives the CMDERR bit on the 7th clock.  
The Decrement Command is an 8-bit command. The  
Decrement Command can only be issued to wiper  
memory locations. The format of the command is  
shown in Figure 7-6.  
An Decrement Command to the wiper memory location  
changes that location after a properly formatted  
command (8-clocks) have been received.  
The wiper value will decrement from the wipers  
Full-Scale value (100h on 8-bit devices and 80h on  
7-bit devices). Above the wipers Full-Scale value  
(8-bit =101h to 1FFh, 7-bit = 81h to FFh), the  
decrement command is disabled. If the Wiper register  
has a Zero Scale value (000h), then the wiper value will  
not decrement. See Table 7-4 for additional information  
on the Decrement Command vs. the current volatile  
wiper value.  
Decrement commands provide a quick and easy  
method to modify the value of the wiper location by -1  
with minimal overhead.  
COMMAND BYTE  
(DECR COMMAND (n+1))  
The Decrement commands only require the Decrement  
A
D
3
A
D
2
A
D
1
A
D
0
1
0
X
X
command byte, while the CS pin is active (VILor VIHH  
)
SDI  
for a single decrement.  
After the wiper is decremented to the desired position,  
the CS pin should be forced to VIH to ensure that  
unexpected transitions on the SCK pin do not cause  
the wiper setting to change. Driving the CS pin to VIH  
should occur as soon as possible (within device  
specifications) after the last desired decrement occurs.  
1
1
1
1
1
1
1
1
1
1
1
1
1*  
0
1
0
Note 1, 2  
Note 1, 3  
SDO  
Note 1: Only functions when writing the volatile  
wiper registers (AD3:AD0) 0h and 1h.  
2: Valid Address/Command combination.  
TABLE 7-5:  
DECREMENT OPERATION VS.  
VOLATILE WIPER VALUE  
3: Invalid Address/Command combination  
all following SDO bits will be low until the  
CMDERR condition is cleared.  
(the CS pin is forced to the inactive  
state).  
Current Wiper  
Setting  
Decrement  
Wiper (W)  
Command  
Operates?  
Properties  
7-bit  
Pot  
8-bit  
Pot  
4: If a Command Error (CMDERR) occurs  
at this bit location (*), then all following  
SDO bits will be driven low until the CS  
pin is driven inactive (VIH).  
3FFh  
081h  
3FFh Reserved  
101h (Full-Scale (W = A))  
No  
080h  
100h Full-Scale (W = A)  
Yes  
FIGURE 7-8:  
SDI and SDO States.  
Decrement Command -  
07Fh  
041h  
0FFh W = N  
081  
040h  
080h W = N (Mid-Scale)  
Yes  
No  
03Fh  
001h  
07Fh W = N  
001  
000h  
000h Zero Scale (W = B)  
© 2008 Microchip Technology Inc.  
DS22060B-page 57  
MCP413X/415X/423X/425X  
Decrement commands can be sent repeatedly without  
raising CS until a desired condition is met. The value in  
the Volatile Wiper register can be read using a Read  
Command.  
7.8.2  
CONTINUOUS DECREMENTS  
Continuous Decrements are possible only when writing  
to the wiper registers.  
Figure 7-9 shows a continuous Decrement sequence  
for three continuous writes. The writes do not need to  
be to the same volatile memory address.  
When executing a continuous command string, The  
Decrement command can be followed by any other  
valid command.  
When executing an continuous Decrement commands,  
the selected wiper will be altered from n to n-1 for each  
Decrement command received. The wiper value will  
decrement from the wipers Full-Scale value (100h on  
8-bit devices and 80h on 7-bit devices). Above the  
wipers Full-Scale value (8-bit =101h to 1FFh,  
7-bit = 81h to FFh), the decrement command is  
disabled. If the Wiper register has a Zero Scale value  
(000h), then the wiper value will not decrement. See  
Table 7-4 for additional information on the Decrement  
Command vs. the current volatile wiper value.  
The wiper terminal will move after the command has  
been received (8th clock).  
After the wiper is decremented to the desired position,  
the CS pin should be forced to VIH to ensure that  
“unexpected” transitions (on the SCK pin do not cause  
the wiper setting to change). Driving the CS pin to VIH  
should occur as soon as possible (within device  
specifications) after the last desired decrement occurs.  
COMMAND BYTE  
COMMAND BYTE  
(DECR COMMAND (n-1) )  
COMMAND BYTE  
(DECR COMMAND (n-1) )  
(DECR COMMAND (n-1) )  
A
D
3
A
D
2
A
D
1
A
D
0
1
0
X
X
A
D
3
A
D
2
A
D
1
A
D
0
1
0
X
X
A
D
3
A
D
2
A
D
1
A
D
0
1
0
X
X
SDI  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1*  
0
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1*  
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1*  
0
1
0
0
0
Note 1, 2  
Note 3, 4  
Note 3, 4  
Note 3, 4  
SDO  
1
0
0
1
1
0
Note 1: Only functions when writing the volatile wiper registers (AD3:AD0) 0h and 1h.  
2: Valid Address/Command combination.  
3: Invalid Address/Command combination.  
4: If an Error Condition occurs (CMDERR = L), all following SDO bits will be low until the CMDERR  
condition is cleared (the CS pin is forced to the inactive state).  
FIGURE 7-9:  
Continuous Decrement Command - SDI and SDO States.  
DS22060B-page 58  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
8.0  
APPLICATIONS EXAMPLES  
5V  
3V  
Voltage  
Digital potentiometers have a multitude of practical  
uses in modern electronic circuits. The most popular  
uses include precision calibration of set point thresh-  
olds, sensor trimming, LCD bias trimming, audio atten-  
uation, adjustable power supplies, motor control  
overcurrent trip setting, adjustable gain amplifiers and  
offset trimming. The MCP413X/415X/423X/425X  
devices can be used to replace the common mechani-  
cal trim pot in applications where the operating and  
terminal voltages are within CMOS process limitations  
(VDD = 2.7V to 5.5V).  
Regulator  
MCP4XXX  
PIC MCU  
SDI  
CS  
SCK  
SDI  
CS  
SCK  
SHDN  
SDO  
SHDN  
SDO  
FIGURE 8-1:  
System 1.  
Example Split Rail  
8.1  
Split Rail Applications  
All inputs that would be used to interface to a Host  
Controller support High Voltage on their input pin. This  
allows the MCP4XXX device to be used in split power  
rail applications.  
5V  
Voltage  
Regulator  
3V  
An example of this is a battery application where the  
PIC® MCU is directly powered by the battery supply  
(4.8V) and the MCP4XXX device is powered by the  
3.3V regulated voltage.  
MCP4XXX  
PIC MCU  
SDI  
CS  
SCK  
SDI  
CS  
SCK  
For SPI applications, these inputs are:  
• CS  
SHDN  
SDO  
SHDN  
SDO  
• SCK  
• SDI (or SDI/SDO)  
• SHDN  
FIGURE 8-2:  
Example Split Rail  
Figure 8-1 through Figure 8-2 show three example split  
rail systems. In this system, the MCP4XXX interface  
input signals need to be able to support the PIC MCU  
output high voltage (VOH).  
System 2.  
TABLE 8-1:  
PIC (1)  
V
- V COMPARISONS  
OH  
IH  
MCP4XXX (2)  
In Example #1 (Figure 8-1), the MCP4XXX interface  
input signals need to be able to support the PIC MCU  
output high voltage (VOH). If the split rail voltage delta  
becomes too large, then the customer may be required  
to do some level shifting due to MCP4XXX VOH levels  
related to Host Controller VIH levels.  
Comment  
VDD VIH VOH VDD VIH  
VOH  
5.5  
5.0  
4.5  
3.3  
3.0  
2.7  
4.4  
4.0  
3.6  
4.4  
4.0  
3.6  
2.7 1.215 (3)  
(3)  
3.0 1.35  
3.3 1.485 (3)  
2.64 2.64 4.5 2.025 — (3)  
In Example #2 (Figure 8-2), the MCP4XXX interface  
input signals need to be able to support the lower  
voltage of the PIC MCU output high voltage level (VOH).  
(3)  
2.4  
2.4  
5.0 2.25  
2.16 2.16 5.5 2.475 — (3)  
Note 1: VOH minimum = 0.8 * VDD  
;
Table 8-1 shows an example PIC microcontroller I/O  
VOL maximum = 0.6V  
voltage  
specifications  
and  
the  
MCP4XXX  
VIH minimum = 0.8 * VDD  
VIL maximum = 0.2 * VDD  
;
;
specifications. So this PIC MCU operating at 3.3V will  
drive a VOH at 2.64V, and for the MCP4XXX operating  
at 5.5V, the VIH is 2.47V. Therefore, the interface  
signals meet specifications.  
2: VOH minimum (SDA only) =;  
VOL maximum = 0.2 * VDD  
VIH minimum = 0.45 * VDD  
VIL maximum = 0.2 * VDD  
;
3: The only MCP4XXX output pin is SDO,  
which is Open-Drain (or Open-Drain with  
Internal Pull-up) with High Voltage Support  
© 2008 Microchip Technology Inc.  
DS22060B-page 59  
MCP413X/415X/423X/425X  
8.2  
Techniques to force the CS pin to  
VIHH  
PIC10F206  
R1  
GP0  
The circuit in Figure 8-3 shows a method using the  
TC1240A doubling charge pump. When the SHDN pin  
is high, the TC1240A is off, and the level on the CS pin  
is controlled by the PIC® microcontrollers (MCUs) IO2  
pin.  
MCP4XXX  
GP2  
CS  
C1  
When the SHDN pin is low, the TC1240A is on and the  
VOUT voltage is 2 * VDD. The resistor R1 allows the CS  
pin to go higher than the voltage such that the PIC  
MCU’s IO2 pin “clamps” at approximately VDD.  
C2  
FIGURE 8-4:  
MCP4XXX Non-Volatile  
Digital Potentiometer Evaluation Board  
(MCP402XEV) implementation to generate the  
TC1240A  
VIN  
V
voltage.  
IHH  
C+  
PIC MCU  
C1  
C-  
SHDN  
8.3  
Using Shutdown Modes  
VOUT  
IO1  
Figure 8-5 shows a possible application circuit where  
the independent terminals could be used.  
Disconnecting the wiper allows the transistor input to  
be taken to the Bias voltage level (disconnecting A and  
or B may be desired to reduce system current).  
Disconnecting Terminal A modifies the transistor input  
by the RBW rheostat value to the Common B.  
Disconnecting Terminal B modifies the transistor input  
by the RAW rheostat value to the Common A. The  
Common A and Common B connections could be  
MCP402X  
R1  
CS  
IO2  
C2  
FIGURE 8-3:  
generate the V  
Using the TC1240A to  
voltage.  
IHH  
connected to VDD and VSS  
.
The circuit in Figure 8-4 shows the method used on the  
MCP402X Non-volatile Digital Potentiometer Evalua-  
tion Board (Part Number: MCP402XEV). This method  
requires that the system voltage be approximately 5V.  
This ensures that when the PIC10F206 enters a  
brown-out condition, there is an insufficient voltage  
level on the CS pin to change the stored value of the  
Common A  
Input  
wiper.  
The  
MCP402X  
Non-volatile  
Digital  
A
Potentiometer Evaluation Board User’s Guide  
(DS51546) contains a complete schematic.  
GP0 is a general purpose I/O pin, while GP2 can either  
be a general purpose I/O pin or it can output the internal  
clock.  
To base  
of Transistor  
(or Amplifier)  
W
For the serial commands, configure the GP2 pin as an  
input (high-impedance). The output state of the GP0  
pin will determine the voltage on the CS pin (VIL or VIH).  
For high-voltage serial commands, force the GP0  
output pin to output a high level (VOH) and configure the  
GP2 pin to output the internal clock. This will form a  
charge pump and increase the voltage on the CS pin  
(when the system voltage is approximately 5V).  
B
Input  
Common B  
Balance  
Bias  
Example Application Circuit  
FIGURE 8-5:  
using Terminal Disconnects.  
DS22060B-page 60  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
8.4.2  
LAYOUT CONSIDERATIONS  
8.4  
Design Considerations  
Inductively-coupled AC transients and digital switching  
noise can degrade the input and output signal integrity,  
potentially masking the MCP4XXX’s performance.  
Careful board layout minimizes these effects and  
increases the Signal-to-Noise Ratio (SNR). Multi-layer  
In the design of a system with the MCP4XXX devices,  
the following considerations should be taken into  
account:  
Power Supply Considerations  
Layout Considerations  
boards utilizing  
a low-inductance ground plane,  
isolated inputs, isolated outputs and proper decoupling  
are critical to achieving the performance that the silicon  
is capable of providing. Particularly harsh  
environments may require shielding of critical signals.  
8.4.1  
POWER SUPPLY  
CONSIDERATIONS  
The typical application will require a bypass capacitor  
in order to filter high-frequency noise, which can be  
induced onto the power supply's traces. The bypass  
capacitor helps to minimize the effect of these noise  
sources on signal integrity. Figure 8-6 illustrates an  
appropriate bypass strategy.  
If low noise is desired, breadboards and wire-wrapped  
boards are not recommended.  
8.4.3  
RESISTOR TEMPCO  
Characterization curves of the resistor temperature  
coefficient (Tempco) are shown in Figure 2-11,  
Figure 2-24, Figure 2-36, and Figure 2-48.  
In this example, the recommended bypass capacitor  
value is 0.1 µF. This capacitor should be placed as  
close (within 4 mm) to the device power pin (VDD) as  
possible.  
These curves show that the resistor network is  
designed to correct for the change in resistance as  
temperature increases. This technique reduces the  
end to end change is RAB resistance.  
The power source supplying these devices should be  
as clean as possible. If the application circuit has  
separate digital and analog power supplies, VDD and  
VSS should reside on the analog plane.  
8.4.4  
HIGH VOLTAGE TOLERANT PINS  
High Voltage support (VIHH) on the Serial Interface pins  
supports two features. These are:  
VDD  
• In-Circuit Accommodation of split rail applications  
and power supply sync issues  
0.1 µF  
• Compatability with systems that also support  
MCP414X/416X /424X/426X devices  
VDD  
0.1 µF  
A
W
U/D  
CS  
B
VSS  
VSS  
FIGURE 8-6:  
Typical Microcontroller  
Connections.  
© 2008 Microchip Technology Inc.  
DS22060B-page 61  
MCP413X/415X/423X/425X  
NOTES:  
DS22060B-page 62  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
9.2  
Technical Documentation  
9.0  
9.1  
DEVELOPMENT SUPPORT  
Development Tools  
Several additional technical documents are available to  
assist you in your design and development. These  
technical documents include Application Notes,  
Technical Briefs, and Design Guides. Table 9-2 shows  
some of these documents.  
Several development tools are available to assist in  
your design and evaluation of the MCP4XXX devices.  
The currently available tools are shown in Table 9-1.  
These boards may be purchased directly from the  
Microchip web site at www.microchip.com.  
TABLE 9-1:  
Board Name  
DEVELOPMENT TOOLS  
Part #  
Supported Devices  
MCP42XX Digital Potentiometer PICtail Plus Demo MCP42XXDM-PTPLS MCP42XX  
Board  
MCP4XXX Digital Potentiometer Daughter Board (1)  
8-pin SOIC/MSOP/TSSOP/DIP Evaluation Board  
14-pin SOIC/MSOP/DIP Evaluation Board  
MCP4XXXDM-DB  
MCP42XXX, MCP42XX,  
MCP4021, and MCP4011  
SOIC8EV  
Any 8-pin device in DIP, SOIC,  
MSOP, or TSSOP package  
SOIC14EV  
Any 14-pin device in DIP, SOIC, or  
MSOP package  
Note 1: Requires the use of a PICDEM Demo board (see User’s Guide for details)  
TABLE 9-2:  
TECHNICAL DOCUMENTATION  
Title  
Application  
Literature #  
Note Number  
AN1080  
AN737  
AN692  
AN691  
AN219  
Understanding Digital Potentiometers Resistor Variations  
Using Digital Potentiometers to Design Low Pass Adjustable Filters  
Using a Digital Potentiometer to Optimize a Precision Single Supply Photo Detect  
Optimizing the Digital Potentiometer in Precision Circuits  
Comparing Digital Potentiometers to Mechanical Potentiometers  
Digital Potentiometer Design Guide  
DS01080  
DS00737  
DS00692  
DS00691  
DS00219  
DS22017  
DS21825  
Signal Chain Design Guide  
© 2008 Microchip Technology Inc.  
DS22060B-page 63  
MCP413X/415X/423X/425X  
NOTES:  
DS22060B-page 64  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
10.0 PACKAGING INFORMATION  
10.1 Package Marking Information  
8-Lead DFN (3x3)  
Example:  
Part Number  
Code  
Part Number  
Code  
MCP4131-502E/MF  
DAAE  
DAAF  
DAAH  
DAAG  
DAAP  
DAAQ  
DAAS  
DAAR  
MCP4132-502E/MF  
MCP4132-103E/MF  
MCP4132-104E/MF  
MCP4132-503E/MF  
MCP4152-502E/MF  
MCP4152-103E/MF  
MCP4152-104E/MF  
MCP4152-503E/MF  
DAAY  
DAAZ  
DABB  
DABA  
DAAA  
DABD  
DAAD  
DAAC  
XXXX  
DAAE  
0817  
256  
MCP4131-103E/MF  
YYWW  
NNN  
MCP4131-104E/MF  
MCP4131-503E/MF  
MCP4151-502E/MF  
MCP4151-103E/MF  
MCP4151-104E/MF  
MCP4151-503E/MF  
8-Lead MSOP  
Example  
Part Number  
Code  
Part Number  
Code  
MCP4131-502E/MS 413152 MCP4132-502E/MS 413252  
MCP4131-103E/MS 413113 MCP4132-103E/MS 413213  
MCP4131-104E/MS 413114 MCP4132-104E/MS 413214  
MCP4131-503E/MS 413153 MCP4132-503E/MS 413253  
MCP4151-502E/MS 415152 MCP4152-502E/MS 415252  
MCP4151-103E/MS 415113 MCP4152-103E/MS 415213  
MCP4151-104E/MS 415114 MCP4152-104E/MS 415214  
MCP4151-503E/MS 415153 MCP4152-503E/MS 415253  
XXXXXX  
YWWNNN  
413152  
817256  
8-Lead PDIP  
Example  
4131-502  
XXXXXXXX  
XXXXXNNN  
YYWW  
E/P  
e
3
256  
0817  
8-Lead SOIC  
Example  
4131502E  
SN^ ^0817  
XXXXXXXX  
XXXXYYWW  
e3  
256  
NNN  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e
3
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2008 Microchip Technology Inc.  
DS22060B-page 65  
MCP413X/415X/423X/425X  
Package Marking Information (Continued)  
10-Lead DFN (3x3)  
Example:  
Part Number  
Code  
Part Number  
Code  
XXXX  
YYWW  
NNN  
BAEH  
0817  
256  
MCP4232-502E/MF  
MCP4232-103E/MF  
MCP4232-104E/MF  
MCP4232-503E/MF  
BAEH  
BAEJ  
BAEL  
BAEK  
MCP4252-502E/MF  
MCP4252-103E/MF  
MCP4252-104E/MF  
MCP4252-503E/MF  
BAES  
BAET  
BAEV  
BAEU  
10-Lead MSOP  
Example  
Part Number  
Code  
Part Number  
Code  
XXXXXX  
YWWNNN  
423252  
817256  
MCP4232-502E/MS 423252 MCP4252-502E/MS 425252  
MCP4232-103E/MS 423213 MCP4252-103E/MS 425213  
MCP4232-104E/MS 423214 MCP4252-104E/MS 425214  
MCP4232-503E/MS 423253 MCP4252-503E/MS 425253  
14-Lead PDIP  
Example  
MCP4251  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
YYWWNNN  
e
3
502E/P^
0817256  
14-Lead SOIC (.150”)  
Example  
MCP4251  
502E/SL^  
XXXXXXXXXXX  
XXXXXXXXXXX  
YYWWNNN  
e3  
^
0817256  
14-Lead TSSOP  
Example  
4251502E  
XXXXXXXX  
YYWW  
0817  
256  
NNN  
16-Lead QFN  
Example  
XXXXX  
XXXXXX  
XXXXXX  
YWWNNN  
4251  
502  
E/ML^  
0817256  
e3  
DS22060B-page 66  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢏꢗꢆMꢆꢘꢙꢘꢙꢚꢛꢜꢆ  ꢆ!ꢒꢅ"ꢆ#ꢍꢏꢑ$  
ꢑꢒꢊꢃ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
e
D
b
N
N
L
EXPOSED PAD  
E
E2  
K
NOTE 1  
NOTE 1  
1
2
2
1
D2  
BOTTOM VIEW  
TOP VIEW  
A
NOTE 2  
A3  
A1  
4ꢄꢃ%  
ꢖꢙ55ꢙꢖ,ꢗ,ꢘꢕ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢖꢙ6  
67ꢖ  
9
ꢚꢁ:.ꢅ/ꢕ0  
ꢚꢁꢛꢚ  
ꢖꢔ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢉꢃꢐꢎ%  
ꢕ%ꢇꢄ"ꢌ$$ꢅ  
0ꢌꢄ%ꢇꢍ%ꢅꢗꢎꢃꢍ*ꢄꢉ    
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢐ%ꢎ  
,#ꢑꢌ ꢉ"ꢅꢂꢇ"ꢅ<ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ<ꢃ"%ꢎ  
6
ꢔꢀ  
ꢔ+  
,ꢏ  
,
ꢚꢁ9ꢚ  
ꢚꢁꢚꢚ  
ꢀꢁꢚꢚ  
ꢚꢁꢚ.  
ꢚꢁꢚꢏ  
ꢚꢁꢏꢚꢅꢘ,2  
+ꢁꢚꢚꢅ/ꢕ0  
M
+ꢁꢚꢚꢅ/ꢕ0  
M
ꢚꢁ+ꢚ  
ꢚꢁ+ꢚ  
M
ꢚꢁꢚꢚ  
ꢀꢁ:ꢚ  
,#ꢑꢌ ꢉ"ꢅꢂꢇ"ꢅ5ꢉꢄꢐ%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢅ<ꢃ"%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢅ5ꢉꢄꢐ%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢜ%ꢌꢜ,#ꢑꢌ ꢉ"ꢅꢂꢇ"  
ꢓꢏ  
(
5
ꢚꢁꢚꢚ  
ꢚꢁꢏ.  
ꢚꢁꢏꢚ  
ꢚꢁꢏꢚ  
ꢏꢁꢒꢚ  
ꢚꢁ+.  
ꢚꢁ..  
M
>
ꢑꢒꢊꢃꢉ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢂꢇꢍ*ꢇꢐꢉꢅ&ꢇꢋꢅꢎꢇꢆꢉꢅꢌꢄꢉꢅꢌꢊꢅ&ꢌꢊꢉꢅꢉ#ꢑꢌ ꢉ"ꢅ%ꢃꢉꢅ(ꢇꢊ ꢅꢇ%ꢅꢉꢄ" ꢁ  
+ꢁ ꢂꢇꢍ*ꢇꢐꢉꢅꢃ ꢅ ꢇ)ꢅ ꢃꢄꢐ!ꢈꢇ%ꢉ"ꢁ  
ꢒꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢑꢉꢊꢅꢔꢕꢖ,ꢅ-ꢀꢒꢁ.ꢖꢁ  
/ꢕ01 /ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢓꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢓꢊꢇ)ꢃꢄꢐ 0ꢚꢒꢜꢚ:ꢏ/  
© 2008 Microchip Technology Inc.  
DS22060B-page 67  
MCP413X/415X/423X/425X  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢏꢗꢆMꢆꢘꢙꢘꢙꢚꢛꢜꢆ  ꢆ!ꢒꢅ"ꢆ#ꢍꢏꢑ$  
ꢑꢒꢊꢃ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
DS22060B-page 68  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆ&'ꢁꢂꢋ'ꢃꢆꢕꢇꢗꢆMꢆꢘꢚꢚꢆ ꢋꢈꢆ!ꢒꢅ"ꢆ#ꢇꢍ&ꢇ$  
ꢑꢒꢊꢃ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
A1  
c
e
eB  
b1  
b
4ꢄꢃ%  
ꢙ60;,ꢕ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢖꢙ6  
67ꢖ  
9
ꢁꢀꢚꢚꢅ/ꢕ0  
M
ꢁꢀ+ꢚ  
M
ꢁ+ꢀꢚ  
ꢁꢏ.ꢚ  
ꢁ+:.  
ꢁꢀ+ꢚ  
ꢁꢚꢀꢚ  
ꢁꢚ:ꢚ  
ꢁꢚꢀ9  
M
ꢖꢔ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
ꢑꢅ%ꢌꢅꢕꢉꢇ%ꢃꢄꢐꢅꢂꢈꢇꢄꢉ  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅꢗꢎꢃꢍ*ꢄꢉ    
/ꢇ ꢉꢅ%ꢌꢅꢕꢉꢇ%ꢃꢄꢐꢅꢂꢈꢇꢄꢉ  
ꢕꢎꢌ!ꢈ"ꢉꢊꢅ%ꢌꢅꢕꢎꢌ!ꢈ"ꢉꢊꢅ<ꢃ"%ꢎ  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅ<ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢐ%ꢎ  
6
ꢔꢏ  
ꢔꢀ  
,
,ꢀ  
5
(ꢀ  
(
ꢉ/  
M
ꢁꢏꢀꢚ  
ꢁꢀꢛ.  
M
ꢁꢀꢀ.  
ꢁꢚꢀ.  
ꢁꢏꢛꢚ  
ꢁꢏꢒꢚ  
ꢁ+ꢒ9  
ꢁꢀꢀ.  
ꢁꢚꢚ9  
ꢁꢚꢒꢚ  
ꢁꢚꢀꢒ  
M
ꢁ+ꢏ.  
ꢁꢏ9ꢚ  
ꢁꢒꢚꢚ  
ꢁꢀ.ꢚ  
ꢁꢚꢀ.  
ꢁꢚꢞꢚ  
ꢁꢚꢏꢏ  
ꢁꢒ+ꢚ  
ꢗꢃꢑꢅ%ꢌꢅꢕꢉꢇ%ꢃꢄꢐꢅꢂꢈꢇꢄꢉ  
5ꢉꢇ"ꢅꢗꢎꢃꢍ*ꢄꢉ    
4ꢑꢑꢉꢊꢅ5ꢉꢇ"ꢅ<ꢃ"%ꢎ  
5ꢌ)ꢉꢊꢅ5ꢉꢇ"ꢅ<ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅꢘꢌ)ꢅꢕꢑꢇꢍꢃꢄꢐꢅꢅꢝ  
ꢑꢒꢊꢃꢉ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢝꢅꢕꢃꢐꢄꢃ$ꢃꢍꢇꢄ%ꢅ0ꢎꢇꢊꢇꢍ%ꢉꢊꢃ %ꢃꢍꢁ  
+ꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢓꢅꢇꢄ"ꢅ,ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢖꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢁꢚꢀꢚ@ꢅꢑꢉꢊꢅ ꢃ"ꢉꢁ  
ꢒꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢑꢉꢊꢅꢔꢕꢖ,ꢅ-ꢀꢒꢁ.ꢖꢁ  
/ꢕ01ꢅ/ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢓꢊꢇ)ꢃꢄꢐ 0ꢚꢒꢜꢚꢀ9/  
© 2008 Microchip Technology Inc.  
DS22060B-page 69  
MCP413X/415X/423X/425X  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢖꢋꢌ(ꢒꢆ) ꢄꢈꢈꢆ*ꢎꢊꢈꢋ'ꢃꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖ)ꢗꢆ#ꢖ)*ꢇ$  
ꢑꢒꢊꢃ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
D
N
E
E1  
NOTE 1  
2
b
1
e
c
φ
A2  
A
L
L1  
A1  
4ꢄꢃ%  
ꢖꢙ55ꢙꢖ,ꢗ,ꢘꢕ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢖꢙ6  
67ꢖ  
ꢖꢔ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
9
ꢚꢁ:.ꢅ/ꢕ0  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢉꢃꢐꢎ%  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅꢗꢎꢃꢍ*ꢄꢉ    
ꢕ%ꢇꢄ"ꢌ$$ꢅ  
7ꢆꢉꢊꢇꢈꢈꢅ<ꢃ"%ꢎ  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅ<ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢐ%ꢎ  
2ꢌꢌ%ꢅ5ꢉꢄꢐ%ꢎ  
M
ꢚꢁꢞ.  
ꢚꢁꢚꢚ  
M
ꢚꢁ9.  
ꢀꢁꢀꢚ  
ꢚꢁꢛ.  
ꢚꢁꢀ.  
ꢔꢏ  
ꢔꢀ  
,
,ꢀ  
M
ꢒꢁꢛꢚꢅ/ꢕ0  
+ꢁꢚꢚꢅ/ꢕ0  
+ꢁꢚꢚꢅ/ꢕ0  
ꢚꢁ:ꢚ  
5
ꢚꢁꢒꢚ  
ꢚꢁ9ꢚ  
2ꢌꢌ%ꢑꢊꢃꢄ%  
2ꢌꢌ%ꢅꢔꢄꢐꢈꢉ  
5ꢀ  
ꢚꢁꢛ.ꢅꢘ,2  
M
ꢚꢟ  
9ꢟ  
5ꢉꢇ"ꢅꢗꢎꢃꢍ*ꢄꢉ    
5ꢉꢇ"ꢅ<ꢃ"%ꢎ  
(
ꢚꢁꢚ9  
ꢚꢁꢏꢏ  
M
M
ꢚꢁꢏ+  
ꢚꢁꢒꢚ  
ꢑꢒꢊꢃꢉ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢓꢅꢇꢄ"ꢅ,ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢖꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢚꢁꢀ.ꢅ&&ꢅꢑꢉꢊꢅ ꢃ"ꢉꢁ  
+ꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢑꢉꢊꢅꢔꢕꢖ,ꢅ-ꢀꢒꢁ.ꢖꢁ  
/ꢕ01 /ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢓꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢓꢊꢇ)ꢃꢄꢐ 0ꢚꢒꢜꢀꢀꢀ/  
DS22060B-page 70  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ) ꢄꢈꢈꢆ*ꢎꢊꢈꢋ'ꢃꢆꢕ)ꢑꢗꢆMꢆꢑꢄ((ꢒ+ꢐꢆꢘꢛꢜꢚꢆ  ꢆ!ꢒꢅ"ꢆ#)*&,$  
ꢑꢒꢊꢃ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
D
e
N
E
E1  
NOTE 1  
1
2
3
α
h
b
h
c
φ
A2  
A
L
A1  
L1  
β
4ꢄꢃ%  
ꢖꢙ55ꢙꢖ,ꢗ,ꢘꢕ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢖꢙ6  
67ꢖ  
ꢖꢔ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
9
ꢀꢁꢏꢞꢅ/ꢕ0  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢉꢃꢐꢎ%  
M
ꢀꢁꢏ.  
ꢚꢁꢀꢚ  
M
M
M
ꢀꢁꢞ.  
M
ꢚꢁꢏ.  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅꢗꢎꢃꢍ*ꢄꢉ    
ꢕ%ꢇꢄ"ꢌ$$ꢅꢅ  
ꢔꢏ  
ꢔꢀ  
,
7ꢆꢉꢊꢇꢈꢈꢅ<ꢃ"%ꢎ  
:ꢁꢚꢚꢅ/ꢕ0  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅ<ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢐ%ꢎ  
0ꢎꢇ&$ꢉꢊꢅBꢌꢑ%ꢃꢌꢄꢇꢈC  
2ꢌꢌ%ꢅ5ꢉꢄꢐ%ꢎ  
,ꢀ  
+ꢁꢛꢚꢅ/ꢕ0  
ꢒꢁꢛꢚꢅ/ꢕ0  
ꢚꢁꢏ.  
ꢚꢁꢒꢚ  
M
M
ꢚꢁ.ꢚ  
ꢀꢁꢏꢞ  
5
2ꢌꢌ%ꢑꢊꢃꢄ%  
2ꢌꢌ%ꢅꢔꢄꢐꢈꢉ  
5ꢉꢇ"ꢅꢗꢎꢃꢍ*ꢄꢉ    
5ꢉꢇ"ꢅ<ꢃ"%ꢎ  
ꢖꢌꢈ"ꢅꢓꢊꢇ$%ꢅꢔꢄꢐꢈꢉꢅ  
ꢖꢌꢈ"ꢅꢓꢊꢇ$%ꢅꢔꢄꢐꢈꢉꢅ/ꢌ%%ꢌ&  
5ꢀ  
ꢀꢁꢚꢒꢅꢘ,2  
ꢚꢟ  
ꢚꢁꢀꢞ  
ꢚꢁ+ꢀ  
.ꢟ  
M
M
M
M
M
9ꢟ  
(
ꢚꢁꢏ.  
ꢚꢁ.ꢀ  
ꢀ.ꢟ  
.ꢟ  
ꢀ.ꢟ  
ꢑꢒꢊꢃꢉ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢝꢅꢕꢃꢐꢄꢃ$ꢃꢍꢇꢄ%ꢅ0ꢎꢇꢊꢇꢍ%ꢉꢊꢃ %ꢃꢍꢁ  
+ꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢓꢅꢇꢄ"ꢅ,ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢖꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢚꢁꢀ.ꢅ&&ꢅꢑꢉꢊꢅ ꢃ"ꢉꢁ  
ꢒꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢑꢉꢊꢅꢔꢕꢖ,ꢅ-ꢀꢒꢁ.ꢖꢁ  
/ꢕ01 /ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢓꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢓꢊꢇ)ꢃꢄꢐ 0ꢚꢒꢜꢚ.ꢞ/  
© 2008 Microchip Technology Inc.  
DS22060B-page 71  
MCP413X/415X/423X/425X  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ) ꢄꢈꢈꢆ*ꢎꢊꢈꢋ'ꢃꢆꢕ)ꢑꢗꢆMꢆꢑꢄ((ꢒ+ꢐꢆꢘꢛꢜꢚꢆ  ꢆ!ꢒꢅ"ꢆ#)*&,$  
ꢑꢒꢊꢃ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
DS22060B-page 72  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
-ꢚꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢏꢗꢆMꢆꢘꢙꢘꢙꢚꢛꢜꢆ  ꢆ!ꢒꢅ"ꢆ#ꢍꢏꢑ$  
ꢑꢒꢊꢃ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
D
e
b
N
N
L
K
E
E2  
EXPOSED  
PAD  
NOTE 1  
NOTE 1  
2
1
1
2
D2  
BOTTOM VIEW  
TOP VIEW  
A
A1  
A3  
NOTE 2  
4ꢄꢃ%  
ꢖꢙ55ꢙꢖ,ꢗ,ꢘꢕ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢖꢙ6  
67ꢖ  
ꢀꢚ  
ꢚꢁ.ꢚꢅ/ꢕ0  
ꢚꢁꢛꢚ  
ꢖꢔ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢉꢃꢐꢎ%  
ꢕ%ꢇꢄ"ꢌ$$ꢅ  
0ꢌꢄ%ꢇꢍ%ꢅꢗꢎꢃꢍ*ꢄꢉ    
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢐ%ꢎ  
,#ꢑꢌ ꢉ"ꢅꢂꢇ"ꢅ5ꢉꢄꢐ%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ<ꢃ"%ꢎ  
6
ꢔꢀ  
ꢔ+  
ꢓꢏ  
,
ꢚꢁ9ꢚ  
ꢚꢁꢚꢚ  
ꢀꢁꢚꢚ  
ꢚꢁꢚ.  
ꢚꢁꢚꢏ  
ꢚꢁꢏꢚꢅꢘ,2  
+ꢁꢚꢚꢅ/ꢕ0  
ꢏꢁ+.  
+ꢁꢚꢚꢅ/ꢕ0  
ꢀꢁ.9  
ꢚꢁꢏ.  
ꢚꢁꢒꢚ  
M
ꢏꢁꢏꢚ  
ꢏꢁꢒ9  
,#ꢑꢌ ꢉ"ꢅꢂꢇ"ꢅ<ꢃ"%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢅ<ꢃ"%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢅ5ꢉꢄꢐ%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢜ%ꢌꢜ,#ꢑꢌ ꢉ"ꢅꢂꢇ"  
,ꢏ  
(
5
ꢀꢁꢒꢚ  
ꢚꢁꢀ9  
ꢚꢁ+ꢚ  
ꢚꢁꢏꢚ  
ꢀꢁꢞ.  
ꢚꢁ+ꢚ  
ꢚꢁ.ꢚ  
M
>
ꢑꢒꢊꢃꢉ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢂꢇꢍ*ꢇꢐꢉꢅ&ꢇꢋꢅꢎꢇꢆꢉꢅꢌꢄꢉꢅꢌꢊꢅ&ꢌꢊꢉꢅꢉ#ꢑꢌ ꢉ"ꢅ%ꢃꢉꢅ(ꢇꢊ ꢅꢇ%ꢅꢉꢄ" ꢁ  
+ꢁ ꢂꢇꢍ*ꢇꢐꢉꢅꢃ ꢅ ꢇ)ꢅ ꢃꢄꢐ!ꢈꢇ%ꢉ"ꢁ  
ꢒꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢑꢉꢊꢅꢔꢕꢖ,ꢅ-ꢀꢒꢁ.ꢖꢁ  
/ꢕ01 /ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢓꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢓꢊꢇ)ꢃꢄꢐ 0ꢚꢒꢜꢚ:+/  
© 2008 Microchip Technology Inc.  
DS22060B-page 73  
MCP413X/415X/423X/425X  
-ꢚꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢏꢗꢆMꢆꢘꢙꢘꢙꢚꢛꢜꢆ  ꢆ!ꢒꢅ"ꢆ#ꢍꢏꢑ$  
ꢑꢒꢊꢃ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
DS22060B-page 74  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
-ꢚꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢖꢋꢌ(ꢒꢆ) ꢄꢈꢈꢆ*ꢎꢊꢈꢋ'ꢃꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕ.ꢑꢗꢆ#ꢖ)*ꢇ$  
ꢑꢒꢊꢃ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
D
N
E
E1  
NOTE 1  
1
2
b
e
c
A
A2  
φ
L
A1  
L1  
4ꢄꢃ%  
ꢖꢙ55ꢙꢖ,ꢗ,ꢘꢕ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢖꢙ6  
67ꢖ  
ꢖꢔ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
ꢀꢚ  
ꢚꢁ.ꢚꢅ/ꢕ0  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢉꢃꢐꢎ%  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅꢗꢎꢃꢍ*ꢄꢉ    
ꢕ%ꢇꢄ"ꢌ$$ꢅ  
7ꢆꢉꢊꢇꢈꢈꢅ<ꢃ"%ꢎ  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅ<ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢐ%ꢎ  
2ꢌꢌ%ꢅ5ꢉꢄꢐ%ꢎ  
M
ꢚꢁꢞ.  
ꢚꢁꢚꢚ  
M
ꢚꢁ9.  
ꢀꢁꢀꢚ  
ꢚꢁꢛ.  
ꢚꢁꢀ.  
ꢔꢏ  
ꢔꢀ  
,
,ꢀ  
M
ꢒꢁꢛꢚꢅ/ꢕ0  
+ꢁꢚꢚꢅ/ꢕ0  
+ꢁꢚꢚꢅ/ꢕ0  
ꢚꢁ:ꢚ  
5
ꢚꢁꢒꢚ  
ꢚꢁ9ꢚ  
2ꢌꢌ%ꢑꢊꢃꢄ%  
2ꢌꢌ%ꢅꢔꢄꢐꢈꢉ  
5ꢀ  
ꢚꢁꢛ.ꢅꢘ,2  
M
ꢚꢟ  
9ꢟ  
5ꢉꢇ"ꢅꢗꢎꢃꢍ*ꢄꢉ    
5ꢉꢇ"ꢅ<ꢃ"%ꢎ  
(
ꢚꢁꢚ9  
ꢚꢁꢀ.  
M
M
ꢚꢁꢏ+  
ꢚꢁ++  
ꢑꢒꢊꢃꢉ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢓꢅꢇꢄ"ꢅ,ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢖꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢚꢁꢀ.ꢅ&&ꢅꢑꢉꢊꢅ ꢃ"ꢉꢁ  
+ꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢑꢉꢊꢅꢔꢕꢖ,ꢅ-ꢀꢒꢁ.ꢖꢁ  
/ꢕ01 /ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢓꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢓꢊꢇ)ꢃꢄꢐ 0ꢚꢒꢜꢚꢏꢀ/  
© 2008 Microchip Technology Inc.  
DS22060B-page 75  
MCP413X/415X/423X/425X  
-/ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆ&'ꢁꢂꢋ'ꢃꢆꢕꢇꢗꢆMꢆꢘꢚꢚꢆ ꢋꢈꢆ!ꢒꢅ"ꢆ#ꢇꢍ&ꢇ$  
ꢑꢒꢊꢃ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
c
A1  
b1  
b
e
eB  
4ꢄꢃ%  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢙ60;,ꢕ  
67ꢖ  
ꢀꢒ  
ꢁꢀꢚꢚꢅ/ꢕ0  
M
ꢖꢙ6  
ꢖꢔ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
ꢑꢅ%ꢌꢅꢕꢉꢇ%ꢃꢄꢐꢅꢂꢈꢇꢄꢉ  
M
ꢁꢏꢀꢚ  
ꢁꢀꢛ.  
M
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅꢗꢎꢃꢍ*ꢄꢉ    
/ꢇ ꢉꢅ%ꢌꢅꢕꢉꢇ%ꢃꢄꢐꢅꢂꢈꢇꢄꢉ  
ꢕꢎꢌ!ꢈ"ꢉꢊꢅ%ꢌꢅꢕꢎꢌ!ꢈ"ꢉꢊꢅ<ꢃ"%ꢎ  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅ<ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢐ%ꢎ  
ꢗꢃꢑꢅ%ꢌꢅꢕꢉꢇ%ꢃꢄꢐꢅꢂꢈꢇꢄꢉ  
5ꢉꢇ"ꢅꢗꢎꢃꢍ*ꢄꢉ    
4ꢑꢑꢉꢊꢅ5ꢉꢇ"ꢅ<ꢃ"%ꢎ  
ꢔꢏ  
ꢔꢀ  
,
,ꢀ  
5
(ꢀ  
(
ꢉ/  
ꢁꢀꢀ.  
ꢁꢚꢀ.  
ꢁꢏꢛꢚ  
ꢁꢏꢒꢚ  
ꢁꢞ+.  
ꢁꢀꢀ.  
ꢁꢚꢚ9  
ꢁꢚꢒ.  
ꢁꢚꢀꢒ  
M
ꢁꢀ+ꢚ  
M
ꢁ+ꢀꢚ  
ꢁꢏ.ꢚ  
ꢁꢞ.ꢚ  
ꢁꢀ+ꢚ  
ꢁꢚꢀꢚ  
ꢁꢚ:ꢚ  
ꢁꢚꢀ9  
M
ꢁ+ꢏ.  
ꢁꢏ9ꢚ  
ꢁꢞꢞ.  
ꢁꢀ.ꢚ  
ꢁꢚꢀ.  
ꢁꢚꢞꢚ  
ꢁꢚꢏꢏ  
ꢁꢒ+ꢚ  
5ꢌ)ꢉꢊꢅ5ꢉꢇ"ꢅ<ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅꢘꢌ)ꢅꢕꢑꢇꢍꢃꢄꢐꢅꢅꢝ  
ꢑꢒꢊꢃꢉ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢝꢅꢕꢃꢐꢄꢃ$ꢃꢍꢇꢄ%ꢅ0ꢎꢇꢊꢇꢍ%ꢉꢊꢃ %ꢃꢍꢁ  
+ꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢓꢅꢇꢄ"ꢅ,ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢖꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢁꢚꢀꢚ@ꢅꢑꢉꢊꢅ ꢃ"ꢉꢁ  
ꢒꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢑꢉꢊꢅꢔꢕꢖ,ꢅ-ꢀꢒꢁ.ꢖꢁ  
/ꢕ01ꢅ/ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢓꢊꢇ)ꢃꢄꢐ 0ꢚꢒꢜꢚꢚ./  
DS22060B-page 76  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
-/ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ) ꢄꢈꢈꢆ*ꢎꢊꢈꢋ'ꢃꢆꢕ)ꢂꢗꢆMꢆꢑꢄ((ꢒ+ꢐꢆꢘꢛꢜꢚꢆ  ꢆ!ꢒꢅ"ꢆ#)*&,$  
ꢑꢒꢊꢃ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
D
N
E
E1  
NOTE 1  
1
2
3
e
h
b
α
h
c
φ
A2  
A
L
A1  
β
L1  
4ꢄꢃ%  
ꢖꢙ55ꢙꢖ,ꢗ,ꢘꢕ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢖꢙ6  
67ꢖ  
ꢖꢔ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
ꢀꢒ  
ꢀꢁꢏꢞꢅ/ꢕ0  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢉꢃꢐꢎ%  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅꢗꢎꢃꢍ*ꢄꢉ    
ꢕ%ꢇꢄ"ꢌ$$ꢅꢅꢝ  
M
ꢀꢁꢏ.  
ꢚꢁꢀꢚ  
M
M
M
ꢀꢁꢞ.  
M
ꢚꢁꢏ.  
ꢔꢏ  
ꢔꢀ  
,
7ꢆꢉꢊꢇꢈꢈꢅ<ꢃ"%ꢎ  
:ꢁꢚꢚꢅ/ꢕ0  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅ<ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢐ%ꢎ  
0ꢎꢇ&$ꢉꢊꢅBꢌꢑ%ꢃꢌꢄꢇꢈC  
2ꢌꢌ%ꢅ5ꢉꢄꢐ%ꢎ  
,ꢀ  
+ꢁꢛꢚꢅ/ꢕ0  
9ꢁ:.ꢅ/ꢕ0  
ꢚꢁꢏ.  
ꢚꢁꢒꢚ  
M
M
ꢚꢁ.ꢚ  
ꢀꢁꢏꢞ  
5
2ꢌꢌ%ꢑꢊꢃꢄ%  
2ꢌꢌ%ꢅꢔꢄꢐꢈꢉ  
5ꢉꢇ"ꢅꢗꢎꢃꢍ*ꢄꢉ    
5ꢉꢇ"ꢅ<ꢃ"%ꢎ  
ꢖꢌꢈ"ꢅꢓꢊꢇ$%ꢅꢔꢄꢐꢈꢉꢅ  
ꢖꢌꢈ"ꢅꢓꢊꢇ$%ꢅꢔꢄꢐꢈꢉꢅ/ꢌ%%ꢌ&  
5ꢀ  
ꢀꢁꢚꢒꢅꢘ,2  
ꢚꢟ  
ꢚꢁꢀꢞ  
ꢚꢁ+ꢀ  
.ꢟ  
M
M
M
M
M
9ꢟ  
(
ꢚꢁꢏ.  
ꢚꢁ.ꢀ  
ꢀ.ꢟ  
.ꢟ  
ꢀ.ꢟ  
ꢑꢒꢊꢃꢉ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢝꢅꢕꢃꢐꢄꢃ$ꢃꢍꢇꢄ%ꢅ0ꢎꢇꢊꢇꢍ%ꢉꢊꢃ %ꢃꢍꢁ  
+ꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢓꢅꢇꢄ"ꢅ,ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢖꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢚꢁꢀ.ꢅ&&ꢅꢑꢉꢊꢅ ꢃ"ꢉꢁ  
ꢒꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢑꢉꢊꢅꢔꢕꢖ,ꢅ-ꢀꢒꢁ.ꢖꢁ  
/ꢕ01 /ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢓꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢓꢊꢇ)ꢃꢄꢐ 0ꢚꢒꢜꢚ:./  
© 2008 Microchip Technology Inc.  
DS22060B-page 77  
MCP413X/415X/423X/425X  
ꢑꢒꢊꢃ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
DS22060B-page 78  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
-/ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ01ꢋ'ꢆ)1(ꢋ'ꢓꢆ) ꢄꢈꢈꢆ*ꢎꢊꢈꢋ'ꢃꢆꢕ)0ꢗꢆMꢆ/ꢛ/ꢆ  ꢆ!ꢒꢅ"ꢆ#0))*ꢇ$  
ꢑꢒꢊꢃ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
φ
A2  
A
A1  
L
L1  
4ꢄꢃ%  
ꢖꢙ55ꢙꢖ,ꢗ,ꢘꢕ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢖꢙ6  
67ꢖ  
ꢖꢔ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
ꢀꢒ  
ꢚꢁ:.ꢅ/ꢕ0  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢉꢃꢐꢎ%  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅꢗꢎꢃꢍ*ꢄꢉ    
ꢕ%ꢇꢄ"ꢌ$$ꢅ  
7ꢆꢉꢊꢇꢈꢈꢅ<ꢃ"%ꢎ  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅ<ꢃ"%ꢎ  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅ5ꢉꢄꢐ%ꢎ  
2ꢌꢌ%ꢅ5ꢉꢄꢐ%ꢎ  
M
ꢚꢁ9ꢚ  
ꢚꢁꢚ.  
M
ꢀꢁꢚꢚ  
M
:ꢁꢒꢚꢅ/ꢕ0  
ꢒꢁꢒꢚ  
.ꢁꢚꢚ  
ꢚꢁ:ꢚ  
ꢀꢁꢏꢚ  
ꢀꢁꢚ.  
ꢚꢁꢀ.  
ꢔꢏ  
ꢔꢀ  
,
,ꢀ  
ꢒꢁ+ꢚ  
ꢒꢁꢛꢚ  
ꢚꢁꢒ.  
ꢒꢁ.ꢚ  
.ꢁꢀꢚ  
ꢚꢁꢞ.  
5
2ꢌꢌ%ꢑꢊꢃꢄ%  
2ꢌꢌ%ꢅꢔꢄꢐꢈꢉ  
5ꢉꢇ"ꢅꢗꢎꢃꢍ*ꢄꢉ    
5ꢉꢇ"ꢅ<ꢃ"%ꢎ  
5ꢀ  
ꢀꢁꢚꢚꢅꢘ,2  
ꢚꢟ  
ꢚꢁꢚꢛ  
ꢚꢁꢀꢛ  
M
M
M
9ꢟ  
(
ꢚꢁꢏꢚ  
ꢚꢁ+ꢚ  
ꢑꢒꢊꢃꢉ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢓꢅꢇꢄ"ꢅ,ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢖꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢚꢁꢀ.ꢅ&&ꢅꢑꢉꢊꢅ ꢃ"ꢉꢁ  
+ꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢑꢉꢊꢅꢔꢕꢖ,ꢅ-ꢀꢒꢁ.ꢖꢁ  
/ꢕ01 /ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢓꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢓꢊꢇ)ꢃꢄꢐ 0ꢚꢒꢜꢚ9ꢞ/  
© 2008 Microchip Technology Inc.  
DS22060B-page 79  
MCP413X/415X/423X/425X  
-2ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ3ꢎꢄꢅꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢂꢗꢆMꢆ/ꢙ/ꢙꢚꢛꢜꢆ  ꢆ!ꢒꢅ"ꢆ#3ꢏꢑ$  
ꢑꢒꢊꢃ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
D
D2  
EXPOSED  
PAD  
e
E
E2  
2
1
2
b
1
K
N
N
NOTE 1  
L
TOP VIEW  
BOTTOM VIEW  
A3  
A
A1  
4ꢄꢃ%  
ꢖꢙ55ꢙꢖ,ꢗ,ꢘꢕ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢖꢙ6  
67ꢖ  
ꢀ:  
ꢚꢁ:.ꢅ/ꢕ0  
ꢚꢁꢛꢚ  
ꢖꢔ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢉꢃꢐꢎ%  
ꢕ%ꢇꢄ"ꢌ$$ꢅ  
0ꢌꢄ%ꢇꢍ%ꢅꢗꢎꢃꢍ*ꢄꢉ    
7ꢆꢉꢊꢇꢈꢈꢅ<ꢃ"%ꢎ  
,#ꢑꢌ ꢉ"ꢅꢂꢇ"ꢅ<ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢐ%ꢎ  
,#ꢑꢌ ꢉ"ꢅꢂꢇ"ꢅ5ꢉꢄꢐ%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢅ<ꢃ"%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢅ5ꢉꢄꢐ%ꢎ  
6
ꢔꢀ  
ꢔ+  
,
,ꢏ  
ꢚꢁ9ꢚ  
ꢚꢁꢚꢚ  
ꢀꢁꢚꢚ  
ꢚꢁꢚ.  
ꢚꢁꢚꢏ  
ꢚꢁꢏꢚꢅꢘ,2  
ꢒꢁꢚꢚꢅ/ꢕ0  
ꢏꢁ:.  
ꢒꢁꢚꢚꢅ/ꢕ0  
ꢏꢁ:.  
ꢚꢁ+ꢚ  
ꢚꢁꢒꢚ  
M
ꢏꢁ.ꢚ  
ꢏꢁ9ꢚ  
ꢓꢏ  
(
5
ꢏꢁ.ꢚ  
ꢚꢁꢏ.  
ꢚꢁ+ꢚ  
ꢚꢁꢏꢚ  
ꢏꢁ9ꢚ  
ꢚꢁ+.  
ꢚꢁ.ꢚ  
M
0ꢌꢄ%ꢇꢍ%ꢜ%ꢌꢜ,#ꢑꢌ ꢉ"ꢅꢂꢇ"  
>
ꢑꢒꢊꢃꢉ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢂꢇꢍ*ꢇꢐꢉꢅꢃ ꢅ ꢇ)ꢅ ꢃꢄꢐ!ꢈꢇ%ꢉ"ꢁ  
+ꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢑꢉꢊꢅꢔꢕꢖ,ꢅ-ꢀꢒꢁ.ꢖꢁ  
/ꢕ01 /ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢓꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢓꢊꢇ)ꢃꢄꢐ 0ꢚꢒꢜꢀꢏꢞ/  
DS22060B-page 80  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
ꢑꢒꢊꢃ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
© 2008 Microchip Technology Inc.  
DS22060B-page 81  
MCP413X/415X/423X/425X  
NOTES:  
DS22060B-page 82  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
APPENDIX A: REVISION HISTORY  
APPENDIX B: MIGRATING FROM  
THE MCP41XXX AND  
Revision B (December 2008)  
MCP42XXX DEVICES  
The following is the list of modifications:  
This is intended to give an overview of some of the  
differences to be aware of when migrating from the  
MCP41XXX and MCP42XXX devices.  
1. Updated IPU specifications to specify test  
conditions and new limit.  
2. Updated DFN package in “Package Types (top  
view)”, including Exposed Thermal Pad sample  
(EP).  
B.1  
MCP41XXX to MCP41XX  
Differences  
3. Added new descriptions in Section 3.0 “Pin  
Descriptions”.  
Here are some of the differences to be aware of:  
1. SI pin is now SDI/SDO pin, and the contents of  
the device memory can be read.  
4. Added new Development Tool support items.  
5. Updated Package Outline section.  
2. Need to address the Terminal Connect Feature  
(TCON register) of MCP41XX.  
Revision A (September 2007)  
3. MCP41XX supports software Shutdown mode.  
4. New 5 kΩ version.  
• Original Release of this Document.  
5. MCP41XX have 7-bit resolution options.  
6. Alternate pinout versions (for Rheostat  
configuration).  
7. Verify device’s electrical specifications.  
8. Interface signals are now high voltage tolerant.  
9. Interface signals now have internal pull-up  
resistors.  
B.2  
MCP42XXX to MCP42XX  
Differences  
Here are some of the differences to be aware of:  
1. Daisy chaining of devices is no longer  
supported.  
2. SDO pin allows contents of device memory to be  
read.  
3. Need to address the Terminal Connect Feature  
(TCON register) of MCP42XX.  
4. MCP42XX supports software Shutdown mode.  
5. New 5 kΩ version.  
6. MCP42XX have 7-bit resolution options.  
7. Alternate package/pinout versions (for Rheostat  
configuration).  
8. Verify device’s electrical specifications.  
9. Interface signals are now high voltage tolerant  
10. Interface signals now have internal pull-up  
resistors.  
© 2008 Microchip Technology Inc.  
DS22060B-page 83  
MCP413X/415X/423X/425X  
NOTES:  
DS22060B-page 84  
© 2008 Microchip Technology Inc.  
MCP413X/415X/423X/425X  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
XXX  
X
/XX  
a)  
b)  
c)  
d)  
e)  
f)  
MCP4131-502E/XX: 5 k, 8LD Device  
MCP4131T-502E/XX: T/R, 5 k, 8LD Device  
MCP4131-103E/XX: 10 k, 8-LD Device  
MCP4131T-103E/XX: T/R, 10 k, 8LD Device  
MCP4131-503E/XX: 50 k, 8LD Device  
MCP4131T-503E/XX: T/R, 50 k, 8LD Device  
MCP4131-104E/XX: 100 k, 8LD Device  
MCP4131T-104E/XX: T/R, 100 k, 8LD Device  
Resistance Temperature  
Version  
Package  
Range  
Device  
MCP4131:  
MCP4131T:  
Single Volatile 7-bit Potentiometer  
Single Volatile 7-bit Potentiometer  
(Tape and Reel)  
g)  
h)  
MCP4132:  
MCP4132T:  
Single Volatile 7-bit Rheostat  
Single Volatile 7-bit Rheostat  
(Tape and Reel)  
Single Volatile 8-bit Potentiometer  
Single Volatile 8-bit Potentiometer  
(Tape and Reel)  
Single Volatile 8-bit Rheostat  
Single Volatile 8-bit Rheostat  
(Tape and Reel)  
Dual Volatile 7-bit Potentiometer  
Dual Volatile 7-bit Potentiometer  
(Tape and Reel)  
Dual Volatile 7-bit Rheostat  
Dual Volatile 7-bit Rheostat  
(Tape and Reel)  
Dual Volatile 8-bit Potentiometer  
Dual Volatile 8-bit Potentiometer  
(Tape and Reel)  
Dual Volatile 8-bit Rheostat  
Dual Volatile 8-bit Rheostat  
(Tape and Reel)  
a)  
b)  
c)  
d)  
e)  
f)  
MCP4132-502E/XX: 5 k, 8LD Device  
MCP4132T-502E/XX: T/R, 5 k, 8LD Device  
MCP4132-103E/XX: 10 k, 8-LD Device  
MCP4132T-103E/XX: T/R, 10 k, 8LD Device  
MCP4132-503E/XX: 50 k, 8LD Device  
MCP4132T-503E/XX: T/R, 50 k, 8LD Device  
MCP4132-104E/XX: 100 k, 8LD Device  
MCP4132T-104E/XX: T/R, 100 k, 8LD Device  
MCP4151:  
MCP4151T:  
MCP4152:  
MCP4152T:  
g)  
h)  
MCP4231:  
MCP4231T:  
a)  
b)  
c)  
d)  
e)  
f)  
MCP4151-502E/XX: 5 k, 8LD Device  
MCP4151T-502E/XX: T/R, 5 k, 8LD Device  
MCP4151-103E/XX: 10 k, 8-LD Device  
MCP4151T-103E/XX: T/R, 10 k, 8LD Device  
MCP4151-503E/XX: 50 k, 8LD Device  
MCP4151T-503E/XX: T/R, 50 k, 8LD Device  
MCP4151-104E/XX: 100 k, 8LD Device  
MCP4151T-104E/XX: T/R, 100 k, 8LD Device  
MCP4232:  
MCP4232T:  
MCP4251:  
MCP4251T:  
g)  
h)  
MCP4252:  
MCP4252T:  
a)  
b)  
c)  
d)  
e)  
f)  
MCP4152-502E/XX: 5 k, 8LD Device  
MCP4152T-502E/XX: T/R, 5 k, 8LD Device  
MCP4152-103E/XX: 10 k, 8-LD Device  
MCP4152T-103E/XX: T/R, 10 k, 8LD Device  
MCP4152-503E/XX: 50 k, 8LD Device  
MCP4152T-503E/XX: T/R, 50 k, 8LD Device  
MCP4152-104E/XX: 100 k, 8LD Device  
MCP4152T-104E/XX: T/R, 100 k, 8LD Device  
Resistance Version: 502  
=
=
=
=
5 kΩ  
10 kΩ  
50 kΩ  
103  
503  
104  
g)  
h)  
100 kΩ  
a)  
b)  
c)  
d)  
e)  
f)  
MCP4231-502E/XX: 5 k, 8LD Device  
MCP4231T-502E/XX: T/R, 5 kΩ, 8LD Device  
MCP4231-103E/XX: 10 k, 8-LD Device  
MCP4231T-103E/XX: T/R, 10 k, 8LD Device  
MCP4231-503E/XX: 50 k, 8LD Device  
MCP4231T-503E/XX: T/R, 50 k, 8LD Device  
MCP4231-104E/XX: 100 k, 8LD Device  
MCP4231T-104E/XX: T/R, 100 k, 8LD Device  
Temperature Range  
Package  
I
E
= -40°C to +85°C (Industrial)  
= -40°C to +125°C (Extended)  
MF  
ML  
MS  
P
SN  
SL  
ST  
UN  
=
=
=
=
=
=
=
=
Plastic Dual Flat No-lead (3x3 DFN), 8/10-lead  
Plastic Quad Flat No-lead (QFN), 16-lead  
g)  
h)  
Plastic Micro Small Outline (MSOP), 8-lead  
Plastic Dual In-line (PDIP) (300 mil), 8/14-lead  
Plastic Small Outline (SOIC), (150 mil), 8-lead  
Plastic Small Outline (SOIC), (150 mil), 14-lead  
Plastic Thin Shrink Small Outline (TSSOP), 14-lead  
Plastic Micro Small Outline (MSOP), 10-lead  
a)  
b)  
c)  
d)  
e)  
f)  
MCP4232-502E/XX: 5 k, 8LD Device  
MCP4232T-502E/XX: T/R, 5 k, 8LD Device  
MCP4232-103E/XX: 10 k, 8-LD Device  
MCP4232T-103E/XX: T/R, 10 k, 8LD Device  
MCP4232-503E/XX: 50 k, 8LD Device  
MCP4232T-503E/XX: T/R, 50 k, 8LD Device  
MCP4232-104E/XX: 100 k, 8LD Device  
MCP4232T-104E/XX: T/R, 100 k, 8LD Device  
g)  
h)  
a)  
b)  
c)  
d)  
e)  
f)  
MCP4251-502E/XX: 5 k, 8LD Device  
MCP4251T-502E/XX: T/R, 5 k, 8LD Device  
MCP4251-103E/XX: 10 k, 8-LD Device  
MCP4251T-103E/XX: T/R, 10 k, 8LD Device  
MCP4251-503E/XX: 50 k, 8LD Device  
MCP4251T-503E/XX: T/R, 50 k, 8LD Device  
MCP4251-104E/XX: 100 k, 8LD Device  
MCP4251T-104E/XX: T/R, 100 k, 8LD Device  
g)  
h)  
a)  
b)  
c)  
d)  
e)  
f)  
MCP4252-502E/XX: 5 k, 8LD Device  
MCP4252T-502E/XX: T/R, 5 k, 8LD Device  
MCP4252-103E/XX: 10 k, 8-LD Device  
MCP4252T-103E/XX: T/R, 10 k, 8LD Device  
MCP4252-503E/XX: 50 k, 8LD Device  
MCP4252T-503E/XX: T/R, 50 k, 8LD Device  
MCP4252-104E/XX: 100 k, 8LD Device  
MCP4252T-104E/XX: T/R, 100 k, 8LD Device  
g)  
h)  
XX  
=
=
=
=
=
=
=
=
MF for 8/10-lead 3x3 DFN  
ML for 16-lead QFN  
MS for 8-lead MSOP  
P for 8/14-lead PDIP  
SN for 8-lead SOIC  
SL for 14-lead SOIC  
ST for 14-lead TSSOP  
UN for 10-lead MSOP  
© 2008 Microchip Technology Inc.  
DS22060B-page 85  
MCP413X/415X/423X/425X  
NOTES:  
DS22060B-page 86  
© 2008 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, rfPIC, SmartShunt and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
FilterLab, Linear Active Thermistor, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, In-Circuit Serial  
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,  
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,  
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total  
Endurance, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2008, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2008 Microchip Technology Inc.  
DS22060B-page 87  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
01/02/08  
DS22060B-page 88  
© 2008 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY