MCP4641T-103E/ST [MICROCHIP]

7/8-Bit Single/Dual I2C Digital POT with Non-Volatile Memory; 7/8位单/双I2C数字电位器具有非易失性存储器
MCP4641T-103E/ST
型号: MCP4641T-103E/ST
厂家: MICROCHIP    MICROCHIP
描述:

7/8-Bit Single/Dual I2C Digital POT with Non-Volatile Memory
7/8位单/双I2C数字电位器具有非易失性存储器

电位器 存储
文件: 总92页 (文件大小:2071K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP454X/456X/464X/466X  
7/8-Bit Single/Dual I2C Digital POT with  
Non-Volatile Memory  
Features  
Description  
• Single or Dual Resistor Network options  
• Potentiometer or Rheostat configuration options  
• Resistor Network Resolution  
- 7-bit: 128 Resistors (129 Steps)  
- 8-bit: 256 Resistors (257 Steps)  
• RAB Resistances options of:  
- 5 kΩ  
The MCP45XX and MCP46XX devices offer a wide  
range of product offerings using an I2C interface. This  
family of devices support 7-bit and 8-bit resistor  
networks, Non-Volatile memory configurations, and  
Potentiometer and Rheostat pinouts.  
WiperLock Technology allows application-specific  
calibration settings to be secured in the EEPROM.  
- 10 kΩ  
- 50 kΩ  
- 100 kΩ  
Package Types (top view)  
MCP45X1  
Single Potentiometer  
MCP45X2  
Single Rheostat  
• Zero-Scale to Full-Scale Wiper operation  
• Low Wiper Resistance: 75Ω (typ.)  
• Low Tempco:  
- Absolute (Rheostat): 50 ppm typical  
(0°C to 70°C)  
- Ratiometric (Potentiometer): 15 ppm typical  
• Non-volatile Memory  
- Automatic Recall of Saved Wiper Setting  
- WiperLock™ Technology  
- 10 General Purpose Memory Locations  
• I2C Serial interface  
- 100 kHz, 400 kHz and 3.4 MHz support  
• Serial protocol allows:  
- High-Speed Read/Write to wiper  
- Read/Write to EEPROM  
- Write Protect to be enabled/disabled  
- WiperLock to be enabled/disabled  
HVC / A0  
HVC / A0  
VDD  
P0B  
P0W  
P0A  
VDD  
1
2
3
4
1
2
3
4
8
7
6
5
8
7
6
5
A1  
SCL  
SDA  
VSS  
SCL  
SDA  
VSS  
P0B  
P0W  
MSOP  
MSOP  
HVC / A0  
VDD HVC / A0  
VDD  
1
8
1
8
SCL  
SDA  
VSS  
A1  
SCL  
SDA  
VSS  
A1  
2
3
4
7
6
5
2
3
4
7
6
5
EP  
9
EP  
9
P0B  
P0W  
P0B  
P0W  
DFN 3x3 (MF) *  
MCP46X1 Dual Potentiometers  
DFN 3x3 (MF) *  
VDD  
A1  
12 A2  
HVC/A0  
SCL  
14  
13  
1
2
3
4
5
6
7
• Resistor Network Terminal Disconnect Feature  
via the Terminal Control (TCON) Register  
SDA  
VSS  
P1B  
P1W  
P1A  
11  
10  
9
WP  
16 15 14 13  
P0B  
P0W  
P0A  
SCL  
SDA  
VSS  
VSS  
WP  
NC  
P0B  
P0W  
1
2
3
4
12  
11  
10  
9
• Write Protect Feature:  
- Hardware Write Protect (WP) Control pin  
- Software Write Protect (WP) Configuration bit  
• Brown-out reset protection (1.5V typical)  
• Serial Interface Inactive current (2.5 uA typ.)  
• High-Voltage Tolerant Digital Inputs: Up to 12.5V  
• Wide Operating Voltage:  
- 2.7V to 5.5V - Device Characteristics Specified  
- 1.8V to 5.5V - Device Operation  
• Wide Bandwidth (-3dB) Operation:  
- 2 MHz (typ.) for 5.0 kΩ device  
EP  
17  
8
TSSOP  
5 6 7  
8
QFN-16 4x4 (ML) *  
MCP46X2 Dual Rheostat  
HVC / A0  
V
DD  
1
10  
VDD  
A1  
P0B  
P0W  
P1W  
HVC/A0  
SCL  
10  
9
8
7
6
1
2
3
4
5
• Extended temperature range (-40°C to +125°C)  
SCL  
SDA  
VSS  
A1  
2
3
4
5
9
8
7
6
SDA  
EP  
11  
P0B  
P0W  
P1W  
VSS  
P1B  
P1B  
MSOP  
DFN 3x3 (MF) *  
* Includes Exposed Thermal Pad (EP); see Table 3-1.  
© 2008 Microchip Technology Inc.  
DS22107A-page 1  
MCP454X/456X/464X/466X  
Device Block Diagram  
VDD  
VSS  
Power-up/  
Brown-out  
Control  
P0A  
Resistor  
Network 0  
(Pot 0)  
P0W  
I2C Serial  
Interface  
Module &  
Control  
Logic  
(WiperLock™  
Technology)  
Wiper 0  
& TCON  
Register  
A2  
A1  
P0B  
P1A  
HVC/A0  
SCL  
SDA  
I2C Interface  
Resistor  
Network 1  
(Pot 1)  
WP  
P1W  
P1B  
Wiper 1  
& TCON  
Register  
Memory (16x9)  
Wiper0 (V & NV)  
Wiper1 (V & NV)  
TCON  
STATUS  
For Dual Resistor Network  
Devices Only  
Data EEPROM  
(10 x 9-bits)  
Device Features  
Resistance (typical)  
VDD  
Wiper  
Configuration  
Wiper  
Device  
Operating  
Range (2)  
R
AB Options (kΩ)  
- RW  
(Ω)  
MCP4531 (3)  
MCP4532 (3)  
MCP4541  
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
Potentiometer(1) I2C RAM No Mid-Scale 5.0, 10.0, 50.0, 100.0  
Rheostat  
I2C RAM No Mid-Scale 5.0, 10.0, 50.0, 100.0  
Potentiometer(1) I2C  
Rheostat  
I2C  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
129 1.8V to 5.5V  
129 1.8V to 5.5V  
129 2.7V to 5.5V  
129 2.7V to 5.5V  
257 1.8V to 5.5V  
257 1.8V to 5.5V  
257 2.7V to 5.5V  
257 2.7V to 5.5V  
129 1.8V to 5.5V  
129 1.8V to 5.5V  
129 2.7V to 5.5V  
129 2.7V to 5.5V  
257 1.8V to 5.5V  
257 1.8V to 5.5V  
257 2.7V to 5.5V  
257 2.7V to 5.5V  
EE  
EE  
Yes NV Wiper 5.0, 10.0, 50.0, 100.0  
Yes NV Wiper 5.0, 10.0, 50.0, 100.0  
MCP4542  
MCP4551 (3)  
MCP4552 (3)  
MCP4561  
Potentiometer(1) I2C RAM No Mid-Scale 5.0, 10.0, 50.0, 100.0  
Rheostat  
I2C RAM No Mid-Scale 5.0, 10.0, 50.0, 100.0  
Potentiometer(1) I2C  
Rheostat  
I2C  
EE  
EE  
Yes NV Wiper 5.0, 10.0, 50.0, 100.0  
Yes NV Wiper 5.0, 10.0, 50.0, 100.0  
MCP4562  
MCP4631 (3)  
MCP4632 (3)  
MCP4641  
Potentiometer(1) I2C RAM No Mid-Scale 5.0, 10.0, 50.0, 100.0  
Rheostat  
I2C RAM No Mid-Scale 5.0, 10.0, 50.0, 100.0  
Potentiometer(1) I2C  
Rheostat  
I2C  
EE  
EE  
Yes NV Wiper 5.0, 10.0, 50.0, 100.0  
Yes NV Wiper 5.0, 10.0, 50.0, 100.0  
MCP4642  
MCP4651 (3)  
MCP4652 (3)  
MCP4661  
Potentiometer(1) I2C RAM No Mid-Scale 5.0, 10.0, 50.0, 100.0  
Rheostat  
I2C RAM No Mid-Scale 5.0, 10.0, 50.0, 100.0  
Potentiometer(1) I2C  
Rheostat  
I2C  
EE  
EE  
Yes NV Wiper 5.0, 10.0, 50.0, 100.0  
Yes NV Wiper 5.0, 10.0, 50.0, 100.0  
MCP4662  
Note 1: Floating either terminal (A or B) allows the device to be used as a Rheostat (variable resistor).  
2: Analog characteristics only tested from 2.7V to 5.5V unless otherwise noted.  
3: Please check Microchip web site for device release and availability  
DS22107A-page 2  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
Voltage on VDD with respect to VSS ............... -0.6V to +7.0V  
Voltage on HVC/A0, A1, A2, SCL, SDA, and WP with  
respect to VSS ............................................................. -0.6V to 12.5V  
Voltage on all other pins (PxA, PxW, and PxB)  
may affect device reliability.  
with respect to VSS ......................................... -0.3V to VDD + 0.3V  
Input clamp current, IIK  
(VI < 0, VI > VDD, VI > VPP ON HV pins)......................±20 mA  
Output clamp current, IOK  
(VO < 0 or VO > VDD) ..................................................±20 mA  
Maximum output current sunk by any Output pin  
......................................................................................25 mA  
Maximum output current sourced by any Output pin  
......................................................................................25 mA  
Maximum current out of VSS pin .................................100 mA  
Maximum current into VDD pin ....................................100 mA  
Maximum current into PXA, PXW & PXB pins ............±2.5 mA  
Storage temperature ....................................-65°C to +150°C  
Ambient temperature with power applied  
-40°C to +125°C  
Total power dissipation (Note 1) ................................400 mW  
Soldering temperature of leads (10 seconds).............+300°C  
ESD protection on all pins .................................. ≥ 4 kV (HBM),  
.......................................................................... 300V (MM)  
Maximum Junction Temperature (TJ) .........................+150°C  
Note 1: Power dissipation is calculated as follows:  
PDIS = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOL x IOL  
)
© 2008 Microchip Technology Inc.  
DS22107A-page 3  
MCP454X/456X/464X/466X  
AC/DC CHARACTERISTICS  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (extended)  
DC Characteristics  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ devices.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Supply Voltage  
VDD  
2.7  
1.8  
5.5  
2.7  
V
V
V
Serial Interface only.  
HVC pin Voltage  
Range  
VHV  
VSS  
12.5V  
VDD The HVC pin will be at one  
4.5V of three input levels  
(VIL, VIH or VIHH). (Note 6)  
VSS  
VDD  
8.0V  
+
V
V
VDD <  
4.5V  
VDD Start Voltage  
to ensure Wiper  
Reset  
VBOR  
VDDRR  
TBORD  
IDD  
1.65  
RAM retention voltage (VRAM) < VBOR  
VDD Rise Rate to  
ensure Power-on  
Reset  
(Note 9)  
10  
V/ms  
µs  
Delay after device  
exits the reset state  
20  
(VDD > VBOR  
)
Supply Current  
600  
µA  
Serial Interface Active,  
(Note 10)  
HVC/A0 = VIH (or VIL) (Note 11)  
Write all 0’s to Volatile Wiper 0  
VDD = 5.5V, FSCL = 3.4 MHz  
250  
575  
µA  
µA  
Serial Interface Active,  
HVC/A0 = VIH (or VIL) (Note 11)  
Write all 0’s to Volatile Wiper 0  
VDD = 5.5V, FSCL = 100 kHz  
EE Write Current (Write Cycle)  
(Non-Volatile device only),  
VDD = 5.5V, FSCL = 400 kHz,  
Write all 0’s to NonVolatile Wiper 0  
SCL = VIL or VIH  
2.5  
5
µA  
Serial Interface Inactive,  
(Stop condition, SCL = SDA = VIH),  
Wiper = 0  
VDD = 5.5V, HVC/A0 = VIH  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS  
.
3: MCP4XX1 only.  
4: MCP4XX2 only, includes VWZSE and VWFSE  
.
5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
6: This specification by design.  
7: Non-linearity is affected by wiper resistance (RW), which changes significantly overvoltage and  
temperature.  
8: The MCP4XX1 is externally connected to match the configurations of the MCP45X2 and MCP46X2, and  
then tested.  
9: POR/BOR is not rate dependent.  
10: Supply current is independent of current through the resistor network  
11: When HVC/A0 = VIHH, the IDD current is less due to current into the HVC/A0 pin. See IPU specification  
DS22107A-page 4  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
AC/DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (extended)  
DC Characteristics  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ devices.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
-502 devices (Note 1)  
Resistance  
(± 20%)  
RAB  
4.0  
8.0  
5
10  
6.0  
12.0  
60.0  
120.0  
kΩ  
kΩ  
kΩ  
kΩ  
-103 devices (Note 1)  
-503 devices (Note 1)  
-104 devices (Note 1)  
40.0  
80.0  
50  
100  
257  
129  
RAB  
Resolution  
N
Taps 8-bit  
Taps 7-bit  
No Missing Codes  
No Missing Codes  
Note 6  
Step Resistance  
RS  
/
Ω
8-bit  
(256)  
RAB  
(128)  
/
Ω
7-bit  
Note 6  
Nominal  
Resistance Match  
|RAB0 - RAB1| /  
RAB  
0.2  
1.25  
1.5  
%
%
MCP46X1 devices only  
|RBW0 - RBW1  
|
0.25  
MCP46X2 devices only,  
/ RBW  
Code = Full-Scale  
Wiper Resistance  
(Note 3, Note 4)  
RW  
75  
75  
160  
300  
Ω
Ω
VDD = 5.5 V, IW = 2.0 mA, code = 00h  
VDD = 2.7 V, IW = 2.0 mA, code = 00h  
Nominal  
Resistance  
Tempco  
ΔRAB/ΔT  
50  
ppm/°C TA = -20°C to +70°C  
ppm/°C TA = -40°C to +85°C  
ppm/°C TA = -40°C to +125°C  
ppm/°C Code = Midscale (80h or 40h)  
100  
150  
15  
Ratiometeric  
Tempco  
ΔVWB/ΔT  
Resistor Terminal  
Input Voltage  
VA,VW,VB  
Vss  
VDD  
V
Note 5, Note 6  
Range (Terminals  
A, B and W)  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS  
.
3: MCP4XX1 only.  
4: MCP4XX2 only, includes VWZSE and VWFSE  
.
5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
6: This specification by design.  
7: Non-linearity is affected by wiper resistance (RW), which changes significantly overvoltage and  
temperature.  
8: The MCP4XX1 is externally connected to match the configurations of the MCP45X2 and MCP46X2, and  
then tested.  
9: POR/BOR is not rate dependent.  
10: Supply current is independent of current through the resistor network  
11: When HVC/A0 = VIHH, the IDD current is less due to current into the HVC/A0 pin. See IPU specification  
© 2008 Microchip Technology Inc.  
DS22107A-page 5  
MCP454X/456X/464X/466X  
AC/DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (extended)  
DC Characteristics  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ devices.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
IAW  
W = Full-Scale (FS)  
IBW  
W = Zero Scale (ZS)  
IAW or IBW  
,
Maximum current  
through Terminal  
(A, W or B)  
IT  
2.5  
mA  
Terminal A  
Terminal B  
Terminal W  
,
2.5  
2.5  
mA  
mA  
mA  
Note 6  
,
W = FS or ZS  
IAB, VB = 0V,  
VA = 5.5V,  
1.38  
RAB(MIN) = 4000  
IAB, VB = 0V,  
VA = 5.5V,  
0.688  
0.138  
0.069  
mA  
mA  
mA  
Terminal A  
and  
Terminal B  
RAB(MIN) = 8000  
IAB, VB = 0V,  
VA = 5.5V,  
RAB(MIN) = 40000  
IAB, VB = 0V,  
VA = 5.5V,  
RAB(MIN) = 80000  
Leakage current  
into A, W or B  
IWL  
100  
100  
100  
nA  
nA  
nA  
MCP4XX1 PxA = PxW = PxB = VSS  
MCP4XX2 PxB = PxW = VSS  
Terminals Disconnected  
(R1HW = R0HW = 0)  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS  
.
3: MCP4XX1 only.  
4: MCP4XX2 only, includes VWZSE and VWFSE  
.
5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
6: This specification by design.  
7: Non-linearity is affected by wiper resistance (RW), which changes significantly overvoltage and  
temperature.  
8: The MCP4XX1 is externally connected to match the configurations of the MCP45X2 and MCP46X2, and  
then tested.  
9: POR/BOR is not rate dependent.  
10: Supply current is independent of current through the resistor network  
11: When HVC/A0 = VIHH, the IDD current is less due to current into the HVC/A0 pin. See IPU specification  
DS22107A-page 6  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
AC/DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (extended)  
DC Characteristics  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ devices.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
3.0V VDD 5.5V  
Full-Scale Error  
(MCP4XX1 only)  
(8-bit code = 100h,  
7-bit code = 80h)  
VWFSE  
-6.0  
-4.0  
-3.5  
-2.0  
-0.8  
-0.5  
-0.5  
-0.5  
-0.1  
-0.1  
LSb 5 kΩ  
8-bit  
7-bit  
LSb  
3.0V VDD 5.5V  
3.0V VDD 5.5V  
3.0V VDD 5.5V  
3.0V VDD 5.5V  
3.0V VDD 5.5V  
3.0V VDD 5.5V  
3.0V VDD 5.5V  
3.0V VDD 5.5V  
3.0V VDD 5.5V  
3.0V VDD 5.5V  
3.0V VDD 5.5V  
3.0V VDD 5.5V  
3.0V VDD 5.5V  
3.0V VDD 5.5V  
3.0V VDD 5.5V  
-0.1  
LSb 10 kΩ 8-bit  
LSb 7-bit  
LSb 50 kΩ 8-bit  
LSb 7-bit  
LSb 100 kΩ 8-bit  
-0.1  
-0.1  
-0.1  
-0.1  
-0.1  
LSb  
7-bit  
8-bit  
7-bit  
Zero-Scale Error  
(MCP4XX1 only)  
(8-bit code = 00h,  
7-bit code = 00h)  
VWZSE  
+0.1  
+0.1  
+0.1  
+0.1  
+0.1  
+0.1  
+0.1  
+0.1  
±0.5  
±0.25  
+6.0  
+3.0  
+3.5  
+2.0  
+0.8  
+0.5  
+0.5  
+0.5  
+1  
LSb 5 kΩ  
LSb  
LSb 10 kΩ 8-bit  
LSb 7-bit  
LSb 50 kΩ 8-bit  
LSb 7-bit  
LSb 100 kΩ 8-bit  
LSb  
7-bit  
Potentiometer  
Integral  
Non-linearity  
INL  
-1  
LSb 8-bit  
LSb 7-bit  
3.0V VDD 5.5V  
MCP4XX1 devices only  
(Note 2)  
-0.5  
+0.5  
Potentiometer  
Differential  
Non-linearity  
DNL  
-0.5  
±0.25  
+0.5  
LSb 8-bit  
LSb 7-bit  
3.0V VDD 5.5V  
MCP4XX1 devices only  
(Note 2)  
-0.25  
±0.125  
+0.25  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS  
.
3: MCP4XX1 only.  
4: MCP4XX2 only, includes VWZSE and VWFSE  
.
5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
6: This specification by design.  
7: Non-linearity is affected by wiper resistance (RW), which changes significantly overvoltage and  
temperature.  
8: The MCP4XX1 is externally connected to match the configurations of the MCP45X2 and MCP46X2, and  
then tested.  
9: POR/BOR is not rate dependent.  
10: Supply current is independent of current through the resistor network  
11: When HVC/A0 = VIHH, the IDD current is less due to current into the HVC/A0 pin. See IPU specification  
© 2008 Microchip Technology Inc.  
DS22107A-page 7  
MCP454X/456X/464X/466X  
AC/DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (extended)  
DC Characteristics  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ devices.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Code = 80h  
Bandwidth -3 dB  
(See Figure 2-58,  
load = 30 pF)  
BW  
2
2
MHz 5 kΩ  
8-bit  
7-bit  
MHz  
Code = 40h  
Code = 80h  
Code = 40h  
Code = 80h  
Code = 40h  
Code = 80h  
Code = 40h  
1
MHz 10 kΩ 8-bit  
MHz 7-bit  
kHz 50 kΩ 8-bit  
kHz 7-bit  
kHz 100 kΩ 8-bit  
kHz 7-bit  
1
200  
200  
100  
100  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS  
.
3: MCP4XX1 only.  
4: MCP4XX2 only, includes VWZSE and VWFSE  
.
5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
6: This specification by design.  
7: Non-linearity is affected by wiper resistance (RW), which changes significantly overvoltage and  
temperature.  
8: The MCP4XX1 is externally connected to match the configurations of the MCP45X2 and MCP46X2, and  
then tested.  
9: POR/BOR is not rate dependent.  
10: Supply current is independent of current through the resistor network  
11: When HVC/A0 = VIHH, the IDD current is less due to current into the HVC/A0 pin. See IPU specification  
DS22107A-page 8  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
AC/DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (extended)  
DC Characteristics  
Parameters  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ devices.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
5.5V, IW = 900 µA  
Rheostat Integral  
Non-linearity  
MCP45X1  
(Note 4, Note 8)  
MCP4XX2 devices  
only (Note 4)  
R-INL  
-1.5  
±0.5  
+4.5  
+1.5  
LSb 5 kΩ  
8-bit  
7-bit  
-8.25  
+8.25  
LSb  
3.0V, IW = 480 µA  
(Note 7)  
-1.125  
-6.0  
±0.5  
+4.5  
+1.125  
+6.0  
LSb  
LSb  
5.5V, IW = 900 µA  
3.0V, IW = 480 µA  
(Note 7)  
-1.5  
-5.5  
±0.5  
+2.5  
+1.5  
+5.5  
LSb 10 kΩ 8-bit  
5.5V, IW = 450 µA  
LSb  
3.0V, IW = 240 µA  
(Note 7)  
-1.125  
-4.0  
±0.5  
+2.5  
+1.125  
+4.0  
LSb  
LSb  
7-bit  
5.5V, IW = 450 µA  
3.0V, IW = 240 µA  
(Note 7)  
-1.5  
-2.0  
±0.5  
+1  
+1.5  
+2.0  
LSb 50 kΩ 8-bit  
5.5V, IW = 90 µA  
LSb  
3.0V, IW = 48 µA  
(Note 7)  
-1.125  
-1.5  
±0.5  
+1  
+1.125  
+1.5  
LSb  
LSb  
7-bit  
5.5V, IW = 90 µA  
3.0V, IW = 48 µA  
(Note 7)  
-1.0  
-1.5  
±0.5  
+1.0  
+1.5  
LSb 100 kΩ 8-bit  
5.5V, IW = 45 µA  
+0.25  
LSb  
3.0V, IW = 24 µA  
(Note 7)  
-0.8  
±0.5  
+0.8  
LSb  
LSb  
7-bit  
5.5V, IW = 45 µA  
-1.125  
+0.25  
+1.125  
3.0V, IW = 24 µA  
(Note 7)  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS  
.
3: MCP4XX1 only.  
4: MCP4XX2 only, includes VWZSE and VWFSE  
.
5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
6: This specification by design.  
7: Non-linearity is affected by wiper resistance (RW), which changes significantly overvoltage and  
temperature.  
8: The MCP4XX1 is externally connected to match the configurations of the MCP45X2 and MCP46X2, and  
then tested.  
9: POR/BOR is not rate dependent.  
10: Supply current is independent of current through the resistor network  
11: When HVC/A0 = VIHH, the IDD current is less due to current into the HVC/A0 pin. See IPU specification  
© 2008 Microchip Technology Inc.  
DS22107A-page 9  
MCP454X/456X/464X/466X  
AC/DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (extended)  
DC Characteristics  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ devices.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
5.5V, IW = 900 µA  
Rheostat  
R-DNL  
-0.5  
-1.0  
±0.25  
+0.5  
+0.5  
+1.0  
LSb 5 kΩ  
8-bit  
7-bit  
Differential  
Non-linearity  
MCP45X1  
(Note 4, Note 8)  
MCP4XX2 devices  
only  
LSb  
3.0V, IW = 480 µA  
(Note 7)  
-0.375  
-0.75  
±0.25  
+0.5  
+0.375  
+0.75  
LSb  
LSb  
5.5V, IW = 900 µA  
3.0V, IW = 480 µA  
(Note 7)  
(Note 4)  
-0.5  
-1.0  
±0.25  
+0.25  
+0.5  
+1.0  
LSb 10 kΩ 8-bit  
5.5V, IW = 450 µA  
LSb  
3.0V, IW = 240 µA  
(Note 7)  
-0.375  
-0.75  
±0.25  
+0.5  
+0.375  
+0.75  
LSb  
LSb  
7-bit  
5.5V, IW = 450 µA  
3.0V, IW = 240 µA  
(Note 7)  
-0.5  
-0.5  
±0.25  
±0.25  
+0.5  
+0.5  
LSb 50 kΩ 8-bit  
5.5V, IW = 90 µA  
LSb  
3.0V, IW = 48 µA  
(Note 7)  
-0.375  
-0.375  
±0.25  
±0.25  
+0.375  
+0.375  
LSb  
LSb  
7-bit  
5.5V, IW = 90 µA  
3.0V, IW = 48 µA  
(Note 7)  
-0.5  
-0.5  
±0.25  
±0.25  
+0.5  
+0.5  
LSb 100 kΩ 8-bit  
5.5V, IW = 45 µA  
LSb  
3.0V, IW = 24 µA  
(Note 7)  
-0.375  
-0.375  
±0.25  
±0.25  
+0.375  
+0.375  
LSb  
LSb  
7-bit  
5.5V, IW = 45 µA  
3.0V, IW = 24 µA  
(Note 7)  
Capacitance (PA)  
Capacitance (Pw)  
Capacitance (PB)  
CAW  
CW  
75  
120  
75  
pF  
pF  
pF  
f =1 MHz, Code = Full-Scale  
f =1 MHz, Code = Full-Scale  
f =1 MHz, Code = Full-Scale  
CBW  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS  
.
3: MCP4XX1 only.  
4: MCP4XX2 only, includes VWZSE and VWFSE  
.
5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
6: This specification by design.  
7: Non-linearity is affected by wiper resistance (RW), which changes significantly overvoltage and  
temperature.  
8: The MCP4XX1 is externally connected to match the configurations of the MCP45X2 and MCP46X2, and  
then tested.  
9: POR/BOR is not rate dependent.  
10: Supply current is independent of current through the resistor network  
11: When HVC/A0 = VIHH, the IDD current is less due to current into the HVC/A0 pin. See IPU specification  
DS22107A-page 10  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
AC/DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (extended)  
DC Characteristics  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ devices.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Digital Inputs/Outputs (SDA, SCK, HVC/A0, A1, A2, WP)  
Schmitt Trigger  
High Input  
VIH  
0.45 VDD  
V
All  
2.7V VDD 5.5V  
Inputs (Allows 2.7V Digital VDD with  
Threshold  
except 5V Analog VDD  
SDA  
and  
)
0.5 VDD  
V
1.8V VDD 2.7V  
SCL  
0.7 VDD  
0.7 VDD  
0.7 VDD  
0.7 VDD  
VMAX  
VMAX  
VMAX  
VMAX  
0.2VDD  
0.3VDD  
0.3VDD  
0.3VDD  
0.3VDD  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
100 kHz  
400 kHz  
1.7 MHz  
3.4 Mhz  
SDA  
and  
SCL  
Schmitt Trigger  
Low Input  
Threshold  
VIL  
All inputs except SDA and SCL  
100 kHz  
-0.5  
SDA  
and  
SCL  
-0.5  
400 kHz  
-0.5  
1.7 MHz  
-0.5  
3.4 Mhz  
Hysteresis of  
Schmitt Trigger  
Inputs (Note 6)  
VHYS  
0.1VDD  
All inputs except SDA and SCL  
N.A.  
VDD < 2.0V  
100 kHz  
N.A.  
VDD 2.0V  
SDA  
0.1 VDD  
0.05 VDD  
0.1 VDD  
0.1 VDD  
8.5  
VDD < 2.0V  
and 400 kHz  
VDD 2.0V  
SCL  
1.7 MHz  
12.5 (6)  
3.4 Mhz  
High Voltage Input  
Entry Voltage  
VIHHEN  
VIHHEX  
VMAX  
Threshold for WiperLock™ Technology  
High Voltage Input  
Exit Voltage  
VDD  
+
V
V
0.8V (6)  
12.5 (6)  
High Voltage Limit  
Pin can tolerate VMAX or less.  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS  
.
3: MCP4XX1 only.  
4: MCP4XX2 only, includes VWZSE and VWFSE  
.
5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
6: This specification by design.  
7: Non-linearity is affected by wiper resistance (RW), which changes significantly overvoltage and  
temperature.  
8: The MCP4XX1 is externally connected to match the configurations of the MCP45X2 and MCP46X2, and  
then tested.  
9: POR/BOR is not rate dependent.  
10: Supply current is independent of current through the resistor network  
11: When HVC/A0 = VIHH, the IDD current is less due to current into the HVC/A0 pin. See IPU specification  
© 2008 Microchip Technology Inc.  
DS22107A-page 11  
MCP454X/456X/464X/466X  
AC/DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (extended)  
DC Characteristics  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ devices.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Output Low  
Voltage (SDA)  
VOL  
VSS  
VSS  
0.2VDD  
0.4  
V
V
VDD < 2.0V, IOL = 1 mA  
VDD 2.0V, IOL = 3 mA  
Weak Pull-up /  
Pull-down Current  
IPU  
1.75  
mA  
Internal VDD pull-up, VIHH pull-down  
VDD = 5.5V, VIHH = 12.5V  
170  
16  
µA  
HVC pin, VDD = 5.5V, VHVC = 3V  
VDD = 5.5V, VHVC = 3V  
HVC Pull-up /  
Pull-down  
RHVC  
kΩ  
Resistance  
Input Leakage Cur-  
rent  
IIL  
-1  
1
µA  
pF  
VIN = VDD and VIN = VSS  
fC = 3.4 MHz  
Pin Capacitance  
RAM (Wiper) Value  
Value Range  
CIN, COUT  
10  
N
0h  
0h  
1FFh  
1FFh  
hex  
hex  
hex  
8-bit device  
7-bit device  
TCON POR/BOR  
Value  
NTCON  
1FFh  
All Terminals connected  
EEPROM  
Endurance  
Endurance  
1M  
Cycles  
hex  
EEPROM Range  
N
N
0h  
1FFh  
Initial Factory  
Setting  
80h  
40h  
5
hex  
8-bit  
7-bit  
WiperLock Technology = Off  
WiperLock Technology = Off  
hex  
EEPROM  
tWC  
10  
ms  
Programming Write  
Cycle Time  
Power Requirements  
Power Supply  
Sensitivity  
(MCP45X2 and  
MCP46X2 only)  
PSS  
0.0015 0.0035  
0.0015 0.0035  
%/% 8-bit  
%/% 7-bit  
VDD = 2.7V to 5.5V,  
VA = 2.7V, Code = 80h  
VDD = 2.7V to 5.5V,  
VA = 2.7V, Code = 40h  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS  
.
3: MCP4XX1 only.  
4: MCP4XX2 only, includes VWZSE and VWFSE  
.
5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
6: This specification by design.  
7: Non-linearity is affected by wiper resistance (RW), which changes significantly overvoltage and  
temperature.  
8: The MCP4XX1 is externally connected to match the configurations of the MCP45X2 and MCP46X2, and  
then tested.  
9: POR/BOR is not rate dependent.  
10: Supply current is independent of current through the resistor network  
11: When HVC/A0 = VIHH, the IDD current is less due to current into the HVC/A0 pin. See IPU specification  
DS22107A-page 12  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
SCL  
SDA  
93  
91  
90  
92  
STOP  
Condition  
START  
Condition  
2
FIGURE 1-1:  
I C Bus Start/Stop Bits Timing Waveforms.  
2
TABLE 1-1:  
I C BUS START/STOP BITS REQUIREMENTS  
I2C AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (Extended)  
Operating Voltage VDD range is described in AC/DC characteristics  
Param.  
Symbol  
No.  
Characteristic  
Standard Mode  
Min  
Max  
Units  
Conditions  
FSCL  
0
0
100  
400  
1.7  
3.4  
400  
400  
400  
100  
kHz Cb = 400 pF, 1.8V - 5.5V  
Fast Mode  
kHz Cb = 400 pF, 2.7V - 5.5V  
High-Speed 1.7  
High-Speed 3.4  
100 kHz mode  
400 kHz mode  
1.7 MHz mode  
3.4 MHz mode  
100 kHz mode  
400 kHz mode  
1.7 MHz mode  
3.4 MHz mode  
100 kHz mode  
400 kHz mode  
1.7 MHz mode  
3.4 MHz mode  
100 kHz mode  
400 kHz mode  
1.7 MHz mode  
3.4 MHz mode  
100 kHz mode  
400 kHz mode  
1.7 MHz mode  
3.4 MHz mode  
0
MHz Cb = 400 pF, 4.5V - 5.5V  
0
MHz Cb = 100 pF, 4.5V - 5.5V  
D102  
90  
Cb  
Bus capacitive  
loading  
pF  
pF  
pF  
pF  
TSU:STA START condition  
Setup time  
4700  
600  
160  
160  
4000  
600  
160  
160  
4000  
600  
160  
160  
4000  
600  
160  
160  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Only relevant for repeated  
START condition  
91  
THD:STA START condition  
Hold time  
After this period the first  
clock pulse is generated  
92  
TSU:STO STOP condition  
Setup time  
93  
THD:STO STOP condition  
Hold time  
© 2008 Microchip Technology Inc.  
DS22107A-page 13  
MCP454X/456X/464X/466X  
103  
102  
100  
101  
SCL  
90  
106  
91  
92  
107  
SDA  
In  
110  
109  
109  
SDA  
Out  
2
FIGURE 1-2:  
I C Bus Data Timing.  
2
TABLE 1-2:  
I C BUS DATA REQUIREMENTS (SLAVE MODE)  
I2C AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (Extended)  
Operating Voltage VDD range is described in AC/DC characteristics  
Param.  
No.  
Sym  
Characteristic  
Min  
Max Units  
Conditions  
Clockhightime 100 kHz mode  
400 kHz mode  
4000  
600  
120  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1.8V-5.5V  
100  
THIGH  
2.7V-5.5V  
4.5V-5.5V  
4.5V-5.5V  
1.8V-5.5V  
2.7V-5.5V  
4.5V-5.5V  
4.5V-5.5V  
1.7 MHz mode  
3.4 MHz mode  
101  
TLOW  
Clock low time 100 kHz mode  
400 kHz mode  
4700  
1300  
320  
160  
1.7 MHz mode  
3.4 MHz mode  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region  
(minimum 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.  
2: A fast-mode (400 kHz) I2C-bus device can be used in a standard-mode (100 kHz) I2C-bus system, but the  
requirement tSU;DAT 250 ns must then be met. This will automatically be the case if the device does not  
stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal,  
it must output the next data bit to the SDA line  
TR max.+tSU;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I2C bus specification) before  
the SCL line is released.  
3: The MCP46X1/MCP46X2 device must provide a data hold time to bridge the undefined part between VIH  
and VIL of the falling edge of the SCL signal. This specification is not a part of the I2C specification, but  
must be tested in order to ensure that the output data will meet the setup and hold specifications for the  
receiving device.  
4: Use Cb in pF for the calculations.  
5: Not Tested  
6: A Master Transmitter must provide a delay to ensure that difference between SDA and SCL fall times do  
not unintentionally create a Start or Stop condition.  
7: Ensured by the TAA 3.4 MHz specification test.  
DS22107A-page 14  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
2
TABLE 1-2:  
I C BUS DATA REQUIREMENTS (SLAVE MODE) (CONTINUED)  
I2C AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
–40°C TA +125°C (Extended)  
Operating Voltage VDD range is described in AC/DC characteristics  
Param.  
No.  
Sym  
Characteristic  
Min  
Max Units  
Conditions  
102A (5)  
TRSCL  
SCL rise time  
100 kHz mode  
400 kHz mode  
1.7 MHz mode  
1.7 MHz mode  
20 + 0.1Cb  
20  
1000  
300  
80  
ns  
ns  
ns  
ns  
Cb is specified to be from  
10 to 400 pF (100 pF maxi-  
mum for 3.4 MHz mode)  
20  
160  
After a Repeated Start con-  
dition or an Acknowledge  
bit  
3.4 MHz mode  
3.4 MHz mode  
10  
10  
40  
80  
ns  
ns  
After a Repeated Start  
condition or an Acknowl-  
edge bit  
102B (5)  
TRSDA  
TFSCL  
TFSDA  
SDA rise time  
SCL fall time  
SDA fall time  
100 kHz mode  
400 kHz mode  
1.7 MHz mode  
3.4 MHz mode  
100 kHz mode  
400 kHz mode  
1.7 MHz mode  
3.4 MHz mode  
100 kHz mode  
1000  
300  
160  
80  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Cb is specified to be from  
10 to 400 pF (100 pF max  
for 3.4 MHz mode)  
20 + 0.1Cb  
20  
10  
103A (5)  
300  
300  
80  
Cb is specified to be from  
10 to 400 pF (100 pF max  
for 3.4 MHz mode)  
20 + 0.1Cb  
20  
10  
40  
103B (5)  
300  
Cb is specified to be from  
10 to 400 pF (100 pF max  
for 3.4 MHz mode)  
400 kHz mode 20 + 0.1Cb (4) 300  
1.7 MHz mode  
3.4 MHz mode  
20  
10  
0
160  
80  
106  
THD:DAT Data input hold 100 kHz mode  
1.8V-5.5V, Note 6  
2.7V-5.5V, Note 6  
4.5V-5.5V, Note 6  
4.5V-5.5V, Note 6  
time  
400 kHz mode  
0
1.7 MHz mode  
3.4 MHz mode  
0
0
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region  
(minimum 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.  
2: A fast-mode (400 kHz) I2C-bus device can be used in a standard-mode (100 kHz) I2C-bus system, but the  
requirement tSU;DAT 250 ns must then be met. This will automatically be the case if the device does not  
stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal,  
it must output the next data bit to the SDA line  
TR max.+tSU;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I2C bus specification) before  
the SCL line is released.  
3: The MCP46X1/MCP46X2 device must provide a data hold time to bridge the undefined part between VIH  
and VIL of the falling edge of the SCL signal. This specification is not a part of the I2C specification, but  
must be tested in order to ensure that the output data will meet the setup and hold specifications for the  
receiving device.  
4: Use Cb in pF for the calculations.  
5: Not Tested  
6: A Master Transmitter must provide a delay to ensure that difference between SDA and SCL fall times do  
not unintentionally create a Start or Stop condition.  
7: Ensured by the TAA 3.4 MHz specification test.  
© 2008 Microchip Technology Inc.  
DS22107A-page 15  
MCP454X/456X/464X/466X  
2
TABLE 1-2:  
I C BUS DATA REQUIREMENTS (SLAVE MODE) (CONTINUED)  
I2C AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (Extended)  
Operating Voltage VDD range is described in AC/DC characteristics  
Param.  
No.  
Sym  
Characteristic  
Min  
Max Units  
Conditions  
107  
TSU:DAT Data input setup 100 kHz mode  
250  
100  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note 2  
Note 1  
time  
400 kHz mode  
1.7 MHz mode  
3.4 MHz mode  
109  
TAA  
Output valid  
from clock  
100 kHz mode  
400 kHz mode  
1.7 MHz mode  
3450  
900  
150  
Cb = 100 pF,  
Note 1, Note 7  
310  
ns  
Cb = 400 pF,  
Note 1, Note 5  
3.4 MHz mode  
100 kHz mode  
400 kHz mode  
1.7 MHz mode  
3.4 MHz mode  
4700  
1300  
N.A.  
N.A.  
150  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Cb = 100 pF, Note 1  
110  
TBUF  
Bus free time  
Time the bus must be free  
before a new transmission  
can start  
TSP  
Input filter spike 100 kHz mode  
50  
50  
10  
10  
Philips Spec states N.A.  
suppression  
(SDA and SCL)  
400 kHz mode  
1.7 MHz mode  
Spike suppression  
Spike suppression  
3.4 MHz mode  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region  
(minimum 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.  
2: A fast-mode (400 kHz) I2C-bus device can be used in a standard-mode (100 kHz) I2C-bus system, but the  
requirement tSU;DAT 250 ns must then be met. This will automatically be the case if the device does not  
stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal,  
it must output the next data bit to the SDA line  
TR max.+tSU;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I2C bus specification) before  
the SCL line is released.  
3: The MCP46X1/MCP46X2 device must provide a data hold time to bridge the undefined part between VIH  
and VIL of the falling edge of the SCL signal. This specification is not a part of the I2C specification, but  
must be tested in order to ensure that the output data will meet the setup and hold specifications for the  
receiving device.  
4: Use Cb in pF for the calculations.  
5: Not Tested  
6: A Master Transmitter must provide a delay to ensure that difference between SDA and SCL fall times do  
not unintentionally create a Start or Stop condition.  
7: Ensured by the TAA 3.4 MHz specification test.  
DS22107A-page 16  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = +2.7V to +5.5V, VSS = GND.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 8L-DFN (3x3)  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 10L-DFN (3x3)  
Thermal Resistance, 10L-MSOP  
Thermal Resistance, 14L-MSOP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 16L-QFN  
TA  
TA  
TA  
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
60  
211  
145.5  
57  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
202  
N/A  
95.3  
47  
© 2008 Microchip Technology Inc.  
DS22107A-page 17  
MCP454X/456X/464X/466X  
NOTES:  
DS22107A-page 18  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
250  
200  
150  
100  
50  
1000  
800  
600  
400  
200  
0
450  
3.4MHz, 5.5V  
400  
350  
300  
250  
200  
150  
100  
50  
3.4MHz, 2.7V  
1.7MHz, 5.5V  
IHVC  
1.7MHz, 2.7V  
400kHz, 5.5V  
-200  
-400  
-600  
-800  
-1000  
100kHz, 5.5V  
400kHz, 2.7V  
100kHz, 2.7V  
RHVC  
0
0
-40  
0
40  
Temperature (°C)  
80  
120  
2
3
4
5
6
7
8
9
10  
V
HVC (V)  
2
FIGURE 2-1:  
Frequency (f  
Device Current (I ) vs. I C  
) and Ambient Temperature  
FIGURE 2-4:  
Resistance (R  
HVC Pull-up/Pull-down  
DD  
) and Current (I ) vs. HVC  
SCL  
HVC  
HVC  
(V = 2.7V and 5.5V).  
Input Voltage (V  
) (V = 5.5V).  
DD  
HVC  
DD  
12  
10  
3
2.5  
5.5V Entry  
5.5V Exit  
2.7V Entry  
8
6
4
2
0
5.5V  
2
1.5  
1
2.7V Exit  
2.7V  
0.5  
-40  
0
40  
Temperature (°C)  
80  
120  
-40 -20  
0
20  
40  
60  
80 100 120  
Ambient Temperature (°C)  
FIGURE 2-2:  
Device Current (I  
) and  
FIGURE 2-5:  
HVC High Input Entry/Exit  
SHDN  
V
. (HVC = V ) vs. Ambient Temperature.  
Threshold vs. Ambient Temperature and V  
.
DD  
DD  
DD  
420  
400  
380  
360  
5.5V  
340  
320  
300  
-40  
0
40  
80  
120  
Temperature (°C)  
FIGURE 2-3:  
Write Current (I  
) vs.  
WRITE  
Ambient Temperature.  
© 2008 Microchip Technology Inc.  
DS22107A-page 19  
MCP454X/456X/464X/466X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
120  
100  
80  
0.3  
0.2  
0.1  
0
120  
100  
80  
1.25  
0.75  
0.25  
-0.25  
-0.75  
-1.25  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
INL  
INL  
DNL  
60  
60  
-0.1  
-0.2  
-0.3  
DNL  
40  
40  
-40°C  
-40°C 25°C  
RW  
25°C  
85°C  
85°C  
RW  
125°C  
125°C  
20  
20  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
FIGURE 2-6:  
5 kΩ Pot Mode – R (Ω),  
FIGURE 2-8:  
5 kΩ Rheo Mode – R (Ω),  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 5.5V).  
Ambient Temperature (V = 5.5V).  
DD  
DD  
300  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
300  
0.3  
0.2  
0.1  
0
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
6
260  
220  
180  
140  
100  
60  
260  
220  
180  
140  
100  
60  
INL  
INL  
4
DNL  
2
RW  
RW  
125°C  
-0.1  
-0.2  
-0.3  
0
-40°C  
85°C  
25°C  
25°C  
DNL  
-40°C  
125°C 85°C  
20  
20  
-2  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
FIGURE 2-7:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 3.0V).  
5 kΩ Pot Mode – R (Ω),  
FIGURE 2-9:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 3.0V).  
5 kΩ Rheo Mode – R (Ω),  
W
W
DD  
DD  
DS22107A-page 20  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
6000  
5000  
4000  
3000  
2000  
1000  
0
5300  
5250  
5200  
5150  
5100  
5050  
2.7V  
5.5V  
-40°C  
25°C  
85°C  
125°C  
-40  
0
40  
80  
120  
0
32  
64  
96  
128 160 192 224 256  
Ambient Temperature (°C)  
Wiper Setting (decimal)  
FIGURE 2-10:  
5 kΩ – Nominal Resistance  
FIGURE 2-11:  
5 kΩ – R  
(Ω) vs. Wiper  
WB  
(Ω) vs. Ambient Temperature and V  
.
Setting and Ambient Temperature.  
DD  
© 2008 Microchip Technology Inc.  
DS22107A-page 21  
MCP454X/456X/464X/466X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
FIGURE 2-12:  
5 kΩ – Low-Voltage  
FIGURE 2-15:  
5 kΩ – Low-Voltage  
Decrement Wiper Settling Time (V = 5.5V)  
Increment Wiper Settling Time (V = 5.5V)  
DD  
DD  
(1 µs/Div).  
(1 µs/Div).  
FIGURE 2-13:  
5 kΩ – Low-Voltage  
FIGURE 2-16:  
5 kΩ – Low-Voltage  
Decrement Wiper Settling Time (V = 2.7V)  
Increment Wiper Settling Time (V = 2.7V)  
DD  
DD  
(1 µs/Div).  
(1 µs/Div).  
FIGURE 2-14:  
5 kΩ – Power-Up Wiper  
Response Time (20 ms/Div).  
DS22107A-page 22  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
120  
100  
80  
0.3  
0.2  
0.1  
0
120  
100  
80  
1
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
0.5  
0
INL  
INL  
DNL  
60  
60  
-0.1  
-0.2  
-0.3  
-0.5  
-1  
DNL  
40  
40  
-40°C  
RW  
-40°C  
25°C  
85°C  
85°C 25°C  
RW  
125°C  
125°C  
20  
20  
0
25 50 75 100 125 150 175 200 225 250  
Wiper Setting (decimal)  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
FIGURE 2-17:  
10 kΩ Pot Mode – R (Ω),  
FIGURE 2-19:  
10 kΩ Rheo Mode – R (Ω),  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 5.5V).  
Ambient Temperature (V = 5.5V).  
DD  
DD  
300  
4
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
300  
0.3  
0.2  
0.1  
0
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
260  
220  
180  
140  
100  
60  
3
260  
220  
180  
140  
100  
60  
INL  
INL  
DNL  
2
1
0
-0.1  
-0.2  
-0.3  
RW  
DNL  
RW  
-1  
-2  
-40°C  
-40°C  
25°C  
85°C 25°C  
85°C  
125°C  
125°C  
20  
20  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
0
25 50 75 100 125 150 175 200 225 250  
Wiper Setting (decimal)  
FIGURE 2-18:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 3.0V).  
10 kΩ Pot Mode – R (Ω),  
FIGURE 2-20:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 3.0V).  
10 kΩ Rheo Mode – R (Ω),  
W
W
DD  
DD  
© 2008 Microchip Technology Inc.  
DS22107A-page 23  
MCP454X/456X/464X/466X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
12000  
10000  
8000  
6000  
4000  
2000  
0
10300  
10250  
10200  
10150  
10100  
2.7V  
10050  
10000  
-40°C  
25°C  
85°C  
5.5V  
9950  
1.8V  
9900  
9850  
125°C  
-40  
0
40  
80  
120  
0
32  
64  
96 128 160 192 224 256  
Ambient Temperature (°C)  
Wiper Setting (decimal)  
FIGURE 2-21:  
10 kΩ – Nominal Resistance  
FIGURE 2-22:  
10 kΩ – R  
(Ω) vs. Wiper  
WB  
(Ω) vs. Ambient Temperature and V  
.
Setting and Ambient Temperature.  
DD  
DS22107A-page 24  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
FIGURE 2-23:  
10 kΩ – Low-Voltage  
FIGURE 2-26:  
10 kΩ – Low-Voltage  
Decrement Wiper Settling Time (V = 5.5V)  
Increment Wiper Settling Time (V = 5.5V)  
DD  
DD  
(1 µs/Div).  
(1 µs/Div).  
FIGURE 2-24:  
10 kΩ – Low-Voltage  
FIGURE 2-27:  
10 kΩ – Low-Voltage  
Decrement Wiper Settling Time (V = 2.7V)  
Increment Wiper Settling Time (V = 2.7V)  
DD  
DD  
(1 µs/Div).  
(1 µs/Div).  
FIGURE 2-25:  
10 kΩ – Power-Up Wiper  
Response Time (1 µs/Div).  
© 2008 Microchip Technology Inc.  
DS22107A-page 25  
MCP454X/456X/464X/466X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
120  
100  
80  
0.3  
0.2  
0.1  
0
120  
100  
80  
0.3  
0.2  
0.1  
0
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
INL  
INL  
DNL  
DNL  
60  
60  
-0.1  
-0.2  
-0.3  
-0.1  
-0.2  
-0.3  
-40°C  
40  
40  
-40°C  
RW  
25°C  
85°C  
25°C  
85°C  
RW  
125°C  
125°C  
20  
20  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
FIGURE 2-28:  
50 kΩ Pot Mode – R (Ω),  
FIGURE 2-30:  
50 kΩ Rheo Mode – R (Ω),  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 5.5V).  
Ambient Temperature (V = 5.5V).  
DD  
DD  
300  
1
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
300  
0.3  
0.2  
0.1  
0
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
0.75  
0.5  
0.25  
0
260  
220  
180  
140  
100  
60  
260  
220  
180  
140  
100  
60  
INL  
INL  
DNL  
DNL  
-0.25  
-0.5  
-0.75  
-1  
RW  
-0.1  
-0.2  
-0.3  
RW  
-40°C  
-40°C  
25°C  
85°C  
25°C  
85°C  
125°C  
125°C  
20  
20  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
FIGURE 2-29:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 3.0V).  
50 kΩ Pot Mode – R (Ω),  
FIGURE 2-31:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 3.0V).  
50 kΩ Rheo Mode – R (Ω),  
W
W
DD  
DD  
DS22107A-page 26  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
52500  
52000  
51500  
51000  
50500  
50000  
49500  
49000  
60000  
50000  
40000  
30000  
20000  
10000  
0
1.8V  
-40°C  
25°C  
85°C  
125°C  
2.7V  
5.5V  
-40  
0
40  
80  
120  
0
32  
64  
96 128 160 192 224 256  
Ambient Temperature (°C)  
Wiper Setting (decimal)  
FIGURE 2-32:  
50 kΩ – Nominal Resistance  
FIGURE 2-33:  
50 kΩ – R  
(Ω) vs. Wiper  
WB  
(Ω) vs. Ambient Temperature and V  
.
Setting and Ambient Temperature.  
DD  
© 2008 Microchip Technology Inc.  
DS22107A-page 27  
MCP454X/456X/464X/466X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
FIGURE 2-34:  
50 kΩ – Low-Voltage  
FIGURE 2-37:  
50 kΩ – Low-Voltage  
Decrement Wiper Settling Time (V = 5.5V)  
Increment Wiper Settling Time (V = 5.5V)  
DD  
DD  
(1 µs/Div).  
(1 µs/Div).  
FIGURE 2-35:  
50 kΩ – Low-Voltage  
FIGURE 2-38:  
50 kΩ – Low-Voltage  
Decrement Wiper Settling Time (V = 2.7V)  
Increment Wiper Settling Time (V = 2.7V)  
DD  
DD  
(1 µs/Div).  
(1 µs/Div).  
FIGURE 2-36:  
50 kΩ – Power-Up Wiper  
Response Time (1 µs/Div).  
DS22107A-page 28  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
120  
100  
80  
0.2  
0.1  
0
120  
100  
80  
0.3  
0.2  
0.1  
0
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
INL  
INL  
DNL  
DNL  
60  
60  
-0.1  
-0.2  
-0.3  
-0.1  
-0.2  
40  
40  
-40°C  
-40°C  
RW  
25°C  
85°C  
RW  
85°C 25°C  
125°C  
125°C  
20  
20  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
FIGURE 2-39:  
100 kΩ Pot Mode – R (Ω),  
FIGURE 2-41:  
100 kΩ Rheo Mode – R  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
(Ω), INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 5.5V).  
Ambient Temperature (V = 5.5V).  
DD  
DD  
300  
0.6  
0.4  
0.2  
0
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
300  
0.2  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
260  
220  
180  
140  
100  
60  
0.15  
0.1  
260  
220  
180  
140  
100  
60  
INL  
INL  
DNL  
DNL  
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.2  
-0.4  
-0.6  
RW  
RW  
-40°C  
-40°C  
85°C 25°C  
125°C  
85°C  
25°C  
125°C  
20  
20  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
0
32 64 96 128 160 192 224 256  
Wiper Setting (decimal)  
FIGURE 2-40:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 3.0V).  
100 kΩ Pot Mode – R (Ω),  
FIGURE 2-42:  
(Ω), INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 3.0V).  
100 kΩ Rheo Mode – R  
W
W
DD  
DD  
© 2008 Microchip Technology Inc.  
DS22107A-page 29  
MCP454X/456X/464X/466X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
120000  
100000  
80000  
60000  
40000  
20000  
0
103500  
103000  
102500  
102000  
101500  
1.8V  
101000  
100500  
-40°C  
25°C  
85°C  
100000  
2.7V  
99500  
99000  
98500  
5.5V  
125°C  
0
32  
64  
96 128 160 192 224 256  
-40  
0
40  
80  
120  
Ambient Temperature (°C)  
Wiper Setting (decimal)  
FIGURE 2-43:  
100 kΩ – Nominal  
FIGURE 2-44:  
100 kΩ – R  
(Ω) vs. Wiper  
WB  
Resistance (Ω) vs. Ambient Temperature and  
Setting and Ambient Temperature.  
V
.
DD  
DS22107A-page 30  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
FIGURE 2-45:  
100 kΩ – Low-Voltage  
FIGURE 2-47:  
100 kΩ – Low-Voltage  
Decrement Wiper Settling Time (V = 5.5V)  
Increment Wiper Settling Time (V =5.5V)  
DD  
DD  
(1 µs/Div).  
(1 µs/Div).  
FIGURE 2-46:  
100 kΩ – Low-Voltage  
FIGURE 2-48:  
100 kΩ – Low-Voltage  
Decrement Wiper Settling Time (V = 2.7V)  
Increment Wiper Settling Time (V = 2.7V)  
DD  
DD  
(1 µs/Div).  
(1 µs/Div)  
© 2008 Microchip Technology Inc.  
DS22107A-page 31  
MCP454X/456X/464X/466X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
0.12  
0.1  
0.1  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0.08  
0.06  
0.04  
0.02  
0
5.5V  
5.5V  
3.0V  
0
3.0V  
-40  
40  
80  
120  
-40  
0
40  
Temperature (°C)  
80  
120  
Temperature (°C)  
FIGURE 2-49:  
Resistor Network 0 to  
FIGURE 2-51:  
Resistor Network 0 to  
Resistor Network 1 R (5 kΩ) Mismatch vs. V  
and Temperature.  
Resistor Network 1 R (50 kΩ) Mismatch vs.  
AB  
DD  
AB  
V
and Temperature.  
DD  
0.04  
0.03  
0.02  
0.05  
0.04  
0.03  
0.02  
0.01  
5.5V  
5.5V  
0.01  
0
-0.01  
3.0V  
0
3.0V  
-0.02  
-0.01  
-0.02  
-0.03  
-0.03  
-0.04  
-40  
0
40  
80  
120  
-40  
10  
60  
110  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-50:  
Resistor Network 0 to  
FIGURE 2-52:  
Resistor Network 0 to  
Resistor Network 1 R (10 kΩ) Mismatch vs.  
Resistor Network 1 R (100 kΩ) Mismatch vs.  
AB  
AB  
V
and Temperature.  
V
and Temperature.  
DD  
DD  
DS22107A-page 32  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
4
3.5  
3
230  
210  
190  
170  
150  
130  
110  
90  
2.7V  
5.5V  
5.5V  
2.7V  
2.5  
2
1.5  
1
70  
50  
-40  
0
40  
Temperature (°C)  
80  
120  
-40  
0
40  
Temperature (°C)  
80  
120  
FIGURE 2-53:  
V
(SDA, SCL) vs. V and  
FIGURE 2-55:  
V
(SDA) vs. V and  
OL DD  
IH  
DD  
Temperature.  
Temperature (I = 3 mA).  
OL  
2
5.5V  
1.5  
2.7V  
1
-40  
0
40  
Temperature (°C)  
80  
120  
FIGURE 2-54:  
V (SDA, SCL) vs. V and  
IL DD  
Temperature.  
© 2008 Microchip Technology Inc.  
DS22107A-page 33  
MCP454X/456X/464X/466X  
Note: Unless otherwise indicated, TA = +25°C,  
VDD = 5V, VSS = 0V.  
2.1  
Test Circuits  
4.2  
4.0  
+5V  
A
B
V
IN  
3.8  
3.6  
3.4  
3.2  
3.0  
W
V
+
-
OUT  
Offset  
GND  
2.5V DC  
-40  
0
40  
80  
120  
Temperature (°C)  
FIGURE 2-58:  
Test.  
-3 db Gain vs. Frequency  
FIGURE 2-56:  
Cycle Time vs. V and Temperature.  
Nominal EEPROM Write  
DD  
1.2  
1
5.5V  
0.8  
0.6  
0.4  
0.2  
0
2.7V  
-40  
0
40  
80  
120  
Temperature (°C)  
FIGURE 2-57:  
POR/BOR Trip point vs. V  
DD  
and Temperature.  
DS22107A-page 34  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
Additional descriptions of the device pins follows.  
TABLE 3-1:  
PINOUT DESCRIPTION FOR THE MCP454X/456X/464X/466X  
Pin  
Weak  
Single  
Dual  
Pot  
Pull-up/  
Standard Function  
Buffer  
Type  
Rheo Pot (1) Rheo  
Symbol  
I/O  
down (1)  
8L  
8L  
10L  
14L  
16L  
1
1
1
1
16  
HVC/A0  
I
I
HV w/ST “smart” High Voltage Command /  
Address 0.  
2
3
2
3
2
3
2
3
1
2
SCL  
SDA  
HV w/ST  
No  
No  
I2C clock input.  
I/O HV w/ST  
I2C serial data I/O. Open Drain  
output  
4
4
5
4
5
4
5
3, 4  
5
VSS  
P1B  
P1W  
P1A  
P0A  
P0W  
P0B  
WP  
A
A
A
A
A
A
I
P
No  
No  
No  
No  
No  
No  
Ground  
5
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Potentiometer 1 Terminal B  
Potentiometer 1 Wiper Terminal  
Potentiometer 1 Terminal A  
Potentiometer 0 Terminal A  
Potentiometer 0 Wiper Terminal  
Potentiometer 0 Terminal B  
6
6
6
7
7
7
8
8
6
9
9
6
7
8
10  
11  
10  
12  
HV w/ST “smart” Hardware EEPROM Write  
Protect  
8
9
12  
13  
14  
13  
14  
15  
11  
17  
A2  
A1  
I
HV w/ST “smart” Address 2  
HV w/ST “smart” Address 1  
7
I
8
10  
11  
VDD  
NC  
EP  
P
Positive Power Supply Input  
No Connection  
9
9
Exposed Pad (Note 2)  
Legend:  
HV w/ST = High Voltage tolerant input (with Schmidtt trigger input)  
A = Analog pins (Potentiometer terminals)  
O = digital output  
I = digital input (high Z)  
I/O = Input / Output  
P = Power  
Note 1: The pin’s “smart” pull-up shuts off while the pin is forced low. This is done to reduce the standby and shut-  
down current.  
2: The DFN and QFN packages have a contact on the bottom of the package. This contact is conductively  
connected to the die substrate, and therefore should be unconnected or connected to the same ground as  
the device’s VSS pin.  
© 2008 Microchip Technology Inc.  
DS22107A-page 35  
MCP454X/456X/464X/466X  
3.1  
High Voltage Command / Address 0  
(HVC/A0)  
3.7  
Potentiometer Terminal A  
The terminal A pin is available on the MCP4XX1  
devices, and is connected to the internal potentiome-  
ter’s terminal A.  
The HVC/A0 pin is the Address 0 input for the I2C  
interface as well as the High Voltage Command pin. At  
the device’s POR/BOR the value of the A0 address bit  
is latched. This input along with the A2 and A1 pins  
completes the device address. This allows up to 8  
MCP45xx/46xx devices can be on a single I2C bus.  
The potentiometer’s terminal A is the fixed connection  
to the Full-Scale wiper value of the digital potentiome-  
ter. This corresponds to a wiper value of 0x100 for 8-bit  
devices or 0x80 for 7-bit devices.  
During normal operation the the voltage on this pin  
determines if the I2C command is a normal command  
or a High Voltage command (when HVC/A0 = VIHH).  
The terminal A pin does not have a polarity relative to  
the terminal W or B pins. The terminal A pin can  
support both positive and negative current. The voltage  
on terminal A must be between VSS and VDD  
.
3.2  
Serial Clock (SCL)  
The terminal A pin is not available on the MCP4XX2  
devices, and the internally terminal A signal is floating.  
The SCL pin is the serial interfaces Serial Clock pin.  
This pin is connected to the Host Controllers SCL pin.  
The MCP45XX/46XX is a slave device, so it’s SCL pin  
accepts only external clock signals.  
MCP46X1 devices have two terminal A pins, one for  
each resistor network.  
3.8  
Write Protect (WP)  
3.3  
Serial Data (SDA)  
The WP pin is used to force the non-volatile memory to  
be write protected.  
The SDA pin is the serial interfaces Serial Data pin.  
This pin is connected to the Host Controllers SDA pin.  
The SDA pin is an open-drain N-channel driver.  
3.9  
Address 2 (A2)  
The A2 pin is the I2C interface’s Address 2 pin. Along  
with the A1 and A0 pins, up to 8 MCP45XX/46XX  
devices can be on a single I2C bus.  
3.4  
Ground (VSS)  
The VSS pin is the device ground reference.  
3.5  
Potentiometer Terminal B  
3.10 Address 1 (A1)  
The A2 pin is the I2C interface’s Address 1 pin. Along  
with the A2 and A0 pins, up to 8 MCP45XX/46XX  
devices can be on a single I2C bus.  
The terminal B pin is connected to the internal  
potentiometer’s terminal B.  
The potentiometer’s terminal B is the fixed connection  
to the Zero Scale wiper value of the digital potentiome-  
ter. This corresponds to a wiper value of 0x00 for both  
7-bit and 8-bit devices.  
3.11 Positive Power Supply Input (VDD  
)
The VDD pin is the device’s positive power supply input.  
The input power supply is relative to VSS  
The terminal B pin does not have a polarity relative to  
the terminal W or A pins. The terminal B pin can  
support both positive and negative current. The voltage  
.
While the device VDD < Vmin (2.7V), the electrical  
performance of the device may not meet the data sheet  
specifications.  
on terminal B must be between VSS and VDD  
.
MCP46XX devices have two terminal B pins, one for  
each resistor network.  
3.12 No Connect (NC)  
These pins should be either connected to VDD or VSS  
.
3.6  
Potentiometer Wiper (W) Terminal  
The terminal W pin is connected to the internal potenti-  
ometer’s terminal W (the wiper). The wiper terminal is  
the adjustable terminal of the digital potentiometer. The  
terminal W pin does not have a polarity relative to  
terminals A or B pins. The terminal W pin can support  
both positive and negative current. The voltage on  
3.13 Exposed Pad (EP)  
This pad is conductively connected to the device’s sub-  
strate. This pad should be tied to the same potential as  
the VSS pin (or left unconnected). This pad could be  
used to assist as a heat sink for the device when con-  
nected to a PCB heat sink.  
terminal W must be between VSS and VDD  
.
MCP46XX devices have two terminal W pins, one for  
each resistor network.  
DS22107A-page 36  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
4.1.2  
BROWN-OUT RESET  
4.0  
FUNCTIONAL OVERVIEW  
When the device powers down, the device VDD will  
cross the VPOR/VBOR voltage.  
This Data Sheet covers a family of thirty-two Digital  
Potentiometer and Rheostat devices that will be  
referred to as MCP4XXX. The MCP4XX1 devices are  
the Potentiometer configuration, while the MCP4XX2  
devices are the Rheostat configuration.  
Once the VDD voltage decreases below the VPOR/VBOR  
voltage the following happens:  
• Serial Interface is disabled  
As the Device Block Diagram shows, there are four  
main functional blocks. These are:  
• EEPROM Writes are disabled  
If the VDD voltage decreases below the VRAM voltage  
the following happens:  
POR/BOR Operation  
Memory Map  
• Volatile wiper registers may become corrupted  
• TCON register may become corrupted  
Resistor Network  
Serial Interface (I2C)  
As the voltage recovers above the VPOR/VBOR voltage  
The POR/BOR operation and the Memory Map are  
discussed in this section and the Resistor Network and  
I2C operation are described in their own sections. The  
Device Commands commands are discussed in  
Section 7.0 “Device Commands”.  
see Section 4.1.1 “Power-on Reset”.  
Serial commands not completed due to a brown-out  
condition may cause the memory location (volatile and  
non-volatile) to become corrupted.  
4.2  
Memory Map  
4.1  
POR/BOR Operation  
The device memory is 16 locations that are 9-bits wide  
(16x9 bits). This memory space contains both volatile  
and non-volatile locations (see Table 4-1).  
The Power-on Reset is the case where the device is  
having power applied to it starting from the VSS level.  
The Brown-out Reset occurs when a device had power  
applied to it, and that power (voltage) drops below the  
specified range.  
TABLE 4-1:  
Address  
MEMORY MAP  
Function  
Memory Type  
The devices RAM retention voltage (VRAM) is lower  
than the POR/BOR voltage trip point (VPOR/VBOR). The  
maximum VPOR/VBOR voltage is less than 1.8V.  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
Volatile Wiper 0  
Volatile Wiper 1  
RAM  
RAM  
When VPOR/VBOR < VDD < 2.7V, the electrical  
performance may not meet the data sheet  
specifications. In this region, the device is capable of  
reading and writing to its EEPROM and incrementing,  
decrementing, reading and writing to its volatile  
memory if the proper serial command is executed.  
Non-Volatile Wiper 0  
Non-Volatile Wiper 1  
Volatile TCON Register  
Status Register  
Data EEPROM  
Data EEPROM  
Data EEPROM  
Data EEPROM  
Data EEPROM  
Data EEPROM  
Data EEPROM  
Data EEPROM  
Data EEPROM  
Data EEPROM  
EEPROM  
EEPROM  
RAM  
RAM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
4.1.1  
POWER-ON RESET  
When the device powers up, the device VDD will cross  
the VPOR/VBOR voltage. Once the VDD voltage crosses  
the VPOR/VBOR voltage the following happens:  
• Volatile wiper register is loaded with value in the  
corresponding non-volatile wiper register  
• The TCON register is loaded it’s default value  
• The device is capable of digital operation  
© 2008 Microchip Technology Inc.  
DS22107A-page 37  
MCP454X/456X/464X/466X  
4.2.1  
NON-VOLATILE MEMORY  
(EEPROM)  
4.2.1.4  
Special Features  
There are 3 non-volatile bits that are not directly  
mapped into the address space. These bits control the  
following functions:  
This memory can be grouped into two uses of non-vol-  
atile memory. These are:  
• EEPROM Write Protect  
General Purpose Registers  
Non-Volatile Wiper Registers  
• WiperLock Technology for Non-Volatile Wiper 0  
• WiperLock Technology for Non-Volatile Wiper 1  
The non-volatile wipers starts functioning below the  
devices VPOR/VBOR trip point.  
The operation of WiperLock Technology is discussed in  
Section 5.3. The state of the WL0, WL1, and WP bits  
is reflected in the STATUS register (see Register 4-1).  
4.2.1.1  
General Purpose Registers  
These locations allow the user to store up to 10 (9-bit)  
locations worth of information.  
EEPROM Write Protect  
All internal EEPROM memory can be Write Protected.  
When EEPROM memory is Write Protected, Write  
commands to the internal EEPROM are prevented.  
4.2.1.2  
Non-Volatile Wiper Registers  
These locations contain the wiper values that are  
loaded into the corresponding volatile wiper register  
whenever the device has a POR/BOR event. There are  
up to two registers, one for each resistor network.  
Write Protect (WP) can be enabled/disabled by two  
methods. These are:  
• External WP Hardware pin (MCP46X1 devices  
only)  
The non-volatile wiper register enables stand-alone  
operation of the device (without Microcontroller control)  
after being programmed to the desired value.  
• Non-Volatile configuration bit  
High Voltage commands are required to enable and  
disable the nonvolatile WP bit. These commands are  
shown in Section 7.8 “Modify Write Protect or Wip-  
erLock Technology (High Voltage)”.  
4.2.1.3  
Factory Initialization of Non-Volatile  
Memory (EEPROM)  
The Non-Volatile Wiper values will be initialized to  
mid-scale value. This is shown in Table 4-2.  
To write to EEPROM, both the external WP pin and the  
internal WP EEPROM bit must be disabled. Write  
Protect does not block commands to the volatile  
registers.  
The General purpose EEPROM memory will be  
programmed to a default value of 0xFF.  
It is good practice in the manufacturing flow to  
configure the device to your desired settings.  
4.2.2  
VOLATILE MEMORY (RAM)  
There are four Volatile Memory locations. These are:  
• Volatile Wiper 0  
TABLE 4-2:  
DEFAULT FACTORY  
SETTINGS SELECTION  
• Volatile Wiper 1  
(Dual Resistor Network devices only)  
Wiper  
Code  
• Status Register  
Terminal Control (TCON) Register  
The volatile memory starts functioning at the RAM  
retention voltage (VRAM).  
8-bit 7-bit  
-502  
5.0 kΩ Mid-scale 80h 40h Disabled  
-103 10.0 kΩ Mid-scale 80h 40h Disabled  
-503 50.0 kΩ Mid-scale 80h 40h Disabled  
-104 100.0 kΩ Mid-scale 80h 40h Disabled  
DS22107A-page 38  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
4.2.2.1  
Status (STATUS) Register  
This register contains 4 status bits. These bits show the  
state of the WiperLock bits, the Write Protect bit, and if  
an EEPROM write cycle is active. The STATUS register  
can be accessed via the READ commands.  
Register 4-1 describes each STATUS register bit.  
The STATUS register is placed at Address 05h.  
REGISTER 4-1:  
STATUS REGISTER (ADDRESS = 0x05)  
R-1  
R-1  
R-1  
R-1  
R-1  
R-0  
R-x  
R-x  
R-x  
(1)  
(1)  
D8:D4  
EEWA  
WL1  
WL0  
WP (1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 8-4  
bit 3  
D8:D4: Reserved. Forced to “1”  
EEWA: EEPROM Write Active Status bit  
This bit indicates if the EEPROM Write Cycle is occurring.  
1= An EEPROM Write cycle is currently occurring. Only serial commands to the Volatile memory  
locations are allowed (addresses 00h, 01h, 04h, and 05h)  
0= An EEPROM Write cycle is NOT currently occurring  
bit 2  
WL1: WiperLock Status bit for Resistor Network 1 (Refer to Section 5.3 “WiperLock™ Technology”  
for further information)  
WiperLock (WL) prevents the Volatile and Non-Volatile Wiper 1 addresses and the TCON register bits  
R1HW, R1A, R1W, and R1B from being written to. High Voltage commands are required to enable and  
disable WiperLock Technology.  
1= Wiper and TCON register bits R1HW, R1A, R1W, and R1B of Resistor Network 1 (Pot 1) are  
“Locked” (Write Protected)  
0= Wiper and TCON of Resistor Network 1 (Pot 1) can be modified  
Note:  
The WL1 bit always reflects the result of the last programming cycle to the non-volatile WL1  
bit. After a POR or BOR event, the WL1 bit is loaded with the non-volatile WL1 bit value.  
bit 1  
WL0: WiperLock Status bit for Resistor Network 0 (Refer to Section 5.3 “WiperLock™ Technology”  
for further information)  
The WiperLock Technology bits (WLx) prevents the Volatile and Non-Volatile Wiper 0 addresses and  
the TCON register bits R0HW, R0A, R0W, and R0B from being written to. High Voltage commands are  
required to enable and disable WiperLock Technology.  
1= Wiper and TCON register bits R0HW, R0A, R0W, and R0B of Resistor Network 0 (Pot 0) are  
“Locked” (Write Protected)  
0= Wiper and TCON of Resistor Network 0 (Pot 0) can be modified  
Note:  
The WL0 bit always reflects the result of the last programming cycle to the non-volatile WL0  
bit. After a POR or BOR event, the WL0 bit is loaded with the non-volatile WL0 bit value.  
Note 1: Requires a High Voltage command to modify the state of this bit (for Non-Volatile devices only). This bit is  
Not directly written, but reflects the system state (for this feature).  
© 2008 Microchip Technology Inc.  
DS22107A-page 39  
MCP454X/456X/464X/466X  
REGISTER 4-1:  
STATUS REGISTER (ADDRESS = 0x05) (CONTINUED)  
bit 0 WP: EEPROM Write Protect Status bit (Refer to Section “EEPROM Write Protect” for further infor-  
mation)  
This bit indicates the status of the write protection on the EEPROM memory. When Write Protect is  
enabled, writes to all non-volatile memory are prevented. This includes the General Purpose EEPROM  
memory, and the non-volatile Wiper registers. Write Protect does not block modification of the volatile  
wiper register values or the volatile TCON register value (via Increment, Decrement, or Write  
commands).  
This status bit is an OR of the devices Write Protect pin (WP) and the internal non-volatile WP bit. High  
Voltage commands are required to enable and disable the internal WP EEPROM bit.  
1= EEPROM memory is Write Protected  
0= EEPROM memory can be written  
Note 1: Requires a High Voltage command to modify the state of this bit (for Non-Volatile devices only). This bit is  
Not directly written, but reflects the system state (for this feature).  
DS22107A-page 40  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
4.2.2.2  
Terminal Control (TCON) Register  
This register contains 8 control bits. Four bits are for  
Wiper 0, and four bits are for Wiper 1. Register 4-2  
describes each bit of the TCON register.  
The state of each resistor network terminal connection  
is individually controlled. That is, each terminal  
connection (A, B and W) can be individually connected/  
disconnected from the resistor network. This allows the  
system to minimize the currents through the digital  
potentiometer.  
The value that is written to this register will appear on  
the resistor network terminals when the serial  
command has completed.  
When the WL1 bit is enabled, writes to the TCON  
register bits R1HW, R1A, R1W, and R1B are inhibited.  
When the WL0 bit is enabled, writes to the TCON  
register bits R0HW, R0A, R0W, and R0B are inhibited.  
On a POR/BOR this register is loaded with 1FFh  
(9-bits), for all terminals connected. The Host  
Controller needs to detect the POR/BOR event and  
then update the Volatile TCON register value.  
Additionally, there is a bit which enables the operation  
of General Call commands.  
© 2008 Microchip Technology Inc.  
DS22107A-page 41  
MCP454X/456X/464X/466X  
(1)  
REGISTER 4-2:  
TCON BITS (ADDRESS = 0x04)  
R/W-1  
GCEN  
R/W-1  
R1HW  
R/W-1  
R1A  
R/W-1  
R1W  
R/W-1  
R1B  
R/W-1  
R0HW  
R/W-1  
R0A  
R/W-1  
R0W  
R/W-1  
R0B  
bit 8  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 8  
GCEN: General Call Enable bit  
This bit specifies if I2C General Call commands are accepted  
1= Enable Device to “Accept” the General Call Address (0000h)  
0= The General Call Address is disabled  
bit 7  
R1HW: Resistor 1 Hardware Configuration Control bit  
This bit forces Resistor 1 into the “shutdown” configuration of the Hardware pin  
1= Resistor 1 is NOT forced to the hardware pin “shutdown” configuration  
0= Resistor 1 is forced to the hardware pin “shutdown” configuration  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
R1A: Resistor 1 Terminal A (P1A pin) Connect Control bit  
This bit connects/disconnects the Resistor 1 Terminal A to the Resistor 1 Network  
1= P1A pin is connected to the Resistor 1 Network  
0= P1A pin is disconnected from the Resistor 1 Network  
R1W: Resistor 1 Wiper (P1W pin) Connect Control bit  
This bit connects/disconnects the Resistor 1 Wiper to the Resistor 1 Network  
1= P1W pin is connected to the Resistor 1 Network  
0= P1W pin is disconnected from the Resistor 1 Network  
R1B: Resistor 1 Terminal B (P1B pin) Connect Control bit  
This bit connects/disconnects the Resistor 1 Terminal B to the Resistor 1 Network  
1= P1B pin is connected to the Resistor 1 Network  
0= P1B pin is disconnected from the Resistor 1 Network  
R0HW: Resistor 0 Hardware Configuration Control bit  
This bit forces Resistor 0 into the “shutdown” configuration of the Hardware pin  
1= Resistor 0 is NOT forced to the hardware pin “shutdown” configuration  
0= Resistor 0 is forced to the hardware pin “shutdown” configuration  
R0A: Resistor 0 Terminal A (P0A pin) Connect Control bit  
This bit connects/disconnects the Resistor 0 Terminal A to the Resistor 0 Network  
1= P0A pin is connected to the Resistor 0 Network  
0= P0A pin is disconnected from the Resistor 0 Network  
R0W: Resistor 0 Wiper (P0W pin) Connect Control bit  
This bit connects/disconnects the Resistor 0 Wiper to the Resistor 0 Network  
1= P0W pin is connected to the Resistor 0 Network  
0= P0W pin is disconnected from the Resistor 0 Network  
R0B: Resistor 0 Terminal B (P0B pin) Connect Control bit  
This bit connects/disconnects the Resistor 0 Terminal B to the Resistor 0 Network  
1= P0B pin is connected to the Resistor 0 Network  
0= P0B pin is disconnected from the Resistor 0 Network  
Note 1: These bits do not affect the wiper register values.  
DS22107A-page 42  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
5.1  
Resistor Ladder Module  
5.0  
RESISTOR NETWORK  
The resistor ladder is a series of equal value resistors  
(RS) with a connection point (tap) between the two  
resistors. The total number of resistors in the series  
(ladder) determines the RAB resistance (see  
Figure 5-1). The end points of the resistor ladder are  
connected to analog switches which are connected to  
the device Terminal A and Terminal B pins. The RAB  
(and RS) resistance has small variations over voltage  
and temperature.  
The Resistor Network has either 7-bit or 8-bit resolu-  
tion. Each Resistor Network allows zero scale to  
full-scale connections. Figure 5-1 shows a block dia-  
gram for the resistive network of a device.  
The Resistor Network is made up of several parts.  
These include:  
• Resistor Ladder  
• Wiper  
• Shutdown (Terminal Connections)  
For an 8-bit device, there are 256 resistors in a string  
between terminal A and terminal B. The wiper can be  
set to tap onto any of these 256 resistors thus providing  
257 possible settings (including terminal A and terminal  
B).  
Devices have either one or two resistor networks,  
These are referred to as Pot 0 and Pot 1.  
A
For a 7-bit device, there are 128 resistors in a string  
between terminal A and terminal B. The wiper can be  
set to tap onto any of these 128 resistors thus providing  
129 possible settings (including terminal A and terminal  
B).  
8-Bit  
N =  
257  
7-Bit  
N =  
128  
(100h)  
(80h)  
(1)  
RW  
RS  
RS  
RS  
Equation 5-1 shows the calculation for the step  
resistance.  
256  
(FFh)  
127  
(7Fh)  
(1)  
(1)  
RW  
RW  
EQUATION 5-1:  
R CALCULATION  
255  
(FEh)  
126  
(7Eh)  
S
RAB  
RAB  
RS = -------------  
8-bit Device  
(256)  
W
RAB  
RS = -------------  
(128)  
7-bit Device  
1
1
(01h)  
(01h)  
(1)  
(1)  
RW  
RW  
RS  
0
0
(00h)  
(00h)  
Analog Mux  
B
Note 1: The wiper resistance is dependent on  
several factors including, wiper code,  
device VDD, Terminal voltages (on A, B,  
and W), and temperature.  
Also for the same conditions, each tap  
selection resistance has a small variation.  
This RW variation has greater effects on  
some specifications (such as INL) for the  
smaller resistance devices (5.0 kΩ)  
compared to larger resistance devices  
(100.0 kΩ).  
FIGURE 5-1:  
Resistor Block Diagram.  
© 2008 Microchip Technology Inc.  
DS22107A-page 43  
MCP454X/456X/464X/466X  
5.2  
Wiper  
5.3  
WiperLock™ Technology  
Each tap point (between the RS resistors) is a  
connection point for an analog switch. The opposite  
side of the analog switch is connected to a common  
signal which is connected to the Terminal W (Wiper)  
pin.  
The MCP4XXX device’s WiperLock technology allows  
application-specific calibration settings to be secured in  
the EEPROM without requiring the use of an additional  
write-protect pin. There are two WiperLock Technology  
configuration bits (WL0 and WL1). These bits prevent  
the Non-Volatile and Volatile addresses and bits for the  
specified resistor network from being written.  
A value in the volatile wiper register selects which  
analog switch to close, connecting the W terminal to  
the selected node of the resistor ladder.  
The WiperLock technology prevents the serial  
commands from doing the following:  
The wiper can connect directly to Terminal B or to  
Terminal A. A zero-scale connections, connects the  
Terminal W (wiper) to Terminal B (wiper setting of  
000h). A full-scale connections, connects the Terminal  
W (wiper) to Terminal A (wiper setting of 100h or 80h).  
In these configurations the only resistance between the  
Terminal W and the other Terminal (A or B) is that of  
the analog switches.  
• Changing a volatile wiper value  
• Writing to a non-volatile wiper memory location  
• Changing the volatile TCON register value  
For either Resistor Network 0 or Resistor Network 1  
(Potx), the WLx bit controls the following:  
• Non-Volatile Wiper Register  
• Volatile Wiper Register  
• Volatile TCON register bits RxHW, RxA, RxW,  
and RxB  
A wiper setting value greater than full-scale (wiper  
setting of 100h for 8-bit device or 80h for 7-bit devices)  
will also be a Full-Scale setting (Terminal W (wiper)  
connected to Terminal A). Table 5-1 illustrates the full  
wiper setting map.  
High Voltage commands are required to enable and  
disable WiperLock. Please refer to the Modify Write  
Protect or WiperLock Technology (High Voltage)  
command for operation.  
Equation 5-2 illustrates the calculation used to deter-  
mine the resistance between the wiper and terminal B.  
5.3.1  
POR/BOR OPERATION WHEN  
WIPERLOCK TECHNOLOGY  
ENABLED  
EQUATION 5-2:  
R
CALCULATION  
WB  
RAB  
N
RWB = ------------- + RW  
8-bit Device  
The WiperLock Technology state is not affected by a  
POR/BOR event. A POR/BOR event will load the  
Volatile Wiper register value with the Non-Volatile  
Wiper register value, refer to Section 4.1.  
(256)  
N = 0 to 256 (decimal)  
RAB  
N
7-bit Device  
RWB = ------------- + RW  
(128)  
N = 0 to 128 (decimal)  
TABLE 5-1:  
VOLATILE WIPER VALUE VS.  
WIPER POSITION MAP  
Wiper Setting  
7-bit Pot 8-bit Pot  
Properties  
3FFh  
081h  
3FFh  
101h  
Reserved (Full-Scale (W = A)),  
Increment and Decrement  
commands ignored  
080h  
100h  
Full-Scale (W = A),  
Increment commands ignored  
07Fh  
041h  
0FFh  
081  
W = N  
040h  
080h  
W = N (Mid-Scale)  
W = N  
03Fh  
001h  
07Fh  
001  
000h  
000h  
Zero Scale (W = B)  
Decrement command ignored  
DS22107A-page 44  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
5.4.2  
INTERACTION OF RxHW BIT AND  
RxA, RxW, AND RxB BITS (TCON  
REGISTER)  
5.4  
Shutdown  
Shutdown is used to minimize the device’s current  
consumption. The MCP4XXX achieves this through the  
Terminal Control Register (TCON).  
Using the TCON bits allows each resistor network (Pot  
0 and Pot 1) to be individually “shutdown”.  
5.4.1  
TERMINAL CONTROL REGISTER  
(TCON)  
The state of the RxHW bit does NOT corrupt the other  
bit values in the TCON register nor the value of the  
Volatile Wiper Registers. When the Shutdown mode is  
exited (RxHW changes state from “0” to “1”):  
The Terminal Control (TCON) register is a volatile  
register used to configure the connection of each  
resistor network terminal pin (A, B, and W) to the  
Resistor Network. This bits are described in  
Register 4-2.  
• The device returns to the Wiper setting specified  
by the Volatile Wiper value  
• The RxA, RxB, and RxW bits return to controlling  
the terminal connection state of that resistor net-  
work  
When the RxHW bit is a “0”, the selected resistor net-  
work is forced into the following state:  
• The PxA terminal is disconnected  
• The PxW terminal is simultaneously connected to  
the PxB terminal (see Figure 5-2)  
• The Serial Interface is NOT disabled, and all  
Serial Interface activity is executed  
• Any EEPROM write cycles are completed  
Alternate low power configurations may be achieved  
with the RxA, RxW, and RxB bits.  
Note 1: The RxHW bits are identical to the RxHW  
bits of the MCP41XX/42XX devices. The  
MCP42XX devices also have a SHDN  
pin which forces the resistor network into  
the same state as that resistor networks  
RxHW bit.  
2: When RxHW = “0”, the state of the TCON  
register RxA, RxW, and RxB bits is over-  
ridden (ignored). When the state of the  
RxHW bit returns to “1”, the TCON  
register RxA, RxW, and RxB bits return to  
controlling the terminal connection state.  
In other words, the RxHW bit does not  
corrupt the state of the RxA, RxW, and  
RxB bits.  
A
W
B
FIGURE 5-2:  
Resistor Network Shutdown  
Configuration.  
© 2008 Microchip Technology Inc.  
DS22107A-page 45  
MCP454X/456X/464X/466X  
NOTES:  
DS22107A-page 46  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
2
6.1  
Signal Descriptions  
6.0  
SERIAL INTERFACE (I C)  
The I2C interface uses up to five pins (signals). These  
are:  
The MCP45XX/46XX devices support the I2C serial  
protocol. The MCP45XX/46XX I2C’s module operates  
in Slave mode (does not generate the serial clock).  
Figure 6-1 shows a typical I2C Interface connection. All  
I2C interface signals are high-voltage tolerant.  
• SDA (Serial Data)  
• SCL (Serial Clock)  
• A0 (Address 0 bit)  
• A1 (Address 1 bit)  
• A2 (Address 2 bit)  
The MCP45XX/46XX devices use the two-wire I2C  
serial interface. This interface can operate in standard,  
fast or High-Speed mode. A device that sends data  
onto the bus is defined as transmitter, and a device  
receiving data as receiver. The bus has to be controlled  
by a master device which generates the serial clock  
(SCL), controls the bus access and generates the  
START and STOP conditions. The MCP45XX/46XX  
device works as slave. Both master and slave can  
operate as transmitter or receiver, but the master  
device determines which mode is activated. Communi-  
cation is initiated by the master (microcontroller) which  
sends the START bit, followed by the slave address  
byte. The first byte transmitted is always the slave  
address byte, which contains the device code, the  
address bits, and the R/W bit.  
6.1.1  
SERIAL DATA (SDA)  
The Serial Data (SDA) signal is the data signal of the  
device. The value on this pin is latched on the rising  
edge of the SCL signal when the signal is an input.  
With the exception of the START and STOP conditions,  
the high or low state of the SDA pin can only change  
when the clock signal on the SCL pin is low. During the  
high period of the clock the SDA pin’s value (high or  
low) must be stable. Changes in the SDA pin’s value  
while the SCL pin is HIGH will be interpreted as a  
START or a STOP condition.  
6.1.2  
SERIAL CLOCK (SCL)  
Refer to the Phillips I2C document for more details of  
the I2C specifications.  
The Serial Clock (SCL) signal is the clock signal of the  
device. The rising edge of the SCL signal latches the  
value on the SDA pin. The MCP45XX/46XX supports  
three I2C interface clock modes:  
Typical I2C Interface Connections  
• Standard Mode: clock rates up to 100 kHz  
• Fast Mode: clock rates up to 400 kHz  
• High-Speed Mode (HS mode): clock rates up to  
3.4 MHz  
MCP4XXX  
SCL  
Host  
Controller  
SCL  
SDA  
SDA  
The MCP4XXX will not strech the clock signal (SCL)  
since memory read acceses occur fast enough.  
I/O (1)  
HVC/A0 (2)  
A1 (2, 3)  
A2 (2, 3)  
Depending on the clock rate mode, the interface will  
display different characteristics.  
6.1.3  
THE ADDRESS BITS (A2:A1:A0)  
There are up to three hardware pins used to specify the  
device address. The number of adress pins is  
determined by the part number.  
Note 1: If High voltage commands are desired,  
some type of external circuitry needs to  
be implemented.  
Address 0 is multiplexed with the High Voltage  
Command (HVC) function. So the state of A0 is latched  
on the MCP4XXX’s POR/BOR event.  
2: These pins have internal pull-ups. If  
faster rise times are required, then  
external pull-ups should be added.  
The state of the A2 and A1 pins should be static, that is  
they should be tied high or tied low.  
3: This pin could be tied high, low, or  
connected to an I/O pin of the Host  
Controller.  
6.1.3.1  
The High Voltage Command (HVC)  
Signal  
2
FIGURE 6-1:  
Typical I C Interface Block  
Diagram.  
The High Voltage Command (HVC) signal is multi-  
plexed with Address 0 (A0) and is used to indicate that  
the command, or sequence of commands, are in the  
High Voltage mode. High Voltage commands allow the  
device’s WiperLock Technology and write protect  
features to be enabled and disabled.  
The HVC pin has an internal resistor connection to the  
MCP45XX/46XXs internal VDD signal.  
© 2008 Microchip Technology Inc.  
DS22107A-page 47  
MCP454X/456X/464X/466X  
I2C Operation  
6.2.1.3  
Acknowledge (A) Bit  
6.2  
The MCP45XX/46XX’s I2C module is compatible with  
the Philips I2C specification. The following lists some of  
the modules features:  
The A bit (see Figure 6-4) is typically a response from  
the receiving device to the transmitting device.  
Depending on the context of the transfer sequence, the  
A bit may indicate different things. Typically the Slave  
device will supply an A response after the Start bit and  
8 “data” bits have been received. an A bit has the SDA  
signal low.  
• 7-bit slave addressing  
• Supports three clock rate modes:  
- Standard mode, clock rates up to 100 kHz  
- Fast mode, clock rates up to 400 kHz  
- High-speed mode (HS mode), clock rates up  
to 3.4 MHz  
• Support Multi-Master Applications  
• General call addressing  
• Internal weak pull-ups on interface signals  
SDA  
SCL  
D0  
A
8
9
The I2C 10-bit addressing mode is not supported.  
FIGURE 6-4:  
Acknowledge Waveform.  
The Philips I2C specification only defines the field  
types, field lengths, timings, etc. of a frame. The frame  
content defines the behavior of the device. The frame  
content for the MCP4XXX is defined in Section 7.0.  
Not A (A) Response  
The A bit has the SDA signal high. Table 6-1 shows  
some of the conditions where the Slave Device will  
issue a Not A (A).  
2
6.2.1  
I C BIT STATES AND SEQUENCE  
Figure 6-8 shows the I2C transfer sequence. The serial  
clock is generated by the master. The following defini-  
tions are used for the bit states:  
If an error condition occurs (such as an A instead of A),  
then an START bit must be issued to reset the  
command state machine.  
• Start bit (S)  
• Data bit  
TABLE 6-1:  
MCP45XX/MCP46XX A / A  
RESPONSES  
• Acknowledge (A) bit (driven low) /  
No Acknowledge (A) bit (not driven low)  
• Repeated Start bit (Sr)  
• Stop bit (P)  
Acknowledge  
Event  
Bit  
Comment  
Response  
6.2.1.1  
Start Bit  
General Call  
A
A
A
A
Only if GCEN bit is  
set  
The Start bit (see Figure 6-2) indicates the beginning of  
a data transfer sequence. The Start bit is defined as the  
SDA signal falling when the SCL signal is “High”.  
Slave Address  
valid  
Slave Address  
not valid  
2nd Bit  
1st Bit  
SDA  
SCL  
Device Mem-  
ory Address  
and specified  
command  
After device has  
received address  
and command  
S
FIGURE 6-2:  
Start Bit.  
(AD3:AD0 and  
C1:C0) are an  
invalid combi-  
nation  
6.2.1.2 Data Bit  
The SDA signal may change state while the SCL signal  
is Low. While the SCL signal is High, the SDA signal  
MUST be stable (see Figure 6-5).  
Communica-  
tion during  
EEPROM write  
cycle  
A
After device has  
received address  
and command,  
and valid condi-  
tions for EEPROM  
write  
2nd Bit  
1st Bit  
SDA  
SCL  
Bus Collision  
N.A.  
I2C Module  
Resets, or a “Don’t  
Care” if the colli-  
sion occurs on the  
Masters “Start bit”.  
Data Bit  
FIGURE 6-3:  
Data Bit.  
DS22107A-page 48  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
6.2.1.4  
Repeated Start Bit  
6.2.1.5  
Stop Bit  
The Repeated Start bit (see Figure 6-5) indicates the  
current Master Device wishes to continue communicat-  
ing with the current Slave Device without releasing the  
I2C bus. The Repeated Start condition is the same as  
the Start condition, except that the Repeated Start bit  
follows a Start bit (with the Data bits + A bit) and not a  
Stop bit.  
The Stop bit (see Figure 6-6) Indicates the end of the  
I2C Data Transfer Sequence. The Stop bit is defined as  
the SDA signal rising when the SCL signal is “High”.  
A Stop bit resets the I2C interface of all MCP4XXX  
devices.  
A / A  
The Start bit is the beginning of a data transfer  
sequence and is defined as the SDA signal falling when  
the SCL signal is “High”.  
SDA  
SCL  
P
Note 1: A bus collision during the Repeated Start  
condition occurs if:  
FIGURE 6-6:  
Stop Condition Receive or  
Transmit Mode.  
• SDA is sampled low when SCL goes  
from low to high.  
6.2.2  
CLOCK STRETCHING  
• SCL goes low before SDA is asserted  
low. This may indicate that another  
master is attempting to transmit a  
data "1".  
“Clock Stretching” is something that the receiving  
Device can do, to allow additional time to “respond” to  
the “data” that has been received.  
The MCP4XXX will not strech the clock signal (SCL)  
since memory read acceses occur fast enough.  
1st Bit  
6.2.3  
ABORTING A TRANSMISSION  
SDA  
If any part of the I2C transmission does not meet the  
command format, it is aborted. This can be intentionally  
accomplished with a START or STOP condition. This is  
done so that noisy transmissions (usually an extra  
START or STOP condition) are aborted before they  
corrupt the device.  
SCL  
Sr = Repeated Start  
FIGURE 6-5:  
Repeat Start Condition  
Waveform.  
SDA  
SCL  
S
1st Bit 2nd Bit 3rd Bit 4th Bit 5th Bit 6th Bit 7th Bit 8th Bit A / A  
P
2
FIGURE 6-7:  
Typical 8-Bit I C Waveform Format.  
SDA  
SCL  
Data allowed  
to change  
Data or  
A valid  
STOP  
Condition  
START  
Condition  
2
FIGURE 6-8:  
I C Data States and Bit Sequence.  
© 2008 Microchip Technology Inc.  
DS22107A-page 49  
MCP454X/456X/464X/466X  
6.2.4  
ADDRESSING  
Slave Address  
The address byte is the first byte received following the  
START condition from the master device. The address  
contains four (or more) fixed bits and (up to) three user  
defined hardware address bits (pins A2, A1, and A0).  
These 7-bits address the desired I2C device. The  
A7:A4 address bits are fixed to “0101” and the device  
appends the value of following three address pins (A2,  
A1, A0). Address pins that are not present on the  
device are pulled up (a bit value of ‘1’).  
S
A6 A5 A4 A3 A2 A1 A0 R/W  
A/A  
“01” “01”  
See Table 6-2  
Start  
bit  
R/W bit  
R/W = 0= write  
R/W = 1= read  
A bit (controlled by slave device)  
A = 0= Slave Device Acknowledges byte  
A = 1= Slave Device does not Acknowledge byte  
Since there are up to three adress bits controlled by  
hardware pins, there may be up to eight MCP4XXX  
devices on the same I2C bus.  
FIGURE 6-9:  
Slave Address Bits in the  
2
I C Control Byte.  
Figure 6-9 shows the slave address byte format, which  
contains the seven address bits. There is also a read/  
write bit. Table 6-2 shows the fixed address for device.  
TABLE 6-2:  
Device  
DEVICESLAVEADDRESSES  
Address Comment  
MCP45X1 ‘0101 11’b + A0  
Supports up to 2  
devices. Note 1  
Hardware Address Pins  
The hardware address bits (A2, A1, and A0)  
correspond to the logic level on the associated address  
pins. This allows up to eight devices on the bus.  
MCP45X2 ‘0101 1’b + A1:A0 Supports up to 4  
devices. Note 1  
MCP46X1 ‘0101’b + A2:A1:A0 Supports up to 8  
devices. Note 1  
These pins have a weak pull-up enabled when the VDD  
< VBOR. The weak pull-up utilizes the “smart” pull-up  
technology and exhibits the same characteristics as the  
High-voltage tolerant I/O structure.  
MCP46X2 ‘0101 1’b + A1:A0 Supports up to 4  
devices. Note 1  
Note 1: A0 is used for High-Voltage commands  
and the value is latched at POR.  
The state of the A0 address pin is latch on POR/BOR.  
This is required since High Voltage commands force  
this pin (HVC/A0) to the VIHH level.  
6.2.5  
SLOPE CONTROL  
The MCP45XX/46XX implements slope control on the  
SDA output.  
As the device transitions from HS mode to FS mode,  
the slope control parmameter will change from the HS  
specification to the FS specification.  
For Fast (FS) and High-Speed (HS) modes, the device  
has a spike suppression and a Schmidt trigger at SDA  
and SCL inputs.  
DS22107A-page 50  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
After switching to the High-Speed mode, the next  
transferred byte is the I2C control byte, which specifies  
6.2.6  
HS MODE  
The I2C specification requires that a high-speed mode  
device must be ‘activated’ to operate in high-speed  
(3.4 Mbit/s) mode. This is done by the Master sending  
a special address byte following the START bit. This  
byte is referred to as the high-speed Master Mode  
Code (HSMMC).  
the device to communicate with, and any number of  
data bytes plus acknowledgements. The Master  
Device can then either issue a Repeated Start bit to  
address a different device (at High-Speed) or a Stop bit  
to return to Fast/Standard bus speed. After the Stop bit,  
any other Master Device (in a Multi-Master system) can  
arbitrate for the I2C bus.  
The MCP45XX/46XX device does not acknowledge  
this byte. However, upon receiving this command, the  
device switches to HS mode. The device can now com-  
municate at up to 3.4 Mbit/s on SDA and SCL lines.  
The device will switch out of the HS mode on the next  
STOP condition.  
See Figure 6-10 for illustration of HS mode command  
sequence.  
For more information on the HS mode, or other I2C  
modes, please refer to the Phillips I2C specification.  
The master code is sent as follows:  
1. START condition (S)  
6.2.6.1  
Slope Control  
The slope control on the SDA output is different  
between the Fast/Standard Speed and the High-Speed  
clock modes of the interface.  
2. High-Speed Master Mode Code (0000 1XXX),  
The XXXbits are unique to the high-speed (HS)  
mode Master.  
6.2.6.2  
Pulse Gobbler  
3. No Acknowledge (A)  
The pulse gobbler on the SCL pin is automatically  
adjusted to suppress spikes < 10 ns during HS mode.  
F/S-mode  
HS-mode  
P
F/S-mode  
S ‘0 0 0 0 1 X X X’b  
Sr ‘Slave AddressR/W  
“Data”  
A
A
A/A  
HS-mode continues  
Sr ‘Slave Address’  
R/W A  
HS Select Byte  
S = Start bit  
Control Byte  
Command/Data Byte(s)  
Control Byte  
Sr = Repeated Start bit  
A = Acknowledge bit  
A = Not Acknowledge bit  
R/W = Read/Write bit  
P = Stop bit (Stop condition terminates HS Mode)  
FIGURE 6-10: HS Mode Sequence.  
© 2008 Microchip Technology Inc.  
DS22107A-page 51  
MCP454X/456X/464X/466X  
6.2.7  
GENERAL CALL  
TABLE 6-3:  
7-bit  
GENERALCALLCOMMANDS  
Comment  
The General Call is a method that the “Master” device  
can communicate with all other “Slave” devices. In a  
Multi-Master application, the other Master devices are  
operating in Slave mode. The General Call address  
has two documented formats. These are shown in  
Figure 6-11. We have added a MCP45XX/46XX format  
in this figure as well.  
This will allow customers to have multiple I2C Digital  
Potentiometers on the bus and have them operate in a  
synchronous fashion (analogous to the DAC Sync pin  
functionality). If these MCP45XX/46XX 7-bit com-  
mands conflict with other I2C devices on the bus, then  
the customer will need two I2C busses and ensure that  
the devices are on the correct bus for their desired  
application functionality.  
Command  
(1, 2, 3)  
‘100000d’b Write Next Byte (Third Byte) to Volatile  
Wiper 0 Register  
‘100100d’b Write Next Byte (Third Byte) to Volatile  
Wiper 1 Register  
‘110000d’b Write Next Byte (Third Byte) to TCON  
Register  
‘1000010’b Increment Wiper 0 Register  
or  
‘1000011’b  
‘1001010’b Increment Wiper 1 Register  
or  
Dual Pot devices can not update both Pot0 and Pot1  
from a single command. To address this, there are  
General Call commands for the Wiper 0, Wiper 1, and  
the TCON registers.  
‘1001011’b  
‘1000100’b Decrement Wiper 0 Register  
or  
‘1000101’b  
Table 6-3 shows the General Call Commands. Three  
commands are specified by the I2C specification and  
are not applicable to the MCP45XX/46XX (so com-  
mand is Not Acknowledged) The MCP45XX/46XX  
General Call Commands are Acknowledge. Any other  
command is Not Acknowledged.  
‘1001100’b Decrement Wiper 1 Register  
or  
‘1001101’b  
Note 1: Any other code is Not Acknowledged.  
These codes may be used by other  
devices on the I2C bus.  
Note:  
Only one General Call command per issue  
of the General Call control byte. Any addi-  
tional General Call commands are ignored  
and Not Acknowledged.  
2: The 7-bit command always appends a “0”  
to form 8-bits. .  
3: “d” is the D8 bit for the 9-bit write value.  
DS22107A-page 52  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
Second Byte  
S
0
0
0
0
0
0
0
0
A
X
X
X
X
X
X X 0 A P  
General Call Address  
“7-bit Command”  
Reserved 7-bit Commands (By I2C Specification - Philips # 9398 393 40011, Ver. 2.1 January 2000)  
‘0000 011’b - Reset and write programmable part of slave address by hardware.  
‘0000 010’b - Write programmable part of slave address by hardware.  
‘0000 000’b - NOT Allowed  
MCP45XX/MCP46XX 7-bit Commands  
‘1000 01x’b - Increment Wiper 0 Register.  
‘1001 01x’b - Increment Wiper 1 Register.  
1000 10x’b - Decrement Wiper 0 Register.  
‘1001 10x’b - Decrement Wiper 1 Register.  
The Following is a Microchip Extension to this General Call Format  
Third Byte  
Second Byte  
S
0
0
0
0
0
0
0
0
A
X
X
X
X
X
X
d
0
A d  
d
d
d
d
d
d
d
A
P
General Call Address  
MCP45XX/MCP46XX 7-bit Commands  
“7-bit Command”  
“0” for General Call Command  
‘1000 00d’b - Write Next Byte (Third Byte) to Volatile Wiper 0 Register.  
‘1001 00d’b - Write Next Byte (Third Byte) to Volatile Wiper 1 Register.  
‘1100 00d’b - Write Next Byte (Third Byte) to TCON Register.  
The Following is a “Hardware General Call” Format  
n occurrences of (Data + A)  
A X X X X X X X X A P  
Second Byte  
S
0
0
0
0
0
0
0
0
A
X
X
X
X
X
X
X
1
General Call Address  
“7-bit Command”  
This indicates a “Hardware General Call”  
MCP45XX/MCP46XX will ignore this byte and  
all following bytes (and A), until  
a Stop bit (P) is encountered.  
FIGURE 6-11:  
General Call Formats.  
© 2008 Microchip Technology Inc.  
DS22107A-page 53  
MCP454X/456X/464X/466X  
NOTES:  
DS22107A-page 54  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
Normal serial commands are those where the HVC pin  
is driven to VIH or VIL. With High-Voltage Serial Com-  
mands, the HVC pin is driven to VIHH. In each mode,  
there are four possible commands.  
7.0  
DEVICE COMMANDS  
The MCP4XXX’s I2C command formats are specified in  
this section. The I2C protocol does not specify how  
commands are formatted.  
Additionally, there are two commands used to enable  
or disable the special features (Write Protect and Wiper  
Lock Technology) of the device. The commands are  
special cases of the Increment and Decrement  
High-Voltage Serial Command.  
The MCP4XXX supports four basic commands.  
Depending on the location accessed determines the  
commands that are supported.  
For the Volatile Wiper Registers, these commands are:  
Table 7-2 shows the supported commands for each  
memory location.  
• Write Data  
• Read Data  
• Increment Data  
• Decrement Data  
Table 7-3 shows an overview of all the device com-  
mands and their interaction with other device features.  
For the Non-Volatile wiper EEPROM, general purpose  
data EEPROM, and the TCON Register these com-  
mands are:  
7.1  
Command Byte  
The MCP4XXX’s Command Byte has three fields: the  
Address, the Command Operation, and 2 Data bits,  
see Figure 7-1. Currently only one of the data bits is  
defined (D8).  
• Write Data  
• Read Data  
These commands have formats for both a single  
command or continuous commands. These commands  
are shown in Table 7-1.  
The device memory is accessed when the Master  
sends a proper Command Byte to select the desired  
operation. The memory location getting accessed is  
contained in the Command Byte’s AD3:AD0 bits. The  
action desired is contained in the Command Byte’s  
C1:C0 bits, see Table 7-1. C1:C0 determines if the  
desired memory location will be read, written,  
Incremented (wiper setting +1) or Decremented (wiper  
setting -1). The Increment and Decrement commands  
are only valid on the volatile wiper registers, and in  
High Voltage commands to enable/disable WiperLock  
Technology and Software Write Protect.  
Each command has two operational states. The  
operational state determines if the device commands  
control the special features (Write Protect and Wiper-  
Lock Technology). These operational states are  
referred to as:  
• Normal Serial Commands  
• High-Voltage Serial Commands  
2
TABLE 7-1:  
I C COMMANDS  
Command  
Operateson  
Volatile/  
If the Address bits and Command bits are not a valid  
combination, then the MCP4XXX will generate a Not  
Acknowledge pulse to indicate the invalid combination.  
The I2C Master device must then force a Start Condi-  
tion to reset the MCP4XXX’s 2C module.  
# of Bit  
Clocks (1) Non-Volatile  
memory  
Operation  
Mode  
Write Data  
Single  
29  
Both  
Continuous 18n + 11 Volatile Only  
D9 and D8 are the most significant bits for the digital  
potentiometer’s wiper setting. The 8-bit devices utilize  
D8 as their MSb while the 7-bit devices utilize D7 (from  
the data byte) as it’s MSb.  
Read Data  
Single  
29  
48  
Both  
Both  
Random  
Continuous 18n + 11 Both (2)  
Increment  
Single  
Continuous 9n + 11 Volatile Only  
20 Volatile Only  
20  
Volatile Only  
(3)  
COMMAND BYTE  
Decrement Single  
A
A
D
3
A
D
2
A
D
1
A
D
0
C
1
C
0
D
9
D
8
A
(3)  
Continuous 9n + 11 Volatile Only  
Note 1: “n” indicates the number of times the  
command operation is to be repeated.  
MSbits (Data)  
MCP4XXX  
Memory Address  
2: This command is useful to determine if a  
non-volatile memory write cycle has  
completed.  
Command Operation bits  
00= Write Data  
01= Increment  
10= Decrement  
11= Read Data  
3: High Voltage Increment and Decrement  
commands on select non-volatile memory  
locations enable/disable WiperLock  
Technology and the software Write  
Protect feature.  
FIGURE 7-1:  
Command Byte Format.  
© 2008 Microchip Technology Inc.  
DS22107A-page 55  
MCP454X/456X/464X/466X  
TABLE 7-2:  
MEMORY MAP AND THE SUPPORTED COMMANDS  
Address  
Function  
Data  
Command Operation  
Comment  
(10-bits) (1)  
Value  
00h Volatile Wiper 0  
Write Data  
Read Data (3)  
nn nnnn nnnn  
nn nnnn nnnn  
Increment Wiper  
Decrement Wiper  
Write Data  
01h Volatile Wiper 1  
nn nnnn nnnn  
nn nnnn nnnn  
Read Data (3)  
Increment Wiper  
Decrement Wiper  
Write Data  
02h Non Volatile Wiper 0  
03h Non Volatile Wiper 1  
nn nnnn nnnn  
nn nnnn nnnn  
Read Data (3)  
High Voltage Increment  
High Voltage Decrement  
Write Data  
Wiper Lock 0 Disable  
Wiper Lock 0 Enable  
nn nnnn nnnn  
nn nnnn nnnn  
Read Data (3)  
High Voltage Increment  
High Voltage Decrement  
Wiper Lock 1 Disable  
Wiper Lock 1 Enable  
04h (2) Volatile TCON Register Write Data  
Read Data (3)  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
nn nnnn nnnn  
05h (2) Status Register  
06h (2) Data EEPROM  
Read Data (3)  
Write Data  
Read Data (3)  
Write Data  
Read Data (3)  
07h (2) Data EEPROM  
08h (2) Data EEPROM  
09h (2) Data EEPROM  
0Ah (2) Data EEPROM  
0Bh (2) Data EEPROM  
0Ch (2) Data EEPROM  
0Dh (2) Data EEPROM  
0Eh (2) Data EEPROM  
0Fh Data EEPROM  
Write Data  
Read Data (3)  
Write Data  
Read Data (3)  
Write Data  
Read Data (3)  
Write Data  
Read Data (3)  
Write Data  
Read Data (3)  
Write Data  
Read Data (3)  
Write Data  
Read Data (3)  
Write Data  
Read Data (3)  
High Voltage Increment  
High Voltage Decrement  
Write Protect Disable  
Write Protect Enable  
Note 1: The Data Memory is only 9-bits wide, so the MSb is ignored by the device.  
2: Increment or Decrement commands are invalid for these addresses.  
3: I2C read operation will read 2 bytes, of which the 10-bits of data are contained within.  
DS22107A-page 56  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
7.2  
Data Byte  
7.3  
Error Condition  
Only the Read Command and the Write Command  
have Data Byte(s).  
If the four address bits received (AD3:AD0) and the two  
command bits received (C1:C0) are a valid combina-  
tion, the MCP4XXX will Acknowledge the I2C bus.  
The Write command concatenates the 8-bits of the  
Data Byte with the one data bit (D8) contained in the  
Command Byte to form 9-bits of data (D8:D0). The  
Command Byte format supports up to 9-bits of data so  
that the 8-bit resistor network can be set to Full-Scale  
(100h or greater). This allows wiper connections to  
Terminal A and to Terminal B. The D9 bit is currently  
unused.  
If the address bits and command bits are an invalid  
combination, then the MCP4XXX will Not Acknowledge  
the I2C bus.  
Once an error condition has occurred, any following  
commands are ignored until the I2C bus is reset with a  
Start Condition.  
7.3.1  
ABORTING A TRANSMISSION  
A Restart or Stop condition in the expected data bit  
position will abort the current command sequence and  
data will not be written to the MCP4XXX.  
TABLE 7-3:  
COMMANDS  
Operates on  
Volatile/  
Non-Volatile  
memory  
High  
Voltage  
(VIHH) on  
HVC pin?  
Works  
when  
Wiper is  
“locked”?  
Writes  
Value in  
EEPROM  
Impact on  
WiperLock or  
Write Protect  
Command Name  
Write Data  
Read Data  
Yes (1)  
Both  
Both  
unlocked (1)  
unlocked (1)  
unlocked (1)  
unlocked (1)  
unchanged  
unchanged  
unchanged  
unchanged  
No  
No  
No  
No  
No  
Yes  
No  
No  
Yes  
Increment Wiper  
Volatile Only  
Volatile Only  
Both  
Decrement Wiper  
High Voltage Write Data  
High Voltage Read Data  
High Voltage Increment Wiper  
High Voltage Decrement Wiper  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Both  
Volatile Only  
Volatile Only  
(2)  
Modify Write Protect or WiperLock  
Technology (High Voltage) - Enable  
Non-Volatile  
Only (2)  
locked/  
protected (2)  
(3)  
Modify Write Protect or WiperLock  
Technology (High Voltage) - Disable  
Non-Volatile  
Only (3)  
Yes  
unlocked/  
unprotected  
Yes  
(3)  
Note 1: This command will only complete, if wiper is “unlocked” (WiperLock Technology is Disabled).  
2: If the command is executed using address 02h or 03h, that corresponding wiper is locked or  
if with address 0Fh, then Write Protect is enabled.  
3: If the command is executed using with address 02h or 03h, that corresponding wiper is unlocked or  
if with address 0Fh, then Write Protect is disabled.  
© 2008 Microchip Technology Inc.  
DS22107A-page 57  
MCP454X/456X/464X/466X  
7.4.3  
CONTINUOUS WRITES TO  
VOLATILE MEMORY  
7.4  
Write Data  
Normal and High Voltage  
A continuous write mode of operation is possible when  
writing to the volatile memory registers (address 00h,  
01h, and 04h). This continuous write mode allows  
writes without a Stop or Restart condition or repeated  
transmissions of the I2C Control Byte. Figure 7-3  
shows the sequence for three continuous writes. The  
writes do not need to be to the same volatile memory  
address. The sequence ends with the master sending  
a STOP or RESTART condition.  
The Write Command can be issued to both the Volatile  
and Non-Volatile memory locations. The format of the  
command, see Figure 7-2, includes the I2C Control  
Byte, an A bit, the MCP4XXX Command Byte, an A bit,  
the MCP4XXX Data Byte, an A bit, and a Stop (or  
Restart) condition. The MCP4XXX generates the A / A  
bits.  
A Write command to a Volatile memory location  
changes that location after a properly formatted Write  
Command and the A / A clock have been received.  
7.4.4  
CONTINUOUS WRITES TO  
NON-VOLATILE MEMORY  
A Write command to a Non-Volatile memory location  
will only start a write cycle after a properly formatted  
Write Command have been received and the Stop  
condition has occurred.  
If a continuous write is attempted on Non-Volatile  
memory, the missing Stop condition will cause the com-  
mand to be an error condition (A). A Start bit is required  
to reset the command state machine.  
Note:  
Writes to certain memory locations will be  
dependant on the state of the WiperLock  
Technology bits and the Write Protect bit.  
7.4.5  
THE HIGH VOLTAGE COMMAND  
(HVC) SIGNAL  
The High Voltage Command (HVC) signal is  
multiplexed with Address 0 (A0) and is used to indicate  
that the command, or sequence of commands, are in  
the High Voltage operational state. High Voltage  
commands allow the device’s WiperLock Technology  
and write protect features to be enabled and disabled.  
7.4.1  
SINGLE WRITE TO VOLATILE  
MEMORY  
For volatile memory locations, data is written to the  
MCP4XXX after every byte transfer (during the  
Acknowledge). If a Stop or Restart condition is gener-  
ated during a data transfer (before the A), the data will  
not be written to the MCP4XXX. After the A bit, the  
master can initiate the next sequence with a Stop or  
Restart condition.  
The HVC pin has an internal resistor connection to the  
MCP45XX/46XXs internal VDD signal.  
Refer to Figure 7-2 for the byte write sequence.  
7.4.2  
SINGLE WRITE TO NON-VOLATILE  
MEMORY  
The sequence to write to a single non-volatile memory  
location is the same as a single write to volatile memory  
with the exception that the EEPROM write cycle (twc) is  
started after a properly formatted command, including  
the Stop bit, is received. After the Stop condition occurs  
the serial interface may immediately be re-enabled by  
initiating a Start condition.  
During an EEPROM write cycle, access to volatile  
memory (addresses 00h, 01h, 04h, and 05h) is allowed  
when using the appropriate command sequence.  
Commands that address non-volatile memory are  
ignored until the EEPROM write cycle (twc) completes.  
This allows the Host Controller to operate on the  
Volatile Wiper registers, the TCON register, and to  
Read the Status Register. The EEWA bit in the Status  
register indicates the status of an EEPROM Write  
Cycle.  
Once a write command to a Non-Volatile memory  
location has been received, No other commands  
should be received before the Stop condition occurs.  
Figure 7-2 show the waveform for a single write.  
DS22107A-page 58  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
Write bit  
Device  
Memory  
Address  
Variable  
Address  
Fixed  
Address  
Write “Data” bits  
Command  
AD AD AD AD  
S
0
1
0
1
A2 A1 A0 0  
A
0
0 x D8 A D7 D6 D5 D4 D3 D2 D1 D0 A P  
3
2
1
0
WRITE Command  
Write Data bits  
Control Byte  
2
FIGURE 7-2:  
I C Write Sequence.  
Write bit  
Variable  
Address  
Device  
Memory  
Address  
Fixed  
Address  
Write “Data” bits  
Command  
AD AD AD AD  
S
0
1
0
1
A2 A1 A0 0  
A
0
0 x D8 A D7 D6 D5 D4 D3 D2 D1 D0 A  
3
2
1
0
WRITE Command Write Data bits  
Control Byte  
AD AD AD AD  
0
0 x D8 A D7 D6 D5 D4 D3 D2 D1 D0 A  
3
2
1
0
WRITE Command  
Write Data bits  
STOP bit  
AD AD AD AD  
0
0
x D8 A D7 D6 D5 D4 D3 D2 D1 D0 A  
P
3
2
1
0
WRITE Command Write Data bits  
Note:  
Only functions when writing the volatile wiper registers (AD3:AD0 = 00h, 01h, and 04h)  
or the TCON register  
2
FIGURE 7-3:  
I C Continuous Volatile Wiper Write.  
© 2008 Microchip Technology Inc.  
DS22107A-page 59  
MCP454X/456X/464X/466X  
7.5.2  
CONTINUOUS READS  
7.5  
Read Data  
Normal and High Voltage  
Continuous reads allows the devices memory to be  
read quickly. Continuous reads are possible to all mem-  
ory locations. If a non-volatile memory write cycle is  
occurring, then Read commands may only access the  
volatile memory locations.  
The Read Command can be issued to both the Volatile  
and Non-Volatile memory locations. The format of the  
command, see Figure 7-4, includes the Start condition,  
I2C Control Byte (with R/W bit set to “0”), A bit,  
MCP4XXX Command Byte, A bit, followed by a  
Repeated Start bit, I2C Control Byte (with R/W bit set to  
“1”), and the MCP4XXX transmitting the requested  
Data High Byte, and A bit, the Data Low Byte, the Mas-  
ter generating the A, and Stop condition.  
The I2C Control Byte requires the R/W bit equal to a  
logic one (R/W = 1) to generate a read sequence. The  
memory location read will be the last address  
contained in a valid write MCP4XXX Command Byte or  
address 00h if no write operations have occurred since  
the device was reset (Power-on Reset or Brown-out  
Reset).  
Figure 7-6 shows the sequence for three continuous  
reads.  
For continuous reads, instead of transmitting a Stop  
or Restart condition after the data transfer, the master  
reads the next data byte. The sequence ends with the  
master Not Acknowledging and then sending a Stop or  
Restart.  
7.5.3  
THE HIGH VOLTAGE COMMAND  
(HVC) SIGNAL  
The High Voltage Command (HVC) signal is  
multiplexed with Address 0 (A0) and is used to indicate  
that the command, or sequence of commands, are in  
the High Voltage mode. High Voltage commands allow  
the device’s WiperLock Technology and write protect  
features to be enabled and disabled.  
During a write cycle (Write or High Voltage Write to a  
Non-Volatile memory location) the Read command can  
only read the Volatile memory locations. By reading the  
Status Register (04h), the Host Controller can  
determine when the write cycle has completed (via the  
state of the EEWA bit).  
The HVC pin has an internal resistor connection to the  
MCP4XXXs internal VDD signal.  
Read operations initially include the same address byte  
sequence as the write sequence (shown in Figure 6-9).  
This sequence is followed by another control byte  
(including the Start condition and Ackowledge) with the  
R/W bit equal to a logic one (R/W = 1) to indicate a  
read. The MCP4XXX will then transmit the data con-  
tained in the addressed register. This is followed by the  
master generating an A bit in preparation for more data,  
or an A bit followed by a Stop. The sequence is ended  
with the master generating a Stop or Restart condition.  
7.5.4  
IGNORING AN I2C TRANSMISSION AND  
“FALLING OFF” THE BUS  
The MCP4XXX expects to receive entire, valid I2C  
commands and will assume any command not defined  
as a valid command is due to a bus corruption and will  
enter a passive high condition on the SDA signal. All  
signals will be ignored until the next valid Start  
condition and Control Byte are received.  
The internal address pointer is maintained. If this  
address pointer is for a non-volatile memory address  
and the read control byte addresses the device during  
a Non-Volatile Write Cycle (tWC) the device will respond  
with an A bit.  
7.5.1  
SINGLE READ  
Figure 7-4 show the waveforms for a single read.  
For single reads the master sends a STOP or  
RESTART condition after the data byte is sent from the  
slave.  
7.5.1.1  
Random Read  
Figure 7-5 shows the sequence for a Random Reads.  
Refer to Figure 7-5 for the random byte read  
sequence.  
DS22107A-page 60  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
Read bit  
STOP bit  
Variable  
Address  
Fixed  
Address  
Read Data bits  
S
0
1
0
1
A2 A1 A0 1 A 0  
0
0
0 0  
0
0 D8 A1 D7 D6 D5 D4 D3 D2 D1 D0 A2  
Read bits  
P
Control Byte  
Note 1: Master Device is responsible for A / A signal. If a A signal occurs, the MCP45XX/46XX will  
abort this transfer and release the bus.  
2: The Master Device will Not Acknowledge, and the MCP45XX/46XX will release the bus so the  
Master Device can generate a Stop or Repeated Start condition.  
3: The MCP45xx/46xx retains the last “Device Memory Address” that it has received. This is the  
MCP45XX/46XX does not “corrupt” the “Device Memory Address” after Repeated Start or  
Stop conditions.  
4: The Device Memory Address pointer defaults to 00h on POR and BOR conditions.  
2
FIGURE 7-4:  
I C Read (Last Memory Address Accessed).  
Write bit  
Device  
Repeated Start bit  
Variable  
Address  
Fixed  
Address  
Memory  
Address  
Command  
AD AD AD AD  
S
0
1
0
1
A2 A1 A0 0  
A
1
1
x X A Sr  
3
2
1
0
READ Command  
Control Byte  
STOP bit  
Read bit  
Read Data bits  
0
1
0
1
A2 A1 A0 1 A 0  
0
0
0 0  
0
0 D8 A1 D7 D6 D5 D4 D3 D2 D1 D0 A2  
Read bits  
P
Control Byte  
Note 1: Master Device is responsible for A / A signal. If a A signal occurs, the MCP45XX/46XX will  
abort this transfer and release the bus.  
2: The Master Device will Not Acknowledge, and the MCP45XX/46XX will release the bus so the  
Master Device can generate a Stop or Repeated Start condition.  
3: The MCP45XX/46XX retains the last “Device Memory Address” that it has received. This is  
the MCP45XX/46XX does not “corrupt” the “Device Memory Address” after Repeated Start or  
Stop conditions.  
2
FIGURE 7-5:  
I C Random Read.  
© 2008 Microchip Technology Inc.  
DS22107A-page 61  
MCP454X/456X/464X/466X  
Read bit  
Variable  
Address  
Fixed  
Address  
Read Data bits  
S
0
1
0
1
A2 A1 A0 1  
A
0
0
0
0
0
0
0 D8 A1 D7 D6 D5 D4 D3 D2 D1 D0 A1  
Read bits  
Control Byte  
Read Data bits  
0
0
0
0 0  
0
0 D8 A1 D7 D6 D5 D4 D3 D2 D1 D0 A1  
STOP bit  
Read Data bits  
0 D8 A1 D7 D6 D5 D4 D3 D2 D1 D0 A2  
0
0
0
0 0  
0
P
Note 1: Master Device is responsible for A / A signal. If a A signal occurs, the MCP45XX/46XX will  
abort this transfer and release the bus.  
2: The Master Device will Not Acknowledge, and the MCP45XX/46XX will release the bus so the  
Master Device can generate a Stop or Repeated Start condition.  
2
FIGURE 7-6:  
I C Continuos Reads.  
DS22107A-page 62  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
The advantage of using an Increment Command  
instead of a read-modify-write series of commands is  
speed and simplicity. The wiper will transition after each  
Command Acknowledge when accessing the volatile  
wiper registers.  
7.6  
Increment Wiper  
Normal and High Voltage  
The Increment Command provide a quick and easy  
method to modify the potentiometer’s wiper by +1 with  
minimal overhead. The Increment Command will only  
function on the volatile wiper setting memory locations  
00h and 01h. The Increment Command to Non-Volatile  
addresses will be ignored and will generate a A.  
TABLE 7-4:  
INCREMENT OPERATION VS.  
VOLATILE WIPER VALUE  
Current Wiper  
Setting  
Increment  
Wiper (W)  
Note:  
Table 7-2 shows the valid addresses for  
the Increment Wiper command. Other  
addresses are invalid.  
Command  
Properties  
7-bit  
Pot  
8-bit  
Pot  
Operates?  
When executing an Increment Command, the volatile  
wiper setting will be altered from n to n+1 for each  
Increment Command received. The value will incre-  
ment up to 100h max on 8-bit devices and 80h on 7-bit  
devices. If multiple Increment Commands are received  
after the value has reached 100h (or 80h), the value will  
not be incremented further. Table 7-4 shows the  
Increment Command versus the current volatile wiper  
value.  
3FFh  
081h  
3FFh Reserved  
101h (Full-Scale (W = A))  
No  
080h  
100h Full-Scale (W = A) No  
07Fh  
041h  
0FFh W = N  
081  
040h  
080h W = N (Mid-Scale) Yes  
03Fh  
001h  
07Fh W = N  
001  
The Increment Command will most commonly be  
performed on the Volatile Wiper locations until a  
desired condition is met. The value in the Volatile Wiper  
register would need to be read using a Read operation  
in order to write the new setting to the corresponding  
Non-Volatile wiper memory using a Write operation.  
The MCP4XXX is responsible for generating the A bits.  
000h  
000h Zero Scale (W = B) Yes  
7.6.1  
THE HIGH VOLTAGE COMMAND  
(HVC) SIGNAL  
The High Voltage Command (HVC) signal is multi-  
plexed with Address 0 (A0) and is used to indicate that  
the command, or sequence of commands, are in the  
High Voltage mode. Signals > VIHH (~8.5V) on the  
HVC/A0 pin puts MCP45XX/46XX devices into High  
Voltage mode. High Voltage commands allow the  
device’s WiperLock Technology and write protect  
features to be enabled and disabled.  
Refer to Figure 7-7 for the Increment Command  
sequence. The sequence is terminated by the Stop  
condition. So when executing a continuous command  
string, The Increment command can be followed by any  
other valid command. this means that writes do not  
need to be to the same volatile memory address.  
Note:  
The command sequence can go from an  
increment to any other valid command for  
the specified address. Issuing an incre-  
ment or decrement to a non-volatile loca-  
tion will cause an error condition (A will be  
generated).  
Note:  
There is a required delay after the HVC pin  
is driven to the VIHH level to the 1st edge  
of the SCL pin.  
The HVC pin has an internal resistor connection to the  
MCP45XX/46XXs internal VDD signal.  
Write bit  
Device  
Memory  
Address  
Variable  
Address  
Fixed  
Address  
Command  
AD AD AD AD  
AD AD AD AD  
(2)  
S
0
1
0
1
A2 A1 A0 0  
A
0
1 x  
X
A
0
1 x  
X A P  
3
2
1
0
4
3
2
1
INCR Command (n+1)  
INCR Command (n+2)  
Control Byte  
Note 1: Increment Command (INCR) only functions when accessing the volatile wiper reg-  
isters (AD3:AD0 = 0h and 1h).  
2: This command sequence does not need to terminate (using the Stop bit) and can  
change to any other desired command sequence (Increment, Read, or Write).  
2
FIGURE 7-7:  
I C Increment Command Sequence.  
© 2008 Microchip Technology Inc.  
DS22107A-page 63  
MCP454X/456X/464X/466X  
The advantage of using an Decrement Command  
instead of a read-modify-write series of commands is  
speed and simplicity. The wiper will transition after each  
Command Acknowledge when accessing the volatile  
wiper registers.  
7.7  
Decrement Wiper  
Normal and High Voltage  
The Decrement Command provide a quick and easy  
method to modify the potentiometer’s wiper by -1 with  
minimal overhead. The Decrement Command will only  
function on the volatile wiper setting memory locations  
00h and 01h. Decrement Commands to Non-Volatile  
addresses will be ignored and will generate an A bit.  
TABLE 7-5:  
DECREMENT OPERATION VS.  
VOLATILE WIPER VALUE  
Current Wiper  
Setting  
Decrement  
Wiper (W)  
Note:  
Table 7-2 shows the valid addresses for  
the Decrement Wiper command. Other  
addresses are invalid.  
Command  
Properties  
7-bit  
Pot  
8-bit  
Pot  
Operates?  
When executing a Decrement Command, the volatile  
wiper setting will be altered from n to n-1 for each  
Decrement Command received. The value will  
decrement down to 000h min. If multiple Decrement  
Commands are received after the value has reached  
000h, the value will not be decremented further.  
Table 7-5 shows the Increment Command versus the  
current volatile wiper value.  
3FFh  
081h  
3FFh Reserved  
101h (Full-Scale (W = A))  
No  
080h  
100h Full-Scale (W = A) Yes  
07Fh  
041h  
0FFh W = N  
081  
040h  
080h W = N (Mid-Scale) Yes  
03Fh  
001h  
07Fh W = N  
001  
The Decrement Command will most commonly be  
performed on the Volatile Wiper locations until a  
desired condition is met. The value in the Volatile Wiper  
register would need to be read using a Read operation  
in order to write the new setting to the corresponding  
Non-Volatile wiper memory using a Write operation.  
The MCP4XXX is responsible for generating the A bits.  
000h  
000h Zero Scale (W = B) No  
7.7.1  
THE HIGH VOLTAGE COMMAND  
(HVC) SIGNAL  
Refer to Figure 7-8 for the Decrement Command  
sequence. The sequence is terminated by the Stop  
condition. So when executing a continuous command  
string, The Increment command can be followed by any  
other valid command. this means that writes do not  
need to be to the same volatile memory address.  
The High Voltage Command (HVC) signal is  
multiplexed with Address 0 (A0) and is used to indicate  
that the command, or sequence of commands, are in  
the High Voltage mode. Signals > VIHH (~8.5V) on the  
HVC/A0 pin puts MCP45XX/46XX devices into High  
Voltage mode. High Voltage commands allow the  
device’s WiperLock Technology and write protect  
features to be enabled and disabled.  
Note:  
The command sequence can go from an  
increment to any other valid command for  
the specified address. Issuing an  
increment or decrement to a non-volatile  
location will cause an error condition (A  
will be generated).  
Note:  
There is a required delay after the HVC pin  
is driven to the VIHH level to the 1st edge  
of the SCL pin.  
The HVC pin has an internal resistor connection to the  
MCP45XX/46XXs internal VDD signal.  
Write bit  
Variable  
Address  
Device  
Memory  
Address  
Fixed  
Address  
Command  
AD AD AD AD  
AD AD AD AD  
S
0
1
0
1
A2 A1 A0 0  
A
1
0 X  
X
A
1
0 X  
X A  
P (2)  
3
2
1
0
4
3
2
1
DECR Command (n-1)  
DECR Command (n-2)  
Control Byte  
Note 1: Decrement Command (DECR) only functions when accessing the volatile wiper  
registers (AD3:AD0 = 0h and 1h).  
2: This command sequence does not need to terminate (using the Stop bit) and can  
change to any other desired command sequence (INCR, Read, or Write).  
2
FIGURE 7-8:  
I C Decrement Command Sequence.  
DS22107A-page 64  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
7.8.1  
SINGLE MODIFY (ENABLE OR  
DISABLE) WRITE PROTECT OR  
WIPERLOCK TECHNOLOGY (HIGH  
VOLTAGE)  
7.8  
Modify Write Protect or WiperLock  
Technology (High Voltage)  
Enable and Disable  
These commands are special cases of the High Volt-  
age Decrement Wiper and the High Voltage Incre-  
ment Wiper commands to the non-volatile memory  
locations 02h, 03h, and 0Fh. This command is used to  
enable or disable either the software Write Protect,  
wiper 0 WiperLock Technology, or wiper 1 WiperLock  
Technology. Table 7-6 shows the memory addresses,  
the High Voltage command and the result of those  
commands on the non-volatile WP, WL0, 0r WL1 bits.  
Figure 7-9 (Disable) and Figure 7-10 (Enable) show  
the formats for a single Modify Write Protect or Wiper-  
Lock Technology command.  
A Modify Write Protect or WiperLock Technology  
Command will only start an EEPROM write cycle (twc  
)
after a properly formatted Command has been  
received and the Stop condition occurs.  
During an EEPROM write cycle, only serial commands  
to Volatile memory (addresses 00h, 01h, 04h, and 05h)  
are accepted. All other serial commands are ignored  
until the EEPROM write cycle (twc) completes. This  
allows the Host Controller to operate on the Volatile  
Wiper registers and the TCON register, and to Read  
the Status Register. The EEWA bit in the Status register  
indicates the status of an EEPROM Write Cycle.  
TABLE 7-6:  
ADDRESS MAP TO MODIFY WRITE PROTECT AND WIPERLOCK TECHNOLOGY  
Command’s and Result  
Memory  
Address  
High Voltage Decrement Wiper  
High Voltage Increment Wiper  
00h  
01h  
Wiper 0 register is incremented  
Wiper 1 register is decremented  
WL0 is enabled  
Wiper 0 register is incremented  
Wiper 1 register is incremented  
WL0 is disabled  
02h  
03h  
WL1 is enabled  
WL1 is disabled  
04h (1)  
05h - 0Eh (1)  
0Fh  
TCON register not changed  
Reserved  
TCON register not changed  
Reserved  
WP is enabled  
WP is disabled  
Note 1: Reserved addresses: Increment or Decrement commands are invalid for these addresses.  
Write bit  
Device  
Memory  
Address  
Variable  
Address  
Fixed  
Address  
Command (Increment)  
AD AD AD AD  
P
X A  
S
0
1
0
1
A2 A1 A0 0  
A
0
1 X  
3
2
1
0
Disable Command  
Control Byte  
2
FIGURE 7-9:  
I C Disable Command Sequence.  
Write bit  
Device  
Memory  
Address  
Variable  
Address  
Fixed  
Address  
Command (Decrement)  
AD AD AD AD  
P
X A  
S
0
1
0
1
A2 A1 A0 0  
A
1
0
X
3
2
1
0
Enable Command  
Control Byte  
2
FIGURE 7-10:  
I C Enable Command Sequence.  
© 2008 Microchip Technology Inc.  
DS22107A-page 65  
MCP454X/456X/464X/466X  
NOTES:  
DS22107A-page 66  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
The circuit in Figure 8-2 shows the method used on the  
MCP402X Non-volatile Digital Potentiometer Evalua-  
8.0  
APPLICATIONS EXAMPLES  
Non-volatile digital potentiometers have a multitude of  
practical uses in modern electronic circuits. The most  
popular uses include precision calibration of set point  
thresholds, sensor trimming, LCD bias trimming, audio  
attenuation, adjustable power supplies, motor control  
overcurrent trip setting, adjustable gain amplifiers and  
offset trimming. The MCP454X/456X/464X/466X  
devices can be used to replace the common mechani-  
cal trim pot in applications where the operating and  
terminal voltages are within CMOS process limitations  
(VDD = 2.7V to 5.5V).  
tion Board (Part Number: MCP402XEV). This method  
requires that the system voltage be approximately 5V.  
This ensures that when the PIC10F206 enters a  
brown-out condition, there is an insufficient voltage  
level on the HVC pin to change the stored value of the  
wiper. The MCP402X Non-volatile Digital Potentiome-  
ter Evaluation Board User’s Guide (DS51546) contains  
a complete schematic.  
GP0 is a general purpose I/O pin, while GP2 can either  
be a general purpose I/O pin or it can output the internal  
clock.  
For the serial commands, configure the GP2 pin as an  
input (high impedance). The output state of the GP0 pin  
will determine the voltage on the HVC pin (VIL or VIH).  
8.1  
Techniques to force the HVC pin  
to VIHH  
The circuit in Figure 8-1 shows a method using the  
TC1240A doubling charge pump. When the SHDN pin  
is high, the TC1240A is off, and the level on the HVC  
pin is controlled by the PIC® microcontrollers (MCUs)  
IO2 pin.  
For high-voltage serial commands, force the GP0  
output pin to output a high level (VOH) and configure the  
GP2 pin to output the internal clock. This will form a  
charge pump and increase the voltage on the HVC pin  
(when the system voltage is approximately 5V).  
When the SHDN pin is low, the TC1240A is on and the  
VOUT voltage is 2 * VDD. The resistor R1 allows the  
HVC pin to go higher than the voltage such that the PIC  
MCU’s IO2 pin “clamps” at approximately VDD.  
PIC10F206  
R1  
GP0  
MCP4XXX  
TC1240A  
C+  
GP2  
PIC MCU  
VIN  
HVC  
C2  
C1  
C-  
SHDN  
C1  
VOUT  
IO1  
FIGURE 8-2:  
Digital Potentiometer Evaluation Board  
(MCP402XEV) implementation to generate the  
MCP4XXX Non-Volatile  
MCP45XX  
MCP46XX  
R1  
HVC  
IO2  
C2  
V
voltage.  
IHH  
FIGURE 8-1:  
generate the V  
Using the TC1240A to  
voltage.  
IHH  
© 2008 Microchip Technology Inc.  
DS22107A-page 67  
MCP454X/456X/464X/466X  
8.2  
Using Shutdown  
S
‘1’ ‘1’ ‘1’ ‘1’ ‘1’ ‘1’ ‘1’ ‘1’  
S
P
Figure 8-3 shows a possible application circuit where  
the independent terminals could be used. Disconnect-  
ing the wiper allows the transistor input to be taken to  
the Bias voltage level (disconnecting A and or B may  
be desired to reduce system current). Disconnecting  
Terminal A modifies the transistor input by the RBW  
rheostat value to the Common B. Disconnecting  
Terminal B modifies the transistor input by the RAW  
rheostat value to the Common A. The Common A and  
Common B connections could be connected to VDD  
Nine bits of ‘1’  
Start bit  
Start  
bit  
Stop bit  
FIGURE 8-4:  
Format.  
Software Reset Sequence  
The 1st Start bit will cause the device to reset from a  
state in which it is expecting to receive data from the  
Master Device. In this mode, the device is monitoring  
the data bus in Receive mode and can detect the Start  
bit forces an internal Reset.  
and VSS  
.
Common A  
The nine bits of ‘1’ are used to force a Reset of those  
devices that could not be reset by the previous Start bit.  
This occurs only if the MCP45XX/46XX is driving an A  
bit on the I2C bus, or is in output mode (from a Read  
command) and is driving a data bit of ‘0’ onto the I2C  
bus. In both of these cases, the previous Start bit could  
not be generated due to the MCP45XX/46XX holding  
the bus low. By sending out nine ‘1’ bits, it is ensured  
that the device will see a A bit (the Master Device does  
not drive the I2C bus low to acknowledge the data sent  
by the MCP45XX/46XX), which also forces the  
MCP45XX/46XX to reset.  
Input  
A
To base  
of Transistor  
(or Amplifier)  
W
The 2nd Start bit is sent to address the rare possibility  
of an erroneous write. This could occur if the Master  
Device was reset while sending a Write command to  
the MCP45XX/46XX, AND then as the Master Device  
returns to normal operation and issues a Start condition  
while the MCP45XX/46XX is issuing an Acknowledge.  
In this case, if the 2nd Start bit is not sent (and the Stop  
bit was sent) the MCP45XX/46XX could initiate a write  
cycle.  
B
Input  
Common B  
Balance  
Bias  
Example Application Circuit  
Note:  
The potential for this erroneous write  
ONLY occurs if the Master Device is reset  
while sending a Write command to the  
MCP45XX/46XX.  
FIGURE 8-3:  
using Terminal Disconnects.  
The Stop bit terminates the current I2C bus activity. The  
MCP45XX/46XX wait to detect the next Start condition.  
8.3  
Software Reset Sequence  
This sequence does not effect any other I2C devices  
which may be on the bus, as they should disregard this  
as an invalid command.  
Note:  
This technique is documented in AN1028.  
At times it may become necessary to perform a Soft-  
ware Reset Sequence to ensure the MCP45XX/46XX  
device is in a correct and known I2C Interface state.  
This technique only resets the I2C state machine.  
This is useful if the MCP45XX/46XX device powers up  
in an incorrect state (due to excessive bus noise, ...), or  
if the Master Device is reset during communication.  
Figure 8-4 shows the communication sequence to soft-  
ware reset the device.  
DS22107A-page 68  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
Figure 8-5 shows two I2C bus configurations. In many  
8.4  
Using the General Call Command  
cases, the single I2C bus configuration will be  
adequate. For applications that do not want all the  
MCP45XX/46XX devices to do General Call support or  
have a conflict with General Call commands, the  
multiple I2C bus configuration would be used.  
The use of the General Call Address Increment, Decre-  
ment, or Write commands is analogous to the “Load”  
feature (LDAC pin) on some DACs (such as the  
MCP4921). This allows all the devices to “Update” the  
output level “at the same time”.  
For some applications, the ability to update the wiper  
values “at the same time may be a requirement, since  
they delay from writing to one wiper value and then the  
next may cause application issues. A possible example  
would be a “tuned” circuit that uses several MCP45XX/  
46XX in rheostat configuration. As the system condition  
changes (temperature, load, ...) these devices need to  
be changed (incremented/decremented) to adjust for  
the system change. These changes will either be in the  
same direction or in opposite directions. With the  
Potentiometer device the customer can either select  
the PxB terminals (same direction) or the PxA  
terminal(s) (opposite direction).  
Single I2C Bus Configuration  
Device 1  
Device n  
Device 3  
Host  
Controller  
Device 4  
Device 2  
Multiple I2C Bus Configuration  
Device 1a  
Device na  
Device nb  
Device 3a  
Host  
Bus a  
Figure 8-6 shows that the update of six devices takes  
6*TI2CDLY time in “normal” operation, but only  
1*TI2CDLY time in “General Call” operation.  
Controller  
Device 4a  
Device 3b  
Device 2a  
Note:  
The application system may need to  
partition the I2C bus into multiple busses to  
ensure that the MCP45XX/46XX General  
Call commands do not conflict with the  
General Call commands that the other I2C  
devices may have defined. Also if only a  
portion of the MCP45XX/46XX devices are  
to require this synchronous operation,  
then the devices that should not receive  
these commands should be on the second  
I2C bus.  
Device 1b  
Bus b  
Device 4b  
Device 3n  
Device 2b  
Device 1n  
Device nn  
Bus n  
Device 4n  
Device 2n  
2
FIGURE 8-5:  
Typical Application I C Bus  
Configurations.  
Normal Operation  
INC  
INC  
POT02  
INC  
POT03  
INC  
POT04  
INC  
POT05  
INC  
POT06  
POT01  
TI2CDLY  
TI2CDLY  
TI2CDLY  
TI2CDLY  
TI2CDLY  
TI2CDLY  
General Call Operation  
INC  
INC  
INC  
INC  
INC  
INC  
POTs 01-06 POTs 01-06 POTs 01-06 POTs 01-06 POTs 01-06 POTs 01-06  
TI2CDLY  
TI2CDLY  
TI2CDLY  
TI2CDLY  
TI2CDLY  
TI2CDLY  
TI2CDLY = Time from one I2C command completed to completing the next I2C command.  
FIGURE 8-6: Example Comparison of “Normal Operation” vs. “General Call Operation” wiper  
Updates.  
© 2008 Microchip Technology Inc.  
DS22107A-page 69  
MCP454X/456X/464X/466X  
8.5.2  
LAYOUT CONSIDERATIONS  
8.5  
Design Considerations  
Inductively-coupled AC transients and digital switching  
noise can degrade the input and output signal integrity,  
potentially masking the MCP4XXX’s performance.  
Careful board layout minimizes these effects and  
increases the Signal-to-Noise Ratio (SNR). Multi-layer  
In the design of a system with the MCP4XXX devices,  
the following considerations should be taken into  
account:  
Power Supply Considerations  
Layout Considerations  
boards utilizing  
a low-inductance ground plane,  
isolated inputs, isolated outputs and proper decoupling  
are critical to achieving the performance that the silicon  
is capable of providing. Particularly harsh environ-  
ments may require shielding of critical signals.  
8.5.1  
POWER SUPPLY  
CONSIDERATIONS  
The typical application will require a bypass capacitor  
in order to filter high-frequency noise, which can be  
induced onto the power supply's traces. The bypass  
capacitor helps to minimize the effect of these noise  
sources on signal integrity. Figure 8-7 illustrates an  
appropriate bypass strategy.  
If low noise is desired, breadboards and wire-wrapped  
boards are not recommended.  
8.5.3  
RESISTOR TEMPCO  
Characterization curves of the resistor temperature  
coefficient (Tempco) are shown in Figure 2-10,  
Figure 2-21, Figure 2-32, and Figure 2-43.  
In this example, the recommended bypass capacitor  
value is 0.1 µF. This capacitor should be placed as  
close (within 4 mm) to the device power pin (VDD) as  
possible.  
These curves show that the resistor network is  
designed to correct for the change in resistance as  
temperature increases. This technique reduces the  
end to end change is RAB resistance.  
The power source supplying these devices should be  
as clean as possible. If the application circuit has  
separate digital and analog power supplies, VDD and  
VSS should reside on the analog plane.  
8.5.4  
HIGH VOLTAGE TOLERANT PINS  
High Voltage support (VIHH) on the Serial Interface pins  
supports user configuration of the Non-Volatile  
EEPROM, Write Protect, and WiperLock feature.  
VDD  
0.1 µF  
Note:  
In many applications, the High Voltage will  
only be present at the manufacturing  
stage so as to “lock” the Non-Volatile  
wiper value (after calibration) and the con-  
tents of the EEPROM. This ensures that  
the since High Voltage is not present  
under normal operating conditions, that  
these values can not be modified.  
VDD  
0.1 µF  
A
W
SCL  
SDA  
B
VSS  
VSS  
FIGURE 8-7:  
Typical Microcontroller  
Connections.  
DS22107A-page 70  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
9.0  
DEVICE OPTIONS  
Additional, custom devices are available. These  
devices have weak pull-up resistors on the SDA and  
SCL pins. This is useful for applications where the  
wiper value is programmed durning manufacture and  
not modified by the system during normal operation.  
Please contact your local sales office for current infor-  
mation and minimum volumn requirements.  
9.1  
Custom Options  
The custom device will have a “P” (for Pull-up) after the  
resistance version in the Product Identification System.  
These device will not be available through Microchip’s  
online Microchip Direct nor Microchip’s Sample sys-  
tems.  
Example part number:  
MCP4641-103PE/ST  
© 2008 Microchip Technology Inc.  
DS22107A-page 71  
MCP454X/456X/464X/466X  
NOTES:  
DS22107A-page 72  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
10.2 Technical Documentation  
10.0 DEVELOPMENT SUPPORT  
10.1 Development Tools  
Several additional technical documents are available to  
assist you in your design and development. These  
technical documents include Application Notes,  
Technical Briefs, and Design Guides. Table 10-2  
shows some of these documents.  
Several development tools are available to assist in  
your design and evaluation of the MCP45XX/46XX  
devices. The currently available tools are shown in  
Table 10-1.  
These boards may be purchased directly from the  
Microchip web site at www.microchip.com.  
TABLE 10-1: DEVELOPMENT TOOLS  
Board Name  
Part #  
Supported Devices  
MCP42XX PICTail Plus Daughter Board (2)  
MCP42XXDM-PTPLS MCP42XX  
MCP4XXX Digital Potentiometer Daughter Board (1) MCP4XXXDM-DB  
MCP42XXX, MCP42XX, MCP46XX,  
MCP4021, and MCP4011  
8-pin SOIC/MSOP/TSSOP/DIP Evaluation Board  
14-pin SOIC/MSOP/DIP Evaluation Board  
SOIC8EV  
Any 8-pin device in DIP, SOIC,  
MSOP, or TSSOP package  
SOIC14EV  
Any 14-pin device in DIP, SOIC, or  
MSOP package  
Note 1: Requires the use of a PICDEM Demo Board (see User’s Guide for details)  
2: Requires the use of the PIC24 Explorer 16 Demo Board (see User’s Guide for details)  
3: The desired MCP46XX device (in MSOP package) must be soldered onto the extra board.  
TABLE 10-2: TECHNICAL DOCUMENTATION  
Application  
Title  
Literature #  
Note Number  
AN1080  
AN737  
AN692  
AN691  
AN219  
Understanding Digital Potentiometers Resistor Variations  
Using Digital Potentiometers to Design Low Pass Adjustable Filters  
Using a Digital Potentiometer to Optimize a Precision Single Supply Photo Detect  
Optimizing the Digital Potentiometer in Precision Circuits  
Comparing Digital Potentiometers to Mechanical Potentiometers  
Digital Potentiometer Design Guide  
DS01080  
DS00737  
DS00692  
DS00691  
DS00219  
DS22017  
DS21825  
Signal Chain Design Guide  
© 2008 Microchip Technology Inc.  
DS22107A-page 73  
MCP454X/456X/464X/466X  
NOTES:  
DS22107A-page 74  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
11.0 PACKAGING INFORMATION  
11.1 Package Marking Information  
8-Lead DFN (3x3)  
Example:  
Part Number  
Code  
Part Number  
Code  
MCP4541-502E/MF  
DACJ  
DACK  
DACM  
DACL  
DADB  
DADC  
DADE  
DADD  
MCP4542-502E/MF  
MCP4542-103E/MF  
MCP4542-104E/MF  
MCP4542-503E/MF  
MCP4562-502E/MF  
MCP4562-103E/MF  
MCP4562-104E/MF  
MCP4562-503E/MF  
DACP  
DACQ  
DACS  
DACR  
DADF  
DADG  
DADJ  
DADH  
XXXX  
XYWW  
NNN  
DACJ  
E841  
256  
MCP4541-103E/MF  
MCP4541-104E/MF  
MCP4541-503E/MF  
MCP4561-502E/MF  
MCP4561-103E/MF  
MCP4561-104E/MF  
MCP4561-503E/MF  
8-Lead MSOP  
Example  
Part Number  
Code  
Part Number  
Code  
MCP4541-103E/MS 454113 MCP4542-103E/MS 454213  
MCP4541-104E/MS 454114 MCP4542-104E/MS 454214  
MCP4541-502E/MS 454152 MCP4542-502E/MS 454252  
MCP4541-503E/MS 454153 MCP4542-503E/MS 454253  
MCP4561-103E/MS 456113 MCP4562-103E/MS 456213  
MCP4561-104E/MS 456114 MCP4562-104E/MS 456214  
MCP4561-502E/MS 456152 MCP4562-502E/MS 456252  
MCP4561-503E/MS 456153 MCP4562-503E/MS 456253  
XXXXXX  
YWWNNN  
454113  
841256  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
3
e
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2008 Microchip Technology Inc.  
DS22107A-page 75  
MCP454X/456X/464X/466X  
Package Marking Information (Continued)  
10-Lead DFN (3x3)  
Example:  
AAFA  
Part Number  
Code  
Part Number  
Code  
XXXX  
YYWW  
NNN  
MCP4642-502E/MF  
MCP4642-103E/MF  
MCP4642-104E/MF  
MCP4642-503E/MF  
AAFA  
AAGA  
AAJA  
AAHA  
MCP4662-502E/MF  
MCP4662-103E/MF  
MCP4662-104E/MF  
MCP4662-503E/MF  
AAQA  
AARA  
AATA  
AASA  
0841  
256  
10-Lead MSOP  
Example  
Part Number  
Code  
Part Number  
Code  
XXXXXX  
YWWNNN  
463252  
841256  
MCP4642-502E/UN 464252 MCP4662-502E/UN 466252  
MCP4642-103E/UN 464213 MCP4662-103E/UN 466213  
MCP4642-104E/UN 464214 MCP4662-104E/UN 466214  
MCP4642-503E/UN 464253 MCP4662-503E/UN 466253  
14-Lead TSSOP (MCP4641, MCP4661)  
Example  
4641502E  
XXXXXXXX  
YYWW  
0841  
256  
NNN  
16-Lead QFN (MCP4641, MCP4661)  
Example  
XXXXX  
XXXXXX  
XXXXXX  
YWWNNN  
4641  
502  
E/ML^  
841256  
e3  
DS22107A-page 76  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢏꢗꢆMꢆꢘꢙꢘꢙꢚꢛꢜꢆ  ꢆ!ꢒꢅ"ꢆ#ꢍꢏꢑ$  
ꢑꢒꢊꢃ% -ꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢜꢉꢖꢚꢉꢛꢌꢅꢋꢐꢉꢗꢃꢄꢛꢇꢓꢅꢜꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅ$ꢃꢖꢐꢕꢖꢘꢃꢜꢅꢂꢉꢖꢚꢉꢛꢃꢄꢛꢅ#ꢜꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢜ*..ꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢜꢁꢖꢕꢑ.ꢜꢉꢖꢚꢉꢛꢃꢄꢛ  
e
D
b
N
N
L
EXPOSED PAD  
E
E2  
K
NOTE 1  
NOTE 1  
1
2
2
1
D2  
BOTTOM VIEW  
TOP VIEW  
A
NOTE 2  
A3  
A1  
/ꢄꢃꢏꢇ  
$0110$%+%,#  
!ꢃꢑꢌꢄꢇꢃꢕꢄꢅ1ꢃꢑꢃꢏꢇ  
$02  
23$  
5
6ꢁ7'ꢅ(#)  
6ꢁ96  
$"4  
2ꢈꢑꢔꢌꢐꢅꢕꢎꢅꢂꢃꢄꢇ  
ꢂꢃꢏꢖꢘ  
3ꢆꢌꢐꢉꢊꢊꢅ8ꢌꢃꢛꢘꢏ  
#ꢏꢉꢄꢋꢕꢎꢎꢅ  
)ꢕꢄꢏꢉꢖꢏꢅ+ꢘꢃꢖꢚꢄꢌꢇꢇ  
3ꢆꢌꢐꢉꢊꢊꢅ1ꢌꢄꢛꢏꢘ  
%ꢍꢜꢕꢇꢌꢋꢅꢂꢉꢋꢅ:ꢃꢋꢏꢘ  
3ꢆꢌꢐꢉꢊꢊꢅ:ꢃꢋꢏꢘ  
2
"
"ꢀ  
"ꢝ  
!
%ꢙ  
%
6ꢁ56  
6ꢁ66  
ꢀꢁ66  
6ꢁ6'  
6ꢁ6ꢙ  
6ꢁꢙ6ꢅ,%-  
ꢝꢁ66ꢅ(#)  
M
ꢝꢁ66ꢅ(#)  
M
6ꢁꢝ6  
6ꢁꢝ6  
M
6ꢁ66  
ꢀꢁ76  
%ꢍꢜꢕꢇꢌꢋꢅꢂꢉꢋꢅ1ꢌꢄꢛꢏꢘ  
)ꢕꢄꢏꢉꢖꢏꢅ:ꢃꢋꢏꢘ  
)ꢕꢄꢏꢉꢖꢏꢅ1ꢌꢄꢛꢏꢘ  
)ꢕꢄꢏꢉꢖꢏ<ꢏꢕ<%ꢍꢜꢕꢇꢌꢋꢅꢂꢉꢋ  
!ꢙ  
1
6ꢁ66  
6ꢁꢙ'  
6ꢁꢙ6  
6ꢁꢙ6  
ꢙꢁ 6  
6ꢁꢝ'  
6ꢁ''  
M
=
ꢑꢒꢊꢃꢉ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃꢇꢈꢉꢊꢅꢃꢄꢋꢌꢍꢅꢎꢌꢉꢏꢈꢐꢌꢅꢑꢉꢒꢅꢆꢉꢐꢒꢓꢅꢔꢈꢏꢅꢑꢈꢇꢏꢅꢔꢌꢅꢊꢕꢖꢉꢏꢌꢋꢅꢗꢃꢏꢘꢃꢄꢅꢏꢘꢌꢅꢘꢉꢏꢖꢘꢌꢋꢅꢉꢐꢌꢉꢁ  
ꢙꢁ ꢂꢉꢖꢚꢉꢛꢌꢅꢑꢉꢒꢅꢘꢉꢆꢌꢅꢕꢄꢌꢅꢕꢐꢅꢑꢕꢐꢌꢅꢌꢍꢜꢕꢇꢌꢋꢅꢏꢃꢌꢅꢔꢉꢐꢇꢅꢉꢏꢅꢌꢄꢋꢇꢁ  
ꢝꢁ ꢂꢉꢖꢚꢉꢛꢌꢅꢃꢇꢅꢇꢉꢗꢅꢇꢃꢄꢛꢈꢊꢉꢏꢌꢋꢁ  
 ꢁ !ꢃꢑꢌꢄꢇꢃꢕꢄꢃꢄꢛꢅꢉꢄꢋꢅꢏꢕꢊꢌꢐꢉꢄꢖꢃꢄꢛꢅꢜꢌꢐꢅ"#$%ꢅ&ꢀ ꢁ'$ꢁ  
(#)* (ꢉꢇꢃꢖꢅ!ꢃꢑꢌꢄꢇꢃꢕꢄꢁꢅ+ꢘꢌꢕꢐꢌꢏꢃꢖꢉꢊꢊꢒꢅꢌꢍꢉꢖꢏꢅꢆꢉꢊꢈꢌꢅꢇꢘꢕꢗꢄꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢇꢁ  
,%-* ,ꢌꢎꢌꢐꢌꢄꢖꢌꢅ!ꢃꢑꢌꢄꢇꢃꢕꢄꢓꢅꢈꢇꢈꢉꢊꢊꢒꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢓꢅꢎꢕꢐꢅꢃꢄꢎꢕꢐꢑꢉꢏꢃꢕꢄꢅꢜꢈꢐꢜꢕꢇꢌꢇꢅꢕꢄꢊꢒꢁ  
$ꢃꢖꢐꢕꢖꢘꢃꢜ +ꢖꢘꢄꢕꢊꢕꢛꢒ !ꢐꢉꢗꢃꢄꢛ )6 <67ꢙ(  
© 2008 Microchip Technology Inc.  
DS22107A-page 77  
MCP454X/456X/464X/466X  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢏꢗꢆMꢆꢘꢙꢘꢙꢚꢛꢜꢆ  ꢆ!ꢒꢅ"ꢆ#ꢍꢏꢑ$  
ꢑꢒꢊꢃ% -ꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢜꢉꢖꢚꢉꢛꢌꢅꢋꢐꢉꢗꢃꢄꢛꢇꢓꢅꢜꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅ$ꢃꢖꢐꢕꢖꢘꢃꢜꢅꢂꢉꢖꢚꢉꢛꢃꢄꢛꢅ#ꢜꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢜ*..ꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢜꢁꢖꢕꢑ.ꢜꢉꢖꢚꢉꢛꢃꢄꢛ  
DS22107A-page 78  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢖꢋꢌ&ꢒꢆ' ꢄꢈꢈꢆ(ꢎꢊꢈꢋ)ꢃꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖ'ꢗꢆ#ꢖ'(ꢇ$  
ꢑꢒꢊꢃ% -ꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢜꢉꢖꢚꢉꢛꢌꢅꢋꢐꢉꢗꢃꢄꢛꢇꢓꢅꢜꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅ$ꢃꢖꢐꢕꢖꢘꢃꢜꢅꢂꢉꢖꢚꢉꢛꢃꢄꢛꢅ#ꢜꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢜ*..ꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢜꢁꢖꢕꢑ.ꢜꢉꢖꢚꢉꢛꢃꢄꢛ  
D
N
E
E1  
NOTE 1  
2
b
1
e
c
φ
A2  
A
L
L1  
A1  
/ꢄꢃꢏꢇ  
$0110$%+%,#  
!ꢃꢑꢌꢄꢇꢃꢕꢄꢅ1ꢃꢑꢃꢏꢇ  
$02  
23$  
$"4  
2ꢈꢑꢔꢌꢐꢅꢕꢎꢅꢂꢃꢄꢇ  
ꢂꢃꢏꢖꢘ  
2
5
6ꢁ7'ꢅ(#)  
3ꢆꢌꢐꢉꢊꢊꢅ8ꢌꢃꢛꢘꢏ  
$ꢕꢊꢋꢌꢋꢅꢂꢉꢖꢚꢉꢛꢌꢅ+ꢘꢃꢖꢚꢄꢌꢇꢇ  
#ꢏꢉꢄꢋꢕꢎꢎꢅ  
3ꢆꢌꢐꢉꢊꢊꢅ:ꢃꢋꢏꢘ  
$ꢕꢊꢋꢌꢋꢅꢂꢉꢖꢚꢉꢛꢌꢅ:ꢃꢋꢏꢘ  
3ꢆꢌꢐꢉꢊꢊꢅ1ꢌꢄꢛꢏꢘ  
-ꢕꢕꢏꢅ1ꢌꢄꢛꢏꢘ  
"
M
6ꢁ>'  
6ꢁ66  
M
6ꢁ5'  
ꢀꢁꢀ6  
6ꢁ9'  
6ꢁꢀ'  
"ꢙ  
"ꢀ  
%
%ꢀ  
!
M
 ꢁ96ꢅ(#)  
ꢝꢁ66ꢅ(#)  
ꢝꢁ66ꢅ(#)  
6ꢁ76  
1
6ꢁ 6  
6ꢁ56  
-ꢕꢕꢏꢜꢐꢃꢄꢏ  
-ꢕꢕꢏꢅ"ꢄꢛꢊꢌ  
1ꢀ  
6ꢁ9'ꢅ,%-  
M
6ꢞ  
5ꢞ  
1ꢌꢉꢋꢅ+ꢘꢃꢖꢚꢄꢌꢇꢇ  
1ꢌꢉꢋꢅ:ꢃꢋꢏꢘ  
6ꢁ65  
6ꢁꢙꢙ  
M
M
6ꢁꢙꢝ  
6ꢁ 6  
ꢑꢒꢊꢃꢉ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃꢇꢈꢉꢊꢅꢃꢄꢋꢌꢍꢅꢎꢌꢉꢏꢈꢐꢌꢅꢑꢉꢒꢅꢆꢉꢐꢒꢓꢅꢔꢈꢏꢅꢑꢈꢇꢏꢅꢔꢌꢅꢊꢕꢖꢉꢏꢌꢋꢅꢗꢃꢏꢘꢃꢄꢅꢏꢘꢌꢅꢘꢉꢏꢖꢘꢌꢋꢅꢉꢐꢌꢉꢁ  
ꢙꢁ !ꢃꢑꢌꢄꢇꢃꢕꢄꢇꢅ!ꢅꢉꢄꢋꢅ%ꢀꢅꢋꢕꢅꢄꢕꢏꢅꢃꢄꢖꢊꢈꢋꢌꢅꢑꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅꢜꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢁꢅ$ꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅꢜꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢅꢇꢘꢉꢊꢊꢅꢄꢕꢏꢅꢌꢍꢖꢌꢌꢋꢅ6ꢁꢀ'ꢅꢑꢑꢅꢜꢌꢐꢅꢇꢃꢋꢌꢁ  
ꢝꢁ !ꢃꢑꢌꢄꢇꢃꢕꢄꢃꢄꢛꢅꢉꢄꢋꢅꢏꢕꢊꢌꢐꢉꢄꢖꢃꢄꢛꢅꢜꢌꢐꢅ"#$%ꢅ&ꢀ ꢁ'$ꢁ  
(#)* (ꢉꢇꢃꢖꢅ!ꢃꢑꢌꢄꢇꢃꢕꢄꢁꢅ+ꢘꢌꢕꢐꢌꢏꢃꢖꢉꢊꢊꢒꢅꢌꢍꢉꢖꢏꢅꢆꢉꢊꢈꢌꢅꢇꢘꢕꢗꢄꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢇꢁ  
,%-* ,ꢌꢎꢌꢐꢌꢄꢖꢌꢅ!ꢃꢑꢌꢄꢇꢃꢕꢄꢓꢅꢈꢇꢈꢉꢊꢊꢒꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢓꢅꢎꢕꢐꢅꢃꢄꢎꢕꢐꢑꢉꢏꢃꢕꢄꢅꢜꢈꢐꢜꢕꢇꢌꢇꢅꢕꢄꢊꢒꢁ  
$ꢃꢖꢐꢕꢖꢘꢃꢜ +ꢖꢘꢄꢕꢊꢕꢛꢒ !ꢐꢉꢗꢃꢄꢛ )6 <ꢀꢀꢀ(  
© 2008 Microchip Technology Inc.  
DS22107A-page 79  
MCP454X/456X/464X/466X  
*ꢚꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢏꢗꢆMꢆꢘꢙꢘꢙꢚꢛꢜꢆ  ꢆ!ꢒꢅ"ꢆ#ꢍꢏꢑ$  
ꢑꢒꢊꢃ% -ꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢜꢉꢖꢚꢉꢛꢌꢅꢋꢐꢉꢗꢃꢄꢛꢇꢓꢅꢜꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅ$ꢃꢖꢐꢕꢖꢘꢃꢜꢅꢂꢉꢖꢚꢉꢛꢃꢄꢛꢅ#ꢜꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢜ*..ꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢜꢁꢖꢕꢑ.ꢜꢉꢖꢚꢉꢛꢃꢄꢛ  
D
e
b
N
N
L
K
E
E2  
EXPOSED  
PAD  
NOTE 1  
NOTE 1  
2
1
1
2
D2  
BOTTOM VIEW  
TOP VIEW  
A
A1  
A3  
NOTE 2  
/ꢄꢃꢏꢇ  
$0110$%+%,#  
!ꢃꢑꢌꢄꢇꢃꢕꢄꢅ1ꢃꢑꢃꢏꢇ  
$02  
23$  
ꢀ6  
6ꢁ'6ꢅ(#)  
6ꢁ96  
$"4  
2ꢈꢑꢔꢌꢐꢅꢕꢎꢅꢂꢃꢄꢇ  
ꢂꢃꢏꢖꢘ  
3ꢆꢌꢐꢉꢊꢊꢅ8ꢌꢃꢛꢘꢏ  
#ꢏꢉꢄꢋꢕꢎꢎꢅ  
)ꢕꢄꢏꢉꢖꢏꢅ+ꢘꢃꢖꢚꢄꢌꢇꢇ  
3ꢆꢌꢐꢉꢊꢊꢅ1ꢌꢄꢛꢏꢘ  
%ꢍꢜꢕꢇꢌꢋꢅꢂꢉꢋꢅ1ꢌꢄꢛꢏꢘ  
3ꢆꢌꢐꢉꢊꢊꢅ:ꢃꢋꢏꢘ  
2
"
"ꢀ  
"ꢝ  
!
!ꢙ  
%
6ꢁ56  
6ꢁ66  
ꢀꢁ66  
6ꢁ6'  
6ꢁ6ꢙ  
6ꢁꢙ6ꢅ,%-  
ꢝꢁ66ꢅ(#)  
ꢙꢁꢝ'  
ꢝꢁ66ꢅ(#)  
ꢀꢁ'5  
6ꢁꢙ'  
6ꢁ 6  
M
ꢙꢁꢙ6  
ꢙꢁ 5  
%ꢍꢜꢕꢇꢌꢋꢅꢂꢉꢋꢅ:ꢃꢋꢏꢘ  
)ꢕꢄꢏꢉꢖꢏꢅ:ꢃꢋꢏꢘ  
)ꢕꢄꢏꢉꢖꢏꢅ1ꢌꢄꢛꢏꢘ  
)ꢕꢄꢏꢉꢖꢏ<ꢏꢕ<%ꢍꢜꢕꢇꢌꢋꢅꢂꢉꢋ  
%ꢙ  
1
ꢀꢁ 6  
6ꢁꢀ5  
6ꢁꢝ6  
6ꢁꢙ6  
ꢀꢁ>'  
6ꢁꢝ6  
6ꢁ'6  
M
=
ꢑꢒꢊꢃꢉ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃꢇꢈꢉꢊꢅꢃꢄꢋꢌꢍꢅꢎꢌꢉꢏꢈꢐꢌꢅꢑꢉꢒꢅꢆꢉꢐꢒꢓꢅꢔꢈꢏꢅꢑꢈꢇꢏꢅꢔꢌꢅꢊꢕꢖꢉꢏꢌꢋꢅꢗꢃꢏꢘꢃꢄꢅꢏꢘꢌꢅꢘꢉꢏꢖꢘꢌꢋꢅꢉꢐꢌꢉꢁ  
ꢙꢁ ꢂꢉꢖꢚꢉꢛꢌꢅꢑꢉꢒꢅꢘꢉꢆꢌꢅꢕꢄꢌꢅꢕꢐꢅꢑꢕꢐꢌꢅꢌꢍꢜꢕꢇꢌꢋꢅꢏꢃꢌꢅꢔꢉꢐꢇꢅꢉꢏꢅꢌꢄꢋꢇꢁ  
ꢝꢁ ꢂꢉꢖꢚꢉꢛꢌꢅꢃꢇꢅꢇꢉꢗꢅꢇꢃꢄꢛꢈꢊꢉꢏꢌꢋꢁ  
 ꢁ !ꢃꢑꢌꢄꢇꢃꢕꢄꢃꢄꢛꢅꢉꢄꢋꢅꢏꢕꢊꢌꢐꢉꢄꢖꢃꢄꢛꢅꢜꢌꢐꢅ"#$%ꢅ&ꢀ ꢁ'$ꢁ  
(#)* (ꢉꢇꢃꢖꢅ!ꢃꢑꢌꢄꢇꢃꢕꢄꢁꢅ+ꢘꢌꢕꢐꢌꢏꢃꢖꢉꢊꢊꢒꢅꢌꢍꢉꢖꢏꢅꢆꢉꢊꢈꢌꢅꢇꢘꢕꢗꢄꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢇꢁ  
,%-* ,ꢌꢎꢌꢐꢌꢄꢖꢌꢅ!ꢃꢑꢌꢄꢇꢃꢕꢄꢓꢅꢈꢇꢈꢉꢊꢊꢒꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢓꢅꢎꢕꢐꢅꢃꢄꢎꢕꢐꢑꢉꢏꢃꢕꢄꢅꢜꢈꢐꢜꢕꢇꢌꢇꢅꢕꢄꢊꢒꢁ  
$ꢃꢖꢐꢕꢖꢘꢃꢜ +ꢖꢘꢄꢕꢊꢕꢛꢒ !ꢐꢉꢗꢃꢄꢛ )6 <67ꢝ(  
DS22107A-page 80  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
*ꢚꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢏꢗꢆMꢆꢘꢙꢘꢙꢚꢛꢜꢆ  ꢆ!ꢒꢅ"ꢆ#ꢍꢏꢑ$  
ꢑꢒꢊꢃ% -ꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢜꢉꢖꢚꢉꢛꢌꢅꢋꢐꢉꢗꢃꢄꢛꢇꢓꢅꢜꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅ$ꢃꢖꢐꢕꢖꢘꢃꢜꢅꢂꢉꢖꢚꢉꢛꢃꢄꢛꢅ#ꢜꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢜ*..ꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢜꢁꢖꢕꢑ.ꢜꢉꢖꢚꢉꢛꢃꢄꢛ  
© 2008 Microchip Technology Inc.  
DS22107A-page 81  
MCP454X/456X/464X/466X  
*ꢚꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢖꢋꢌ&ꢒꢆ' ꢄꢈꢈꢆ(ꢎꢊꢈꢋ)ꢃꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕ+ꢑꢗꢆ#ꢖ'(ꢇ$  
ꢑꢒꢊꢃ% -ꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢜꢉꢖꢚꢉꢛꢌꢅꢋꢐꢉꢗꢃꢄꢛꢇꢓꢅꢜꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅ$ꢃꢖꢐꢕꢖꢘꢃꢜꢅꢂꢉꢖꢚꢉꢛꢃꢄꢛꢅ#ꢜꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢜ*..ꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢜꢁꢖꢕꢑ.ꢜꢉꢖꢚꢉꢛꢃꢄꢛ  
D
N
E
E1  
NOTE 1  
1
2
b
e
c
A
A2  
φ
L
A1  
L1  
/ꢄꢃꢏꢇ  
$0110$%+%,#  
!ꢃꢑꢌꢄꢇꢃꢕꢄꢅ1ꢃꢑꢃꢏꢇ  
$02  
23$  
$"4  
2ꢈꢑꢔꢌꢐꢅꢕꢎꢅꢂꢃꢄꢇ  
ꢂꢃꢏꢖꢘ  
2
ꢀ6  
6ꢁ'6ꢅ(#)  
3ꢆꢌꢐꢉꢊꢊꢅ8ꢌꢃꢛꢘꢏ  
$ꢕꢊꢋꢌꢋꢅꢂꢉꢖꢚꢉꢛꢌꢅ+ꢘꢃꢖꢚꢄꢌꢇꢇ  
#ꢏꢉꢄꢋꢕꢎꢎꢅ  
3ꢆꢌꢐꢉꢊꢊꢅ:ꢃꢋꢏꢘ  
$ꢕꢊꢋꢌꢋꢅꢂꢉꢖꢚꢉꢛꢌꢅ:ꢃꢋꢏꢘ  
3ꢆꢌꢐꢉꢊꢊꢅ1ꢌꢄꢛꢏꢘ  
-ꢕꢕꢏꢅ1ꢌꢄꢛꢏꢘ  
"
M
6ꢁ>'  
6ꢁ66  
M
6ꢁ5'  
ꢀꢁꢀ6  
6ꢁ9'  
6ꢁꢀ'  
"ꢙ  
"ꢀ  
%
%ꢀ  
!
M
 ꢁ96ꢅ(#)  
ꢝꢁ66ꢅ(#)  
ꢝꢁ66ꢅ(#)  
6ꢁ76  
1
6ꢁ 6  
6ꢁ56  
-ꢕꢕꢏꢜꢐꢃꢄꢏ  
-ꢕꢕꢏꢅ"ꢄꢛꢊꢌ  
1ꢀ  
6ꢁ9'ꢅ,%-  
M
6ꢞ  
5ꢞ  
1ꢌꢉꢋꢅ+ꢘꢃꢖꢚꢄꢌꢇꢇ  
1ꢌꢉꢋꢅ:ꢃꢋꢏꢘ  
6ꢁ65  
6ꢁꢀ'  
M
M
6ꢁꢙꢝ  
6ꢁꢝꢝ  
ꢑꢒꢊꢃꢉ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃꢇꢈꢉꢊꢅꢃꢄꢋꢌꢍꢅꢎꢌꢉꢏꢈꢐꢌꢅꢑꢉꢒꢅꢆꢉꢐꢒꢓꢅꢔꢈꢏꢅꢑꢈꢇꢏꢅꢔꢌꢅꢊꢕꢖꢉꢏꢌꢋꢅꢗꢃꢏꢘꢃꢄꢅꢏꢘꢌꢅꢘꢉꢏꢖꢘꢌꢋꢅꢉꢐꢌꢉꢁ  
ꢙꢁ !ꢃꢑꢌꢄꢇꢃꢕꢄꢇꢅ!ꢅꢉꢄꢋꢅ%ꢀꢅꢋꢕꢅꢄꢕꢏꢅꢃꢄꢖꢊꢈꢋꢌꢅꢑꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅꢜꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢁꢅ$ꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅꢜꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢅꢇꢘꢉꢊꢊꢅꢄꢕꢏꢅꢌꢍꢖꢌꢌꢋꢅ6ꢁꢀ'ꢅꢑꢑꢅꢜꢌꢐꢅꢇꢃꢋꢌꢁ  
ꢝꢁ !ꢃꢑꢌꢄꢇꢃꢕꢄꢃꢄꢛꢅꢉꢄꢋꢅꢏꢕꢊꢌꢐꢉꢄꢖꢃꢄꢛꢅꢜꢌꢐꢅ"#$%ꢅ&ꢀ ꢁ'$ꢁ  
(#)* (ꢉꢇꢃꢖꢅ!ꢃꢑꢌꢄꢇꢃꢕꢄꢁꢅ+ꢘꢌꢕꢐꢌꢏꢃꢖꢉꢊꢊꢒꢅꢌꢍꢉꢖꢏꢅꢆꢉꢊꢈꢌꢅꢇꢘꢕꢗꢄꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢇꢁ  
,%-* ,ꢌꢎꢌꢐꢌꢄꢖꢌꢅ!ꢃꢑꢌꢄꢇꢃꢕꢄꢓꢅꢈꢇꢈꢉꢊꢊꢒꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢓꢅꢎꢕꢐꢅꢃꢄꢎꢕꢐꢑꢉꢏꢃꢕꢄꢅꢜꢈꢐꢜꢕꢇꢌꢇꢅꢕꢄꢊꢒꢁ  
$ꢃꢖꢐꢕꢖꢘꢃꢜ +ꢖꢘꢄꢕꢊꢕꢛꢒ !ꢐꢉꢗꢃꢄꢛ )6 <6ꢙꢀ(  
DS22107A-page 82  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
*,ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ-.ꢋ)ꢆ'.&ꢋ)ꢓꢆ' ꢄꢈꢈꢆ(ꢎꢊꢈꢋ)ꢃꢆꢕ'-ꢗꢆMꢆ,ꢛ,ꢆ  ꢆ!ꢒꢅ"ꢆ#-''(ꢇ$  
ꢑꢒꢊꢃ% -ꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢜꢉꢖꢚꢉꢛꢌꢅꢋꢐꢉꢗꢃꢄꢛꢇꢓꢅꢜꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅ$ꢃꢖꢐꢕꢖꢘꢃꢜꢅꢂꢉꢖꢚꢉꢛꢃꢄꢛꢅ#ꢜꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢜ*..ꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢜꢁꢖꢕꢑ.ꢜꢉꢖꢚꢉꢛꢃꢄꢛ  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
φ
A2  
A
A1  
L
L1  
/ꢄꢃꢏꢇ  
$0110$%+%,#  
!ꢃꢑꢌꢄꢇꢃꢕꢄꢅ1ꢃꢑꢃꢏꢇ  
$02  
23$  
$"4  
2ꢈꢑꢔꢌꢐꢅꢕꢎꢅꢂꢃꢄꢇ  
ꢂꢃꢏꢖꢘ  
2
 
6ꢁ7'ꢅ(#)  
3ꢆꢌꢐꢉꢊꢊꢅ8ꢌꢃꢛꢘꢏ  
$ꢕꢊꢋꢌꢋꢅꢂꢉꢖꢚꢉꢛꢌꢅ+ꢘꢃꢖꢚꢄꢌꢇꢇ  
#ꢏꢉꢄꢋꢕꢎꢎꢅ  
3ꢆꢌꢐꢉꢊꢊꢅ:ꢃꢋꢏꢘ  
$ꢕꢊꢋꢌꢋꢅꢂꢉꢖꢚꢉꢛꢌꢅ:ꢃꢋꢏꢘ  
$ꢕꢊꢋꢌꢋꢅꢂꢉꢖꢚꢉꢛꢌꢅ1ꢌꢄꢛꢏꢘ  
-ꢕꢕꢏꢅ1ꢌꢄꢛꢏꢘ  
"
M
6ꢁ56  
6ꢁ6'  
M
ꢀꢁ66  
M
7ꢁ 6ꢅ(#)  
 ꢁ 6  
'ꢁ66  
6ꢁ76  
ꢀꢁꢙ6  
ꢀꢁ6'  
6ꢁꢀ'  
"ꢙ  
"ꢀ  
%
%ꢀ  
!
 ꢁꢝ6  
 ꢁ96  
6ꢁ '  
 ꢁ'6  
'ꢁꢀ6  
6ꢁ>'  
1
-ꢕꢕꢏꢜꢐꢃꢄꢏ  
-ꢕꢕꢏꢅ"ꢄꢛꢊꢌ  
1ꢌꢉꢋꢅ+ꢘꢃꢖꢚꢄꢌꢇꢇ  
1ꢌꢉꢋꢅ:ꢃꢋꢏꢘ  
1ꢀ  
ꢀꢁ66ꢅ,%-  
6ꢞ  
6ꢁ69  
6ꢁꢀ9  
M
M
M
5ꢞ  
6ꢁꢙ6  
6ꢁꢝ6  
ꢑꢒꢊꢃꢉ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃꢇꢈꢉꢊꢅꢃꢄꢋꢌꢍꢅꢎꢌꢉꢏꢈꢐꢌꢅꢑꢉꢒꢅꢆꢉꢐꢒꢓꢅꢔꢈꢏꢅꢑꢈꢇꢏꢅꢔꢌꢅꢊꢕꢖꢉꢏꢌꢋꢅꢗꢃꢏꢘꢃꢄꢅꢏꢘꢌꢅꢘꢉꢏꢖꢘꢌꢋꢅꢉꢐꢌꢉꢁ  
ꢙꢁ !ꢃꢑꢌꢄꢇꢃꢕꢄꢇꢅ!ꢅꢉꢄꢋꢅ%ꢀꢅꢋꢕꢅꢄꢕꢏꢅꢃꢄꢖꢊꢈꢋꢌꢅꢑꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅꢜꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢁꢅ$ꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅꢜꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢅꢇꢘꢉꢊꢊꢅꢄꢕꢏꢅꢌꢍꢖꢌꢌꢋꢅ6ꢁꢀ'ꢅꢑꢑꢅꢜꢌꢐꢅꢇꢃꢋꢌꢁ  
ꢝꢁ !ꢃꢑꢌꢄꢇꢃꢕꢄꢃꢄꢛꢅꢉꢄꢋꢅꢏꢕꢊꢌꢐꢉꢄꢖꢃꢄꢛꢅꢜꢌꢐꢅ"#$%ꢅ&ꢀ ꢁ'$ꢁ  
(#)* (ꢉꢇꢃꢖꢅ!ꢃꢑꢌꢄꢇꢃꢕꢄꢁꢅ+ꢘꢌꢕꢐꢌꢏꢃꢖꢉꢊꢊꢒꢅꢌꢍꢉꢖꢏꢅꢆꢉꢊꢈꢌꢅꢇꢘꢕꢗꢄꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢇꢁ  
,%-* ,ꢌꢎꢌꢐꢌꢄꢖꢌꢅ!ꢃꢑꢌꢄꢇꢃꢕꢄꢓꢅꢈꢇꢈꢉꢊꢊꢒꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢓꢅꢎꢕꢐꢅꢃꢄꢎꢕꢐꢑꢉꢏꢃꢕꢄꢅꢜꢈꢐꢜꢕꢇꢌꢇꢅꢕꢄꢊꢒꢁ  
$ꢃꢖꢐꢕꢖꢘꢃꢜ +ꢖꢘꢄꢕꢊꢕꢛꢒ !ꢐꢉꢗꢃꢄꢛ )6 <65>(  
© 2008 Microchip Technology Inc.  
DS22107A-page 83  
MCP454X/456X/464X/466X  
*/ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ0ꢎꢄꢅꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢂꢗꢆMꢆ,ꢙ,ꢙꢚꢛꢜꢆ  ꢆ!ꢒꢅ"ꢆ#0ꢏꢑ$  
ꢑꢒꢊꢃ% -ꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢜꢉꢖꢚꢉꢛꢌꢅꢋꢐꢉꢗꢃꢄꢛꢇꢓꢅꢜꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅ$ꢃꢖꢐꢕꢖꢘꢃꢜꢅꢂꢉꢖꢚꢉꢛꢃꢄꢛꢅ#ꢜꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢜ*..ꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢜꢁꢖꢕꢑ.ꢜꢉꢖꢚꢉꢛꢃꢄꢛ  
D
D2  
EXPOSED  
PAD  
e
E
E2  
2
1
2
b
1
K
N
N
NOTE 1  
L
TOP VIEW  
BOTTOM VIEW  
A3  
A
A1  
/ꢄꢃꢏꢇ  
$0110$%+%,#  
!ꢃꢑꢌꢄꢇꢃꢕꢄꢅ1ꢃꢑꢃꢏꢇ  
$02  
23$  
ꢀ7  
6ꢁ7'ꢅ(#)  
6ꢁ96  
$"4  
2ꢈꢑꢔꢌꢐꢅꢕꢎꢅꢂꢃꢄꢇ  
ꢂꢃꢏꢖꢘ  
3ꢆꢌꢐꢉꢊꢊꢅ8ꢌꢃꢛꢘꢏ  
#ꢏꢉꢄꢋꢕꢎꢎꢅ  
)ꢕꢄꢏꢉꢖꢏꢅ+ꢘꢃꢖꢚꢄꢌꢇꢇ  
3ꢆꢌꢐꢉꢊꢊꢅ:ꢃꢋꢏꢘ  
%ꢍꢜꢕꢇꢌꢋꢅꢂꢉꢋꢅ:ꢃꢋꢏꢘ  
3ꢆꢌꢐꢉꢊꢊꢅ1ꢌꢄꢛꢏꢘ  
%ꢍꢜꢕꢇꢌꢋꢅꢂꢉꢋꢅ1ꢌꢄꢛꢏꢘ  
)ꢕꢄꢏꢉꢖꢏꢅ:ꢃꢋꢏꢘ  
)ꢕꢄꢏꢉꢖꢏꢅ1ꢌꢄꢛꢏꢘ  
2
"
"ꢀ  
"ꢝ  
%
%ꢙ  
!
6ꢁ56  
6ꢁ66  
ꢀꢁ66  
6ꢁ6'  
6ꢁ6ꢙ  
6ꢁꢙ6ꢅ,%-  
 ꢁ66ꢅ(#)  
ꢙꢁ7'  
 ꢁ66ꢅ(#)  
ꢙꢁ7'  
6ꢁꢝ6  
6ꢁ 6  
M
ꢙꢁ'6  
ꢙꢁ56  
!ꢙ  
1
ꢙꢁ'6  
6ꢁꢙ'  
6ꢁꢝ6  
6ꢁꢙ6  
ꢙꢁ56  
6ꢁꢝ'  
6ꢁ'6  
M
)ꢕꢄꢏꢉꢖꢏ<ꢏꢕ<%ꢍꢜꢕꢇꢌꢋꢅꢂꢉꢋ  
=
ꢑꢒꢊꢃꢉ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃꢇꢈꢉꢊꢅꢃꢄꢋꢌꢍꢅꢎꢌꢉꢏꢈꢐꢌꢅꢑꢉꢒꢅꢆꢉꢐꢒꢓꢅꢔꢈꢏꢅꢑꢈꢇꢏꢅꢔꢌꢅꢊꢕꢖꢉꢏꢌꢋꢅꢗꢃꢏꢘꢃꢄꢅꢏꢘꢌꢅꢘꢉꢏꢖꢘꢌꢋꢅꢉꢐꢌꢉꢁ  
ꢙꢁ ꢂꢉꢖꢚꢉꢛꢌꢅꢃꢇꢅꢇꢉꢗꢅꢇꢃꢄꢛꢈꢊꢉꢏꢌꢋꢁ  
ꢝꢁ !ꢃꢑꢌꢄꢇꢃꢕꢄꢃꢄꢛꢅꢉꢄꢋꢅꢏꢕꢊꢌꢐꢉꢄꢖꢃꢄꢛꢅꢜꢌꢐꢅ"#$%ꢅ&ꢀ ꢁ'$ꢁ  
(#)* (ꢉꢇꢃꢖꢅ!ꢃꢑꢌꢄꢇꢃꢕꢄꢁꢅ+ꢘꢌꢕꢐꢌꢏꢃꢖꢉꢊꢊꢒꢅꢌꢍꢉꢖꢏꢅꢆꢉꢊꢈꢌꢅꢇꢘꢕꢗꢄꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢇꢁ  
,%-* ,ꢌꢎꢌꢐꢌꢄꢖꢌꢅ!ꢃꢑꢌꢄꢇꢃꢕꢄꢓꢅꢈꢇꢈꢉꢊꢊꢒꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢓꢅꢎꢕꢐꢅꢃꢄꢎꢕꢐꢑꢉꢏꢃꢕꢄꢅꢜꢈꢐꢜꢕꢇꢌꢇꢅꢕꢄꢊꢒꢁ  
$ꢃꢖꢐꢕꢖꢘꢃꢜ +ꢖꢘꢄꢕꢊꢕꢛꢒ !ꢐꢉꢗꢃꢄꢛ )6 <ꢀꢙ>(  
DS22107A-page 84  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
ꢑꢒꢊꢃ% -ꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢜꢉꢖꢚꢉꢛꢌꢅꢋꢐꢉꢗꢃꢄꢛꢇꢓꢅꢜꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅ$ꢃꢖꢐꢕꢖꢘꢃꢜꢅꢂꢉꢖꢚꢉꢛꢃꢄꢛꢅ#ꢜꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢜ*..ꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢜꢁꢖꢕꢑ.ꢜꢉꢖꢚꢉꢛꢃꢄꢛ  
© 2008 Microchip Technology Inc.  
DS22107A-page 85  
MCP454X/456X/464X/466X  
NOTES:  
DS22107A-page 86  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
APPENDIX A: REVISION HISTORY  
Revision A (November 2008)  
• Original Release of this Document.  
© 2008 Microchip Technology Inc.  
DS22107A-page 87  
MCP454X/456X/464X/466X  
NOTES:  
DS22107A-page 88  
© 2008 Microchip Technology Inc.  
MCP454X/456X/464X/466X  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
XXX  
X
/XX  
a)  
b)  
c)  
d)  
e)  
MCP4541-502E/XX: 5 kΩ, 8LD Device  
Resistance Temperature Package  
Version Range  
MCP4541-103E/XX: 10 kΩ, 8-LD Device  
MCP4541-503E/XX: 50 kΩ, 8LD Device  
MCP4541-104E/XX: 100 kΩ, 8LD Device  
MCP4541T-104E/XX: T/R, 100 kΩ, 8LD Device  
Device:  
MCP4541:  
MCP4541T:  
Single Non-Volatile 7-bit Potentiometer  
Single Non-Volatile 7-bit Potentiometer  
(Tape and Reel)  
Single Non-Volatile 7-bit Rheostat  
Single Non-Volatile 7-bit Rheostat  
(Tape and Reel)  
Single Non-Volatile 8-bit Potentiometer  
Single Non-Volatile 8-bit Potentiometer  
(Tape and Reel)  
Single Non-Volatile8-bit Rheostat  
Single Non-Volatile 8-bit Rheostat  
(Tape and Reel)  
Dual Non-Volatile 7-bit Potentiometer  
Dual Non-Volatile 7-bit Potentiometer  
(Tape and Reel)  
Dual Non-Volatile 7-bit Rheostat  
Dual Non-Volatile 7-bit Rheostat  
(Tape and Reel)  
Dual Non-Volatile 8-bit Potentiometer  
Dual Non-Volatile 8-bit Potentiometer  
(Tape and Reel)  
Dual Non-Volatile8-bit Rheostat  
Dual Non-Volatile 8-bit Rheostat  
(Tape and Reel)  
a)  
b)  
c)  
d)  
e)  
MCP4542-502E/XX: 5 kΩ, 8LD Device  
MCP4542-103E/XX: 10 kΩ, 8-LD Device  
MCP4542-503E/XX: 50 kΩ, 8LD Device  
MCP4542-104E/XX: 100 kΩ, 8LD Device  
MCP4542T-104E/XX: T/R, 100 kΩ, 8LD Device  
MCP4542:  
MCP4542T:  
a)  
b)  
c)  
d)  
e)  
MCP4561-502E/XX: 5 kΩ, 8LD Device  
MCP4561-103E/XX: 10 kΩ, 8-LD Device  
MCP4561-503E/XX: 50 kΩ, 8LD Device  
MCP4561-104E/XX: 100 kΩ, 8LD Device  
MCP4561T-104E/XX: T/R, 100 kΩ, 8LD Device  
MCP4561:  
MCP4561T:  
MCP4562:  
MCP4562T:  
a)  
b)  
c)  
d)  
e)  
MCP4562-502E/XX: 5 kΩ, 8LD Device  
MCP4562-103E/XX: 10 kΩ, 8-LD Device  
MCP4562-503E/XX: 50 kΩ, 8LD Device  
MCP4562-104E/XX: 100 kΩ, 8LD Device  
MCP4562T-104E/XX: T/R, 100 kΩ, 8LD Device  
MCP4641:  
MCP4641T:  
MCP4642:  
MCP4642T:  
a)  
b)  
c)  
d)  
e)  
MCP4641-502E/XX: 5 kΩ, 8LD Device  
MCP4641-103E/XX: 10 kΩ, 8-LD Device  
MCP4641-503E/XX: 50 kΩ, 8LD Device  
MCP4641-104E/XX: 100 kΩ, 8LD Device  
MCP4641T-104E/XX: T/R, 100 kΩ, 8LD Device  
MCP4661:  
MCP4661T:  
MCP4662:  
MCP4662T:  
a)  
b)  
c)  
d)  
e)  
MCP4642-502E/XX: 5 kΩ, 8LD Device  
MCP4642-103E/XX: 10 kΩ, 8-LD Device  
MCP4642-503E/XX: 50 kΩ, 8LD Device  
MCP4642-104E/XX: 100 kΩ, 8LD Device  
MCP4642T-104E/XX: T/R, 100 kΩ, 8LD Device  
Resistance Version:  
502 = 5 kΩ  
103 = 10 kΩ  
503 = 50 kΩ  
104 = 100 kΩ  
a)  
b)  
c)  
d)  
e)  
MCP4661-502E/XX: 5 kΩ, 8LD Device  
MCP4661-103E/XX: 10 kΩ, 8-LD Device  
MCP4661-503E/XX: 50 kΩ, 8LD Device  
MCP4661-104E/XX: 100 kΩ, 8LD Device  
MCP4661T-104E/XX: T/R, 100 kΩ, 8LD Device  
Temperature Range:  
Package:  
E
=
-40°C to +125°C  
a)  
b)  
c)  
d)  
e)  
MCP4662-502E/XX: 5 kΩ, 8LD Device  
MCP4662-103E/XX: 10 kΩ, 8-LD Device  
MCP4662-503E/XX: 50 kΩ, 8LD Device  
MCP4662-104E/XX: 100 kΩ, 8LD Device  
MCP4662T-104E/XX: T/R, 100 kΩ, 8LD Device  
MF  
ML  
MS  
ST  
=
=
=
=
=
Plastic Dual Flat No-lead (3x3 DFN), 8/10-lead  
Plastic Quad Flat No-lead (QFN), 16-lead  
Plastic Micro Small Outline (MSOP), 8-lead  
Plastic Thin Shrink Small Outline (TSSOP), 14-lead  
Plastic Micro Small Outline (MSOP), 10-lead  
UN  
XX  
=
=
=
=
=
MF for 8/10-lead 3x3 DFN  
ML for 16-lead QFN  
MS for 8-lead MSOP  
ST for 14-lead TSSOP  
UN for 10-lead MSOP  
© 2008 Microchip Technology Inc.  
DS22107A-page 89  
MCP454X/456X/464X/466X  
NOTES:  
DS22107A-page 90  
© 2008 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, rfPIC, SmartShunt and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
FilterLab, Linear Active Thermistor, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, In-Circuit Serial  
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,  
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,  
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total  
Endurance, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2008, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2008 Microchip Technology Inc.  
DS22107A-page 91  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
01/02/08  
DS22107A-page 92  
© 2008 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY