MCP48FEB04 [MICROCHIP]

8/10/12-Bit Quad/Octal Voltage Output, 6 LSb INL Digital-to-Analog Converters with SPI Interface;
MCP48FEB04
型号: MCP48FEB04
厂家: MICROCHIP    MICROCHIP
描述:

8/10/12-Bit Quad/Octal Voltage Output, 6 LSb INL Digital-to-Analog Converters with SPI Interface

文件: 总112页 (文件大小:9618K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP48FXBX4/8  
8/10/12-Bit Quad/Octal Voltage Output, 6 LSb INL  
Digital-to-Analog Converters with SPI Interface  
Features  
Package Types  
• Operating Voltage Range:  
- 2.7V to 5.5V – Full specifications  
- 1.8V to 2.7V – Reduced device specifications  
• Output Voltage Resolutions:  
SDO  
V
CS 1  
15  
14  
13  
12  
MCP48FXBX4  
20-Lead VQFN  
5x5 mm Quad  
-
8-bit: MCP48FXB0X (256 steps)  
VREF0  
2
3
4
5
REF1  
- 10-bit: MCP48FXB1X (1024 steps)  
- 12-bit: MCP48FXB2X (4096 steps)  
• Rail-to-Rail Output  
VOUT0  
VOUT2  
NC  
(1)  
V
V
OUT1  
OUT3  
21 EP  
11 NC  
• Fast Settling Time of 7.8 µs (Typical)  
• DAC Voltage Reference Source Options:  
- Device VDD  
LAT1 1  
VDD 2  
20 LAT0/HVC  
19 SDI  
- External VREF pin (buffered or unbuffered)  
- Internal band gap (1.22V typical)  
• Output Gain Options:  
CS 3  
18 SCK  
17 SDO  
16 VREF1  
15 VOUT1  
14 VOUT3  
13 NC  
MCP48FXBX4  
20-Lead TSSOP  
Quad  
VREF0  
4
VOUT0 5  
VOUT2 6  
- 1x (unity)  
- 2x (available when not using internal VDD as  
voltage source)  
NC  
NC  
7
8
• Nonvolatile Memory (EEPROM) Option:  
VSS 9  
12 NC  
- User-programmable Power-on Reset  
(POR)/Brown-out Reset (BOR) output setting  
and device Configuration bits recall  
NC 10  
11 NC  
- Auto-recall of saved DAC register setting  
- Auto-recall of saved device configuration  
(voltage reference, gain, power-down)  
CS 1  
15 SDO  
• Power-on/Brown-out Reset Protection  
• Power-Down Modes:  
MCP48FXBX8  
20-Lead VQFN  
5x5 mm Octal  
VREF0  
2
3
4
5
14 VREF1  
13 VOUT1  
12 VOUT3  
11 VOUT5  
VOUT0  
VOUT2  
(1)  
21 EP  
- Disconnects output buffer (high-impedance)  
- Selection of VOUT pull-down resistors  
(125 kor 1 k)  
VOUT4  
• Low-Power Consumption:  
- Normal operation: <2.6 mA (quad), 3.2 mA (octal)  
- Power-down operation: 680 nA typical  
LAT1 1  
20 LAT0/HVC  
19 SDI  
- EEPROM write cycle: 2.2 mA (quad),  
2.7 mA (octal) maximum  
VDD  
2
CS 3  
18 SCK  
MCP48FXBX8  
20-Lead TSSOP  
Octal  
VREF0  
• SPI Interface:  
4
17 SDO  
VOUT0  
5
VOUT2 6  
16 VREF1  
15 VOUT1  
14 VOUT3  
- Supports Mode 0,0 and Mode 1,1  
- Up to 20 MHz writes and 10 MHz reads  
VOUT4  
7
- Input buffers support interfacing to  
low-voltage digital devices  
VOUT6 8  
VSS 9  
13  
V
OUT5  
12 VOUT7  
11 NC  
• Package Types: 20-Lead TSSOP,  
20-Lead 5 mm x 5 mm VQFN  
NC 10  
Note 1: Includes Exposed Thermal Pad (EP); see  
• Extended Temperature Range: -40°C to +125°C  
Table 3-1 and Table 3-2.  
2020 Microchip Technology Inc.  
DS20006362A-page 1  
MCP48FXBX4/8  
In the Internal Band Gap Voltage Reference mode, the  
gain can be selected between 2 and 4.  
General Description  
The MCP48FXBX4/8 devices are a family of buffered  
voltage output Digital-to-Analog Converters (DAC),  
with the following options:  
This family of devices features WiperLock™  
functionality, which prevents inadvertent changes of  
the output value. It uses a high voltage on a specific  
pin, together with dedicated commands, to lock the  
values that are stored in memory.  
• Quad or octal output channel configurations  
• 8/10/12-bit resolution  
• Volatile or nonvolatile user memory  
These devices have an SPI compatible serial interface.  
WRITEcommands are supported up to 20 MHz, while  
READcommands are supported up to 10 MHz.  
The quad and octal options differ only by the number of  
output channels. The volatile and nonvolatile versions  
have an identical analog circuit structure.  
Applications  
There are three voltage reference sources: the external  
VREF pin, the device’s VDD or an internal band gap  
voltage source.  
• Set Point or Offset Trimming  
• Sensor Calibration  
When the VDD mode is selected, it is internally con-  
nected to the DAC’s reference circuit. When the external  
VREF pin is used, the user has the option to select  
between a gain of 1 and 2 if the Buffered mode is used,  
or the internal buffer can be bypassed entirely in the  
External VREF Unbuffered mode.  
• Low-Power Portable Instrumentation  
• PC Peripherals  
• Data Acquisition Systems  
• Motor Control  
MCP48FXBX4/8 DAC Output Channel Block Diagram  
V
DD  
VRnB:VRnA/PDnB:PDnA  
PDnB:PDnA  
V
+
REF  
PDnB:PDnA  
VRnB:VRnA  
Band Gap  
VDD  
V
GAIN  
OUT  
PDnB:PDnA  
VRnB:VRnA  
LAT  
1 kΩ  
125 kΩ  
DS20006362A-page 2  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
MCP48FXBX4 Block Diagram (Quad-Channel Output)  
VDD  
Power-up/Brown-out Control  
VSS  
SCK  
SDI  
SDO  
CS  
MEMORY  
SPI Serial Interface Module  
and Control Logic  
VOLATILE  
(WiperLock™ Technology)  
NONVOLATILE  
DAC CHANNELS  
0, 2  
VREF0  
VREF  
VOUT0  
VOUT2  
LAT  
LAT0/HVC  
VREF1  
DAC CHANNELS  
1, 3  
VOUT1  
VOUT3  
VREF  
LAT  
LAT1  
MCP48FXBX8 Block Diagram (Octal-Channel Output)  
VDD  
Power-up/Brown-out Control  
VSS  
SCK  
SDI  
SDO  
CS  
MEMORY  
SPI Serial Interface Module  
and Control Logic  
VOLATILE  
(WiperLock™ Technology)  
NONVOLATILE  
DAC CHANNELS  
0, 2, 4, 6  
VOUT0  
VOUT2  
VOUT4  
VOUT6  
VREF0  
VREF  
LAT  
LAT0/HVC  
DAC CHANNELS  
1, 3, 5, 7  
VOUT1  
VOUT3  
VOUT5  
VOUT7  
VREF1  
VREF  
LAT  
LAT1  
2020 Microchip Technology Inc.  
DS20006362A-page 3  
MCP48FXBX4/8  
Device Features  
DAC  
Output  
Internal  
Band  
Gap  
Device  
Package Type  
Memory  
POR/BOR  
Setting(1)  
MCP48FVB04  
MCP48FVB14  
MCP48FVB24  
MCP48FVB08  
MCP48FVB18  
MCP48FVB28  
MCP48FEB04  
MCP48FEB14  
MCP48FEB24  
MCP48FEB08  
MCP48FEB18  
MCP48FEB28  
VQFN-20 5 x 5, TSSOP-20  
VQFN-20 5 x 5, TSSOP-20  
VQFN-20 5 x 5, TSSOP-20  
VQFN-20 5 x 5, TSSOP-20  
VQFN-20 5 x 5, TSSOP-20  
VQFN-20 5 x 5, TSSOP-20  
VQFN-20 5 x 5, TSSOP-20  
VQFN-20 5 x 5, TSSOP-20  
VQFN-20 5 x 5, TSSOP-20  
VQFN-20 5 x 5, TSSOP-20  
VQFN-20 5 x 5, TSSOP-20  
VQFN-20 5 x 5, TSSOP-20  
4
4
4
8
8
8
4
4
4
8
8
8
8
7Fh  
1FFh  
7FFh  
7Fh  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
RAM  
RAM  
10  
12  
8
RAM  
RAM  
10  
12  
8
1FFh  
7FFh  
7Fh  
RAM  
RAM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
10  
12  
8
1FFh  
7FFh  
7Fh  
10  
12  
1FFh  
7FFh  
Note 1: The factory default value. The DAC output POR/BOR value can be modified via the nonvolatile DAC  
Output register (available only on nonvolatile devices – MCP48FEBXX).  
DS20006362A-page 4  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
1.0  
ELECTRICAL CHARACTERISTICS  
()  
Absolute Maximum Ratings  
Voltage on VDD with Respect to VSS ........................................................................................................ -0.6V to +6.5V  
Voltage on All Pins with Respect to VSS ............................................................................................ -0.6V to VDD+0.3V  
Input Clamp Current, IIK (VI < 0, VI > VDD, VI > VPP on HV Pins) ........................................................................±20 mA  
Output Clamp Current, IOK (VO < 0 or VO > VDD) .................................................................................................±20 mA  
Maximum Current out of the VSS Pin (Quad) .........................................................................................................150 mA  
(Octal)..........................................................................................................150 mA  
Maximum Current into the VDD Pin (Quad) .........................................................................................................150 mA  
(Octal)..........................................................................................................150 mA  
Maximum Current Sourced by the VOUT Pin...........................................................................................................20 mA  
Maximum Current Sunk by the VOUT Pin................................................................................................................20 mA  
Maximum Current Sunk by the VREF Pin ...............................................................................................................125 µA  
Maximum Input Current Source/Sunk by the SDI, SCK and CS Pins ......................................................................2 mA  
Maximum Output Current Sunk by the SDO Output Pin ........................................................................................25 mA  
Total Power Dissipation(1) ....................................................................................................................................400 mW  
Package Power Dissipation (TA = +50°C, TJ = +150°C)  
20-Lead TSSOP......................................................................................................................................1300 mW  
20-Lead VQFN (5 x 5 mm, ML)...............................................................................................................2800 mW  
ESD Protection on all Pins±6 kV (HBM)  
±400V (MM)  
±2 kV (CDM)  
Latch-up (per JEDEC® JESD78A) at +125°C ....................................................................................................±100 mA  
Storage Temperature ..............................................................................................................................-65°C to +150°C  
Ambient Temperature with Power Applied .............................................................................................-55°C to +125°C  
Soldering Temperature of Leads (10 seconds) ..................................................................................................... +300°C  
Maximum Junction Temperature (TJ).................................................................................................................... +150°C  
† Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This  
is a stress rating only and functional operation of the device at those or any other conditions above those indicated  
in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
Note 1: Power dissipation is calculated as follows:  
PDIS = VDD × {IDD IOH} + {(VDD – VOH) × IOH} + (VOL × IOL  
)
2020 Microchip Technology Inc.  
DS20006362A-page 5  
MCP48FXBX4/8  
DC CHARACTERISTICS  
Standard Operating Conditions (unless otherwise specified):  
Operating Temperature: -40°C TA +125°C (Extended).  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, VREF = +2.048V to VDD, VSS = 0V, Gx = 0, RL = 5 kfrom VOUT to GND, CL = 100 pF.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Supply Voltage  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
VDD  
2.7  
1.8  
5.5  
2.7  
V
V
Serial interface operational,  
DAC operation with reduced analog  
specifications  
VDD Voltage  
VPOR/BOR  
1.7  
V
RAM retention voltage: (VRAM) < VPOR,  
(Rising) to Ensure Device  
Power-on Reset  
VDD voltages greater than the VPOR/BOR  
limit ensure that the device is out of  
Reset  
VDD Rise Rate to Ensure  
Power-on Reset  
VDDRR  
VHV  
VIHHEN  
VIHHEX  
Note 3  
V/ms  
High-Voltage Commands  
Voltage Range (HVC Pin)  
VSS  
9.0  
12.5  
V
V
V
The HVC pin will be at one of the three  
(1)  
input levels (VIL, VIH or VIHH  
)
High-Voltage  
Input Entry Voltage  
Threshold for entry into WiperLock™  
technology  
High-Voltage  
VDD + 0.8V  
Note 1  
Input Exit Voltage  
Note 1: This parameter is ensured by design.  
3: POR/BOR voltage trip point is not slope dependent. Hysteresis implemented with time delay.  
DS20006362A-page 6  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified):  
Operating Temperature: -40°C TA +125°C (Extended).  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, VREF = +2.048V to VDD, VSS = 0V, Gx = 0, RL = 5 kfrom VOUT to GND, CL = 100 pF.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Supply Current IDD  
1.0  
1.7  
2.6  
1.6  
2.3  
3.2  
mA  
mA  
mA  
mA  
mA  
mA  
Quad 1 MHz(1) Serial interface active (not  
10 MHz(1)  
High-Voltage Command),  
VRnB:VRnA = All Modes(4)  
,
20 MHz  
VOUT is unloaded, VDD = 5.5V,  
Volatile DAC Register = Midscale  
Octal  
1 MHz(1)  
10 MHz(1)  
20 MHz  
0.85  
1.6  
mA  
mA  
Quad Serial interface inactive(1) (not  
High-Voltage Command),  
Octal  
VRnB:VRnA = All Modes, SCK = SDI = VSS,  
VOUT is unloaded,  
Volatile DAC Register = Midscale  
2.2  
2.7  
mA  
mA  
Quad EE write current, VREF = VDD = 5.5V  
(after write, serial interface is inactive),  
Octal  
write 0x7FF to nonvolatile DAC0 (address  
10h), VOUT pins are unloaded  
560  
700  
µA  
µA  
Quad HVC = 12.5V (High-Voltage Command),  
serial interface inactive, VREF = VDD = 5.5V,  
1100  
1300  
Octal  
LAT/HVC = VIHH, DAC Registers = Midscale,  
VOUT pins are unloaded  
Power-Down  
Current  
IDDP  
0.68  
3.8  
µA  
PDnB:PDnA = 01(5), VOUT not connected  
Note 1: This parameter is ensured by characterization.  
4: Supply current is independent of current through the resistor ladder in mode VRnB:VRnA = 10.  
5: The PDnB:PDnA = 00, 10and 11configurations should have the same current.  
2020 Microchip Technology Inc.  
DS20006362A-page 7  
MCP48FXBX4/8  
DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified):  
Operating Temperature: -40°C TA +125°C (Extended).  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, VREF = +2.048V to VDD, VSS = 0V, Gx = 0, RL = 5 kfrom VOUT to GND, CL = 100 pF.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Resistor Ladder  
Resistance  
RL  
100  
140  
180  
k  
VRnB:VRnA = 10,  
VREF = VDD  
(6)  
Resolution; # of  
Resistors and # of Taps  
(see B.1 “Resolution”)  
N
256  
1024  
4096  
0.5  
Taps  
Taps  
Taps  
%
8-bit No missing codes  
10-bit No missing codes  
12-bit No missing codes  
2.7V VDD 5.5V(2)  
1.8V(2)  
Nominal VOUT Match(11)  
|VOUT – VOUTMEAN  
/VOUTMEAN  
|
1.0  
1.2  
%
VOUT Temperature  
Coefficient (see B.19  
“VOUT Temperature  
Coefficient”)  
VOUT/T  
15  
ppm/°C Code = Midscale  
(7Fh, 1FFh or 7FFh)  
V
REF Pin Input Voltage  
Range  
Note 1: This parameter is ensured by design.  
2: This parameter is ensured by characterization.  
VREF  
VSS  
VDD  
V
1.8V VDD 5.5V(1)  
6: Resistance is defined as the resistance between the VREF pin (mode VRnB:VRnA = 10) to VSS pin. For  
octal-channel devices (MCP48FXBX8), this is the effective resistance of each resistor ladder. The  
resistance measurement is one of the two resistor ladders measured in parallel.  
11: Variation of one output voltage to mean output voltage.  
DS20006362A-page 8  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified):  
Operating Temperature: -40°C TA +125°C (Extended).  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, VREF = +2.048V to VDD, VSS = 0V, Gx = 0, RL = 5 kfrom VOUT to GND, CL = 100 pF.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Zero-Scale Error;  
Code = 000h  
EZS  
0.75  
LSb  
8-bit VRnB:VRnA = 10, Gx = 0,  
VREF = VDD, no load  
(see B.5 “Zero-Scale  
Error (EZS)”)  
3
LSb 10-bit VRnB:VRnA = 10, Gx = 0,  
VREF = VDD, no load  
12  
LSb 12-bit VRnB:VRnA = 10, Gx = 0,  
VREF = VDD, no load  
See Section 2.0 “Typical  
LSb  
LSb  
VRnB:VRnA = 11, Gx = 0, Gx = 1,  
VREF = 0.5 × VDD = 2.7, no load  
Performance Curves”(1)  
See Section 2.0 “Typical  
VRnB:VRnA = 10, Gx = 0, Gx = 1,  
VREF = VDD/2, VREF = VDD,  
VDD = 2.7-5.5V, no load  
Performance Curves”(1)  
See Section 2.0 “Typical  
LSb  
VRnB:VRnA = 10, Gx = 0, Gx= 1,  
VREF = VDD/2, VREF = VDD,  
VDD = 2.7-5.5V, no load  
Performance Curves”(1)  
See Section 2.0 “Typical  
LSb  
LSb  
VRnB:VRnA = 00, Gx = 0,  
VREF = VDD = 2.7-5.5V, no load  
Performance Curves”(1)  
Full-Scale Error (see  
B.4 “Full-Scale Error  
(EFS)”)  
EFS  
4.5  
18  
70  
8-bit VRnB:VRnA = 10, Gx = 0,  
VREF = VDD, no load  
LSb 10-bit VRnB:VRnA = 10, Gx = 0,  
VREF = VDD, no load  
LSb 12-bit VRnB:VRnA = 10, Gx = 0,  
VREF = VDD, no load  
See Section 2.0 “Typical  
LSb  
LSb  
VRnB:VRnA = 11, Gx = 0, Gx = 1,  
VREF = 0.5 × VDD = 2.7, no load  
Performance Curves”(1)  
See Section 2.0 “Typical  
VRnB:VRnA = 10, Gx = 0, Gx = 1,  
VREF = VDD/2, VREF = VDD,  
VDD = 2.7-5.5V, no load  
Performance Curves”(1)  
See Section 2.0 “Typical  
LSb  
LSb  
VRnB:VRnA = 10, Gx = 0, Gx = 1,  
VREF = VDD/2, VREF = VDD,  
VDD = 2.7-5.5V, no load  
Performance Curves”(1)  
See Section 2.0 “Typical  
VRnB:VRnA = 00, Gx = 0,  
VREF = VDD = 2.7-5.5V, no load  
Performance Curves”(1)  
Offset Error  
EOS  
-15  
±1.5  
+15  
mV VRnB:VRnA = 00, Gx = 0, no load  
(see B.7 “Offset  
Error (EOS)”)  
Offset Voltage  
Temperature  
Coefficient  
VOSTC  
±10  
µV/°C  
Note 1: This parameter is ensured by characterization.  
2020 Microchip Technology Inc.  
DS20006362A-page 9  
MCP48FXBX4/8  
DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified):  
Operating Temperature: -40°C TA +125°C (Extended).  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, VREF = +2.048V to VDD, VSS = 0V, Gx = 0, RL = 5 kfrom VOUT to GND, CL = 100 pF.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Gain Error  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
EG  
-1.0  
±0.1  
+1.0  
% of  
FSR  
Code = 250, no load,  
VRnB:VRnA = 00, Gx = 0  
8-bit  
10-bit  
12-bit  
(see B.9 “Gain Error  
(EG)”)(8)  
-1.0  
-1.0  
±0.1  
±0.1  
-3  
+1.0  
+1.0  
% of  
FSR  
Code = 1000, no load,  
VRnB:VRnA = 00, Gx = 0  
% of  
FSR  
Code = 4000, no load,  
VRnB:VRnA = 00, Gx = 0  
Gain Error Drift (see  
B.10 “Gain Error Drift  
(EGD)”)  
G/°C  
ppm/°C  
Total Unadjusted Error  
(see B.6 “Total  
Unadjusted Error  
(ET)”)(2)  
ET  
-2.5  
-10.0  
-40.0  
+0.5  
+2.0  
+8.0  
LSb  
LSb  
LSb  
8-bit VRnB:VRnA = 10, Gx = 0,  
VREF = VDD, no load  
10-bit VRnB:VRnA = 10, Gx = 0,  
VREF = VDD, no load  
12-bit VRnB:VRnA = 10, Gx = 0,  
VREF = VDD, no load  
See Section 2.0 “Typical  
VRnB:VRnA = 11, Gx = 0, Gx = 1,  
VREF = 0.5 × VDD = 2.7, no load  
Performance Curves”(1)  
See Section 2.0 “Typical  
VRnB:VRnA = 10, Gx = 0, Gx = 1,  
VREF = VDD/2, VREF = VDD,  
VDD = 2.7-5.5V, no load  
Performance Curves”(1)  
See Section 2.0 “Typical  
VRnB:VRnA = 10, Gx = 0, Gx = 1,  
VREF = VDD/2, VREF = VDD,  
VDD = 2.7-5.5V, no load  
Performance Curves”(1)  
See Section 2.0 “Typical  
VRnB:VRnA = 00, Gx = 0,  
VREF = VDD = 2.7-5.5V, no load  
Performance Curves”(1)  
Note 1: This parameter is ensured by characterization.  
DS20006362A-page 10  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified):  
Operating Temperature: -40°C TA +125°C (Extended).  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, VREF = +2.048V to VDD, VSS = 0V, Gx = 0, RL = 5 kfrom VOUT to GND, CL = 100 pF.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Integral Nonlinearity  
(see B.11 “Integral  
Nonlinearity  
INL  
-0.5  
±0.1  
+0.5  
LSb  
8-bit VRnB:VRnA = 10, Gx = 0,  
VREF = VDD, no load  
-1.5  
-6  
±0.4  
±1.5  
+1.5  
+6  
LSb  
LSb  
LSb  
LSb  
10-bit VRnB:VRnA = 10, Gx = 0,  
(INL)”)(7,10)  
VREF = VDD, no load  
12-bit VRnB:VRnA = 10, Gx = 0,  
VREF = VDD, no load  
See Section 2.0 “Typical  
VRnB:VRnA = 11, Gx = 0, Gx = 1,  
VREF = 0.5 × VDD = 2.7, no load  
Performance Curves”(1)  
See Section 2.0 “Typical  
VRnB:VRnA = 10, Gx = 0, Gx = 1,  
Performance Curves”(1)  
VREF = VDD/2, VREF = VDD  
,
VDD = 2.7-5.5V, no load  
See Section 2.0 “Typical  
LSb  
LSb  
VRnB:VRnA = 10, Gx = 0, Gx = 1,  
Performance Curves”(1)  
VREF = VDD/2, VREF = VDD  
,
VDD = 2.7-5.5V, no load  
See Section 2.0 “Typical  
VRnB:VRnA = 00, Gx = 0,  
VREF = VDD = 2.7-5.5V, no load  
Performance Curves”(1)  
Note 1: This parameter is ensured by characterization.  
7: INL and DNL are measured at VOUT with VRL = VDD (VRnB:VRnA = 00).  
10: Code range is dependent on resolution: 8-bit, codes 6 to 250; 10-bit, codes 25 to 1000; 12-bit,  
100 to 4000.  
2020 Microchip Technology Inc.  
DS20006362A-page 11  
MCP48FXBX4/8  
DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified):  
Operating Temperature: -40°C TA +125°C (Extended).  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, VREF = +2.048V to VDD, VSS = 0V, Gx = 0, RL = 5 kfrom VOUT to GND, CL = 100 pF.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym.  
Min.  
Typ.  
Max. Units  
LSb 8-bit  
Conditions  
DifferentialNonlinearity DNL  
(see B.12  
-0.25  
±0.0125 +0.25  
VRnB:VRnA = 10, Gx = 0,  
VREF = VDD, no load  
“Differential  
-0.5  
-1.0  
±0.05  
±0.2  
+0.5  
+1.0  
LSb 10-bit VRnB:VRnA = 10, Gx = 0,  
Nonlinearity  
VREF = VDD, no load  
(DNL)”)(7,10)  
LSb 12-bit VRnB:VRnA = 10, Gx = 0,  
VREF = VDD, no load  
See Section 2.0 “Typical  
LSb  
LSb  
VRnB:VRnA = 11, Gx = 0, Gx = 1,  
VREF = 0.5 × VDD = 2.7, no load  
Performance Curves”(1)  
See Section 2.0 “Typical  
VRnB:VRnA = 10, Gx = 0, Gx = 1,  
Performance Curves”(1)  
VREF = VDD/2, VREF = VDD  
VDD = 2.7-5.5V, no load  
,
See Section 2.0 “Typical  
LSb  
LSb  
VRnB:VRnA = 10, Gx = 0, Gx = 1,  
Performance Curves”(1)  
VREF = VDD/2, VREF = VDD  
VDD = 2.7-5.5V, no load  
,
See Section 2.0 “Typical  
VRnB:VRnA = 00, Gx = 0,  
VREF = VDD = 2.7-5.5V, no load  
Performance Curves”(1)  
Note 1: This parameter is ensured by characterization.  
7: INL and DNL are measured at VOUT with VRL = VDD (VRnB:VRnA = 00).  
10: Code range is dependent on resolution: 8-bit, codes 6 to 250; 10-bit, codes 25 to 1000; 12-bit,  
100 to 4000.  
DS20006362A-page 12  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified):  
Operating Temperature: -40°C TA +125°C (Extended).  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, VREF = +2.048V to VDD, VSS = 0V, Gx = 0, RL = 5 kfrom VOUT to GND, CL = 100 pF.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
-3 dB Bandwidth  
(see B.16 “-3 dB  
Bandwidth”)  
BW  
86.5  
kHz  
V
REF = 2.048V ±0.1V,  
VRnB:VRnA = 10, Gx = 0  
67.7  
kHz  
VREF = 2.048V ±0.1V,  
VRnB:VRnA = 10, Gx = 1  
Output Amplifier  
Minimum Output  
Voltage  
VOUT(MIN)  
VOUT(MAX)  
0.01  
V
V
1.8V VDD 5.5V,  
output amplifier’s minimum drive  
Maximum Output  
Voltage  
VDD – 0.016  
1.8V VDD 5.5V,  
output amplifier’s maximum drive  
Phase Margin  
Slew Rate(9)  
PM  
SR  
ISC  
3
58  
0.44  
9
22  
22  
°C  
V/µs  
mA  
mA  
CL = 400 pF, RL =   
RL = 5 k  
Short-Circuit Current  
Short to VSS DAC Code = Full Scale  
Short to VDD DAC Code = 000h  
3
9
Internal Band Gap  
Band Gap Voltage  
VBG  
1.18  
1.22  
15  
1.26  
V
Band Gap Voltage  
Temperature  
Coefficient  
VBGTC  
ppm/°C  
Operating Range  
VDD  
2.0  
2.2  
5.5  
5.5  
V
V
VREF pin voltage stable  
VOUT output linear  
External Reference (VREF  
)
Input Range(1)  
VREF  
VSS  
VSS  
VDD – 0.04  
VDD  
V
V
VRnB:VRnA = 11(Buffered mode)  
VRnB:VRnA = 10(Unbuffered  
mode)  
Input Capacitance  
CREF  
THD  
1
pF  
dB  
VRnB:VRnA = 10(Unbuffered  
mode)  
Total Harmonic  
Distortion(1)  
-64  
VREF = 2.048V ±0.1V,  
VRnB:VRnA = 10, Gx = 0,  
Frequency = 1 kHz  
Dynamic Performance  
Major Code  
45  
nV-s  
nV-s  
1 LSb change around major carry  
(7FFh to 800h)  
Transition Glitch (see  
B.14 “Major Code  
Transition Glitch”)  
Digital Feedthrough  
(see B.15 “Digital  
Feedthrough”)  
<10  
Note 1: This parameter is ensured by design.  
9: Within 1/2 LSb of final value when code changes from 1/4 to 3/4 of FSR. (Example: 400h to C00h in a 12-bit  
device.)  
2020 Microchip Technology Inc.  
DS20006362A-page 13  
MCP48FXBX4/8  
DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified):  
Operating Temperature: -40°C TA +125°C (Extended).  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, VREF = +2.048V to VDD, VSS = 0V, Gx = 0, RL = 5 kfrom VOUT to GND, CL = 100 pF.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Digital Inputs/Outputs (CS, SCK, SDI, SDO, LAT0/HVC, LAT1)  
Schmitt Trigger  
High Input Threshold  
VIH  
0.45 VDD  
0.5 VDD  
V
V
V
2.7V VDD 5.5V  
1.8V VDD 2.7V  
Schmitt Trigger  
Low Input Threshold  
VIL  
VHYS  
VOL  
0.2 VDD  
Hysteresis of Schmitt  
Trigger Inputs  
0.1 VDD  
V
Output Low Voltage  
VSS  
VSS  
10  
0.3 VDD  
0.3 VDD  
VDD  
V
V
V
V
IOL = 5 mA, VDD = 5.5V  
IOL = 1 mA, VDD = 1.8V  
IOH = -2.5 mA, VDD = 5.5V  
IOH = -1 mA, VDD = 1.8V  
Output High Voltage  
VOH  
0.7 VDD  
0.7 VDD  
-1  
VDD  
Input Leakage Current  
Pin Capacitance  
IIL  
1
µA VIN = VDD and VIN = VSS  
pF fC = 20 MHz  
CIN, COUT  
DS20006362A-page 14  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
DC CHARACTERISTICS (CONTINUED)  
Standard Operating Conditions (unless otherwise specified):  
Operating Temperature: -40°C TA +125°C (Extended).  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, VREF = +2.048V to VDD, VSS = 0V, Gx = 0, RL = 5 kfrom VOUT to GND, CL = 100 pF.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
RAM Value  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Value Range  
N
0h  
0h  
0h  
FFh  
3FFh  
FFFh  
Hex  
Hex  
Hex  
Hex  
Hex  
Hex  
Hex  
8-bit  
10-bit  
12-bit  
8-bit  
DAC Register POR/BOR  
Value  
N
N
See Table 4-2  
See Table 4-2  
See Table 4-2  
See Table 4-2  
10-bit  
12-bit  
PDCON Initial  
Factory Setting  
EEPROM  
Endurance  
ENEE  
DREE  
N
0h  
0h  
0h  
1M  
Cycles Notes 1, 2  
Years At +25°C(1,2)  
Data Retention  
EEPROM Range  
200  
FFh  
3FFh  
FFFh  
Hex  
Hex  
Hex  
8-bit  
DACn register(s)  
10-bit DACn register(s)  
12-bit DACn register(s)  
See Table 4-2  
11  
Initial Factory Setting  
N
EEPROM Programming  
Write Cycle Time  
tWC  
16  
ms  
VDD = +1.8V to 5.5V  
Power Requirements  
Power Supply Sensitivity  
(B.17 “Power Supply  
Sensitivity (PSS)”)  
PSS  
0.002  
0.002  
0.002  
0.005  
0.005  
0.005  
%/% 8-bit  
Code = 7Fh  
%/% 10-bit Code = 1FFh  
%/% 12-bit Code = 7FFh  
Note 1: This parameter is ensured by design.  
2: This parameter is ensured by characterization.  
2020 Microchip Technology Inc.  
DS20006362A-page 15  
MCP48FXBX4/8  
DC Notes:  
1. This parameter is ensured by design.  
2. This parameter is ensured by characterization.  
3. POR/BOR voltage trip point is not slope-dependent. Hysteresis is implemented with time delay.  
4. Supply current is independent of current through the resistor ladder in mode VRnB:VRnA = 10.  
5. The PDnB:PDnA bits = 01, 10and 11configurations should have the same current.  
6. Resistance is defined as the resistance between the VREF pin (mode VRnB:VRnA = 10) to VSS pin. For  
octal-channel devices (MCP48FXBX8), this is the effective resistance of each resistor ladder. The resistance  
measurement is one of the two resistor ladders measured in parallel.  
7. INL and DNL are measured at VOUT with VRL = VDD (VRnB:VRnA = 00).  
8. This gain error does not include an offset error.  
9. Within 1/2 LSb of the final value when the code changes from 1/4 to 3/4 of FSR. (Example: 400h to C00h in a  
12-bit device.)  
10. Code range is dependent on resolution: 8-bit, codes 6 to 250; 10-bit, codes 25 to 1000; 12-bit, codes 100 to 4000.  
11. Variation of one output voltage to mean output voltage.  
DS20006362A-page 16  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
1.1  
Timing Waveforms and Requirements  
1.1.1  
WIPER SETTLING TIME  
±0.5 LSb  
New Value  
Old Value  
VOUT  
FIGURE 1-1:  
VOUT Settling Time Waveforms.  
TABLE 1-1:  
WIPER SETTLING TIMING  
Standard Operating Conditions (unless otherwise specified):  
Operating Temperature: -40°C TA +125°C (Extended).  
Timing Characteristics  
Parameters  
All parameters apply across the specified operating ranges unless noted.  
VDD = +1.8V to 5.5V, VSS = 0V, RL = 2 kfrom VOUT to GND, CL = 100 pF.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Sym. Min. Typ. Max. Units  
tS 7.8 µs  
Conditions  
VOUT Settling Time; ±0.5 LSb  
12-bit Code = 400h C00h; C00h 400h(1)  
Error Band, CL = 100 pF  
(see B.13 “Settling Time”)  
Note 1: Within 1/2 LSb of the final value when the code changes from 1/4 to 3/4 of FSR.  
1.1.2 LATCH PIN (LAT) TIMING  
LATx  
t
LAT  
SCK  
Wx  
FIGURE 1-2:  
LAT Pin Waveforms.  
TABLE 1-2:  
LAT PIN TIMING  
Standard Operating Conditions (unless otherwise specified):  
Operating Temperature: -40°C TA +125°C (Extended).  
Timing Characteristics  
All parameters apply across the specified operating ranges unless noted.  
VDD = +2.7V to 5.5V, VSS = 0V, RL = 2 kfrom VOUT to GND, CL = 100 pF.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
LATx Pin Pulse Width  
tLAT  
20  
ns  
2020 Microchip Technology Inc.  
DS20006362A-page 17  
MCP48FXBX4/8  
1.1.3  
RESET AND POWER-DOWN TIMING  
VPOR  
VBOR  
tBORD  
VDD  
tPORD  
VOUT at High-Z  
VOUT  
SPI Interface is Operational  
Power-on and Brown-out Reset Waveforms.  
FIGURE 1-3:  
24th Bit  
(WRITE  
command) command)  
1st Bit  
(next  
24th Bit  
(WRITE  
command)  
SCK  
tPDD  
tPDE  
VOUT  
FIGURE 1-4:  
SPI Power-Down Command Waveforms.  
TABLE 1-3:  
RESET AND POWER-DOWN TIMING  
Standard Operating Conditions (unless otherwise specified):  
Operating Temperature: -40°C TA +125°C (Extended.  
Timing Characteristics  
Unless otherwise noted, all parameters apply across these specified operating ranges:  
VDD = +2.7V to 5.5V, VSS = 0V, RL = 5 kfrom VOUT to VSS, CL = 100 pF.  
Typical specifications represent values for VDD = 5.5V, TA = +25°C.  
Parameters  
Sym. Min. Typ. Max. Units  
Conditions  
µs VDD rising, VDD > VPOR  
µs VDD transitions from VDD(MIN) > VPOR  
Power-on Reset Delay tPORD  
Brown-out Reset Delay tBORD  
60  
45  
,
VOUT driven to VOUT disabled  
Power-Down DAC  
Output Disable Time  
Delay  
TPDE  
10.5  
1
µs PDnB:PDnA = 0011, 10or 01started from the falling  
edge of the SCK at the end of the 24th clock cycle,  
VOUT = VOUT – 10 mV, VOUT not connected  
Power-Down DAC  
Output Enable Time  
Delay  
TPDD  
µs PDnB:PDnA = 11, 10or 0100started from the falling  
edge of the SCK at the end of the 24th clock cycle,  
Volatile DAC Register = FFh, VOUT = 10 mV,  
VOUT not connected  
DS20006362A-page 18  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
1.2  
SPI Mode Timing Waveforms and Requirements  
V
IHH  
HVC  
V
IH  
97  
98  
V
IH  
CS  
V
IL  
96  
84  
1’  
0’  
1’  
0’  
LAT  
94  
70  
72  
96  
SCK  
SDO  
83  
71  
80  
MSb  
Bit 6 - - - - - -1  
Bit 6 - - - -1  
LSb  
73  
74  
77  
SDI  
MSb In  
LSb In  
FIGURE 1-5:  
SPI Timing Waveforms Mode 1,1.  
V
IHH  
97  
V
98  
IH  
HVC  
CS  
V
IH  
V
IH  
82  
71  
V
IH  
V
IL  
84  
1’  
0’  
1’  
0’  
96  
LAT  
94  
83  
96  
70  
72  
SCK  
73  
80  
77  
SDO  
SDI  
MSb  
Bit 6 - -1  
LSb  
74  
MSb In  
Bit 6 - - - -1  
LSb In  
FIGURE 1-6:  
SPI Timing (Mode 0,0) Waveforms.  
2020 Microchip Technology Inc.  
DS20006362A-page 19  
MCP48FXBX4/8  
TABLE 1-4:  
#
SPI REQUIREMENTS (MODE 1,1)  
Characteristic  
Symbol Min. Max. Units  
Conditions  
SCK Input Frequency  
FSCK  
10 MHz VDD = 2.7V to 5.5V  
(READcommand)  
20 MHz  
VDD = 2.7V to 5.5V  
(all other commands)  
70  
71  
CS Active (VIL) to Command’s 1st SCK Input TCSA2SCH  
60  
20  
50  
ns  
SCK Input High Time  
TSCH  
ns VDD = 2.7V to 5.5V  
ns VDD = 1.8V to 2.7V  
ns VDD = 2.7V to 5.5V  
ns VDD = 1.8V to 2.7V  
ns  
400  
20  
72  
SCK Input Low Time  
TSCL  
400  
10  
73  
74  
77  
Setup Time of SDI Input to SCK Edge  
Hold Time of SDI Input from SCK Edge  
TDIV2SCH  
TSCH2DIL  
TCSH2DOZ  
20  
ns  
CS Inactive (VIH) to SDO Output  
High-Impedance  
ns Note 1  
80  
83  
SDO Data Output Valid after SCK Edge  
CS Inactive (VIH) after SCK Edge  
CS High Time (VIH)  
TSCL2DOV  
45  
170  
ns VDD = 2.7V to 5.5V  
ns VDD = 1.8V to 2.7V  
ns VDD = 2.7V to 5.5V  
µs VDD = 1.8V to 2.7V  
ns  
TSCH2CSL 100  
1
84  
94  
TCSH  
50  
20  
LAT to SCK (write data 24th bit) Setup  
TLATSU  
ns Write data transferred(3)  
Time  
96  
97  
LAT High or Low Time  
TLAT  
20  
0
ns  
HVC to SCK (1st data bit)  
THVCSU  
ns High-Voltage Commands(1)  
(HVC setup time)  
98  
SCK (last bit of command, 8th or 24th bit) to THVCHD  
HVC (HVC hold time)  
25  
ns High-Voltage Commands(1)  
Note 1: This parameter is ensured by design.  
3: Within 1/2 LSb of the final value when the code changes from 1/4 to 3/4 of FSR. (Example: 400h to C00h in  
12-bit device.) The transition of the LAT signal must occur 10 ns before the rising edge of the 24th SCK  
signal (Spec 94) or the current register data value may not be transferred to the output latch (VOUT) before  
the register is overwritten with the new value.  
DS20006362A-page 20  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
TABLE 1-5:  
#
SPI REQUIREMENTS (MODE 0,0)  
Characteristic  
Sym.  
Min. Max. Units  
Conditions  
SCK Input Frequency  
FSCK  
10  
MHz VDD = 2.7V to 5.5V  
(READcommand)  
20  
MHz VDD = 2.7V to 5.5V  
(all other commands)  
70  
71  
CS Active (VIL) to SCK Input  
TCSA2SCH  
TSCH  
60  
20  
50  
ns  
SCK Input High Time  
ns VDD = 2.7V to 5.5V  
400  
20  
ns  
VDD = 1.8V to 2.7V  
72  
SCK Input Low Time  
TSCL  
ns VDD = 2.7V to 5.5V  
400  
10  
ns VDD = 1.8V to 2.7V  
73  
74  
77  
Setup Time of SDI Input to SCK Edge  
Hold Time of SDI Input from SCK Edge  
TDIV2SCH  
TSCH2DIL  
TCSH2DOZ  
ns  
20  
ns  
CS Inactive (VIH) to SDO Output  
High-Impedance  
ns Note 1  
80  
SDO Data Output Valid after SCK Edge  
TSCL2DOV  
45  
170  
70  
ns VDD = 2.7V to 5.5V  
ns VDD = 1.8V to 2.7V  
ns  
82  
83  
SDO Data Output Valid after CS Active (VIL)  
TSSL2DOV  
TSCH2CSL  
CS Inactive (VIH) after SCK Edge  
100  
1
ns VDD = 2.7V to 5.5V  
µs VDD = 1.8V to 2.7V  
ns  
84  
94  
CS High Time (VIH)  
TCSH  
50  
10  
LAT to SCK (write data 24th bit) Setup  
TLATSU  
ns Write data transferred(3)  
Time  
96  
97  
LAT High or Low Time  
TLAT  
50  
0
ns  
HVC to SCK (1st data bit)  
THVCSU  
ns High-Voltage Commands(1)  
(HVC setup time)  
98  
SCK (last bit of command, 8th or 24th bit) to  
HVC (HVC hold time)  
THVCHD  
25  
ns High-Voltage Commands(1)  
Note 1: This parameter is ensured by design.  
3: Within 1/2 LSb of the final value when the code changes from 1/4 to 3/4 of FSR. (Example: 400h to C00h in  
12-bit device.) The transition of the LAT signal must occur 10 ns before the rising edge of the 24th SCK  
signal (Spec 94) or the current register data value may not be transferred to the output latch (VOUT) before  
the register is overwritten with the new value.  
2020 Microchip Technology Inc.  
DS20006362A-page 21  
MCP48FXBX4/8  
Timing Table Notes:  
1. This parameter is ensured by design.  
2. This parameter is ensured by characterization.  
3. Within 1/2 LSb of the final value when the code changes from 1/4 to 3/4 of FSR. (Example: 400h to C00h in 12-bit  
device).The transition of the LAT signal must occur 10 ns before the rising edge of the 24th SCK signal (Spec 94)  
or the current register data value may not be transferred to the output latch (VOUT) before the register is  
overwritten with the new value.  
DS20006362A-page 22  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: Unless otherwise indicated, VDD = +2.7V to +5.5V, VSS = GND.  
Parameters  
Temperature Ranges  
Sym.  
Min.  
Typ.  
Max. Units  
Conditions  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
TA  
TA  
TA  
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
Note 1  
Thermal Package Resistances  
Thermal Resistance, 20-Lead TSSOP  
JA  
JA  
90  
°C/W  
°C/W  
Thermal Resistance, 20-Lead VQFN  
(5x5 mm, P8X)  
36.1  
Note 1: Operation in this range must not cause TJ to exceed the Maximum Junction Temperature of +150°C.  
2020 Microchip Technology Inc.  
DS20006362A-page 23  
MCP48FXBX4/8  
NOTES:  
DS20006362A-page 24  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
2.1  
Electrical Data  
Note:  
Unless otherwise indicated, TA = +25°C, VDD = 5.5V.  
FIGURE 2-1:  
Current vs. FSCK Frequency, Voltage and  
Temperature Active Interface,  
VRnB:VRnA = 00, (VDD Mode).  
Average Device Supply  
FIGURE 2-4:  
Average Device Supply  
Current Inactive Interface (SCK = VIH or VIL)  
vs. Voltage and Temperature, VRnB:VRnA = 00  
(VDD Mode).  
FIGURE 2-2:  
Current vs. FSCK Frequency, Voltage and  
Temperature Active Interface,  
VRnB:VRnA = 01 (Band Gap Mode).  
Average Device Supply  
FIGURE 2-5:  
Average Device Supply  
Current Inactive Interface (SCK = VIH or VIL)  
vs. Voltage and Temperature, VRnB:VRnA = 01  
(Band Gap Mode).  
FIGURE 2-3:  
Current vs. FSCK Frequency, Voltage and  
Temperature Active Interface,  
VRnB:VRnA = 11 (VREF Buffered Mode).  
Average Device Supply  
FIGURE 2-6:  
Average Device Supply  
Current Inactive Interface (SCK = VIH or VIL)  
vs. Voltage and Temperature, VRnB:VRnA = 11  
(VREF Buffered Mode).  
2020 Microchip Technology Inc.  
DS20006362A-page 25  
MCP48FXBX4/8  
Note:  
Unless otherwise indicated, TA = +25°C, VDD = 5.5V.  
FIGURE 2-7:  
Current vs. FSCK Frequency, Voltage and  
Temperature Active Interface,  
VRnB:VRnA = 10 (VREF Unbuffered Mode).  
Average Device Supply  
FIGURE 2-9:  
Average Device Supply  
Current Inactive Interface (SCK = VIH or VIL)  
vs. Voltage and Temperature, VRnB:VRnA = 10  
(VREF Unbuffered Mode).  
FIGURE 2-8:  
Active Current (IDDA) (at 5.5V and  
SCK = 20 MHz) vs. Temperature and DAC  
Average Device Supply  
FIGURE 2-10:  
Power-Down Currents.  
F
Reference Voltage Mode.  
DS20006362A-page 26  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
2.2  
Linearity Data  
2.2.1  
TOTAL UNADJUSTED ERROR (TUE) – MCP48FXB28 (12-BIT), VREF = VDD  
(VRnB:VRnA = 00), GAIN = 1x, CODE 100-4000  
Note:  
Unless otherwise indicated: TA = +25°C, VDD = 5.5V  
FIGURE 2-11:  
Total Unadjusted Error  
FIGURE 2-14:  
Total Unadjusted Error  
(VOUT) vs. DAC Code, T = -40°C, VDD = 5.5V.  
(VOUT) vs. DAC Code, T = -40°C, VDD = 2.7V.  
FIGURE 2-12:  
Total Unadjusted Error  
FIGURE 2-15:  
Total Unadjusted Error  
(VOUT) vs. DAC Code, T = +25°C, VDD = 5.5V.  
(VOUT) vs. DAC Code, T = +25°C, VDD = 2.7V.  
FIGURE 2-13:  
(VOUT) vs. DAC Code, T = +125°C, VDD = 5.5V.  
Total Unadjusted Error  
FIGURE 2-16:  
(VOUT) vs. DAC Code, T = +125°C, VDD = 2.7V.  
Total Unadjusted Error  
2020 Microchip Technology Inc.  
DS20006362A-page 27  
MCP48FXBX4/8  
2.2.2  
INTEGRAL NONLINEARITY (INL) – MCP48FXB28 (12-BIT), VREF = VDD (VRnB:VRnA = 00),  
GAIN = 1x, CODE 64-4032  
Note:  
Unless otherwise indicated, TA = +25°C, VDD = 5.5V.  
FIGURE 2-17:  
INL Error vs. DAC Code,  
FIGURE 2-20:  
INL Error vs. DAC Code,  
T = 40°C, VDD = 5.5V.  
T = -40°C, VDD = 2.7V.  
FIGURE 2-18:  
INL Error vs. DAC Code,  
FIGURE 2-21:  
INL Error vs. DAC Code,  
T = +25°C, VDD = 5.5V.  
T = +25°C, VDD = 2.7V.  
FIGURE 2-19:  
INL Error vs. DAC Code,  
FIGURE 2-22:  
INL Error vs. DAC Code,  
T = +125°C, VDD = 5.5V.  
T = +125°C, VDD = 2.7V.  
DS20006362A-page 28  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
2.2.3  
Note:  
DIFFERENTIAL NONLINEARITY (DNL) – MCP48FXB28 (12-BIT), VREF = VDD  
(VRnB:VRnA = 00), GAIN = 1x, CODE 64-4032  
Unless otherwise indicated, TA = +25°C, VDD = 5.5V.  
FIGURE 2-23:  
DNL Error vs. DAC Code,  
FIGURE 2-26:  
DNL Error vs. DAC Code,  
T = -40°C, VDD = 5.5V.  
T = -40°C, VDD = 2.7V.  
FIGURE 2-24:  
DNL Error vs. DAC Code,  
FIGURE 2-27:  
DNL Error vs. DAC Code,  
T = +25°C, VDD = 5.5V.  
T = +25°C, VDD = 2.7V.  
FIGURE 2-25:  
DNL Error vs. DAC Code,  
FIGURE 2-28:  
DNL Error vs. DAC Code,  
T = +125°C, VDD = 5.5V.  
T = +125°C, VDD = 2.7V.  
2020 Microchip Technology Inc.  
DS20006362A-page 29  
MCP48FXBX4/8  
2.2.4  
TOTAL UNADJUSTED ERROR (TUE) – MCP48FXB28 (12-BIT), BAND GAP MODE  
(VRnB:VRnA = 01), GAIN = 2x, CODE 100-4000  
Note:  
Unless otherwise indicated, TA = +25°C, VDD = 5.5V.  
FIGURE 2-29:  
Total Unadjusted Error  
FIGURE 2-32:  
Total Unadjusted Error  
(VOUT) vs. DAC Code, T = -40°C, VDD = 5.5V.  
(VOUT) vs. DAC Code, T = -40°C, VDD = 2.7V.  
FIGURE 2-30:  
Total Unadjusted Error  
FIGURE 2-33:  
Total Unadjusted Error  
(VOUT) vs. DAC Code, T = +25°C, VDD = 5.5V.  
(VOUT) vs. DAC Code, T = +25°C, VDD = 2.7V.  
FIGURE 2-31:  
Total Unadjusted Error  
FIGURE 2-34:  
Total Unadjusted Error  
(VOUT) vs. DAC Code, T = +125°C, VDD = 5.5V.  
(VOUT) vs. DAC Code, T = +125°C, VDD = 2.7V.  
DS20006362A-page 30  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
2.2.5  
Note:  
TOTAL UNADJUSTED ERROR (TUE) – MCP48FXB28 (12-BIT), BAND GAP MODE  
(VRnB:VRnA = 01), GAIN = 4x, CODE 100-4000  
Unless otherwise indicated, TA = +25°C, VDD = 5.5V.  
FIGURE 2-35:  
Total Unadjusted Error  
FIGURE 2-37:  
Total Unadjusted Error  
(VOUT) vs. DAC Code, T = -40°C, VDD = 5.5V.  
(VOUT) vs. DAC Code, T = +125°C, VDD = 5.5V.  
FIGURE 2-36:  
Total Unadjusted Error  
(VOUT) vs. DAC Code, T = +25°C, VDD = 5.5V.  
2020 Microchip Technology Inc.  
DS20006362A-page 31  
MCP48FXBX4/8  
2.2.6  
INTEGRAL NONLINEARITY (INL) – MCP48FXB28 (12-BIT), BAND GAP MODE  
(VRnB:VRnA = 01), GAIN = 2x, CODE 100-4000  
Note:  
Unless otherwise indicated, TA = +25°C, VDD = 5.5V.  
FIGURE 2-38:  
INL Error vs. DAC Code,  
FIGURE 2-41:  
INL Error vs. DAC Code,  
T = -40°C, VDD = 5.5V.  
T = -40°C, VDD = 2.7V.  
FIGURE 2-39:  
INL Error vs. DAC Code,  
FIGURE 2-42:  
INL Error vs. DAC Code,  
T = +25°C, VDD = 5.5V.  
T = +25°C, VDD = 2.7V.  
FIGURE 2-40:  
INL Error vs. DAC Code,  
FIGURE 2-43:  
INL Error vs. DAC Code,  
T = +125°C, VDD = 5.5V.  
T = +125°C, VDD = 2.7V.  
DS20006362A-page 32  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
2.2.7  
Note:  
INTEGRAL NONLINEARITY (INL) – MCP48FXB28 (12-BIT), BAND GAP MODE  
(VRnB:VRnA = 01), GAIN = 4x, CODE 100-4000  
Unless otherwise indicated, TA = +25°C, VDD = 5.5V.  
FIGURE 2-46:  
T = +125°C, VDD = 5.5V.  
INL Error vs. DAC Code,  
FIGURE 2-44:  
T = -40°C, VDD = 5.5V.  
INL Error vs. DAC Code,  
FIGURE 2-45:  
INL Error vs. DAC Code,  
T = +25°C, VDD = 5.5V.  
2020 Microchip Technology Inc.  
DS20006362A-page 33  
MCP48FXBX4/8  
2.2.8  
DIFFERENTIAL NONLINEARITY ERROR (DNL) – MCP48FXB28 (12-BIT), BAND GAP MODE  
(VRnB:VRnA = 01), GAIN = 2x, CODE 100-4000  
Note:  
Unless otherwise indicated, TA = +25°C, VDD = 5.5V.  
FIGURE 2-47:  
DNL Error vs. DAC Code,  
FIGURE 2-50:  
DNL Error vs. DAC Code,  
T = -40°C, VDD = 5.5V.  
T = -40°C, VDD = 2.7V.  
FIGURE 2-48:  
DNL Error vs. DAC Code,  
FIGURE 2-51:  
DNL Error vs. DAC Code,  
T = +25°C, VDD = 5.5V.  
T = +25°C, VDD = 2.7V.  
FIGURE 2-49:  
DNL Error vs. DAC Code,  
FIGURE 2-52:  
DNL Error vs. DAC Code,  
T = +125°C, VDD = 5.5V.  
T = +125°C, VDD = 2.7V.  
DS20006362A-page 34  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
2.2.9  
Note:  
DIFFERENTIAL NONLINEARITY ERROR (DNL) – MCP48FXB28 (12-BIT), BAND GAP MODE  
(VRnB:VRnA = 01), GAIN = 4x, CODE 100-4000  
Unless otherwise indicated, TA = +25°C, VDD = 5.5V.  
FIGURE 2-55:  
T = +125°C, VDD = 5.5V.  
DNL Error vs. DAC Code,  
FIGURE 2-53:  
T = -40°C, VDD = 5.5V.  
DNL Error vs. DAC Code,  
FIGURE 2-54:  
DNL Error vs. DAC Code,  
T = +25°C, VDD = 5.5V.  
2020 Microchip Technology Inc.  
DS20006362A-page 35  
MCP48FXBX4/8  
2.2.10  
TOTAL UNADJUSTED ERROR (TUE) – MCP48FXB28 (12-BIT), EXTERNAL VREF  
UNBUFFERED MODE (VRnB:VRnA = 10), VREF = VDD, GAIN = 1x, CODE 100-4000  
Note:  
Unless otherwise indicated, TA = +25°C, VDD = 5.5V.  
FIGURE 2-56:  
Total Unadjusted Error  
FIGURE 2-59:  
Total Unadjusted Error  
(VOUT) vs. DAC Code, T = -40°C, VDD = 5.5V.  
(VOUT) vs. DAC Code, T = -40°C, VDD = 2.7V.  
FIGURE 2-57:  
Total Unadjusted Error  
FIGURE 2-60:  
Total Unadjusted Error  
(VOUT) vs. DAC Code, T = +25°C,VDD = 5.5V.  
(VOUT) vs. DAC Code, T = +25°C, VDD = 2.7V.  
FIGURE 2-58:  
Total Unadjusted Error  
FIGURE 2-61:  
Total Unadjusted Error  
(VOUT) vs. DAC Code, T = +125°C, VDD = 5.5V.  
(VOUT) vs. DAC Code, T = +125°C, VDD = 2.7V.  
DS20006362A-page 36  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
2.2.11  
TOTAL UNADJUSTED ERROR (TUE) – MCP48FXB28 (12-BIT), EXTERNAL VREF  
UNBUFFERED MODE (VRnB:VRnA = 10), VREF = VDD/2, GAIN = 2x, CODE 100-4000  
Note:  
Unless otherwise indicated, TA = +25°C, VDD = 5.5V.  
FIGURE 2-62:  
Total Unadjusted Error  
FIGURE 2-65:  
Total Unadjusted Error  
(VOUT) vs. DAC Code, T = -40°C, VDD = 5.5V.  
(VOUT) vs. DAC Code, T = -40°C, VDD = 2.7V.  
FIGURE 2-63:  
Total Unadjusted Error  
FIGURE 2-66:  
Total Unadjusted Error  
(VOUT) vs. DAC Code, T = +25°C,VDD = 5.5V.  
(VOUT) vs. DAC Code, T = +25°C, VDD = 2.7V.  
FIGURE 2-64:  
Total Unadjusted Error  
FIGURE 2-67:  
Total Unadjusted Error  
(VOUT) vs. DAC Code, T = +125°C, VDD = 5.5V.  
(VOUT) vs. DAC Code, T = +125°C, VDD = 2.7V.  
2020 Microchip Technology Inc.  
DS20006362A-page 37  
MCP48FXBX4/8  
2.2.12  
INTEGRAL NONLINEARITY ERROR (INL) – MCP48FXB28 (12-BIT), EXTERNAL VREF  
MODE, UNBUFFERED (VRnB:VRnA = 10), VREF = VDD, GAIN = 1x, CODE 100-4000  
Note:  
Unless otherwise indicated, TA = +25°C, VDD = 5.5V.  
FIGURE 2-68:  
INL Error vs. DAC Code,  
FIGURE 2-71:  
INL Error vs. DAC Code,  
T = -40°C, VDD = 5.5V.  
T = -40°C, VDD = 2.7V.  
FIGURE 2-69:  
INL Error vs. DAC Code,  
FIGURE 2-72:  
INL Error vs. DAC Code,  
T = +25°C, VDD = 5.5V.  
T = +25°C, VDD = 2.7V.  
FIGURE 2-70:  
INL Error vs. DAC Code,  
FIGURE 2-73:  
INL Error vs. DAC Code,  
T = +125°C, VDD = 5.5V.  
T = +125°C, VDD = 2.7V.  
DS20006362A-page 38  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
2.2.13  
INTEGRAL NONLINEARITY ERROR (INL) – MCP48FXB28 (12-BIT), EXTERNAL VREF  
MODE, UNBUFFERED (VRnB:VRnA = 10), VREF = VDD/2, GAIN = 2x, CODE 100-4000  
Note:  
Unless otherwise indicated, TA = +25°C, VDD = 5.5V.  
FIGURE 2-74:  
INL Error vs. DAC Code,  
FIGURE 2-77:  
INL Error vs. DAC Code,  
T = -40°C, VDD = 5.5V.  
T = -40°C, VDD = 2.7V.  
FIGURE 2-75:  
INL Error vs. DAC Code,  
FIGURE 2-78:  
INL Error vs. DAC Code,  
T = +25°C, VDD = 5.5V.  
T = +25°C, VDD = 2.7V.  
FIGURE 2-76:  
INL Error vs. DAC Code,  
FIGURE 2-79:  
INL Error vs. DAC Code,  
T = +125°C, VDD = 5.5V.  
T = +125°C, VDD = 2.7V.  
2020 Microchip Technology Inc.  
DS20006362A-page 39  
MCP48FXBX4/8  
2.2.14  
DIFFERENTIAL NONLINEARITY ERROR (DNL) – MCP48FXB28 (12-BIT), EXTERNAL VREF  
MODE, UNBUFFERED (VRnB:VRnA = 10), VREF = VDD, GAIN = 1x, CODE 100-4000  
Note:  
Unless otherwise indicated, TA = +25°C, VDD = 5.5V.  
.
FIGURE 2-80:  
DNL Error vs. DAC Code,  
FIGURE 2-83:  
DNL Error vs. DAC Code,  
T = -40°C, VDD = 5.5V.  
T = -40°C, VDD = 2.7V.  
FIGURE 2-81:  
DNL Error vs. DAC Code,  
FIGURE 2-84:  
DNL Error vs. DAC Code,  
T = +25°C, VDD = 5.5V.  
T = +25°C, VDD = 2.7V.  
FIGURE 2-82:  
DNL Error vs. DAC Code,  
FIGURE 2-85:  
DNL Error vs. DAC Code,  
T = +125°C, VDD = 5.5V.  
T = +125°C, VDD = 2.7V.  
DS20006362A-page 40  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
2.2.15  
DIFFERENTIAL NONLINEARITY ERROR (DNL) – MCP48FXB28 (12-BIT), EXTERNAL VREF  
MODE, UNBUFFERED (VRnB:VRnA = 10), VREF = VDD/2, GAIN = 2x, CODE 100-4000  
Note:  
Unless otherwise indicated, TA = +25°C, VDD = 5.5V.  
.
FIGURE 2-86:  
DNL Error vs. DAC Code,  
FIGURE 2-89:  
DNL Error vs. DAC Code,  
T = -40°C, VDD = 5.5V.  
T = -40°C, VDD = 2.7V.  
FIGURE 2-87:  
DNL Error vs. DAC Code,  
FIGURE 2-90:  
DNL Error vs. DAC Code,  
T = +25°C, VDD = 5.5V.  
T = +25°C, VDD = 2.7V.  
FIGURE 2-88:  
DNL Error vs. DAC Code,  
FIGURE 2-91:  
DNL Error vs. DAC Code,  
T = +125°C, VDD = 5.5V.  
T = +125°C, VDD = 2.7V.  
2020 Microchip Technology Inc.  
DS20006362A-page 41  
MCP48FXBX4/8  
2.2.16  
TOTAL UNADJUSTED ERROR (TUE) – MCP48FXB28 (12-BIT), EXTERNAL VREF  
BUFFERED MODE (VRnB:VRnA = 10), VREF = VDD, GAIN = 1x, CODE 100-4000  
Note:  
Unless otherwise indicated, TA = +25°C, VDD = 5.5V.  
FIGURE 2-92:  
Total Unadjusted Error  
FIGURE 2-95:  
Total Unadjusted Error  
(VOUT) vs. DAC Code, T = -40°C, VDD = 5.5V.  
(VOUT) vs. DAC Code, T = -40°C, VDD = 2.7V.  
FIGURE 2-93:  
Total Unadjusted Error  
FIGURE 2-96:  
Total Unadjusted Error  
(VOUT) vs. DAC Code, T = +25°C,VDD = 5.5V.  
(VOUT) vs. DAC Code, T = +25°C, VDD = 2.7V.  
FIGURE 2-94:  
Total Unadjusted Error  
FIGURE 2-97:  
Total Unadjusted Error  
(VOUT) vs. DAC Code, T = +125°C, VDD = 5.5V.  
(VOUT) vs. DAC Code, T = +125°C, VDD = 2.7V.  
DS20006362A-page 42  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
2.2.17  
TOTAL UNADJUSTED ERROR (TUE) – MCP48FXB28 (12-BIT), EXTERNAL VREF  
BUFFERED MODE (VRnB:VRnA = 10), VREF = VDD/2, GAIN = 2x, CODE 100-4000  
Note:  
Unless otherwise indicated, TA = +25°C, VDD = 5.5V.  
FIGURE 2-98:  
Total Unadjusted Error  
FIGURE 2-101:  
Total Unadjusted Error  
(VOUT) vs. DAC Code, T = -40°C, VDD = 5.5V.  
(VOUT) vs. DAC Code, T = -40°C, VDD = 2.7V.  
FIGURE 2-99:  
Total Unadjusted Error  
FIGURE 2-102:  
Total Unadjusted Error  
(VOUT) vs. DAC Code, T = +25°C,VDD = 5.5V.  
(VOUT) vs. DAC Code, T = +25°C, VDD = 2.7V.  
FIGURE 2-100:  
Total Unadjusted Error  
FIGURE 2-103:  
Total Unadjusted Error  
(VOUT) vs. DAC Code, T = +125°C, VDD = 5.5V.  
(VOUT) vs. DAC Code, T = +125°C, VDD = 2.7V.  
2020 Microchip Technology Inc.  
DS20006362A-page 43  
MCP48FXBX4/8  
2.2.18  
INTEGRAL NONLINEARITY ERROR (INL) – MCP48FXB28 (12-BIT), EXTERNAL VREF  
MODE, BUFFERED (VRnB:VRnA = 11), VREF = VDD, GAIN = 1x, CODE 100-4000  
Note:  
Unless otherwise indicated, TA = +25°C, VDD = 5.5V.  
FIGURE 2-104:  
INL Error vs. DAC Code,  
FIGURE 2-107:  
INL Error vs. DAC Code,  
T = -40°C, VDD = 5.5V.  
T = -40°C, VDD = 2.7V.  
FIGURE 2-105:  
INL Error vs. DAC Code,  
FIGURE 2-108:  
INL Error vs. DAC Code,  
T = +25°C, VDD = 5.5V.  
T = +25°C, VDD = 2.7V.  
FIGURE 2-106:  
INL Error vs. DAC Code,  
FIGURE 2-109:  
INL Error vs. DAC Code,  
T = +125°C, VDD = 5.5V.  
T = +125°C, VDD = 2.7V.  
DS20006362A-page 44  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
2.2.19  
INTEGRAL NONLINEARITY ERROR (INL) – MCP48FXB28 (12-BIT), EXTERNAL VREF  
MODE, BUFFERED (VRnB:VRnA = 11), VREF = VDD/2, GAIN = 2x, CODE 100-4000  
Note:  
Unless otherwise indicated, TA = +25°C, VDD = 5.5V.  
FIGURE 2-110:  
INL Error vs. DAC Code,  
FIGURE 2-113:  
INL Error vs. DAC Code,  
T = -40°C, VDD = 5.5V.  
T = -40°C, VDD = 2.7V.  
FIGURE 2-111:  
INL Error vs. DAC Code,  
FIGURE 2-114:  
INL Error vs. DAC Code,  
T = +25°C, VDD = 5.5V.  
T = +25°C, VDD = 2.7V.  
FIGURE 2-112:  
INL Error vs. DAC Code,  
FIGURE 2-115:  
INL Error vs. DAC Code,  
T = +125°C, VDD = 5.5V.  
T = +125°C, VDD = 2.7V.  
2020 Microchip Technology Inc.  
DS20006362A-page 45  
MCP48FXBX4/8  
2.2.20  
DIFFERENTIAL NONLINEARITY ERROR (DNL) – MCP48FXB28 (12-BIT), EXTERNAL VREF  
MODE, BUFFERED (VRnB:VRnA = 11), VREF = VDD, GAIN = 1x, CODE 100-4000  
Note:  
Unless otherwise indicated, TA = +25°C, VDD = 5.5V.  
.
FIGURE 2-116:  
DNL Error vs. DAC Code,  
FIGURE 2-119:  
DNL Error vs. DAC Code,  
T = -40°C, VDD = 5.5V.  
T = -40°C, VDD = 2.7V.  
FIGURE 2-117:  
DNL Error vs. DAC Code,  
FIGURE 2-120:  
DNL Error vs. DAC Code,  
T = +25°C, VDD = 5.5V.  
T = +25°C, VDD = 2.7V.  
FIGURE 2-118:  
DNL Error vs. DAC Code,  
FIGURE 2-121:  
DNL Error vs. DAC Code,  
T = +125°C, VDD = 5.5V.  
T = +125°C, VDD = 2.7V.  
DS20006362A-page 46  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
2.2.21  
DIFFERENTIAL NONLINEARITY ERROR (DNL) – MCP48FXB28 (12-BIT), EXTERNAL VREF  
MODE, BUFFERED (VRnB:VRnA = 11), VREF = VDD/2, GAIN = 2x, CODE 100-4000  
Note:  
Unless otherwise indicated, TA = +25°C, VDD = 5.5V.  
.
FIGURE 2-122:  
DNL Error vs. DAC Code,  
FIGURE 2-125:  
DNL Error vs. DAC Code,  
T = -40°C, VDD = 5.5V.  
T = -40°C, VDD = 2.7V.  
FIGURE 2-123:  
DNL Error vs. DAC Code,  
FIGURE 2-126:  
DNL Error vs. DAC Code,  
T = +25°C, VDD = 5.5V.  
T = +25°C, VDD = 2.7V.  
FIGURE 2-124:  
DNL Error vs. DAC Code,  
FIGURE 2-127:  
DNL Error vs. DAC Code,  
T = +125°C, VDD = 5.5V.  
T = +125°C, VDD = 2.7V.  
2020 Microchip Technology Inc.  
DS20006362A-page 47  
MCP48FXBX4/8  
NOTES:  
DS20006362A-page 48  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
3.0  
PIN DESCRIPTIONS  
Overviews of the pin functions are provided in  
Section 3.1 “Positive Power Supply Input Pin  
(VDD)” through Section 3.10 “No Connect Pin (NC)”.  
The descriptions of the pins for the quad DAC output  
devices are listed in Table 3-1 and descriptions for the  
octal DAC output devices are listed in Table 3-2.  
TABLE 3-1:  
MCP48FXBX4 (QUAD DAC) PIN FUNCTION TABLE  
Pin  
Description  
20-Lead 20-Lead  
Buffer  
Type  
Symbol  
LAT1  
I/O  
TSSOP  
VQFN  
1
19  
I
ST  
DAC Register Latch Pin. The Latch 1 pin allows the value in the  
volatile DAC1/DAC3 registers (wiper and Configuration bits) to  
be transferred to the DAC1/DAC3 outputs (VOUT1, VOUT3).  
2
3
4
5
6
20  
1
VDD  
CS  
I
P
Supply Voltage Pin  
SPI Chip Select Pin  
ST  
2
VREF0  
VOUT0  
VOUT2  
NC  
A
A
A
Analog Voltage Reference Input 0 Pin  
3
Analog Buffered Analog Voltage Output – Channel 0 Pin  
Analog Buffered Analog Voltage Output – Channel 2 Pin  
4
7, 8, 10, 5, 6, 8, 9,  
Not internally connected  
11, 12, 13  
10,11  
9
7
VSS  
VOUT3  
VOUT1  
VREF1  
SDO  
A
I
P
Ground Reference Pin for all circuitries on the device  
Buffered Analog Voltage Output – Channel 3 Pin  
Buffered Analog Voltage Output – Channel 1 Pin  
14  
15  
16  
17  
18  
19  
20  
12  
13  
14  
15  
16  
17  
18  
Analog Voltage Reference Input 1 Pin  
ST  
ST  
ST  
SPI Serial Data Output Pin  
SPI Serial Clock Pin  
SCK  
I
SDI  
I
SPI Serial Data Input Pin  
LAT0/HVC  
I
DAC Register Latch/High-Voltage Command Pin. The Latch 0  
pin allows the value in the volatile DAC0/DAC2 registers (wiper  
and Configuration bits) to be transferred to the DAC0/DAC2  
outputs (VOUT0, VOUT2). The High-Voltage Command (HVC)  
allows user Configuration bits to be written.  
21  
EP  
Exposed Thermal Pad Pin(1)  
Note 1: A = Analog, ST = Schmitt Trigger, HV = High Voltage, I = Input, O = Output, I/O = Input/Output,  
P = Power.  
2020 Microchip Technology Inc.  
DS20006362A-page 49  
MCP48FXBX4/8  
TABLE 3-2:  
MCP48FXBX8 (OCTAL DAC) PIN FUNCTION TABLE  
Pin  
Description  
20-Lead 20-Lead  
TSSOP VQFN  
Buffer  
Type  
Symbol  
LAT1  
I/O  
1
19  
I
ST  
DAC Register Latch Pin. The Latch 1 pin allows the value in the  
volatile DAC1/DAC3/DAC5/DAC7 registers (wiper and Configura-  
tion bits) to be transferred to the DAC1/DAC3/DAC5/DAC7 outputs  
(VOUT1, VOUT3, VOUT5, VOUT7).  
2
3
20  
1
VDD  
CS  
I
P
Supply Voltage Pin  
SPI Chip Select Pin  
ST  
4
2
VREF0  
VOUT0  
VOUT2  
VOUT4  
VOUT6  
VSS  
A
A
A
A
A
A
A
A
A
A
I
Analog Voltage Reference Input 0 Pin  
5
3
Analog Buffered Analog Voltage Output – Channel 0 Pin  
Analog Buffered Analog Voltage Output – Channel 2 Pin  
Analog Buffered Analog Voltage Output – Channel 4 Pin  
Analog Buffered Analog Voltage Output – Channel 6 Pin  
6
4
7
5
8
6
9
7
P
Ground Reference Pin for all circuitries on the device  
Not internally connected  
10, 11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
8, 9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
NC  
VOUT7  
VOUT5  
VOUT3  
VOUT1  
VREF1  
SDO  
Analog Buffered Analog Voltage Output – Channel 7 Pin  
Analog Buffered Analog Voltage Output – Channel 5 Pin  
Analog Buffered Analog Voltage Output – Channel 3 Pin  
Analog Buffered Analog Voltage Output – Channel 1 Pin  
Analog Voltage Reference Input 1 Pin  
ST  
ST  
ST  
SPI Serial Data Output Pin  
SPI Serial Clock Pin  
SCK  
I
SDI  
I
SPI Serial Data Input Pin  
LAT0/HVC  
I
DAC Register Latch/High-Voltage Command Pin. The Latch 0 pin  
allows the value in the volatile DAC0/DAC2/DAC4/DAC6 registers  
(wiper and Configuration bits) to be transferred to the  
DAC0/DAC2/DAC4/DAC6 outputs (VOUT0, VOUT2, VOUT4, VOUT6).  
The High-Voltage Command (HVC) allows user Configuration bits  
to be written.  
21  
EP  
Exposed Thermal Pad Pin(1)  
Note 1: A = Analog, ST = Schmitt Trigger, HV = High Voltage, I = Input, O = Output, I/O = Input/Output, P = Power.  
DS20006362A-page 50  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
3.1  
Positive Power Supply Input Pin  
(V  
3.4  
Analog Output Voltage Pins  
)
(V  
)
DD  
VDD is the positive supply voltage input pin. The input  
supply voltage is relative to VSS  
OUTn  
VOUT is the DAC analog voltage output pin. The DAC  
output has an output amplifier. The DAC output range  
depends on the selection of the voltage reference  
source (and potential output gain selection). These are:  
.
The power supply at the VDD pin should be as clean as  
possible for a good DAC performance. It is recom-  
mended to use an appropriate bypass capacitor of  
about 0.1 µF (ceramic) to ground. An additional 10 µF  
capacitor (tantalum) in parallel is also recommended to  
further attenuate noise present in application boards.  
• Device VDD – The full-scale range of the DAC  
output is from VSS to approximately VDD  
.
• VREF Pin – The full-scale range of the DAC output  
is from VSS to G × VRL, where G is the gain  
selection option (1x or 2x).  
3.2  
Ground Pin (V  
)
SS  
• Internal Band Gap – The full-scale range of the  
DAC output is from VSS to G × (2 × VBG), where G  
is the gain selection option (1x or 2x).  
The VSS pin is the device ground reference.  
The user must connect the VSS pin to a ground plane  
through a low-impedance connection. If an analog  
ground path is available in the application PCB (Printed  
Circuit Board), it is highly recommended that the VSS  
pin be tied to the analog ground path or isolated within  
an analog ground plane of the circuit board.  
In Normal mode, the DC impedance of the output pin is  
about 1. In Power-Down mode, the output pin is  
internally connected to a known pull-down resistor of  
1 k, 125 kor open. The power-down selection bits  
setting are shown in Register 4-3 and Table 5-4.  
3.5  
Latch Pin (LAT)/High-Voltage  
Command Pin (HVC)  
3.3  
Voltage Reference Pins (V  
)
REF  
The VREF pin is either an input or an output. When the  
DAC’s voltage reference is configured as the VREF pin,  
the pin is an input. When the DAC’s voltage reference is  
configured as the internal band gap, the pin is an output.  
The DAC output value update event can be controlled  
and synchronized using the LAT pins, for one or both  
channels, on a single or different devices.  
The LAT pins control the effect of the Volatile Wiper  
registers, and the VRnB:VRnA, PDnB:PDnA and Gx  
bits on the DAC output.  
When the DAC’s voltage reference is configured as the  
VREF pin, there are two options for this voltage input:  
• VREF pin voltage buffered  
• VREF pin voltage unbuffered  
If the LAT pins are held at VIH, the values sent to the  
Volatile Wiper registers and Configuration bits have no  
effect on the DAC outputs.  
The buffered option is offered in cases where the exter-  
nal reference voltage does not have sufficient current  
capability to not drop its voltage when connected to the  
internal resistor ladder circuit.  
Once voltage on the pin transitions to VIL, the values in  
the Volatile Wiper registers and Configuration bits are  
transferred to the DAC outputs.  
When the DAC’s voltage reference is configured as the  
device VDD, the VREF pin is disconnected from the  
internal circuit.  
The pin is level-sensitive, so writing to the Volatile  
Wiper registers and Configuration bits, while it is being  
held at VIL, will trigger an immediate change in the  
outputs.  
When the DAC’s voltage reference is configured as the  
internal band gap, the VREF pin’s drive capability is min-  
imal, so the output signal should be buffered.  
The HVC pin allows the device’s nonvolatile user  
Configuration bits to be programmed when the voltage  
on the pin is greater than the VIHH entry voltage.  
There are two VREF pins, each corresponding to a  
group of output channels. VREF0 is connected to even  
channels: 0-6, while VREF1 is connected to odd  
channels: 1-7. See Section 5.2 “Voltage Reference  
Selection” and Register 4-2 for more details on the  
configuration bits.  
3.6  
SPI Chip Select Pin (CS)  
The CS pin enables/disables the serial interface. The  
serial interface must be enabled for the SPI commands  
to be received by the device. See Section 6.2 “SPI  
Serial Interface” for more details on the SPI serial  
interface communication.  
2020 Microchip Technology Inc.  
DS20006362A-page 51  
MCP48FXBX4/8  
3.7  
SPI Serial Data Input Pin (SDI)  
3.10 No Connect Pin (NC)  
The SDI pin is the serial data input pin of the SPI  
interface. The SDI pin is used to read the DAC registers  
and Configuration bits.  
The NC pins are not connected to the device.  
3.11 Exposed Pad Pin  
See Section 6.2 “SPI Serial Interface” for more  
details on the SPI serial interface communication.  
This pad is conductively connected to the device’s  
substrate. It should be tied to the same potential as the  
VSS pin (or left unconnected). This pad could be used  
to assist in heat dissipation for the device when con-  
nected to a PCB heat sink. The pad is only present on  
the VQFN package.  
3.8  
SPISerialDataOutputPin(SDO)  
The SDO pin is the serial data output pin of the SPI  
interface. The SDO pin is used to write the DAC  
registers and Configuration bits.  
See Section 6.2 “SPI Serial Interface” for more  
details on the SPI serial interface communication.  
3.9  
SPI Serial Clock Pin (SCK)  
The SCK pin is the serial clock pin of the SPI interface.  
The MCP48FXBX4/8 SPI interface only accepts  
external serial clocks.  
See Section 6.2, SPI Serial Interface for more details  
on the SPI serial interface communication.  
DS20006362A-page 52  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
4.1  
Power-on Reset/Brown-out Reset  
(POR/BOR)  
4.0  
GENERAL DESCRIPTION  
The MCP48FXBX4 (MCP48FXB04, MCP48FXB14  
and MCP48FXB24) devices are quad-channel voltage  
output devices. The MCP48FXBX8 (MCP48FXB08,  
MCP48FXB18 and MCP48FXB28) devices are  
octal-channel voltage output devices.  
The internal POR/BOR circuit monitors the power  
supply voltage (VDD) during operation. This circuit  
ensures correct device start-up at system power-up  
and power-down events. The device’s RAM Retention  
Voltage (VRAM) is lower than the POR/BOR Voltage  
(VPOR/VBOR) trip point. The maximum VPOR/VBOR  
voltage is less than 1.8V.  
These devices are offered with 8-bit (MCP48FXB0X),  
10-bit (MCP48FXB1X) and 12-bit (MCP48FXB2X) res-  
olutions and include nonvolatile memory (EEPROM),  
an SPI serial interface and two write Latch pins (LAT0,  
LAT1) to control the update of the written DAC value to  
the DAC output pin.  
POR occurs as the voltage rises (typically from 0V),  
while BOR occurs as the voltage falls (typically from  
VDD(MIN) or higher).  
The devices use a resistor ladder architecture. The  
resistor ladder DAC is driven from a software-  
selectable voltage reference source. The source can  
be either the device’s internal VDD, an external VREF  
pin voltage (buffered or unbuffered) or an internal band  
gap voltage source.  
The POR and BOR trip points are at the same voltage  
and the condition is determined by whether the VDD  
voltage is rising or falling (see Figure 4-1). What occurs  
is different depending on whether the reset is a POR or  
BOR.  
When VPOR/VBOR < VDD < 2.7V, the electrical perfor-  
mance may not meet the data sheet specifications. In  
this region, the device is capable of reading and writing  
to its EEPROM and reading and writing to its volatile  
memory if the proper serial command is executed.  
The DAC output is buffered with a low-power and  
precision output amplifier (op amp). This output  
amplifier provides a rail-to-rail output with low offset  
voltage and low noise. The gain (1x or 2x) of the  
output buffer is software configurable.  
4.1.1  
POWER-ON RESET  
This device family also has a user-programmable  
nonvolatile memory (EEPROM) option, which allows  
the user to save the desired POR/BOR value of the  
DAC register and device Configuration bits.  
The Power-on Reset is the case where the VDD has  
power applied to it, ramping up from the VSS voltage  
level. As the device powers up, the VOUT pin floats to  
an unknown value. When VDD is above the transistor  
threshold voltage of the device, the output starts to be  
pulled low. After the VDD is above the POR/BOR trip  
point (VBOR/VPOR), the resistor network’s wiper is  
loaded with the POR value (midscale). The volatile  
memory determines the analog output (VOUT) pin volt-  
age. After the device is powered up, the user can  
update the device’s memory.  
High-voltage lock bits can be used to ensure that the  
device’s output settings are not accidentally modified.  
The device operates from a single-supply voltage. This  
voltage is specified from 2.7V to 5.5V for full specified  
operation and from 1.8V to 5.5V for digital operation.  
The device can operate between 1.8V and 2.7V, but its  
analog performance is significantly reduced; therefore,  
most device parameters are not specified for this  
range.  
When the rising VDD voltage crosses the VPOR trip  
point, the following occurs:  
The main functional blocks are:  
• The nonvolatile DAC register value is latched into  
the volatile DAC register.  
Power-on Reset/Brown-out Reset (POR/BOR)  
Device Memory  
• The nonvolatile Configuration bit values are  
latched into the volatile Configuration bits.  
Resistor Ladder  
Output Buffer/VOUT Operation  
Internal Band Gap  
• The POR status bit is set (‘1’).  
• The POR Reset Delay Timer (tPORD) starts; when  
the POR Reset Delay Timer (tPORD) times out, the  
serial interface is operational. During this delay  
time, the serial interface will not accept commands.  
SPI Serial Interface Module  
• The Device Memory Address Pointer is forced to  
00h.  
The Analog Output (VOUT) state is determined by the  
state of the volatile Configuration bits and the DAC  
register. This is called a Power-on Reset (event).  
Figure 4-1 illustrates the conditions for power-up and  
power-down events under typical conditions.  
2020 Microchip Technology Inc.  
DS20006362A-page 53  
MCP48FXBX4/8  
If the VDD voltage decreases below the VRAM voltage,  
all volatile memory may become corrupted.  
4.1.2  
BROWN-OUT RESET  
The Brown-out Reset occurs when a device has power  
applied to it and that power (voltage) drops below the  
specified range.  
As the voltage recovers above the VPOR/VBOR voltage,  
see Section 4.1.1 “Power-on Reset”.  
Serial commands not completed due to a brown-out  
condition may cause the memory location (volatile and  
nonvolatile) to become corrupted.  
When the falling VDD voltage crosses the VPOR trip  
point (BOR event), the following occurs:  
• The serial interface is disabled.  
• EEPROM writes are disabled.  
Figure 4-1 illustrates the conditions for power-up and  
power-down events under typical conditions.  
• The device is forced into a Power-Down state  
(PDnB:PDnA = 11). Analog circuitry is turned off.  
• The volatile DAC register is forced to 000h.  
• Volatile Configuration bits, VRnB:VRnA and Gx,  
are forced to ‘0’.  
POR Starts Reset Delay Timer;  
After it Times Out, the Serial Interface  
Default Device Configuration  
Latched into Volatile Configuration  
Bits and DAC Register; POR  
can Operate (if VDD  
VDD(MIN))  
BOR,  
Status Bit is Set (‘1’)  
Volatile DAC Register = 000h,  
Volatile Memory Retains  
Data Values  
Volatile VRnB:VRnA = 00  
Volatile Gx =  
Volatile PDnB:PDnA = 11  
,
POR Forced  
Active  
0,  
T
PORD  
V
DD(MIN)  
Volatile Memory  
becomes Corrupted  
V
V
BOR  
POR  
RAM  
V
Device in  
Unknown  
State  
Device in Unknown  
State  
Device Normal Operation  
in POR  
State  
Device in  
Power-  
Down  
Below Min.  
Operating  
Voltage  
State  
FIGURE 4-1:  
POR/BOR Operation.  
DS20006362A-page 54  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
4.2.3  
DEVICE CONFIGURATION  
MEMORY  
4.2  
Device Memory  
User memory includes the following types:  
There are up to sixteen nonvolatile user bits that are not  
directly mapped into the address space. These non-  
volatile device Configuration bits control the WiperLock  
technology for DAC registers and configuration (two bits  
per DAC).  
Volatile Register Memory (RAM)  
Nonvolatile Register Memory  
Device Configuration Memory  
Each memory address is 16 bits wide. There are up to  
17 nonvolatile user control bits that do not reside in  
memory-mapped register space (see Section 4.2.3  
“Device Configuration Memory”).  
The Status register shows the states of the device  
WiperLock technology Configuration bits. The Status  
register is described in Register 4-6.  
The operation of WiperLock technology is discussed in  
Section 4.2.6 “WiperLock Technology”.  
4.2.1  
VOLATILE REGISTER MEMORY  
(RAM)  
There are up to twelve volatile memory locations:  
4.2.4  
READ commands of  
unimplemented bits as ‘0’.  
UNIMPLEMENTED REGISTER BITS  
• DAC0 through DAC7 Output Value registers  
• VREF Select register  
a
valid location will read  
• Power-Down Configuration register  
• Gain and Status register  
4.2.5  
UNIMPLEMENTED (RESERVED)  
LOCATIONS  
• WiperLock Technology Status register  
Normal (voltage) commands (READ or WRITE) to any  
unimplemented memory address (reserved) will result  
in a Command Error (CMDERR) condition. READ  
commands of a reserved location will read bits as ‘1’.  
The volatile memory starts functioning when the  
device VDD is at (or above) the RAM Retention Voltage  
(VRAM). The volatile memory will be loaded with the  
default device values when the VDD rises across the  
VPOR/VBOR voltage trip point.  
High-Voltage Commands (enable or disable) to any  
unimplemented Configuration bits will result in a  
Command Error (CMDERR) condition.  
4.2.2  
NONVOLATILE REGISTER  
MEMORY  
4.2.5.1  
Default Factory POR Memory State  
of Nonvolatile Memory (EEPROM)  
This device family uses the nonvolatile memory for the  
DAC output value and Configuration registers:  
Table 4-2 shows the default factory POR initialization  
of the device memory map for the 8, 10 and 12-bit  
devices. In the case of volatile memory devices  
(MCP48FVBXX), the factory default values cannot be  
modified.  
• Nonvolatile DAC0 through DAC7 Output Value  
registers  
• Nonvolatile VREF Select register  
• Nonvolatile Power-Down Configuration register  
• Nonvolatile Gain register  
Note:  
The volatile memory locations will be  
determined by the nonvolatile memory  
states (registers and device Configuration  
bits).  
The nonvolatile memory starts functioning below the  
device’s VPOR/VBOR trip point, and is loaded into the  
corresponding volatile registers whenever the device  
rises above the POR/BOR voltage trip point.  
The device starts writing the nonvolatile (EEPROM)  
memory location at the completion of the serial  
interface command, after the Acknowledge pulse of the  
WRITE single command. Continuous WRITE  
commands addressing the nonvolatile memory are not  
permitted.  
Note:  
When the nonvolatile memory is written,  
the corresponding volatile memory is not  
modified.  
Nonvolatile DAC registers enable the stand-alone  
operation of the device (without microcontroller control)  
after being programmed to the desired value.  
2020 Microchip Technology Inc.  
DS20006362A-page 55  
MCP48FXBX4/8  
TABLE 4-1:  
MCP48FXBX4/8 MEMORY MAP  
Function  
Function  
00h Volatile DAC0 Register  
01h Volatile DAC1 Register  
02h Volatile DAC2 Register  
03h Volatile DAC3 Register  
04h Volatile DAC4 Register  
05h Volatile DAC5 Register  
06h Volatile DAC6 Register  
07h Volatile DAC7 Register  
CL0  
CL1  
CL2  
CL3  
CL4  
CL5  
CL6  
CL7  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
10h Nonvolatile DAC0 Register  
11h Nonvolatile DAC1 Register  
12h Nonvolatile DAC2 Register  
13h Nonvolatile DAC3 Register  
14h Nonvolatile DAC4 Register  
15h Nonvolatile DAC5 Register  
16h Nonvolatile DAC6 Register  
17h Nonvolatile DAC7 Register  
DL0  
DL1  
DL2  
DL3  
DL4  
DL5  
DL6  
DL7  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
08h  
V
Register  
18h Nonvolatile V  
Register  
REF  
REF  
09h Power-Down Register  
Y
19h Nonvolatile Power-Down  
Register  
Y
0Ah Gain and Status Register  
Y
Y
Y
Y
1Ah Nonvolatile Gain Register  
1Bh Reserved  
Y
Y
0Bh WiperLock™ Technology  
Status Register  
Volatile Memory Address Range  
Nonvolatile Memory Address Range  
Note 1:  
Device Configuration memory bits require a high-voltage enable or disable command  
(LATn = V or CS = V ) to modify the bit value.  
IHH  
IHH  
TABLE 4-2:  
FACTORY DEFAULT POR/BOR VALUES  
POR/BOR Value  
POR/BOR Value  
Function  
Function  
00h Volatile DAC0 Register  
01h Volatile DAC1 Register  
02h Volatile DAC2 Register  
03h Volatile DAC3 Register  
04h Volatile DAC4 Register  
05h Volatile DAC5 Register  
06h Volatile DAC6 Register  
07h Volatile DAC7 Register  
7Fh  
7Fh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
1FFh 7FFh  
1FFh 7FFh  
3FFh FFFh  
3FFh FFFh  
3FFh FFFh  
3FFh FFFh  
3FFh FFFh  
3FFh FFFh  
10h Nonvolatile DAC0 Register  
11h Nonvolatile DAC1 Register  
12h Nonvolatile DAC2 Register  
13h Nonvolatile DAC3 Register  
14h Nonvolatile DAC4 Register  
15h Nonvolatile DAC5 Register  
16h Nonvolatile DAC6 Register  
17h Nonvolatile DAC7 Register  
7Fh  
1FFh 7FFh  
1FFh 7FFh  
3FFh FFFh  
3FFh FFFh  
3FFh FFFh  
3FFh FFFh  
3FFh FFFh  
3FFh FFFh  
7Fh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
08h V  
Register  
0000h 0000h 0000h  
0000h 0000h 0000h  
18h Nonvolatile V  
Register  
REF  
0000h 0000h 0000h  
0000h 0000h 0000h  
REF  
09h Power-Down Register  
19h Nonvolatile Power-Down  
Register  
0Ah Gain and Status Register  
0080h 0080h 0080h  
0000h 0000h 0000h  
1Ah Nonvolatile Gain Register  
0000h 0000h 0000h  
(1)  
0Bh WiperLock™ Technology  
Status Register  
1Bh Reserved  
Volatile Memory address range  
Note 1: Reading a reserved memory location results in the SPI command error condition. The SDO pin will output all  
0’s. Forcing the CS pin to the V state will reset the SPI interface.  
Nonvolatile Memory address range  
IH  
DS20006362A-page 56  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
To modify the Configuration bits, the HVC pin must be  
forced to the VIHH state and then an enable or disable  
command must be received for the desired pair of  
DAC register addresses.  
4.2.6  
WIPERLOCK TECHNOLOGY  
The MCP48FXBX4/8 WiperLock technology allows  
application-specific device settings (DAC register and  
configuration) to be secured without requiring the use  
of an additional write-protect pin. There are two Con-  
figuration bits (DLn:CLn) for each DAC channel (DAC0  
through DAC7).  
Example: To modify the CL0 bit, the enable or disable  
command specifies address 00h; while to modify the  
DL0 bit, the enable or disable command specifies  
address 10h.  
Dependent on the state of the DLn:CLn Configuration  
bits, WiperLock technology prevents the serial com-  
mands from the following actions on the DACn  
registers and bits:  
Note:  
During device communication, if the  
device address/command combination is  
invalid or an unimplemented address is  
specified, the MCP48FXBX4/8 will com-  
mand error that command byte. To reset  
the serial interface state machine, the CS  
pin must be driven to the Inactive state  
(VIH) before returning to the Active state  
(VIL or VIHH).  
• Writing to the specified volatile DACn register  
memory location  
• Writing to the specified nonvolatile DACn register  
memory location  
• Writing to the specified volatile DACn  
Configuration bits  
• Writing to the specified nonvolatile DACn  
Configuration bits  
4.2.6.1  
POR/BOR Operation with  
Each pair of these Configuration bits controls one of  
the four modes.  
WiperLock Technology Enabled  
The WiperLock Technology state is not affected by a  
POR/BOR event. A POR/BOR event will load the volatile  
DACn register values with the nonvolatile or default  
factory values (in case of volatile memory only devices).  
TABLE 4-3:  
DLn:CLn(1)  
WIPERLOCK™ TECHNOLOGY CONFIGURATION BITS FUNCTIONAL DESCRIPTION  
Register/Bits  
DACn Wiper  
DACn Configuration(1)  
Comments  
Volatile Nonvolatile Volatile Nonvolatile  
11  
10  
Locked  
Locked  
Locked  
Locked  
Locked  
Locked  
Locked  
All DACn registers are locked.  
Unlocked  
All DACn registers are locked, except for volatile  
DACn Configuration registers. This allows  
operation of Power-Down modes.  
01  
00  
Unlocked  
Unlocked  
Locked  
Unlocked  
Unlocked  
Locked  
Volatile DACn registers are unlocked, nonvolatile  
DACn registers are locked.  
Unlocked  
Unlocked All DACn registers are unlocked.  
Note 1: The state of these Configuration bits (DLn:CLn) is reflected in the WLnB:WLnA bits, as shown in  
Register 4-6. DAC Configuration bits include Voltage Reference Control bits (VRnB:VRnA), Power-Down  
Control bits (PDnB:PDnA) and Output Gain bits (Gx).  
2020 Microchip Technology Inc.  
DS20006362A-page 57  
MCP48FXBX4/8  
4.2.7  
DEVICE REGISTERS  
Register 4-1 shows the format of the DAC Output  
Value registers for both volatile and nonvolatile mem-  
ory locations. These registers will be either 8 bits,  
10 bits or 12 bits wide. The values are right justified.  
REGISTER 4-1:  
DAC0 TO DAC7: DAC OUTPUT VALUE REGISTERS  
(ADDRESSES 00h THROUGH 07h/10h THROUGH 17h; VOLATILE/NONVOLATILE)  
R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n  
U-0  
U-0  
U-0  
U-0  
12-bit  
10-bit  
8-bit  
D11 D10 D09 D08 D07 D06 D05 D04 D03 D02 D01 D00  
(1)  
(1)  
(1)  
(1)  
D09 D08 D07 D06 D05 D04 D03 D02 D01 D00  
(1)  
(1)  
D07 D06 D05 D04 D03 D02 D01 D00  
bit 0  
bit 15  
Legend:  
R = Readable bit  
-n = Value at POR  
= 12-bit device  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
= 10-bit device  
= 8-bit device  
12-Bit  
10-Bit  
8-Bit  
bit 15-12 bit 15-10 bit 15-8 Unimplemented: Read as ‘0’  
bit 11-0  
bit 9-0  
D11-D00: DAC Output Value – 12-bit devices  
FFFh = Full-scale output value  
7FFh = Midscale output value  
000h = Zero scale output value  
D09-D00: DAC Output Value – 10-bit devices  
3FFh = Full-scale output value  
1FFh = Midscale output value  
000h = Zero scale output value  
bit 7-0  
D07-D00: DAC Output Value – 8-bit devices  
FFh = Full-scale output value  
7Fh = Midscale output value  
000h = Zero scale output value  
Note 1: Unimplemented bit, read as ‘0’.  
DS20006362A-page 58  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
Register 4-2 shows the format of the Voltage  
Reference Control register. Each DAC has two bits to  
control the source of the DAC’s voltage reference. This  
register is for both volatile and nonvolatile memory  
locations.  
REGISTER 4-2:  
VREF: VOLTAGE REFERENCE CONTROL REGISTER  
(ADDRESSES 08h AND 18h; VOLATILE/NONVOLATILE)  
R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n  
Octal VR7B VR7A VR6B VR6A VR5B VR5A VR4B VR4A VR3B VR3A VR2B VR2A VR1B VR1A VR0B VR0A  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Quad  
VR3B VR3A VR2B VR2A VR1B VR1A VR0B VR0A  
bit 0  
bit 15  
Legend:  
R = Readable bit  
-n = Value at POR  
= Quad-channel device  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
= Octal-channel device  
Octal  
Quad  
bit 15-8 Unimplemented: Read as ‘0’  
bit 15-0 bit 7-0  
VRnB:VRnA: DAC Voltage Reference Control  
11= VREF pin (buffered); VREF buffer enabled  
10= VREF pin (unbuffered); VREF buffer disabled  
01= Internal band gap (1.22V typical); VREF buffer enabled, VREF voltage driven when powered  
down  
00= VDD (unbuffered); VREF buffer disabled  
Use this state with Power-Down bits for lowest current.  
Note 1: Unimplemented bit, read as ‘0’.  
2020 Microchip Technology Inc.  
DS20006362A-page 59  
MCP48FXBX4/8  
Register 4-3 shows the format of the Power-Down  
Control register. Each DAC has two bits to control the  
Power-Down state of the DAC. This register is for both  
volatile and nonvolatile memory locations.  
REGISTER 4-3:  
POWER-DOWN CONTROL REGISTER (ADDRESSES 09h, 19h;  
VOLATILE/NONVOLATILE)  
R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n  
Octal PD7B PD7A PD6B PD6A PD5B PD5A PD4B PD4A PD3B PD3A PD2B PD2A PD1B PD1A PD0B PD0A  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Quad  
PD0B PD0A PD0B PD0A PD0B PD0A PD0B PD0A  
bit 0  
bit 15  
Legend:  
R = Readable bit  
-n = Value at POR  
= Quad-channel device  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
= Octal-channel device  
Octal  
Quad  
bit 15-8 Unimplemented: Read as ‘1’  
bit 15-0 bit 7-0  
PDnB:PDnA: DAC Power-Down Control(2)  
11= Powered down – VOUT is open circuit  
10= Powered down – VOUT is loaded with a 125 kresistor to ground  
01= Powered down – VOUT is loaded with a 1 kresistor to ground  
00= Normal operation (not powered down)  
Note 1: Unimplemented bit, read as ‘0’.  
2: See Table 5-4 for more details.  
DS20006362A-page 60  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
Register 4-4 shows the format of the volatile Gain  
Control and System Status register. Each DAC has one  
bit to control the gain of the DAC and three status bits.  
REGISTER 4-4:  
GAIN CONTROL AND SYSTEM STATUS REGISTER (ADDRESS 0Ah; VOLATILE)  
R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/C-1  
R-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
Octal  
Quad  
G7  
G6  
G5  
G4  
G3  
G3  
G2  
G2  
G1  
G1  
G0 POR EEWA  
G0 POR EEWA  
(1)  
(1)  
(1)  
(1)  
bit 15  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
= Quad-channel device  
W = Writable bit  
‘1’ = Bit is set  
C = Clearable bit  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
x = Bit is unknown  
= Octal-channel device  
Octal  
Quad  
bit 15-12 Unimplemented: Read as ‘0’  
bit 15-8 bit 11-8  
Gn: DAC Channel n Output Driver Gain Control  
1= 2x gain  
0= 1x gain  
bit 7  
bit 7  
POR: Power-on Reset (Brown-out Reset) Status bit  
This bit indicates if a POR or BOR event has occurred since the last READcommand of this  
register. Reading this register clears the state of the POR status bit.  
1= A POR (BOR) event has occurred since the last read of this register; reading this register  
clears this bit  
0= A POR (BOR) event has not occurred since the last read of this register  
bit 6  
bit 6  
EEWA: EEPROM Write Active Status  
This bit indicates if the EEPROM write cycle is occurring.  
1= An EEPROM write cycle is currently occurring; only serial commands to the volatile mem-  
ory are allowed  
0= An EEPROM write cycle is NOT currently occurring  
bit 5-0  
bit 5-0  
Unimplemented: Read as ‘0’  
Note 1: Unimplemented bit, read as ‘0’.  
2020 Microchip Technology Inc.  
DS20006362A-page 61  
MCP48FXBX4/8  
Register 4-5 shows the format of the nonvolatile Gain  
Control register. Each DAC has one bit to control the  
gain of the DAC.  
REGISTER 4-5:  
GAIN CONTROL REGISTER (ADDRESS 1Ah; NONVOLATILE  
)
U-0  
R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n R/W-n U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
Octal  
Quad  
G7  
G6  
G5  
(1)  
G4  
G3  
G3  
G2  
G2  
G1  
G1  
G0  
G0  
(1)  
(1)  
(1)  
bit 15  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
= Quad-channel device  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
= Octal-channel device  
Octal  
Quad  
bit 15-12 Unimplemented: Read as ‘0’  
bit 15-8 bit 11-8  
Gn: DACn Output Driver Gain Control bits  
1= 2x gain  
0= 1x gain  
bit 7-0  
bit 7-0  
Unimplemented bits.  
Note 1: Unimplemented bit, read as ‘0’.  
DS20006362A-page 62  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
Register 4-6 shows the format of the DAC WiperLock  
Technology Status register.  
REGISTER 4-6:  
DAC WiperLock™ TECHNOLOGY STATUS REGISTER (ADDRESS 0Bh; VOLATILE)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
WL7B WL7A WL6B WL6A WL5B WL5A WL4B WL4A WL3B WL3A WL2B WL2A WL1B WL1A WL0B WL0A  
Octal  
Quad  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
WL3B WL3A WL2B WL2A WL1B WL1A WL0B WL0A  
bit 0  
bit 15  
Legend:  
R = Readable bit  
-n = Value at POR  
= Quad-channel device  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
= Octal-channel device  
Octal  
Quad  
bit 15-8 Unimplemented: Read as ‘0’  
bit 15-0 bit 7-0 WLnB:WLnA: WiperLock™ Technology Status  
These bits reflect the state of the DLn:CLn nonvolatile Configuration bits.  
11= DAC Wiper and DAC Configuration (volatile and nonvolatile registers) are locked  
(DLn = CLn = Enabled)  
10= DAC Wiper (volatile and nonvolatile) and DAC Configuration (nonvolatile registers) are  
locked (DLn = Enabled; CLn = Disabled)  
01= DAC Wiper (nonvolatile) and DAC Configuration (nonvolatile registers) are locked  
(DLn = Disabled; CLn = Enabled)  
00= DAC Wiper and DAC Configuration are unlocked (DLn = CLn = Disabled)  
Note 1: POR value depends on the programmed values of the DLn:CLn Configuration bits. The devices are  
shipped with a default DLn:CLn Configuration bit state of ‘0’.  
2: Unimplemented bit, read as ‘0’.  
2020 Microchip Technology Inc.  
DS20006362A-page 63  
MCP48FXBX4/8  
NOTES:  
DS20006362A-page 64  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
The functional blocks of the DAC include:  
5.0  
DAC CIRCUITRY  
Resistor Ladder  
The Digital-to-Analog Converter circuitry converts a  
digital value into its analog representation. The  
description shows the functional operation of the device.  
Voltage Reference Selection  
Output Buffer/VOUT Operation  
Internal Band Gap  
The DAC circuit uses a resistor ladder implementation.  
Devices have up to eight DACs.  
Latch Pins (LATn)  
Power-Down Operation  
Figure 5-1 shows the functional block diagram for the  
MCP48FXBX4/8 DAC circuitry.  
Power-Down  
Operation  
VDD  
PDnB:PDnAand  
VRnB:VRnA  
Internal Band Gap  
VDD  
Voltage  
Reference  
Selection  
VREF  
VRnB:VRnA and  
PDnB:PDnA  
Band Gap  
(1.22V typical)  
VDD  
PDnB:PDnA  
VRnB:VRnA  
Power-Down  
Operation  
V
A (RL)  
RL  
DAC  
Output  
Selection  
VDD  
RS(2 )  
n
PDnB:PDnA  
RS(2  
n
– 1)  
VW  
RS(2n – 2)  
VOUT  
RS(2n – 3)  
PDnB:PDnA  
Gain  
(1x or 2x)  
RRL  
(~120 k)  
Output Buffer/VOUT  
Operation  
Power-Down  
Operation  
RS(2)  
RS(1)  
DAC Register Value  
VW = --------------------------------------------------------------------- VRL  
# Resistor in Resistor Ladder  
B
Where:  
# Resistors in Resistor Ladder =  
Resistor Ladder  
256 (MCP48FXB0X)  
1024 (MCP48FXB1X)  
4096 (MCP48FXB2X)  
FIGURE 5-1:  
MCP48FXBX4/8 DAC Module Block Diagram.  
2020 Microchip Technology Inc.  
DS20006362A-page 65  
MCP48FXBX4/8  
Equation 5-1 shows the calculation for the step  
resistance:  
5.1  
Resistor Ladder  
The resistor ladder is a digital potentiometer with the B  
Terminal internally grounded and the A Terminal  
connected to the selected reference voltage (see  
Figure 5-2). The volatile DAC register controls the  
wiper position. The Wiper Voltage (VW) is proportional  
to the DAC register value divided by the number of  
Resistor Elements (RS) in the ladder (256, 1024 or  
4096) related to the VRL voltage.  
EQUATION 5-1:  
RS CALCULATION  
RRL  
RS = -------------  
8-Bit Device  
256  
RRL  
RS = ----------------  
10-Bit Device  
12-Bit Device  
1024  
The output of the resistor network will drive the input of  
an output buffer.  
RRL  
RS = ----------------  
4096  
V
RL  
DAC  
The maximum wiper position is 2n – 1,  
while the number of resistors in the  
resistor ladder is 2n. This means that  
when the DAC register is at full scale,  
there is one Resistor Element (RS)  
between the wiper and the VRL voltage.  
Register  
Note:  
PDnB:PDnA  
RS(2 )  
n
(1)  
2n – 1  
2n – 2  
RW  
RS(2  
n
( )  
1
– 1)  
RW  
If the unbuffered VREF pin is used as the VRL voltage  
source, this voltage source should have a low output  
impedance.  
RS(2n – 2)  
( )  
1
RW  
2n – 3  
When the DAC is powered down, the resistor ladder is  
disconnected from the selected reference voltage.  
VW  
RS(2n – 3)  
5.2  
Voltage Reference Selection  
( )  
1
RW  
RRL  
2
The resistor ladder has up to four sources for the  
reference voltage. Two user control bits (VRnB:VRnA)  
are used to control the selection with the selection con-  
nected to the VRL node (see Figure 5-3 and Figure 5-4).  
RS(2)  
( )  
1
RW  
1
0
RS(1)  
( )  
1
RW  
VRnB:VRnA  
VREF  
VDD  
Analog Mux  
Band Gap  
VRL  
Note 1:  
The analog Switch Resistance (R ) does not  
W
affect performance due to the voltage divider  
configuration.  
Buffer  
FIGURE 5-2:  
Resistor Ladder Model.  
FIGURE 5-3:  
Resistor Ladder Reference  
The resistor network is made of these three parts:  
Voltage Selection Block Diagram.  
• Resistor ladder (string of RS elements)  
• Wiper switches  
• DAC register decode  
The four voltage source options for the resistor ladder  
are:  
1. VDD pin voltage.  
The Resistor Ladder (RRL) has a typical impedance of  
approximately 120 k. This resistance may vary from  
device to device by up to ±20%. Since this is a voltage  
divider configuration, the actual RRL resistance does  
2. Internal Voltage Reference (VBG).  
3.  
VREF pin voltage unbuffered.  
4. VREF pin voltage internally buffered.  
not affect the output given a fixed voltage at VRL  
.
DS20006362A-page 66  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
The selection of the voltage is specified with the volatile  
VRnB:VRnA Configuration bits (see Register 4-2).  
There are nonvolatile and volatile VRnB:VRnA Config-  
uration bits. On a POR/BOR event, the state of the  
nonvolatile VRnB:VRnA Configuration bits is latched  
into the volatile VRnB:VRnA Configuration bits.  
5.2.2  
UNBUFFERED MODE  
The VREF pin voltage may be from VSS to VDD  
.
Note 1: The voltage source should have a low  
output impedance. If the voltage source  
has a high output impedance, then the  
voltage on the VREF pin is lower than  
expected. The resistor ladder has a  
typical impedance of 140 kand a typical  
capacitance of 29 pF.  
When the user selects the VDD as reference, the VREF  
pin voltage is not connected to the resistor ladder.  
VDD  
VDD  
2: If the VREF pin is tied to the VDD voltage,  
the VDD mode (VRnB:VRnA  
recommended.  
= 00) is  
PDnB:PDnA and  
VRnB:VRnA  
5.2.3  
BAND GAP MODE  
PDnB:PDnA and  
VRnB:VRnA  
If the internal band gap is selected, then the external  
VREF pin should not be driven and should only use  
high-impedance loads.  
(1)  
Band Gap  
(1.227V typical)  
The band gap output is buffered, but the internal  
switches limit the current that the output should source  
to the VREF pin. The resistor ladder buffer is used to  
drive the band gap voltage for the cases of multiple  
DAC outputs. This ensures that the resistor ladders are  
always properly sourced when the band gap is  
selected.  
VRL  
+
VREF  
VDD  
5.3  
Internal Band Gap  
The internal band gap is designed to drive the resistor  
ladder buffer.  
PDnB:PDnA and  
VRnB:VRnA  
The resistance of a Resistor Ladder (RRL) is targeted to  
be 140 k(40 k), which means a minimum  
resistance of 100 k.  
Note 1: The Band Gap Voltage (VBG) is 1.22V  
typical. The band gap output goes  
through the buffer with a 2x gain to  
create the VRL voltage. See Table 5-1  
for additional information on the  
band gap circuit.  
The band gap selection can be used across the VDD  
voltages while maximizing the VOUT voltage ranges.  
For VDD voltages below the 2 × Gain × VBG voltage, the  
output for the upper codes will be clipped to the VDD  
voltage. Table 5-1 shows the maximum DAC register  
code given device VDD and Gain bit setting.  
FIGURE 5-4:  
Reference Voltage Selection  
Implementation Block Diagram.  
If the VREF pin is selected, then a selection has to be  
made between the Buffered and Unbuffered mode.  
TABLE 5-1:  
VOUT USING BAND GAP  
Max DAC Code(1)  
5.2.1  
BUFFERED MODE  
Comment  
12-Bit 10-Bit 8-Bit  
The VREF pin voltage may be from 0.01V to VDD – 0.04V.  
The input buffer (amplifier) provides low offset voltage,  
low noise and a very high input impedance, with only  
minor limitations on the input range and frequency  
response.  
1
2
1
2
FFFh 3FFh FFh VOUT(max) = 2.44V(2)  
FFFh 3FFh FFh VOUT(max) = 4.88V(2)  
FFFh 3FFh FFh VOUT(max) = 2.44V(2)  
8CDh 233h 8Ch ~ 0 to 56% range  
5.5  
2.7  
Note 1: Any variation or noises on the reference  
source can directly affect the DAC output.  
The reference voltage needs to be as  
clean as possible for accurate DAC  
performance.  
Note 1: Without the VOUT pin voltage being  
clipped.  
2: When VBG = 1.22V typical.  
3: Band gap performance achieves full  
performance starting from a VDD of 2.0V.  
2: If the VREF pin is tied to the VDD voltage,  
the VDD mode (VRnB:VRnA  
recommended.  
= 00) is  
2020 Microchip Technology Inc.  
DS20006362A-page 67  
MCP48FXBX4/8  
5.4.2  
OUTPUT VOLTAGE  
5.4  
Output Buffer/V  
Operation  
OUT  
The volatile DAC register values, along with the  
device’s Configuration bits, control the analog VOUT  
voltage. The volatile DAC register’s value is unsigned  
binary. The formula for the output voltage is given in  
Equation 5-2. Table 5-5 shows examples of volatile  
DAC register values and the corresponding theoretical  
The output driver buffers the Wiper Voltage (VW) of the  
resistor ladder.  
The DAC output is buffered with a low-power and pre-  
cision output amplifier (op amp). This amplifier provides  
a rail-to-rail output with low offset voltage and low  
noise. The amplifier’s output can drive the resistive and  
high capacitive loads without oscillation. The amplifier  
provides a maximum load current, which is enough for  
most programmable voltage reference applications.  
See Section 1.0 “Electrical Characteristics” for the  
specifications of the output amplifier.  
V
OUT voltage for the MCP48FXBX4/8 devices.  
EQUATION 5-2: CALCULATING OUTPUT  
VOLTAGE (VOUT  
VRL DAC Register Value  
)
VOUT = --------------------------------------------------------------------- Gain  
# Resistor in Resistor Ladder  
Note:  
The load resistance must be kept higher  
than 5 kfor the stable and expected  
analog output (to meet electrical  
specifications).  
Where:  
# Resistors in R-Ladder = 4096 (MCP48FXB2X)  
1024 (MCP48FXB1X)  
256 (MCP48FXB0X)  
Figure 5-5 shows the block diagram of the output driver  
circuit.  
The user can select the output gain of the output  
amplifier. The gain options are:  
Note:  
When Gain = 2 (VRL= VREF) and if  
VREF > VDD/2, the VOUT voltage will be  
limited to VDD. So if VREF = VDD, then the  
VOUT voltage will not change for volatile  
DAC register values midscale and  
greater, since the op amp is at full-scale  
output.  
a) Gain of 1, when either the VDD, External VREF or  
Band Gap mode are used. In case of the Band  
Gap mode, the effective gain is 2; see  
Section 5.3 “Internal Band Gap”.  
b) Gain of 2, when the External VREF or Internal  
Band Gap modes are used. In case of the Band  
Gap mode, the effective gain is 4; see  
Section 5.3 “Internal Band Gap”.  
The following events update the DAC register value,  
and therefore, the analog Voltage Output (VOUT):  
• POR  
• BOR  
WRITEcommand  
VDD  
The VOUT voltage starts driving to the new value after  
the event has occurred.  
PDnB:PDnA  
5.4.3  
STEP VOLTAGE (VS)  
VW  
+
The step voltage depends on the device resolution and  
the calculated output voltage range. One LSb is  
defined as the ideal voltage difference between two  
successive codes. The step voltage can be easily cal-  
culated by using Equation 5-3 (DAC register value is  
equal to 1). Theoretical step voltages are shown in  
Table 5-2 for several VREF voltages.  
VOUT  
PDnB:PDnA  
Gain  
(1x or 2x)  
EQUATION 5-3:  
VS CALCULATION  
FIGURE 5-5:  
5.4.1  
Output Driver Block Diagram.  
VRL  
VS = --------------------------------------------------------------------- Gain  
# Resistor in Resistor Ladder  
PROGRAMMABLE GAIN  
Where:  
The amplifier’s gain is controlled by the Gain (G)  
Configuration bit (see Register 4-5) and the VRL  
reference selection.  
# Resistors in R-Ladder = 4096 (12-bit)  
1024 (10-bit)  
The volatile Gain bit value can be modified by:  
• POR events  
256 (8-bit)  
• BOR events  
• SPI WRITEcommands  
DS20006362A-page 68  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
TABLE 5-2:  
THEORETICAL STEP  
VOLTAGE (VS)(1)  
5.4.5  
DRIVING RESISTIVE AND  
CAPACITIVE LOADS  
The VOUT pin can drive up to 100 pF of capacitive load  
in parallel with a 5 kresistive load (to meet electrical  
specifications).  
V
REF  
5.0  
2.7  
1.8  
1.5  
1.0  
1.22 mV 659 µV 439 µV 366 µV 244 µV 12-bit  
4.88 mV 2.64 mV 1.76 mV 1.46 mV 977 µV 10-bit  
19.5 mV 10.5 mV 7.03 mV 5.86 mV 3.91 mV 8-bit  
VOUT drops slowly as the load resistance decreases  
after about 3.5 k. It is recommended to use a load with  
RL greater than 5 k.  
V
S
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase mar-  
gin decreases and the closed-loop bandwidth is  
reduced. This produces gain peaking in the frequency  
response with overshoot and ringing in the step  
response. That is, since the VOUT pin’s voltage does  
not quickly follow the buffer’s input voltage (due to the  
large capacitive load), the output buffer will overshoot  
the desired target voltage. Once the driver detects this  
overshoot, it compensates by forcing it to a voltage  
below the target. This causes voltage ringing on the  
VOUT pin.  
Note 1: When Gain = 1x, V = V and V = 0V.  
FS  
RL  
ZS  
5.4.4  
Figure 5-6 shows an example of the slew rate for the  
OUT pin. The slew rate can be affected by the charac-  
OUTPUT SLEW RATE  
V
teristics of the circuit connected to the VOUT pin.  
VOUT(B)  
VOUT(A)  
When driving large capacitive loads with the output  
buffer, a small Series Resistor (RISO) at the output (see  
Figure 5-7) improves the output buffer’s stability (feed-  
back loop’s phase margin) by making the output load  
resistive at higher frequencies. The bandwidth will be  
generally lower than the bandwidth with no capacitive  
load.  
DACn = A  
DACn = B  
Time  
V
OUTBVOUTA  
Slew Rate = --------------------------------------------------  
T  
FIGURE 5-6:  
VOUT Pin Slew Rate.  
VOUT  
VW  
RISO  
RL  
5.4.4.1 Small Capacitive Load  
+
VCL  
With a small Capacitive Load (CL), the output buffer’s  
current is not affected, but the VOUT pin’s voltage is not  
a step transition from one output value (DAC register  
value) to the next output value. The change of the VOUT  
voltage is limited by the output buffer’s characteristics,  
so the VOUT pin voltage will have a slope from the old  
voltage to the new one. This slope is fixed for the output  
buffer and is referred to as the Buffer Slew Rate  
(SRBUF).  
CL  
Gain  
FIGURE 5-7:  
Circuit to Stabilize the  
Output Buffer for Large Capacitive Loads (CL).  
The RISO resistor value for your circuit needs to be  
selected. The resulting frequency response peaking  
and step response overshoot for this RISO resistor  
value should be verified on the bench. Modify the  
RISO’s resistance value until the output characteristics  
meet your requirements.  
5.4.4.2  
Large Capacitive Load  
With a larger capacitive load, the slew rate is determined  
by two factors:  
• The output buffer’s Short-Circuit Current (ISC  
)
• The VOUT pin’s external load  
A method to evaluate the system’s performance is to  
inject a step voltage on the VREF pin and observe the  
IOUT cannot exceed the output buffer’s Short-Circuit  
Current (ISC), which fixes the output Buffer Slew Rate  
VOUT pin’s characteristics.  
(SRBUF). The voltage on the Capacitive Load, VCL  
changes at a rate proportional to IOUT, which fixes a  
Capacitive Load Slew Rate (SRCL).  
,
Note: Additional insight into circuit design for  
driving capacitive loads can be found in  
AN884, “Driving Capacitive Loads with  
Op Amps” (DS00884).  
The VCL voltage slew rate is limited to the slower of the  
output buffer’s internally set Slew Rate (SRBUF) and  
the Capacitive Load Slew Rate (SRCL).  
2020 Microchip Technology Inc.  
DS20006362A-page 69  
MCP48FXBX4/8  
The Power-Down bits are modified by using a WRITE  
command to the volatile Power-Down register or a POR  
event which transfers the nonvolatile Power-Down  
register to the volatile Power-Down register.  
5.5  
Power-Down Operation  
To allow the application to conserve power when the  
DAC operation is not required, three Power-Down  
modes are available. The Power-Down configuration  
bits (PDnB:PDnA) control the power-down operation  
(Figure 5-8 and Table 5-3). On devices with multiple  
DACs, each DACs Power-Down mode is individually  
controllable. All Power-Down modes do the following:  
TABLE 5-3:  
POWER-DOWN BITS AND  
OUTPUT RESISTIVE LOAD  
PDnB PDnA  
Function  
0
0
1
1
0
1
0
1
Normal operation  
• Turn off most DAC module’s internal circuits  
(output op amp, resistor ladder, etc.)  
1 kresistor to ground  
125 kresistor to ground  
Open circuit  
• Op amp output becomes high-impedance to the  
VOUT pin  
• Disconnect the resistor ladder from the Reference  
Table 5-4 shows the current sources for the DAC based  
on the selected source of the DAC’s reference voltage  
and if the device is in a normal operating mode or in  
one of the Power-Down modes.  
Voltage (VRL  
)
• Retain the value of the volatile DAC register and  
Configuration bits and the nonvolatile (EEPROM)  
DAC register and Configuration bits  
TABLE 5-4:  
DAC CURRENT SOURCES  
Depending on the selected Power-Down mode, the  
following will occur:  
PDnB:A = 00,  
PDnB:A 00,  
Device VDD  
Current  
Source  
• VOUT pin is switched to one of the two resistive  
pull-downs (see Table 5-4):  
VRnB:A =  
VRnB:A =  
00 01 10 11 00 01 10 11  
- 125 k(typical)  
- 1 k(typical)  
• Op amp is powered down and the VOUT pin  
becomes high-impedance  
Output Op Amp  
Y
Y
Y
Y
Y
N(1)  
Y
Y
N
N
N
N
N
N(1)  
N
N
Resistor  
Ladder  
RL Op Amp  
Band Gap  
N
N
Y
Y
N
N
Y
N
N
N
N
Y
N
N
N
N
There is a delay (TPDE) between the PDnB:PDnA bits,  
changing from ‘00’ to either ‘01’, ‘10’ or ‘11’, with the op  
amp no longer driving the VOUT output and the pull-down  
resistors sinking current.  
Note 1: Current is sourced from the VREF pin, not  
the device VDD  
.
Section 7.0 “SPI Device Commands” describes the  
SPI commands for writing the power-down bits. The com-  
mand that can update the volatile PDnB:PDnA bits is a  
WRITEcommand (normal and high voltage).  
VDD  
PDnB:PDnA  
VW  
Note:  
The SPI serial interface circuit is not  
affected by the Power-Down mode. This  
circuit remains active in order to receive  
any command that might come from the  
master device.  
VOUT  
PDnB:PDnA  
Gain  
(1x or 2x)  
FIGURE 5-8:  
VOUT Power-Down Block  
Diagram.  
In any of the Power-Down modes where the VOUT pin  
is not externally connected (sinking or sourcing cur-  
rent), the power-down current will typically be 680 nA  
for a quad DAC device. As the number of DACs  
increases, the device’s power-down current will also  
increase.  
DS20006362A-page 70  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
5.5.1  
EXITING POWER-DOWN  
5.6  
DAC Registers, Configuration Bits  
and Status Bits  
When the device exits Power-Down mode, the  
following occurs:  
The MCP48FXBX4/8 device family has both volatile  
and nonvolatile (EEPROM) memory options. Table 4-2  
shows the volatile and nonvolatile memory, and their  
interaction due to a POR event.  
• Disabled circuits (op amp, resistor ladder, etc.)  
are turned on  
• The resistor ladder is connected to the selected  
Reference Voltage (VRL  
)
There are five Configuration bits, DAC registers, and two  
volatile status bits in both the volatile and nonvolatile  
memory. The DAC registers (volatile and nonvolatile) will  
be either twelve bits (MCP48FXB2X), ten bits  
(MCP48FEB1X) or eight bits (MCP48FXB0X) wide.  
• The selected pull-down resistor is disconnected  
• The VOUT output will be driven to the voltage  
represented by the volatile DAC register’s value  
and Configuration bits  
When the device is first powered up, it automatically  
uploads the EEPROM memory values or factory  
default values (in case of MCP48FVBXX devices) to  
the volatile memory. The volatile memory determines  
the analog Output Voltage (VOUT) pin. After the device  
is powered up, the user can update the memory.  
The VOUT output signal requires time as these circuits  
are powered up and the output voltage is driven to the  
specified value as determined by the volatile DAC  
register and Configuration bits.  
Note:  
Since the op amp and resistor ladder are  
powered off (0V), the op amp’s Input  
Voltage (VW) can be considered 0V. There  
This memory is read and written through the SPI inter-  
face. See Section 6.0 “SPI Serial Interface Module”  
and Section 7.0 “SPI Device Commands” for more  
details on reading and writing the device’s memory.  
is  
a
delay (TPDD  
)
between the  
PDnB:PDnA bits updating to ‘00’ and the  
op amp driving the VOUT output. The  
op amp’s settling time (from 0V) needs to  
be taken into account to ensure the VOUT  
voltage reflects the selected value.  
When the nonvolatile memory is written, the device  
starts writing the EEPROM cell at the Acknowledge  
pulse of the WRITEsingle memory location command.  
Register 4-4 shows the operation of the device status  
bits and Table 4-2 shows the factory default value of a  
POR/BOR event for the device Configuration bits.  
Any WRITEcommand where the PDnB:PDnA bits are  
00’ will cause the device to exit the Power-Down mode.  
There are two status bits. These are only in volatile  
memory and indicate the status of the device. The POR  
bit indicates if the device VDD is above or below the  
POR trip point. During normal operation, this bit should  
be ‘1’. The EEWA bit indicates if an EEPROM write  
cycle is in progress. While the EEWA bit is ‘1’ (during  
the EEPROM writing), all commands are ignored,  
except for the READcommand.  
2020 Microchip Technology Inc.  
DS20006362A-page 71  
MCP48FXBX4/8  
5.7  
Latch Pins (LATn)  
Serial Shift Reg.  
The Latch pins control when the volatile DAC register  
value is transferred to the DAC wiper. This is useful for  
applications that need to synchronize the wiper(s)  
updates to an external event, such as zero-crossing or  
updates to the other wipers on the device. The LAT pin  
functionality is asynchronous to the serial interface  
operation.  
Register Address  
WRITECommand  
16 Clocks  
Vol. DAC Register n  
Transfer  
Data  
LAT  
SYNC  
(internal signal)  
When the LAT pin is high, transfers from the volatile DAC  
register to the DAC wiper are inhibited. The volatile DAC  
register value(s) can continue to update.  
DAC Wiper n  
Transfer  
Data  
When the LAT pin is low, the volatile DAC register value  
is transferred to the DAC wiper.  
LAT SYNC  
Comment  
1
1
0
0
1
0
1
0
0
0
1
0
No Transfer  
No Transfer  
Note:  
This allows the volatile DAC0 through  
DAC7 registers to be updated while the  
LATn pins are high, and to have outputs  
synchronously updated as the LATn pins  
are driven low.  
Vol. DAC Register n DAC Wiper n  
No Transfer  
FIGURE 5-9:  
LAT and DAC Interaction.  
Figure 5-9 shows the interaction of the LAT pin and the  
loading of the DAC Wiper n (from the volatile DAC  
register n). The transfers are level-driven. If the LAT pin  
is held low, the corresponding DAC wiper is updated as  
soon as the volatile DAC register value is updated.  
Since the DAC wiper n is updated from the volatile DAC  
register n, all DACs that are associated with a given  
LAT pin can be updated synchronously.  
If the application does not require synchronization, then  
this signal should be tied low.  
The LAT pin allows the DAC wiper to be updated to  
an external event and have multiple DAC  
channels/devices updating at a common event.  
Figure 5-10 shows two examples of using the LAT pin  
to control when the Wiper register is updated relative to  
the value of a sine wave signal.  
Case 1: Zero-Crossing of Sine Wave to Update the Volatile DAC0 Register (using LAT pin)  
Case 2: Fixed-Point Crossing of Sine Wave to Update the Volatile DAC0 Register (using LAT pin)  
Indicates Where LAT Pin Pulses are Active (volatile DAC0 register updated)  
FIGURE 5-10:  
LAT Pin Operation Example.  
DS20006362A-page 72  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
TABLE 5-5:  
Device  
DAC INPUT CODE VS. CALCULATED ANALOG OUTPUT (VOUT) (VDD = 5.0V)  
(3)  
LSb  
Equation  
5.0V/4096 1,220.7  
2.5V/4096 610.4  
VOUT  
Equation  
Volatile DAC  
Register Value  
Gain  
(1)  
VRL  
Selection(2)  
µV  
V
1111 1111 1111 5.0V  
1x  
1x  
2x(2)  
VRL (4095/4096) 1  
VRL (4095/4096) 1  
VRL (4095/4096) 2)  
VRL (2047/4096) 1)  
VRL (2047/4096) 1)  
VRL (2047/4096) 2)  
VRL (1023/4096) 1)  
VRL (1023/4096) 1)  
VRL (1023/4096) 2)  
VRL (0/4096) * 1)  
VRL (0/4096) * 1)  
VRL (0/4096) * 2)  
VRL (1023/1024) 1  
VRL (1023/1024) 1  
VRL (1023/1024) 2  
VRL (511/1024) 1  
VRL (511/1024) 1  
VRL (511/1024) 2  
VRL (255/1024) 1  
VRL (255/1024) 1  
VRL (255/1024) 2  
VRL (0/1024) 1  
4.998779  
2.499390  
4.998779  
2.498779  
1.249390  
2.498779  
1.248779  
0.624390  
1.248779  
0
2.5V  
0111 1111 1111 5.0V  
5.0V/4096 1,220.7  
2.5V/4096 610.4  
1x  
2.5V  
1x  
2x(2)  
0011 1111 1111 5.0V  
5.0V/4096 1,220.7  
2.5V/4096 610.4  
1x  
2.5V  
1x  
2x(2)  
0000 0000 0000 5.0V  
5.0V/4096 1,220.7  
2.5V/4096 610.4  
1x  
2.5V  
1x  
2x(2)  
0
0
11 1111 1111  
01 1111 1111  
00 1111 1111  
00 0000 0000  
1111 1111  
5.0V  
2.5V  
5.0V/1024 4,882.8  
2.5V/1024 2,441.4  
1x  
4.995117  
2.497559  
4.995117  
2.495117  
1.247559  
2.495117  
1.245117  
0.622559  
1.245117  
0
1x  
2x(2)  
5.0V  
2.5V  
5.0V/1024 4,882.8  
2.5V/1024 2,441.4  
1x  
1x  
2x(2)  
5.0V  
2.5V  
5.0V/1024 4,882.8  
2.5V/1024 2,441.4  
1x  
1x  
2x(2)  
5.0V  
2.5V  
5.0V/1024 4,882.8  
2.5V/1024 2,441.4  
1x  
1x  
VRL (0/1024) 1  
0
2x(2)  
VRL (0/1024) 1  
0
5.0V  
2.5V  
5.0V/256 19,531.3  
1x  
VRL (255/256) 1  
VRL (255/256) 1  
VRL (255/256) 2  
VRL (127/256) 1  
VRL (127/256) 1  
VRL (127/256) 2  
VRL (63/256) 1  
4.980469  
2.490234  
4.980469  
2.480469  
1.240234  
2.480469  
1.230469  
0.615234  
1.230469  
0
2.5V/256  
9,765.6  
1x  
2x(2)  
0111 1111  
5.0V  
2.5V  
5.0V/256 19,531.3  
2.5V/256 9,765.6  
1x  
1x  
2x(2)  
0011 1111  
5.0V  
2.5V  
5.0V/256 19,531.3  
2.5V/256 9,765.6  
1x  
1x  
2x(2)  
VRL (63/256) 1  
VRL (63/256) 2  
0000 0000  
5.0V  
2.5V  
5.0V/256 19,531.3  
2.5V/256 9,765.6  
1x  
VRL (0/256) 1  
1x  
VRL (0/256) 1  
0
2x(2)  
VRL (0/256) 2  
0
Note 1:  
VRL is the resistor ladder’s reference voltage. It is independent of the VRnB:VRnA selection.  
2: Gain selection of 2x (Gx = 1) requires the voltage reference source to come from the VREF pin  
(VRnB:VRnA = 10or 11) and requires a VREF pin voltage (or VRL) VDD/2, or from the internal band gap  
(VRnB:VRnA = 01).  
3: These theoretical calculations do not take into account the offset, gain and nonlinearity errors.  
2020 Microchip Technology Inc.  
DS20006362A-page 73  
MCP48FXBX4/8  
NOTES:  
DS20006362A-page 74  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
The MCP48FXBX4/8 SPI’s module supports two (of  
the four) standard SPI modes. These are Mode 0,0  
and 1,1. The SPI mode is determined by the state of  
the SCK pin (VIH or VIL) when the CS pin transitions  
from inactive (VIH) to active (VIL).  
6.0  
SPI SERIAL INTERFACE  
MODULE  
The MCP48FXBX4/8 devices’ SPI serial interface  
module supports the SPI serial protocol specification.  
An additional HVC pin is available for High-Voltage  
Command support. High-Voltage Commands allow the  
device to enable and disable nonvolatile Configuration  
bits. Without a high voltage present, those bits are  
inhibited from being modified.  
The command format and waveforms for the  
MCP48FXBX4/8 are defined in Section 7.0 “SPI  
Device Commands”.  
6.1  
Overview  
The HVC pin is high-voltage tolerant. To enter a High-  
Voltage Command, the HVC pin must be greater than  
the VIHH voltage.  
This section discusses some of the specific  
characteristics of the MCP48FXBX4/8’s serial interface  
module.  
6.2.1  
SPI MODES  
The following sections discuss some of these  
device-specific characteristics:  
The SPI module supports two (of the four) standard  
SPI modes. These are Mode 0,0 and 1,1. The mode is  
determined by the state of the SDI pin on the rising  
edge of the first clock bit (of the 8-bit byte).  
SPI Serial Interface  
Interface Pins (CS, SCK, SDI, SDO and  
LAT/HVC)  
Communication Data Rates  
POR/BOR  
6.2.1.1  
Mode 0,0  
In Mode 0,0:  
• SCK Idle state = low (VIL)  
6.2  
SPI Serial Interface  
• Data are clocked in on the SDI pin on the rising  
edge of SCK  
The MCP48FXBX4/8 devices support the SPI serial  
protocol. This SPI operates in Slave mode (does not  
generate the serial clock).  
• Data are clocked out on the SDO pin on the falling  
edge of SCK  
The SPI interface uses up to four pins. These are:  
6.2.1.2  
Mode 1,1  
• CS – Chip Select  
• SCK – Serial Clock  
• SDI – Serial Data In (MOSI)  
• SDO – Serial Data Out (MISO)  
In Mode 1,1:  
• SCK Idle state = high (VIH)  
• Data are clocked in on the SDI pin on the rising  
edge of SCK  
Typical SPI interfaces are shown in Figure 6-1. In the  
SPI interface, the master’s output pin is connected to  
the slave’s input pin, and the master’s input pin is  
connected to the slave’s output pin.  
• Data are clocked out on the SDO pin on the falling  
edge of SCK  
6.3  
Interface Pins (CS, SCK, SDI, SDO  
and LAT/HVC)  
Typical SPI Interface Connections  
Host  
Controller  
MCP48FXBXX  
The operation of the five interface pins and the High-  
Voltage Command (HVC) pin is discussed in this  
section. The pins are:  
Other Devices  
SDO  
SDI  
SDI  
• SDI (Serial Data In)  
• SDO (Serial Data Out)  
• SCK (Serial Clock)  
SDO  
SCK  
SCK  
• CS (Chip Select)  
• LAT/HVC (High-Voltage Command)  
GPIO  
GPIO  
CS  
LAT/HVC  
The serial interface works on either 8-bit or 24-bit  
boundaries depending on the selected command. The  
Chip Select (CS) pin frames the SPI commands.  
(Master)  
(Slave)  
FIGURE 6-1:  
Typical SPI Interface Block  
Diagram.  
2020 Microchip Technology Inc.  
DS20006362A-page 75  
MCP48FXBX4/8  
6.3.1  
SERIAL DATA IN (SDI)  
6.3.4  
CS SIGNAL  
The Serial Data In (SDI) signal is the data signal into  
the device. The value on this pin is latched on the  
rising edge of the SCK signal.  
The Chip Select (CS) signal is used to select the  
device and frame a command sequence. To start a  
command, or sequence of commands, the CS signal  
must transition from the Inactive state (VIH) to an  
Active state (VIL or VIHH).  
6.3.2  
SERIAL DATA OUT (SDO)  
The Serial Data Out (SDO) signal is the data signal out  
of the device. The value on this pin is driven on the  
falling edge of the SCK signal.  
After the CS signal has gone active, the SDO pin is  
driven and the clock bit counter is reset.  
Note: There is a required delay after the CS pin  
Once the CS pin is forced to the active level (VIL or  
VIHH), the SDO pin will be driven. The state of the  
SDO pin is determined by the serial bit’s position in the  
command, the command selected and if there is a  
Command Error (CMDERR) state.  
goes active to the first edge of the SCK pin.  
If an error condition occurs for an SPI command, then  
the command byte’s Command Error (CMDERR) bit  
(on the SDO pin) will be driven low (VIL). To exit the  
error condition, the user must take the CS pin to the  
6.3.3  
SERIAL CLOCK (SCK)  
VIH level.  
(SPI FREQUENCY OF OPERATION)  
When the CS pin returns to the Inactive state (VIH), the  
SPI module resets (including the Address Pointer).  
While the CS pin is in the Inactive state (VIH), the serial  
interface is ignored. This allows the host controller to  
interface to other SPI devices using the same SDI,  
SDO and SCK signals.  
The SPI interface is specified to operate up to 20 MHz.  
The actual clock rate depends on the configuration of  
the system and the serial command used. Table 6-1  
shows the SCK frequency for different configurations.  
TABLE 6-1:  
SCK FREQUENCY  
Command  
Write,  
6.3.5  
HVC SIGNAL  
The high-voltage capability of the HVC pin allows High-  
Voltage Commands. High-Voltage Commands allow the  
device’s WiperLock technology and write-protect  
features to be enabled and disabled.  
Memory Type Access  
Read  
Enable,  
Disable  
Nonvolatile  
Memory  
SDI, SDO 10 MHz  
SDI, SDO 10 MHz  
20 MHz(1,2)  
6.4  
Communication Data Rates  
Volatile  
Memory  
20 MHz(2)  
The MCP48FXBX4/8 devices support clock rates (bit  
rate) of up to 20 MHz for WRITE commands and  
10 MHz for READcommands.  
Note 1: After a WRITEcommand, the internal  
write cycle must be completed before the  
next SPI command is received.  
For most applications, the write time will be considered  
more important, since that is how the device operation  
is controlled.  
2: This is a design goal. The SDO pin  
performance is believed to be the limiting  
factor.  
6.5  
POR/BOR  
On a POR/BOR event, the SPI serial interface module  
state machine is reset, which means that the device’s  
Memory Address Pointer is forced to 00h.  
DS20006362A-page 76  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
7.0  
SPI DEVICE COMMANDS  
Command Byte  
The MCP48FXBX4/8 devices’ SPI command format  
supports 32 memory address locations and four  
commands:  
AD AD AD AD AD C  
C
0
X
4
3
2
1
0
1
Legend:  
WRITEcommand (C1:C0 = 00)  
READcommand (C1:C0 = 11)  
• Enable Configuration bit (high voltage,  
HVC = VIHH):  
AD  
C
n
Memory Address  
Data Bits  
Command Bits  
Reserved  
n
D
nn  
- Enable Configuration bit (C1:C0 = 10)  
- Disable Configuration bit (C1:C0 = 01)  
X
The supported commands are shown in Table 7-1.  
These commands allow for both single data or continu-  
ous data operation. Table 7-2 also shows the required  
number of bit clocks for each command’s different mode  
of operation.  
FIGURE 7-1:  
8-Bit SPI Command Format.  
7.1  
Command Byte  
The command byte has three fields: the address, the  
command and one reserved bit (see Figure 7-1).  
Commands may have two modes. These are:  
The device memory is accessed when the master  
sends a proper command byte to select the desired  
operation. The memory location getting accessed is  
contained in the command byte’s AD4:AD0 bits. The  
action desired is contained in the command byte’s  
C1:C0 bits; see Table 7-2. C1:C0 determines if the  
desired memory location will be read, written, enabled  
or disabled.  
• Normal Serial Commands  
• High-Voltage Serial Commands  
Normal serial commands are those where the HVC pin  
is driven to either VIH or VIL. With high-voltage serial  
commands, the HVC pin is driven to VIHH  
.
TABLE 7-1:  
COMMAND BITS OVERVIEW  
C1:C0 Bit  
States  
Command # of Bits Normal or HV  
As the command byte is being loaded into the device (on  
the SDI pin), the device’s SDO pin is driving. The SDO pin  
will output high bits for the first seven bits of that com-  
mand. On the 8th bit, the SDO pin will output the  
CMDERR bit state (see Section 7.6 “Error Condition”).  
11  
00  
01  
10  
Read Data  
24 Bits Normal  
24 Bits Normal  
8 Bits HV Only  
8 Bits HV Only  
Write Data  
Enable(1)  
Disable(1)  
7.2  
Data Bytes  
Note 1: High-voltage enable and disable com-  
mands on selected nonvolatile memory  
locations.  
Data bytes are only present in the READ and WRITE  
commands. These commands concatenate the two  
data bytes, after the command byte, for a 24-bit long  
command (see Figure 7-2).  
The 8-bit commands (see Figure 7-1) are used to mod-  
ify the device Configuration bits (Section 7.9 “Enable  
Configuration Bit (High Voltage)” and Section 7.10  
“Disable Configuration Bit (High Voltage)”) while  
the 24-bit commands (see Figure 7-2) are used to read  
and write to the device registers (Section 7.8 “READ  
Command (Normal and High Voltage)” and  
Section 7.7 WRITE Command (Normal and High  
Voltage)”). These commands contain a command byte  
and two data bytes.  
Command Byte  
Data Word (2 bytes)  
AD AD AD AD AD C  
C
0
D
D
D
D
D
D
D
D
D
D
D
D
X
X
X
X
X
4
3
2
1
0
1
11 10 09 08 07 06 05 04 03 02 01 00  
AD  
n
C
n
D
nn  
Legend:  
Memory Address  
Command Bits  
Data Bits  
X
Reserved  
FIGURE 7-2:  
24-Bit SPI Command Format.  
2020 Microchip Technology Inc.  
DS20006362A-page 77  
MCP48FXBX4/8  
TABLE 7-2:  
SPI COMMANDS OVERVIEW AND COMMAND RATE  
Estimated Peak  
Command Rate  
Command  
Code  
# of Bit  
(Commands/ms)(5)  
Comments  
Clocks(2)  
Operation  
HV  
Mode(1)  
1 MHz 10 MHz 20 MHz  
C1 C0  
WRITECommand  
READCommand(4)  
0 0  
0 0  
1 1  
1 1  
1 0  
1 0  
0 1  
0 1  
No(3) Single  
No(3) Continuous  
No(3) Single  
24  
24 * n  
24  
41  
416  
833  
Read frequency can  
be up to 10 MHz  
No(3) Continuous  
24 * n  
8
Enable Configuration  
Bit (High Voltage)  
Yes Single  
Yes Continuous  
Yes Single  
8 * n  
8
125  
1250  
2500  
Disable Configuration  
Bit (High Voltage)  
Yes Continuous  
8 * n  
Note 1: Nonvolatile registers can only use the Single mode.  
2: “n” indicates the number of times the command operation is to be repeated.  
3: If the state of the HVC pin is VIHH, then the command is ignored, but a Command Error condition  
(CMDERR) will NOT be generated.  
4: This command is used to determine when an EEPROM programming cycle is complete.  
5: The actual voltage output update rate depends on several factors, such as output settling time, code,  
reference voltage or load impedance.  
7.3  
Continuous Commands  
7.4  
Commands to Modify the Device  
Configuration Bits  
The devices support the ability to execute commands  
continuously. While the CS pin is in the Active state  
(VIL), any sequence of valid commands may be  
received.  
The MCP48FXBX4/8 devices support two commands,  
which are used to program the device’s Configuration  
bits. These commands require a High Voltage (VIHH) on  
the HVC pin. The commands are:  
The following example is a valid sequence of events:  
Enable Configuration Bit (High Voltage)  
Disable Configuration Bit (High Voltage)  
1. CS pin is driven active (VIL).  
2. READcommand.  
3. WRITEcommand (volatile memory).  
4. WRITEcommand (nonvolatile memory).  
5. CS pin is driven inactive (VIH).  
The Configuration bits are used to inhibit the DAC  
values from inadvertent modification. High voltage is  
required to change the state of these bits if/when the  
DAC values need to be modified.  
Note 1: It is recommended that while the CS pin is  
active, only one type of command should  
be issued. When changing commands, it  
is advisable to take the CS pin inactive,  
then force it back to the Active state.  
7.5  
High-Voltage Command (HVC)  
Signal  
The High-Voltage Command (HVC) signal is used to  
indicate that the command or sequence of commands  
are in the High-Voltage mode. Signals higher than VIHH  
(~9.0V) on the LAT/HVC pin puts the device into High-  
Voltage mode. High-voltage commands allow the  
device’s WiperLock technology and write-protect  
features to be enabled and disabled.  
2: Long command strings should be broken  
down into shorter command strings. This  
reduces the probability of noise on the  
SCK pin, corrupting the desired SPI  
command string.  
Note 1: There is a required delay after the HVC  
pin is driven to the VIHH level on the first  
edge of the SCK pin.  
DS20006362A-page 78  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
7.6  
Error Condition  
7.7  
WRITE Command  
(Normal and High Voltage)  
The Command Error (CMDERR) bit indicates if the five  
Address bits received (AD4:AD0) and the two Com-  
mand bits received (C1:C0) are a valid combination (see  
Figures 7-1 and 7-2). The CMDERR bit is high if the  
combination is valid and low if the combination is invalid.  
WRITE commands are used to transfer data to the  
desired memory location (from the host controller). The  
WRITEcommand can be issued to both the volatile and  
nonvolatile memory locations.  
The Command Error bit will also be low if a write to a  
nonvolatile address has been specified and another  
SPI command occurs before the CS pin is driven  
inactive (VIH).  
WRITEcommands can be structured as either single or  
continuous.  
The format of the command is shown in Figure 7-3  
(single) and Figure 7-6 (continuous).  
SPI commands that do not have a multiple of eight  
clocks are ignored.  
A WRITE command to a volatile memory location  
changes that location after a properly formatted WRITE  
command has been received.  
Once an error condition has occurred, any following  
commands are ignored. All following SDO bits will be  
low until the CMDERR condition is cleared by forcing  
the CS pin to the Inactive state (VIH).  
A WRITE command to a nonvolatile memory location  
starts an EEPROM write cycle only after a properly for-  
matted WRITE command has been received and the  
CS pin transitions to the Inactive state (VIH).  
7.6.1  
ABORTING A TRANSMISSION  
Note 1: Writes to certain memory locations  
depend on the state of the WiperLock™  
technology status bits.  
All SPI transmissions must have the correct number of  
SCK pulses to be executed. The command is not  
executed until the complete number of clocks is  
received. Some commands also require the CS pin to  
be forced inactive (VIH). If the CS pin is forced to the  
Inactive state (VIH), the serial interface is reset. Partial  
commands are not executed.  
2: During device communication, if an  
unimplemented address is specified, then  
the MCP48FXBX4/8 will generate  
a
Command Error state. To reset the SPI  
state machine, the CS pin must transition  
to the Inactive state (VIH).  
SPI is more susceptible to noise than other bus  
protocols. The most likely case is that noise corrupts  
the value of the data being clocked into the  
MCP48FXBX4/8 or the SCK pin is injected with extra  
clock pulses. This may cause data to be corrupted in  
the device, or a Command Error to occur, since the  
address and command bits were not a valid combina-  
tion. The extra SCK pulse will also cause the SPI data  
(SDI) and clock (SCK) to be out of sync. Forcing the  
CS pin to the Inactive state (VIH) resets the serial inter-  
7.7.1  
SINGLE WRITE TO VOLATILE  
MEMORY  
The write operation requires that the CS pin be in the  
Active state (VIL). Typically, the CS pin will be in the  
Inactive state (VIH) and it is driven to the Active state  
(VIL). The 24-bit WRITEcommand (command byte and  
data bytes) is then clocked in on the SCK and SDI pins.  
Once all 24 bits have been received, the specified  
volatile address is updated. A write will not occur if the  
WRITE command is not exactly 24 clock pulses. This  
protects against system issues corrupting the  
nonvolatile memory locations.  
face. The SPI interface will ignore activity on the SDI  
and SCK pins until the CS pin transition to the Active  
state is detected (VIH to VIL or VIH to VIHH).  
Note 1: When the MCP48FXBX4/8 devices do not  
receive data, it is recommended that the  
CS pin be forced to the Inactive Level (VIL).  
Figures 7-4 and 7-5 show the waveforms for a single  
write (depending on the SPI mode).  
2: It is also recommended that long continu-  
ous command strings be broken down  
into single commands or shorter continu-  
ous command strings. This reduces the  
probability of noise on the SCK pin  
corrupting the desired SPI commands.  
2020 Microchip Technology Inc.  
DS20006362A-page 79  
MCP48FXBX4/8  
7.7.2  
SINGLE WRITE TO NONVOLATILE  
MEMORY  
7.7.3  
CONTINUOUS WRITES TO  
VOLATILE MEMORY  
The sequence to write to a single nonvolatile memory  
location is the same as a single write to volatile memory,  
with the exception that after the CS pin is driven inactive  
(VIH), the EEPROM Write Cycle (tWC) is started. A write  
cycle will not start if the WRITEcommand is not exactly  
24 clock pulses. This protects against system issues  
corrupting the nonvolatile memory locations.  
AContinuous Write mode of operation is possible when  
writing to the device’s volatile memory registers (see  
Table 7-3). Figure 7-6 shows the sequence for three  
continuous writes. The writes do not need to be to the  
same volatile memory address.  
TABLE 7-3:  
VOLATILE MEMORY  
ADDRESSES  
Once a WRITE command to a nonvolatile memory  
location has been received, no other SPI commands  
should be received before the CS pin transitions to the  
Inactive state (VIH) or the current SPI command will  
have a Command Error (CMDERR) occur.  
Address  
Quad-Channel  
Octal-Channel  
00h-03h  
04h-07h  
08h  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
After the CS pin is driven inactive (VIH), the serial  
interface may immediately be re-enabled by driving  
the CS pin to the Active state (VIL).  
09h  
0Ah  
During an EEPROM write cycle, access to the volatile  
memory is allowed when using the appropriate com-  
mand sequence. Commands that address nonvolatile  
memory are ignored until the EEPROM Write Cycle  
(tWC) completes. This allows the host controller to  
operate on the volatile DAC registers.  
7.7.4  
CONTINUOUS WRITES TO  
NONVOLATILE MEMORY  
Continuous writes to nonvolatile memory are not  
allowed and attempts to do so will result in a  
Command Error (CMDERR) condition.  
Note:  
The EEWA status bit indicates if an  
EEPROM write cycle is active (see  
Register 4-4).  
7.7.5  
HIGH-VOLTAGE COMMAND (HVC)  
SIGNAL  
The High-Voltage Command (HVC) signal is used to  
indicate that the command or sequence of commands  
are in the high-voltage operational state. HVC  
commands allow the device’s WiperLock technology  
and write-protect features to be enabled and disabled.  
Note:  
Writes to a volatile DAC register will not  
transfer to the output register until the LAT  
(HVC) pin is transitioned from the VIHHEN  
voltage to a VIL voltage.  
12-bit data  
10-bit data  
8-bit data  
AD AD AD AD AD C  
C
0
D
D
D
D
D
D
D
D
D
D
D
D
X
X
X
X
X
4
3
2
1
0
1
11 10 09 08 07 06 05 04 03 02 01 00  
SDI  
*
*
*
*
*
0
0
X
X
*
*
*
*
*
*
*
1
0
*
*
1
0
*
*
1
0
*
*
1
0
*
*
1
0
*
*
1
0
X
X
X
X
X
X
X
X
X
X
X
X
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Valid(2)  
Invalid(3)  
SDO  
Note 1: For WRITEcommands addressing the DAC Wiper registers, the data bits depend on the resolution of the  
device: 12-bit = D11:D00, 10-bit = D09:D00 and 8-bit = D07:D00. Data are right justified for easy host  
controller operation (no data manipulation before transmitting the desired value). The unimplemented bits  
are ignored.  
2: After a valid memory address and WRITEcommand byte are received (CMDERR = 1), all the following  
SDO bits will be output as ‘1’.  
3: If an error condition occurs (CMDERR = 0), all the following SDO bits will be output as ‘0’ until the  
CMDERR condition is cleared (the CS pin is forced to the Inactive state).  
FIGURE 7-3:  
Write Single Memory Location Command SDI and SDO States.(1)  
DS20006362A-page 80  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
VIHH  
HVC(1)  
CS  
Note: HVC must be at VIHH before the start of a WRITEcommand and only lowered to VIH or VIL after the last bit of the 24-bit command.  
VIH  
VIH  
VIL  
SCK  
SDI  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
20  
21  
22  
23  
AD4  
AD3 AD2 AD1 AD0  
C1  
C0  
X
D15  
D14  
D03  
D02  
D01  
D00  
SDO  
Input  
CMDERR  
Sample  
Note 1: If the state of the HVC pin is VIHH, then the command is ignored, but a Command Error condition (CMDERR) will NOT be generated.  
FIGURE 7-4:  
24-Bit WRITE Command (C1:C0 = 00) SPI Waveform (Mode 1,1).  
VIHH  
HVC(1)  
Note: HVC must be at VIHH before the start of a WRITEcommand and only lowered to VIH or VIL after the last bit of the 24-bit command.  
VIH  
VIH  
VIL  
CS  
SCK  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
19  
20  
21  
22  
23  
AD4 AD3 AD2 AD1 AD0  
C1  
C0  
X
D15  
D14  
D03  
D02  
D01  
D00  
SDI  
SDO  
Input  
CMDERR  
Sample  
Note 1: If the state of the HVC pin is VIHH, then the command is ignored, but a Command Error condition (CMDERR) will NOT be generated.  
FIGURE 7-5:  
24-Bit WRITE Command (C1:C0 = 00) SPI Waveform (Mode 0,0).  
2020 Microchip Technology Inc.  
DS20006362A-page 81  
MCP48FXBX4/8  
12-bit data  
10-bit data  
8-bit data  
AD AD AD AD AD C  
C
0
D
D
D
D
D
D
D
D
D
D
D
D
X
X
X
X
X
4
3
2
1
0
1
11 10 09 08 07 06 05 04 03 02 01 00  
SDI  
(1)  
*
*
*
*
*
0
0
X
X
*
*
*
*
*
*
*
1
0
*
*
1
0
*
*
1
0
*
*
1
0
*
*
1
0
*
*
1
0
X
X
X
X
X
X
X
X
X
X
X
X
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Valid(2)  
Invalid(3)  
SDO  
AD AD AD AD AD C  
C
0
D
D
D
D
D
D
D
D
D
D
D
D
X
*
X
X
X
X
4
3
2
1
0
1
0
1
0
11 10 09 08 07 06 05 04 03 02 01 00  
SDI  
(1)  
*
*
*
*
*
0
1
0
*
*
*
*
*
*
1
0
*
*
1
0
*
*
1
0
*
*
1
0
*
*
1
0
*
*
1
0
1
(3)  
1
0
1
0
1
0
1
0
1
(4)  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Valid(2)  
Invalid(3)  
SDO  
AD AD AD AD AD C  
C
0
D
D
D
D
D
D
D
D
D
D
D
D
X
*
X
X
X
X
4
3
2
1
0
1
0
1
0
11 10 09 08 07 06 05 04 03 02 01 00  
SDI  
(1)  
*
*
*
*
*
0
1
0
*
*
*
*
*
*
1
0
*
*
1
0
*
*
1
0
*
*
1
0
*
*
1
0
*
*
1
0
1
(3)  
1
0
1
0
1
0
1
0
1
(4)  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Valid(2)  
Invalid(3)  
SDO  
Note 1: For WRITEcommands addressing the DAC Wiper registers, the data bits depend on the resolution of the  
device: 12-bit = D11:D00, 10-bit = D09:D00, and 8-bit = D07:D00. Data are right justified for easy host  
controller operation (no data manipulation before transmitting the desired value). The unimplemented  
bits are ignored.  
2: After a valid memory address and WRITEcommand byte are received (CMDERR = 1), all the following  
SDO bits will be output as ‘1’.  
3: If an error condition occurs (CMDERR = 0), all the following SDO bits will be output as ‘0’ until the  
CMDERR condition is cleared (the CS pin is forced to the Inactive state).  
4: This CMDERR bit will be forced to ‘0’, regardless if this Address+Command combination is valid. This  
command will not be completed and requires the CS pin to return to VIH to clear the CMDERR  
condition.  
FIGURE 7-6:  
Continuous WRITE Commands (Volatile Memory Only).  
DS20006362A-page 82  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
The READcommand formats include:  
7.8  
READ Command  
(Normal and High Voltage)  
Single Read  
Continuous Reads  
The READcommand is a 24-bit command and is used  
to transfer data from the specified memory location to  
the host controller. The READcommand can be issued  
to both the volatile and nonvolatile memory locations.  
The format of the command, as well as an example of  
SDI and SDO data, are shown in Figure 7-7.  
7.8.1  
LAT PIN INTERACTION  
During a READcommand of the DACn registers, if the  
LAT pin transitions from VIH to VIL, then the read data  
may be corrupted. This is due to the fact that the data  
being read are the output value and not the DAC  
register value. The LAT pin transition causes an update  
of the output value. Based on the DAC output value,  
the DACn register value and the Command bit where  
the LAT pin transitions, the value being read could be  
corrupted.  
The first seven bits of the READ command determine  
the address and the command. The 8th clock will out-  
put the CMDERR bit on the SDO pin. By means of the  
remaining 16 clocks, the device will transmit the data  
bits of the specified address (AD4:AD0).  
During an EEPROM write cycle (write to nonvolatile  
memory location or enable/disable Configuration bit  
command), the READ command can only read the  
volatile memory locations. By reading the Status  
register (0Ah), the host controller can determine when  
the write cycle has been completed (via the state of the  
EEWA bit).  
If LAT pin transitions occur during a read of the DACn  
register, it is recommended that sequential reads be  
performed until the two most recent read values match.  
Then the most recent read data are good.  
7.8.2  
SINGLE READ  
The READ command operation requires that the  
CS pin be in the Active state (VIL). Typically, the CS  
pin will be in the Inactive state (VIH) and is driven to  
the Active state (VIL). The 24-bit READ command  
(command byte and data byte) is then clocked in on  
the SCK and SDI pins. The SDO pin starts driving data  
on the 8th bit (CMDERR bit) and the addressed data  
come out on the 9th through 24th clocks.  
Note 1: During device communication, if an unim-  
plemented address is specified, then the  
MCP48FXBX4/8 will command error that  
byte. To reset the SPI state machine, the  
CS pin must be driven to the VIH state.  
2: If the LAT pin is high (VIH), reads of the  
volatile DAC register read the output  
value, not the internal register.  
3: The READ commands operate the same  
regardless of the state of the High-Voltage  
Command (HVC) signal.  
12-bit data  
10-bit data  
8-bit data  
AD AD AD AD AD C  
C
0
D
D
D
D
D
D
D
D
D
D
D
D
X
X
X
X
X
4
3
2
1
0
1
11 10 09 08 07 06 05 04 03 02 01 00  
SDI  
*
*
*
*
*
1
1
X
X
*
*
*
*
*
*
*
d
0
*
*
d
0
*
*
d
0
*
*
d
0
*
*
d
0
*
*
d
0
X
X
X
X
X
X
X
X
X
X
X
X
1
0
0
0
0
0
0
0
0
0
d
0
d
0
d
0
d
0
d
0
d
0
Valid(1)  
Invalid(2)  
SDO  
Note 1: The Data bits depend on the resolution of the device: 12-bit = D11:D00, 10-bit = D09:D00, and  
8-bit = D07:D00. The unimplemented bits are output as ‘0’ and data are right justified for easy host  
controller operation (no data manipulation after reading the register value).  
2: If an error condition occurs (CMDERR = 0), all the following SDO bits will be output as ‘0’ until the  
CMDERR condition is cleared (the CS pin is forced to the Inactive state).  
FIGURE 7-7:  
READ Command SDI and SDO States.  
2020 Microchip Technology Inc.  
DS20006362A-page 83  
MCP48FXBX4/8  
Figure 7-8 shows the sequence for three continuous  
reads. The reads do not need to be to the same  
memory address.  
7.8.3  
CONTINUOUS READS  
Continuous reads format allows the device’s memory  
to be read quickly. Continuous reads are possible to all  
memory locations. If a nonvolatile memory write cycle  
is occurring, then READ commands may only access  
the volatile memory locations.  
This is useful in reading the System Status register  
(0Ah) to determine if an EEPROM write cycle is  
complete (EEWA bit).  
12-bit data  
10-bit data  
8-bit data  
AD AD AD AD AD C  
C
0
D
D
D
D
D
D
D
D
D
D
D
D
X
X
X
X
X
4
3
2
1
0
1
11 10 09 08 07 06 05 04 03 02 01 00  
SDI  
*
*
*
*
*
0
0
X
X
*
*
*
*
*
*
*
1
0
*
*
1
0
*
*
1
0
*
*
1
0
*
*
1
0
*
*
1
0
X
X
X
X
X
X
X
X
X
X
X
X
1
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
Valid(1)  
Invalid(2)  
SDO  
AD AD AD AD AD C  
C
0
D
D
D
D
D
D
D
D
D
D
D
D
X
*
X
X
X
X
4
3
2
1
0
1
0
1
0
11 10 09 08 07 06 05 04 03 02 01 00  
SDI  
*
*
*
*
*
0
1
0
*
*
*
*
*
*
1
0
*
*
1
0
*
*
1
0
*
*
1
0
*
*
1
0
*
*
1
0
1
0
1
0
1
0
1
0
1
0
1
(3)  
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
Valid(1)  
Invalid(2)  
SDO  
AD AD AD AD AD C  
C
0
D
D
D
D
D
D
D
D
D
D
D
D
X
*
X
X
X
X
4
3
2
1
0
1
0
1
0
11 10 09 08 07 06 05 04 03 02 01 00  
SDI  
*
*
*
*
*
0
1
0
*
*
*
*
*
*
1
0
*
*
1
0
*
*
1
0
*
*
1
0
*
*
1
0
*
*
1
0
1
0
1
0
1
0
1
0
1
0
1
(3)  
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
Valid(1)  
Invalid(2)  
SDO  
Note 1: The data bits depend on the resolution of the device: 12-bit = D11:D00, 10-bit = D09:D00, and  
8-bit = D07:D00. The unimplemented bits are output as ‘0’ and data are right justified for easy host  
controller operation (no data manipulation after reading the register value).  
2: If an error condition occurs (CMDERR = 0), all the following SDO bits will be output as ‘0’ until the  
CMDERR condition is cleared (the CS pin is forced to the Inactive state).  
3: The CMDERR bit will be forced to ‘0’, regardless if this Address+Command combination is valid. This  
command will not be completed and requires the CS pin to return to VIH to clear the CMDERR  
condition.  
FIGURE 7-8:  
READ Command Continuous Read Sequence.  
DS20006362A-page 84  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
VIHH  
HVC(1)  
CS  
Note: HVC must be at VIHH before the start of a WRITEcommand and only lowered to VIH or VIL after the last bit of the 24-bit command.  
VIH  
VIH  
VIL  
SCK  
SDI  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
20  
21  
22  
23  
D03  
D02  
D01  
D00  
AD4 AD3 AD2 AD1 AD0  
C1  
C0  
X
D15  
D14  
SDO  
Input  
CMDERR  
Sample  
Note 1: If the state of the HVC pin is VIHH, then the command is ignored, but a Command Error condition (CMDERR) will NOT be generated.  
FIGURE 7-9:  
24-Bit READ Command (C1:C0 = 11) SPI Waveforms (Mode 1,1).  
VIHH  
HVC(1)  
Note: HVC must be at VIHH before start of a WRITEcommand and only lowered to VIH or VIL after the last bit of the 24-bit command.  
VIH  
VIH  
VIL  
CS  
SCK  
SDI  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
19  
20  
21  
22  
23  
X
AD4  
AD3  
AD2  
AD1  
AD0  
C1  
C0  
D15  
D14  
D03  
D02  
D01  
D00  
SDO  
Input  
CMDERR  
Sample  
Note 1: If the state of the HVC pin is VIHH, then the command is ignored, but a Command Error condition (CMDERR) will NOT be generated.  
FIGURE 7-10:  
24-Bit READ Command (C1:C0 = 11) SPI Waveforms (Mode 0,0).  
2020 Microchip Technology Inc.  
DS20006362A-page 85  
MCP48FXBX4/8  
During an EEPROM write cycle, only serial commands  
to volatile memory are accepted. All other serial com-  
7.9  
Enable Configuration Bit  
(High Voltage)  
mands are ignored until the EEPROM Write Cycle (tWC  
)
Figure 7-11 shows the formats for a single enable  
Configuration bit command. The command will only  
start the EEPROM Write Cycle (tWC) after a properly  
formatted command has been received.  
completes. This allows the host controller to operate on  
the volatile DAC, the volatile VREF, Power-Down, Gain  
and Status, and WiperLock Technology Status registers.  
The EEWA bit in the Status register indicates the status  
of the EEPROM write cycle.  
AD AD AD AD AD C  
C
0
AD AD AD AD AD C  
C
0
AD AD AD AD AD C  
C
0
X
X
X
4
3
2
1
0
1
4
3
2
1
0
1
1
1
0
4
3
2
1
0
1
1
1
0
SDI  
*
*
*
*
*
1
0
X
X
*
*
*
*
*
*
0
1
0
*
1
0
*
*
*
*
*
0
1
0
*
1
0
X
X
X
X
X
X
X
X
X
X
X
X
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Valid(1)  
Invalid(2)  
SDO  
Note 1: If an error condition occurs (CMDERR = 0), all the following SDO bits will be low until the CMDERR  
condition is cleared (the CS pin is forced to the Inactive state).  
2: The CMDERR bit will be forced to ‘0’, regardless if this Address+Command combination is valid. This  
command will not be completed and requires the CS pin to return to VIH to clear the CMDERR  
condition.  
FIGURE 7-11:  
Enable Command Sequence.  
VIHH  
VIH  
VIH  
HVC  
CS  
VIL  
SCK  
SDI  
00  
01  
02  
03  
04  
05  
06  
07  
AD4 AD3 AD2 AD1  
AD0  
C1  
C0  
X
SDO  
Input  
CMDERR  
Sample  
FIGURE 7-12:  
8-Bit Enable Command (C1:C0 = 10) SPI Waveforms (Mode 1,1).  
DS20006362A-page 86  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
VIHH  
VIH  
VIH  
HVC  
CS  
VIL  
SCK  
SDI  
00  
01  
02  
03  
04  
05  
06  
07  
AD4 AD3 AD2  
AD1  
AD0  
C1  
C0  
X
SDO  
CMDERR  
Input  
Sample  
FIGURE 7-13:  
8-Bit Enable Command (C1:C0 = 10) SPI Waveforms (Mode 0,0).  
During an EEPROM write cycle, only serial commands  
to volatile memory are accepted. All other serial  
commands are ignored until the EEPROM Write Cycle  
(tWC) completes. This allows the host controller to oper-  
ate on the volatile DAC, the volatile VREF, Power-Down,  
Gain and Status, and WiperLock Technology Status  
registers. The EEWA bit in the Status register indicates  
the status of an EEPROM write cycle.  
7.10 Disable Configuration Bit  
(High Voltage)  
Figure 7-14 shows the formats for a single disable  
Configuration bit command. The command will only  
start an EEPROM Write Cycle (tWC) after a properly  
formatted command has been received.  
AD AD AD AD AD C  
C
0
AD AD AD AD AD C  
C
0
AD AD AD AD AD C  
C
0
X
X
X
4
3
2
1
0
1
4
3
2
1
0
1
0
1
0
4
3
2
1
0
1
0
1
0
SDI  
*
*
*
*
*
0
1
X
X
*
*
*
*
*
*
1
1
0
*
1
0
*
*
*
*
*
1
1
0
*
1
0
X
X
X
X
X
X
X
X
X
X
X
X
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Valid(1)  
Invalid(2)  
SDO  
Note 1: If an error condition occurs (CMDERR = 0), all the following SDO bits will be low until the CMDERR  
condition is cleared (the CS pin is forced to the Inactive state).  
2: The CMDERR bit will be forced to ‘0’, regardless if this Address+Command combination is valid. This  
command will not be completed and requires the CS pin to return to VIH to clear the CMDERR  
condition.  
FIGURE 7-14:  
Disable Command Sequence.  
2020 Microchip Technology Inc.  
DS20006362A-page 87  
MCP48FXBX4/8  
VIHH  
VIH  
VIH  
HVC  
CS  
VIL  
SCK  
SDI  
00  
01  
02  
03  
04  
05  
06  
07  
AD4 AD3 AD2 AD1  
AD0  
C1  
C0  
X
SDO  
CMDERR  
Input  
Sample  
FIGURE 7-15:  
8-Bit Disable Command (C1:C0 = 01) SPI Waveforms (Mode 1,1).  
VIHH  
VIH  
VIH  
HVC  
CS  
VIL  
SCK  
SDI  
00  
01  
02  
03  
04  
05  
06  
07  
AD4 AD3 AD2 AD1  
AD0  
C1  
C0  
X
SDO  
CMDERR  
Input  
Sample  
FIGURE 7-16:  
8-Bit Disable Command (C1:C0 = 01) SPI Waveforms (Mode 0,0).  
DS20006362A-page 88  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
8.0  
APPLICATIONS INFORMATION  
V
DD  
The MCP48FXBX4/8 devices are general purpose,  
quad/octal-channel voltage output DACs for various  
VDD  
applications, where  
low-power and nonvolatile EEPROM memory is  
needed.  
a
precision operation with  
SDI  
SDO  
SCK  
CS  
C1  
C2  
VREF  
VOUT0  
To MCU  
Since the devices include a nonvolatile EEPROM  
memory, the user can utilize these devices for  
applications that require the output to return to the  
previous setup value on subsequent power-ups.  
Analog  
Output  
LAT/HVC  
VSS  
VOUTN  
8.1  
Power Supply Considerations  
C3  
Optional  
CN  
The power source should be as clean as possible. The  
power supply to the device is also used for the DAC  
voltage reference internally if the internal VDD is  
selected as the resistor ladder’s reference voltage  
(VRnB:VRnA = 00).  
(a) Circuit when V is selected as reference.  
DD  
Note:  
V
is connected to the reference circuit internally.  
DD  
Any noise induced on the VDD line can affect the DAC  
performance. Typical applications will require a bypass  
capacitor in order to filter out high-frequency noise on  
the VDD line. The noise can be induced onto the power  
supply’s traces or as a result of changes on the DAC out-  
put. The bypass capacitor helps to minimize the effect of  
these noise sources on signal integrity. Figure 8-1  
shows an example of using two bypass capacitors (a  
10 µF tantalum capacitor and a 0.1 µF ceramic capaci-  
tor) in parallel on the VDD line. These capacitors should  
be placed as close to the VDD pin as possible (within  
4 mm). If the application circuit has separate digital and  
analog power supplies, the VDD and VSS pins of the  
device should reside on the analog plane.  
V
DD  
C1  
C2  
Analog  
VREF  
SDI  
VDD  
SDO  
VREF  
To MCU  
SCK  
CS  
VOUT0  
LAT/HVC  
VSS  
Analog  
Output  
VOUTN  
When setting the part voltage reference to Band Gap  
mode, the use of the VREF pin decoupling capacitors is  
not recommended.  
C3  
CN  
Optional  
(b) Circuit when external reference is used.  
C : 0.1 µF capacitor  
Ceramic  
Tantalum  
=
=
=
1
C : 10 µF capacitor  
2
C : ~0.1 µF  
Optional to reduce noise  
in V pin  
3
OUT  
C : 0.1 µF capacitor  
Ceramic  
=
=
=
4
C : 10 µF capacitor  
Tantalum  
Ceramic  
5
C : 0.1 µF capacitor  
6
FIGURE 8-1:  
Example Circuit.  
2020 Microchip Technology Inc.  
DS20006362A-page 89  
MCP48FXBX4/8  
8.2.0.2  
PCB Area Requirements  
8.2  
Layout Considerations  
In some applications, PCB area is a criteria for device  
selection. Table 8-1 shows the typical package  
dimensions and area for the different package options.  
Several layout considerations may be applicable to  
your application. These may include:  
Noise  
)
TABLE 8-1:  
Package  
PACKAGE FOOTPRINT(1  
PCB Area Requirements  
Package Footprint  
8.2.0.1  
Noise  
Dimensions  
(mm)  
Particularly harsh environments may require shielding  
of critical signals. Inductively coupled AC transients  
and digital switching noise can degrade the input and  
output signal integrity, potentially masking the  
MCP48FXBX4/8 devices’ performance. Careful board  
layout minimizes these effects and increases the  
Signal-to-Noise Ratio (SNR).  
Type  
Code  
Area (mm2)  
Length Width  
20 TSSOP  
20 VQFN  
ST  
3.00  
5
4.90  
5
14.70  
25  
MQ  
Note 1: Does not include recommended land  
pattern dimensions. Dimensions are  
typical values.  
Multilayer boards utilizing a low-inductance ground  
plane, isolated inputs, isolated outputs and proper  
decoupling are critical to achieving the performance  
that the silicon is capable of providing.  
Separate digital and analog ground planes are  
recommended. In this case, the VSS pin and the ground  
pins of the VDD capacitors should be terminated to the  
analog ground plane.  
Note:  
Breadboards and wire-wrapped boards  
are not recommended.  
DS20006362A-page 90  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
Figure 9-1 shows how the TSSOP20EV bond-out PCB  
can be populated to easily evaluate the  
MCP48FXBX4/8 devices. The PICkit™ Serial Analyzer  
can be used to control the DAC Output registers and  
state of the Configuration, Control and Status register.  
9.0  
DEVELOPMENT SUPPORT  
Development support can be classified into two groups.  
These are:  
Development Tools  
Technical Documentation  
The TSSOP20EV boards may be purchased directly  
from the Microchip website at www.microchip.com.  
9.1  
Development Tools  
9.2  
Technical Documentation  
Several development tools are available to assist in  
your design and evaluation of the MCP48FXBX4/8  
devices. The currently available tools are shown in  
Table 9-1.  
Several additional technical documents are available to  
assist you in your design and development. These  
technical documents include Application Notes,  
Technical Briefs and Design Guides. Table 9-2 lists  
some of these documents.  
TABLE 9-1:  
DEVELOPMENT TOOLS(1)  
Board Name  
Part #  
Comment  
20-Pin TSSOP and SSOP Evaluation Board TSSOP20EV Most Flexible Option – Recommended Bond-out PCB  
Note 1: Supports the PICkit™ Serial Analyzer. See the User’s Guide for additional information and requirements.  
TABLE 9-2:  
TECHNICAL DOCUMENTATION  
Application  
Note Number  
Title  
Literature #  
AN1326  
Using the MCP4828 12-Bit DAC for LDMOS Amplifier Bias Control Applications  
Signal Chain Design Guide  
DS01326  
DS21825  
DS01005  
Analog Solutions for Automotive Applications Design Guide  
2020 Microchip Technology Inc.  
DS20006362A-page 91  
MCP48FXBX4/8  
MCP48FXBX8-20E/ST  
Installed in U3 Footprint  
Connected to  
Digital Ground  
(DGND) Plane  
Connected to  
Digital Power (VL) Plane  
LAT1  
LAT0/HVC  
1.0 µF  
4.7k   
4.7k   
0  
V
SDI  
DD  
10k  
SCK  
CS  
REF0  
OUT0  
V
SDO  
V
V
V
REF1  
OUT7  
V
OUT2  
V
V
V
V
OUT4  
OUT6  
OUT5  
OUT3  
V
V
SS  
OUT1  
0   
Two-Wire Jumpers to Connect the  
PICkitSerial Analyzer (SPI) to Device Pins  
1x6 Male Header with 90° Right Angle  
FIGURE 9-1:  
MCP48FXBX4/8 Evaluation Board Circuit Using TSSOP20EV.  
DS20006362A-page 92  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
10.0 PACKAGING INFORMATION  
10.1 Package Marking Information  
20-Lead 5 x 5 mm VQFN  
Example  
MCP48FE  
B04  
-E/MQ  
2010256  
20-Lead TSSOP  
Example  
XXXXXXXX  
XXXXXNNN  
YYWW  
MCP48FVB  
0420E256  
2010  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
e
3
e
3
*
)
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2020 Microchip Technology Inc.  
DS20006362A-page 93  
MCP48FXBX4/8  
20-Lead Plastic Quad Flat, No Lead Package (MQ) – 5x5x1.0 mm Body [VQFN]  
With 0.40 mm Contact Length  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
A
B
E
N
NOTE 1  
1
2
(DATUM B)  
(DATUM A)  
2X  
0.20 C  
2X  
TOP VIEW  
0.20 C  
0.10 C  
A1  
C
A
SEATING  
PLANE  
20X  
(A3)  
0.08 C  
C A B  
SIDE VIEW  
0.10  
D2  
0.10  
C A B  
E2  
2
1
NOTE 1  
K
N
L
20X b  
0.10  
0.05  
C A B  
C
e
BOTTOM VIEW  
Microchip Technology Drawing C04-139C (MQ) Sheet 1 of 2  
DS20006362A-page 94  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
20-Lead Plastic Quad Flat, No Lead Package (MQ) – 5x5x1.0 mm Body [VQFN]  
With 0.40 mm Contact Length  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Units  
Dimension Limits  
MILLIMETERS  
NOM  
MIN  
MAX  
Number of Terminals  
Pitch  
Overall Height  
N
20  
0.65 BSC  
0.90  
0.02  
0.20 REF  
5.00 BSC  
3.25  
5.00 BSC  
3.25  
0.30  
0.40  
e
A
A1  
(A3)  
D
D2  
E
E2  
b
0.80  
0.00  
1.00  
0.05  
Standoff  
Contact Thickness  
Overall Length  
Exposed Pad Length  
Overall Width  
Exposed Pad Width  
Contact Width  
3.15  
3.35  
3.15  
0.25  
0.35  
0.20  
3.35  
0.35  
0.45  
-
Contact Length  
Contact-to-Exposed Pad  
L
K
-
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package is saw singulated  
3. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-139C (MQ) Sheet 2 of 2  
2020 Microchip Technology Inc.  
DS20006362A-page 95  
MCP48FXBX4/8  
20-Lead Plastic Quad Flat, No Lead Package (MQ) – 5x5x1.0 mm Body [VQFN]  
With 0.40 mm Contact Length  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
C1  
X2  
EV  
20  
1
ØV  
2
G
Y2  
C2  
EV  
Y1  
E
X1  
SILK SCREEN  
RECOMMENDED LAND PATTERN  
Units  
Dimension Limits  
E
MILLIMETERS  
NOM  
0.65 BSC  
MIN  
MAX  
Contact Pitch  
Optional Center Pad Width  
Optional Center Pad Length  
Contact Pad Spacing  
W2  
T2  
C1  
C2  
X1  
Y1  
G
3.35  
3.35  
4.50  
4.50  
Contact Pad Spacing  
Contact Pad Width (X20)  
Contact Pad Length (X20)  
Distance Between Pads  
Thermal Via Diameter  
Thermal Via Pitch  
0.40  
0.55  
0.20  
V
EV  
0.30  
1.00  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during  
reflow process  
Microchip Technology Drawing C04-2139B (MQ)  
DS20006362A-page 96  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
2020 Microchip Technology Inc.  
DS20006362A-page 97  
MCP48FXBX4/8  
DS20006362A-page 98  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2020 Microchip Technology Inc.  
DS20006362A-page 99  
MCP48FXBX4/8  
NOTES:  
DS20006362A-page 100  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
APPENDIX A: REVISION HISTORY  
Revision A (May 2020)  
• Original release of this document.  
2020 Microchip Technology Inc.  
DS20006362A-page 101  
MCP48FXBX4/8  
NOTES:  
DS20006362A-page 102  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
B.3  
Monotonic Operation  
APPENDIX B: TERMINOLOGY  
Monotonic operation means that the device’s output  
voltage (VOUT) increases with every 1 code step (LSb)  
increment (from VSS to the DAC’s reference voltage  
(VDD or VREF)).  
B.1  
Resolution  
The resolution is the number of DAC output states that  
divide the full-scale range. For the 12-bit DAC, the  
resolution is 212, meaning the DAC code ranges from  
0 to 4095.  
VS64  
40h  
3Fh  
Note:  
When there are 2N resistors in the resistor  
ladder and 2N tap points, the full-scale  
DAC register code is the resistor element  
(1 LSb) from the source reference voltage  
(VDD or VREF).  
VS63  
3Eh  
VS3  
03h  
02h  
B.2  
Least Significant Bit (LSb)  
VS1  
This is the voltage difference between two successive  
codes. For a given output voltage range, it is divided by  
the resolution of the device (Equation B-1). The range  
may be VDD (or VREF) to VSS (ideal); the DAC register  
codes across the linear range of the output driver  
(Measured 1), or full scale to zero scale (Measured 2).  
VS0  
01h  
00h  
VW (@ tap)  
n = ?  
VW  
=
VSn + VZS(@ Tap 0)  
n = 0  
EQUATION B-1:  
Ideal  
LSb VOLTAGE  
CALCULATION  
Voltage (VW VOUT  
)
FIGURE B-1:  
VW (VOUT).  
V
V
DD  
REF  
---------------  
N
or  
V
= ------------  
LSb(IDEAL)  
N
2
2
Measured 1  
V
V  
OUT(@4000)  
OUT(@100)  
V
= -----------------------------------------------------------------------------  
LSb(Measured)  
4000 100  
Measured 2  
V
V  
OUT(@FS)  
OUT(@ZS)  
V
= ---------------------------------------------------------------------  
LSb  
N
2
1  
2N = 4096 (MCP48FXB2X)  
= 1024 (MCP48FXB1X)  
= 256 (MCP48FXB0X)  
2020 Microchip Technology Inc.  
DS20006362A-page 103  
MCP48FXBX4/8  
B.4  
Full-Scale Error (E )  
B.6  
Total Unadjusted Error (E )  
T
FS  
The Full-Scale Error (see Figure B-3) is the error on  
the VOUT pin relative to the expected VOUT voltage  
(theoretical) for the maximum device DAC register  
code (code FFFh for 12-bit, code 3FFh for 10-bit and  
code FFh for 8-bit); see Equation B-2. The error  
depends on the resistive load on the VOUT pin (and  
where that load is tied to, such as VSS or VDD). For  
loads (to VSS) greater than specified, the Full-Scale  
Error will be greater.  
The Total Unadjusted Error (ET) is the difference  
between the ideal and the measured VOUT voltage.  
Typically, calibration of the output voltage is  
implemented to improve system performance.  
The error in bits is determined by the theoretical  
voltage step-size to give an error in LSb.  
Equation B-4 shows the Total Unadjusted Error  
calculation.  
The error in bits is determined by the theoretical volt-  
age step-size to give an error in LSb.  
EQUATION B-4:  
TOTAL UNADJUSTED  
ERROR CALCULATION  
EQUATION B-2:  
FULL-SCALE ERROR  
V  
V  
OUT_Actual(@Code)  
OUT_Ideal(@Code)  
E
= ------------------------------------------------------------------------------------------------------------------------  
V
V  
T
V
OUT(@FS)  
IDEAL(@FS)  
LSb(Ideal)  
E
= --------------------------------------------------------------------------  
FS  
V
LSb(IDEAL)  
Where:  
Where:  
ET is expressed in LSb.  
EFS is expressed in LSb.  
VOUT_Actual(@Code) = The measured DAC output  
voltage at the specified code.  
VOUT(@FS) = The VOUT voltage when the DAC  
register code is at full scale.  
VOUT_Ideal(@Code) = The calculated DAC output  
voltage at the specified code.  
VIDEAL(@FS) = The ideal output voltage when the  
DAC register code is at full scale.  
(code × VLSb(Ideal)).  
VLSb(IDEAL) = The theoretical voltage step size.  
VLSb(Ideal) = VREF/# Steps  
12-bit = VREF/4096  
10-bit = VREF/1024  
8-bit = VREF/256  
B.5  
Zero-Scale Error (E )  
ZS  
The Zero-Scale Error (see Figure B-2) is the difference  
between the ideal and the measured VOUT voltage with  
the DAC register code equal to 000h (Equation B-3).  
The error depends on the resistive load on the VOUT pin  
(and where that load is tied to, such as VSS or VDD). For  
loads (to VDD) greater than specified, the Zero-Scale  
Error will be greater.  
The error in bits is determined by the theoretical  
voltage step-size to give an error in LSb.  
EQUATION B-3:  
ZERO-SCALE ERROR  
V
OUT(@ZS)  
E
= ---------------------------------  
ZS  
V
LSb(IDEAL)  
Where:  
ZS is expressed in LSb.  
E
VOUT(@ZS) = The VOUT voltage when the DAC  
register code is at zero scale.  
VLSb(IDEAL) = The theoretical voltage step-size.  
DS20006362A-page 104  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
Gain Error indicates how well the slope of the actual  
transfer function matches the slope of the ideal transfer  
function. Gain Error is usually expressed as a percent  
of full-scale range (% of FSR) or in LSb. FSR is the  
ideal full-scale voltage of the DAC (see Equation B-5).  
B.7  
Offset Error (E  
)
OS  
The Offset Error is the delta voltage of the VOUT voltage  
from the ideal output voltage at the specified code. This  
code is specified where the output amplifier is in the  
linear operating range; for the MCP48FXBX4/8, we  
specify code 100 (decimal). Offset error does not  
include Gain Error, see Figure B-2.  
Gain Error (E )  
G
(@ Code = 4000)  
This error is expressed in mV. Offset Error can be  
negative or positive. The Offset Error can be calibrated  
by software in application circuits.  
V
REF  
Actual  
Transfer  
Function  
Full-Scale  
Error (E  
)
FS  
Ideal Transfer  
Function Shifted by  
Offset Error  
(crosses at start of  
defined linear range)  
Actual  
Transfer  
Function  
Ideal Transfer  
Function  
0
100  
4000 4095  
DAC Input Code  
FIGURE B-3:  
Error Example.  
Gain Error and Full-Scale  
Zero-Scale  
Ideal Transfer  
Function  
Error (E  
)
ZS  
0
100  
DAC Input Code  
4000  
EQUATION B-5:  
EXAMPLE GAIN ERROR  
Offset  
Error (E  
)
V  
V  
V  
OS  
OUT(@4000)  
OS  
OUT_Ideal(@4000)  
E
= ---------------------------------------------------------------------------------------------------------------------- 1 0 0  
G
V
Full-Scale Range  
FIGURE B-2:  
Offset Error and Zero-Scale  
Error.  
Where:  
EG is expressed in % of FSR.  
B.8  
Offset Error Drift (E  
)
OSD  
VOUT(@4000) = The measured DAC output  
voltage at the specified code.  
The Offset Error Drift is the variation in Offset Error due  
to a change in ambient temperature. The Offset Error  
Drift is typically expressed in ppm/°C or µV/°C.  
VOUT_Ideal(@4000) = The calculated DAC output  
voltage at the specified code  
(4000 * VLSb(Ideal)).  
B.9  
Gain Error (E )  
G
VOS = Measured offset voltage.  
Gain Error is a calculation based on the ideal slope  
using the voltage boundaries for the linear range of the  
output driver (ex.: code 100 and code 4000); see  
Figure B-3. The Gain Error calculation nullifies the  
device’s Offset Error.  
VFull-Scale Range = Expected full-scale output  
value (such as the VREF  
voltage).  
B.10 Gain Error Drift (E  
)
GD  
The Gain Error Drift is the variation in Gain Error due to  
a change in ambient temperature. Gain Error Drift is  
typically expressed in ppm/°C (of FSR).  
2020 Microchip Technology Inc.  
DS20006362A-page 105  
MCP48FXBX4/8  
B.11 Integral Nonlinearity (INL)  
B.12 Differential Nonlinearity (DNL)  
The Integral Nonlinearity (INL) error is the maximum  
deviation of an actual transfer function from an ideal  
transfer function (straight line) passing through the  
defined end points of the DAC transfer function (after  
offset and gain errors have been removed).  
The Differential Nonlinearity (DNL) error (see  
Figure B-5) is the measure of step-size between codes  
in an actual transfer function. The ideal step-size  
between codes is 1 LSb. A DNL error of zero would  
imply that every code is exactly 1 LSb wide. If the DNL  
error is less than 1 LSb, the DAC ensures monotonic  
output and no missing codes. Equation B-7 shows how  
to calculate the DNL error between any two adjacent  
codes in LSb.  
In the MCP48FXBX4/8, INL is calculated using the  
defined end points, DAC code 100 and code 4000. INL  
can be expressed as a percentage of FSR or in LSb.  
INL is also called ‘Relative Accuracy’. Equation B-6  
shows how to calculate the INL error in LSb and  
Figure B-4 shows an example of INL accuracy.  
EQUATION B-7:  
DNL ERROR  
V  
V  
Positive INL means higher VOUT voltage than the ideal  
one. Negative INL means lower VOUT voltage than the  
ideal one.  
OUT(code = n+1)  
OUT(code = n)  
E
= ---------------------------------------------------------------------------------------------------- 1  
DNL  
V
LSb(Measured)  
Where:  
EQUATION B-6:  
INL ERROR  
V  
DNL is expressed in LSb.  
V  
OUT  
Calc_Ideal  
E
= ---------------------------------------------------------  
VOUT(code = n) = The measured DAC output voltage  
with a given DAC register code.  
INL  
V
LSb(Measured)  
VLSb(Measured) = For Measured:  
(VOUT(4000) – VOUT(100))/3900.  
Where:  
INL is expressed in LSb.  
VCalc_Ideal = Code × VLSb(Measured) + VOS  
VOUT(Code = n) = The measured DAC output  
voltage with a given DAC  
register code.  
7
DNL = 0.5 LSb  
VLSb(Measured) = For Measured:  
(VOUT(4000) – VOUT(100))/3900.  
6
5
VOS = Measured offset voltage.  
DNL = 2 LSb  
Analog  
Output  
4
(LSb)  
3
7
2
1
INL = < -1 LSb  
6
INL = -1 LSb  
5
0
Analog  
4
000 001 010 011 100 101 110 111  
Output  
DAC Input Code  
INL = 0.5 LSb  
(LSb)  
3
2
Ideal Transfer Function  
Actual Transfer Function  
1
0
FIGURE B-5:  
DNL Accuracy.  
000 001 010 011 100 101 110 111  
DAC Input Code  
Ideal Transfer Function  
Actual Transfer Function  
FIGURE B-4:  
INL Accuracy.  
DS20006362A-page 106  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
B.13 Settling Time  
B.17 Power Supply Sensitivity (PSS)  
The settling time is the time delay required for the VOUT  
voltage to settle into its new output value. This time is  
measured from the start of code transition to when the  
PSS indicates how the output of the DAC is affected by  
changes in the supply voltage. PSS is the ratio of the  
change in VOUT to a change in VDD for midscale output  
of the DAC. The VOUT is measured while the VDD is  
varied from 5.5V to 2.7V as a step (VREF voltage held  
constant) and is expressed in %/%, which is the %  
change of the DAC output voltage with respect to the %  
change of the VDD voltage.  
VOUT voltage is within the specified accuracy.  
For the MCP48FXBX4/8, the settling time is a  
measurement of the time delay until the VOUT voltage  
reaches within 0.5 LSb of its final value, when the vol-  
atile DAC register changes from 1/4 to 3/4 of the FSR  
(12-bit device: 400h to C00h).  
EQUATION B-8:  
PSS CALCULATION  
B.14 Major Code Transition Glitch  
V  
V  
V  
OUT(@5.5V)  
OUT(@2.7V)  
OUT(@5.5V)  
PSS = ----------------------------------------------------------------------------------------------------------------------------  
Major code transition glitch is the impulse energy  
injected into the DAC analog output when the code in  
the DAC register changes the state. It is normally  
specified as the area of the glitch in nV-Sec and is  
measured when the digital code is changed by 1 LSb at  
the major carry transition.  
5.5V 2.7V5.5V  
Where:  
PSS is expressed in %/%.  
VOUT(@5.5V) = The measured DAC output  
voltage with VDD = 5.5V.  
Example: 011...111to 100...000  
or 100...000to 011...111  
VOUT(@2.7V) = The measured DAC output  
voltage with VDD = 2.7V.  
B.15 Digital Feedthrough  
B.18 Power Supply Rejection Ratio  
(PSRR)  
The digital feed-through is the glitch that appears at the  
analog output, caused by coupling from the digital input  
pins of the device. The area of the glitch is expressed  
in nV-Sec and is measured with a full-scale change on  
the digital input pins; example: all ‘0’s to all ‘1’s and vice  
versa. The digital feedthrough is measured when the  
DAC is not written to the output register.  
PSRR indicates how the output of the DAC is affected  
by changes in the supply voltage. PSRR is the ratio of  
the change in VOUT to a change in VDD for full-scale  
output of the DAC. The VOUT is measured while the  
VDD is varied ±10% (VREF voltage held constant) and  
expressed in dB or µV/V.  
B.16 -3 dB Bandwidth  
B.19  
V
Temperature Coefficient  
OUT  
This is the frequency of the signal at the VREF pin that  
causes the voltage at the VOUT pin to fall a -3 dB value  
from a static value on the VREF pin. The output  
decreases due to the RC characteristics of the resistor  
ladder and the characteristics of the output buffer.  
The VOUT temperature coefficient quantifies the error in  
the resistor ladder’s resistance ratio (DAC register  
code value) and output buffer due to temperature drift.  
B.20 Absolute Temperature Coefficient  
The absolute temperature coefficient quantifies the  
error in the end-to-end output voltage (nominal Output  
Voltage, VOUT) due to temperature drift. For a DAC,  
this error is typically not an issue due to the ratiometric  
aspect of the output.  
B.21 Noise Spectral Density  
Noise spectral density is a measurement of the  
device’s internally generated random noise and is  
characterized as a spectral density (voltage per Hz).  
It is measured by loading the DAC to the midscale  
value and measuring the noise at the VOUT pin. It is  
measured in nV/Hz.  
2020 Microchip Technology Inc.  
DS20006362A-page 107  
MCP48FXBX4/8  
NOTES:  
DS20006362A-page 108  
2020 Microchip Technology Inc.  
MCP48FXBX4/8  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
XX  
X
/XX  
a) MCP48FEB04-E/MQ:  
b) MCP48FEB08T-E/MQ:  
c) MCP48FEB18-20E/ST:  
Quad-Channel, 8-Bit Nonvolatile  
DAC, Extended Temperature,  
20-Lead VQFN.  
Tape and  
Reel  
Pin  
Count  
Temperature Package  
Range  
Octal-Channel, 8-Bit Nonvolatile  
DAC, Tape and Reel, Extended  
Temperature, 20-Lead VQFN.  
Octal-Channel, 10-Bit Nonvolatile  
DAC, Extended Temperature,  
20-Lead TSSOP.  
Device:  
MCP48FXB0X: Quad/Octal-Channel, 8-Bit DAC  
with SPI Interface  
MCP48FXB1X: Quad/Octal-Channel, 10-Bit DAC  
with SPI Interface  
d) MCP48FEB18T-20E/ST: Octal-Channel, 10-Bit Nonvolatile  
DAC, Tape and Reel, Extended  
MCP48FXB2X: Quad/Octal-Channel, 12-Bit DAC  
with SPI Interface  
Temperature, 20-Lead TSSOP.  
e) MCP48FVB28-E/MQ:  
f) MCP48FVB28T-E/MQ:  
Octal-Channel, 12-Bit Volatile  
DAC, Extended Temperature,  
20-Lead VQFN.  
Octal-Channel, 12-Bit Volatile  
DAC, Tape and Reel, Extended  
Temperature, 20-Lead VQFN.  
Tape and Reel:  
Pin Count:  
T
= Tape and Reel  
Blank = Tube  
20-Lead  
Temperature  
Range:  
E
= -40°C to +125°C (Extended)  
Note 1:  
Tape and Reel identifier only appears in the  
catalog part number description. This identifier is  
used for ordering purposes and is not printed on  
the device package. Check with your Microchip  
Sales Office for package availability with the  
Tape and Reel option.  
Package:  
MQ = Plastic Quad Flat, No Lead Package (VQFN),  
5 x 5 mm, 20-Lead  
ST  
= Plastic Thin Shrink Small Outline  
Package (TSSOP), 20-Lead  
2020 Microchip Technology Inc.  
DS20006362A-page 109  
MCP48FXBX4/8  
NOTES:  
DS20006362A-page 110  
2020 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, Adaptec,  
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT,  
chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex,  
flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck,  
LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi,  
Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer,  
PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire,  
Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST,  
SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,  
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA  
are registered trademarks of Microchip Technology Incorporated in  
the U.S.A. and other countries.  
APT, ClockWorks, The Embedded Control Solutions Company,  
EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load,  
IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision  
Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire,  
SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,  
TimePictra, TimeProvider, Vite, WinPath, and ZL are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard,  
CryptoAuthentication, CryptoAutomotive, CryptoCompanion,  
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average  
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial  
Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker,  
KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,  
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,  
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,  
PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple  
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,  
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,  
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and  
ZENA are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
The Adaptec logo, Frequency on Demand, Silicon Storage  
Technology, and Symmcom are registered trademarks of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology Germany  
II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in  
other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2020, Microchip Technology Incorporated, All Rights Reserved.  
ISBN: 978-1-5224-6143-2  
For information regarding Microchip’s Quality Management Systems,  
please visit www.microchip.com/quality.  
2020 Microchip Technology Inc.  
DS20006362A-page 111  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Australia - Sydney  
Tel: 61-2-9868-6733  
India - Bangalore  
Tel: 91-80-3090-4444  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
China - Beijing  
Tel: 86-10-8569-7000  
India - New Delhi  
Tel: 91-11-4160-8631  
Denmark - Copenhagen  
Tel: 45-4485-5910  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8665-5511  
India - Pune  
Tel: 91-20-4121-0141  
Finland - Espoo  
Tel: 358-9-4520-820  
China - Chongqing  
Tel: 86-23-8980-9588  
Japan - Osaka  
Tel: 81-6-6152-7160  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
China - Dongguan  
Tel: 86-769-8702-9880  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Guangzhou  
Tel: 86-20-8755-8029  
Korea - Daegu  
Tel: 82-53-744-4301  
Germany - Garching  
Tel: 49-8931-9700  
China - Hangzhou  
Tel: 86-571-8792-8115  
Korea - Seoul  
Tel: 82-2-554-7200  
Germany - Haan  
Tel: 49-2129-3766400  
Austin, TX  
Tel: 512-257-3370  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Malaysia - Kuala Lumpur  
Tel: 60-3-7651-7906  
Germany - Heilbronn  
Tel: 49-7131-72400  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
China - Nanjing  
Tel: 86-25-8473-2460  
Malaysia - Penang  
Tel: 60-4-227-8870  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Qingdao  
Philippines - Manila  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-532-8502-7355  
Tel: 63-2-634-9065  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shanghai  
Tel: 86-21-3326-8000  
Singapore  
Tel: 65-6334-8870  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Shenyang  
Tel: 86-24-2334-2829  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Shenzhen  
Tel: 86-755-8864-2200  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Suzhou  
Tel: 86-186-6233-1526  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Wuhan  
Tel: 86-27-5980-5300  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Italy - Padova  
Tel: 39-049-7625286  
Houston, TX  
Tel: 281-894-5983  
China - Xian  
Tel: 86-29-8833-7252  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
China - Xiamen  
Tel: 86-592-2388138  
Norway - Trondheim  
Tel: 47-7288-4388  
China - Zhuhai  
Tel: 86-756-3210040  
Poland - Warsaw  
Tel: 48-22-3325737  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
DS20006362A-page 112  
2020 Microchip Technology Inc.  
02/28/20  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY