MCP6001RT-I/MS [MICROCHIP]

1 MHz, Low-Power Op Amp; 1兆赫,低功耗运算放大器
MCP6001RT-I/MS
型号: MCP6001RT-I/MS
厂家: MICROCHIP    MICROCHIP
描述:

1 MHz, Low-Power Op Amp
1兆赫,低功耗运算放大器

运算放大器
文件: 总28页 (文件大小:455K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6001/2/4  
1 MHz, Low-Power Op Amp  
Features  
Description  
• Available in SC-70-5 and SOT-23-5 packages  
• Gain Bandwidth Product: 1 MHz (typ.)  
• Rail-to-Rail Input/Output  
The Microchip Technology Inc. MCP6001/2/4 family of  
operational amplifiers (op amps) is specifically  
designed for general-purpose applications. This family  
has a 1 MHz Gain Bandwidth Product (GBWP) and  
90° phase margin (typ.). It also maintains 45° phase  
margin (typ.) with a 500 pF capacitive load. This family  
operates from a single supply voltage as low as 1.8V,  
while drawing 100 µA (typ.) quiescent current.  
Additionally, the MCP6001/2/4 supports rail-to-rail  
input and output swing, with a common mode input  
voltage range of VDD + 300 mV to VSS – 300 mV. This  
family of op amps is designed with Microchip’s  
advanced CMOS process.  
• Supply Voltage: 1.8V to 5.5V  
• Supply Current: IQ = 100 µA (typ.)  
• Phase Margin: 90° (typ.)  
Temperature Range:  
- Industrial: -40°C to +85°C  
- Extended: -40°C to +125°C  
• Available in Single, Dual and Quad Packages  
Applications  
The MCP6001/2/4 family is available in the industrial  
and extended temperature ranges, with a power supply  
range of 1.8V to 5.5V.  
• Automotive  
• Portable Equipment  
• Photodiode Amplifier  
• Analog Filters  
Package Types  
• Notebooks and PDAs  
• Battery-Powered Systems  
MCP6001  
MCP6002  
SC-70-5, SOT-23-5  
PDIP, SOIC, MSOP  
VDD  
VOUT  
VOUTA  
8
7
6
5
VDD  
1
2
3
5
1
2
3
4
Available Tools  
VSS  
VIN  
VINA  
+
-
VOUTB  
+
-
SPICE Macro Models (at www.microchip.com)  
FilterLab® Software (at www.microchip.com)  
+
VIN–  
VINA  
4
+ -  
VINB  
VINB  
+
VSS  
Typical Application  
MCP6001R  
VDD  
SOT-23-5  
MCP6004  
PDIP, SOIC, TSSOP  
VSS  
VOUT  
VDD  
VIN  
1
5
4
+
2
3
VOUTA  
V
V
V
VOUT  
14  
13  
12  
11  
MCP6001  
1
2
3
4
OUTD  
-
VIN  
+
VIN–  
VINA  
VINA  
VDD  
+ -  
- +  
IND  
+
+
IND  
VSS  
VSS  
VINB  
+
V
+
MCP6001U  
10  
9
5
6
7
INC  
R1  
-
-
+
+
VINB  
VINC  
R2  
SOT-23-5  
R1  
-----  
VOUTB  
VOUTC  
8
VIN  
+
VDD  
5
1
Gain = 1 +  
+
R2  
VSS  
VREF  
2
3
-
VIN  
VOUT  
4
Non-Inverting Amplifier  
© 2005 Microchip Technology Inc.  
DS21733F-page 1  
MCP6001/2/4  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification  
is not implied. Exposure to maximum rating conditions  
for extended periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
V
– V ........................................................................7.0V  
SS  
DD  
All Inputs and Outputs ................... V – 0.3V to V + 0.3V  
SS  
DD  
Difference Input Voltage ...................................... |V – V  
|
DD  
SS  
Output Short-Circuit Current .................................continuous  
Current at Input Pins ....................................................±2 mA  
Current at Output and Supply Pins ............................±30 mA  
Storage Temperature.....................................-65°C to +150°C  
Maximum Junction Temperature (T )..........................+150°C  
J
ESD Protection On All Pins (HBM;MM) ............... ≥ 4 kV; 200V  
DC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2,  
RL = 10 kΩ to VDD/2 and VOUT VDD/2.  
Parameters  
Input Offset  
Input Offset Voltage  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
VOS  
-4.5  
+4.5  
mV VCM = VSS (Note 1)  
Input Offset Drift with Temperature ΔVOS/ΔTA  
±2.0  
µV/°C TA= -40°C to +125°C,  
VCM = VSS  
Power Supply Rejection Ratio  
Input Bias Current and Impedance  
Input Bias Current:  
PSRR  
86  
dB  
VCM = VSS  
IB  
IB  
±1.0  
19  
pA  
pA  
Industrial Temperature  
TA = +85°C  
Extended Temperature  
IB  
1100  
pA  
TA = +125°C  
Input Offset Current  
IOS  
ZCM  
ZDIFF  
±1.0  
pA  
Common Mode Input Impedance  
Differential Input Impedance  
Common Mode  
1013||6  
1013||3  
Ω||pF  
Ω||pF  
Common Mode Input Range  
Common Mode Rejection Ratio  
VCMR  
VSS 0.3  
VDD + 0.3  
V
CMRR  
60  
76  
dB  
VCM = -0.3V to 5.3V,  
VDD = 5V  
Open-Loop Gain  
DC Open-Loop Gain (Large Signal)  
AOL  
88  
112  
dB  
VOUT = 0.3V to VDD – 0.3V,  
VCM = VSS  
Output  
Maximum Output Voltage Swing  
Output Short-Circuit Current  
VOL, VOH VSS + 25  
±6  
VDD – 25  
mV VDD = 5.5V  
mA VDD = 1.8V  
ISC  
±23  
mA  
VDD = 5.5V  
Power Supply  
Supply Voltage  
VDD  
IQ  
1.8  
50  
5.5  
V
Quiescent Current per Amplifier  
100  
170  
µA  
IO = 0, VDD = 5.5V, VCM = 5V  
Note 1: MCP6001/2/4 parts with date codes prior to December 2004 (week code 49) were tested to ±7 mV minimum/  
maximum limits.  
DS21733F-page 2  
© 2005 Microchip Technology Inc.  
MCP6001/2/4  
AC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8 to 5.5V, VSS = GND, VCM = VDD/2,  
VOUT VDD/2, RL = 10 kΩ to VDD/2 and CL = 60 pF.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
AC Response  
Gain Bandwidth Product  
Phase Margin  
GBWP  
PM  
1.0  
90  
MHz  
°
G = +1  
Slew Rate  
SR  
0.6  
V/µs  
Noise  
Input Noise Voltage  
Input Noise Voltage Density  
Input Noise Current Density  
Eni  
eni  
ini  
6.1  
28  
µVp-p f = 0.1 Hz to 10 Hz  
nV/Hz f = 1 kHz  
fA/Hz f = 1 kHz  
0.6  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, VDD = +1.8V to +5.5V and VSS = GND.  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Industrial Temperature Range  
Extended Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
TA  
TA  
TA  
TA  
-40  
-40  
-40  
-65  
+85  
°C  
°C  
°C  
°C  
+125  
+125  
+150  
Note  
Thermal Package Resistances  
Thermal Resistance, 5L-SC70  
Thermal Resistance, 5L-SOT-23  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC (150 mil)  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 14L-PDIP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
331  
256  
85  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
163  
206  
70  
120  
100  
Note:  
The industrial temperature devices operate over this extended temperature range, but with reduced  
performance. In any case, the internal Junction Temperature (TJ) must not exceed the Absolute Maximum  
specification of +150°C.  
© 2005 Microchip Technology Inc.  
DS21733F-page 3  
MCP6001/2/4  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 10 kΩ to VDD/2 and CL = 60 pF.  
100  
95  
90  
85  
80  
75  
70  
20%  
18%  
16%  
14%  
12%  
10%  
8%  
64,695 Samples  
CM = VSS  
V
PSRR (VCM = VSS  
)
6%  
4%  
CMRR (VCM = -0.3V to +5.3V)  
2%  
0%  
-50  
-25  
0
25  
50  
75  
100  
125  
Input Offset Voltage (mV)  
Ambient Temperature (°C)  
FIGURE 2-1:  
Input Offset Voltage.  
FIGURE 2-4:  
CMRR, PSRR vs. Ambient  
Temperature.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
120  
100  
80  
60  
40  
20  
0
0
VCM = VSS  
-30  
-60  
Phase  
PSRR–  
PSRR+  
-90  
-120  
Gain  
CMRR  
-150  
-180  
-210  
VCM = VSS  
-20  
10  
100  
1.2  
1k  
10k  
104  
100k  
15  
1.01  
1.03  
0.1  
1
10 100 1k 10k 100k 1M 10M  
1.E- 1.E 1.E 1.E 1.E 1.E 1.E 1.E 1.E  
01 +00 +01 F+r0e2qu+e0n3cy+(0H4z)+05 +06 +07  
Frequency (Hz)  
FIGURE 2-2:  
PSRR, CMRR vs.  
FIGURE 2-5:  
Open-Loop Gain, Phase vs.  
Frequency.  
Frequency.  
14%  
55%  
50%  
45%  
40% VCM = VDD  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
1230 Samples  
VDD = 5.5V  
VCM = VDD  
605 Samples  
DD = 5.5V  
12%  
10%  
8%  
V
TA = +85°C  
TA = +125°C  
6%  
4%  
2%  
0%  
0%  
Input Bias Current (pA)  
Input Bias Current (pA)  
FIGURE 2-3:  
Input Bias Current at +85°C.  
FIGURE 2-6:  
Input Bias Current at +125°C.  
DS21733F-page 4  
© 2005 Microchip Technology Inc.  
MCP6001/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 10 kΩ to VDD/2 and CL = 60 pF.  
1,000  
18%  
1225 Samples  
TA = -40°C to +125°C  
16%  
14%  
VCM = VSS  
12%  
10%  
100  
8%  
6%  
4%  
2%  
0%  
10  
0.1  
1
10  
100  
1.E-01 1.E+0 1.E+0 1.E+0 1.E+0 1.E+0 1.E+0  
1k  
10k 100k  
Input Offset Voltage Drift (µV/°C)  
0
F1reque2ncy (Hz3)  
4
5
FIGURE 2-7:  
Input Noise Voltage Density  
FIGURE 2-10:  
Input Offset Voltage Drift.  
vs. Frequency.  
200  
150  
100  
50  
0
VDD = 1.8V  
-100  
-200  
-300  
-400  
-500  
-600  
-700  
VDD = 5.5V  
0
VDD = 1.8V  
TA = -40°C  
-50  
-100  
-150  
-200  
T
T
A = +25°C  
A = +85°C  
TA = +125°C  
VCM = VSS  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-11:  
Input Offset Voltage vs.  
FIGURE 2-8:  
Input Offset Voltage vs.  
Output Voltage.  
Common Mode Input Voltage at VDD = 1.8V.  
30  
0
VDD = 5.5V  
-100  
-200  
-300  
25  
20  
15  
10  
5
TA = -40°C  
TA = +25°C  
TA = +85°C  
TA = +125°C  
-400  
-500  
-600  
-700  
TA = -40°C  
T
T
A = +25°C  
A = +85°C  
TA = +125°C  
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-12:  
Output Short-Circuit Current  
FIGURE 2-9:  
Input Offset Voltage vs.  
vs. Power Supply Voltage.  
Common Mode Input Voltage at VDD = 5.5V.  
© 2005 Microchip Technology Inc.  
DS21733F-page 5  
MCP6001/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 10 kΩ to VDD/2 and CL = 60 pF.  
0.08  
1.0  
0.9  
G = +1 V/V  
Falling Edge, VDD = 5.5V  
0.06  
Falling Edge, VDD = 1.8V  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.04  
0.02  
0.00  
Rising Edge, VDD = 5.5V  
Rising Edge, VDD = 1.8V  
-0.02  
-0.04  
-0.06  
-0.08  
-50  
-25  
0
25  
50  
75  
100  
125  
0.E+00  
1.E-06  
2.E-06  
3.E-06  
4.E-06  
5.E-06  
6.E-06  
7.E-06  
8.E-06  
9.E-06  
1.E-05  
Ambient Temperature (°C)  
Time (1 µs/div)  
FIGURE 2-13:  
Slew Rate vs. Ambient  
FIGURE 2-16:  
Small-Signal, Non-Inverting  
Temperature.  
Pulse Response.  
1,000  
100  
10  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
G = +1 V/V  
V
DD = 5.0V  
VDD – VOH  
VOL – VSS  
1
10µ  
100µ  
14  
1m  
13  
10m  
12  
0.0 0.E+00  
1.E-05  
2.E-05  
3.E-05  
4.E-05  
5.E-05  
6.E-05  
7.E-05  
8.E-05  
9.E-05  
1.E-04  
15  
Time (10 µs/div)  
Output Current Magnitude (A)  
FIGURE 2-14:  
Output Voltage Headroom  
FIGURE 2-17:  
Large-Signal, Non-Inverting  
vs. Output Current Magnitude.  
Pulse Response.  
180  
10  
VCM = VDD - 0.5V  
160  
140  
120  
100  
80  
VDD = 5.5V  
VDD = 1.8V  
1
TA = +125°C  
60  
TA = +85°C  
A = +25°C  
40  
T
TA = -40°C  
20  
0
0.1  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
1k  
10k  
1.4  
100k  
15  
1M  
1.06  
1.E03  
Frequency (Hz)  
FIGURE 2-15:  
Output Voltage Swing vs.  
FIGURE 2-18:  
Quiescent Current vs.  
Frequency.  
Power Supply Voltage.  
DS21733F-page 6  
© 2005 Microchip Technology Inc.  
MCP6001/2/4  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
MCP6001 MCP6001R MCP6001U MCP6002 MCP6004  
Symbol  
Description  
1
4
1
4
4
3
1
2
3
8
5
6
1
2
3
4
5
6
VOUT, VOUTA Analog Output (op amp A)  
VIN–, VINA  
+
Inverting Input (op amp A)  
Non-inverting Input (op amp A)  
Positive Power Supply  
3
3
1
VIN+, VINA  
VDD  
5
2
5
VINB  
+
Non-inverting Input (op amp B)  
Inverting Input (op amp B)  
VINB  
2
5
2
7
7
VOUTB  
VOUTC  
Analog Output (op amp B)  
Analog Output (op amp C)  
Inverting Input (op amp C)  
Non-inverting Input (op amp C)  
Negative Power Supply  
4
8
9
VINC  
+
10  
11  
12  
13  
14  
VINC  
VSS  
VIND  
+
Non-inverting Input (op amp D)  
Inverting Input (op amp D)  
Analog Output (op amp D)  
VIND  
VOUTD  
3.1  
Analog Outputs  
3.3  
Power Supply (V and V  
)
DD  
SS  
The output pins are low-impedance voltage sources.  
The positive power supply (VDD) is 1.8V to 5.5V higher  
than the negative power supply (VSS). For normal  
operation, the other pins are at voltages between VSS  
3.2  
Analog Inputs  
and VDD  
.
The non-inverting and inverting inputs are high-  
impedance CMOS inputs with low bias currents.  
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need a local bypass capacitor (typically 0.01 µF to  
0.1 µF) within 2 mm of the VDD pin. These parts can  
share a bulk capacitor with analog parts (typically  
2.2 µF to 10 µF) within 100 mm of the VDD pin.  
© 2005 Microchip Technology Inc.  
DS21733F-page 7  
MCP6001/2/4  
4.0  
APPLICATION INFORMATION  
The MCP6001/2/4 family of op amps is manufactured  
using Microchip’s state-of-the-art CMOS process and  
is specifically designed for low-cost, low-power and  
general-purpose applications. The low supply voltage,  
low quiescent current and wide bandwidth makes the  
MCP6001/2/4 ideal for battery-powered applications.  
This device has high phase margin, which makes it  
stable for larger capacitive load applications.  
VOUT  
RIN  
MCP600X  
+
VIN  
(Maximum expected VIN) VDD  
------------------------------------------------------------------------------  
2 mA  
RIN  
VSS (Minimum expected VIN  
)
4.1  
Rail-to-Rail Input  
---------------------------------------------------------------------------  
RIN  
2 mA  
The MCP6001/2/4 op amps are designed to prevent  
phase reversal when the input pins exceed the supply  
voltages. Figure 4-1 shows the input voltage exceeding  
the supply voltage without any phase reversal.  
FIGURE 4-2:  
Resistor (RIN).  
Input Current Limiting  
4.2  
Rail-to-Rail Output  
6
The output voltage range of the MCP6001/2/4 op amps  
is VDD – 25 mV (min.) and VSS + 25 mV (max.) when  
RL = 10 kΩ is connected to VDD/2 and VDD = 5.5V.  
Refer to Figure 2-14 for more information.  
VIN  
VDD = 5.0V  
G = +2 V/V  
5
4
VOUT  
3
4.3  
Capacitive Loads  
2
Driving large capacitive loads can cause stability prob-  
lems for voltage feedback op amps. As the load capac-  
itance increases, the feedback loop’s phase margin  
decreases and the closed-loop bandwidth is reduced.  
This produces gain peaking in the frequency response,  
with overshoot and ringing in the step response. While  
a unity-gain buffer (G = +1) is the most sensitive to  
capacitive loads, all gains show the same general  
behavior.  
1
0
0.E+00  
1.E-05  
2.E-05  
3.E-05  
4.E-05  
5.E-05  
6.E-05  
7.E-05  
8.E-05  
9.E-05  
1.E-04  
-1  
Time (10 µs/div)  
FIGURE 4-1:  
Phase Reversal.  
The MCP6001/2/4 Show No  
The input stage of the MCP6001/2/4 op amps use two  
differential input stages in parallel. One operates at a  
low common mode input voltage (VCM), while the other  
operates at a high VCM. With this topology, the device  
operates with a VCM up to 300 mV above VDD and  
300 mV below VSS. The input offset voltage is  
measured at VCM = VSS – 300 mV and VDD + 300 mV  
to ensure proper operation.  
When driving large capacitive loads with these op  
amps (e.g., > 100 pF when G = +1), a small series  
resistor at the output (RISO in Figure 4-3) improves the  
feedback loop’s phase margin (stability) by making the  
output load resistive at higher frequencies. The band-  
width will be generally lower than the bandwidth with no  
capacitance load.  
Input voltages that exceed the input voltage range  
(VSS – 0.3V to VDD + 0.3V at 25°C) can cause  
excessive current to flow into or out of the input pins,  
while current beyond ±2 mA can cause reliability  
problems. Applications that exceed this rating must be  
externally limited with a resistor, as shown in Figure 4-2.  
RISO  
VOUT  
MCP600X  
+
VIN  
CL  
FIGURE 4-3:  
Output resistor, RISO  
stabilizes large capacitive loads.  
DS21733F-page 8  
© 2005 Microchip Technology Inc.  
MCP6001/2/4  
Figure 4-4 gives recommended RISO values for  
different capacitive loads and gains. The x-axis is the  
normalized load capacitance (CL/GN), where GN is the  
circuit's noise gain. For non-inverting gains, GN and the  
Signal Gain are equal. For inverting gains, GN is  
1+|Signal Gain| (e.g., -1 V/V gives GN = +2 V/V).  
4.5  
PCB Surface Leakage  
In applications where low input bias current is critical,  
Printed Circuit Board (PCB) surface leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
between nearby traces is 1012Ω. A 5V difference would  
cause 5 pA of current to flow; which is greater than the  
MCP6001/2/4 family’s bias current at 25°C (1 pA, typ.).  
1000  
VDD = 5.0V  
RL = 100 k:  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
An example of this type of layout is shown in  
Figure 4-5.  
100  
GN = 1  
GN t 2  
VIN-  
VIN+  
VSS  
10  
10p  
100p  
10  
1n  
1.09  
10n  
1.8  
1.1  
Normalized Load Capacitance; CL/GN (F)  
FIGURE 4-4:  
Recommended RISO values  
for Capacitive Loads.  
After selecting RISO for your circuit, double-check the  
resulting frequency response peaking and step  
response overshoot. Modify RISO’s value until the  
response is reasonable. Bench evaluation and simula-  
tions with the MCP6001/2/4 SPICE macro model are  
very helpful.  
Guard Ring  
Example Guard Ring Layout  
FIGURE 4-5:  
for Inverting Gain.  
1. Non-inverting Gain and Unity-Gain Buffer:  
4.4  
Supply Bypass  
a. Connect the non-inverting pin (VIN+) to the  
input with a wire that does not touch the  
PCB surface.  
With this family of operational amplifiers, the power  
supply pin (VDD for single-supply) should have a local  
bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm  
for good high-frequency performance. It also needs a  
bulk capacitor (i.e., 1 µF or larger) within 100 mm to  
provide large, slow currents. This bulk capacitor can be  
shared with other analog parts.  
b. Connect the guard ring to the inverting input  
pin (VIN–). This biases the guard ring to the  
common mode input voltage.  
2. Inverting Gain and Transimpedance Gain  
Amplifiers (convert current to voltage, such as  
photo detectors):  
a. Connect the guard ring to the non-inverting  
input pin (VIN+). This biases the guard ring  
to the same reference voltage as the op  
amp (e.g., VDD/2 or ground).  
b. Connect the inverting pin (VIN–) to the input  
with a wire that does not touch the PCB  
surface.  
© 2005 Microchip Technology Inc.  
DS21733F-page 9  
MCP6001/2/4  
4.6  
Application Circuits  
100 pF  
4.6.1  
UNITY-GAIN BUFFER  
The rail-to-rail input and output capability of the  
MCP6001/2/4 op amp is ideal for unity-gain buffer  
applications. The low quiescent current and wide  
bandwidth makes the device suitable for a buffer  
configuration in an instrumentation amplifier circuit, as  
shown in Figure 4-6.  
14.3 kΩ 53.6 kΩ  
V
IN  
+
MCP6002  
V
33 pF  
OUT  
FIGURE 4-7:  
Low- Pass Filter.  
Active Second-Order  
R1  
R2  
1/2  
MCP6002  
VIN1  
+
4.6.3  
PEAK DETECTOR  
The MCP6001/2/4 op amp has a high input impedance,  
rail-to-rail input/output and low input bias current, which  
makes this device suitable for peak detector applica-  
tions. Figure 4-8 shows a peak detector circuit with  
clear and sample switches. The peak-detection cycle  
uses a clock (CLK), as shown in Figure 4-8.  
VOUT  
MCP6001  
+
R2  
1/2  
MCP6002  
VIN2  
+
R = 20 kΩ  
1
R1  
At the rising edge of CLK, Sample Switch closes to  
begin sampling. The peak voltage stored on C1 is sam-  
pled to C2 for a sample time defined by tSAMP. At the  
end of the sample time (falling edge of Sample Signal),  
Clear Signal goes high and closes the Clear Switch.  
When the Clear Switch closes, C1 discharges through  
R1 for a time defined by tCLEAR. At the end of the clear  
time (falling edge of Clear Signal), op amp A begins to  
store the peak value of VIN on C1 for a time defined by  
R = 10 kΩ  
2
VREF  
R1  
-----  
VOUT = (VIN2 VIN1) •  
+ VREF  
R2  
FIGURE 4-6:  
with Unity-Gain Buffer Inputs.  
Instrumentation Amplifier  
tDETECT  
.
4.6.2  
ACTIVE LOW-PASS FILTER  
In order to define tSAMP and tCLEAR, it is necessary to  
determine the capacitor charging and discharging  
period. The capacitor charging time is limited by the  
amplifier source current, while the discharging time (τ)  
is defined using R1 (τ = R1C1). tDETECT is the time that  
the input signal is sampled on C1 and is dependent on  
the input voltage change frequency.  
The MCP6001/2/4 op amp’s low input bias current  
makes it possible for the designer to use larger resis-  
tors and smaller capacitors for active low-pass filter  
applications. However, as the resistance increases, the  
noise generated also increases. Parasitic capacitances  
and the large value resistors could also modify the fre-  
quency response. These trade-offs need to be  
considered when selecting circuit elements.  
The op amp output current limit, and the size of the  
storage capacitors (both C1 and C2), could create slew-  
ing limitations as the input voltage (VIN) increases.  
Current through a capacitor is dependent on the size of  
the capacitor and the rate of voltage change. From this  
relationship, the rate of voltage change or the slew rate  
can be determined. For example, with an op amp short-  
circuit current of ISC = 25 mA and a load capacitor of  
C1 = 0.1 µF, then:  
Usually, the op amp bandwidth is 100X the filter cutoff  
frequency (or higher) for good performance. It is possi-  
ble to have the op amp bandwidth 10X higher than the  
cutoff frequency, thus having a design that is more  
sensitive to component tolerances.  
Figure 4-7 shows a second-order Butterworth filter with  
100 kHz cutoff frequency and a gain of +1 V/V; the op  
amp bandwidth is only 10X higher than the cutoff  
frequency. The component values were selected using  
Microchip’s FilterLab® software.  
EQUATION 4-1:  
dVC1  
------------  
ISC = C1  
dt  
dVC1  
------------  
ISC  
-------  
C1  
=
=
dt  
25mA  
--------------  
0.1μF  
dVC1  
------------  
= 250mV ⁄ μs  
dt  
DS21733F-page 10  
© 2005 Microchip Technology Inc.  
MCP6001/2/4  
This voltage rate of change is less than the MCP6001/2/4  
slew rate of 0.6 V/µs. When the input voltage swings  
below the voltage across C1, D1 becomes reverse-  
biased. This opens the feedback loop and rails the  
amplifier. When the input voltage increases, the amplifier  
recovers at its slew rate. Based on the rate of voltage  
change shown in the above equation, it takes an  
extended period of time to charge a 0.1 µF capacitor. The  
capacitors need to be selected so that the circuit is not  
limited by the amplifier slew rate. Therefore, the capaci-  
tors should be less than 40 µF and a stabilizing resistor  
(RISO) needs to be properly selected. (Refer to  
Section 4.3 “Capacitive Loads”).  
VIN  
D1  
+
RISO  
VC1  
1/2  
RISO  
+
VC2  
MCP6002  
1/2  
VOUT  
+
MCP6002  
C1  
R1  
Op Amp A  
MCP6001  
C2  
Op Amp B  
Op Amp C  
Sample  
Switch  
Clear  
Switch  
t
SAMP  
Sample Signal  
t
CLEAR  
Clear Signal  
CLK  
t
DETECT  
FIGURE 4-8:  
Peak Detector with Clear and Sample CMOS Analog Switches.  
© 2005 Microchip Technology Inc.  
DS21733F-page 11  
MCP6001/2/4  
5.0  
DESIGN TOOLS  
Microchip provides the basic design tools needed for  
the MCP6001/2/4 family of op amps.  
5.1  
SPICE Macro Model  
The latest SPICE macro model for the MCP6001/2/4  
op amps is available on our web site at  
www.microchip.com. This model is intended to be an  
initial design tool that works well in the op amp’s linear  
region of operation at room temperature. See the  
model file for information on its capabilities.  
Bench testing is a very important part of any design and  
cannot be replaced with simulations. Also, simulation  
results using this macro model need to be validated by  
comparing them to the data sheet specifications and  
characteristic curves.  
®
5.2  
FilterLab Software  
Microchip’s FilterLab® software is an innovative  
software tool that simplifies analog active filter (using  
op amps) design. Available at no cost from our web site  
at www.microchip.com, the FilterLab design tool  
provides full schematic diagrams of the filter circuit with  
component values. It also outputs the filter circuit in  
SPICE format, which can be used with the macro  
model to simulate actual filter performance.  
DS21733F-page 12  
© 2005 Microchip Technology Inc.  
MCP6001/2/4  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Lead SC-70 (MCP6001)  
Example: (I-Temp)  
I-Temp  
Code  
E-Temp  
Code  
XXN (Front)  
YWW (Back)  
AA7 (Front)  
432 (Back)  
Device  
MCP6001  
AAN  
CDN  
Note: Applies to 5-Lead SC-70.  
OR  
OR  
I-Temp  
Code  
E-Temp  
Code  
Device  
AA74  
XXNN  
MCP6001  
AANN  
CDNN  
Note: Applies to 5-Lead SC-70.  
Example: (E-Temp)  
5-Lead SOT-23 (MCP6001/1R/1U)  
5
4
5
4
I-Temp  
Code  
E-Temp  
Code  
Device  
MCP6001  
AANN  
ADNN  
AFNN  
CDNN  
CENN  
CFNN  
CD25  
XXNN  
MCP6001R  
MCP6001U  
1
2
3
1
2
3
Note: Applies to 5-Lead SOT-23.  
8-Lead PDIP (300 mil)  
Example:  
XXXXXXXX  
XXXXXNNN  
MCP6002  
I/P256  
0432  
YYWW  
Legend: XX...X Customer specific information*  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard marking consists of Microchip part number, year code, week code, traceability code (facility  
code, mask rev#, and assembly code). For marking beyond this, certain price adders apply. Please  
check with your Microchip Sales Office.  
© 2005 Microchip Technology Inc.  
DS21733F-page 13  
MCP6001/2/4  
Package Marking Information (Continued)  
8-Lead SOIC (150 mil)  
Example:  
XXXXXXXX  
MCP6002  
XXXXYYWW  
I/SN0432  
NNN  
256  
Example:  
8-Lead MSOP  
XXXXXX  
YWWNNN  
6002I  
432256  
14-Lead PDIP (300 mil) (MCP6004)  
Example:  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
MCP6004-I/P  
0432256  
YYWWNNN  
14-Lead SOIC (150 mil) (MCP6004)  
Example:  
XXXXXXXXXX  
XXXXXXXXXX  
MCP6004ISL  
0432256  
YYWWNNN  
Example:  
14-Lead TSSOP (MCP6004)  
XXXXXX  
YYWW  
6004ST  
0432  
NNN  
256  
DS21733F-page 14  
© 2005 Microchip Technology Inc.  
MCP6001/2/4  
5-Lead Plastic Package (SC-70)  
E
E1  
D
p
B
n
1
Q1  
A2  
A
c
A1  
L
Units  
INCHES  
NOM  
5
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
5
MAX  
n
p
Number of Pins  
Pitch  
.026 (BSC)  
0.65 (BSC)  
Overall Height  
A
.031  
.031  
.000  
.071  
.045  
.071  
.004  
.004  
.004  
.006  
.043  
0.80  
1.10  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.039  
.004  
.094  
.053  
.087  
.012  
.016  
.007  
.012  
0.80  
0.00  
1.80  
1.15  
1.80  
0.10  
0.10  
0.10  
0.15  
1.00  
0.10  
2.40  
1.35  
2.20  
0.30  
0.40  
0.18  
0.30  
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Foot Length  
L
Q1  
c
Top of Molded Pkg to Lead Shoulder  
Lead Thickness  
Lead Width  
B
*Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed .005" (0.127mm) per side.  
JEITA (EIAJ) Standard: SC-70  
Drawing No. C04-061  
© 2005 Microchip Technology Inc.  
DS21733F-page 15  
MCP6001/2/4  
5-Lead Plastic Small Outline Transistor (OT) (SOT23)  
E
E1  
p
B
p1  
D
n
1
α
c
A
A2  
φ
A1  
L
β
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
5
MAX  
n
p
Number of Pins  
5
Pitch  
.038  
.075  
.046  
.043  
.003  
.110  
.064  
.116  
.018  
5
0.95  
1.90  
p1  
Outside lead pitch (basic)  
Overall Height  
A
A2  
A1  
E
.035  
.035  
.000  
.102  
.059  
.110  
.014  
0
.057  
0.90  
0.90  
1.18  
1.10  
0.08  
2.80  
1.63  
2.95  
0.45  
5
1.45  
Molded Package Thickness  
.051  
.006  
.118  
.069  
.122  
.022  
10  
1.30  
0.15  
3.00  
1.75  
3.10  
0.55  
10  
Standoff  
§
0.00  
2.60  
1.50  
2.80  
0.35  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Foot Length  
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.004  
.014  
0
.006  
.017  
5
.008  
.020  
10  
0.09  
0.35  
0
0.15  
0.43  
5
0.20  
0.50  
10  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-178  
Drawing No. C04-091  
DS21733F-page 16  
© 2005 Microchip Technology Inc.  
MCP6001/2/4  
8-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
β
B1  
B
p
eB  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
8
8
.100  
.155  
.130  
2.54  
3.94  
3.30  
Top to Seating Plane  
A
.140  
.170  
3.56  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.360  
.125  
.008  
.045  
.014  
.310  
5
.145  
2.92  
0.38  
7.62  
6.10  
9.14  
3.18  
0.20  
1.14  
0.36  
7.87  
5
3.68  
.313  
.250  
.373  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.385  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
9.46  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
9.78  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-018  
© 2005 Microchip Technology Inc.  
DS21733F-page 17  
MCP6001/2/4  
8-Lead Plastic Small Outline (SN) – Narrow, 150 mil (SOIC)  
E
E1  
p
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
8
MAX  
n
p
Number of Pins  
Pitch  
8
.050  
.061  
.056  
.007  
.237  
.154  
.193  
.015  
.025  
4
1.27  
Overall Height  
A
.053  
.069  
1.35  
1.32  
1.55  
1.42  
0.18  
6.02  
3.91  
4.90  
0.38  
0.62  
4
1.75  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.052  
.004  
.228  
.146  
.189  
.010  
.019  
0
.061  
.010  
.244  
.157  
.197  
.020  
.030  
8
1.55  
0.25  
6.20  
3.99  
5.00  
0.51  
0.76  
8
§
0.10  
5.79  
3.71  
4.80  
0.25  
0.48  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.008  
.013  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.33  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-057  
DS21733F-page 18  
© 2005 Microchip Technology Inc.  
MCP6001/2/4  
8-Lead Plastic Micro Small Outline Package (MS) (MSOP)  
E
E1  
p
D
2
B
n
1
α
A2  
A
c
φ
A1  
(F)  
L
β
Units  
Dimension Limits  
INCHES  
NOM  
8
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
8
.026 BSC  
0.65 BSC  
Overall Height  
A
A2  
A1  
E
-
-
.043  
-
-
1.10  
Molded Package Thickness  
Standoff  
.030  
.000  
.033  
.037  
.006  
0.75  
0.00  
0.85  
0.95  
0.15  
-
-
Overall Width  
.193 TYP.  
4.90 BSC  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
.118 BSC  
3.00 BSC  
.118 BSC  
3.00 BSC  
L
.016  
.024  
.031  
0.40  
0.60  
0.80  
Footprint (Reference)  
Foot Angle  
F
.037 REF  
0.95 REF  
φ
c
0°  
.003  
.009  
5°  
-
.006  
.012  
-
8°  
.009  
.016  
15°  
0°  
0.08  
0.22  
5°  
-
-
-
-
-
8°  
0.23  
0.40  
15°  
Lead Thickness  
Lead Width  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
5°  
-
15°  
5°  
15°  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed .010" (0.254mm) per side.  
JEDEC Equivalent: MO-187  
Drawing No. C04-111  
© 2005 Microchip Technology Inc.  
DS21733F-page 19  
MCP6001/2/4  
14-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
B1  
β
eB  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
14  
MAX  
n
p
Number of Pins  
Pitch  
14  
.100  
.155  
.130  
2.54  
Top to Seating Plane  
A
.140  
.170  
3.56  
2.92  
0.38  
7.62  
6.10  
18.80  
3.18  
0.20  
1.14  
0.36  
7.87  
5
3.94  
3.30  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.740  
.125  
.008  
.045  
.014  
.310  
5
.145  
3.68  
.313  
.250  
.750  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.760  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
19.05  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
19.30  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-005  
DS21733F-page 20  
© 2005 Microchip Technology Inc.  
MCP6001/2/4  
14-Lead Plastic Small Outline (SL) – Narrow, 150 mil (SOIC)  
E
E1  
p
D
2
B
n
1
α
h
45°  
c
A2  
A
φ
A1  
L
β
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
14  
14  
.050  
.061  
.056  
.007  
.236  
.154  
.342  
.015  
.033  
4
1.27  
1.55  
1.42  
0.18  
5.99  
3.90  
8.69  
0.38  
0.84  
4
Overall Height  
A
.053  
.069  
1.35  
1.75  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.052  
.004  
.228  
.150  
.337  
.010  
.016  
0
.061  
.010  
.244  
.157  
.347  
.020  
.050  
8
1.32  
0.10  
5.79  
3.81  
8.56  
0.25  
0.41  
0
1.55  
0.25  
6.20  
3.99  
8.81  
0.51  
1.27  
8
§
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.008  
.014  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.36  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-065  
© 2005 Microchip Technology Inc.  
DS21733F-page 21  
MCP6001/2/4  
14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm (TSSOP)  
E
E1  
p
D
2
1
n
B
α
A
c
φ
A1  
A2  
β
L
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
14  
MAX  
n
p
Number of Pins  
Pitch  
14  
.026  
0.65  
Overall Height  
A
.043  
1.10  
0.95  
0.15  
6.50  
4.50  
5.10  
0.70  
8
Molded Package Thickness  
Standoff  
A2  
A1  
E
.033  
.002  
.246  
.169  
.193  
.020  
0
.035  
.004  
.251  
.173  
.197  
.024  
4
.037  
.006  
.256  
.177  
.201  
.028  
8
0.85  
0.05  
0.90  
0.10  
6.38  
4.40  
5.00  
0.60  
4
§
Overall Width  
6.25  
4.30  
4.90  
0.50  
0
Molded Package Width  
Molded Package Length  
Foot Length  
E1  
D
L
φ
Foot Angle  
c
Lead Thickness  
.004  
.007  
0
.006  
.010  
5
.008  
.012  
10  
0.09  
0.19  
0
0.15  
0.25  
5
0.20  
0.30  
10  
Lead Width  
B1  
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.005” (0.127mm) per side.  
JEDEC Equivalent: MO-153  
Drawing No. C04-087  
DS21733F-page 22  
© 2005 Microchip Technology Inc.  
MCP6001/2/4  
APPENDIX A: REVISION HISTORY  
Revision F (March 2005)  
Updated 6.0 “Packaging Information” to include old  
and new packaging examples.  
Revision E (December 2004)  
The following is the list of modifications:  
1. VOS specification reduced to ±4.5 mV from  
±7.0 mV for parts starting with date code  
YYWW = 0449  
2. Corrected package markings in Section 6.0  
“Packaging Information”  
3. Added Appendix A: Revision History.  
Revision D (May 2003)  
Revision C (December 2002)  
Revision B (October 2002)  
Revision A (June 2002)  
Original data sheet release.  
© 2005 Microchip Technology Inc.  
DS21733E-page 23  
MCP6001/2/4  
NOTES:  
DS21733E-page 24  
© 2005 Microchip Technology Inc.  
MCP6001/2/4  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
/XX  
a)  
b)  
c)  
d)  
MCP6001T-I/LT:  
Tape and Reel,  
Temperature  
Range  
Package  
Industrial Temperature,  
5LD SC-70 package  
Tape and Reel,  
Industrial Temperature,  
5LD SOT-23 package.  
MCP6001T-I/OT:  
Device:  
MCP6001T:  
Single Op Amp (Tape and Reel)  
(SC-70, SOT-23)  
Single Op Amp (Tape and Reel) (SOT-23)  
MCP6001RT-I/OT: Tape and Reel,  
Industrial Temperature,  
5LD SOT-23 package.  
MCP6001UT-E/OT: Tape and Reel,  
MCP6001RT:  
MCP6001UT: Single Op Amp (Tape and Reel) (SOT-23)  
MCP6002:  
MCP6002T:  
Dual Op Amp  
Dual Op Amp (Tape and Reel)  
(SOIC, MSOP)  
Quad Op Amp  
Quad Op Amp (Tape and Reel)  
(SOIC, MSOP)  
Extended Temperature,  
5LD SOT-23 package.  
MCP6004:  
MCP6004T:  
a)  
b)  
c)  
d)  
e)  
MCP6002-I/MS:  
MCP6002-I/P:  
Industrial Temperature,  
8LD MSOP package.  
Industrial Temperature,  
8LD PDIP package.  
Extended Temperature,  
8LD PDIP package.  
Industrial Temperature,  
8LD SOIC package.  
Tape and Reel,  
Temperature Range:  
Package:  
I
E
=
=
-40°C to +85°C  
-40°C to +125°C  
MCP6002-E/P:  
MCP6002-I/SN:  
MCP6002T-I/MS:  
LT  
OT  
=
=
Plastic Package (SC-70), 5-lead (MCP6001 only)  
Plastic Small Outline Transistor (SOT-23), 5-lead  
(MCP6001, MCP6001R, MCP6001U)  
Plastic MSOP, 8-lead  
Plastic DIP (300 mil Body), 8-lead, 14-lead  
Plastic SOIC, (150 mil Body), 8-lead  
Plastic SOIC (150 mil Body), 14-lead  
Plastic TSSOP (4.4mm Body), 14-lead  
MS  
P
SN  
SL  
ST  
=
=
=
=
=
Industrial Temperature,  
8LD MSOP package.  
a)  
b)  
c)  
d)  
e)  
MCP6004-I/P:  
MCP6004-I/SL:  
MCP6004-E/SL:  
MCP6004-I/ST:  
MCP6004T-I/SL:  
Industrial Temperature,  
14LD PDIP package.  
IndustrialTemperature,,  
14LD SOIC package.  
Extended Temperature,,  
14LD SOIC package.  
Industrial Temperature,  
14LD TSSOP package.  
Tape and Reel,  
Industrial Temperature,  
14LD SOIC package.  
Tape and Reel,  
f)  
MCP6004T-I/ST:  
Industrial Temperature,  
14LD TSSOP package.  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and  
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
Customer Notification System  
Register on our web site (www.microchip.com) to receive the most current information on our products.  
© 2005 Microchip Technology Inc.  
DS21733E-page 25  
MCP6001/2/4  
NOTES:  
DS21733E-page 26  
© 2005 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-  
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,  
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,  
RELATED TO THE INFORMATION, INCLUDING BUT NOT  
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,  
MERCHANTABILITY OR FITNESS FOR PURPOSE.  
Microchip disclaims all liability arising from this information and  
its use. Use of Microchip’s products as critical components in  
life support systems is not authorized except with express  
written approval by Microchip. No licenses are conveyed,  
implicitly or otherwise, under any Microchip intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro,  
PICSTART, PRO MATE, PowerSmart, rfPIC, and  
SmartShunt are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
AmpLab, FilterLab, MXDEV, MXLAB, PICMASTER, SEEVAL,  
SmartSensor and The Embedded Control Solutions Company  
are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, dsPICDEM,  
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,  
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial  
Programming, ICSP, ICEPIC, Migratable Memory, MPASM,  
MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net,  
PICLAB, PICtail, PowerCal, PowerInfo, PowerMate,  
PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial,  
SmartTel and Total Endurance are trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2005, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 quality system certification for  
its worldwide headquarters, design and wafer fabrication facilities in  
Chandler and Tempe, Arizona and Mountain View, California in  
October 2003. The Company’s quality system processes and  
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2005 Microchip Technology Inc.  
DS21733E-page 27  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
India - Bangalore  
Tel: 91-80-2229-0061  
Fax: 91-80-2229-0062  
Austria - Weis  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Denmark - Ballerup  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-5160-8631  
Fax: 91-11-5160-8632  
China - Chengdu  
Tel: 86-28-8676-6200  
Fax: 86-28-8676-6599  
France - Massy  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Japan - Kanagawa  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Atlanta  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Germany - Ismaning  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Korea - Seoul  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Boston  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Westford, MA  
Tel: 978-692-3848  
Fax: 978-692-3821  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
England - Berkshire  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Dallas  
Addison, TX  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Tel: 972-818-7423  
Fax: 972-818-2924  
Taiwan - Hsinchu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shunde  
Detroit  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Qingdao  
Tel: 86-532-502-7355  
Fax: 86-532-502-7205  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
San Jose  
Mountain View, CA  
Tel: 650-215-1444  
Fax: 650-961-0286  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
10/20/04  
DS21733E-page 28  
© 2005 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY