MCP6006RT-E/OTVAO [MICROCHIP]

1 MHz Operational Amplifier with EMI Filtering;
MCP6006RT-E/OTVAO
型号: MCP6006RT-E/OTVAO
厂家: MICROCHIP    MICROCHIP
描述:

1 MHz Operational Amplifier with EMI Filtering

文件: 总46页 (文件大小:3293K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6006/6R/6U/7/9  
1 MHz Operational Amplifier with EMI Filtering  
Description  
Features  
The Microchip Technology Inc. MCP6006/6R/6U/7/9  
operational amplifier operates with a single supply  
voltage as low as 1.8V, while drawing low quiescent  
current (70 µA, maximum per amplifier). This op amp  
also has low input offset voltage (±1.6 mV, maximum),  
and rail-to-rail input and output operation. In addition, the  
MCP6006/6R/6U/7/9 is unity gain stable and has a gain  
bandwidth product of 1 MHz (typical). This combination  
of features supports battery-powered and portable  
applications.  
• Low Quiescent Current:  
- 70 µA (maximum)/amplifier  
• Low Input Offset Voltage:  
- ±1.6 mV (maximum)  
• Enhanced EMI Protection:  
- Electromagnetic Interference Rejection Ratio  
(EMIRR) at 1.8 GHz: 95 dB  
• Supply Voltage Range: 1.8V to 5.5V  
• Gain Bandwidth Product: 1 MHz (typical)  
• Rail-to-Rail Input/Output  
The MCP6006/6R/6U/7/9 has enhanced EMI protec-  
tion, minimizing electromagnetic interference from  
external sources. This feature makes it well-suited for  
EMI-sensitive applications, such as power lines, radio  
stations and mobile communications.  
• Unity Gain Stable  
• No Phase Reversal  
• Quick Start-up Time: 6 µs (typical)  
• Small Packages  
This product family is offered in single (MCP6006), dual  
(MCP6007) and quad (MCP6009) packages. All  
devices are designed using an advanced CMOS pro-  
cess and fully specified in the extended temperature  
range from -40°C to +125°C.  
• Extended Temperature Range: -40°C to +125°C  
• AEC Q100 Qualified, Grade 1  
Applications  
• Smoke Detectors  
• Automotive, see Product Identification System  
(Automotive)  
Package Types  
• Battery-Powered Systems  
• Sensor Conditioning  
• Battery Current Monitoring  
MCP6006  
5-Lead SC70, SOT-23  
MCP6006R  
5-Lead SOT-23  
VOUT  
VSS  
VDD  
1
2
3
5
VOUT  
VDD  
VSS  
1
2
3
5
4
Design Aids  
V
+
V -  
IN  
4
V
+
V -  
IN  
IN  
IN  
• SPICE Macro Models  
• Microchip Advanced Part Selector (MAPS)  
• Analog Demonstration and Evaluation Boards  
• Application Notes  
MCP6006U  
5-Leadꢀ6&ꢁꢂꢃ SOT-23  
V
+
VDD  
1
2
3
5
IN  
VSS  
MCP6009  
14-Lead TSSOP, SOIC  
Start-up Time  
V
-
VOUT  
4
IN  
Start-up Time vs. Nearest Competitor  
VOUTD  
VOUTA  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
MCP6007  
VIND  
VIND  
VSS  
-
VINA  
VINA  
-
+
8-Lead SOIC, MSOP  
VDD  
+
V
= 100 mV  
PP  
IN  
VDD  
VOUTA  
1
2
3
4
8
7
6
5
VINC  
VINC  
+
-
VOUTB  
VINB  
VINB  
+
-
VINA  
VINA  
-
+
VINB  
VINB  
-
+
VOUTC  
VOUTB  
VSS  
8
Time (10 µs/div)  
2020-2021 Microchip Technology Inc.  
DS20006411B-page 1  
MCP6006/6R/6U/7/9  
1.0  
1.1  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings†  
VDD – VSS .....................................................................................................................................................................6V  
Current at Analog Input Pins (VIN+, VIN-)................................................................................................................±5 mA  
Analog Inputs (VIN+, VIN-)..................................................................................................... VSS – 0.5V to VDD + 0.5V  
Difference Input Voltage ................................................................................................................................ |VDD – VSS  
|
Output Short-Circuit Current (Note 1) .............................................................................................................Continuous  
Storage Temperature...............................................................................................................................-65°C to +150°C  
Maximum Junction Temperature (TJ) ....................................................................................................................+150°C  
ESD Protection on All Pins (HBM; CDM; MM) 3 kV; 2 kV; 300V  
Note 1: Short-circuit to ground, one amplifier per package.  
Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above  
those indicated in the operational listings of this specification is not implied. Exposure to maximum rating  
conditions for extended periods may affect device reliability.  
†† See Section 4.1.2 “Input Voltage Limits”.  
1.2  
Specifications  
DC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA= +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/4,  
VOUT = VDD/2, VL = VDD/2, RL = 10 kto VL and CL = 30 pF.  
Parameters  
Input Offset  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Input Offset Voltage  
VOS  
-1.6  
1.6  
mV  
Input Offset Drift with  
Temperature  
VOS/TA  
±0.6  
µV/°C TA= -40°C to +125°C  
Power Supply Rejection Ratio  
PSRR  
80  
95  
dB  
Input Bias Current and Impedance  
Input Bias Current  
IB  
±1  
19  
pA  
pA  
pA  
TA = +85°C  
200  
TA = +125°C  
Input Offset Current  
IOS  
ZCM  
±1  
pA  
Common-Mode Input Impedance  
Differential Input Impedance  
1013||6  
1013||1  
||pF  
|pF  
ZDIFF  
DS20006411B-page 2  
2020-2021 Microchip Technology Inc.  
MCP6006/6R/6U/7/9  
DC ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, TA= +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/4,  
OUT = VDD/2, VL = VDD/2, RL = 10 kto VL and CL = 30 pF.  
V
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Common-Mode  
Common-Mode Input Voltage  
Range  
VCMR  
VSS – 0.3  
90  
VDD + 0.3  
VDD + 0.1  
V
VSS – 0.1  
TA= -40°C to +125°C  
Common-Mode Rejection Ratio  
CMRR  
dB  
dB  
dB  
dB  
dB  
V
DD = 5.5V,  
VCM = -0.3V to 4.1V  
DD = 5.5V,  
VCM = -0.3V to 5.8V  
DD = 1.8V,  
VCM = -0.3V to 2.1V  
DD = 5.5V, VCM = -0.3V  
60  
60  
50  
50  
76  
76  
76  
76  
V
V
V
to 5.8V (MCP6006/6R/6U)  
VDD = 1.8V, VCM = -0.3V  
to 2.1V (MCP6006/6R/6U)  
Open-Loop Gain  
DC Open-Loop Gain  
(Large Signal)  
AOL  
105  
126  
dB  
0.2 < VOUT < (VDD – 0.2V)  
Output  
High-Level Output Voltage  
VOH  
VOL  
ISC  
VDD – 10 VDD – 6  
VDD – 80 VDD – 54  
mV  
VDD = 5.5V, RL = 10 k  
VDD = 5.5V, RL = 1 k  
VDD = 5.5V, RL = 10 k  
VDD = 5.5V, RL = 1 k  
VDD = 1.8V  
Low-Level Output Voltage  
Output Short-Circuit Current  
VSS + 6 VSS + 10  
SS + 54 VSS + 80  
V
±6  
mA  
mA  
±30  
VDD = 5.5V  
Power Supply  
Supply Voltage  
VDD  
IQ  
1.8  
50  
6
5.5  
70  
V
Quiescent Current per Amplifier  
Start-up Time  
µA  
µs  
dB  
IO = 0  
tstart  
VDD = 0V to 5.5V  
Crosstalk  
140  
AC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA= +25°C, VDD = +1.8V to +5.5V, VSS = GND,  
VCM = VDD/4, VOUT = VDD/2, VL = VDD/2, RL = 10 kto VL and CL = 30 pF.  
Parameters  
AC Response  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Gain Bandwidth Product  
Phase Margin  
GBWP  
PM  
1
70  
1.9  
3
MHz  
°
G = +1 V/V  
DD = 5.5V  
Slew Rate  
SR  
V/µs  
µs  
V
Settling Time  
ts  
To 0.1%, VDD = 5V,  
2V step, G = +1  
3.5  
To 0.01%, VDD = 5V,  
2V step, G = +1  
Total Harmonic Distortion + Noise THD + N  
0.0025  
%
VDD = 5V, Vo = 1VRMS,  
G = +1, f = 1kHz, 80 kHz  
measurement BW  
2020-2021 Microchip Technology Inc.  
DS20006411B-page 3  
MCP6006/6R/6U/7/9  
AC ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, TA= +25°C, VDD = +1.8V to +5.5V, VSS = GND,  
VCM = VDD/4, VOUT = VDD/2, VL = VDD/2, RL = 10 kto VL and CL = 30 pF.  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Noise  
Input Noise Voltage  
Eni  
eni  
3.3  
25  
µVP-P  
f = 0.1 Hz to 10 Hz  
Input Noise Voltage Density  
nV/Hz f = 1 kHz  
nV/Hz f = 10 kHz  
fA/Hz f = 1 kHz  
22  
Input Noise Current Density  
ini  
0.6  
60  
Electromagnetic Interference  
Rejection Ratio  
EMIRR  
dB  
VIN = 100 mVPK, 400 MHz  
VIN = 100 mVPK, 900 MHz  
VIN = 100 mVPK, 1800 MHz  
VIN = 100 mVPK, 2400 MHz  
VIN = 100 mVPK, 5800 MHz  
90  
95  
100  
100  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, VDD = +1.8V to +5.5V and VSS = GND.  
Parameters  
Temperature Ranges  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Operating Temperature Range  
TA  
TA  
-40  
-65  
+125  
+150  
°C  
°C  
Note 1  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 5-Lead SC70  
Thermal Resistance, 5-Lead SOT-23  
Thermal Resistance, 8-Lead MSOP  
Thermal Resistance, 8-Lead SOIC  
Thermal Resistance, 14-Lead TSSOP  
Thermal Resistance, 14-Lead SOIC  
JA  
JA  
JA  
JA  
JA  
JA  
331  
221  
206  
150  
100  
120  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Note 1: The internal Junction Temperature (TJ) must not exceed the absolute maximum specification of +150°C.  
DS20006411B-page 4  
2020-2021 Microchip Technology Inc.  
MCP6006/6R/6U/7/9  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA= +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/4, VOUT = VDD/2,  
VL = VDD/2, RL = 10 kto VL and CL = 30 pF.  
2.1  
DC Inputs  
600  
400  
200  
0
40  
VDD = 5.5V  
1900 Samples  
TA = +25°C  
35  
30  
25  
20  
15  
10  
5
TA = -40°C  
A = +25°C  
T
VDD = 1.8V  
VDD = 5.5V  
-200  
-400  
-600  
TA = +85°C  
A = +125°C  
T
0
-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Input Common Mode Voltage (V)  
Input Offset Voltage (μV)  
FIGURE 2-1:  
Input Offset Voltage  
FIGURE 2-4:  
Input Offset Voltage vs.  
Histogram.  
Common-Mode Input Voltage.  
40  
200  
150  
114 Samples  
TA = -40°C to +125°C  
35  
30  
25  
20  
15  
10  
5
100  
50  
VDD = 5.5V  
VDD = 5.5V  
0
VDD = 1.8V  
VDD = 1.8V  
-50  
-100  
-150  
-200  
VCM = VSS  
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
Input Offset Voltage Drift (μV/°C)  
FIGURE 2-2:  
Input Offset Voltage Drift  
FIGURE 2-5:  
Input Offset Voltage vs.  
Histogram.  
Output Voltage.  
1000  
800  
600  
400  
200  
0
-200  
-400  
-600  
-800  
500  
400  
300  
200  
100  
0
-100  
-200  
-300  
-400  
-500  
TA = -40°C  
TA = +25°C  
TA = +85°C  
TA = +125°C  
TA = -40°C  
TA = +25°C  
TA = +85°C  
TA = +125°C  
VCM = VSS  
VDD = 1.8V  
-1000  
-0.4-0.2  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
2.2  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Common Mode Voltage (V)  
Supply Voltage (V)  
FIGURE 2-3:  
Input Offset Voltage vs.  
FIGURE 2-6:  
Input Offset Voltage vs.  
Common-Mode Input Voltage.  
Power Supply Voltage.  
2020-2021 Microchip Technology Inc.  
DS20006411B-page 5  
MCP6006/6R/6U/7/9  
Note: Unless otherwise indicated, TA= +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/4, VOUT = VDD/2,  
VL = VDD/2, RL = 10 kto VL and CL = 30 pF.  
5
4
3
2
1
140  
130  
120  
110  
100  
90  
VDD = 5.5V  
VDD = 5.5V  
VDD = 1.8V  
IOS  
0
-1  
-2  
-3  
-4  
-5  
IB+  
IB-  
80  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Input Common Mode Voltage (V)  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
FIGURE 2-7:  
Input Bias, Offset Current  
FIGURE 2-10:  
DC Open-Loop Gain vs.  
vs. Common-Mode Voltage.  
Ambient Temperature.  
400  
0.001  
1m  
VDD = 5.5V  
0.0001  
100μ  
300  
0.00001  
10μ  
TA = +125°C  
200  
100  
0
0.000001  
1μ  
0.0000001  
100n  
TA = +125°C  
TA = +85°C  
1E-08  
10n  
T
A = +85°C  
TA = +25°C  
TA = -40°C  
1E-09  
1n  
-100  
-200  
1E-10  
100p  
1E-11  
10p  
-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1  
VIN (V)  
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Input Common Mode Voltage (V)  
FIGURE 2-8:  
Input Bias Current vs.  
FIGURE 2-11:  
Measured Input Current vs.  
Common-Mode Input Voltage.  
Input Voltage (below V ).  
SS  
110  
VDD = +5.5V  
105  
100  
95  
90  
85  
80  
75  
70  
PSRR  
CMRR (VCM = -0.1V to +5.6V)  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
FIGURE 2-9:  
CMRR, PSRR vs. Ambient  
Temperature.  
DS20006411B-page 6  
2020-2021 Microchip Technology Inc.  
MCP6006/6R/6U/7/9  
Note: Unless otherwise indicated, TA= +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/4, VOUT = VDD/2,  
VL = VDD/2, RL = 10 kto VL and CL = 30 pF.  
2.2  
Other DC Voltages and Currents  
80  
70  
60  
50  
40  
30  
20  
50  
40  
30  
20  
10  
+125ᵒC  
+85ᵒC  
+25ᵒC  
-40ᵒC  
VDD = +5.5V  
VDD = +1.8V  
0
-10  
-20  
-30  
-40  
-50  
Per Amplifier  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
-50  
-25  
0
25  
50  
75  
100  
125  
Power Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-12:  
Quiescent Current vs.  
FIGURE 2-15:  
Output Short-Circuit Current  
Ambient Temperature.  
vs. Power Supply Voltage.  
80  
70  
60  
50  
40  
400  
350  
300  
250  
200  
150  
100  
50  
VDD = 1.8V  
VOL
TA = -40°C  
30  
20  
10  
0
TA = +25°C  
TA = +85°C  
TA = +125°C  
VOH  
Per Amplifier  
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Supply Voltage (V)  
0.0  
1.0  
2.0  
3.0  
4.0  
Output Current Magnitude (mA)  
FIGURE 2-13:  
Quiescent Current vs.  
FIGURE 2-16:  
Output Voltage Headroom  
Power Supply Voltage.  
vs. Output Current.  
100  
90  
80  
300  
250  
200  
150  
100  
50  
70  
60  
50  
40  
30  
20  
10  
0
VDD = 1.8V  
VOH  
VOL - V
VDD = 5.5V  
Per Amplifier  
VDD = 5.5V  
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Common Mode Input Voltage (V)  
0.0  
2.0  
4.0  
6.0  
8.0  
10.0  
Output Current Magnitude (mA)  
FIGURE 2-14:  
Quiescent Current vs.  
FIGURE 2-17:  
Output Voltage Headroom  
Common-Mode Input Voltage.  
vs. Output Current.  
2020-2021 Microchip Technology Inc.  
DS20006411B-page 7  
MCP6006/6R/6U/7/9  
Note: Unless otherwise indicated, TA= +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/4, VOUT = VDD/2,  
VL = VDD/2, RL = 10 kto VL and CL = 30 pF.  
2.3  
Frequency Response  
140  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
160  
140  
120  
100  
80  
Representative Part  
120  
100  
80  
60  
40  
20  
0
Gain Bandwidth Product  
CMRR  
PSRR-  
PSRR+  
60  
Phase Margin  
40  
20  
VDD = 1.8V  
0
-50  
-25  
0
25  
50  
75  
100 125  
1k  
100  
10k  
Frequency (Hz)  
100k  
1M  
Ambient Temperature (°C)  
FIGURE 2-18:  
CMRR, PSRR vs.  
FIGURE 2-21:  
Gain Bandwidth Product,  
Frequency.  
Phase Margin vs. Ambient Temperature.  
140  
120  
100  
80  
225  
180  
135  
90  
10000  
1000  
100  
Phase  
60  
45  
GN:  
101 V/V  
11 V/V  
1 V/V  
40  
0
Gain  
10  
1
20  
-45  
-90  
-135  
0
VDD = 5.5V  
100  
1k  
10k  
100k  
1M  
-20  
0.1  
1
10 100 1k 10k 100k 1M 10M  
111.0111213116
Frequency (Hz)  
Frequency (Hz)  
FIGURE 2-19:  
Open-Loop Gain, Phase vs.  
FIGURE 2-22:  
Closed-Loop Output  
Frequency.  
Impedance vs. Frequency.  
120  
100  
80  
60  
40  
20  
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
160  
140  
Gain Bandwidth Product  
120  
100  
80  
60  
40  
Phase Margin  
20  
0
VIN = 100 mVPK  
VDD = 5.5V  
VDD = 5.5V  
-50  
-25  
0
25  
50  
75  
100 125  
10  
10M  
100  
100M  
1000  
1G  
10000  
10G  
Ambient Temperature (°C)  
Frequency (Hz)  
FIGURE 2-20:  
Gain Bandwidth Product,  
FIGURE 2-23:  
EMIRR vs. Frequency.  
Phase Margin vs. Ambient Temperature.  
DS20006411B-page 8  
2020-2021 Microchip Technology Inc.  
MCP6006/6R/6U/7/9  
Note: Unless otherwise indicated, TA= +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/4, VOUT = VDD/2,  
VL = VDD/2, RL = 10 kto VL and CL = 30 pF.  
10  
120  
100  
80  
60  
40  
20  
0
VDD = 5.5V  
1
EMIRR @ 2400 MHz  
EMIRR @ 1800 MHz  
EMIRR @ 900 MHz  
EMIRR @ 400 MHz  
0.1  
0.01  
0.1  
RF Input Peak Voltage (VPK  
1
10k  
1M  
10M  
1k  
100k  
)
Frequency (Hz)  
FIGURE 2-24:  
EMIRR vs. RF Input  
FIGURE 2-26:  
Maximum Output Voltage  
Peak-to-Peak Voltage.  
Swing vs. Frequency.  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
E
1k  
E
10k  
E
100k  
Frequency (Hz)  
1M  
10M  
FIGURE 2-25:  
Channel Separation vs.  
Frequency.  
2020-2021 Microchip Technology Inc.  
DS20006411B-page 9  
MCP6006/6R/6U/7/9  
Note: Unless otherwise indicated, TA= +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/4, VOUT = VDD/2,  
VL = VDD/2, RL = 10 kto VL and CL = 30 pF.  
2.4  
Input Noise  
40  
35  
30  
25  
20  
15  
10  
5
VDD = 5.5V  
VCM = 2.5V  
G = 1  
-10  
-30  
BW = 80 kHz  
f = 1 kHz  
VDD = 1.8V  
-50  
G = -1, RL = 2 kΩ  
G = +1, RL = 2 kΩ  
VDD = 5.5V  
-70  
-90  
G = -1, RL = 10 kΩ  
G = +1, RL = 10 kΩ  
f = 10 kHz  
-110  
0
0.001  
0.01  
0.1  
1
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Amplitude (VRMS  
)
Common Mode Input Voltage (V)  
FIGURE 2-27:  
Input Noise Voltage Density  
FIGURE 2-30:  
THD + N vs. Amplitude.  
vs. Common-Mode Voltage.  
10
10μ  
101μ  
100n  
10n  
1n  
0.1  
1
10  
100  
1k  
10k  
100k  
11 1.+0 11 113 1
Frequency (Hz)  
FIGURE 2-28:  
vs. Frequency.  
Input Noise Voltage Density  
FIGURE 2-31:  
Noise.  
0.1 Hz to 10 Hz Voltage  
-50  
VDD = 5.5V  
VCM = 2.5V  
G = 1  
-60  
-70  
BW = 80 kHz  
VOUT = 0.5VRMS  
RL = 2 kΩ  
-80  
-90  
RL = 10 kΩ  
-100  
-110  
100  
1k
Frequency (Hz)  
10k  
FIGURE 2-29:  
THD + N vs. Frequency.  
DS20006411B-page 10  
2020-2021 Microchip Technology Inc.  
MCP6006/6R/6U/7/9  
Note: Unless otherwise indicated, TA= +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/4, VOUT = VDD/2,  
VL = VDD/2, RL = 10 kto VL and CL = 30 pF.  
2.5  
Time Response  
6
5
4
3
2
1
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Falling Edge, VDD =5.5V  
VIN  
VOUT  
Rising Edge, VDD =5.5V  
Rising Edge, VDD =1.8V  
Falling Edge, VDD =1.8V  
VDD = 5.5V  
G = +1 V/V  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Time (10 μs/div)  
FIGURE 2-32:  
Slew Rate vs. Ambient  
FIGURE 2-35:  
Large Signal Noninverting  
Temperature.  
Pulse Response.  
VOUT  
VIN  
VDD = 5.5V  
G = +1 V/V  
Time (10 μs/div)  
FIGURE 2-33:  
Small Signal Noninverting  
FIGURE 2-36:  
Large Signal Inverting Pulse  
Pulse Response.  
Response.  
7
6
5
VIN  
VIN  
VOUT  
4
VDD = 5.5V  
G = -1 V/V  
3
2
VDD = 5.5V  
G = +1 V/V  
1
0
VOUT  
-1  
Time (10 μs/div)  
Time (0.1 ms/div)  
FIGURE 2-34:  
Small Signal Inverting Pulse  
FIGURE 2-37:  
The MCP6006/6R/6U/7/9  
Response.  
Device Shows No Phase Reversal.  
2020-2021 Microchip Technology Inc.  
DS20006411B-page 11  
MCP6006/6R/6U/7/9  
Note: Unless otherwise indicated, TA= +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/4, VOUT = VDD/2,  
VL = VDD/2, RL = 10 kto VL and CL = 30 pF.  
6
5
4
3
2
1
0
60  
50  
40  
30  
20  
10  
0
VDD = 5.5V  
No Bypass Capacitors  
VIN = 100mVPP  
Overshoot (+)  
Overshoot (-)  
VIN = 100 mV  
G = +1 V/V  
VOUT  
tstart  
0
200  
400  
600  
800  
1000  
Capacitive Load (pF)  
Time (10 μs/div)  
FIGURE 2-38:  
Start-up Time.  
FIGURE 2-39:  
Overshoot vs. Capacitive  
Load.  
DS20006411B-page 12  
2020-2021 Microchip Technology Inc.  
MCP6006/6R/6U/7/9  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1, Table 3-2, and Table 3-3.  
TABLE 3-1:  
PIN FUNCTION TABLE – SINGLES  
MCP6006  
MCP6006R  
MCP6006U  
Symbol  
Description  
Analog Output  
5-Lead SC70, SOT-23  
5-Lead SOT-23  
5-Lead SC70, SOT-23  
1
2
3
4
5
1
5
3
4
2
4
2
1
3
5
VOUT  
VSS  
Negative Power Supply  
Noninverting Input  
Inverting Input  
VIN+  
VIN-  
VDD  
Positive Power Supply  
TABLE 3-2:  
PIN FUNCTION TABLE – DUALS  
MCP6007  
Symbol  
Description  
8-Lead MSOP, SOIC  
1
2
3
4
5
6
7
8
VOUTA  
Analog Output; Op Amp A  
Inverting Input; Op Amp A  
Noninverting Input; Op Amp A  
Negative Power Supply  
VINA  
VINA  
VSS  
-
+
VINB+  
Noninverting Input; Op Amp B  
Inverting Input; Op Amp B  
Analog Output; Op Amp B  
Positive Power Supply  
VINB  
-
VOUTB  
VDD  
TABLE 3-3:  
PIN FUNCTION TABLE – QUADS  
MCP6009  
Symbol  
Description  
14-Lead TSSOP, SOIC  
1
2
VOUTA  
Analog Output; Op Amp A  
VINA  
VINA  
VDD  
-
Inverting Input; Op Amp A  
Noninverting Input; Op Amp A  
Positive Power Supply  
3
+
4
5
VINB  
+
Noninverting Input; Op Amp B  
Inverting Input; Op Amp B  
Analog Output; Op Amp B  
Analog Output; Op Amp C  
Inverting Input; Op Amp C  
Noninverting Input; Op Amp C  
Negative Power Supply  
6
VINB  
-
7
VOUTB  
VOUTC  
VINC  
VINC  
VSS  
8
9
-
10  
11  
12  
13  
14  
+
VIND  
+
Noninverting Input; Op Amp D  
Inverting Input; Op Amp D  
Analog Output; Op Amp D  
VIND  
-
VOUTD  
2020-2021 Microchip Technology Inc.  
DS20006411B-page 13  
MCP6006/6R/6U/7/9  
3.1  
Analog Outputs  
3.3  
Power Supply Pins (VSS, VDD)  
The analog output pins (VOUTx) are low-impedance  
voltage sources.  
The positive power supply (VDD) is 1.8V to 5.5V higher  
than the negative power supply (VSS). For normal  
operation, the other pins are at voltages between VSS  
and VDD  
.
3.2  
Analog Inputs  
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD needs  
bypass capacitors.  
The noninverting and inverting inputs (VINx+, VINx-) are  
high-impedance CMOS inputs with low bias currents.  
DS20006411B-page 14  
2020-2021 Microchip Technology Inc.  
MCP6006/6R/6U/7/9  
4.1.3  
INPUT CURRENT LIMITS  
4.0  
APPLICATION INFORMATION  
In order to prevent damage and/or improper operation  
of the amplifier, the circuit must limit the currents into  
the input pins (see Section 1.1, Absolute Maximum  
Ratings).  
The MCP6006/6R/6U/7/9 operational amplifier is unity  
gain stable and suitable for a wide range of general  
purpose applications.  
Figure 4-2 shows one approach to protecting these  
inputs. The resistors, R1 and R2, limit the possible  
currents in or out of the input pins through the ESD  
4.1  
Rail-to-Rail Input  
4.1.1  
PHASE REVERSAL  
diodes to either VDD or VSS  
.
The MCP6006/6R/6U/7/9 op amp is designed to  
prevent phase reversal, when the input pins exceed the  
supply voltages. Figure 2-37 shows the input voltage  
exceeding the supply voltage with no phase reversal.  
VDD  
4.1.2  
INPUT VOLTAGE LIMITS  
V1  
In order to prevent damage and/or improper operation  
of the amplifier, the circuit must limit the voltages at the  
input pins (see Section 1.1, Absolute Maximum  
Ratings).  
+
VOUT  
R1  
MCP6006  
V2  
R2  
The Electrostatic Discharge (ESD) protection on the  
inputs can be depicted as shown in Figure 4-1. This  
structure was chosen to protect the input transistors  
against many, but not all, overvoltage conditions and to  
minimize the Input Bias (IB) current.  
VSS – min(V1, V2)  
5 mA  
min(R1, R2) >  
min(R1, R2) >  
max(V1,V2) – VDD  
5 mA  
FIGURE 4-2:  
Protecting the Analog Inputs.  
VDD  
-IN  
VDD  
OUT  
VSS  
+IN  
+
VSS  
FIGURE 4-1:  
Simplified Analog Input ESD  
Structures.  
The input ESD diodes clamp the inputs when they try  
to go more than one diode drop below VSS. They also  
clamp any voltages that go well above VDD; their  
breakdown voltage is high enough to allow normal  
operation. At 0.5V above VDD or below VSS, the input  
currents are typically less than 5 mA. Very fast ESD  
events that meet the specification are limited so that  
damage does not occur.  
2020-2021 Microchip Technology Inc.  
DS20006411B-page 15  
MCP6006/6R/6U/7/9  
Figure 4-4 shows the output voltage for the MCP6007  
and a similar op amp from a competitor, while Figure 4-5  
shows the inrush current. When power is first applied to  
the MCP6007, the output is turned off (Point B) and  
driven by the load. After 6 µs, the output is turned on  
(Point C) and VOUT follows the input sine wave. Mean-  
while, the competitor’s output is uncontrolled during the  
first 4 µs (Point A) and has some distortion on the output  
(Point D) prior to turning on after 50 µs (Point E).  
4.1.4  
NORMAL OPERATION  
The input stage of the MCP6006/6R/6U/7/9 op amp  
uses two differential input stages in parallel. One oper-  
ates at a low Common-Mode Input Voltage (VCM), while  
the other operates at a high VCM. With this topology,  
the device operates with a VCM of up to 300 mV above  
VDD and 300 mV below VSS. The input offset voltage is  
measured at VCM = VSS – 0.3V and VDD + 0.3V to  
ensure proper operation.  
The transition between the input stages occurs when  
VCM is near VDD – 0.9V (see Figures 2-3 and 2-4). For  
the best distortion performance and gain linearity with  
noninverting gains, avoid this region of operation.  
A
B
4.2  
Rail-to-Rail Output  
D
The output voltage range of the MCP6006/6R/6U/7/9  
op amp is 0.006V (typical) and 5.494V (typical) when  
RL = 10 kis connected to VDD/2 and VDD = 5.5V.  
Refer to Figures 2-16 and 2-17 for more information.  
E
C
FIGURE 4-4:  
Start-up Time Voltages.  
4.3  
Start-up  
The MCP6006/6R/6U/7/9 family of parts quickly  
controls the output when power (VDD) is initially applied  
to the device (start-up). Bypass capacitors are  
removed during the start-up testing to minimize inrush  
currents (see Figure 4-3). When the op amp is con-  
trolled and is off, the output impedance is high and  
VOUT is VL or 1V. When the op amp turns on, the output  
becomes low-impedance and VOUT follows the input  
sine wave; this is used as the start-up time.  
FIGURE 4-5:  
I
During Start-up.  
DD  
VDD  
3V  
0
+
-
VDD  
VSS  
VOUT  
RL  
VL = 1V  
Start-up Test Circuit.  
FIGURE 4-3:  
DS20006411B-page 16  
2020-2021 Microchip Technology Inc.  
MCP6006/6R/6U/7/9  
4.4  
Capacitive Loads  
Guard Ring  
VIN- VIN+  
VSS  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases and the closed-loop bandwidth is  
reduced. This produces gain peaking in the frequency  
response, with overshoot and ringing in the step  
response. While a unity gain buffer (G = +1 V/V) is the  
most sensitive to the capacitive loads, all gains show  
the same general behavior.  
FIGURE 4-7:  
for Inverting Gain.  
Example Guard Ring Layout  
When driving large capacitive loads with the  
MCP6006/6R/6U/7/9 op amp, a small series resistor at  
the output (RISO in Figure 4-6) improves the feedback  
loop’s phase margin (stability) by making the output  
load resistive at higher frequencies. The bandwidth will  
be generally lower than the bandwidth with no  
capacitance load.  
1. Noninverting Gain and Unity Gain Buffer:  
a) Connect the noninverting pin (VIN+) to the  
input with a wire that does not touch the  
PCB surface.  
b) Connect the guard ring to the inverting input  
pin (VIN-). This biases the guard ring to the  
Common-mode input voltage.  
2. Inverting Gain and Transimpedance Gain  
Amplifiers (convert current to voltage, such as  
photo detectors):  
RISO  
VOUT  
a) Connect the guard ring to the noninverting  
input pin (VIN+). This biases the guard ring  
to the same reference voltage as the  
op amp (e.g., VDD/2 or ground).  
MCP6006  
+
VIN  
CL  
b) Connect the inverting pin (VIN-) to the input  
with a wire that does not touch the PCB  
surface.  
FIGURE 4-6:  
Stabilizes Large Capacitive Loads.  
Output Resistor, R  
,
ISO  
4.5  
Supply Bypass  
4.7  
Unused Op Amps  
The MCP6006/6R/6U/7/9 op amp’s power supply pin  
(VDD for single-supply) should have a local bypass  
capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm for good  
high-frequency performance. It can use a bulk capaci-  
tor (i.e., 1 µF or larger) within 100 mm to provide large,  
slow currents. This bulk capacitor can be shared with  
other analog parts.  
An unused op amp in a dual (MCP6007) or quad  
(MCP6009) package should be configured as shown in  
Figure 4-8. These circuits prevent the output from  
toggling and causing crosstalk. Circuit A sets the  
op amp at its minimum noise gain. The resistor divider  
produces any desired reference voltage within the out-  
put voltage range of the op amp; the op amp buffers  
that reference voltage. Circuit B uses the minimum  
number of components.  
4.6  
PCB Surface Leakage  
In applications where low input bias current is critical,  
Printed Circuit Board (PCB) surface leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
between nearby traces is 1012. A 5V difference would  
cause 5 pA of current to flow, which is greater than the  
MCP6006/6R/6U/7/9’s bias current at +25°C (±1 pA,  
typical).  
¼ MCP6009 (A)  
VDD  
¼ MCP6009 (B)  
VDD  
VDD  
R1  
R2  
VREF  
R2  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
An example of this type of layout is shown in  
Figure 4-7.  
VREF = VDD  
R1 + R2  
FIGURE 4-8:  
Unused Op Amps.  
2020-2021 Microchip Technology Inc.  
DS20006411B-page 17  
MCP6006/6R/6U/7/9  
.
4.8  
Electromagnetic Interference  
Rejection Ratio (EMIRR)  
Definitions  
VDD  
VREF  
V
DD  
+
The Electromagnetic Interference (EMI) is the  
disturbance that affects an electrical circuit due to  
either electromagnetic induction or electromagnetic  
radiation emitted from an external source.  
V
OUT  
MCP6006  
R1  
The parameter which describes the EMI robustness of  
an op amp is the Electromagnetic Interference Rejec-  
tion Ratio (EMIRR). It quantitatively describes the  
effect that an RF interfering signal has on op amp  
performance. Internal passive filters make EMIRR  
better compared with older parts. This means that with  
good PCB layout techniques, your EMC performance  
should be better.  
FIGURE 4-9:  
CO Gas Sensor Circuit.  
4.9.2 PRESSURE SENSOR AMPLIFIER  
The MCP6006/6R/6U/7/9 is well-suited for conditioning  
sensor signals in battery-powered applications. Many  
sensors are configured as Wheatstone bridges. Strain  
gauges and pressure sensors are two common  
examples.  
EMIRR is defined as:  
EQUATION 4-1:  
Figure 4-10 shows a strain gauge amplifier, using the  
MCP6006/6R/6U/7/9 Enhanced EMI protection device.  
The difference amplifier with EMI robustness op amp is  
used to amplify the signal from the Wheatstone bridge.  
The two op amps, configured as buffers and connected  
at outputs of pressure sensors, prevent resistive load-  
ing of the bridge by resistors, R1 and R2. Resistors, R1,  
R2 and R3, R5, need to be chosen with very low  
tolerance to match the CMRR.  
VRF  
-------------  
EMIRRdB= 20 log  
VOS  
Where:  
VRF = Peak Amplitude of  
RF Interfering Signal (VPK  
)
VOS = Input Offset Voltage Shift (V)  
4.9  
Application Circuits  
VDD  
VDD  
R3  
10 k  
R+R  
R-R  
4.9.1  
CARBON MONOXIDE GAS SENSOR  
½ MCP6007  
-
+
VDD  
R1  
100  
A Carbon Monoxide (CO) gas detector is a device that  
detects the presence of carbon monoxide gas. Usually  
this is battery powered and transmits audible and  
visible warnings.  
Vb  
VOUT  
MCP6006  
-
+
Va  
R2  
VDD  
100  
The sensor responds to CO gas by reducing its resis-  
tance proportionaly to the amount of CO present in the  
air exposed to the internal element. On the sensor  
module, this variable is part of a voltage divider formed  
by the internal element and potentiometer R1. The  
output of this voltage divider is fed into the noninverting  
inputs of the MCP6006 op amp. The device is config-  
ured as a buffer with unity gain and is used to provide  
a nonloaded test point for sensor sensitivity.  
R4  
10 kΩ  
-
+
R-R  
R+R  
½ MCP6007  
10k  
-------------  
VOUT = Va Vb  
100  
Strain Gauge  
FIGURE 4-10:  
Pressure Sensor Amplifier.  
Because this sensor can be corrupted by parasitic  
electromagnetic signals, the MCP6006 op amp can be  
used for conditioning this sensor.  
In Figure 4-9, the variable resistor is used to calibrate  
the sensor in different environments.  
DS20006411B-page 18  
2020-2021 Microchip Technology Inc.  
MCP6006/6R/6U/7/9  
5.3  
Application Notes  
5.0  
DESIGN AIDS  
The following Microchip Analog Design Notes and Appli-  
cation Notes are available on the Microchip website at  
www.microchip.com/appnotes and are recommended  
as supplemental reference resources:  
Microchip provides the basic design tools needed for  
the MCP6006/6R/6U/7/9 op amp.  
5.1  
Microchip Advanced Part Selector  
(MAPS)  
ADN003 – “Select the Right Operational Amplifier  
for your Filtering Circuits”, Microchip Technology  
Inc. (DS21821)  
MAPS is a software tool that helps semiconductor  
professionals efficiently identify the Microchip  
devices that fit a particular design requirement.  
Available at no cost from the Microchip website at  
www.microchip.com/ maps, MAPS is an overall selec-  
tion tool for Microchip’s product portfolio that includes  
Analog, Memory, MCUs and DSCs. Using this tool, you  
can define a filter to sort features for a parametric  
search of devices and export side-by-side technical  
comparison reports. Helpful links are also provided for  
data sheets, purchase and sampling of Microchip parts.  
AN722 – “Operational Amplifier Topologies and  
DC Specifications”, Microchip Technology Inc.  
(DS00722)  
AN723 – “Operational Amplifier AC Specifications  
and Applications”, Microchip Technology Inc.  
(DS00723)  
AN884 – “Driving Capacitive Loads With  
Op Amps”, Microchip Technology Inc. (DS00884)  
AN990 – “Analog Sensor Conditioning  
Circuits – An Overview”, Microchip Technology  
Inc. (DS00990)  
5.2  
Analog Demonstration and  
Evaluation Boards  
AN1177 – “Op Amp Precision Design: DC Errors”,  
Microchip Technology Inc. (DS01177)  
Microchip offers  
a broad spectrum of Analog  
AN1228 – “Op Amp Precision Design: Random  
Noise”, Microchip Technology Inc. (DS01228)  
Demonstration and Evaluation Boards that are  
designed to help you achieve faster time to market.  
For a complete listing of these boards and their  
corresponding user’s guides and technical informa-  
tion, visit the Microchip website at:  
AN1258 – “Op Amp Precision Design: PCB  
Layout Techniques”, Microchip Technology Inc.  
(DS01258).  
These application notes and others are listed in the  
design guide:  
www.microchipdirect.com.  
Some boards that are especially useful are:  
“Signal Chain Design Guide”, Microchip  
Technology inc. (DS21825).  
• MCP6XXX Amplifier Evaluation Board 2  
(P/N DS51668)  
• MCP6XXX Amplifier Evaluation Board 3  
(P/N DS51673)  
• 8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board  
(P/N SOIC8EV)  
• 5/6-Pin SOT-23 Evaluation Board  
(P/N VSUPEV2)  
• 14-Pin SOIC/TSSOP/DIP Evaluation Board  
(P/N SOIC14EV)  
2020-2021 Microchip Technology Inc.  
DS20006411B-page 19  
MCP6006/6R/6U/7/9  
NOTES:  
DS20006411B-page 20  
2020-2021 Microchip Technology Inc.  
MCP6006/6R/6U/7/9  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Lead SC70 (MCP6006/6U)  
Example  
Device  
Marking  
MCP6006  
GANN  
GFNN  
XXNN  
GA25  
MCP6006U  
Example:  
5-Lead SOT-23 (MCP6006/6U/6R)  
Device  
Marking  
MCP6006  
AAA5  
AAA6  
AAA7  
MCP6006U  
XXXXY  
AAA50  
MCP6006R  
WWNNN  
31256  
Note: Applies to 5-Lead SOT-23.  
8-Lead SOIC (MCP6007)  
Example:  
XXXXXXXX  
XXXXYYWW  
MCP6007  
e
3
SN 2031  
NNN  
256  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2020-2021 Microchip Technology Inc.  
DS20006411B-page 21  
MCP6006/6R/6U/7/9  
Package Marking Information (Continued)  
8-Lead MSOP (MCP6007)  
Example:  
XXXXXX  
6007E  
YWWNNN  
031256  
14-Lead SOIC (MCP6009)  
Example:  
XXXXXXXXXXX  
XXXXXXXXXXX  
YYWWNNN  
MCP6009  
e
3
E/SL  
3124256  
14-Lead TSSOP (MCP6009)  
Example:  
MCP6009E  
2031  
XXXXXXXX  
YYWW  
256  
NNN  
DS20006411B-page 22  
2020-2021 Microchip Technology Inc.  
MCP6006/6R/6U/7/9  
5-Lead Plastic Small Outline Transistor (LT) [SC70]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
A
e
e
B
E
3
1
E1  
2X  
0.15 C  
4
N
5X TIPS  
0.30 C  
NOTE 1  
2X  
0.15 C  
5X b  
0.10  
C A B  
TOP VIEW  
c
A2  
A
C
SEATING  
PLANE  
A1  
L
SIDE VIEW  
END VIEW  
Microchip Technology Drawing C04-061-LT Rev E Sheet 1 of 2  
2020-2021 Microchip Technology Inc.  
DS20006411B-page 23  
MCP6006/6R/6U/7/9  
5-Lead Plastic Small Outline Transistor (LT) [SC70]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Units  
Dimension Limits  
MILLIMETERS  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
Overall Height  
Standoff  
Molded Package Thickness  
Overall Length  
Overall Width  
N
5
e
0.65 BSC  
A
A1  
A2  
D
E
0.80  
0.00  
0.80  
-
-
-
1.10  
0.10  
1.00  
2.00 BSC  
2.10 BSC  
Molded Package Width  
Terminal Width  
Terminal Length  
E1  
b
L
c
1.25 BSC  
0.15  
0.10  
0.08  
-
0.20  
-
0.40  
0.46  
0.26  
Lead Thickness  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or  
protrusions shall not exceed 0.15mm per side.  
3. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-061-LT Rev E Sheet 2 of 2  
DS20006411B-page 24  
2020-2021 Microchip Technology Inc.  
MCP6006/6R/6U/7/9  
5-Lead Plastic Small Outline Transistor (LT) [SC70]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
Gx  
SILK SCREEN  
3
4
2
1
5
C
G
Y
X
RECOMMENDED LAND PATTERN  
Units  
Dimension Limits  
MILLIMETERS  
MIN  
NOM  
0.65 BSC  
2.20  
MAX  
Contact Pitch  
E
C
Contact Pad Spacing  
Contact Pad Width  
Contact Pad Length  
Distance Between Pads  
Distance Between Pads  
X
Y
G
Gx  
0.45  
0.95  
1.25  
0.20  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing No. C04-2061-LT Rev E  
2020-2021 Microchip Technology Inc.  
DS20006411B-page 25  
MCP6006/6R/6U/7/9  
5-Lead Plastic Small Outline Transistor (OT) [SOT23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
0.20 C 2X  
D
e1  
A
D
N
E/2  
E1/2  
E1  
E
(DATUM D)  
(DATUM A-B)  
0.15 C D  
2X  
NOTE 1  
1
2
e
B
NX b  
0.20  
C A-B D  
TOP VIEW  
A
A2  
A1  
A
0.20 C  
SEATING PLANE  
A
SEE SHEET 2  
C
SIDE VIEW  
Microchip Technology Drawing C04-091-OT Rev F Sheet 1 of 2  
DS20006411B-page 26  
2020-2021 Microchip Technology Inc.  
MCP6006/6R/6U/7/9  
5-Lead Plastic Small Outline Transistor (OT) [SOT23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
c
T
L
L1  
VIEW A-A  
SHEET 1  
Units  
Dimension Limits  
MILLIMETERS  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
Outside lead pitch  
Overall Height  
Molded Package Thickness  
Standoff  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
N
5
e
0.95 BSC  
1.90 BSC  
e1  
A
A2  
A1  
E
E1  
D
L
0.90  
0.89  
-
-
-
-
1.45  
1.30  
0.15  
2.80 BSC  
1.60 BSC  
2.90 BSC  
0.30  
-
0.60  
Footprint  
Foot Angle  
Lead Thickness  
Lead Width  
L1  
0.60 REF  
I
0°  
0.08  
0.20  
-
-
-
10°  
0.26  
0.51  
c
b
Notes:  
1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or  
protrusions shall not exceed 0.25mm per side.  
2. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-091-OT Rev F Sheet 2 of 2  
2020-2021 Microchip Technology Inc.  
DS20006411B-page 27  
MCP6006/6R/6U/7/9  
5-Lead Plastic Small Outline Transistor (OT) [SOT23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
X
SILK SCREEN  
5
Y
Z
C
G
1
2
E
GX  
RECOMMENDED LAND PATTERN  
Units  
Dimension Limits  
MILLIMETERS  
MIN  
NOM  
0.95 BSC  
2.80  
MAX  
Contact Pitch  
E
C
Contact Pad Spacing  
Contact Pad Width (X5)  
Contact Pad Length (X5)  
Distance Between Pads  
Distance Between Pads  
Overall Width  
X
Y
G
GX  
Z
0.60  
1.10  
1.70  
0.35  
3.90  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing No. C04-2091-OT Rev F  
DS20006411B-page 28  
2020-2021 Microchip Technology Inc.  
MCP6006/6R/6U/7/9  
8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 In.) Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2X  
0.10 C A–B  
D
A
D
NOTE 5  
N
E
2
E1  
2
E1  
E
2X  
0.10 C A–B  
2X  
0.10 C A–B  
1
2
NOTE 1  
e
NX b  
0.25  
C A–B D  
B
NOTE 5  
TOP VIEW  
0.10 C  
0.10 C  
C
A2  
A
SEATING  
PLANE  
8X  
SIDE VIEW  
A1  
h
R0.13  
R0.13  
h
H
0.23  
L
SEE VIEW C  
(L1)  
VIEW A–A  
VIEW C  
Microchip Technology Drawing No. C04-057-SN Rev F Sheet 1 of 2  
2020-2021 Microchip Technology Inc.  
DS20006411B-page 29  
MCP6006/6R/6U/7/9  
8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 In.) Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Units  
Dimension Limits  
MILLIMETERS  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
Overall Height  
Molded Package Thickness  
Standoff  
N
8
e
1.27 BSC  
A
-
-
-
-
1.75  
-
0.25  
A2  
A1  
E
1.25  
0.10  
§
Overall Width  
6.00 BSC  
Molded Package Width  
Overall Length  
Chamfer (Optional)  
Foot Length  
E1  
D
h
3.90 BSC  
4.90 BSC  
0.25  
0.40  
-
-
0.50  
1.27  
L
Footprint  
Foot Angle  
Lead Thickness  
Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
L1  
1.04 REF  
0°  
0.17  
0.31  
5°  
-
-
-
-
-
8°  
c
b
0.25  
0.51  
15°  
5°  
15°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or  
protrusions shall not exceed 0.15mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
5. Datums A & B to be determined at Datum H.  
Microchip Technology Drawing No. C04-057-SN Rev F Sheet 2 of 2  
DS20006411B-page 30  
2020-2021 Microchip Technology Inc.  
MCP6006/6R/6U/7/9  
8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 In.) Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
SILK SCREEN  
C
Y1  
X1  
E
RECOMMENDED LAND PATTERN  
Units  
Dimension Limits  
MILLIMETERS  
NOM  
MIN  
MAX  
Contact Pitch  
E
C
X1  
Y1  
1.27 BSC  
5.40  
Contact Pad Spacing  
Contact Pad Width (X8)  
Contact Pad Length (X8)  
0.60  
1.55  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-2057-SN Rev F  
2020-2021 Microchip Technology Inc.  
DS20006411B-page 31  
MCP6006/6R/6U/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20006411B-page 32  
2020-2021 Microchip Technology Inc.  
MCP6006/6R/6U/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2020-2021 Microchip Technology Inc.  
DS20006411B-page 33  
MCP6006/6R/6U/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20006411B-page 34  
2020-2021 Microchip Technology Inc.  
MCP6006/6R/6U/7/9  
14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2X  
0.10 C A–B  
D
NOTE 5  
A
D
E
N
E
2
E2  
2
E1  
2X  
0.10 C D  
NOTE 1  
2X N/2 TIPS  
0.20 C  
1
2
3
e
NX b  
0.25  
C A–B D  
0.10 C  
NOTE 5  
B
TOP VIEW  
C
A2  
A
SEATING  
PLANE  
14X  
0.10 C  
SIDE VIEW  
A1  
h
h
R0.13  
H
R0.13  
c
SEE VIEW C  
L
VIEW A–A  
(L1)  
VIEW C  
Microchip Technology Drawing No. C04-065-SL Rev D Sheet 1 of 2  
2020-2021 Microchip Technology Inc.  
DS20006411B-page 35  
MCP6006/6R/6U/7/9  
14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Units  
Dimension Limits  
MILLIMETERS  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
Overall Height  
Molded Package Thickness  
Standoff  
N
14  
1.27 BSC  
e
A
-
-
-
-
1.75  
-
0.25  
A2  
A1  
E
1.25  
0.10  
§
Overall Width  
6.00 BSC  
Molded Package Width  
Overall Length  
Chamfer (Optional)  
Foot Length  
E1  
D
h
L
L1  
3.90 BSC  
8.65 BSC  
0.25  
0.40  
-
-
0.50  
1.27  
Footprint  
1.04 REF  
Lead Angle  
Foot Angle  
Lead Thickness  
Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0°  
0°  
0.10  
0.31  
5°  
-
-
-
-
-
-
-
8°  
0.25  
0.51  
15°  
15°  
c
b
5°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic  
3. Dimension D does not include mold flash, protrusions or gate burrs, which shall  
not exceed 0.15 mm per end. Dimension E1 does not include interlead flash  
or protrusion, which shall not exceed 0.25 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
5. Datums A & B to be determined at Datum H.  
Microchip Technology Drawing No. C04-065-SL Rev D Sheet 2 of 2  
DS20006411B-page 36  
2020-2021 Microchip Technology Inc.  
MCP6006/6R/6U/7/9  
14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
14  
SILK SCREEN  
C
Y
1
2
X
E
RECOMMENDED LAND PATTERN  
Units  
Dimension Limits  
MILLIMETERS  
MIN  
NOM  
1.27 BSC  
5.40  
MAX  
Contact Pitch  
Contact Pad Spacing  
Contact Pad Width (X14)  
E
C
X
0.60  
1.55  
Contact Pad Length (X14)  
Y
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing No. C04-2065-SL Rev D  
2020-2021 Microchip Technology Inc.  
DS20006411B-page 37  
MCP6006/6R/6U/7/9  
14Lead Thin Shrink Small Outline Package [ST] 4.4 mm Body [TSSOP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
A
B
E
N
E
2
E1  
2
E1  
2X 7 TIPS  
0.20 C B A  
1
2
e
TOP VIEW  
A
A
C
A2  
A
SEATING  
PLANE  
A1  
14X  
14X b  
0.10 C  
0.10  
C B A  
SIDE VIEW  
SEE DETAIL B  
VIEW A–A  
Microchip Technology Drawing C04-087 Rev D Sheet 1 of 2  
DS20006411B-page 38  
2020-2021 Microchip Technology Inc.  
MCP6006/6R/6U/7/9  
14Lead Thin Shrink Small Outline Package [ST] 4.4 mm Body [TSSOP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
(ș2)  
R1  
H
R2  
c
L
ș1  
(L1)  
(ș3)  
DETAIL B  
Units  
Dimension Limits  
MILLIMETERS  
MIN  
NOM  
MAX  
Number of Terminals  
Pitch  
Overall Height  
N
14  
0.65 BSC  
1.00  
5.00  
e
A
A1  
A2  
D
1.20  
0.15  
1.05  
5.10  
Standoff  
0.05  
0.80  
4.90  
Molded Package Thickness  
Overall Length  
Overall Width  
E
6.40 BSC  
Molded Package Width  
Terminal Width  
Terminal Thickness  
Terminal Length  
Footprint  
Lead Bend Radius  
Lead Bend Radius  
Foot Angle  
E1  
b
c
4.30  
0.19  
0.09  
0.45  
4.40  
0.60  
4.50  
0.30  
0.20  
0.75  
L
L1  
R1  
R2  
ș1  
ș2  
ș3  
1.00 REF  
0.09  
0.09  
0°  
8°  
Mold Draft Angle  
Mold Draft Angle  
12° REF  
12° REF  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-087 Rev D Sheet 2 of 2  
2020-2021 Microchip Technology Inc.  
DS20006411B-page 39  
MCP6006/6R/6U/7/9  
14Lead Thin Shrink Small Outline Package [ST] 4.4 mm Body [TSSOP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
G
SILK SCREEN  
C
Y
X
E
RECOMMENDED LAND PATTERN  
Units  
Dimension Limits  
MILLIMETERS  
NOM  
MIN  
MAX  
Contact Pitch  
Contact Pad Spacing  
Contact Pad Width (Xnn)  
E
C
X
0.65 BSC  
5.90  
0.45  
1.45  
Contact Pad Length (Xnn)  
Contact Pad to Contact Pad (Xnn)  
Y
G
0.20  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-2087 Rev D  
DS20006411B-page 40  
2020-2021 Microchip Technology Inc.  
MCP6006/6R/6U/7/9  
APPENDIX A: REVISION HISTORY  
Revision B (June 2021)  
Below is a list of changes:  
• Updated mentions of the MCP6006 device  
throughout the document.  
• Updated Figure 4-2.  
• Updated Section 6.0, Packaging Information.  
• Updated the Product Identification System to  
include Automotive models.  
• Minor corrections and editorial changes.  
Revision A (September 2020)  
• Original Release of this Document.  
2020-2021 Microchip Technology Inc.  
DS20006411B-page 41  
MCP6006/6R/6U/7/9  
NOTES:  
DS20006411B-page 42  
2020-2021 Microchip Technology Inc.  
MCP6006/6R/6U/7/9  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
XXX(2)  
Class  
Examples:  
PART NO.  
Device  
[X](1)  
-X  
/XX  
a)  
b)  
c)  
d)  
e)  
MCP6006T-E/LT:  
MCP6006T-E/OT:  
Tape and Reel,  
Tape and Reel Temperature Package  
Option  
Range  
Extended Temperature,  
5-Lead SC70 Package.  
Tape and Reel,  
Extended Temperature,  
5-Lead SOT-23 Package.  
Device: MCP6006T  
Single Op Amp (Tape and Reel) (SC70, SOT-23)  
MCP6006RT Single Op Amp (Tape and Reel) (SOT-23)  
MCP6006RT-E/OT: Tape and Reel,  
Extended Temperature,  
5-Lead SOT-23 Package.  
MCP6006UT-E/LT: Tape and Reel,  
MCP6006UT Single Op Amp (Tape and Reel) (SC70, SOT-23)  
MCP6007  
MCP6007T  
MCP6009  
MCP6009T  
Dual Op Amp  
Dual Op Amp (Tape and Reel for SOIC, MSOP)  
Quad Op Amp  
Extended Temperature,  
5-Lead SC70 Package.  
MCP6006UT-E/OT: Tape and Reel,  
Quad Op Amp (Tape and Reel for SOIC, TSSOP)  
Extended Temperature,  
5-Lead SOT-23 Package.  
Temperature Range:  
E
=
-40°C to +125°C  
a)  
b)  
c)  
MCP6007-E/SN:  
MCP6007-E/MS:  
MCP6007T-E/SN:  
Extended Temperature,  
8-Lead SOIC Package.  
Extended Temperature,  
8-Lead MSOP Package.  
Tape and Reel,  
Package: LT  
=
=
Plastic Package (SC70), 5-Lead (MCP6006 only)  
OT  
Plastic Small Outline Transistor (SOT-23),  
5-Lead (MCP6006 only)  
Extended Temperature,  
8-Lead SOIC Package.  
Tape and Reel,  
Extended Temperature,  
8-Lead MSOP Package.  
SN  
=
Plastic Small Outline (3.90 mm), 8-Lead  
(MCP6007 only)  
d)  
MCP6007T-E/MS:  
MS  
ST  
=
=
Plastic MSOP, 8-Lead (MCP6007 only)  
Plastic Thin Shrink Small Outline (4.4 mm),  
14-Lead (MCP6009 only)  
SL  
=
Plastic Small Outline, (3.90 mm),  
14-Lead (MCP6009 only)  
a)  
b)  
c)  
MCP6009-E/ST:  
MCP6009-E/SL:  
MCP6009T-E/ST:  
Extended Temperature,  
14-Lead TSSOP Package.  
Extended Temperature,  
14-Lead SOIC Package.  
Tape and Reel,  
Extended Temperature,  
14-Lead TSSOP Package.  
Tape and Reel,  
Class  
(Blank)  
VAO  
=
=
Non-Automotive  
Automotive  
d)  
MCP6009T-E/SL:  
Note 1: The Tape and Reel identifier only appears in the catalog part number  
description. This identifier is used for ordering purposes and is not  
printed on the device package. Check with your Microchip Sales Office  
for package availability with the Tape and Reel option.  
Extended Temperature,  
14-Lead SOIC Package.  
2: Automotive parts are AEC-Q100 qualified, Grade 1.  
2020-2021 Microchip Technology Inc.  
DS20006411B-page 43  
MCP6006/6R/6U/7/9  
PRODUCT IDENTIFICATION SYSTEM (AUTOMOTIVE)  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office..  
Examples:  
XXX(2)  
Class  
PART NO.  
Device  
[X](1)  
-X  
/XX  
a)  
b)  
c)  
d)  
e)  
MCP6006T-E/LTVAO:  
Tape and Reel, Automotive,  
Extended Temperature,  
5-Lead SC70 Package.  
Tape and Reel, Automotive,  
Extended Temperature,  
5-Lead SOT-23 Package.  
Tape and Reel Temperature Package  
Option  
Range  
MCP6006T-E/OTVAO:  
Device: MCP6006T  
Single Op Amp (Tape and Reel)  
(SC70, SOT-23)  
MCP6006UT-E/OTVAO: Tape and Reel, Automotive,  
Extended Temperature,  
MCP6006RT Single Op Amp (Tape and Reel)  
(SOT-23)  
5-Lead SOT-23 Package.  
MCP6006UT Single Op Amp (Tape and Reel)  
(SC70, SOT-23)  
MCP6006RT-E/OTVAO: Tape and Reel, Automotive,  
Extended Temperature,  
5-Lead SOT-23 Package.  
MCP6007  
Dual Op Amp  
MCP6006UT-E/LTVAO: Tape and Reel, Automotive,  
Extended Temperature,  
MCP6007T  
Dual Op Amp (Tape and Reel for  
SOIC, MSOP)  
5-Lead SC70 Package.  
MCP6009  
Quad Op Amp  
a)  
b)  
c)  
MCP6007-E/SNVAO:  
MCP6007-E/MSVAO:  
MCP6007T-E/SNVAO:  
Extended Temperature,  
Automotive,  
8-Lead SOIC Package.  
Extended Temperature,  
Automotive,  
8-Lead MSOP Package.  
Tape and Reel,  
Automotive,  
Extended Temperature,  
8-Lead SOIC Package.  
Tape and Reel, Automotive,  
Extended Temperature,  
8-Lead MSOP Package.  
MCP6009T  
Quad Op Amp (Tape and Reel for  
SOIC, TSSOP)  
Temperature Range:  
E
=
-40°C to +125°C  
Package: LT  
=
=
Plastic Package (SC70), 5-Lead  
OT  
Plastic Small Outline Transistor  
(SOT-23), 5-Lead  
SN  
=
Plastic Small Outline (3.90 mm),  
8-Lead  
d)  
MCP6007T-E/MSVAO:  
MS  
ST  
=
=
Plastic MSOP, 8-Lead  
Plastic Thin Shrink Small Outline  
(4.4 mm), 14-Lead  
a)  
b)  
c)  
d)  
MCP6009-E/STVAO:  
MCP6009-E/SLVAO:  
MCP6009T-E/STVAO:  
MCP6009T-E/SLVAO:  
Extended Temperature,  
Automotive,  
14-Lead TSSOP Package.  
Extended Temperature,  
Automotive,  
14-Lead SOIC Package.  
Tape and Reel, Automotive,  
Extended Temperature,  
14-Lead TSSOP Package.  
Tape and Reel, Automotive,  
Extended Temperature,  
14-Lead SOIC Package.  
SL  
=
Plastic Small Outline, (3.90 mm),  
14-Lead  
Class  
(Blank)  
VAO  
=
=
Non-Automotive  
Automotive  
Note 1: The Tape and Reel identifier only appears in the catalog  
part number description. This identifier is used for order-  
ing purposes and is not printed on the device package.  
Check with your Microchip Sales Office for package  
availability with the Tape and Reel option.  
2: Automotive parts are AEC-Q100 qualified, Grade 1.  
DS20006411B-page 44  
2020-2021 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specifications contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.  
There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip  
devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications  
contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished  
without violating Microchip's intellectual property rights.  
Microchip is willing to work with any customer who is concerned about the integrity of its code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not  
mean that we are guaranteeing the product is "unbreakable." Code protection is constantly evolving. We at Microchip are  
committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection  
feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or  
other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication is provided for the sole  
purpose of designing with and using Microchip products. Infor-  
mation regarding device applications and the like is provided  
only for your convenience and may be superseded by updates.  
It is your responsibility to ensure that your application meets  
with your specifications.  
Trademarks  
The Microchip name and logo, the Microchip logo, Adaptec,  
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT,  
chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex,  
flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck,  
LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi,  
Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer,  
PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire,  
Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST,  
SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,  
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA  
are registered trademarks of Microchip Technology Incorporated in  
the U.S.A. and other countries.  
THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS".  
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-  
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,  
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,  
RELATED TO THE INFORMATION INCLUDING BUT NOT  
LIMITED TO ANY IMPLIED WARRANTIES OF NON-  
INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A  
PARTICULAR PURPOSE OR WARRANTIES RELATED TO  
ITS CONDITION, QUALITY, OR PERFORMANCE.  
APT, ClockWorks, The Embedded Control Solutions Company,  
EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load,  
IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision  
Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire,  
SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,  
TimePictra, TimeProvider, Vite, WinPath, and ZL are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-  
RECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUEN-  
TIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND  
WHATSOEVER RELATED TO THE INFORMATION OR ITS  
USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS  
BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES  
ARE FORESEEABLE. TO THE FULLEST EXTENT  
ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON  
ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION  
OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF  
ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP  
FOR THE INFORMATION. Use of Microchip devices in life sup-  
port and/or safety applications is entirely at the buyer's risk, and  
the buyer agrees to defend, indemnify and hold harmless  
Microchip from any and all damages, claims, suits, or expenses  
resulting from such use. No licenses are conveyed, implicitly or  
otherwise, under any Microchip intellectual property rights  
unless otherwise stated.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard,  
CryptoAuthentication, CryptoAutomotive, CryptoCompanion,  
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average  
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial  
Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker,  
KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,  
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,  
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,  
PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple  
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,  
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,  
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and  
ZENA are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
The Adaptec logo, Frequency on Demand, Silicon Storage  
Technology, and Symmcom are registered trademarks of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology Germany  
II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in  
other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2020-2021, Microchip Technology Incorporated, All Rights  
Reserved.  
For information regarding Microchip’s Quality Management Systems,  
please visit www.microchip.com/quality.  
ISBN: 978-1-5224-8232-1  
2020-2021 Microchip Technology Inc.  
DS20006411B-page 45  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Australia - Sydney  
Tel: 61-2-9868-6733  
India - Bangalore  
Tel: 91-80-3090-4444  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
China - Beijing  
Tel: 86-10-8569-7000  
India - New Delhi  
Tel: 91-11-4160-8631  
Denmark - Copenhagen  
Tel: 45-4485-5910  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8665-5511  
India - Pune  
Tel: 91-20-4121-0141  
Finland - Espoo  
Tel: 358-9-4520-820  
China - Chongqing  
Tel: 86-23-8980-9588  
Japan - Osaka  
Tel: 81-6-6152-7160  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
China - Dongguan  
Tel: 86-769-8702-9880  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Guangzhou  
Tel: 86-20-8755-8029  
Korea - Daegu  
Tel: 82-53-744-4301  
Germany - Garching  
Tel: 49-8931-9700  
China - Hangzhou  
Tel: 86-571-8792-8115  
Korea - Seoul  
Tel: 82-2-554-7200  
Germany - Haan  
Tel: 49-2129-3766400  
Austin, TX  
Tel: 512-257-3370  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Malaysia - Kuala Lumpur  
Tel: 60-3-7651-7906  
Germany - Heilbronn  
Tel: 49-7131-72400  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
China - Nanjing  
Tel: 86-25-8473-2460  
Malaysia - Penang  
Tel: 60-4-227-8870  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Qingdao  
Philippines - Manila  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-532-8502-7355  
Tel: 63-2-634-9065  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shanghai  
Tel: 86-21-3326-8000  
Singapore  
Tel: 65-6334-8870  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Shenyang  
Tel: 86-24-2334-2829  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Shenzhen  
Tel: 86-755-8864-2200  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Suzhou  
Tel: 86-186-6233-1526  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Wuhan  
Tel: 86-27-5980-5300  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Italy - Padova  
Tel: 39-049-7625286  
Houston, TX  
Tel: 281-894-5983  
China - Xian  
Tel: 86-29-8833-7252  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
China - Xiamen  
Tel: 86-592-2388138  
Norway - Trondheim  
Tel: 47-7288-4388  
China - Zhuhai  
Tel: 86-756-3210040  
Poland - Warsaw  
Tel: 48-22-3325737  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
DS20006411B-page 46  
2020-2021 Microchip Technology Inc.  
02/28/20  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY