MCP608I/P [MICROCHIP]

2.5V TO 5.5V MICROPOWER CMOS OP AMPS; 2.5V至5.5V微功耗CMOS运算放大器
MCP608I/P
型号: MCP608I/P
厂家: MICROCHIP    MICROCHIP
描述:

2.5V TO 5.5V MICROPOWER CMOS OP AMPS
2.5V至5.5V微功耗CMOS运算放大器

运算放大器
文件: 总30页 (文件大小:494K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP606/7/8/9  
2.5V to 5.5V Micropower CMOS Op Amps  
Description  
Features  
The MCP606/7/8/9 family of operational amplifiers (op  
amps) from Microchip Technology Inc. are unity-gain  
stable with low offset voltage (250 µV, max.).  
Performance characteristics include rail-to-rail output  
swing capability and low input bias current (80 pA at  
+85°C, max.). These features make this family of op  
amps well suited for single-supply, precision, high-  
impedance, battery-powered applications.  
• Low Input Offset Voltage: 250 µV (max.)  
• Rail-to-Rail Output  
• Low Input Bias Current: 80 pA (max. at 85°C)  
• Low Quiescent Current: 25 µA (max.)  
• Power Supply Voltage: 2.5V to 5.5V  
• Unity-Gain Stable  
• Chip Select (CS) Capability: MCP608  
• Industrial Temperature Range: -40°C to +85°C  
• No Phase Reversal  
The single MCP606 is available in standard 8-lead  
PDIP, SOIC and TSSOP packages, as well as in a  
SOT-23-5 package. The single MCP608 with Chip  
Select (CS) is offered in standard 8-lead PDIP, SOIC  
and TSSOP packages. The dual MCP607 is offered in  
standard 8-lead PDIP, SOIC and TSSOP packages.  
Finally, the quad MCP609 is offered in standard  
14-lead PDIP, SOIC and TSSOP packages. All devices  
are fully specified from -40°C to +85°C, with power  
supplies from 2.5V to 5.5V.  
• Available in Single, Dual and Quad Packages  
Typical Applications  
• Battery Power Instruments  
• High-Impedance Applications  
- Photodiode Amplifier  
- pH Probe Buffer Amplifier  
- Infrared Detectors  
Package Types  
- Precision Integrators  
MCP606  
PDIP, SOIC,TSSOP  
MCP606  
SOT-23-5  
- Charge Amplifier for Piezoelectric  
Transducers  
NC 1  
8
7
6
VOUT  
VSS  
VIN+  
1
5
NC  
VDD  
• Strain Gauges  
2
3
4
2
3
VIN–  
VIN+  
VSS  
VDD  
VOUT  
• Medical Instruments  
Test Equipment  
4 VIN–  
5 NC  
Available Tools  
MCP607  
PDIP, SOIC,TSSOP  
MCP608  
PDIP, SOIC,TSSOP  
• SPICE Macro Models (at www.microchip.com)  
• FilterLab® Software (at www.microchip.com)  
VOUTA  
VINA  
VINA  
VSS  
1
2
3
4
8
7
6
NC 1  
8
7
6
VDD  
CS  
2
3
4
+
VOUTB VIN–  
VINB  
VDD  
VOUT  
Typical Application  
+
VIN+  
VSS  
5 VINB  
5 NC  
IL  
MCP609  
PDIP, SOIC,TSSOP  
RF  
50 kΩ  
RG  
5 kΩ  
To Load  
(VLP  
)
VOUTA  
1
2
3
4
5
6
7
14  
13  
12  
VOUTD  
2.5V  
to  
5.5V  
VINA  
VINA  
+
VIND  
VIND  
+
VOUT  
11 VSS  
VDD  
VINB  
VINB  
MCP606  
RSEN  
10Ω  
To Load  
10  
9
+
VINC  
VINC  
+
(VLM  
)
8 VOUTC  
VOUTB  
Low-Side Battery Current Sensor  
© 2005 Microchip Technology Inc.  
DS11177D-page 1  
MCP606/7/8/9  
† Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification is not  
implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
V
– V  
.......................................................................7.0V  
SS  
DD  
All Inputs and Outputs ................... V – 0.3V to V + 0.3V  
SS  
DD  
Difference Input Voltage ...................................... |V – V  
|
DD  
SS  
Output Short Circuit Current ..................................continuous  
Current at Input Pins ....................................................±2 mA  
Current at Output and Supply Pins ............................±30 mA  
Storage temperature ....................................-65°C to +150°C  
Maximum Junction Temperature (T ) .........................+150°C  
J
ESD protection on all pins (HBM;MM) ...................2 kV; 200V  
DC CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, V = +2.5V to +5.5V, V = GND, T = +25°C, V  
= V /2,  
DD  
DD  
SS  
A
CM  
V
V /2 and R = 100 kΩ to V /2.  
OUT  
DD  
L
DD  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Offset  
Input Offset Voltage  
VOS  
-250  
±1.8  
93  
+250  
µV  
Input Offset Drift with Temperature  
Power Supply Rejection Ratio  
ΔVOS/ΔT  
µV/°C T = -40°C to +85°C  
A
A
PSRR  
80  
dB  
Input Bias Current and Impedance  
Input Bias Current  
I
I
1
1
80  
pA  
B
At Temperature  
pA T = +85°C  
B
A
Input Offset Bias Current  
Common Mode Input Impedance  
Differential Input Impedance  
Common Mode  
I
pA  
OS  
13  
Z
10 ||6  
Ω||pF  
CM  
13  
Z
10 ||6  
Ω||pF  
DIFF  
Common Mode Input Range  
Common Mode Rejection Ratio  
V
V
– 0.3  
V
– 1.1  
DD  
V
CMRR 75 dB  
CMR  
SS  
CMRR  
75  
91  
dB  
V
V
= 5V,  
= -0.3V to 3.9V  
DD  
CM  
Open-Loop Gain  
DC Open-Loop Gain  
(Large-signal)  
A
105  
100  
121  
118  
dB R = 25 kΩ to V /2,  
OL  
L
DD  
V
= 50 mV to V – 50 mV  
OUT  
DD  
DC Open-Loop Gain  
(Large-signal)  
A
dB R = 5 kΩ to V /2,  
OL  
L
DD  
V
= 0.1V to V – 0.1V  
OUT  
DD  
Output  
Maximum Output Voltage Swing  
V
, V  
, V  
V
V
V
+ 15  
V
V
V
– 20  
mV R = 25 kΩ to V /2,  
L DD  
OL  
OH  
SS  
SS  
SS  
DD  
DD  
DD  
0.5V output overdrive  
V
+ 45  
+ 50  
– 60  
– 50  
mV R = 5 kΩ to V /2,  
OL  
OH  
L
DD  
0.5V output overdrive  
Linear Output Voltage Range  
Output Short Circuit Current  
V
mV R = 25 kΩ to V /2,  
OUT  
OUT  
L
DD  
A
105 dB  
OL  
V
V
+ 100  
V
– 100  
mV R = 5 kΩ to V /2,  
SS  
DD  
L
DD  
A
V
V
100 dB  
OL  
I
7
mA  
mA  
= 2.5V  
SC  
DD  
DD  
I
17  
= 5.5V  
SC  
Power Supply  
Supply Voltage  
V
2.5  
5.5  
25  
V
DD  
Quiescent Current per Amplifier  
I
18.7  
µA  
I = 0  
O
Q
DS11177D-page 2  
© 2005 Microchip Technology Inc.  
MCP606/7/8/9  
AC CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, V = +2.5V to +5.5V, V = GND, T = 25°C, V  
= V /2,  
DD  
DD  
SS  
A
CM  
V
V /2, R = 100 kΩ to V /2 and C = 60 pF.  
OUT  
DD  
L
DD  
L
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
AC Response  
Gain Bandwidth Product  
Phase Margin  
GBWP  
PM  
155  
62  
kHz  
°
G = +1  
G = 1  
Slew Rate  
SR  
0.08  
V/µs  
Noise  
Input Noise Voltage  
Input Noise Voltage Density  
Input Noise Current Density  
E
e
2.8  
38  
3
µV  
f = 0.1 Hz to 10 Hz  
ni  
P-P  
nV/Hz f = 1 kHz  
fA/Hz f = 1 kHz  
ni  
i
ni  
MCP608 CHIP SELECT (CS) CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, V = +2.5V to +5.5V, V = GND, T = 25°C, V  
= V /2,  
DD  
DD  
SS  
A
CM  
V
V /2, R = 100 kΩ to V /2 and C = 60 pF.  
DD L DD L  
OUT  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
CS Low Specifications  
CS Logic Threshold, Low  
CS Input Current, Low  
V
V
0.2 V  
V
IL  
SS  
DD  
I
-0.1  
0.01  
µA  
CS = 0.2V  
DD  
CSL  
CS High Specifications  
CS Logic Threshold, High  
CS Input Current, High  
CS Input High, GND Current  
V
0.8 V  
0.01  
-0.05  
10  
V
DD  
V
IH  
DD  
I
0.1  
µA  
µA  
nA  
CS = V  
CS = V  
CS = V  
CSH  
DD  
DD  
DD  
I
-2  
SS  
O(LEAK)  
Amplifier Output Leakage, CS High  
CS Dynamic Specifications  
I
CS Low to Amplifier Output Turn-on Time  
t
9
100  
µs  
µs  
V
CS = 0.2V to V  
= 0.9(V /2),  
OUT DD  
ON  
DD  
G = +1 V/V, R = 1 kΩ to V  
L
SS  
CS High to Amplifier Output Hi-Z  
CS Hysteresis  
t
0.1  
0.6  
CS = 0.8V to V  
= 0.1(V /2),  
OUT DD  
OFF  
DD  
G = +1 V/V, R = 1 kΩ to V  
L
SS  
V
V
= 5.0V  
HYST  
DD  
VIH  
VIL  
CS  
VOUT  
ISS  
tOFF  
tON  
Hi-Z  
Hi-Z  
-18.7 µA (typ.)  
-50 nA (typ.)  
-50 nA (typ.)  
-50 nA (typ.)  
-50 nA (typ.)  
ICS  
FIGURE 1-1:  
Timing Diagram for the CS  
Pin on the MCP608.  
© 2005 Microchip Technology Inc.  
DS11177D-page 3  
MCP606/7/8/9  
TEMPERATURE CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, V = +2.5V to +5.5V and V = GND.  
DD  
SS  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 5L-SOT23  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 8L-TSSOP  
Thermal Resistance, 14L-PDIP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
T
-40  
-40  
-65  
+85  
+125  
+150  
°C  
°C  
°C  
A
T
Note 1  
A
T
A
θ
θ
θ
θ
θ
θ
θ
256  
85  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
JA  
JA  
JA  
JA  
JA  
JA  
JA  
163  
124  
70  
120  
100  
Note 1: The MCP606/7/8/9 operate over this extended temperature range, but with reduced performance. In any case, the  
Junction Temperature (T ) must not exceed the Absolute Maximum specification of +150°C.  
J
DS11177D-page 4  
© 2005 Microchip Technology Inc.  
MCP606/7/8/9  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VDD = +2.5V to +5.5V, VSS = GND, TA = 25°C, VCM = VDD/2, VOUT VDD/2,  
RL = 100 kΩ to VDD/2 and CL = 60 pF.  
25%  
20%  
15%  
10%  
5%  
16%  
14%  
12%  
10%  
8%  
1200 Samples  
VDD = 5.5V  
1200 Samples  
DD = 5.5V  
V
6%  
4%  
2%  
0%  
0%  
Input Offset Voltage (µV)  
Input Offset Voltage Drift Magnitude (µV/°C)  
FIGURE 2-1:  
Input Offset Voltage at  
FIGURE 2-4:  
Input Offset Voltage Drift  
VDD = 5.5V.  
Magnitude at VDD = 5.5V.  
16%  
25%  
20%  
15%  
10%  
5%  
1200 Samples  
DD = 2.5V  
1200 Samples  
VDD = 2.5V  
14%  
12%  
10%  
8%  
V
6%  
4%  
2%  
0%  
0%  
Input Offset Voltage (µV)  
Input Offset Voltage Drift Magnitude (µV/°C)  
FIGURE 2-2:  
Input Offset Voltage at  
FIGURE 2-5:  
Input Offset Voltage Drift  
VDD = 2.5V.  
Magnitude at VDD = 2.5V.  
24  
22  
20  
18  
16  
14  
12  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
VDD = 5.5V  
VDD = 2.5V  
TA = +85°C  
TA = +25°C  
TA = -40°C  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature (°C)  
FIGURE 2-3:  
Quiescent Current vs.  
FIGURE 2-6:  
Quiescent Current vs.  
Power Supply Voltage.  
Ambient Temperature.  
© 2005 Microchip Technology Inc.  
DS11177D-page 5  
MCP606/7/8/9  
Note: Unless otherwise indicated, VDD = +2.5V to +5.5V, VSS = GND, TA = 25°C, VCM = VDD/2, VOUT VDD/2,  
RL = 100 kΩ to VDD/2 and CL = 60 pF.  
120  
100  
80  
60  
40  
20  
0
500  
400  
300  
200  
100  
0
VDD = 5.5V  
VDD =2.5V  
VDD = 5.5V  
TA = +85°C  
TA = +25°C  
TA = -40°C  
Representative Part  
-20  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature (°C)  
Common Mode Input Voltage (V)  
FIGURE 2-7:  
Input Offset Voltage vs.  
FIGURE 2-10:  
Input Offset Voltage vs.  
Ambient Temperature.  
Common Mode Input Voltage.  
120  
100  
80  
60  
40  
20  
0
90  
160  
80  
70  
60  
50  
40  
30  
20  
10  
0
RL = 25 kΩ  
140  
120  
100  
80  
GBWP  
45  
0
Phase Margin  
Gain  
-45  
-90  
-135  
-180  
-225  
Phase  
60  
40  
20  
VDD = 5.0V  
0
-20  
0.01 0.1  
-50 -25  
0
25  
50  
75 100  
1
10 100 1k 10k 100k 1M  
Frequency (Hz)  
Ambient Temperature (°C)  
FIGURE 2-8:  
Open-Loop Gain and Phase  
FIGURE 2-11:  
Gain Bandwidth Product,  
vs. Frequency.  
Phase Margin vs. Ambient Temperature.  
1000  
140  
130  
120  
110  
100  
90  
100  
Referred to Input  
80  
10  
0.1  
100 1k  
10k  
1.E+04  
100k  
1.E+05  
1
10 100 1k  
F1reque2ncy (Hz3)  
10k 100k  
1.E- 1.E+0 1.E+0 1.E+0 1.E+0 1.E+0 1.E+0  
1.E+02 1.E+03  
Frequency (Hz)  
01  
0
4
5
FIGURE 2-9:  
Channel-to-Channel  
FIGURE 2-12:  
Input Noise Voltage Density  
Separation (MCP607 and MCP609 only).  
vs. Frequency.  
DS11177D-page 6  
© 2005 Microchip Technology Inc.  
MCP606/7/8/9  
Note: Unless otherwise indicated, VDD = +2.5V to +5.5V, VSS = GND, TA = 25°C, VCM = VDD/2, VOUT VDD/2,  
RL = 100 kΩ to VDD/2 and CL = 60 pF.  
100  
10  
1
60  
50  
40  
30  
20  
10  
0
VDD = 5.5V  
CM = VDD  
TA = +85°C  
DD = 5.5V  
V
V
IB  
IB  
IOS  
| IOS  
|
0.1  
-10  
25 30 35 40 45 50 55 60 65 70 75 80 85  
Ambient Temperature (°C)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Common Mode Input Voltage (V)  
FIGURE 2-13:  
Input Bias Current, Input  
FIGURE 2-16:  
Input Bias Current, Input  
Offset Current vs. Ambient Temperature.  
Offset Current vs. Common Mode Input Voltage.  
135  
130  
125  
150  
RL = 25 kΩ  
140  
130  
120  
110  
100  
120  
115  
110  
105  
100  
VDD = 5.5V  
VDD = 2.5V  
90  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
100  
1k  
1.E+03  
10k  
100k  
1.E+05  
1.E+02  
1.E+04  
Power Supply Voltage (V)  
Load Resistance (Ω)  
FIGURE 2-14:  
DC Open-Loop Gain vs.  
FIGURE 2-17:  
DC Open-Loop Gain vs.  
Load Resistance.  
Power Supply Voltage.  
120  
100  
80  
60  
40  
20  
0
100  
95  
90  
85  
80  
75  
PSRR-  
PSRR+  
PSRR  
CMRR  
CMRR  
-50  
-25  
0
25  
50  
75  
100  
0.1  
1
10  
100  
1k  
10k  
1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04  
Frequency (Hz)  
Ambient Temperature (°C)  
FIGURE 2-15:  
Frequency.  
CMRR, PSRR vs.  
FIGURE 2-18:  
Temperature.  
CMRR, PSRR vs. Ambient  
© 2005 Microchip Technology Inc.  
DS11177D-page 7  
MCP606/7/8/9  
Note: Unless otherwise indicated, VDD = +2.5V to +5.5V, VSS = GND, TA = 25°C, VCM = VDD/2, VOUT VDD/2,  
RL = 100 kΩ to VDD/2 and CL = 60 pF.  
40  
35  
30  
25  
20  
15  
10  
5
1000  
100  
10  
VDD – VOH, VDD = 5.5V  
OL – VSS, VDD = 5.5V  
VDD - VOH, VDD = 2.5V  
VOL - VSS, VDD = 2.5V  
V
RL = 5 kΩ  
VDD - VOH, VDD = 5.5V  
VOL - VSS, VDD = 5.5V  
VDD – VOH, VDD = 2.5V  
VOL – VSS, VDD = 2.5V  
1
0
0.1  
1
10  
100  
-50  
-25  
0
25  
50  
75  
100  
Output Current (mA)  
Ambient Temperature (°C)  
FIGURE 2-19:  
Output Voltage Headroom  
FIGURE 2-22:  
Output Voltage Headroom  
vs. Output Current Magnitude.  
vs. Ambient Temperature at RL = 5 kΩ.  
10  
6
G = +2 V/V  
V
DD = 5.0V  
5
4
VDD = 5.5V  
VDD = 2.5V  
3
1
2
VIN  
1
VOUT  
0
0.1  
-1  
100  
1k  
1.E+03  
10k  
1.E+04  
100k  
1.E+05  
1.E+02  
Frequency (Hz)  
Time (100 µs/div)  
FIGURE 2-20:  
Maximum Output Voltage  
FIGURE 2-23:  
The MCP606/7/8/9 Show  
Swing vs. Frequency.  
No Phase Reversal.  
0.12  
25  
20  
15  
10  
+ISC , VDD = 5.5V  
| -ISC |, VDD = 5.5V  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
Low to High  
High to Low  
5
0
+ISC , VDD = 2.5V  
| -ISC |, VDD = 2.5V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-21:  
Slew Rate vs. Ambient  
FIGURE 2-24:  
Output Short Circuit Current  
Temperature.  
Magnitude vs. Ambient Temperature.  
DS11177D-page 8  
© 2005 Microchip Technology Inc.  
MCP606/7/8/9  
Note: Unless otherwise indicated, VDD = +2.5V to +5.5V, VSS = GND, TA = 25°C, VCM = VDD/2, VOUT VDD/2,  
RL = 100 kΩ to VDD/2 and CL = 60 pF.  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VDD = 5.0V  
VDD = 5.0V  
Time (50 µs/div)  
Time (50 µs/div)  
FIGURE 2-25:  
Large-signal, Non-inverting  
FIGURE 2-28:  
Large-signal, Inverting  
Pulse Response.  
Pulse Response.  
VDD = 5.0V  
RL = 25 kΩ  
Time (50 µs/div)  
Time (50 µs/div)  
FIGURE 2-26:  
Small-signal, Non-inverting  
FIGURE 2-29:  
Small-signal, Inverting Pulse  
Pulse Response.  
Response.  
3.5  
3.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
VDD = 5.0V  
G = +1 V/V  
Amplifier Output Active  
RL = 1 kΩ to VSS  
5
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
CS  
0
CS Input  
High to Low  
CS Input  
Low to High  
Output Enabled  
VOUT  
Hysteresis  
1.0  
Output  
Hi-Z  
Output  
Hi-Z  
Amplifier Output Hi-Z  
0.5  
0.0  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
CS Input Voltage (V)  
Time (5 µs/div)  
FIGURE 2-27:  
Chip Select (CS) Hysteresis  
FIGURE 2-30:  
Amplifier Output Response  
(MCP608 only).  
Times vs. Chip Select (CS) Pulse  
(MCP608 only).  
© 2005 Microchip Technology Inc.  
DS11177D-page 9  
MCP606/7/8/9  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE.  
MCP606  
MCP606  
(PDIP, SOIC,  
TSSOP)  
MCP607 MCP608 MCP609  
Symbol  
Description  
(SOT-23-5)  
6
2
1
1
2
6
2
1
2
VOUT, VOUTA Output (op amp A)  
4
VIN–, VINA  
VIN+, VINA  
VDD  
Inverting Input (op amp A)  
Non-inverting Input (op amp A)  
Positive Power Supply  
Non-inverting Input (op amp B)  
Inverting Input (op amp B)  
Output (op amp B)  
3
3
3
3
3
+
7
5
4
7
4
4
2
5
4
5
VINB  
VINB  
+
6
6
7
7
VOUTB  
VOUTC  
8
8
Output (op amp B)  
9
VINC  
+
Inverting Input (op amp C)  
Non-inverting Input (op amp C)  
Negative Power Supply  
Non-inverting Input (op amp D)  
Inverting Input (op amp D)  
Output (op amp D)  
10  
11  
12  
13  
14  
VINC  
VSS  
1, 5, 8  
8
VIND+  
VIND–  
VOUTD  
CS  
Chip Select  
1, 5  
NC  
No Internal Connection  
3.1  
Analog Outputs  
3.4  
Digital Input  
The output pins are low-impedance voltage sources.  
The Chip Select (CS) pin is a Schmitt-triggered, CMOS  
logic input. It is used to place the MCP608 op amp in a  
Low-power mode, with the output(s) in a Hi-Z state.  
3.2  
Analog Inputs  
The non-inverting and inverting inputs are high-  
impedance CMOS inputs with low bias currents.  
3.3  
Power Supply (V and V  
)
DD  
SS  
The positive power supply pin (VDD) is 2.5V to 5.5V  
higher than the negative power supply pin (VSS). For  
normal operation, the output pins are at voltages  
between VSS and VDD; while the input pins are at  
voltages between VSS – 0.3V and VDD + 0.3V.  
Typically, these parts are used in a single-supply  
(positive) configuration. In this case, VSS is connected  
to ground and VDD is connected to the supply. VDD will  
need a local bypass capacitor (typically 0.01 µF to  
0.1 µF) within 2 mm of the VDD pin. These parts can  
share a bulk capacitor with nearby analog parts  
(typically 1 µF or larger) within 100 mm of the VDD pin.  
DS11177D-page 10  
© 2005 Microchip Technology Inc.  
MCP606/7/8/9  
linear region. To verify linear operation in this range, the  
large-signal DC Open-Loop Gain (AOL) is measured at  
points inside the supply rails. The measurement must  
meet the specified AOL conditions in the specification  
table.  
4.0  
APPLICATIONS INFORMATION  
The MCP606/7/8/9 family of op amps is manufactured  
using Microchip’s state-of-the-art CMOS process  
These op amps are unity-gain stable and suitable for a  
wide range of general purpose applications.  
4.3  
Capacitive Loads  
4.1  
Inputs  
Driving large capacitive loads can cause stability  
problems for voltage-feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases and the closed-loop bandwidth is  
reduced. This produces gain-peaking in the frequency  
response, with overshoot and ringing in the step  
response. A unity-gain buffer (G = +1) is the most  
sensitive to capacitive loads, though all gains show the  
same general behavior.  
The MCP606/7/8/9 op amps are designed to prevent  
phase reversal when the input pins exceed the supply  
voltages. Figure 2-23 shows the input voltage  
exceeding the supply voltage without any phase rever-  
sal.  
The inputs of the MCP606/7/8/9 op amps connect to a  
differential PMOS input stage. The Common Mode  
Input Voltage Range (VCMR) includes ground in single-  
supply systems (VSS), but does not include VDD. This  
means that the amplifier input behaves linearly as long  
as the Common Mode Input Voltage (VCM) is kept within  
the specified VCMR limits (VSS – 0.3V to VDD – 1.1V at  
+25°C).  
When driving large capacitive loads with these op  
amps (e.g., > 60 pF when G = +1), a small series  
resistor at the output (RISO in Figure 4-2) improves the  
feedback loop’s phase margin (stability) by making the  
output load resistive at higher frequencies. The  
bandwidth will be generally lower than the bandwidth  
with no capacitive load.  
Input voltages that exceed the Absolute Maximum  
Voltage Range (VSS – 0.3V to VDD + 0.3V) can cause  
excessive current to flow into or out of the input pins.  
Current beyond ±2 mA can cause reliability problems.  
Applications that exceed this rating must be externally  
limited with a resistor, as shown in Figure 4-1.  
RISO  
VOUT  
MCP60X  
VIN  
CL  
VOUT  
MCP60X  
RIN  
FIGURE 4-2:  
Output Resistor, RISO  
VIN  
stabilizes large capacitive loads.  
Figure 4-3 gives recommended RISO values for  
different capacitive loads and gains. The x-axis is the  
normalized load capacitance (CL/GN), where GN is the  
circuit’s noise gain. For non-inverting gains, GN and the  
Signal Gain are equal. For inverting gains, GN is  
1+|Signal Gain| (e.g., -1 V/V gives GN = +2 V/V).  
(Maximum expected VIN) VDD  
------------------------------------------------------------------------------  
2 mA  
RIN  
VSS (Minimum expected VIN  
)
---------------------------------------------------------------------------  
2 mA  
RIN  
FIGURE 4-1:  
Resistor (RIN).  
Input Current-Limiting  
10000  
10k  
4.2  
Rail-to-Rail Output  
There are two specifications that describe the output-  
swing capability of the MCP606/7/8/9 family of op amps.  
The first specification (Maximum Output Voltage Swing)  
defines the absolute maximum swing that can be  
achieved under the specified load conditions. For  
instance, the output voltage swings to within 15 mV of  
the negative rail with a 25 kΩ load to VDD/2. Figure 2-23  
shows how the output voltage is limited when the input  
goes beyond the linear region of operation.  
1000  
1k  
GN = +1  
G
N = +2  
GN t +4  
100  
100  
10  
100  
1000  
10000  
10p  
100p  
1n  
10n  
Normalized Load Capacitance; CL/GN (F)  
FIGURE 4-3:  
for Capacitive Loads.  
Recommended RISO Values  
The second specification that describes the output-  
swing capability of these amplifiers (Linear Output  
Voltage Range) defines the maximum output swing that  
can be achieved while the amplifier still operates in its  
© 2005 Microchip Technology Inc.  
DS11177D-page 11  
MCP606/7/8/9  
After selecting RISO for your circuit, double-check the  
resulting frequency response peaking and step  
response overshoot. Modify RISO’s value until the  
response is reasonable. Bench evaluation and simula-  
tions with the MCP606/7/8/9 SPICE macro model are  
helpful.  
1. Non-inverting Gain and Unity-gain Buffer:  
a) Connect the non-inverting pin (VIN+) to the  
input with a wire that does not touch the  
PCB surface.  
b) Connect the guard ring to the inverting input  
pin (VIN–). This biases the guard ring to the  
common mode input voltage.  
4.4  
MCP608 Chip Select (CS)  
2. Inverting Gain and Transimpedance Gain  
(convert current to voltage, such as photo  
detectors) amplifiers:  
The MCP608 is a single op amp with Chip Select (CS).  
When CS is pulled high, the supply current drops to  
50 nA (typ.) and flows through the CS pin to VSS. When  
this happens, the amplifier output is put into a high-  
impedance state. By pulling CS low, the amplifier is  
enabled. If the CS pin is left floating, the amplifier may  
not operate properly. Figure 1-1 shows the output  
voltage and supply current response to a CS pulse.  
a) Connect the guard ring to the non-inverting  
input pin (VIN+). This biases the guard ring  
to the same reference voltage as the op  
amp (e.g., VDD/2 or ground).  
b) Connect the inverting pin (VIN–) to the input  
with a wire that does not touch the PCB  
surface.  
4.5  
Supply Bypass  
4.7  
Application Circuits  
With this family of operational amplifiers, the power  
supply pin (VDD for single-supply) should have a local  
bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm  
for good high-frequency performance. It also needs a  
bulk capacitor (i.e., 1 µF or larger) within 100 mm to  
provide large, slow currents. This bulk capacitor can be  
shared with other nearby analog parts.  
4.7.1  
LOW-SIDE BATTERY CURRENT  
SENSOR  
The MCP606/7/8/9 op amps can be used to sense the  
load current on the low-side of a battery using the  
circuit in Figure 4-5. In this circuit, the current from the  
power supply (minus the current required to power the  
MCP606) flows through a sense resistor (RSEN), which  
converts it to voltage. This is gained by the the amplifier  
and resistors, RG and RF.Since the non-inverting input  
of the amplifier is at the load’s negative supply (VLM),  
the gain from RSEN to VOUT is RF/RG.  
4.6  
PCB Surface Leakage  
In applications where low input bias current is critical,  
Printed Circuit Board (PCB) surface-leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
between nearby traces is 1012Ω. A 5V difference would  
cause 5 pA of current to flow, which is greater than the  
MCP606/7/8/9 family’s bias current at 25°C (1 pA, typ.).  
VOUT = VLM + I R  
(R RG)  
F
L
SEN  
IL  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
An example of this type of layout is shown in Figure 4-4.  
RF  
50 kΩ  
RG  
5 kΩ  
To Load  
(VLP  
)
2.5V  
to  
5.5V  
VOUT  
MCP606  
RSEN  
To Load  
VIN-  
VIN+  
VSS  
10Ω  
(VLM  
)
FIGURE 4-5:  
Low Side Battery Current  
Sensor.  
Since the input bias current and input offset voltage of  
the MCP606 are low, and the input is capable of swing-  
ing below ground, there is very little error generated by  
the amplifier. The quiescent current is very low, which  
helps conserve battery power. The rail-to-rail output  
makes it possible to read very low currents.  
Guard Ring  
FIGURE 4-4:  
Example Guard Ring Layout  
for Inverting Gain.  
DS11177D-page 12  
© 2005 Microchip Technology Inc.  
MCP606/7/8/9  
operate at a much higher speed. This reverse bias also  
increases the dark current and current noise, however.  
Resistor R2 converts the current into voltage. Capacitor  
C2 limits the bandwidth and helps stabilize the circuit  
when D1’s junction capacitance is large.  
4.7.2  
PHOTODIODE AMPLIFIERS  
Sensors that produce an output current and have high  
output impedance can be connected to a transimped-  
ance amplifier. The transimpedance amplifier converts  
the current into voltage. Photodiodes are one sensor  
that produce an output current.  
VB < 0  
The key op amp characteristics that are needed for  
these circuits are: low input offset voltage, low input  
bias current, high input impedance and an input  
common mode range that includes ground. The low  
input offset voltage and low input bias current support  
a very low voltage drop across the photodiode; this  
gives the best photodiode linearity. Since the  
photodiode is biased at ground, the op amp’s input  
needs to function well both above and below ground.  
VOUT = I  
R
D1  
2
C2  
R2  
VOUT  
ID1  
VDD  
Light  
4.7.2.1  
Photo-Voltaic Mode  
D1  
MCP606  
Figure 4-6 shows a transimpedance amplifier with a  
photodiode (D1) biased in the Photo-voltaic mode (0V  
across D1), which is used for precision photodiode  
sensing.  
VB  
As light impinges on D1, charge is generated, causing  
a current to flow in the reverse bias direction of D1. The  
op amp’s negative feedback forces the voltage across  
the D1 to be nearly 0V. Resistor R2 converts the current  
into voltage. Capacitor C2 limits the bandwidth and  
helps stabilize the circuit when D1’s junction  
capacitance is large.  
FIGURE 4-7:  
conductive mode) and Transimpedance  
Amplifier.  
Photodiode (in Photo-  
4.7.3  
TWO OP AMP INSTRUMENTATION  
AMPLIFIER  
The two op amp instrumentation amplifier shown in  
Figure 4-8 serves the function of taking the difference  
of two input voltages, level-shifting it and gaining it to  
the output. This configuration is best suited for higher  
VOUT = I  
R
D1  
2
C2  
R2  
gains (i.e., gain > 3 V/V). The reference voltage (VREF  
)
is typically at mid-supply (VDD/2) in a single-supply  
environment.  
VOUT  
ID1  
R
2R  
1
1
VDD  
Light  
V
= (V V ) 1 + ------ + --------- + V  
OUT  
1
2
REF  
R
R
2
G
D1  
MCP606  
RG  
R1  
R2  
R2  
R1  
VREF  
VOUT  
FIGURE 4-6:  
Photodiode (in Photo-voltaic  
mode) and Transimpedance Amplifier.  
V2  
V1  
½
½
MCP607  
MCP607  
4.7.2.2 Photo-Conductive Mode  
Figure 4-6 shows a transimpedance amplifier with a  
photodiode (D1) biased in the Photo-conductive mode  
(D1 is reverse biased), which is used for high-speed  
applications.  
FIGURE 4-8:  
Amplifier.  
Two op amp Instrumentation  
The key specifications that make the MCP606/7/8/9  
family appropriate for this application circuit are low  
input bias current, low offset voltage and high common-  
mode rejection.  
As light impinges on D1, charge is generated, causing  
a current to flow in the reverse bias direction of D1.  
Placing a negative bias on D1 significantly reduces its  
junction capacitance, which allows the circuit to  
© 2005 Microchip Technology Inc.  
DS11177D-page 13  
MCP606/7/8/9  
4.7.4  
THREE OP AMP  
INSTRUMENTATION AMPLIFIER  
4.7.5  
PRECISION GAIN WITH GOOD  
LOAD ISOLATION  
A classic, three op amp instrumentation amplifier is  
illustrated in Figure 4-9. The two input op amps provide  
differential signal gain and a common mode gain of +1.  
The output op amp is a difference amplifier, which  
converts its input signal from differential to a single  
ended output; it rejects common mode signals at its  
input. The gain of this circuit is simply adjusted with one  
resistor (RG). The reference voltage (VREF) is typically  
referenced to mid-supply (VDD/2) in single-supply  
applications.  
In Figure 4-10, the MCP606 op amps, R1 and R2  
provide a high gain to the input signal (VIN). The  
MCP606’s low offset voltage makes this an accurate  
circuit.  
The MCP601 is configured as a unity-gain buffer. It  
isolates the MCP606’s output from the load, increasing  
the high-gain stage’s precision. Since the MCP601 has  
a higher output current, with the two amplifiers being  
housed in separate packages, there is minimal change  
in the MCP606’s offset voltage due to loading effect.  
R
4
2R  
⎞ ⎛  
⎟ ⎜  
⎠ ⎝  
2
V
= V (1 + R R )  
IN 2 1  
-----  
+ V  
V
= (V V ) 1 + ---------  
OUT  
OUT  
1
2
REF  
R
R
3
G
MCP606  
VIN  
½
MCP601  
MCP607  
V2  
VOUT  
R3  
R4  
R1  
R2  
VOUT  
R2  
RG  
R2  
FIGURE 4-10:  
Load Isolation.  
Precision Gain with Good  
MCP606  
VREF  
R3  
R4  
V1  
½
MCP607  
FIGURE 4-9:  
Three op amp  
Instrumentation Amplifier.  
DS11177D-page 14  
© 2005 Microchip Technology Inc.  
MCP606/7/8/9  
5.0 DESIGN TOOLS  
Microchip provides the basic design tools needed for  
the MCP606/7/8/9 family of op amps.  
5.1  
SPICE Macro Model  
The latest SPICE macro model for the MCP606/7/8/9  
op amps is available on our web site at  
www.microchip.com. This model is intended to be an  
initial design tool that works well in the op amp’s linear  
region of operation at room temperature. See the  
model file for information on its capabilities.  
Bench testing is a very important part of any design and  
cannot be replaced with simulations. Also, simulation  
results using this macro model need to be validated by  
comparing them to the data sheet specifications and  
characteristic curves.  
®
5.2  
FilterLab Software  
The FilterLab software is an innovative tool that  
simplifies analog active-filter (using op amps) design. It  
is available free of charge from our web site at  
www.microchip.com. The FilterLab software tool  
provides full schematic diagrams of the filter circuit with  
component values. It also outputs the filter circuit in  
SPICE format, which can be used with the macro  
model to simulate actual filter performance.  
© 2005 Microchip Technology Inc.  
DS11177D-page 15  
MCP606/7/8/9  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Lead SOT-23-5  
Example:  
XXNN  
SB25  
8-Lead PDIP (300 mil)  
Example:  
XXXXXXXX  
XXXXXNNN  
MCP606  
I/P^256  
e3  
YYWW  
0545  
8-Lead SOIC (150 mil)  
Example:  
MCP606  
XXXXXXXX  
XXXXYYWW  
e
3
SN^0545  
NNN  
256  
8-Lead TSSOP  
Example:  
XXXX  
YYWW  
606  
I545  
NNN  
256  
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS11177D-page 16  
© 2005 Microchip Technology Inc.  
MCP606/7/8/9  
Package Marking Information (Continued)  
14-Lead PDIP (300 mil) (MCP609)  
Example:  
XXXXXXXXXXXXXX  
XXXXXXXXXXXNNN  
MCP609  
e
3
I/P^256  
YYWW  
0545  
14-Lead SOIC (150 mil) (MCP609)  
Example:  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
MCP609  
e
3
I/SL^
0545256  
Example:  
14-Lead TSSOP (MCP609)  
XXXXXXXX  
YYWW  
609IST  
0545  
NNN  
256  
© 2005 Microchip Technology Inc.  
DS11177D-page 17  
MCP606/7/8/9  
5-Lead Plastic Small Outline Transistor (OT) (SOT23)  
E
E1  
p
B
p1  
D
n
1
α
c
A
A2  
φ
A1  
L
β
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
5
MAX  
n
p
Number of Pins  
5
Pitch  
.038  
.075  
.046  
.043  
.003  
.110  
.064  
.116  
.018  
5
0.95  
1.90  
p1  
Outside lead pitch (basic)  
Overall Height  
A
A2  
A1  
E
.035  
.035  
.000  
.102  
.059  
.110  
.014  
0
.057  
0.90  
0.90  
1.18  
1.10  
0.08  
2.80  
1.63  
2.95  
0.45  
5
1.45  
Molded Package Thickness  
.051  
.006  
.118  
.069  
.122  
.022  
10  
1.30  
0.15  
3.00  
1.75  
3.10  
0.55  
10  
Standoff  
§
0.00  
2.60  
1.50  
2.80  
0.35  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Foot Length  
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.004  
.014  
0
.006  
.017  
5
.008  
.020  
10  
0.09  
0.35  
0
0.15  
0.43  
5
0.20  
0.50  
10  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-178  
Drawing No. C04-091  
DS11177D-page 18  
© 2005 Microchip Technology Inc.  
MCP606/7/8/9  
8-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
β
B1  
B
p
eB  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
8
8
.100  
.155  
.130  
2.54  
3.94  
3.30  
Top to Seating Plane  
A
.140  
.170  
3.56  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.360  
.125  
.008  
.045  
.014  
.310  
5
.145  
2.92  
0.38  
7.62  
6.10  
9.14  
3.18  
0.20  
1.14  
0.36  
7.87  
5
3.68  
.313  
.250  
.373  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.385  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
9.46  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
9.78  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-018  
© 2005 Microchip Technology Inc.  
DS11177D-page 19  
MCP606/7/8/9  
8-Lead Plastic Small Outline (SN) – Narrow, 150 mil (SOIC)  
E
E1  
p
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
8
MAX  
n
p
Number of Pins  
Pitch  
8
.050  
.061  
.056  
.007  
.237  
.154  
.193  
.015  
.025  
4
1.27  
Overall Height  
A
.053  
.069  
1.35  
1.32  
1.55  
1.42  
0.18  
6.02  
3.91  
4.90  
0.38  
0.62  
4
1.75  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.052  
.004  
.228  
.146  
.189  
.010  
.019  
0
.061  
.010  
.244  
.157  
.197  
.020  
.030  
8
1.55  
0.25  
6.20  
3.99  
5.00  
0.51  
0.76  
8
§
0.10  
5.79  
3.71  
4.80  
0.25  
0.48  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.008  
.013  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.33  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-057  
DS11177D-page 20  
© 2005 Microchip Technology Inc.  
MCP606/7/8/9  
8-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm (TSSOP)  
E
E1  
p
D
2
1
n
B
α
A
c
A1  
A2  
φ
β
L
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
8
8
.026  
0.65  
Overall Height  
A
.043  
1.10  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.033  
.035  
.004  
.251  
.173  
.118  
.024  
4
.037  
.006  
.256  
.177  
.122  
.028  
8
0.85  
0.90  
0.10  
6.38  
4.40  
3.00  
0.60  
4
0.95  
0.15  
6.50  
4.50  
3.10  
0.70  
8
§
.002  
.246  
.169  
.114  
.020  
0
0.05  
6.25  
4.30  
2.90  
0.50  
0
Overall Width  
Molded Package Width  
Molded Package Length  
Foot Length  
E1  
D
L
φ
Foot Angle  
c
Lead Thickness  
.004  
.007  
0
.006  
.010  
5
.008  
.012  
10  
0.09  
0.19  
0
0.15  
0.25  
5
0.20  
0.30  
10  
Lead Width  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.005” (0.127mm) per side.  
JEDEC Equivalent: MO-153  
Drawing No. C04-086  
© 2005 Microchip Technology Inc.  
DS11177D-page 21  
MCP606/7/8/9  
14-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
B1  
β
eB  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
14  
MAX  
n
p
Number of Pins  
Pitch  
14  
.100  
.155  
.130  
2.54  
Top to Seating Plane  
A
.140  
.170  
3.56  
2.92  
0.38  
7.62  
6.10  
18.80  
3.18  
0.20  
1.14  
0.36  
7.87  
5
3.94  
3.30  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.740  
.125  
.008  
.045  
.014  
.310  
5
.145  
3.68  
.313  
.250  
.750  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.760  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
19.05  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
19.30  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-005  
DS11177D-page 22  
© 2005 Microchip Technology Inc.  
MCP606/7/8/9  
14-Lead Plastic Small Outline (SL) – Narrow, 150 mil (SOIC)  
E
E1  
p
D
2
B
n
1
α
h
45°  
c
A2  
A
φ
A1  
L
β
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
14  
14  
.050  
.061  
.056  
.007  
.236  
.154  
.342  
.015  
.033  
4
1.27  
1.55  
1.42  
0.18  
5.99  
3.90  
8.69  
0.38  
0.84  
4
Overall Height  
A
.053  
.069  
1.35  
1.75  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.052  
.004  
.228  
.150  
.337  
.010  
.016  
0
.061  
.010  
.244  
.157  
.347  
.020  
.050  
8
1.32  
0.10  
5.79  
3.81  
8.56  
0.25  
0.41  
0
1.55  
0.25  
6.20  
3.99  
8.81  
0.51  
1.27  
8
§
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.008  
.014  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.36  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-065  
© 2005 Microchip Technology Inc.  
DS11177D-page 23  
MCP606/7/8/9  
14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm (TSSOP)  
E
E1  
p
D
2
1
n
B
α
A
c
φ
A1  
A2  
β
L
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
14  
MAX  
n
p
Number of Pins  
Pitch  
14  
.026  
0.65  
Overall Height  
A
.043  
1.10  
0.95  
0.15  
6.50  
4.50  
5.10  
0.70  
8
Molded Package Thickness  
Standoff  
A2  
A1  
E
.033  
.002  
.246  
.169  
.193  
.020  
0
.035  
.004  
.251  
.173  
.197  
.024  
4
.037  
.006  
.256  
.177  
.201  
.028  
8
0.85  
0.05  
0.90  
0.10  
6.38  
4.40  
5.00  
0.60  
4
§
Overall Width  
6.25  
4.30  
4.90  
0.50  
0
Molded Package Width  
Molded Package Length  
Foot Length  
E1  
D
L
φ
Foot Angle  
c
Lead Thickness  
.004  
.007  
0
.006  
.010  
5
.008  
.012  
10  
0.09  
0.19  
0
0.15  
0.25  
5
0.20  
0.30  
10  
Lead Width  
B1  
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.005” (0.127mm) per side.  
JEDEC Equivalent: MO-153  
Drawing No. C04-087  
DS11177D-page 24  
© 2005 Microchip Technology Inc.  
MCP606/7/8/9  
APPENDIX A: REVISION HISTORY  
Revision D (February 2005)  
The following is the list of modifications:  
1. Added Section 3.0 “Pin Descriptions”.  
2. Updated Section 4.0 “Applications Information”.  
3. Added Section 4.3 “Capacitive Loads”  
4. Updated Section 5.0 “Design Tools” to  
include FilterLab® and to point to the latest  
SPICE macro model.  
5. Corrected and updated Section 6.0 “Packaging  
Information”.  
6. Added Section Appendix A: “Revision History”.  
Revision C (January 2001)  
Revision B (May 2000)  
Revision A (January 2000)  
• Original Release of this Document.  
© 2005 Microchip Technology Inc.  
DS11177D-page 25  
MCP606/7/8/9  
NOTES:  
DS11177D-page 26  
© 2005 Microchip Technology Inc.  
MCP606/7/8/9  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
/XX  
a)  
b)  
c)  
MCP606-I/P:  
Industrial Temperature,  
8LD PDIP package.  
Temperature Package  
Range  
MCP606-I/SN: Industrial Temperature,  
8LD SOIC package.  
MCP606T-I/SN: Tape and Reel,  
Industrial Temperature,  
8LD SOIC package.  
Device  
MCP606  
MCP606T = Single Op Amp  
Tape and Reel (SOIC, TSSOP)  
Dual Op Amp  
MCP607T = Dual Op Amp  
Tape and Reel (SOIC, TSSOP)  
Single Op Amp with CS  
= Single Op Amp  
d)  
e)  
f)  
MCP606-I/ST:  
Industrial Temperature,  
8LD TSSOP package.  
MCP607  
=
MCP606-I/OT: Industrial Temperature,  
5LD SOT-23 package.  
MCP606T-I/OT: Tape and Reel,  
Industrial Temperature,  
MCP608  
=
MCP608T = Single Op Amp with CS  
Tape and Reel (SOIC, TSSOP)  
MCP609  
MCP609T = Quad Op Amp  
Tape and Reel (SOIC, TSSOP)  
5LD SOT-23 package.  
= Quad Op Amp  
a)  
b)  
MCP607-I/P:  
Industrial Temperature,  
8LD PDIP package.  
MCP607T-I/P: Industrial Temperature,  
8LD PDIP package.  
Temperature Range  
Package  
I
=
-40°C to +85°C  
a)  
b)  
MCP608-I/SN: Industrial Temperature,  
8LD SOIC package.  
MCP608T-I/SN: Tape and Reel,  
Industrial Temperature,  
8LD SOIC package.  
OT  
P
SN  
SL  
ST  
=
=
=
=
=
Plastic SOT-23, 5-lead  
Plastic DIP (300 mil Body), 8-lead & 14-lead  
Plastic SOIC (150 mil Body), 8-lead  
Plastic SOIC (150 mil Body), 14-lead  
Plastic TSSOP, 8-lead & 14-lead  
a)  
b)  
MCP609-I/P:  
Industrial Temperature,  
14LD PDIP package.  
MCP609T-I/P: Industrial Temperature,  
14LD PDIP package.  
© 2005 Microchip Technology Inc.  
DS11177D-page 27  
MCP606/7/8/9  
NOTES:  
DS11177D-page 28  
© 2005 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-  
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,  
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,  
RELATED TO THE INFORMATION, INCLUDING BUT NOT  
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,  
MERCHANTABILITY OR FITNESS FOR PURPOSE.  
Microchip disclaims all liability arising from this information and  
its use. Use of Microchip’s products as critical components in  
life support systems is not authorized except with express  
written approval by Microchip. No licenses are conveyed,  
implicitly or otherwise, under any Microchip intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart, rfPIC, and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
PICMASTER, SEEVAL, SmartSensor and The Embedded  
Control Solutions Company are registered trademarks of  
Microchip Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, dsPICDEM,  
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,  
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial  
Programming, ICSP, ICEPIC, MPASM, MPLIB, MPLINK,  
MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail,  
PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total  
Endurance and WiperLock are trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2005, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 quality system certification for  
its worldwide headquarters, design and wafer fabrication facilities in  
Chandler and Tempe, Arizona and Mountain View, California in  
October 2003. The Company’s quality system processes and  
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2005 Microchip Technology Inc.  
DS11177D-page 29  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
India - Bangalore  
Tel: 91-80-2229-0061  
Fax: 91-80-2229-0062  
Austria - Weis  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Denmark - Ballerup  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-5160-8631  
Fax: 91-11-5160-8632  
China - Chengdu  
Tel: 86-28-8676-6200  
Fax: 86-28-8676-6599  
France - Massy  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Japan - Kanagawa  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Atlanta  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Germany - Ismaning  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Korea - Seoul  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Boston  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Westford, MA  
Tel: 978-692-3848  
Fax: 978-692-3821  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
England - Berkshire  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Dallas  
Addison, TX  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Tel: 972-818-7423  
Fax: 972-818-2924  
Taiwan - Hsinchu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shunde  
Detroit  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Qingdao  
Tel: 86-532-502-7355  
Fax: 86-532-502-7205  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
San Jose  
Mountain View, CA  
Tel: 650-215-1444  
Fax: 650-961-0286  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
10/20/04  
DS11177D-page 30  
© 2005 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY