MCP608T-I/SN [MICROCHIP]

2.5V to 6.0V Micropower CMOS Op Amp; 2.5V至6.0V微功耗CMOS运算放大器
MCP608T-I/SN
型号: MCP608T-I/SN
厂家: MICROCHIP    MICROCHIP
描述:

2.5V to 6.0V Micropower CMOS Op Amp
2.5V至6.0V微功耗CMOS运算放大器

运算放大器 放大器电路 光电二极管
文件: 总42页 (文件大小:720K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP606/7/8/9  
2.5V to 6.0V Micropower CMOS Op Amp  
Description  
Features  
The MCP606/7/8/9 family of operational amplifiers (op  
amps) from Microchip Technology Inc. are unity-gain  
stable with low offset voltage (250 µV, maximum).  
Performance characteristics include rail-to-rail output  
swing capability and low input bias current (80 pA at  
+85°C, maximum). These features make this family of  
op amps well suited for single-supply, precision,  
high-impedance, battery-powered applications.  
• Low Input Offset Voltage: 250 µV (maximum)  
• Rail-to-Rail Output  
• Low Input Bias Current: 80 pA (maximum at  
+85°C)  
• Low Quiescent Current: 25 µA (maximum)  
• Power Supply Voltage: 2.5V to 6.0V  
• Unity-Gain Stable  
• Chip Select (CS) Capability: MCP608  
• Industrial Temperature Range: -40°C to +85°C  
• No Phase Reversal  
The single is available in standard 8-lead PDIP, SOIC  
and TSSOP packages, as well as in a SOT-23-5  
package. The single MCP608 with Chip Select (CS) is  
offered in the standard 8-lead PDIP, SOIC and TSSOP  
packages. The dual MCP607 is offered in the standard  
8-lead PDIP, SOIC and TSSOP packages. Finally, the  
quad MCP609 is offered in the standard 14-lead PDIP,  
SOIC and TSSOP packages. All devices are fully  
specified from -40°C to +85°C, with power supplies  
from 2.5V to 6.0V.  
• Available in Single, Dual and Quad Packages  
Typical Applications  
• Battery Power Instruments  
• High-Impedance Applications  
• Strain Gauges  
• Medical Instruments  
Test Equipment  
Package Types  
MCP606  
MCP606  
PDIP, SOIC,TSSOP  
SOT-23-5  
Design Aids  
NC 1  
8
7
6
VOUT  
VSS  
VIN+  
1
5
4
NC  
VDD  
• SPICE Macro Models  
• FilterLab® Software  
2
3
4
2
3
VIN–  
VIN+  
VSS  
VDD  
VOUT  
VIN–  
• Mindi™ Circuit Designer & Simulator  
• Analog Demonstration and Evaluation Boards  
• Application Notes  
5 NC  
MCP607  
PDIP, SOIC,TSSOP  
MCP608  
PDIP, SOIC,TSSOP  
Typical Application  
VOUTA  
1
2
3
4
8
7
6
NC 1  
8
7
6
VDD  
CS  
2
3
4
VINA  
VINA  
+
VOUTB VIN–  
VDD  
VOUT  
VOUT = VLM + I R  
(R RG)  
F
L
SEN  
IL  
VINB  
+
VIN+  
VSS  
5 VINB  
5 NC  
VSS  
RF  
RG  
To Load  
(VLP  
)
50 kΩ  
5 kΩ  
MCP609  
PDIP, SOIC,TSSOP  
2.5V  
to  
6.0V  
VOUT  
VOUTA  
1
2
3
4
5
6
7
14  
13  
VOUTD  
VINA  
VINA  
+
VIND  
+
MCP606  
RSEN  
10Ω  
12 VIND  
11 VSS  
10  
9
To Load  
(VLM  
)
VDD  
VINB  
VINB  
+
VINC  
VINC  
+
Low-Side Battery Current Sensor  
8 VOUTC  
VOUTB  
© 2009 Microchip Technology Inc.  
DS11177F-page 1  
MCP606/7/8/9  
NOTES:  
DS11177F-page 2  
© 2009 Microchip Technology Inc.  
MCP606/7/8/9  
† Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification is not  
implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
VDD – VSS ........................................................................7.0V  
Current at Input Pins ....................................................±2 mA  
Analog Inputs (VIN+, VIN–) †........ VSS – 1.0V to VDD + 1.0V  
All Other Inputs and Outputs ......... VSS – 0.3V to VDD + 0.3V  
†† See Section 4.1.2 “Input Voltage and Current Limits”.  
Difference Input Voltage ...................................... |VDD – VSS  
|
Output Short Circuit Current ................................Continuous  
Current at Output and Supply Pins ............................±30 mA  
Storage Temperature .................................65° C to +150° C  
Maximum Junction Temperature (TJ).........................+150° C  
ESD Protection On All Pins (HBM; MM) .............. ≥ 3 kV; 200V  
DC CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, VDD = +2.5V to +5.5V, VSS = GND, TA = +25°C, VCM = VDD/2,  
VOUT VDD/2, VL = VDD/2, RL = 100 kΩ to VL, and CS is tied low (refer to Figure 1-2 and Figure 1-3).  
Parameters  
Input Offset  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Offset Voltage  
VOS  
-250  
±1.8  
93  
+250  
µV  
Input Offset Drift with Temperature  
Power Supply Rejection Ratio  
Input Bias Current and Impedance  
Input Bias Current  
ΔVOS/ΔTA  
PSRR  
µV/°C TA = -40°C to +85°C  
dB  
80  
IB  
IB  
1
80  
pA  
At Temperature  
pA TA = +85°C  
Input Offset Bias Current  
Common Mode Input Impedance  
Differential Input Impedance  
Common Mode  
IOS  
1
pA  
ZCM  
ZDIFF  
1013||6  
1013||6  
Ω||pF  
Ω||pF  
Common Mode Input Range  
Common Mode Rejection Ratio  
Open-Loop Gain  
VCMR  
VSS – 0.3  
75  
VDD – 1.1  
V
CMRR 75 dB  
CMRR  
91  
dB VDD = 5V, VCM = -0.3V to 3.9V  
DC Open-Loop Gain  
(Large-signal)  
AOL  
AOL  
105  
100  
121  
118  
dB RL = 25 kΩ to VL,  
V
OUT = 50 mV to VDD – 50 mV  
DC Open-Loop Gain  
(Large-signal)  
dB RL = 5 kΩ to VL,  
V
OUT = 0.1V to VDD – 0.1V  
Output  
Maximum Output Voltage Swing  
VOL, VOH  
VSS + 15  
VSS + 45  
VSS + 50  
VSS + 100  
VDD – 20  
VDD – 60  
VDD – 50  
VDD – 100  
mV RL = 25 kΩ to VL,  
0.5V input overdrive  
V
OL, VOH  
VOUT  
mV RL = 5 kΩ to VL,  
0.5V input overdrive  
Linear Output Voltage Range  
Output Short Circuit Current  
mV RL = 25 kΩ to VL,  
AOL 105 dB  
VOUT  
mV RL = 5 kΩ to VL,  
AOL 100 dB  
ISC  
ISC  
7
mA VDD = 2.5V  
mA VDD = 5.5V  
17  
Power Supply  
Supply Voltage  
VDD  
IQ  
2.5  
6.0  
25  
V
Quiescent Current per Amplifier  
18.7  
µA IO = 0  
Note 1: All parts with date codes November 2007 and later have been screened to ensure operation at VDD = 6.0V. However,  
the other minimum and maximum specifications are measured at 2.5V and 5.5V.  
© 2009 Microchip Technology Inc.  
DS11177F-page 3  
MCP606/7/8/9  
AC CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, VDD = +2.5V to +5.5V, VSS = GND, TA = +25°C, VCM = VDD/2,  
VOUT VDD/2, VL = VDD/2, RL = 100 kΩ to VL and CL = 60 pF, and CS is tied low (refer to Figure 1-2 and Figure 1-3).  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
AC Response  
Gain Bandwidth Product  
Phase Margin  
GBWP  
PM  
155  
62  
kHz  
°
G = +1 V/V  
Slew Rate  
SR  
0.08  
V/µs  
Noise  
Input Noise Voltage  
Input Noise Voltage Density  
Input Noise Current Density  
Eni  
eni  
ini  
2.8  
38  
3
µVP-P  
f = 0.1 Hz to 10 Hz  
nV/Hz f = 1 kHz  
fA/Hz f = 1 kHz  
MCP608 CHIP SELECT CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, VDD = +2.5V to +5.5V, VSS = GND, TA = +25°C, VCM = VDD/2,  
VOUT VDD/2, VL = VDD/2, RL = 100 kΩ to VL and CL = 60 pF, and CS is tied low (refer to Figure 1-2 and Figure 1-3).  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
CS Low Specifications  
CS Logic Threshold, Low  
VIL  
VSS  
-0.1  
0.2 VDD  
V
CS Input Current, Low  
ICSL  
0.01  
µA  
CS = 0.2VDD  
CS High Specifications  
CS Logic Threshold, High  
VIH  
ICSH  
0.8 VDD  
0.01  
-0.05  
10  
VDD  
0.1  
V
CS Input Current, High  
-2  
µA  
µA  
nA  
CS = VDD  
CS = VDD  
CS = VDD  
CS Input High, GND Current  
Amplifier Output Leakage, CS High  
CS Dynamic Specifications  
CS Low to Amplifier Output Turn-on Time  
ISS  
IO(LEAK)  
tON  
tOFF  
9
100  
µs  
µs  
V
CS = 0.2VDD to VOUT = 0.9 VDD/2,  
G = +1 V/V, RL = 1 kΩ to VSS  
CS High to Amplifier Output Hi-Z  
CS Hysteresis  
0.1  
0.6  
CS = 0.8VDD to VOUT = 0.1 VDD/2,  
G = +1 V/V, RL = 1 kΩ to VSS  
VHYST  
VDD = 5.0V  
VIH  
VIL  
CS  
VOUT  
ISS  
tOFF  
tON  
Hi-Z  
Hi-Z  
-18.7 µA  
(typical)  
-50 nA  
(typical)  
-50 nA  
(typical)  
ICS  
-50 nA  
-50 nA  
(typical)  
(typical)  
FIGURE 1-1:  
Timing Diagram for the CS  
Pin on the MCP608.  
DS11177F-page 4  
© 2009 Microchip Technology Inc.  
MCP606/7/8/9  
TEMPERATURE CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, VDD = +2.5V to +5.5V and VSS = GND.  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 5L-SOT23  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 8L-TSSOP  
Thermal Resistance, 14L-PDIP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
TA  
TA  
TA  
-40  
-40  
-65  
+85  
+125  
+150  
°C  
°C  
°C  
Note 1  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
220.7  
89.3  
149.5  
139  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
70  
95.3  
100  
Note 1: The MCP606/7/8/9 operate over this extended temperature range, but with reduced performance. In any case, the  
Junction Temperature (TJ) must not exceed the Absolute Maximum specification of +150°C.  
1.1  
Test Circuits  
The test circuits used for the DC and AC tests are  
shown in Figure 1-2 and Figure 1-3. The bypass  
capacitors are laid out according to the rules discussed  
in Section 4.5 “Supply Bypass”.  
VDD  
1 µF  
0.1 µF  
VIN  
VOUT  
RL  
RN  
RG  
MCP60X  
CL  
RF  
VDD/2  
VL  
FIGURE 1-2:  
AC and DC Test Circuit for  
Most Non-Inverting Gain Conditions.  
VDD  
1 µF  
0.1 µF  
VDD/2  
VOUT  
RL  
RN  
RG  
MCP60X  
CL  
RF  
VIN  
VL  
FIGURE 1-3:  
AC and DC Test Circuit for  
Most Inverting Gain Conditions.  
© 2009 Microchip Technology Inc.  
DS11177F-page 5  
MCP606/7/8/9  
NOTES:  
DS11177F-page 6  
© 2009 Microchip Technology Inc.  
MCP606/7/8/9  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VDD = +2.5V to +5.5V, VSS = GND, TA = +25°C, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 100 kΩ to VL, CL = 60 pF, and CS is tied low.  
16%  
16%  
206 Samples  
1200 Samples  
DD = 5.5V  
14%  
12%  
10%  
8%  
14%  
12%  
10%  
8%  
V
DD = 5.5V  
V
6%  
6%  
4%  
4%  
2%  
2%  
0%  
0%  
-8  
-6  
-4  
-2  
0
2
4
6
8
Input Offset Voltage (µV)  
Input Offset Voltage Drift (µV/°C)  
FIGURE 2-1:  
Input Offset Voltage at  
FIGURE 2-4:  
Input Offset Voltage Drift  
V
= 5.5V.  
Magnitude at V = 5.5V.  
DD  
DD  
18%  
16%  
206 Samples  
16%  
1200 Samples  
DD = 2.5V  
14%  
12%  
10%  
8%  
V
DD = 2.5V  
V
14%  
12%  
10%  
8%  
6%  
4%  
6%  
2%  
4%  
0%  
2%  
0%  
-8  
-6  
-4  
-2  
0
2
4
6
8
Input Offset Voltage (µV)  
Input Offset Voltage Drift (µV/°C)  
FIGURE 2-2:  
Input Offset Voltage at  
FIGURE 2-5:  
Input Offset Voltage Drift  
V
= 2.5V.  
Magnitude at V = 2.5V.  
DD  
DD  
24  
22  
22  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
VDD = 5.5V  
20  
18  
16  
14  
12  
TA = +85°C  
TA = +25°C  
TA = -40°C  
VDD = 2.5V  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature (°C)  
FIGURE 2-3:  
Quiescent Current vs.  
FIGURE 2-6:  
Quiescent Current vs.  
Power Supply Voltage.  
Ambient Temperature.  
© 2009 Microchip Technology Inc.  
DS11177F-page 7  
MCP606/7/8/9  
Note: Unless otherwise indicated, VDD = +2.5V to +5.5V, VSS = GND, TA = +25°C, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 100 kΩ to VL, CL = 60 pF, and CS is tied low.  
120  
100  
80  
60  
40  
20  
0
500  
400  
300  
200  
100  
0
VDD = 5.5V  
VDD =2.5V  
DD = 5.5V  
V
TA = +85°C  
TA = +25°C  
T
A = -40°C  
Representative Part  
-20  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature (°C)  
Common Mode Input Voltage (V)  
FIGURE 2-7:  
Input Offset Voltage vs.  
FIGURE 2-10:  
Input Offset Voltage vs.  
Ambient Temperature.  
Common Mode Input Voltage.  
120  
100  
80  
90  
45  
0
160  
80  
70  
60  
50  
40  
30  
20  
10  
0
RL = 25 k  
140  
120  
100  
80  
GBWP  
Phase Margin  
Gain  
60  
-45  
-90  
Phase  
40  
60  
20  
-135  
-180  
-225  
40  
20  
0
VDD = 5.0V  
0
-20  
0.01 0.1  
-50  
-25  
0
25  
50  
75  
100  
1
10 100 1k 10k 100k 1M  
Frequency (Hz)  
Ambient Temperature (°C)  
FIGURE 2-8:  
Open-Loop Gain and Phase  
FIGURE 2-11:  
Gain Bandwidth Product,  
vs. Frequency.  
Phase Margin vs. Ambient Temperature.  
1000  
140  
130  
120  
110  
100  
90  
100  
10  
Referred to Input  
80  
0.1  
1
10  
100  
1k  
10k  
100k  
1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05  
Frequency (Hz)  
100 1k  
10k  
1.E+04  
100k  
1.E+05  
1.E+02 1.E+03  
Frequency (Hz)  
FIGURE 2-9:  
Separation (MCP607 and MCP609 only).  
Channel-to-Channel  
FIGURE 2-12:  
vs. Frequency.  
Input Noise Voltage Density  
DS11177F-page 8  
© 2009 Microchip Technology Inc.  
MCP606/7/8/9  
Note: Unless otherwise indicated, VDD = +2.5V to +5.5V, VSS = GND, TA = +25°C, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 100 kΩ to VL, CL = 60 pF, and CS is tied low.  
100  
10  
1
60  
50  
40  
30  
20  
10  
0
VDD = 5.5V  
CM = VDD  
TA = 85°C  
DD = 5.5V  
V
V
IB  
IB  
IOS  
| IOS  
|
0.1  
-10  
25 30 35 40 45 50 55 60 65 70 75 80 85  
Ambient Temperature (°C)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Common Mode Input Voltage (V)  
FIGURE 2-13:  
Input Bias Current, Input  
FIGURE 2-16:  
Input Bias Current, Input  
Offset Current vs. Ambient Temperature.  
Offset Current vs. Common Mode Input Voltage.  
135  
130  
125  
150  
RL = 25 kΩ  
140  
130  
120  
110  
100  
120  
115  
110  
105  
100  
VDD = 5.5V  
VDD = 2.5V  
10k  
90  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
100  
1k  
1.E+03  
100k  
1.E+05  
1.E+02  
1.E+04  
Power Supply Voltage (V)  
Load Resistance ()  
FIGURE 2-14:  
DC Open-Loop Gain vs.  
FIGURE 2-17:  
DC Open-Loop Gain vs.  
Load Resistance.  
Power Supply Voltage.  
120  
100  
80  
60  
40  
20  
0
100  
95  
90  
85  
80  
75  
PSRR-  
PSRR+  
PSRR  
CMRR  
CMRR  
0.1  
1
10  
100  
1k  
10k  
-50  
-25  
0
25  
50  
75  
100  
1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04  
Frequency (Hz)  
Ambient Temperature (°C)  
FIGURE 2-15:  
Frequency.  
CMRR, PSRR vs.  
FIGURE 2-18:  
Temperature.  
CMRR, PSRR vs. Ambient  
© 2009 Microchip Technology Inc.  
DS11177F-page 9  
MCP606/7/8/9  
Note: Unless otherwise indicated, VDD = +2.5V to +5.5V, VSS = GND, TA = +25°C, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 100 kΩ to VL, CL = 60 pF, and CS is tied low.  
1000  
100  
10  
40  
35  
30  
25  
20  
15  
10  
5
RL = 5 k  
VDD = 2.5V  
VDD - VOH  
VDD = 5.5V  
VDD - VOH  
VDD = 5.5V  
VDD = 2.5V  
VOL - VSS  
VOL - VSS  
0
1
-50  
-25  
0
25  
50  
75  
100  
0.1  
1
10  
100  
Ambient Temperature (°C)  
Output Current (mA)  
FIGURE 2-19:  
Output Voltage Headroom  
FIGURE 2-22:  
Output Voltage Headroom  
vs. Output Current Magnitude.  
vs. Ambient Temperature at R = 5 kΩ.  
L
10  
6
G = +2 V/V  
VDD = 5.0V  
5
4
VDD = 5.5V  
VDD = 2.5V  
3
1
2
VIN  
1
VOUT  
0
0.1  
100  
1k  
1.E+03  
10k  
1.E+04  
100k  
1.E+05  
-1  
1.E+02  
Frequency (Hz)  
Time (100 µs/div)  
FIGURE 2-20:  
Maximum Output Voltage  
FIGURE 2-23:  
The MCP606/7/8/9 Show  
Swing vs. Frequency.  
No Phase Reversal.  
0.12  
0.10  
25  
20  
15  
10  
+ISC , VDD = 5.5V  
| -ISC |, VDD = 5.5V  
Low to High  
0.08  
0.06  
0.04  
0.02  
0.00  
High to Low  
5
0
+ISC , VDD = 2.5V  
| -ISC |, VDD = 2.5V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-21:  
Slew Rate vs. Ambient  
FIGURE 2-24:  
Output Short Circuit Current  
Temperature.  
Magnitude vs. Ambient Temperature.  
DS11177F-page 10  
© 2009 Microchip Technology Inc.  
MCP606/7/8/9  
Note: Unless otherwise indicated, VDD = +2.5V to +5.5V, VSS = GND, TA = +25°C, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 100 kΩ to VL, CL = 60 pF, and CS is tied low.  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VDD = 5.0V  
VDD = 5.0V  
Time (50 µs/div)  
Time (50 µs/div)  
FIGURE 2-25:  
Large-signal, Non-inverting  
FIGURE 2-28:  
Large-signal, Inverting  
Pulse Response.  
Pulse Response.  
VDD = 5.0V  
RL = 25 k  
Time (50 µs/div)  
Time (50 µs/div)  
FIGURE 2-26:  
Small-signal, Non-inverting  
FIGURE 2-29:  
Small-signal, Inverting Pulse  
Pulse Response.  
Response.  
3.5  
3.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
G = +1 V/V  
RL = 1 kto VSS  
VDD = 5.0V  
Amplifier Output Active  
5
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
CS  
0
CS Input  
High to Low  
CS Input  
Output Enabled  
Low to High  
Hysteresis  
VOUT  
1.0  
Amplifier Output Hi-Z  
Output  
Hi-Z  
Output  
Hi-Z  
0.5  
0.0  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
CS Input Voltage (V)  
Time (5 µs/div)  
FIGURE 2-27:  
Chip Select (CS) Hysteresis  
FIGURE 2-30:  
Amplifier Output Response  
(MCP608 only).  
Times vs. Chip Select (CS) Pulse (MCP608  
only).  
© 2009 Microchip Technology Inc.  
DS11177F-page 11  
MCP606/7/8/9  
Note: Unless otherwise indicated, VDD = +2.5V to +5.5V, VSS = GND, TA = +25°C, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 100 kΩ to VL, CL = 60 pF, and CS is tied low.  
1.E-02  
10m  
1.E-03  
1m  
1.E- 4  
100µ  
1.E1-05µ  
1.E-016µ  
100n  
1.E- 7  
10n  
1.E- 8  
1n  
1.E-09  
100p  
1.E-10  
10p  
1.E-11  
+125°C  
+85°C  
+25°C  
-40°C  
1p  
1.E-12  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
Input Voltage (V)  
FIGURE 2-31:  
Measured Input Current vs.  
Input Voltage (below V ).  
SS  
DS11177F-page 12  
© 2009 Microchip Technology Inc.  
MCP606/7/8/9  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
MCP606  
MCP607 MCP608 MCP609  
Symbol  
Description  
PDIP, SOIC,  
TSSOP  
SOT-23-5  
6
2
1
1
2
6
2
1
2
VOUT, VOUTA Output (op amp A)  
4
VIN–, VINA  
VIN+, VINA  
VDD  
+
Inverting Input (op amp A)  
Non-inverting Input (op amp A)  
Positive Power Supply  
Non-inverting Input (op amp B)  
Inverting Input (op amp B)  
Output (op amp B)  
3
3
3
3
3
7
5
8
7
4
4
2
5
4
5
VINB  
VINB  
+
6
6
7
7
VOUTB  
VOUTC  
4
8
Output (op amp B)  
9
VINC  
VINC  
Inverting Input (op amp C)  
Non-inverting Input (op amp C)  
Negative Power Supply  
Non-inverting Input (op amp D)  
Inverting Input (op amp D)  
Output (op amp D)  
10  
11  
12  
13  
14  
+
VSS  
1, 5, 8  
8
VIND  
+
VIND  
VOUTD  
CS  
Chip Select  
1, 5  
NC  
No Internal Connection  
3.1  
Analog Outputs  
3.4  
Power Supply Pins  
The output pins are low-impedance voltage sources.  
The positive power supply pin (VDD) is 2.5V to 5.5V  
higher than the negative power supply pin (VSS). For  
normal operation, the output pins are at voltages  
between VSS and VDD; while the input pins are at  
voltages between VSS – 0.3V and VDD + 0.3V.  
3.2  
Analog Inputs  
The non-inverting and inverting inputs are high-  
impedance CMOS inputs with low bias currents.  
Typically, these parts are used in a single-supply  
(positive) configuration. In this case, VSS is connected  
to ground and VDD is connected to the supply. VDD will  
need bypass capacitors .  
3.3  
Chip Select Digital Input  
The Chip Select (CS) pin is a Schmitt-triggered, CMOS  
logic input. It is used to place the MCP608 op amp in a  
Low-power mode, with the output(s) in a Hi-Z state.  
© 2009 Microchip Technology Inc.  
DS11177F-page 13  
MCP606/7/8/9  
NOTES:  
DS11177F-page 14  
© 2009 Microchip Technology Inc.  
MCP606/7/8/9  
4.0  
APPLICATIONS INFORMATION  
VDD  
The MCP606/7/8/9 family of op amps is manufactured  
using Microchip’s state-of-the-art CMOS process  
These op amps are unity-gain stable and suitable for a  
wide range of general purpose applications.  
D1 D2  
V1  
V2  
R1  
R2  
MCP60X  
4.1  
Rail-to-Rail Inputs  
4.1.1  
PHASE REVERSAL  
The MCP606/7/8/9 op amp is designed to prevent  
phase reversal when the input pins exceed the supply  
voltages. Figure 2-23 shows the input voltage  
exceeding the supply voltage without any phase  
reversal.  
R3  
VSS – (minimum expected V1)  
R1 >  
R2 >  
2 mA  
VSS – (minimum expected V2)  
2 mA  
4.1.2  
INPUT VOLTAGE AND CURRENT  
LIMITS  
FIGURE 4-2:  
Protecting the Analog  
The ESD protection on the inputs can be depicted as  
shown in Figure 4-1. This structure was chosen to  
protect the input transistors, and to minimize input bias  
current (IB). The input ESD diodes clamp the inputs  
when they try to go more than one diode drop below  
VSS. They also clamp any voltages that go too far  
above VDD; their breakdown voltage is high enough to  
allow normal operation, and low enough to bypass  
quick ESD events within the specified limits.  
Inputs.  
It is also possible to connect the diodes to the left of  
resistors R1 and R2. In this case, current through the  
diodes D1 and D2 needs to be limited by some other  
mechanism. The resistors then serve as in-rush current  
limiters; the DC current into the input pins (VIN+ and  
VIN–) should be very small.  
A significant amount of current can flow out of the  
inputs when the common mode voltage (VCM) is below  
ground (VSS); see Figure 2-31. Applications that are  
high impedance may need to limit the useable voltage  
range.  
Bond  
VDD  
Pad  
4.1.3  
NORMAL OPERATION  
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
The input stage of the MCP606/7/8/9 op amps use a  
PMOS input stage. It operates at low common mode  
VIN+  
VIN–  
input voltage (V ), including ground. WIth this  
CM  
topology, the device operates with V up to V –1.1V  
CM  
DD  
and 0.3V below V  
.
Bond  
Pad  
SS  
VSS  
Figure 4-3 shows a unity gain buffer. Since VOUT is the  
same voltage as the inverting input, VOUT must be kept  
below VDD–1.2V for correct operation.  
FIGURE 4-1:  
Simplified Analog Input ESD  
Structures.  
In order to prevent damage and/or improper operation  
of these op amps, the circuit they are in must limit the  
currents and voltages at the VIN+ and VIN– pins (see  
Absolute Maximum Ratings † at the beginning of  
Section 1.0 “Electrical Characteristics”). Figure 4-2  
shows the recommended approach to protecting these  
inputs. The internal ESD diodes prevent the input pins  
(VIN+ and VIN–) from going too far below ground, and  
the resistors R1 and R2 limit the possible current drawn  
out of the input pins. Diodes D1 and D2 prevent the  
input pins (VIN+ and VIN–) from going too far above  
VDD, and dump any currents onto VDD. When  
implemented as shown, resistors R1 and R2 also limit  
the current through D1 and D2.  
VIN  
+
VOUT  
MCP60X  
FIGURE 4-3:  
Unity Gain Buffer has a  
Range.  
Limited V  
OUT  
© 2009 Microchip Technology Inc.  
DS11177F-page 15  
MCP606/7/8/9  
4.2  
Rail-to-Rail Output  
10000  
10k  
There are two specifications that describe the  
output-swing capability of the MCP606/7/8/9 family of  
op amps. The first specification (Maximum Output  
Voltage Swing) defines the absolute maximum swing  
that can be achieved under the specified load  
conditions. For instance, the output voltage swings to  
within 15 mV of the negative rail with a 25 kΩ load to  
VDD/2. Figure 2-23 shows how the output voltage is  
limited when the input goes beyond the linear region of  
operation.  
1000  
1k  
GN = +1  
N = +2  
GN +4  
G
100  
100  
10  
100  
1000  
10000  
10p  
100p  
1n  
10n  
Normalized Load Capacitance; CL/GN (F)  
The second specification that describes the output-  
swing capability of these amplifiers (Linear Output  
Voltage Range) defines the maximum output swing that  
can be achieved while the amplifier still operates in its  
linear region. To verify linear operation in this range, the  
large-signal DC Open-Loop Gain (AOL) is measured at  
points inside the supply rails. The measurement must  
meet the specified AOL conditions in the specification  
table.  
FIGURE 4-5:  
Recommended R  
Values  
ISO  
for Capacitive Loads.  
After selecting RISO for your circuit, double-check the  
resulting frequency response peaking and step  
response overshoot. Modify RISO’s value until the  
response is reasonable. Bench evaluation and simula-  
tions with the MCP606/7/8/9 SPICE macro model are  
helpful.  
4.3  
Capacitive Loads  
4.4  
MCP608 Chip Select  
Driving large capacitive loads can cause stability  
problems for voltage-feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases and the closed-loop bandwidth is  
reduced. This produces gain-peaking in the frequency  
response, with overshoot and ringing in the step  
response. A unity-gain buffer (G = +1) is the most  
sensitive to capacitive loads, though all gains show the  
same general behavior.  
The MCP608 is a single op amp with Chip Select (CS).  
When CS is pulled high, the supply current drops to  
50 nA (typical) and flows through the CS pin to VSS  
When this happens, the amplifier output is put into a  
high-impedance state. By pulling CS low, the amplifier  
is enabled. The CS pin has an internal 5 MΩ (typical)  
pull-down resistor connected to VSS, so it will go low if  
the CS pins is left floating. Figure 1-1 shows the output  
voltage and supply current response to a CS pulse.  
.
When driving large capacitive loads with these op  
amps (e.g., > 60 pF when G = +1), a small series  
resistor at the output (RISO in Figure 4-4) improves the  
feedback loop’s phase margin (stability) by making the  
output load resistive at higher frequencies. The  
bandwidth will be generally lower than the bandwidth  
with no capacitive load.  
4.5  
Supply Bypass  
With this family of operational amplifiers, the power  
supply pin (VDD for single-supply) should have a local  
bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm  
for good high-frequency performance. It also needs a  
bulk capacitor (i.e., 1 µF or larger) within 100 mm to  
provide large, slow currents. This bulk capacitor can be  
shared with other nearby analog parts.  
RISO  
MCP60X  
VOUT  
VIN  
CL  
FIGURE 4-4:  
Output Resistor, R  
ISO  
stabilizes large capacitive loads.  
Figure 4-5 gives recommended RISO values for  
different capacitive loads and gains. The x-axis is the  
normalized load capacitance (CL/GN), where GN is the  
circuit’s noise gain. For non-inverting gains, GN and the  
Signal Gain are equal. For inverting gains, GN is  
1+|Signal Gain| (e.g., -1 V/V gives GN = +2 V/V).  
DS11177F-page 16  
© 2009 Microchip Technology Inc.  
MCP606/7/8/9  
1. Non-inverting Gain and Unity-gain Buffer:  
4.6  
Unused Op Amps  
a) Connect the non-inverting pin (VIN+) to the  
input with a wire that does not touch the  
PCB surface.  
An unused op amp in a quad package (MCP609)  
should be configured as shown in Figure 4-6. These  
circuits prevent the output from toggling and causing  
crosstalk. Circuits A sets the op amp at its minimum  
noise gain. The resistor divider produces any desired  
reference voltage within the output voltage range of the  
op amp; the op amp buffers that reference voltage.  
Circuit B uses the minimum number of components  
and operates as a comparator, but it may draw more  
current.  
b) Connect the guard ring to the inverting input  
pin (VIN–). This biases the guard ring to the  
common mode input voltage.  
2. Inverting Gain and Transimpedance Gain  
(convert current to voltage, such as photo  
detectors) amplifiers:  
a) Connect the guard ring to the non-inverting  
input pin (VIN+). This biases the guard ring  
to the same reference voltage as the op  
amp (e.g., VDD/2 or ground).  
¼ MCP609 (B)  
¼ MCP609 (A)  
VDD  
VDD  
b) Connect the inverting pin (VIN–) to the input  
with a wire that does not touch the PCB  
surface.  
VDD  
R1  
R2  
VREF  
4.8  
Application Circuits  
4.8.1  
LOW-SIDE BATTERY CURRENT  
SENSOR  
R2  
------------------  
The MCP606/7/8/9 op amps can be used to sense the  
load current on the low-side of a battery using the  
circuit in Figure 4-8. In this circuit, the current from the  
power supply (minus the current required to power the  
MCP606) flows through a sense resistor (RSEN), which  
converts it to voltage. This is gained by the the amplifier  
and resistors, RG and RF.Since the non-inverting input  
of the amplifier is at the load’s negative supply (VLM),  
the gain from RSEN to VOUT is RF/RG.  
VREF = VDD  
R1 + R2  
FIGURE 4-6:  
Unused Op Amps.  
4.7  
PCB Surface Leakage  
In applications where low input bias current is critical,  
Printed Circuit Board (PCB) surface-leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
between nearby traces is 1012Ω. A 5V difference would  
cause 5 pA of current to flow, which is greater than the  
MCP606/7/8/9 family’s bias current at +25°C (1 pA,  
typical).  
VOUT = VLM + I R  
(R RG)  
F
L
SEN  
IL  
RF  
50 kΩ  
RG  
5 kΩ  
To Load  
(VLP  
)
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
An example of this type of layout is shown in Figure 4-7.  
2.5V  
to  
6.0V  
VOUT  
MCP606  
RSEN  
To Load  
10Ω  
(VLM  
)
VIN-  
VIN+  
VSS  
FIGURE 4-8:  
Low Side Battery Current  
Sensor.  
Since the input bias current and input offset voltage of  
the MCP606 are low, and the input is capable of  
swinging below ground, there is very little error  
generated by the amplifier. The quiescent current is  
very low, which helps conserve battery power. The  
rail-to-rail output makes it possible to read very low  
currents.  
Guard Ring  
Example Guard Ring Layout  
FIGURE 4-7:  
for Inverting Gain.  
© 2009 Microchip Technology Inc.  
DS11177F-page 17  
MCP606/7/8/9  
operate at a much higher speed. This reverse bias also  
increases the dark current and current noise, however.  
Resistor R2 converts the current into voltage. Capacitor  
C2 limits the bandwidth and helps stabilize the circuit  
when D1’s junction capacitance is large.  
4.8.2  
PHOTODIODE AMPLIFIERS  
Sensors that produce an output current and have high  
output impedance can be connected to  
transimpedance amplifier. The transimpedance  
amplifier converts the current into voltage. Photodiodes  
are one sensor that produce an output current.  
a
VB < 0  
The key op amp characteristics that are needed for  
these circuits are: low input offset voltage, low input  
bias current, high input impedance and an input  
common mode range that includes ground. The low  
input offset voltage and low input bias current support  
a very low voltage drop across the photodiode; this  
gives the best photodiode linearity. Since the  
photodiode is biased at ground, the op amp’s input  
needs to function well both above and below ground.  
VOUT = I  
R
D1  
2
C2  
R2  
VOUT  
ID1  
VDD  
Light  
4.8.2.1  
Photo-Voltaic Mode  
D1  
MCP606  
Figure 4-9 shows a transimpedance amplifier with a  
photodiode (D1) biased in the Photo-voltaic mode (0V  
across D1), which is used for precision photodiode  
sensing.  
VB  
FIGURE 4-10:  
As light impinges on D1, charge is generated, causing  
a current to flow in the reverse bias direction of D1. The  
op amp’s negative feedback forces the voltage across  
the D1 to be nearly 0V. Resistor R2 converts the current  
into voltage. Capacitor C2 limits the bandwidth and  
helps stabilize the circuit when D1’s junction  
capacitance is large.  
Photodiode (in Photo-  
conductive mode) and Transimpedance  
Amplifier.  
4.8.3  
TWO OP AMP INSTRUMENTATION  
AMPLIFIER  
The two op amp instrumentation amplifier shown in  
Figure 4-11 serves the function of taking the difference  
of two input voltages, level-shifting it and gaining it to  
the output. This configuration is best suited for higher  
VOUT = I  
R
D1  
2
C2  
R2  
gains (i.e., gain > 3 V/V). The reference voltage (VREF  
)
is typically at mid-supply (VDD/2) in a single-supply  
environment.  
VOUT  
ID1  
R
2R  
1
1
VDD  
Light  
V
= (V V ) 1 + ------ + --------- + V  
OUT  
1
2
REF  
R
R
2
G
D1  
MCP606  
RG  
R1  
R2  
R2  
R1  
VREF  
VOUT  
FIGURE 4-9:  
Photodiode (in Photo-voltaic  
mode) and Transimpedance Amplifier.  
V2  
V1  
½
½
MCP607  
MCP607  
4.8.2.2 Photo-Conductive Mode  
Figure 4-9 shows a transimpedance amplifier with a  
photodiode (D1) biased in the Photo-conductive mode  
(D1 is reverse biased), which is used for high-speed  
applications.  
FIGURE 4-11:  
Instrumentation Amplifier.  
Two Op Amp  
The key specifications that make the MCP606/7/8/9  
family appropriate for this application circuit are low  
input bias current, low offset voltage and high  
common-mode rejection.  
As light impinges on D1, charge is generated, causing  
a current to flow in the reverse bias direction of D1.  
Placing a negative bias on D1 significantly reduces its  
junction capacitance, which allows the circuit to  
DS11177F-page 18  
© 2009 Microchip Technology Inc.  
MCP606/7/8/9  
4.8.4  
THREE OP AMP  
INSTRUMENTATION AMPLIFIER  
4.8.5  
PRECISION GAIN WITH GOOD  
LOAD ISOLATION  
A classic, three op amp instrumentation amplifier is  
illustrated in Figure 4-12. The two input op amps  
provide differential signal gain and a common mode  
gain of +1. The output op amp is a difference amplifier,  
which converts its input signal from differential to a sin-  
gle ended output; it rejects common mode signals at its  
input. The gain of this circuit is simply adjusted with one  
resistor (RG). The reference voltage (VREF) is typically  
referenced to mid-supply (VDD/2) in single-supply  
applications.  
In Figure 4-13, the MCP606 op amps, R1 and R2  
provide a high gain to the input signal (VIN). The  
MCP606’s low offset voltage makes this an accurate  
circuit.  
The MCP601 is configured as a unity-gain buffer. It  
isolates the MCP606’s output from the load, increasing  
the high-gain stage’s precision. Since the MCP601 has  
a higher output current, with the two amplifiers being  
housed in separate packages, there is minimal change  
in the MCP606’s offset voltage due to loading effect.  
R
2R  
⎞ ⎛  
⎟ ⎜  
⎠ ⎝  
4
2
V
= V (1 + R R )  
IN 2 1  
-----  
V
= (V V ) 1 + ---------  
+ V  
OUT  
OUT  
1
2
REF  
R
3
R
G
MCP606  
½
VIN  
MCP601  
MCP607  
V2  
VOUT  
R3  
R4  
R1  
R2  
VOUT  
R2  
RG  
R2  
FIGURE 4-13:  
Load Isolation.  
Precision Gain with Good  
MCP606  
VREF  
R3  
R4  
V1  
½
MCP607  
FIGURE 4-12:  
Three Op Amp  
Instrumentation Amplifier.  
© 2009 Microchip Technology Inc.  
DS11177F-page 19  
MCP606/7/8/9  
NOTES:  
DS11177F-page 20  
© 2009 Microchip Technology Inc.  
MCP606/7/8/9  
5.5  
Analog Demonstration and  
Evaluation Boards  
5.0 DESIGN AIDS  
Microchip provides the basic design tools needed for  
the MCP606/7/8/9 family of op amps.  
Microchip offers  
a
broad spectrum of Analog  
Demonstration and Evaluation Boards that are  
designed to help you achieve faster time to market. For  
5.1  
SPICE Macro Model  
a
complete listing of these boards and their  
The latest SPICE macro model for the MCP606/7/8/9  
op amps is available on the Microchip web site at  
www.microchip.com. This model is intended to be an  
initial design tool that works well in the op amp’s linear  
region of operation over the temperature range. See  
the model file for information on its capabilities.  
corresponding user’s guides and technical information,  
visit the Microchip web site at www.microchip.com/  
analogtools.  
Two of our boards that are especially useful are:  
• 8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board,  
P/N SOIC8EV  
Bench testing is a very important part of any design and  
cannot be replaced with simulations. Also, simulation  
results using this macro model need to be validated by  
comparing them to the data sheet specifications and  
characteristic curves.  
• 14-Pin SOIC/TSSOP/DIP Evaluation Board, P/N  
SOIC14EV  
5.6  
Application Notes  
The following Microchip Application Notes are avail-  
able on the Microchip web site at www.microchip. com/  
appnotes and are recommended as supplemental  
reference resources.  
5.2  
FilterLab® Software  
Microchip’s FilterLab® software is an innovative  
software tool that simplifies analog active filter (using  
op amps) design. Available at no cost from the  
Microchip web site at www.microchip.com/filterlab, the  
FilterLab design tool provides full schematic diagrams  
of the filter circuit with component values. It also  
outputs the filter circuit in SPICE format, which can be  
used with the macro model to simulate actual filter  
performance.  
ADN003: “Select the Right Operational Amplifier  
for your Filtering Circuits”, DS21821  
AN722: “Operational Amplifier Topologies and DC  
Specifications”, DS00722  
AN723: “Operational Amplifier AC Specifications  
and Applications”, DS00723  
AN884: “Driving Capacitive Loads With Op  
Amps”, DS00884  
5.3  
Mindi™ Circuit Designer &  
Simulator  
AN990: “Analog Sensor Conditioning Circuits –  
An Overview”, DS00990  
Microchip’s Mindi™ Circuit Designer & Simulator aids  
in the design of various circuits useful for active filter,  
amplifier and power-management applications. It is a  
free online circuit designer & simulator available from  
the Microchip web site at www.microchip.com/mindi.  
This interactive circuit designer & simulator enables  
designers to quickly generate circuit diagrams,  
simulate circuits. Circuits developed using the Mindi  
Circuit Designer & Simulator can be downloaded to a  
personal computer or workstation.  
These application notes and others are listed in the  
design guide:  
“Signal Chain Design Guide”, DS21825  
5.4  
Microchip Advanced Part Selector  
(MAPS)  
MAPS is a software tool that helps semiconductor  
professionals efficiently identify Microchip devices that  
fit a particular design requirement. Available at no cost  
from the Microchip website at www.microchip.com/  
maps, the MAPS is an overall selection tool for  
Microchip’s product portfolio that includes Analog,  
Memory, MCUs and DSCs. Using this tool you can  
define a filter to sort features for a parametric search of  
devices and export side-by-side technical comparasion  
reports. Helpful links are also provided for Datasheets,  
Purchase, and Sampling of Microchip parts.  
© 2009 Microchip Technology Inc.  
DS11177F-page 21  
MCP606/7/8/9  
NOTES:  
DS11177F-page 22  
© 2009 Microchip Technology Inc.  
MCP606/7/8/9  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
Example:  
5-Lead SOT-23 (MCP606)  
XXNN  
SB25  
8-Lead PDIP (300 mil)  
Example:  
XXXXXXXX  
XXXXXNNN  
MCP606  
I/P256  
0722  
MCP606  
I/P 256  
0936  
e
3
OR  
YYWW  
8-Lead SOIC (150 mil)  
Example:  
XXXXXXXX  
MCP606  
MCP606I  
e
3
XXXXYYWW  
I/SN0722  
SN 0936  
OR  
NNN  
256  
256  
Example:  
8-Lead TSSOP  
606  
I936  
256  
XXXX  
YYWW  
NNN  
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2009 Microchip Technology Inc.  
DS11177F-page 23  
MCP606/7/8/9  
Package Marking Information (Continued)  
14-Lead PDIP (300 mil) (MCP609)  
Example:  
MCP609-I/P  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
YYWWNNN  
0722256  
MCP609  
e
3
I/P  
OR  
0936256  
14-Lead SOIC (150 mil) (MCP609)  
Example:  
MCP609ISL  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
0722256  
MCP609  
OR  
I/SL^  
e
3
0936256  
Example:  
14-Lead TSSOP (MCP609)  
XXXXXXXX  
YYWW  
609IST  
0936  
NNN  
256  
DS11177F-page 24  
© 2009 Microchip Technology Inc.  
MCP606/7/8/9  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢏꢒꢖꢆꢗꢍꢏꢒꢁꢘꢙꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
5
(
ꢐꢁꢛ(ꢈ)ꢕ*  
6$# ꢃ!ꢅꢈ4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%  
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
ꢅꢀ  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
ꢀꢁꢛꢐꢈ)ꢕ*  
ꢐꢁꢛꢐ  
ꢐꢁ;ꢛ  
ꢐꢁꢐꢐ  
ꢑꢁꢑꢐ  
ꢀꢁꢜꢐ  
ꢑꢁꢒꢐ  
ꢐꢁꢀꢐ  
ꢐꢁꢜ(  
ꢐꢝ  
M
M
M
M
M
M
M
M
M
M
M
ꢀꢁꢖ(  
ꢀꢁꢜꢐ  
ꢐꢁꢀ(  
ꢜꢁꢑꢐ  
ꢀꢁ;ꢐ  
ꢜꢁꢀꢐ  
ꢐꢁ=ꢐ  
ꢐꢁ;ꢐ  
ꢜꢐꢝ  
4ꢀ  
8
ꢐꢁꢐ;  
ꢐꢁꢑꢐ  
ꢐꢁꢑ=  
ꢐꢁ(ꢀ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐꢛꢀ)  
© 2009 Microchip Technology Inc.  
DS11177F-page 25  
MCP606/7/8/9  
ꢝꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ ꢐꢄꢈꢆ!ꢑꢁꢂꢋꢑꢃꢆꢕꢇꢖꢆMꢆꢙ##ꢆꢎꢋꢈꢆ$ꢔꢅ%ꢆꢗꢇ !ꢇꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
A1  
c
e
eB  
b1  
b
3ꢆꢃ#  
ꢙ5*9"ꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
;
ꢁꢀꢐꢐꢈ)ꢕ*  
M
ꢁꢀꢜꢐ  
M
ꢁꢜꢀꢐ  
ꢁꢑ(ꢐ  
ꢁꢜ=(  
ꢁꢀꢜꢐ  
ꢁꢐꢀꢐ  
ꢁꢐ=ꢐ  
ꢁꢐꢀ;  
M
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
ꢎꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
)ꢉ ꢅꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
ꢕꢌꢇ$ꢋ!ꢅꢍꢈ#ꢇꢈꢕꢌꢇ$ꢋ!ꢅꢍꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
5
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
8ꢀ  
8
ꢅ)  
M
ꢁꢑꢀꢐ  
ꢁꢀꢛ(  
M
ꢁꢀꢀ(  
ꢁꢐꢀ(  
ꢁꢑꢛꢐ  
ꢁꢑꢖꢐ  
ꢁꢜꢖ;  
ꢁꢀꢀ(  
ꢁꢐꢐ;  
ꢁꢐꢖꢐ  
ꢁꢐꢀꢖ  
M
ꢁꢜꢑ(  
ꢁꢑ;ꢐ  
ꢁꢖꢐꢐ  
ꢁꢀ(ꢐ  
ꢁꢐꢀ(  
ꢁꢐꢒꢐ  
ꢁꢐꢑꢑ  
ꢁꢖꢜꢐ  
ꢗꢃꢎꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
3ꢎꢎꢅꢍꢈ4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
4ꢇ-ꢅꢍꢈ4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈꢚꢇ-ꢈꢕꢎꢉꢊꢃꢆꢓꢈꢈꢟ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢟꢈꢕꢃꢓꢆꢃ%ꢃꢊꢉꢆ#ꢈ*ꢌꢉꢍꢉꢊ#ꢅꢍꢃ #ꢃꢊꢁ  
ꢜꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢁꢐꢀꢐ@ꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢖꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ꢈ)ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐꢀ;)  
DS11177F-page 26  
© 2009 Microchip Technology Inc.  
MCP606/7/8/9  
ꢝꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢛꢖꢆMꢆꢛꢄꢓꢓꢔ&'ꢆꢙ()#ꢆꢎꢎꢆ$ꢔꢅ%ꢆꢗꢍꢏ!*ꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
e
N
E
E1  
NOTE 1  
1
2
3
α
h
b
h
c
φ
A2  
A
L
A1  
L1  
β
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
;
ꢀꢁꢑꢒꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
M
ꢀꢁꢑ(  
ꢐꢁꢀꢐ  
M
M
M
ꢀꢁꢒ(  
M
ꢐꢁꢑ(  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈꢈ  
ꢔꢑ  
ꢔꢀ  
"
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
=ꢁꢐꢐꢈ)ꢕ*  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
*ꢌꢉꢄ%ꢅꢍꢈAꢇꢎ#ꢃꢇꢆꢉꢋB  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
"ꢀ  
ꢜꢁꢛꢐꢈ)ꢕ*  
ꢖꢁꢛꢐꢈ)ꢕ*  
ꢐꢁꢑ(  
ꢐꢁꢖꢐ  
M
M
ꢐꢁ(ꢐ  
ꢀꢁꢑꢒ  
4
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ)ꢇ##ꢇꢄ  
4ꢀ  
ꢀꢁꢐꢖꢈꢚ".  
ꢐꢝ  
ꢐꢁꢀꢒ  
ꢐꢁꢜꢀ  
(ꢝ  
M
M
M
M
M
;ꢝ  
8
ꢐꢁꢑ(  
ꢐꢁ(ꢀ  
ꢀ(ꢝ  
(ꢝ  
ꢀ(ꢝ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢟꢈꢕꢃꢓꢆꢃ%ꢃꢊꢉꢆ#ꢈ*ꢌꢉꢍꢉꢊ#ꢅꢍꢃ #ꢃꢊꢁ  
ꢜꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢖꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐ(ꢒ)  
© 2009 Microchip Technology Inc.  
DS11177F-page 27  
MCP606/7/8/9  
ꢝꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢛꢖꢆMꢆꢛꢄꢓꢓꢔ&'ꢆꢙ()#ꢆꢎꢎꢆ$ꢔꢅ%ꢆꢗꢍꢏ!*ꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
DS11177F-page 28  
© 2009 Microchip Technology Inc.  
MCP606/7/8/9  
ꢝꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢒ+ꢋꢑꢆꢍ+ꢓꢋꢑ,ꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢒꢖꢆMꢆ-(-ꢆꢎꢎꢆ$ꢔꢅ%ꢆꢗꢒꢍꢍꢏꢇꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
N
E
E1  
NOTE 1  
1
2
b
e
c
φ
A
A2  
A1  
L
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
;
ꢐꢁ=(ꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈ  
M
ꢐꢁ;ꢐ  
ꢐꢁꢐ(  
M
ꢀꢁꢐꢐ  
M
ꢀꢁꢑꢐ  
ꢀꢁꢐ(  
ꢐꢁꢀ(  
ꢔꢑ  
ꢔꢀ  
"
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
=ꢁꢖꢐꢈ)ꢕ*  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
"ꢀ  
4
ꢖꢁꢜꢐ  
ꢑꢁꢛꢐ  
ꢐꢁꢖ(  
ꢖꢁꢖꢐ  
ꢜꢁꢐꢐ  
ꢐꢁ=ꢐ  
ꢖꢁ(ꢐ  
ꢜꢁꢀꢐ  
ꢐꢁꢒ(  
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
4ꢀ  
ꢀꢁꢐꢐꢈꢚ".  
ꢐꢝ  
ꢐꢁꢐꢛ  
ꢐꢁꢀꢛ  
M
M
M
;ꢝ  
8
ꢐꢁꢑꢐ  
ꢐꢁꢜꢐ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢜꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐ;=)  
© 2009 Microchip Technology Inc.  
DS11177F-page 29  
MCP606/7/8/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS11177F-page 30  
© 2009 Microchip Technology Inc.  
MCP606/7/8/9  
.-ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ ꢐꢄꢈꢆ!ꢑꢁꢂꢋꢑꢃꢆꢕꢇꢖꢆMꢆꢙ##ꢆꢎꢋꢈꢆ$ꢔꢅ%ꢆꢗꢇ !ꢇꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
c
A1  
b1  
b
e
eB  
3ꢆꢃ#  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢙ5*9"ꢕ  
56ꢏ  
ꢀꢖ  
ꢁꢀꢐꢐꢈ)ꢕ*  
M
ꢏꢙ5  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
ꢎꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
M
ꢁꢑꢀꢐ  
ꢁꢀꢛ(  
M
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
)ꢉ ꢅꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
ꢕꢌꢇ$ꢋ!ꢅꢍꢈ#ꢇꢈꢕꢌꢇ$ꢋ!ꢅꢍꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
ꢗꢃꢎꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
3ꢎꢎꢅꢍꢈ4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
8ꢀ  
8
ꢅ)  
ꢁꢀꢀ(  
ꢁꢐꢀ(  
ꢁꢑꢛꢐ  
ꢁꢑꢖꢐ  
ꢁꢒꢜ(  
ꢁꢀꢀ(  
ꢁꢐꢐ;  
ꢁꢐꢖ(  
ꢁꢐꢀꢖ  
M
ꢁꢀꢜꢐ  
M
ꢁꢜꢀꢐ  
ꢁꢑ(ꢐ  
ꢁꢒ(ꢐ  
ꢁꢀꢜꢐ  
ꢁꢐꢀꢐ  
ꢁꢐ=ꢐ  
ꢁꢐꢀ;  
M
ꢁꢜꢑ(  
ꢁꢑ;ꢐ  
ꢁꢒꢒ(  
ꢁꢀ(ꢐ  
ꢁꢐꢀ(  
ꢁꢐꢒꢐ  
ꢁꢐꢑꢑ  
ꢁꢖꢜꢐ  
4ꢇ-ꢅꢍꢈ4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈꢚꢇ-ꢈꢕꢎꢉꢊꢃꢆꢓꢈꢈꢟ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢟꢈꢕꢃꢓꢆꢃ%ꢃꢊꢉꢆ#ꢈ*ꢌꢉꢍꢉꢊ#ꢅꢍꢃ #ꢃꢊꢁ  
ꢜꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢁꢐꢀꢐ@ꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢖꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ꢈ)ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐꢐ()  
© 2009 Microchip Technology Inc.  
DS11177F-page 31  
MCP606/7/8/9  
.-ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢂꢖꢆMꢆꢛꢄꢓꢓꢔ&'ꢆꢙ()#ꢆꢎꢎꢆ$ꢔꢅ%ꢆꢗꢍꢏ!*ꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
N
E
E1  
NOTE 1  
1
2
3
e
h
b
α
h
c
φ
A2  
A
L
A1  
β
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
ꢀꢖ  
ꢀꢁꢑꢒꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈꢈꢟ  
M
ꢀꢁꢑ(  
ꢐꢁꢀꢐ  
M
M
M
ꢀꢁꢒ(  
M
ꢐꢁꢑ(  
ꢔꢑ  
ꢔꢀ  
"
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
=ꢁꢐꢐꢈ)ꢕ*  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
*ꢌꢉꢄ%ꢅꢍꢈAꢇꢎ#ꢃꢇꢆꢉꢋB  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
"ꢀ  
ꢜꢁꢛꢐꢈ)ꢕ*  
;ꢁ=(ꢈ)ꢕ*  
ꢐꢁꢑ(  
ꢐꢁꢖꢐ  
M
M
ꢐꢁ(ꢐ  
ꢀꢁꢑꢒ  
4
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ)ꢇ##ꢇꢄ  
4ꢀ  
ꢀꢁꢐꢖꢈꢚ".  
ꢐꢝ  
ꢐꢁꢀꢒ  
ꢐꢁꢜꢀ  
(ꢝ  
M
M
M
M
M
;ꢝ  
8
ꢐꢁꢑ(  
ꢐꢁ(ꢀ  
ꢀ(ꢝ  
(ꢝ  
ꢀ(ꢝ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢟꢈꢕꢃꢓꢆꢃ%ꢃꢊꢉꢆ#ꢈ*ꢌꢉꢍꢉꢊ#ꢅꢍꢃ #ꢃꢊꢁ  
ꢜꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢖꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐ=()  
DS11177F-page 32  
© 2009 Microchip Technology Inc.  
MCP606/7/8/9  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
© 2009 Microchip Technology Inc.  
DS11177F-page 33  
MCP606/7/8/9  
.-ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢒ+ꢋꢑꢆꢍ+ꢓꢋꢑ,ꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢒꢖꢆMꢆ-(-ꢆꢎꢎꢆ$ꢔꢅ%ꢆꢗꢒꢍꢍꢏꢇꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
φ
A2  
A
A1  
L
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
ꢀꢖ  
ꢐꢁ=(ꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈ  
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
M
ꢐꢁ;ꢐ  
ꢐꢁꢐ(  
M
ꢀꢁꢐꢐ  
M
=ꢁꢖꢐꢈ)ꢕ*  
ꢖꢁꢖꢐ  
(ꢁꢐꢐ  
ꢐꢁ=ꢐ  
ꢀꢁꢑꢐ  
ꢀꢁꢐ(  
ꢐꢁꢀ(  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
ꢖꢁꢜꢐ  
ꢖꢁꢛꢐ  
ꢐꢁꢖ(  
ꢖꢁ(ꢐ  
(ꢁꢀꢐ  
ꢐꢁꢒ(  
4
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
4ꢀ  
ꢀꢁꢐꢐꢈꢚ".  
ꢐꢝ  
ꢐꢁꢐꢛ  
ꢐꢁꢀꢛ  
M
M
M
;ꢝ  
8
ꢐꢁꢑꢐ  
ꢐꢁꢜꢐ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢜꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐ;ꢒ)  
DS11177F-page 34  
© 2009 Microchip Technology Inc.  
MCP606/7/8/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2009 Microchip Technology Inc.  
DS11177F-page 35  
MCP606/7/8/9  
NOTES:  
DS11177F-page 36  
© 2009 Microchip Technology Inc.  
MCP606/7/8/9  
APPENDIX A: REVISION HISTORY  
Revision F (September 2009)  
The following is the list of modifications:  
1. Corrected RL text in Figure 2-22 in Section 2.0  
“Typical Performance Curves”.  
2. Corrected  
devices’  
pins  
in  
Table 3-1  
(Section 3.0 “Pin Descriptions”).  
3. Updated Section 6.0 “Packaging Informa-  
tion”. Updated package outline drawings.  
Revision E (March 2008)  
The following is the list of modifications:  
1. Increased maximum operating VDD  
2. Added test circuits.  
.
3. Updated performance curves.  
4. Added Figure 2-31.  
5. Added Section 4.1.1 “Phase Reversal”,  
Section 4.1.2 “Input Voltage and Current  
Limits”, ad Section 4.1.3 “Normal Opera-  
tion”.  
6. Updated Section 5.0 “Design Aids”  
7. Updated Section 6.0 “Packaging Informa-  
tion”. Updated package outline drawings.  
Revision D (February 2005)  
The following is the list of modifications:  
1. Added Section 3.0 “Pin Descriptions”.  
2. Updated Section 4.0 “Applications Information”.  
3. Added Section 4.3 “Capacitive Loads”  
4. Updated Section 5.0 “Design Aids” to include  
FilterLab® and to point to the latest SPICE  
macro model.  
5. Corrected and updated Section 6.0 “Packaging  
Information”.  
6. Added Appendix A: “Revision History”.  
Revision C (January 2001)  
• Undocumented changes  
Revision B (May 2000)  
• Undocumented changes  
Revision A (January 2000)  
• Original Release of this Document.  
© 2009 Microchip Technology Inc.  
DS11177F-page 37  
MCP606/7/8/9  
NOTES:  
DS11177F-page 38  
© 2009 Microchip Technology Inc.  
MCP606/7/8/9  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
Examples:  
a)  
b)  
c)  
MCP606-I/P:  
Industrial Temperature,  
8LD PDIP package.  
Temperature Package  
Range  
MCP606-I/SN: Industrial Temperature,  
8LD SOIC package.  
MCP606T-I/SN: Tape and Reel,  
Industrial Temperature,  
Device  
MCP606  
MCP606T = Single Op Amp  
Tape and Reel (SOIC, TSSOP)  
Dual Op Amp  
MCP607T = Dual Op Amp  
Tape and Reel (SOIC, TSSOP)  
Single Op Amp with CS  
= Single Op Amp  
8LD SOIC package.  
Industrial Temperature,  
8LD TSSOP package.  
d)  
e)  
MCP606-I/ST:  
MCP607  
=
MCP606T-I/OT: Tape and Reel,  
Industrial Temperature,  
MCP608  
=
MCP608T = Single Op Amp with CS  
Tape and Reel (SOIC, TSSOP)  
5LD SOT-23 package.  
MCP609  
MCP609T = Quad Op Amp  
Tape and Reel (SOIC, TSSOP)  
= Quad Op Amp  
a)  
b)  
MCP607-I/P:  
Industrial Temperature,  
8LD PDIP package.  
MCP607T-I/SN: Tape and Reel,  
Industrial Temperature,  
8LD SOIC package.  
Temperature Range  
Package  
I
=
-40°C to +85°C  
a)  
b)  
MCP608-I/SN: Industrial Temperature,  
8LD SOIC package.  
MCP608T-I/SN: Tape and Reel,  
Industrial Temperature,  
OT  
P
SN  
SL  
ST  
=
=
=
=
=
Plastic SOT-23, 5-lead  
Plastic DIP (300 mil Body), 8-lead, 14-lead  
Plastic SOIC (3.90 mm body), 8-lead  
Plastic SOIC (3.90 mm body), 14-lead  
Plastic TSSOP, 8-lead, 14-lead  
8LD SOIC package.  
a)  
b)  
MCP609-I/P:  
Industrial Temperature,  
14LD PDIP package.  
MCP609T-I/SL: Tape and Reel,  
Industrial Temperature,  
14LD SOIC package.  
© 2009 Microchip Technology Inc.  
DS11177F-page 39  
MCP606/7/8/9  
NOTES:  
DS11177F-page 40  
© 2009 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
rfPIC and UNI/O are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, PIC32 logo, REAL ICE, rfLAB, Select Mode, Total  
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA  
are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2009 Microchip Technology Inc.  
DS11177F-page 41  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4080  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
03/26/09  
DS11177F-page 42  
© 2009 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY