MCP6231U [MICROCHIP]

The Microchip Technology Inc. MCP6231/1R/1U/2/4 operational amplifiers (op amps) family has a 300 ;
MCP6231U
型号: MCP6231U
厂家: MICROCHIP    MICROCHIP
描述:

The Microchip Technology Inc. MCP6231/1R/1U/2/4 operational amplifiers (op amps) family has a 300

放大器 运算放大器 放大器电路
文件: 总20页 (文件大小:337K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6231/2  
20 µA, 300 kHz Rail-to-Rail Op Amp  
Features  
Description  
• Gain Bandwidth Product: 300 kHz (typ.)  
• Supply Current: IQ = 20 µA (typ.)  
The Microchip Technology Inc. MCP6231/2 opera-  
tional amplifiers (op amps) provide wide bandwidth for  
the quiescent current. The MCP6231/2 family has a  
300 kHz Gain Bandwidth Product (GBWP) and 65°  
(typ.) phase margin. This family operates from a single  
supply voltage as low as 1.8V, while drawing 20 µA  
(typ.) quiescent current. In addition, the MCP6231/2  
family supports rail-to-rail input and output swing, with  
a common mode input voltage range of VDD + 300 mV  
to VSS – 300 mV. These op amps are designed in one  
of Microchip’s advanced CMOS processes.  
• Supply Voltage: 1.8V to 5.5V  
• Rail-to-Rail Input/Output  
• Extended Temperature Range: -40°C to +125°C  
• Available in 5-Pin SC-70 and SOT-23 packages  
Applications  
• Automotive  
• Portable Equipment  
• Transimpedance amplifiers  
• Analog Filters  
Package Types  
MCP6231  
MCP6231R  
• Notebooks and PDAs  
• Battery-Powered Systems  
SOT-23-5  
SOT-23-5  
VDD  
VOUT  
VDD  
VSS  
VOUT  
VSS  
1
2
3
5
4
1
5
4
Available Tools  
2
3
VIN  
+
VIN  
VIN  
+
VIN–  
SPICE Macro Models (at www.microchip.com)  
FilterLab® Software (at www.microchip.com)  
MCP6231U  
SC-70-5, SOT-23-5  
MCP6231  
PDIP, SOIC, MSOP  
Typical Application  
VDD  
R
VIN  
VSS  
VIN  
+
1
2
3
4
8
7
6
5
NC  
NC  
1
2
3
5
G2  
+
V
VDD  
VIN  
+
+
IN2  
R
G1  
VIN  
VOUT  
NC  
4
VOUT  
V
VSS  
IN1  
R
F
V
MCP6232  
PDIP, SOIC, MSOP  
DD  
R
R
X
Y
V
OUT  
MCP6231  
+
V
V
V
8
7
6
5
OUTA  
1
2
DD  
_
A
V
R
-
+
INA  
Z
OUTB  
B
_
V
+ 3  
4
+
-
V
V
INA  
INB  
V
+
SS  
INB  
Summing Amplifier Circuit  
2004 Microchip Technology Inc.  
DS21881B-page 1  
MCP6231/2  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
V
- V .........................................................................7.0V  
SS  
DD  
All Inputs and Outputs ................... V – 0.3V to V + 0.3V  
SS  
DD  
PIN FUNCTION TABLE  
Difference Input Voltage ...................................... |V – V  
|
DD  
SS  
Output Short Circuit Current ..................................continuous  
Current at Input Pins ....................................................±2 mA  
Current at Output and Supply Pins ............................±30 mA  
Storage Temperature....................................65°C to +150°C  
Name  
VIN+, VINA+, VINB  
VIN–, VINA–, VINB  
VDD  
Function  
Non-inverting Input  
Inverting Input  
+
Positive Power Supply  
Negative Power Supply  
Maximum Junction Temperature (T )..........................+150°C  
J
VSS  
ESD Protection On All Pins (HBM;MM) ............... ≥ 4 kV; 400V  
VOUT, VOUTA, VOUTB Output  
DC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, T = +25°C, V = +1.8V to +5.5V, V = GND, V  
= V /2, R = 100 kΩ  
DD L  
A
DD  
SS  
CM  
to V /2 and VOUT V /2.  
DD  
DD  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Offset  
Input Offset Voltage  
Extended Temperature  
V
V
–5.0  
–7.0  
+5.0  
+7.0  
mV  
mV  
V
= V  
OS  
CM SS  
T = –40°C to +125°C (Note)  
OS  
A
Input Offset Drift with Temperature  
V /T  
±3.0  
µV/°C T = –40°C to +125°C,  
A
OS  
A
V
= V  
CM  
SS  
Power Supply Rejection  
Input Bias Current and Impedance  
Input Bias Current:  
PSRR  
83  
dB  
V
= V  
CM  
SS  
I
I
I
±1.0  
20  
pA  
pA  
B
B
B
At Temperature  
T = +85°C  
A
At Temperature  
1100  
±1.0  
pA  
T = +125°C  
A
Input Offset Current  
I
pA  
OS  
13  
Common Mode Input Impedance  
Differential Input Impedance  
Common Mode  
Z
10 ||6  
||pF  
||pF  
CM  
13  
Z
10 ||3  
DIFF  
Common Mode Input Range  
Common Mode Rejection Ratio  
Open-Loop Gain  
V
V
– 0.3  
V
+ 0.3  
DD  
V
CMR  
SS  
CMRR  
61  
75  
dB  
V
= –0.3V to 5.3V, V = 5V  
CM DD  
DC Open-Loop Gain (large signal)  
A
90  
110  
dB  
V
V
= 0.3V to V – 0.3V,  
OL  
OUT  
DD  
= V  
CM  
SS  
Output  
Maximum Output Voltage Swing  
Output Short-Circuit Current  
V
, V  
V
+ 35  
±6  
V
– 35  
mV  
mA  
mA  
R =10 kΩ, 0.5V Output Overdrive  
L
OL  
OH  
SS  
DD  
I
I
V
V
= 1.8V  
= 5.5V  
SC  
SC  
DD  
DD  
±23  
Power Supply  
Supply Voltage  
V
1.8  
10  
5.5  
30  
V
DD  
Quiescent Current per Amplifier  
I
20  
µA  
I
= 0, V  
= V – 0.5V  
Q
O
CM DD  
Note:  
The SC-70 package is only tested at +25°C.  
DS21881B-page 2  
2004 Microchip Technology Inc.  
MCP6231/2  
AC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8 to 5.5V, VSS = GND, VCM = VDD/2,  
VOUT VDD/2, RL = 100 kto VDD/2 and CL = 60 pF.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
AC Response  
Gain Bandwidth Product  
Phase Margin  
GBWP  
PM  
300  
65  
kHz  
°
G = +1  
Slew Rate  
SR  
0.10  
V/µs  
Noise  
Input Noise Voltage  
Input Noise Voltage Density  
Input Noise Current Density  
Eni  
eni  
ini  
6.0  
52  
µVp-p f = 0.1 Hz to 10 Hz  
nV/Hz f = 1 kHz  
0.6  
fA/Hz f = 1 kHz  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, VDD = +1.8V to +5.5V and VSS = GND.  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Extended Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 5L-SC70  
Thermal Resistance, 5L-SOT-23  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 8L-MSOP  
TA  
TA  
TA  
–40  
–40  
–65  
+125  
+125  
+150  
°C  
°C  
°C  
Note  
θJA  
θJA  
θJA  
θJA  
θJA  
331  
256  
85  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
163  
206  
Note:  
The internal Junction Temperature (TJ) must not exceed the Absolute Maximum specification of +150°C.  
2004 Microchip Technology Inc.  
DS21881B-page 3  
MCP6231/2  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 100 kto VDD/2 and CL = 60 pF.  
20%  
90  
630 Samples  
VDD = 5.0V  
18%  
VCM = VSS  
16%  
85  
PSRR (VCM = VSS  
)
14%  
12%  
10%  
8%  
80  
75  
70  
6%  
CMRR (VCM = -0.3 V to +5.3 V)  
4%  
2%  
0%  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Input Offset Voltage (mV)  
FIGURE 2-1:  
Input Offset Voltage.  
FIGURE 2-4:  
CMRR, PSRR vs. Ambient  
Temperature.  
100  
90  
80  
70  
60  
50  
40  
30  
120  
100  
80  
0
RL = 100.0 kΩ  
VDD = 5.0V  
VDD = 5.0V  
PSRR-  
PSRR+  
-30  
Gain  
V
CM = VDD/2  
-60  
CMRR  
60  
-90  
Phase  
40  
20  
0
-120  
-150  
-180  
-210  
20 1.E+01  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E-01  
1.E+00  
1.E+01  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
1.E+07  
-20  
10  
100  
1k  
10k  
100k  
0.1  
1
10 100 1k 10k 100k 1M 10M  
Frequency (Hz)  
Frequency (Hz)  
FIGURE 2-2:  
PSRR, CMRR vs.  
FIGURE 2-5:  
Open-Loop Gain, Phase vs.  
Frequency.  
Frequency.  
22%  
20%  
18%  
16%  
14%  
12%  
10%  
8%  
30%  
25%  
20%  
15%  
10%  
5%  
630 Samples  
VCM = VSS  
TA = +85°C  
632 Samples  
V
CM = VSS  
TA = +125°C  
6%  
4%  
2%  
0%  
0%  
Input Bias Current (pA)  
Input Bias Current (nA)  
FIGURE 2-3:  
Input Bias Current at +85°C.  
FIGURE 2-6:  
Input Bias Current at +125°C.  
DS21881B-page 4  
2004 Microchip Technology Inc.  
MCP6231/2  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 100 kto VDD/2 and CL = 60 pF.  
1,000  
100  
10  
20%  
18%  
16%  
14%  
12%  
10%  
8%  
628 Samples  
CM = VSS  
TA = -40°C to +125°C  
V
6%  
4%  
2%  
1.E-01  
1.E+00  
1.E+01  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
0%  
0.1  
1
10  
100  
1k  
10k 100k  
Frequency (Hz)  
Input Offset Voltage Drift (µV/°C)  
FIGURE 2-7:  
Input Noise Voltage Density  
FIGURE 2-10:  
Input Offset Voltage Drift.  
vs. Frequency.  
100  
50  
550  
450  
350  
250  
VCM = VSS  
TA = +125°C  
TA = +85°C  
0
TA = +25°C  
A = -40°C  
-50  
-100  
-150  
-200  
T
VDD = 5.5 V  
VDD = 1.8 V  
VDD = 1.8 V  
-250  
-300  
150  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-11:  
Input Offset Voltage vs.  
FIGURE 2-8:  
Input Offset Voltage vs.  
Output Voltage.  
Common Mode Input Voltage at VDD = 1.8V.  
30  
25  
20  
15  
10  
5
300  
+ISC  
TA = +125°C  
TA = +85°C  
200  
T
T
A = +25°C  
A = -40°C  
100  
0
TA = +125°C  
T
T
A = +85°C  
A = +25°C  
0
-5  
TA = -40°C  
-10  
-15  
-20  
-25  
-30  
-100  
-200  
-300  
VDD = 5.5 V  
-ISC  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-12:  
Output Short-Circuit Current  
FIGURE 2-9:  
Input Offset Voltage vs.  
vs. Ambient Temperature.  
Common Mode Input Voltage at VDD = 5.5V.  
2004 Microchip Technology Inc.  
DS21881B-page 5  
MCP6231/2  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 100 kto VDD/2 and CL = 60 pF.  
120.00  
0.30  
G = +1 V/V  
RL = 10 kΩ  
Falling Edge, VDD = 5.5 V  
100.00  
0.25  
0.20  
0.15  
0.10  
0.05  
Falling Edge, VDD = 1.8 V  
80.00  
60.00  
40.00  
20.00  
0.00  
Rising Edge, VDD = 5.5 V  
Rising Edge, VDD = 1.8 V  
-20.00  
-9.E+00  
-40.00  
1.E+00  
1.E+01  
2.E+01  
3.E+01  
-50  
-25  
0
25  
50  
75  
100 125  
Time (1 µs/div)  
Ambient Temperature (°C)  
FIGURE 2-13:  
Slew Rate vs. Ambient  
FIGURE 2-16:  
Small Signal Non-Inverting  
Temperature.  
Pulse Response.  
5.0  
1,000  
100  
10  
G = +1 V/V  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VDD - VOH  
VOL - VSS  
1
0.0001  
0.001  
0.01  
0.1  
10  
0.1µ  
1µ  
10µ  
100µ  
11m  
10m  
-2.E+01  
0.E+00  
2.E+01  
4.E+01  
6.E+01  
8.E+01  
1.E+02  
1.E+02  
1.E+02  
Time (20 µs/div)  
Output Current Magnitude (A)  
FIGURE 2-14:  
Output Voltage Headroom  
FIGURE 2-17:  
Large Signal Non-Inverting  
vs. Output Current Magnitude.  
Pulse Response.  
30  
10  
VCM = VDD - 0.5  
25  
20  
15  
10  
5
VDD = 5.5 V  
VDD = 1.8 V  
1
TA = +125°C  
T
A = +85°C  
TA = +25°C  
A = -40°C  
T
0
0.1  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
100k  
100000  
1M  
1000000  
1k  
10k  
10000  
1000  
Frequency (Hz)  
FIGURE 2-15:  
Output Voltage Swing vs.  
FIGURE 2-18:  
Quiescent Current vs.  
Frequency.  
Power Supply Voltage.  
DS21881B-page 6  
2004 Microchip Technology Inc.  
MCP6231/2  
3.0  
APPLICATION INFORMATION  
The MCP6231/2 family of op amps is manufactured  
using Microchip’s state-of-the-art CMOS process and  
is specifically designed for low-cost, low-power and  
general-purpose applications. The low supply voltage,  
low quiescent current and wide bandwidth makes the  
MCP6231/2 ideal for battery-powered applications.  
VOUT  
RIN  
MCP623X  
+
VIN  
(Maximum expected VIN) VDD  
------------------------------------------------------------------------------  
2 mA  
RIN  
3.1  
Rail-to-Rail Input  
VSS (Minimum expected VIN  
)
The MCP6231/2 op amps are designed to prevent  
phase reversal when the input pins exceed the supply  
voltages. Figure 3-1 shows the input voltage exceeding  
the supply voltage without any phase reversal.  
---------------------------------------------------------------------------  
RIN  
2 mA  
FIGURE 3-2:  
Input Current-Limiting  
Resistor (RIN).  
6
VIN  
VDD = 5.0V  
G = +2 V/V  
3.2  
Rail-to-Rail Output  
5
4
VOUT  
The output voltage range of the MCP6231/2 op amps  
is VDD – 35 mV (min.) and VSS + 35 mV (max.) when  
RL = 10 kis connected to VDD/2 and VDD = 5.5V.  
Refer to Figure 2-14 for more information.  
3
2
1
3.3  
Capacitive Loads  
0
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases and the closed-loop bandwidth is  
reduced. This produces gain peaking in the frequency  
response, with overshoot and ringing in the step  
response. A unity-gain buffer (G = +1) is the most  
sensitive to capacitive loads, but all gains show the  
same general behavior.  
-1 0.E+00  
1.E+00  
2.E+00  
3.E+00  
4.E+00  
5.E+00  
6.E+00  
7.E+00  
8.E+00  
9.E+00  
1.E+01  
Time (1 ms/div)  
FIGURE 3-1:  
Phase Reversal.  
The MCP6231/2 Show No  
The input stage of the MCP6231/2 op amps use two  
differential input stages in parallel. One operates at low  
common mode input voltage (VCM) and the other at  
high VCM. With this topology, the device operates with  
When driving large capacitive loads with these op  
amps (e.g., > 100 pF when G = +1), a small series  
resistor at the output (RISO in Figure 3-3) improves the  
feedback loop’s phase margin (stability) by making the  
output load resistive at higher frequencies. It does not,  
however, improve the bandwidth.  
VCM up to 300 mV above VDD and 300 mV below VSS  
.
The input offset voltage is measured at  
VCM = VSS – 300 mV and VDD + 300 mV to ensure  
proper operation.  
Input voltages that exceed the input voltage range  
(VSS – 0.3V to VDD + 0.3V at 25°C) can cause  
excessive current to flow into or out of the input pins.  
Current beyond ±2 mA can cause reliability problems.  
Applications that exceed this rating must be externally  
limited with a resistor, as shown in Figure 3-2.  
RISO  
VOUT  
MCP623X  
+
VIN  
CL  
FIGURE 3-3:  
Output resistor, RISO  
stabilizes large capacitive loads.  
Figure 3-4 gives recommended RISO values for  
different capacitive loads and gains. The x-axis is the  
normalized load capacitance (CL/GN), where GN is the  
circuit’s noise gain. For non-inverting gains, GN and the  
gain are equal. For inverting gains, GN is 1 + |Gain|  
(e.g., –1 V/V gives GN = +2 V/V).  
2004 Microchip Technology Inc.  
DS21881B-page 7  
MCP6231/2  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
An example of this type of layout is shown in  
Figure 3-5.  
1.E+04  
10k  
1.E+03  
1k  
VIN–  
VIN+  
GN = 1 V/V  
VSS  
GN = 2 V/V  
GN 4 V/V  
100  
1.E+02  
1.E+01  
1.E+02  
1.E+03  
1.E+04  
10p  
100p  
1n  
10n  
Normalized Load Capacitance; CL/GN (F)  
FIGURE 3-4:  
Recommended RISO Values  
for Capactive Loads.  
Guard Ring  
Example Guard Ring Layout  
After selecting RISO for your circuit, double-check the  
resulting frequency response peaking and step  
response overshoot. Evaluation on the bench and  
simulations with the MCP6231/2 SPICE macro model  
are very helpful. Modify RISO’s value until the response  
is reasonable.  
FIGURE 3-5:  
for Inverting Gain.  
1. Non-inverting Gain and Unity-Gain Buffer:  
a. Connect the non-inverting pin (VIN+) to the  
input with a wire that does not touch the  
PCB surface.  
3.4  
Supply Bypass  
b. Connect the guard ring to the inverting input  
pin (VIN–). This biases the guard ring to the  
common mode input voltage.  
With this op amp, the power supply pin (VDD for  
single-supply) should have a local bypass capacitor  
(i.e., 0.01 µF to 0.1 µF) within 2 mm for good high-  
frequency performance. It also needs a bulk capacitor  
(i.e., 1 µF or larger) within 100 mm to provide large,  
slow currents. This bulk capacitor can be shared with  
other parts.  
2. Inverting and transimpedance gain amplifiers  
(convert current to voltage, such as photo  
detectors):  
a. Connect the guard ring to the non-inverting  
input pin (VIN+). This biases the guard ring  
to the same reference voltage as the op  
amp (e.g., VDD/2 or ground).  
3.5  
PCB Surface Leakage  
b. Connect the inverting pin (VIN–) to the input  
with a wire that does not touch the PCB  
surface.  
In applications where low input bias current is critical,  
Printed Circuit Board (PCB) surface leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
between nearby traces is 1012. A 5V difference would  
cause 5 pA, if current-to-flow. This is greater than the  
MCP6231/2 family’s bias current at 25°C (1 pA, typ).  
DS21881B-page 8  
2004 Microchip Technology Inc.  
MCP6231/2  
4.2  
Compensating for the Parasitic  
Capacitance  
4.0  
4.1  
APPLICATION CIRCUITS  
Matching the Impedance at the  
Inputs  
In analog circuit design, the PCB parasitic capacitance  
can compromise the circuit behavior; Figure 4-2 shows  
a typical scenario. If the input of an amplifier sees  
To minimize the effect of input bias current in an  
amplifier circuit (this is important for very high source-  
impedance applications, such as pH meters and  
transimpedance amplifiers), the impedance at both  
inverting and non-inverting inputs needs to be  
matched. This is done by choosing the circuit resistor  
values so that the total resistance at each input is the  
same. Figure 4-1 shows a summing amplifier circuit.  
parasitic capacitance of several picofarad (CPARA  
,
which includes the common mode capacitance of 6 pF,  
typical), and large RF and RG, the frequency response  
of the circuit will include a zero. This parasitic zero  
introduces gain peaking and can cause circuit  
instability.  
R
G2  
V
+
AC  
V
V
IN2  
IN1  
V
R
MCP623X  
OUT  
G1  
R
F
R
R
G
F
V
DD  
V
DC  
R
X
Y
V
OUT  
MCP623X  
+
C
R
PARA  
R
C
Z
F
RG  
------  
RF  
CF = CPARA  
FIGURE 4-2:  
Capacitance at the Input.  
Effect of Parasitic  
FIGURE 4-1:  
Summing Amplifier Circuit.  
To match the inputs, set all voltage sources to ground  
and calculate the total resistance at the input nodes. In  
this summing amplifier circuit, the resistance at the  
inverting input is calculated by setting VIN1, VIN2 and  
VOUT to ground. In this case, RG1, RG2 and RF are in  
parallel. The total resistance at the inverting input is:  
One solution is to use smaller resistor values to push  
the zero to a higher frequency. Another solution is to  
compensate by introducing a pole at the point at which  
the zero occurs. This can be done by adding CF in  
parallel with the feedback resistor (RF). CF needs to be  
selected so that the ratio CPARA:CF is equal to the ratio  
of RF:RG.  
1
---------------------------------------------  
RVIN- =  
1
1
1
--------- --------- ------  
+
+
RG1 RG2 RF  
Where:  
RVIN= total resistance at the inverting input  
At the non-inverting input, VDD is the only voltage  
source. When VDD is set to ground, both Rx and Ry are  
in parallel. The total resistance at the non-inverting  
input is:  
1
------------------------  
RVIN  
=
+ RZ  
+
1
1
------ -----  
+
RX RY  
Where:  
+
RVIN = total resistance at the inverting  
input  
To minimize output offset voltage and increase circuit  
accuracy, the resistor values need to meet the  
conditions:  
-
RVIN = RVIN  
+
2004 Microchip Technology Inc.  
DS21881B-page 9  
MCP6231/2  
5.0  
DESIGN TOOLS  
Microchip provides the basic design tools needed for  
the MCP6231/2 family of op amps.  
5.1  
SPICE Macro Model  
The latest SPICE macro model for the MCP6231/2 op  
amps is available on our web site at  
www.microchip.com. This model is intended to be an  
initial design tool that works well in the op amp’s linear  
region of operation at room temperature. See the model  
file for information on its capabilities.  
Bench testing is a very important part of any design and  
cannot be replaced with simulations. Also, simulation  
results using this macro model need to be validated by  
comparing them to the data sheet specifications and  
characteristic curves.  
®
5.2  
FilterLab Software  
The FilterLab software is an innovative tool that simpli-  
fies analog active-filter (using op amps) design.  
Available free of charge from our web site at  
www.microchip.com, the FilterLab software active-filter  
design tool provides full schematic diagrams of the filter  
circuit with component values. It also outputs the filter  
circuit in SPICE format, which can be used with the  
macro model to simulate actual filter performance.  
DS21881B-page 10  
2004 Microchip Technology Inc.  
MCP6231/2  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Lead SC-70 (MCP6231U Only)  
Example:  
XNN  
YWW  
ASN  
418  
Example:  
5
5-Lead SOT-23  
5
4
3
4
3
Device  
MCP6231  
Code  
BCNN  
BDNN  
BENN  
AA07  
XXNN  
MCP6231R  
MCP6231U  
1
2
1
2
Note:  
Applies to 5-Lead SOT-23.  
Example:  
8-Lead MSOP  
XXXXXX  
YWWNNN  
6232E  
418256  
8-Lead PDIP (300 mil)  
Example:  
MCP6232  
XXXXXXXX  
XXXXXNNN  
E/P256  
0418  
YYWW  
8-Lead SOIC (150 mil)  
Example:  
XXXXXXXX  
XXXXYYWW  
MCP6232  
E/SN0418  
NNN  
256  
Legend: XX...X Customer specific information*  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard marking consists of Microchip part number, year code, week code, traceability code (facility  
code, mask rev#, and assembly code). For marking beyond this, certain price adders apply. Please  
check with your Microchip Sales Office.  
2004 Microchip Technology Inc.  
DS21881B-page 11  
MCP6231/2  
5-Lead Small Outline Transistor Package (SC-70)  
E
E1  
D
p
B
n
1
Q1  
A2  
A
c
A1  
L
Units  
INCHES  
NOM  
5
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
5
MAX  
n
p
Number of Pins  
Pitch  
.026 (BSC)  
0.65 (BSC)  
Overall Height  
A
.031  
.043  
0.80  
1.10  
1.00  
0.10  
2.40  
1.35  
2.20  
0.30  
0.40  
0.18  
0.30  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.031  
.000  
.071  
.045  
.071  
.004  
.004  
.004  
.006  
.039  
.004  
.094  
.053  
.087  
.012  
.016  
.007  
.012  
0.80  
0.00  
1.80  
1.15  
1.80  
0.10  
0.10  
0.10  
0.15  
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Foot Length  
L
Q1  
c
Top of Molded Pkg to Lead Shoulder  
Lead Thickness  
Lead Width  
B
*Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed .005" (0.127mm) per side.  
JEITA (EIAJ) Standard: SC-70  
Drawing No. C04-061  
DS21881B-page 12  
2004 Microchip Technology Inc.  
MCP6231/2  
5-Lead Plastic Small Outline Transistor (OT) (SOT23)  
E
E1  
p
B
p1  
D
n
1
α
c
A
A2  
φ
A1  
L
β
Units  
Dimension Limits  
INCHES*  
NOM  
5
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
5
MAX  
n
p
Number of Pins  
Pitch  
.038  
0.95  
p1  
Outside lead pitch (basic)  
Overall Height  
.075  
.046  
.043  
.003  
.110  
.064  
.116  
.018  
5
1.90  
1.18  
1.10  
0.08  
2.80  
1.63  
2.95  
0.45  
5
A
A2  
A1  
E
.035  
.035  
.000  
.102  
.059  
.110  
.014  
0
.057  
0.90  
1.45  
Molded Package Thickness  
Standoff  
.051  
.006  
.118  
.069  
.122  
.022  
10  
0.90  
0.00  
2.60  
1.50  
2.80  
0.35  
0
1.30  
0.15  
3.00  
1.75  
3.10  
0.55  
10  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.004  
.014  
0
.006  
.017  
5
.008  
.020  
10  
0.09  
0.35  
0
0.15  
0.43  
5
0.20  
0.50  
10  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
0
5
10  
0
5
10  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed .005" (0.127mm) per side.  
EIAJ Equivalent: SC-74A  
Drawing No. C04-091  
2004 Microchip Technology Inc.  
DS21881B-page 13  
MCP6231/2  
8-Lead Plastic Micro Small Outline Package (MS) (MSOP)  
E
E1  
p
D
2
B
n
1
α
A2  
A
c
φ
A1  
(F)  
L
β
Units  
Dimension Limits  
INCHES  
NOM  
8
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
8
MAX  
n
p
Number of Pins  
Pitch  
.026 BSC  
0.65 BSC  
Overall Height  
A
A2  
A1  
E
-
-
.043  
-
-
1.10  
Molded Package Thickness  
Standoff  
.030  
.000  
.033  
.037  
.006  
0.75  
0.85  
0.95  
0.15  
-
0.00  
-
Overall Width  
.193 TYP.  
4.90 BSC  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
.118 BSC  
3.00 BSC  
.118 BSC  
3.00 BSC  
L
.016  
.024  
.031  
0.40  
0.60  
0.80  
Footprint (Reference)  
Foot Angle  
F
.037 REF  
0.95 REF  
φ
c
0°  
.003  
.009  
5°  
-
.006  
.012  
-
8°  
.009  
.016  
15°  
0°  
0.08  
0.22  
5°  
-
-
-
-
-
8°  
0.23  
0.40  
15°  
Lead Thickness  
Lead Width  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
5°  
-
15°  
5°  
15°  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed .010" (0.254mm) per side.  
JEDEC Equivalent: MO-187  
Drawing No. C04-111  
DS21881B-page 14  
2004 Microchip Technology Inc.  
MCP6231/2  
8-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
β
B1  
B
p
eB  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
8
8
.100  
.155  
.130  
2.54  
3.94  
3.30  
Top to Seating Plane  
A
.140  
.170  
3.56  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.360  
.125  
.008  
.045  
.014  
.310  
5
.145  
2.92  
0.38  
7.62  
6.10  
9.14  
3.18  
0.20  
1.14  
0.36  
7.87  
5
3.68  
.313  
.250  
.373  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.385  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
9.46  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
9.78  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-018  
2004 Microchip Technology Inc.  
DS21881B-page 15  
MCP6231/2  
8-Lead Plastic Small Outline (SN) – Narrow, 150 mil (SOIC)  
E
E1  
p
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
8
MAX  
n
p
Number of Pins  
Pitch  
8
.050  
.061  
.056  
.007  
.237  
.154  
.193  
.015  
.025  
4
1.27  
Overall Height  
A
.053  
.069  
1.35  
1.32  
1.55  
1.42  
0.18  
6.02  
3.91  
4.90  
0.38  
0.62  
4
1.75  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.052  
.004  
.228  
.146  
.189  
.010  
.019  
0
.061  
.010  
.244  
.157  
.197  
.020  
.030  
8
1.55  
0.25  
6.20  
3.99  
5.00  
0.51  
0.76  
8
§
0.10  
5.79  
3.71  
4.80  
0.25  
0.48  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.008  
.013  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.33  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-057  
DS21881B-page 16  
2004 Microchip Technology Inc.  
MCP6231/2  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
a) MCP6231-E/SN:  
PART NO.  
Device  
X
-X  
/XX  
Extended Temp.,  
8LD SOIC pkg.  
Tape and Reel  
and/or  
Alternate Pinout  
Temperature Package  
Range  
b) MCP6231-E/MS: Extended Temp.,  
8LD MSOP pkg.  
c) MCP6231-E/P:  
Extended Temp.,  
8LD PDIP pkg.  
Device:  
MCP6231:  
MCP6231T:  
MCP6231RT:  
MCP6231UT: Single Op Amp (Tape and Reel)  
(SC-70, SOT-23)  
MCP6232:  
Single Op Amp (MSOP, PDIP, SOIC)  
Single Op Amp (Tape and Reel) (SOT-23)  
Single Op Amp (Tape and Reel) (SOT-23)  
d) MCP6231RT-E/OT: Tape and Reel,  
Extended Temp.,  
5LD SOT-23 pkg  
Dual Op Amp (MSOP, PDIP, SOIC)  
Dual Op Amp (Tape and Reel)  
e) MCP6231UT-E/OT: Tape and Reel,  
Extended Temp.,  
MCP6232T:  
5LD SOT-23 pkg.  
MCP6231UT-E/LT: Tape and Reel,  
Extended Temp.,  
Temperature Range:  
Package:  
E
=
-40°C to +125°C  
f)  
LT  
MS  
P
=
=
=
=
Plastic Package (SC-70), 5-lead (MCP6231U only)  
Plastic Micro Small Outline (MSOP), 8-lead  
Plastic DIP (300 mil Body), 8-lead  
Plastic Small Outline Transistor (SOT-23), 5-lead  
(MCP6231, MCP6231R, MCP6231U)  
5LD SC-70 pkg.  
g) MCP6231T-E/OT: Tape and Reel,  
Extended Temp.,  
OT  
5LD SOT-23 pkg.  
SN  
=
Plastic SOIC, (150 mil Body), 8-lead  
a) MCP6232-E/SN:  
Extended Temp.,  
8LD SOIC pkg.  
b) MCP6232-E/MS: Extended Temp.,  
8LD MSOP pkg.  
c) MCP6232-E/P:  
Extended Temp.,  
8LD PDIP pkg.  
d) MCP6232T-E/SN: Tape and Reel,  
Extended Temp.,  
SOIC pkg.  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and  
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2004 Microchip Technology Inc.  
DS21881B-page 17  
MCP6231/2  
NOTES:  
DS21881B-page 18  
2004 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical  
components in life support systems is not authorized except  
with express written approval by Microchip. No licenses are  
conveyed, implicitly or otherwise, under any intellectual  
property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro,  
PICSTART, PRO MATE, PowerSmart, rfPIC, and  
SmartShunt are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
AmpLab, FilterLab, MXDEV, MXLAB, PICMASTER, SEEVAL,  
SmartSensor and The Embedded Control Solutions Company  
are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, dsPICDEM,  
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,  
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial  
Programming, ICSP, ICEPIC, Migratable Memory, MPASM,  
MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net,  
PICLAB, PICtail, PowerCal, PowerInfo, PowerMate,  
PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial,  
SmartTel and Total Endurance are trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2004, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 quality system certification for  
its worldwide headquarters, design and wafer fabrication facilities in  
Chandler and Tempe, Arizona and Mountain View, California in  
October 2003. The Company’s quality system processes and  
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
2004 Microchip Technology Inc.  
DS21881B-page 19  
WORLDWIDE SALES AND SERVICE  
China - Chengdu  
Taiwan  
AMERICAS  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Kaohsiung Branch  
Kaohsiung 806, Taiwan  
Tel: 886-7-536-4816  
Fax: 886-7-536-4817  
Ming Xing Financial Tower  
Chengdu 610016, China  
Tel: 86-28-86766200  
Fax: 86-28-86766599  
Taiwan  
Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: www.microchip.com  
China - Fuzhou  
World Trade Plaza  
Fuzhou 350001, China  
Tel: 86-591-7503506  
Fax: 86-591-7503521  
Taiwan Branch  
Taipei City, 104, Taiwan  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Atlanta  
Alpharetta, GA 30022  
Tel: 770-640-0034  
Fax: 770-640-0307  
Taiwan  
Taiwan Branch  
Hsinchu City 300, Taiwan  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Hong Kong SAR  
Metroplaza  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Boston  
Westford, MA 01886  
Tel: 978-692-3848  
Fax: 978-692-3821  
China - Shanghai  
Far East International Plaza  
Shanghai, 200051  
Tel: 86-21-6275-5700  
Fax: 86-21-6275-5060  
EUROPE  
Austria  
Austria  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
Chicago  
Itasca, IL 60143  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shenzhen  
United Plaza  
Shenzhen 518033, China  
Tel: 86-755-82901380  
Fax: 86-755-8295-1393  
Dallas  
Denmark  
Addison Plaza  
Addison, TX 75001  
Tel: 972-818-7423  
Fax: 972-818-2924  
Regus Business Centre  
Ballerup DK-2750 Denmark  
Tel: 45-4420-9895  
Fax: 45-4420-9910  
Detroit  
China - Shunde  
Foshan City, Guangdong 528303, China  
Tel: 86-757-28395507  
France  
Tri-Atria Office Building  
Farmington Hills, MI 48334  
Tel: 248-538-2250  
Fax: 248-538-2260  
91300 Massy, France  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Fax: 86-757-28395571  
China - Qingdao  
Fullhope Plaza,  
Qingdao 266071, China  
Tel: 86-532-5027355  
Fax: 86-532-5027205  
Germany  
Kokomo  
D-85737 Ismaning, Germany  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Kokomo, IN 46902  
Tel: 765-864-8360  
Fax: 765-864-8387  
Italy  
Los Angeles  
Mission Viejo, CA 92691  
Tel: 949-462-9523  
India  
Milan, Italy  
Divyasree Chambers  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Bangalore, 560 025, India  
Tel: 91-80-22290061 Fax: 91-80-22290062  
Fax: 949-462-9608  
Netherlands  
NL-5152 JR, Drunen, Netherlands  
Tel: 31-416-690399  
San Jose  
Mountain View, CA 94043  
Tel: 650-215-1444  
India  
International Trade Tower  
New Delhi, 110019, India  
Tel: +91-11-5160-8632  
Fax: +91-11-5160-8632  
Fax: 31-416-690340  
Fax: 650-961-0286  
United Kingdom  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Toronto  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699  
Japan  
Yokohama, Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Fax: 905-673-6509  
ASIA/PACIFIC  
Australia  
Microchip Technology Australia Pty Ltd  
Sydney, Australia  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Korea  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or 82-2-558-5934  
Singapore  
China - Beijing  
Singapore, 188980  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Wan Tai Bei Hai Bldg.  
Beijing, 100027, China  
Tel: 86-10-85282100  
Fax: 86-10-85282104  
08/16/04  
DS21881B-page 20  
2004 Microchip Technology Inc.  

相关型号:

MCP6231UT

20 μA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6231UT-E/LT

20 UA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6231UT-E/LTVAO

Operational Amplifier, 1 Func, 7000uV Offset-Max, CMOS, PDSO5
MICROCHIP

MCP6231UT-E/MC

20 μA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6231UT-E/MNY

20 μA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6231UT-E/MS

20 UA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6231UT-E/OT

20 UA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6231UT-E/P

20 UA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6231UT-E/SL

20 μA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6231UT-E/SN

20 UA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6231UT-E/ST

20 μA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP

MCP6231_05

20 レA, 300 kHz Rail-to-Rail Op Amp
MICROCHIP