MCP6295T [MICROCHIP]

1.0 mA, 10 MHz Rail-to-Rail Op Amp; 1.0毫安, 10 MHz轨到轨运算放大器
MCP6295T
型号: MCP6295T
厂家: MICROCHIP    MICROCHIP
描述:

1.0 mA, 10 MHz Rail-to-Rail Op Amp
1.0毫安, 10 MHz轨到轨运算放大器

运算放大器
文件: 总32页 (文件大小:573K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6291/2/3/4/5  
1.0 mA, 10 MHz Rail-to-Rail Op Amp  
Features  
Description  
• Gain Bandwidth Product: 10 MHz (typ.)  
• Supply Current: IQ = 1.0 mA  
The Microchip Technology Inc. MCP6291/2/3/4/5 family  
of operational amplifiers (op amps) provide wide  
bandwidth for the current. This family has a 10 MHz  
Gain Bandwidth Product (GBWP) and a 65° phase  
margin. This family also operates from a single supply  
voltage as low as 2.4V, while drawing 1 mA (typ.)  
quiescent current. In addition, the MCP6291/2/3/4/5  
supports rail-to-rail input and output swing, with a  
common mode input voltage range of VDD + 300 mV to  
• Supply Voltage: 2.4V to 5.5V  
• Rail-to-Rail Input/Output  
• Extended Temperature Range: -40°C to +125°C  
• Available in Single, Dual and Quad Packages  
• Single with Chip Select (CS) (MCP6293)  
• Dual with Chip Select (CS) (MCP6295)  
VSS – 300 mV. This family of operational amplifiers is  
designed with Microchip’s advanced CMOS process.  
Applications  
The MCP6295 has a Chip Select input (CS) for dual op  
amps in an 8-pin package. This device is manufactured  
by cascading the two op amps, with the output of  
op amp A being connected to the non-inverting input of  
op amp B. The CS input puts the device in a Low-power  
mode.  
• Automotive  
• Portable Equipment  
• Photodiode Amplifier  
• Analog Filters  
• Notebooks and PDAs  
• Battery-Powered Systems  
The MCP6291/2/3/4/5 family operates over the  
Extended Temperature Range of -40°C to +125°C. It  
also has a power supply range of 2.4V to 5.5V.  
Available Tools  
• SPICE Macro Model (at www.microchip.com)  
• FilterLab® Software (at www.microchip.com)  
Package Types  
MCP6291  
MCP6291  
MCP6291R  
MCP6292  
PDIP, SOIC, MSOP  
PDIP, SOIC, MSOP  
SOT-23-5  
SOT-23-5  
V
1
2
3
4
8
7
6
NC  
V
NC  
OUTA  
1
8
7
6
5
DD  
V
V
SS  
V
V
OUT  
1
2
3
5
4
1
5
4
OUT  
DD  
_
_
V
V
-
V
2
-
V
IN  
+
DD  
INA  
OUTB  
V
V
DD  
2
3
SS  
+
-
+
V
+
-
_
V
V
+ 3  
4
IN  
+
-
OUT  
V
V
INA  
INB  
V
+
V
V
+
V –  
IN  
IN  
IN  
IN  
V
5 NC  
V
SS  
+
SS  
INB  
MCP6293  
PDIP, SOIC, MSOP  
MCP6293  
MCP6294  
PDIP, SOIC, TSSOP  
MCP6295  
PDIP, SOIC, MSOP  
SOT-23-6  
NC  
1
2
3
4
8 CS  
V
V
14  
1
OUTA  
OUTD  
V
/V  
+
V
V
V
1
2
3
4
8
7
6
5
V
V
1
2
3
6
5
4
OUTA INB  
DD  
_
DD  
OUT  
_
_
V
V
-
7
6
5
IN  
DD  
V
INA  
2
+ - 13 V  
- +  
IND  
_
V
V
-
+
CS  
SS  
OUTB  
INA  
+
-
V
+
V
IN  
12  
V
V
+ 3  
4
OUT  
+
INA  
_
IND  
V
V
+
+
-
V
+
INB  
IN  
INA  
IN  
V
11  
V
NC  
V
SS  
DD  
SS  
V
CS  
SS  
10  
V
5
6
7
+
_
V
V
+
INC  
INB  
_
-
-
+ +  
9
INB  
V
INC  
V
8 V  
OUTB  
OUTC  
2004 Microchip Technology Inc.  
DS21812D-page 1  
MCP6291/2/3/4/5  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
V
– V ........................................................................7.0V  
SS  
DD  
All Inputs and Outputs ................... V – 0.3V to V + 0.3V  
SS  
DD  
Difference Input Voltage ...................................... |V – V  
|
DD  
SS  
Output Short Circuit Current .................................Continuous  
Current at Input Pins ....................................................±2 mA  
Current at Output and Supply Pins ............................±30 mA  
Storage Temperature.....................................-65°C to +150°C  
Junction Temperature (T ) ..........................................+150°C  
J
ESD Protection On All Pins (HBM/MM) ................ ≥ 4 kV/400V  
DC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, T = +25°C, V = +2.4V to +5.5V, V = GND, V  
= V /2,  
DD  
A
DD  
SS  
CM  
R = 10 kto V /2 and V  
V /2.  
DD  
L
DD  
OUT  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Offset  
Input Offset Voltage  
V
V
-3.0  
-5.0  
+3.0  
+5.0  
mV  
mV  
V
= V (Note 1)  
OS  
CM SS  
Input Offset Voltage  
T = -40°C to +125°C,  
A
OS  
(Extended Temperature)  
V
= V (Note 1)  
CM SS  
Input Offset Temperature Drift  
V /T  
±1.7  
90  
µV/°C T = -40°C to +125°C,  
A
OS  
A
V
= V (Note 1)  
CM  
SS  
Power Supply Rejection Ratio  
PSRR  
70  
dB  
V
= V (Note 1)  
SS  
CM  
Input Bias, Input Offset Current and Impedance  
Input Bias Current  
I
I
I
±1.0  
50  
200  
5
pA  
pA  
nA  
pA  
Note 2  
T = +85°C (Note 2)  
B
B
B
At Temperature  
A
At Temperature  
2
T = +125°C (Note 2)  
A
Input Offset Current  
I
±1.0  
Note 3  
OS  
13  
Common Mode Input Impedance  
Differential Input Impedance  
Common Mode (Note 4)  
Common Mode Input Range  
Common Mode Rejection Ratio  
Common Mode Rejection Ratio  
Open-Loop Gain  
Z
10 ||6  
||pF Note 3  
||pF Note 3  
CM  
13  
Z
10 ||3  
DIFF  
V
V
0.3  
85  
80  
V
+ 0.3  
DD  
V
CMR  
SS  
CMRR  
CMRR  
70  
65  
dB  
dB  
V
V
= -0.3V to 2.5V, V = 5V  
DD  
CM  
CM  
= -0.3V to 5.3V, V = 5V  
DD  
DC Open-Loop Gain (Large Signal)  
A
90  
110  
dB  
V
= 0.2V to V – 0.2V,  
OUT DD  
OL  
V
= V (Note 1)  
CM  
SS  
Output  
Maximum Output Voltage Swing  
Output Short Circuit Current  
Power Supply  
V
, V  
V
+ 15  
V – 15  
DD  
mV  
mA  
OL  
OH  
SS  
I
±25  
SC  
Supply Voltage  
V
2.4  
0.7  
5.5  
1.3  
V
T = -40°C to +125°C  
A
DD  
Quiescent Current per Amplifier  
I
1.0  
mA  
I = 0  
O
Q
Note 1: The MCP6295’s V  
for op amp B (pins V  
/V + and V –) is V + 100 mV.  
OUTA INB INB SS  
CM  
2: The current at the MCP6295’s V – pin is specified by I only.  
INB  
B
3: This specification does not apply to the MCP6295’s V  
/V + pin.  
OUTA INB  
4: The MCP6295’s V – pin (op amp B) has a common mode range (V  
) of V + 100 mV to V – 100 mV.  
SS DD  
INB  
CMR  
The MCP6295’s V  
/V + pin (op amp B) has a voltage range specified by V  
and V  
.
OUTA INB  
OH  
OL  
DS21812D-page 2  
2004 Microchip Technology Inc.  
MCP6291/2/3/4/5  
AC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, T = +25°C, V = +2.4V to +5.5V, V = GND, V  
= V /2,  
DD  
A
DD  
SS  
CM  
V
V /2, R = 10 kto V /2 and C = 60 pF.  
DD L DD L  
OUT  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
AC Response  
Gain Bandwidth Product  
Phase Margin at Unity-Gain  
Slew Rate  
GBWP  
PM  
10.0  
65  
7
MHz  
°
SR  
V/µs  
Noise  
Input Noise Voltage  
Input Noise Voltage Density  
Input Noise Current Density  
E
3.5  
8.7  
3
µV  
f = 0.1 Hz to 10 Hz  
nV/Hz f = 10 kHz  
fA/Hz f = 1 kHz  
ni  
P-P  
e
ni  
i
ni  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, V = +2.4V to +5.5V and V = GND.  
DD  
SS  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 5L-SOT-23  
Thermal Resistance, 6L-SOT-23  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 14L-PDIP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
T
-40  
-65  
+125  
+150  
°C  
°C  
Note  
A
T
A
θ
θ
θ
θ
θ
θ
θ
θ
256  
230  
85  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
JA  
JA  
JA  
JA  
JA  
JA  
163  
206  
70  
120  
100  
JA  
JA  
Note:  
The Junction Temperature (T ) must not exceed the Absolute Maximum specification of +150°C.  
J
2004 Microchip Technology Inc.  
DS21812D-page 3  
MCP6291/2/3/4/5  
MCP6293/MCP6295 CHIP SELECT (CS) SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, T = +25°C, V = +2.4V to +5.5V, V = GND,  
A
DD  
SS  
V
= V /2, V  
V /2, R = 10 kto V /2 and C = 60 pF.  
CM  
DD  
OUT  
DD  
L
DD  
L
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
CS Low Specifications  
CS Logic Threshold, Low  
V
V
0.2 V  
DD  
V
IL  
SS  
CS Input Current, Low  
I
0.01  
µA  
CS = V  
SS  
CSL  
CS High Specifications  
CS Logic Threshold, High  
V
0.8 V  
V
DD  
V
IH  
DD  
CS Input Current, High  
GND Current per Amplifier  
Amplifier Output Leakage  
I
0.7  
2
µA  
µA  
µA  
CS = V  
CS = V  
CS = V  
CSH  
DD  
DD  
DD  
I
-0.7  
0.01  
SS  
Dynamic Specifications (Note 1)  
CS Low to Valid Amplifier Output,  
Turn-on Time  
t
4
10  
µs  
CS Low 0.2 V , G = +1 V/V,  
DD  
ON  
V
V
= V /2, V  
= 0.9 V /2,  
IN  
DD  
OUT DD  
= 5.0V  
DD  
CS High to Amplifier Output High-Z  
Hysteresis  
t
0.01  
0.6  
µs  
V
CS High 0.8 V , G = +1 V/V,  
DD  
OFF  
V
= V /2, V  
= 0.1 V /2  
IN  
DD  
OUT DD  
V
V
= 5V  
HYST  
DD  
Note 1: The input condition (V ) specified applies to both op amp A and B of the MCP6295. The dynamic specification is tested  
IN  
at the output of op amp B (V  
).  
OUTB  
CS  
VIL  
VIH  
tOFF  
tON  
Hi-Z  
Hi-Z  
VOUT  
-0.7 µA (typ.)  
0.7 µA (typ.)  
-0.7 µA (typ.)  
0.7 µA (typ.)  
ISS  
ICS  
-1.0 mA (typ.)  
10 nA (typ.)  
FIGURE 1-1:  
Timing Diagram for the  
Chip Select (CS) pin on the MCP6293 and  
MCP6295.  
DS21812D-page 4  
2004 Microchip Technology Inc.  
MCP6291/2/3/4/5  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.4V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 10 kto VDD/2 and CL = 60 pF.  
25%  
20%  
15%  
10%  
5%  
12%  
11%  
10%  
9%  
8%  
7%  
6%  
5%  
4%  
3%  
2%  
1%  
0%  
840 Samples  
VCM = VSS  
TA = -40°C to +125°C  
840 Samples  
VCM = VSS  
0%  
Input Offset Voltage (mV)  
Input Offset Voltage Drift (µV/°C)  
FIGURE 2-4:  
Input Offset Voltage Drift.  
FIGURE 2-1:  
Input Offset Voltage.  
30%  
40%  
210 Samples  
TA = +125°C  
210 Samples  
TA = 85°C  
25%  
20%  
15%  
10%  
5%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
0%  
0%  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Input Bias Current (pA)  
Input Bias Current (pA)  
FIGURE 2-5:  
TA = +125 °C.  
Input Bias Current at  
FIGURE 2-2:  
TA = +85 °C.  
Input Bias Current at  
800  
400  
VDD = 5.5V  
750  
VDD = 2.4V  
350  
300  
250  
200  
150  
100  
50  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
TA = +125°C  
TA  
TA  
TA  
=
=
=
+85°C  
+25°C  
-40°C  
TA  
TA  
TA  
TA  
=
=
=
=
-40°C  
+25°C  
+85°C  
+125°C  
0
-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
-0.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Common Mode Input Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-6:  
Common Mode Input Voltage at VDD = 5.5V.  
Input Offset Voltage vs.  
FIGURE 2-3:  
Common Mode Input Voltage at VDD = 2.4V.  
Input Offset Voltage vs.  
2004 Microchip Technology Inc.  
DS21812D-page 5  
MCP6291/2/3/4/5  
TYPICAL PERFORMANCE CURVES (CONTINUED)  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.4V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 10 kto VDD/2 and CL = 60 pF.  
700  
10,000  
VCM = VSS  
VCM = VDD  
VDD = 5.5V  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
Representative Part  
1,000  
100  
10  
Input Bias Current  
Input Offset Current  
VDD = 5.5V  
DD = 2.4V  
V
1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
25 35 45 55 65 75 85 95 105 115 125  
Ambient Temperature (°C)  
FIGURE 2-7:  
Input Offset Voltage vs.  
FIGURE 2-10:  
Input Bias, Input Offset  
Output Voltage.  
Currents vs. Ambient Temperature.  
120  
110  
110  
100  
90  
CMRR  
PSRR-  
100  
80  
CMRR  
70  
90  
PSRR+  
60  
PSRR  
VCM = VSS  
80  
70  
60  
50  
40  
30  
20 1.E+00  
1.E+01  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
-50  
-25  
0
25  
50  
75  
100  
125  
1
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Ambient Temperature (°C)  
FIGURE 2-8:  
CMRR, PSRR vs.  
FIGURE 2-11:  
CMRR, PSRR vs. Ambient  
Frequency.  
Temperature.  
2.5  
55  
45  
35  
25  
15  
5
TA = +125°C  
DD = 5.5V  
V
2.0  
1.5  
Input Bias Current  
Input Offset Current  
Input Bias Current  
1.0  
0.5  
0.0  
-5  
TA = +85°C  
DD = 5.5V  
Input Offset Current  
-0.5  
-1.0  
-15  
-25  
V
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Common Mode Input Voltage (V)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Common Mode Input Voltage (V)  
FIGURE 2-9:  
Input Bias, Offset Currents  
FIGURE 2-12:  
Input Bias, Offset Currents  
vs. Common Mode Input Voltage at TA = +85°C.  
vs. Common Mode Input Voltage at  
TA = +125°C.  
DS21812D-page 6  
2004 Microchip Technology Inc.  
MCP6291/2/3/4/5  
TYPICAL PERFORMANCE CURVES (CONTINUED)  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.4V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 10 kto VDD/2 and CL = 60 pF.  
1000  
100  
10  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
TA = +125°C  
TA  
TA  
TA  
=
=
=
+85°C  
+25°C  
-40°C  
VOL - VSS  
VDD - VOH  
1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
0.01  
0.1  
1
10  
Output Current Magnitude (mA)  
FIGURE 2-13:  
Quiescent Current vs.  
FIGURE 2-16:  
Output Voltage Headroom  
Power Supply Voltage.  
vs. Output Current Magnitude.  
120  
100  
0
16  
90  
85  
80  
75  
70  
65  
60  
55  
50  
14  
-30  
GBWP, VDD = 5.5V  
GBWP, VDD = 2.4V  
Gain  
12  
10  
8
80  
60  
40  
20  
0
-60  
Phase  
-90  
-120  
-150  
-180  
-210  
6
4
PM, VDD = 5.5V  
PM, VDD = 2.4V  
2
0
-20  
0.1  
1
10 100  
1k 10k 100k 1M 10M 100M  
-50  
-25  
0
25  
50  
75  
100  
125  
Frequency (Hz)  
Ambient Temperature (°C)  
FIGURE 2-14:  
Open-Loop Gain, Phase vs.  
FIGURE 2-17:  
Gain Bandwidth Product,  
Frequency.  
Phase Margin vs. Ambient Temperature.  
10  
12  
Falling Edge, VDD = 5.5V  
10  
VDD = 2.4V  
8
6
VDD = 5.5V  
VDD = 2.4V  
1
4
Rising Edge, VDD = 5.5V  
2
0
VDD = 2.4V  
0.1  
1k  
-50  
-25  
0
25  
50  
75  
100  
125  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Ambient Temperature (°C)  
FIGURE 2-15:  
Maximum Output Voltage  
FIGURE 2-18:  
Slew Rate vs. Ambient  
Swing vs. Frequency.  
Temperature.  
2004 Microchip Technology Inc.  
DS21812D-page 7  
MCP6291/2/3/4/5  
TYPICAL PERFORMANCE CURVES (CONTINUED)  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.4V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 10 kto VDD/2 and CL = 60 pF.  
11  
10  
9
1,000  
100  
10  
8
f = 10 kHz  
VDD = 5.0V  
7
6
5
4
3
2
1
0
1
1.E-01  
1.E+00  
1.E+01  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Common Mode Input Voltage (V)  
Frequency (Hz)  
FIGURE 2-19:  
Input Noise Voltage Density  
FIGURE 2-22:  
Input Noise Voltage Density  
vs. Frequency.  
vs. Common Mode Input Voltage at 10 kHz.  
35  
30  
25  
20  
15  
10  
5
140  
130  
120  
110  
100  
TA = +125°C  
TA  
TA  
TA  
=
=
=
+85°C  
+25°C  
-40°C  
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
1
10  
100  
Frequency (kHz)  
FIGURE 2-20:  
Output Short Circuit Current  
FIGURE 2-23:  
Channel-to-Channel  
vs. Power Supply Voltage.  
Separation vs. Frequency (MCP6292, MCP6294  
and MCP6295 only).  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.6  
VDD = 5.5V  
VDD = 2.4V  
Op Amp shuts off  
Op Amp turns on  
Op-Amp shuts off here  
Op-Amp turns on here  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Hysteresis  
Hysteresis  
CS swept  
high to low  
CS swept  
low to high  
CS swept  
low to high  
CS swept  
high to low  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
Chip Select Voltage (V)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Chip Select Voltage (V)  
FIGURE 2-21:  
Quiescent Current vs.  
FIGURE 2-24:  
Quiescent Current vs.  
Chip Select (CS) Voltage at VDD = 2.4V  
(MCP6293 and MCP6295 only).  
Chip Select (CS) Voltage at VDD = 5.5V  
(MCP6293 and MCP6295 only).  
DS21812D-page 8  
2004 Microchip Technology Inc.  
MCP6291/2/3/4/5  
TYPICAL PERFORMANCE CURVES (CONTINUED)  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.4V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 10 kto VDD/2 and CL = 60 pF.  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0 0.E+00  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0 0.E+00  
G = +1V/V  
G = -1V/V  
V
DD = 5.0V  
V
DD = 5.0V  
1.E-06  
2.E-06  
3.E-06  
4.E-06  
5.E-06  
6.E-06  
7.E-06  
8.E-06  
9.E-06  
1.E-05  
1.E-06  
2.E-06  
3.E-06  
4.E-06  
5.E-06  
6.E-06  
7.E-06  
8.E-06  
9.E-06  
1.E-05  
Time (1 µs/div)  
Time (1 µs/div)  
FIGURE 2-25:  
Large-Signal Non-inverting  
FIGURE 2-28:  
Large-Signal Inverting Pulse  
Pulse Response.  
Response.  
G = -1V/V  
G = +1V/V  
Time (200 ns/div)  
Time (200 ns/div)  
FIGURE 2-26:  
Small-Signal Non-inverting  
FIGURE 2-29:  
Small-Signal Inverting Pulse  
Pulse Response.  
Response.  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
VDD = 2.4V  
VDD = 5.5V  
G = +1V/V  
VIN = VSS  
CS Voltage  
G = +1V/V  
VIN = VSS  
CS Voltage  
VOUT  
Output On  
Output On  
VOUT  
Output High-Z  
Output High-Z  
0.0 0.E+00  
5.E-06  
1.E-05  
2.E-05  
2.E-05  
3.E-05  
3.E-05  
4.E-05  
4.E-05  
5.E-05  
5.E-05  
0.0 0.E+00  
5.E-06  
1.E-05  
2.E-05  
2.E-05  
3.E-05  
3.E-05  
4.E-05  
4.E-05  
5.E-05  
5.E-05  
Time (5 µs/div)  
Time (5 µs/div)  
FIGURE 2-27:  
Chip Select (CS) to  
FIGURE 2-30:  
Chip Select (CS) to  
Amplifier Output Response Time at VDD = 2.4V  
(MCP6293 and MCP6295 only).  
Amplifier Output Response Time at VDD = 5.5V  
(MCP6293 and MCP6295 only).  
2004 Microchip Technology Inc.  
DS21812D-page 9  
MCP6291/2/3/4/5  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1 (single op amps) and Table 3-2 (dual and quad op amps).  
TABLE 3-1:  
PIN FUNCTION TABLE FOR SINGLE OP AMPS  
MCP6291  
(PDIP,  
SOIC,  
MCP6293  
(PDIP,  
SOIC,  
MCP6291  
(SOT-23-5)  
MCP6271R  
(SOT-23-5)  
MCP6293  
(SOT-23-6)  
Symbol  
Description  
MSOP)  
MSOP)  
6
2
1
4
1
4
6
2
1
4
V
Analog Output  
OUT  
V
+
Inverting Input  
IN  
3
3
3
3
3
V
Non-inverting Input  
Positive Power Supply  
Negative Power Supply  
Chip Select  
IN  
7
5
2
7
6
V
DD  
4
2
5
4
2
V
SS  
1,5,8  
8
5
CS  
NC  
1,5  
No Internal Connection  
TABLE 3-2:  
PIN FUNCTION TABLE FOR DUAL AND QUAD OP AMPS  
MCP6292  
MCP6294  
MCP6295  
Symbol  
Description  
1
2
1
2
2
V
Analog Output (op amp A)  
Inverting Input (op amp A)  
OUTA  
V
+
INA  
3
3
3
V
Non-inverting Input (op amp A)  
Positive Power Supply  
INA  
8
4
8
V
DD  
5
5
6
V
V
+
Non-inverting Input (op amp B)  
Inverting Input (op amp B)  
Analog Output (op amp B)  
Analog Output (op amp C)  
Inverting Input (op amp C)  
Non-inverting Input (op amp C)  
Negative Power Supply  
INB  
6
6
INB  
7
7
7
V
OUTB  
OUTC  
4
8
4
V
9
V
V
+
INC  
10  
11  
12  
13  
14  
INC  
V
SS  
1
V
V
+
Non-inverting Input (op amp D)  
Inverting Input (op amp D)  
Analog Output (op amp D)  
IND  
IND  
V
OUTD  
V
/V  
+
Analog Output (op amp A)/Non-inverting Input (op amp B)  
Chip Select  
OUTA INB  
5
CS  
3.1  
Analog Outputs  
3.4  
CS Digital Input  
This is a CMOS, Schmitt-triggered input that places the  
part into a low power mode of operation.  
The output pins are low-impedance voltage sources.  
3.2  
Analog Inputs  
3.5  
Power Supply (V and V  
)
DD  
SS  
The non-inverting and inverting inputs are high-  
impedance CMOS inputs with low bias currents.  
The positive power supply (VDD) is 2.4V to 5.5V higher  
than the negative power supply (VSS). For normal  
operation, the other pins are between VSS and VDD  
.
3.3  
MCP6295’s V  
/V + Pin  
OUTA INB  
Typically, these parts are used in a single (positive)  
supply configuration). In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need a local bypass capacitor (typically 0.01 µF to  
0.1 µF) within 2 mm of the VDD pin. These parts need to  
use a bulk capacitor (within 100 mm), which can be  
shared with nearby analog parts.  
For the MCP6295 only, the output of op amp A is  
connected directly to the non-inverting input of  
op amp B; this is the VOUTA/VINB+ pin. This connection  
makes it possible to provide a Chip Select pin for duals  
in 8-pin packages.  
DS21812D-page 10  
2004 Microchip Technology Inc.  
MCP6291/2/3/4/5  
4.0  
APPLICATION INFORMATION  
The MCP6291/2/3/4/5 family of op amps is manufac-  
tured using Microchip’s state-of-the-art CMOS  
process, specifically designed for low-cost, low-power  
and general purpose applications. The low supply  
voltage, low quiescent current and wide bandwidth  
makes the MCP6291/2/3/4/5 ideal for battery-powered  
applications.  
VOUT  
RIN  
MCP629X  
+
VIN  
(Maximum expected VIN) VDD  
------------------------------------------------------------------------------------  
2 mA  
RIN  
RIN  
4.1  
Rail-to-Rail Inputs  
V
SS (Minimum expected VIN)  
----------------------------------------------------------------------------------  
The MCP6291/2/3/4/5 op amp is designed to prevent  
phase reversal when the input pins exceed the supply  
voltages. Figure 4-1 shows the input voltage exceeding  
the supply voltage without any phase reversal.  
2 mA  
FIGURE 4-2:  
Resistor (RIN).  
Input Current Limiting  
4.2  
Rail-to-Rail Output  
6
VDD = 5.0V  
G = +2V/V  
5
The output voltage range of the MCP6291/2/3/4/5 op  
amp is VDD – 15 mV (min.) and VSS + 15 mV (max.)  
when RL = 10 kis connected to VDD/2 and  
4
VOUT  
VIN  
3
2
1
0
V
DD = 5.5V. Refer to Figure 2-16 for more information.  
4.3  
Capacitive Loads  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases and the closed-loop bandwidth is  
reduced. This produces gain peaking in the frequency  
response, with overshoot and ringing in the step  
response. A unity-gain buffer (G = +1) is the most  
sensitive to capacitive loads, though all gains show the  
same general behavior.  
-1 -15  
-14  
-13  
-12  
-11  
-10  
-9  
-8  
-7  
-6  
-5  
Time (1 ms/div)  
FIGURE 4-1:  
No Phase Reversal.  
The MCP6291/2/3/4/5 Show  
The input stage of the MCP6291/2/3/4/5 op amps use  
two differential CMOS input stages in parallel. One  
operates at low common mode input voltage (VCM),  
while the other operates at high VCM. With this topol-  
ogy, the device operates with VCM up to 0.3 mV above  
VDD and 0.3 mV below VSS. The Input Offset Voltage  
When driving large capacitive loads with these op  
amps (e.g., > 100 pF when G = +1), a small series  
resistor at the output (RISO in Figure 4-3) improves the  
feedback loop’s phase margin (stability) by making the  
output load resistive at higher frequencies. The band-  
width will be generally lower than the bandwidth with no  
capacitive load.  
(VOS  
V
) is measured at VCM = VSS – 0.3 mV and  
DD + 0.3 mV to ensure proper operation.  
Input voltages that exceed the absolute maximum volt-  
age (VSS – 0.3V to VDD + 0.3V) can cause excessive  
current to flow into or out of the input pins. Current  
beyond ±2 mA can cause reliability problems. Applica-  
tions that exceed this rating must be externally limited  
with a resistor, as shown in Figure 4-2.  
RISO  
MCP629X  
+
VOUT  
VIN  
CL  
FIGURE 4-3:  
Output Resistor, RISO  
stabilizes large capacitive loads.  
Figure 4-4 gives recommended RISO values for differ-  
ent capacitive loads and gains. The x-axis is the  
normalized load capacitance (CL/GN), where GN is the  
circuit's noise gain. For non-inverting gains, GN and the  
Signal Gain are equal. For inverting gains, GN is  
1+|Signal Gain| (e.g., -1 V/V gives GN = +2 V/V).  
2004 Microchip Technology Inc.  
DS21812D-page 11  
MCP6291/2/3/4/5  
VINB  
6
VOUTA/VINB  
+
100  
1
2
3
7
VINA  
VINA  
VOUTB  
B
A
+
GN = 1 V/V  
MCP6295  
GN 2 V/V  
10  
5
10  
100  
1,000  
10,000  
CS  
Normalized Load Capacitance; CL/GN (pF)  
FIGURE 4-5:  
Cascaded Gain Amplifier.  
FIGURE 4-4:  
Recommended RISO Values  
The output of op amp A is loaded by the input imped-  
ance of op amp B, which is typically 1013Ω||6 pF, as  
specified in the DC specification table (Refer to  
Section 4.3 “Capacitive Loads” for further details  
regarding capacitive loads).  
for Capacitive Loads.  
After selecting RISO for your circuit, double-check the  
resulting frequency response peaking and step  
response overshoot. Modify RISO's value until the  
response is reasonable. Bench evaluation and  
simulations with the MCP6291/2/3/4/5 SPICE macro  
model are helpful.  
The common mode input range of these op amps is  
specified in the data sheet as VSS – 300 mV and  
VDD + 300 mV. However, since the output of op amp A  
is limited to VOL and VOH (20 mV from the rails with a  
10 kload), the non-inverting input range of op amp B  
is limited to the common mode input range of  
VSS + 20 mV and VDD – 20 mV.  
4.4  
MCP629X Chip Select (CS)  
The MCP6293 and MCP6295 are single and dual op  
amps with Chip Select (CS), respectively. When CS is  
pulled high, the supply current drops to 0.7 µA (typ.)  
and flows through the CS pin to VSS. When this  
happens, the amplifier output is put into a high-imped-  
ance state. By pulling CS low, the amplifier is enabled.  
If the CS pin is left floating, the amplifier may not  
operate properly. Figure 1-1 shows the output voltage  
and supply current response to a CS pulse.  
4.6  
Supply Bypass  
With this family of operational amplifiers, the power  
supply pin (VDD for single supply) should have a local  
bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm  
for good high-frequency performance. It also needs a  
bulk capacitor (i.e., 1 µF or larger) within 100 mm to  
provide large, slow currents. This bulk capacitor can be  
shared with other analog parts.  
4.5  
Cascaded Dual Op Amps  
(MCP6295)  
4.7  
PCB Surface Leakage  
The MCP6295 is a dual op amp with Chip Select (CS).  
The Chip Select input is available on what would be the  
non-inverting input of a standard dual op amp (pin 5).  
This is available because the output of op amp A  
connects to the non-inverting input of op amp B, as  
shown in Figure 4-5. The Chip Select input, which can  
be connected to a microcontroller I/O line, puts the  
device in Low-power mode. Refer to Section 4.3  
“MCP6293/5 Chip Select (CS)”.  
In applications where low input bias current is critical,  
Printed Circuit Board (PCB) surface-leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
between nearby traces is 1012. A 5V difference would  
cause 5 pA of current to flow, which is greater than the  
MCP6291/2/3/4/5 family’s bias current at 25°C (1 pA,  
typ.).  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
An example of this type of layout is shown in  
Figure 4-6.  
DS21812D-page 12  
2004 Microchip Technology Inc.  
MCP6291/2/3/4/5  
4.8  
Application Circuits  
VIN–  
VIN+  
VSS  
4.8.1  
MULTIPLE FEEDBACK LOW-PASS  
FILTER  
The MCP6291/2/3/4/5 op amp can be used in active-  
filter applications. Figure 4-7 shows an inverting, third-  
order, multiple feedback low-pass filter that can be  
used as an anti-aliasing filter.  
Guard Ring  
Example Guard Ring Layout  
R1  
R2  
C3  
R4  
VOUT  
VIN  
FIGURE 4-6:  
for Inverting Gain.  
R3  
C1  
C4  
1. For Inverting Gain and Transimpedance  
Amplifiers (convert current to voltage, such as  
photo detectors):  
a. Connect the guard ring to the non-inverting  
input pin (VIN+). This biases the guard ring  
to the same reference voltage as the op  
amp (e.g., VDD/2 or ground).  
MCP6291  
VDD/2  
b. Connect the inverting pin (VIN–) to the input  
with a wire that does not touch the PCB  
surface.  
FIGURE 4-7:  
Pass Filter.  
Multiple Feedback Low-  
This filter, and others, can be designed using  
Microchip’s FilterLab® software, which is available on  
our web site (www.microchip.com).  
2. Non-inverting Gain and Unity-Gain Buffer:  
a. Connect the non-inverting pin (VIN+) to the  
input with a wire that does not touch the  
PCB surface.  
4.8.2  
PHOTODIODE AMPLIFIER  
b. Connect the guard ring to the inverting input  
pin (VIN–). This biases the guard ring to the  
common mode input voltage.  
Figure 4-8 shows a photodiode biased in the photovol-  
taic mode for high precision. The resistor R converts  
the diode current ID to the voltage VOUT. The capacitor  
is used to limit the bandwidth or to stabilize the circuit  
against the diode’s capacitance (it is not always  
needed).  
C
R
ID  
VOUT  
light  
MCP6291  
VDD/2  
FIGURE 4-8:  
Photodiode Amplifier.  
2004 Microchip Technology Inc.  
DS21812D-page 13  
MCP6291/2/3/4/5  
4.8.3  
CASCADED OP AMP  
APPLICATIONS  
R4  
R3  
R2  
R1  
The MCP6295 provides the flexibility of Low-power  
mode for dual op amps in an 8-pin package. The  
MCP6295 eliminates the added cost and space in  
battery-powered applications by using two single op  
amps with Chip Select lines or a 10-pin device with one  
Chip Select line for both op amps. Since the two op  
amps are internally cascaded, this device cannot be  
used in circuits that require active or passive elements  
between the two op amps. However, there are several  
applications where this op amp configuration with  
Chip Select line becomes suitable. The circuits below  
show possible applications for this device.  
VOUT  
B
A
VIN  
MCP6295  
CS  
FIGURE 4-10:  
Cascaded Gain Circuit  
Configuration.  
4.8.3.1  
Load Isolation  
4.8.3.3  
Difference Amplifier  
With the cascaded op amp configuration, op amp B can  
be used to isolate the load from op amp A. In applica-  
tions where op amp A is driving capacitive or low resis-  
tance loads in the feedback loop (such as an integrator  
circuit or filter circuit), the op amp may not have  
sufficient source current to drive the load. In this case,  
op amp B can be used as a buffer.  
Figure 4-11 shows op amp A as a difference amplifier  
with Chip Select. In this configuration, it is recom-  
mended to use well-matched resistors (e.g., 0.1%) to  
increase the Common Mode Rejection Ratio (CMRR).  
Op amp B can be used for additional gain or as a unity-  
gain buffer to isolate the load from the difference  
amplifier.  
R4  
R3  
B
VOUTB  
Load  
B
R2  
R2  
R1  
A
A
VIN2  
MCP6295  
VOUT  
VIN1  
CS  
MCP6295  
R1  
FIGURE 4-9:  
Isolating the Load with a  
Buffer.  
CS  
4.8.3.2  
Cascaded Gain  
FIGURE 4-11:  
Difference Amplifier Circuit.  
Figure 4-10 shows a cascaded gain circuit configura-  
tion with Chip Select. Op amps A and B are configured  
in a non-inverting amplifier configuration. In this config-  
uration, it is important to note that the input offset volt-  
age of op amp A is amplified by the gain of op amp A  
and B, as shown below:  
VOUT = VINGAGB + VOSAGAGB + VOSBGB  
Where:  
GA  
GB  
VOSA  
VOSB  
=
=
=
=
op amp A gain  
op amp B gain  
op amp A input offset voltage  
op amp B input offset voltage  
Therefore, it is recommended to set most of the gain  
with op amp A and use op amp B with relatively small  
gain (e.g., a unity-gain buffer).  
DS21812D-page 14  
2004 Microchip Technology Inc.  
MCP6291/2/3/4/5  
4.8.3.4  
Buffered Non-inverting Integrator  
4.8.3.6  
Second-Order MFB Low-Pass Filter  
with an Extra Pole-Zero Pair  
Figure 4-12 shows a lossy non-inverting integrator that  
is buffered and has a Chip Select input. Op amp A is  
configured as a non-inverting integrator. In this config-  
uration, matching the impedance at each input is  
recommended. RF is used to provide a feedback loop  
at frequencies << 1/(2πR1C1) and makes this a lossy  
integrator (it has a finite gain at DC). Op amp B is used  
to isolate the load from the integrator.  
Figure 4-14 is a second-order multiple feedback low-  
pass filter with Chip Select. Use the FilterLab® software  
from Microchip to determine the R and C values for the  
op amp A’s second-order filter. Op amp B can be used  
to add a pole-zero pair using C3, R6 and R7.  
R
C
6
3
R
1
R
C
2
2
C
1
R
7
R
R
2
3
R
F
V
IN  
V
OUT  
B
V
B
OUT  
A
R
A
1
R
5
4
C
V
2
IN  
MCP6295  
R
MCP6295  
C
1
CS  
CS  
||  
R1C1 = (R2 RF)C2  
FIGURE 4-14:  
Second-Order Multiple  
Feedback Low-Pass Filter with an Extra Pole-  
Zero Pair.  
FIGURE 4-12:  
Integrator with Chip Select.  
Buffered Non-inverting  
4.8.3.7  
Second-Order Sallen-Key Low-Pass  
Filter with an Extra Pole-Zero Pair  
4.8.3.5 Inverting Integrator with Active  
Compensation and Chip Select  
Figure 4-15 is a second-order, Sallen-Key low-pass  
filter with Chip Select. Use the FilterLab® software from  
Microchip to determine the R and C values for the op  
amp A’s second-order filter. Op amp B can be used to  
add a pole-zero pair using C3, R5 and R6.  
Figure 4-13 uses an active compensator (op amp B) to  
compensate for the non-ideal op amp characteristics  
introduced at higher frequencies. This circuit uses  
op amp B as a unity-gain buffer to isolate the integra-  
tion capacitor C1 from op amp A and drives the capac-  
itor with low-impedance source. Since both op amps  
are matched very well, they provide a high quality  
integrator.  
C
3
R
R
R
5
2
1
R
6
V
B
OUT  
R
R
3
R1  
C1  
4
A
V
IN  
VIN  
MCP6295  
C
1
B
C
2
CS  
VOUT  
A
MCP6295  
FIGURE 4-15:  
Second-Order Sallen-Key  
Low-Pass Filter with an Extra Pole-Zero Pair and  
Chip Select.  
CS  
Integrator Circuit with Active  
FIGURE 4-13:  
Compensation.  
2004 Microchip Technology Inc.  
DS21812D-page 15  
MCP6291/2/3/4/5  
4.8.3.8  
Capacitorless Second-Order  
Low-Pass filter with Chip Select  
5.0  
DESIGN TOOLS  
Microchip provides the basic design tools needed for  
the MCP6291/2/3/4/5 family of op amps.  
The low-pass filter shown in Figure 4-16 does not  
require external capacitors and uses only three exter-  
nal resistors; the op amp’s GBWP sets the corner  
frequency. R1 and R2 are used to set the circuit gain  
and R3 is used to set the Q. To avoid gain peaking in  
the frequency response, Q needs to be low (lower  
values need to be selected for R3). Note that the  
amplifier bandwidth varies greatly over temperature  
and process. However, this configuration provides a  
low cost solution for applications with high bandwidth  
requirements.  
5.1  
SPICE Macro Model  
The latest SPICE macro model for the  
MCP6291/2/3/4/5 op amps is available on our web site  
at www.microchip.com. This model is intended to be an  
initial design tool that works well in the op amp’s linear  
region of operation at room temperature. See the  
macro model file for information on its capabilities.  
Bench testing is a very important part of any design and  
cannot be replaced with simulations. Also, simulation  
results using this macro model need to be validated by  
comparing them to the data sheet specifications and  
characteristic curves.  
R2  
R1  
VIN  
R3  
®
5.2  
FilterLab Software  
A
VOUT  
B
Microchip’s FilterLab software is an innovative tool that  
simplifies analog active-filter (using op amps) design.  
Available at no cost from our web site at  
www.microchip.com, the FilterLab design tool provides  
full schematic diagrams of the filter circuit with  
component values. It also outputs the filter circuit in  
SPICE format, which can be used with the macro  
model to simulate actual filter performance.  
VREF  
MCP6295  
CS  
FIGURE 4-16:  
Low-Pass Filter with Chip Select.  
Capacitorless Second-Order  
DS21812D-page 16  
2004 Microchip Technology Inc.  
MCP6291/2/3/4/5  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
Example:  
CJ25  
Example:  
CM25  
Example:  
5-Lead SOT-23 (MCP6291 and MCP6291R)  
Device  
Code  
MCP6291  
CJNN  
EVNN  
XXNN  
MCP6291R  
Note: Applies to 5-Lead SOT-23  
6-Lead SOT-23 (MCP6283)  
XXNN  
8-Lead MSOP  
XXXXXX  
YWWNNN  
6291E  
436256  
8-Lead PDIP (300 mil)  
Example:  
XXXXXXXX  
XXXXXNNN  
MCP6291  
E/P256  
YYWW  
0436  
8-Lead SOIC (150 mil)  
Example:  
XXXXXXXX  
XXXXYYWW  
MCP6291  
E/SN0436  
NNN  
256  
Legend: XX...X Customer specific information*  
YY  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard marking consists of Microchip part number, year code, week code, traceability code (facility  
code, mask rev#, and assembly code). For marking beyond this, certain price adders apply. Please  
check with your Microchip Sales Office.  
2004 Microchip Technology Inc.  
DS21812D-page 17  
MCP6291/2/3/4/5  
Package Marking Information (Continued)  
14-Lead PDIP (300 mil) (MCP6294)  
Example:  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
MCP6294-E/P  
0436256  
YYWWNNN  
14-Lead SOIC (150 mil) (MCP6294)  
Example:  
XXXXXXXXXX  
XXXXXXXXXX  
MCP6294ESL  
0436256  
YYWWNNN  
Example:  
14-Lead TSSOP (MCP6294)  
XXXXXX  
YYWW  
6294EST  
0436  
NNN  
256  
DS21812D-page 18  
2004 Microchip Technology Inc.  
MCP6291/2/3/4/5  
5-Lead Plastic Small Outline Transistor (OT) (SOT-23)  
E
E1  
p
B
p1  
D
n
1
α
c
A
A2  
φ
A1  
L
β
Units  
Dimension Limits  
INCHES*  
NOM  
5
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
5
MAX  
n
p
Number of Pins  
Pitch  
.038  
0.95  
p1  
Outside lead pitch (basic)  
Overall Height  
.075  
.046  
.043  
.003  
.110  
.064  
.116  
.018  
5
1.90  
1.18  
1.10  
0.08  
2.80  
1.63  
2.95  
0.45  
5
A
A2  
A1  
E
.035  
.035  
.000  
.102  
.059  
.110  
.014  
0
.057  
0.90  
1.45  
Molded Package Thickness  
Standoff  
.051  
.006  
.118  
.069  
.122  
.022  
10  
0.90  
0.00  
2.60  
1.50  
2.80  
0.35  
0
1.30  
0.15  
3.00  
1.75  
3.10  
0.55  
10  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.004  
.014  
0
.006  
.017  
5
.008  
.020  
10  
0.09  
0.35  
0
0.15  
0.43  
5
0.20  
0.50  
10  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
0
5
10  
0
5
10  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed .005" (0.127mm) per side.  
EIAJ Equivalent: SC-74A  
Drawing No. C04-091  
2004 Microchip Technology Inc.  
DS21812D-page 19  
MCP6291/2/3/4/5  
6-Lead Plastic Small Outline Transistor (CH) (SOT-23)  
E
E1  
B
p1  
D
n
1
α
c
A
A2  
φ
A1  
L
β
Units  
INCHES*  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
6
MAX  
MIN  
NOM  
6
MAX  
n
p
Number of Pins  
Pitch  
.038  
0.95  
1.90  
p1  
Outside lead pitch (basic)  
Overall Height  
.075  
.046  
.043  
.003  
.110  
.064  
.116  
.018  
5
A
A2  
A1  
E
.035  
.057  
0.90  
0.90  
1.18  
1.10  
0.08  
2.80  
1.63  
2.95  
0.45  
5
1.45  
1.30  
0.15  
3.00  
1.75  
3.10  
0.55  
10  
Molded Package Thickness  
Standoff  
.035  
.000  
.102  
.059  
.110  
.014  
0
.051  
.006  
.118  
.069  
.122  
.022  
10  
0.00  
2.60  
1.50  
2.80  
0.35  
0
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.004  
.014  
0
.006  
.017  
5
.008  
.020  
10  
0.09  
0.35  
0
0.15  
0.43  
5
0.20  
0.50  
10  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
0
5
10  
0
5
10  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed .005" (0.127mm) per side.  
JEITA (formerly EIAJ) equivalent: SC-74A  
Drawing No. C04-120  
DS21812D-page 20  
2004 Microchip Technology Inc.  
MCP6291/2/3/4/5  
8-Lead Plastic Micro Small Outline Package (MS) (MSOP)  
E
E1  
p
D
2
B
n
1
α
A2  
A
c
φ
A1  
(F)  
L
β
Units  
Dimension Limits  
INCHES  
NOM  
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
8
8
.026 BSC  
0.65 BSC  
Overall Height  
A
A2  
A1  
E
-
-
.043  
-
-
1.10  
Molded Package Thickness  
Standoff  
.030  
.000  
.033  
-
.037  
.006  
0.75  
0.00  
0.85  
-
0.95  
0.15  
Overall Width  
.193 TYP.  
4.90 BSC  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
.118 BSC  
.118 BSC  
3.00 BSC  
3.00 BSC  
L
.016  
.024  
.037 REF  
.031  
0.40  
0.60  
0.95 REF  
0.80  
Footprint (Reference)  
Foot Angle  
F
φ
c
0°  
.003  
.009  
-
8°  
.009  
.016  
15°  
0°  
0.08  
0.22  
5°  
-
-
-
-
-
8°  
0.23  
0.40  
15°  
Lead Thickness  
Lead Width  
.006  
.012  
-
B
α
β
5°  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
5°  
5°  
5°  
-
-
-
15°  
5°  
15°  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed .010" (0.254mm) per side.  
JEDEC Equivalent: MO-187  
Drawing No. C04-111  
2004 Microchip Technology Inc.  
DS21812D-page 21  
MCP6291/2/3/4/5  
8-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
β
B1  
B
p
eB  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
8
MAX  
n
p
Number of Pins  
Pitch  
8
.100  
.155  
.130  
2.54  
Top to Seating Plane  
A
.140  
.170  
3.56  
2.92  
3.94  
3.30  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.360  
.125  
.008  
.045  
.014  
.310  
5
.145  
3.68  
0.38  
7.62  
6.10  
9.14  
3.18  
0.20  
1.14  
0.36  
7.87  
5
.313  
.250  
.373  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.385  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
9.46  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
9.78  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-018  
DS21812D-page 22  
2004 Microchip Technology Inc.  
MCP6291/2/3/4/5  
8-Lead Plastic Small Outline (SN) – Narrow, 150 mil (SOIC)  
E
E1  
p
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
8
8
.050  
.061  
.056  
.007  
.237  
.154  
.193  
.015  
.025  
4
1.27  
1.55  
1.42  
0.18  
6.02  
3.91  
4.90  
0.38  
0.62  
4
Overall Height  
A
.053  
.069  
1.35  
1.75  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.052  
.004  
.228  
.146  
.189  
.010  
.019  
0
.061  
.010  
.244  
.157  
.197  
.020  
.030  
8
1.32  
0.10  
5.79  
3.71  
4.80  
0.25  
0.48  
0
1.55  
0.25  
6.20  
3.99  
5.00  
0.51  
0.76  
8
§
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.008  
.013  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.33  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-057  
2004 Microchip Technology Inc.  
DS21812D-page 23  
MCP6291/2/3/4/5  
14-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
B1  
β
eB  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
14  
MAX  
n
p
Number of Pins  
Pitch  
14  
.100  
.155  
.130  
2.54  
Top to Seating Plane  
A
.140  
.170  
3.56  
2.92  
0.38  
7.62  
6.10  
18.80  
3.18  
0.20  
1.14  
0.36  
7.87  
5
3.94  
3.30  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.740  
.125  
.008  
.045  
.014  
.310  
5
.145  
3.68  
.313  
.250  
.750  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.760  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
19.05  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
19.30  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-005  
DS21812D-page 24  
2004 Microchip Technology Inc.  
MCP6291/2/3/4/5  
14-Lead Plastic Small Outline (SL) – Narrow, 150 mil (SOIC)  
E
E1  
p
D
2
1
B
n
α
h
45°  
c
A2  
A
φ
A1  
L
β
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
14  
MAX  
n
p
Number of Pins  
Pitch  
14  
.050  
.061  
.056  
.007  
.236  
.154  
.342  
.015  
.033  
4
1.27  
Overall Height  
A
.053  
.052  
.004  
.228  
.150  
.337  
.010  
.016  
0
.069  
1.35  
1.32  
1.55  
1.42  
0.18  
5.99  
3.90  
8.69  
0.38  
0.84  
4
1.75  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.061  
.010  
.244  
.157  
.347  
.020  
.050  
8
1.55  
0.25  
6.20  
3.99  
8.81  
0.51  
1.27  
8
§
0.10  
5.79  
3.81  
8.56  
0.25  
0.41  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.008  
.014  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.36  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-065  
2004 Microchip Technology Inc.  
DS21812D-page 25  
MCP6291/2/3/4/5  
14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm (TSSOP)  
E
E1  
p
D
2
1
n
B
α
A
c
φ
A1  
A2  
β
L
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
14  
MAX  
n
p
Number of Pins  
Pitch  
14  
.026  
0.65  
Overall Height  
A
.043  
1.10  
0.95  
0.15  
6.50  
4.50  
5.10  
0.70  
8
Molded Package Thickness  
Standoff  
A2  
A1  
E
.033  
.002  
.246  
.169  
.193  
.020  
0
.035  
.004  
.251  
.173  
.197  
.024  
4
.037  
.006  
.256  
.177  
.201  
.028  
8
0.85  
0.05  
0.90  
0.10  
6.38  
4.40  
5.00  
0.60  
4
§
Overall Width  
6.25  
4.30  
4.90  
0.50  
0
Molded Package Width  
Molded Package Length  
Foot Length  
E1  
D
L
φ
Foot Angle  
c
Lead Thickness  
.004  
.007  
0
.006  
.010  
5
.008  
.012  
10  
0.09  
0.19  
0
0.15  
0.25  
5
0.20  
0.30  
10  
Lead Width  
B1  
α
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.005” (0.127mm) per side.  
JEDEC Equivalent: MO-153  
Drawing No. C04-087  
DS21812D-page 26  
2004 Microchip Technology Inc.  
MCP6291/2/3/4/5  
APPENDIX A: REVISION HISTORY  
Revision A (June 2003)  
Original data sheet release.  
Revision B (October 2003)  
Revision C (June 2004)  
Revision D (December 2004)  
The following is the list of modifications:  
1. Added SOT-23-5 packages for the MCP6291  
and MCP6291R single op amps.  
2. Added SOT-23-6 package for the MCP6293  
single op amp.  
3. Added Section 3.0 “Pin Descriptions”.  
4. Corrected application circuits (Section 4.8  
“Application Circuits”).  
5. Added SOT-23-5 and SOT-23-6 packages and  
corrected  
package  
marking  
information  
(Section 6.0 “Packaging Information”).  
6. Added Appendix A: Revision History.  
2004 Microchip Technology Inc.  
DS21812D-page 27  
MCP6291/2/3/4/5  
NOTES:  
DS21812D-page 28  
2004 Microchip Technology Inc.  
MCP6291/2/3/4/5  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
/XX  
a)  
b)  
c)  
d)  
MCP6291-E/SN:  
Extended Temperature,  
8LD SOIC package.  
Temperature  
Range  
Package  
MCP6291-E/MS: Extended Temperature,  
8LD MSOP package.  
MCP6291-E/P:  
Extended Temperature,  
8LD PDIP package.  
Device:  
MCP6291:  
MCP6291T:  
Single Op Amp  
Single Op Amp  
(Tape and Reel)  
(SOIC, MSOP, SOT-23-5)  
Single Op Amp  
(Tape and Reel) (SOT-23-5)  
Dual Op Amp  
Dual Op Amp  
(Tape and Reel) (SOIC, MSOP)  
Single Op Amp with Chip Select  
Single Op Amp with Chip Select  
(Tape and Reel)  
(SOIC, MSOP, SOT-23-6)  
Quad Op Amp  
MCP6291T-E/OT: Tape and Reel,  
Extended Temperature,  
5LD SOT-23 package.  
MCP6291RT:  
a)  
b)  
c)  
d)  
MCP6292-E/SN:  
Extended Temperature,  
8LD SOIC package.  
MCP6292:  
MCP6292T:  
MCP6292-E/MS: Extended Temperature,  
8LD MSOP package.  
MCP6292-E/P:  
Extended Temperature,  
8LD PDIP package.  
MCP6293:  
MCP6293T:  
MCP6292T-E/SN: Tape and Reel,  
Extended Temperature,  
8LD SOIC package.  
MCP6294:  
MCP6294T:  
a)  
b)  
c)  
d)  
MCP6293-E/SN:  
Extended Temperature,  
8LD SOIC package.  
Quad Op Amp  
(Tape and Reel) (SOIC, TSSOP)  
Dual Op Amp with Chip Select  
Dual Op Amp with Chip Select  
(Tape and Reel) (SOIC, MSOP)  
MCP6293-E/MS: Extended Temperature,  
8LD MSOP package.  
MCP6293-E/P:  
MCP6295:  
MCP6295T:  
Extended Temperature,  
8LD PDIP package.  
MCP6293T-E/CH: Tape and Reel,  
Extended Temperature,  
Temperature Range:  
Package:  
E
=
-40°C to +125°C  
6LD SOT-23 package.  
a)  
b)  
MCP6294-E/P:  
Extended Temperature,  
14LD PDIP package.  
OT  
CH  
=
=
Plastic Small Outline Transistor (SOT-23), 5-lead  
(MCP6291, MCP6291R)  
Plastic Small Outline Transistor (SOT-23), 6-lead  
(MCP6293)  
MCP6294T-E/SL: Tape and Reel,  
Extended Temperature,  
14LD SOIC package.  
Extended Temperature,  
14LD SOIC package.  
Extended Temperature,  
14LD TSSOP package.  
MS  
P
SN  
SL  
ST  
=
=
=
=
=
Plastic MSOP, 8-lead  
c)  
d)  
MCP6294-E/SL:  
MCP6294-E/ST:  
Plastic DIP (300 mil Body), 8-lead, 14-lead  
Plastic SOIC, (150 mil Body), 8-lead  
Plastic SOIC (150 mil Body), 14-lead  
Plastic TSSOP (4.4 mm Body), 14-lead  
a)  
b)  
c)  
d)  
MCP6295-E/SN:  
Extended Temperature,  
8LD SOIC package.  
MCP6295-E/MS: Extended Temperature,  
8LD MSOP package.  
MCP6295-E/P:  
Extended Temperature,  
8LD PDIP package.  
MCP6295T-E/SN: Tape and Reel,  
Extended Temperature,  
8LD SOIC package.  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and  
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
Customer Notification System  
Register on our web site (www.microchip.com) to receive the most current information on our products.  
2004 Microchip Technology Inc.  
DS21812D-page 29  
MCP6291/2/3/4/5  
NOTES:  
DS21812D-page 30  
2004 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-  
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,  
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,  
RELATED TO THE INFORMATION, INCLUDING BUT NOT  
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,  
MERCHANTABILITY OR FITNESS FOR PURPOSE.  
Microchip disclaims all liability arising from this information and  
its use. Use of Microchip’s products as critical components in  
life support systems is not authorized except with express  
written approval by Microchip. No licenses are conveyed,  
implicitly or otherwise, under any Microchip intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart, rfPIC, and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
PICMASTER, SEEVAL, SmartSensor and The Embedded  
Control Solutions Company are registered trademarks of  
Microchip Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, dsPICDEM,  
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,  
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial  
Programming, ICSP, ICEPIC, MPASM, MPLIB, MPLINK,  
MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail,  
PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel and Total  
Endurance are trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2004, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 quality system certification for  
its worldwide headquarters, design and wafer fabrication facilities in  
Chandler and Tempe, Arizona and Mountain View, California in  
October 2003. The Company’s quality system processes and  
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
2004 Microchip Technology Inc.  
DS21812D-page 31  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
India - Bangalore  
Tel: 91-80-2229-0061  
Fax: 91-80-2229-0062  
Austria - Weis  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Denmark - Ballerup  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-5160-8631  
Fax: 91-11-5160-8632  
China - Chengdu  
Tel: 86-28-8676-6200  
Fax: 86-28-8676-6599  
France - Massy  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Japan - Kanagawa  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Atlanta  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Germany - Ismaning  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Korea - Seoul  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Boston  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Westford, MA  
Tel: 978-692-3848  
Fax: 978-692-3821  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
England - Berkshire  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Dallas  
Addison, TX  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Tel: 972-818-7423  
Fax: 972-818-2924  
Taiwan - Hsinchu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shunde  
Detroit  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Qingdao  
Tel: 86-532-502-7355  
Fax: 86-532-502-7205  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
San Jose  
Mountain View, CA  
Tel: 650-215-1444  
Fax: 650-961-0286  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
10/20/04  
DS21812D-page 32  
2004 Microchip Technology Inc.  

相关型号:

MCP6295T-E/MS

DUAL OP-AMP, 5000 uV OFFSET-MAX, 10 MHz BAND WIDTH, PDSO8, PLASTIC, MO-187, MSOP-8
MICROCHIP

MCP6295T-E/P

Operational Amplifier
MICROCHIP

MCP6295T-E/SN

1.0 mA, 10 MHz Rail-to-Rail Op Amp
MICROCHIP

MCP6295T-ESN

1.0 mA, 10 MHz Rail-to-Rail Op Amp
MICROCHIP

MCP631

24 MHz, 2.5 mA Op Amps
MICROCHIP

MCP631-E/MF

24 MHz, 2.5 mA Op Amps
MICROCHIP

MCP631-E/SN

24 MHz, 2.5 mA Op Amps
MICROCHIP

MCP631-E/UN

24 MHz, 2.5 mA Op Amps
MICROCHIP

MCP631T

24 MHz, 2.5 mA Op Amps
MICROCHIP

MCP631T-E/MF

24 MHz, 2.5 mA Op Amps
MICROCHIP

MCP631T-E/SN

24 MHz, 2.5 mA Op Amps
MICROCHIP

MCP631T-E/UN

24 MHz, 2.5 mA Op Amps
MICROCHIP