MCP6422 [MICROCHIP]

The Microchip’s MCP6421/2/4 operational amplifiers (op amps) has low input bias current (1 pA, typ;
MCP6422
型号: MCP6422
厂家: MICROCHIP    MICROCHIP
描述:

The Microchip’s MCP6421/2/4 operational amplifiers (op amps) has low input bias current (1 pA, typ

放大器 运算放大器 放大器电路
文件: 总34页 (文件大小:2880K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6421  
4.4 µA, 90 kHz Op Amp  
Features:  
Description:  
The Microchip Technology Inc. MCP6421 family of  
operational amplifiers operate with a single supply  
voltage as low as 1.8V, while drawing low quiescent  
current per amplifier (5.5 µA, maximum). This family  
also has low input offset voltage (±1.0 mV, maximum)  
and rail-to-rail input and output operation. In addition,  
the MCP6421 family is unity gain stable and has a gain  
bandwidth product of 90 kHz (typical). This  
combination of features supports battery-powered and  
portable applications. The MCP6421 family has  
enhanced EMI protection to minimize any  
electromagnetic interference from external sources,  
such as power lines, radio stations, and mobile  
communications, etc. This feature makes it well suited  
for EMI sensitive applications.  
• Low Quiescent Current:  
- 4.4 µA/amplifier (typical)  
• Low Input Offset Voltage:  
- ±1.0 mV (maximum)  
• Enhanced EMI Protection:  
- Electromagnetic Interference Rejection Ratio  
(EMIRR) at 1.8 GHz: 97 dB  
• Supply Voltage Range: 1.8V to 5.5V  
• Gain Bandwidth Product: 90 kHz (typical)  
• Rail-to-Rail Input/Output  
• Slew Rate: 0.05 V/µs (typical)  
• Unity Gain Stable  
• No Phase Reversal  
• Small Packages:  
The MCP6421 family is offered in single (MCP6421)  
packages. All devices are designed using an advanced  
CMOS process and fully specified in extended  
temperature range from -40°C to +125°C.  
- Singles in SC70-5, SOT-23-5  
• Extended Temperature Range:  
- -40°C to +125°C  
Package Types  
Applications:  
• Portable Medical Instrument  
• Safety Monitoring  
MCP6421  
SC70-5, SOT-23-5  
• Battery Powered System  
• Remote Sensing  
VOUT  
VSS  
1
2
3
5
4
VDD  
• Supply Current Sensing  
• Analog Active Filter  
VIN+  
VIN–  
Design Aids:  
Typical Application  
• SPICE Macro Models  
• FilterLab® Software  
VDD  
R
VDD  
3
R+ꢁR  
R-ꢁR  
• Microchip Advanced Part Selector (MAPS)  
• Analog Demonstration and Evaluation Boards  
• Application Notes  
100k  
MCP6421  
-
R
1
VDD  
+
1kꢀ  
VOUT  
MCP6421  
V
b
-
V
a
+
VDD  
R
2
1kꢀ  
R
5
-
100k  
+
R-ꢁR R+ꢁR  
MCP6421  
10k  
VOUT = Va Vb-------------  
100  
Strain Gauge  
2013 Microchip Technology Inc.  
DS25165A-page 1  
MCP6421  
NOTES:  
DS25165A-page 2  
2013 Microchip Technology Inc.  
MCP6421  
1.0  
1.1  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
V
– V ......................................................................................................................................................................................... 6.5V  
SS  
DD  
Current at Analog Input Pins (V +, V -)....................................................................................................................................... ±2 mA  
IN  
IN  
Analog Inputs (V +, V -)†† ............................................................................................................................V – 1.0V to V + 1.0V  
IN  
IN  
SS  
DD  
All Other Inputs and Outputs ...........................................................................................................................V – 0.3V to V + 0.3V  
SS  
DD  
Difference Input Voltage ........................................................................................................................................................|V – V  
|
SS  
DD  
Output Short-Circuit Current ................................................................................................................................................. Continuous  
Current at Input Pins...................................................................................................................................................................... ±2 mA  
Current at Output and Supply Pins ............................................................................................................................................. ±30 mA  
Storage Temperature ..................................................................................................................................................... -65°C to +150°C  
Maximum Junction Temperature (T )........................................................................................................................................... +150°C  
J
ESD Protection on All Pins (HBM; MM)  4 kV; 400V  
† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at those or any other conditions above those indicated  
in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended peri-  
ods may affect device reliability.  
†† See Section 4.1.2 “Input Voltage Limits”.  
1.2  
Specifications  
TABLE 1-1:  
DC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA= +25°C, VDD = +1.8V to +5.5V, VSS= GND, VCM = VDD/2,  
VOUT = VDD/2, VL = VDD/2, RL = 100 kto VL and CL = 30 pF (refer to Figure 1-1).  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Offset  
Input Offset Voltage  
VOS  
-1.0  
±3.0  
90  
1.0  
mV VDD = 3.0V; VCM = VDD  
4
/
Input Offset Drift with Temperature  
VOS/TA  
PSRR  
µV/°C TA= -40°C to +125°C,  
VCM = VSS  
Power Supply Rejection Ratio  
Input Bias Current and Impedance  
Input Bias Current  
75  
dB VCM = VSS  
IB  
±1  
20  
50  
pA  
pA TA = +85°C  
800  
pA TA = +125°C  
Input Offset Current  
IOS  
ZCM  
±1  
pA  
Common Mode Input Impedance  
Differential Input Impedance  
Common Mode  
1013||12  
1013||12  
||pF  
|pF  
ZDIFF  
Common Mode Input Voltage Range  
Common Mode Rejection Ratio  
VCMR  
VSS - 0.3  
75  
VDD + 0.3  
V
CMRR  
90  
dB VDD = 5.5V  
VCM = -0.3V to 5.8V  
70  
85  
dB VDD = 1.8V  
VCM = -0.3V to 2.1V  
2013 Microchip Technology Inc.  
DS25165A-page 3  
MCP6421  
TABLE 1-1:  
DC ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, TA= +25°C, VDD = +1.8V to +5.5V, VSS= GND, VCM = VDD/2,  
VOUT = VDD/2, VL = VDD/2, RL = 100 kto VL and CL = 30 pF (refer to Figure 1-1).  
Parameters  
Open-Loop Gain  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
DC Open-Loop Gain  
(Large Signal)  
AOL  
95  
115  
dB 0.3 < VOUT < (VDD -0.3V)  
VCM= VSS  
VDD = 5.5V  
Output  
High-Level Output Voltage  
VOH  
VOL  
ISC  
1.796  
5.495  
1.799  
5.499  
0.001  
0.001  
±6  
V
V
V
V
VDD = 1.8V  
VDD = 5.5V  
VDD = 1.8V  
Low-Level Output Voltage  
Output Short-Circuit Current  
0.004  
0.005  
VDD = 5.5V  
mA VDD = 1.8V  
mA VDD = 5.5V  
±22  
Power Supply  
Supply Voltage  
VDD  
IQ  
1.8  
5.5  
5.5  
V
Quiescent Current per Amplifier  
4.4  
µA IO = 0, VCM = VDD/4  
TABLE 1-2:  
AC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA= +25°C, VDD = +1.8V to +5.5V, VSS= GND, VCM = VDD/2,  
VOUT = VDD/2, VL = VDD/2, RL = 100 kto VL and CL = 30 pF (refer to Figure 1-1).  
Parameters  
AC Response  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Gain Bandwidth Product  
Phase Margin  
GBWP  
PM  
90  
55  
kHz  
°
G = +1 V/V  
Slew Rate  
SR  
0.05  
V/µs  
Noise  
Input Noise Voltage  
Input Noise Voltage Density  
Eni  
eni  
15  
95  
90  
0.6  
77  
µVp-p  
f = 0.1 Hz to 10 Hz  
nV/Hz f = 1 kHz  
nV/Hz f = 10 kHz  
fA/Hz f = 1 kHz  
Input Noise Current Density  
ini  
Electromagnetic Interference  
Rejection Ratio  
EMIRR  
dB  
V
IN = 100 mVPK  
400 MHz  
VIN = 100 mVPK  
,
,
,
,
92  
97  
99  
900 MHz  
VIN = 100 mVPK  
1800 MHz  
VIN = 100 mVPK  
2400 MHz  
DS25165A-page 4  
2013 Microchip Technology Inc.  
MCP6421  
TABLE 1:  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, VDD = +1.8V to +5.5V and VSS = GND.  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 5L-SC70  
Thermal Resistance, 5L-SOT-23  
TA  
TA  
-40  
-65  
+125  
+150  
°C  
°C  
Note 1  
JA  
JA  
331  
°C/W  
°C/W  
220.7  
Note 1: The internal junction temperature (TJ) must not exceed the absolute maximum specification of +150°C.  
1.3  
Test Circuits  
CF  
The circuit used for most DC and AC tests is shown in  
Figure 1-1. This circuit can independently set VCM and  
VOUT (see Equation 1-1). Note that VCM is not the  
circuit’s Common mode voltage ((VP + VM)/2), and that  
VOST includes VOS plus the effects (on the input offset  
error, VOST) of the temperature, CMRR, PSRR and  
6.8 pF  
RG  
100 k  
RF  
100 k  
VDD/2  
VP  
VDD  
AOL  
.
VIN+  
CB1  
100 nF  
CB2  
1 µF  
EQUATION 1-1:  
MCP6421  
GDM = RF RG  
VIN–  
VCM = VP + VDD 22  
VOST = VIN– VIN+  
VOUT  
VM  
RL  
CL  
RG  
100 k  
RF  
VOUT = VDD 2+ VP VM+ VOST1 + GDM  
Where:  
100 k30 pF  
100 k  
GDM = Differential Mode Gain  
(V/V)  
(V)  
CF  
VL  
6.8 pF  
VCM = Op Amp’s Common Mode  
Input Voltage  
FIGURE 1-1:  
AC and DC Test Circuit for  
VOST = Op Amp’s Total Input Offset Voltage (mV)  
Most Specifications.  
2013 Microchip Technology Inc.  
DS25165A-page 5  
MCP6421  
NOTES:  
DS25165A-page 6  
2013 Microchip Technology Inc.  
MCP6421  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA= +25°C, VDD = +1.8V to +5.5V, VSS= GND, VCM = VDD/2, VOUT = VDD/2,  
VL = VDD/2, RL = 100 kto VL and CL = 30 pF.  
48%  
44%  
40%  
36%  
32%  
28%  
24%  
20%  
16%  
12%  
8%  
1000  
800  
600  
400  
200  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
1253Samples  
VDD = 3.0V  
VCM = VDD/4  
0
-200  
-400  
-600  
-800  
-1000  
VDD = 5.5V  
Representative Part  
4%  
0%  
-0.50.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Common Mode Input Voltage (V)  
Input Offset Voltage (μV)  
FIGURE 2-1:  
Input Offset Voltage.  
FIGURE 2-4:  
Input Offset Voltage vs.  
Common Mode Input Voltage.  
12%  
1000  
800  
600  
400  
200  
0
-200  
-400  
-600  
-800  
-1000  
1253 Samples  
DD = 3.0V  
VCM = VDD/4  
TA = -40°C to +125°C  
V
10%  
8%  
6%  
4%  
2%  
0%  
Representative Part  
VDD = 5.5V  
VDD = 1.8V  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Output Voltage (V)  
Input Offset Voltage Drift (μV/°C)  
FIGURE 2-2:  
Input Offset Voltage Drift.  
FIGURE 2-5:  
Input Offset Voltage vs.  
Output Voltage.  
1000  
800  
600  
400  
200  
1000  
800  
600  
400  
200  
0
Representative Part  
TA = +125°C  
T
A = +85°C  
TA = +25°C  
A = -40°C  
T
0
-200  
-400  
-600  
-800  
-1000  
-200  
-400  
-600  
-800  
-1000  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
VDD = 1.8V  
Representative Part  
-0.3 0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1  
Common Mode Input Voltage (V)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
Power Supply Voltage (V)  
FIGURE 2-3:  
Input Offset Voltage vs.  
FIGURE 2-6:  
Input Offset Voltage vs.  
Common Mode Input Voltage.  
Power Supply Voltage.  
2013 Microchip Technology Inc.  
DS25165A-page 7  
MCP6421  
Note: Unless otherwise indicated, TA= +25°C, VDD = +1.8V to +5.5V, VSS= GND, VCM = VDD/2, VOUT = VDD/2,  
VL = VDD/2, RL = 100 kto VL and CL = 30 pF.  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
140  
130  
120  
110  
100  
90  
PSRR  
80  
CMRR @ VDD = 5.5V  
@ VDD = 1.8V  
70  
f = 10 kHz  
DD = 5.5 V  
60  
V
50  
-0.5 0 0.5  
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6  
-50  
-25  
0
25  
50  
75  
100  
125  
Common Mode Input Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-7:  
Input Noise Voltage Density  
FIGURE 2-10:  
CMRR, PSRR vs. Ambient  
vs. Common Mode Input Voltage.  
Temperature.  
10,000  
1n  
VDD = 5.5V  
100p  
1,000  
100  
10  
Input Bias Current  
10p  
1p  
0.1p  
.
Input Offset Current  
0.01p  
0.1  
1
10
100  
1k
10k 100k  
Ambient Temperature (°C)  
Frequency (Hz)  
FIGURE 2-8:  
Input Noise Voltage Density  
FIGURE 2-11:  
Input Bias, Offset Current  
vs. Frequency.  
vs. Ambient Temperature.  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
100  
Representative Part  
CMRR  
TA = +125°C  
90  
80  
70  
60  
50  
40  
30  
20  
PSRR-  
PSRR+  
TA = +85°C  
TA = +25°C  
VDD = 5.5 V  
-100  
100
1k  
10k  
100k  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
10  
Frequency (Hz)  
Common Mode Input Voltage (V)  
FIGURE 2-9:  
CMRR, PSRR vs.  
FIGURE 2-12:  
Input Bias Current vs.  
Frequency.  
Common Mode Input Voltage.  
DS25165A-page 8  
2013 Microchip Technology Inc.  
MCP6421  
Note: Unless otherwise indicated, TA= +25°C, VDD = +1.8V to +5.5V, VSS= GND, VCM = VDD/2, VOUT = VDD/2,  
VL = VDD/2, RL = 100 kto VL and CL = 30 pF.  
6
5
6
VDD = 5.5V  
VDD = 1.8V  
5
4
3
2
1
0
4
3
2
1
0
VDD = 5.5V  
G = +1 V/V  
-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Common Mode Input Voltage (V)  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
FIGURE 2-13:  
Quiescent Current vs.  
FIGURE 2-16:  
Quiescent Current vs.  
Ambient Temperature.  
Common Mode Input Voltage.  
6
5
4
3
2
1
0
120  
0
Open-Loop Gain  
100  
-30  
80  
-60  
Open-Loop Phase  
60  
40  
20  
0
-90  
-120  
-150  
-180  
-210  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
-20  
1.0E.0021 0.1 1.1E+0 10 100 1.0Ek3 10k 100k  
10-1  
10+0
10+0
.E4  
10E+0
0
0.5  
1
1.5  
2 2.5 3 3.5 4 4.5 5 5.5 6  
Power Supply Voltage (V)  
Frequency (Hz)  
FIGURE 2-14:  
Quiescent Current vs.  
FIGURE 2-17:  
Open-Loop Gain, Phase vs.  
Power Supply Voltage.  
Frequency.  
6
5
4
3
2
140  
VDD = 5.5V  
130  
120  
110  
100  
90  
VDD = 1.8V  
1
VDD = 1.8V  
G = +1 V/V  
0
80  
-50  
-25  
0
25  
50  
75  
100  
125  
-0.5 -0.2 0.1 0.4 0.7 1.0 1.3 1.6 1.9 2.2 2.5  
Common Mode Input Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-15:  
Quiescent Current vs.  
FIGURE 2-18:  
DC Open-Loop Gain vs.  
Common Mode Input Voltage.  
Ambient Temperature.  
2013 Microchip Technology Inc.  
DS25165A-page 9  
MCP6421  
Note: Unless otherwise indicated, TA= +25°C, VDD = +1.8V to +5.5V, VSS= GND, VCM = VDD/2, VOUT = VDD/2,  
VL = VDD/2, RL = 100 kto VL and CL = 30 pF.  
150  
140  
130  
120  
110  
100  
90  
40  
30  
Isc+@ TA = +125°C  
TA = +85°C  
TA = +25°C  
20  
TA = -40°C  
10  
0
VDD = 5.5V  
VDD = 1.8V  
-10  
-20  
-30  
-40  
Isc-@ TA = +125°C  
TA = +85°C  
80  
TA = +25°C  
TA = -40°C  
70  
0.00  
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Output Voltage Headroom (V)  
VDD - VOH or VOL - VSS  
Power Supply Voltage (V)  
FIGURE 2-19:  
DC Open-Loop Gain vs.  
FIGURE 2-22:  
Output Short Circuit Current  
Output Voltage Headroom.  
vs. Power Supply Voltage.  
100.0  
90.0  
80.0  
180  
160  
140  
120  
100  
80  
10  
VDD = 5.5V  
VDD = 1.8V  
Gain Bandwidth Product  
70.0  
60.0  
50.0  
40.0  
30.0  
1
60  
40  
Phase Margin  
VDD = 5.5V  
20  
0
0.1  
1k  
10k  
100k  
-50 -25  
0
25  
50  
75 100 125  
Ambient Temperature (°C)  
Frequency (Hz)  
FIGURE 2-20:  
Gain Bandwidth Product,  
FIGURE 2-23:  
Output Voltage Swing vs.  
Phase Margin vs. Ambient Temperature.  
Frequency.  
100.0  
90.0  
80.0  
180  
160  
140  
120  
100  
80  
1000  
VDD = 1.8V  
100  
10  
1
VDD - VOH  
70.0  
60.0  
50.0  
40.0  
30.0  
Gain Bandwidth Product  
Phase Margin  
60  
VOL - VSS  
40  
20  
VDD = 1.8V  
0.1  
0.001  
0
0.01  
0.1  
1
10  
100  
-50 -25  
0
25  
50  
75 100 125  
Ambient Temperature (°C)  
Output Current (mA)  
FIGURE 2-21:  
Phase Margin vs. Ambient Temperature.  
Gain Bandwidth Product,  
FIGURE 2-24:  
vs. Output Current.  
Output Voltage Headroom  
DS25165A-page 10  
2013 Microchip Technology Inc.  
MCP6421  
Note: Unless otherwise indicated, TA= +25°C, VDD = +1.8V to +5.5V, VSS= GND, VCM = VDD/2, VOUT = VDD/2,  
VL = VDD/2, RL = 100 kto VL and CL = 30 pF.  
1000  
100  
10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
VDD = 5.5V  
Falling Edge, VDD = 5.5V  
Rising Edge, VDD = 5.5V  
VDD - VOH  
Falling Edge, VDD = 1.8V  
Rising Edge, VDD = 1.8V  
VOL - VSS  
1
0.1  
0.01  
-50  
-25  
0
25  
50  
75  
100  
125  
0.1  
1
10  
100  
Output Current (mA)  
Ambient Temperature (°C)  
FIGURE 2-25:  
Output Voltage Headroom  
FIGURE 2-28:  
Slew Rate vs. Ambient  
vs. Output Current.  
Temperature.  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VDD - VOH  
VOL - VSS  
VDD = 5.5V  
G = +1 V/V  
VDD = 1.8V  
-50  
-25  
0
25  
50  
75  
100  
125  
Time (25 μs/div)  
Ambient Temperature (°C)  
FIGURE 2-26:  
Output Voltage Headroom  
FIGURE 2-29:  
Small Signal Non-Inverting  
vs. Ambient Temperature.  
Pulse Response.  
1.2  
1
VOL - VSS  
VDD = 5.5 V  
G = -1 V/V  
0.8  
0.6  
0.4  
0.2  
0
VDD - VOH  
VDD = 5.5V  
100 125  
-50  
-25  
0
25  
50  
75  
Ambient Temperature (°C)  
Time (25 μs/div)  
FIGURE 2-27:  
Output Voltage Headroom  
FIGURE 2-30:  
Small Signal Inverting Pulse  
vs. Ambient Temperature.  
Response.  
2013 Microchip Technology Inc.  
DS25165A-page 11  
MCP6421  
10000  
1000  
100  
10  
6
5
4
3
2
1
0
GN:  
101 V/V  
11 V/V  
1 V/V  
VDD = 5.5 V  
G = +1 V/V  
1
.1E0
10  
110E002  
1.1Ek3  
10k  
100k  
.E0
.E4  
.E0
Time (0.1 ms/div)  
Frequency (Hz)  
FIGURE 2-31:  
Large Signal Non-Inverting  
FIGURE 2-34:  
Closed Loop Output  
Pulse Response.  
Impedance vs. Frequency.  
100μ  
10μ  
6
5
4
3
2
1
0
1μ  
VDD = 5.5 V  
G = -1 V/V  
100n  
TA = +125°C  
TA = +85°C  
TA = +25°C  
10n  
1n  
T
A = -40°C  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
IN (V)  
Time (0.1 ms/div)  
V
FIGURE 2-32:  
Large Signal Inverting Pulse  
FIGURE 2-35:  
Measured Input Current vs.  
Response.  
Input Voltage (below VSS).  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6
5
4
VOUT  
3
VIN  
2
1
VIN = 100 mVPK  
VDD = 5.5V  
VDD = 5.5V  
G = +2V/V  
0
100k  
1M  
10M  
100M  
1G  
10G  
-1  
Time (1 ms/div)  
Frequency (Hz)  
FIGURE 2-33:  
The MCP6421 Device  
FIGURE 2-36:  
EMIRR vs. Frequency.  
Shows No Phase Reversal.  
DS25165A-page 12  
2013 Microchip Technology Inc.  
MCP6421  
Note: Unless otherwise indicated, TA= +25°C, VDD = +1.8V to +5.5V, VSS= GND, VCM = VDD/2, VOUT = VDD/2,  
VL = VDD/2, RL = 100 kto VL and CL = 30 pF.  
120  
100  
80  
60  
EMIRR @ 2400 MHz  
40  
@ 1800 MHz  
@ 900 MHz  
20  
0
@ 400 MHz  
-45 -40 -35 -30 -25 -20 -15 -10 -5  
0
5
10  
RF Input Voltage (VPK  
)
FIGURE 2-37:  
EMIRR vs. RF Input Peak-  
to-Peak Voltage.  
2013 Microchip Technology Inc.  
DS25165A-page 13  
MCP6421  
NOTES:  
DS25165A-page 14  
2013 Microchip Technology Inc.  
MCP6421  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
MCP6421  
Symbol  
Description  
SC70-5, SOT-23-5  
1
2
3
4
5
VOUT  
VSS  
Analog Output  
Negative Power Supply  
Non-inverting Input  
Inverting Input  
VIN+  
VIN–  
VDD  
Positive Power Supply  
3.1  
Analog Output (V  
)
OUT  
The output pin is a low-impedance voltage source.  
3.2  
Analog Inputs (V +, V -)  
IN IN  
The non-inverting and inverting inputs are high-  
impedance CMOS inputs with low bias currents.  
3.3  
Power Supply Pins (V , V  
)
DD  
SS  
The positive power supply (VDD) is 1.8V to 5.5V higher  
than the negative power supply (VSS). For normal  
operation, the other pins are at voltages between VSS  
and VDD  
.
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need bypass capacitors.  
2013 Microchip Technology Inc.  
DS25165A-page 15  
MCP6421  
NOTES:  
DS25165A-page 16  
2013 Microchip Technology Inc.  
MCP6421  
In some applications, it may be necessary to prevent  
excessive voltages from reaching the op amp inputs;  
Figure 4-2 shows one approach to protecting these  
inputs.  
4.0  
APPLICATION INFORMATION  
The MCP6421 op amp is manufactured using  
Microchip’s state-of-the-art CMOS process. This op  
amp is unity gain stable and suitable for a wide range  
of general purpose applications.  
VDD  
4.1  
Rail-to-Rail Input  
D1 D2  
4.1.1  
PHASE REVERSAL  
V1  
VOUT  
The MCP6421 op amp is designed to prevent phase  
reversal, when the input pins exceed the supply  
voltages. Figure 2-33 shows the input voltage  
exceeding the supply voltage with no phase reversal.  
MCP6421  
V2  
4.1.2  
INPUT VOLTAGE LIMITS  
FIGURE 4-2:  
Protecting the Analog  
Inputs.  
In order to prevent damage and/or improper operation  
of the amplifier, the circuit must limit the voltages at the  
input pins (see Section 1.1, Absolute Maximum  
Ratings †).  
A significant amount of current can flow out of the  
inputs when the Common mode voltage (VCM) is below  
ground (VSS); see Figure 2-35.  
The Electrostatic Discharge (ESD) protection on the  
inputs can be depicted as shown in Figure 4-1. This  
structure was chosen to protect the input transistors  
against many, but not all, over-voltage conditions, and  
to minimize the input bias current (IB).  
4.1.3  
INPUT CURRENT LIMITS  
In order to prevent damage and/or improper operation  
of the amplifier, the circuit must limit the currents into  
the input pins (see Section 1.1, Absolute Maximum  
Ratings †).  
Figure 4-3 shows one approach to protecting these  
inputs. The resistors R1 and R2 limit the possible  
currents in or out of the input pins (and the ESD diodes,  
D1 and D2). The diode currents will go through either  
Bond  
VDD  
Pad  
VDD or VSS  
.
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
VIN+  
VIN–  
VDD  
Bond  
Pad  
D1 D2  
R1  
VSS  
V1  
V2  
VOUT  
MCP6421  
FIGURE 4-1:  
Structures.  
Simplified Analog Input ESD  
R2  
The input ESD diodes clamp the inputs when they try  
to go more than one diode drop below VSS. They also  
clamp any voltages that go well above VDD; their  
breakdown voltage is high enough to allow normal  
operation, but not low enough to protect against slow  
over-voltage (beyond VDD) events. Very fast ESD  
events that meet the spec are limited so that damage  
does not occur.  
VSS – min(V1, V2)  
2 mA  
min(R1,R2) >  
min(R1,R2) >  
max(V1,V2) – VDD  
2 mA  
FIGURE 4-3:  
Protecting the Analog  
Inputs.  
2013 Microchip Technology Inc.  
DS25165A-page 17  
MCP6421  
Figure 4-5 gives the recommended RISO values for the  
different capacitive loads and gains. The x-axis is the  
normalized load capacitance (CL/GN), where GN is the  
circuit's noise gain. For non-inverting gains, GN and the  
Signal Gain are equal. For inverting gains, GN is  
1+|Signal Gain| (e.g., -1 V/V gives GN = +2 V/V).  
4.1.4  
NORMAL OPERATION  
The input stage of the MCP6421 op amp uses two  
differential input stages in parallel. One operates at a  
low Common mode input voltage (VCM), while the other  
operates at a high VCM. With this topology, the device  
operates with a VCM up to 300 mV above VDD and  
300 mV below VSS. The input offset voltage is  
measured at VCM = VSS – 0.3V and VDD + 0.3V, to  
ensure proper operation.  
100000  
VDD = 5.5 V  
RL = 100 kꢁ  
10000  
1000  
100  
The transition between the input stages occurs when  
VCM is near VDD – 0.6V (see Figures 2-3 and 2-4). For  
the best distortion performance and gain linearity, with  
non-inverting gains, avoid this region of operation.  
GN:  
1 V/V  
2 V/V  
5 V/V  
10  
1
4.2  
Rail-to-Rail Output  
The output voltage range of the MCP6421 op amp is  
0.001V (typical) and 5.499V (typical) when  
RL = 100 kis connected to VDD/2 and VDD = 5.5V.  
Refer to Figures 2-24 and 2-26 for more information.  
10p  
100p  
1n  
10n  
0.1μ  
Normalized Load Capacitance; CL/GN (F)  
FIGURE 4-5:  
Recommended RISO Values  
for Capacitive Loads.  
4.3  
Capacitive Loads  
After selecting RISO for your circuit, double-check the  
resulting frequency response peaking and step  
response overshoot. Modify RISO’s value until the  
response is reasonable. Bench evaluation and  
simulations with the MCP6421 SPICE macro model are  
very helpful.  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases, and the closed-loop bandwidth is  
reduced. This produces gain peaking in the frequency  
response, with overshoot and ringing in the step  
response. While a unity-gain buffer (G = +1 V/V) is the  
most sensitive to the capacitive loads, all gains show  
the same general behavior.  
4.4  
Supply Bypass  
The MCP6421 op amp’s power supply pin (VDD for  
single-supply) should have a local bypass capacitor  
(i.e., 0.01 µF to 0.1 µF) within 2 mm for good high  
frequency performance. It can use a bulk capacitor  
(i.e., 1 µF or larger) within 100 mm to provide large,  
slow currents. This bulk capacitor can be shared with  
other analog parts.  
When driving large capacitive loads with the MCP6421  
op amp (e.g., > 60 pF when G = +1 V/V), a small series  
resistor at the output (RISO in Figure 4-5) improves the  
feedback loop’s phase margin (stability) by making the  
output load resistive at higher frequencies. The  
bandwidth will be generally lower than the bandwidth  
with no capacitance load.  
4.5  
PCB Surface Leakage  
In applications where low input bias current is critical,  
Printed Circuit Board (PCB) surface leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
between nearby traces is 1012. A 5V difference would  
cause 5 pA of current to flow, which is greater than the  
MCP6421 op amp’s bias current at +25°C (±1 pA,  
typical).  
RISO  
VOUT  
MCP6421  
+
VIN  
CL  
FIGURE 4-4:  
Output Resistor, RISO  
Stabilizes Large Capacitive Loads.  
DS25165A-page 18  
2013 Microchip Technology Inc.  
MCP6421  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
An example of this type of layout is shown in  
Figure 4-6.  
EMIRR is defined as :  
EQUATION 4-1:  
VRF  
EMIRRdB= 20 log -------------  
VOS  
Where:  
Guard Ring  
VIN– VIN+  
VSS  
VRF = Peak Amplitude of  
RF Interfering Signal (VPK  
)
VOS = Input Offset Voltage Shift (V)  
4.7  
4.7.1  
Application Circuits  
FIGURE 4-6:  
for Inverting Gain.  
Example Guard Ring Layout  
CO GAS SENSOR  
A CO gas detector is a device which detects the  
presence of carbon monoxide gas level. Usually this is  
battery powered and transmits audible and visible  
warnings.  
1. Non-inverting Gain and Unity-Gain Buffer:  
a) Connect the non-inverting pin (VIN+) to the  
input with a wire that does not touch the  
PCB surface.  
The sensor responds to CO gas by reducing its  
resistance proportionaly to the amount of CO present in  
the air exposed to the internal element. On the sensor  
module, this variable is part of a voltage divider formed  
by the internal element and potentiometer R1. The  
output of this voltage divider is fed into the non-  
inverting inputs of the MCP6421 op amp. The device is  
configured as a buffer with unity gain and is used to  
provide a non-loaded test point for sensor sensitivity.  
b) Connect the guard ring to the inverting input  
pin (VIN–). This biases the guard ring to the  
Common mode input voltage.  
2. Inverting Gain and Transimpedance Gain  
Amplifiers (convert current to voltage, such as  
photo detectors):  
a) Connect the guard ring to the non-inverting  
input pin (VIN+). This biases the guard ring  
to the same reference voltage as the op  
amp (e.g., VDD/2 or ground).  
Because this sensor can be corrupted by parasitic elec-  
tromagnetic signals, the MCP6421 op amp can be  
used for conditioning this sensor.  
b) Connect the inverting pin (VIN–) to the input  
with a wire that does not touch the PCB  
surface.  
In Figure 4-7, the variable resistor is used to calibrate  
the sensor in different environments.  
.
4.6  
Electromagnetic Interference  
Rejection Ratio (EMIRR)  
Definitions  
VDD  
VREF  
VDD  
-
VOUT  
MCP6421  
+
The electromagnetic interference (EMI) is the distur-  
bance that affects an electrical circuit due to either elec-  
tromagnetic induction or electromagnetic radiation  
emitted from an external source.  
R1  
The parameter which describes the EMI robustness of  
an op amp is the Electromagnetic Interference  
Rejection Ratio (EMIRR). It quantitatively describes the  
effect that an RF interfering signal has on op amp  
performance. Internal passive filters make EMIRR  
better compared with older parts. This means that, with  
good PCB layout techniques, your EMC performance  
should be better.  
FIGURE 4-7:  
CO Gas Sensor Circuit.  
2013 Microchip Technology Inc.  
DS25165A-page 19  
MCP6421  
4.7.2  
PRESSURE SENSOR AMPLIFIER  
VDD  
VDD  
The MCP6421 op amp is well suited for conditioning  
sensor signals in battery-powered applications. Many  
sensors are configured as Wheatstone bridges. Strain  
gauges and pressure sensors are two common exam-  
ples.  
VOUT  
10  
IDD  
MCP6421  
VSS  
1.8V  
to  
100 k  
Figure 4-8 shows a strain gauge amplifier, using the  
MCP6421 Enhanced EMI protection device. The  
difference amplifier with EMI robustness op amp is  
used to amplify the signal from the Wheatstone bridge.  
The two op amps, configured as buffers and connected  
at outputs of pressure sensors, prevents resistive  
loading of the bridge by resistor R1 and R2. Resistors  
R1,R2 and R3,R5 need to be chosen with very low  
tolerance to match the CMRR.  
5.5V  
1 M  
V
V  
DD  
OUT  
10 V/V10  
I
= -----------------------------------------  
DD  
High-Side Battery Current Sensor  
FIGURE 4-9:  
Battery Current Sensing.  
VDD  
R
VDD  
3
R+ꢁR  
R-ꢁR  
100k  
MCP6421  
-
R
1
VDD  
+
1kꢀ  
VOUT  
MCP6421  
V
b
-
V
a
+
VDD  
R
2
1kꢀ  
R
5
-
100k  
+
R-ꢁR R+ꢁR  
MCP6421  
10k  
VOUT = Va Vb-------------  
100  
Strain Gauge  
FIGURE 4-8:  
Pressure Sensor Amplifier.  
4.7.3  
BATTERY CURRENT SENSING  
The MCP6421 op amp’s Common Mode Input Range,  
which goes 0.3V beyond both supply rails, supports  
their use in high-side and low-side battery current  
sensing applications. The low quiescent current helps  
prolong battery life, and the rail-to-rail output supports  
detection of low currents.  
Figure 4-9 shows a high side battery current sensor  
circuit. The 10resistor is sized to minimize power  
losses. The battery current (IDD) through the 10  
resistor causes its top terminal to be more negative  
than the bottom terminal. This keeps the Common  
mode input voltage of the op amp below VDD, which is  
within its allowed range. The output of the op amp will  
also be below VDD, within its Maximum Output Voltage  
Swing specification.  
DS25165A-page 20  
2013 Microchip Technology Inc.  
MCP6421  
5.4  
Analog Demonstration and  
Evaluation Boards  
5.0  
DESIGN AIDS  
Microchip provides the basic design tools needed for  
the MCP6421 op amp.  
Microchip offers  
a
broad spectrum of Analog  
Demonstration and Evaluation Boards that are  
designed to help you achieve faster time to market. For  
5.1  
SPICE Macro Model  
a
complete listing of these boards and their  
The latest SPICE macro model for the MCP6421 op  
amp is available on the Microchip web site at  
www.microchip.com. The model was written and tested  
in the official OrCAD (Cadence®) owned PSpice®. For  
the other simulators, translation may be required.  
corresponding user’s guides and technical information,  
visit the Microchip web site at www.microchip.com/  
analogtools.  
Some boards that are especially useful are:  
• MCP6XXX Amplifier Evaluation Board 1  
• MCP6XXX Amplifier Evaluation Board 2  
• MCP6XXX Amplifier Evaluation Board 3  
• MCP6XXX Amplifier Evaluation Board 4  
• Active Filter Demo Board Kit  
The model covers a wide aspect of the op amp's  
electrical specifications. Not only does the model cover  
voltage, current and resistance of the op amp, but it  
also covers the temperature and the noise effects on  
the behavior of the op amp. The model has not been  
verified outside of the specification range listed in the  
op amp data sheet. The model behaviors under these  
conditions cannot ensure it will match the actual op  
amp performance.  
• 5/6-Pin SOT-23 Evaluation Board, P/N VSUPEV2  
5.5  
Application Notes  
Moreover, the model is intended to be an initial design  
tool. Bench testing is a very important part of any  
design and cannot be replaced with simulations. Also,  
simulation results using this macro model need to be  
validated by comparing them to the data sheet  
specifications and characteristic curves.  
The following Microchip Analog Design Note and  
Application Notes are available on the Microchip web  
site at www.microchip.com/appnotes, and are  
recommended as supplemental reference resources.  
ADN003 – “Select the Right Operational Amplifier  
for your Filtering Circuits”, DS21821  
AN722 – “Operational Amplifier Topologies and  
DC Specifications”, DS00722  
®
5.2  
FilterLab Software  
AN723 – “Operational Amplifier AC Specifications  
and Applications”, DS00723  
Microchip’s FilterLab software is an innovative software  
tool that simplifies analog active filter design using op  
amps. Available at no cost from the Microchip web site  
at www.microchip.com/filterlab, the FilterLab design  
tool provides full schematic diagrams of the filter circuit  
with component values. It also outputs the filter circuit  
in SPICE format, which can be used with the macro  
model to simulate the actual filter performance.  
AN884 – “Driving Capacitive Loads With Op  
Amps”, DS00884  
AN990 – “Analog Sensor Conditioning Circuits –  
An Overview”, DS00990  
AN1177 – “Op Amp Precision Design: DC Errors”,  
DS01177  
AN1228 – “Op Amp Precision Design: Random  
Noise”, DS01228  
5.3  
Microchip Advanced Part Selector  
(MAPS)  
• AN1297 “Microchip’s Op Amp SPICE Macro  
Models”, DS01297  
MAPS is a software tool that helps semiconductor  
professionals efficiently identify the Microchip devices  
that fit a particular design requirement. Available at no  
• AN1332: “Current Sensing Circuit Concepts and  
Fundamentals”’ DS01332  
cost  
from  
the  
Microchip  
website  
at  
AN1494: “Using MCP6491 Op Amps for Photode-  
tection Applications”’ DS01494  
www.microchip.com/ maps, the MAPS is an overall  
selection tool for Microchip’s product portfolio that  
includes Analog, Memory, MCUs and DSCs. Using this  
tool, you can define a filter to sort features for a  
parametric search of devices and export side-by-side  
technical comparison reports. Helpful links are also  
provided for data sheets, purchase and sampling of  
Microchip parts.  
These application notes and others are listed in the  
design guide:  
“Signal Chain Design Guide”, DS21825  
2013 Microchip Technology Inc.  
DS25165A-page 21  
MCP6421  
NOTES:  
DS25165A-page 22  
2013 Microchip Technology Inc.  
MCP6421  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
Example:  
5-Lead SC70  
DS25  
5-Lead SOT-23  
Example:  
3H25  
XXNN  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
e
3
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
Note: In the event the full Microchip part number cannot be marked on one line, it  
will be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2013 Microchip Technology Inc.  
DS25165A-page 23  
MCP6421  
ꢂꢃꢄꢅꢆꢇꢈꢉꢊꢆꢋꢌꢍꢎꢈꢏꢐꢆꢊꢊꢈꢑꢒꢌꢊꢍꢓꢅꢈꢔꢕꢆꢓꢋꢍꢋꢌꢖꢕꢈꢗꢄꢔꢘꢈꢙꢏꢚꢛꢜꢝ  
!ꢖꢌꢅ" .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
b
1
3
2
E1  
E
4
5
e
e
A
A2  
c
A1  
L
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
(
ꢐꢁ9(ꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%  
ꢐꢁ;ꢐ  
ꢐꢁ;ꢐ  
ꢐꢁꢐꢐ  
ꢀꢁ;ꢐ  
ꢀꢁꢀ(  
ꢀꢁ;ꢐ  
ꢐꢁꢀꢐ  
ꢐꢁꢐ;  
ꢐꢁꢀ(  
M
M
M
ꢑꢁꢀꢐ  
ꢀꢁꢑ(  
ꢑꢁꢐꢐ  
ꢐꢁꢑꢐ  
M
ꢀꢁꢀꢐ  
ꢀꢁꢐꢐ  
ꢐꢁꢀꢐ  
ꢑꢁꢖꢐ  
ꢀꢁꢛ(  
ꢑꢁꢑ(  
ꢐꢁꢖ9  
ꢐꢁꢑ9  
ꢐꢁꢖꢐ  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
8
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
M
!ꢖꢌꢅꢋ"  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢐ9ꢀ)  
DS25165A-page 24  
2013 Microchip Technology Inc.  
MCP6421  
5-Lead Plastic Small Outline Transistor (LT) [SC70]  
!ꢖꢌꢅ" .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
2013 Microchip Technology Inc.  
DS25165A-page 25  
MCP6421  
ꢂꢃꢄꢅꢆꢇꢈꢉꢊꢆꢋꢌꢍꢎꢈꢏꢐꢆꢊꢊꢈꢑꢒꢌꢊꢍꢓꢅꢈꢔꢕꢆꢓꢋꢍꢋꢌꢖꢕꢈꢗꢑꢔꢘꢈꢙꢏꢑꢔꢃ#$ꢝ  
!ꢖꢌꢅ" .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
5
(
ꢐꢁꢝ(ꢈ)ꢕ*  
6$# ꢃ!ꢅꢈ4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%  
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
ꢅꢀ  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
ꢀꢁꢝꢐꢈ)ꢕ*  
ꢐꢁꢝꢐ  
ꢐꢁ;ꢝ  
ꢐꢁꢐꢐ  
ꢑꢁꢑꢐ  
ꢀꢁꢛꢐ  
ꢑꢁꢒꢐ  
ꢐꢁꢀꢐ  
ꢐꢁꢛ(  
ꢐꢞ  
M
M
M
M
M
M
M
M
M
M
M
ꢀꢁꢖ(  
ꢀꢁꢛꢐ  
ꢐꢁꢀ(  
ꢛꢁꢑꢐ  
ꢀꢁ;ꢐ  
ꢛꢁꢀꢐ  
ꢐꢁ9ꢐ  
ꢐꢁ;ꢐ  
ꢛꢐꢞ  
4ꢀ  
8
ꢐꢁꢐ;  
ꢐꢁꢑꢐ  
ꢐꢁꢑ9  
ꢐꢁ(ꢀ  
!ꢖꢌꢅꢋ"  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢐꢝꢀ)  
DS25165A-page 26  
2013 Microchip Technology Inc.  
MCP6421  
\
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2013 Microchip Technology Inc.  
DS25165A-page 27  
MCP6421  
NOTES:  
DS25165A-page 28  
2013 Microchip Technology Inc.  
MCP6421  
APPENDIX A: REVISION HISTORY  
Revision A (March 2013)  
• Original Release of this Document.  
2013 Microchip Technology Inc.  
DS25165A-page 29  
MCP6421  
NOTES:  
DS25165A-page 30  
2013 Microchip Technology Inc.  
MCP6421  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
T
-X  
/XX  
a)  
MCP6421T-E/LTY:  
Tape and Reel,  
Tape and Reel Temperature Package  
Range  
Extended Temperature,  
5LD SC-70 Package  
Tape and Reel,  
b)  
MCP6421T-E/OT:  
Device:  
MCP6421T:  
Single Op Amp (Tape and Reel)  
(SC70, SOT-23)  
Extended Temperature,  
5LD SOT-23 Package  
Temperature  
Range:  
E
= -40°C to +125°C (Extended)  
Package:  
LTY  
OT  
=
=
Plastic Package (SC70), 5-lead  
Plastic Small Outline Transistor (SOT-23), 5-lead  
2013 Microchip Technology Inc.  
DS25165A-page 31  
MCP6421  
NOTES:  
DS25165A-page 32  
2013 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, PIC logo, rfPIC, SST, SST Logo, SuperFlash  
and UNI/O are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
32  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MTP, SEEVAL and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
Analog-for-the-Digital Age, Application Maestro, BodyCom,  
chipKIT, chipKIT logo, CodeGuard, dsPICDEM,  
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O,  
Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA  
and Z-Scale are trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
GestIC and ULPP are registered trademarks of Microchip  
Technology Germany II GmbH & Co. & KG, a subsidiary of  
Microchip Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2013, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-62077-046-7  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2013 Microchip Technology Inc.  
DS25165A-page 33  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Korea - Seoul  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7828  
Fax: 886-7-330-9305  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
11/29/12  
DS25165A-page 34  
2013 Microchip Technology Inc.  

相关型号:

MICROCHIP
MICROCHIP
MICROCHIP

MCP6422T-E/MSVAO

Operational Amplifier, 2 Func, 1000uV Offset-Max, CMOS, PDSO8
MICROCHIP
MICROCHIP

MCP6424

The Microchip’s MCP6421/2/4 operational amplifiers (op amps) has low input bias current (1 pA, typ
MICROCHIP
MICROCHIP
MICROCHIP
MICROCHIP
MICROCHIP

MCP6424T-E/STVAO

Operational Amplifier, 4 Func, 1000uV Offset-Max, CMOS, PDSO14
MICROCHIP

MCP6441

450 nA, 9 kHz Op Amp No Phase Reversal Analog Active Filters
MICROCHIP