MCP6441T [MICROCHIP]

450 nA, 9 kHz Op Amp No Phase Reversal Analog Active Filters; 450 nA的, 9 kHz的运算放大器无相位反转模拟有源滤波器
MCP6441T
型号: MCP6441T
厂家: MICROCHIP    MICROCHIP
描述:

450 nA, 9 kHz Op Amp No Phase Reversal Analog Active Filters
450 nA的, 9 kHz的运算放大器无相位反转模拟有源滤波器

有源滤波器 运算放大器
文件: 总42页 (文件大小:1429K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6441/2/4  
450 nA, 9 kHz Op Amp  
Features:  
Description:  
The MCP6441/2/4 device is a single nanopower  
operational amplifier (op amp), which has low  
quiescent current (450 nA, typical) and rail-to-rail input  
and output operation. This op amp is unity gain stable  
and has a gain bandwidth product of 9 kHz (typical).  
These devices operate with a single supply voltage as  
low as 1.4V. These features make the family of op  
amps well suited for single-supply, battery-powered  
applications.  
• Low Quiescent Current: 450 nA (typical)  
• Gain Bandwidth Product: 9 kHz (typical)  
• Supply Voltage Range: 1.4V to 6.0V  
• Rail-to-Rail Input and Output  
• Unity Gain Stable  
• Slew Rate: 3V/ms (typical)  
• Extended Temperature Range: -40°C to +125°C  
• No Phase Reversal  
The MCP6441/2/4 op amp is designed with Microchip’s  
advanced CMOS process and offered in single  
(MCP6441), dual (MCP6442), and quad (MCP6444)  
configurations. All devices are available in the  
extended temperature range, with a power supply  
range of 1.4V to 6.0V.  
• Small Packages  
Applications:  
• Portable Equipment  
• Battery Powered System  
• Data Acquisition Equipment  
• Sensor Conditioning  
Typical Application  
I
DD  
• Battery Current Sensing  
• Analog Active Filters  
To load  
1.4V  
to  
V
10Ω  
DD  
V
OUT  
6.0V  
Design Aids:  
MCP6441  
100 kΩ  
• SPICE Macro Models  
• FilterLab® Software  
1 MΩ  
• Microchip Advanced Part Selector (MAPS)  
• Analog Demonstration and Evaluation Boards  
• Application Notes  
V
V  
DD  
OUT  
I
= -----------------------------------------  
DD  
(10 V/V) (10Ω)  
Battery Current Sensing  
Package Types  
MCP6441  
MCP6442  
MCP6444  
SC70-5, SOT-23-5  
SOIC, MSOP  
SOIC, TSSOP  
VDD  
VOUT  
VSS  
1
2
3
5
4
VOUTA  
VINA  
1
2
3
4
VOUTA  
VDD  
1
2
8
7
6
5
14  
13  
12  
11  
10  
9
VOUTD  
VIND  
VIND+  
VSS  
V
VINA–  
OUTB  
VIN+  
VSS  
VIN+ 3  
VDD  
VIN+  
VIN–  
VIN–  
VINB  
4
5
6
7
+
VINB  
VINB  
+
VINC+  
VINC–  
VOUTB  
8
VOUTC  
© 2011 Microchip Technology Inc.  
DS22257B-page 1  
MCP6441/2/4  
NOTES:  
DS22257B-page 2  
© 2011 Microchip Technology Inc.  
MCP6441/2/4  
1.0  
1.1  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
V
– V ........................................................................7.0V  
† Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification is not  
implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
DD  
SS  
Current at Input Pins.....................................................±2 mA  
Analog Inputs (V +, V -)†† .......... V – 1.0V to V + 1.0V  
IN  
IN  
SS  
DD  
All Other Inputs and Outputs ......... V – 0.3V to V + 0.3V  
SS  
DD  
Difference Input Voltage ...................................... |V – V  
|
SS  
DD  
Output Short-Circuit Current ................................Continuous  
Current at Output and Supply Pins ............................±30 mA  
Storage Temperature ....................................-65°C to +150°C  
†† See Section 4.1.2 “Input Voltage Limits”.  
Maximum Junction Temperature (T )..........................+150°C  
J
ESD Protection on All Pins (HBM; MM)............... ≥ 4 kV; 200V  
DC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, VDD = +1.4V to +6.0V, VSS= GND, TA= +25°C, VCM = VDD/2,  
VOUT VDD/2, VL = VDD/2 and RL = 1 MΩ to VL. (Refer to Figure 1-1).  
Parameters  
Input Offset  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Offset Voltage  
VOS  
-4.5  
+4.5  
mV VCM = VSS  
Input Offset Drift with Temperature  
ΔVOS/ΔTA  
±2.5  
µV/°C TA= -40°C to +125°C,  
VCM = VSS  
Power Supply Rejection Ratio  
Input Bias Current and Impedance  
Input Bias Current  
PSRR  
IB  
65  
86  
dB VCM = VSS  
±1  
20  
pA  
pA TA = +85°C  
400  
pA TA = +125°C  
Input Offset Current  
IOS  
ZCM  
±1  
pA  
Common Mode Input Impedance  
Differential Input Impedance  
Common Mode  
1013||6  
1013||6  
Ω||pF  
Ω||pF  
ZDIFF  
Common Mode Input Voltage Range  
Common Mode Rejection Ratio  
VCMR  
VSS-0.3  
60  
VDD+0.3  
V
CMRR  
76  
dB VCM = -0.3V to 6.3V,  
VDD = 6.0V  
Open-Loop Gain  
DC Open-Loop Gain  
(Large Signal)  
AOL  
90  
110  
dB VOUT = 0.1V to VDD-0.1V  
RL = 10 kΩ to VL  
Output  
Maximum Output Voltage Swing  
VOL, VOH  
ISC  
VSS+20  
VDD–20  
mV VDD = 6.0V, RL = 10 kΩ  
0.5V input overdrive  
Output Short-Circuit Current  
±3  
mA VDD = 1.4V  
mA VDD = 6.0V  
±22  
Power Supply  
Supply Voltage  
VDD  
IQ  
1.4  
6.0  
V
Quiescent Current per Amplifier  
250  
450  
650  
nA IO = 0, VDD = 5.0V  
© 2011 Microchip Technology Inc.  
DS22257B-page 3  
MCP6441/2/4  
AC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.4V to +6.0V, VSS = GND,  
VCM = VDD/2, VOUT VDD/2, VL = VDD/2, RL = 1 MΩ to VL and CL = 60 pF. (Refer to Figure 1-1).  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
AC Response  
Gain Bandwidth Product  
Phase Margin  
GBWP  
PM  
9
65  
3
kHz  
°
G = +1 V/V  
Slew Rate  
SR  
V/ms  
Noise  
Input Noise Voltage  
Input Noise Voltage Density  
Input Noise Current Density  
Eni  
eni  
ini  
5
µVp-p f = 0.1 Hz to 10 Hz  
nV/Hz f = 1 kHz  
190  
0.6  
fA/Hz f = 1 kHz  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, VDD = +1.4V to +6.0V and VSS = GND.  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 5L-SC70  
Thermal Resistance, 5L-SOT-23  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
TA  
TA  
-40  
-65  
+125  
+150  
°C  
°C  
Note 1  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
331  
220.7  
149.5  
20  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
95.3  
100  
Note 1: The internal junction temperature (TJ) must not exceed the absolute maximum specification of +150°C.  
1.2  
Test Circuits  
CF  
6.8 pF  
The circuit used for most DC and AC tests is shown in  
Figure 1-1. This circuit can independently set VCM and  
VOUT (see Equation 1-1). Note that VCM is not the  
circuit’s Common Mode voltage ((VP + VM)/2), and that  
RG  
100 kΩ  
RF  
100 kΩ  
V
OST includes VOS plus the effects (on the input offset  
error, VOST) of the temperature, CMRR, PSRR and  
AOL  
VDD/2  
VP  
.
VDD  
VIN+  
EQUATION 1-1:  
CB1  
100 nF  
CB2  
1 µF  
MCP6441  
GDM = RF RG  
VCM = (VP + VDD 2) 2  
VOST = VIN– VIN+  
VIN–  
VOUT  
VM  
VOUT = (VDD 2) + (VP VM) + VOST(1 + GDM  
)
RL  
CL  
RG  
RF  
1 MΩ  
60 pF  
100 kΩ  
100 kΩ  
Where:  
GDM = Differential Mode Gain  
(V/V)  
(V)  
CF  
6.8 pF  
VCM = Op Amp’s Common Mode  
Input Voltage  
VL  
VOST = Op Amp’s Total Input Offset  
Voltage  
(mV)  
FIGURE 1-1:  
Most Specifications.  
AC and DC Test Circuit for  
DS22257B-page 4  
© 2011 Microchip Technology Inc.  
MCP6441/2/4  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.4V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 1 MΩ to VL and CL = 60 pF.  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
VDD = 1.4V  
Representative Part  
1700 Samples  
VCM = VSS  
TA = +125°C  
TA = +85°C  
TA = +25°C  
T
A = -40°C  
0
0%  
-500  
Input Offset Voltage (mV)  
Common mode input voltage (V)  
FIGURE 2-1:  
Input Offset Voltage.  
FIGURE 2-4:  
Input Offset Voltage vs.  
Common Mode Input Voltage with VDD = 1.4V.  
30%  
25%  
20%  
15%  
10%  
5%  
1000  
800  
1700 Samples  
VCM = VSS  
TA = -40°C to +125°C  
VDD = 1.4V  
600  
400  
VDD = 6.0V  
200  
0
-200  
-400  
Representative Part  
-600  
-800  
-1000  
0%  
Output Voltage (V)  
Input Offset Voltage Drift (µV/°C)  
FIGURE 2-2:  
Input Offset Voltage Drift.  
FIGURE 2-5:  
Input Offset Voltage vs.  
Output Voltage.  
2000  
1600  
1200  
800  
3000  
2500  
2000  
1500  
1000  
500  
TA = +125°C  
A = +85°C  
TA = +25°C  
TA = -40°C  
Representative Part  
VDD = 6.0V  
Representative Part  
T
TA = +125°C  
T
T
A = +85°C  
A = +25°C  
400  
0
TA = -40°C  
-400  
-800  
-1200  
-1600  
-2000  
0
-500  
Power Supply Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-3:  
Input Offset Voltage vs.  
FIGURE 2-6:  
Input Offset Voltage vs.  
Common Mode Input Voltage with VDD = 6.0V.  
Power Supply Voltage.  
© 2011 Microchip Technology Inc.  
DS22257B-page 5  
MCP6441/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.4V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 1 MΩ to VL and CL = 60 pF.  
1,000  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
PSRR (VDD = 1.4V to 6.0V, VCM = VSS  
)
CMRR (VDD = 6.0V, VCM = -0.3V to 6.3V)  
CMRR (VDD = 1.4V, VCM = -0.3V to 1.7V)  
100  
0.1  
1
10  
100  
1k  
10k  
-50  
-25  
0
25  
50  
75  
100  
125  
Frequency (Hz)  
Ambient Temperature (°C)  
FIGURE 2-7:  
Input Noise Voltage Density  
FIGURE 2-10:  
CMRR, PSRR vs. Ambient  
vs. Frequency.  
Temperature.  
350  
300  
250  
200  
150  
100  
50  
1000  
VDD = 6.0V  
100  
10  
1
Input Bias Current  
f = 1 kHz  
VDD = 6.0 V  
Input Offset Current  
0
25  
45  
65  
85  
105  
125  
Common Mode Input Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-8:  
Input Noise Voltage Density  
FIGURE 2-11:  
Input Bias, Offset Current  
vs. Common Mode Input Voltage.  
vs. Ambient Temperature.  
100  
1000  
Representative Part  
TA = +125°C  
PSRR-  
90  
80  
70  
60  
50  
40  
30  
20  
100  
10  
PSRR+  
CMRR  
TA = +85°C  
c
VDD = 6.0V  
1
0.1  
1
10  
100  
1000  
Frequency (Hz)  
Common Mode Input Voltage (V)  
FIGURE 2-9:  
CMRR, PSRR vs.  
FIGURE 2-12:  
Input Bias Current vs.  
Frequency.  
Common Mode Input Voltage.  
DS22257B-page 6  
© 2011 Microchip Technology Inc.  
MCP6441/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.4V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 1 MΩ to VL and CL = 60 pF.  
130  
120  
110  
100  
90  
600  
550  
500  
450  
400  
350  
300  
250  
200  
VDD = 6.0V  
VDD = 1.4V  
80  
RL = 10 k  
VSS + 0.1V < VOUT < VDD - 0.1V  
70  
60  
-50  
-25  
0
25  
50  
75  
100 125  
Power Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-13:  
Quiescent Current vs.  
FIGURE 2-16:  
DC Open-Loop Gain vs.  
Ambient Temperature.  
Power Supply Voltage.  
700  
600  
500  
400  
300  
200  
100  
0
130  
VDD = 6.0V  
120  
110  
100  
90  
VDD = 1.4V  
TA = +125°C  
T
T
A = +85°C  
A = +25°C  
80  
Large Signal AOL  
TA = -40°C  
Ω
RL = 10k  
70  
60  
0.00  
0.05  
0.10  
0.15  
0.20  
0.25  
Power Supply Voltage (V)  
Output Voltage Headroom (V)  
FIGURE 2-14:  
Quiescent Current vs.  
FIGURE 2-17:  
DC Open-Loop Gain vs.  
Power Supply Voltage.  
Output Voltage Headroom.  
120  
0
18  
16  
14  
12  
10  
8
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Phase Margin  
Open-Loop Gain  
100  
80  
60  
40  
20  
0
-30  
-60  
Open-Loop Phase  
-90  
-120  
-150  
-180  
-210  
Gain Bandwidth Product  
VDD = 6.0V  
6
4
2
0
VDD = 6.0V  
-20  
1m 10m0.1
1
10 100 1k10k 100k  
-50 -25  
0
25  
50  
75 100 125  
Frequency (Hz)  
Ambient Temperature (°C)  
FIGURE 2-15:  
Open-Loop Gain, Phase vs.  
FIGURE 2-18:  
Gain Bandwidth Product,  
Frequency.  
Phase Margin vs. Ambient Temperature.  
© 2011 Microchip Technology Inc.  
DS22257B-page 7  
MCP6441/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.4V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 1 MΩ to VL and CL = 60 pF.  
18  
16  
14  
12  
10  
8
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1000  
100  
10  
Phase Margin  
VDD - VOH @ VDD = 1.4V  
VOL - VSS @ VDD = 1.4V  
Gain Bandwidth Product  
VDD - VOH @ VDD = 6.0V  
OL - VSS @ VDD = 6.0V  
6
V
1
4
VDD = 1.4V  
RL = 10 kΩ  
2
0
0.1  
-50 -25  
0
25  
50  
75 100 125  
0.01  
0.1  
1
10  
Ambient Temperature (°C)  
Output Current (mA)  
FIGURE 2-19:  
Gain Bandwidth Product,  
FIGURE 2-22:  
Output Voltage Headroom  
Phase Margin vs. Ambient Temperature.  
vs. Output Current.  
25  
35  
30  
VDD - VOH @ VDD = 6.0V  
20  
15  
10  
5
VOL - VSS @ VDD = 6.0V  
TA = -40°C  
25  
T
A = +25°C  
TA = +85°C  
20  
15  
10  
5
T
A = +125°C  
VDD - VOH @ VDD = 1.4V  
OL - VSS @ VDD = 1.4V  
V
0
0
-50  
-25  
0
25  
50  
75  
100 125  
Power Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-20:  
Output Short Circuit Current  
FIGURE 2-23:  
Output Voltage Headroom  
vs. Power Supply Voltage.  
vs. Ambient Temperature.  
6
10  
VDD = 6.0V  
Falling Edge, VDD = 6.0V  
5
4
3
2
1
0
Rising Edge, VDD = 6.0V  
VDD = 1.4V  
1
Falling Edge, VDD = 1.4V  
Rising Edge, VDD = 1.4V  
0.1  
10  
100  
1k  
10k  
-50  
-25  
0
25  
50  
75  
100  
125  
Frequency (Hz)  
Ambient Temperature (°C)  
FIGURE 2-21:  
Output Voltage Swing vs.  
FIGURE 2-24:  
Slew Rate vs. Ambient  
Frequency.  
Temperature.  
DS22257B-page 8  
© 2011 Microchip Technology Inc.  
MCP6441/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.4V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 1 MΩ to VL and CL = 60 pF.  
6.0  
5.5  
5.0  
VDD = 6.0V  
4.5  
G = -1 V/V  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VDD = 6.0V  
G = +1 V/V  
Time (200 µs/div)  
Time (2 ms/div)  
FIGURE 2-25:  
Small Signal Non-Inverting  
FIGURE 2-28:  
Large Signal Inverting Pulse  
Pulse Response.  
Response.  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
VDD = 6.0V  
G = -1 V/V  
VOUT  
VIN  
VDD = 6.0V  
G = +2 V/V  
1.0  
0.0  
-1.0  
Time (2 ms/div)  
Time (200 µs/div)  
FIGURE 2-26:  
Small Signal Inverting Pulse  
FIGURE 2-29:  
The MCP6441/2/4 Device  
Response.  
Shows No Phase Reversal.  
1M  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
100k  
10k  
1k  
GN:  
101 V/V  
11 V/V  
1 V/V  
100  
VDD = 6.0V  
G = +1 V/V  
10  
1
1
10  
100  
1k  
10k  
Frequency (Hz)  
Time (2 ms/div)  
FIGURE 2-27:  
Large Signal Non-Inverting  
FIGURE 2-30:  
Closed Loop Output  
Pulse Response.  
Impedance vs. Frequency.  
© 2011 Microchip Technology Inc.  
DS22257B-page 9  
MCP6441/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.4V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 1 MΩ to VL and CL = 60 pF.  
1m  
150  
140  
130  
120  
110  
100µ  
10µ  
1µ  
100n
10n  
TA = -40°C  
A = +25°C  
TA = +85°C  
100  
90  
T
1n  
100p  
1
80  
TA = +125°C  
Input Referred  
10p  
1
70  
1p  
60  
1k  
10k  
100  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
Input Voltage (V)  
Frequency (Hz)  
FIGURE 2-31:  
Measured Input Current vs.  
FIGURE 2-32:  
Channel-to-Channel  
Input Voltage (below VSS).  
Separation vs. Frequency (MCP6442/4 only).  
DS22257B-page 10  
© 2011 Microchip Technology Inc.  
MCP6441/2/4  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
MCP6441  
PIN FUNCTION TABLE  
MCP6442  
MCP6444  
Symbol  
Description  
SC70-5, SOT-23-5  
SOIC, MSOP  
SOIC, TSSOP  
1
1
2
1
2
VOUT, VOUTA Analog Output (op amp A)  
4
VIN–, VINA  
VIN+, VINA  
VDD  
Inverting Input (op amp A)  
Non-inverting Input (op amp A)  
Positive Power Supply  
3
3
3
+
5
8
4
2
5
5
VINB  
VINB  
VOUTB  
VOUTC  
VINC  
VINC  
VSS  
+
Non-inverting Input (op amp B)  
Inverting Input (op amp B)  
Analog Output (op amp B)  
Analog Output (op amp C)  
Inverting Input (op amp C)  
Non-inverting Input (op amp C)  
Negative Power Supply  
6
6
-
7
7
4
8
9
-
10  
11  
12  
13  
14  
+
VIND+  
Non-inverting Input (op amp D)  
Inverting Input (op amp D)  
Analog Output (op amp D)  
VIND  
-
VOUTD  
3.1  
Analog Output (V  
)
OUT  
The output pin is a low-impedance voltage source.  
3.2  
Power Supply Pins (V , V  
)
SS  
DD  
The positive power supply (VDD) is 1.4V to 6.0V higher  
than the negative power supply (VSS). For normal  
operation, the other pins are at voltages between VSS  
and VDD  
.
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need bypass capacitors.  
3.3  
Analog Inputs (V +, V -)  
IN IN  
The non-inverting and inverting inputs are high-  
impedance CMOS inputs with low bias currents.  
© 2011 Microchip Technology Inc.  
DS22257B-page 11  
MCP6441/2/4  
NOTES:  
DS22257B-page 12  
© 2011 Microchip Technology Inc.  
MCP6441/2/4  
In some applications, it may be necessary to prevent  
excessive voltages from reaching the op amp inputs;  
Figure 4-2 shows one approach to protecting these  
inputs.  
4.0  
APPLICATION INFORMATION  
The MCP6441/2/4 op amp is manufactured using  
Microchip’s state-of-the-art CMOS process, specifically  
designed for low power applications.  
VDD  
4.1  
Rail-to-Rail Input  
4.1.1  
PHASE REVERSAL  
D1 D2  
The MCP6441/2/4 op amp is designed to prevent  
phase reversal, when the input pins exceed the supply  
voltages. Figure 2-29 shows the input voltage  
exceeding the supply voltage with no phase reversal.  
V1  
VOUT  
MCP644X  
V2  
4.1.2  
INPUT VOLTAGE LIMITS  
FIGURE 4-2:  
Inputs.  
Protecting the Analog  
In order to prevent damage and/or improper operation  
of the amplifier, the circuit must limit the voltages at the  
input pins (see Section 1.1 “Absolute Maximum  
Ratings †”).  
A significant amount of current can flow out of the  
inputs when the Common Mode voltage (VCM) is below  
ground (VSS); see Figure 2-31.  
The Electrostatic Discharge (ESD) protection on the  
inputs can be depicted as shown in Figure 4-1. This  
structure was chosen to protect the input transistors  
against many, but not all, over-voltage conditions, and  
to minimize the input bias current (IB).  
4.1.3  
INPUT CURRENT LIMITS  
In order to prevent damage and/or improper operation  
of the amplifier, the circuit must limit the currents into  
the input pins (see Section 1.1 “Absolute Maximum  
Ratings †”).  
Bond  
VDD  
Figure 4-3 shows one approach to protecting these  
inputs. The resistors R1 and R2 limit the possible  
currents in or out of the input pins (and the ESD diodes,  
D1 and D2). The diode currents will go through either  
Pad  
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
VDD or VSS  
.
VIN+  
VIN–  
VDD  
Bond  
Pad  
VSS  
D1 D2  
R1  
V1  
V2  
VOUT  
FIGURE 4-1:  
Structures.  
Simplified Analog Input ESD  
MCP644X  
The input ESD diodes clamp the inputs when they try  
to go more than one diode drop below VSS. They also  
clamp any voltages that go well above VDD; their  
breakdown voltage is high enough to allow normal  
operation, but not low enough to protect against slow  
over-voltage (beyond VDD) events. Very fast ESD  
events that meet the spec are limited so that damage  
does not occur.  
R2  
VSS – min(V1, V2)  
2 mA  
min(R1,R2) >  
min(R1,R2) >  
max(V1,V2) – VDD  
2 mA  
FIGURE 4-3:  
Protecting the Analog  
Inputs.  
© 2011 Microchip Technology Inc.  
DS22257B-page 13  
MCP6441/2/4  
Figure 4-5 gives the recommended RISO values for the  
different capacitive loads and gains. The x-axis is the  
normalized load capacitance (CL/GN), where GN is the  
circuit's noise gain. For non-inverting gains, GN and the  
Signal Gain are equal. For inverting gains, GN is  
1+|Signal Gain| (e.g., -1 V/V gives GN = +2 V/V).  
4.1.4  
NORMAL OPERATION  
The input stage of the MCP6441/2/4 op amp uses two  
differential input stages in parallel. One operates at a  
low Common Mode input voltage (VCM), while the other  
operates at a high VCM. With this topology, the device  
operates with a VCM up to 300 mV above VDD and  
300 mV below VSS. The input offset voltage is  
measured at VCM = VSS – 0.3V and VDD + 0.3V, to  
ensure proper operation.  
1M  
The transition between the input stages occurs when  
VCM is near VDD – 0.6V (see Figures 2-3 and 2-4). For  
the best distortion performance and gain linearity, with  
non-inverting gains, avoid this region of operation.  
100k
GN:  
1 V/V  
2 V/V  
10k  
5 V/V  
4.2  
Rail-to-Rail Output  
1k  
The output voltage range of the MCP6441/2/4 op amp  
is VSS + 20 mV (minimum) and VDD – 20 mV (maxi-  
mum) when RL = 10 kΩ is connected to VDD/2 and  
VDD = 6.0V. Refer to Figures 2-22 and 2-23 for more  
information.  
10p  
100p  
1n  
10n  
0.1µ  
1µ  
Normalized Load Capacitance; CL/GN (F)  
FIGURE 4-5:  
for Capacitive Loads.  
Recommended RISO Values  
After selecting RISO for your circuit, double-check the  
resulting frequency response peaking and step  
response overshoot. Modify RISO’s value until the  
response is reasonable. Bench evaluation and  
simulations with the MCP6441/2/4 SPICE macro  
model are very helpful.  
4.3  
Capacitive Loads  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases, and the closed-loop bandwidth is  
reduced. This produces gain peaking in the frequency  
response, with overshoot and ringing in the step  
response. While a unity-gain buffer (G = +1 V/V) is the  
most sensitive to the capacitive loads, all gains show  
the same general behavior.  
4.4  
Supply Bypass  
The MCP6441/2/4 op amp’s power supply pin (VDD for  
single-supply) should have a local bypass capacitor  
(i.e., 0.01 µF to 0.1 µF) within 2 mm for good high  
frequency performance. It can use a bulk capacitor  
(i.e., 1 µF or larger) within 100 mm to provide large,  
slow currents. This bulk capacitor can be shared with  
other analog parts.  
When driving large capacitive loads with the  
MCP6441/2/4 op amp (e.g., > 100 pF when  
G = +1 V/V), a small series resistor at the output (RISO  
in Figure 4-4) improves the feedback loop’s phase mar-  
gin (stability) by making the output load resistive at  
higher frequencies. The bandwidth will be generally  
lower than the bandwidth with no capacitance load.  
4.5  
PCB Surface Leakage  
In applications where low input bias current is critical,  
Printed Circuit Board (PCB) surface leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
between nearby traces is 1012Ω. A 5V difference would  
cause 5 pA of current to flow, which is greater than the  
MCP6441/2/4 op amp’s bias current at +25°C (±1 pA,  
typical).  
RISO  
VOUT  
MCP644X  
+
VIN  
CL  
FIGURE 4-4:  
Output Resistor, RISO  
Stabilizes Large Capacitive Loads.  
DS22257B-page 14  
© 2011 Microchip Technology Inc.  
MCP6441/2/4  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
An example of this type of layout is shown in  
Figure 4-6.  
4.6  
Application Circuits  
4.6.1  
BATTERY CURRENT SENSING  
The MCP6441/2/4 op amp’s Common Mode Input  
Range, which goes 0.3V beyond both supply rails,  
supports their use in high-side and low-side battery  
current sensing applications. The low quiescent current  
(450 nA, typical) helps prolong battery life, and the  
rail-to-rail output supports detection of low currents.  
Guard Ring  
VIN– VIN+  
VSS  
Figure 4-7 shows a high side battery current sensor  
circuit. The 10Ω resistor is sized to minimize power  
losses. The battery current (IDD) through the 10Ω  
resistor causes its top terminal to be more negative  
than the bottom terminal. This keeps the Common  
Mode input voltage of the op amp below VDD, which is  
within its allowed range. The output of the op amp will  
also be below VDD, within its Maximum Output Voltage  
Swing specification.  
FIGURE 4-6:  
for Inverting Gain.  
Example Guard Ring Layout  
1. Non-inverting Gain and Unity-Gain Buffer:  
a) Connect the non-inverting pin (VIN+) to the  
input with a wire that does not touch the  
PCB surface.  
IDD  
To load  
b) Connect the guard ring to the inverting input  
pin (VIN–). This biases the guard ring to the  
Common Mode input voltage.  
1.4V  
to  
6.0V  
VDD  
MCP6441  
1 MΩ  
10Ω  
VOUT  
2. Inverting Gain and Transimpedance Gain  
Amplifiers (convert current to voltage, such as  
photo detectors):  
100 kΩ  
a) Connect the guard ring to the non-inverting  
input pin (VIN+). This biases the guard ring  
to the same reference voltage as the op  
amp (e.g., VDD/2 or ground).  
VDD VOUT  
IDD = -----------------------------------------  
(10 V/V) (10Ω)  
b) Connect the inverting pin (VIN–) to the input  
with a wire that does not touch the PCB  
surface.  
FIGURE 4-7:  
Battery Current Sensing.  
© 2011 Microchip Technology Inc.  
DS22257B-page 15  
MCP6441/2/4  
4.6.2  
PRECISION HALF-WAVE  
RECTIFIER  
4.6.3  
INSTRUMENTATION AMPLIFIER  
The MCP6441/2/4 op amp is well suited for condition-  
ing sensor signals in battery-powered applications.  
Figure 4-9 shows a two op amp instrumentation  
amplifier, using the MCP6441/2/4 device, that works  
well for applications requiring rejection of Common  
Mode noise at higher gains. The reference voltage  
(VREF) is supplied by a low-impedance source. In sin-  
gle supply applications, VREF is typically VDD/2.  
The precision half-wave rectifier, which is also known  
as a super diode, is a configuration obtained with an  
operational amplifier in order to have a circuit behaving  
like an ideal diode and rectifier. It effectively cancels the  
forward voltage drop of the diode in such way that very  
low level signals can still be rectified, with minimal  
error. This can be useful for high-precision signal  
processing. The MCP6441/2/4 op amp has high input  
impedance, low input bias current and rail-to-rail  
input/output, which makes this device suitable for  
precision rectifier applications.  
RG  
R1  
R2  
R2  
R1  
VREF  
VOUT  
Figure 4-8 shows a precision half-wave rectifier and its  
transfer characteristic. The rectifier’s input impedance  
is determined by the input resistor R1. To avoid the  
loading effect, it must be driven from a low-impedance  
source.  
V2  
V1  
1/2 MCP6442  
1/2 MCP6442  
When VIN is greater than zero, D1 is OFF, D2 is ON, and  
VOUT is zero. When VIN is less than zero, D1 is ON, D2  
is OFF, and VOUT is the VIN with an amplification of  
-R2/R1.  
R1 2R1  
VOUT = (V1 V2) 1 + ----- + --------- + VREF  
R2 RG  
The rectifier circuit shown in Figure 4-8 has the benefit  
that the op amp never goes in saturation, so the only  
thing affecting its frequency response is the  
amplification and the gain bandwidth product.  
.
FIGURE 4-9: Two Op Amp  
Instrumentation Amplifier.  
R2  
D2  
VIN  
R1  
VOUT  
MCP6441  
D1  
Precision Half-Wave Rectifier  
VOUT  
-R2/R1  
VIN  
Transfer Characteristic  
FIGURE 4-8:  
Precision Half-Wave  
Rectifier.  
DS22257B-page 16  
© 2011 Microchip Technology Inc.  
MCP6441/2/4  
5.3  
Microchip Advanced Part Selector  
(MAPS)  
5.0  
DESIGN AIDS  
Microchip provides the basic design tools needed for  
the MCP6441/2/4 op amp.  
MAPS is a software tool that helps semiconductor  
professionals efficiently identify the Microchip devices  
that fit a particular design requirement. Available at no  
cost from the Microchip website at www.micro-  
chip.com/ maps, the MAPS is an overall selection tool  
for Microchip’s product portfolio that includes Analog,  
Memory, MCUs and DSCs. Using this tool, you can  
define a filter to sort features for a parametric search of  
devices and export side-by-side technical comparison  
reports. Helpful links are also provided for Data Sheets,  
Purchase and Sampling of Microchip parts.  
5.1  
SPICE Macro Model  
The latest SPICE macro model for the MCP6441/2/4  
op amp is available on the Microchip web site at  
www.microchip.com. The model was written and tested  
in the official OrCAD (Cadence®) owned PSpice®. For  
the other simulators, translation may be required.  
The model covers a wide aspect of the op amp's  
electrical specifications. Not only does the model cover  
voltage, current and resistance of the op amp, but it  
also covers the temperature and the noise effects on  
the behavior of the op amp. The model has not been  
verified outside of the specification range listed in the  
op amp data sheet. The model behaviors under these  
conditions cannot ensure it will match the actual op  
amp performance.  
5.4  
Analog Demonstration and  
Evaluation Boards  
Microchip offers  
Demonstration and Evaluation Boards that are  
designed to help you achieve faster time to market. For  
a
broad spectrum of Analog  
a
complete listing of these boards and their  
Moreover, the model is intended to be an initial design  
tool. Bench testing is a very important part of any  
design and cannot be replaced with simulations. Also,  
simulation results using this macro model need to be  
validated by comparing them to the data sheet  
specifications and characteristic curves.  
corresponding user’s guides and technical information,  
visit the Microchip web site at www.micro-  
chip.com/analogtools.  
Some boards that are especially useful are:  
• MCP6XXX Amplifier Evaluation Board 1  
• MCP6XXX Amplifier Evaluation Board 2  
• MCP6XXX Amplifier Evaluation Board 3  
• MCP6XXX Amplifier Evaluation Board 4  
• Active Filter Demo Board Kit  
®
5.2  
FilterLab Software  
Microchip’s FilterLab software is an innovative software  
tool that simplifies analog active filter design using op  
amps. Available at no cost from the Microchip web site  
at www.microchip.com/filterlab, the FilterLab design  
tool provides full schematic diagrams of the filter circuit  
with component values. It also outputs the filter circuit  
in SPICE format, which can be used with the macro  
model to simulate the actual filter performance.  
• 5/6-Pin SOT-23 Evaluation Board, P/N VSUPEV2  
© 2011 Microchip Technology Inc.  
DS22257B-page 17  
MCP6441/2/4  
5.5  
Application Notes  
The following Microchip Analog Design Note and  
Application Notes are available on the Microchip web  
site at www.microchip.com/appnotes, and are  
recommended as supplemental reference resources.  
ADN003 – “Select the Right Operational Amplifier  
for your Filtering Circuits”, DS21821  
AN722 – “Operational Amplifier Topologies and  
DC Specifications”, DS00722  
AN723 – “Operational Amplifier AC Specifications  
and Applications”, DS00723  
AN884 – “Driving Capacitive Loads With Op  
Amps”, DS00884  
AN990 – “Analog Sensor Conditioning Circuits –  
An Overview”, DS00990  
AN1177 – “Op Amp Precision Design: DC Errors”,  
DS01177  
AN1228 – “Op Amp Precision Design: Random  
Noise”, DS01228  
• AN1297 “Microchip’s Op Amp SPICE Macro  
Models”, DS01297  
• AN1332: “Current Sensing Circuit Concepts and  
Fundamentals”’ DS01332  
These application notes and others are listed in the  
design guide:  
“Signal Chain Design Guide”, DS21825  
DS22257B-page 18  
© 2011 Microchip Technology Inc.  
MCP6441/2/4  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Lead SC70 (MCP6441)  
Example:  
DG25  
XXNN  
Example:  
5-Lead SOT-23 (MCP6441)  
WU25  
XXNN  
8-Lead SOIC (150 mil) (MCP6442)  
Example:  
XXXXXXXX  
XXXXYYWW  
MCP6442E  
e
3
SN^^0746  
256  
NNN  
Example:  
8-Lead MSOP (MCP6442)  
XXXXXX  
YWWNNN  
6442E  
432256  
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
e
3
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
Note: In the event the full Microchip part number cannot be marked on one line, it  
will be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2011 Microchip Technology Inc.  
DS22257B-page 19  
MCP6441/2/4  
6.2  
Package Types  
14-Lead SOIC (150 mil) (MCP6444)  
Example:  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
MCP6444  
e
3
E/SL
0746256  
Example:  
14-Lead TSSOP (MCP6444)  
XXXXXX  
YYWW  
6444E/ST  
0432  
NNN  
256  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS22257B-page 20  
© 2011 Microchip Technology Inc.  
MCP6441/2/4  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢂꢒꢖꢆꢗꢍꢘꢙꢚꢛ  
ꢜꢔꢊꢃꢝ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
D
b
1
3
2
E1  
E
4
5
e
e
A
A2  
c
A1  
L
ꢬꢆꢃꢍꢇꢕꢭꢮꢮꢭꢕꢌꢣꢌꢯꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉꢮꢃꢄꢃꢍꢇ  
ꢕꢭꢰ  
ꢰꢱꢕ  
ꢕꢛꢲ  
ꢰꢐꢄꢳꢅꢓꢉꢈꢑꢉꢪꢃꢆꢇꢰ  
ꢪꢃꢍꢎꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢵꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢸꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢸꢃꢋꢍꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢮꢅꢆꢚꢍꢒ  
ꢧꢈꢈꢍꢉꢮꢅꢆꢚꢍꢒ  
ꢮꢅꢊꢋꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢮꢅꢊꢋꢉꢸꢃꢋꢍꢒ  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
ꢗꢁꢴꢟꢉꢠꢜꢡ  
ꢗꢁꢶꢗ  
ꢗꢁꢶꢗ  
ꢗꢁꢗꢗ  
ꢀꢁꢶꢗ  
ꢀꢁꢀꢟ  
ꢀꢁꢶꢗ  
ꢗꢁꢀꢗ  
ꢗꢁꢗꢶ  
ꢗꢁꢀꢟ  
ꢘꢁꢀꢗ  
ꢀꢁꢘꢟ  
ꢘꢁꢗꢗ  
ꢗꢁꢘꢗ  
ꢀꢁꢀꢗ  
ꢀꢁꢗꢗ  
ꢗꢁꢀꢗ  
ꢘꢁꢞꢗ  
ꢀꢁꢹꢟ  
ꢘꢁꢘꢟ  
ꢗꢁꢞꢴ  
ꢗꢁꢘꢴ  
ꢗꢁꢞꢗ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀꢘꢙꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀꢞꢁꢟꢕꢁ  
ꢠꢜꢡꢢ ꢠꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉꢣꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏꢤꢉꢅꢖꢊꢎꢍꢉꢥꢊꢏꢐꢅꢉꢇꢒꢈꢦꢆꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ ꢎꢒꢆꢈꢏꢈꢚꢤ ꢂꢓꢊꢦꢃꢆꢚ ꢡꢗꢞꢺꢗꢴꢀꢠ  
© 2011 Microchip Technology Inc.  
DS22257B-page 21  
MCP6441/2/4  
5-Lead Plastic Small Outline Transistor (LT) [SC70]  
ꢜꢔꢊꢃꢝ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
DS22257B-page 22  
© 2011 Microchip Technology Inc.  
MCP6441/2/4  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢏꢒꢖꢆꢗꢍꢏꢒꢁꢞꢟꢛ  
ꢜꢔꢊꢃꢝ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
ꢬꢆꢃꢍꢇꢕꢭꢮꢮꢭꢕꢌꢣꢌꢯꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉꢮꢃꢄꢃꢍꢇ  
ꢕꢭꢰ  
ꢰꢱꢕ  
ꢕꢛꢲ  
ꢰꢐꢄꢳꢅꢓꢉꢈꢑꢉꢪꢃꢆꢇꢰ  
ꢮꢅꢊꢋꢉꢪꢃꢍꢎꢒ  
ꢗꢁꢻꢟꢉꢠꢜꢡ  
ꢱꢐꢍꢇꢃꢋꢅꢉꢮꢅꢊꢋꢉꢪꢃꢍꢎꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢵꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢸꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢸꢃꢋꢍꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢮꢅꢆꢚꢍꢒ  
ꢧꢈꢈꢍꢉꢮꢅꢆꢚꢍꢒ  
ꢧꢈꢈꢍꢔꢓꢃꢆꢍ  
ꢧꢈꢈꢍꢉꢛꢆꢚꢏꢅ  
ꢮꢅꢊꢋꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢮꢅꢊꢋꢉꢸꢃꢋꢍꢒ  
ꢅꢀ  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
ꢀꢁꢻꢗꢉꢠꢜꢡ  
ꢗꢁꢻꢗ  
ꢗꢁꢶꢻ  
ꢗꢁꢗꢗ  
ꢘꢁꢘꢗ  
ꢀꢁꢹꢗ  
ꢘꢁꢙꢗ  
ꢗꢁꢀꢗ  
ꢗꢁꢹꢟ  
ꢗꢼ  
ꢀꢁꢞꢟ  
ꢀꢁꢹꢗ  
ꢗꢁꢀꢟ  
ꢹꢁꢘꢗ  
ꢀꢁꢶꢗ  
ꢹꢁꢀꢗ  
ꢗꢁꢴꢗ  
ꢗꢁꢶꢗ  
ꢹꢗꢼ  
ꢮꢀ  
ꢗꢁꢗꢶ  
ꢗꢁꢘꢗ  
ꢗꢁꢘꢴ  
ꢗꢁꢟꢀ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀꢘꢙꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀꢞꢁꢟꢕꢁ  
ꢠꢜꢡꢢ ꢠꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉꢣꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏꢤꢉꢅꢖꢊꢎꢍꢉꢥꢊꢏꢐꢅꢉꢇꢒꢈꢦꢆꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ ꢎꢒꢆꢈꢏꢈꢚꢤ ꢂꢓꢊꢦꢃꢆꢚ ꢡꢗꢞꢺꢗꢻꢀꢠ  
© 2011 Microchip Technology Inc.  
DS22257B-page 23  
MCP6441/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
I
DS22257B-page 24  
© 2011 Microchip Technology Inc.  
MCP6441/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2011 Microchip Technology Inc.  
DS22257B-page 25  
MCP6441/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22257B-page 26  
© 2011 Microchip Technology Inc.  
MCP6441/2/4  
ꢠꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢜꢖꢆꢡꢆꢜꢄꢓꢓꢔꢢꢣꢆꢟꢤꢥꢚꢆꢎꢎꢆꢦꢔꢅꢧꢆꢗꢍꢏꢨꢘꢛ  
ꢜꢔꢊꢃꢝ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
© 2011 Microchip Technology Inc.  
DS22257B-page 27  
MCP6441/2/4  
ꢠꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢩꢋꢌꢓꢔꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢇꢄꢌꢪꢄꢫꢃꢆꢕꢩꢍꢖꢆꢗꢩꢍꢏꢇꢛ  
ꢜꢔꢊꢃꢝ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
D
N
E
E1  
NOTE 1  
2
b
1
e
c
φ
A2  
A
L
L1  
A1  
ꢬꢆꢃꢍꢇꢕꢭꢮꢮꢭꢕꢌꢣꢌꢯꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉꢮꢃꢄꢃꢍꢇ  
ꢕꢭꢰ  
ꢰꢱꢕ  
ꢕꢛꢲ  
ꢰꢐꢄꢳꢅꢓꢉꢈꢑꢉꢪꢃꢆꢇꢰ  
ꢪꢃꢍꢎꢒ  
ꢗꢁꢴꢟꢉꢠꢜꢡ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢵꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑꢉ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢸꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢸꢃꢋꢍꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢮꢅꢆꢚꢍꢒ  
ꢧꢈꢈꢍꢉꢮꢅꢆꢚꢍꢒ  
ꢗꢁꢙꢟ  
ꢗꢁꢗꢗ  
ꢗꢁꢶꢟ  
ꢀꢁꢀꢗ  
ꢗꢁꢻꢟ  
ꢗꢁꢀꢟ  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
ꢞꢁꢻꢗꢉꢠꢜꢡ  
ꢹꢁꢗꢗꢉꢠꢜꢡ  
ꢹꢁꢗꢗꢉꢠꢜꢡ  
ꢗꢁꢴꢗ  
ꢗꢁꢞꢗ  
ꢗꢁꢶꢗ  
ꢧꢈꢈꢍꢔꢓꢃꢆꢍ  
ꢧꢈꢈꢍꢉꢛꢆꢚꢏꢅ  
ꢮꢀ  
ꢗꢁꢻꢟꢉꢯꢌꢧ  
ꢗꢼ  
ꢶꢼ  
ꢮꢅꢊꢋꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢮꢅꢊꢋꢉꢸꢃꢋꢍꢒ  
ꢗꢁꢗꢶ  
ꢗꢁꢘꢘ  
ꢗꢁꢘꢹ  
ꢗꢁꢞꢗ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢪꢃꢆꢉꢀꢉꢥꢃꢇꢐꢊꢏꢉꢃꢆꢋꢅꢖꢉꢑꢅꢊꢍꢐꢓꢅꢉꢄꢊꢤꢉꢥꢊꢓꢤꢩꢉꢳꢐꢍꢉꢄꢐꢇꢍꢉꢳꢅꢉꢏꢈꢎꢊꢍꢅꢋꢉꢦꢃꢍꢒꢃꢆꢉꢍꢒꢅꢉꢒꢊꢍꢎꢒꢅꢋꢉꢊꢓꢅꢊꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀꢟꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢹꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀꢞꢁꢟꢕꢁ  
ꢠꢜꢡꢢ ꢠꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉꢣꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏꢤꢉꢅꢖꢊꢎꢍꢉꢥꢊꢏꢐꢅꢉꢇꢒꢈꢦꢆꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢯꢌꢧꢢ ꢯꢅꢑꢅꢓꢅꢆꢎꢅꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢩꢉꢐꢇꢐꢊꢏꢏꢤꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢩꢉꢑꢈꢓꢉꢃꢆꢑꢈꢓꢄꢊꢍꢃꢈꢆꢉꢔꢐꢓꢔꢈꢇꢅꢇꢉꢈꢆꢏꢤꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ ꢎꢒꢆꢈꢏꢈꢚꢤ ꢂꢓꢊꢦꢃꢆꢚ ꢡꢗꢞꢺꢀꢀꢀꢠ  
DS22257B-page 28  
© 2011 Microchip Technology Inc.  
MCP6441/2/4  
8-Lead Plastic Micro Small Outline Package (MS) [MSOP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2011 Microchip Technology Inc.  
DS22257B-page 29  
MCP6441/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22257B-page 30  
© 2011 Microchip Technology Inc.  
MCP6441/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2011 Microchip Technology Inc.  
DS22257B-page 31  
MCP6441/2/4  
14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]  
ꢜꢔꢊꢃꢝ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
DS22257B-page 32  
© 2011 Microchip Technology Inc.  
MCP6441/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2011 Microchip Technology Inc.  
DS22257B-page 33  
MCP6441/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22257B-page 34  
© 2011 Microchip Technology Inc.  
MCP6441/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2011 Microchip Technology Inc.  
DS22257B-page 35  
MCP6441/2/4  
NOTES:  
DS22257B-page 36  
© 2011 Microchip Technology Inc.  
MCP6441/2/4  
APPENDIX A: REVISION HISTORY  
Revision B (March 2011)  
• Added the MCP6442 and MCP6444 package  
information.  
• Updated the ESD protection value on all pins in  
Section 1.1 “Absolute Maximum Ratings †”.  
• Added Figure 2-32.  
• Updated Table 3-1.  
• Updated the package markings information and  
drawings.  
• Updated the Product Identification System  
section.  
Revision A (September 2010)  
• Original Release of this Document.  
© 2011 Microchip Technology Inc.  
DS22257B-page 37  
MCP6441/2/4  
NOTES:  
DS22257B-page 38  
© 2011 Microchip Technology Inc.  
MCP6441/2/4  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
T
-X  
/XX  
Examples:  
a)  
b)  
c)  
d)  
e)  
f)  
MCP6441T-E/LT:  
Tape and Reel,  
5LD SC70 Package  
Tape and Reel,  
5LD SOT-23 Package  
Tape and Reel,  
8LD MSOP Package  
Tube,  
8LD MSOP Package  
Tube,  
8LD SOIC Package  
Tube,  
8LD SOIC Package  
Tape and Reel,  
14LD SOIC Package  
Tube,  
14LD SOIC Package  
Tape and Reel,  
14LD TSSOP Package  
Tube,  
Tape and Reel Temperature Package  
Range  
MCP6441T-E/OT:  
MCP6442T-E/MS:  
MCP6442-E/MS:  
MCP6442T-E/SN:  
MCP6442-E/SN:  
MCP6444T-E/SL:  
MCP6444-E/SL:  
MCP6444T-E/ST:  
MCP6444-E/ST:  
Device:  
MCP6441T:  
MCP6442T:  
MCP6442:  
MCP6444T:  
MCP6444:  
Single Op Amp (Tape and Reel)  
(SC70, SOT-23)  
Dual Op Amp (Tape and Reel)  
(SOIC, MSOP)  
Dual Op Amp (Tube)  
(SOIC, MSOP)  
Quad Op Amp (Tape and Reel)  
(SOIC, TSSOP)  
Quad Op Amp (Tube)  
(SOIC, TSSOP)  
g)  
h)  
i)  
Temperature  
Range:  
E
= -40°C to +125°C  
j)  
Package:  
LT  
=
=
=
=
=
=
Plastic Package (SC70), 5-lead  
Plastic Small Outline Transistor (SOT-23), 5-lead  
Plastic MSOP, 8-lead  
Plastic SOIC, (3.99 mm body), 8-lead  
Plastic SOIC, (3.99 mm body), 14-lead  
Plastic TSSOP (4.4 mm body), 14-lead  
14LD TSSOP Package  
OT  
MS  
SN  
SL  
ST  
© 2011 Microchip Technology Inc.  
DS22257B-page 39  
MCP6441/2/4  
NOTES:  
DS22257B-page 40  
© 2011 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
32  
PIC logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,  
TSHARC, UniWinDriver, WiperLock and ZENA are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2011, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-61341-021-9  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2011 Microchip Technology Inc.  
DS22257B-page 41  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Fax: 886-7-330-9305  
Los Angeles  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Toronto  
Mississauga, Ontario,  
Canada  
China - Zhuhai  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
02/18/11  
DS22257B-page 42  
© 2011 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY