MCP654-E/SN [MICROCHIP]

DUAL OP-AMP, 200 uV OFFSET-MAX, 50 MHz BAND WIDTH, PDSO8, 3.90 MM, LEAD FREE, PLASTIC, SOIC-8;
MCP654-E/SN
型号: MCP654-E/SN
厂家: MICROCHIP    MICROCHIP
描述:

DUAL OP-AMP, 200 uV OFFSET-MAX, 50 MHz BAND WIDTH, PDSO8, 3.90 MM, LEAD FREE, PLASTIC, SOIC-8

光电二极管
文件: 总56页 (文件大小:1679K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP651/2/4/5/9  
50 MHz, 6 mA Op Amps with mCal  
Features  
Description  
• Gain Bandwidth Product: 50 MHz (typical)  
• Short Circuit Current: 100 mA (typical)  
• Noise: 7.5 nV/Hz (typical, at 1 MHz)  
• Calibrated Input Offset: ±200 µV (maximum)  
• Rail-to-Rail Output  
The Microchip Technology, Inc. MCP651/2/4/5/9 family  
of operational amplifiers features low offset. At power  
up, these op amps are self-calibrated using mCal.  
Some package options also provide a calibration/chip  
select pin (CAL/CS) that supports a low power mode of  
operation, with offset calibration at the time normal  
operation is re-started. These amplifiers are optimized  
for high speed, low noise and distortion, single-supply  
operation with rail-to-rail output and an input that  
includes the negative rail.  
• Slew Rate: 30 V/µs (typical)  
• Supply Current: 6.0 mA (typical)  
• Power Supply: 2.5V to 5.5V  
• Extended Temperature Range: -40°C to +125°C  
This family is offered in single with CAL/CS pin  
(MCP651), dual (MCP652), dual with CAL/CS pins  
(MCP655), quad (MCP654) and quad with CAL/CS  
pins (MCP659). All devices are fully specified from  
-40°C to +125°C.  
Typical Applications  
• Driving A/D Converters  
• Power Amplifier Control Loops  
• Barcode Scanners  
Typical Application Circuit  
• Optical Detector Amplifier  
R1  
R2  
Design Aids  
VDD/2  
VOUT  
RL  
• SPICE Macro Models  
R3  
• FilterLab® Software  
MCP65X  
VIN  
• Microchip Advanced Part Selector (MAPS)  
• Analog Demonstration and Evaluation Boards  
• Application Notes  
Power Driver with High Gain  
Package Types  
MCP654  
SOIC, TSSOP  
MCP651  
SOIC  
MCP652  
3×3 DFN *  
MCP652  
SOIC  
VOUTA  
VDD  
1
8
7
1
2
3
4
8
V
NC  
CAL/CS  
VDD  
V
OUTA  
VDD  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUTD  
1
8
7
6
5
VOUTA  
7
6
5
V
V
V
-
VIN  
+
VINA  
+
VOUTB  
V
-
INA  
2
VOUTB  
EP  
9
2
3
4
IND  
VINA  
VINA  
+
V
+
+
VIN  
VOUT  
VCAL  
VINB  
VINB  
+
VINA  
VINB  
VINB  
+
INA  
3
4
6
5
IND  
SS  
V
VSS  
VSS  
VSS  
DD  
+
V
V
V
V
+
-
INB  
INC  
INC  
V
-
INB  
V
8
OUTB  
OUTC  
16 15 14 13  
MCP659  
4x4 QFN*  
MCP655  
MCP655  
MSOP  
VINA  
-
VIND  
VSS  
+
1
12  
3×3 DFN *  
VINA  
VDD  
VINB  
+
11  
10  
9
2
3
4
EP  
17  
VOUTA  
V
DD  
1
10  
9
VINC  
VINC  
+
-
V
VOUTA  
1
2
3
4
5
10  
9
DD  
VINA  
+
VOUTB  
+
2
3
VOUTB  
VINA  
VINA  
+
EP  
11  
5
6
7
8
VINA  
VINB  
VINB  
+
8
VINB  
VINB  
+
8
VSS  
VSS  
4
5
7
6
7
CALA/CSA  
CALB/CSB CALA/CSA  
CALB/CSB  
6
* Includes Exposed Thermal Pad (EP); see Table 3-1.  
© 2011 Microchip Technology Inc.  
DS22146B-page 1  
MCP651/2/4/5/9  
NOTES:  
DS22146B-page 2  
© 2011 Microchip Technology Inc.  
MCP651/2/4/5/9  
1.0  
1.1  
ELECTRICAL CHARACTERISTICS  
Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification is not  
implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
Absolute Maximum Ratings †  
V
– V  
.......................................................................6.5V  
SS  
DD  
Current at Input Pins ....................................................±2 mA  
Analog Inputs (V + and V –) †† . V – 1.0V to V + 1.0V  
IN  
IN  
SS  
DD  
All other Inputs and Outputs .......... V – 0.3V to V + 0.3V  
SS  
DD  
Difference Input voltage ...................................... |V – V  
|
SS  
DD  
†† See Section 4.2.2 “Input Voltage and Current Limits”.  
Output Short Circuit Current ................................Continuous  
Current at Output and Supply Pins ..........................±150 mA  
Storage Temperature ...................................-65°C to +150°C  
Max. Junction Temperature ........................................+150°C  
ESD protection on all pins (HBM, MM) ................≥ 1 kV, 200V  
1.2  
Specifications  
DC ELECTRICAL SPECIFICATIONS  
TABLE 1-1:  
Electrical Characteristics: Unless otherwise indicated, T = +25°C, V = +2.5V to +5.5V, V = GND, V  
= V /3,  
DD  
A
DD  
SS  
CM  
V
V /2, V = V /2, R = 1 kΩ to V and CAL/CS = V (refer to Figure 1-2).  
OUT  
DD  
L
DD  
L
L
SS  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Offset  
Input Offset Voltage  
V
-200  
37  
+200  
200  
µV  
µV  
After calibration (Note 1)  
OS  
Input Offset Voltage Trim Step  
Input Offset Voltage Drift  
Power Supply Rejection Ratio  
Input Current and Impedance  
Input Bias Current  
V
OSTRM  
ΔV /ΔT  
±2.5  
76  
µV/°C T = -40°C to +125°C  
OS  
A
A
PSRR  
61  
dB  
I
I
I
6
pA  
B
B
B
Across Temperature  
130  
1700  
±1  
pA  
pA  
T = +85°C  
A
Across Temperature  
5,000  
T = +125°C  
A
Input Offset Current  
I
pA  
OS  
13  
Common Mode Input Impedance  
Differential Input Impedance  
Common Mode  
Z
10 ||9  
Ω||pF  
Ω||pF  
CM  
13  
Z
10 ||2  
DIFF  
Common-Mode Input Voltage Range  
Common-Mode Rejection Ratio  
V
V
0.3  
81  
84  
V
1.3  
DD  
V
(Note 2)  
CMR  
SS  
CMRR  
CMRR  
65  
68  
dB  
dB  
V
V
= 2.5V, V  
= 5.5V, V  
= -0.3 to 1.2V  
= -0.3 to 4.2V  
DD  
DD  
CM  
CM  
Open-Loop Gain  
DC Open-Loop Gain (large signal)  
A
A
88  
94  
114  
123  
dB  
dB  
V
V
= 2.5V, V  
= 5.5V, V  
= 0.3V to 2.2V  
= 0.3V to 5.2V  
OL  
DD  
DD  
OUT  
OL  
OUT  
Output  
Maximum Output Voltage Swing  
V
V
, V  
, V  
V
V
+ 25  
V
V
25  
mV  
mV  
V
= 2.5V, G = +2,  
DD  
OL  
OH  
OH  
SS  
DD  
DD  
0.5V Input Overdrive  
V = 5.5V, G = +2,  
DD  
+ 50  
50  
OL  
SS  
0.5V Input Overdrive  
Output Short Circuit Current  
I
I
±50  
±50  
±95  
±145  
±150  
mA  
mA  
V
V
= 2.5V (Note 3)  
= 5.5V (Note 3)  
SC  
SC  
DD  
DD  
±100  
Note 1: Describes the offset (under the specified conditions) right after power up, or just after the CAL/CS pin is toggled. Thus,  
1/f noise effects (an apparent wander in V ; see Figure 2-35) are not included.  
OS  
2: See Figure 2-6 and Figure 2-7 for temperature effects.  
3: The I specifications are for design guidance only; they are not tested.  
SC  
© 2011 Microchip Technology Inc.  
DS22146B-page 3  
MCP651/2/4/5/9  
TABLE 1-1:  
DC ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, T = +25°C, V = +2.5V to +5.5V, V = GND, V  
= V /3,  
DD  
A
DD  
SS  
CM  
V
V /2, V = V /2, R = 1 kΩ to V and CAL/CS = V (refer to Figure 1-2).  
OUT  
DD  
L
DD  
L
L
SS  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Calibration Input  
Calibration Input Voltage Range  
Internal Calibration Voltage  
Input Impedance  
V
V
+ 0.1  
V
– 1.4  
mV  
V
V
pin externally driven  
pin open  
CALRNG  
SS  
DD  
CAL  
CAL  
V
Z
0.31V  
0.33V  
0.35V  
CAL  
CAL  
DD  
DD  
DD  
100 || 5  
kΩ||pF  
Power Supply  
Supply Voltage  
V
2.5  
3
6
5.5  
9
V
DD  
Quiescent Current per Amplifier  
POR Input Threshold, Low  
I
mA  
I = 0  
O
Q
V
1.15  
1.40  
PRL  
V
V
POR Input Threshold, High  
V
1.40  
1.65  
PRH  
Note 1: Describes the offset (under the specified conditions) right after power up, or just after the CAL/CS pin is toggled. Thus,  
1/f noise effects (an apparent wander in V ; see Figure 2-35) are not included.  
OS  
2: See Figure 2-6 and Figure 2-7 for temperature effects.  
3: The I specifications are for design guidance only; they are not tested.  
SC  
TABLE 1-2:  
AC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, T = 25°C, V = +2.5V to +5.5V, V = GND, V  
= V /2,  
DD  
A
DD  
SS  
CM  
V
V /2, V = V /2, R = 1 kΩ to V , C = 20 pF and CAL/CS = V (refer to Figure 1-2).  
DD L DD L L L SS  
OUT  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
AC Response  
Gain Bandwidth Product  
Phase Margin  
GBWP  
PM  
50  
65  
20  
MHz  
°
G = +1  
Open-Loop Output Impedance  
AC Distortion  
R
Ω
OUT  
Total Harmonic Distortion plus Noise  
THD+N  
0.0012  
%
G = +1, V  
= 4V , f = 1 kHz,  
OUT P-P  
V
= 5.5V, BW = 80 kHz  
DD  
Step Response  
Rise Time, 10% to 90%  
Slew Rate  
t
6
ns  
G = +1, V  
G = +1  
= 100 mV  
OUT P-P  
r
SR  
30  
V/µs  
Noise  
Input Noise Voltage  
Input Noise Voltage Density  
Input Noise Current Density  
E
e
17  
7.5  
4
µV  
f = 0.1 Hz to 10 Hz  
ni  
P-P  
nV/Hz f = 1 MHz  
fA/Hz f = 1 kHz  
ni  
i
ni  
DS22146B-page 4  
© 2011 Microchip Technology Inc.  
MCP651/2/4/5/9  
TABLE 1-3:  
DIGITAL ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, T = 25°C, V = +2.5V to +5.5V, V = GND, V  
= V /2,  
DD  
A
DD  
SS  
CM  
V
V /2, V = V /2, R = 1 kΩ to V , C = 20 pF and CAL/CS = V (refer to Figure 1-1 and Figure 1-2).  
OUT  
DD L DD L L L SS  
Parameters  
Sym  
Min  
Typ  
Max Units  
Conditions  
CAL/CS Low Specifications  
CAL/CS Logic Threshold, Low  
CAL/CS Input Current, Low  
CAL/CS High Specifications  
CAL/CS Logic Threshold, High  
CAL/CS Input Current, High  
GND Current  
V
V
0
0.2V  
V
IL  
SS  
DD  
I
nA  
CAL/CS = 0V  
CSL  
V
0.8V  
V
DD  
V
IH  
DD  
I
0.7  
-1.8  
-4  
µA  
µA  
µA  
µA  
µA  
MΩ  
nA  
CAL/CS = V  
DD  
CSH  
I
I
I
I
-3.5  
-8  
Single, CAL/CS = V = 2.5V  
DD  
SS  
SS  
SS  
SS  
Single, CAL/CS = V = 5.5V  
DD  
-5  
-2.5  
-5  
Dual, CAL/CS = V = 2.5V  
DD  
-10  
Dual, CAL/CS = V = 5.5V  
DD  
CAL/CS Internal Pull Down Resistor  
R
5
PD  
O(LEAK)  
Amplifier Output Leakage  
I
50  
CAL/CS = V  
DD  
POR Dynamic Specifications  
V
Low to Amplifier Off Time  
t
200  
200  
ns  
G = +1 V/V, V = V  
,
DD  
POFF  
L
SS  
(output goes High-Z)  
V
= 2.5V to 0V step to V  
= 0.1 (2.5V)  
= 0.9 (2.5V)  
DD  
OUT  
OUT  
V
High to Amplifier On Time  
t
100  
300  
ms  
G = +1 V/V, V = V  
,
DD  
PON  
L
SS  
(including calibration)  
V
= 0V to 2.5V step to V  
DD  
CAL/CS Dynamic Specifications  
CAL/CS Input Hysteresis  
1
V
0.25  
V
HYST  
CAL/CS Setup Time  
t
µs  
G = +1 V/V, V = V (Notes 2, 3, 4)  
L SS  
CSU  
(between CAL/CS edges)  
CAL/CS = 0.8V to V  
= 0.1 (V /2)  
DD  
OUT  
DD  
CAL/CS High to Amplifier Off Time  
(output goes High-Z)  
t
200  
ns  
G = +1 V/V, V = V  
,
COFF  
L
SS  
CAL/CS = 0.8V to V  
= 0.1 (V /2)  
DD  
DD  
OUT  
CAL/CS Low to Amplifier On Time  
(including calibration)  
G = +1 V/V, V = V , MCP651 and MCP655,  
L SS  
t
3
6
4
8
ms  
ms  
CON  
CAL/CS = 0.2V to V  
= 0.9 (V /2)  
DD  
OUT  
DD  
G = +1 V/V, V = V , MCP659,  
t
L
SS  
CON  
CAL/CS = 0.2V to V  
= 0.9 (V /2)  
DD  
DD  
OUT  
Note 1: The MCP652 single, MCP655 dual and MCP659 quad have their CAL/CS inputs internally pulled down to V (0V).  
SS  
2: This time ensures that the internal logic recognizes the edge. However, for the rising edge case, if CAL/CS is raised  
before the calibration is complete, the calibration will be aborted and the part will return to low power mode.  
3: For the MCP655 dual, there is an additional constraint. CALA/CSA and CALB/CSB can be toggled simultaneously  
(within a time much smaller than t  
) to make both op amps perform the same function simultaneously. If they are tog-  
CSU  
gled independently, then CALA/CSA (CALB/CSB) cannot be allowed to toggle while op amp B (op amp A) is in  
calibration mode; allow more than the maximum t time (4 ms) before the other side is toggled.  
CON  
4: For the MCP659 quad, there is an additional constraint. CALAD/CSAD and CALBC/CSBC can be toggled simultane-  
ously (within a time much smaller than t ) to make all four op amps perform the same function simultaneously, and  
CSU  
the maximum tCON time is approximately doubled (8 ms). If they are toggled independently, then CALAD/CSAD  
(CALBC/CSBC) cannot be allowed to toggle while op amps B and C (op amps A and D) are in calibration mode; allow  
more than the maximum t  
time (8 ms) before the other side is toggled.  
CON  
© 2011 Microchip Technology Inc.  
DS22146B-page 5  
MCP651/2/4/5/9  
TABLE 1-4:  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, all limits are specified for: V = +2.5V to +5.5V, V = GND.  
DD  
SS  
Parameters  
Sym  
Min  
Typ  
Max Units  
Conditions  
Temperature Ranges  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
T
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
A
T
(Note 1)  
A
T
A
Thermal Package Resistances  
Thermal Resistance, 8L-3×3 DFN  
Thermal Resistance, 8L-SOIC  
θ
θ
θ
θ
θ
θ
θ
63  
163  
71  
°C/W (Note 2)  
°C/W  
JA  
JA  
JA  
JA  
JA  
JA  
JA  
Thermal Resistance, 10L-3×3 DFN  
Thermal Resistance, 10L-MSOP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
Thermal Resistance, 16L-4x4-QFN  
°C/W (Note 2)  
°C/W  
202  
95.3  
100  
46  
°C/W  
°C/W  
°C/W (Note 2)  
Note 1: Operation must not cause T to exceed Maximum Junction Temperature specification (150°C).  
J
2: Measured on a standard JC51-7, four layer printed circuit board with ground plane and vias.  
1.3  
Timing Diagram  
CAL/CS  
VIL  
VIH  
VDD  
VPRH  
VPRL  
tPOFF  
tCSU  
tPON  
High-Z  
tCOFF  
tCON  
High-Z  
VOUT  
High-Z  
On  
-6 mA (typical)  
On  
-6 mA (typical)  
ISS -3 µA (typical)  
ICS  
-3 µA (typical)  
-3 µA (typical)  
0 nA (typical)  
0 nA (typical)  
0.7 µA (typical)  
Note  
:
For the MCP655 dual and the MCP659 quad, there is an additional constraint on toggling the two CAL/CS pins close  
together; see the TCON specification in Table 1-3.  
FIGURE 1-1:  
Timing Diagram.  
DS22146B-page 6  
© 2011 Microchip Technology Inc.  
MCP651/2/4/5/9  
1.4  
Test Circuits  
CF  
The circuit used for most DC and AC tests is shown in  
Figure 1-2. This circuit can independently set VCM and  
VOUT; see Equation 1-1. Note that VCM is not the  
circuit’s common mode voltage ((VP + VM)/2), and that  
VOST includes VOS plus the effects (on the input offset  
6.8 pF  
RG  
10 kΩ  
RF  
10 kΩ  
VDD/2  
VDD  
VP  
error, VOST) of temperature, CMRR, PSRR and AOL  
.
VIN+  
EQUATION 1-1:  
CB1  
100 nF  
CB2  
2.2 µF  
GDM = RF RG  
MCP65X  
VCM = (VP + VDD 2) ⁄ 2  
VOST = VINVIN+  
VIN–  
VOUT = (VDD 2) + (VP VM) + VOST(1 + GDM  
Where:  
)
VOUT  
VM  
RL  
CL  
RG  
RF  
1 kΩ  
20 pF  
10 kΩ  
10 kΩ  
GDM = Differential Mode Gain  
(V/V)  
(V)  
VCM = Op Amp’s Common Mode  
CF  
6.8 pF  
Input Voltage  
VL  
VOST = Op Amp’s Total Input Offset (mV)  
Voltage  
FIGURE 1-2:  
AC and DC Test Circuit for  
Most Specifications.  
© 2011 Microchip Technology Inc.  
DS22146B-page 7  
MCP651/2/4/5/9  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 1 kΩ to VL, CL = 20 pF, and CAL/CS = VSS  
.
2.1  
DC Signal Inputs  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
700  
600  
500  
400  
300  
200  
100  
0
80 Samples  
TA = +25°C  
VDD = 2.5V and 5.5V  
Calibrated at +25°C  
Representative Part  
Calibrated at VDD = 6.5V  
+125°C  
+85°C  
+25°C  
-40°C  
0%  
-100  
-100 -80 -60 -40 -20  
0
20 40 60 80 100  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
Power Supply Voltage (V)  
Input Offset Voltage (µV)  
FIGURE 2-1:  
Input Offset Voltage.  
FIGURE 2-4:  
Input Offset Voltage vs.  
Power Supply Voltage.  
20%  
50  
80 Samples  
VDD = 2.5V and 5.5V  
TA = -40°C to +125°C  
Calibrated at +25°C  
Representative Part  
18%  
16%  
14%  
12%  
10%  
8%  
40  
30  
VDD = 2.5V  
20  
10  
0
-10  
-20  
-30  
-40  
-50  
VDD = 5.5V  
6%  
4%  
2%  
0%  
-10 -8 -6 -4 -2  
0
2
4
6
8
10  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
Input Offset Voltage Drift (µV/°C)  
FIGURE 2-2:  
Input Offset Voltage Drift.  
FIGURE 2-5:  
Input Offset Voltage vs.  
Output Voltage.  
55%  
0.0  
1 Lot  
Low (VCMR_L – VSS  
80 Samples  
TA = +25°C  
DD = 2.5V and 5.5V  
50%  
45%  
40%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
)
V
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
No Change  
(includes noise)  
VDD = 2.5V  
Calibration  
Changed  
Calibration  
Changed  
VDD = 5.5V  
0%  
-100 -80 -60 -40 -20  
0
20 40 60 80 100  
-50  
-25  
0
25  
50  
75  
100 125  
Input Offset Voltage Repeatability (µV)  
Ambient Temperature (°C)  
FIGURE 2-3:  
Input Offset Voltage  
FIGURE 2-6:  
Low Input Common Mode  
Repeatability (repeated calibration).  
Voltage Headroom vs. Ambient Temperature.  
DS22146B-page 8  
© 2011 Microchip Technology Inc.  
MCP651/2/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 1 kΩ to VL, CL = 20 pF, and CAL/CS = VSS  
.
1.4  
110  
105  
100  
95  
1 Lot  
High (VDD – VCMR_H  
)
PSRR  
1.3  
1.2  
1.1  
1.0  
VDD = 2.5V  
90  
85  
CMRR, VDD = 5.5V  
CMRR, VDD = 2.5V  
80  
75  
70  
VDD = 5.5V  
65  
60  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-7:  
High Input Common Mode  
FIGURE 2-10:  
CMRR and PSRR vs.  
Voltage Headroom vs. Ambient Temperature.  
Ambient Temperature.  
1000  
130  
VDD = 2.5V  
Representative Part  
800  
VDD = 5.5V  
125  
120  
115  
110  
105  
100  
95  
600  
400  
200  
0
VDD = 2.5V  
-200  
-40°C  
+25°C  
+85°C  
+125°C  
-400  
-600  
-800  
-1000  
-50  
-25  
0
25  
50  
75  
100  
125  
Input Common Mode Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-8:  
Input Offset Voltage vs.  
FIGURE 2-11:  
DC Open-Loop Gain vs.  
Common Mode Voltage with VDD = 2.5V.  
Ambient Temperature.  
1000  
10,000  
VDD = 5.5V  
VCM = VCMR_H  
VDD = 5.5V  
800  
Representative Part  
600  
400  
200  
0
1,000  
IB  
100  
10  
1
-200  
-400  
-600  
-40°C  
+25°C  
+85°C  
+125°C  
-IOS  
-800  
-1000  
25  
45  
65  
85  
105  
125  
Input Common Mode Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-9:  
Input Offset Voltage vs.  
FIGURE 2-12:  
Input Bias and Offset  
Common Mode Voltage with VDD = 5.5V.  
Currents vs. Ambient Temperature with  
DD = +5.5V.  
V
© 2011 Microchip Technology Inc.  
DS22146B-page 9  
MCP651/2/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 1 kΩ to VL, CL = 20 pF, and CAL/CS = VSS  
.
160  
1.E-10m3  
1.E10-004µ  
TA = +85°C  
140  
VDD = 5.5V  
120  
100  
80  
10µ  
1.E-05  
IB  
1µ  
1.E-06  
100n  
1.E-07  
60  
40  
20  
10n  
1.E-08  
1n  
1.E-09  
+125°C  
+85°C  
+25°C  
-40°C  
IOS  
0
100p  
1.E-10  
-20  
-40  
-60  
10p  
1.E-11  
1p  
1.E-12  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Common Mode Input Voltage (V)  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
Input Voltage (V)  
FIGURE 2-13:  
Input Bias and Offset  
FIGURE 2-15:  
Input Bias Current vs. Input  
Currents vs. Common Mode Input Voltage with  
TA = +85°C.  
Voltage (below VSS).  
2000  
TA = +125°C  
VDD = 5.5V  
1500  
1000  
500  
IB  
0
IOS  
-500  
-1000  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Common Mode Input Voltage (V)  
FIGURE 2-14:  
Input Bias and Offset  
Currents vs. Common Mode Input Voltage with  
TA = +125°C.  
DS22146B-page 10  
© 2011 Microchip Technology Inc.  
MCP651/2/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 1 kΩ to VL, CL = 20 pF, and CAL/CS = VSS  
.
2.2  
Other DC Voltages and Currents  
14  
8
7
6
5
4
3
2
1
0
VDD = 5.5V  
VOL – VSS  
-IOUT  
12  
10  
8
+125°C  
+85°C  
+25°C  
-40°C  
6
VDD – VOH  
IOUT  
4
VDD = 2.5V  
2
0
1
10  
100  
Output Current Magnitude (mA)  
Power Supply Voltage (V)  
FIGURE 2-16:  
Ratio of Output Voltage  
FIGURE 2-19:  
Supply Current vs. Power  
Headroom to Output Current.  
Supply Voltage.  
14  
9
8
7
6
5
RL = 1 k  
VDD = 5.5V  
VOL – VSS  
12  
10  
8
VDD = 5.5V  
VDD = 2.5V  
4
3
2
1
0
6
VDD – VOH  
4
VDD = 2.5V  
2
0
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Common Mode Input Voltage (V)  
FIGURE 2-17:  
Output Voltage Headroom  
FIGURE 2-20:  
Supply Current vs. Common  
vs. Ambient Temperature.  
Mode Input Voltage.  
100  
80  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
+125°C  
+85°C  
+25°C  
-40°C  
60  
VPRH  
40  
20  
VPRL  
0
-20  
-40  
-60  
-80  
-100  
-50  
-25  
0
25  
50  
75  
100  
125  
Power Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-18:  
Output Short Circuit Current  
FIGURE 2-21:  
Power On Reset Voltages  
vs. Power Supply Voltage.  
vs. Ambient Temperature.  
© 2011 Microchip Technology Inc.  
DS22146B-page 11  
MCP651/2/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 1 kΩ to VL, CL = 20 pF, and CAL/CS = VSS  
.
30%  
140  
120  
100  
80  
144 Samples  
VDD = 2.5V and 5.5V  
25%  
20%  
15%  
10%  
5%  
60  
40  
0%  
20  
0
Normalized Internal Calibration Voltage;  
CAL/VDD  
-50  
-25  
0
25  
50  
75  
100  
125  
V
Ambient Temperature (°C)  
FIGURE 2-22:  
Normalized Internal  
FIGURE 2-23:  
VCAL Input Resistance vs.  
Calibration Voltage.  
Temperature.  
DS22146B-page 12  
© 2011 Microchip Technology Inc.  
MCP651/2/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 1 kΩ to VL, CL = 20 pF, and CAL/CS = VSS  
.
2.3  
Frequency Response  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
70  
60  
50  
40  
30  
20  
10  
PM  
PSRR+  
PSRR-  
CMRR  
VDD = 5.5V  
VDD = 2.5V  
GBWP  
11.E0+02  
1.1Ek+3  
11.E0+k4  
110.E0+k5  
11.EM+6  
11.0EM+7  
Frequency (Hz)  
Common Mode Input Voltage (V)  
FIGURE 2-24:  
CMRR and PSRR vs.  
FIGURE 2-27:  
Gain Bandwidth Product  
Frequency.  
and Phase Margin vs. Common Mode Input  
Voltage.  
120  
100  
80  
0
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
-30  
VDD = 5.5V  
-60  
-90  
GBWP  
AOL  
60  
VDD = 2.5V  
40  
-120  
-150  
-180  
-210  
| AOL  
|
20  
PM  
0
-20  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
1.E+1 1.E+2 1.E+3 1.E+4 1.E+5 1.E+6 1.E+7 1.E+8 1.E+9  
10 100 1k 10k 100k 1M 10M 100M 1G  
Frequency (Hz)  
FIGURE 2-25:  
Open-Loop Gain vs.  
FIGURE 2-28:  
Gain Bandwidth Product  
Frequency.  
and Phase Margin vs. Output Voltage.  
1000  
100  
90  
80  
70  
60  
50  
40  
30  
70  
60  
50  
40  
30  
20  
10  
PM  
G = 101 V/V  
G = 11 V/V  
G = 1 V/V  
VDD = 5.5V  
VDD = 2.5V  
10  
1
GBWP  
0.1  
-50 -25  
0
25  
50  
75 100 125  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
100M  
1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08  
Ambient Temperature (°C)  
FIGURE 2-26:  
Gain Bandwidth Product  
FIGURE 2-29:  
Closed-Loop Output  
and Phase Margin vs. Ambient Temperature.  
Impedance vs. Frequency.  
© 2011 Microchip Technology Inc.  
DS22146B-page 13  
MCP651/2/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 1 kΩ to VL, CL = 20 pF, and CAL/CS = VSS  
.
10  
9
8
7
6
150  
140  
130  
120  
110  
100  
90  
RS = 0  
S = 1 kΩ  
R
RTI  
VCM = VDD/2  
G = +1 V/V  
G = 1 V/V  
5
G = 2 V/V  
4
3
2
1
0
G 4 V/V  
80  
70  
RS = 10 kΩ  
S = 100 kΩ  
60  
R
50  
10p  
100p  
1n  
10n  
1.0E-09  
1k  
10k  
1.E+04  
100k  
1.E+05  
1M  
1.E+06  
10M  
1.E+07  
1.0E-11  
1.0E-10  
1.E+03  
Frequency (Hz)  
Normalized Capacitive Load; CL/G (F)  
FIGURE 2-30:  
Gain Peaking vs.  
FIGURE 2-31:  
Channel-to-Channel  
Normalized Capacitive Load.  
Separation vs. Frequency.  
DS22146B-page 14  
© 2011 Microchip Technology Inc.  
MCP651/2/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 1 kΩ to VL, CL = 20 pF, and CAL/CS = VSS  
.
2.4  
Input Noise and Distortion  
1.E+4  
10μ  
20  
15  
10  
5
Representative Part  
NPBW = 0.1 Hz  
1.E+3  
1μ  
0
1.E+2  
100n  
-5  
-10  
-15  
-20  
1.E+1  
10n  
1n  
1.E+00.1  
1
10  
100 1k 10k 100k 1M 10M  
0
5
10 15 20 25 30 35 40 45 50  
1.E-1 1.E+0 1.E+1 1.E+2 1.E+3 1.E+4 1.E+5 1.E+6 1.E+7  
Time (min)  
Frequency (Hz)  
FIGURE 2-32:  
Input Noise Voltage Density  
FIGURE 2-35:  
Input Noise plus Offset vs.  
vs. Frequency.  
Time with 0.1 Hz Filter.  
160  
1
VDD = 5.0V  
VDD = 2.5V  
140  
120  
100  
80  
0.1  
VDD = 5.5V  
BW = 22 Hz to > 500 kHz  
G = 1 V/V  
G = 11 V/V  
0.01  
60  
40  
0.001  
BW = 22 Hz to 80 kHz  
20  
f = 100 Hz  
0
0.0001  
11.E0+02  
1.1Ek+3  
11.E0+k4  
11.0E0+5k  
Frequency (Hz)  
Common Mode Input Voltage (V)  
FIGURE 2-33:  
Input Noise Voltage Density  
FIGURE 2-36:  
THD+N vs. Frequency.  
vs. Input Common Mode Voltage with f = 100 Hz.  
12  
11  
10  
9
VDD = 2.5V  
8
7
VDD = 5.5V  
6
5
4
3
2
1
f = 1 MHz  
0
Common Mode Input Voltage (V)  
FIGURE 2-34:  
Input Noise Voltage Density  
vs. Input Common Mode Voltage with f = 1 MHz.  
© 2011 Microchip Technology Inc.  
DS22146B-page 15  
MCP651/2/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 1 kΩ to VL, CL = 20 pF, and CAL/CS = VSS  
.
2.5  
Time Response  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VDD = 5.5V  
G = 1  
VDD = 5.5V  
G = -1  
R
F = 499  
VIN  
VIN  
VOUT  
VOUT  
0
20 40 60 80 100 120 140 160 180 200  
Time (ns)  
0
100 200 300 400 500 600 700 800  
Time (ns)  
FIGURE 2-37:  
Non-inverting Small Signal  
FIGURE 2-40:  
Inverting Large Signal Step  
Step Response.  
Response.  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
7
6
VDD = 5.5V  
G = 1  
VDD = 5.5V  
G = 2  
VIN  
5
VOUT  
4
3
2.5  
VIN  
VOUT  
2
2.0  
1.5  
1.0  
0.5  
0.0  
1
0
-1  
0
1
2
3
4
5
6
7
8
9
10  
0
100 200 300 400 500 600 700 800  
Time (ns)  
Time (ms)  
FIGURE 2-38:  
Non-inverting Large Signal  
FIGURE 2-41:  
The MCP651/2/4/5/9 family  
Step Response.  
shows no input phase reversal with overdrive.  
60  
Falling Edge  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
VDD = 5.5V  
VIN  
VDD = 5.5V  
G = -1  
F = 499Ω  
R
VDD = 2.5V  
Rising Edge  
VOUT  
0
-50  
-25  
0
25  
50  
75  
100  
125  
0
50  
100 150 200 250 300 350 400  
Time (ns)  
Ambient Temperature (°C)  
FIGURE 2-39:  
Inverting Small Signal Step  
FIGURE 2-42:  
Slew Rate vs. Ambient  
Response.  
Temperature.  
DS22146B-page 16  
© 2011 Microchip Technology Inc.  
MCP651/2/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 1 kΩ to VL, CL = 20 pF, and CAL/CS = VSS  
.
10  
VDD = 5.5V  
VDD = 2.5V  
1
0.1  
100k  
1M  
1.E+06  
10M  
1.E+07  
100M  
1.E+08  
1.E+05  
Frequency (Hz)  
FIGURE 2-43:  
Maximum Output Voltage  
Swing vs. Frequency.  
© 2011 Microchip Technology Inc.  
DS22146B-page 17  
MCP651/2/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 1 kΩ to VL, CL = 20 pF, and CAL/CS = VSS  
.
2.6  
Calibration and Chip Select Response  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
CAL/CS = VDD  
VDD = 5.5V  
VDD = 2.5V  
-50  
-25  
0
25  
50  
75  
100  
125  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-44:  
CAL/CS Current vs. Power  
FIGURE 2-47:  
CAL/CS Hysteresis vs.  
Supply Voltage.  
Ambient Temperature.  
8
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VDD = 2.5V  
6
G = 1  
L = 0V  
V
4
IDD  
2
0
-2  
Op Amp  
turns off  
Op Amp  
Calibration  
starts  
CAL/CS  
VOUT  
3
2
turns on 
1
0
-1  
-50  
-25  
0
25  
50  
75  
100  
125  
0
1
2
3
4
5
6
7
8
9
10  
Time (ms)  
Ambient Temperature (°C)  
FIGURE 2-45:  
CAL/CS Voltage, Output  
FIGURE 2-48:  
CAL/CS Turn On Time vs.  
Voltage and Supply Current (for Side A) vs. Time  
with VDD = 2.5V.  
Ambient Temperature.  
8
6
5
4
3
2
1
0
-1  
10  
8
6
4
2
Representative Part  
VDD = 5.5V  
G = 1  
VL = 0V  
7
6
5
4
3
2
1
0
IDD  
0
Op Amp  
turns on  
-2  
Calibration  
starts  
Op Amp  
turns off  
CAL/CS  
VOUT  
0
1
2
3
4
5
6
7
8
9
10  
-50  
-25  
0
25  
50  
75  
100  
125  
Time (ms)  
Ambient Temperature (°C)  
FIGURE 2-46:  
CAL/CS Voltage, Output  
FIGURE 2-49:  
CAL/CS’s Pull-down  
Voltage and Supply Current (for Side A) vs. Time  
with VDD = 5.5V.  
Resistor (RPD) vs. Ambient Temperature.  
DS22146B-page 18  
© 2011 Microchip Technology Inc.  
MCP651/2/4/5/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 1 kΩ to VL, CL = 20 pF, and CAL/CS = VSS  
.
0
1.E-06  
1.E-07  
1.E-08  
1.E-09  
1.E-10  
1.E-11  
CAL/CS = VDD = 5.5V  
CAL/CS = VDD  
-1  
-2  
-3  
+125°C  
+85°C  
-4  
+125°C  
+85°C  
+25°C  
-40°C  
-5  
-6  
+25°C  
-7  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Output Voltage (V)  
Power Supply Voltage (V)  
FIGURE 2-50:  
Quiescent Current in  
FIGURE 2-51:  
Output Leakage Current vs.  
Shutdown vs. Power Supply Voltage.  
Output Voltage.  
© 2011 Microchip Technology Inc.  
DS22146B-page 19  
MCP651/2/4/5/9  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
MCP652 MCP654 MCP655  
MCP651  
MCP659  
QFN  
Symbol  
Description  
SOIC SOIC DFN SOIC TSSOP MSOP DFN  
6
2
3
4
1
2
3
4
1
2
3
4
1
2
1
2
1
2
3
4
1
2
3
4
16  
1
VOUT, VOUTA Output (op amp A)  
VIN–, VINA  
VIN+, VINA  
VSS  
Inverting Input (op amp A)  
Non-inverting Input (op amp A)  
Negative Power Supply  
3
3
2
+
11  
11  
11  
8
5
5
CAL/CS,  
CALA/CSA  
Calibrate/Chip Select Digital Input  
(op amp A)  
6
6
15  
7
CALB/CSB  
Calibrate/Chip Select Digital Input  
(op amp B)  
CALAD/CSAD Calibrate/Chip Select Digital Input  
(op amps A and D)  
CALBC/CSBC Calibrate/Chip Select Digital Input  
(op amps B and C)  
7
5
5
6
5
6
5
6
7
8
7
8
4
5
VINB  
+
Non-inverting Input (op amp B)  
Inverting Input (op amp B)  
Output (op amp B)  
6
VINB  
7
7
7
7
9
9
6
VOUTB  
8
8
10  
9
10  
9
10  
10  
10  
9
VINC  
+
-
Non-inverting input (op amp C)  
Inverting Input (op amp C)  
Output (op amp C)  
VINC  
8
8
8
VOUTC  
12  
13  
14  
4
12  
13  
14  
4
12  
13  
14  
3
VIND  
+
-
Non-inverting Input (op amp D)  
Inverting Input (op amp D)  
Output (op amp D)  
VIND  
VOUTD  
VDD  
Positive Power Supply  
5
VCAL  
Calibration Common Mode Voltage  
Input  
1
9
11  
NC  
EP  
No Internal Connection  
17  
Exposed Thermal Pad (EP);  
must be connected to VSS  
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need bypass capacitors.  
3.1  
Analog Outputs  
The analog output pins (VOUT) are low-impedance  
voltage sources.  
3.2  
Analog Inputs  
3.4  
Calibration Common Mode  
Voltage Input  
The non-inverting and inverting inputs (VIN+, VIN–, …)  
are high-impedance CMOS inputs with low bias  
currents.  
A low impedance voltage placed at this input (VCAL  
)
analog input will set the op amps’ common mode input  
voltage during calibration. If this pin is left open, the  
common mode input voltage during calibration is  
approximately VDD/3. The internal resistor divider is  
disconnected from the supplies whenever the part is  
not in calibration.  
3.3  
Power Supply Pins  
The positive power supply (VDD) is 2.5V to 5.5V higher  
than the negative power supply (VSS). For normal  
operation, the other pins are between VSS and VDD  
.
DS22146B-page 20  
© 2011 Microchip Technology Inc.  
MCP651/2/4/5/9  
3.5  
Calibrate/Chip Select Digital Input  
3.6  
Exposed Thermal Pad (EP)  
This input (CAL/CS, …) is a CMOS, Schmitt-triggered  
input that affects the calibration and low power modes  
of operation. When this pin goes high, the part is placed  
into a low power mode and the output is high-Z. When  
this pin goes low, a calibration sequence is started  
(which corrects VOS). At the end of the calibration  
sequence, the output becomes low impedance and the  
part resumes normal operation.  
There is an internal connection between the Exposed  
Thermal Pad (EP) and the VSS pin; they must be con-  
nected to the same potential on the Printed Circuit  
Board (PCB).  
This pad can be connected to a PCB ground plane to  
provide a larger heat sink. This improves the package  
thermal resistance (θJA).  
An internal POR triggers a calibration event when the  
part is powered on, or when the supply voltage drops  
too low. Thus, the MCP652 parts are calibrated, even  
though they do not have a CAL/CS pin.  
© 2011 Microchip Technology Inc.  
DS22146B-page 21  
MCP651/2/4/5/9  
NOTES:  
DS22146B-page 22  
© 2011 Microchip Technology Inc.  
MCP651/2/4/5/9  
For the MCP655 dual and the MCP659 quad, there is  
an additional constraint on toggling the two CAL/CS  
pins close together; see the tCON specification in  
Table 1-3. If the two pins are toggled simultaneously, or  
if they are toggled separately with an adequate delay  
between them (greater than tCON), then the CAL/CS  
inputs are accepted as valid. If one of the two pins  
toggles while the other pin’s claibration routine is in  
progress, then an invalid input occurs and the result is  
unpredictable.  
4.0  
APPLICATIONS  
The MCP651/2/4/5/9 family of self-zeroed op amps is  
manufactured using Microchip’s state of the art CMOS  
process. It is designed for low cost, low power and high  
precision applications. Its low supply voltage, low  
quiescent current and wide bandwidth makes the  
MCP651/2/4/5/9 ideal for battery-powered applica-  
tions.  
4.1  
Calibration and Chip Select  
4.1.3  
INTERNAL POR  
These op amps include circuitry for dynamic calibration  
of the offset voltage (VOS).  
This part includes an internal Power On Reset (POR)  
to protect the internal calibration memory cells. The  
POR monitors the power supply voltage (VDD). When  
the POR detects a low VDD event, it places the part into  
the low power mode of operation. When the POR  
detects a normal VDD event, it starts a delay counter,  
then triggers an calibration event. The additional delay  
gives a total POR turn on time of 200 ms (typical); this  
is also the power up time (since the POR is triggered at  
power up).  
4.1.1  
mCal CALIBRATION CIRCUITRY  
The internal mCal circuitry, when activated, starts a  
delay timer (to wait for the op amp to settle to its new  
bias point), then calibrates the input offset voltage  
(VOS). The mCal circuitry is triggered at power-up (and  
after some power brown out events) by the internal  
POR, and by the memory’s Parity Detector. The power  
up time, when the mCal circuitry triggers the calibration  
sequence, is 200 ms (typical).  
4.1.4  
PARITY DETECTOR  
A parity error detector monitors the memory contents  
for any corruption. In the rare event that a parity error is  
detected (e.g., corruption from an alpha particle), a  
POR event is automatically triggered. This will cause  
the input offset voltage to be re-corrected, and the op  
amp will not return to normal operation for a period of  
time (the POR turn on time, tPON).  
4.1.2  
CAL/CS PIN  
The CAL/CS pin gives the user a means to externally  
demand a low power mode of operation, then to  
calibrate VOS. Using the CAL/CS pin makes it possible  
to correct VOS as it drifts over time (1/f noise and aging;  
see Figure 2-35) and across temperature.  
The CAL/CS pin performs two functions: it places the  
op amp(s) in a low power mode when it is held high,  
and starts a calibration event (correction of VOS) after a  
rising edge.  
4.1.5  
CALIBRATION INPUT PIN  
A VCAL pin is available in some options (e.g., the single  
MCP651) for those applications that need the calibra-  
tion to occur at an internally driven common mode  
voltage other than VDD/3.  
While in the low power mode, the quiescent current is  
quite small (ISS = -3 µA, typical). The output is also is in  
a High-Z state.  
Figure 4-1 shows the reference circuit that internally  
sets the op amp’s common mode reference voltage  
(VCM_INT) during calibration (the resistors are discon-  
nected from the supplies at other times). The 5 kΩ  
resistor provides over-current protection for the buffer.  
During the calibration event, the quiescent current is  
near, but smaller than, the specified quiescent current  
(6 mA, typical). The output continues in the High-Z  
state, and the inputs are disconnected from the  
external circuit, to prevent internal signals from  
affecting circuit operation. The op amp inputs are inter-  
nally connected to a common mode voltage buffer and  
feedback resistors. The offset is corrected (using a  
digital state machine, logic and memory), and the  
calibration constants are stored in memory.  
To op amp during  
VDD  
calibration  
VCM_INT  
300 kΩ  
5 kΩ  
Once the calibration event is completed, the amplifier is  
reconnected to the external circuitry. The turn on time,  
when calibration is started with the CAL/CS pin, is 3 ms  
(typical).  
VCAL  
BUFFER  
150 kΩ  
There is an internal 5 MΩ pull-down resistor tied to the  
CAL/CS pin. If the CAL/CS pin is left floating, the ampli-  
fier operates normally.  
VSS  
FIGURE 4-1:  
Common-Mode Reference’s  
Input Circuitry.  
© 2011 Microchip Technology Inc.  
DS22146B-page 23  
MCP651/2/4/5/9  
When the VCAL pin is left open, the internal resistor  
divider generates a VCM_INT of approximately VDD/3,  
which is near the center of the input common mode  
voltage range. It is recommended that an external  
capacitor from VCAL to ground be added to improve  
noise immunity.  
above VDD; their breakdown voltage is high enough to  
allow normal operation, and low enough to bypass  
quick ESD events within the specified limits.  
Bond  
VDD  
Pad  
When the VCAL pin is driven by an external voltage  
source, which is within its specified range, the op amp  
will have its input offset voltage calibrated at that com-  
mon mode input voltage. Make sure that VCAL is within  
its specified range.  
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
VIN+  
VIN–  
It is possible to use an external resistor voltage divider  
to modify VCM_INT; see Figure 4-2. The internal circuitry  
at the VCAL pin looks like 100 kΩ tied to VDD/3. The  
parallel equivalent of R1 and R2 should be much  
smaller than 100 kΩ to minimize differences in match-  
ing and temperature drift between the internal and  
external resistors. Again, make sure that VCAL is within  
its specified range.  
Bond  
Pad  
VSS  
FIGURE 4-3:  
Structures.  
Simplified Analog Input ESD  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuit must limit the currents  
(and voltages) at the input pins (see Section 1.1  
“Absolute Maximum Ratings †”). Figure 4-4 shows  
the recommended approach to protecting these inputs.  
The internal ESD diodes prevent the input pins (VIN+  
and VIN–) from going too far below ground, and the  
resistors R1 and R2 limit the possible current drawn out  
of the input pins. Diodes D1 and D2 prevent the input  
pins (VIN+ and VIN–) from going too far above VDD, and  
dump any currents onto VDD. When implemented as  
shown, resistors R1 and R2 also limit the current  
through D1 and D2.  
VDD  
MCP65X  
R1  
VCAL  
C1  
R2  
VSS  
FIGURE 4-2:  
Resistors.  
Setting VCM with External  
VDD  
For instance, a design goal to set VCM_INT = 0.1V when  
DD = 2.5V could be met with: R1 = 24.3 kΩ,  
R2 = 1.00 kΩ and C1 = 100 nF. This will keep VCAL  
within its range for any VDD, and should be close  
enough to 0V for ground based applications.  
D1  
R1  
D2  
V
MCP65X  
V1  
V2  
VOUT  
R2  
4.2  
Input  
PHASE REVERSAL  
VSS – (minimum expected V1)  
R1 >  
R2 >  
2 mA  
VSS – (minimum expected V2)  
2 mA  
4.2.1  
The input devices are designed to not exhibit phase  
inversion when the input pins exceed the supply  
voltages. Figure 2-41 shows an input voltage  
exceeding both supplies with no phase inversion.  
FIGURE 4-4:  
Protecting the Analog  
Inputs.  
4.2.2  
INPUT VOLTAGE AND CURRENT  
LIMITS  
It is also possible to connect the diodes to the left of the  
resistor R1 and R2. In this case, the currents through  
the diodes D1 and D2 need to be limited by some other  
mechanism. The resistors then serve as in-rush current  
limiters; the DC current into the input pins (VIN+ and  
VIN–) should be very small.  
The ESD protection on the inputs can be depicted as  
shown in Figure 4-3. This structure was chosen to  
protect the input transistors, and to minimize input bias  
current (IB). The input ESD diodes clamp the inputs  
when they try to go more than one diode drop below  
VSS. They also clamp any voltages that go too far  
DS22146B-page 24  
© 2011 Microchip Technology Inc.  
MCP651/2/4/5/9  
A significant amount of current can flow out of the  
inputs (through the ESD diodes) when the common  
mode voltage (VCM) is below ground (VSS); see  
Figure 2-15. Applications that are high impedance may  
need to limit the usable voltage range.  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
VOH Limited  
(VDD = 5.5V)  
RL = 1 k  
RL = 100Ω  
RL = 10Ω  
4.2.3  
NORMAL OPERATION  
The input stage of the MCP651/2/4/5/9 op amps uses  
a differential PMOS input stage. It operates at low com-  
VOL Limited  
mon mode input voltage (VCM), with VCM up to VDD  
1.3V and down to VSS – 0.3V. The input offset voltage  
(VOS) is measured at VCM = VSS – 0.3V and VDD  
IOUT (mA)  
1.3V to ensure proper operation. See Figure 2-6 and  
Figure 2-7 for temperature effects.  
FIGURE 4-6:  
Output Current.  
When operating at very low non-inverting gains, the  
output voltage is limited at the top by the VCM range  
(< VDD – 1.3V); see Figure 4-5  
VDD  
MCP65X  
VIN  
VOUT  
VSS < VIN, VOUT VDD – 1.3V  
FIGURE 4-5:  
Unity Gain Voltage  
Limitations for Linear Operation.  
4.3  
Rail-to-Rail Output  
Maximum Output Voltage  
4.3.0.1  
The Maximum Output Voltage (see Figure 2-16 and  
Figure 2-17) describes the output range for a given  
load. For instance, the output voltage swings to within  
15 mV of the negative rail with a 1 kΩ load tied to  
VDD/2.  
4.3.0.2  
Output Current  
Figure 4-6 shows the possible combinations of output  
voltage (VOUT) and output current (IOUT). IOUT is  
positive when it flows out of the op amp into the  
external circuit.  
© 2011 Microchip Technology Inc.  
DS22146B-page 25  
MCP651/2/4/5/9  
Figure 4-7 shows a capacitive load (CL), which is  
driven by a sine wave with DC offset. The capacitive  
load causes the op amp to output higher currents at  
4.3.0.3  
Power Dissipation  
Since the output short circuit current (ISC) is specified  
at ±100 mA (typical), these op amps are capable of  
both delivering and dissipating significant power. Two  
common loads, and their impact on the op amp’s power  
dissipation, will be discussed.  
higher frequencies. Because the output rectifies IOUT  
,
the op amp’s dissipated power increases (even though  
the capacitor does not dissipate power).  
Figure 4-7 shows a resistive load (RL) with a DC output  
voltage (VOUT). VL is RL’s ground point, VSS is usually  
ground (0V) and IOUT is the output current. The input  
currents are assumed to be negligible.  
VDD  
IDD  
IOUT  
VOUT  
MCP65X  
VDD  
CL  
ISS  
IDD  
IOUT  
VSS  
VOUT  
MCP65X  
FIGURE 4-8:  
Power Calculations.  
Diagram for Capacitive Load  
RL  
ISS  
The output voltage is assumed to be:  
VSS  
VL  
EQUATION 4-4:  
FIGURE 4-7:  
Power Calculations.  
Diagram for Resistive Load  
VOUT = VDC + VAC sin(ωt)  
Where:  
The DC currents are:  
VDC = DC offset (V)  
VAC = Peak output swing (VPK  
)
EQUATION 4-1:  
ω = Radian frequency (2π f) (rad/s)  
VOUT VL  
IOUT = -------------------------  
RL  
The op amp’s currents are:  
EQUATION 4-5:  
IDD IQ + max(0, IOUT  
ISS IQ + min(0, IOUT  
)
)
Where:  
dVOUT  
IOUT = CL ---------------- = VACωCL cos(ωt)  
dt  
IQ = Quiescent supply current for one  
op amp (mA/amplifier)  
IDD IQ + max(0, IOUT  
ISS IQ + min(0, IOUT  
)
)
VOUT = A DC value (V)  
Where:  
The DC op amp power is:  
IQ = Quiescent supply current for one  
EQUATION 4-2:  
op amp (mA/amplifier)  
POA = IDD(VDD VOUT) + ISS(VSS VOUT  
)
The op amp’s instantaneous power, average power  
and peak power are:  
The maximum op amp power, for resistive loads at DC,  
occurs when VOUT is halfway between VDD and VL or  
halfway between VSS and VL:  
EQUATION 4-6:  
POA = IDD(VDD VOUT) + ISS(VSS VOUT  
)
EQUATION 4-3:  
4VAC fCL  
ave(POA) = (VDD VSS) IQ + -----------------------  
max(POA) = IDD(VDD VSS  
)
π
max2(VDD VL, VL VSS  
)
max(POA) = (VDD VSS)(IQ + 2VAC fCL)  
+ -----------------------------------------------------------------  
4RL  
The power dissipated in a package depends on the  
powers dissipated by each op amp in that package:  
DS22146B-page 26  
© 2011 Microchip Technology Inc.  
MCP651/2/4/5/9  
When driving large capacitive loads with these op  
amps (e.g., > 20 pF when G = +1), a small series  
resistor at the output (RISO in Figure 4-9) improves the  
feedback loop’s phase margin (stability) by making the  
output load resistive at higher frequencies. The  
bandwidth will be generally lower than the bandwidth  
with no capacitive load.  
EQUATION 4-7:  
n
PPKG  
=
POA  
k = 1  
Where:  
n = Number of op amps in package (1 or 2)  
The maximum ambient to junction temperature rise  
(ΔTJA) and junction temperature (TJ) can be calculated  
using the maximum expected package power (PPKG),  
ambient temperature (TA) and the package thermal  
resistance (θJA) found in Table 1-4:  
RISO  
CL  
RG  
RF  
VOUT  
MCP65X  
RN  
EQUATION 4-8:  
FIGURE 4-9:  
Stabilizes Large Capacitive Loads.  
Output Resistor, RISO  
ΔTJA = PPKGθJA  
TJ = TA + ΔTJA  
Figure 4-10 gives recommended RISO values for  
different capacitive loads and gains. The x-axis is the  
normalized load capacitance (CL/GN), where GN is the  
circuit’s noise gain. For non-inverting gains, GN and the  
Signal Gain are equal. For inverting gains, GN is  
1+|Signal Gain| (e.g., -1 V/V gives GN = +2 V/V).  
The worst case power de-rating for the op amps in a  
particular package can be easily calculated:  
EQUATION 4-9:  
TJmax TA  
PPKG --------------------------  
100  
θJA  
Where:  
TJmax = Absolute maximum junction  
temperature (°C)  
10  
TA = Ambient temperature (°C)  
GN = +1  
GN +2  
Several techniques are available to reduce ΔTJA for a  
given package:  
1
10p  
100p  
1.E-10  
1n  
1.E-09  
10n  
1.E-08  
• Reduce θJA  
- Use another package  
1.E-11  
Normalized Capacitance; CL/GN (F)  
- Improve the PCB layout (ground plane, etc.)  
- Add heat sinks and air flow  
FIGURE 4-10:  
for Capacitive Loads.  
Recommended RISO Values  
• Reduce max(PPKG  
- Increase RL  
)
After selecting RISO for your circuit, double check the  
resulting frequency response peaking and step  
response overshoot. Modify RISO’s value until the  
response is reasonable. Bench evaluation and  
simulations with the MCP651/2/4/5/9 SPICE macro  
model are helpful.  
- Decrease CL  
- Limit IOUT using RISO (see Figure 4-9)  
- Decrease VDD  
4.4  
4.4.1  
Improving Stability  
4.4.2  
GAIN PEAKING  
Figure 4-11 shows an op amp circuit that represents  
non-inverting amplifiers (VM is a DC voltage and VP is  
the input) or inverting amplifiers (VP is a DC voltage  
and VM is the input). The capacitances CN and CG  
represent the total capacitance at the input pins; they  
include the op amp’s common mode input capacitance  
(CCM), board parasitic capacitance and any capacitor  
placed in parallel.  
CAPACITIVE LOADS  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases and the closed-loop bandwidth is  
reduced. This produces gain peaking in the frequency  
response, with overshoot and ringing in the step  
response. See Figure 2-30. A unity gain buffer (G = +1)  
is the most sensitive to capacitive loads, though all  
gains show the same general behavior.  
© 2011 Microchip Technology Inc.  
DS22146B-page 27  
MCP651/2/4/5/9  
EQUATION 4-10:  
Given:  
CN  
RN  
GN1 = 1 + RF RG  
MCP65X  
VP  
GN2 = 1 + CG CF  
fF = 1 (2πRFCF)  
VOUT  
VM  
fZ = fF(GN1 GN2  
We need:  
)
RG  
RF  
CG  
fF fGBWP (2GN2), GN1 < GN2  
fF fGBWP (4GN1), GN1 > GN2  
FIGURE 4-11:  
Amplifier with Parasitic  
Capacitance.  
4.5  
Power Supply  
CG acts in parallel with RG (except for a gain of +1 V/V),  
which causes an increase in gain at high frequencies.  
CG also reduces the phase margin of the feedback  
loop, which becomes less stable. This effect can be  
reduced by either reducing CG or RF.  
With this family of operational amplifiers, the power  
supply pin (VDD for single supply) should have a local  
bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm  
for good high frequency performance. Surface mount,  
multilayer ceramic capacitors, or their equivalent,  
should be used.  
CN and RN form a low-pass filter that affects the signal  
at VP. This filter has a single real pole at 1/(2πRNCN).  
The largest value of RF that should be used depends  
on noise gain (see GN in Section 4.4.1 “Capacitive  
Loads”) and CG. Figure 4-12 shows the maximum  
recommended RF for several CG values.  
These op amps require a bulk capacitor (i.e., 2.2 µF or  
larger) within 50 mm to provide large, slow currents.  
Tantalum capacitors, or their equivalent, may be a good  
choice. This bulk capacitor can be shared with other  
nearby analog parts as long as crosstalk through the  
supplies does not prove to be a problem.  
1.E+05  
100k  
GN > +1 V/V  
CG = 10 pF  
G = 32 pF  
CG = 100 pF  
4.6  
High Speed PCB Layout  
C
1.E+04  
10k  
C
G = 320 pF  
CG = 1 nF  
These op amps are fast enough that a little extra care  
in the PCB (Printed Circuit Board) layout can make a  
significant difference in performance. Good PC board  
layout techniques will help you achieve the  
performance shown in the specifications and Typical  
Performance Curves; it will also help you minimize  
EMC (Electro-Magnetic Compatibility) issues.  
1.E+013k  
1.E+10020  
1
10  
100  
Noise Gain; GN (V/V)  
Use a solid ground plane. Connect the bypass local  
capacitor(s) to this plane with minimal length traces.  
This cuts down inductive and capacitive crosstalk.  
FIGURE 4-12:  
Maximum Recommended  
RF vs. Gain.  
Separate digital from analog, low speed from high  
speed, and low power from high power. This will reduce  
interference.  
Figure 2-37 and Figure 2-38 show the small signal and  
large signal step responses at G = +1 V/V. The unity  
gain buffer usually has RF = 0Ω and RG open.  
Keep sensitive traces short and straight. Separate  
them from interfering components and traces. This is  
especially important for high frequency (low rise time)  
signals.  
Figure 2-39 and Figure 2-40 show the small signal and  
large signal step responses at G = -1 V/V. Since the  
noise gain is 2 V/V and CG 10 pF, the resistors were  
chosen to be RF = RG = 499Ω and RN = 249Ω.  
Sometimes, it helps to place guard traces next to victim  
traces. They should be on both sides of the victim  
trace, and as close as possible. Connect guard traces  
to ground plane at both ends, and in the middle for long  
traces.  
It is also possible to add a capacitor (CF) in parallel with  
RF to compensate for the de-stabilizing effect of CG.  
This makes it possible to use larger values of RF. The  
conditions for stability are summarized in  
Equation 4-10.  
Use coax cables, or low inductance wiring, to route  
signal and power to and from the PCB. Mutual and self  
inductance of power wires is often a cause of crosstalk  
and unusual behavior.  
DS22146B-page 28  
© 2011 Microchip Technology Inc.  
MCP651/2/4/5/9  
4.7.3  
H-BRIDGE DRIVER  
4.7  
Typical Applications  
Figure 4-15 shows the MCP652 dual op amp used as  
a H-bridge driver. The load could be a speaker or a DC  
motor.  
4.7.1  
POWER DRIVER WITH HIGH GAIN  
Figure 4-13 shows a power driver with high gain  
(1 + R2/R1). The MCP651/2/4/5/9 op amp’s short cir-  
cuit current makes it possible to drive significant loads.  
The calibrated input offset voltage supports accurate  
response at high gains. R3 should be small, and equal  
to R1||R2, in order to minimize the bias current induced  
offset.  
½ MCP652  
VIN  
VOT  
RF  
RF  
RF  
R1  
R3  
R2  
RL  
RGT  
RGB  
VDD/2  
VOUT  
RL  
VOB  
VIN  
MCP65X  
VDD/2  
½ MCP652  
H-Bridge Driver.  
FIGURE 4-13:  
Power Driver.  
FIGURE 4-15:  
4.7.2  
OPTICAL DETECTOR AMPLIFIER  
This circuit automatically makes the noise gains (GN)  
equal, when the gains are set properly, so that the fre-  
quency responses match well (in magnitude and in  
phase). Equation 4-11 shows how to calculate RGT and  
RGB so that both op amps have the same DC gains;  
GDM needs to be selected first.  
Figure 4-14 shows a transimpedance amplifier, using  
the MCP651 op amp, in a photo detector circuit. The  
photo detector is a capacitive current source. The op  
amp’s input common mode capacitance (5 pF, typical)  
acts in parallel with CD. RF provides enough gain to  
produce 10 mV at VOUT. CF stabilizes the gain and lim-  
its the transimpedance bandwidth to about 1.1 MHz.  
RF’s parasitic capacitance (e.g., 0.2 pF for a 0805  
SMD) acts in parallel with CF.  
EQUATION 4-11:  
VOT VOB  
GDM -------------------------------- 2 V / V  
V
IN VDD 2  
RF  
CF  
1.5 pF  
RGT = --------------------------------  
(GDM 2) 1  
RF  
Photo  
Detector  
RGB = ------------------  
RF  
GDM 2  
100 kΩ  
VOUT  
Equation 4-12 gives the resulting common mode and  
differential mode output voltages.  
ID  
100 nA  
CD  
30pF  
MCP651  
EQUATION 4-12:  
VDD/2  
VOT + VOB  
-------------------------- = ----------  
VDD  
2
2
FIGURE 4-14:  
for an Optical Detector.  
Transimpedance Amplifier  
VDD  
VOT VOB = GDM  
V
IN ----------  
2
© 2011 Microchip Technology Inc.  
DS22146B-page 29  
MCP651/2/4/5/9  
NOTES:  
DS22146B-page 30  
© 2011 Microchip Technology Inc.  
MCP651/2/4/5/9  
• MCP6XXX Amplifier Evaluation Board 3  
5.0  
DESIGN AIDS  
• MCP6XXX Amplifier Evaluation Board 4  
• Active Filter Demo Board Kit  
Microchip provides the basic design aids needed for  
the MCP651/2/4/5/9 family of op amps.  
• 8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board,  
P/N SOIC8EV  
5.1  
SPICE Macro Model  
The latest SPICE macro model for the MCP651/2/4/5/9  
op amps is available on the Microchip web site at  
www.microchip.com. This model is intended to be an  
initial design tool that works well in the op amp’s linear  
region of operation over the temperature range. See  
the model file for information on its capabilities.  
5.5  
Application Notes  
The following Microchip Application Notes are  
available on the Microchip web site at www.microchip.  
com/appnotes and are recommended as supplemental  
reference resources.  
ADN003: “Select the Right Operational Amplifier  
for your Filtering Circuits”, DS21821  
Bench testing is a very important part of any design and  
cannot be replaced with simulations. Also, simulation  
results using this macro model need to be validated by  
comparing them to the data sheet specifications and  
characteristic curves.  
AN722: “Operational Amplifier Topologies and DC  
Specifications”, DS00722  
AN723: “Operational Amplifier AC Specifications  
and Applications”, DS00723  
®
5.2  
FilterLab Software  
AN884: “Driving Capacitive Loads With Op  
Amps”, DS00884  
Microchip’s FilterLab® software is an innovative  
software tool that simplifies analog active filter (using  
op amps) design. Available at no cost from the  
Microchip web site at www.microchip.com/filterlab, the  
Filter-Lab design tool provides full schematic diagrams  
of the filter circuit with component values. It also  
outputs the filter circuit in SPICE format, which can be  
used with the macro model to simulate actual filter  
performance.  
AN990: “Analog Sensor Conditioning Circuits –  
An Overview”, DS00990  
AN1177: “Op Amp Precision Design: DC Errors”,  
DS01177  
AN1228: “Op Amp Precision Design: Random  
Noise”, DS01228  
AN1332: “Current Sensing Circuit Concepts and  
Fundamentals”, DS01332  
Some of these application notes, and others, are listed  
in the design guide:  
5.3  
Microchip Advanced Part Selector  
(MAPS)  
• “Signal Chain Design Guide”, DS21825  
MAPS is a software tool that helps efficiently identify  
Microchip devices that fit a particular design require-  
ment. Available at no cost from the Microchip website  
at www.microchip.com/maps, the MAPS is an overall  
selection tool for Microchip’s product portfolio that  
includes Analog, Memory, MCUs and DSCs. Using this  
tool, a customer can define a filter to sort features for a  
parametric search of devices and export side-by-side  
technical comparison reports. Helpful links are also  
provided for Data sheets, Purchase and Sampling of  
Microchip parts.  
5.4  
Analog Demonstration and  
Evaluation Boards  
Microchip offers a broad spectrum of Analog Demon-  
stration and Evaluation Boards that are designed to  
help customers achieve faster time to market. For a  
complete listing of these boards and their correspond-  
ing user’s guides and technical information, visit the  
Microchip web site at www.microchip.com/analog  
tools.  
Some boards that are especially useful are:  
• MCP6XXX Amplifier Evaluation Board 1  
• MCP6XXX Amplifier Evaluation Board 2  
© 2011 Microchip Technology Inc.  
DS22146B-page 31  
MCP651/2/4/5/9  
NOTES:  
DS22146B-page 32  
© 2011 Microchip Technology Inc.  
MCP651/2/4/5/9  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
Example:  
8-Lead DFN (3x3) (MCP652)  
Device  
MCP652  
Code  
XXXX  
DABP  
1105  
256  
DABP  
YYWW  
NNN  
Note: Applies to 8-Lead  
3x3 DFN  
8-Lead SOIC (150 mil) (MCP651, MCP652)  
Example:  
MCP651E  
XXXXXXXX  
e
3
SN 1105  
XXXXYYWW  
256  
NNN  
10-Lead DFN (3x3) (MCP655)  
Example:  
XXXX  
YYWW  
NNN  
BAFC  
1105  
256  
Example:  
10-Lead MSOP (MCP655)  
655EUN  
XXXXXX  
YWWNNN  
105256  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
e
3
*
)
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2011 Microchip Technology Inc.  
DS22146B-page 33  
MCP651/2/4/5/9  
6.2  
Package Marking Information  
14-Lead SOIC (MCP654)  
Example:  
MCP654  
XXXXXXXXXXX  
XXXXXXXXXXX  
YYWWNNN  
e
3
E/SL  
1105256  
14-Lead TSSOP (MCP654)  
Example:  
XXXXXXXX  
654E/ST  
YYWW  
NNN  
1105  
256  
16-Lead QFN (4x4) (MCP659)  
Example:  
659  
XXXXXXX  
XXXXXXX  
YWWNNN  
e
3
E/ML  
1105256  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
e
3
e
3
*
)
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS22146B-page 34  
© 2011 Microchip Technology Inc.  
MCP651/2/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2011 Microchip Technology Inc.  
DS22146B-page 35  
MCP651/2/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22146B-page 36  
© 2011 Microchip Technology Inc.  
MCP651/2/4/5/9  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢏꢗꢆꢘꢆꢙꢚꢙꢚꢛꢜꢝꢆꢞꢞꢆꢟꢒꢅꢠꢆꢡꢍꢏꢑꢢ  
ꢑꢒꢊꢃꢣ ꢀꢁꢂꢃꢄꢅꢆꢃꢇꢁꢈꢄꢃꢉꢊꢂꢂꢆꢋꢄꢃꢌꢍꢉꢎꢍꢏꢆꢃꢐꢂꢍꢑꢒꢋꢏꢈꢓꢃꢌꢔꢆꢍꢈꢆꢃꢈꢆꢆꢃꢄꢅꢆꢃꢕꢒꢉꢂꢁꢉꢅꢒꢌꢃꢖꢍꢉꢎꢍꢏꢒꢋꢏꢃꢗꢌꢆꢉꢒꢘꢒꢉꢍꢄꢒꢁꢋꢃꢔꢁꢉꢍꢄꢆꢐꢃꢍꢄꢃ  
ꢅꢄꢄꢌꢙꢚꢚꢑꢑꢑꢛꢇꢒꢉꢂꢁꢉꢅꢒꢌꢛꢉꢁꢇꢚꢌꢍꢉꢎꢍꢏꢒꢋꢏ  
© 2011 Microchip Technology Inc.  
DS22146B-page 37  
MCP651/2/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22146B-page 38  
© 2011 Microchip Technology Inc.  
MCP651/2/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2011 Microchip Technology Inc.  
DS22146B-page 39  
MCP651/2/4/5/9  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢤꢞꢄꢈꢈꢆꢥꢎꢊꢈꢋꢦꢃꢆꢕꢤꢑꢗꢆꢘꢆꢑꢄꢧꢧꢒꢨꢐꢆꢙꢜꢝꢛꢆꢞꢞꢆꢟꢒꢅꢠꢆꢡꢤꢥꢩꢪꢢ  
ꢑꢒꢊꢃꢣ ꢀꢁꢂꢃꢄꢅꢆꢃꢇꢁꢈꢄꢃꢉꢊꢂꢂꢆꢋꢄꢃꢌꢍꢉꢎꢍꢏꢆꢃꢐꢂꢍꢑꢒꢋꢏꢈꢓꢃꢌꢔꢆꢍꢈꢆꢃꢈꢆꢆꢃꢄꢅꢆꢃꢕꢒꢉꢂꢁꢉꢅꢒꢌꢃꢖꢍꢉꢎꢍꢏꢒꢋꢏꢃꢗꢌꢆꢉꢒꢘꢒꢉꢍꢄꢒꢁꢋꢃꢔꢁꢉꢍꢄꢆꢐꢃꢍꢄꢃ  
ꢅꢄꢄꢌꢙꢚꢚꢑꢑꢑꢛꢇꢒꢉꢂꢁꢉꢅꢒꢌꢛꢉꢁꢇꢚꢌꢍꢉꢎꢍꢏꢒꢋꢏ  
DS22146B-page 40  
© 2011 Microchip Technology Inc.  
MCP651/2/4/5/9  
ꢫꢛꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢏꢗꢆꢘꢆꢙꢚꢙꢚꢛꢜꢝꢆꢞꢞꢆꢟꢒꢅꢠꢆꢡꢍꢏꢑꢢ  
ꢑꢒꢊꢃꢣ ꢀꢁꢂꢃꢄꢅꢆꢃꢇꢁꢈꢄꢃꢉꢊꢂꢂꢆꢋꢄꢃꢌꢍꢉꢎꢍꢏꢆꢃꢐꢂꢍꢑꢒꢋꢏꢈꢓꢃꢌꢔꢆꢍꢈꢆꢃꢈꢆꢆꢃꢄꢅꢆꢃꢕꢒꢉꢂꢁꢉꢅꢒꢌꢃꢖꢍꢉꢎꢍꢏꢒꢋꢏꢃꢗꢌꢆꢉꢒꢘꢒꢉꢍꢄꢒꢁꢋꢃꢔꢁꢉꢍꢄꢆꢐꢃꢍꢄꢃ  
ꢅꢄꢄꢌꢙꢚꢚꢑꢑꢑꢛꢇꢒꢉꢂꢁꢉꢅꢒꢌꢛꢉꢁꢇꢚꢌꢍꢉꢎꢍꢏꢒꢋꢏ  
D
e
b
N
N
L
K
E
E2  
EXPOSED  
PAD  
NOTE 1  
NOTE 1  
2
1
1
2
D2  
BOTTOM VIEW  
TOP VIEW  
A
A1  
A3  
NOTE 2  
@ꢋꢒꢄꢈ  
ꢕꢣAAꢣꢕ;ꢡ;ꢢꢗ  
ꢟꢒꢇꢆꢋꢈꢒꢁꢋꢃAꢒꢇꢒꢄꢈ  
ꢕꢣE  
EGꢕ  
1ꢤ  
ꢤꢛ=ꢤꢃ>ꢗ?  
ꢤꢛꢦꢤ  
ꢕꢠH  
Eꢊꢇ7ꢆꢂꢃꢁꢘꢃꢖꢒꢋꢈ  
ꢖꢒꢄꢉꢅ  
G3ꢆꢂꢍꢔꢔꢃJꢆꢒꢏꢅꢄ  
ꢗꢄꢍꢋꢐꢁꢘꢘꢃ  
?ꢁꢋꢄꢍꢉꢄꢃꢡꢅꢒꢉꢎꢋꢆꢈꢈ  
G3ꢆꢂꢍꢔꢔꢃAꢆꢋꢏꢄꢅ  
;6ꢌꢁꢈꢆꢐꢃꢖꢍꢐꢃAꢆꢋꢏꢄꢅ  
G3ꢆꢂꢍꢔꢔꢃKꢒꢐꢄꢅ  
E
ꢠ1  
ꢠ8  
ꢟꢝ  
;
ꢤꢛꢥꢤ  
ꢤꢛꢤꢤ  
1ꢛꢤꢤ  
ꢤꢛꢤ=  
ꢤꢛꢤꢝ  
ꢤꢛꢝꢤꢃꢢ;ꢀ  
8ꢛꢤꢤꢃ>ꢗ?  
ꢝꢛ8=  
8ꢛꢤꢤꢃ>ꢗ?  
1ꢛ=ꢥ  
ꢤꢛꢝ=  
ꢤꢛꢞꢤ  
ꢝꢛꢝꢤ  
ꢝꢛꢞꢥ  
;6ꢌꢁꢈꢆꢐꢃꢖꢍꢐꢃKꢒꢐꢄꢅ  
?ꢁꢋꢄꢍꢉꢄꢃKꢒꢐꢄꢅ  
?ꢁꢋꢄꢍꢉꢄꢃAꢆꢋꢏꢄꢅ  
?ꢁꢋꢄꢍꢉꢄꢨꢄꢁꢨ;6ꢌꢁꢈꢆꢐꢃꢖꢍꢐ  
;ꢝ  
7
A
1ꢛꢞꢤ  
ꢤꢛ1ꢥ  
ꢤꢛ8ꢤ  
ꢤꢛꢝꢤ  
1ꢛꢧ=  
ꢤꢛ8ꢤ  
ꢤꢛ=ꢤ  
L
ꢑꢒꢊꢃꢉꢣ  
1ꢛ ꢖꢒꢋꢃ1ꢃ3ꢒꢈꢊꢍꢔꢃꢒꢋꢐꢆ6ꢃꢘꢆꢍꢄꢊꢂꢆꢃꢇꢍꢜꢃ3ꢍꢂꢜꢓꢃ7ꢊꢄꢃꢇꢊꢈꢄꢃ7ꢆꢃꢔꢁꢉꢍꢄꢆꢐꢃꢑꢒꢄꢅꢒꢋꢃꢄꢅꢆꢃꢅꢍꢄꢉꢅꢆꢐꢃꢍꢂꢆꢍꢛ  
ꢝꢛ ꢖꢍꢉꢎꢍꢏꢆꢃꢇꢍꢜꢃꢅꢍ3ꢆꢃꢁꢋꢆꢃꢁꢂꢃꢇꢁꢂꢆꢃꢆ6ꢌꢁꢈꢆꢐꢃꢄꢒꢆꢃ7ꢍꢂꢈꢃꢍꢄꢃꢆꢋꢐꢈꢛ  
8ꢛ ꢖꢍꢉꢎꢍꢏꢆꢃꢒꢈꢃꢈꢍꢑꢃꢈꢒꢋꢏꢊꢔꢍꢄꢆꢐꢛ  
ꢞꢛ ꢟꢒꢇꢆꢋꢈꢒꢁꢋꢒꢋꢏꢃꢍꢋꢐꢃꢄꢁꢔꢆꢂꢍꢋꢉꢒꢋꢏꢃꢌꢆꢂꢃꢠꢗꢕ;ꢃ<1ꢞꢛ=ꢕꢛ  
>ꢗ?ꢙ >ꢍꢈꢒꢉꢃꢟꢒꢇꢆꢋꢈꢒꢁꢋꢛꢃꢡꢅꢆꢁꢂꢆꢄꢒꢉꢍꢔꢔꢜꢃꢆ6ꢍꢉꢄꢃ3ꢍꢔꢊꢆꢃꢈꢅꢁꢑꢋꢃꢑꢒꢄꢅꢁꢊꢄꢃꢄꢁꢔꢆꢂꢍꢋꢉꢆꢈꢛ  
ꢢ;ꢀꢙ ꢢꢆꢘꢆꢂꢆꢋꢉꢆꢃꢟꢒꢇꢆꢋꢈꢒꢁꢋꢓꢃꢊꢈꢊꢍꢔꢔꢜꢃꢑꢒꢄꢅꢁꢊꢄꢃꢄꢁꢔꢆꢂꢍꢋꢉꢆꢓꢃꢘꢁꢂꢃꢒꢋꢘꢁꢂꢇꢍꢄꢒꢁꢋꢃꢌꢊꢂꢌꢁꢈꢆꢈꢃꢁꢋꢔꢜꢛ  
ꢕꢒꢉꢂꢁꢉꢅꢒꢌ ꢉꢅꢋꢁꢔꢁꢏꢜ ꢟꢂꢍꢑꢒꢋꢏ ?ꢤꢞꢨꢤO8>  
© 2011 Microchip Technology Inc.  
DS22146B-page 41  
MCP651/2/4/5/9  
ꢫꢛꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢏꢗꢆꢘꢆꢙꢚꢙꢚꢛꢜꢝꢆꢞꢞꢆꢟꢒꢅꢠꢆꢡꢍꢏꢑꢢ  
ꢑꢒꢊꢃꢣ ꢀꢁꢂꢃꢄꢅꢆꢃꢇꢁꢈꢄꢃꢉꢊꢂꢂꢆꢋꢄꢃꢌꢍꢉꢎꢍꢏꢆꢃꢐꢂꢍꢑꢒꢋꢏꢈꢓꢃꢌꢔꢆꢍꢈꢆꢃꢈꢆꢆꢃꢄꢅꢆꢃꢕꢒꢉꢂꢁꢉꢅꢒꢌꢃꢖꢍꢉꢎꢍꢏꢒꢋꢏꢃꢗꢌꢆꢉꢒꢘꢒꢉꢍꢄꢒꢁꢋꢃꢔꢁꢉꢍꢄꢆꢐꢃꢍꢄꢃ  
ꢅꢄꢄꢌꢙꢚꢚꢑꢑꢑꢛꢇꢒꢉꢂꢁꢉꢅꢒꢌꢛꢉꢁꢇꢚꢌꢍꢉꢎꢍꢏꢒꢋꢏ  
DS22146B-page 42  
© 2011 Microchip Technology Inc.  
MCP651/2/4/5/9  
ꢫꢛꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢖꢋꢌꢧꢒꢆꢤꢞꢄꢈꢈꢆꢥꢎꢊꢈꢋꢦꢃꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢬꢑꢗꢆꢡꢖꢤꢥꢇꢢ  
ꢑꢒꢊꢃꢣ ꢀꢁꢂꢃꢄꢅꢆꢃꢇꢁꢈꢄꢃꢉꢊꢂꢂꢆꢋꢄꢃꢌꢍꢉꢎꢍꢏꢆꢃꢐꢂꢍꢑꢒꢋꢏꢈꢓꢃꢌꢔꢆꢍꢈꢆꢃꢈꢆꢆꢃꢄꢅꢆꢃꢕꢒꢉꢂꢁꢉꢅꢒꢌꢃꢖꢍꢉꢎꢍꢏꢒꢋꢏꢃꢗꢌꢆꢉꢒꢘꢒꢉꢍꢄꢒꢁꢋꢃꢔꢁꢉꢍꢄꢆꢐꢃꢍꢄꢃ  
ꢅꢄꢄꢌꢙꢚꢚꢑꢑꢑꢛꢇꢒꢉꢂꢁꢉꢅꢒꢌꢛꢉꢁꢇꢚꢌꢍꢉꢎꢍꢏꢒꢋꢏ  
D
N
E
E1  
NOTE 1  
1
2
b
e
c
A
A2  
φ
L
A1  
L1  
@ꢋꢒꢄꢈ  
ꢕꢣAAꢣꢕ;ꢡ;ꢢꢗ  
ꢟꢒꢇꢆꢋꢈꢒꢁꢋꢃAꢒꢇꢒꢄꢈ  
ꢕꢣE  
EGꢕ  
ꢕꢠH  
Eꢊꢇ7ꢆꢂꢃꢁꢘꢃꢖꢒꢋꢈ  
ꢖꢒꢄꢉꢅ  
E
1ꢤ  
ꢤꢛ=ꢤꢃ>ꢗ?  
G3ꢆꢂꢍꢔꢔꢃJꢆꢒꢏꢅꢄ  
ꢕꢁꢔꢐꢆꢐꢃꢖꢍꢉꢎꢍꢏꢆꢃꢡꢅꢒꢉꢎꢋꢆꢈꢈ  
ꢗꢄꢍꢋꢐꢁꢘꢘꢃ  
G3ꢆꢂꢍꢔꢔꢃKꢒꢐꢄꢅ  
ꢕꢁꢔꢐꢆꢐꢃꢖꢍꢉꢎꢍꢏꢆꢃKꢒꢐꢄꢅ  
G3ꢆꢂꢍꢔꢔꢃAꢆꢋꢏꢄꢅ  
ꢀꢁꢁꢄꢃAꢆꢋꢏꢄꢅ  
ꢤꢛꢧ=  
ꢤꢛꢤꢤ  
ꢤꢛꢥ=  
1ꢛ1ꢤ  
ꢤꢛꢦ=  
ꢤꢛ1=  
ꢠꢝ  
ꢠ1  
;
;1  
ꢞꢛꢦꢤꢃ>ꢗ?  
8ꢛꢤꢤꢃ>ꢗ?  
8ꢛꢤꢤꢃ>ꢗ?  
ꢤꢛOꢤ  
A
ꢤꢛꢞꢤ  
ꢤꢛꢥꢤ  
ꢀꢁꢁꢄꢌꢂꢒꢋꢄ  
ꢀꢁꢁꢄꢃꢠꢋꢏꢔꢆ  
A1  
ꢤꢛꢦ=ꢃꢢ;ꢀ  
ꢤꢪ  
ꢥꢪ  
Aꢆꢍꢐꢃꢡꢅꢒꢉꢎꢋꢆꢈꢈ  
AꢆꢍꢐꢃKꢒꢐꢄꢅ  
7
ꢤꢛꢤꢥ  
ꢤꢛ1=  
ꢤꢛꢝ8  
ꢤꢛ88  
ꢑꢒꢊꢃꢉꢣ  
1ꢛ ꢖꢒꢋꢃ1ꢃ3ꢒꢈꢊꢍꢔꢃꢒꢋꢐꢆ6ꢃꢘꢆꢍꢄꢊꢂꢆꢃꢇꢍꢜꢃ3ꢍꢂꢜꢓꢃ7ꢊꢄꢃꢇꢊꢈꢄꢃ7ꢆꢃꢔꢁꢉꢍꢄꢆꢐꢃꢑꢒꢄꢅꢒꢋꢃꢄꢅꢆꢃꢅꢍꢄꢉꢅꢆꢐꢃꢍꢂꢆꢍꢛ  
ꢝꢛ ꢟꢒꢇꢆꢋꢈꢒꢁꢋꢈꢃꢟꢃꢍꢋꢐꢃ;1ꢃꢐꢁꢃꢋꢁꢄꢃꢒꢋꢉꢔꢊꢐꢆꢃꢇꢁꢔꢐꢃꢘꢔꢍꢈꢅꢃꢁꢂꢃꢌꢂꢁꢄꢂꢊꢈꢒꢁꢋꢈꢛꢃꢕꢁꢔꢐꢃꢘꢔꢍꢈꢅꢃꢁꢂꢃꢌꢂꢁꢄꢂꢊꢈꢒꢁꢋꢈꢃꢈꢅꢍꢔꢔꢃꢋꢁꢄꢃꢆ6ꢉꢆꢆꢐꢃꢤꢛ1=ꢃꢇꢇꢃꢌꢆꢂꢃꢈꢒꢐꢆꢛ  
8ꢛ ꢟꢒꢇꢆꢋꢈꢒꢁꢋꢒꢋꢏꢃꢍꢋꢐꢃꢄꢁꢔꢆꢂꢍꢋꢉꢒꢋꢏꢃꢌꢆꢂꢃꢠꢗꢕ;ꢃ<1ꢞꢛ=ꢕꢛ  
>ꢗ?ꢙ >ꢍꢈꢒꢉꢃꢟꢒꢇꢆꢋꢈꢒꢁꢋꢛꢃꢡꢅꢆꢁꢂꢆꢄꢒꢉꢍꢔꢔꢜꢃꢆ6ꢍꢉꢄꢃ3ꢍꢔꢊꢆꢃꢈꢅꢁꢑꢋꢃꢑꢒꢄꢅꢁꢊꢄꢃꢄꢁꢔꢆꢂꢍꢋꢉꢆꢈꢛ  
ꢢ;ꢀꢙ ꢢꢆꢘꢆꢂꢆꢋꢉꢆꢃꢟꢒꢇꢆꢋꢈꢒꢁꢋꢓꢃꢊꢈꢊꢍꢔꢔꢜꢃꢑꢒꢄꢅꢁꢊꢄꢃꢄꢁꢔꢆꢂꢍꢋꢉꢆꢓꢃꢘꢁꢂꢃꢒꢋꢘꢁꢂꢇꢍꢄꢒꢁꢋꢃꢌꢊꢂꢌꢁꢈꢆꢈꢃꢁꢋꢔꢜꢛ  
ꢕꢒꢉꢂꢁꢉꢅꢒꢌ ꢉꢅꢋꢁꢔꢁꢏꢜ ꢟꢂꢍꢑꢒꢋꢏ ?ꢤꢞꢨꢤꢝ1>  
© 2011 Microchip Technology Inc.  
DS22146B-page 43  
MCP651/2/4/5/9  
ꢫꢭꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢤꢞꢄꢈꢈꢆꢥꢎꢊꢈꢋꢦꢃꢆꢕꢤꢂꢗꢆꢘꢆꢑꢄꢧꢧꢒꢨꢐꢆꢙꢜꢝꢛꢆꢞꢞꢆꢟꢒꢅꢠꢆꢡꢤꢥꢩꢪꢢ  
ꢑꢒꢊꢃꢣ ꢀꢁꢂꢃꢄꢅꢆꢃꢇꢁꢈꢄꢃꢉꢊꢂꢂꢆꢋꢄꢃꢌꢍꢉꢎꢍꢏꢆꢃꢐꢂꢍꢑꢒꢋꢏꢈꢓꢃꢌꢔꢆꢍꢈꢆꢃꢈꢆꢆꢃꢄꢅꢆꢃꢕꢒꢉꢂꢁꢉꢅꢒꢌꢃꢖꢍꢉꢎꢍꢏꢒꢋꢏꢃꢗꢌꢆꢉꢒꢘꢒꢉꢍꢄꢒꢁꢋꢃꢔꢁꢉꢍꢄꢆꢐꢃꢍꢄꢃ  
ꢅꢄꢄꢌꢙꢚꢚꢑꢑꢑꢛꢇꢒꢉꢂꢁꢉꢅꢒꢌꢛꢉꢁꢇꢚꢌꢍꢉꢎꢍꢏꢒꢋꢏ  
D
N
E
E1  
NOTE 1  
1
2
3
e
h
b
α
h
c
φ
A2  
A
L
A1  
β
L1  
@ꢋꢒꢄꢈ  
ꢕꢣAAꢣꢕ;ꢡ;ꢢꢗ  
ꢟꢒꢇꢆꢋꢈꢒꢁꢋꢃAꢒꢇꢒꢄꢈ  
ꢕꢣE  
EGꢕ  
ꢕꢠH  
Eꢊꢇ7ꢆꢂꢃꢁꢘꢃꢖꢒꢋꢈ  
ꢖꢒꢄꢉꢅ  
E
1ꢞ  
1ꢛꢝꢧꢃ>ꢗ?  
G3ꢆꢂꢍꢔꢔꢃJꢆꢒꢏꢅꢄ  
ꢕꢁꢔꢐꢆꢐꢃꢖꢍꢉꢎꢍꢏꢆꢃꢡꢅꢒꢉꢎꢋꢆꢈꢈ  
ꢗꢄꢍꢋꢐꢁꢘꢘꢃꢃ"  
1ꢛꢝ=  
ꢤꢛ1ꢤ  
1ꢛꢧ=  
ꢤꢛꢝ=  
ꢠꢝ  
ꢠ1  
;
G3ꢆꢂꢍꢔꢔꢃKꢒꢐꢄꢅ  
Oꢛꢤꢤꢃ>ꢗ?  
ꢕꢁꢔꢐꢆꢐꢃꢖꢍꢉꢎꢍꢏꢆꢃKꢒꢐꢄꢅ  
G3ꢆꢂꢍꢔꢔꢃAꢆꢋꢏꢄꢅ  
?ꢅꢍꢇꢘꢆꢂꢃUꢁꢌꢄꢒꢁꢋꢍꢔV  
ꢀꢁꢁꢄꢃAꢆꢋꢏꢄꢅ  
;1  
8ꢛꢦꢤꢃ>ꢗ?  
ꢥꢛO=ꢃ>ꢗ?  
ꢤꢛꢝ=  
ꢤꢛꢞꢤ  
ꢤꢛ=ꢤ  
1ꢛꢝꢧ  
A
ꢀꢁꢁꢄꢌꢂꢒꢋꢄ  
ꢀꢁꢁꢄꢃꢠꢋꢏꢔꢆ  
Aꢆꢍꢐꢃꢡꢅꢒꢉꢎꢋꢆꢈꢈ  
AꢆꢍꢐꢃKꢒꢐꢄꢅ  
ꢕꢁꢔꢐꢃꢟꢂꢍꢘꢄꢃꢠꢋꢏꢔꢆꢃꢌ  
ꢕꢁꢔꢐꢃꢟꢂꢍꢘꢄꢃꢠꢋꢏꢔꢆꢃ>ꢁꢄꢄꢁꢇ  
A1  
1ꢛꢤꢞꢃꢢ;ꢀ  
ꢤꢪ  
ꢤꢛ1ꢧ  
ꢤꢛ81  
=ꢪ  
ꢥꢪ  
7
ꢤꢛꢝ=  
ꢤꢛ=1  
1=ꢪ  
=ꢪ  
1=ꢪ  
ꢑꢒꢊꢃꢉꢣ  
1ꢛ ꢖꢒꢋꢃ1ꢃ3ꢒꢈꢊꢍꢔꢃꢒꢋꢐꢆ6ꢃꢘꢆꢍꢄꢊꢂꢆꢃꢇꢍꢜꢃ3ꢍꢂꢜꢓꢃ7ꢊꢄꢃꢇꢊꢈꢄꢃ7ꢆꢃꢔꢁꢉꢍꢄꢆꢐꢃꢑꢒꢄꢅꢒꢋꢃꢄꢅꢆꢃꢅꢍꢄꢉꢅꢆꢐꢃꢍꢂꢆꢍꢛ  
ꢝꢛ "ꢃꢗꢒꢏꢋꢒꢘꢒꢉꢍꢋꢄꢃ?ꢅꢍꢂꢍꢉꢄꢆꢂꢒꢈꢄꢒꢉꢛ  
8ꢛ ꢟꢒꢇꢆꢋꢈꢒꢁꢋꢈꢃꢟꢃꢍꢋꢐꢃ;1ꢃꢐꢁꢃꢋꢁꢄꢃꢒꢋꢉꢔꢊꢐꢆꢃꢇꢁꢔꢐꢃꢘꢔꢍꢈꢅꢃꢁꢂꢃꢌꢂꢁꢄꢂꢊꢈꢒꢁꢋꢈꢛꢃꢕꢁꢔꢐꢃꢘꢔꢍꢈꢅꢃꢁꢂꢃꢌꢂꢁꢄꢂꢊꢈꢒꢁꢋꢈꢃꢈꢅꢍꢔꢔꢃꢋꢁꢄꢃꢆ6ꢉꢆꢆꢐꢃꢤꢛ1=ꢃꢇꢇꢃꢌꢆꢂꢃꢈꢒꢐꢆꢛ  
ꢞꢛ ꢟꢒꢇꢆꢋꢈꢒꢁꢋꢒꢋꢏꢃꢍꢋꢐꢃꢄꢁꢔꢆꢂꢍꢋꢉꢒꢋꢏꢃꢌꢆꢂꢃꢠꢗꢕ;ꢃ<1ꢞꢛ=ꢕꢛ  
>ꢗ?ꢙ >ꢍꢈꢒꢉꢃꢟꢒꢇꢆꢋꢈꢒꢁꢋꢛꢃꢡꢅꢆꢁꢂꢆꢄꢒꢉꢍꢔꢔꢜꢃꢆ6ꢍꢉꢄꢃ3ꢍꢔꢊꢆꢃꢈꢅꢁꢑꢋꢃꢑꢒꢄꢅꢁꢊꢄꢃꢄꢁꢔꢆꢂꢍꢋꢉꢆꢈꢛ  
ꢢ;ꢀꢙ ꢢꢆꢘꢆꢂꢆꢋꢉꢆꢃꢟꢒꢇꢆꢋꢈꢒꢁꢋꢓꢃꢊꢈꢊꢍꢔꢔꢜꢃꢑꢒꢄꢅꢁꢊꢄꢃꢄꢁꢔꢆꢂꢍꢋꢉꢆꢓꢃꢘꢁꢂꢃꢒꢋꢘꢁꢂꢇꢍꢄꢒꢁꢋꢃꢌꢊꢂꢌꢁꢈꢆꢈꢃꢁꢋꢔꢜꢛ  
ꢕꢒꢉꢂꢁꢉꢅꢒꢌ ꢉꢅꢋꢁꢔꢁꢏꢜ ꢟꢂꢍꢑꢒꢋꢏ ?ꢤꢞꢨꢤO=>  
DS22146B-page 44  
© 2011 Microchip Technology Inc.  
MCP651/2/4/5/9  
14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]  
ꢑꢒꢊꢃꢣ ꢀꢁꢂꢃꢄꢅꢆꢃꢇꢁꢈꢄꢃꢉꢊꢂꢂꢆꢋꢄꢃꢌꢍꢉꢎꢍꢏꢆꢃꢐꢂꢍꢑꢒꢋꢏꢈꢓꢃꢌꢔꢆꢍꢈꢆꢃꢈꢆꢆꢃꢄꢅꢆꢃꢕꢒꢉꢂꢁꢉꢅꢒꢌꢃꢖꢍꢉꢎꢍꢏꢒꢋꢏꢃꢗꢌꢆꢉꢒꢘꢒꢉꢍꢄꢒꢁꢋꢃꢔꢁꢉꢍꢄꢆꢐꢃꢍꢄꢃ  
ꢅꢄꢄꢌꢙꢚꢚꢑꢑꢑꢛꢇꢒꢉꢂꢁꢉꢅꢒꢌꢛꢉꢁꢇꢚꢌꢍꢉꢎꢍꢏꢒꢋꢏ  
© 2011 Microchip Technology Inc.  
DS22146B-page 45  
MCP651/2/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22146B-page 46  
© 2011 Microchip Technology Inc.  
MCP651/2/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2011 Microchip Technology Inc.  
DS22146B-page 47  
MCP651/2/4/5/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22146B-page 48  
© 2011 Microchip Technology Inc.  
MCP651/2/4/5/9  
ꢫꢮꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢯꢎꢄꢅꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢂꢗꢆꢘꢆꢭꢚꢭꢚꢛꢜꢝꢆꢞꢞꢆꢟꢒꢅꢠꢆꢡꢯꢏꢑꢢ  
ꢑꢒꢊꢃꢣ ꢀꢁꢂꢃꢄꢅꢆꢃꢇꢁꢈꢄꢃꢉꢊꢂꢂꢆꢋꢄꢃꢌꢍꢉꢎꢍꢏꢆꢃꢐꢂꢍꢑꢒꢋꢏꢈꢓꢃꢌꢔꢆꢍꢈꢆꢃꢈꢆꢆꢃꢄꢅꢆꢃꢕꢒꢉꢂꢁꢉꢅꢒꢌꢃꢖꢍꢉꢎꢍꢏꢒꢋꢏꢃꢗꢌꢆꢉꢒꢘꢒꢉꢍꢄꢒꢁꢋꢃꢔꢁꢉꢍꢄꢆꢐꢃꢍꢄꢃ  
ꢅꢄꢄꢌꢙꢚꢚꢑꢑꢑꢛꢇꢒꢉꢂꢁꢉꢅꢒꢌꢛꢉꢁꢇꢚꢌꢍꢉꢎꢍꢏꢒꢋꢏ  
D
D2  
EXPOSED  
PAD  
e
E
E2  
2
1
2
b
1
K
N
N
NOTE 1  
L
TOP VIEW  
BOTTOM VIEW  
A3  
A
A1  
@ꢋꢒꢄꢈ  
ꢕꢣAAꢣꢕ;ꢡ;ꢢꢗ  
ꢟꢒꢇꢆꢋꢈꢒꢁꢋꢃAꢒꢇꢒꢄꢈ  
ꢕꢣE  
EGꢕ  
1O  
ꢤꢛO=ꢃ>ꢗ?  
ꢤꢛꢦꢤ  
ꢕꢠH  
Eꢊꢇ7ꢆꢂꢃꢁꢘꢃꢖꢒꢋꢈ  
ꢖꢒꢄꢉꢅ  
G3ꢆꢂꢍꢔꢔꢃJꢆꢒꢏꢅꢄ  
ꢗꢄꢍꢋꢐꢁꢘꢘꢃ  
?ꢁꢋꢄꢍꢉꢄꢃꢡꢅꢒꢉꢎꢋꢆꢈꢈ  
G3ꢆꢂꢍꢔꢔꢃKꢒꢐꢄꢅ  
;6ꢌꢁꢈꢆꢐꢃꢖꢍꢐꢃKꢒꢐꢄꢅ  
G3ꢆꢂꢍꢔꢔꢃAꢆꢋꢏꢄꢅ  
;6ꢌꢁꢈꢆꢐꢃꢖꢍꢐꢃAꢆꢋꢏꢄꢅ  
?ꢁꢋꢄꢍꢉꢄꢃKꢒꢐꢄꢅ  
?ꢁꢋꢄꢍꢉꢄꢃAꢆꢋꢏꢄꢅ  
E
ꢠ1  
ꢠ8  
;
;ꢝ  
ꢤꢛꢥꢤ  
ꢤꢛꢤꢤ  
1ꢛꢤꢤ  
ꢤꢛꢤ=  
ꢤꢛꢤꢝ  
ꢤꢛꢝꢤꢃꢢ;ꢀ  
ꢞꢛꢤꢤꢃ>ꢗ?  
ꢝꢛO=  
ꢞꢛꢤꢤꢃ>ꢗ?  
ꢝꢛO=  
ꢤꢛ8ꢤ  
ꢤꢛꢞꢤ  
ꢝꢛ=ꢤ  
ꢝꢛꢥꢤ  
ꢟꢝ  
7
A
ꢝꢛ=ꢤ  
ꢤꢛꢝ=  
ꢤꢛ8ꢤ  
ꢤꢛꢝꢤ  
ꢝꢛꢥꢤ  
ꢤꢛ8=  
ꢤꢛ=ꢤ  
?ꢁꢋꢄꢍꢉꢄꢨꢄꢁꢨ;6ꢌꢁꢈꢆꢐꢃꢖꢍꢐ  
L
ꢑꢒꢊꢃꢉꢣ  
1ꢛ ꢖꢒꢋꢃ1ꢃ3ꢒꢈꢊꢍꢔꢃꢒꢋꢐꢆ6ꢃꢘꢆꢍꢄꢊꢂꢆꢃꢇꢍꢜꢃ3ꢍꢂꢜꢓꢃ7ꢊꢄꢃꢇꢊꢈꢄꢃ7ꢆꢃꢔꢁꢉꢍꢄꢆꢐꢃꢑꢒꢄꢅꢒꢋꢃꢄꢅꢆꢃꢅꢍꢄꢉꢅꢆꢐꢃꢍꢂꢆꢍꢛ  
ꢝꢛ ꢖꢍꢉꢎꢍꢏꢆꢃꢒꢈꢃꢈꢍꢑꢃꢈꢒꢋꢏꢊꢔꢍꢄꢆꢐꢛ  
8ꢛ ꢟꢒꢇꢆꢋꢈꢒꢁꢋꢒꢋꢏꢃꢍꢋꢐꢃꢄꢁꢔꢆꢂꢍꢋꢉꢒꢋꢏꢃꢌꢆꢂꢃꢠꢗꢕ;ꢃ<1ꢞꢛ=ꢕꢛ  
>ꢗ?ꢙ >ꢍꢈꢒꢉꢃꢟꢒꢇꢆꢋꢈꢒꢁꢋꢛꢃꢡꢅꢆꢁꢂꢆꢄꢒꢉꢍꢔꢔꢜꢃꢆ6ꢍꢉꢄꢃ3ꢍꢔꢊꢆꢃꢈꢅꢁꢑꢋꢃꢑꢒꢄꢅꢁꢊꢄꢃꢄꢁꢔꢆꢂꢍꢋꢉꢆꢈꢛ  
ꢢ;ꢀꢙ ꢢꢆꢘꢆꢂꢆꢋꢉꢆꢃꢟꢒꢇꢆꢋꢈꢒꢁꢋꢓꢃꢊꢈꢊꢍꢔꢔꢜꢃꢑꢒꢄꢅꢁꢊꢄꢃꢄꢁꢔꢆꢂꢍꢋꢉꢆꢓꢃꢘꢁꢂꢃꢒꢋꢘꢁꢂꢇꢍꢄꢒꢁꢋꢃꢌꢊꢂꢌꢁꢈꢆꢈꢃꢁꢋꢔꢜꢛ  
ꢕꢒꢉꢂꢁꢉꢅꢒꢌ ꢉꢅꢋꢁꢔꢁꢏꢜ ꢟꢂꢍꢑꢒꢋꢏ ?ꢤꢞꢨ1ꢝꢧ>  
© 2011 Microchip Technology Inc.  
DS22146B-page 49  
MCP651/2/4/5/9  
20-Lead Plastic Quad Flat, No Lead Package (ML) - 4x4 mm Body [QFN]  
With 0.40 mm Contact Length  
ꢑꢒꢊꢃꢣ ꢀꢁꢂꢃꢄꢅꢆꢃꢇꢁꢈꢄꢃꢉꢊꢂꢂꢆꢋꢄꢃꢌꢍꢉꢎꢍꢏꢆꢃꢐꢂꢍꢑꢒꢋꢏꢈꢓꢃꢌꢔꢆꢍꢈꢆꢃꢈꢆꢆꢃꢄꢅꢆꢃꢕꢒꢉꢂꢁꢉꢅꢒꢌꢃꢖꢍꢉꢎꢍꢏꢒꢋꢏꢃꢗꢌꢆꢉꢒꢘꢒꢉꢍꢄꢒꢁꢋꢃꢔꢁꢉꢍꢄꢆꢐꢃꢍꢄꢃ  
ꢅꢄꢄꢌꢙꢚꢚꢑꢑꢑꢛꢇꢒꢉꢂꢁꢉꢅꢒꢌꢛꢉꢁꢇꢚꢌꢍꢉꢎꢍꢏꢒꢋꢏ  
DS22146B-page 50  
© 2011 Microchip Technology Inc.  
MCP651/2/4/5/9  
APPENDIX A: REVISION HISTORY  
Revision B (March 2011)  
The following is a list of modifications:  
1. Added the MCP654 and MCP659 amplifiers to  
the product family and the related information  
throughout the document.  
2. Added the corresponding SOIC (14L), TSSOP  
(14L) and QFN (16L) package options and  
related information.  
Revision A (April 2009)  
• Original Release of this Document.  
© 2011 Microchip Technology Inc.  
DS22146B-page 51  
MCP651/2/4/5/9  
NOTES:  
DS22146B-page 52  
© 2011 Microchip Technology Inc.  
MCP651/2/4/5/9  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
/XX  
a) MCP651T-E/SN:  
b) MCP652T-E/MF:  
c) MCP652T-E/SN:  
d) MCP654T-E/SL:  
e) MCP654T-E/ST:  
f) MCP655T-E/MF:  
g) MCP655T-E/UN:  
h) MCP659T-E/ML:  
Tape and Reel,  
Extended Temperature,  
8LD SOIC package.  
Tape and Reel,  
Extended Temperature,  
8LD DFN package.  
Tape and Reel,  
Extended Temperature,  
8LD SOIC package.  
Tape and Reel,  
Extended Temperature,  
14LD SOIC package.  
Tape and Reel,  
Extended Temperature,  
14LD TSSOP package.  
Tape and Reel,  
Extended Temperature,  
10LD DFN package.  
Tape and Reel,  
Extended Temperature,  
10LD MSOP package.  
Temperature  
Range  
Package  
Device:  
MCP651:  
MCP651T:  
Single Op Amp  
Single Op Amp (Tape and Reel)  
(DFN and SOIC)  
Dual Op Amp  
Dual Op Amp (Tape and Reel)  
(DFN and SOIC)  
MCP652:  
MCP652T:  
MCP654:  
MCP654T:  
Dual Op Amp  
Dual Op Amp (Tape and Reel)  
(TSSOP and SOIC)  
Dual Op Amp  
Dual Op Amp (Tape and Reel)  
(DFN and MSOP)  
Quad Op Amp  
Quad Op Amp (Tape and Reel)  
(QFN)  
MCP655:  
MCP655T:  
MCP659:  
MCP659T:  
Tape and Reel,  
Extended Temperature,  
16LD QFN package.  
Temperature Range:  
Package:  
E
= -40°C to +125°C  
MF  
=Plastic Dual Flat, No Lead (3x3 DFN),  
8-lead, 10-lead  
SN  
UN  
ST  
=Plastic Small Outline, (3.90 mm), 8-lead  
=Plastic Micro Small Outline, (MSOP), 10-lead  
=Plastic Thin Shrink Small Outline, (4.4 mm), 14-  
lead  
SL  
=Plastic Small Outline, Narrow, (3.90 mm), 14-  
lead  
ML  
=Plastic Quad Flat, No Lead Package,  
(4x4x0.9 mm), 16-lead  
© 2011 Microchip Technology Inc.  
DS22146B-page 53  
MCP651/2/4/5/9  
NOTES:  
DS22146B-page 54  
© 2011 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
32  
PIC logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,  
TSHARC, UniWinDriver, WiperLock and ZENA are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2011, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-61341-024-0  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2011 Microchip Technology Inc.  
DS22146B-page 55  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Fax: 886-7-330-9305  
Los Angeles  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Toronto  
Mississauga, Ontario,  
Canada  
China - Zhuhai  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
02/18/11  
DS22146B-page 56  
© 2011 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY