MCP6541-I/P [MICROCHIP]

Push-Pull Output Sub-Microamp Comparators; 推挽输出亚微安比较
MCP6541-I/P
型号: MCP6541-I/P
厂家: MICROCHIP    MICROCHIP
描述:

Push-Pull Output Sub-Microamp Comparators
推挽输出亚微安比较

比较器 放大器 放大器电路 光电二极管 PC
文件: 总34页 (文件大小:1169K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6541/1R/1U/2/3/4  
Push-Pull Output Sub-Microamp Comparators  
Description  
Features  
• Low Quiescent Current: 600 nA/comparator (typ.)  
• Rail-to-Rail Input: VSS - 0.3V to VDD + 0.3V  
• CMOS/TTL-Compatible Output  
The Microchip Technology Inc. MCP6541/2/3/4 family  
of comparators is offered in single (MCP6541,  
MCP6541R, MCP6541U), single with Chip Select (CS)  
(MCP6543), dual (MCP6542) and quad (MCP6544)  
configurations. The outputs are push-pull (CMOS/TTL-  
compatible) and are capable of driving heavy DC or  
capacitive loads.  
• Propagation Delay: 4 µs (typ., 100 mV Overdrive)  
• Wide Supply Voltage Range: 1.6V to 5.5V  
• Available in Single, Dual and Quad  
• Single available in SOT-23-5, SC-70-5 * packages  
• Chip Select (CS) with MCP6543  
• Low Switching Current  
These comparators are optimized for low power, single-  
supply operation with greater than rail-to-rail input  
operation.  
The  
push-pull  
output  
of  
the  
MCP6541/1R/1U/2/3/4 family supports rail-to-rail output  
swing and interfaces with TTL/CMOS logic. The internal  
input hysteresis eliminates output switching due to inter-  
nal input noise voltage, reducing current draw. The out-  
put limits supply current surges and dynamic power  
consumption while switching. This product family oper-  
ates with a single-supply voltage as low as 1.6V and  
draws less than 1 µA/comparator of quiescent current.  
• Internal Hysteresis: 3.3 mV (typ.)  
Temperature Ranges:  
- Industrial: -40°C to +85°C  
- Extended: -40°C to +125°C  
Typical Applications  
• Laptop Computers  
• Mobile Phones  
The related MCP6546/7/8/9 family of comparators from  
Microchip has an open-drain output. Used with a pull-up  
resistor, these devices can be used as level-shifters for  
any desired voltage up to 10V and in wired-OR logic.  
• Metering Systems  
• Hand-held Electronics  
• RC Timers  
* SC-70-5 E-Temp parts not available at this release of  
the data sheet.  
• Alarm and Monitoring Circuits  
• Windowed Comparators  
• Multi-vibrators  
MCP6541U SOT-23-5 is E-Temp only.  
Related Devices  
• Open-Drain Output: MCP6546/7/8/9  
Package Types  
MCP6541  
MCP6541R  
MCP6542  
MCP6544  
PDIP, SOIC, MSOP  
PDIP, SOIC, TSSOP  
PDIP, SOIC, MSOP  
SOT-23-5  
VDD  
OUTA  
14 OUTD  
OUTA  
1
2
3
4
VSS  
5
1
2
3
4
8
7
6
5
NC  
1
2
3
4
8 NC  
OUT  
VDD  
1
VINA  
+
- + + 13 VIND  
-
+
VINA  
+
OUTB  
-
+
V –  
-
+
VDD  
7
-
2
3
IN  
VINA  
12 VIND  
VINA  
+
VINB  
VINB  
+
-
V +  
6
5
OUT  
NC  
VIN+  
VIN–  
4
IN  
VDD  
V
11  
VSS  
VSS  
SS  
VINB  
+
10 VINC  
+
5
6
7
MCP6541  
SOT-23-5, SC-70-5  
MCP6541U  
MCP6543  
PDIP, SOIC, MSOP  
-
-
+ +  
VINB  
9 VINC  
SOT-23-5  
OUTB  
8 OUTC  
NC  
VIN–  
VIN+  
VSS  
CS  
VDD  
VDD  
VDD  
5
1
2
3
4
8
7
6
5
OUT  
VSS  
VIN–  
VSS  
1
2
3
5
1
-
+
-
+
-
2
3
OUT  
NC  
VIN+  
VIN– VIN+  
OUT  
4
4
© 2006 Microchip Technology Inc.  
DS21696E-page 1  
MCP6541/1R/1U/2/3/4  
† Notice: Stresses above those listed under “Absolute Maxi-  
mum Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of the  
device at those or any other conditions above those indicated  
in the operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
VDD - VSS .........................................................................7.0V  
Current at Analog Input Pin (VIN+, VIN-.........................±2 mA  
Analog Input (VIN) †† ...................... VSS - 1.0V to VDD + 1.0V  
All other Inputs and Outputs........... VSS - 0.3V to VDD + 0.3V  
†† See Section 4.1.2 “Input Voltage and Current  
Limits”  
Difference Input voltage ....................................... |VDD - VSS  
|
Output Short-Circuit Current .................................continuous  
Current at Input Pins ....................................................±2 mA  
Current at Output and Supply Pins ............................±30 mA  
Storage temperature .....................................-65°C to +150°C  
Maximum Junction Temperature (TJ)..........................+150°C  
ESD protection on all pins (HBM;MM) ...................4 kV; 400V  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = +25°C,VIN+ = VDD/2,  
VIN= VSS, and RL = 100 kΩ to VDD/2 (Refer to Figure 1-3).  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Power Supply  
Supply Voltage  
VDD  
IQ  
1.6  
0.3  
5.5  
1.0  
V
Quiescent Current per comparator  
Input  
0.6  
µA  
IOUT = 0  
Input Voltage Range  
VCMR  
CMRR  
CMRR  
CMRR  
PSRR  
VOS  
VSS0.3  
55  
70  
VDD+0.3  
V
Common Mode Rejection Ratio  
Common Mode Rejection Ratio  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Input Offset Voltage  
dB  
dB  
dB  
dB  
mV  
VDD = 5V, VCM = -0.3V to 5.3V  
VDD = 5V, VCM = 2.5V to 5.3V  
VDD = 5V, VCM = -0.3V to 2.5V  
VCM = VSS  
50  
65  
55  
70  
63  
80  
-7.0  
±1.5  
±3  
+7.0  
VCM = VSS (Note 1)  
Drift with Temperature  
ΔVOS/ΔTA  
VHYST  
TC1  
µV/°C TA = -40°C to +125°C, VCM = VSS  
mV VCM = VSS (Note 1)  
Input Hysteresis Voltage  
Linear Temp. Co. (Note 2)  
Quadratic Temp. Co. (Note 2)  
Input Bias Current  
1.5  
3.3  
6.5  
6.7  
µV/°C TA = -40°C to +125°C, VCM = VSS  
µV/°C2 TA = -40°C to +125°C, VCM = VSS  
TC2  
-0.035  
1
IB  
pA  
pA  
VCM = VSS  
At Temperature (I-Temp parts)  
At Temperature (E-Temp parts)  
Input Offset Current  
IB  
25  
100  
5000  
TA = +85°C, VCM = VSS (Note 3)  
TA = +125°C, VCM = VSS (Note 3)  
VCM = VSS  
IB  
1200  
pA  
IOS  
±1  
pA  
Common Mode Input Impedance  
Differential Input Impedance  
ZCM  
1013||4  
1013||2  
Ω||pF  
Ω||pF  
ZDIFF  
Note 1: The input offset voltage is the center (average) of the input-referred trip points. The input hysteresis is the difference  
between the input-referred trip points.  
2:  
V
HYST at different temperatures is estimated using VHYST (TA) = VHYST + (TA - 25°C) TC1 + (TA - 25°C)2 TC2.  
3: Input bias current at temperature is not tested for SC-70-5 package.  
4: Limit the output current to Absolute Maximum Rating of 30 mA.  
DS21696E-page 2  
© 2006 Microchip Technology Inc.  
MCP6541/1R/1U/2/3/4  
DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = +25°C,VIN+ = VDD/2,  
VIN= VSS, and RL = 100 kΩ to VDD/2 (Refer to Figure 1-3).  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Push-Pull Output  
High-Level Output Voltage  
Low-Level Output Voltage  
Short-Circuit Current  
VOH  
VOL  
ISC  
VDD0.2  
VSS+0.2  
V
V
I
I
= -2 mA, V = 5V  
DD  
OUT  
= 2 mA, V = 5V  
OUT  
DD  
-2.5, +1.5  
±30  
mA  
mA  
VDD = 1.6V (Note 4)  
VDD = 5.5V (Note 4)  
ISC  
Note 1: The input offset voltage is the center (average) of the input-referred trip points. The input hysteresis is the difference  
between the input-referred trip points.  
2: VHYST at different temperatures is estimated using VHYST (TA) = VHYST + (TA - 25°C) TC1 + (TA - 25°C)2 TC2.  
3: Input bias current at temperature is not tested for SC-70-5 package.  
4: Limit the output current to Absolute Maximum Rating of 30 mA.  
AC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2,  
Step = 200 mV, Overdrive = 100 mV, and CL = 36 pF (Refer to Figure 1-2 and Figure 1-3).  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Rise Time  
Fall Time  
tR  
0.85  
0.85  
4
8
µs  
µs  
µs  
µs  
µs  
tF  
Propagation Delay (High-to-Low)  
Propagation Delay (Low-to-High)  
Propagation Delay Skew  
tPHL  
tPLH  
tPDS  
fMAX  
fMAX  
Eni  
4
8
±0.2  
160  
120  
200  
(Note 1)  
Maximum Toggle Frequency  
kHz VDD = 1.6V  
kHz VDD = 5.5V  
Input Noise Voltage  
µVP-P 10 Hz to 100 kHz  
Note 1: Propagation Delay Skew is defined as: tPDS = tPLH - tPHL  
.
MCP6543 CHIP SELECT (CS) CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN= VSS  
,
and CL= 36 pF (Refer to Figures 1-1 and 1-3).  
Parameters  
Sym  
Min  
Typ  
Max Units  
Conditions  
CS Low Specifications  
CS Logic Threshold, Low  
VIL  
VSS  
0.2 VDD  
V
CS Input Current, Low  
ICSL  
5.0  
pA  
CS = VSS  
CS High Specifications  
CS Logic Threshold, High  
VIH  
ICSH  
IDD  
0.8 VDD  
1
VDD  
V
CS Input Current, High  
pA  
pA  
pA  
pA  
CS = VDD  
CS = VDD  
CS = VDD  
CS Input High, VDD Current  
CS Input High, GND Current  
Comparator Output Leakage  
CS Dynamic Specifications  
18  
–20  
1
ISS  
IO(LEAK)  
VOUT = VDD, CS = VDD  
CS Low to Comparator Output Low  
Turn-on Time  
tON  
tOFF  
2
50  
ms  
µs  
V
CS = 0.2 VDD to VOUT = VDD/2,  
V
IN– = VDD  
CS = 0.8 VDD to VOUT = VDD/2,  
IN– = VDD  
VDD = 5V  
CS High to Comparator Output  
High Z Turn-off Time  
10  
0.6  
V
CS Hysteresis  
VCS_HYST  
© 2006 Microchip Technology Inc.  
DS21696E-page 3  
MCP6541/1R/1U/2/3/4  
CS  
VIL  
VIH  
VIN–  
100 mV  
tON  
Hi-Z  
tOFF  
VIN+ = VDD/2  
tPHL  
100 mV  
VOUT  
Hi-Z  
tPLH  
VOH  
-0.6 µA (typ.)  
-20 pA (typ.)  
1 pA (typ.)  
-20 pA (typ.)  
1 pA (typ.)  
ISS  
ICS  
VOUT  
VOL  
VOL  
FIGURE 1-1:  
Timing Diagram for the CS  
FIGURE 1-2:  
Propagation Delay Timing  
Pin on the MCP6543.  
Diagram.  
DS21696E-page 4  
© 2006 Microchip Technology Inc.  
MCP6541/1R/1U/2/3/4  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = +1.6V to +5.5V and VSS = GND.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 5L-SC-70  
Thermal Resistance, 5L-SOT-23  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 14L-PDIP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
TA  
TA  
TA  
-40  
-40  
-65  
+85  
+125  
+150  
°C  
°C Note  
°C  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
331  
256  
85  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
163  
206  
70  
120  
100  
Note:  
The MCP6541/2/3/4 I-Temp parts operate over this extended temperature range, but with reduced perfor-  
mance. In any case, the Junction Temperature (TJ) must not exceed the Absolute Maximum specification  
of +150°C.  
1.1  
Test Circuit Configuration  
This test circuit configuration is used to determine the  
AC and DC specifications.  
VDD  
200 kΩ  
MCP654X  
200 kΩ  
VOUT  
36 pF  
200 kΩ  
VIN = VSS  
200 kΩ  
VSS = 0V  
FIGURE 1-3:  
AC and DC Test Circuit for  
the Push-Pull Output Comparators.  
© 2006 Microchip Technology Inc.  
DS21696E-page 5  
MCP6541/1R/1U/2/3/4  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN= GND,  
RL = 100 kΩ to VDD/2, and CL = 36 pF.  
14%  
12%  
10%  
8%  
18%  
16%  
14%  
12%  
10%  
8%  
1200 Samples  
CM = VSS  
1200 Samples  
CM = VSS  
V
V
6%  
6%  
4%  
4%  
2%  
2%  
0%  
0%  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0  
Input Hysteresis Voltage (mV)  
Input Offset Voltage (mV)  
FIGURE 2-1:  
Input Offset Voltage at  
FIGURE 2-4:  
Input Hysteresis Voltage at  
V
= V  
.
V
= V  
.
CM  
SS  
CM  
SS  
25%  
20%  
15%  
10%  
5%  
16%  
14%  
596 Samples  
1200 Samples  
CM = VSS  
V
CM = VSS  
V
TA = -40°C to +125°C  
12% TA= -40°C to +125°C  
10%  
8%  
6%  
4%  
2%  
0%  
VDD = 5.5V  
VDD = 1.6V  
0%  
Input Hysteresis Voltage –  
Linear Temp. Co.; TC1 (µV/°C)  
Input Offset Voltage Drift (µV/°C)  
FIGURE 2-2:  
Input Offset Voltage Drift at  
FIGURE 2-5:  
Input Hysteresis Voltage  
V
= V  
.
Linear Temp. Co. (TC ) at V  
= V  
.
CM  
SS  
1
CM  
SS  
20%  
18%  
7
6
596 Samples  
VDD = 5.5V  
VCM = VSS  
16%  
14%  
12%  
10%  
8%  
TA = -40°C to +125°C  
VOUT  
5
VDD = 5.5V  
4
3
VDD = 1.6V  
6%  
4%  
2%  
0%  
2
1
VIN–  
0
-1  
Input Hysteresis Voltage –  
Quadratic Temp. Co.; TC2 (µV/°C2)  
0
1
2
3
4
5
6
7
8
9
10  
Time (1 ms/div)  
FIGURE 2-3:  
The MCP6541/1R/1U/2/3/4  
FIGURE 2-6:  
Input Hysteresis Voltage  
comparators show no phase reversal.  
Quadratic Temp. Co. (TC ) at V  
= V  
.
2
CM  
SS  
DS21696E-page 6  
© 2006 Microchip Technology Inc.  
MCP6541/1R/1U/2/3/4  
Note: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = 25°C, VIN+ = VDD/2, VIN– = GND,  
RL = 100 kΩ to VDD/2, and CL = 36 pF.  
1.0  
0.8  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
VCM = VSS  
VCM = VSS  
0.6  
0.4  
VDD = 1.6V  
VDD = 5.5V  
0.2  
0.0  
VDD = 1.6V  
VDD = 5.5V  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-7:  
Input Offset Voltage vs.  
FIGURE 2-10:  
Input Hysteresis Voltage vs.  
Ambient Temperature at V  
= V  
.
Ambient Temperature at V  
= V  
.
CM  
SS  
CM  
SS  
2.0  
6.0  
VDD = 1.6V  
VDD = 1.6V  
TA = +125°C  
5.5  
1.5  
T
T
A = +85°C  
A = +25°C  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
TA = +125°C  
0.0  
T
T
A = +85°C  
A = +25°C  
TA = +125°C  
-0.5  
-1.0  
-1.5  
-2.0  
TA = -40°C  
TA = -40°C  
Common Mode Input Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-8:  
Input Offset Voltage vs.  
FIGURE 2-11:  
Input Hysteresis Voltage vs.  
Common Mode Input Voltage at V = 1.6V.  
Common Mode Input Voltage at V = 1.6V.  
DD  
DD  
2.0  
6.0  
VDD = 5.5V  
1.5  
VDD = 5.5V  
TA = +125°C  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
T
T
A = +85°C  
A = +25°C  
TA = -40°C  
A = +25°C  
1.0  
T
TA = -40°C  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
TA = +85°C  
A = +125°C  
T
Common Mode Input Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-9:  
Input Offset Voltage vs.  
FIGURE 2-12:  
Input Hysteresis Voltage vs.  
Common Mode Input Voltage at V = 5.5V.  
Common Mode Input Voltage at V = 5.5V.  
DD  
DD  
© 2006 Microchip Technology Inc.  
DS21696E-page 7  
MCP6541/1R/1U/2/3/4  
Note: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = 25°C, VIN+ = VDD/2, VIN– = GND,  
RL = 100 kΩ to VDD/2, and CL = 36 pF.  
90  
85  
80  
75  
70  
65  
60  
55  
100100n  
10010n  
VDD = 5.5V  
Input Referred  
IB, TA = +125°C  
IB, TA = +85°C  
100p  
1 0  
PSRR, VIN+ = VSS, VDD = 1.6V to 5.5V  
CMRR, VIN+ = -0.3 to 5.3V, VDD = 5.0V  
10p  
10  
IOS, TA = +125°C  
IOS, TA = +85°C  
1p  
1
100f  
0.1  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Common Mode Input Voltage (V)  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
FIGURE 2-13:  
CMRR,PSRR vs. Ambient  
FIGURE 2-16:  
Input Bias Current, Input  
Temperature.  
Offset Current vs. Common Mode Input Voltage.  
1000  
0.7  
0.6  
0.5  
0.4  
VDD = 5.5V  
VCM = VDD  
100  
10  
1
IB  
TA = +125°C  
A = +85°C  
TA = +25°C  
A = -40°C  
0.3  
0.2  
0.1  
0.0  
| IOS  
|
T
T
0.1  
55  
65  
75  
85  
95 105 115 125  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-14:  
Input Bias Current, Input  
FIGURE 2-17:  
Quiescent Current vs.  
Offset Current vs. Ambient Temperature.  
Power Supply Voltage.  
0.7  
0.7  
VDD = 1.6V  
VDD = 5.5V  
0.6  
0.5  
0.4  
0.3  
0.6  
0.5  
0.4  
0.3  
0.2  
0.2  
Sweep VIN+, VIN– = VDD/2  
Sweep VIN+, VIN– = VDD/2  
0.1  
0.0  
0.1  
Sweep VIN–, VIN+ = VDD/2  
Sweep VIN–, VIN+ = VDD/2  
0.0  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Common Mode Input Voltage (V)  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  
Common Mode Input Voltage (V)  
FIGURE 2-15:  
Quiescent Current vs.  
FIGURE 2-18:  
Quiescent Current vs.  
Common Mode Input Voltage at V = 1.6V.  
Common Mode Input Voltage at V = 5.5V.  
DD  
DD  
DS21696E-page 8  
© 2006 Microchip Technology Inc.  
MCP6541/1R/1U/2/3/4  
Note: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = 25°C, VIN+ = VDD/2, VIN– = GND,  
RL = 100 kΩ to VDD/2, and CL = 36 pF.  
35  
10  
TA = -40°C  
TA = +25°C  
A = +85°C  
A = +125°C  
100 mV Overdrive  
CM = VDD/2  
RL = infinity  
30  
25  
20  
15  
10  
5
V
T
T
1
VDD = 5.5V  
VDD = 1.6V  
0
0.1  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
0.1  
1
10  
100  
Toggle Frequency (kHz)  
FIGURE 2-19:  
Supply Current vs. Toggle  
FIGURE 2-22:  
Output Short Circuit Current  
Frequency.  
Magnitude vs. Power Supply Voltage.  
1.0  
0.8  
VOL – VSS  
TA = +125°C  
TA = +85°C  
:
VDD = 1.6V  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VOL–VSS  
:
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
TA = +125°C  
TA  
TA  
TA  
=
=
=
+85°C  
+25°C  
-40°C  
TA = +25°C  
TA = -40°C  
VDD – VOH  
:
VDD–VOH  
:
TA = +125°C  
TA = +85°C  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
T
T
A = +25°C  
A = -40°C  
VDD = 5.5V  
10  
0
5
15  
20  
25  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Output Current (mA)  
Output Current (mA)  
FIGURE 2-20:  
Output Voltage Headroom  
FIGURE 2-23:  
Output Voltage Headroom  
vs. Output Current at V = 1.6V.  
vs. Output Current at V = 5.5V.  
DD  
DD  
45%  
45%  
600 Samples  
100 mV Overdrive  
600 Samples  
100 mV Overdrive  
VCM = VDD/2  
40%  
40%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
35%  
V
CM = VDD/2  
30%  
25%  
20%  
15%  
10%  
5%  
VDD = 1.6V  
VDD = 5.5V  
VDD = 1.6V  
VDD = 5.5V  
0%  
0%  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
High-to-Low Propagation Delay (µs)  
Low-to-High Propagation Delay (µs)  
FIGURE 2-21:  
High-to-Low Propagation  
FIGURE 2-24:  
Low-to-High Propagation  
Delay.  
Delay.  
© 2006 Microchip Technology Inc.  
DS21696E-page 9  
MCP6541/1R/1U/2/3/4  
Note: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = 25°C, VIN+ = VDD/2, VIN– = GND,  
RL = 100 kΩ to VDD/2, and CL = 36 pF.  
45%  
40%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
8
7
6
5
4
3
2
1
0
100 mV Overdrive  
CM = VDD/2  
600 Samples  
100 mV Overdrive  
V
V
CM = VDD/2  
tPLH @ VDD = 5.5V  
tPHL @ VDD = 5.5V  
VDD = 1.6V  
VDD = 5.5V  
tPLH @ VDD = 1.6V  
tPHL @ VDD = 1.6V  
0%  
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0  
Propagation Delay Skew (µs)  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
FIGURE 2-25:  
Propagation Delay Skew.  
FIGURE 2-28:  
Propagation Delay vs.  
Ambient Temperature.  
14  
100  
VCM = VDD/2  
tPLH @ 10 mV Overdrive  
13  
12  
11  
10  
9
VCM = VDD/2  
tPHL @ VDD = 5.5V  
t
t
PLH @ VDD = 1.6V  
PHL @ VDD = 1.6V  
8
7
tPHL @ 10 mV Overdrive  
tPLH @ 100 mV Overdrive  
10  
6
5
4
tPLH @ VDD = 5.5V  
3
tPHL @ 100 mV Overdrive  
2
1
0
1
1.5  
2.0  
2.5  
3.0 3.5  
4.0  
4.5  
5.0 5.5  
1
10  
100  
1000  
Power Supply Voltage (V)  
Input Overdrive (mV)  
FIGURE 2-26:  
Propagation Delay vs.  
FIGURE 2-29:  
Propagation Delay vs. Input  
Power Supply Voltage.  
Overdrive.  
8
8
VDD = 1.6V  
100 mV Overdrive  
VDD = 5.5V  
7
7
100 mV Overdrive  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
tPHL  
tPLH  
tPLH  
tPHL  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Common Mode Input Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-27:  
Propagation Delay vs.  
FIGURE 2-30:  
Propagation Delay vs.  
Common Mode Input Voltage at V = 1.6V.  
Common Mode Input Voltage at V = 5.5V.  
DD  
DD  
DS21696E-page 10  
© 2006 Microchip Technology Inc.  
MCP6541/1R/1U/2/3/4  
Note: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = 25°C, VIN+ = VDD/2, VIN– = GND,  
RL = 100 kΩ to VDD/2, and CL = 36 pF.  
6.0  
50  
VDD = 5.5V  
100 mV Overdrive  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
45  
40  
35  
30  
25  
20  
15  
10  
5
VCM = VDD/2  
tPHL @ VDD = 1.6V  
tPLH @ VDD = 1.6V  
VOUT  
CS  
tPHL @ VDD = 5.5V  
tPLH @ VDD = 5.5V  
0
0
10 20 30 40 50 60 70 80 90  
Load Capacitance (nF)  
0
1
2
3
4
5
6
7
8
9
10  
Time (ms)  
FIGURE 2-31:  
Propagation Delay vs. Load  
FIGURE 2-34:  
Chip Select (CS) Step  
Capacitance.  
Response (MCP6543 only).  
1.E-10m3  
1.E-03  
1m  
Comparator  
Turns On  
Comparator  
Shuts Off  
Comparator  
Turns On  
Comparator  
Shuts Off  
100µ  
1.E-04  
1.E- 4  
100µ  
10µ  
1.E-05  
10µ  
1.E- 5  
1µ  
1.E-06  
1µ  
1.E-06  
CS Hysteresis  
CS  
Hysteresis  
100n  
1.E-07  
100n  
1.E- 7  
10n  
1.E-08  
10n  
1.E- 8  
CS  
High-to-Low  
CS  
CS  
CS  
1n  
1.E-09  
1n  
1.E-09  
Low-to-High  
High-to-Low  
Low-to-High  
100p  
1.E-10  
100p  
1.E-10  
VDD = 1.6V  
VDD = 5.5V  
10p  
1.E-11  
10p  
1.E-11  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6  
Chip Select (CS) Voltage (V)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Chip Select (CS) Voltage (V)  
FIGURE 2-32:  
Supply Current (shoot  
FIGURE 2-35:  
Supply Current (shoot  
through current) vs. Chip Select (CS) Voltage at  
through current) vs. Chip Select (CS) Voltage at  
V
= 1.6V (MCP6543 only).  
V
= 5.5V (MCP6543 only).  
DD  
DD  
6
1.6  
VOUT  
CS  
3
0.0  
VOUT  
0
CS  
140  
20  
120  
VDD = 1.6V  
Start-up IDD  
100  
80  
60  
40  
20  
0
15  
VDD = 5.5V  
Start-up  
IDD  
Charging output  
capacitance  
10  
5
Charging output  
capacitance  
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5  
Time (0.5 ms/div)  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14  
Time (1 ms/div)  
FIGURE 2-33:  
Supply Current (charging  
FIGURE 2-36:  
Supply Current (charging  
current) vs. Chip Select (CS) pulse at V = 1.6V  
current) vs. Chip Select (CS) pulse at V = 5.5V  
DD  
DD  
(MCP6543 only).  
(MCP6543 only).  
© 2006 Microchip Technology Inc.  
DS21696E-page 11  
MCP6541/1R/1U/2/3/4  
Note: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = 25°C, VIN+ = VDD/2, VIN– = GND,  
RL = 100 kΩ to VDD/2, and CL = 36 pF.  
1.E-02  
10m  
1.E-03  
1m  
1.E-04  
100µ  
1.E1-005µ  
1.E-016µ  
100n  
1.E-07  
10n  
1.E-08  
1n  
1.E-09  
100p  
1.E-10  
10p  
1.E-11  
+125°C  
+85°C  
+25°C  
-40°C  
1p  
1.E-12  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
Input Voltage (V)  
FIGURE 2-37:  
Input Bias Current vs. Input  
Voltage  
DS21696E-page 12  
© 2006 Microchip Technology Inc.  
MCP6541/1R/1U/2/3/4  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
MCP6541  
(PDIP,  
SOIC,  
MCP6541  
(SOT-23-5,  
MSOP)  
SC-70-5)  
Symbol  
Description  
6
2
1
1
4
1
2
6
2
1
2
OUT, OUTA Digital Output (comparator A)  
VIN–, VINA– Inverting Input (comparator A)  
VIN+, VINA+ Non-inverting Input (comparator A)  
4
4
1
3
3
3
3
3
3
3
7
5
2
5
8
7
4
VDD  
Positive Power Supply  
4
2
5
2
5
4
5
VINB  
+
Non-inverting Input (comparator B)  
Inverting Input (comparator B)  
Digital Output (comparator B)  
Digital Output (comparator C)  
Inverting Input (comparator C)  
Non-inverting Input (comparator C)  
Negative Power Supply  
6
6
VINB  
7
7
OUTB  
OUTC  
4
8
9
VINC  
+
10  
11  
12  
13  
14  
VINC  
VSS  
1, 5, 8  
8
VIND  
VIND  
+
Non-inverting Input (comparator D)  
Inverting Input (comparator D)  
Digital Output (comparator D)  
Chip Select  
OUTD  
CS  
1, 5  
NC  
No Internal Connection  
3.1  
Analog Inputs  
3.4  
Power Supply (VSS and VDD)  
The comparator non-inverting and inverting inputs are  
high-impedance CMOS inputs with low bias currents.  
The positive power supply pin (VDD) is 1.6V to 5.5V  
higher than the negative power supply pin (VSS). For  
normal operation, the other pins are at voltages  
between VSS and VDD  
.
3.2  
CS Digital Input  
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need a local bypass capacitor (typically 0.01 µF to  
0.1 µF) within 2 mm of the VDD pin. These can share a  
bulk capacitor with nearby analog parts (within  
100 mm), but it is not required.  
This is a CMOS, Schmitt-triggered input that places the  
part into a low power mode of operation.  
3.3  
Digital Outputs  
The comparator outputs are CMOS, push-pull digital  
outputs. They are designed to be compatible with  
CMOS and TTL logic and are capable of driving heavy  
DC or capacitive loads.  
© 2006 Microchip Technology Inc.  
DS21696E-page 13  
MCP6541/1R/1U/2/3/4  
the resistors R1 and R2 limit the possible current drawn  
out of the input pin. Diodes D1 and D2 prevent the input  
4.0  
APPLICATIONS INFORMATION  
The MCP6541/2/3/4 family of push-pull output compar-  
ators are fabricated on Microchip’s state-of-the-art  
CMOS process. They are suitable for a wide range of  
applications requiring very low power consumption.  
pin (VIN+ and VIN–) from going too far above VDD  
.
When implemented as shown, resistors R1 and R2 also  
limit the current through D1 and D2.  
VDD  
4.1  
Comparator Inputs  
4.1.1  
PHASE REVERSAL  
D1  
The MCP6541/1R/1U/2/3/4 comparator family uses  
CMOS transistors at the input. They are designed to  
prevent phase inversion when the input pins exceed  
the supply voltages. Figure 2-3 shows an input voltage  
exceeding both supplies with no resulting phase  
inversion.  
+
V1  
R1  
VOUT  
MCP6G0X  
D2  
V2  
R2  
R3  
4.1.2  
INPUT VOLTAGE AND CURRENT  
LIMITS  
VSS – (minimum expected V1)  
2 mA  
R1 ≥  
R2 ≥  
The ESD protection on the inputs can be depicted as  
shown in Figure 4-1. This structure was chosen to pro-  
tect the input transistors, and to minimize input bias  
current (IB). The input ESD diodes clamp the inputs  
when they try to go more than one diode drop below  
VSS. They also clamp any voltages that go too far  
above VDD; their breakdown voltage is high enough to  
allow normal operation, and low enough to bypass ESD  
events within the specified limits.  
VSS – (minimum expected V2)  
2 mA  
FIGURE 4-2:  
Protecting the Analog Inputs.  
It is also possible to connect the diodes to the left of the  
resistors R1 and R2. In this case, the currents through  
the diodes D1 and D2 need to be limited by some other  
mechanism. The resistor then serves as in-rush current  
limiter; the DC current into the input pins (VIN+ and  
VIN–) should be very small.  
Bond  
VDD  
Pad  
A significant amount of current can flow out of the  
inputs when the common mode voltage (VCM) is below  
ground (VSS); see Figure 2-37. Applications that are  
high impedance may need to limit the useable voltage  
range.  
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
VIN+  
VIN–  
4.1.3  
NORMAL OPERATION  
Bond  
Pad  
The input stage of this family of devices uses two  
differential input stages in parallel: one operates at low  
input voltages and the other at high input voltages. With  
this topology, the input voltage is 0.3V above VDD and  
0.3V below VSS. Therefore, the input offset voltage is  
measured at both VSS - 0.3V and VDD + 0.3V to ensure  
proper operation.  
VSS  
FIGURE 4-1:  
Structures.  
Simplified Analog Input ESD  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuits they are in must limit the  
currents (and voltages) at the VIN+ and VIN– pins (see  
Absolute Maximum Ratings † at the beginning of  
Section 1.0 “Electrical Characteristics”). Figure 4-3  
shows the recommended approach to protecting these  
inputs. The internal ESD diodes prevent the input pins  
(VIN+ and VIN–) from going too far below ground, and  
The MCP6541/1R/1U/2/3/4 family has internally-set  
hysteresis that is small enough to maintain input offset  
accuracy (<7 mV) and large enough to eliminate output  
chattering caused by the comparator’s own input noise  
voltage (200 µVp-p). Figure 4-3 depicts this behavior.  
DS21696E-page 14  
© 2006 Microchip Technology Inc.  
MCP6541/1R/1U/2/3/4  
4.4  
Externally Set Hysteresis  
25  
20  
15  
10  
5
VDD = 5.0V  
Greater flexibility in selecting hysteresis (or input trip  
points) is achieved by using external resistors.  
VIN–  
5
Input offset voltage (VOS) is the center (average) of the  
(input-referred) low-high and high-low trip points. Input  
hysteresis voltage (VHYST) is the difference between  
the same trip points. Hysteresis reduces output  
chattering when one input is slowly moving past the  
other and thus reduces dynamic supply current. It also  
helps in systems where it is best not to cycle between  
states too frequently (e.g., air conditioner thermostatic  
control).  
VOUT  
4
3
0
2
-5  
Hysteresis  
1
-10  
-15  
-20  
-25  
-30  
0
Time (100 ms/div)  
FIGURE 4-3:  
comparators’ internal hysteresis eliminates  
output chatter caused by input noise voltage.  
The MCP6541/2/3/4  
4.4.1  
NON-INVERTING CIRCUIT  
Figure 4-4 shows a non-inverting circuit for single-  
supply applications using just two resistors. The  
resulting hysteresis diagram is shown in Figure 4-5.  
4.2  
Push-Pull Output  
The push-pull output is designed to be compatible with  
CMOS and TTL logic, while the output transistors are  
configured to give rail-to-rail output performance. They  
are driven with circuitry that minimizes any switching  
current (shoot-through current from supply-to-supply)  
when the output is transitioned from high-to-low, or from  
low-to-high (see Figures 2-15, 2-18, 2-32 through 2-36  
for more information).  
VDD  
VREF  
-
VOUT  
MCP654X  
+
VIN  
R1  
RF  
Non-inverting circuit with  
4.3  
MCP6543 Chip Select (CS)  
The MCP6543 is a single comparator with Chip Select  
(CS). When CS is pulled high, the total current  
consumption drops to 20 pA (typ.); 1 pA (typ.) flows  
through the CS pin, 1 pA (typ.) flows through the out-  
put pin and 18 pA (typ.) flows through the VDD pin, as  
shown in Figure 1-1. When this happens, the  
comparator output is put into a high-impedance state.  
By pulling CS low, the comparator is enabled. If the CS  
pin is left floating, the comparator will not operate  
properly. Figure 1-1 shows the output voltage and  
supply current response to a CS pulse.  
FIGURE 4-4:  
hysteresis for single-supply.  
VOUT  
VDD  
VOH  
High-to-Low  
Low-to-High  
VIN  
VOL  
VSS  
The internal CS circuitry is designed to minimize  
glitches when cycling the CS pin. This helps conserve  
power, which is especially important in battery-powered  
applications.  
VSS  
VTHL VTLH  
VDD  
FIGURE 4-5:  
Hysteresis Diagram for the  
Non-Inverting Circuit.  
The trip points for Figures 4-4 and 4-5 are:  
EQUATION 4-1:  
R
R
1
1
------  
V
= V  
1 +------ V  
TLH  
REF  
OL  
R
R
F
F
R
R
1
1
------  
V
= V  
1 +------ V  
THL  
REF  
OH  
R
F
R
F
VTLH = trip voltage from low to high  
VTHL = trip voltage from high to low  
© 2006 Microchip Technology Inc.  
DS21696E-page 15  
MCP6541/1R/1U/2/3/4  
Where:  
4.4.2  
INVERTING CIRCUIT  
Figure 4-6 shows an inverting circuit for single-supply  
using three resistors. The resulting hysteresis diagram  
is shown in Figure 4-7.  
R2R3  
R23 = ------------------  
R2 + R3  
R3  
------------------  
VDD  
V23  
=
× VDD  
R2 + R3  
VIN  
Using this simplified circuit, the trip voltage can be  
calculated using the following equation:  
VDD  
VOUT  
MCP654X  
R2  
R3  
EQUATION 4-2:  
R23  
RF  
----------------------  
---------------------  
R23 + RF  
VTHL = VOH  
+ V  
+ V  
RF  
23  
R
23 + R  
F
R23  
RF  
----------------------  
---------------------  
VTLH = VOL  
23  
R
23 + R  
R23 + RF  
F
FIGURE 4-6:  
Hysteresis.  
Inverting Circuit With  
V
TLH = trip voltage from low to high  
VTHL = trip voltage from high to low  
VOUT  
Figure 2-20 and Figure 2-23 can be used to determine  
typical values for VOH and VOL  
VDD  
VOH  
.
Low-to-High  
High-to-Low  
4.5  
Bypass Capacitors  
With this family of comparators, the power supply pin  
(VDD for single supply) should have a local bypass  
capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm for good  
edge rate performance.  
VIN  
VOL  
VSS  
VSS  
VTLH VTHL  
VDD  
FIGURE 4-7:  
Hysteresis Diagram for the  
Inverting Circuit.  
4.6  
Capacitive Loads  
In order to determine the trip voltages (VTHL and VTLH  
)
Reasonable capacitive loads (e.g., logic gates) have  
little impact on propagation delay (see Figure 2-31).  
The supply current increases with increasing toggle  
frequency (Figure 2-19), especially with higher  
capacitive loads.  
for the circuit shown in Figure 4-6, R2 and R3 can be  
simplified to the Thevenin equivalent circuit with  
respect to VDD, as shown in Figure 4-8.  
VDD  
4.7  
Battery Life  
-
MCP654X  
In order to maximize battery life in portable  
applications, use large resistors and small capacitive  
loads. Avoid toggling the output more than necessary.  
Do not use Chip Select (CS) frequently to conserve  
start-up power. Capacitive loads will draw additional  
power at start-up.  
VOUT  
+
VSS  
V23  
R23  
RF  
Thevenin Equivalent Circuit.  
FIGURE 4-8:  
DS21696E-page 16  
© 2006 Microchip Technology Inc.  
MCP6541/1R/1U/2/3/4  
4.8  
PCB Surface Leakage  
4.9  
Unused Comparators  
In applications where low input bias current is critical,  
PCB (Printed Circuit Board) surface leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
between nearby traces is 1012Ω. A 5V difference would  
cause 5 pA of current to flow. This is greater than the  
MCP6541/1R/1U/2/3/4 family’s bias current at 25°C  
(1 pA, typ.).  
An unused amplifier in a quad package (MCP6544)  
should be configured as shown in Figure 4-10. This  
circuit prevents the output from toggling and causing  
crosstalk. It uses the minimum number of components  
and draws minimal current (see Figure 2-15 and  
Figure 2-18).  
¼ MCP6544  
VDD  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
An example of this type of layout is shown in  
Figure 4-9.  
+
VIN-  
VIN+  
VSS  
FIGURE 4-10:  
Unused Comparators.  
Guard Ring  
Example Guard Ring Layout  
FIGURE 4-9:  
for Inverting Circuit.  
1. Inverting Configuration (Figures 4-6 and 4-9):  
a. Connect the guard ring to the non-inverting  
input pin (VIN+). This biases the guard ring  
to the same reference voltage as the  
comparator (e.g., VDD/2 or ground).  
b. Connect the inverting pin (VIN–) to the input  
pad without touching the guard ring.  
2. Non-inverting Configuration (Figure 4-4):  
a. Connect the non-inverting pin (VIN+) to the  
input pad without touching the guard ring.  
b. Connect the guard ring to the inverting input  
pin (VIN–).  
© 2006 Microchip Technology Inc.  
DS21696E-page 17  
MCP6541/1R/1U/2/3/4  
4.10.3  
BISTABLE MULTI-VIBRATOR  
4.10 Typical Applications  
A simple bistable multi-vibrator design is shown in  
Figure 4-13. VREF needs to be between the power  
supplies (VSS = GND and VDD) to achieve oscillation.  
4.10.1  
PRECISE COMPARATOR  
Some applications require higher DC precision. An  
easy way to solve this problem is to use an amplifier  
(such as the MCP6041) to gain-up the input signal  
before it reaches the comparator. Figure 4-11 shows an  
example of this approach.  
The output duty cycle changes with VREF  
.
R1  
R2  
VREF  
VDD  
VDD  
VREF  
VOUT  
MCP6541  
MCP6041  
VDD  
MCP654X  
VIN  
C1  
R3  
R1  
R2  
VREF  
VOUT  
FIGURE 4-13:  
Bistable Multi-vibrator.  
FIGURE 4-11:  
Precise Inverting  
Comparator.  
4.10.2  
WINDOWED COMPARATOR  
Figure 4-12 shows one approach to designing a win-  
dowed comparator. The AND gate produces a logic ‘1’  
when the input voltage is between VRB and VRT (where  
VRT > VRB).  
VRT  
1/2  
MCP6542  
VIN  
1/2  
MCP6542  
VRB  
FIGURE 4-12:  
Windowed Comparator.  
DS21696E-page 18  
© 2006 Microchip Technology Inc.  
MCP6541/1R/1U/2/3/4  
5.0  
5.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Lead SC-70 (MCP6541)  
Example:  
I-Temp  
Code  
E-Temp  
Code  
Device  
XXNN Front)  
YWW (Back)  
AB25 Front)  
636 (Back)  
MCP6541U  
ABNN  
Note 2  
Note 1: I-Temp parts prior to March  
2005 are marked “ABN”  
2: SC-70-5 E-Temp parts not  
available at this release of  
this data sheet.  
Example:  
5-Lead SOT-23 (MCP6541, MCP6541R, MCP6541U)  
I-Temp  
Code  
E-Temp  
Code  
Device  
MCP6541  
MCP6541R  
MCP6541U  
Note:  
ABNN  
AGNN  
GTNN  
GUNN  
ATNN  
XXNN  
AB25  
Applies to 5-Lead SOT-23  
8-Lead PDIP (300 mil)  
Example:  
XXXXXXXX  
XXXXXNNN  
MCP6541  
I/P256  
0636  
MCP6541  
E/P^256  
0636  
e
3
OR  
YYWW  
8-Lead SOIC (150 mil)  
Example:  
MCP6542  
XXXXXXXX  
XXXXYYWW  
MCP6541E  
I/SN0636  
SN^0636  
e
3
OR  
NNN  
256  
256  
Example:  
8-Lead MSOP  
XXXXXX  
YWWNNN  
6543I  
636256  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e
3
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2006 Microchip Technology Inc.  
DS21696E-page 19  
MCP6541/1R/1U/2/3/4  
Package Marking Information (Continued)  
14-Lead PDIP (300 mil) (MCP6544)  
Example:  
MCP6544-I/P  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
YYWWNNN  
0636256  
e
3
MCP6544E/P  
OR  
OR  
0636256  
MCP6544  
I/P^
e
3
0636256  
14-Lead SOIC (150 mil) (MCP6544)  
Example:  
MCP6544ISL  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
0636256  
MCP6544  
e
3
E/SL^
OR  
0636256  
Example:  
14-Lead TSSOP (MCP6544)  
XXXXXXXX  
YYWW  
MCP6544I  
0636  
NNN  
256  
DS21696E-page 20  
© 2006 Microchip Technology Inc.  
MCP6541/1R/1U/2/3/4  
5-Lead Plastic Small Outline Transistor (LT) (SC-70)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
D
p
B
n
1
Q1  
A2  
A
c
A1  
L
Units  
INCHES  
NOM  
MILLIMETERS  
NOM  
*
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
5
5
.026 (BSC)  
0.65 (BSC)  
Overall Height  
A
A2  
A1  
E
.031  
.043  
0.80  
1.10  
Molded Package Thickness  
Standoff  
.031  
.000  
.071  
.045  
.071  
.004  
.039  
.004  
.094  
.053  
.087  
.012  
0.80  
0.00  
1.80  
1.15  
1.80  
0.10  
1.00  
0.10  
2.40  
1.35  
2.20  
0.30  
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Foot Length  
L
Top of Molded Pkg to  
Lead Shoulder  
Q1  
.004  
.016  
0.10  
0.40  
c
Lead Thickness  
Lead Width  
.004  
.006  
.007  
.012  
0.10  
0.15  
0.18  
0.30  
B
*
Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
See ASME Y14.5M  
JEITA (EIAJ) Standard: SC-70  
Revised 07-19-05  
Drawing No. C04-061  
© 2006 Microchip Technology Inc.  
DS21696E-page 21  
MCP6541/1R/1U/2/3/4  
5-Lead Plastic Small Outline Transistor (OT) (SOT23)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
p
B
p1  
D
n
1
α
c
A
A2  
φ
L
A1  
β
Units  
INCHES  
NOM  
*
MILLIMETERS  
NOM  
5
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
5
.038  
0.95  
p1  
A
Outside lead pitch (basic)  
Overall Height  
.075  
.046  
.043  
.003  
.110  
.064  
.116  
.018  
1.90  
.035  
.057  
0.90  
1.18  
1.45  
1.30  
0.15  
3.00  
1.75  
3.10  
0.55  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.035  
.000  
.102  
.059  
.110  
.014  
.051  
.006  
.118  
.069  
.122  
.022  
10  
0.90  
0.00  
2.60  
1.50  
2.80  
0.35  
1.10  
0.08  
Overall Width  
2.80  
Molded Package Width  
Overall Length  
E1  
D
1.63  
2.95  
Foot Length  
L
f
0.45  
Foot Angle  
0
5
0
5
10  
c
Lead Thickness  
Lead Width  
.004  
.014  
.006  
.017  
.008  
.020  
10  
0.09  
0.35  
0.15  
0.43  
0.20  
0.50  
B
a
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
0
5
5
0
5
5
10  
10  
b
10  
0
*
Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.  
EIAJ Equivalent: SC-74A  
Revised 09-12-05  
Drawing No. C04-091  
DS21696E-page 22  
© 2006 Microchip Technology Inc.  
MCP6541/1R/1U/2/3/4  
8-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
β
B1  
B
p
eB  
Units  
INCHES*  
NOM  
8
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
8
MAX  
n
p
Number of Pins  
Pitch  
.100  
2.54  
Top to Seating Plane  
A
.140  
.155  
.130  
.170  
3.56  
2.92  
3.94  
3.30  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.360  
.125  
.008  
.045  
.014  
.310  
5
.145  
3.68  
0.38  
7.62  
6.10  
9.14  
3.18  
0.20  
1.14  
0.36  
7.87  
5
.313  
.250  
.373  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.385  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
9.46  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
9.78  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-018  
© 2006 Microchip Technology Inc.  
DS21696E-page 23  
MCP6541/1R/1U/2/3/4  
8-Lead Plastic Small Outline (SN) – Narrow, 150 mil (SOIC)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
p
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
8
MAX  
MIN  
NOM  
8
MAX  
n
p
Number of Pins  
Pitch  
.050  
1.27  
Overall Height  
A
.053  
.061  
.056  
.007  
.237  
.154  
.193  
.015  
.025  
4
.069  
1.35  
1.32  
1.55  
1.42  
0.18  
6.02  
3.91  
4.90  
0.38  
0.62  
4
1.75  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.052  
.004  
.228  
.146  
.189  
.010  
.019  
0
.061  
.010  
.244  
.157  
.197  
.020  
.030  
8
1.55  
0.25  
6.20  
3.99  
5.00  
0.51  
0.76  
8
§
0.10  
5.79  
3.71  
4.80  
0.25  
0.48  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.008  
.013  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.33  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
0
12  
15  
0
12  
15  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-057  
DS21696E-page 24  
© 2006 Microchip Technology Inc.  
MCP6541/1R/1U/2/3/4  
8-Lead Plastic Micro Small Outline Package (MS) (MSOP)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
N
E
E1  
NOTE 1  
2
b
1
e
c
ϕ
A2  
A
L1  
L
A1  
Units  
MILLIMETERS  
Dimension Limits  
NOM  
8
MAX  
MIN  
Number of Pins  
Pitch  
N
e
0.65 BSC  
Overall Height  
A
1.10  
0.95  
0.15  
0.75  
0.00  
0.85  
Molded Package Thickness  
Standoff  
A2  
A1  
E
4.90 BSC  
3.00 BSC  
3.00 BSC  
0.60  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
0.40  
L
0.80  
0.95 REF  
Footprint  
L1  
0°  
Foot Angle  
ϕ
8°  
0.08  
0.22  
Lead Thickness  
Lead Width  
c
0.23  
0.40  
b
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions  
shall not exceed 0.15 mm per side.  
3. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing No. C04–111, Sept. 8, 2006  
© 2006 Microchip Technology Inc.  
DS21696E-page 25  
MCP6541/1R/1U/2/3/4  
14-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
B1  
β
eB  
p
B
Units  
INCHES*  
NOM  
14  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
14  
MAX  
n
p
Number of Pins  
Pitch  
.100  
2.54  
Top to Seating Plane  
A
.140  
.155  
.130  
.170  
3.56  
2.92  
0.38  
7.62  
6.10  
18.80  
3.18  
0.20  
1.14  
0.36  
7.87  
5
3.94  
3.30  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.740  
.125  
.008  
.045  
.014  
.310  
5
.145  
3.68  
.313  
.250  
.750  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.760  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
19.05  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
19.30  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-005  
DS21696E-page 26  
© 2006 Microchip Technology Inc.  
MCP6541/1R/1U/2/3/4  
14-Lead Plastic Small Outline (SL) – Narrow, 150 mil (SOIC)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
p
D
2
B
n
1
α
h
45°  
c
A2  
A
φ
A1  
L
β
Units  
INCHES*  
NOM  
14  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
14  
MAX  
n
p
Number of Pins  
Pitch  
.050  
.061  
.056  
.007  
.236  
.154  
.342  
.015  
.033  
4
1.27  
Overall Height  
A
.053  
.069  
1.35  
1.32  
1.55  
1.42  
0.18  
5.99  
3.90  
8.69  
0.38  
0.84  
4
1.75  
Molded Package Thickness  
A2  
A1  
E
.052  
.004  
.228  
.150  
.337  
.010  
.016  
0
.061  
.010  
.244  
.157  
.347  
.020  
.050  
8
1.55  
0.25  
6.20  
3.99  
8.81  
0.51  
1.27  
8
Standoff  
§
0.10  
5.79  
3.81  
8.56  
0.25  
0.41  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.008  
.014  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.36  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
0
12  
15  
0
12  
15  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-065  
Revised 7-20-06  
© 2006 Microchip Technology Inc.  
DS21696E-page 27  
MCP6541/1R/1U/2/3/4  
14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm (TSSOP)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
p
D
2
1
n
B
α
A
c
φ
β
L
A1  
A2  
Units  
INCHES  
NOM  
MILLIMETERS  
NOM  
14  
*
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
14  
.026 BSC  
.041  
0.65 BSC  
1.05  
Overall Height  
A
A2  
A1  
E
.039  
.033  
.002  
.246  
.169  
.193  
.020  
.043  
1.00  
1.10  
Molded Package Thickness  
Standoff  
.035  
.004  
.251  
.173  
.197  
.024  
.037  
.006  
.256  
.177  
.201  
.028  
0.85  
0.05  
6.25  
4.30  
4.90  
0.50  
0.90  
0.95  
0.15  
6.50  
4.50  
5.10  
0.70  
0.10  
Overall Width  
6.38  
Molded Package Width  
Molded Package Length  
Foot Length  
E1  
D
4.40  
5.00  
L
0.60  
φ
Foot Angle  
0°  
4°  
8°  
0°  
4°  
0.15  
0.25  
12° REF  
12° REF  
8°  
c
Lead Thickness  
.004  
.007  
.006  
.010  
.008  
.012  
0.09  
0.19  
0.20  
0.30  
Lead Width  
B
α
Mold Draft Angle Top  
Mold Draft Angle Bottom  
12° REF  
12° REF  
β
*
Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold fla sh or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
See ASME Y14.5M  
REF: Reference Dimension, usually without tole rance, for information purposes only.  
See ASME Y14.5M  
JEDEC Equivalent: MO-153 AB-1  
Drawing No. C04-087  
Revised: 08-17-05  
DS21696E-page 28  
© 2006 Microchip Technology Inc.  
MCP6541/1R/1U/2/3/4  
APPENDIX A: REVISION HISTORY  
Revision E (September 2006)  
The following is the list of modifications:  
1. Added MCP6541U pinout for the SOT-23-5  
package.  
2. Clarified Absolute Maximum Analog Input  
Voltage and Current Specifications.  
3. Added applications writeups on unused  
comparators.  
4. Added disclaimer to package outline drawings.  
Revision D (May 2006)  
The following is the list of modifications:  
1. Added E-temp parts.  
2. Changed VHYST temperature specification to  
linear and quadratic temperature coefficients.  
3. Changed specifications and plots for E-Temp.  
4. Added Section 3.0 Pin Descriptions  
5. Corrected package marking (See Section 5.1  
“Package Marking Information”)  
6. Added Appendix A: Revision History.  
Revision C (September 2003)  
Revision B (November 2002)  
Revision A (March 2002)  
• Original Release of this Document.  
© 2006 Microchip Technology Inc.  
DS21696E-page 29  
MCP6541/1R/1U/2/3/4  
NOTES:  
DS21696E-page 30  
© 2006 Microchip Technology Inc.  
MCP6541/1R/1U/2/3/4  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
-X  
/XX  
a)  
b)  
MCP6541T-I/LT: Tape and Reel,  
Temperature Package  
Range  
Industrial Temperature,  
5LD SC-70.  
MCP6541T-I/OT: Tape and Reel,  
Industrial Temperature,  
5LD SOT-23.  
Device:  
MCP6541:  
MCP6541T:  
Single Comparator  
Single Comparator (Tape and Reel)  
(SC-70, SOT-23, SOIC, MSOP)  
c)  
d)  
MCP6541-E/P:  
Extended Temperature,  
8LD PDIP.  
MCP6541RT: Single Comparator (Rotated - Tape and  
Reel) (SOT-23 only)  
MCP6541UT: Single Comparator (Tape and Reel)  
(SOT-23-5 is E-Temp only)  
MCP6541RT-I/OT: Tape and Reel,  
Industrial Temperature,  
5LD SOT23.  
MCP6541-E/SN: Extended Temperature,  
8LD SOIC.  
MCP6542:  
MCP6542T:  
Dual Comparator  
Dual Comparator  
e)  
f)  
(Tape and Reel for SOIC and MSOP)  
Single Comparator with CS  
Single Comparator with CS  
(Tape and Reel for SOIC and MSOP)  
Quad Comparator  
MCP6543:  
MCP6543T:  
MCP6541UT-E/OT:Tape and Reel,  
Extended Temperature,  
MCP6544:  
MCP6544T:  
5LD SOT23.  
Quad Comparator  
(Tape and Reel for SOIC and TSSOP)  
a)  
b)  
MCP6542-I/MS: Industrial Temperature,  
8LD MSOP.  
Temperature Range:  
Package:  
I
=
=
-40°C to +85°C  
-40°C to +125°C  
MCP6542T-I/MS: Tape and Reel,  
Industrial Temperature,  
8LD MSOP.  
E *  
* SC-70-5 E-Temp parts not available at this release of the  
data sheet.  
c)  
d)  
MCP6542-I/P:  
Industrial Temperature,  
8LD PDIP.  
LT  
=
=
=
=
=
=
=
Plastic Package (SC-70), 5-lead  
Plastic Small Outline Transistor (SOT-23), 5-lead  
Plastic MSOP, 8-lead  
Plastic DIP (300 mil Body), 8-lead, 14-lead  
Plastic SOIC (150 mil Body), 8-lead  
Plastic SOIC (150 mil Body), 14-lead (MCP6544)  
Plastic TSSOP (4.4mm Body), 14-lead (MCP6544)  
OT  
MS  
P
SN  
SL  
ST  
MCP6542-E/SN: Extended Temperature,  
8LD SOIC.  
a)  
b)  
MCP6543-I/SN: Industrial Temperature,  
8LD SOIC.  
MCP6543T-I/SN: Tape and Reel,  
Industrial Temperature,  
8LD SOIC.  
c)  
d)  
MCP6543-I/P:  
Industrial Temperature,  
8LD PDIP.  
MCP6543-E/SN: Extended Temperature,  
8LD SOIC.  
a)  
b)  
MCP6544T-I/SL: Tape and Reel,  
Industrial Temperature,  
14LD SOIC.  
MCP6544T-E/SL: Tape and Reel,  
Extended Temperature,  
14LD SOIC.  
c)  
d)  
MCP6544-I/P:  
Industrial Temperature,  
14LD PDIP.  
MCP6544T-E/ST: Tape and Reel,  
Extended Temperature,  
14LD TSSOP.  
© 2006 Microchip Technology Inc.  
DS21696E-page 31  
MCP6541/1R/1U/2/3/4  
NOTES:  
DS21696E-page 32  
© 2006 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart, rfPIC, and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active  
Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2006, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The  
Company’s quality system processes and procedures are for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial  
EEPROMs, microperipherals, nonvolatile memory and analog  
products. In addition, Microchip’s quality system for the design and  
manufacture of development systems is ISO 9001:2000 certified.  
© 2006 Microchip Technology Inc.  
DS21696E-page 33  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Habour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-3910  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
08/29/06  
DS21696E-page 34  
© 2006 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY