MCP6566T-E/OTVAO [MICROCHIP]

Comparator, 1 Func, 10000uV Offset-Max, 56ns Response Time, CMOS, PDSO5;
MCP6566T-E/OTVAO
型号: MCP6566T-E/OTVAO
厂家: MICROCHIP    MICROCHIP
描述:

Comparator, 1 Func, 10000uV Offset-Max, 56ns Response Time, CMOS, PDSO5

光电二极管
文件: 总48页 (文件大小:1319K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6566/6R/6U/7/9  
1.8V Low-Power Open-Drain Output Comparator  
Features:  
Description:  
• Propagation Delay at 1.8 VDD  
:
The Microchip MCP6566/6R/6U/7/9 family of open-  
drain output comparators are offered in single, dual and  
quad configurations.  
56 ns (typical) High-to-Low  
• Low Quiescent Current: 100 µA (typical)  
• Input Offset Voltage: ±3 mV (typical)  
• Rail-to-Rail Input: VSS - 0.3V to VDD + 0.3V  
• Open-Drain Output  
These comparators are optimized for low-power 1.8V,  
single-supply applications with greater than rail-to-rail  
input operation. The internal input hysteresis eliminates  
output switching due to internal input noise voltage,  
reducing current draw.  
• Wide Supply Voltage Range: 1.8V to 5.5V  
• Available in Single, Dual and Quad  
• Packages: SC70, SOT-23-5, SOIC, MSOP, TSSOP  
The open-drain output of the MCP6566/6R/6U/7/9 fam-  
ily requires a pull-up resistor. It supports pull-up volt-  
ages that are above and below VDD, which can be used  
to level shift. The output toggle frequency can reach a  
typical of 4 MHz (typical) while limiting supply current  
surges and dynamic power consumption during  
switching.  
Typical Applications:  
• Laptop Computers  
• Mobile Phones  
• Hand-held Electronics  
• RC Timers  
This family operates with single supply voltage of 1.8V  
to 5.5V while drawing less than 100 µA/comparator of  
quiescent current (typical).  
• Alarm and Monitoring Circuits  
• Window Comparators  
• Multivibrators  
Package Types  
Design Aids:  
MCP6566  
MCP6567  
• Microchip Advanced Part Selector (MAPS)  
• Analog Demonstration and Evaluation Boards  
• Application Notes  
SOT-23-5, SC70-5  
SOIC, MSOP  
V
OUT  
V
1
2
3
4
1
2
3
5
8
7
6
5
OUTA  
DD  
DD  
V
+
-
OUTB  
-INB  
SS  
-INA  
• SPICE Macro Model  
+IN  
4
-IN  
+
-
+INA  
+INB  
V
SS  
Related Device:  
Push-Pull Output: MCP6561/1R/1U/2/4  
MCP6566R  
SOT-23-5  
MCP6569  
Typical Application  
SOIC, TSSOP  
OUT  
V
SS  
1
1
2
3
5
OUTA  
14  
OUTD  
+3VPU  
V
+
2
3
4
-
+
DD  
-
13 -IND  
-INA  
+5VDD  
+IN  
4
-IN  
+IND  
+INA  
12  
11  
10  
9
VIN  
V
V
DD  
SS  
VOUT  
+INC  
-INC  
+INB  
-INB  
5
6
7
VDD  
-
-
+
+
MCP656X  
MCP6566U  
OUTB  
8
OUTC  
SOT-23-5  
R2  
VDD  
5
VIN+  
VSS  
1
+
2
3
-
RF  
R3  
VIN–  
OUT  
4
2009-2014 Microchip Technology Inc.  
DS20002143E-page 1  
MCP6566/6R/6U/7/9  
NOTES:  
DS20002143E-page 2  
2009-2014 Microchip Technology Inc.  
MCP6566/6R/6U/7/9  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied. Expo-  
sure to maximum rating conditions for extended periods may  
affect device reliability.  
1.0  
1.1  
ELECTRICAL  
CHARACTERISTICS  
Maximum Ratings †  
V
- V ....................................................................... 6.5V  
SS  
DD  
Open-Drain Output.............................................V + 10.5V  
SS  
†† See Section 4.1.2 “Input Voltage and Current Limits”  
All other inputs and outputs...........V – 0.3V to V + 0.3V  
SS  
DD  
Analog Input (V ) †† ....................V – 1.0V to V + 1.0V  
IN  
SS  
DD  
Difference Input voltage ......................................|V - V  
|
SS  
DD  
Output Short Circuit Current .................................... ±25 mA  
Current at Input Pins .................................................. ±2 mA  
Current at Output and Supply Pins .......................... ±50 mA  
Storage temperature ................................... -65°C to +150°C  
Ambient temp. with power applied .............. -40°C to +125°C  
Junction temp............................................................ +150°C  
ESD protection on all pins (HBM/MM)4kV/300V  
DC CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated: V = +1.8V to +5.5V, V = GND, T = +25°C, V + = V /2, V - = V  
,
DD  
SS  
A
IN  
DD  
IN  
SS  
and R  
= 20 kto V = V (see Figure 1-1).  
PU DD  
Pull-Up  
Parameters  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
Power Supply  
Supply Voltage  
V
1.8  
60  
63  
100  
70  
5.5  
130  
V
DD  
Quiescent Current per comparator  
Power Supply Rejection Ratio  
Input  
I
µA  
dB  
I
= 0  
= V  
Q
OUT  
PSRR  
V
CM  
SS  
Input Offset Voltage  
Input Offset Drift  
V
-10  
1.0  
3  
2  
1  
1
+10  
mV  
V
V
V
= V (Note 1)  
OS  
CM  
CM  
CM  
SS  
V /T  
µV/°C  
pA  
= V  
OS  
SS  
Input Offset Current  
Input Bias Current  
I
= V  
OS  
SS  
I
pA  
T = +25°C, V - = V /2  
A IN DD  
B
60  
1500  
pA  
T = +85°C, V - = V /2  
A IN DD  
5000  
5.0  
pA  
T = +125°C, V - = V /2  
A IN DD  
Input Hysteresis Voltage  
V
mV  
V
= V (Notes 1, 2)  
HYST  
CM  
SS  
Input Hysteresis Linear Temp. Co.  
Input Hysteresis Quadratic Temp. Co.  
Common-Mode Input Voltage Range  
TC  
TC  
10  
0.3  
µV/°C  
1
2
2
µV/°C  
V
V
V
V
0.2  
V
V
+ 0.2  
V
V
V
V
V
= 1.8V  
= 5.5V  
CMR  
SS  
SS  
DD  
DD  
DD  
DD  
CM  
CM  
CM  
0.3  
+ 0.3  
V
Common-Mode Rejection Ratio  
CMRR  
54  
66  
63  
65  
dB  
= -0.3V to V +0.3V, V = 5.5V  
DD DD  
50  
54  
dB  
= V /2 to V +0.3V, V = 5.5V  
DD DD DD  
dB  
= -0.3V to V /2, V = 5.5V  
DD DD  
13  
Common Mode Input Impedance  
Differential Input Impedance  
Z
10 ||4  
||pF  
||pF  
CM  
13  
Z
10 ||2  
DIFF  
Note 1: The input offset voltage is the center of the input-referred trip points. The input hysteresis is the difference between the  
input-referred trip points.  
2
2:  
3: Limit the output current to Absolute Maximum Rating of 50 mA.  
4: The pull-up voltage for the open drain output V can be as high as the absolute maximum rating of 10.5V. In this  
V
at different temperatures is estimated using V  
(T ) = V  
+ (T - 25°C) TC + (T - 25°C) TC .  
HYST  
HYST  
A
HYST @ +25°C  
A
1
A
2
PULL_UP  
case, I  
can be higher than 1 µA (see Figure 2-30).  
OH_leak  
2009-2014 Microchip Technology Inc.  
DS20002143E-page 3  
MCP6566/6R/6U/7/9  
DC CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated: V = +1.8V to +5.5V, V = GND, T = +25°C, V + = V /2, V - = V ,  
SS  
DD  
SS  
A
IN  
DD  
IN  
and R  
= 20 kto V = V (see Figure 1-1).  
Pull-Up  
PU DD  
Parameters  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
Push-Pull Output  
Pull-up Voltage  
V
1.6  
±30  
8
5.5  
V
V
PULL_UP  
High-Level Output Voltage  
V
V
(see Figure 1-1) (Notes 3, 4)  
OH  
OH_leak  
PULL_UP  
High-Level Output Current Leakage  
Low-Level Output Voltage  
I
1
µA  
V
Note 4  
V
0.6  
I
= 3 mA/8 mA @ V = 1.8V/5.5V  
OUT DD  
OL  
SC  
Short Circuit Current (Notes 3)  
Output Pin Capacitance  
I
mA  
pF  
Not to exceed Absolute Max. Rating  
C
OUT  
Note 1: The input offset voltage is the center of the input-referred trip points. The input hysteresis is the difference between the  
input-referred trip points.  
2
2:  
3: Limit the output current to Absolute Maximum Rating of 50 mA.  
4: The pull-up voltage for the open drain output V can be as high as the absolute maximum rating of 10.5V. In this  
V
at different temperatures is estimated using V  
(T ) = V  
+ (T - 25°C) TC + (T - 25°C) TC .  
HYST  
HYST  
A
HYST @ +25°C  
A
1
A
2
PULL_UP  
case, I  
can be higher than 1 µA (see Figure 2-30).  
OH_leak  
AC CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated,: Unless otherwise indicated,: V = +1.8V to +5.5V, V = GND,  
DD  
SS  
T = +25°C, V  
= V /2, V = V , R  
= 20 kto V = V , and C = 25 pf (see Figure 1-1).  
A
IN+  
DD  
IN-  
SS  
Pull-Up  
PU  
DD  
L
Parameters  
Symbol Min.  
Typ.  
Max.  
Units  
Conditions  
Propagation Delay  
High-to-Low,100 mV Overdrive  
t
56  
34  
80  
80  
ns  
ns  
V
V
= V /2, V = 1.8V  
DD DD  
PHL  
CM  
= V /2, V = 5.5V  
CM  
DD  
DD  
Output  
Fall Time  
t
20  
4
ns  
F
Maximum Toggle Frequency  
f
MHz  
MHz  
V
V
= 5.5V  
= 1.8V  
TG  
DD  
2
DD  
Input Voltage Noise  
E
350  
µVP-P 10 Hz to 10 MHz (Note 1)  
NI  
Note 1: ENI is based on SPICE simulation.  
2: Rise time t and t depend on the load (R and C ). These specification are valid for the specified load only.  
R
PLH  
L
L
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated: V = +1.8v to +5.5v and V = GND.  
DD  
SS  
Parameters  
Temperature Ranges  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, SC70-5  
Thermal Resistance, SOT-23-5  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
T
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
A
T
A
T
A
331  
201  
211  
149  
91  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
JA  
JA  
JA  
JA  
JA  
JA  
100  
DS20002143E-page 4  
2009-2014 Microchip Technology Inc.  
MCP6566/6R/6U/7/9  
1.2  
Test Circuit Configuration  
This test circuit configuration is used to determine the  
AC and DC specifications.  
VDD  
MCP656X  
VPU = VDD  
200 k  
200 k  
RPU  
20 k  
IOUT  
VOUT  
25 pF  
VIN = VSS  
VSS = 0V  
FIGURE 1-1:  
AC and DC Test Circuit for  
the Open-Drain Output Comparators.  
2009-2014 Microchip Technology Inc.  
DS20002143E-page 5  
MCP6566/6R/6U/7/9  
NOTES:  
DS20002143E-page 6  
2009-2014 Microchip Technology Inc.  
MCP6566/6R/6U/7/9  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (i.e., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VDD = +1.8V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN= GND,  
RL = 20 kto VPU = VDD, and CL = 25 pF.  
30%  
50%  
VDD = 1.8V  
VDD = 5.5V  
VDD = 5.5V  
CM = VSS  
Avg. = -0.9 mV  
StDev = 2.1 mV  
3588 units  
VDD = 1.8V  
VCM = VSS  
Avg. = -0.1 mV  
StDev = 2.1 mV  
3588 units  
Avg. = 3.4 mV  
StDev = 0.2 mV  
3588 units  
Avg. = 3.6 mV  
StDev = 0.1 mV  
3588 units  
25%  
20%  
15%  
10%  
5%  
V
40%  
30%  
20%  
10%  
0%  
0%  
-10 -8 -6 -4 -2  
0
2
4
6
8
10  
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
HYST (mV)  
V
OS (mV)  
V
FIGURE 2-1:  
Input Offset Voltage.  
FIGURE 2-4:  
Input Hysteresis Voltage.  
60%  
60%  
VCM = VSS  
Avg. = 0.9 µV/°C  
StDev = 6.6 µV/°C  
1380 Units  
VDD = 1.8V  
VDD = 5.5V  
50%  
40%  
30%  
20%  
10%  
0%  
50%  
40%  
30%  
20%  
10%  
0%  
Avg. = 12 µV/°C  
StDev = 0.6 µV/°C  
Avg. = 10.4 µV/°C  
StDev = 0.6 µV/°C  
TA = -40°C to +125°C  
1380 Units  
TA = -40°C to 125°C  
VCM = VSS  
-60 -48 -36 -24 -12  
0
12 24 36 48 60  
0
2
4
6
8
10 12 14 16 18 20  
V
OS Drift (µV/°C)  
VHYST Drift, TC1 (µV/°C)  
FIGURE 2-2:  
Input Offset Voltage Drift.  
FIGURE 2-5:  
Input Hysteresis Voltage  
Drift – Linear Temp. Co. (TC1).  
7.0  
30%  
VDD = 5.5V  
VIN+ = VDD/2  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
VDD = 1.8V  
VDD = 5.5V  
Avg. = 0.3 µV/°C2  
Avg. = 0.25 µV/°C2  
StDev = 0.2 µV/°C2  
StDev = 0.1 µV/°C2  
20%  
VOUT  
VIN  
-
1380 Units  
10%  
TA = -40°C to +125°C  
VCM = VSS  
0%  
-0.50 -0.25 0.00  
0.25  
0.50  
0.75  
1.00  
Time (3 µs/div)  
V
HYST Drift, TC2 (µV/°C2)  
FIGURE 2-3:  
Input vs. Output Signal, No  
FIGURE 2-6:  
Input Hysteresis Voltage  
Phase Reversal.  
Drift – Quadratic Temp. Co. (TC2).  
2009-2014 Microchip Technology Inc.  
DS20002143E-page 7  
MCP6566/6R/6U/7/9  
Note: Unless otherwise indicated, VDD = +1.8V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN= GND,  
RL = 20 kto VPU = VDD, and CL = 25 pF.  
3.0  
2.0  
5.0  
4.0  
3.0  
2.0  
1.0  
VCM = VSS  
VCM = VSS  
VDD= 5.0V  
VDD= 1.8V  
1.0  
0.0  
-1.0  
-2.0  
-3.0  
VDD= 1.8V  
VDD= 5.5V  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-7:  
Input Offset Voltage vs.  
FIGURE 2-10:  
Input Hysteresis Voltage vs.  
Temperature.  
Temperature.  
4.0  
5.0  
4.0  
3.0  
2.0  
VDD = 1.8V  
TA= +125°C  
TA= +125°C  
TA= +85°C  
2.0  
0.0  
TA= +25°C  
TA= -40°C  
TA= +25°C  
TA= +85°C  
TA= -40°C  
-2.0  
VDD = 1.8V  
-4.0  
1.0  
-0.3 0.0  
-0.3 0.0 0.3 0.6  
0.9 1.2 1.5 1.8 2.1  
CM (V)  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
V
VCM (V)  
FIGURE 2-8:  
Input Offset Voltage vs.  
FIGURE 2-11:  
Input Hysteresis Voltage vs.  
Common-mode Input Voltage.  
Common-mode Input Voltage.  
3.0  
5.0  
4.0  
VDD = 5.5V  
2.0  
1.0  
TA= -40°C  
TA= +25°C  
0.0  
3.0  
TA= -40°C  
-1.0  
-2.0  
-3.0  
TA= +25°C  
TA= +85°C  
TA= +125°C  
2.0  
TA= +85°C  
TA= +125°C  
VDD = 5.5V  
1.0  
-1.0  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
-0.5  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
VCM (V)  
VCM (V)  
FIGURE 2-9:  
Input Offset Voltage vs.  
FIGURE 2-12:  
Input Hysteresis Voltage vs.  
Common-mode Input Voltage.  
Common-mode Input Voltage.  
DS20002143E-page 8  
2009-2014 Microchip Technology Inc.  
MCP6566/6R/6U/7/9  
Note: Unless otherwise indicated, VDD = +1.8V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN= GND,  
RL = 20 kto VPU = VDD, and CL = 25 pF.  
3.0  
2.0  
5.0  
4.0  
3.0  
2.0  
1.0  
TA= +125°C  
TA= +85°C  
TA= -40°C  
TA= +25°C  
TA= +85°C  
TA= +125°C  
1.0  
TA= +25°C  
TA= -40°C  
0.0  
-1.0  
-2.0  
-3.0  
1.5  
2.5  
3.5  
DD (V)  
4.5  
5.5  
1.5  
2.5  
3.5  
4.5  
5.5  
V
VDD (V)  
FIGURE 2-13:  
Input Offset Voltage vs.  
FIGURE 2-16:  
Input Hysteresis Voltage vs.  
Supply Voltage vs. Temperature.  
Supply Voltage vs. Temperature.  
50%  
140.0  
120.0  
100.0  
80.0  
VDD = 5.5V  
VDD = 1.8V  
40%  
Avg. = 97 µA  
StDev= 4 µA  
1794 units  
Avg. = 88 µA  
StDev= 4 µA  
1794 units  
30%  
60.0  
20%  
10%  
0%  
TA= -40°C  
TA= +25°C  
40.0  
TA= +85°C  
TA= +125°C  
20.0  
0.0  
60  
70  
80  
90  
100 110 120 130  
0.0  
1.0  
2.0  
3.0  
VDD (V)  
4.0  
5.0  
6.0  
I
Q (µA)  
FIGURE 2-14:  
Quiescent Current.  
FIGURE 2-17:  
Quiescent Current vs.  
Supply Voltage vs. Temperature.  
130  
130  
VDD = 1.8V  
VDD = 5.5V  
120  
120  
110  
100  
90  
110  
100  
90  
Sweep VIN+ ,VIN- = VDD/2  
Sweep VIN+ ,VIN- = VDD/2  
Sweep VIN- ,VIN+ = VDD/2  
Sweep VIN- ,VIN+ = VDD/2  
80  
80  
70  
70  
60  
60  
-0.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
-1.0  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
VCM (V)  
VCM (V)  
FIGURE 2-15:  
Quiescent Current vs.  
FIGURE 2-18:  
Quiescent Current vs.  
Common-mode Input Voltage.  
Common-mode Input Voltage.  
2009-2014 Microchip Technology Inc.  
DS20002143E-page 9  
MCP6566/6R/6U/7/9  
Note: Unless otherwise indicated, VDD = +1.8V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN= GND,  
RL = 20 kto VPU = VDD, and CL = 25 pF.  
150  
125  
100  
75  
150  
125  
100  
75  
IDD Spike near VPU = 0.9V  
VDD = 5.5 V  
VDD = 4.5 V  
VDD = 3.5 V  
VDD = 5.5V  
VDD = 4.5V  
VDD = 3.5V  
VDD = 2.5 V  
VDD = 2.0 V  
VDD = 1.8 V  
VDD = 2.5V  
V
V
DD = 2.0V  
DD = 1.8V  
50  
50  
-4.5  
-2.5  
-0.5  
1.5  
3.5  
5.5  
7.5  
9.5  
0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5  
PU (V)  
V
VPU - VDD (V)  
FIGURE 2-19:  
Quiescent Current vs.  
FIGURE 2-22:  
Quiescent Current vs.  
Pull-up Voltage.  
Pull-up to Supply Voltage Difference.  
400  
100,000  
0dB Output Attenuation  
VDD = 5.5V  
100 mV Over-Drive  
VCM = VDD/2  
RL = Open  
TA  
=
350  
300  
250  
200  
150  
100  
50  
10,000  
1,000  
100  
10  
TA = +85°C  
TA = +25°C  
VDD = 1.8V  
1
1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5  
PU (V)  
10  
10  
100  
100  
1k  
10k  
100k  
1M  
10M  
1000 10000 100000 100000 1E+07  
V
Toggle Frequency (Hz)  
0
FIGURE 2-20:  
Quiescent Current vs.  
FIGURE 2-23:  
Output Leakage Current vs.  
Toggle Frequency.  
Pull-up Voltage.  
1000  
1000  
VDD= 1.8V  
VDD= 5.5V  
800  
600  
400  
200  
0
800  
600  
400  
200  
0
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
0.0  
3.0  
6.0  
9.0  
12.0  
15.0  
0
5
10  
15  
20  
25  
I
OUT (mA)  
IOUT (mA)  
FIGURE 2-21:  
Output Headroom vs.  
FIGURE 2-24:  
Output Headroom vs.  
Output Current.  
Output Current.  
DS20002143E-page 10  
2009-2014 Microchip Technology Inc.  
MCP6566/6R/6U/7/9  
Note: Unless otherwise indicated, VDD = +1.8V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN= GND,  
RL = 20 kto VPU = VDD, and CL = 25 pF.  
50%  
40%  
30%  
20%  
10%  
0%  
50%  
40%  
30%  
20%  
10%  
0%  
VDD= 5.5V  
100mV Over-Drive  
VCM = VDD/2  
VDD= 1.8V  
100 mV Over-Drive  
VCM = VDD/2  
tPHL  
Avg. = 33 ns  
StDev= 1 ns  
198 units  
tPHL  
Avg. = 54.4 ns  
StDev= 2 ns  
198 units  
30 35 40 45 50 55 60 65 70 75 80  
Prop. Delay (ns)  
30 35 40 45 50 55 60 65 70 75 80  
Prop. Delay (ns)  
FIGURE 2-25:  
High-to-Low Propagation  
FIGURE 2-28:  
High-to-Low Propagation  
Delays.  
Delays.  
260  
210  
160  
110  
60  
80  
100 mV Over-Drive  
VCM = VDD/2  
VCM = VDD/2  
70  
60  
50  
40  
30  
20  
tPHL , VDD = 1.8V  
tPHL , VDD = 1.8V  
tPHL , VDD = 5.5V  
tPHL , VDD = 5.5V  
10  
1
10  
100  
1000  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Over-Drive (mV)  
FIGURE 2-26:  
Propagation Delay vs. Input  
FIGURE 2-29:  
Propagation Delay vs.  
Over-Drive.  
Temperature.  
120  
80  
140  
120  
100  
80  
TA= -40°C  
TA= +25°C  
TA= +85°C  
TA= +125°C  
VCM = VDD/2  
40  
tPHL , 10 mV Over-Drive  
0
-40  
-80  
-120  
TA= -40°C  
TA= +25°C  
TA= +85°C  
TA= +125°C  
60  
tPHL , 100 mV Over-Drive  
40  
20  
1.5  
2.5  
3.5  
4.5  
5.5  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
V
DD (V)  
VDD (V)  
FIGURE 2-27:  
Propagation Delay vs.  
FIGURE 2-30:  
Short Circuit Current vs.  
Supply Voltage.  
Supply Voltage vs. Temperature.  
2009-2014 Microchip Technology Inc.  
DS20002143E-page 11  
MCP6566/6R/6U/7/9  
Note: Unless otherwise indicated, VDD = +1.8V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN= GND,  
RL = 20 kto VPU = VDD, and CL = 25 pF.  
80  
70  
60  
50  
40  
30  
20  
80  
70  
60  
50  
40  
30  
20  
VDD= 1.8V  
100 mV Over-Drive  
VDD= 5.5V  
100 mV Over-Drive  
tPHL  
tPHL  
0.00  
0.50  
1.00  
1.50  
2.00  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
V
CM (V)  
V
CM (V)  
FIGURE 2-31:  
Propagation Delay vs.  
FIGURE 2-34:  
Propagation Delay vs.  
Common-mode Input Voltage.  
Common-mode Input Voltage.  
1000  
10000  
100 mV Over-Drive  
VCM = VDD/2  
100mV Over-Drive  
VCM = VDD/2  
100  
VDD = 1.8V, tPHL  
1000  
100  
10  
tPLH  
10  
1
VDD = 5.5V, tPHL  
tPHL  
0.1  
0.01  
0.001 0.01  
0.1  
100  
1
10  
100  
1000  
1
10  
1000 10000 100000 1E+06  
0.1  
1.0  
10.0  
100.0  
Capacitive Load (nf)  
RPU (k)  
FIGURE 2-32:  
Capacitive Load.  
Propagation Delay vs.  
FIGURE 2-35:  
Pull-up Resistor.  
Propagation Delay vs.  
10m  
1E+11  
10000  
100 mV Over-Drive  
VCM = VDD/2  
1E+10m9  
tPLH, VDD = 5.5V  
10µ  
1E+07  
1000  
100  
10  
100n  
1E+05  
TA= -40°C  
TA= +25°C  
TA= +85°C  
tPLH, VDD = 1.8V  
tPHL, VDD = 1.8V  
1n  
1E+03  
TA= +125°C  
10p  
1E+01  
tPLH, VDD = 5.5V  
0.1p  
1E-01  
-0.8  
-0.6  
-0.4  
-0.2  
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
PU (V)  
Input Voltage (V)  
V
FIGURE 2-33:  
Input Bias Current vs. Input  
FIGURE 2-36:  
Propagation Delay vs.  
Voltage vs. Temperature.  
Pull-up Voltage.  
DS20002143E-page 12  
2009-2014 Microchip Technology Inc.  
MCP6566/6R/6U/7/9  
Note: Unless otherwise indicated, VDD = +1.8V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN= GND,  
RL = 20 kto VPU = VDD, and CL = 25 pF.  
80  
78  
76  
74  
72  
70  
30%  
20%  
10%  
0%  
VCM = -0.2V to VDD + 0.2V  
VCM = VDD/2 to VDD+ 0.2V  
Avg. = 0.7 mV  
StDev= 1 mV  
Input Referred  
Avg. = 0.6 mV  
StDev= 0.1 mV  
VCM = VSS  
VDD = 1.8V to 5.5V  
PSRR  
CMRR  
VCM = -0.2V to VDD/2  
Avg. = 0.5 mV  
StDev= 0.1 mV  
VDD= 1.8V  
3588 units  
VCM = -0.3V to VDD + 0.3V  
VDD = 5.5V  
-50  
-25  
0
25  
50  
75  
100  
125  
-5 -4 -3 -2 -1  
0
1
2
3
4
5
Temperature (°C)  
CMRR (mV/V)  
FIGURE 2-37:  
Common-mode Rejection  
FIGURE 2-40:  
Common-mode Rejection  
Ratio and Power Supply Rejection Ratio vs.  
Temperature.  
Ratio (CMRR).  
30%  
30%  
VCM = -0.3V to VDD + 0.3V  
Avg. = 0.1 mV  
StDev= 0.4 mV  
VCM = VDD/2 to VDD+ 0.3V  
VCM = VSS  
Avg. = 0.03 mV  
StDev= 0.7 mV  
Avg. = 200 µV/V  
StDev= 94 µV/V  
3588 units  
25%  
20%  
15%  
10%  
5%  
20%  
10%  
0%  
VCM = -0.3V to VDD/2  
Avg. = 0.2 mV  
StDev= 0.4 mV  
VDD= 5.5V  
3588 units  
0%  
-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5  
CMRR (mV/V)  
-600  
-400  
-200  
0
200  
400  
600  
PSRR (µV/V)  
FIGURE 2-38:  
Power Supply Rejection  
FIGURE 2-41:  
Common-mode Rejection  
Ratio (PSRR).  
Ratio (CMRR).  
1000  
10000  
VDD = 5.5V  
IB @ TA= +125°C  
1000  
100  
10  
IB @ TA= +85°C  
100  
IB  
10  
1
1
|IOS| @ TA= +125°C  
|IOS|@ TA= +85°C  
0.1  
|IOS|  
0.01  
0.001  
0.1  
25  
50  
75  
100  
125  
0
1
2
3
4
5
6
Temperature (°C)  
VCM (V)  
FIGURE 2-39:  
Input Offset Current and  
FIGURE 2-42:  
Input Offset Current and  
Input Bias Current vs. Temperature.  
Input Bias Current vs. Common-mode Input  
Voltage vs. Temperature.  
2009-2014 Microchip Technology Inc.  
DS20002143E-page 13  
MCP6566/6R/6U/7/9  
Note: Unless otherwise indicated, VDD = +1.8V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN= GND,  
RL = 20 kto VPU = VDD, and CL = 25 pF.  
10000  
VDD = 5.5V  
VIN+ = 2Vpp (sine)  
1000  
100  
10  
1
0.1  
1k  
1000  
10M  
10000 100000 100000 1E+07  
100  
10k  
100k  
1M  
100  
Input Frequency (Hz)  
0
FIGURE 2-43:  
Output Jitter vs. Input  
Frequency.  
DS20002143E-page 14  
2009-2014 Microchip Technology Inc.  
MCP6566/6R/6U/7/9  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1: PIN FUNCTION TABLE  
MCP6566 MCP6566R MCP6566U MCP6567 MCP6569  
Symbol  
Description  
SC70-5,  
SOT-23-5  
MSOP,  
SOIC  
SOIC,  
TSSOP  
SOT-23-5  
SOT-23-5  
1
4
1
4
3
1
2
1
2
OUT, OUTA Digital Output (comparator A)  
4
VIN–, VINA  
VIN+, VINA  
VDD  
Inverting Input (comparator A)  
Non-inverting Input (comparator A)  
Positive Power Supply  
3
3
1
3
3
+
5
2
5
8
4
2
5
2
5
5
VINB  
+
Non-inverting Input (comparator B)  
Inverting Input (comparator B)  
Digital Output (comparator B)  
Digital Output (comparator C)  
Inverting Input (comparator C)  
Non-inverting Input (comparator C)  
Negative Power Supply  
6
6
VINB  
7
7
OUTB  
OUTC  
4
8
9
VINC  
+
10  
11  
12  
13  
14  
VINC  
VSS  
VIND  
+
Non-inverting Input (comparator D)  
Inverting Input (comparator D)  
Digital Output (comparator D)  
VIND  
OUTD  
3.1  
Analog Inputs  
3.3  
Power Supply (V and V  
)
DD  
SS  
The comparator non-inverting and inverting inputs are  
high-impedance CMOS inputs with low bias currents.  
The positive power supply pin (VDD) is 1.8V to 5.5V  
higher than the negative power supply pin (VSS). For  
normal operation, the other pins are at voltages  
between VSS and VDD  
.
3.2  
Digital Outputs  
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need a local bypass capacitor (typically 0.01 µF to  
0.1 µF) within 2 mm of the VDD pin. These can share a  
bulk capacitor with nearby analog parts (within  
100 mm), but it is not required.  
The comparator outputs are CMOS, open-drain digital  
outputs. They are designed to make level shifting and  
wired-OR easy to implement.  
2009-2014 Microchip Technology Inc.  
DS20002143E-page 15  
MCP6566/6R/6U/7/9  
NOTES:  
DS20002143E-page 16  
2009-2014 Microchip Technology Inc.  
MCP6566/6R/6U/7/9  
4.1.2  
INPUT VOLTAGE AND CURRENT  
LIMITS  
4.0  
APPLICATIONS INFORMATION  
The MCP6566/6R/6U/7/9 family of open-drain output  
comparators are fabricated on Microchip’s  
state-of-the-art CMOS process. They are suitable for a  
wide range of high speed applications that require  
low-power consumption.  
The ESD protection on the inputs can be depicted as  
shown in Figure 4-2. This structure was chosen to  
protect the input transistors, and to minimize input bias  
current (IB). The input ESD diodes clamp the inputs  
when they try to go more than one diode drop below  
VSS. They also clamp any voltages that go too far  
above VDD. The diodes’ breakdown voltage is high  
enough to allow normal operation, but low enough to  
bypass ESD events within the specified limits.  
4.1  
Comparator Inputs  
4.1.1  
NORMAL OPERATION  
The input stage of this family of devices uses two differ-  
ent input stages in parallel. This configuration provides  
three regions of operation, one operates at low input  
voltages, one at high input voltages, and one at mid  
input voltage. With this topology, the input voltage  
range is 0.3V above VDD and 0.3V below VSS, while  
providing low offset voltage throughout the common  
mode range. The input offset voltage is measured at  
both VSS - 0.3V and VDD + 0.3V to ensure proper  
operation.  
Bond  
VDD  
Pad  
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
VIN+  
VIN–  
The MCP6566/6R/6U/7/9 family has an internally-set  
hysteresis VHYST, which is small enough to maintain  
input offset accuracy and large enough to eliminate  
output chattering caused by the comparator’s own  
input noise voltage ENI. Figure 4-1 depicts this behav-  
ior. Input offset voltage (VOS) is the center (average) of  
the (input-referred) low-high and high-low trip points.  
Input hysteresis voltage (VHYST) is the difference  
between the same trip points.  
Bond  
Pad  
VSS  
FIGURE 4-2:  
Structures.  
Simplified Analog Input ESD  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuits they are in must limit the  
currents (and voltages) at the VIN+ and VIN– pins (see  
Section 1.1 “Maximum Ratings †” at the beginning of  
Section 1.0 “Electrical Characteristics”). Figure 4-3  
shows the recommended approach to protecting these  
inputs. The internal ESD diodes prevent the input pins  
(VIN+ and VIN–) from going too far below ground, and  
the resistors R1 and R2 limit the possible current drawn  
out of the input pin. Diodes D1 and D2 prevent the input  
25  
20  
15  
10  
5
VDD = 5.0V  
VIN  
5
VOUT  
4
3
0
2
-5  
pin (VIN+ and VIN–) from going too far above VDD  
When implemented as shown, resistors R1 and R2 also  
limit the current through D1 and D2.  
.
Hysteresis  
1
-10  
-15  
-20  
-25  
-30  
0
Time (100 ms/div)  
FIGURE 4-1:  
The MCP6566/6R/6U/7/9  
comparators’ internal hysteresis eliminates  
output chatter caused by input noise voltage.  
2009-2014 Microchip Technology Inc.  
DS20002143E-page 17  
MCP6566/6R/6U/7/9  
4.3  
Externally Set Hysteresis  
VDD  
Greater flexibility in selecting hysteresis (or input trip  
points) is achieved by using external resistors.  
Hysteresis reduces output chattering when one input is  
slowly moving past the other. It also helps in systems in  
which it is best not to cycle between high and low states  
too frequently (e.g., air conditioner thermostatic con-  
trol). Output chatter also increases the dynamic supply  
current.  
VPU  
D1  
R4  
V1  
+
VOUT  
R1  
MCP656X  
D2  
V2  
4.3.1  
NON-INVERTING CIRCUIT  
non-inverting circuit for  
R2  
R3  
Figure 4-4 shows  
single-supply applications using just two resistors. The  
resulting hysteresis diagram is shown in Figure 4-5.  
a
VSS – (minimum expected V1)  
2 mA  
R1   
R2   
VSS – (minimum expected V2)  
2 mA  
VPU  
VDD  
FIGURE 4-3:  
Protecting the Analog  
RPU  
Inputs.  
VREF  
-
It is also possible to connect the diodes to the left of the  
resistors R1 and R2. In this case, the currents through  
the diodes D1 and D2 need to be limited by some other  
mechanism. The resistor then serves as in-rush current  
limiter; the DC current into the input pins (VIN+ and  
VIN–) should be very small.  
VOUT  
MCP656X  
+
VIN  
R1  
RF  
Non-Inverting Circuit with  
A significant amount of current can flow out of the  
inputs when the common mode voltage (VCM) is below  
ground (VSS); see Figure 4-3. Applications that are  
high-impedance may need to limit the usable voltage  
range.  
FIGURE 4-4:  
Hysteresis for Single-Supply.  
VOUT  
VDD  
VOH  
4.1.3  
PHASE REVERSAL  
The MCP6566/6R/6U/7/9 comparator family uses  
CMOS transistors at the input. They are designed to  
prevent phase inversion when the input pins exceed  
the supply voltages. Figure 2-3 shows an input voltage  
exceeding both supplies with no resulting phase  
inversion.  
High-to-Low  
Low-to-High  
VOL  
VSS  
VIN  
VTHL VTLH  
VDD  
VSS  
4.2  
Open-Drain Output  
FIGURE 4-5:  
Hysteresis Diagram for the  
Non-Inverting Circuit.  
The open-drain output is designed to make  
level-shifting and wired-OR logic easy to implement.  
The output stage minimizes switching current  
(shoot-through current from supply-to-supply) when  
the output changes state. See Figures 2-15, 2-18,  
2-35 and 2-36, for more information.  
The trip points for Figures 4-4 and 4-5 are:  
EQUATION 4-1:  
R
R
1
1
V
= V  
1 +------ V  
------  
TLH  
REF  
OL  
R
R
F
F
R
R
1
1
V
= V  
1 +------ V  
------  
THL  
REF  
OH  
R
R
F
F
Where:  
VTLH  
VTHL  
=
trip voltage from low-to-high  
trip voltage from high-to-low  
=
DS20002143E-page 18  
2009-2014 Microchip Technology Inc.  
MCP6566/6R/6U/7/9  
Where:  
4.3.2  
INVERTING CIRCUIT  
Figure 4-6 shows an inverting circuit for single-supply  
using three resistors. The resulting hysteresis diagram  
is shown in Figure 4-7.  
R2R3  
R23 = ------------------  
R2 + R3  
R3  
V23 = ------------------ VDD  
VPU  
VDD  
R2 + R3  
VIN  
RPU  
VOUT  
Using this simplified circuit, the trip voltage can be  
calculated using the following equation:  
VDD  
MCP656X  
EQUATION 4-2:  
R2  
R23  
RF  
OH  
VTHL = V  
---------------------- + V ---------------------  
23  
R
23 + R  
R23 + RF  
RF  
F
R3  
R23  
RF  
OL  
VTLH = V  
---------------------- + V ---------------------  
23  
R23 + RF  
R
23 + R  
F
Where:  
FIGURE 4-6:  
Inverting Circuit with  
Hysteresis.  
VTLH  
VTHL  
=
=
trip voltage from low-to-high  
trip voltage from high-to-low  
VOUT  
VDD  
VOH  
Figure 2-21 and Figure 2-24 can be used to determine  
typical values for VOH and VOL  
.
Low-to-High  
High-to-Low  
4.4  
Bypass Capacitors  
With this family of comparators, the power supply pin  
(VDD for single supply) should have a local bypass  
capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm for good  
edge rate performance.  
VOL  
VSS  
VIN  
VTLH VTHL  
VDD  
VSS  
FIGURE 4-7:  
Inverting Circuit.  
Hysteresis Diagram for the  
4.5  
Capacitive Loads  
Reasonable capacitive loads (e.g., logic gates) have  
little impact on propagation delay (see Figure 2-32).  
The supply current increases with increasing toggle  
frequency (Figure 2-20), especially with higher  
capacitive loads. The output slew rate and propagation  
delay performance will be reduced with higher  
capacitive loads.  
In order to determine the trip voltages (VTHL and VTLH  
)
for the circuit shown in Figure 4-6, R2 and R3 can be  
simplified to the Thevenin equivalent circuit with  
respect to VDD, as shown in Figure 4-8.  
VPU  
RPU  
VOUT  
VDD  
-
MCP656X  
+
VSS  
V23  
R23  
RF  
Thevenin Equivalent Circuit.  
FIGURE 4-8:  
2009-2014 Microchip Technology Inc.  
DS20002143E-page 19  
MCP6566/6R/6U/7/9  
4.6  
PCB Surface Leakage  
4.7  
PCB Layout Technique  
In applications where low input bias current is critical,  
PCB (Printed Circuit Board) surface leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
between nearby traces is 1012. A 5V difference would  
cause 5 pA of current to flow. This is greater than the  
MCP6566/6R/6U/7/9 family’s bias current at +25°C  
(1 pA, typical).  
When designing the PCB layout, it is critical to note that  
analog and digital signal traces are adequately  
separated to prevent signal coupling. If the comparator  
output trace is at close proximity to the input traces,  
then large output voltage changes from, VSS to VDD or  
visa versa, may couple to the inputs and cause the  
device output to oscillate. To prevent such oscillation,  
the output traces must be routed away from the input  
pins. The SC70-5 and SOT-23-5 are relatively immune  
because the output pin OUT (pin 1) is separated by the  
power pin VDD/VSS (pin 2) from the input pin +IN (as  
long as the analog and digital traces remain separated  
throughout the PCB). However, the pinouts for the dual  
and quad packages (SOIC, MSOP, TSSOP) have OUT  
and -IN pins (pin 1 and 2) close to each other. The  
recommended layout for these packages is shown in  
Figure 4-10.  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
An example of this type of layout is shown in  
Figure 4-9.  
IN–  
IN+  
VSS  
OUTA  
-INA  
VDD  
OUTB  
-INB  
+INA  
VSS  
Guard Ring  
Example Guard Ring Layout  
+INB  
FIGURE 4-9:  
for Inverting Circuit.  
FIGURE 4-10:  
Recommended Layout.  
1. Inverting Configuration (Figures 4-6 and 4-9):  
4.8  
Unused Comparators  
a) Connect the guard ring to the non-inverting  
input pin (VIN+). This biases the guard ring  
to the same reference voltage as the  
comparator (e.g., VDD/2 or ground).  
An unused amplifier in a quad package (MCP6569)  
should be configured as shown in Figure 4-11. This  
circuit prevents the output from toggling and causing  
crosstalk. It uses the minimum number of components  
and draws minimal current (see Figure 2-15 and  
Figure 2-15).  
b) Connect the inverting pin (VIN–) to the input  
pad without touching the guard ring.  
2. Non-inverting Configuration (Figure 4-4):  
a) Connect the non-inverting pin (VIN+) to the  
input pad without touching the guard ring.  
¼ MCP6569  
b) Connect the guard ring to the inverting input  
pin (VIN–).  
VDD  
+
FIGURE 4-11:  
Unused Comparators.  
DS20002143E-page 20  
2009-2014 Microchip Technology Inc.  
MCP6566/6R/6U/7/9  
4.9.3  
BISTABLE MULTIVIBRATOR  
4.9  
Typical Applications  
A simple bistable multivibrator design is shown in  
Figure 4-14. VREF needs to be between the power  
supplies (VSS = GND and VDD) to achieve oscillation.  
4.9.1  
PRECISE COMPARATOR  
Some applications require higher DC precision. An  
easy way to solve this problem is to use an amplifier  
(such as the MCP6291) to gain-up the input signal  
before it reaches the comparator. Figure 4-12 shows  
an example of this approach.  
The output duty cycle changes with VREF  
.
VPU  
R1  
R2  
VDD  
VDD  
VREF  
RPU  
VREF  
MCP6291  
VPU  
MCP656X  
VOUT  
VDD  
RPU  
VOUT  
VIN  
R1  
R2  
MCP656X  
C1  
FIGURE 4-14:  
VREF  
R3  
Bistable Multivibrator.  
FIGURE 4-12:  
Precise Inverting  
Comparator.  
4.9.2  
WINDOWED COMPARATOR  
Figure 4-13 shows one approach to designing a  
windowed comparator. The AND gate produces a logic  
1’ when the input voltage is between VRB and VRT  
(where VRT > VRB).  
VPU  
1/2  
MCP6567  
RPU  
VRT  
VOUT  
V
IN  
VRB  
1/2  
MCP6567  
FIGURE 4-13:  
Windowed Comparator.  
2009-2014 Microchip Technology Inc.  
DS20002143E-page 21  
MCP6566/6R/6U/7/9  
NOTES:  
DS20002143E-page 22  
2009-2014 Microchip Technology Inc.  
MCP6566/6R/6U/7/9  
5.3  
Application Notes  
5.0  
5.1  
DESIGN AIDS  
The following Microchip Application Note is available  
on the Microchip web site at www.microchip.com and is  
recommended as a supplemental reference resource:  
Microchip Advanced Part Selector  
(MAPS)  
AN895 “Oscillator Circuits for RTD Temperature  
Sensors” (DS00000895).  
MAPS is a software tool that helps semiconductor  
professionals efficiently identify Microchip devices that  
fit a particular design requirement.  
5.4  
SPICE Macro Model  
Available at no cost from the Microchip web site at  
www.microchip.com/ maps, the MAPS is an overall  
selection tool for Microchip’s product portfolio that  
includes Analog, Memory, MCU and DSC devices.  
Using this tool you can define a filter to sort features for  
a parametric search of devices and export side-by-side  
technical comparison reports. Helpful links are also  
provided for data sheets, purchase, and sampling of  
Microchip parts.  
The latest SPICE macro model for the MCP6566/7/9  
op amp is available on the Microchip web site at  
www.microchip.com. The model was written and tested  
in the official Cadence® (OrCAD®) PSpice®. For the  
other simulators, translation may be required.  
The model covers a wide aspect of the comparator's  
electrical specifications. Not only does the model cover  
voltage, current and resistance of the comparator, but it  
also covers the temperature and the noise effects on  
the behavior of the comparator. The model has not  
been verified outside of the specification range listed in  
the comparator data sheet. The model behaviors under  
these conditions cannot ensure it will match the actual  
comparator performance. Moreover, the model is  
intended to be an initial design tool. Bench testing is a  
very important part of any design and cannot be  
replaced with simulations. Also, simulation results  
using this macro model need to be validated by  
comparing them to the data sheet specifications and  
characteristic curves.  
5.2  
Analog Demonstration and  
Evaluation Boards  
Microchip offers  
a
broad spectrum of Analog  
Demonstration and Evaluation Boards that are  
designed to help you achieve faster time to market.  
For a listing of these boards and their corresponding  
user’s guides and technical information, visit the  
Microchip web site at www.microchip.com/analogtools.  
Three of the boards that are especially useful are:  
• 8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board,  
P/N SOIC8EV  
• 14-Pin SOIC/TSSOP/DIP Evaluation Board, P/N  
SOIC14EV  
• 5/6-Pin SOT23 Evaluation Board, P/N VSUPEV2  
2009-2014 Microchip Technology Inc.  
DS20002143E-page 23  
MCP6566/6R/6U/7/9  
NOTES:  
DS20002143E-page 24  
2009-2014 Microchip Technology Inc.  
MCP6566/6R/6U/7/9  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Lead SC70 (MCP6566)  
Example:  
BJ25  
XXNN  
5-Lead SOT-23 (MCP6566, MCP6566R)  
Example:  
Device  
Code  
MCP6566T  
JYNN  
JZNN  
WLNN  
XXNN  
JY25  
MCP6566RT  
MCP6566UT  
Note: Applies to 5-Lead SOT-23.  
Example:  
8-Lead MSOP (MCP6567)  
XXXXXX  
6567E  
437256  
YWWNNN  
8-Lead SOIC (150 mil) (MCP6567)  
Example:  
XXXXXXXX  
XXXXYYWW  
MCP6567E  
SN1437  
e3  
NNN  
256  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2009-2014 Microchip Technology Inc.  
DS20002143E-page 25  
MCP6566/6R/6U/7/9  
Package Marking Information (Continued)  
14-Lead SOIC (150 mil) (MCP6569)  
Example:  
XXXXXXXXXX  
MCP6569  
E/SL^  
1437256  
XXXXXXXXXX  
e3  
YYWWNNN  
14-Lead TSSOP (MCP6569)  
Example:  
MCP6569E  
XXXXXXXX  
YYWW  
1437  
256  
NNN  
DS20002143E-page 26  
2009-2014 Microchip Technology Inc.  
MCP6566/6R/6U/7/9  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢂꢒꢖꢆꢗꢍꢘꢙꢚꢛ  
ꢜꢔꢊꢃꢝ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
D
b
1
3
2
E1  
E
4
5
e
e
A
A2  
c
A1  
L
ꢬꢆꢃꢍꢇꢕꢭꢮꢮꢭꢕꢌꢣꢌꢯꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉꢮꢃꢄꢃꢍꢇ  
ꢕꢭꢰ  
ꢰꢱꢕ  
ꢕꢛꢲ  
ꢰꢐꢄꢳꢅꢓꢉꢈꢑꢉꢪꢃꢆꢇꢰ  
ꢪꢃꢍꢎꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢵꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢸꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢸꢃꢋꢍꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢮꢅꢆꢚꢍꢒ  
ꢧꢈꢈꢍꢉꢮꢅꢆꢚꢍꢒ  
ꢮꢅꢊꢋꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢮꢅꢊꢋꢉꢸꢃꢋꢍꢒ  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
ꢗꢁꢴꢟꢉꢠꢜꢡ  
ꢗꢁꢶꢗ  
ꢗꢁꢶꢗ  
ꢗꢁꢗꢗ  
ꢀꢁꢶꢗ  
ꢀꢁꢀꢟ  
ꢀꢁꢶꢗ  
ꢗꢁꢀꢗ  
ꢗꢁꢗꢶ  
ꢗꢁꢀꢟ  
ꢘꢁꢀꢗ  
ꢀꢁꢘꢟ  
ꢘꢁꢗꢗ  
ꢗꢁꢘꢗ  
ꢀꢁꢀꢗ  
ꢀꢁꢗꢗ  
ꢗꢁꢀꢗ  
ꢘꢁꢞꢗ  
ꢀꢁꢹꢟ  
ꢘꢁꢘꢟ  
ꢗꢁꢞꢴ  
ꢗꢁꢘꢴ  
ꢗꢁꢞꢗ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀꢘꢙꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀꢞꢁꢟꢕꢁ  
ꢠꢜꢡꢢ ꢠꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉꢣꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏꢤꢉꢅꢖꢊꢎꢍꢉꢥꢊꢏꢐꢅꢉꢇꢒꢈꢦꢆꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ ꢎꢒꢆꢈꢏꢈꢚꢤ ꢂꢓꢊꢦꢃꢆꢚ ꢡꢗꢞꢺꢗꢴꢀꢠ  
2009-2014 Microchip Technology Inc.  
DS20002143E-page 27  
MCP6566/6R/6U/7/9  
ꢜꢔꢊꢃꢝ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
DS20002143E-page 28  
2009-2014 Microchip Technology Inc.  
MCP6566/6R/6U/7/9  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢏꢒꢖꢆꢗꢍꢏꢒꢁꢞꢟꢛ  
ꢜꢔꢊꢃꢝ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
ꢬꢆꢃꢍꢇꢕꢭꢮꢮꢭꢕꢌꢣꢌꢯꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉꢮꢃꢄꢃꢍꢇ  
ꢕꢭꢰ  
ꢰꢱꢕ  
ꢕꢛꢲ  
ꢰꢐꢄꢳꢅꢓꢉꢈꢑꢉꢪꢃꢆꢇꢰ  
ꢮꢅꢊꢋꢉꢪꢃꢍꢎꢒ  
ꢗꢁꢻꢟꢉꢠꢜꢡ  
ꢱꢐꢍꢇꢃꢋꢅꢉꢮꢅꢊꢋꢉꢪꢃꢍꢎꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢵꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢸꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢸꢃꢋꢍꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢮꢅꢆꢚꢍꢒ  
ꢧꢈꢈꢍꢉꢮꢅꢆꢚꢍꢒ  
ꢧꢈꢈꢍꢔꢓꢃꢆꢍ  
ꢧꢈꢈꢍꢉꢛꢆꢚꢏꢅ  
ꢮꢅꢊꢋꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢮꢅꢊꢋꢉꢸꢃꢋꢍꢒ  
ꢅꢀ  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
ꢀꢁꢻꢗꢉꢠꢜꢡ  
ꢗꢁꢻꢗ  
ꢗꢁꢶꢻ  
ꢗꢁꢗꢗ  
ꢘꢁꢘꢗ  
ꢀꢁꢹꢗ  
ꢘꢁꢙꢗ  
ꢗꢁꢀꢗ  
ꢗꢁꢹꢟ  
ꢗꢼ  
ꢀꢁꢞꢟ  
ꢀꢁꢹꢗ  
ꢗꢁꢀꢟ  
ꢹꢁꢘꢗ  
ꢀꢁꢶꢗ  
ꢹꢁꢀꢗ  
ꢗꢁꢴꢗ  
ꢗꢁꢶꢗ  
ꢹꢗꢼ  
ꢮꢀ  
ꢗꢁꢗꢶ  
ꢗꢁꢘꢗ  
ꢗꢁꢘꢴ  
ꢗꢁꢟꢀ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀꢘꢙꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀꢞꢁꢟꢕꢁ  
ꢠꢜꢡꢢ ꢠꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉꢣꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏꢤꢉꢅꢖꢊꢎꢍꢉꢥꢊꢏꢐꢅꢉꢇꢒꢈꢦꢆꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ ꢎꢒꢆꢈꢏꢈꢚꢤ ꢂꢓꢊꢦꢃꢆꢚ ꢡꢗꢞꢺꢗꢻꢀꢠ  
2009-2014 Microchip Technology Inc.  
DS20002143E-page 29  
MCP6566/6R/6U/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002143E-page 30  
2009-2014 Microchip Technology Inc.  
MCP6566/6R/6U/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2014 Microchip Technology Inc.  
DS20002143E-page 31  
MCP6566/6R/6U/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002143E-page 32  
2009-2014 Microchip Technology Inc.  
MCP6566/6R/6U/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2014 Microchip Technology Inc.  
DS20002143E-page 33  
MCP6566/6R/6U/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002143E-page 34  
2009-2014 Microchip Technology Inc.  
MCP6566/6R/6U/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2014 Microchip Technology Inc.  
DS20002143E-page 35  
MCP6566/6R/6U/7/9  
ꢠꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢜꢖꢆꢡꢆꢜꢄꢓꢓꢔꢢꢣꢆꢟꢤꢥꢚꢆꢎꢎꢆꢦꢔꢅꢧꢆꢗꢍꢏꢨꢘꢛ  
ꢜꢔꢊꢃꢝ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
DS20002143E-page 36  
2009-2014 Microchip Technology Inc.  
MCP6566/6R/6U/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2014 Microchip Technology Inc.  
DS20002143E-page 37  
MCP6566/6R/6U/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002143E-page 38  
2009-2014 Microchip Technology Inc.  
MCP6566/6R/6U/7/9  
ꢜꢔꢊꢃꢝ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
2009-2014 Microchip Technology Inc.  
DS20002143E-page 39  
MCP6566/6R/6U/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002143E-page 40  
2009-2014 Microchip Technology Inc.  
MCP6566/6R/6U/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2014 Microchip Technology Inc.  
DS20002143E-page 41  
MCP6566/6R/6U/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002143E-page 42  
2009-2014 Microchip Technology Inc.  
MCP6566/6R/6U/7/9  
APPENDIX A: REVISION HISTORY  
Revision E (November 2014)  
The following is the list of modifications:  
1. Added SPICE Macro Model in the Related  
Device features section.  
2. Updated Temperature Specifications table.  
3. Corrected pin table in Section 3.0, Pin Descrip-  
tions.  
4. Added new Section 5.4, SPICE Macro Model.  
Revision D (February 2013)  
The following is the list of modifications:  
1. Added the Analog Input (VIN) parameter in  
Section 1.0 “Electrical Characteristics”.  
Revision C (February 2011)  
The following is the list of modifications:  
1. Replaced the MCP5468 package name with the  
correct MCP6567 package name on page 1 and  
in Table 3-1.  
Revision B (August 2009)  
The following is the list of modifications:  
1. Added MCP6566U throughout the document.  
2. Updated package outline drawings.  
Revision A (March 2009)  
• Original Release of this Document.  
2009-2014 Microchip Technology Inc.  
DS20002143E-page 43  
MCP6566/6R/6U/7/9  
NOTES:  
DS20002143E-page 44  
2009-2014 Microchip Technology Inc.  
MCP6566/6R/6U/7/9  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
Examples:  
a)  
MCP6566T-E/LT: Tape and Reel,  
Temperature  
Range  
Package  
Extended Temperature,  
5LD SC70 package.  
b)  
MCP6566T-E/OT: Tape and Reel  
Extended Temperature,  
5LD SOT-23 package.  
Device:  
MCP6566T:  
Single Comparator (Tape and Reel)  
(SC70, SOT-23)  
MCP6566RT: Single Comparator (Tape and Reel)  
(SOT-23 only)  
MCP6566UT: Single Comparator (Tape and Reel)  
(SOT-23 only)  
a)  
a)  
MCP6566RT-E/OT: Tape and Reel  
Extended Temperature,  
5LD SOT-23 package.  
MCP6567:  
MCP6567T:  
MCP6569:  
MCP6569T:  
Dual Comparator  
Dual Comparator (Tape and Reel)  
Quad Comparator  
MCP6566UT-E/OT: Tape and Reel  
Extended Temperature,  
5LD SOT-23 package.  
Quad Comparator (Tape and Reel)  
a)  
b)  
MCP6567-E/MS:  
MCP6567-E/SN:  
Extended Temperature  
8LD MSOP package.  
Extended Temperature  
8LD SOIC package.  
Temperature  
Range:  
E
=
-40 C to +125 C  
Package:  
LT  
=
Plastic Small Outline Transistor (SC70), 5-lead  
OT = Plastic Small Outline Transistor (SOT-23), 5-lead  
MS = Plastic Micro Small Outline Transistor, 8-lead  
SN = Plastic Small Outline Transistor, 8-lead  
a)  
b)  
MCP6569T-E/SL: Tape and Reel  
Extended Temperature  
14LD SOIC package.  
ST  
SL  
=
=
Plastic Thin Shrink Small Outline Transistor, 14-lead  
Plastic Small Outline Transistor, 14-lead  
MCP6569T-E/ST:  
Tape and Reel  
Extended Temperature  
14LD TSSOP package.  
2009-2014 Microchip Technology Inc.  
DS20002143E-page 45  
MCP6566/6R/6U/7/9  
NOTES:  
DS20002143E-page 46  
2009-2014 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer,  
LANCheck, MediaLB, MOST, MOST logo, MPLAB,  
32  
OptoLyzer, PIC, PICSTART, PIC logo, RightTouch, SpyNIC,  
SST, SST Logo, SuperFlash and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
The Embedded Control Solutions Company and mTouch are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo,  
CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit  
Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet,  
KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo,  
MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code  
Generation, PICDEM, PICDEM.net, PICkit, PICtail,  
RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total  
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,  
WiperLock, Wireless DNA, and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
GestIC is a registered trademarks of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip  
Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009-2014, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
ISBN: 978-1-63276-677-9  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2009-2014 Microchip Technology Inc.  
DS20002143E-page 47  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-3019-1500  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Germany - Dusseldorf  
Tel: 49-2129-3766400  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Austin, TX  
Tel: 512-257-3370  
Germany - Pforzheim  
Tel: 49-7231-424750  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Korea - Seoul  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Italy - Venice  
Tel: 39-049-7625286  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
Poland - Warsaw  
Tel: 48-22-3325737  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Houston, TX  
Tel: 281-894-5983  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
Los Angeles  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
New York, NY  
Tel: 631-435-6000  
San Jose, CA  
Tel: 408-735-9110  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Canada - Toronto  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
03/25/14  
DS20002143E-page 48  
2009-2014 Microchip Technology Inc.  

相关型号:

MCP6566T-E/SL

1.8V Low Power Open-Drain Output Comparator
MICROCHIP

MCP6566T-E/SN

1.8V Low Power Open-Drain Output Comparator
MICROCHIP

MCP6566T-E/ST

1.8V Low Power Open-Drain Output Comparator
MICROCHIP

MCP6566U

1.8V Low Power Open-Drain Output Comparator
MICROCHIP

MCP6566UT

1.8V Low Power Open-Drain Output Comparator
MICROCHIP

MCP6566UT-E/LT

1.8V Low Power Open-Drain Output Comparator
MICROCHIP

MCP6566UT-E/MS

1.8V Low Power Open-Drain Output Comparator
MICROCHIP

MCP6566UT-E/OT

1.8V Low Power Open-Drain Output Comparator
MICROCHIP

MCP6566UT-E/OTVAO

Comparator, 1 Func, 10000uV Offset-Max, 56ns Response Time, CMOS, PDSO5
MICROCHIP

MCP6566UT-E/SL

1.8V Low Power Open-Drain Output Comparator
MICROCHIP

MCP6566UT-E/SN

1.8V Low Power Open-Drain Output Comparator
MICROCHIP

MCP6566UT-E/ST

1.8V Low Power Open-Drain Output Comparator
MICROCHIP