MCP6C04T-020E [MICROCHIP]

Zero-Drift, 52V High-Side Current Sense Amplifier;
MCP6C04T-020E
型号: MCP6C04T-020E
厂家: MICROCHIP    MICROCHIP
描述:

Zero-Drift, 52V High-Side Current Sense Amplifier

文件: 总54页 (文件大小:2230K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6C04  
Zero-Drift, 52V High-Side Current Sense Amplifier  
Features  
General Description  
• Single Amplifier: MCP6C04  
• Bidirectional or Unidirectional  
• Input (Common-mode) Voltages:  
- +3.0V to +52V, specified  
- +2.8V to +54V, operating  
- -0.3V to +56V, survival  
• Power Supply:  
The MCP6C04 high-side current sense amplifier is  
offered with preset gains of 20, 50 and 100 V/V. The  
Common-mode input range (VIP) is +3V to +52V. The  
differential-mode input range (VDM = VIP – VIM  
supports unidirectional and bidirectional applications.  
)
The power supply can be set between 2.0V and 5.5V.  
This device is specified from -40°C to +125°C  
(E-Temp) and is provided in the SOT-23 package.  
- 2.0V to 5.5V  
The Zero-Drift architecture supports very low input  
errors, that allow a design to use shunt resistors of  
lower value (and lower power dissipation).  
- Single or Dual (Split) Supplies  
• High DC Precision:  
- VOS: ±3.3 μV (typical)  
Package Types  
- CMRR: 150 dB (typical)  
- PSRR: 127 dB (typical)  
- Gain Error: ±0.2% (typical)  
• Preset Gains: 20, 50 and 100 V/V  
• POR Protection:  
MCP6C04  
6-Lead SOT-23  
VOUT 1  
VSS 2  
VDD  
VREF  
VIM  
6
5
4
- HV POR for VIP – VSS  
- LV POR for VDD – VSS  
• Bandwidth: 500 kHz (typical)  
• Supply Currents:  
VIP  
3
- IDD = 500 μA (typical)  
- IBP = 175 μA (typical)  
• Enhanced EMI Protection:  
- EMIRR: 118 dB at 2.4 GHz (typical)  
• Extended Temperature Range (E-Temp):  
- -40°C to +125°C  
Typical Application Circuit  
+5V  
2.2 µF  
Typical Applications  
10 nF  
U1 (DUT)  
100 nF  
• Actuator controls  
MCP6C04-100  
• Industrial control and automation  
• Power management systems  
• Motor control  
VBAT  
+36V  
RSH  
2.2 mΩ  
VOUT  
20 kΩ  
• Battery monitor/tester  
IL < 20A  
Related Products  
VL  
• MCP6C02-020  
• MCP6C02-050  
• MCP6C02-100  
2019 Microchip Technology Inc.  
DS20006179A-page 1  
MCP6C04  
Functional Diagram  
Gain Options  
Table 1 shows key specifications that differentiate  
VDD  
between the three different differential gain (GDM  
)
VOUT  
RF  
options. See Section 1.0 “Electrical Characteris-  
tics”, Section 6.0 “Packaging Information” and  
Product Identification System for further information  
on the GDM options available.  
VIP  
RM3  
GM1  
Σ
I1  
VFG  
VIM  
I2  
GM2  
RG  
VREF  
VSS  
TABLE 1:  
KEY DIFFERENTIATING SPECIFICATIONS  
GDM  
VOS  
TC1  
CMRR  
(dB)  
Min.  
PSRR  
(dB)  
Min.  
VDMH  
(V)  
Min.  
BW  
(kHz)  
Typ.  
Eni  
(μVp-p  
Typ.  
eni  
(nV/√Hz)  
Typ.  
Part No.  
(V/V) (± μV) (± nV/°C)  
Nom. Max.  
)
Max.  
MCP6C04-020  
MCP6C04-050  
MCP6C04-100  
20  
50  
30  
27  
24  
180  
140  
130  
125  
132  
102  
109  
110  
0.265  
0.106  
0.053  
500  
1.54  
0.95  
0.92  
74  
46  
44  
100  
390  
Note 1:  
VOS and TC1 limits are by design and characterization only.  
2: TC1 covers the extended temperature range (-40°C to +125°C).  
3: CMRR is at VDD = 5.5V.  
4: Eni is at f = 0.1 Hz to 10 Hz. eni is at f < 500 Hz.  
DS20006179A-page 2  
2019 Microchip Technology Inc.  
MCP6C04  
Figure 1, Figure 2 and Figure 3 show input offset  
voltage versus temperature for the three gain options  
(GDM = 20, 50 and 100 V/V).  
The MCP6C04's CMRR supports applications in noisy  
environments. Figure 4 shows how CMRR is high,  
even for frequencies near 100 kHz.  
ꢁꢂ  
100  
90  
*
9
 ꢉꢂꢃ  
'0  
ꢁꢃ  
 ꢉꢇꢍꢇ9  
''  
ꢂꢄꢉ6DPSOHV  
80  
70  
ꢀꢂ  
ꢀꢆ  
ꢀꢅ  
ꢀꢄ  
ꢀꢁꢃ  
ꢀꢁꢂ  
60  
GDM = 100  
GDM = 50  
50  
GDM = 20  
40  
1.E+04  
10k  
100k  
1M  
1.E+06  
1.E+05  
ꢀꢇꢃ  
ꢀꢂꢇ  
ꢂꢇ  
ꢇꢃ  
ꢈꢇ  
ꢁꢃꢃ  
ꢁꢂꢇ  
ꢁꢂꢇ  
ꢁꢂꢇ  
Frequency; f (Hz)  
$PELHQWꢉ7HPSHUDWXUHꢊꢉ7$ ꢋƒ&ꢌ  
FIGURE 1:  
Temperature, G  
Input Offset Voltage vs.  
= 20 V/V.  
FIGURE 4:  
CMRR vs. Frequency.  
DM  
ꢁꢂ  
ꢁꢃ  
*
9
 ꢉꢇꢃ  
'0  
 ꢉꢇꢍꢇ9  
''  
ꢂꢄꢉ6DPSOHV  
ꢀꢂ  
ꢀꢆ  
ꢀꢅ  
ꢀꢄ  
ꢀꢁꢃ  
ꢀꢁꢂ  
ꢀꢇꢃ  
ꢀꢂꢇ  
ꢂꢇ  
ꢇꢃ  
ꢈꢇ  
ꢁꢃꢃ  
$PELHQWꢉ7HPSHUDWXUHꢊꢉ7$ ꢋƒ&ꢌ  
FIGURE 2:  
Temperature, G  
Input Offset Voltage vs.  
= 50 V/V.  
DM  
ꢁꢂ  
ꢁꢃ  
*
9
 ꢉꢁꢃꢃ  
'0  
 ꢉꢇꢍꢇ9  
''  
ꢂꢈꢉ6DPSOHV  
ꢀꢂ  
ꢀꢆ  
ꢀꢅ  
ꢀꢄ  
ꢀꢁꢃ  
ꢀꢁꢂ  
ꢀꢇꢃ  
ꢀꢂꢇ  
ꢂꢇ  
ꢇꢃ  
ꢈꢇ  
ꢁꢃꢃ  
$PELHQWꢉ7HPSHUDWXUHꢊꢉ7$ ꢋƒ&ꢌ  
FIGURE 3:  
Input Offset Voltage vs.  
Temperature, G  
= 100 V/V.  
DM  
2019 Microchip Technology Inc.  
DS20006179A-page 3  
MCP6C04  
NOTES:  
DS20006179A-page 4  
2019 Microchip Technology Inc.  
MCP6C04  
1.0  
1.1  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
VDD – VSS .................................................................................................................................................. -0.3V to +5.5V  
Current at Input Pins (Note 1).................................................................................................................................±2 mA  
Analog Inputs (VIP and VIM) (Note 1).......................................................................................................... -0.3V to +56V  
All Other Inputs and Outputs.....................................................................................................VSS – 0.3V to VDD + 0.3V  
Input Difference Voltage (VDM) (Note 1)...................................................................................................................±1.2V  
Output Short-Circuit Current ...........................................................................................................................Continuous  
Current at Output and Supply Pins .......................................................................................................................±30 mA  
Storage Temperature ..............................................................................................................................-65°C to +150°C  
Maximum Junction Temperature........................................................................................................................... +150°C  
ESD protection (HBM, CDM, MM) ....................................................................................................... ≥ 2 kV, 2 kV, 300V  
† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
Note 1: These voltage and current ratings are physically independent; each required condition must be enforced by  
the user (see Section 5.1.1 “Input Voltage Limits” and Section 5.1.2 “Input Current Limits”).  
1.2  
Voltage and Temperature Ranges  
The various voltage and temperature ranges are listed in Table 1-1.  
TABLE 1-1: VOLTAGE AND TEMPERATURE RANGES  
Parameter Units GDM (V/V) Comment  
VDD  
Range  
Type Sym.  
Spec.  
Oper.  
Abs. Min./Max.  
VDD  
V
V
All  
All  
Min.  
VDDL  
2.0  
1.7  
-0.3  
(Note 2)  
(LV POR on)  
LV POR  
VPLH  
0.1 Typ.  
Hysteresis  
VPLL  
Typ.  
2.0 to 5.5  
5.5  
5.5  
-0.3  
Max. VDDH  
5.5  
2.8  
VIP  
(Note 2)  
VIP  
(HV POR on)  
VIP  
Min.  
VIPL  
VIPLD  
VIPLH  
3.0  
2.8  
2.6  
(HV POR on)  
HV POR  
0.2 Typ.  
0.2 Typ.  
Hysteresis  
Typ.  
Max.  
Min.  
Typ.  
Max.  
VIPH  
VRL  
27.5  
52  
56  
54  
VREF  
V
All  
0
0
-0.3  
VDD/4  
VDD – 1.3  
VRH  
VDD – 1.2  
VDD + 0.3  
Note 1: All of this table’s limits are set by design and characterization.  
2: The HV POR is triggered by VIP, with hysteresis. The LV POR is triggered by VDD, with hysteresis.  
3: VDM = VIP – VIM. VIM is in its range when both VIP and VDM are in their ranges.  
4: Allowing the ambient temperature (TA) to exceed the maximum ambient temperature limit (TAH) may  
cause parameters to exceed their specified limits. See Section 1.1 “Absolute Maximum Ratings †” for  
the absolute maximum junction temperature and storage temperature limits.  
5: VOL and VOH are at RL = 1 kΩ.  
2019 Microchip Technology Inc.  
DS20006179A-page 5  
MCP6C04  
TABLE 1-1:  
VOLTAGE AND TEMPERATURE RANGES (CONTINUED)  
Range  
Parameter Units GDM (V/V)  
Comment  
Type Sym.  
Spec.  
Oper.  
Abs. Min./Max.  
VOUT  
(Note 5)  
V
V
All  
Min.  
Typ.  
Max.  
VOL  
0.06 Max  
0
-0.3  
V
DD/2  
VOH  
VDD – 0.13  
Min  
VDD  
VDD + 0.3  
VDM  
20  
50, 100  
All  
Min.  
VDML  
-3/GDM  
-4.05/GDM  
0
-4.25/GDM  
-1.2  
Typ.  
5.5/GDM  
-40  
+1.2  
-40  
Max. VDMH  
5.3/GDM  
-40  
TA  
°C  
All  
Min.  
Typ.  
Max.  
TAL  
25  
TAH  
+125  
+150  
+150  
Note 1: All of this table’s limits are set by design and characterization.  
2: The HV POR is triggered by VIP, with hysteresis. The LV POR is triggered by VDD, with hysteresis.  
3: VDM = VIP – VIM. VIM is in its range when both VIP and VDM are in their ranges.  
4: Allowing the ambient temperature (TA) to exceed the maximum ambient temperature limit (TAH) may  
cause parameters to exceed their specified limits. See Section 1.1 “Absolute Maximum Ratings †” for  
the absolute maximum junction temperature and storage temperature limits.  
5: VOL and VOH are at RL = 1 kΩ.  
DS20006179A-page 6  
2019 Microchip Technology Inc.  
MCP6C04  
1.3  
Specifications  
TABLE 1-2:  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = 2.0V to 5.5V, VSS = GND, VIP = 27.5V,  
DM = 0V, VREF = VDD/4, VL = VDD/2 and RL = 10 kΩ to VL; see Figure 1-9 and Figure 1-10.  
DC ELECTRICAL CHARACTERISTICS  
V
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Gain  
Conditions  
Input Offset (VIP = VIM) (Note 1)  
Input Offset Voltage  
VOS  
TC1  
-30  
-27  
±3.8  
±3.3  
±3.0  
±13  
±11  
+30  
+27  
μV  
20  
50  
Note 2  
-24  
+24  
100  
20  
V
V
V
OS Drift,  
Linear Temp. Co.  
-180  
-140  
-130  
+180  
+140  
+130  
nV/°C  
pV/°C2  
μV  
TA = -40°C to +125°C  
(Note 2, Note 3)  
50  
±10  
±60  
±95  
±105  
±0.35  
±0.25  
±0.2  
±4  
100  
20  
OS Drift,  
Quadratic Temp. Co.  
TC2  
50  
100  
20  
OS Aging  
ΔVOS  
ΔTC1  
PSRR  
108 hr at +150°C  
(changes measured at +25°C)  
50  
100  
20  
TC1 Aging  
nV/°C  
dB  
±2.5  
±2  
50  
100  
20  
Power Supply Rejection  
Ratio  
102  
109  
110  
123  
129  
130  
VDD = 2.0V to 5.5V  
50  
100  
Input Current and Impedance (VIP and VIM  
VIP's Input Bias Current IBP 100  
IM's Input Bias Current IBM  
)
175  
±0.2  
3
240  
μA  
nA  
All  
VDD = 2.0V to 5.5V  
VDD = 5.5V  
V
IBM2  
IBM3  
CVIP  
CVIM  
CVDM  
VDD = 5.5V, VDM = VDML  
VDD = 5.5V, VDM = VDMH  
-2  
Capacitance at VIP  
40  
11  
pF  
Capacitance at VIM  
Capacitance across VDM  
12  
Note 1: The VIP input is treated as the Common-mode input (e.g., for CMRR). VDM = (VIP – VIM).  
2: Set by design and characterization. VOS is screened in production (see Appendix B: “Offset Test  
Screens”).  
3: See the discussion in Section 1.6.2, Input Offset Related Errors.  
4: See Section 1.6, Explanation of DC Error Specifications.  
2019 Microchip Technology Inc.  
DS20006179A-page 7  
MCP6C04  
TABLE 1-2:  
DC ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = 2.0V to 5.5V, VSS = GND, VIP = 27.5V,  
VDM = 0V, VREF = VDD/4, VL = VDD/2 and RL = 10 kΩ to VL; see Figure 1-9 and Figure 1-10.  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Gain  
Conditions  
Input Common-Mode Voltage (VIP)  
VIP’s Voltage Range Low  
VIPL  
VIPLD  
VIPLH  
VIPH  
2.4  
2.15  
0.2  
3.0  
2.8  
V
All  
VIP  
VIP  
VIPLH = VIPL – VIPLD  
VIP’s Voltage Range High  
52  
145  
Common-Mode Rejection CMRR  
Ratio  
125  
132  
dB  
20  
50  
VDD = 2.0V to 5.5V,  
VIP = 3V to 52V  
152  
154  
100  
All  
Common-Mode  
INLCM  
±0.006  
ppm  
VDD = 5.5V, VIP = 3V to 52V  
Nonlinearity (Note 4)  
Reference Voltage (VREF  
)
Reference Voltage  
Range (Note 2)  
VRL  
VRH  
VDD 1.3  
0
V
All  
See Section 5.1.5, Setting  
the Voltage at VREF  
Gain Resistance  
RF + RG  
160  
165  
225  
11  
kΩ  
20  
50  
100  
All  
VREF Input Capacitance  
CREF  
pF  
Differential Input (VDM) (Note 1)  
Differential Gain  
GDM  
20  
50  
V/V  
20  
50  
MCP6C04-020  
MCP6C04-050  
100  
100 MCP6C04-100  
Differential Input Voltage  
Range  
VDML  
-3/GDM  
V
20  
VDD = 5.5V, VREF = 4.1V,  
VL = 0V  
-4.05/GDM  
50,  
100  
VDMH  
gE  
5.3/GDM  
All  
VDD = 5.5V, VREF = 0V,  
VL = VDD  
Differential Gain Error  
±0.2  
±0.2  
±0.2  
±0.2  
±0.2  
%
VDD = 2.0V, VREF = 0.5V,  
GDMVDM = -0.4V to 1.4V  
-1.6  
+1.6  
VDD = 5.5V, VREF = 2.75V,  
GDMVDM = -2.65V to 2.65V  
VDD = 5.5V, VREF = 0V,  
GDMVDM = 0.2V to 5.3V  
20  
V
DD = 5.5V, VREF = 4.2V,  
GDMVDM = -3V to 1.2V  
DD = 5.5V, VREF = 4.2V,  
50,  
V
100 GDMVDM = -4V to 1.2V  
Note 1: The VIP input is treated as the Common-mode input (e.g., for CMRR). VDM = (VIP – VIM).  
2: Set by design and characterization. VOS is screened in production (see Appendix B: “Offset Test  
Screens”).  
3: See the discussion in Section 1.6.2, Input Offset Related Errors.  
4: See Section 1.6, Explanation of DC Error Specifications.  
DS20006179A-page 8  
2019 Microchip Technology Inc.  
MCP6C04  
TABLE 1-2:  
DC ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = 2.0V to 5.5V, VSS = GND, VIP = 27.5V,  
VDM = 0V, VREF = VDD/4, VL = VDD/2 and RL = 10 kΩ to VL; see Figure 1-9 and Figure 1-10.  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Gain  
Conditions  
Differential Input (VDM) – Continued (Note 1)  
Differential Gain Drift  
gE Aging  
ΔgE/ΔTA  
±10  
±10  
±0.3  
ppm/°C  
All  
VDD = 2.0V, VREF = 0.5V,  
GDMVDM = -0.4V to 1.4V  
VDD = 5.5V, VREF = 2.75V,  
GDMVDM = -2.65V to 2.65V  
ΔgE  
%
408 hr at +150°C,  
VDD = 5.5V, VREF = 2.75V,  
GDMVDM = -2.65V to 2.65V,  
(change measured at +25°C)  
Differential Nonlinearity  
(Note 4)  
INLDM  
±50  
ppm  
VDD = 2.0V, VREF = 0.5V,  
GDMVDM = -0.4V to 1.4V  
±100  
VDD = 5.5V, VREF = 2.75V,  
GDMVDM = -2.65V to 2.65V  
Output (VOUT  
)
Minimum Output  
Voltage Swing  
VOL  
3
5
mV  
All  
VDD = 2.0V, VREF = 0V  
VDM = -0.5V/GDM  
VDD = 5.5V, VREF = 0V  
VDM = -0.5V/GDM  
20  
3
60  
VDD = 5.5V, VREF = 0V  
VDM = -0.5V/GDM, RL = 1 kΩ  
V
DD = 5.5V, VREF = 0V  
VDM = -0.5V/GDM, VL = 0V  
Output (VOUT) – Continued  
Maximum Output  
Voltage Swing  
VDD  
VOH  
6
10  
40  
5
mV  
All  
VDD = 2.0V, VREF = 0.7V  
VDM = 1.8V/GDM  
VDD = 5.5V, VREF = 4.2V  
VDM = 1.8V/GDM  
130  
VDD = 5.5V, VREF = 4.2V  
VDM = 1.8V/GDM, RL = 1 kΩ  
VDD = 5.5V, VREF = 0V  
VDM = 1.8V/GDM, VL = VDD  
Output Short Circuit  
Current  
ISCP  
ISCM  
Power Supplies (VDD, VSS and VIP)  
+12  
+20  
-12  
-20  
VDD = 2.0V, GDMVDM = 1.0V  
V
DD = 5.5V, GDMVDM = 2.75V  
VDD = 2.0V, GDMVDM = 0V  
DD = 5.5V, GDMVDM = 0V  
V
Low Supply Voltage  
VDD  
VIP  
ISS  
IDD  
IBP  
2.0  
(see VIP spec)  
-675  
5.5  
V
All  
High Supply Voltage  
Quiescent Current at VSS  
Quiescent Current at VDD  
Quiescent Current at VIP  
μA  
IO = 0A  
250  
500  
840  
(see IBP spec)  
Note 1: The VIP input is treated as the Common-mode input (e.g., for CMRR). VDM = (VIP – VIM).  
2: Set by design and characterization. VOS is screened in production (see Appendix B: “Offset Test  
Screens”).  
3: See the discussion in Section 1.6.2, Input Offset Related Errors.  
4: See Section 1.6, Explanation of DC Error Specifications.  
2019 Microchip Technology Inc.  
DS20006179A-page 9  
MCP6C04  
TABLE 1-2:  
DC ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = 2.0V to 5.5V, VSS = GND, VIP = 27.5V,  
VDM = 0V, VREF = VDD/4, VL = VDD/2 and RL = 10 kΩ to VL; see Figure 1-9 and Figure 1-10.  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Gain  
Conditions  
POR Trip Voltages,  
VPLL  
1.05  
1.35  
V
All  
LV POR turns off (VDD ↓),  
Low-Side (VDD  
)
VL = 0V, VIP = 3V, VREF = 0V  
VPLH  
VPHL  
1.45  
1.95  
1.7  
LV POR turns on (VDD ↑),  
VL = 0V, VIP = 3V, VREF = 0V  
POR Trip Voltages,  
High-Side (VIP)  
1.7  
HV POR turns off (VIP ↓),  
RL = open, VDD = 5.5V  
(change in ISS  
)
VPHH  
2.05  
2.6  
HV POR turns on (VIP ↑),  
RL = open, VDD = 5.5V  
(change in ISS  
)
Note 1: The VIP input is treated as the Common-mode input (e.g., for CMRR). VDM = (VIP – VIM).  
2: Set by design and characterization. VOS is screened in production (see Appendix B: “Offset Test  
Screens”).  
3: See the discussion in Section 1.6.2, Input Offset Related Errors.  
4: See Section 1.6, Explanation of DC Error Specifications.  
TABLE 1-3:  
AC ELECTRICAL CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = 2.0V to 5.5V, VSS = GND, VIP = 27.5V,  
VDM = 0V, VREF = VDD/4, VL = VDD/2, RL = 10 kΩ to VL and CL = 60 pF; see Figure 1-11.  
Parameter  
AC Response  
Sym.  
Min. Typ. Max. Units  
Gain  
Conditions  
Bandwidth  
BW  
500  
390  
0
kHz  
dB  
20, 50 GDMVDM = 0.1Vp-p  
100  
All  
Gain Peaking  
GPK  
Step Response  
V
DM Slew Rate  
SR  
(Note 1)  
4
V/μs  
%
All  
20  
GDMVDM Step = VDD – 0.5V  
VDM Step Overshoot  
OSDM  
GDMVDM Step = 0.1V, tr_in = 0.2 μs  
Overdrive Recovery,  
tIRDL  
3
μs  
VDD = 5.5V, VREF = 4V,  
GDMVDM = -3.5V to -1.25V Step,  
90% of VOUT change  
Input Differential Mode  
(see tORL Spec)  
50, 100 (Note 2)  
tIRDH  
3
All VDD = 5.5V, VREF = 0.5V,  
GDMVDM = +4.5V to +2.25V Step,  
90% of VOUT change  
Note 1: SR is limited by GBWP; the large signal step response is dominated by the small signal bandwidth.  
2: At these gains, we cannot distinguish between overdriving VDM or VOUT  
3: See Figure 2-47 for the noise density over a wider frequency range.  
.
DS20006179A-page 10  
2019 Microchip Technology Inc.  
MCP6C04  
TABLE 1-3:  
AC ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = 2.0V to 5.5V, VSS = GND, VIP = 27.5V,  
VDM = 0V, VREF = VDD/4, VL = VDD/2, RL = 10 kΩ to VL and CL = 60 pF; see Figure 1-11.  
Parameter  
Sym.  
Min. Typ. Max. Units  
Gain  
Conditions  
Overdrive Recovery,  
Output  
tORL  
1.5  
1.5  
1.5  
1.5  
μs  
All  
VDD = 2.0V, VREF = 0V,  
GDMVDM = -0.5V to +1V Step,  
90% of VOUT change  
VDD = 5.5V, VREF = 0V,  
GDMVDM = -0.5V to +2.75V Step,  
90% of VOUT change  
tORH  
VDD = 2.0V, VREF = 0.7V,  
GDMVDM = +1.8V to +0.3V Step,  
90% of VOUT change  
VDD = 5.5V, VREF = 4.2V,  
GDMVDM = +1.8V to -1.2V Step,  
90% of VOUT change  
Noise  
Input Noise Voltage  
Eni  
0.48  
0.30  
0.29  
1.54  
0.95  
0.92  
74  
μVp-p  
20  
50  
f = 0.01 Hz to 1 Hz  
f = 0.1 Hz to 10 Hz  
f < 500 Hz  
100  
20  
50  
100  
20  
Input Noise Voltage  
Density (Note 3)  
eni  
nV/√Hz  
46  
50  
44  
100  
All  
f < 1 kHz  
f = 1 kHz  
Input Current Noise  
Density – At VIP  
inip  
10  
pA/√Hz  
fA/√Hz  
Input Current Noise  
Density – At VIM  
inim  
8
f = 1 kHz, VDM = 0V  
33  
f = 1 kHz, VDM = 0.15V  
EMI Protection  
EMI Rejection Ratio  
EMIRR  
96  
91  
dB  
All  
All  
VIN = 0.1VPK, f = 400 MHz  
V
V
IN = 0.1VPK, f = 900 MHz  
IN = 0.1VPK, f = 1800 MHz  
114  
118  
121  
VIN = 0.1VPK, f = 2400 MHz  
IN = 0.1VPK, f = 6000 MHz  
V
Power Up/Down  
Power On Time (VDD ↑),  
VOUT Settles  
tPON  
65  
140  
8
μs  
VDD = 0V to 2.0V, VL = 0V,  
90% of VOUT change  
V
DD = 0V to 5.5V, VL = 0V,  
90% of VOUT change  
Power Off Time (VDD ↓),  
VOUT Settles  
tPOFF  
VDD = 2.0V to 0V, VL = 0V,  
90% of VOUT change  
5.5  
VDD = 5.5V to 0V, VL = 0V,  
90% of VOUT change  
Note 1: SR is limited by GBWP; the large signal step response is dominated by the small signal bandwidth.  
2: At these gains, we cannot distinguish between overdriving VDM or VOUT  
3: See Figure 2-47 for the noise density over a wider frequency range.  
.
2019 Microchip Technology Inc.  
DS20006179A-page 11  
MCP6C04  
TABLE 1-4:  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = 2.0V to 5.5V, VSS = GND and  
VIP = 27.5V.  
Parameters  
Sym. Min.  
Typ.  
Max. Units  
Conditions  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Resistance, 6L-SOT-23  
TA  
-40  
-40  
-60  
+125  
+150  
+150  
°C  
Note 1  
No power  
θJA  
191  
°C/W  
Note 1: Operation must not cause TJ to exceed the absolute maximum junction temperature specification, which is  
150°C. See Section 4.1.5, Temperature Performance for design tips.  
1.4.2  
TIMING DIAGRAMS  
1.4  
Simplified Diagrams  
1.4.1  
VOLTAGE RANGE DIAGRAMS  
VDM  
±(1V)/GDM  
These ranges are constant across temperature.  
VIP  
tIRC  
VIP Range (V)  
VOUT  
VIPH – VSS  
FIGURE 1-4:  
Common-Mode Input  
Overdrive Recovery Timing Diagram.  
VIPL – VSS  
VIP  
-40  
25  
85  
125 150  
27.5V  
VDM  
TA (°C)  
Common-Mode Input  
tIRD  
FIGURE 1-1:  
VOUT  
Voltage Range vs. Temperature.  
FIGURE 1-5:  
Differential-Mode Input  
Overdrive Recovery Timing Diagram.  
VDM Range (V)  
VDMH  
VIP  
27.5V  
TA (°C)  
VDM  
-40  
25  
85  
125 150  
VDML  
Differential Input Voltage  
tOR  
VOUT  
FIGURE 1-6:  
Timing Diagram.  
Output Overdrive Recovery  
FIGURE 1-2:  
Range vs. Temperature.  
VPLH + 0.1V  
VPLL + 0.1V  
VREF Range (V)  
VDD  
0V  
VDD  
tPOFF  
tPON  
High-Z  
VOUT  
On  
VRH  
FIGURE 1-7:  
V
Power On/Off Timing  
OUT  
TA (°C)  
VRL  
Diagram, Low-Side.  
-40  
25  
85  
125 150  
FIGURE 1-3:  
Reference Voltage Range  
vs. Temperature.  
DS20006179A-page 12  
2019 Microchip Technology Inc.  
MCP6C04  
1.5.2  
DC DIFFERENTIAL GAIN TEST  
CIRCUIT  
VPHH + 0.1V  
VPHL + 0.1V  
Figure 1-10 is used for testing the differential gain error,  
nonlinearity and input voltage range (gE, INLDM, VDML  
0V  
tPHOFF  
High-Z  
VIP  
tPHON  
and VDMH). We compare VMEAS with the ideal VOUT  
,
then extract the above parameters.  
VOUT  
On  
FIGURE 1-8:  
Diagram, High-Side.  
V
Power On/Off Timing  
OUT  
VIP  
VDD  
U1 (DUT)  
RWIP  
MCP6C04  
1.5  
Simplified Test Circuits  
VMEAS  
LPF  
1.5.1  
V
TEST CIRCUIT  
OS  
RWR  
CL  
RWIM  
VIM  
Figure 1-9 tests the MCP6C04’s input offset errors  
(VOS, 1/CMRR, 1/CMRR2 and 1/PSRR, etc.). RWIP is  
set very low, so IBP does not affect the result. VOUT is  
filtered and amplified before measuring the result.  
VOUT  
RL  
VSS  
VL  
Differential Gain Test  
VIP  
VDD  
FIGURE 1-10:  
Circuit.  
U1 (DUT)  
RWIP  
MCP6C04  
LPF  
and  
Gain  
When measuring the differential input range, all of the  
voltages must be in range except VDM  
VMEAS  
.
When measuring differential errors (gE, ΔgE/ΔTA and  
INLDM), all voltages are held constant, except VDM  
RWR  
RWIM  
VOUT  
RL  
.
For accuracy, the wiring resistances at the DUT need  
to be very small (see Equation 1-2).  
VSS  
CL  
VL  
Input Offset Test Circuit for  
1.5.3  
AC GAINS TEST CIRCUIT  
Figure 1-11 is used for testing the INA’s different AC  
gains. The AC voltages are:  
FIGURE 1-9:  
the MCP6C04.  
• vout is the AC output  
When MCP6C04 is in its normal range of operation, the  
DC output voltages are (VE is the sum of input offset  
errors and gE is the gain error):  
• vip is the AC Common-mode input, used for  
CMRR plots  
• vdm is the AC differential input, used for GDM plots  
(also for CMRR and PSRR)  
EQUATION 1-1:  
• vdd and vss are the AC supply inputs, used for  
PSRR plots (including PSRR+ and PSRR-)  
GDM  
=
DM Gain  
VOUT = GDM(1 + gE)VE + VREF  
VMEAS = GPAVOUT  
VDD + vdd  
U1 (DUT)  
VIP + vip  
The resistances at the Device Under Test (DUT) need  
to be small enough for accuracy (see Figure 1-10).  
These resistances include wires, traces, vias, etc.  
MCP6C04  
VOUT + vout  
CL  
~
RWR  
EQUATION 1-2:  
VDM + vdm  
RL  
VL  
AC Gain Test Circuit.  
RWIP 4 mΩ  
RWIM 0.1Ω  
RWR 1Ω  
VSS + vss  
FIGURE 1-11:  
2019 Microchip Technology Inc.  
DS20006179A-page 13  
MCP6C04  
The impedance at VREF (shown here as RWR) needs to  
have a magnitude less than 1Ω, for gain accuracy in the  
signal bandwidth. The magnitude needs to be < 50Ω,  
when f < 1 MHz, to maintain good stability.  
EQUATION 1-4:  
VOUT = VREF + GDM(1 + gE)VE  
The input offset error (VE) is extracted from input offset  
measurements (see Section 1.5.1 “VOS Test  
Circuit”):  
1.6  
Explanation of DC Error  
Specifications  
1.6.1  
LINEAR RESPONSE MODEL  
EQUATION 1-5:  
When the inputs and the output are in their normal  
ranges, and the nonlinear errors are negligible, the out-  
put voltage (VOUT) is:  
VOUT VREF  
--------------------------------  
=
VE  
GDM(1 + gE)  
EQUATION 1-3:  
We usually assume gE = 0, in Equation 1-5, when  
extracting VE. The result is accurate enough, since gE  
is so low.  
VOUT = VREF + GDM(1 + gE)(VDM + VE)  
VE has several terms, that assume a linear response to  
VDM is the input voltage. VE is the sum of input offset  
errors (due to VOS, PSRR, CMRR, CMRR2, TC1, TC2,  
etc.). gE is the Gain Error (GDM is the nominal gain).  
changes in VDD, VSS, VIP and VREF  
.
VOS’s dependence on temperature (TA) is a quadratic  
polynomial (VOS, TC1 and TC2). The aging specs  
(ΔVOS and ΔTC1) are not included, for simplicity.  
1.6.2  
INPUT OFFSET RELATED ERRORS  
When VDM = 0V, the linear response model for VOUT  
becomes:  
EQUATION 1-6:  
ΔV  
ΔV  
ΔV  
ΔV  
REF  
2
DD  
SS  
IP  
------------------------------------ --------------- ------------------  
V
= V  
+
+
+
+ ΔT TC + ΔT TC  
E
OS  
A
1
A
2
PSRR  
CMRR CMRR2  
Where:  
PSRR, CMRR and CMRR2 are in units of V/V  
ΔTA is in units of °C  
VDM = 0  
1.6.3  
INPUT OFFSET’S COMMON-MODE  
VOLTAGE NONLINEARITY  
VE, VE_LIN (V)  
VE_LIN  
VE  
The input offset error (VE) changes nonlinearly with VIP.  
Figure 1-12 shows the MCP6C04’s VE vs. VIP, as well  
as a linear fit line (VE_LIN), that goes through the center  
point (VC, V2) and has the same slope as the end  
points.  
V3  
V2  
V1  
ΔVE  
VIP (V)  
VIPL  
VC  
VIPH  
FIGURE 1-12:  
Input Offset Error vs.  
Common-Mode Input Voltage.  
DS20006179A-page 14  
2019 Microchip Technology Inc.  
MCP6C04  
The part is in standard conditions (ΔVOUT = 0, VDM = 0,  
etc.). VIP sweeps from VIPL to VIPH. The test circuit is in  
Section 1.5.1, VOS Test Circuit. Calculate VE at each  
point with Equation 1-5.  
VED, VED_LIN (V)  
VED_LIN  
VED  
V3  
V2  
Based on the measured VE data, we obtain the  
following linear fit:  
EQUATION 1-7:  
VE_LIN = V2 + (VIP VC) CMRR  
Where:  
V1  
ΔVED  
VC = (VIPL + VIPH) 2  
VDM (V)  
1 CMRR = (V3 V1) (VIPH VIPL  
)
VD1  
VC  
VD2  
The remaining error (ΔVE) is described by the  
Common-mode Nonlinearity spec:  
FIGURE 1-13:  
Differential Input Voltage.  
Differential Input Error vs.  
Based on the measured VED data, we obtain the  
following linear fit:  
EQUATION 1-8:  
INLCMH = max(ΔVE) (VIPH VIPL  
INLCML = min(ΔVE) (VIPH VIPL  
)
)
EQUATION 1-10:  
INLCM = INLCMH  
= INLCML  
,
INLCMH INLCML  
otherwise  
VED_LIN = V2 + (VDM VC)gE  
,
Where:  
Where:  
VC = (VD1 + VD2) 2  
gE = (V3 V1) (VD2 VD1  
ΔVE = VE VE_LIN  
)
The remaining error (ΔVED) is described by the  
Differential Nonlinearity spec:  
1.6.4  
DIFFERENTIAL GAIN ERROR AND  
NONLINEARITY  
The differential errors are extracted from differential  
gain measurements (see Section 1.5.2, DC  
Differential Gain Test Circuit), based on  
Equation 1-3. These errors are then split into the  
differential Gain Error (gE) and the input nonlinearity  
EQUATION 1-11:  
INLDMH = max(ΔVED) (VD2 VD1  
INLDML = min(ΔVED) (VD2 VD1  
INLDM = INLDMH  
= INLDML  
)
)
,
INLDMH INLDML  
error INLDM  
.
,
otherwise  
The error VED is calculated by subtracting the ideal  
Where:  
output from VOUT, then dividing by the ideal gain GDM  
.
ΔVED = VED VED_LIN  
EQUATION 1-9:  
The aging spec ΔgE is not included here, for simplicity.  
VDM sweeps are not always centered on VDM = 0V; the  
INLDM spec will interact with the VOS spec.  
VED = (VOUT (VREF + GDM VDM)) GDM  
Figure 1-13 shows VED vs. VDM, as well as a linear fit  
line (VED_LIN) based on VDM and gE. The amplifier is in  
one of the standard condition sets. The linear fit line  
(VED_LIN) goes through the center point (VC, V2) and  
has the same slope as the end points.  
2019 Microchip Technology Inc.  
DS20006179A-page 15  
MCP6C04  
NOTES:  
DS20006179A-page 16  
2019 Microchip Technology Inc.  
MCP6C04  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note:  
Unless otherwise indicated, TA = +25°C, VDD = 2.0V to 5.5V, VSS = GND, VIP = 27.5V, VDM = 0V,  
VREF = VDD/4, VL = VDD/2, RL = 10 kΩ to VL and CL = 60 pF; see Figure 1-9, Figure 1-10 and Figure 1-11.  
2.1  
DC Precision  
ꢆꢃꢎ  
ꢏꢇꢎ  
ꢏꢃꢎ  
ꢂꢇꢎ  
ꢂꢃꢎ  
ꢁꢇꢎ  
ꢁꢃꢎ  
ꢇꢎ  
ꢇꢃꢎ  
*
 ꢉꢂꢃ  
*
 ꢉꢂꢃ  
7$'0 ꢉꢂꢇƒ&  
7$'0 ꢉꢀꢆꢃƒ&ꢉWRꢉꢁꢂꢇƒ&  
ꢂꢄꢉ6DPSOHV  
ꢆꢇꢎ  
ꢆꢃꢎ  
ꢏꢇꢎ  
ꢏꢃꢎ  
ꢂꢇꢎ  
ꢂꢃꢎ  
ꢁꢇꢎ  
ꢁꢃꢎ  
ꢇꢎ  
ꢂꢄꢉ6DPSOHV  
9''  ꢉꢂꢍꢃ9  
9''  ꢉꢇꢍꢇ9  
9''  ꢉꢂꢍꢃ9  
9''  ꢉꢇꢍꢇ9  
ꢃꢎ  
ꢃꢎ  
ꢀꢅꢃ ꢀꢇꢃ ꢀꢆꢃ ꢀꢏꢃ ꢀꢂꢃ ꢀꢁꢃ  
 ꢁꢃ ꢂꢃ ꢏꢃ ꢆꢃ ꢇꢃ ꢅꢃ  
ꢀꢁꢂ ꢀꢁꢃ ꢀꢄ ꢀꢅ ꢀꢆ ꢀꢂ  
 ꢁꢃ ꢁꢂ  
,QSXWꢉ2IIVHWꢉ9ROWDJHꢊꢉ926 ꢋ—9ꢌ  
,QSXWꢉ2IIVHWꢉ9ROWDJHꢉ'ULIWꢊꢉ7& ꢋQ9ꢐƒ&ꢌ  
FIGURE 2-1:  
Input Offset Voltage,  
FIGURE 2-4:  
Linear Input Offset Voltage  
G
= 20.  
Drift, G  
= 20.  
DM  
DM  
ꢆꢃꢎ  
ꢏꢇꢎ  
ꢆꢇꢎ  
ꢆꢃꢎ  
ꢏꢇꢎ  
ꢏꢃꢎ  
ꢂꢇꢎ  
ꢂꢃꢎ  
ꢁꢇꢎ  
ꢁꢃꢎ  
ꢇꢎ  
*
 ꢉꢇꢃ  
*
 ꢉꢇꢃ  
7$'0 ꢉꢂꢇƒ&  
7$'0 ꢉꢀꢆꢃƒ&ꢉWRꢉꢑꢁꢂꢇƒ&  
ꢂꢄꢉ6DPSOHV  
9''  ꢉꢂꢍꢃ9  
9''  ꢉꢇꢍꢇ9  
ꢂꢄꢉ6DPSOHV  
ꢏꢃꢎ  
ꢂꢇꢎ  
ꢂꢃꢎ  
ꢁꢇꢎ  
ꢁꢃꢎ  
ꢇꢎ  
9''  ꢉꢂꢍꢃ9  
9''  ꢉꢇꢍꢇ9  
ꢃꢎ  
ꢃꢎ  
ꢀꢏꢃ ꢀꢂꢇ ꢀꢂꢃ ꢀꢁꢇ ꢀꢁꢃ ꢀꢇ  
ꢁꢃ ꢁꢇ ꢂꢃ ꢂꢇ ꢏꢃ  
ꢀꢅ ꢀꢇ ꢀꢆ ꢀꢏ ꢀꢂ ꢀꢁ  
,QSXWꢉ2IIVHWꢉ9ROWDJHꢊꢉ926 ꢋ—9ꢌ  
,QSXWꢉ2IIVHWꢉ9ROWDJHꢉ'ULIWꢊꢉ7& ꢋQ9ꢐƒ&ꢌ  
FIGURE 2-2:  
Input Offset Voltage,  
FIGURE 2-5:  
Linear Input Offset Voltage  
G
= 50.  
Drift, G  
= 50.  
DM  
DM  
ꢆꢃꢎ  
ꢆꢇꢎ  
ꢆꢃꢎ  
ꢏꢇꢎ  
ꢏꢃꢎ  
ꢂꢇꢎ  
ꢂꢃꢎ  
ꢁꢇꢎ  
ꢁꢃꢎ  
ꢇꢎ  
*
 ꢉꢁꢃꢃ  
*
 ꢉꢁꢃꢃ  
7$'0 ꢉꢂꢇƒ&  
ꢏꢇꢎ  
ꢏꢃꢎ  
ꢂꢇꢎ  
ꢂꢃꢎ  
ꢁꢇꢎ  
ꢁꢃꢎ  
ꢇꢎ  
7$'0 ꢉꢀꢆꢃƒ&ꢉWRꢉꢑꢁꢂꢇƒ&  
ꢂꢈꢉ6DPSOHV  
ꢂꢈꢉ6DPSOHV  
9''  ꢉꢇꢍꢇ9  
9''  ꢉꢂꢍꢃ9  
9''  ꢉꢇꢍꢇ9  
9''  ꢉꢂꢍꢃ9  
ꢃꢎ  
ꢃꢎ  
ꢀꢅ ꢀꢇ ꢀꢆ ꢀꢏ ꢀꢂ ꢀꢁ  
ꢀꢏꢃ ꢀꢂꢇ ꢀꢂꢃ ꢀꢁꢇ ꢀꢁꢃ ꢀꢇ  
 ꢁꢃ ꢁꢇ ꢂꢃ ꢂꢇ ꢏꢃ  
,QSXWꢉ2IIVHWꢉ9ROWDJHꢊꢉ926 ꢋ—9ꢌ  
,QSXWꢉ2IIVHWꢉ9ROWDJHꢉ'ULIWꢊꢉ7& ꢋQ9ꢐƒ&ꢌ  
FIGURE 2-3:  
= 100.  
Input Offset Voltage,  
FIGURE 2-6:  
Linear Input Offset Voltage  
G
Drift, G  
= 100.  
DM  
DM  
2019 Microchip Technology Inc.  
DS20006179A-page 17  
MCP6C04  
Note:  
Unless otherwise indicated, TA = +25°C, VDD = 2.0V to 5.5V, VSS = GND, VIP = 27.5V, VDM = 0V,  
VREF = VDD/4, VL = VDD/2, RL = 10 kΩ to VL and CL = 60 pF; see Figure 1-9, Figure 1-10 and Figure 1-11.  
ꢁꢂ  
ꢅꢇꢎ  
ꢅꢃꢎ  
ꢇꢇꢎ  
ꢇꢃꢎ  
ꢆꢇꢎ  
ꢆꢃꢎ  
ꢏꢇꢎ  
ꢏꢃꢎ  
ꢂꢇꢎ  
ꢂꢃꢎ  
ꢁꢇꢎ  
ꢁꢃꢎ  
ꢇꢎ  
*
 ꢉꢂꢃ  
ꢁꢃ  
7$'0 ꢉꢀꢆꢃƒ&ꢉWRꢉꢁꢂꢇƒ&  
ꢂꢄꢉ6DPSOHV  
9''  ꢉꢇꢍꢇ9  
9''  ꢉꢂꢍꢃ9  
ꢀꢂ  
ꢀꢆ  
ꢀꢅ  
ꢀꢄ  
ꢀꢁꢃ  
ꢀꢁꢂ  
ꢁꢂꢇƒ&  
ꢄꢇƒ&  
ꢂꢇƒ&  
ꢀꢆꢃƒ&  
*
9
 ꢉꢂꢃ  
'0  
 ꢉꢏ9  
ꢃꢎ  
5HSUHVHQWDWLYHꢉ3DUW  
,3  
ꢀꢏꢃꢃ ꢀꢂꢃꢃ ꢀꢁꢃꢃ  
ꢁꢃꢃ  
ꢂꢃꢃ  
ꢏꢃꢃ  
ꢃꢍꢃ ꢃꢍꢇ ꢁꢍꢃ ꢁꢍꢇ ꢂꢍꢃ ꢂꢍꢇ ꢏꢍꢃ ꢏꢍꢇ ꢆꢍꢃ ꢆꢍꢇ ꢇꢍꢃ ꢇꢍꢇ  
3RZHUꢉ6XSSO\ꢉ9ROWDJHꢊꢉ9'' ꢋ9ꢌ  
,QSXWꢉ2IIVHWꢉ9ROWDJHꢉ'ULIWꢊꢉ7& ꢋS9ꢐƒ&  
FIGURE 2-7:  
Voltage Drift, G  
Quadratic Input Offset  
= 20.  
FIGURE 2-10:  
Power Supply Voltage, with G  
Input Offset Voltage vs.  
= 20.  
DM  
DM  
ꢆꢇꢎ  
*
 ꢉꢇꢃ  
7$'0 ꢉꢀꢆꢃƒ&ꢉWRꢉꢑꢁꢂꢇƒ&  
ꢂꢄꢉ6DPSOHV  
ꢆꢃꢎ  
ꢏꢇꢎ  
ꢏꢃꢎ  
ꢂꢇꢎ  
ꢂꢃꢎ  
ꢁꢇꢎ  
ꢁꢃꢎ  
ꢇꢎ  
9''  ꢉꢇꢍꢇ9  
9''  ꢉꢂꢍꢃ9  
ꢀꢂ  
ꢁꢂꢇƒ&  
ꢀꢆ  
ꢄꢇƒ&  
ꢂꢇƒ&  
ꢀꢅ  
ꢀꢄ  
*
9
 ꢉꢇꢃ  
'0  
ꢀꢆꢃƒ&  
5HSUHVHQWDWLYHꢉ3DUW  
 ꢉꢏ9  
,3  
ꢃꢎ  
ꢀꢁꢂꢃ  
ꢀꢄꢃ  
ꢀꢆꢃ  
ꢆꢃ  
ꢄꢃ  
ꢁꢂꢃ  
ꢃꢍꢃ ꢃꢍꢇ ꢁꢍꢃ ꢁꢍꢇ ꢂꢍꢃ ꢂꢍꢇ ꢏꢍꢃ ꢏꢍꢇ ꢆꢍꢃ ꢆꢍꢇ ꢇꢍꢃ ꢇꢍꢇ  
3RZHUꢉ6XSSO\ꢉ9ROWDJHꢊꢉ9'' ꢋ9ꢌ  
,QSXWꢉ2IIVHWꢉ9ROWDJHꢉ'ULIWꢊꢉ7& ꢋS9ꢐƒ&  
FIGURE 2-8:  
Quadratic Input Offset  
FIGURE 2-11:  
Input Offset Voltage vs.  
Voltage Drift, G  
= 50.  
Power Supply Voltage, with G  
= 50.  
DM  
DM  
ꢆꢇꢎ  
*
 ꢉꢁꢃꢃ  
7$'0 ꢉꢀꢆꢃƒ&ꢉWRꢉꢑꢁꢂꢇƒ&  
ꢂꢈꢉ6DPSOHV  
ꢆꢃꢎ  
ꢏꢇꢎ  
ꢏꢃꢎ  
ꢂꢇꢎ  
ꢂꢃꢎ  
ꢁꢇꢎ  
ꢁꢃꢎ  
ꢇꢎ  
9''  ꢉꢇꢍꢇ9  
9''  ꢉꢂꢍꢃ9  
ꢀꢁ  
ꢀꢂ  
ꢁꢂꢇƒ&  
ꢀꢏ  
ꢄꢇƒ&  
ꢀꢆ  
ꢀꢇ  
ꢀꢅ  
ꢂꢇƒ&  
*
9
 ꢉꢁꢃꢃ  
'0  
ꢀꢆꢃƒ&  
 ꢉꢏ9  
,3  
5HSUHVHQWDWLYHꢉ3DUW  
ꢃꢎ  
ꢀꢁꢂꢃ  
ꢀꢄꢃ  
ꢀꢆꢃ  
ꢆꢃ  
ꢄꢃ  
ꢁꢂꢃ  
ꢃꢍꢃ ꢃꢍꢇ ꢁꢍꢃ ꢁꢍꢇ ꢂꢍꢃ ꢂꢍꢇ ꢏꢍꢃ ꢏꢍꢇ ꢆꢍꢃ ꢆꢍꢇ ꢇꢍꢃ ꢇꢍꢇ  
3RZHUꢉ6XSSO\ꢉ9ROWDJHꢊꢉ9'' ꢋ9ꢌ  
,QSXWꢉ2IIVHWꢉ9ROWDJHꢉ'ULIWꢊꢉ7& ꢋS9ꢐƒ&  
FIGURE 2-9:  
Voltage Drift, G  
Quadratic Input Offset  
= 100.  
FIGURE 2-12:  
Power Supply Voltage, with G  
Input Offset Voltage vs.  
= 100.  
DM  
DM  
DS20006179A-page 18  
2019 Microchip Technology Inc.  
MCP6C04  
Note:  
Unless otherwise indicated, TA = +25°C, VDD = 2.0V to 5.5V, VSS = GND, VIP = 27.5V, VDM = 0V,  
VREF = VDD/4, VL = VDD/2, RL = 10 kΩ to VL and CL = 60 pF; see Figure 1-9, Figure 1-10 and Figure 1-11.  
ꢁꢂ  
ꢁꢂ  
ꢁꢃ  
5HSUHVHQWDWLYH 3DUW  
ꢁꢃ  
ꢀꢂ  
ꢀꢆ  
ꢀꢅ  
ꢀꢂ  
ꢀꢆ  
ꢀꢅ  
ꢀꢄ  
ꢀꢁꢃ  
ꢀꢁꢂ  
ꢁꢂꢇƒ&  
ꢄꢇƒ&  
ꢂꢇƒ&  
ꢀꢆꢃƒ&  
*
9
 ꢉꢂꢃ  
ꢁꢂꢇƒ&  
ꢄꢇƒ&  
ꢂꢇƒ&  
ꢀꢆꢃƒ&  
'0  
ꢀꢄ  
ꢀꢁꢃ  
ꢀꢁꢂ  
*
9
 ꢉꢂꢃ  
 ꢉꢂꢍꢃ9  
'0  
''  
 ꢉꢇꢍꢇ9  
''  
5HSUHVHQWDWLYHꢉ3DUW  
ꢃꢍꢃ ꢃꢍꢇ ꢁꢍꢃ ꢁꢍꢇ ꢂꢍꢃ ꢂꢍꢇ ꢏꢍꢃ ꢏꢍꢇ ꢆꢍꢃ ꢆꢍꢇ ꢇꢍꢃ ꢇꢍꢇ  
2XWSXWꢉ5HIHUHQFHꢉ9ROWDJHꢊꢉ95() ꢋ9ꢌ  
ꢁꢃ ꢁꢇ ꢂꢃ ꢂꢇ ꢏꢃ ꢏꢇ ꢆꢃ ꢆꢇ ꢇꢃ ꢇꢇ ꢅꢃ  
&RPPRQꢉ0RGHꢉ,QSXWꢉ9ROWDJHꢊꢉ9,3 ꢋ9ꢌ  
FIGURE 2-13:  
Input Offset Voltage vs.  
FIGURE 2-16:  
Input Offset Voltage vs.  
Common-Mode Input Voltage, with G  
= 20.  
Reference Voltage, with G  
= 20.  
DM  
DM  
ꢁꢂꢇƒ&  
ꢄꢇƒ&  
ꢂꢇƒ&  
ꢀꢆꢃƒ&  
ꢀꢂ  
ꢀꢆ  
ꢀꢅ  
ꢀꢂ  
ꢀꢆꢃƒ&  
ꢂꢇƒ&  
ꢀꢆ  
ꢄꢇƒ&  
ꢁꢂꢇƒ&  
ꢀꢅ  
ꢀꢄ  
*
9
 ꢉꢇꢃ  
*
9
 ꢉꢇꢃ  
'0  
'0  
5HSUHVHQWDWLYHꢉ3DUW  
5HSUHVHQWDWLYHꢉ3DUW  
 ꢉꢇꢍꢇ9  
 ꢉꢂꢍꢃ9  
''  
''  
ꢀꢄ  
ꢁꢃ ꢁꢇ ꢂꢃ ꢂꢇ ꢏꢃ ꢏꢇ ꢆꢃ ꢆꢇ ꢇꢃ ꢇꢇ ꢅꢃ  
&RPPRQꢉ0RGHꢉ,QSXWꢉ9ROWDJHꢊꢉ9,3 ꢋ9ꢌ  
ꢃꢍꢃ ꢃꢍꢇ ꢁꢍꢃ ꢁꢍꢇ ꢂꢍꢃ ꢂꢍꢇ ꢏꢍꢃ ꢏꢍꢇ ꢆꢍꢃ ꢆꢍꢇ ꢇꢍꢃ ꢇꢍꢇ  
2XWSXWꢉ5HIHUHQFHꢉ9ROWDJHꢊꢉ95() ꢋ9ꢌ  
FIGURE 2-14:  
Input Offset Voltage vs.  
FIGURE 2-17:  
Input Offset Voltage vs.  
Common-Mode Input Voltage, with G  
= 50.  
Reference Voltage, with G  
= 50.  
DM  
DM  
ꢁꢂꢇƒ&  
ꢁꢂꢇƒ&  
ꢄꢇƒ&  
ꢄꢇƒ&  
ꢂꢇƒ&  
ꢂꢇƒ&  
ꢀꢆꢃƒ&  
ꢀꢁ  
ꢀꢂ  
ꢀꢏ  
ꢀꢆ  
ꢀꢇ  
ꢀꢅ  
ꢀꢁ  
ꢀꢂ  
ꢀꢏ  
ꢀꢆ  
ꢀꢇ  
ꢀꢅ  
*
9
 ꢉꢁꢃꢃ  
*
9
 ꢉꢁꢃꢃ  
'0  
'0  
 ꢉꢂꢍꢃ9  
5HSUHVHQWDWLYHꢉ3DUW  
5HSUHVHQWDWLYHꢉ3DUW  
 ꢉꢇꢍꢇ9  
''  
''  
ꢁꢃ ꢁꢇ ꢂꢃ ꢂꢇ ꢏꢃ ꢏꢇ ꢆꢃ ꢆꢇ ꢇꢃ ꢇꢇ ꢅꢃ  
&RPPRQꢉ0RGHꢉ,QSXWꢉ9ROWDJHꢊꢉ9,3 ꢋ9ꢌ  
ꢃꢍꢃ ꢃꢍꢇ ꢁꢍꢃ ꢁꢍꢇ ꢂꢍꢃ ꢂꢍꢇ ꢏꢍꢃ ꢏꢍꢇ ꢆꢍꢃ ꢆꢍꢇ ꢇꢍꢃ ꢇꢍꢇ  
2XWSXWꢉ5HIHUHQFHꢉ9ROWDJHꢊꢉ95() ꢋ9ꢌ  
FIGURE 2-15:  
Input Offset Voltage vs.  
FIGURE 2-18:  
Input Offset Voltage vs.  
Common-Mode Input Voltage, with G  
= 100.  
Reference Voltage, with G  
= 100.  
DM  
DM  
2019 Microchip Technology Inc.  
DS20006179A-page 19  
MCP6C04  
Note:  
Unless otherwise indicated, TA = +25°C, VDD = 2.0V to 5.5V, VSS = GND, VIP = 27.5V, VDM = 0V,  
VREF = VDD/4, VL = VDD/2, RL = 10 kΩ to VL and CL = 60 pF; see Figure 1-9, Figure 1-10 and Figure 1-11.  
ꢆꢇꢎ  
ꢆꢃꢎ  
ꢏꢇꢎ  
ꢏꢃꢎ  
ꢂꢇꢎ  
ꢂꢃꢎ  
ꢁꢇꢎ  
ꢁꢃꢎ  
ꢇꢎ  
ꢆꢇꢎ  
*
 ꢉꢂꢃ  
*
 ꢉꢂꢃ  
7$'0 ꢉꢂꢇƒ&  
7$'0 ꢉꢂꢇƒ&  
ꢆꢃꢎ  
ꢏꢇꢎ  
ꢏꢃꢎ  
ꢂꢇꢎ  
ꢂꢃꢎ  
ꢁꢇꢎ  
ꢁꢃꢎ  
ꢇꢎ  
9''  ꢉꢂꢍꢃ9ꢉWRꢉꢇꢍꢇ9  
ꢂꢄꢉ6DPSOHV  
9,3  ꢉꢏ9ꢉWRꢉꢇꢂ9  
ꢂꢄꢉ6DPSOHV  
9''  ꢉꢂꢍꢃ9  
9''  ꢉꢇꢍꢇ9  
ꢃꢎ  
ꢃꢎ  
ꢃꢍꢃꢁꢃ ꢃꢍꢃꢁꢂ ꢃꢍꢃꢁꢆ ꢃꢍꢃꢁꢅ ꢃꢍꢃꢁꢄ ꢃꢍꢃꢂꢃ ꢃꢍꢃꢂꢂ  
ꢁꢐ&055ꢉꢋ—9ꢐ9ꢌ  
ꢀꢃꢍꢏ  
ꢀꢃꢍꢂ  
ꢀꢃꢍꢁ  
ꢃꢍꢃ  
ꢃꢍꢁ  
ꢃꢍꢂ  
ꢃꢍꢏ  
ꢁꢐ3655ꢉꢋ—9ꢐ9ꢌ  
FIGURE 2-19:  
1/CMRR, with G  
= 20.  
FIGURE 2-22:  
1/PSRR, with G  
= 20.  
DM  
DM  
ꢆꢇꢎ  
ꢏꢃꢎ  
*
 ꢉꢇꢃ  
7$'0 ꢉꢂꢇƒ&  
*
 ꢉꢇꢃ  
7$'0 ꢉꢂꢇƒ&  
ꢆꢃꢎ  
ꢏꢇꢎ  
ꢏꢃꢎ  
ꢂꢇꢎ  
ꢂꢃꢎ  
ꢁꢇꢎ  
ꢁꢃꢎ  
ꢇꢎ  
9,3  ꢉꢏ9ꢉWRꢉꢇꢂ9  
ꢂꢄꢉ6DPSOHV  
ꢂꢇꢎ  
ꢂꢃꢎ  
ꢁꢇꢎ  
ꢁꢃꢎ  
ꢇꢎ  
9''  ꢉꢂꢍꢃ9ꢉWRꢉꢇꢍꢇ9  
ꢂꢄꢉ6DPSOHV  
9''  ꢉꢇꢍꢇ9  
9''  ꢉꢂꢍꢃ9  
ꢃꢎ  
ꢃꢎ  
ꢃꢍꢃꢁꢆ ꢃꢍꢃꢁꢅ ꢃꢍꢃꢁꢄ ꢃꢍꢃꢂꢃ ꢃꢍꢃꢂꢂ ꢃꢍꢃꢂꢆ ꢃꢍꢃꢂꢅ  
ꢁꢐ&055ꢉꢋ—9ꢐ9ꢌ  
ꢀꢃꢍꢁꢂ ꢀꢃꢍꢃꢄ ꢀꢃꢍꢃꢆ ꢃꢍꢃꢃ  
ꢃꢍꢃꢆ  
ꢃꢍꢃꢄ  
ꢃꢍꢁꢂ  
ꢁꢐ3655ꢉꢋ—9ꢐ9ꢌ  
FIGURE 2-20:  
1/CMRR, with G  
= 50.  
FIGURE 2-23:  
1/PSRR, with G  
= 50.  
DM  
DM  
ꢇꢇꢎ  
ꢅꢃꢎ  
ꢇꢇꢎ  
ꢇꢃꢎ  
ꢆꢇꢎ  
ꢆꢃꢎ  
ꢏꢇꢎ  
ꢏꢃꢎ  
ꢂꢇꢎ  
ꢂꢃꢎ  
ꢁꢇꢎ  
ꢁꢃꢎ  
ꢇꢎ  
*
 ꢉꢁꢃꢃ  
*
 ꢉꢁꢃꢃ  
7$'0 ꢉꢂꢇƒ&  
9,3  ꢉꢏ9ꢉWRꢉꢇꢂ9  
ꢂꢄꢉ6DPSOHV  
7$'0 ꢉꢂꢇƒ&  
ꢇꢃꢎ  
ꢆꢇꢎ  
ꢆꢃꢎ  
ꢏꢇꢎ  
ꢏꢃꢎ  
ꢂꢇꢎ  
ꢂꢃꢎ  
ꢁꢇꢎ  
ꢁꢃꢎ  
ꢇꢎ  
9''  ꢉꢂꢍꢃ9ꢉWRꢉꢇꢍꢇ9  
ꢂꢈꢉ6DPSOHV  
9''  ꢉꢇꢍꢇ9  
9''  ꢉꢂꢍꢃ9  
ꢃꢎ  
ꢃꢎ  
ꢃꢍꢃꢁꢃ ꢃꢍꢃꢁꢂ ꢃꢍꢃꢁꢆ ꢃꢍꢃꢁꢅ ꢃꢍꢃꢁꢄ ꢃꢍꢃꢂꢃ ꢃꢍꢃꢂꢂ  
ꢁꢐ&055ꢉꢋ—9ꢐ9ꢌ  
ꢀꢃꢍꢁꢂ ꢀꢃꢍꢃꢄ ꢀꢃꢍꢃꢆ ꢃꢍꢃꢃ  
ꢃꢍꢃꢆ  
ꢃꢍꢃꢄ  
ꢃꢍꢁꢂ  
ꢁꢐ3655ꢉꢋ—9ꢐ9ꢌ  
FIGURE 2-21:  
1/CMRR, with G  
= 100.  
FIGURE 2-24:  
1/PSRR, with G  
= 100.  
DM  
DM  
DS20006179A-page 20  
2019 Microchip Technology Inc.  
MCP6C04  
Note:  
Unless otherwise indicated, TA = +25°C, VDD = 2.0V to 5.5V, VSS = GND, VIP = 27.5V, VDM = 0V,  
VREF = VDD/4, VL = VDD/2, RL = 10 kΩ to VL and CL = 60 pF; see Figure 1-9, Figure 1-10 and Figure 1-11.  
ꢁꢅꢃ  
ꢁꢇꢃ  
ꢁꢆꢃ  
ꢁꢏꢃ  
ꢁꢂꢃ  
ꢁꢁꢃ  
ꢁꢃꢃ  
*
*
*
 ꢉꢁꢃꢃ  
 ꢉꢇꢃ  
 ꢉꢂꢃ  
'0  
'0  
'0  
9,3  ꢉꢏ9ꢉWRꢉꢇꢂ9  
ꢂꢄꢉ6DPSOHV  
ꢀꢇꢃ  
ꢀꢂꢇ  
ꢂꢇ  
ꢇꢃ  
ꢈꢇ  
ꢁꢃꢃ  
ꢁꢂꢇ  
$PELHQWꢉ7HPSHUDWXUHꢊꢉ7$ ꢋƒ&ꢌ  
FIGURE 2-25:  
CMRR vs. Ambient  
Temperature.  
ꢁꢅꢃ  
ꢁꢇꢃ  
ꢁꢆꢃ  
ꢁꢏꢃ  
ꢁꢂꢃ  
ꢁꢁꢃ  
*
*
*
 ꢉꢁꢃꢃ  
 ꢉꢇꢃ  
 ꢉꢂꢃ  
'0  
'0  
'0  
9''  ꢉꢂꢍꢃ9ꢉWRꢉꢇꢍꢇ9  
ꢂꢄꢉ6DPSOHV  
ꢁꢃꢃ  
ꢀꢇꢃ  
ꢀꢂꢇ  
ꢂꢇ  
ꢇꢃ  
ꢈꢇ  
ꢁꢃꢃ  
ꢁꢂꢇ  
$PELHQWꢉ7HPSHUDWXUHꢊꢉ7$ ꢋƒ&ꢌ  
FIGURE 2-26:  
PSRR vs. Ambient  
Temperature.  
FIGURE 2-27:  
Gain Error.  
2019 Microchip Technology Inc.  
DS20006179A-page 21  
ꢁꢍ(  
ꢁꢃꢃ—  
                                                                                 
MCP6C04  
Note:  
Unless otherwise indicated, TA = +25°C, VDD = 2.0V to 5.5V, VSS = GND, VIP = 27.5V, VDM = 0V,  
VREF = VDD/4, VL = VDD/2, RL = 10 kΩ to VL and CL = 60 pF; see Figure 1-9, Figure 1-10 and Figure 1-11.  
2.2  
Other DC Voltages and Currents  
ꢂꢂꢃ  
ꢂꢃꢃ  
4
3
VDM = VDML  
GDM = 20  
:
5HSUHVHQWDWLYHꢉ3DUW  
G
G
DM = 50  
ꢁꢄꢃ  
ꢁꢅꢃ  
ꢁꢆꢃ  
ꢁꢂꢃ  
ꢁꢃꢃ  
ꢄꢃ  
ꢅꢃ  
ꢆꢃ  
ꢂꢃ  
DM = 100  
2
1
ꢀꢆꢃ&  
0
ꢑꢂꢇ&  
ꢑꢄꢇ&  
ꢑꢁꢂꢇ&  
-1  
-2  
-3  
-4  
VDM = VDMH  
:
GDM = 100  
GDM = 50  
G
DM = 20  
ꢃꢉ ꢇꢉ ꢁꢃꢉ ꢁꢇꢉ ꢂꢃꢉ ꢂꢇꢉ ꢏꢃꢉ ꢏꢇꢉ ꢆꢃꢉ ꢆꢇꢉ ꢇꢃꢉ ꢇꢇꢉ ꢅꢃ  
1RQ,QYHUWLQJꢉ,QSXWꢉ9ROWDJHꢊꢉ9,3ꢋ9ꢌ  
Differential Input Voltage;VDM (V)  
FIGURE 2-28:  
V
Pin Input Bias Current  
FIGURE 2-31:  
V
Pin Input Bias Current  
IM  
IP  
vs. Input Common-Mode Voltage.  
vs. Differential Input Voltage.  
ꢁꢃ—  
*
'09'0  ꢉꢀꢏ9  
ꢑꢁꢂꢇƒ&  
ꢑꢄꢇƒ&  
ꢑꢂꢇƒ&  
ꢀꢆꢃƒ&  
ꢁꢂꢇƒ&  
ꢄꢇƒ&  
9''  ꢉꢇꢍꢇ9  
*
 ꢉꢂꢃ  
ꢂꢇƒ&  
'0  
ꢁꢍ(ꢀꢃꢇ  
ꢁꢃ—  
ꢀꢆꢃƒ&  
ꢁꢍ(ꢀꢃꢅ  
ꢁ—  
ꢁ—  
ꢁꢍ(ꢀꢃꢈ  
ꢁꢃꢃQ  
ꢁꢍ(ꢀꢃꢄ  
ꢁꢃQ  
ꢃꢍꢁ  
ꢁꢍ(ꢀꢃꢒ  
ꢁQ  
ꢁꢃꢃQ  
ꢁꢃ ꢁꢇ ꢂꢃ ꢂꢇ ꢏꢃ ꢏꢇ ꢆꢃ ꢆꢇ ꢇꢃ ꢇꢇ ꢅꢃ  
,QYHUWLQJꢉ,QSXWꢉ9ROWDJHꢊꢉ9,0 ꢋ9ꢌ  
ꢀꢃꢍꢏꢃ ꢀꢃꢍꢂꢇ ꢀꢃꢍꢂꢃ ꢀꢃꢍꢁꢇ ꢀꢃꢍꢁꢃ ꢀꢃꢍꢃꢇ  
,QSXWꢉ&RPPRQꢉ0RGHꢉ9ROWDJHꢊꢉ9,3 ꢋ9ꢌ  
ꢃꢍꢃꢃ  
FIGURE 2-29:  
V
Pin Input Bias Current  
FIGURE 2-32:  
Input Bias Current vs. Input  
IM  
vs. Input Common-Mode Voltage, V  
= V  
.
Common-Mode Voltage (below V ).  
DM  
DML  
SS  
ꢁꢃ  
ꢇꢅ  
ꢇꢇ  
ꢇꢆ  
ꢇꢏ  
ꢇꢂ  
ꢇꢁ  
ꢇꢃ  
ꢆꢒ  
ꢆꢄ  
ꢆꢈ  
ꢆꢅ  
ꢁꢃ—  
ꢑꢁꢂꢇƒ&  
ꢑꢄꢇƒ&  
ꢑꢂꢇƒ&  
ꢀꢆꢃƒ&  
*
'09'0  ꢉꢀꢏ9  
9''  ꢉꢇꢍꢇ9  
*
 ꢉꢂꢃ  
'0  
9,3+ ± 966  
ꢁ—  
9,3/ ± 966  
ꢃꢍꢁ  
ꢁꢃꢃQ  
ꢁꢃ ꢁꢇ ꢂꢃ ꢂꢇ ꢏꢃ ꢏꢇ ꢆꢃ ꢆꢇ ꢇꢃ ꢇꢇ ꢅꢃ  
,QYHUWLQJꢉ,QSXWꢉ9ROWDJHꢊꢉ9,0 ꢋ9ꢌ  
ꢀꢇꢃ ꢀꢂꢇ  
ꢂꢇ ꢇꢃ ꢈꢇ ꢁꢃꢃ ꢁꢂꢇ ꢁꢇꢃ  
$PELHQWꢉ7HPSHUDWXUHꢊꢉ7$ ꢋƒ&ꢌ  
FIGURE 2-30:  
V
Pin Input Bias Current  
FIGURE 2-33:  
Common-Mode Input Range  
IM  
vs. Input Common-Mode Voltage, V  
= V  
.
vs. Ambient Temperature.  
DM  
DMH  
DS20006179A-page 22  
2019 Microchip Technology Inc.  
MCP6C04  
Note:  
Unless otherwise indicated, TA = +25°C, VDD = 2.0V to 5.5V, VSS = GND, VIP = 27.5V, VDM = 0V,  
VREF = VDD/4, VL = VDD/2, RL = 10 kΩ to VL and CL = 60 pF; see Figure 1-9, Figure 1-10 and Figure 1-11.  
ꢁꢍꢆ  
ꢅꢃꢃ  
,QFUHDVLQJꢉ9''  
ꢇꢇꢃ  
ꢁꢍꢂ  
ꢇꢃꢃ  
9'' ± 95+  
ꢆꢇꢃ  
ꢆꢃꢃ  
ꢃꢍꢄ  
ꢃꢍꢅ  
ꢃꢍꢆ  
ꢃꢍꢂ  
ꢏꢇꢃ  
ꢑꢁꢂꢇƒ&  
ꢏꢃꢃ  
ꢂꢇꢃ  
ꢂꢃꢃ  
ꢁꢇꢃ  
ꢁꢃꢃ  
ꢇꢃ  
ꢑꢄꢇƒ&  
ꢑꢂꢇƒ&  
ꢀꢆꢃƒ&  
95/ ± 966  
ꢀꢃꢍꢂ  
ꢃꢍꢃ ꢃꢍꢇ ꢁꢍꢃ ꢁꢍꢇ ꢂꢍꢃ ꢂꢍꢇ ꢏꢍꢃ ꢏꢍꢇ ꢆꢍꢃ ꢆꢍꢇ ꢇꢍꢃ ꢇꢍꢇ  
3RZHUꢉ6XSSO\ꢉ9ROWDJHꢊꢉ9'' ꢋ9ꢌ  
ꢀꢇꢃ  
ꢀꢂꢇ  
ꢂꢇ  
ꢇꢃ  
ꢈꢇ  
ꢁꢃꢃ ꢁꢂꢇ  
$PELHQWꢉ7HPSHUDWXUHꢊꢉ7$ ꢋƒ&ꢌ  
FIGURE 2-34:  
Reference Voltage Range  
FIGURE 2-37:  
Supply Current vs. Power  
vs. Ambient Temperature.  
Supply Voltage.  
50  
40  
1000  
6-Lead SOT-23  
30  
20  
10  
-40°C  
+25°C  
+85°C  
100  
10  
+125°C  
0
+125°C  
+85°C  
+25°C  
-40°C  
-10  
-20  
-30  
-40  
-50  
VDD – VOH  
VOL – VSS  
1
0.1  
1
10  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage; VDD (V)  
Output Current Magnitude; | IOUT | (mA)  
FIGURE 2-35:  
Output Voltage Range vs.  
FIGURE 2-38:  
Output Short Circuit Current  
Output Current.  
vs. Power Supply Voltage.  
ꢁꢍꢈ  
ꢁꢍꢅ  
ꢁꢍꢇ  
ꢁꢍꢆ  
ꢁꢍꢏ  
ꢁꢍꢂ  
ꢁꢍꢁ  
ꢁꢍꢃ  
ꢃꢍꢒ  
ꢃꢍꢄ  
ꢃꢍꢈ  
ꢆꢇ  
ꢆꢃ  
ꢏꢇ  
ꢏꢃ  
ꢂꢇ  
ꢂꢃ  
ꢁꢇ  
ꢁꢃ  
93/+  
93//  
9'' ± 92+  
92/ ± 966  
ꢀꢇꢃ  
ꢀꢂꢇ  
ꢂꢇ  
ꢇꢃ  
ꢈꢇ  
ꢁꢃꢃ ꢁꢂꢇ  
ꢀꢇꢃ  
ꢀꢂꢇ  
ꢂꢇ  
ꢇꢃ  
ꢈꢇ  
ꢁꢃꢃ  
ꢁꢂꢇ  
$PELHQWꢉ7HPSHUDWXUHꢊꢉ7$ ꢋƒ&ꢌ  
$PELHQWꢉ7HPSHUDWXUHꢊꢉ7$ ꢋƒ&ꢌ  
FIGURE 2-36:  
Output Voltage Range vs.  
FIGURE 2-39:  
LV POR (for V ) Trip  
DD  
Ambient Temperature.  
Points vs. Ambient Temperature.  
2019 Microchip Technology Inc.  
DS20006179A-page 23  
MCP6C04  
Note:  
Unless otherwise indicated, TA = +25°C, VDD = 2.0V to 5.5V, VSS = GND, VIP = 27.5V, VDM = 0V,  
VREF = VDD/4, VL = VDD/2, RL = 10 kΩ to VL and CL = 60 pF; see Figure 1-9, Figure 1-10 and Figure 1-11.  
ꢂꢍꢅ  
ꢂꢍꢇ  
ꢂꢍꢆ  
ꢂꢍꢏ  
ꢂꢍꢂ  
ꢂꢍꢁ  
ꢂꢍꢃ  
ꢁꢍꢒ  
ꢁꢍꢄ  
9,3/  
9,3/'  
ꢀꢇꢃ  
ꢀꢂꢇ  
ꢂꢇ  
ꢇꢃ  
ꢈꢇ  
ꢁꢃꢃ ꢁꢂꢇ  
$PELHQWꢉ7HPSHUDWXUHꢊꢉ7$ ꢋƒ&ꢌ  
FIGURE 2-40:  
HV POR (for V ) Trip Points  
IP  
vs. Ambient Temperature.  
DS20006179A-page 24  
2019 Microchip Technology Inc.  
ꢁꢍꢁꢃN  
N
ꢁꢍ0  
ꢏ0  
MCP6C04  
Note:  
Unless otherwise indicated, TA = +25°C, VDD = 2.0V to 5.5V, VSS = GND, VIP = 27.5V, VDM = 0V,  
VREF = VDD/4, VL = VDD/2, RL = 10 kΩ to VL and CL = 60 pF; see Figure 1-9, Figure 1-10 and Figure 1-11.  
2.3  
Frequency Response  
ꢆꢃ  
ꢏꢇ  
ꢏꢃ  
ꢂꢇ  
ꢂꢃ  
ꢁꢇ  
ꢁꢃ  
*
5
 ꢉꢂꢃꢉ9ꢐ9  
 ꢉꢃŸ  
1.E+04  
10k  
'0  
,62  
1.E+03  
1k  
&/  
ꢃꢉS)  
ꢁꢃꢃꢉS)  
ꢁꢍꢃꢉQ)  
ꢁꢃꢉQ)  
ꢀꢇ  
1.E+02  
100  
GDM  
GDM  
=
=
20  
50  
ꢀꢁꢃ  
ꢀꢁꢇ  
ꢀꢂꢃ  
ꢀꢂꢇ  
ꢀꢏꢃ  
G
DM = 100  
1.E+01  
10  
1.E+5  
1.E+6  
1M  
1.E+7  
10M  
100k  
Frequency; f (Hz)  
)UHTXHQF\ꢊꢉIꢉꢋ+]ꢌ  
FIGURE 2-41:  
Gain vs. Frequency, with  
FIGURE 2-44:  
Closed-Loop Output  
Capacitive Load.  
Impedance Magnitude vs. Frequency.  
100  
90  
80  
70  
60  
50  
40  
140  
VIP= 0.1VPK  
120  
100  
80  
60  
40  
20  
0
GDM = 100  
GDM = 50  
GDM = 20  
10k  
1.E+04  
100k  
1M  
1.E+06  
1.E+05  
100M  
1.0E+08  
1G  
10G  
1.0E+10  
1.0E+09  
Frequency; f (Hz)  
Frequency; f (Hz)  
FIGURE 2-42:  
CMRR vs. Frequency.  
FIGURE 2-45:  
EMI Rejection Ratio vs.  
Frequency.  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
140  
120  
100  
80  
f:  
60  
6.0 GHz  
4.0 GHz  
2.4 GHz  
1.8 GHz  
0.9 GHz  
0.4 GHz  
GDM = 100  
40  
GDM  
GDM  
=
=
50  
20  
20  
0
0.01  
1k  
10k  
1.E+4  
100k  
1.E+5  
1M  
1.E+6  
10M  
1.E+7  
0.1  
Input Common Mode Voltage; VIP (VPK  
1
1.E+3  
Frequency; f (Hz)  
)
FIGURE 2-43:  
PSRR vs. Frequency.  
FIGURE 2-46:  
EMI Rejection Ratio vs.  
Signal Strength.  
2019 Microchip Technology Inc.  
DS20006179A-page 25  
MCP6C04  
Note:  
Unless otherwise indicated, TA = +25°C, VDD = 2.0V to 5.5V, VSS = GND, VIP = 27.5V, VDM = 0V,  
VREF = VDD/4, VL = VDD/2, RL = 10 kΩ to VL and CL = 60 pF; see Figure 1-9, Figure 1-10 and Figure 1-11.  
2.4  
Noise and Intermodulation Distortion  
300n  
GDM = 20  
GDM = 50  
GDM = 100  
GDM = 20  
SAM = 40 SPS  
f
NPBW = 10 Hz  
NPBW = 1 Hz  
1.E-7  
100n  
1.E-8  
10n  
0.1  
1
10  
100  
1k  
10k  
100k  
0
20 40 60 80 100 120 140 160 180 200  
Time; t (s)  
1.E-1 1.E+0 1.E+1 1.E+2 1.E+3 1.E+4 1.E+5  
Frequency; f (Hz)  
FIGURE 2-47:  
vs. Frequency.  
Input Noise Voltage Density  
FIGURE 2-50:  
Time, G = 20.  
Input Noise Voltage vs.  
DM  
1.E-4  
100μ  
GDM = 50  
GDM = 20  
fSAM = 40 SPS  
G
DM = 50  
GDM = 100  
NPBW = 10 Hz  
NPBW = 1 Hz  
1.E-5  
10μ  
1.E-6  
1μ  
1.E-7  
100n  
1.E-8  
10n  
0.1  
1
10  
100  
1k  
10k  
100k  
0
20 40 60 80 100 120 140 160 180 200  
Time; t (s)  
1.E-1 1.E+0 1.E+1 1.E+2 1.E+3 1.E+4 1.E+5  
Frequency; f (Hz)  
FIGURE 2-48:  
Frequency.  
Input Noise Voltage vs.  
FIGURE 2-51:  
Time, G = 50.  
Input Noise Voltage vs.  
DM  
1.E-03  
GDM = 100  
GDM = 20  
fSAM = 40 SPS  
VDD = 5.5V, at DC  
= 0.1 VPK, at 100 Hz  
No VDD bypass cap  
NPBW = 10 Hz  
NPBW = 1 Hz  
1.E-04  
1.E-05  
1.E-06  
Residual Tone  
at 100 Hz  
Δf = 2 Hz, f ≤ 3201 Hz  
= 64 Hz, f ≥ 3250 Hz  
0
20 40 60 80 100 120 140 160 180 200  
Time; t (s)  
1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05  
Frequency; f (Hz)  
FIGURE 2-49:  
vs. Frequency, with V Disturbance.  
Intermodulation Distortion  
FIGURE 2-52:  
Time, G = 100.  
Input Noise Voltage vs.  
DD  
DM  
DS20006179A-page 26  
2019 Microchip Technology Inc.  
MCP6C04  
Note:  
Unless otherwise indicated, TA = +25°C, VDD = 2.0V to 5.5V, VSS = GND, VIP = 27.5V, VDM = 0V,  
VREF = VDD/4, VL = VDD/2, RL = 10 kΩ to VL and CL = 60 pF; see Figure 1-9, Figure 1-10 and Figure 1-11.  
2.5  
Time Response  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
6
5
4
VDD (V)  
3
VOUT (V)  
2
1
GDM = 20  
VOS ≈ (VOUT – 0.5V)/GDM  
0
GDM = 100  
GDM = 50  
GDM = 20  
-1  
-2  
-3  
tSettle  
tON  
0
50 100 150 200 250 300 350 400 450 500  
Time; t (μs)  
Time; t (2 μs/div)  
FIGURE 2-56:  
to Differential Input Voltage.  
Small Signal Step Response  
FIGURE 2-53:  
Time, at Power-Up.  
Input Offset Voltage vs.  
6
5
4
3
2
1
0
-1  
GDM = 20  
VIP  
GDM = 50  
GDM = 100  
VOUT  
VOUT  
GDMVDM  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
Time; t (μs)  
Time; t (ms)  
FIGURE 2-57:  
to Common-Mode Input Voltage.  
Small Signal Step Response  
FIGURE 2-54:  
Phase Reversal vs. Differential Input Overdrive.  
The MCP6C04 Shows No  
70  
60  
50  
40  
30  
20  
10  
0
7
6
5
4
3
2
1
0
VDD = 5.0V  
VIP  
VOUT  
On  
3
Off  
0
1
2
4
5
6
7
8
9
10  
Time; t (ms)  
FIGURE 2-55:  
The MCP6C04 Shows No  
Phase Reversal vs. Input Common-Mode  
Overdrive.  
2019 Microchip Technology Inc.  
DS20006179A-page 27  
MCP6C04  
Note:  
Unless otherwise indicated, TA = +25°C, VDD = 2.0V to 5.5V, VSS = GND, VIP = 27.5V, VDM = 0V,  
VREF = VDD/4, VL = VDD/2, RL = 10 kΩ to VL and CL = 60 pF; see Figure 1-9, Figure 1-10 and Figure 1-11.  
2.0  
GDM = 20  
RISO = 0Ω  
RISO = 0Ω  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
GDM = 100  
GDM = 50  
GDM = 20  
CL = 100 pF  
CL = 1 nF  
CL = 10 nF  
1n  
1.E-9  
10n  
1.E-8  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
10p  
100p  
1.E-10  
1.E-11  
t (μs)  
Capacitive Load; CL (F)  
FIGURE 2-58:  
Small Signal Step Response  
FIGURE 2-60:  
Small Signal Step Response  
to Differential Input Voltage, with Capacitive  
Rise Time, with Capacitive Load (C ).  
L
Load (C ).  
L
70%  
RISO = 0Ω  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
GDM = 100  
GDM = 50  
GDM = 20  
1n  
1.E-9  
10n  
1.E-8  
10p  
1.E-11  
100p  
1.E-10  
Capacitive Load; CL (F)  
FIGURE 2-59:  
Small Signal Step Response  
Overshoot, with Capacitive Load (C ).  
L
DS20006179A-page 28  
2019 Microchip Technology Inc.  
MCP6C04  
NOTES:  
2019 Microchip Technology Inc.  
DS20006179A-page 29  
MCP6C04  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
Symbol  
VOUT  
MCP6C04  
SOT-23  
Description  
1
2
3
4
5
6
Output voltage  
VSS  
VIP  
Negative power supply  
Noninverting input (at load’s RSH) and positive (high-side) power supply  
VIM  
Inverting input (at load’s RSH  
)
VREF  
VDD  
Output reference  
Positive (low-side) power supply  
3.1  
Noninverting Analog Signal Input  
(VIP)  
3.4  
Analog Output (VOUT)  
The analog output pin (VOUT) is a low-impedance  
voltage source.  
The noninverting input (VIP) is a high-impedance  
CMOS input. It is designed to operate over a wide  
voltage range, with a voltage source to drive it. In this  
data sheet, it is treated as the Common-mode input  
voltage.  
3.5  
Low-Side Power Supplies  
(VDD, VSS  
)
VDD is normally between VSS + 2.0V and VSS + 5.5V,  
while the VREF and VOUT pins are usually between VSS  
and VDD. VDD – VSS triggers the LV POR.  
VIP is the high voltage power supply pin, and is  
normally between VSS + 3V and VSS + 52V. It supplies  
the current needed to operate the high voltage circuitry.  
VIP should have a good bypass capacitor (e.g., 10 nF).  
VIP – VSS triggers the HV POR.  
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need good bypass capacitors.  
VIP is treated as the Common-mode voltage in this data  
sheet, due to the inputs' architecture. Since VDM is  
relatively small, this simplification is accurate; it also  
simplifies the specifications and applications  
information.  
In split supply configurations, including dual supplies,  
ground is between VSS and VDD. Both supply pins will  
need good bypass capacitors.  
In a single (negative) supply configuration, VDD  
connects to ground and VSS connects to the supply.  
VSS will need good bypass capacitors.  
3.2  
Inverting Analog Signal Input (VIM)  
The inverting input (VIM) is a high-impedance CMOS  
input, with low input bias current. VIM is designed to  
operate near the VIP voltage. The difference voltage  
VDM (or VIP – VIM) is the input signal for this amplifier.  
3.3  
Analog Output Reference Voltage  
(VREF  
)
The analog output reference voltage is  
a
high-impedance CMOS input. VREF is set to a DC  
voltage, which shifts VOUT. Its dynamic response helps  
reject power surges and glitches at the VIP, VDD and  
VSS pins.  
DS20006179A-page 30  
2019 Microchip Technology Inc.  
MCP6C04  
NOTES:  
2019 Microchip Technology Inc.  
DS20006179A-page 31  
MCP6C04  
The input (differential) signal is applied to GM1. Due to  
its architecture, the MCP6C04’s signal inputs are best  
described by VIP and VDM. The inverting input is then:  
4.0  
DEVICE OPERATION  
This chapter includes additional information on basic  
operations and major functions.  
EQUATION 4-2:  
4.1  
Basic Performance  
VIM = VIP VDM  
4.1.1  
IDEAL PERFORMANCE  
Figure 4-1 shows the basic circuit; inputs, supplies and  
output. When the inputs (VIP, VIM, VDD, VSS and VREF  
and output (VOUT) are in their specified ranges, and the  
part is nearly ideal, the output voltage is:  
The negative feedback loop includes GM2, RM3, RF and  
RG. These blocks set the DC open-loop gain (AOL) and  
the nominal differential gain (GDM):  
)
EQUATION 4-3:  
EQUATION 4-1:  
A
= G  
R
OL  
M2 M3  
= 1 + R R  
G
VOUT VREF + GDMVDM  
G
DM  
F
Where:  
GDM  
VIP  
=
=
=
Differential-Mode Gain  
AOL is very high, so the current into RM3 (I1 + I2) is  
nearly zero. This makes the differential inputs to GM1  
and GM2 equal in magnitude and opposite in polarity.  
Ideally, this gives:  
Common-Mode Input (and HV supply)  
VDM  
Differential-Mode Input (VIP – VIM)  
EQUATION 4-4:  
VDD  
U1 (DUT)  
VFG VREF = VDM  
MCP6C04  
VIP  
VIM  
VOUT = VREF + GDMVDM  
VOUT  
For an ideal part, within the operating ranges, changing  
VIP, VSS or VDD produces no change in VOUT. VREF  
shifts VOUT as needed in the design.  
VREF  
VSS  
The different GDM options change GM1, GM2, RF, RG  
and the internal compensation capacitor. This results in  
the performance trade-offs highlighted in Table 1.  
FIGURE 4-1:  
Basic Circuit.  
For normal operation, keep:  
• VIP between VIPL and VIPH  
• VDM between VDML and VDMH  
• VREF between VRL and VRH  
4.1.3  
DC PERFORMANCE  
DC Voltage Errors  
4.1.3.1  
• VOUT between 0.1V to VDD – 0.1V, usually  
- VOL and VOH are hard limits  
Section 1.6, Explanation of DC Error Specifications  
covers some DC specifications. The input offset error  
(with temperature coefficients), gain error and  
nonlinearities are discussed in detail.  
4.1.2  
ANALOG ARCHITECTURE  
Figure 4-2 shows the block diagram for these high-side  
current sense amplifiers, without any details on offset  
correction.  
Plots in Section 2.1, DC Precision and Section 2.2,  
Other DC Voltages and Currents give useful  
information.  
In this data sheet, CMRR is based on changes in VIP  
(i.e., CMRR = ΔVIP/ΔVOS). This is accurate since VDM  
is relatively small. This CMRR describes the rejection  
of errors at the high voltage supply, without any  
VDD  
VOUT  
VIP  
VIM  
RM3  
GM1  
Σ
contribution from VDM  
.
I1  
RF  
VFG  
I2  
GM2  
RG  
VREF  
VSS  
FIGURE 4-2:  
MCP6C04 Block Diagram.  
DS20006179A-page 32  
2019 Microchip Technology Inc.  
MCP6C04  
These parts are compensated to have a stable  
response. For instance, step response overshoot is  
low. To be stable, VREF must see a low impedance and  
VOUT must have a low capacitive load (see Figure 4-6  
to compensate large capacitive loads).  
4.1.3.2  
Figure 4-3 shows the resistors and currents that  
change the DC bias point. The input bias currents (IBP  
IBM and IBR), together with a circuit’s external input  
resistances, give an DC error (see Equation 1-2).  
DC Current Errors  
,
In this data sheet, the AC CMRR is measured at VIP.  
This is accurate, since VDM is relatively small.  
VDD  
4.1.5  
TEMPERATURE PERFORMANCE  
The input offset voltage’s temperature drift is detailed in  
Equation 1-6. Other temperature responses are shown  
in Section 1.3, Specifications and Section 2.0  
“Typical Performance Curves”.  
VOUT  
Σ
RWIP  
IBP  
RWIM  
RF  
IBM  
IBR  
RG  
Since there are three power supply pins (VIP, VDD and  
VSS), and VIP reaches 52V, power and temperature rise  
calculations are important.  
RSH  
VHV  
VSS  
IL  
The power dissipated is calculated as follows (IOUT is  
positive when it flows out of the VOUT pin):  
U1  
MCP6C04  
RWR  
Load  
EQUATION 4-6:  
FIGURE 4-3:  
Currents.  
DC Bias Resistors and  
PTOT = PDD + PBP + POUT  
RSH is set by the design requirements, given the load  
current (IL). For most applications, RSH would be  
between 100 µΩ and 1Ω.  
Where:  
IOUT  
PDD  
=
=
=
=
=
(VOUT – VL)/RL  
(VDD – VSS)IDD  
The DC input offset error due to the input currents is:  
VOS_IR = VDM – ILRSH  
PBP  
(VIP – VSS)IBP  
POUT  
(VDD – VOUT)IOUT, IOUT ≥ 0A  
(VSS – VOUT)IOUT, IOUT < 0A  
= IBM(RSH + RWIM) – IBPRWIP  
Since these currents do not correlate, minimize the  
magnitude of each resistance. IBPRIP will dominate in  
many designs.  
Now we can estimate the junction temperature of the  
device (see Table 1-4):  
RWR modifies the gain error and the DC output offset  
error (VOUT changes IBR):  
EQUATION 4-7:  
TJ = TA + PTOTθJA  
EQUATION 4-5:  
ΔVREF = IBRRWR  
4.1.6  
NOISE PERFORMANCE  
ΔgE (RWRGDM) (RF + RG)  
This part is designed to have low input noise voltage  
density at lower frequencies. The offset correction  
(Section 4.2.2, Chopping Action) modulates high  
frequency white noise down to DC; it also modulates  
low frequency 1/f noise to higher frequencies.  
VOUT (VREF + ΔVREF) + GDMVDM(1 + gE + ΔgE)  
4.1.4  
AC PERFORMANCE  
The bandwidth of these parts (fBW) is set internally to  
either 500 kHz (GDM = 20 or 50) or 390 kHz  
(GDM = 100).  
The measured input noise voltage density is shown in  
Figure 2-47. That figure also shows Integrated Input  
Noise Voltage (Eni, in units of VRMS) between 0 Hz and  
f (between 0.1 Hz and 100 kHz).  
The large signal bandwidth is close to the small signal  
bandwidth. The slew rate (SR) has little effect on VOUT  
(a benefit of our Current-mode architecture).  
The Input Noise Voltage Density (eni) changes with  
VDM. However, that relationship is a weak one.  
The bandwidth at the maximum output swing is called  
the Full Power Bandwidth (fFPBW). It is limited by the  
Slew Rate (SR) for many amplifiers, but is close to fBW  
for these parts. This is a benefit of the Current-mode  
architecture these parts have.  
2019 Microchip Technology Inc.  
DS20006179A-page 33  
MCP6C04  
4.2  
Overview of Zero-Drift Operation  
Figure 4-4 shows a diagram of the MCP6C04; It explains how slow voltage errors at the input are reduced in this archi-  
tecture (much better VOS, TC1 TC2, CMRR, CMRR2, PSRR and 1/f noise).  
VIP  
DM  
EMI  
Clamps  
Filters  
VIM  
GM1  
Chopper  
Input  
Switches  
Chopper  
Output  
Switches  
Low-Pass  
Filter  
GA1  
EMI  
Filter  
VREF  
RG  
RF  
GM2  
Chopper  
Input  
Switches  
Chopper  
Output  
Switches  
Low-Pass  
Filter  
VFG  
GA2  
RM4  
VOUT  
FIGURE 4-4:  
MCP6C04 Block Diagram.  
The internal LV POR (for VDD – VSS) starts the part in  
a known good state, protecting against power supply  
4.2.1  
BUILDING BLOCKS  
The Main Amplifiers (GM1 and GM2) are designed for  
high gain and bandwidth, with a differential topology.  
The main input pairs (+ and - pins at the top left) are for  
the higher frequency portion of the input signal. The  
auxiliary input pairs (+ and - pins at the bottom left) are  
for the low frequency and high precision portion of the  
input signal and correct the input offset voltage. Both  
inputs are added together internally  
brown-outs. The internal HV POR (for VIP – VSS  
)
ensures protection of the low voltage circuitry, as well  
as proper functioning.  
4.2.2  
CHOPPING ACTION  
Figure 4-5 shows the amplifier connections for the first  
phase of the Chopping Clock and Figure 4-6 shows  
them for the second phase. The slow voltage errors  
alternate in polarity, making the average error small.  
The auxiliary amplifiers (GA1 and GA2), the chopper  
input switches and the chopper output switches provide  
a high DC gain to the input signal. DC errors are  
modulated to higher frequencies and white noise to low  
frequencies.  
VIP  
VIM  
The low-pass filter reduces high-frequency content,  
including harmonics of the chopping clock.  
Low-  
Pass  
Filter  
GA1  
The output buffer (RM4) converts current to voltage,  
drives the external load at VOUT and creates a negative  
feedback loop through RF and RG. RF and RG help set  
the differential gain.  
VREF  
VFG  
Low-  
Pass  
Filter  
The oscillator runs at fCLK = 50 kHz for the gains of 20  
and 50, and at fCLK = 100 kHz for the gain of 100. fCLK  
is divided by 2, to produce the chopping clock rate  
(25 kHz and 50 kHz, respectively).  
GA2  
FIGURE 4-5:  
First Chopping Clock Phase;  
Simplified Diagram.  
DS20006179A-page 34  
2019 Microchip Technology Inc.  
MCP6C04  
The VIP and VIM input pins have an ESD structure  
designed to limit VIP – VSS and VDM. The double  
parallel diode structure that limits ESD damage through  
VDM also limits VDM in other conditions.  
VIP  
VIM  
Low-  
Pass  
Filter  
GA1  
VIP  
VIM  
VREF  
VFG  
HV  
ESD  
HV  
POR  
DM ESD  
VSS  
Low-  
Pass  
Filter  
GA2  
FIGURE 4-7:  
(i.e., for V ) and V – V .  
SS  
Input Protection for V  
DM  
IM  
IP  
FIGURE 4-6:  
Phase; Simplified Diagram.  
Second Chopping Clock  
The VREF, VOUT and VDD pins have ESD structures that  
limit their voltages above VSS (i.e., limit VREF – VSS  
,
VOUT – VSS and VDD – VSS).  
4.2.3  
FINAL TEST VS. BENCH  
Due to limitations in the final test environment  
(e.g., equipment accuracies, thermocouple effects  
crosstalk and test time), final test measurements are  
not as accurate as bench measurements. For this  
reason, the input offset voltage related specifications  
(VOS, TC1, TC2, ..., CMRR and PSRR) are significantly  
wider than the histograms from bench measurements.  
VREF  
VOUT  
LV  
ESD  
LV  
ESD  
VSS  
VDD  
VSS  
The bench results will give good guidance on how to  
design your circuit. The specified limits (for final test)  
give min/max limits used to screen outliers in  
production.  
LV  
ESD  
LV  
POR  
VSS  
4.2.4  
INTERMODULATION DISTORTION  
(IMD)  
FIGURE 4-8:  
and V  
Input Protection for V  
,
REF  
V
.
DD  
OUT  
These amplifiers will show intermodulation distortion  
(IMD) products when an AC signal is present.  
4.3.2  
PHASE REVERSAL  
This part is designed to not exhibit phase inversion  
when the input signals (VIP, VDM and VREF) exceed  
their specified ranges (but not their absolute ranges).  
The signal and clock can be decomposed into sine  
wave tones (Fourier series components). These tones  
interact with the zero-drift circuitry’s nonlinear  
response to produce IMD tones at sum and difference  
frequencies. Each of the square wave clock’s  
harmonics has a series of IMD tones centered on it.  
4.3  
Protection  
The MCP6C04 helps the designer provide enough  
protection against undesired conditions and signals in  
their environment.  
4.3.1  
INTERNAL PROTECTION DEVICES  
All of the ESD structures clamp their inputs when they  
try to go too far below VSS. Their breakdown voltage is  
high enough to allow normal operation, but not low  
enough to protect against slow over-voltage events.  
Very fast ESD events (that meet the specification) are  
limited so that damage does not occur.  
The supply inputs (VIP – VSS and VDD – VSS) are also  
connected to PORs, so that internal power up  
sequencing is well controlled.  
2019 Microchip Technology Inc.  
DS20006179A-page 35  
MCP6C04  
5.1.3  
BYPASS CAPACITORS  
5.0  
APPLICATIONS  
Be sure to specify capacitors that will support your  
application. Be sure to look at:  
This chapter includes design recommendations and  
typical application circuits.  
• Voltage rating (well above the maximum value for  
its pins)  
The Common-mode rejection (see Figure 2-13,  
Figure 2-14, Figure 2-15 and Figure 2-42) supports  
applications in noisy environments. Our Current-mode  
architecture gives high CMRR at higher frequencies  
than was traditional (e.g., 80 dB near 80 kHz, instead  
of near 60 Hz).  
• Dielectrics (good Temp. Cos. and reasonable  
Volt. Cos.  
• Size  
• Surface mount vs. leaded  
• Cost vs. availability  
The power supply rejection (see Figure 2-43) also has  
excellent rejection at higher frequencies than  
traditional.  
If possible, connect VSS to ground. This will make your  
design simpler.  
Bypass VIP to VSS with a local bypass capacitor next to  
these pins (e.g.,10 nF). If needed, a bulk bypass  
capacitor can also be added (e.g.,1 µF).  
5.1  
Recommended Design Practices  
Some simple design practices help take advantage of  
the MCP6C04's performance in high-side current  
sensing applications.  
Bypass VDD to VSS with a local bypass capacitor next  
to these pins (e.g.,100 nF). A bulk bypass capacitor  
should also be added close by (e.g.,2.2 µF); placing it  
next to the local bypass capacitor is a good choice.  
5.1.1  
INPUT VOLTAGE LIMITS  
To prevent damage and/or improper operation of these  
amplifiers, the circuit must limit the voltages at the VIP  
and VIM input pins, as well as the differential input  
voltage VDM (see Section 1.1, Absolute Maximum  
Ratings †). These requirements are independent of  
the current limits discussed below.  
5.1.4  
SETTING THE VOLTAGES AT V  
IP  
AND V  
IM  
VIP is tied to a voltage source, to minimize glitches and  
crosstalk. This part’s excellent CMRR versus  
frequency helps reject Common-mode (i.e., at VIP)  
noise and glitches. A local pass capacitor to VSS can  
help, when the design allows it; 10 nF is usually a good  
choice (see the Typical Application Circuit on Page 1).  
The ESD protection on the VIP and VDM inputs was  
discussed in Section 4.3.1, Internal Protection  
Devices. This structure was chosen to protect the input  
transistors against many (but not all) overvoltage  
conditions, and to minimize input bias currents (IBP and  
IBM).  
A shunt resistor (RSH) is connected between VIP and  
VIM, then to the load (which is grounded). It is selected  
for the trade-off between accuracy (high RSH) and  
power dissipation (low RSH). Low power dissipation  
also leads to reduced size and cost. RSH also helps  
protect these pins against large glitches; make sure it  
will never fail open.  
To protect the inputs, always drive VIP with a low  
impedance source and use a shunt resistor (RSH) with  
low resistance (designed to not fail open). Placing  
zener diode(s) or a transorb across RSH will also help  
protect the inputs.  
Bypass capacitors on VIP and VIM can reduce the risk  
of high over-voltage events when the current changes  
abruptly, such as an inductive load opening.  
5.1.2  
INPUT CURRENT LIMITS  
To prevent damage to (or improper operation of) these  
amplifiers, the circuit must limit the currents into the VIP  
and VIM input pins (see Section 1.1, Absolute  
A good layout is necessary to minimize DC and AC  
errors. Figure 5-1 shows a layout that minimizes input  
resistances seen by IBN and IBM. The critical paths are  
between RSH and the pins VIP and VIM (RWIP and  
RWIM).  
Maximum  
Ratings †).  
This  
requirement  
is  
independent of the voltage limits discussed above.  
One way to ensure the input currents are limited is to  
always drive VIP with a low impedance source, and to  
use a shunt resistor (RSH) with low resistance  
(designed to not fail open). Placing zener diode(s) or a  
transorb across RSH will also help protect the inputs.  
Pin VIP  
Pin VIM  
(trace = RWIP  
)
(trace = RWIM)  
trace to VHV  
trace to load  
RSH  
FIGURE 5-1:  
PCB Layout for R  
SH  
(connections to V and V ).  
IP  
IM  
DS20006179A-page 36  
2019 Microchip Technology Inc.  
MCP6C04  
For accuracy, the wiring resistances at the DUT inputs  
need to be small:  
VDD  
U1 (DUT)  
U2 (ADC)  
EQUATION 5-1:  
MCP6C04  
MCP3xxx  
VIP  
VIM  
R
RWIP 4 mΩ  
RWIM 0.1Ω  
C
VOUT  
R
5.1.5  
SETTING THE VOLTAGE AT V  
REF  
VDD  
For designs with VREF = VSS, short the VREF and VSS  
pins together; connect them to ground (or other  
reference) using one low impedance via (or trace). This  
minimizes DC and AC errors.  
RR  
VREF  
CR  
For designs with VREF ≥ VSS + 0.1V, connect VREF and  
VSS with a relatively large capacitor. Since VREF needs  
a low impedance source, we recommend the following  
two design approaches.  
VSS  
Use when VREF ≥ VSS + 0.1V  
V Bypass Circuit #2.  
REF  
The DC resistance seen at VREF needs to be small.  
This resistance includes trace resistance, via  
resistance and output resistance of any driving  
amplifiers. For good gain error in the signal band,  
maintain this resistance in that band.  
FIGURE 5-3:  
Replacing Figure 5-3 with a simple resistor divider and  
capacitor will cause potential issues. The equivalent  
resistance needs to be low (see Equation 5-2), so the  
divider will draw a lot of current. The capacitor will need  
to be large, to set a reasonable pole, increasing cost  
and PCB space.  
EQUATION 5-2:  
RWR 1Ω  
We strongly recommend against designs with  
VSS < VREF < VSS + 0.1V, since AC glitches may  
become an problem.  
The AC impedance seen at VREF needs to support  
stability at frequencies near the bandwidth. See  
Section 5.1.7.1, Driving VREF for more information.  
5.1.6  
TEMPERATURE RISE  
Figure 5-2 shorts VREF and VSS together. The ADC  
connects its negative input to VREF, so it can reject  
glitches on VSS and VREF (notice only one connection  
to VSS is shown, for good precision).  
Make sure that TJ does not exceed the absolute  
maximum junction temperature spec (see Section 1.1,  
Absolute Maximum Ratings ). This is a strong  
concern when TA is high (e.g., above 125°C), when  
IOUT’s magnitude is large (e.g., near the short circuit  
limit) or when VIP is high.  
Figure 5-3 uses an IC VREF to generate VREF – VSS  
,
an R-C low-pass filter to reject fast glitches seen at  
VREF – VSS and an op amp buffer (≥ 1 MHz) to drive  
VREF with a low impedance source (see Equation 1-2)  
(notice only one connection to VSS is shown, for good  
precision).  
Formulas needed for this part of the design are found  
in Section 4.1.5, Temperature Performance.  
Temperature ramp rates need to be limited, for best  
performance. The PCB and other components cause  
external offset shifts, while the temperature ramp rate  
is high.  
VDD  
U1 (DUT)  
U2 (ADC)  
MCP6C04  
MCP3xxx  
5.1.7  
ENSURING STABILITY  
VIP  
VIM  
A few simple design techniques will help take  
advantage of these stable parts. Simulations and  
bench measurements help to verify the solutions (e.g.,  
look at step response overshoot and ringing).  
R
R
C
VOUT  
VSS  
Use when VREF = VSS  
FIGURE 5-2:  
V
Bypass Circuit #1.  
REF  
2019 Microchip Technology Inc.  
DS20006179A-page 37  
MCP6C04  
5.1.7.1  
Driving V  
REF  
ꢁꢂ  
ꢁꢃ  
ꢁꢓꢂꢃꢃ  
ꢁꢓꢃꢃꢃ  
ꢄꢃꢃ  
ꢅꢃꢃ  
ꢆꢃꢃ  
ꢂꢃꢃ  
5,62  ꢉꢃŸ  
The voltage source driving the VREF pin must be low  
impedance (see Equation 1-2), so that the signal gain  
is constant within the signal bandwidth.  
*3.ꢉ± 6ROLGꢉ/LQHV  
%:ꢉ± 'DVKHGꢉ/LQHV  
When the frequency is near the bandwidth (e.g.,  
between BW/4 and 4 BW), the source’s impedance  
magnitude should be below 50Ω.  
*
 ꢉꢂꢃ  
 ꢉꢇꢃ  
'0  
*
'0  
5.1.7.2  
Source Impedances  
*
 ꢉꢁꢃꢃ  
'0  
The recommended DC source resistances (at VIP, VIM  
and VREF; see Equation 5-2) will help ensure stability,  
by keeping R-C time constants very fast.  
ꢁS  
ꢁꢃS  
ꢁꢃꢃS  
ꢁQ  
ꢁꢃQ  
ꢁꢃꢃQ  
ꢁꢍ(ꢀꢁꢂ ꢁꢍ(ꢀꢁꢁ ꢁꢍ(ꢀꢁꢃ ꢁꢍ(ꢀꢃꢒ ꢁꢍ(ꢀꢃꢄ ꢁꢍ(ꢀꢃꢈ  
&DSDFLWLYHꢉ/RDGꢊꢉ&/ ꢋ)ꢌ  
FIGURE 5-5:  
Bandwidth and Gain  
5.1.7.3  
Capacitive Loads  
Peaking vs. Capacitive Load, without R  
.
ISO  
Driving large capacitive loads can cause stability  
problems for voltage amplifiers. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases and the closed-loop bandwidth  
reduces. This produces gain peaking in the frequency  
response, with overshoot and ringing in the step  
response. Lower gains (GDM) exhibit greater sensitivity  
to capacitive loads.  
1.E+ 4  
10k  
1.E+03  
1k  
When driving large capacitive loads with these parts  
(e.g., > 80 pF), a small series resistor at the output  
(RISO in Figure 5-4) improves the feedback loop’s  
phase margin (stability) by making the output load  
resistive at higher frequencies. The bandwidth will be  
generally lower than the bandwidth with no capacitive  
load.  
1.E+02  
100  
GDM = 100  
G
G
DM = 50  
DM = 20  
1.E+01  
10  
10p  
100p  
1.E-10  
1n  
10n  
1.E-08  
100n  
1.E-07  
1.E-11  
1.E-09  
Capacitive Load; CL (F)  
FIGURE 5-6:  
Recommended R  
vs.  
ISO  
Capacitive Load.  
VDD  
U1 (DUT)  
5.1.8  
NOISE DESIGN  
MCP6C04  
As shown in Figure 2-47 and Table 1-3, the input noise  
voltage density is white (and low) at low frequencies.  
This supports accurate averages (DC estimates) in  
applications.  
VIP  
VOUT  
RISO  
CL  
VIM  
VREF  
VSS  
1/f noise is negligible for almost all applications. As a  
result, the time domain data in Figure 2-50, Figure 2-51  
and Figure 2-52 is well behaved.  
FIGURE 5-4:  
Recommended R  
Values  
ISO  
Figure 2-47 also shows a curve of the Integrated Input  
Noise Voltage (Eni, in units of VRMS) between 0 Hz and  
f (between 0.1 Hz and 100 kHz). To estimate Eni  
between the frequencies f1 and f2, simply take the RMS  
for Capacitive Loads.  
Figure 5-5 shows the typical responses versus CL,  
when RISO is a short circuit (see Figure 2-58).  
difference (i.e., Eni f1 to f2  
= sqrt(Eni22 – Eni12)).  
|
Figure 5-6 gives recommended RISO values for  
different capacitive loads and gains. The x-axis is the  
load capacitance (CL).  
The Input Noise Voltage Density (eni) changes with  
VDM; however, that it is a weak relationship, so it can be  
neglected in designs.  
After selecting RISO for the circuit, double check the  
resulting frequency response peaking and step  
response overshoot on the bench. Modify RISO’s value  
until the response is reasonable.  
Figure 5-7 and Figure 5-8 show the device noise as a  
Signal-to-Noise ratio (SNR), assuming the signal is a  
full-scale sine wave (at VOUT). The x-axis is the circuit’s  
bandwidth (BW), to make it easy to evaluate a  
particular design.  
The input offset voltage is shown as a Signal-to-Offset  
ratio (SVosR), to indicate where the DC offset  
dominates the error.  
DS20006179A-page 38  
2019 Microchip Technology Inc.  
MCP6C04  
5.1.10  
BIDIRECTIONAL APPLICATIONS  
Figure 5-3 shows ways to connect VREF and VSS for  
best performance.  
130  
120  
110  
100  
90  
VDD = 2.0V  
Dashed Lines = SVosR  
Solid Lines = SNR  
To maximize headroom, reduce VOL and VOH by  
setting RL high.  
5.1.11  
SUPPLY PINS  
80  
As described in Section 3.5 “Low-Side Power  
Supplies (VDD, VSS)”, the ground potential (GND)  
can be set where needed in your design. The most  
common design approach has VSS = GND (positive  
single supply). Other common design approaches  
have VDD = GND (negative single supply) or  
VSS < GND < VDD (dual, or split, supplies).  
70  
GDM = 20  
GDM = 50  
GDM = 100  
60  
50  
1.E+0  
1
10  
1.E+1  
100  
1.E+2  
1k  
1.E+3  
10k  
1.E+4  
100k  
1.E+5  
Bandwidth; f (Hz)  
FIGURE 5-7:  
Estimates, V = 2.0V.  
SNR vs. Bandwidth  
DD  
Setting VSS = GND has the potential to increase  
rejection of crosstalk and glitches. In any case, a good  
ground design (e.g., ground plane on a PCB) and  
appropriate bypass capacitors are needed to realize  
these benefits. It pays to be sure that your capacitor's  
voltage rating and dielectric will support your needs  
over your voltage and temperature ranges. With some  
dielectrics, it pays to also take aging (changes over  
time) into account too.  
130  
120  
110  
100  
90  
VDD = 5.5V  
Dashed Lines = SVosR  
Solid Lines = SNR  
80  
70  
GDM = 20  
GDM = 50  
60  
GDM = 100  
50  
1
10  
1.E+1  
100  
1.E+2  
1k  
1.E+3  
10k  
1.E+4  
100k  
1.E+5  
1.E+0  
Bandwidth; f (Hz)  
FIGURE 5-8:  
SNR vs. Bandwidth  
Estimates, V = 5.5V.  
DD  
5.1.9  
UNIDIRECTIONAL APPLICATIONS  
In unidirectional applications where VREF = VSS, it is  
important to minimize output headroom (VOL). The  
lower VOL is, the more accurate the zero scale reading  
is.  
To reduce VOL, make IOUT as low as possible. This is  
done by making RL high and by tying VL to VSS  
.
Figure 5-2 shows how to connect VREF and VSS for  
best performance.  
2019 Microchip Technology Inc.  
DS20006179A-page 39  
MCP6C04  
H-Bridge motor drive circuits can place their current  
monitors in several positions. Figure 5-10 shows a few  
possibilities:  
5.2  
Typical Application Circuits  
The following circuits give guidance on using the  
MCP6C04 within common applications. They leave out  
details and the design requirements followed.  
• Position A – This uses a unidirectional monitor  
(MCP6C04 at VA1 and VA2), with current polarity  
determined by the timing of the switches (SWLT,  
etc.)  
5.2.1  
MOTOR CURRENT MONITORS  
Figure 5-9 shows a simplified DC motor current monitor  
circuit with a regulated voltage supply. The MCP6C04  
and its circuit are all connected to the same ground, for  
better glitch performance. In this case, since IL is  
• Positions B and C – This uses two unidirectional  
monitors (on MCP6C04 at VB1 and VB2 and the  
other at VC1 and VC2), with each one representing  
one current polarity  
non-negative, we choose VREF = VSS  
.
• Position D – This uses a bidirectional monitor  
(MCP6C04 at VD1 and VD2), with current polarity  
determined by the output  
The ADC operates on a different supply; its ground will  
be different due to I-R drops and glitches. The  
differential input is tied to VREF, so that its CMRR can  
reject differences between grounds.  
- The monitor must function at and below  
ground  
- The monitor must withstand large switching  
steps and glitches  
+5V  
- We caution that the MCP6C04 should not be  
used in these conditions  
2.2 µF  
10 nF  
U1 (DUT)  
100 nF  
+48V  
MCP6C04-100  
Obviously, choosing different locations for the  
monitor(s) gives trade-offs in accuracy and complexity.  
For instance, the monitor at Position D directly  
measures the motor current, but will have large voltage  
swings at its VIP pin.  
RSH  
VOUT  
2.2 mΩ  
20 kΩ  
IL < 20A  
VREF  
The switches are discrete semiconductor switches  
(i.e., CMOS, Bipolar, IGFET, etc.).  
+5V  
VHV  
2.2 µF  
U2 (ADC)  
VA1  
MCP3xxx  
R
R
100 nF  
VOUT  
VREF  
IA  
RA  
C
VA2  
VC1  
RC  
VB1  
RB  
FIGURE 5-9:  
Regulated Supply Voltage.  
Motor Current Monitor for  
IB  
IC  
VC2  
VB2  
SWLT  
SWRT  
VD2  
ID  
VD1  
RD  
SWLB  
SWRB  
FIGURE 5-10:  
H-Bridge Motor Current  
Monitor, With a Few Possible Monitor Locations.  
DS20006179A-page 40  
2019 Microchip Technology Inc.  
MCP6C04  
5.2.2  
ANALOG LEVEL SHIFTER  
The MCP6C04 can be used to shift analog voltages  
from a high positive voltage down to a low voltage.  
Many possibilities exist; Figure 5-11 is just one possible  
implementation.  
+5V  
2.2 µF  
10 nF  
100 nF  
V1  
The input attenuator (R1 and R2) allow a wider range of  
voltages to be measured. No resistor is placed  
between V1 and the noninverting input, so that the input  
current IBP doesn’t cause an offset shift. The attenuator  
resistors' accuracy and values may affect the circuit's  
gain error and offset.  
R1  
R2  
VOUT  
100 kΩ  
V2  
U1  
MCP6C04  
+2.5V  
+5V  
The +2.5V reference level allows bidirectional voltage  
sensing; it needs to be very low impedance and reject  
glitches on the supply or ground (see Figure 5-3 for  
recommendations on this part of the circuit).  
2.2 µF  
U2  
100 nF  
MCP3xxx  
VOUT  
R
R
C
+2.5V  
FIGURE 5-11:  
Analog Level Shifter.  
2019 Microchip Technology Inc.  
DS20006179A-page 41  
MCP6C04  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
6-Lead SOT-23  
Example  
Part Number  
Code  
MCP6C04T-020E/CHY  
MCP6C04T-050E/CHY  
MCP6C04T-100E/CHY  
42  
45  
41  
4247  
Legend: XX...X Device-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available charac-  
ters for customer-specific information.  
DS20006179A-page 42  
2019 Microchip Technology Inc.  
MCP6C04  
6-Lead Plastic Small Outline Transistor (CH, CHY) [SOT-23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2X  
0.15 C A-B  
D
e1  
A
D
E
2
E1  
E
E1  
2
2X  
0.15 C D  
2X  
0.20 C A-B  
e
B
6X b  
0.20  
C A-B D  
TOP VIEW  
A2  
A
C
SEATING PLANE  
6X  
A1  
c
0.10 C  
SIDE VIEW  
R1  
R
L2  
GAUGE PLANE  
Ĭ
L
(L1)  
END VIEW  
Microchip Technology Drawing C04-028C (CH) Sheet 1 of 2  
2019 Microchip Technology Inc.  
DS20006179A-page 43  
MCP6C04  
6-Lead Plastic Small Outline Transistor (CH, CHY) [SOT-23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Units  
Dimension Limits  
MILLIMETERS  
MIN  
NOM  
MAX  
Number of Leads  
Pitch  
Outside lead pitch  
Overall Height  
Molded Package Thickness  
Standoff  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
N
6
e
0.95 BSC  
1.90 BSC  
e1  
A
A2  
A1  
E
E1  
D
L
0.90  
0.89  
0.00  
-
1.45  
1.30  
0.15  
1.15  
-
2.80 BSC  
1.60 BSC  
2.90 BSC  
0.45  
0.30  
0.60  
Footprint  
Seating Plane to Gauge Plane  
Foot Angle  
Lead Thickness  
Lead Width  
L1  
L1  
φ
c
b
0.60 REF  
0.25 BSC  
-
0°  
0.08  
0.20  
10°  
0.26  
0.51  
-
-
Notes:  
1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or  
protrusions shall not exceed 0.25mm per side.  
2. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-028C (CH) Sheet 2 of 2  
DS20006179A-page 44  
2019 Microchip Technology Inc.  
MCP6C04  
6-Lead Plastic Small Outline Transistor (CH, CHY) [SOT-23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
GX  
Y
Z
C
G
G
SILK SCREEN  
X
E
RECOMMENDED LAND PATTERN  
Units  
Dimension Limits  
MILLIMETERS  
MIN  
NOM  
0.95 BSC  
2.80  
MAX  
Contact Pitch  
E
C
Contact Pad Spacing  
Contact Pad Width (X3)  
Contact Pad Length (X3)  
Distance Between Pads  
Distance Between Pads  
Overall Width  
X
Y
G
GX  
Z
0.60  
1.10  
1.70  
0.35  
3.90  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing No. C04-2028B (CH)  
2019 Microchip Technology Inc.  
DS20006179A-page 45  
MCP6C04  
NOTES:  
DS20006179A-page 46  
2019 Microchip Technology Inc.  
MCP6C04  
APPENDIX A: REVISION HISTORY  
Revision A (March 2019)  
• Initial release of this document.  
2019 Microchip Technology Inc.  
DS20006179A-page 47  
MCP6C04  
NOTES:  
2019 Microchip Technology Inc.  
DS20006179A-page 48  
MCP6C04  
We use production screens to support the quality of our  
VOS specification in outgoing products. The screen  
limits are wider and are used to eliminate fliers; see  
Table B-1.  
APPENDIX B: OFFSET TEST  
SCREENS  
Input offset voltage specifications in the DC spec table  
(Table 1-1) are based on bench measurements (see  
Section 2.1, DC Precision). These measurements are  
much more accurate than at test, because:  
• More compact circuit  
• Parts soldered on the PCB  
• More time spent averaging (reduced noise)  
• Better temperature control  
- Reduced temperature gradients  
- Greater accuracy  
TABLE B-1:  
OFFSET TEST SCREENS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = 2.0V to 5.5V, VSS = GND, VIP = 27.5V,  
VDM = 0V, VREF = VDD/4, VL = VDD/2 and RL = 10 kΩ to VL; see Figure 1-9 and Figure 1-10.  
Parameters  
Sym.  
Min.  
Max.  
Units  
Gain  
Conditions  
Test Screen  
Input Offset Voltage  
VOS  
-36  
-33  
-30  
+36  
+33  
+30  
μV  
20  
50  
100  
2019 Microchip Technology Inc.  
DS20006179A-page 49  
MCP6C04  
NOTES:  
2019 Microchip Technology Inc.  
DS20006179A-page 50  
MCP6C04  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
(1)  
Examples:  
-XXX  
X
/XXX  
[X]  
PART NO.  
Device  
a) MCP6C04T-020E/CHY: Tape and Reel,  
Differential Gain = 20,  
Gain Option  
Temperature  
Range  
Package  
Tape and Reel  
Option  
Extended Temperature,  
6LD SOT-23  
b) MCP6C04T-050E/CHY: Tape and Reel,  
Device:  
MCP6C04: Zero-Drift, 52V High-Side Current Sense Amp  
Differential Gain = 50,  
Extended Temperature,  
6LD SOT-23  
(1)  
Tape and Reel  
Option:  
T
= Tape and Reel  
c) MCP6C04T-100E/CHY: Tape and Reel,  
Differential Gain = 100,  
Extended Temperature,  
6LD SOT-23  
Gain Option:  
020  
050  
100  
= Differential Gain of 20 V/V  
= Differential Gain of 50 V/V  
= Differential Gain of 100 V/V  
Temperature  
Range:  
E
=
=
-40°C to +125°C (Extended))  
Note 1:  
Tape and Reel identifier only appears in the  
catalog part number description. This identifier  
is used for ordering purposes and is not  
printed on the device package. Check with  
your Microchip Sales Office for package  
availability with the Tape and Reel option.  
Package:  
CHY  
Plastic Small Outline Transistor (SOT-23), 6-Lead  
2019 Microchip Technology Inc.  
DS20006179A-page 51  
MCP6C04  
NOTES:  
DS20006179A-page 52  
2019 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate, AVR,  
AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo,  
CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo,  
JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus,  
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,  
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip  
Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo,  
SuperFlash, tinyAVR, UNI/O, and XMEGA are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
and other countries.  
ClockWorks, The Embedded Control Solutions Company,  
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,  
mTouch, Precision Edge, and Quiet-Wire are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard,  
CryptoAuthentication, CryptoAutomotive, CryptoCompanion,  
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average  
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial  
Programming, ICSP, INICnet, Inter-Chip Connectivity,  
JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi,  
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB,  
MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation,  
PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon,  
QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O,  
SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total  
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,  
WiperLock, Wireless DNA, and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip  
Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
© 2019, Microchip Technology Incorporated, All Rights  
Reserved.  
ISBN: 978-1-5224-4265-3  
== ISO/TS 16949 ==  
2019 Microchip Technology Inc.  
DS20006179A-page 53  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Australia - Sydney  
Tel: 61-2-9868-6733  
India - Bangalore  
Tel: 91-80-3090-4444  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
China - Beijing  
Tel: 86-10-8569-7000  
India - New Delhi  
Tel: 91-11-4160-8631  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8665-5511  
India - Pune  
Tel: 91-20-4121-0141  
Finland - Espoo  
Tel: 358-9-4520-820  
China - Chongqing  
Tel: 86-23-8980-9588  
Japan - Osaka  
Tel: 81-6-6152-7160  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
China - Dongguan  
Tel: 86-769-8702-9880  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Guangzhou  
Tel: 86-20-8755-8029  
Korea - Daegu  
Tel: 82-53-744-4301  
Germany - Garching  
Tel: 49-8931-9700  
China - Hangzhou  
Tel: 86-571-8792-8115  
Korea - Seoul  
Tel: 82-2-554-7200  
Germany - Haan  
Tel: 49-2129-3766400  
Austin, TX  
Tel: 512-257-3370  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Malaysia - Kuala Lumpur  
Tel: 60-3-7651-7906  
Germany - Heilbronn  
Tel: 49-7131-67-3636  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
China - Nanjing  
Tel: 86-25-8473-2460  
Malaysia - Penang  
Tel: 60-4-227-8870  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Qingdao  
Philippines - Manila  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-532-8502-7355  
Tel: 63-2-634-9065  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shanghai  
Tel: 86-21-3326-8000  
Singapore  
Tel: 65-6334-8870  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Shenyang  
Tel: 86-24-2334-2829  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Shenzhen  
Tel: 86-755-8864-2200  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Suzhou  
Tel: 86-186-6233-1526  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Wuhan  
Tel: 86-27-5980-5300  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Italy - Padova  
Tel: 39-049-7625286  
Houston, TX  
Tel: 281-894-5983  
China - Xian  
Tel: 86-29-8833-7252  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
China - Xiamen  
Tel: 86-592-2388138  
Norway - Trondheim  
Tel: 47-7288-4388  
China - Zhuhai  
Tel: 86-756-3210040  
Poland - Warsaw  
Tel: 48-22-3325737  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
DS20006179A-page 54  
2019 Microchip Technology Inc.  
08/15/18  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY