MCP6L92T-E/OT [MICROCHIP]

10 MHz, 850 μA Op Amps; 10兆赫, 850 μA运算放大器
MCP6L92T-E/OT
型号: MCP6L92T-E/OT
厂家: MICROCHIP    MICROCHIP
描述:

10 MHz, 850 μA Op Amps
10兆赫, 850 μA运算放大器

运算放大器
文件: 总30页 (文件大小:456K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6L91/1R/2/4  
10 MHz, 850 µA Op Amps  
Features  
Description  
• Available in SOT-23-5 package  
The Microchip Technology Inc. MCP6L91/1R/2/4 family  
of operational amplifiers (op amps) provides wide  
bandwidth for the current. The input bias currents and  
voltage ranges make it easier to fit into many  
applications.  
• Gain Bandwidth Product: 10 MHz (typical)  
• Rail-to-Rail Input/Output  
• Supply Voltage: 2.4V to 6.0V  
• Supply Current: IQ = 0.85 mA/amplifier (typical)  
• Extended Temperature Range: -40°C to +125°C  
• Available in Single, Dual and Quad Packages  
This family has a 10 MHz Gain Bandwidth Product  
(GBWP) and a low 850 µA per amplifier quiescent  
current. These op amps operate on supply voltages  
between 2.4V and 6.0V, with rail-to-rail input and output  
swing. They are available in the extended temperature  
range.  
Typical Applications  
• Portable Equipment  
• Photodiode Amplifier  
• Analog Filters  
Package Types  
MCP6L91  
MCP6L92  
• Notebooks and PDAs  
• Battery-Powered Systems  
SOT-23-5  
SOIC, MSOP  
VDD  
1
5
1
2
3
4
8
7
6
5
VOUTA  
VOUT  
VSS  
VDD  
Design Aids  
• FilterLab® Software  
VOUTB  
2
3
VINA  
+
VINB  
+
VINA  
4
VIN  
+
VIN  
VINB  
VSS  
• Microchip Advanced Part Selector (MAPS)  
• Analog Demonstration and Evaluation Boards  
• Application Notes  
MCP6L91  
SOIC, MSOP  
MCP6L94  
SOIC, TSSOP  
NC  
1
2
3
4
8
7
6
5
NC  
VIN  
VIN  
V
V
V
VOUTA  
1
2
3
14  
13  
12  
11  
10  
9
OUTD  
VDD  
VOUT  
NC  
Typical Application  
VINA  
+
IND  
+
MCP6L91  
VINA  
+
VSS  
IND  
R1  
R2  
R3  
VDD 4  
VSS  
3.01 kΩ 6.81 kΩ  
9.31 kΩ  
MCP6L91R  
VINB  
+
V
+
5
6
7
INC  
VOUT  
VIN  
VINB  
VINC  
SOT-23-5  
C1  
C2  
C3  
VOUTB  
VOUTC  
8
120 nF  
12 nF  
27 nF  
1
2
3
5
VOUT  
VDD  
VSS  
4
VIN  
+
VIN–  
Low-pass Filter  
© 2009 Microchip Technology Inc.  
DS22141A-page 1  
MCP6L91/1R/2/4  
NOTES:  
DS22141A-page 2  
© 2009 Microchip Technology Inc.  
MCP6L91/1R/2/4  
1.0  
1.1  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification is not  
implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
VDD – VSS .......................................................................7.0V  
Current at Input Pins ....................................................±2 mA  
Analog Inputs (VIN+, VIN–) †† ....... VSS – 1.0V to VDD + 1.0V  
All Inputs and Outputs ................... VSS – 0.3V to VDD + 0.3V  
Difference Input voltage ...................................... |VDD – VSS  
|
†† See Section 4.1.2 “Input Voltage and Current Limits”.  
Output Short Circuit Current ................................Continuous  
Current at Output and Supply Pins ..........................±150 mA  
Storage Temperature ...................................-65°C to +150°C  
Max. Junction Temperature ........................................+150°C  
ESD protection on all pins (HBM, MM) ................≥ 4 kV, 400V  
1.2  
Specifications  
TABLE 1-1:  
DC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = 5.0V, VSS = GND, VCM = VSS, VOUT VDD/2,  
VL = VDD/2 and RL = 10 kΩ to VL (refer to Figure 1-1).  
Min  
(Note 1)  
Max  
(Note 1)  
Parameters  
Sym  
Typ  
Units  
Conditions  
Input Offset  
Input Offset Voltage  
VOS  
-4  
±1  
±1.3  
89  
+4  
mV  
Input Offset Voltage Drift  
Power Supply Rejection Ratio  
Input Current and Impedance  
Input Bias Current  
ΔVOS/ΔTA  
PSRR  
µV/°C TA= -40°C to+125°C  
dB  
IB  
IB  
1
pA  
Across Temperature  
50  
pA  
pA  
TA= +85°C  
Across Temperature  
IB  
2000  
±1  
1013||6  
1013||3  
TA= +125°C  
Input Offset Current  
IOS  
ZCM  
ZDIFF  
pA  
Common Mode Input Impedance  
Differential Input Impedance  
Common Mode  
Ω||pF  
Ω||pF  
Common-Mode Input Voltage Range  
Common-Mode Rejection Ratio  
Open Loop Gain  
VCMR  
-0.3  
5.3  
V
CMRR  
91  
dB  
VCM = -0.3V to 5.3V  
VOUT = 0.2V to 4.8V  
DC Open Loop Gain (large signal)  
Output  
AOL  
105  
dB  
Maximum Output Voltage Swing  
VOL  
VOH  
ISC  
4.980  
0.020  
V
V
G = +2, 0.5V Input Overdrive  
G = +2, 0.5V Input Overdrive  
Output Short Circuit Current  
Power Supply  
±25  
mA  
Supply Voltage  
VDD  
IQ  
2.4  
6.0  
V
Quiescent Current per Amplifier  
0.35  
0.85  
1.35  
mA  
IO = 0  
Note 1: For design guidance only; not tested.  
© 2009 Microchip Technology Inc.  
DS22141A-page 3  
MCP6L91/1R/2/4  
TABLE 1-2:  
AC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +5.0V, VSS = GND, VCM = VSS, VOUT VDD/2,  
VL = VDD/2, RL = 10 kΩ to VL and CL = 60 pF (refer to Figure 1-1).  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
AC Response  
Gain Bandwidth Product  
Phase Margin  
GBWP  
PM  
10  
65  
7
MHz  
°
G = +1  
Slew Rate  
SR  
V/µs  
Noise  
Input Noise Voltage  
Input Noise Voltage Density  
Input Noise Current Density  
Eni  
eni  
ini  
2.5  
9.4  
3
µVP-P f = 0.1 Hz to 10 Hz  
nV/Hz f = 10 kHz  
fA/Hz f = 1 kHz  
TABLE 1-3:  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, all limits are specified for: VDD = +2.4V to +6.0V, VSS = GND.  
Parameters  
Sym  
Min  
Typ  
Max Units  
Conditions  
Temperature Ranges  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
TA  
TA  
TA  
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
(Note 1)  
Thermal Package Resistances  
Thermal Resistance, 5L-SOT-23  
Thermal Resistance, 8L-SOIC (150 mil)  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
θJA  
θJA  
θJA  
θJA  
θJA  
256  
163  
206  
120  
100  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Note 1: Operation must not cause TJ to exceed Maximum Junction Temperature specification (150°C).  
CF  
6.8 pF  
1.3  
Test Circuit  
The circuit used for most DC and AC tests is shown in  
Figure 1-1. This circuit can independently set VCM and  
VOUT; see Equation 1-1. Note that VCM is not the  
circuit’s common mode voltage ((VP + VM)/2), and that  
RG  
100 kΩ  
RF  
100 kΩ  
VDD/2  
VP  
VOST includes VOS plus the effects (on the input offset  
VDD  
error, VOST) of temperature, CMRR, PSRR and AOL  
.
VIN+  
CB1  
100 nF  
CB2  
1 µF  
EQUATION 1-1:  
MCP6L9X  
GDM = RF RG  
VIN–  
VCM = (VP + VDD 2) ⁄ 2  
VOST = VINVIN+  
VOUT  
VM  
RL  
10 kΩ  
CL  
60 pF  
RG  
100 kΩ  
VOUT = (VDD 2) + (VP VM) + VOST(1 + GDM  
Where:  
)
RF  
100 kΩ  
GDM = Differential Mode Gain  
(V/V)  
(V)  
CF  
6.8 pF  
VCM = Op Amp’s Common Mode  
VL  
Input Voltage  
FIGURE 1-1:  
AC and DC Test Circuit for  
VOST = Op Amp’s Total Input Offset  
(mV)  
Voltage  
Most Specifications.  
DS22141A-page 4  
© 2009 Microchip Technology Inc.  
MCP6L91/1R/2/4  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5.0V, VSS = GND, VCM = VSS, VOUT = VDD/2, VL = VDD/2,  
RL = 10 kΩ to VL and CL = 60 pF.  
1.0  
0.8  
0.5  
0.4  
VDD = 2.4V  
Representative Part  
0.6  
0.3  
VCMRH – VDD  
0.4  
0.2  
0.2  
0.1  
0.0  
One Wafer Lot  
0.0  
-40°C  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
+25°C  
+85°C  
+125°C  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
VCMRL – VSS  
-50  
-25  
0
25  
50  
75  
100  
125  
Common Mode Input Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-1:  
Input Offset Voltage vs.  
FIGURE 2-4:  
Input Common Mode Range  
Common Mode Input Voltage at V = 2.4V.  
Voltage vs. Ambient Temperature.  
DD  
1.0  
100  
95  
VDD = 5.5V  
Representative Part  
+125°C  
+85°C  
+25°C  
-40°C  
0.8  
0.6  
CMRR (VCM = VCMRL to VCMRH  
)
0.4  
90  
85  
80  
75  
70  
0.2  
PSRR (VCM = VSS  
)
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-50  
-25  
0
25  
50  
75  
100  
125  
Common Mode Input Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-2:  
Input Offset Voltage vs.  
FIGURE 2-5:  
CMRR, PSRR vs. Ambient  
Common Mode Input Voltage at V = 5.5V.  
Temperature.  
DD  
0.5  
100  
90  
80  
70  
60  
50  
40  
30  
20  
Representative Part  
0.4  
VDD = 1.8V  
0.3  
0.2  
CMRR  
VDD = 5.5V  
0.1  
0.0  
PSRR–  
PSRR+  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
10  
100  
1.2  
1k  
10k  
1.4  
100k  
15  
1.E01  
1.03  
Frequency (Hz)  
FIGURE 2-3:  
Input Offset Voltage vs.  
FIGURE 2-6:  
CMRR, PSRR vs.  
Output Voltage.  
Frequency.  
© 2009 Microchip Technology Inc.  
DS22141A-page 5  
MCP6L91/1R/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +5.0V, VSS = GND, VCM = VSS, VOUT = VDD/2, VL = VDD/2,  
RL = 10 kΩ to VL and CL = 60 pF.  
6
5
1.E1-00m2  
VIN  
G = +2 V/V  
1m  
1.E-03  
100µ  
1.E- 4  
VOUT  
10µ  
1.E-05  
4
1µ  
1.E-06  
3
100n  
1.E-07  
10n  
1.E-08  
2
+125°C  
+85°C  
+25°C  
-40°C  
1n  
1.E-09  
100p  
1.E-10  
1
10p  
1.E-11  
1p  
0
1.E-12  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
Input Voltage (V)  
0.E+00  
1.E-03  
2.E-03  
3.E-03  
4.E-03  
5.E-03  
6.E-03  
7.E-03  
8.E-03  
9.E-03  
1.E-02  
-1  
Time (1 ms/div)  
FIGURE 2-7:  
Measured Input Current vs.  
FIGURE 2-10:  
The MCP6L91/1R/2/4 Show  
Input Voltage (below V ).  
No Phase Reversal.  
SS  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
120  
100  
80  
0
-30  
-60  
Phase  
60  
-90  
+125°C  
+85°C  
+25°C  
-40°C  
40  
-120  
-150  
-180  
-210  
Gain  
20  
0
-20  
1
10 100 1k 10k 100k 1M 10M 100M  
1.E+ 1.E+ 1.E+ 1.E+ 1.E+ 1.E+ 1.E+ 1.E+ 1.E+  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Power Supply Voltage (V)  
Frequency (Hz)  
00 01 02 03 04 05 06 07 08  
FIGURE 2-8:  
Open-Loop Gain, Phase vs.  
FIGURE 2-11:  
Quiescent Current vs.  
Frequency.  
Power Supply Voltage.  
40  
30  
1,000  
20  
100  
10  
1
10  
-40°C  
+25°C  
+85°C  
+125°C  
0
-10  
-20  
-30  
-40  
0.1  
1
10  
100  
1k  
10k  
100k  
1.E-01 1.E+0 1.E+0 1.E+0 1.E+0 1.E+0 1.E+0  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
0
1Freque2ncy (Hz3)  
4
5
FIGURE 2-9:  
Input Noise Voltage Density  
FIGURE 2-12:  
Output Short Circuit Current  
vs. Frequency.  
vs. Power Supply Voltage.  
DS22141A-page 6  
© 2009 Microchip Technology Inc.  
MCP6L91/1R/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +5.0V, VSS = GND, VCM = VSS, VOUT = VDD/2, VL = VDD/2,  
RL = 10 kΩ to VL and CL = 60 pF.  
12  
30  
25  
20  
15  
10  
5
VDD = 5.5V  
VDD – VOH  
IOUT  
11  
10  
9
8
7
6
5
4
3
Falling Edge  
VOL – VSS  
-IOUT  
VDD = 2.4V  
Rising Edge  
2
1
0
0
100µ  
1m  
1.E-03  
10m  
1.E-02  
-50  
-25  
0
25  
50  
75  
100  
125  
1.E-04  
Output Current Magnitude (A)  
Ambient Temperature (°C)  
FIGURE 2-13:  
Ratio of Output Voltage  
FIGURE 2-16:  
Slew Rate vs. Ambient  
Headroom to Output Current vs. Output Current.  
Temperature.  
0.04  
10  
1
G = +1 V/V  
VDD = 5.5V  
0.03  
0.02  
0.01  
VDD = 2.4V  
0.00  
-0.01  
-0.02  
-0.03  
-0.04  
0.1  
10k  
100k  
1M  
1.E+06  
10M  
1.E+07  
0.E+00  
2.E-07  
4.E-07  
6.E-07  
8.E-07  
1.E-06  
1.E-06  
1.E-06  
2.E-06  
2.E-06  
2.E-06  
1.E+04  
1.E+05  
Time (200 ns/div)  
Frequency (Hz)  
FIGURE 2-14:  
Small Signal, Non-Inverting  
FIGURE 2-17:  
Output Voltage Swing vs.  
Pulse Response.  
Frequency.  
5.0  
G = +1 V/V  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.E+00  
1.E-06  
2.E-06  
3.E-06  
4.E-06  
5.E-06  
6.E-06  
7.E-06  
8.E-06  
9.E-06  
1.E-05  
0.0  
Time (1 µs/div)  
FIGURE 2-15:  
Pulse Response.  
Large Signal, Non-Inverting  
© 2009 Microchip Technology Inc.  
DS22141A-page 7  
MCP6L91/1R/2/4  
NOTES:  
DS22141A-page 8  
© 2009 Microchip Technology Inc.  
MCP6L91/1R/2/4  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
MCP6L91  
PIN FUNCTION TABLE  
MCP6L91R MCP6L92 MCP6L94  
Symbol  
Description  
MSOP-8,  
SOIC-8,  
MSOP-8,  
SOIC-8,  
SOIC-14,  
TSSOP-14  
SOT-23-5  
SOT-23-5  
1
6
2
1
1
2
1
2
VOUT, VOUTA  
VIN–, VINA  
Output (op amp A)  
4
4
Inverting Input (op amp A)  
Non-inverting Input (op amp A)  
Positive Power Supply  
3
3
3
3
3
VIN+, VINA  
VDD  
+
5
7
2
8
4
2
4
5
5
5
VINB  
+
Non-inverting Input (op amp B)  
Inverting Input (op amp B)  
Output (op amp B)  
6
6
VINB  
7
7
VOUTB  
VOUTC  
4
8
Output (op amp C)  
9
VINC  
VINC  
VSS  
+
Inverting Input (op amp C)  
Non-inverting Input (op amp C)  
Negative Power Supply  
Non-inverting Input (op amp D)  
Inverting Input (op amp D)  
Output (op amp D)  
10  
11  
12  
13  
14  
1, 5, 8  
VIND  
VIND  
+
VOUTD  
NC  
No Internal Connection  
3.1  
Analog Outputs  
3.3  
Power Supply Pins  
The analog output pins (VOUT) are low-impedance  
voltage sources.  
The positive power supply (VDD) is 2.4V to 6.0V higher  
than the negative power supply (VSS). For normal  
operation, the other pins are between VSS and VDD  
.
3.2  
Analog Inputs  
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need bypass capacitors.  
The non-inverting and inverting inputs (VIN+, VIN–, …)  
are high-impedance CMOS inputs with low bias  
currents.  
© 2009 Microchip Technology Inc.  
DS22141A-page 9  
MCP6L91/1R/2/4  
NOTES:  
DS22141A-page 10  
© 2009 Microchip Technology Inc.  
MCP6L91/1R/2/4  
A significant amount of current can flow out of the  
inputs (through the ESD diodes) when the common  
mode voltage (VCM) is below ground (VSS); see  
Figure 2-7. Applications that are high impedance may  
need to limit the usable voltage range.  
4.0  
APPLICATION INFORMATION  
The MCP6L91/1R/2/4 family of op amps is manufac-  
tured using Microchip’s state of the art CMOS process.  
It is designed for low cost, low power and general pur-  
pose applications. The low supply voltage, low  
quiescent current and wide bandwidth makes the  
MCP6L91/1R/2/4 ideal for battery-powered applica-  
tions.  
4.1.3  
NORMAL OPERATION  
The input stage of the MCP6L91/1R/2/4 op amps use  
two differential CMOS input stages in parallel. One  
operates at low common mode input voltage (VCM),  
while the other operates at high VCM. WIth this  
topology, and at room temperature, the device  
operates with VCM up to 0.3V above VDD and 0.3V  
below VSS (typical at 25°C).  
4.1  
Rail-to-Rail Inputs  
4.1.1  
PHASE REVERSAL  
The MCP6L91/1R/2/4 op amps are designed to  
prevent phase inversion when the input pins exceed  
the supply voltages. Figure 2-10 shows an input  
voltage exceeding both supplies without any phase  
reversal.  
The transition between the two input stages occurs  
when VCM = VDD – 1.1V. For the best distortion and  
gain linearity, with non-inverting gains, avoid this region  
of operation.  
4.1.2  
INPUT VOLTAGE AND CURRENT  
LIMITS  
4.2  
Rail-to-Rail Output  
The output voltage range of the MCP6L91/1R/2/4 op  
amps is VDD – 20 mV (minimum) and VSS + 20 mV  
(maximum) when RL = 10 kΩ is connected to VDD/2  
and VDD = 5.0V. Refer to Figure 2-13 for more informa-  
tion.  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuit they are in must limit the  
currents (and voltages) at the input pins (see  
Section 1.1 “Absolute Maximum Ratings †”).  
Figure 4-1 shows the recommended approach to  
protecting these inputs. The internal ESD diodes  
prevent the input pins (VIN+ and VIN–) from going too  
far below ground, and the resistors R1 and R2 limit the  
possible current drawn out of the input pins. Diodes D1  
and D2 prevent the input pins (VIN+ and VIN–) from  
going too far above VDD, and dump any currents onto  
4.3  
Capacitive Loads  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases and the closed-loop bandwidth is  
reduced. This produces gain peaking in the frequency  
response, with overshoot and ringing in the step  
response.  
VDD  
.
VDD  
When driving large capacitive loads with these op  
amps (e.g., > 100 pF when G = +1), a small series  
resistor at the output (RISO in Figure 4-2) improves the  
feedback loop’s stability by making the output load  
resistive at higher frequencies; the bandwidth will  
usually be decreased.  
D1  
R1  
D2  
V1  
V2  
MCP6L9X  
R2  
RG  
RF  
RISO  
CL  
VOUT  
R3  
VSS – (minimum expected V1)  
MCP6L9X  
RN  
R1 >  
2 mA  
VSS – (minimum expected V2)  
2 mA  
R2 >  
FIGURE 4-2:  
Output Resistor, R  
ISO  
stabilizes large capacitive loads.  
FIGURE 4-1:  
Protecting the Analog  
Inputs.  
Bench measurements are helpful in choosing RISO  
.
Adjust RISO so that a small signal step response (see  
Figure 2-14) has reasonable overshoot (e.g., 4%).  
© 2009 Microchip Technology Inc.  
DS22141A-page 11  
MCP6L91/1R/2/4  
4.4  
Supply Bypass  
Guard Ring  
VIN– VIN+  
With this family of operational amplifiers, the power  
supply pin (VDD for single supply) should have a local  
bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm  
for good high frequency performance. It also needs a  
bulk capacitor (i.e., 1 µF or larger) within 100 mm to  
provide large, slow currents. This bulk capacitor can be  
shared with other nearby analog parts.  
FIGURE 4-4:  
Example guard ring layout.  
1. Inverting Amplifiers (Figure 4-4) and Transim-  
pedance Gain Amplifiers (convert current to  
voltage, such as photo detectors).  
4.5  
Unused Op Amps  
An unused op amp in a quad package (e.g., MCP6L94)  
should be configured as shown in Figure 4-3. These  
circuits prevent the output from toggling and causing  
crosstalk. Circuit A sets the op amp at its minimum  
noise gain. The resistor divider produces any desired  
reference voltage within the output voltage range of the  
op amp; the op amp buffers that reference voltage.  
Circuit B uses the minimum number of components  
and operates as a comparator, but it may draw more  
current.  
a) Connect the guard ring to the non-inverting  
input pin (VIN+); this biases the guard ring  
to the same reference voltage as the op  
amp’s input (e.g., VDD/2 or ground).  
b) Connect the inverting pin (VIN–) to the input  
with a wire that does not touch the PCB sur-  
face.  
2. Non-inverting Gain and Unity-Gain Buffer.  
a) Connect the guard ring to the inverting input  
pin (VIN–); this biases the guard ring to the  
common mode input voltage.  
¼ MCP6L94 (A)  
VDD  
¼ MCP6L94 (B)  
b) Connect the non-inverting pin (VIN+) to the  
input with a wire that does not touch the  
PCB surface.  
VDD  
VDD  
R1  
R2  
4.7  
Application Circuit  
VREF  
4.7.1  
ACTIVE LOW-PASS FILTER  
The MCP6L91/1R/2/4 op amp’s low input noise and  
good output current drive make it possible to design  
low noise filters. Reducing the resistors’ values also  
reduces the noise and increases the frequency at  
which parasitic capacitances affect the response.  
These trade-offs need to be considered when selecting  
circuit elements.  
R2  
------------------  
VREF = VDD  
R1 + R2  
FIGURE 4-3:  
Unused Op Amps.  
4.6  
PCB Surface Leakage  
Figure 4-5 shows a third-order Chebyshev filter with a  
1 kHz bandwidth, 0.2 dB ripple and a gain of +1 V/V.  
The component values were selected using Micro-  
chip’s FilterLab® software. Resistor R3 was reduced in  
value by increasing C3 in FilterLab.  
In applications where low input bias current is critical,  
PCB (printed circuit board) surface leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
between nearby traces is 1012Ω. A 5V difference would  
cause 5 pA of current to flow; this is greater than this  
family’s bias current at 25°C (1 pA, typical).  
MCP6L91  
R1  
R2  
R3  
3.01 kΩ 6.81 kΩ  
9.31 kΩ  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
Figure 4-4 is an example of this type of layout.  
VOUT  
VIN  
C2  
12 nF  
C3  
27 nF  
C1  
120 nF  
FIGURE 4-5:  
Chebyshev Filter.  
DS22141A-page 12  
© 2009 Microchip Technology Inc.  
MCP6L91/1R/2/4  
5.4  
Application Notes  
5.0  
DESIGN AIDS  
The following Microchip Application Notes are  
available on the Microchip web site at www.microchip.  
com/appnotes and are recommended as supplemental  
reference resources.  
Microchip provides the basic design aids needed for  
the MCP6L91/1R/2/4 family of op amps.  
5.1  
FilterLab® Software  
ADN003: “Select the Right Operational Amplifier  
for your Filtering Circuits”, DS21821  
Microchip’s FilterLab® software is an innovative  
software tool that simplifies analog active filter (using  
op amps) design. Available at no cost from the Micro-  
chip web site at www.microchip.com/filterlab, the Filter-  
Lab design tool provides full schematic diagrams of the  
filter circuit with component values. It also outputs the  
filter circuit in SPICE format, which can be used with  
the macro model to simulate actual filter performance.  
AN722: “Operational Amplifier Topologies and DC  
Specifications”, DS00722  
AN723: “Operational Amplifier AC Specifications  
and Applications”, DS00723  
AN884: “Driving Capacitive Loads With Op  
Amps”, DS00884  
AN990: “Analog Sensor Conditioning Circuits –  
An Overview”, DS00990  
5.2  
Microchip Advanced Part Selector  
(MAPS)  
MAPS is a software tool that helps efficiently identify  
Microchip devices that fit a particular design require-  
ment. Available at no cost from the Microchip website  
at www.microchip.com/maps, the MAPS is an overall  
selection tool for Microchip’s product portfolio that  
includes Analog, Memory, MCUs and DSCs. Using this  
tool, a customer can define a filter to sort features for a  
parametric search of devices and export side-by-side  
technical comparison reports. Helpful links are also  
provided for Data sheets, Purchase and Sampling of  
Microchip parts.  
5.3  
Analog Demonstration and  
Evaluation Boards  
Microchip offers a broad spectrum of Analog Demon-  
stration and Evaluation Boards that are designed to  
help customers achieve faster time to market. For a  
complete listing of these boards and their correspond-  
ing user’s guides and technical information, visit the  
Microchip web site at www.microchip.com/analog  
tools.  
Some boards that are especially useful are:  
• MCP6XXX Amplifier Evaluation Board 1  
• MCP6XXX Amplifier Evaluation Board 2  
• MCP6XXX Amplifier Evaluation Board 3  
• MCP6XXX Amplifier Evaluation Board 4  
• Active Filter Demo Board Kit  
• 5/6-Pin SOT-23 Evaluation Board, P/N VSUPEV2  
• 8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board,  
P/N SOIC8EV  
• 14-Pin SOIC/TSSOP/DIP Evaluation Board,  
P/N SOIC14EV  
© 2009 Microchip Technology Inc.  
DS22141A-page 13  
MCP6L91/1R/2/4  
NOTES:  
DS22141A-page 14  
© 2009 Microchip Technology Inc.  
MCP6L91/1R/2/4  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
Example:  
5-Lead SOT-23 (MCP6L91/1R)  
5
4
5
4
3
Device  
MCP6L91  
MCP6L91R  
Code  
UUNN  
UVNN  
UU25  
XXNN  
Note: Applies to 5-Lead SOT-23.  
1
2
3
1
2
Example:  
8-Lead MSOP (MCP6L92)  
XXXXXX  
YWWNNN  
6L92E  
908256  
8-Lead SOIC (150 mil) (MCP6L92)  
Example:  
XXXXXXXX  
XXXXYYWW  
MCP6L92E  
e
3
SN^0908  
NNN  
256  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2009 Microchip Technology Inc.  
DS22141A-page 15  
MCP6L91/1R/2/4  
Package Marking Information ( Continued)  
14-Lead SOIC (150 mil) (MCP6L94)  
Example:  
MCP6L94  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
e
3
E/SL
0908256  
Example:  
14-Lead TSSOP (MCP6L94)  
XXXXXX  
YYWW  
6L94EST  
0908  
NNN  
256  
DS22141A-page 16  
© 2009 Microchip Technology Inc.  
MCP6L91/1R/2/4  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢏꢒꢖꢆꢗꢍꢏꢒꢁꢘꢙꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
5
(
ꢐꢁꢛ(ꢈ)ꢕ*  
6$# ꢃ!ꢅꢈ4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%  
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
ꢅꢀ  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
ꢀꢁꢛꢐꢈ)ꢕ*  
ꢐꢁꢛꢐ  
ꢐꢁ;ꢛ  
ꢐꢁꢐꢐ  
ꢑꢁꢑꢐ  
ꢀꢁꢜꢐ  
ꢑꢁꢒꢐ  
ꢐꢁꢀꢐ  
ꢐꢁꢜ(  
ꢐꢝ  
M
M
M
M
M
M
M
M
M
M
M
ꢀꢁꢖ(  
ꢀꢁꢜꢐ  
ꢐꢁꢀ(  
ꢜꢁꢑꢐ  
ꢀꢁ;ꢐ  
ꢜꢁꢀꢐ  
ꢐꢁ=ꢐ  
ꢐꢁ;ꢐ  
ꢜꢐꢝ  
4ꢀ  
8
ꢐꢁꢐ;  
ꢐꢁꢑꢐ  
ꢐꢁꢑ=  
ꢐꢁ(ꢀ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐꢛꢀ)  
© 2009 Microchip Technology Inc.  
DS22141A-page 17  
MCP6L91/1R/2/4  
ꢝꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ ꢋꢌꢓꢔꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢇꢄꢌ!ꢄ"ꢃꢆꢕ ꢍꢖꢆꢗ ꢍꢏꢇꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
N
E
E1  
NOTE 1  
2
b
1
e
c
φ
A2  
A
L
L1  
A1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
;
ꢐꢁ=(ꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈ  
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
M
ꢐꢁꢒ(  
ꢐꢁꢐꢐ  
M
ꢐꢁ;(  
ꢀꢁꢀꢐ  
ꢐꢁꢛ(  
ꢐꢁꢀ(  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
M
ꢖꢁꢛꢐꢈ)ꢕ*  
ꢜꢁꢐꢐꢈ)ꢕ*  
ꢜꢁꢐꢐꢈ)ꢕ*  
ꢐꢁ=ꢐ  
4
ꢐꢁꢖꢐ  
ꢐꢁ;ꢐ  
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢀ  
ꢐꢁꢛ(ꢈꢚ".  
M
ꢐꢝ  
;ꢝ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
8
ꢐꢁꢐ;  
ꢐꢁꢑꢑ  
M
M
ꢐꢁꢑꢜ  
ꢐꢁꢖꢐ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢜꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢀꢀꢀ)  
DS22141A-page 18  
© 2009 Microchip Technology Inc.  
MCP6L91/1R/2/4  
ꢝꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢛꢖꢆMꢆꢛꢄꢓꢓꢔ$%ꢆꢙ&'(ꢆꢎꢎꢆ)ꢔꢅ*ꢆꢗꢍꢏ+,ꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
e
N
E
E1  
NOTE 1  
1
2
3
α
h
b
h
c
φ
A2  
A
L
A1  
L1  
β
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
;
ꢀꢁꢑꢒꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
M
ꢀꢁꢑ(  
ꢐꢁꢀꢐ  
M
M
M
ꢀꢁꢒ(  
M
ꢐꢁꢑ(  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈꢈ  
ꢔꢑ  
ꢔꢀ  
"
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
=ꢁꢐꢐꢈ)ꢕ*  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
*ꢌꢉꢄ%ꢅꢍꢈ@ꢇꢎ#ꢃꢇꢆꢉꢋA  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
"ꢀ  
ꢜꢁꢛꢐꢈ)ꢕ*  
ꢖꢁꢛꢐꢈ)ꢕ*  
ꢐꢁꢑ(  
ꢐꢁꢖꢐ  
M
M
ꢐꢁ(ꢐ  
ꢀꢁꢑꢒ  
4
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ)ꢇ##ꢇꢄ  
4ꢀ  
ꢀꢁꢐꢖꢈꢚ".  
ꢐꢝ  
ꢐꢁꢀꢒ  
ꢐꢁꢜꢀ  
(ꢝ  
M
M
M
M
M
;ꢝ  
8
ꢐꢁꢑ(  
ꢐꢁ(ꢀ  
ꢀ(ꢝ  
(ꢝ  
ꢀ(ꢝ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢟꢈꢕꢃꢓꢆꢃ%ꢃꢊꢉꢆ#ꢈ*ꢌꢉꢍꢉꢊ#ꢅꢍꢃ #ꢃꢊꢁ  
ꢜꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢖꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐ(ꢒ)  
© 2009 Microchip Technology Inc.  
DS22141A-page 19  
MCP6L91/1R/2/4  
ꢝꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢛꢖꢆMꢆꢛꢄꢓꢓꢔ$%ꢆꢙ&'(ꢆꢎꢎꢆ)ꢔꢅ*ꢆꢗꢍꢏ+,ꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
DS22141A-page 20  
© 2009 Microchip Technology Inc.  
MCP6L91/1R/2/4  
-.ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢂꢖꢆMꢆꢛꢄꢓꢓꢔ$%ꢆꢙ&'(ꢆꢎꢎꢆ)ꢔꢅ*ꢆꢗꢍꢏ+,ꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
N
E
E1  
NOTE 1  
1
2
3
e
h
b
α
h
c
φ
A2  
A
L
A1  
β
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
ꢀꢖ  
ꢀꢁꢑꢒꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈꢈꢟ  
M
ꢀꢁꢑ(  
ꢐꢁꢀꢐ  
M
M
M
ꢀꢁꢒ(  
M
ꢐꢁꢑ(  
ꢔꢑ  
ꢔꢀ  
"
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
=ꢁꢐꢐꢈ)ꢕ*  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
*ꢌꢉꢄ%ꢅꢍꢈ@ꢇꢎ#ꢃꢇꢆꢉꢋA  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
"ꢀ  
ꢜꢁꢛꢐꢈ)ꢕ*  
;ꢁ=(ꢈ)ꢕ*  
ꢐꢁꢑ(  
ꢐꢁꢖꢐ  
M
M
ꢐꢁ(ꢐ  
ꢀꢁꢑꢒ  
4
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ)ꢇ##ꢇꢄ  
4ꢀ  
ꢀꢁꢐꢖꢈꢚ".  
ꢐꢝ  
ꢐꢁꢀꢒ  
ꢐꢁꢜꢀ  
(ꢝ  
M
M
M
M
M
;ꢝ  
8
ꢐꢁꢑ(  
ꢐꢁ(ꢀ  
ꢀ(ꢝ  
(ꢝ  
ꢀ(ꢝ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢟꢈꢕꢃꢓꢆꢃ%ꢃꢊꢉꢆ#ꢈ*ꢌꢉꢍꢉꢊ#ꢅꢍꢃ #ꢃꢊꢁ  
ꢜꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢖꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐ=()  
© 2009 Microchip Technology Inc.  
DS22141A-page 21  
MCP6L91/1R/2/4  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
DS22141A-page 22  
© 2009 Microchip Technology Inc.  
MCP6L91/1R/2/4  
-.ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢒ/ꢋꢑꢆꢍ/ꢓꢋꢑ!ꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢒꢖꢆMꢆ.&.ꢆꢎꢎꢆ)ꢔꢅ*ꢆꢗꢒꢍꢍꢏꢇꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
φ
A2  
A
A1  
L
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
ꢀꢖ  
ꢐꢁ=(ꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈ  
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
M
ꢐꢁ;ꢐ  
ꢐꢁꢐ(  
M
ꢀꢁꢐꢐ  
M
=ꢁꢖꢐꢈ)ꢕ*  
ꢖꢁꢖꢐ  
(ꢁꢐꢐ  
ꢐꢁ=ꢐ  
ꢀꢁꢑꢐ  
ꢀꢁꢐ(  
ꢐꢁꢀ(  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
ꢖꢁꢜꢐ  
ꢖꢁꢛꢐ  
ꢐꢁꢖ(  
ꢖꢁ(ꢐ  
(ꢁꢀꢐ  
ꢐꢁꢒ(  
4
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
4ꢀ  
ꢀꢁꢐꢐꢈꢚ".  
ꢐꢝ  
ꢐꢁꢐꢛ  
ꢐꢁꢀꢛ  
M
M
M
;ꢝ  
8
ꢐꢁꢑꢐ  
ꢐꢁꢜꢐ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢜꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐ;ꢒ)  
© 2009 Microchip Technology Inc.  
DS22141A-page 23  
MCP6L91/1R/2/4  
NOTES:  
DS22141A-page 24  
© 2009 Microchip Technology Inc.  
MCP6L91/1R/2/4  
APPENDIX A: REVISION HISTORY  
Revision A (March 2009)  
• Original Release of this Document.  
© 2009 Microchip Technology Inc.  
DS22141A-page 25  
MCP6L91/1R/2/4  
NOTES:  
DS22141A-page 26  
© 2009 Microchip Technology Inc.  
MCP6L91/1R/2/4  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
/XX  
a) MCP6L91T-E/OT: Tape and Reel,  
Extended Temperature,  
5LD SOT-23 package  
b) MCP6L91T-E/MS: Tape and Reel,  
Temperature  
Range  
Package  
Extended Temperature,  
8LD MSOP package.  
c) MCP6L91T-E/SN: Tape and Reel,  
Device:  
MCP6L91T:  
Single Op Amp (Tape and Reel)  
(SOT-23, SOIC, MSOP)  
Single Op Amp (Tape and Reel) (SOT-23)  
Dual Op Amp (Tape and Reel)  
(SOIC, MSOP)  
Quad Op Amp (Tape and Reel)  
(SOIC, TSSOP)  
Extended Temperature,  
8LD SOIC package.  
MCP6L91RT:  
MCP6L92T:  
a) MCP6L91RT-E/OT: Tape and Reel,  
MCP6L94T:  
Extended Temperature,  
5LD SOT-23 package.  
a) MCP6L92T-E/MS: Tape and Reel,  
Extended Temperature,  
8LD MSOP package.  
b) MCP6L92T-E/SN: Tape and Reel,  
Temperature Range:  
Package:  
E
=
-40°C to +125°C  
OT  
MS  
SN  
SL  
=
=
=
=
=
Plastic Small Outline Transistor (SOT-23), 5-lead  
Plastic MSOP, 8-lead  
Plastic SOIC, (3.99 mm body), 8-lead  
Plastic SOIC (3.99 mm body), 14-lead  
Plastic TSSOP (4.4mm body), 14-lead  
Extended Temperature,  
8LD SOIC package.  
a) MCP6L94T-E/SL: Tape and Reel,  
Extended Temperature,  
14LD SOIC package.  
ST  
b) MCP6L94T-E/ST: Tape and Reel,  
Extended Temperature,  
14LD TSSOP package.  
© 2009 Microchip Technology Inc.  
DS22141A-page 27  
MCP6L91/1R/2/4  
NOTES:  
DS22141A-page 28  
© 2009 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, rfPIC, SmartShunt and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
FilterLab, Linear Active Thermistor, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, In-Circuit Serial  
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,  
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,  
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total  
Endurance, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2009 Microchip Technology Inc.  
DS22141A-page 29  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4080  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
02/04/09  
DS22141A-page 30  
© 2009 Microchip Technology Inc.  

相关型号:

MCP6L92T-E/SL

10 MHz, 850 μA Op Amps
MICROCHIP

MCP6L92T-E/SN

10 MHz, 850 μA Op Amps
MICROCHIP

MCP6L92T-E/SNVAO

Operational Amplifier, 2 Func, 4000uV Offset-Max, CMOS, PDSO8
MICROCHIP

MCP6L92T-E/ST

10 MHz, 850 μA Op Amps
MICROCHIP

MCP6L92TE/MS

DUAL OP-AMP, 4000 uV OFFSET-MAX, 10 MHz BAND WIDTH, PDSO8, PLATSIC, MSOP-8
MICROCHIP

MCP6L94

10 MHz, 850 μA Op Amps
MICROCHIP

MCP6L94T

10 MHz, 850 μA Op Amps
MICROCHIP

MCP6L94T-E/MS

10 MHz, 850 μA Op Amps
MICROCHIP

MCP6L94T-E/OT

10 MHz, 850 μA Op Amps
MICROCHIP

MCP6L94T-E/SL

10 MHz, 850 μA Op Amps
MICROCHIP

MCP6L94T-E/SN

10 MHz, 850 μA Op Amps
MICROCHIP

MCP6L94T-E/ST

10 MHz, 850 μA Op Amps
MICROCHIP