MCP6V52 [MICROCHIP]

The MCP6V51/2/4 operational amplifiers provide input offset voltage correction for very low offset;
MCP6V52
型号: MCP6V52
厂家: MICROCHIP    MICROCHIP
描述:

The MCP6V51/2/4 operational amplifiers provide input offset voltage correction for very low offset

文件: 总43页 (文件大小:3337K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6V51  
45V, 2 MHz Zero-Drift Op Amp with EMI Filtering  
Features  
General Description  
• High DC Precision:  
The Microchip Technology Inc. MCP6V51 operational  
amplifier employs dynamic offset correction for very  
low offset and offset drift. The device has a gain  
bandwidth product of 2 MHz (typical). It is unity-gain  
stable, has virtually no 1/f noise and excellent Power  
Supply Rejection Ratio (PSRR) and Common Mode  
Rejection Ratio (CMRR). The product operates with a  
single supply voltage that can range from 4.5V to 45V,  
(±2.25V to ±22.5V), while drawing 470 µA (typical) of  
quiescent current.  
- VOS Drift: 36 nV/°C (max.)  
- VOS: 15 µV (max.)  
- Open-Loop Gain: 140 dB (min.)  
- PSRR: 134 dB (min.)  
- CMRR: 135 dB (min.)  
• Low Noise:  
- 10.2 nV/Hz at 1 kHz  
- Eni: 0.21 µVP-P, f = 0.1 Hz to 10 Hz  
• Low Power:  
The MCP6V51 op amp is offered as a single-channel  
amplifier and is designed using an advanced CMOS  
process.  
- IQ: 470 µA/amplifier (typ.)  
- Wide Supply Voltage Range: 4.5V to 45V  
• Easy to Use:  
Package Types  
- Input Range incl. Negative Rail  
- Rail-to-Rail Output  
- EMI Filtered Inputs  
MCP6V51  
SOT-23-5  
MCP6V51  
MSOP-8  
- Gain Bandwidth Product: 2 MHz  
- Slew Rate 1.2V/µs  
NC  
V
1
8
7
6
5
NC  
VOUT  
VSS  
VDD  
1
5
4
- Unity Gain Stable  
2
3
4
V
+
DD  
2
3
IN  
• Small Packages: 5-Lead SOT23, 8-Lead MSOP  
• Extended Temperature Range: -40°C to +125°C  
V
V
OUT  
VIN+  
VIN–  
IN  
NC  
V
SS  
Typical Applications  
• Industrial Instrumentation, PLC  
• Process Control  
• Power Control Loops  
• Sensor Conditioning  
Typical Application Circuit  
40VDD  
• Electronic Weight Scales  
• Medical Instrumentation  
• Automotive Monitors  
Load  
• Low-side Current Sensing  
40VDD  
U1  
MCP6V51  
Design Aids  
IL  
+
-
VOUT  
• Microchip Advanced Part Selector (MAPS)  
• Application Notes  
RSHUNT  
0.05Ω  
RG  
100Ω  
RF  
Related Parts  
20 kΩ  
• MCP6V71/1U/2/4: Zero-Drift, 2 MHz, 1.8V to 5V  
• MCP6V81/1U/2/4: Zero-Drift, 5 MHz, 1.8V to 5V  
CF  
8.2 nF  
2018 Microchip Technology Inc.  
DS20006136A-page 1  
MCP6V51  
Figure 1 and Figure 2 show input offset voltage versus  
ambient temperature for different power supply  
voltages.  
As seen in Figure 1 and Figure 2, the MCP6V51 op  
amps have excellent performance across temperature.  
The input offset voltage temperature drift (TC1) shown  
is well within the specified maximum values of  
31 nV/°C at VDD = 4.5V and 36 nV/°C at VDD = 45V.  
8
22 Samples  
VDD = 4.5V  
6
This performance supports applications with stringent  
DC precision requirements. In many cases, it will not be  
necessary to correct for temperature effects (i.e.,  
calibrate) in a design. In the other cases, the correction  
will be small.  
4
2
0
-2  
-4  
-6  
-8  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
FIGURE 1:  
Input Offset Voltage vs.  
Ambient Temperature with VDD = 4.5V.  
8
22 Samples  
VDD = 45V  
6
4
2
0
-2  
-4  
-6  
-8  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
FIGURE 2:  
Input Offset Voltage vs.  
Ambient Temperature with VDD = 45V.  
DS20006136A-page 2  
2018 Microchip Technology Inc.  
MCP6V51  
1.0  
1.1  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
VDD - VSS ................................................................................................................................................................49.5V  
Current at Input Pins ............................................................................................................................................±10 mA  
Analog Inputs (VIN+ and VIN-) (Note 1)..................................................................................... VSS - 1.0V to VDD + 1.0V  
All Other Inputs and Outputs .................................................................................................... VSS - 0.3V to VDD + 0.3V  
Difference Input Voltage .............................................................................................................................................±1V  
Output Short Circuit Current ...........................................................................................................................Continuous  
Current at Output and Supply Pins ......................................................................................................................±50 mA  
Storage Temperature .............................................................................................................................-65°C to +150°C  
Maximum Junction Temperature .......................................................................................................................... +150°C  
ESD protection on all pins (HBM, CDM, MM)   2 kV, 750V, 200V  
† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
Note 1: See Section 4.2.1, Input Protection.  
1.2  
Electrical Specifications  
DC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +4.5V to +45V, VSS = GND,  
VCM = VDD/3, VOUT = VDD/2, VL = VDD/2, RL = 10 kto VL and CL = 100 pF (refer to Figure 1-4 and Figure 1-5).  
Parameters  
Input Offset  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Input Offset Voltage  
VOS  
TC1  
-15  
-31  
±2.4  
±5  
+15  
+31  
µV  
TA = +25°C  
Input Offset Voltage Drift with  
Temperature (Linear Temp. Co.)  
nV/°C TA = -40 to +125°C,  
VDD = 4.5V (Note 1)  
TC1  
-36  
±7  
+36  
nV/°C TA = -40 to +125°C,  
VDD = 45V  
(Note 1)  
Input Offset Voltage Quadratic  
Temp. Co.  
TC2  
TC2  
±42  
±38  
±2  
nV/ TA = -40 to +125°C  
°C2 VDD = 4.5V  
nV/ TA = -40 to +125°C  
°C2  
µV  
VDD = 45V  
Input Offset Voltage Aging  
VOS  
408 hours Life Test at  
+150°C,  
measured at +25°C  
Power Supply Rejection Ratio  
PSRR  
134  
124  
160  
138  
dB  
dB  
TA = -40°C to +125°C  
VDD = 45V (Note 1)  
Input Bias Current and Impedance  
Input Bias Current  
IB  
-250  
±60  
+250  
pA  
VDD = 45V  
Note 1: Not production tested. Limits set by characterization and/or simulation and provided as design guidance  
only.  
2: Figure 2-17 shows how VCML and VCMH changed across temperature for the first production lot.  
2018 Microchip Technology Inc.  
DS20006136A-page 3  
MCP6V51  
DC ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +4.5V to +45V, VSS = GND,  
VCM = VDD/3, VOUT = VDD/2, VL = VDD/2, RL = 10 kto VL and CL = 100 pF (refer to Figure 1-4 and Figure 1-5).  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
TA = +85°C  
Input Bias Current across  
Temperature  
IB  
IB  
-4  
-1  
-8  
±80  
±1.4  
+4  
+1  
+8  
pA  
nA  
TA = +125°C (Note 1)  
VDD = 45V  
Input Offset Current  
IOS  
IOS  
IOS  
ZCM  
ZDIFF  
±0.28  
nA  
Input Offset Current across  
Temperature  
±0.32  
nA  
TA = +85°C  
±0.45  
nA  
TA = +125°C (Note 1)  
Common Mode Input Impedance  
Differential Input Impedance  
Common Mode  
120G||3  
2.5M||5.2  
||pF  
||pF  
Common Mode  
Input Voltage Range Low  
VCML  
VSS - 0.3  
V
V
(Note 2)  
(Note 2)  
Common Mode  
Input Voltage Range High  
VCMH VDD - 2.1  
Common Mode Rejection Ratio  
CMRR  
110  
106  
135  
128  
125  
dB  
VDD = 4.5V,  
VCM = -0.3V to 2.4V  
(Note 2)  
116  
150  
140  
dB  
dB  
dB  
VDD = 4.5V  
TA = -40°C to +125°C,  
(Note 1)  
CMRR  
V
DD = 45V,  
VCM = -0.3V to 42.9V  
(Note 2)  
V
DD = 45V  
TA = -40°C to +125°C,  
(Note 1)  
Open-Loop Gain  
DC Open-Loop Gain  
AOL  
124  
120  
142  
139  
dB  
dB  
VDD = 4.5V,  
VOUT = 0.3V to 4.2V  
VDD = 4.5V  
TA = -40°C to +125°C,  
(Note 1)  
AOL  
140  
134  
164  
160  
dB  
dB  
VDD = 45V,  
VOUT = 0.3V to 44.7V  
VDD = 45V  
TA = -40°C to +125°C,  
(Note 1)  
Output  
Minimum Output Voltage Swing  
VOL  
VSS + 45  
VSS + 60  
mV RL = 1 k, VDD = 4.5V  
RL = 1 k, VDD = 45V  
VSS + 500 VSS + 1000  
VSS + 6  
VSS + 50  
VSS + 20  
VSS + 70  
RL = 10 k, VDD = 4.5V  
RL = 10 k, VDD = 45V  
Note 1: Not production tested. Limits set by characterization and/or simulation and provided as design guidance  
only.  
2: Figure 2-17 shows how VCML and VCMH changed across temperature for the first production lot.  
DS20006136A-page 4  
2018 Microchip Technology Inc.  
MCP6V51  
DC ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +4.5V to +45V, VSS = GND,  
CM = VDD/3, VOUT = VDD/2, VL = VDD/2, RL = 10 kto VL and CL = 100 pF (refer to Figure 1-4 and Figure 1-5).  
V
Parameters  
Sym.  
Min.  
VDD - 150 VDD - 100  
DD - 2500 VDD - 1500  
VDD - 20 VDD - 12  
VDD - 200 VDD - 100  
Typ.  
Max.  
Units  
Conditions  
Maximum Output Voltage Swing  
VOH  
mV RL = 1 k, VDD = 4.5V  
RL = 1 k, VDD = 45V  
RL = 10 k, VDD = 4.5V  
RL = 10 k, VDD = 45V  
mA  
V
Output Short Circuit Current  
ISC  
ISC  
ROUT  
+
46  
36  
16  
-
mA  
Closed-loop Output Resistance  
f = 0.1 MHz, IO = 0,  
G = 1  
Capacitive Load Drive  
Power Supply  
CL  
100  
pF  
G = 1  
Supply Voltage  
VDD  
IQ  
4.5  
310  
310  
45  
V
Quiescent Current per Amplifier  
460  
470  
540  
590  
590  
670  
µA  
µA  
µA  
VDD = 4.5V, IO = 0  
VDD = 45V, IO = 0  
IO = 0,  
TA = -40 to +125°C  
(Note 1)  
(Figure 2-22)  
Power-on Reset (POR) Trip  
Voltage  
VPOR  
2.3  
V
Note 1: Not production tested. Limits set by characterization and/or simulation and provided as design guidance  
only.  
2: Figure 2-17 shows how VCML and VCMH changed across temperature for the first production lot.  
AC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +4.5V to +45V, VSS = GND,  
VCM = VDD/3, VOUT = VDD/2, VL = VDD/2, RL = 10 kto VL and CL = 100 pF (refer to Figure 1-4 and Figure 1-5).  
Parameters  
Sym. Min. Typ. Max. Units  
Conditions  
Amplifier AC Response  
Gain Bandwidth Product  
GBWP  
1.8  
2
MHz VDD = 4.5V, VIN = 10 mVpp, Gain = 100  
MHz DD = 45V, VIN = 10 mVpp, Gain = 100  
V
Slew Rate  
SR  
PM  
1.2  
66  
V/µs (Figure 2-44)  
Phase Margin  
deg. VDD = 45V  
Amplifier Noise Response  
Input Noise Voltage  
Eni  
Eni  
eni  
ini  
0.1  
0.21  
10.2  
4
µVP-P f = 0.01 Hz to 1 Hz  
µVP-P f = 0.1 Hz to 10 Hz  
nV/Hz f = 1 kHz  
Input Noise Voltage Density  
Input Noise Current Density  
Amplifier Step Response  
Start-Up Time  
fA/Hz  
tSTR  
tSTL  
200  
45  
µs  
µs  
G = +1, 1% VOUT settling (Note 1)  
Offset Correction Settling Time  
G = +1, VIN step of 2V,  
VOS within ±100 µV of its final value  
Note 1: Behavior may vary with different gains; see Section 4.3.3 “Offset at Power-Up”.  
2: tSTL and tODR include some uncertainty due to clock edge timing.  
2018 Microchip Technology Inc.  
DS20006136A-page 5  
MCP6V51  
AC ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +4.5V to +45V, VSS = GND,  
VCM = VDD/3, VOUT = VDD/2, VL = VDD/2, RL = 10 kto VL and CL = 100 pF (refer to Figure 1-4 and Figure 1-5).  
Parameters  
Sym. Min. Typ. Max. Units  
Conditions  
Output Overdrive Recovery Time  
tODR  
65  
µs  
G = -10, ±0.5V input overdrive to VDD/2,  
VIN 50% point to VOUT 90% point (Note 2)  
EMI Protection  
EMI Rejection Ratio  
EMIRR  
80  
95  
dB  
VIN = 0.1 VPK, f = 400 MHz, VDD = 45V  
VIN = 0.1 VPK, f = 900 MHz, VDD = 45V  
108  
109  
109  
VIN = 0.1 VPK, f = 1800 MHz, VDD = 45V  
VIN = 0.1 VPK, f = 2400 MHz, VDD = 45V  
VIN = 0.1 VPK, f = 5600 MHz, VDD = 45V  
Note 1: Behavior may vary with different gains; see Section 4.3.3 “Offset at Power-Up”.  
2: tSTL and tODR include some uncertainty due to clock edge timing.  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, all limits are specified for: VDD = +4.5V to +45V, VSS = GND.  
Parameters  
Temperature Ranges  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
TA  
TA  
TA  
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
(Note 1)  
Thermal Package Resistances  
Thermal Resistance, 8LD-MSOP  
JA  
JA  
206  
115  
°C/W  
°C/W  
Thermal Resistance, 5LD-SOT-23  
Note 1: Operation must not cause TJ to exceed Maximum Junction Temperature specification (+150°C).  
DS20006136A-page 6  
2018 Microchip Technology Inc.  
MCP6V51  
1.3  
Timing Diagrams  
1.4  
Test Circuits  
The Timing Diagrams provide a depiction of the  
Amplifier Step Response specifications listed under the  
AC Electrical Specifications table.  
The circuits used for most DC and AC tests are shown  
in Figure 1-4 and Figure 1-5. Lay the bypass  
capacitors out as discussed in Section 4.3.10 “Supply  
Bypassing and Filtering”. RN is equal to the parallel  
combination of RF and RG to minimize bias current  
effects.  
VDD  
2.3V  
VDD  
0V  
tSTR  
1.01(VDD/3)  
0.99(VDD/3)  
VDD  
1 µF  
VOUT  
RN  
VIN  
RISO  
CL  
VOUT  
+
-
MCP6V51  
FIGURE 1-1:  
Amplifier Start-Up.  
RL  
100 nF  
RF  
VDD/3  
VIN  
VL  
RG  
tSTL  
VOS + 100 µV  
OS – 100 µV  
FIGURE 1-4:  
Most Noninverting Gain Conditions.  
AC and DC Test Circuit for  
VOS  
V
VDD  
1 µF  
FIGURE 1-2:  
Time.  
Offset Correction Settling  
RN  
VDD/3  
RISO  
CL  
VOUT  
+
-
MCP6V51  
VIN  
RL  
100 nF  
RF  
VIN  
tODR  
VL  
RG  
VDD  
FIGURE 1-5:  
Most Inverting Gain Conditions.  
AC and DC Test Circuit for  
tODR  
VOUT  
VDD/2  
The circuit in Figure 1-6 tests the input’s dynamic  
behavior (i.e., tSTR, tSTL and tODR). The potentiometer  
balances the resistor network (VOUT should equal VREF  
at DC). The op amp’s Common Mode Input Voltage is  
VSS  
FIGURE 1-3:  
Output Overdrive Recovery.  
VCM = VIN/3. The error at the input (VERR) appears at  
VOUT with a noise gain of approx. 10 V/V.  
1.1 k10 k500Ω  
0.1%  
0.1% 25 turn  
VREF = VDD/3  
VDD  
RISO  
0 Ω  
1 µF  
VOUT  
VIN  
100 nF  
CL  
100 pF  
RL  
open  
MCP6V51  
VL  
1.1 kΩ  
10 k249Ω  
1%  
0.1%  
0.1%  
FIGURE 1-6:  
Test Circuit for Dynamic  
Input Behavior.  
2018 Microchip Technology Inc.  
DS20006136A-page 7  
MCP6V51  
NOTES:  
DS20006136A-page 8  
2018 Microchip Technology Inc.  
MCP6V51  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = +4.5V to +45V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 10 kto VL and CL = 100 pF.  
2.1  
DC Input Precision  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
8
6
7611 Samples  
TA = 25ºC  
Representative Part  
VDD = 4.5V  
VDD = 45V  
4
VDD = 4.5V  
2
0
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = - 40°C  
-2  
-4  
-6  
-8  
0%  
-10 -8 -6 -4 -2  
0
2
4
6
8
10  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5  
Output Voltage (V)  
Input Offset Voltage (μV)  
FIGURE 2-1:  
Input Offset Voltage.  
FIGURE 2-4:  
Input Offset Voltage vs.  
Output Voltage with VDD = 4.5V.  
40%  
8
22 Samples  
TA = -40°C to +125°C  
Representative Part  
VDD = 45V  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
6
4
VDD = 45V  
2
VDD = 4.5V  
0
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = - 40°C  
-2  
-4  
-6  
-8  
0%  
-18 -15 -12 -9 -6 -3  
0
3
6
9
12 15 18  
-1  
4
9
14 19 24 29 34 39 44  
Output Voltage (V)  
Input Offset Voltage Drift; TC1 (nV/°C)  
FIGURE 2-2:  
Input Offset Voltage Drift.  
FIGURE 2-5:  
Input Offset Voltage vs.  
Output Voltage with VDD = 45V.  
8.0  
20  
15  
10  
5
VDD = 4.5V  
Representative Part  
6.0  
4.0  
2.0  
0.0  
TA = -40°C  
TA = +25°C  
0
TA = +125°C  
-2.0  
-4.0  
-6.0  
-8.0  
TA = +85°C  
TA = +25°C  
TA = - 40°C  
-5  
TA = +85°C  
-10  
-15  
TA = +125°C  
-20  
0
-0.3 0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4  
Common Mode Input Voltage (V)  
5
10 15 20 25 30 35 40 45  
Power Supply Voltage (V)  
FIGURE 2-3:  
Input Offset Voltage vs.  
FIGURE 2-6:  
Input Offset Voltage vs.  
Power Supply Voltage.  
Common Mode Voltage with VDD = 4.5V  
2018 Microchip Technology Inc.  
DS20006136A-page 9  
MCP6V51  
8.0  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
VDD = 45V  
Representative Part  
474 Samples  
6.0  
4.0  
TA = +25ºC  
VDD = 45V  
2.0  
0.0  
-2.0  
-4.0  
-6.0  
-8.0  
TA = +125°C  
TA = +85°C  
TA = +25°C  
VDD = 4.5V  
TA = - 40°C  
-1  
4
9
14 19 24 29 34 39 44  
Common Mode Input Voltage (V)  
1/AOL (μV/V)  
FIGURE 2-7:  
Input Offset Voltage vs.  
FIGURE 2-10:  
DC Open-Loop Gain.  
Common Mode Voltage with VDD = 45V.  
160  
150  
140  
130  
120  
110  
90%  
PSRR  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
488 Samples  
TA = +25ºC  
VDD = 45V  
CMRR @ VDD = 45V  
@ VDD = 4.5V  
VDD = 4.5V  
-50  
-25  
0
25  
50  
75  
100  
125  
1/CMRR (μV/V)  
Ambient Temperature (°C)  
FIGURE 2-8:  
CMRR.  
FIGURE 2-11:  
CMRR and PSRR vs.  
Ambient Temperature.  
170  
35%  
488 Samples  
TA = +25ºC  
30%  
25%  
20%  
15%  
10%  
5%  
160  
VDD= 45V  
150  
140  
130  
120  
VDD= 4.5V  
0%  
-50  
-25  
0
25  
50  
75  
100 125  
1/PSRR (μV/V)  
Ambient Temperature (°C)  
FIGURE 2-9:  
PSRR.  
FIGURE 2-12:  
DC Open-Loop Gain vs.  
Ambient Temperature.  
DS20006136A-page 10  
2018 Microchip Technology Inc.  
MCP6V51  
1m  
100μ  
10μ  
1μ  
500  
400  
300  
200  
100  
0
-100  
-200  
-300  
-400  
-500  
VDD = 45V  
TA = +85 ºC  
Input Offset Current  
Input Bias Current  
TA = +125°C  
100n  
10n  
1n  
T
A = +85°C  
TA = +25°C  
TA = -40°C  
100p  
0
5
10 15 20 25 30 35 40 45  
Input Common Mode Voltage (V)  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
Input Voltage (V)  
FIGURE 2-13:  
Input Bias and Offset  
FIGURE 2-16:  
Input Bias Current vs. Input  
Currents vs. Common Mode Input Voltage with  
TA = +85°C.  
Voltage (Below VSS).  
2000  
VDD = 45V  
TA = +125 ºC  
1500  
1000  
500  
Input Bias Current  
0
-500  
-1000  
Input Offset Current  
0
5
10 15 20 25 30 35 40 45  
Input Common Mode Voltage (V)  
FIGURE 2-14:  
Input Bias and Offset  
Currents vs. Common Mode Input Voltage with  
TA = +125°C.  
10n  
45V  
1n  
IOS  
100p  
4.5V  
IB  
10p  
1p  
Ambient Temperature (°C)  
FIGURE 2-15:  
Input Bias and Offset  
Currents vs. Ambient Temperature with  
VDD = 45V.  
2018 Microchip Technology Inc.  
DS20006136A-page 11  
MCP6V51  
Note: Unless otherwise indicated, TA = +25°C, VDD = +4.5V to +45V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 10 kto VL and CL = 100 pF.  
2.2  
Other DC Voltages and Currents  
200  
150  
100  
50  
2.5  
RL = 10 kȍ  
2
1.5  
1
Upper (VDD - VCMH  
)
VDD - VOH  
0.5  
0
VDD = 45V  
Lower (VCML - VSS  
)
VOL - VSS  
VDD = 4.5V  
-0.5  
0
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-17:  
Input Common Mode  
FIGURE 2-20:  
Output Voltage Headroom  
Voltage Headroom (Range) vs. Ambient  
Temperature.  
vs Temperature RL = 10 k.  
1000  
80  
60  
40  
VDD -VOH  
100  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
20  
0
VDD = 4.5V  
VOL -VSS  
10  
1
-20  
-40  
-60  
VDD = 45V  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
0.1  
1
10  
Power Supply Voltage (V)  
Output Current Magnitude (mA)  
FIGURE 2-21:  
Output Short Circuit Current  
FIGURE 2-18:  
Output Voltage Headroom  
vs. Power Supply Voltage.  
vs. Output Current.  
700  
600  
500  
400  
300  
200  
100  
0
2000  
RL = 1 kȍ  
1500  
1000  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
VDD - VOH  
VDD = 45V  
500  
VOL - VSS  
VDD = 4.5V  
0
-50  
-25  
0
25  
50  
75  
100  
125  
0
10  
20  
30  
40  
50  
Power Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-19:  
Output Voltage Headroom  
FIGURE 2-22:  
Supply Current vs. Power  
vs. Ambient Temperature.  
Supply Voltage.  
DS20006136A-page 12  
2018 Microchip Technology Inc.  
MCP6V51  
Note: Unless otherwise indicated, TA = +25°C, VDD = +4.5V to +45V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 10 kto VL and CL = 100 pF.  
2.3  
Frequency Response  
180  
160  
140  
120  
100  
80  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
80  
70  
60  
50  
40  
30  
20  
10  
VDD = 45V  
PM  
CMRR  
PSRR+  
PSRR-  
VDD = 45V  
VDD = 4.5V  
60  
GBWP  
40  
20  
0
1
10  
100  
1k  
10k  
100k  
1M  
10M  
-50 -25  
0
25  
50  
75 100 125  
Ambient Temperature (°C)  
Frequency (Hz)  
FIGURE 2-23:  
CMRR and PSRR vs.  
FIGURE 2-26:  
Gain Bandwidth Product  
Frequency.  
and Phase Margin vs. Ambient Temperature.  
5
4
3
2
1
0
90  
80  
70  
60  
50  
40  
140  
120  
100  
80  
-30  
VDD = 45V  
-60  
Phase  
-90  
PM  
-120  
-150  
-180  
-210  
-240  
-270  
60  
Gain  
40  
GBWP  
GBWP = 1.8 MHz  
= 4.5V  
V
R
20  
0
DD  
= 10 kΩ  
L  
L  
C
= 100 pF  
'RPꢁ3ROHꢂꢀꢃꢀP+]  
-20  
0
5
10 15 20 25 30 35 40 45  
Common Mode Input Voltage (V)  
10k  
1M 10M  
110000 1,000 10,00010100,0k01,000,10,000,000  
11  
10  
1k  
Frequency (Hz)  
FIGURE 2-24:  
Open-Loop Gain vs.  
FIGURE 2-27:  
Gain Bandwidth Product  
Frequency with VDD = 4.5V.  
and Phase Margin vs. Common Mode Input  
Voltage.  
1000  
140  
120  
-30  
VDD = 4.5V  
100  
10  
1
-60  
Phase  
100  
80  
60  
40  
20  
0
-90  
-120  
-150  
-180  
-210  
-240  
-270  
GN:  
0.1  
0.01  
Gain  
101 V/V  
11 V/V  
1 V/V  
GBWP = 2 MHz  
V
= 45V  
= 10 kΩ  
= 100 pF  
DD  
R
C
L  
L  
0.001  
0.0001  
'RPꢁꢀ3ROHꢂꢀꢃꢀP+]  
-20  
1
10  
100  
1k  
10k  
100k  
1M  
10M 100M  
10k  
1M 10M  
110000 1,000 10,00010100,0k01,000,10,000,000  
11  
10  
1k  
Frequency (Hz)  
Frequency (Hz)  
FIGURE 2-28:  
Impedance vs. Frequency with VDD = 4.5V.  
Closed-Loop Output  
FIGURE 2-25:  
Frequency with VDD = 45V.  
Open-Loop Gain vs.  
2018 Microchip Technology Inc.  
DS20006136A-page 13  
MCP6V51  
1000  
VDD =45V  
100  
10  
GN:  
1
101 V/V  
11 V/V  
1 V/V  
0.1  
0.01  
0.001  
0.0001  
1
10  
100  
1k  
10k  
100k  
1M  
10M 100M  
Frequency (Hz)  
FIGURE 2-29:  
Closed-Loop Output  
Impedance vs. Frequency with VDD = 45V.  
100  
VDD = 45V  
10  
VDD = 4.5V  
1
0
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
FIGURE 2-30:  
Maximum Output Voltage  
Swing vs. Frequency.  
120  
110  
100  
90  
80  
VDD = 45V  
70  
60  
50  
40  
VDD = 4.5V  
30  
20  
10  
VINPK = 100 mV  
10M  
100M  
1G  
10G  
Frequency (Hz)  
FIGURE 2-31:  
EMIRR vs. Frequency.  
DS20006136A-page 14  
2018 Microchip Technology Inc.  
MCP6V51  
Note: Unless otherwise indicated, TA = +25°C, VDD = +4.5V to +45V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 10 kto VL and CL = 100 pF.  
2.4  
Input Noise  
1000  
100  
10  
1000  
100  
10  
VDD = 45V, green  
VDD = 4.5V, blue  
eni  
Eni (0 Hz to f)  
1
1
1
10  
100  
1k  
10k  
100k  
1.E+0 1.E+1 1.E+2 1.E+3 1.E+4 1.E+5  
Frequency (Hz)  
FIGURE 2-32:  
Input Noise Voltage Density  
and Integrated Input Noise Voltage vs.  
Frequency.  
VDD = 4.5V  
NPBW = 10 Hz  
NPBW = 1 Hz  
0
10  
20  
30  
40  
50  
60  
Time (s)  
FIGURE 2-33:  
Input Noise vs. Time with  
1 Hz and 10 Hz Filters and VDD = 4.5V.  
VDD = 45V  
NPBW = 10 Hz  
NPBW = 1 Hz  
0
10  
20  
30  
40  
50  
60  
Time (s)  
FIGURE 2-34:  
Input Noise vs. Time with  
1 Hz and 10 Hz Filters and VDD = 45V.  
2018 Microchip Technology Inc.  
DS20006136A-page 15  
MCP6V51  
Note: Unless otherwise indicated, TA = +25°C, VDD = +4.5V to +45V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 10 kto VL and CL = 100 pF.  
2.5  
Time Response  
20  
15  
10  
5
100  
60  
VDD = +/-15V  
G = +1 V/V  
TPCB  
20  
VIN  
VDD = 45V  
VDD = 4.5V  
VOUT  
-20  
-60  
-100  
VOS  
0
Temperature increased by  
using heat gun for 3 seconds  
-5  
0
20 40 60 80 100 120 140 160 180 200  
Time (s)  
0
1
2
3
4
5
6
7
8
9
10  
Time (μs)  
FIGURE 2-35:  
Input Offset Voltage vs.  
FIGURE 2-38:  
Noninverting Small Signal  
Time with Temperature Change.  
Step Response.  
2000  
48  
42  
36  
30  
24  
18  
12  
6
15  
10  
VDD = +/-15 V  
G = +1 V/V  
1750  
VDD  
1500  
VDD Bypass = 1PF  
5
1250  
1000  
750  
500  
250  
0
VDD = 45V  
G = +1 V/V  
VIN  
VOUT  
0
-5  
-10  
-15  
VOS  
0
-250  
-6  
0
10 20 30 40 50 60 70 80 90 100  
Time (μs)  
0
2
4
6
8
10 12 14 16 18 20  
Time (ms)  
FIGURE 2-36:  
Input Offset Voltage vs.  
FIGURE 2-39:  
Noninverting Large Signal  
Time at Power-Up.  
Step Response.  
30  
20  
30  
V
= +/-22.5V  
VDD = +/-22.5 V  
G = +1 V/V  
DD  
G = +1 V/V  
9
,1  
ꢀ ꢀꢃꢄ9  
33  
20  
10  
10  
VIN  
VOUT  
0
-10  
-20  
-30  
0
-10  
-20  
-30  
VOUT  
VIN  
0
20 40 60 80 100 120 140 160 180 200  
Time (μs)  
Time (100 μs/div)  
FIGURE 2-37:  
The MCP6V51 Shows No  
FIGURE 2-40:  
Noninverting 40 VPP Step  
Input Phase Reversal with Overdrive.  
Response.  
DS20006136A-page 16  
2018 Microchip Technology Inc.  
MCP6V51  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
VIN  
VOUT  
Falling Edge, VDD = 45V  
Falling Edge, VDD = 4.5V  
Rising Edge, VDD = 45V  
Rising Edge, VDD = 4.5V  
VDD = +/-15V  
G = -1 V/V  
-50  
-25  
0
25  
50  
75  
100 125  
0
1
2
3
4
5
6
7
8
9
10  
Time (μs)  
Ambient Temperature (°C)  
FIGURE 2-41:  
Inverting Small Signal Step  
FIGURE 2-44:  
Slew Rate vs. Ambient  
Response.  
Temperature.  
15  
10  
30  
20  
10  
0
VDD = +/-15 V  
G = -1 V/V  
GVIN  
VOUT  
5
VIN  
VDD = 45 V  
0
-5  
G = -10V/V  
VOUT  
0.5V Overdrive  
-10  
GVIN  
-20  
VOUT  
-10  
-15  
-30  
0
10 20 30 40 50 60 70 80 90 100  
Time (μs)  
Time (100 us/div)  
FIGURE 2-42:  
Inverting Large Signal Step  
FIGURE 2-45:  
Output Overdrive Recovery  
Response.  
vs. Time with G = -10 V/V.  
30  
1m  
VDD = +/-22.5 V  
G = -1 V/V  
0.5V Input Overdrive  
VIN  
20  
VDD = 45V  
100μ  
10  
0
VDD = 4.5V  
tODR, high  
tODR, low  
10μ  
1μ  
-10  
-20  
-30  
VOUT  
1
10  
100  
1000  
0
20 40 60 80 100 120 140 160 180 200  
Time (μs)  
Inverting Gain Magnitude (V/V)  
FIGURE 2-43:  
Inverting 40 VPP Step  
FIGURE 2-46:  
Output Overdrive Recovery  
Response.  
Time vs. Inverting Gain.  
2018 Microchip Technology Inc.  
DS20006136A-page 17  
MCP6V51  
NOTES:  
DS20006136A-page 18  
2018 Microchip Technology Inc.  
MCP6V51  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
MCP6V51  
PIN FUNCTION TABLE  
Symbol  
Description  
SOT23-5  
MSOP-8  
1
4
6
VOUT  
VIN-  
VIN+  
VSS  
VDD  
NC  
Output  
2
Inverting Input  
3
3
Noninverting Input  
Negative Power Supply  
Positive Power Supply  
2
4
7
5
1, 5, 8  
Do not connect (no internal connection)  
3.1  
Analog Output  
The analog output pins (VOUT) are low-impedance  
voltage sources.  
3.2  
Analog Inputs  
The noninverting and inverting inputs (VIN+, VIN-, …)  
are high-impedance CMOS inputs with low bias  
currents.  
3.3  
Power Supply Pins  
The positive power supply (VDD) is 4.5V to 45V higher  
than the negative power supply (VSS). For normal  
operation, the other pins are between VSS and VDD  
.
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need bypass capacitors.  
2018 Microchip Technology Inc.  
DS20006136A-page 19  
MCP6V51  
NOTES:  
DS20006136A-page 20  
2018 Microchip Technology Inc.  
MCP6V51  
The Output Buffer drives external loads at the VOUT pin  
(VREF is an internal reference voltage).  
4.0  
APPLICATIONS  
The MCP6V51 is designed for precision applications  
with requirements for small packages and low power.  
Its wide supply voltage range and low quiescent current  
make the MCP6V51 devices ideal for industrial  
applications.  
The Oscillator runs at fOSC1 = 200 kHz. Its output is  
divided by two, to produce the chopping clock rate of  
fCHOP = 100 kHz.  
The internal Power-on Reset (POR) starts the part in a  
known good state, protecting against power supply  
brown-outs.  
4.1  
Overview of Zero-Drift Operation  
The Digital Control block controls switching and POR  
events.  
Figure 4-1 shows  
MCP6V51 zero-drift op amp. This diagram will be used  
to explain how slow voltage errors are reduced in this  
architecture (much better VOS  
CMRR, PSRR, AOL and 1/f noise).  
a simplified diagram of the  
4.1.2  
CHOPPING ACTION  
, VOS/TA (TC1),  
Figure 4-2 shows the amplifier connections for the first  
phase of the chopping clock and Figure 4-3 shows the  
connections for the second phase. Its slow voltage  
errors alternate in polarity, making the average error  
small.  
VREF  
-
Output  
Buffer  
VOUT  
VIN+  
+
VIN+  
VIN-  
+
-
+
-
+
-
Main  
Amp.  
VIN-  
+
-
Main  
Amp.  
NC  
+
-
NC  
+
-
Low-Pass  
Filter  
Low-Pass  
Filter  
+
-
+
-
Aux.  
Amp.  
Chopper  
Input  
Switches  
Chopper  
Output  
Switches  
+
-
+
-
Aux.  
Amp.  
FIGURE 4-2:  
First Chopping Clock Phase;  
Equivalent Amplifier Diagram.  
Oscillator  
Digital Control  
POR  
VIN+  
FIGURE 4-1:  
Simplified Zero-Drift Op  
+
-
Amp Functional Diagram.  
+
-
Main  
Amp.  
VIN-  
NC  
+
-
4.1.1  
BUILDING BLOCKS  
The Main Amplifier is designed for high gain and  
bandwidth, with a differential topology. Its main input  
pair (+ and - pins at the top left) is used for the higher  
frequency portion of the input signal. Its auxiliary input  
pair (+ and - pins at the bottom left) is used for the  
low-frequency portion of the input signal and corrects  
the op amp’s input offset voltage. Both inputs are  
added together internally.  
Low-Pass  
Filter  
+
-
+
-
Aux.  
Amp.  
The Auxiliary Amplifier, Chopper Input Switches and  
Chopper Output Switches provide a high DC gain to the  
input signal. DC errors are modulated to higher  
frequencies, while white noise is modulated to low  
frequency.  
FIGURE 4-3:  
Phase; Equivalent Amplifier Diagram.  
Second Chopping Clock  
The Low-Pass Filter reduces high-frequency content,  
including harmonics of the chopping clock.  
2018 Microchip Technology Inc.  
DS20006136A-page 21  
MCP6V51  
In addition, the input is protected by a pair of back-to-  
back diodes across the amplifier’s inputs, which will  
limit the voltage that can develop across the inputs to  
about +/-1V.  
4.2  
Other Functional Blocks  
4.2.1  
INPUT PROTECTION  
The MCP6V51 can be operated on a single supply  
voltage ranging from 4.5V to 45V, or in a split-supply  
application (+/-2.25V to +/- 22.5V). The input common-  
mode range extends below the negative rail,  
In some applications, it may be necessary to prevent  
excessive voltages from reaching the op amp inputs;  
Figure 4-5 shows one approach of protecting these  
inputs. D1 and D2 may be small-signal silicon diodes,  
Schottky diodes for lower clamping voltages or  
diode-connected FETs for low leakage.  
VCML = VSS - 0.3V at 25°C, while maintaining high  
CMRR (135 dB min. at 45VDD). The upper range of the  
input common-mode is limited to VCMH = VDD - 2.1V.  
To ensure proper operation, these VCM limits, along  
with any potential overvoltage/current conditions as  
described in the following paragraphs, should be taken  
into consideration.  
VDD  
U1  
D1  
4.2.1.1  
Phase Reversal  
MCP6V51  
V1  
V2  
+
-
The input devices are designed to not exhibit phase  
inversion when the input pins exceed the supply  
voltages. Figure 2-37 shows an input voltage  
exceeding both supplies with no phase inversion.  
D2  
VOUT  
4.2.1.2  
Input Voltage Limits  
FIGURE 4-5:  
Protecting the Analog Inputs  
against High Voltages.  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuit must limit the voltages at  
the input pins (see Section 1.1, Absolute Maximum  
Ratings †). This requirement is independent of the  
current limits discussed later on.  
4.2.1.3  
Input Current Limits  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuit must limit the currents  
into the input pins (see Section 1.1, Absolute  
The ESD protection on the inputs can be depicted as  
shown in Figure 4-4. This structure was chosen to  
protect the input transistors against many (but not all)  
overvoltage conditions and to minimize input bias  
current (IB).  
Maximum  
Ratings †).  
This  
requirement  
is  
independent of the voltage limits discussed previously.  
Figure 4-6 shows one approach to protecting these  
inputs. The R1 and R2 resistors limit the possible  
current in or out of the input pins (and into D1 and D2).  
Once the diode is forward biased, any current will flow  
into the VDD supply line.  
The input ESD diodes clamp the inputs when they try  
to go more than one diode drop below VSS. They also  
clamp any voltages well above VDD; their breakdown  
voltage is high enough to allow normal operation but  
not low enough to protect against slow overvoltage  
(beyond VDD) events. Very fast ESD events (that meet  
the specification) are limited so that damage can  
largely be prevented.  
VDD  
U1  
D1  
MCP6V51  
V1  
V2  
+
-
R1  
R2  
D2  
VOUT  
Bond  
VDD  
Pad  
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
VSS minV1V2  
VIN+  
VIN-  
min(R1R2 --------------------------------------------  
10 mA  
maxV1V2VDD  
min(R1R2 -----------------------------------------------  
Bond  
Pad  
10 mA  
VSS  
FIGURE 4-6:  
Against High Currents.  
Protecting the Analog Inputs  
FIGURE 4-4:  
Structures.  
Simplified Analog Input ESD  
DS20006136A-page 22  
2018 Microchip Technology Inc.  
MCP6V51  
It is also possible to connect the diodes to the left of the  
R1 and R2 resistors. In this case, the currents through  
the D1 and D2 diodes need to be limited by some other  
mechanism. The resistors then serve as in-rush current  
limiters; the DC current into the input pins (VIN+ and  
VIN-) should be very small.  
To derive the Power dissipation of the device, add the  
terms for the devices’ quiescent power and the load  
power as shown in Equation 4-2:  
EQUATION 4-2:  
A significant amount of current can flow out of the  
inputs (through the ESD diodes) when the Common  
Mode Voltage (VCM) is below ground (VSS); see  
Figure 2-16.  
PD = VDD VSSIQ + IOUT VDD VOUT  
This assumes that the device is sourcing the load  
current, i.e. current flowing from the VDD supply into the  
4.2.2  
INTEGRATED EMI FILTER  
I
×(VOUT - V  
)
load. Use the term ( OUT  
SS ) when the  
device is sinking current. Note that this simple example  
assumes a constant (DC) signal current flow.  
The MCP6V51 has an integrated low-pass filter in its  
inputs for the dedicated purpose of reducing any  
electromagnetic or RF interference (EMI, RFI). The on-  
chip filter is designed as a 2nd-order RC low-pass,  
The thermal shutdown circuitry activates as soon as  
the junction temperature reaches approximately  
+175°C causing the amplifier’s output stage to be tri-  
stated (high-impedance) effectively disabling any  
output current flow. The amplifier will remain in this  
disabled state until the junction temperature has cooled  
down to approximately +160°C. At this point the  
thermal shutdown circuitry will enable the output stage  
of the MCP6V51 amplifier and the device will resume  
normal operation.  
which  
sets a bandwidth limit of approximately  
115 MHz and attenuates the high-frequency  
interference. Performance results of the MCP6V51’s  
EMI rejection ratio (EMIRR) under various conditions  
can be seen in Figure 2-31 and Figure 2-33.  
4.2.3  
RAIL-TO-RAIL OUTPUT  
The Output Voltage Range of the MCP6V51 zero-drift  
op amps is typically VDD - 100 mV, and VSS + 50 mV  
when RL = 10 kis connected to VDD/2 and  
VDD = 45V. Refer to Figure 2-18, Figure 2-19 and  
Figure 2-20 for more information.  
If a fault condition persists, for example the amplifier’s  
output (VOUT) is shorted causing excessive output  
current, the thermal shutdown circuity may be triggered  
again and the previously described cycle repeats. This  
may continue until the fault condition is removed.  
4.2.4  
THERMAL SHUTDOWN  
It should be noted that the thermal shutdown feature of  
the MCP6V51 does not guarantee that the device will  
remain undamaged when operated under stress  
conditions during which the device is placed into the  
shutdown mode.  
Under certain operating conditions, the MCP6V51  
amplifier can be subjected to a rise of its die  
temperature above the specified maximum junction  
temperature of 150°C. To control possible overheating  
and damage, the MCP6V51 amplifier has internal  
thermal shutdown circuitry. Especially when operating  
with the maximum supply voltage of 45V, observe that  
the ambient temperature and/or the amplifier’s output  
current are such that the junction temperature remains  
below the specified limit. To estimate the junction  
temperature (TJ) consider these factors: the total power  
dissipation of the device (PD) and the ambient  
temperature at the device package (TA), and use  
Equation 4-1 below.  
4.3  
Application Tips  
4.3.1  
INPUT OFFSET VOLTAGE OVER  
TEMPERATURE  
Table DC Electrical Specifications gives both the  
linear and quadratic temperature coefficients (TC1 and  
TC2) of input offset voltage. The input offset voltage, at  
any temperature in the specified range, can be  
calculated as follows:  
EQUATION 4-1:  
EQUATION 4-3:  
VOSTA= VOS + TC1T + TC2T2  
TJ = PD  JA + TA  
Where:  
Where:  
JA  
=
the thermal resistance between the die  
and the ambient environment, as  
shown in Temperature  
T  
OS(TA)  
VOS  
=
=
=
=
=
TA – 25°C  
V
Input offset voltage at TA  
Input offset voltage at +25°C  
Linear temperature coefficient  
Quadratic temperature coefficient  
Specifications  
TC1  
TC2  
2018 Microchip Technology Inc.  
DS20006136A-page 23  
MCP6V51  
reduced. This produces gain peaking in the frequency  
response, with overshoot and ringing in the step  
response. These zero-drift op amps have a different  
output impedance compared to standard linear op  
amps, due to their unique topology.  
4.3.2  
DC GAIN PLOTS  
Figure 2-8, Figure 2-9 and Figure 2-10 are  
histograms of the reciprocals (in units of µV/V) of  
CMRR, PSRR and AOL, respectively. They represent  
the change in Input Offset Voltage (VOS) with a change  
in Common Mode Input Voltage (VCM), Power Supply  
Voltage (VDD) and Output Voltage (VOUT).  
When driving a capacitive load with these op amps, a  
series resistor at the output (RISO in Figure 4-8)  
improves the feedback loop’s phase margin (stability)  
by making the output load resistive at higher  
frequencies. The bandwidth will be generally lower  
than the bandwidth with no capacitive load.  
The 1/AOL histogram is centered near 0 µV/V because  
the measurements are dominated by the op amp’s  
input noise. The negative values shown represent  
noise and tester limitations, not unstable behavior.  
Production tests make multiple VOS measurements,  
which validates an op amp's stability; an unstable part  
would show greater VOS variability or the output would  
stick at one of the supply rails.  
Figure 4-7 gives recommended RISO values for  
different capacitive loads and gains. The x-axis is the  
load capacitance (CL). The y-axis is the resistance  
(RISO).  
GN is the circuit’s noise gain. For non-inverting gains,  
GN and the Signal Gain are equal. For inverting gains,  
GN is 1+|Signal Gain| (e.g., -1 V/V gives GN = +2 V/V).  
4.3.3  
OFFSET AT POWER-UP  
When these parts power up, the input offset (VOS  
)
starts at its uncorrected value (usually less than  
±5 mV). Circuits with high DC gain may cause the  
output to reach one of the two rails. In this case, the  
time to a valid output is delayed by an output overdrive  
time (tODR), in addition to the start-up time (tSTR).  
1000  
VDD = 45 V  
RL = 10 kȍ  
100  
To avoid this extended start-up time, reducing the gain  
is one method. Adding a capacitor across the feedback  
resistor (RF) is another method.  
10  
GN:  
1 V/V  
10 V/V  
100 V/V  
4.3.4  
SOURCE RESISTANCES  
The input bias currents have two significant  
components: switching glitches that dominate at room  
temperature and below, and input ESD diode leakage  
currents that dominate at +85°C and above.  
1
10p  
100p  
1n  
10n  
100n  
1μ  
Normalized Load Capacitance; CL/—GN (F)  
FIGURE 4-7:  
for Capacitive Loads.  
Recommended RISO Values  
Make the resistances seen by the inputs small and  
equal. This minimizes the output offset voltage caused  
by the input bias currents.  
After selecting RISO for your circuit, double check the  
resulting frequency response peaking and step  
response overshoot. Modify the RISO value until the  
response is reasonable. Bench evaluation is helpful.  
The inputs should see a resistance on the order of 10ꢀ  
to 1 kat high frequencies (i.e., above 1 MHz). This  
helps minimize the impact of switching glitches, which  
are very fast, on overall performance. In some cases, it  
may be necessary to add resistors in series with the  
inputs to achieve this improvement in performance.  
Small input resistances may be needed for high gains.  
Without them, parasitic capacitances might cause  
positive feedback and instability.  
4.3.5  
SOURCE CAPACITANCE  
The capacitances seen by the two inputs should be  
small. Large input capacitances and source  
resistances, together with high gain, can lead to  
instability.  
4.3.6  
CAPACITIVE LOADS  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases and the closed-loop bandwidth is  
DS20006136A-page 24  
2018 Microchip Technology Inc.  
MCP6V51  
CN and RN form a low-pass filter that affects the signal  
at VP. This filter has a single real pole at 1/(2πRNCN).  
4.3.7  
STABILIZING OUTPUT LOADS  
This family of zero-drift op amps has an output  
impedance (Figure 2-28 and Figure 2-29) that has a  
double zero when the gain is low. This can cause a  
large phase shift in feedback networks that have low-  
impedance near the part’s cross-over frequency. This  
phase shift can cause stability problems.  
The largest value of RF that should be used depends  
on the noise gain (see GN in Section 4.3.6  
“Capacitive Loads”), CG and the open-loop gain’s  
phase shift. An approximate limit for RF is shown in  
Equation 4-4.  
Figure 4-8 shows that the load on the output is  
(RL + RISO)||(RF + RG), where RISO is before the load.  
This load needs to be large enough to maintain  
stability; it is recommended to design for a total load of  
10 k, or higher.  
EQUATION 4-4:  
3.5 pF  
RF 10 k  --------------- G N2  
CG  
Some applications may modify these values to reduce  
either output loading or gain peaking (step-response  
overshoot).  
RISO  
RG  
RF  
VOUT  
-
At high gains, RN needs to be small, in order to prevent  
positive feedback and oscillations. Large CN values  
can also help.  
RL  
CL  
+
U1  
MCP6V51  
Output Resistor, RISO  
FIGURE 4-8:  
Stabilizes Capacitive Loads  
,
4.3.8 GAIN PEAKING  
Figure 4-9 shows an op amp circuit that represents  
noninverting amplifiers (VM is a DC voltage and VP is  
the input) or inverting amplifiers (VP is a DC voltage  
and VM is the input). The CN and CG capacitances  
represent the total capacitance at the input pins; they  
include the op amp’s Common Mode Input  
Capacitance (CCM), board parasitic capacitance and  
any capacitor placed in parallel. The CFP capacitance  
represents the parasitic capacitance coupling between  
the output and the non-inverting input pins.  
CN  
CFP  
RN  
VP  
U1  
+
VOUT  
MCP6V51  
-
VM  
RG  
RF  
CG  
FIGURE 4-9:  
Amplifier with Parasitic  
Capacitance.  
CG acts in parallel with RG (except for a gain of +1 V/  
V), which causes an increase in gain at high  
frequencies. CG also reduces the phase margin of the  
feedback loop, which becomes less stable. This effect  
can be reduced by either reducing CG or RF||RG.  
2018 Microchip Technology Inc.  
DS20006136A-page 25  
MCP6V51  
Typical thermojunctions have temperature-to-voltage  
conversion coefficients of 1 to 100 µV/°C (sometimes  
higher).  
4.3.9  
REDUCING UNDESIRED NOISE  
AND SIGNALS  
Reduce undesired noise and signals with:  
Microchip’s AN1258 Application Note – “Op Amp  
Precision Design: PCB Layout Techniques” (DS01258)  
contains in-depth information on PCB layout  
techniques that minimize thermojunction effects. It also  
discusses other effects, such as crosstalk,  
impedances, mechanical stresses and humidity.  
• Low bandwidth signal filters:  
- Minimize random analog noise  
- Reduce interfering signals  
• Good PCB layout techniques:  
- Minimize crosstalk  
- Minimize parasitic capacitances and  
inductances that interact with fast switching  
edges  
4.3.11.2  
Crosstalk  
DC crosstalk causes offsets that appear as a larger  
input offset voltage. Common causes include:  
• Good power supply design:  
• Common mode noise (remote sensors)  
• Ground loops (current return paths)  
• Power supply coupling  
- Isolation from other parts  
- Filtering of interference on supply line(s)  
4.3.10  
SUPPLY BYPASSING AND  
FILTERING  
Interference from the mains (usually 50 Hz or 60 Hz)  
and other AC sources can also affect the DC  
performance. Nonlinear distortion can convert these  
signals to multiple tones, including a DC shift in voltage.  
When the signal is sampled by an ADC, these AC  
signals can also be aliased to DC, causing an apparent  
shift in offset.  
With this operational amplifier, the power supply pins  
(only VDD for single supply) should have a low-ESR  
ceramic bypass capacitor (i.e., 0.01 µF to 0.1 µF)  
within 2 mm of the pins for good high-frequency  
decoupling.  
It is recommended to place a bulk capacitor (i.e., 1 µF  
or larger) within 100 mm of the device to provide large,  
slow currents. This bulk capacitor can be shared with  
other low-noise analog parts.  
To reduce interference:  
- Keep traces and wires as short as possible  
- Use shielding  
- Use ground plane (at least a star ground)  
- Place the input signal source near the DUT  
- Use good PCB layout techniques  
In some cases, high-frequency power supply noise  
(e.g., switched-mode power supplies) may cause  
undue intermodulation distortion, with a DC offset shift;  
this noise needs to be filtered. Adding a small resistor  
or ferrite bead into the supply connection can be  
helpful.  
- Use a separate power supply filter (bypass  
capacitors) for these zero-drift op amps  
4.3.11.3  
Miscellaneous Effects  
4.3.11  
PCB DESIGN FOR DC PRECISION  
Keep the resistances seen by the input pins as small  
and as near to equal as possible, to minimize bias  
current-related offsets.  
In order to achieve DC precision on the order of ±1 µV,  
many physical errors need to be minimized. The design  
of the Printed Circuit Board (PCB), the wiring and the  
thermal environment have a strong impact on the  
precision achieved. A poor PCB design can easily be  
more than 100 times worse than the MCP6V51 op  
amps’ specifications.  
Make the (trace) capacitances seen by the input pins  
small and equal. This is helpful in minimizing switching  
glitch-induced offset voltages.  
Bending a coax cable with a radius that is too small  
causes a small voltage drop to appear on the center  
conductor (the triboelectric effect). Make sure the  
bending radius is large enough to keep the conductors  
and insulation in full contact.  
4.3.11.1  
PCB Layout  
Any time two dissimilar metals are joined together, a  
temperature-dependent voltage appears across the  
junction (the Seebeck or thermojunction effect). This  
effect is used in thermocouples to measure  
temperature. The following are examples of  
thermojunctions on a PCB:  
Mechanical stresses can make some capacitor types  
(such as some ceramics) output small voltages. Use  
more appropriate capacitor types in the signal path and  
minimize mechanical stresses and vibration.  
Humidity can cause electrochemical potential voltages  
to appear in a circuit. Proper PCB cleaning helps, as  
does the use of encapsulants.  
• Components (resistors, op amps, …) soldered to  
a copper pad  
• Wires mechanically attached to the PCB  
• Jumpers  
• Solder joints  
• PCB vias  
DS20006136A-page 26  
2018 Microchip Technology Inc.  
MCP6V51  
4.4  
Typical Applications  
0.01C  
100R  
VDD  
1 kꢀ  
+5V  
4.4.1  
LOW-SIDE CURRENT SENSE  
R
R
+
-
ADC  
The common-mode input range of the MCP6V51  
typically extend 0.3V below ground (VSS), which makes  
this amplifier a good choice for Low-side current sense  
application especially where operation on higher  
supply voltages is required. One such example is  
shown in Figure 4-10. Here, the load current (IL)  
ranges from 0A to 1.5A, which results in an voltage  
drop across the shunt resistor of 0 to 75 mV. The gain  
on the MCP6V51 is set to 201 V/V, which gives an  
output voltage range of about 0V to +15V.  
0.2R  
0.2R  
U1  
MCP6V51  
-
R
R
+
FIGURE 4-11:  
Simple Design.  
Figure 4-13 shows a higher performance circuit for a  
Wheatstone bridge signal conditioning design. This  
example offers a symmetric, high impedance load to  
the bridge with superior CMRR performance. It  
maintains this high CMRR by driving the signal  
differentially into the ADC.  
40VDD  
Load  
MCP6V51  
40VDD  
U1  
200   
MCP6V51  
IL  
+
-
VOUT  
VDD  
RSHUNT  
1 µF  
0.05ꢀ  
RG  
100ꢀ  
R
R
R
R
RF  
20 k  
3 k  
10 nF  
VDD  
200  
1 µF  
20 kꢀ  
ADC  
CF  
8.2 nF  
200  
3 k  
FIGURE 4-10:  
1.5A Max Load Current.  
Low-Side Current Sense for  
10 nF  
20 k  
1 µF  
This circuit example can be adapted to a wide range of  
similar applications:  
- for VDD voltages from 4.5V up to 45V  
200   
- adjusting the shunt resistor and/or gain for  
higher or lower load currents.  
MCP6V51  
Because the MCP6V51 has a very low offset drift and  
virtually no 1/f noise, very small shunt resistor values  
can be selected, which helps in mediating the heating  
and size problems that may arise in such applications.  
FIGURE 4-12:  
Higher Performance Design.  
4.4.2  
WHEATSTONE BRIDGE  
Many sensors are configured as Wheatstone bridges.  
Strain gages and pressure sensors are two common  
examples. These signals can be small and the  
common mode noise large. Amplifier designs with high  
differential gain are desirable.  
Figure 4-11 shows how to interface to a Wheatstone  
bridge with a minimum of components. Because the  
circuit is not symmetric, the ADC input is single-ended  
and there is a minimum of filtering; the CMRR is good  
enough for moderate common mode noise.  
2018 Microchip Technology Inc.  
DS20006136A-page 27  
MCP6V51  
4.4.3  
The ratiometric circuit in Figure 4-13 conditions a  
two-wire RTD for applications with limited  
RTD SENSOR  
a
temperature range. U1 acts as a difference amplifier,  
with a low-frequency pole. The sensor’s wiring  
resistance (RW) is corrected in firmware. Failure (open)  
of the RTD is detected by an out-of-range voltage.  
VDD  
RT  
RN  
34.8 kꢀ  
10 nF  
10.0 kꢀ  
RF  
RW  
2 Mꢀ  
+
U1  
RRTD  
MCP6V51  
RG  
10.0 kꢀ  
-
100ꢀ  
1 kꢀ  
RF  
2 Mꢀ  
RW  
100 nF  
+5V  
RB  
4.99 kꢀ  
10 nF  
1.0 µF  
+
-
ADC  
FIGURE 4-13:  
RTD Sensor.  
DS20006136A-page 28  
2018 Microchip Technology Inc.  
MCP6V51  
5.3  
Application Notes  
5.0  
DESIGN AIDS  
The following Microchip Application Notes are  
available on the Microchip web site at www.microchip.  
com/appnotes and are recommended as supplemental  
reference resources.  
Microchip provides the basic design aids needed for  
the MCP6V51 op amp.  
5.1  
Microchip Advanced Part Selector  
(MAPS)  
• ADN003 Application Note – “Select the Right  
Operational Amplifier for your Filtering Circuits”  
(DS21821)  
MAPS is a software tool that helps efficiently identify  
Microchip devices that fit particular design  
a
• AN722 Application Note – “Operational Amplifier  
Topologies and DC Specifications” (DS00722)  
requirement. Available at no cost from the Microchip  
web site at www.microchip.com/maps, MAPS is an  
overall selection tool for Microchip’s product portfolio  
that includes Analog, Memory, MCUs and DSCs. Using  
this tool, a customer can define a filter to sort features  
for a parametric search of devices and export  
side-by-side technical comparison reports. Helpful links  
are also provided for data sheets, purchase and  
sampling of Microchip parts.  
• AN723 Application Note – “Operational Amplifier  
AC Specifications and Applications” (DS00723)  
• AN884 Application Note – “Driving Capacitive  
Loads With Op Amps” (DS00884)  
• AN990 Application Note – “Analog Sensor  
Conditioning Circuits - An Overview” (DS00990)  
• AN1177 Application Note – “Op Amp Precision  
Design: DC Errors” (DS01177)  
5.2  
Analog Demonstration and  
Evaluation Boards  
• AN1228 Application Note – “Op Amp Precision  
Design: Random Noise” (DS01228)  
• AN1258 Application Note – “Op Amp Precision  
Design: PCB Layout Techniques” (DS01258)  
Microchip offers  
a
broad spectrum of Analog  
Demonstration and Evaluation Boards that are  
designed to help customers achieve faster time to  
market. For a complete listing of these boards and their  
corresponding user’s guides and technical information,  
visit the Microchip web site at www.microchip.com/  
analog tools.  
Some boards that are especially useful are:  
• MCP6V01 Thermocouple Auto-Zeroed Reference  
Design (P/N MCP6V01RD-TCPL)  
• MCP6XXX Amplifier Evaluation Board 1  
(P/N DS51667)  
• MCP6XXX Amplifier Evaluation Board 2  
(P/N DS51668)  
• MCP6XXX Amplifier Evaluation Board 3  
(P/N DS51673)  
• MCP6XXX Amplifier Evaluation Board 4  
(P/N DS51681)  
• Active Filter Demo Board Kit (P/N DS51614)  
• 8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board  
(P/N SOIC8EV)  
• 14-Pin SOIC/TSSOP/DIP Evaluation Board  
(P/N SOIC14EV)  
2018 Microchip Technology Inc.  
DS20006136A-page 29  
MCP6V51  
NOTES:  
DS20006136A-page 30  
2018 Microchip Technology Inc.  
MCP6V51  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Lead SOT-23  
Example  
AADQY  
32256  
Example  
8-Lead MSOP  
6V51  
832256  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC® designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2018 Microchip Technology Inc.  
DS20006136A-page 31  
MCP6V51  
5-Lead Plastic Small Outline Transistor (OT) [SOT23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
0.20 C 2X  
D
e1  
A
D
N
E/2  
E1/2  
E1  
E
(DATUM D)  
(DATUM A-B)  
0.15 C D  
2X  
NOTE 1  
1
2
e
B
NX b  
0.20  
C A-B D  
TOP VIEW  
A
A2  
A1  
A
0.20 C  
SEATING PLANE  
A
SEE SHEET 2  
C
SIDE VIEW  
Microchip Technology Drawing C04-091-OT Rev E Sheet 1 of 2  
DS20006136A-page 32  
2018 Microchip Technology Inc.  
MCP6V51  
5-Lead Plastic Small Outline Transistor (OT) [SOT23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
c
T
L
L1  
VIEW A-A  
SHEET 1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
5
0.95 BSC  
Outside lead pitch  
Overall Height  
Molded Package Thickness  
Standoff  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
e1  
A
A2  
A1  
E
E1  
D
L
1.90 BSC  
0.90  
0.89  
-
-
-
-
1.45  
1.30  
0.15  
2.80 BSC  
1.60 BSC  
2.90 BSC  
0.30  
-
0.60  
Footprint  
Foot Angle  
Lead Thickness  
Lead Width  
L1  
0.60 REF  
I
0°  
0.08  
0.20  
-
-
-
10°  
0.26  
0.51  
c
b
Notes:  
1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or  
protrusions shall not exceed 0.25mm per side.  
2. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-091-OT Rev E Sheet 2 of 2  
2018 Microchip Technology Inc.  
DS20006136A-page 33  
MCP6V51  
5-Lead Plastic Small Outline Transistor (OT) [SOT23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
X
SILK SCREEN  
5
Y
Z
C
G
1
2
E
GX  
RECOMMENDED LAND PATTERN  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
0.95 BSC  
2.80  
MAX  
Contact Pitch  
E
C
Contact Pad Spacing  
Contact Pad Width (X5)  
Contact Pad Length (X5)  
Distance Between Pads  
Distance Between Pads  
Overall Width  
X
Y
G
GX  
Z
0.60  
1.10  
1.70  
0.35  
3.90  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing No. C04-2091B [OT]  
DS20006136A-page 34  
2018 Microchip Technology Inc.  
MCP6V51  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2018 Microchip Technology Inc.  
DS20006136A-page 35  
MCP6V51  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20006136A-page 36  
2018 Microchip Technology Inc.  
MCP6V51  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2018 Microchip Technology Inc.  
DS20006136A-page 37  
MCP6V51  
NOTES:  
DS20006136A-page 38  
2018 Microchip Technology Inc.  
MCP6V51  
APPENDIX A: REVISION HISTORY  
Revision A (December 2018)  
• Initial release of this document  
2018 Microchip Technology Inc.  
DS20006136A-page 39  
MCP6V51  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
(1)  
X
/XX  
[X]  
PART NO.  
Device  
Examples:  
Temperature  
Range  
Package  
Tape and Reel  
Option  
a)  
MCP6V51T-E/OT: 5-Lead SOT-23 package,  
Tape and Reel  
b)  
c)  
MCP6V51-E/MS:  
8-Lead MSOP package  
MCP6V51T-E/MS: 8-Lead MSOP package,  
Tape and Reel  
Device:  
MCP6V51: 45V, 2 MHz Zero-Drift Op Amp with EMI Filtering  
Tape and Reel  
Option:  
Blank  
T
=
=
Standard packaging (tube or tray)  
Tape and Reel(1)  
Note 1:  
Tape and Reel identifier only appears in the  
catalog part number description. This  
identifier is used for ordering purposes and is  
not printed on the device package. Check  
with your Microchip Sales Office for package  
availability with the Tape and Reel option.  
Temperature  
Range:  
E
=
-40C to +125C (Extended)  
Package:  
OT  
MS  
=
=
5-Lead Plastic Small Outline Transistor (SOT-23)  
8-Lead Plastic Micro Small Outline Package  
(MSOP)  
2018 Microchip Technology Inc.  
DS20006136A-page 40  
MCP6V51  
NOTES:  
DS20006136A-page 41  
2018 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate, AVR,  
AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo,  
CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo,  
JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus,  
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,  
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip  
Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo,  
SuperFlash, tinyAVR, UNI/O, and XMEGA are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
and other countries.  
ClockWorks, The Embedded Control Solutions Company,  
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,  
mTouch, Precision Edge, and Quiet-Wire are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard,  
CryptoAuthentication, CryptoAutomotive, CryptoCompanion,  
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average  
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial  
Programming, ICSP, INICnet, Inter-Chip Connectivity,  
JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi,  
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB,  
MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation,  
PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon,  
QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O,  
SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total  
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,  
WiperLock, Wireless DNA, and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
Silicon Storage Technology is a registered trademark of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip  
Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
© 2018, Microchip Technology Incorporated, All Rights Reserved.  
ISBN: 978-1-5224-3968-4  
== ISO/TS 16949 ==  
2018 Microchip Technology Inc.  
DS20006136A-page 42  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Australia - Sydney  
Tel: 61-2-9868-6733  
India - Bangalore  
Tel: 91-80-3090-4444  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
China - Beijing  
Tel: 86-10-8569-7000  
India - New Delhi  
Tel: 91-11-4160-8631  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8665-5511  
India - Pune  
Tel: 91-20-4121-0141  
Finland - Espoo  
Tel: 358-9-4520-820  
China - Chongqing  
Tel: 86-23-8980-9588  
Japan - Osaka  
Tel: 81-6-6152-7160  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
China - Dongguan  
Tel: 86-769-8702-9880  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Guangzhou  
Tel: 86-20-8755-8029  
Korea - Daegu  
Tel: 82-53-744-4301  
Germany - Garching  
Tel: 49-8931-9700  
China - Hangzhou  
Tel: 86-571-8792-8115  
Korea - Seoul  
Tel: 82-2-554-7200  
Germany - Haan  
Tel: 49-2129-3766400  
Austin, TX  
Tel: 512-257-3370  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Malaysia - Kuala Lumpur  
Tel: 60-3-7651-7906  
Germany - Heilbronn  
Tel: 49-7131-67-3636  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
China - Nanjing  
Tel: 86-25-8473-2460  
Malaysia - Penang  
Tel: 60-4-227-8870  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Qingdao  
Philippines - Manila  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-532-8502-7355  
Tel: 63-2-634-9065  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shanghai  
Tel: 86-21-3326-8000  
Singapore  
Tel: 65-6334-8870  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Shenyang  
Tel: 86-24-2334-2829  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Shenzhen  
Tel: 86-755-8864-2200  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Suzhou  
Tel: 86-186-6233-1526  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Wuhan  
Tel: 86-27-5980-5300  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Italy - Padova  
Tel: 39-049-7625286  
Houston, TX  
Tel: 281-894-5983  
China - Xian  
Tel: 86-29-8833-7252  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
China - Xiamen  
Tel: 86-592-2388138  
Norway - Trondheim  
Tel: 47-7288-4388  
China - Zhuhai  
Tel: 86-756-3210040  
Poland - Warsaw  
Tel: 48-22-3325737  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
DS20006136A-page 43  
2018 Microchip Technology Inc.  
08/15/18  

相关型号:

MCP6V54

The MCP6V51/2/4 operational amplifiers provide input offset voltage correction for very low offset
MICROCHIP

MCP6V61

Portable Instrumentation
MICROCHIP

MCP6V61U

The MCP6V6x family of operational amplifiers provides input offset voltage correction for very low
MICROCHIP

MCP6V62

Portable Instrumentation
MICROCHIP

MCP6V64

Portable Instrumentation
MICROCHIP

MCP6V66

80 μA, 1 MHz Zero-Drift Op Amps
MICROCHIP

MCP6V66T-E/OT

80 μA, 1 MHz Zero-Drift Op Amps
MICROCHIP

MCP6V66U

80 μA, 1 MHz Zero-Drift Op Amps
MICROCHIP

MCP6V66UT-E/LTY

80 μA, 1 MHz Zero-Drift Op Amps
MICROCHIP

MCP6V66UT-E/OT

80 μA, 1 MHz Zero-Drift Op Amps
MICROCHIP

MCP6V67

80 μA, 1 MHz Zero-Drift Op Amps
MICROCHIP

MCP6V67-E/MS

80 μA, 1 MHz Zero-Drift Op Amps
MICROCHIP