MCP73837T-G8I/MF [MICROCHIP]

Advanced Stand-Alone Li-Ion/Li-Polymer Battery Charge Management Controller with Autonomous AC Adapter or USB Port Source Selection;
MCP73837T-G8I/MF
型号: MCP73837T-G8I/MF
厂家: MICROCHIP    MICROCHIP
描述:

Advanced Stand-Alone Li-Ion/Li-Polymer Battery Charge Management Controller with Autonomous AC Adapter or USB Port Source Selection

电池
文件: 总36页 (文件大小:1220K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP73837/8  
Advanced Stand-Alone Li-Ion/Li-Polymer Battery Charge  
Management Controller with Autonomous AC Adapter or  
USB Port Source Selection  
Features  
Applications  
• Highly Accurate Preset Voltage Regulation:  
±0.5%  
• Smart Phones and Personal Data Assistants  
(PDA)  
• Available Voltage Regulation Options:  
- 4.20V, 4.35V, 4.4V or 4.5V  
• Portable Media Players (PMP)  
• Ultra Mobile Devices (UMD)  
• Digital Cameras  
• Complete Linear Charge Management Controller:  
- Autonomous Power Source Selection  
- Integrated Pass Transistors  
• MP3 Players  
• Bluetooth Headsets  
- Integrated Current Sense  
• Handheld Medical Devices  
• AC/USB Dual Source Li-Ion Battery Chargers  
- Integrated Reverse Discharge Protection  
• Constant Current (CC)/Constant Voltage (CV)  
Operation with Thermal Regulation  
Description  
The MCP73837 and MCP73838 devices are fully  
integrated linear Li-Ion/Li-Polymer battery chargers  
with autonomous power source selection. Along with its  
small physical size, the low number of external  
components required makes the MCP73837/8 ideally  
suitable for portable applications.  
• Selectable USB Port Charge Current:  
- Low: 1 Unit Load  
- High: 5 Unit Loads  
• Programmable AC Adapter Charge Current:  
- 15 mA – 1000 mA  
• Two-Charge Status Outputs  
• Power-Good Monitor: MCP73837  
• Timer Enable: MCP73838  
The MCP73837/8 automatically selects the USB port or  
AC adapter as the power source for the system. For the  
USB port powered systems, the MCP73837/8  
specifically adheres to the current limits governed by  
the USB specification. The host microcontroller can  
select from two preset maximum charge current rates  
of 100 mA (low-power USB port) or 500 mA  
(high-power USB port). With an AC adapter providing  
power to the system, an external resistor sets the mag-  
nitude of the system or charge current up to a  
maximum of 1A.  
• Automatic Recharge:  
- Selectable Voltage Threshold  
• Automatic End-of-Charge Control:  
- Selectable Charge Termination Current Ratio  
- Selectable Safety Timer Period  
• Preconditioning of Deeply Depleted Cells – Can  
Be Disabled  
• Battery Cell Temperature Monitor  
• UVLO (Undervoltage Lockout)  
The MCP73837/8 employs a constant current/constant  
voltage  
charge  
algorithm  
with  
selectable  
• Automatic Power-Down When Input Power Is  
Removed  
preconditioning and charge termination. The constant  
voltage regulation is fixed with four available options:  
4.20V, 4.35V, 4.40V or 4.50V, to accommodate the new  
emerging battery charging requirements. The  
MCP73837/8 limits the charge current, based on die  
temperature, during high power or high ambient  
conditions. This thermal regulation optimizes the  
charge cycle time while maintaining the reliability of the  
device .  
• Low-Dropout (LDO) Linear Regulator Mode  
• Numerous Selectable Options Available for a  
Variety of Applications:  
- Refer to Section 1.0 “Electrical Characteris-  
tics” for Selectable Options  
- Refer to the Product Identification System”  
for Standard Options  
The MCP73837/8 are fully specified over the ambient  
temperature range of -40°C to +85°C.  
Temperature Range: -40°C to 85°C  
• Packaging:  
The MCP73837/8 devices are available in either a  
3 mm x 3 mm 10-lead DFN package or a 10-lead  
MSOP package.  
- 10-Lead 3 mm x 3 mm DFN  
- 10-Lead MSOP*  
* Consult the factory for MSOP availability.  
2007-2015 Microchip Technology Inc.  
DS20002071C-page 1  
MCP73837/8  
Package Types  
MCP73837/8  
3 x 3 10-Lead DFN*  
MCP73837/8  
10-Lead MSOP  
VBAT  
VAC  
V
V
BAT  
1
2
1
2
3
4
5
10  
9
10  
9
AC  
VUSB  
V
THERM  
PG (TE)  
PROG2  
PROG1  
USB  
STAT1  
STAT2  
THERM  
PG (TE)  
PROG2  
EP  
11  
STAT1 3  
STAT2 4  
8
8
7
7
VSS  
5
V
6
6
SS  
PROG1  
*Includes Exposed Thermal Pad (EP); see Table 3-1.  
Typical Applications  
MCP73837 Typical Application  
1
10  
VBAT  
AC/DC Adapter  
VAC  
Thermistor  
4.7 µF  
Single  
Li-Ion  
Cell  
9
2
USB Port  
4.7 µF  
VUSB  
THERM  
4.7 µF  
1 k  
3
5
VSS  
STAT1  
1 k  
4
7
STAT2  
PROG2  
Hi  
Low  
1 k  
8
6
PG  
PROG1  
RPROG  
MCP73838 Typical Application  
1
10  
AC/DC Adapter  
VAC  
VBAT  
Thermistor  
9
4.7 µF  
2
USB Port  
4.7 µF  
VUSB  
THERM  
TE  
Cell  
4.7 µF  
1K  
3
8
STAT1  
Hi  
Hi  
Low  
Low  
1K  
4
7
6
STAT2  
PROG2  
PROG1  
5
VSS  
RPROG  
DS20002071C-page 2  
2007-2015 Microchip Technology Inc.  
MCP73837/8  
Functional Block Diagram (MCP73837/8)  
VOREG  
Direction  
Control  
ꢃꢂȝ$  
VUSB  
VBAT  
SENSEFET  
G = 0.001  
100mA/500mA  
10k  
2k  
SENSEFET  
G = 0.001  
VOREG  
Direction  
Control  
VAC  
AC/USB  
Current  
Limit  
+
SENSEFET  
G = 0.001  
-
1k VREF  
SENSEFET  
G = 0.001  
PROG1  
AC/USB  
111k  
CA  
+
Reference,  
Bias, UVLO,  
and SHDN  
VREF (1.21V)  
-
310k  
10k  
+
-
VOREG  
UVLO  
72.7k  
-
470.6k  
48k  
Precondition  
+
TERM  
-
PROG2  
STAT1  
+
CHARGE  
6k  
VA  
Charge Control,  
Timer,  
+
-
157.3k  
and  
Status Logic  
VOREG  
STAT2  
+
-
LDO  
HTVT  
LTVT  
175k  
PG (TE)  
+
-
ꢀꢁꢂȝ$  
470.6k  
121k  
THERM  
+
-
175k  
V
ss  
1M  
2007-2015 Microchip Technology Inc.  
DS20002071C-page 3  
MCP73837/8  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings†  
V
.................................................................................7.0V  
DDN  
All Inputs and Outputs w.r.t. V ............. -0.3 to (V + 0.3)V  
SS  
DD  
Maximum Junction Temperature, T ............Internally Limited  
J
Storage temperature .....................................-65°C to +150°C  
ESD protection on all pins  
Human Body Model (1.5 kin Series with 100 pF)......4 kV  
Machine Model (200 pF, No Series Resistance).............300V  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, all limits apply for V = [V  
(typical) + 0.3V] to 6V, T = -40°C to +85°C.  
A
DD  
REG  
Typical values are at +25°C, V = [V  
(typical) + 1.0V].  
DD  
REG  
Parameters  
Supply Input  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
(1)  
Supply Voltage  
V
V
(Typ)  
REG  
6
V
DD  
+0.3V  
Supply Current  
I
1900  
110  
75  
3000  
300  
100  
5
µA  
µA  
µA  
µA  
Charging  
SS  
Charge Complete, No Battery  
Standby (PROG Floating)  
0.6  
Shutdown (V V  
100 mV  
DD  
BAT –  
or V < V  
)
STOP  
DD  
UVLO Start Threshold  
UVLO Stop Threshold  
UVLO Hysteresis  
V
3.35  
3.25  
3.45  
3.35  
75  
3.55  
3.45  
V
V
V
V
= Low to High (USB Port)  
= High to Low (USB Port)  
START  
DD  
DD  
V
STOP  
V
mV  
V
(USB Port)  
HYS  
UVLO Start Threshold  
UVLO Stop Threshold  
UVLO Hysteresis  
V
4.1  
4.0  
4.15  
4.1  
4.3  
4.2  
(AC Adapter)  
(AC Adapter)  
(AC Adapter)  
START  
V
V
STOP  
V
55  
mV  
HYS  
Voltage Regulation (Constant Voltage Mode)  
Regulated Charge Voltage  
V
4.179  
4.328  
4.378  
4.477  
-0.5  
4.20  
4.35  
4.40  
4.50  
4.221  
4.372  
4.422  
4.523  
+0.5  
V
V
V
V
%
V
= [V  
(typical) + 1V]  
REG  
REG  
DD  
I
= 30 mA  
OUT  
T = -5°C to +55°C  
A
Regulated Charge Voltage  
Tolerance  
V
T = -5°C to +55°C  
A
RTOL  
Line Regulation  
V  
/V  
)
0.075  
0.150  
0.2  
0.3  
%/V  
%
V
I
= [V  
= 30 mA  
(typical)+1V] to 6V  
REG  
BAT BAT  
DD  
/V  
|
DD  
OUT  
Load Regulation  
V  
/V  
|
I
= 10 mA to 100 mA  
BAT BAT  
OUT  
V
= [V  
(typical)+1V]  
REG  
DD  
OUT  
OUT  
OUT  
Supply Ripple Attenuation  
PSRR  
60  
52  
23  
dB  
dB  
dB  
I
I
I
= 10 mA, 10Hz to 1 kHz  
= 10 mA, 10Hz to 10 kHz  
= 10 mA, 10Hz to 1 MHz  
Current Regulation (Fast Charge Constant-Current Mode)  
AC Adapter Fast Charge Current  
I
95  
105  
115  
mA  
mA  
PROG1 = 10 k  
PROG1 = 1 k  
REG  
(2)  
900  
1000  
1100  
T = -5°C to +55°C  
A
Note 1: The supply voltage (V ) = V when input power source is from AC adapter and the supply voltage (V ) = V  
USB  
DD  
AC  
DD  
when input power source is from the USB port.  
2: The value is guaranteed by design and not production tested.  
3: The current is based on the ratio of selected current regulation (I  
).  
REG  
The maximum charge impedance has to be less than shutdown impedance for normal operation.  
DS20002071C-page 4  
2007-2015 Microchip Technology Inc.  
MCP73837/8  
DC CHARACTERISTICS (Continued)  
Electrical Specifications: Unless otherwise indicated, all limits apply for V = [V  
(typical) + 0.3V] to 6V, T = -40°C to +85°C.  
A
DD  
REG  
Typical values are at +25°C, V = [V  
(typical) + 1.0V].  
DD  
REG  
Parameters  
Sym.  
Min.  
Typ.  
90  
Max.  
100  
Units  
mA  
Conditions  
PROG2 = Low  
PROG2 = High  
USB port Fast Charge Current  
I
80  
REG  
400  
450  
500  
mA  
T = -5°C to +55°C  
A
Maximum Output Current Limit  
I
1200  
mA  
PROG1 < 833  
MAX  
Precondition Current Regulation (Trickle Charge Constant-Current Mode)  
(3)  
Precondition Current Ratio  
I
/I  
7.5  
15  
30  
10  
20  
12.5  
25  
%
%
%
%
%
PREG REG  
T = -5°C to +55°C  
A
40  
50  
100  
66.5  
Precondition Current Threshold  
Ratio  
V
/V  
64  
69  
V
V
Low to High  
High to Low  
PTH REG  
BAT  
BAT  
69  
71.5  
120  
74  
%
Precondition Hysteresis  
V
mV  
PHYS  
Charge Termination  
Charge Termination Current Ratio  
I
/I  
3.75  
5.6  
7.5  
15  
5
6.25  
9.4  
%
%
%
%
PROG1 = 1 kto 10 k  
TERM REG  
7.5  
10  
20  
T = -5°C to +55°C  
A
(3)  
12.5  
25  
Automatic Recharge  
Recharge Voltage Threshold Ratio  
V
/V  
92  
95  
94.0  
97  
96  
99  
%
%
V
High to Low  
BAT  
RTH REG  
T = -5°C to +55°C  
A
Pass Transistor ON-Resistance  
ON-Resistance  
R
350  
m  
V
= 4.5V, T = +105°C  
DD J  
DSON  
Battery Discharge Current  
Output Reverse Leakage Current  
I
0.1  
0.55  
-6  
2
2
µA  
µA  
µA  
Standby (PROG1 or PROG2  
Floating)  
DISCHARGE  
Shutdown (V V  
-100 mV  
DD  
BAT  
or V < V  
)
DD  
STOP  
-15  
Charge Complete  
Status Indicators – STAT1, STAT2, PG (MCP73837)  
Sink Current  
I
16  
0.3  
35  
1
mA  
V
SINK  
Low Output Voltage  
Input Leakage Current  
PROG1 Input (PROG1)  
Charge Impedance Range  
Shutdown Impedance  
V
I
= 4 mA  
SINK  
OL  
I
0.03  
1
µA  
High Impedance, V on pin  
LK  
DD  
(4)  
R
R
1
k  
k  
PROG  
PROG  
70  
200  
Minimum Impedance for  
Shutdown  
PROG2 Inputs (PROG2)  
Input High Voltage Level  
Input Low Voltage Level  
Shutdown Voltage Level  
Input Leakage Current  
V
0.8V  
7
%
%
IH  
DD  
V
0.2V  
0.2V  
0.8V  
IL  
DD  
DD  
V
%
SD  
LK  
DD  
I
15  
µA  
V
= V  
PROG2 DD  
Note 1: The supply voltage (V ) = V when input power source is from AC adapter and the supply voltage (V ) = V  
USB  
DD  
AC  
DD  
when input power source is from the USB port.  
2: The value is guaranteed by design and not production tested.  
3: The current is based on the ratio of selected current regulation (I  
).  
REG  
The maximum charge impedance has to be less than shutdown impedance for normal operation.  
2007-2015 Microchip Technology Inc.  
DS20002071C-page 5  
MCP73837/8  
DC CHARACTERISTICS (Continued)  
Electrical Specifications: Unless otherwise indicated, all limits apply for V = [V  
(typical) + 0.3V] to 6V, T = -40°C to +85°C.  
A
DD  
REG  
Typical values are at +25°C, V = [V  
(typical) + 1.0V].  
DD  
REG  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Timer Enable (TE)  
Input High Voltage Level  
Input Low Voltage Level  
Input Leakage Current  
Thermistor Bias  
V
2
0.8  
1
V
V
IH  
V
IL  
ILK  
0.01  
µA  
V
= V  
TE DD  
Thermistor Current Source  
Thermistor Comparator  
Upper Trip Threshold  
I
47  
50  
53  
µA  
2 k< R  
< 50 k  
THERM  
THERM  
V
1.20  
1.23  
-40  
1.26  
V
V
V
Low to High  
High to Low  
T1  
T1  
T2  
Upper Trip Point Hysteresis  
Lower Trip Threshold  
V
V
mV  
V
T1HYS  
V
0.235  
0.250  
40  
0.265  
T2  
T2HYS  
Lower Trip Point Hysteresis  
System Test (LDO) Mode  
Input High Voltage Level  
THERM Input Sink Current  
Bypass Capacitance  
mV  
V
3
5.5  
V
– 0.1  
DD  
V
IH  
I
20  
µA  
Stand-by or System Test Mode  
SINK  
C
1
4.7  
µF  
µF  
I
I
< 250 mA  
> 250 mA  
BAT  
OUT  
OUT  
Automatic Power Down (SLEEP Comparator, Direction Control)  
Automatic Power Down Entry  
Threshold  
V
V
+
V
+
V
V
2.3V V  
V  
V  
PD  
BAT  
BAT  
BAT  
REG  
10 mV  
100 mV  
V
Falling  
DD  
Automatic Power Down Exit  
Threshold  
V
V
+
V
+
2.3V V  
BAT  
PDEXIT  
BAT  
BAT  
250 mV  
REG  
150 mV  
V
Rising  
DD  
Thermal Shutdown  
Die Temperature  
T
150  
10  
C  
C  
SD  
Die Temperature Hysteresis  
T
SDHYS  
Note 1: The supply voltage (V ) = V when input power source is from AC adapter and the supply voltage (V ) = V  
USB  
DD  
AC  
DD  
when input power source is from the USB port.  
2: The value is guaranteed by design and not production tested.  
3: The current is based on the ratio of selected current regulation (I  
).  
REG  
The maximum charge impedance has to be less than shutdown impedance for normal operation.  
DS20002071C-page 6  
2007-2015 Microchip Technology Inc.  
MCP73837/8  
AC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, all limits apply for V = [V  
(typical) + 0.3V] to 6V.  
REG  
DD  
Typical values are at +25°C, V = [V  
(typical) + 1.0V] .  
DD  
REG  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Low to High  
UVLO Start Delay  
t
5
ms  
V
V
START  
DD  
Current Regulation  
Transition Time Out of Precondition  
t
10  
10  
ms  
ms  
ms  
ms  
ms  
< V  
to V  
> V  
DELAY  
BAT  
PTH  
BAT PTH  
Current Rise Time Out of Precondition  
Precondition Comparator Filter Time  
Termination Comparator Filter Time  
t
I
Rising to 90% of I  
OUT REG  
RISE  
t
t
0.4  
0.4  
0.4  
1.3  
1.3  
1.3  
3.2  
3.2  
3.2  
Average V  
Rise/Fall  
BAT  
PRECON  
t
Average I  
Falling  
Falling  
BAT  
TERM  
CHARGE  
OUT  
Average V  
Charge Comparator Filter Time  
Thermistor Comparator Filter Time  
Elapsed Timer  
t
0.4  
1.3  
3.2  
ms  
Average THERM Rise/Fall  
THERM  
Elapsed Timer Period  
t
0
0
0
Hours Timer Disabled  
ELAPSED  
3.6  
5.4  
7.2  
4.0  
6.0  
8.0  
4.4  
6.6  
8.8  
Hours  
Hours  
Hours  
Status Indicators  
Status Output Turn-off  
Status Output Turn-on  
t
500  
500  
µs  
µs  
I
I
= 1 mA to 0 mA  
= 0 mA to 1 mA  
OFF  
SINK  
SINK  
t
ON  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: Unless otherwise indicated, all limits apply for V = [V  
(typ.) + 0.3V] to 6V.  
REG  
DD  
Typical values are at +25°C, V = [V  
(typ.) + 1.0V] .  
DD  
REG  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Temperature Ranges  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 10-Lead MSOP  
T
-40  
-40  
-65  
+85  
+125  
+150  
°C  
°C  
°C  
A
T
J
T
A
113  
41  
°C/W  
°C/W  
4-Layer JC51-7 Standard Board,  
Natural Convection  
JA  
(1)  
Thermal Resistance, 10-Lead 3 x 3 DFN  
4-Layer JC51-7 Standard Board,  
Natural Convection  
JA  
Note 1: This represents the minimum copper condition on the Printed Circuit Board (PCB).  
2007-2015 Microchip Technology Inc.  
DS20002071C-page 7  
MCP73837/8  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VDD = [VREG(typical) + 1V], IOUT = 30 mA, and TA= +25°C, Constant-voltage mode.  
4.210  
2.0  
TEMP = 25°C  
IOUT = 50 mA  
4.205  
4.200  
4.195  
4.190  
4.185  
4.180  
4.175  
4.170  
4.165  
4.160  
VDD = Floating  
VBAT = 4.2V  
IOUT = 10 mA  
1.6  
1.2  
0.8  
0.4  
0.0  
IOUT = 100 mA  
IOUT = 500 mA  
IOUT = 1000 mA  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
Temperature (°C)  
4.5  
4.8  
5.0  
5.3  
5.5  
5.8  
6.0  
Supply Voltage (V)  
FIGURE 2-1:  
Battery Regulation Voltage  
FIGURE 2-4:  
Output Leakage Current  
(VBAT) vs. Supply Voltage (VDD).  
(IDISCHARGE) vs. Ambient Temperature (TA).  
2.0  
4.210  
VDD = 5.2V  
VDD = Floating  
1.8  
IOUT = 10 mA  
4.205  
4.200  
4.195  
4.190  
4.185  
4.180  
4.175  
4.170  
IOUT = 50 mA  
TEMP = +25°C  
1.6  
1.4  
1.2  
1.0  
IOUT = 100 mA  
IOUT = 500 mA  
0.8  
0.6  
0.4  
IOUT = 1000 mA  
0.2  
0.0  
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2  
-40 -30 -20 -10  
0 10 20 30 40 50 60 70 80  
Battery Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-2:  
Battery Regulation Voltage  
FIGURE 2-5:  
Output Leakage Current  
(VBAT) vs. Ambient Temperature (TA).  
(IDISCHARGE) vs. Battery Voltage (VBAT).  
0.50  
0.45  
1000  
VDD = VBAT  
TEMP = 25 °C  
VDD = 5.2V  
Temp = 25°C  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2  
Battery Voltage (V)  
1
6
11 16 21 26 31 36 41 46 51 56 61  
R
PROG (k)  
FIGURE 2-3:  
Output Leakage Current  
FIGURE 2-6:  
Charge Current (IOUT) vs.  
(IDISCHARGE) vs. Battery Regulation Voltage  
(VBAT).  
Programming Resistor (RPROG).  
DS20002071C-page 8  
2007-2015 Microchip Technology Inc.  
MCP73837/8  
Note: Unless otherwise indicated, VDD = [VREG(typical) + 1V], IOUT = 30 mA and TA= +25°C, Constant-voltage mode.  
110  
108  
106  
104  
102  
100  
98  
1200  
1150  
1100  
1050  
1000  
950  
RPROG = 10 k  
VDD = 5.2V  
RPROG = 1 kΩ  
Temp = +25°C  
900  
96  
850  
94  
800  
92  
750  
90  
700  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
4.5  
4.8  
5.0  
5.3  
5.5  
5.8  
6.0  
Ambient Temperature (°C)  
Supply Voltage (V)  
FIGURE 2-7:  
Charge Current (IOUT) vs.  
FIGURE 2-10:  
Charge Current (IOUT) vs.  
Supply Voltage (VDD).  
Ambient Temperature (TA).  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
104  
102  
100  
98  
RPROG = 20 k  
VDD = 5.2V  
RPROG = 10 kΩ  
Temp = +25°C  
96  
94  
92  
90  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
4.5  
4.8  
5.0  
5.3  
5.5  
5.8  
6.0  
Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-8:  
Charge Current (IOUT) vs.  
FIGURE 2-11:  
Charge Current (IOUT) vs.  
Supply Voltage (VDD).  
Ambient Temperature (TA).  
1100  
1050  
1000  
950  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
RPROG = 1 kΩ  
VDD = 5.2V  
RPROG = 1 kΩ  
900  
850  
800  
750  
700  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
Ambient Temperature (°C)  
Junction Temperature (°C)  
FIGURE 2-9:  
Charge Current (IOUT) vs.  
FIGURE 2-12:  
Charge Current (IOUT) vs.  
Ambient Temperature (TA).  
Junction Temperature (TJ).  
2007-2015 Microchip Technology Inc.  
DS20002071C-page 9  
MCP73837/8  
Note: Unless otherwise indicated, VDD = [VREG(typical) + 1V], IOUT = 30 mA and TA= +25°C, Constant-voltage mode.  
600  
52.0  
51.5  
51.0  
50.5  
50.0  
49.5  
49.0  
48.5  
48.0  
47.5  
47.0  
RPROG = 2 kΩ  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
VDD = 5.2V  
0
Junction Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-13:  
Charge Current (IOUT) vs.  
FIGURE 2-16:  
Thermistor Current (ITHERM)  
Junction Temperature (TJ).  
vs. Ambient Temperature (TA).  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
RPROG = 10 kΩ  
IOUT = 10 mA  
COUT = 4.7 µF  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Junction Temperature (°C)  
FIGURE 2-14:  
Charge Current (IOUT) vs.  
FIGURE 2-17:  
Power Supply Ripple  
Junction Temperature (TJ).  
Rejection (PSRR).  
0
52.0  
51.5  
51.0  
50.5  
50.0  
49.5  
49.0  
48.5  
48.0  
47.5  
47.0  
Temp = +25°C  
IOUT = 100 mA  
COUT = 4.7 µF  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
0.01  
0.1  
1
10  
100  
1000  
4.5  
4.8  
5.0  
5.3  
5.5  
5.8  
6.0  
Frequency (kHz)  
Supply Voltage (V)  
FIGURE 2-15:  
Thermistor Current (ITHERM  
)
FIGURE 2-18:  
Power Supply Ripple  
vs. Supply Voltage (VDD).  
Rejection (PSRR).  
DS20002071C-page 10  
2007-2015 Microchip Technology Inc.  
MCP73837/8  
Note: Unless otherwise indicated, VDD = [VREG(typical) + 1V], IOUT = 30 mA and TA= +25°C, Constant-voltage mode.  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.1  
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
-0.25  
-0.3  
16  
14  
12  
10  
8
0.1  
0
IOUT = 100 mA  
V
V
OUT  
OUT  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
V
IN  
I
OUT  
6
4
-0.1  
2
IOUT = 100 mA  
0
Time (Minutes)  
Time (µs)  
FIGURE 2-19:  
Line Transient Response.  
FIGURE 2-22:  
Load Transient Response.  
16  
0.1  
0
V
OUT  
V
14  
12  
10  
8
IN  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
V
IN  
6
4
V
OUT  
2
IOUT = 10 mA  
0
Time (µs)  
FIGURE 2-20:  
Line Transient Response.  
FIGURE 2-23:  
VAC Start Delay  
(IOUT = 1A).  
0.35  
0.04  
IOUT = 10 mA  
0.02  
V
OUT(AC)  
0.3  
0.25  
0.2  
0.15  
0.1  
V
IN  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.1  
I
OUT  
0.05  
0
-0.05  
-0.12  
V
OUT  
Time (Minutes)  
FIGURE 2-21:  
Load Transient Response.  
FIGURE 2-24:  
VUSB Start Delay  
(USB = Low).  
2007-2015 Microchip Technology Inc.  
DS20002071C-page 11  
MCP73837/8  
Note: Unless otherwise indicated, VDD = [VREG(typical) + 1V], IOUT = 30 mA and TA= +25°C, Constant-voltage mode.  
UVLOVAC  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
0.12  
0.1  
V
V
OUT  
IN  
0.08  
0.06  
0.04  
0.02  
0
I
OUT  
VDD = 5.2V  
PROG = USB_Low  
180 mAh Li-Ion Battery  
V
OUT  
R
0
20 40 60 80 100 120 140 160 180  
Time (Minutes)  
FIGURE 2-28:  
(180 mAh Li-Ion Battery).  
Complete Charge Cycle  
FIGURE 2-25:  
(USB = High)  
VUSB Start Delay  
5.0  
0.12  
0.1  
5.0  
1.2  
1
V
OUT  
C.C. Begins  
V
OUT  
4.0  
3.0  
2.0  
4.0  
3.0  
2.0  
1.0  
0.0  
I
OUT  
0.08  
0.06  
0.04  
0.02  
0
0.8  
0.6  
0.4  
0.2  
0
I
OUT  
C.V. Begins  
VDD = 5.2V  
PROG = USB_Low  
180 mAh Li-Ion Battery  
VDD = 5.2V  
PROG = 1 k  
1200 mAh Li-Ion Battery  
R
1.0  
0.0  
R
Preconditioning  
0
1
2
3
4
5
6
7
8
9
10  
Time (Minutes)  
Time (Minutes)  
FIGURE 2-29:  
Preconditioning and CC-CV (180 mAh Li-Ion  
Battery).  
Typical Charge Profile in  
FIGURE 2-26:  
(1200 mAh Li-Ion Battery).  
Complete Charge Cycle  
4.5  
1.2  
0.9  
0.6  
0.3  
0
V
OUT  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
I
OUT  
VDD = 5.2V  
RPROG = 1 k  
1200 mAh Li-Ion Battery  
0
1
2
3
4
5
6
7
8
9
10  
Time (Minutes)  
FIGURE 2-27:  
Typical Charge Profile in  
Thermal Regulation (1200 mAh Li-Ion Battery).  
DS20002071C-page 12  
2007-2015 Microchip Technology Inc.  
MCP73837/8  
3.0  
PIN DESCRIPTION  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
Pin Number  
PIN FUNCTION TABLE  
Symbol I/O  
Function  
DFN-10 MSOP-10  
1
2
3
4
5
6
1
2
3
4
5
6
VAC  
VUSB  
STAT1  
STAT2  
VSS  
I
I
AC Adapter Supply Input  
USB port Supply Input  
O
O
Charge Status Output 1 (Open-Drain)  
Charge Status Output 2 (Open-Drain)  
Battery Management 0V Reference  
PROG1 I/O Current Regulation Setting With AC Adapter; Device Charge Control Enable;  
Precondition Set Point for AC control  
7
7
PROG2  
I
Current Regulation Setting With USB Port; Precondition Set Point for USB  
control.  
8
8
8
8
O
I
Available on MCP73837: Power-Good Status Output (Open-Drain)  
PG  
TE  
Available on MCP73838: Timer Enable; Enables Safety Timer (Active Low)  
9
9
THERM I/O Thermistor Monitoring Input and Bias current; System Test (LDO) Mode Input  
10  
11  
10  
VBAT  
EP  
I/O Battery Positive Input and Output Connection  
EP (Exposed Thermal Pad)  
There is an internal electrical connection between the exposed thermal pad  
and VSS. The EP must be connected to the same potential as the VSS pin on  
the PCB.  
3.1  
AC Adapter Supply Input (V  
)
3.5  
Battery Management 0V Reference  
(V  
AC  
)
SS  
A supply voltage of VREG + 0.3V to 6V from the AC/DC  
wall-adapter is recommended. When both the AC  
adapter and the USB port supply voltages are present  
at the same time, the AC adapter dominates the regu-  
lated charge current with the maximum value of 1A.  
Bypass to VSS, with a minimum of 4.7 µF, is  
recommended.  
Connect to the negative terminal of the battery and  
input supply.  
3.6  
AC Adapter Current Regulation  
Set (PROG1)  
The AC adapter constant charge current is set by  
placing a resistor from PROG1 to VSS. PROG1 is the  
set point of precondition and termination when the AC  
adapter is present.  
3.2  
USB Port Supply Input (V  
)
USB  
A supply voltage of V  
+ 0.3V to 6V from the USB  
REG  
port is recommended. When no supply voltage from  
VAC pin is available, the Li-Ion battery is charged  
directly from USB port. Bypass to VSS, with a minimum  
of 1 µF, is recommended.  
PROG1 also functions as device charge control  
enable. The MCP73837/8 is shut down when an  
impedance value greater than 70 kis applied to  
PROG1. When PROG1 is floating, the MCP73837/8  
enters into Stand-By mode.  
3.3  
Charge Status Output 1 (STAT1)  
STAT1 is an open-drain logic output for connection to a  
LED for charge status indication. Alternatively, a pull-up  
resistor can be applied for interfacing to a host  
microcontroller.  
3.4  
Charge Status Output 2 (STAT2)  
STAT2 is an open-drain logic output for connection to a  
LED for charge status indication. Alternatively, a pull-up  
resistor can be applied for interfacing to a host  
microcontroller.  
2007-2015 Microchip Technology Inc.  
DS20002071C-page 13  
MCP73837/8  
3.7  
USB Port Current Regulation Set  
(PROG2)  
3.12 Exposed Thermal Pad (EP)  
The 10-lead 3 x 3 mm DFN package has an exposed  
metal pad on the bottom of the package. It gives the  
device better thermal characteristics by providing a  
good thermal path to a PCB ground plane.There is an  
internal electrical connection between the EP and the  
VSS pin; they must be connected to the same potential  
on the PCB.  
The MCP73837/8 USB port current regulation set input  
(PROG2) is a digital input selection. A logic Low selects  
a 1 unit load charge current; a logic High selects a 5  
unit loads charge current. The precondition and termi-  
nation current is internally set to the percentage levels  
selected by the device part number. The current is  
based on the selected unit load charge current, based  
on the level of PROG2.  
PROG2 also functions as the set point of termination  
when the USB port is present. When PROG2 is float-  
ing, the MCP73837/8 enters into Stand-By mode.  
3.8  
Power Good (PG)  
Power Good (PG) is available only on MCP73837. PG  
is an open-drain logic output for connection to an LED  
for input power supply indication. Alternatively, a  
pull-up resistor can be applied for interfacing to a host  
microcontroller.  
3.9  
Timer Enable (TE)  
Timer Enable (TE) is available only on MCP73838. TE  
enables the built-in safety timer when it is pulled Low,  
and disables the built-in safety timer when it is pulled  
High.  
Note:  
The built-in safety timer is available for  
both MCP73837 and MCP73838 in the  
following options: Disable, 4 HR, 6 HR,  
and 8 HR.  
3.10 Battery Temperature Monitor  
(THERM)  
MCP73837/8 continuously monitors the battery  
temperature during a charge cycle by measuring the  
voltage between the THERM and VSS pins. An internal  
50 µA current source provides the bias for the most  
common 10 knegative-temperature coefficient  
thermistors (NTC).  
3.11 Battery Charge Control Output  
(V  
)
BAT  
Connect to the positive terminal of Li-Ion/Li-Polymer  
batteries. Bypass to VSS, with a minimum of 1 µF, to  
ensure loop stability when the battery is disconnected.  
DS20002071C-page 14  
2007-2015 Microchip Technology Inc.  
MCP73837/8  
4.0  
DEVICE OVERVIEW  
The MCP73837/8 devices are simple, yet fully integrated, linear charge management controllers. Figure 4-1 depicts  
the operational flow algorithm.  
SHUTDOWN MODE*  
*
Continuously Monitored  
VDD  
VBAT  
-100 mV  
VDD < VSTOP  
STAT1 = High Z  
STAT2 = High Z  
PG = High Z  
SYSTEM TEST (LDO) MODE  
STANDBY MODE *  
VTHERM > (VDD -100 mV)  
VDD > (VREG + 100 mV)  
STAT1 = LOW  
STAT2 = LOW  
PG = LOW  
PROG > 200 k  
STAT1 = High Z  
STAT2 = High Z  
PG = LOW  
Timer Suspended  
VBAT < VPTH  
PRECONDITIONING MODE  
Charge Current = IPREG  
STAT1 = LOW  
STAT2 = High Z  
PG = LOW  
Timer Reset  
VBAT > VPTH  
VBAT > VPTH  
TIMER FAULT  
No Charge Current  
STAT1 = High Z  
STAT2 = High Z  
PG = LOW  
TEMPERATURE FAULT  
No Charge Current  
STAT1 = High Z  
STAT2 = High Z  
PG = LOW  
FAST CHARGE MODE  
Charge Current = IREG  
Timer Expired  
VBAT < VRTH  
STAT1 = LOW  
STAT2 = High Z  
PG = LOW  
Timer Suspended  
Timer Suspended  
Timer Enabled  
VBAT = VREG  
CONSTANT VOLTAGE MODE  
Charge Voltage = VREG  
STAT1 = LOW  
STAT2 = High Z  
PG = LOW  
IBAT < ITERM  
Timer Expired  
CHARGE COMPLETE MODE  
No Charge Current  
STAT1 = High Z  
STAT2 = LOW  
PG = LOW  
FIGURE 4-1:  
Operational Algorithm.  
2007-2015 Microchip Technology Inc.  
DS20002071C-page 15  
MCP73837/8  
4.1  
Undervoltage Lockout (UVLO)  
4.4  
Preconditioning  
An internal undervoltage lockout (UVLO) circuit  
monitors the input voltage and keeps the charger in  
Shutdown mode until the input supply rises above the  
UVLO threshold. The UVLO circuitry has a built-in  
hysteresis of 75 mV for the USB port and 55 mV for the  
AC adapter.  
If the voltage at the VBAT pin is less than the  
preconditioning threshold, the MCP73837/8 enters a  
preconditioning mode. The preconditioning threshold is  
factory set.  
Refer to Section 1.0 “Electrical Characteristics” for pre-  
conditioning threshold options.  
In the event a battery is present when the input power  
is applied, the input supply must rise 100 mV above the  
battery voltage before MCP73837/8 becomes  
operational.  
In this mode, the MCP73837/8 supplies a percentage  
of the charge current (established with the value of the  
resistor connected to the PROG1 pin for AC mode,  
established by PROG2 level for USB mode) to the bat-  
tery. The percentage or ratio of the current is factory  
set. Refer to Section 1.0 “Electrical Characteristics” for  
preconditioning current options.  
The UVLO circuit places the device in shutdown mode  
if the input supply falls to within +100 mV of the battery  
voltage.  
The UVLO circuit is always active. If, at any time, the  
input supply is below the UVLO threshold or within  
+100 mV of the voltage at the VBAT pin, the  
MCP73837/8 is placed in a Shutdown mode.  
When the voltage at the VBAT pin rises above the  
preconditioning threshold, the MCP73837/8 enters the  
Constant Current or Fast Charge mode.  
4.5  
Constant Current Mode – Fast  
Charge  
During any UVLO condition, the battery reverse  
discharge current is less than 2 µA.  
During Constant Current mode, the programmed (AC  
adapter) or selected (USB port) charge current is sup-  
plied to the battery or load.  
4.2  
Autonomous Power Source  
Selection  
The MCP73837/8 devices are designed to select the  
USB port or AC adapter as the power source  
automatically. If the AC adapter input is not present, the  
USB port is selected. If both inputs are available, the  
AC adapter has first priority.  
For AC adapter, the charge current is established  
using a single resistor from PROG1 to VSS. The  
program resistor and the charge current are calculated  
using the Equation 4-1.  
EQUATION 4-1:  
Note:  
If the input power is switched during a  
charge cycle, the power path switch-over  
will be a break-before-make connection.  
As a result, the charge current can  
momentarily go to zero. The charge cycle  
timer will remain continuous.  
1000V  
I
= --------------------  
REG  
R
PROG  
Where:  
RPROG  
IREG  
=
=
kilohm (k  
milliampere (mA)  
4.3  
Charge Qualification  
For a charge cycle to begin, all UVLO conditions must  
be met and a battery or output load must be present.  
When charging from  
a
USB port, the host  
microcontroller has the option of selecting either a  
one-unit-load or a five-unit-loads charge rate based on  
the PROG2 input. A logic Low selects a one-unit-load  
charge rate, a High selects a five-unit-loads charge  
rate, and high impedance input suspends or disables  
charging.  
A charge current programming resistor must be con-  
nected from PROG1 to VSS. If the PROG1 or PROG2  
pin are open or floating, the MCP73837/8 is disabled  
and the battery reverse discharge current is less than  
2 µA. In this manner, the PROG1 pin acts as a charge  
enable and can be used as a manual shutdown.  
Note:  
USB Specification Rev. 2.0 defines the  
maximum absolute current for one unit  
load is 100 mA. This value is not an  
average over time and cannot be  
exceeded.  
Constant Current mode is maintained until the voltage  
at the VBAT pin reaches the regulation voltage, VREG  
.
When constant current mode is invoked, the internal  
timer is reset.  
DS20002071C-page 16  
2007-2015 Microchip Technology Inc.  
MCP73837/8  
4.5.1  
TIMER EXPIRED DURING  
CONSTANT CURRENT – FAST  
CHARGE MODE  
4.9  
Thermal Regulation  
The MCP73837/8 limits the charge current based on  
the die temperature. The thermal regulation optimizes  
the charge cycle time while maintaining device  
reliability. Figure 4-2 depicts the thermal regulation for  
the MCP73837/8. Refer to Section 1.0 “Electrical  
Characteristics” for thermal package resistances and  
If the internal timer expires before the recharge voltage  
threshold is reached, a timer fault is indicated and the  
charge cycle terminates. The MCP73837/8 remains in  
this condition until the battery is removed, the input  
battery is removed or the PROG1/2 pin is opened. If the  
battery is removed or the PROG1/2 pin is opened, the  
MCP73837/8 enters the Stand-by mode where it  
remains until a battery is reinserted or the PROG1/2 pin  
is reconnected. If the input power is removed, the  
MCP73837/8 is in Shutdown. When the input power is  
reapplied, a normal start-up sequence begins.  
Section 6.1.1.3  
calculating power dissipation.  
“Thermal  
Considerations”  
for  
.
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
RPROG = 1 k  
4.6  
Constant Voltage Mode  
When the voltage at the VBAT pin reaches the  
regulation voltage, VREG, constant voltage regulation  
begins. The regulation voltage is factory set to 4.20V,  
4.35V, 4.40V, or 4.5V, with a tolerance of ± 0.5%.  
25 35 45 55 65 75 85 95 105 115 125 135 145 155  
Junction Temperature (°C)  
4.7  
Charge Termination  
FIGURE 4-2:  
Thermal Regulation.  
The charge cycle is terminated when, during constant  
voltage mode, the average charge current diminishes  
below a percentage of the programmed charge current,  
or the internal timer has expired. A 1 ms filter time on  
the termination comparator ensures that transient load  
conditions do not result in premature charge cycle ter-  
mination. The percentage or ratio of the current is fac-  
tory set. The timer period is factory set and can be  
disabled. Refer to Section 1.0 “Electrical Characteris-  
tics” for charge termination current ratio and timer  
period options.  
4.10 Thermal Shutdown  
The MCP73837/8 suspends charge if the die  
temperature exceeds +150°C. Charging will resume  
when the die temperature has cooled by  
approximately +10°C. The thermal shutdown is a  
secondary safety feature in the event that there is a  
failure within the thermal regulation circuitry.  
The charge current is latched off and the MCP73837/8  
enters a charge complete mode.  
4.8  
Automatic Recharge  
The MCP73837/8 continuously monitors the voltage at  
the VBAT pin in the charge complete mode. If the  
voltage drops below the recharge threshold, another  
charge cycle begins and current is once again supplied  
to the battery or load. The recharge threshold is factory  
set. Refer to Section 1.0 “Electrical Characteristics” for  
recharge threshold options.  
Note:  
Charge termination and automatic  
recharge features avoid constantly  
charging a Li-Ion battery in order to pro-  
long its life, while keeping its capacity at a  
healthy level.  
2007-2015 Microchip Technology Inc.  
DS20002071C-page 17  
MCP73837/8  
5.1.4  
TEMPERATURE QUALIFICATION  
(THERM)  
5.0  
DETAILED DESCRIPTION  
Analog Circuitry  
Digital Circuitry  
The MCP73837/8 continuously monitors battery  
temperature during a charge cycle by measuring the  
voltage between the THERM and the VSS pins. An  
internal 50 µA current source provides the bias for the  
most common 10 knegative-temperature coefficient  
(NTC) or positive-temperature coefficient (PTC)  
thermistors. The current source is controlled, avoiding  
measurement sensitivity to fluctuations in the supply  
voltage (VDD). The MCP73837/8 compares the voltage  
at the THERM pin to factory set thresholds of 1.20V  
and 0.25V, typically. If a voltage that is outside the  
thresholds is detected during a charge cycle, the  
MCP73837/8 immediately suspends the charge cycle.  
5.1 Analog Circuitry  
5.1.1 BATTERY MANAGEMENT INPUT  
SUPPLY (VDD  
)
The VDD input is the input supply to the MCP73837/8.  
The MCP73837/8 can be supplied by either AC adapter  
(VAC) or USB port (VUSB) with autonomous source  
selection. The MCP73837/8 automatically enters a  
Power-Down mode if the voltage on the VDD input falls  
to within +100 mV of the battery voltage or below the  
UVLO voltage (VSTOP). This feature prevents draining  
the battery pack when both the VAC and VUSB supplies  
are not present.  
The MCP73837/8 suspends charge by turning off the  
pass transistor and holding the timer value. The charge  
cycle resumes when the voltage at the THERM pin  
returns to the normal range.  
5.1.2  
AC ADAPTER CURRENT  
REGULATION SET (PROG1)  
If temperature monitoring is not required, place a  
standard 10 kresistor from THERM to VSS  
.
For the MCP73837/8, the charge current regulation  
can be scaled by placing a programming resistor  
(RPROG) from the PROG1 input to VSS. The program  
resistor and the charge current are calculated using  
the following equation:  
5.1.5 SYSTEM TEST (LDO) MODE  
The MCP73837/8 can be placed in a System Test  
mode. In this mode, the MCP73837/8 operates as a  
low dropout (LDO) linear regulator. The output voltage  
is regulated to the factory set voltage regulation option.  
The available output current is limited to the pro-  
grammed fast charge current. For stability, the VBAT  
output must be bypassed to VSS with a minimum  
capacitance of 1 µF for output currents up to 250 mA.  
A minimum capacitance of 4.7 µF is required for output  
currents above 250 mA.  
EQUATION 5-1:  
1000V  
IREG = ----------------  
RPROG  
Where:  
RPROG  
IREG  
=
=
kilohm (k  
The system test mode is entered by driving the THERM  
input greater than (VDD – 100 mV) with no battery  
connected to the output. In this mode, the MCP73837/8  
can be used to power the system without a battery  
being present.  
milliampere (mA  
The preconditioning current and the charge  
termination current are ratiometric to the fast charge  
current based on the selected device options.  
Note 1: ITHERM is disabled during shutdown,  
stand-by, and system test modes.  
5.1.3  
BATTERY CHARGE CONTROL  
OUTPUT (VBAT  
2: A pull-down current source on the  
THERM input is active only in Stand-By  
and System Test modes.  
)
The battery charge control output is the drain terminal  
of an internal P-channel MOSFET. The MCP73837/8  
provides constant current and voltage regulation to the  
battery pack by controlling this MOSFET in the linear  
region. The battery charge control output should be  
connected to the positive terminal of the battery pack.  
3: During System Test mode, the PROG  
input sets the available output current  
limit.  
4: System Test mode shall be exited by  
releasing the THERM input or cycling  
input power.  
DS20002071C-page 18  
2007-2015 Microchip Technology Inc.  
MCP73837/8  
5.2.4  
TIMER ENABLE (TE) OPTION  
5.2  
Digital Circuitry  
The timer enable (TE) input option is used to enable or  
disable the internal timer. It is only available on the  
MCP73838. A low signal on this pin enables the inter-  
nal timer and a high signal disables the internal timer.  
The TE input can be used to disable the timer when the  
charger is supplying current to charge the battery and  
power the system load. The TE input is compatible with  
1.8V logic.  
5.2.1  
STATUS INDICATORS AND POWER  
GOOD (PG) OPTION  
The charge status outputs have two different states:  
Low (L), and High Impedance (Hi-Z). The charge status  
outputs can be used to illuminate LEDs. Optionally, the  
charge status outputs can be used as an interface to a  
host microcontroller. Table 5-1 summarizes the state of  
the status outputs during a charge cycle.  
5.2.5  
DEVICE DISABLE (PROG1/2)  
5.2.2  
USB PORT CURRENT  
REGULATION SELECT (PROG2)  
The current regulation set input pin (PROG1/2) can be  
used to terminate a charge at any time during the  
charge cycle, as well as to initiate a charge cycle or to  
initiate a recharge cycle.  
For the MCP73837/8, driving the PROG2 input to a  
logic Low selects the low charge current setting  
(maximum 100 mA). Driving the PROG2 input to a logic  
High selects the high charge current setting (maximum  
500 mA).  
Placing a programming resistor from the PROG1/2  
input to VSS enables the device. Allowing the PROG1/2  
input to float or applying a logic-high input signal to  
PROG1 disables the device and terminates a charge  
cycle. When disabled, the device’s supply current is  
reduced to 75 µA, typically.  
The Precondition current and Termination current are  
percentages of the charge current selected by the  
PROG2 level. The percentage is based on the selected  
part number of the device.  
TABLE 5-1:  
STATUS OUTPUTS  
Charge Cycle State  
STAT1  
STAT2  
PG  
Shutdown  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
L
High-Z  
Standby  
High-Z  
L
L
L
L
L
L
L
L
Preconditioning  
Constant Current  
Constant Voltage  
L
L
L
Charge Complete – Standby High Z  
Temperature Fault  
Timer Fault  
High Z  
High Z  
L
High Z  
High Z  
L
System Test Mode  
5.2.3  
POWER GOOD (PG) OPTION  
The power good (PG) option is a pseudo open-drain  
output. It is only available on the MCP73837. The PG  
output can sink current, but not source current. How-  
ever, there is a diode path back to the input, and as  
such, the output should be pulled up only to the input.  
The PG output is low whenever the input to the  
MCP73837 is above the UVLO threshold and greater  
than the battery voltage. If the supply voltage is above  
the UVLO, but below VREG(typical)+0.3V, the  
MCP73837 will pulse the PG output as the device  
determines if a battery is present.  
2007-2015 Microchip Technology Inc.  
DS20002071C-page 19  
MCP73837/8  
6.0  
APPLICATIONS  
The MCP73837/8 devices are designed to operate in  
conjunction with host microcontroller or in  
a
stand-alone applications. The MCP73837/8 devices  
provide the preferred charge algorithm for Lithium-Ion  
and Lithium-Polymer cells, Constant-Current followed  
by Constant-Voltage. Figure 6-1 depicts a typical  
stand-alone MCP73837 application circuit, while  
Figure 6-2 and Figure 6-3 depict the accompanying  
charge profile.  
1
2
3
10  
VAC  
VBAT  
Thermistor  
9
COUT  
Single  
Li-Ion  
Cell  
USB Port  
VUSB  
THERM  
C
IN1  
1
  
REGULATED  
WALL CUBE  
C
IN2  
5
VSS  
STAT1  
1
1
  
  
4
8
7
6
STAT2  
/PG  
PROG2  
PROG1  
Hi  
Low  
RPROG  
MCP73837  
FIGURE 6-1:  
MCP73837 Typical Stand-Alone Application Circuit.  
5.0  
V
1.2  
1
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.2  
V
OUT  
OUT  
4.0  
3.0  
2.0  
1.0  
0.0  
0.9  
0.6  
0.3  
0
0.8  
0.6  
0.4  
0.2  
0
I
OUT  
I
OUT  
VDD = 5.2V  
PROG = 1 kΩ  
1200 mAh Li-Ion Battery  
VDD = 5.2V  
R
RPROG = 1 k  
1200 mAh Li-Ion Battery  
0
1
2
3
4
5
6
7
8
9
10  
Time (Minutes)  
Time (Minutes)  
FIGURE 6-2:  
Typical Charge Profile  
FIGURE 6-3:  
Typical Charge Profile in  
(1200 mAh Li-Ion Battery).  
Thermal Regulation (1200 mAh Li-Ion Battery).  
DS20002071C-page 20  
2007-2015 Microchip Technology Inc.  
MCP73837/8  
6.1.1.1  
Charge Current  
6.1  
Application Circuit Design  
The preferred fast charge current for Lithium-Ion cells  
should always follow references and guidance from  
battery manufacturers. For example, programming  
700 mA fast charge current for a 1000 mAh Li-Ion  
battery pack if its preferred fast charge rate is 0.7C.  
This will result in the shortest charge cycle time without  
degradation of a battery's life and performance.  
Due to the low efficiency of linear charging, the most  
important factors are thermal design and cost, which  
are a direct function of the input voltage, output current,  
and thermal impedance between the battery charger  
and the ambient cooling air.  
The worst-case situation is when the device has transi-  
tioned from the Preconditioning mode to the Constant  
Current mode. In this situation, the battery charger has  
to dissipate the maximum power. A trade-off must be  
made between the charge current, cost, and thermal  
requirements of the charger.  
6.1.1.2  
Input Over-Voltage Protection  
Input over-voltage protection must be used when the  
input power source is hot-pluggable. This includes USB  
cables and wall-type power supplies. The cabling of  
these supplies acts as an inductor. When the supplies  
are connected/ disconnected from the system, large  
voltage transients are created which may damage the  
system circuitry. These transients should be snubbed  
out. A TransZorb® diode (unidirectional or bidirec-  
tional), connected from the VAC and VUSB inputs to 0V  
ground reference, will snub the transients. An example  
of this can be shown in Figure 6-4.  
6.1.1  
COMPONENT SELECTION  
Selection of the external components in Figure 6-1 is  
crucial to the integrity and reliability of the charging  
system. The following discussion is intended as a guide  
for the component selection process.  
1
2
3
10  
V
V
V
AC  
BAT  
Thermistor  
9
C
OUT  
Single  
Li-Ion  
Cell  
C
USB Port  
IN1  
THERM  
USB  
C
IN2  
1 kΩ  
REGULATED  
5V WALL CUBE  
5
7
V
SS  
STAT1  
SMAJ5.0A/AC  
1 kΩ  
1 kΩ  
SMAJ5.0A/AC  
4
8
STAT2  
/PG  
PROG2  
PROG1  
Hi  
Low  
6
R
PROG  
MCP73837  
FIGURE 6-4:  
Input Over-Voltage Protection Example.  
2007-2015 Microchip Technology Inc.  
DS20002071C-page 21  
MCP73837/8  
6.1.1.3  
Thermal Considerations  
6.1.1.5  
Reverse-Blocking Protection  
The worst-case power dissipation in the battery char-  
ger occurs when the input voltage is at the maximum  
and the device has transitioned from the  
Preconditioning mode to the Constant-current mode. In  
this case, the power dissipation is:  
The MCP73837/8 provides protection from a faulted or  
shorted input. Without the protection, a faulted or  
shorted input would discharge the battery pack through  
the body diode of the internal pass transistor.  
6.1.1.6  
Charge Inhibit  
EQUATION 6-1:  
The current regulation set input pin (PROG1/2) can be  
used to terminate a charge at any time during the  
charge cycle, as well as to initiate a charge cycle or a  
recharge cycle.  
PowerDissipation = V  
V  
I  
PTHMIN REGMAX  
DDMAX  
Placing a programming resistor from the PROG1 input  
to VSS or driving PROG2 to logic High or Low enables  
the device. Allowing either the PROG1/2 input to float  
disables the device and terminates a charge cycle.  
When disabled, the device’s supply current is reduced  
to 75 µA, typically.  
Where:  
VDDMAX  
IREGMAX  
VPTHMIN  
=
=
=
the maximum input voltage  
the maximum fast charge current  
the minimum transition threshold  
voltage  
6.1.1.7  
Temperature Monitoring  
The charge temperature window can be set by placing  
fixed value resistors in series-parallel with a thermistor.  
The resistance values of RT1 and RT2 can be calculated  
with the following equations in order to set the  
temperature window of interest.  
For example, power dissipation with a 5V, ±10% input  
voltage source, and a 500 mA, ±10% fast charge  
current is calculated in the following example:  
EXAMPLE 6-1:  
For NTC thermistors, see Equation 6-2.  
PowerDissipation = 5.5V 2.7V550mA = 1.54W  
EQUATION 6-2:  
RT2 RCOLD  
This power dissipation with the battery charger in the  
MSOP-10 package will cause thermal regulation to be  
entered as depicted in Figure 6-3. Alternatively, the  
3 mm x 3 mm DFN package could be utilized to reduce  
the charge cycle times.  
24k= RT1 + ---------------------------------  
RT2 + RCOLD  
RT2 RHOT  
5k= RT1 + -----------------------------  
RT2 + RHOT  
6.1.1.4  
External Capacitors  
Where:  
The MCP73837/8 is stable with or without a battery  
load. In order to maintain good AC stability in the Con-  
stant Voltage mode, a minimum capacitance of 1 µF is  
recommended to bypass the VBAT pin to VSS. This  
capacitance provides compensation when there is no  
battery load. In addition, the battery and interconnec-  
tions appear inductive at high frequencies. These ele-  
ments are in the control feedback loop during Constant  
Voltage mode. Therefore, the bypass capacitance may  
be necessary to compensate for the inductive nature of  
the battery pack.  
R
R
=
=
=
the fixed series resistance  
the fixed parallel resistance  
T1  
T2  
R
the thermistor resistance at the lower  
temperature of interest  
COLD  
R
=
the thermistor resistance at the  
upper temperature of interest  
HOT  
For example, by utilizing a 10 kat +25°C NTC  
thermistor with a sensitivity index, , of 3892, the  
charge temperature range can be set to 0°C – +50°C  
by placing a 1.54 kresistor in series (RT1), and a  
69.8 kresistor in parallel (RT2) with the thermistor.  
Virtually any good quality output filter capacitor can be  
used, independent of the capacitor’s minimum Effec-  
tive Series Resistance (ESR) value. The actual value of  
the capacitor (and its associated ESR) depends on the  
output load current. A 1 µF ceramic, tantalum, or alumi-  
num electrolytic capacitor at the output is usually suffi-  
cient to ensure stability for output currents up to  
500 mA.  
6.1.1.8  
Charge Status Interface  
A status output provides information on the state of  
charge. The output can be used to illuminate external  
LEDs or interface to a host microcontroller. Refer to  
Table 5-1 or Figure 4-1 for information on the state of  
the status output during a charge cycle.  
DS20002071C-page 22  
2007-2015 Microchip Technology Inc.  
MCP73837/8  
6.2  
PCB Layout Issues  
For optimum voltage regulation, place the battery pack  
as close as possible to the device’s VBAT and VSS pins.  
This is recommended to minimize voltage drops along  
the high-current-carrying PCB traces.  
If the PCB layout is used as a heat sink, adding many  
vias in the heatsink pad can help conduct more heat to  
the backplane of the PCB, thus reducing the maximum  
junction temperature.  
2007-2015 Microchip Technology Inc.  
DS20002071C-page 23  
MCP73837/8  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
10-Lead DFN  
Example:  
Marking  
Code  
Marking  
Code  
Part Number(1)  
Part Number(1)  
MCP73837-FCI/MF  
MCP73837-FJI/MF  
MCP73837-NVI/MF  
MCP73838-FCI/MF  
MCP73838-FJI/MF  
MCP73838-NVI/MF  
BABA  
BABB  
BABC  
BACA  
BACB  
BACC  
MCP73837T-FCI/MF  
MCP73837T-FJI/MF  
MCP73837T-NVI/MF  
MCP73838T-FCI/MF  
MCP73838T-FJI/MF  
MCP73838T-NVI/MF  
BABA  
BABB  
BABC  
BACA  
BACB  
BACC  
BABA  
1539  
256  
10-Lead MSOP(2)  
Example:  
Marking  
Code  
Marking  
Code  
Part Number(1)  
Part Number(1)  
MCP73837-FCI/UN  
MCP73837-FJI/UN  
MCP73837-NVI/UN  
MCP73838-FCI/UN  
MCP73838-FJI/UN  
MCP73838-NVI/UN  
MCP73838-AMI/UN  
837FCI MCP73837T-FCI/UN  
837FJI MCP73837T-FJI/UN  
837FCI  
837FJI  
837NVI  
838FCI  
838FJI  
838NVI  
837FCI  
539256  
837NVI MCP73837T-NVI/UN  
838FCI MCP73838T-FCI/UN  
838FJI  
MCP73838T-FJII/UN  
838NVI MCP73838T-NVI/UN  
838AMI MCP73838T-AMI/UN 838AMI  
Note 1: Consult Factory for Alternative Device Options.  
2: Consult Factory for MSOP Package Availability.  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
3
e
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS20002071C-page 24  
2007-2015 Microchip Technology Inc.  
MCP73837/8  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2007-2015 Microchip Technology Inc.  
DS20002071C-page 25  
MCP73837/8  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002071C-page 26  
2007-2015 Microchip Technology Inc.  
MCP73837/8  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2007-2015 Microchip Technology Inc.  
DS20002071C-page 27  
MCP73837/8  
UN  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002071C-page 28  
2007-2015 Microchip Technology Inc.  
MCP73837/8  
UN  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2007-2015 Microchip Technology Inc.  
DS20002071C-page 29  
MCP73837/8  
10-Lead Plastic Micro Small Outline Package (UN) [MSOP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002071C-page 30  
2007-2015 Microchip Technology Inc.  
MCP73837/8  
APPENDIX A: REVISION HISTORY  
Revision C (November 2015)  
The following is the list of modifications:  
1. Added Section 6.1.1.2 “Input Over-Voltage  
Protection”.  
2. Added Figure 6-4.  
3. Added CN output option to “Operational Out-  
put Options” table in “Product Identification  
System”.  
4. Minor typographical errors.  
Revision B (December 2011)  
The following is the list of modifications:  
1. Updated the Functional Block Diagram on  
page 3.  
2. Added labels on the charts throughout  
Section 2.0 “Typical Performance Curves”.  
3. Updated text in Section 3.7 “USB Port Current  
Regulation Set (PROG2)”.  
4. Updated text in Section 4.4 “Precondition-  
ing”.  
5. Updated text in Section 5.2.2 “USB port  
Current Regulation Select (PROG2)”.  
6. Added labels in Figure 6-2 and Figure 6-3.  
Revision A (November 2007)  
• Original Release of this Document.  
2007-2015 Microchip Technology Inc.  
DS20002071C-page 31  
MCP73837/8  
NOTES:  
DS20002071C-page 32  
2007-2015 Microchip Technology Inc.  
MCP73837/8  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
(1)  
Examples  
:
PART NO.  
Device  
XX  
X/  
XX  
a)  
b)  
c)  
d)  
MCP73837-FCI/MF: 10-lead DFN package  
MCP73837-FJI/MF: 10-lead DFN package  
MCP73837-NVI/MF: 10-lead DFN package  
MCP73837T-FCI/MF: 10-lead DFN package,  
Tape and Reel  
Output Temp. Package  
Options*  
e)  
f)  
MCP73837T-FJI/MF: 10-lead DFN package,  
Tape and Reel  
MCP73837T-NVI/MF: 10-lead DFN package,  
Tape and Reel  
Device:  
MCP73837: 1A Fully Integrated Charger,  
PG function on pin 8  
MCP73837T: 1A Fully Integrated Charger,  
PG function on pin 8  
(Tape and Reel)  
MCP73838: 1A Fully Integrated Charger,  
TE function on pin 8  
g)  
h)  
i)  
MCP73837-FCI/UN: 10-lead MSOP package  
MCP73837-FJI/UN:  
10-lead MSOP package  
MCP73837-NVI/UN: 10-lead MSOP package  
MCP73837T-FCI/UN: 10-lead MSOP package  
Tape and Reel  
MCP73837T-FJI/UN: 10-lead MSOP package  
Tape and Reel  
j)  
MCP73838T: 1A Fully Integrated Charger,  
TE function on pin 8  
k)  
l)  
(Tape and Reel)  
MCP73837T-NVI/UN: 10-lead MSOP package  
Tape and Reel  
Output Options(1)  
Refer to “Operational Output Options” table for different  
operational output options.  
a)  
b)  
c)  
d)  
e)  
f)  
MCP73838-FCI/MF: 10-lead DFN package  
MCP73838-FJI/MF:  
10-lead DFN package  
MCP73838-NVI/MF: 10-lead DFN package  
MCP73838T-FCI/MF: 10-lead DFN package  
Tape and Reel  
MCP73838T-FJI/MF: 10-lead DFN package  
Tape and Reel  
MCP73838T-NVI/MF: 10-lead DFN package  
Tape and Reel  
MCP73838-AMI/UN: 10-lead MSOP package  
MCP73838-FCI/UN: 10-lead MSOP package  
Temperature:  
I
=
-40C to +85C  
Package Type:  
MF  
UN  
=
=
10-Lead Plastic Dual Flat, No Lead Package  
3 x 3 x 0.9 mm Body, DFN  
10-Lead Plastic Micro Small Outline Package,  
MSOP (2)  
g)  
h)  
i)  
MCP73838-FJI/UN:  
10-lead MSOP package  
j)  
MCP73838-NVI/UN: 10-lead MSOP package  
MCP73838T-AMI/UN: 10-lead MSOP package  
Tape and Reel  
MCP73838T-FCI/UN: 10-lead MSOP package  
Tape and Reel  
k)  
l)  
m) MCP73838T-FJI/UN: 10-lead MSOP package  
Tape and Reel  
Note 1: Consult the factory for alternative device options.  
2: Consult the factory for MSOP package availability.  
n)  
MCP73838T-FCI/UN: 10-lead MSOP package  
Tape and Reel  
OPERATIONAL OUTPUT OPTIONS  
Output Options  
V
I
/I  
V
/V  
I
/I  
V
/V  
Timer Period  
REG  
PREG REG  
PTH REG  
TERM REG  
RTH REG  
AM  
BZ  
FC  
GP  
G8  
NV  
YA  
6S  
B6  
CN  
FJ  
4.20V  
4.20V  
4.20V  
4.20V  
4.20V  
4.35V  
4.40V  
4.50V  
4.20V  
4.20V  
4.20V  
10%  
100%  
10%  
100%  
10%  
10%  
10%  
10%  
10%  
10%  
10%  
71.5%  
N/A  
7.5%  
7.5%  
7.5%  
7.5%  
7.5%  
7.5%  
7.5%  
7.5%  
5.0%  
20%  
96.5%  
96.5%  
96.5%  
96.5%  
96.5%  
96.5%  
96.5%  
96.5%  
96.5%  
94%  
0 hours  
0 hours  
6 hours  
6 hours  
8 hours  
6 hours  
6 hours  
6 hours  
4 hours  
4 hours  
6 hours  
71.5%  
N/A  
71.5%  
71.5%  
71.5%  
71.5%  
66.5%  
71.5%  
71.5%  
20%  
94%  
2007-2015 Microchip Technology Inc.  
DS20002071C-page 33  
MCP73837/8  
NOTES:  
DS20002071C-page 34  
2007-2015 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer,  
LANCheck, MediaLB, MOST, MOST logo, MPLAB,  
32  
OptoLyzer, PIC, PICSTART, PIC logo, RightTouch, SpyNIC,  
SST, SST Logo, SuperFlash and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
The Embedded Control Solutions Company and mTouch are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo,  
CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit  
Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet,  
KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB  
Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,  
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,  
PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O,  
Total Endurance, TSHARC, USBCheck, VariSense,  
ViewSpan, WiperLock, Wireless DNA, and ZENA are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip  
Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2011-2015, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
ISBN: 978-1-63277-879-6  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2011-2015 Microchip Technology Inc.  
DS20002071C-page 35  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
Germany - Dusseldorf  
Tel: 49-2129-3766400  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Germany - Karlsruhe  
Tel: 49-721-625370  
India - Pune  
Tel: 91-20-3019-1500  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Austin, TX  
Tel: 512-257-3370  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Boston  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Dongguan  
Tel: 86-769-8702-9880  
Italy - Venice  
Tel: 39-049-7625286  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
Cleveland  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Poland - Warsaw  
Tel: 48-22-3325737  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Novi, MI  
UK - Wokingham  
Tel: 44-118-921-5800  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Tel: 248-848-4000  
Fax: 44-118-921-5820  
Houston, TX  
Tel: 281-894-5983  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-213-7828  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
New York, NY  
Tel: 631-435-6000  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
San Jose, CA  
Tel: 408-735-9110  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Canada - Toronto  
Tel: 905-673-0699  
Fax: 905-673-6509  
07/14/15  
DS20002071C-page 36  
2011-2015 Microchip Technology Inc.  

相关型号:

MCP73837T-G8I/UN

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO10, PLASTIC, MSOP-10
MICROCHIP

MCP73837T-GPI/MF

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO10, 3 X 3 MM, 0.90 MM HEIGHT, PLASTIC, DFN-10
MICROCHIP

MCP73837T-GPI/UN

Advanced Stand-Alone Li-Ion/Li-Polymer Battery Charge Management Controller with Autonomous AC Adapter or USB Port Source Selection
MICROCHIP

MCP73837T-NVI/MF

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO10, 3 X 3 MM, 0.90 MM HEIGHT, PLASTIC, DFN-10
MICROCHIP

MCP73837T-NVI/UN

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO10, PLASTIC, MSOP-10
MICROCHIP

MCP73837T-YAI/MF

Advanced Stand-Alone Li-Ion/Li-Polymer Battery Charge Management Controller with Autonomous AC Adapter or USB Port Source Selection
MICROCHIP

MCP73837T-YAI/UN

Advanced Stand-Alone Li-Ion/Li-Polymer Battery Charge Management Controller with Autonomous AC Adapter or USB Port Source Selection
MICROCHIP

MCP73837T6SIMF

Advanced Stand-Alone Li-Ion / Li-Polymer Battery Charge Management Controller with Autonomous AC-Adapter or USB-Port Source Selection
MICROCHIP

MCP73837T6SIUN

Advanced Stand-Alone Li-Ion / Li-Polymer Battery Charge Management Controller with Autonomous AC-Adapter or USB-Port Source Selection
MICROCHIP

MCP73837TAMIMF

Advanced Stand-Alone Li-Ion / Li-Polymer Battery Charge Management Controller with Autonomous AC-Adapter or USB-Port Source Selection
MICROCHIP

MCP73837TAMIUN

Advanced Stand-Alone Li-Ion / Li-Polymer Battery Charge Management Controller with Autonomous AC-Adapter or USB-Port Source Selection
MICROCHIP

MCP73837TB6IMF

Advanced Stand-Alone Li-Ion / Li-Polymer Battery Charge Management Controller with Autonomous AC-Adapter or USB-Port Source Selection
MICROCHIP