MCP73855T-I/ML [MICROCHIP]

POWER SUPPLY SUPPORT CKT;
MCP73855T-I/ML
型号: MCP73855T-I/ML
厂家: MICROCHIP    MICROCHIP
描述:

POWER SUPPLY SUPPORT CKT

光电二极管
文件: 总32页 (文件大小:876K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP73853/55  
USB Compatible Li-Ion/Li-Polymer  
Charge Management Controllers  
Features  
Description  
• Linear Charge Management Controllers  
- Integrated Pass Transistor  
The MCP7385X devices are highly-advanced, linear  
charge management controllers, for use in space-  
limited, cost-sensitive applications. The MCP73853  
combines high-accuracy constant-voltage, constant-  
current regulation, cell preconditioning, cell temperature  
monitoring, advanced safety timers, automatic charge  
termination, internal current sensing, reverse blocking  
protection and charge status and fault indication in a  
space-saving 16-lead, 4x4 QFN package.  
- Integrated Current Sense  
- Reverse Blocking Protection  
• High-Accuracy Preset Voltage Regulation: + 0.5%  
• Two Selectable Voltage Regulation Options:  
- 4.1V, 4.2V  
• Programmable Charge Current  
The MCP73855 employs all the features of the  
MCP73853, with the exception of the cell temperature  
monitor and one status output. The MCP73855 is  
offered in a space-saving 10-lead, 3x3 DFN package.  
• USB Compatible Charge Current Settings  
• Programmable Safety Charge Timers  
• Preconditioning of Deeply Depleted Cells  
• Automatic End-of-Charge Control  
• Optional Continuous Cell Temperature Monitoring  
The MCP73853 and MCP73855 are designed  
specifically for USB applications, adhering to all the  
specifications governing the USB power bus.  
MCP73853  
The MCP7385X devices provide two selectable  
voltage regulation options (4.1V or 4.2V) for use with  
either coke or graphite anodes.  
• Charge Status Output for Direct LED Drive  
• Fault Output for Direct LED Drive  
These devices have complete and fully-functional,  
charge management solutions, operating with an input  
voltage range of 4.5V to 5.5V. These are fully specified  
over the ambient temperature range of -40°C to +85°C.  
MCP73853  
• Automatic Power-Down  
• Thermal Regulation  
Temperature Range: -40°C to +85°C  
Package Types  
• Packaging:  
MCP73853  
4x4 QFN*  
- 16-Lead, 4x4 mm QFN (MCP73853)  
- 10-Lead, 3x3 mm DFN (MCP73855)  
16 15 14 13  
V
V
V
V
V
V
1
12  
11  
10  
9
SET  
BAT3  
Applications  
2
3
4
DD1  
DD2  
BAT2  
BAT1  
SS3  
EP  
17  
• Lithium-Ion/Lithium-Polymer Battery Chargers  
• Personal Data Assistants (PDAs)  
• Cellular Telephones  
V
V
SS1  
5
6
7
8
• Hand-Held Instruments  
• Cradle Chargers  
MCP73855  
3x3 DFN*  
• Digital Cameras  
STAT1  
EN  
V
1
2
10  
9
• MP3 Players  
V
• Bluetooth Headsets  
SET  
BAT2  
EP  
11  
V
V
V
3
4
5
8
7
6
• USB Chargers  
DD1  
BAT1  
SS2  
V
SS1  
TIMER  
PROG  
*Exposed Pad (EP) is at VSS potential.  
2004-2013 Microchip Technology Inc.  
DS21915C-page 1  
MCP73853/55  
Typical Application  
400 mA Lithium-Ion Battery Charger  
3
2
8
9
VDD1  
VSET  
EN  
VBAT1  
VBAT2  
5V  
4.7 µF  
4.7 µF  
10  
1
STAT1  
+
Single  
Lithium-Ion  
Cell  
6
TIMER  
VSS  
0.1 µF  
4, 7  
5
PROG  
MCP73855  
Functional Block Diagram  
Direction  
Control  
VDD1  
VBAT1  
VBAT2  
VDD2  
VDD  
G = 0.001  
4 k  
VREF  
Charge Current  
Control Amplifier  
90  
3 k  
k  
PROG  
Voltage Control  
+
Amplifier  
+
11 k  
Charge  
VREF  
10 k  
VREF  
VBAT3  
Termination  
Comparator  
110 k  
Precondition  
Comp.  
+
Charge_OK  
Precon.  
600 k  
149 k  
IREG/12  
Precondition  
Control  
+
10 k  
UVLO  
COMPARATOR  
+
Constant-voltage/  
Recharge Comp.  
VUVLO  
+
1.58 k  
300 k  
EN  
Power-On  
Delay  
VREF  
VUVLO  
VREF(1.2V)  
Bias and  
Reference  
Generator  
VSET  
10.3 k  
VSS1  
VSS2  
VSS3  
THREF  
THERM  
Temperature  
Comparators  
100 k  
STAT1  
+
-
Drv Stat 1  
Drv Stat 2  
Charge Control,  
Charge Timers,  
and  
50 k  
50 k  
STAT2  
IREG/12  
Oscillator  
+
-
Status Logic  
MCP73853 ONLY  
MCP73853 ONLY  
Charge_OK  
TIMER  
DS21915C-page 2  
2004-2013 Microchip Technology Inc.  
MCP73853/55  
*Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings*  
V
.............................................................................6.5V  
DD1,2  
All Inputs and Outputs w.r.t. VSS ..............-0.3 to (VDD + 0.3)V  
Maximum Junction Temperature, TJ ............Internally Limited  
Storage temperature .....................................-65°C to +150°C  
ESD protection on all pins:  
Human Body Model (1.5kin Series with 100pF)4 kV  
Machine Model (200pF, No Series Resistance) ..........400V  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, all limits apply for VDD = [VREG(Typ) + 0.3V] to 5.5V,  
TA = -40°C to 85°C. Typical values are at +25°C, VDD = [VREG (Typ) + 1.0V]  
Parameters  
Supply Input  
Sym  
Min  
Typ  
Max Units  
Conditions  
Supply Voltage  
Supply Current  
VDD  
ISS  
4.5  
5.5  
4
V
0.28  
0.83  
4.45  
4.40  
µA Disabled  
mA Operating  
4
UVLO Start Threshold  
UVLO Stop Threshold  
VSTART  
VSTOP  
4.25  
4.20  
4.65  
4.55  
V
V
VDD Low-to-High  
VDD High-to-Low  
Voltage Regulation (Constant-Voltage Mode)  
Regulated Output Voltage  
VREG  
4.079  
4.179  
4.1  
4.2  
4.121  
4.221  
V
V
VSET = VSS  
VSET = VDD  
VDD = [VREG(Typ) + 1V],  
I
OUT = 10 mA, TA = -5°C to +55°C  
Line Regulation  
VBAT  
VBAT)| /VDD  
/
0.020  
0.022  
0.25  
0.25  
%/V VDD = [VREG(Typ) + 1V] to 5.5V  
IOUT = 10 mA  
Load Regulation  
VBAT/VBAT  
|
%
IOUT = 10 mA to 150 mA  
VDD = [VREG(Typ) + 1V]  
Supply Ripple Attenuation  
PSRR  
50  
26  
1
dB IOUT = 10 mA, 10 Hz to 1 kHz  
dB  
dB  
µA  
I
I
OUT = 10 mA, 10 Hz to 10 kHz  
OUT = 10 mA, 10 Hz to 1 MHz  
24  
0.24  
Output Reverse-Leakage  
Current  
IDISCHARGE  
VDD < VBAT = VREG(Typ)  
Current Regulation (Fast Charge Constant-Current Mode)  
Fast Charge Current  
Regulation  
IREG  
70  
85  
100  
475  
mA PROG = OPEN  
mA PROG = VSS  
TA = -5°C to +55°C  
325  
400  
Preconditioning Current Regulation (Trickle Charge Constant-Current Mode)  
Precondition Current  
Regulation  
IPREG  
5
9
15  
75  
mA PROG = OPEN  
mA PROG = VSS  
TA = -5°C to +55°C  
25  
40  
Precondition Threshold  
Voltage  
VPTH  
2.70  
2.75  
2.80  
2.85  
2.90  
2.95  
V
V
VSET = VSS  
VSET = VDD  
VBAT Low-to-High  
2004-2013 Microchip Technology Inc.  
DS21915C-page 3  
MCP73853/55  
DC CHARACTERISTICS (Continued)  
Electrical Specifications: Unless otherwise indicated, all limits apply for VDD = [VREG(Typ) + 0.3V] to 5.5V,  
TA = -40°C to 85°C. Typical values are at +25°C, VDD = [VREG (Typ) + 1.0V]  
Parameters  
Sym  
Min  
Typ  
Max Units  
Conditions  
Charge Termination  
Charge Termination Current  
ITERM  
3.7  
18  
6.5  
32  
9.3  
46  
mA PROG = OPEN  
mA PROG = VSS  
TA = -5°C to +55°C  
Automatic Recharge  
Recharge Threshold Voltage  
VRTH  
VREG – VREG – VREG  
V
VBAT High-to-Low  
300mV 200mV 100mV  
Thermistor Reference - MCP73853  
Thermistor Reference  
Output Voltage  
VTHREF  
2.475  
200  
2.55  
2.625  
V
TA = 25°C, VDD = VREG(Typ) + 1V,  
ITHREF = 0 mA  
Thermistor Reference  
Source Current  
ITHREF  
µA  
Thermistor Reference Line  
Regulation  
V  
/
0.05  
0.02  
0.25  
0.10  
%/V VDD = [VREG (Typ) + 1V] to 5.5V  
THREF  
V
)|/V  
THREF  
DD  
/
VTHREF  
VTHREF|  
%
Thermistor Reference Load  
Regulation  
ITHREF = 0 mA to 0.20 mA  
Thermistor Comparator - MCP73853  
Upper Trip Threshold  
Upper Trip Point Hysteresis  
Lower Trip Threshold  
Lower Trip Point Hysteresis  
Input Bias Current  
VT1  
VT1HYS  
VT2  
1.18  
1.25  
-50  
0.62  
80  
1.32  
V
mV  
V
0.59  
0.66  
VT2HYS  
IBIAS  
mV  
A  
2
Status Indicator – STAT1, STAT2  
Sink Current  
ISINK  
VOL  
ILK  
4
8
12  
400  
1
mA  
Low Output Voltage  
Input Leakage Current  
Enable Input  
200  
0.01  
mV ISINK = 1 mA  
A ISINK = 0 mA, VSTAT1,2 = 5.5V  
Input High Voltage Level  
Input Low Voltage Level  
Input Leakage Current  
Thermal Shutdown  
Die Temperature  
VIH  
VIL  
ILK  
1.4  
0.8  
1
V
V
0.01  
A VENABLE = 5.5V  
TSD  
155  
10  
°C  
°C  
Die Temperature Hysteresis  
TSDHYS  
DS21915C-page 4  
2004-2013 Microchip Technology Inc.  
MCP73853/55  
AC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, all limits apply for VDD = [VREG (Typ) + 0.3V] to 5.5V,  
TA = -40°C to 85°C. Typical values are at +25°C, VDD = [VREG (Typ) + 1.0V]  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
VDD Low-to-High  
UVLO Start Delay  
tSTART  
5
ms  
Current Regulation  
Transition Time Out of  
Preconditioning  
tDELAY  
tRISE  
1
1
ms  
ms  
VBAT < VPTH to VBAT > VPTH  
IOUT Rising to 90% of IREG  
Current Rise Time Out of  
Preconditioning  
Fast Charge Safety Timer  
Period  
tFAST  
1.1  
1.5  
1.9  
Hours CTIMER = 0.1 µF  
Minutes CTIMER = 0.1 µF  
Hours CTIMER = 0.1 µF  
Preconditioning Current Regulation  
Preconditioning Charge  
Safety Timer Period  
tPRECON  
45  
60  
3
75  
Charge Termination  
Elapsed Time Termination  
Period  
tTERM  
2.2  
3.8  
Status Indicators  
Status Output Turn-off  
Status Output Turn-on  
tOFF  
tON  
200  
200  
µs  
µs  
ISINK = 1 mA to 0 mA  
ISINK = 0 mA to 1 mA  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: Unless otherwise indicated, all limits apply for VDD = [VREG (Typ) + 0.3V] to 5.5.  
Typical values are at +25°C, VDD = [VREG (Typ) + 1.0V]  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
TA  
TJ  
TA  
-40  
-40  
-65  
+85  
+125  
+150  
°C  
°C  
°C  
4-Layer JC51-7  
Thermal Resistance, 16-L, 4mm x 4mm QFN  
Thermal Resistance, 10-L, 3mm x 3mm DFN  
JA  
37  
51  
°C/W Standard Board,  
Natural Convection  
4-Layer JC51-7  
°C/W Standard Board,  
Natural Convection  
JA  
2004-2013 Microchip Technology Inc.  
DS21915C-page 5  
MCP73853/55  
NOTES:  
DS21915C-page 6  
2004-2013 Microchip Technology Inc.  
MCP73853/55  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
NOTE: Unless otherwise indicated, VDD = [VREG(Typ) + 1V], IOUT = 10 mA and TA= +25°C.  
4.250  
4.230  
4.210  
4.190  
4.170  
4.150  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
VSET = VDD  
VDD = 5.2 V  
VSET = VDD  
VDD = 5.2 V  
0
50 100 150 200 250 300 350 400  
0
50 100 150 200 250 300 350 400  
IOUT (mA)  
I
OUT (mA)  
FIGURE 2-1:  
Battery Regulation Voltage  
FIGURE 2-4:  
Supply Current (I ) vs.  
SS  
(V  
) vs. Charge Current (I  
).  
Charge Current (I  
).  
BAT  
OUT  
OUT  
4.250  
4.230  
4.210  
4.190  
4.170  
4.150  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
VSET = VDD  
IOUT = 375 mA  
VSET = VDD  
IOUT = 375 mA  
4.5  
4.7  
4.9  
5.1  
DD (V)  
5.3  
5.5  
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
V
VDD (V)  
FIGURE 2-2:  
Battery Regulation Voltage  
FIGURE 2-5:  
Supply Current (I ) vs.  
SS  
(V  
) vs. Supply Voltage (V ).  
Supply Voltage (V ).  
BAT  
DD  
DD  
4.250  
4.230  
4.210  
4.190  
4.170  
4.150  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
VSET = VDD  
IOUT = 10 mA  
VSET = VDD  
IOUT = 10 mA  
4.5  
4.7  
4.9  
5.1  
DD (V)  
5.3  
5.5  
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
V
VDD (V)  
FIGURE 2-3:  
Battery Regulation Voltage  
FIGURE 2-6:  
Supply Current (I ) vs.  
SS  
(V ) vs. Supply Voltage (V ).  
Supply Voltage (V ).  
BAT  
DD  
DD  
NOTE: Unless otherwise indicated, VDD = [VREG(Typ) + 1V], IOUT = 10 mA and TA= +25°C.  
2004-2013 Microchip Technology Inc.  
DS21915C-page 7  
MCP73853/55  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
VSET = VDD  
VDD = VSS  
VSET = VDD  
IOUT = 10 mA  
+85°C  
+25°C  
-40°C  
2.0  
2.4  
2.8  
3.2  
3.6  
4.0  
4.4  
VBAT (V)  
TA (°C)  
FIGURE 2-7:  
Output Leakage Current  
).  
FIGURE 2-10:  
Ambient Temperature (T ).  
Supply Current (I ) vs.  
SS  
(I  
) vs. Battery Voltage (V  
DISCHARGE  
BAT  
A
2.575  
2.565  
2.555  
2.545  
2.535  
4.250  
4.230  
4.210  
4.190  
4.170  
4.150  
MCP73853  
VSET = VDD  
ITHREF = 100 µA  
VSET = VDD  
IOUT = 10 mA  
2.525  
4.5  
4.7  
4.9  
5.1  
DD (V)  
5.3  
5.5  
V
TA (°C)  
FIGURE 2-8:  
Thermistor Reference  
) vs. Supply Voltage (V ).  
FIGURE 2-11:  
(V  
Battery Regulation Voltage  
Voltage (V  
) vs. Ambient Temperature (T ).  
THREF  
DD  
BAT  
A
2.575  
2.565  
2.555  
2.545  
2.535  
2.525  
2.575  
2.565  
2.555  
2.545  
2.535  
2.525  
MCP73853  
VSET = VDD  
ITHREF = 100 µA  
MCP73853  
SET = VDD  
V
0
25  
50  
75 100 125 150 175 200  
THREF (µA)  
I
TA (°C)  
FIGURE 2-9:  
Thermistor Reference  
) vs. Thermistor Bias Current  
FIGURE 2-12:  
Voltage (V  
Thermistor Reference  
) vs. Ambient Temperature (T ).  
Voltage (V  
THREF  
THREF  
A
(I  
).  
THREF  
NOTE: Unless otherwise indicated, VDD = [VREG(Typ) + 1V], IOUT = 10 mA and TA= +25°C.  
DS21915C-page 8  
2004-2013 Microchip Technology Inc.  
MCP73853/55  
FIGURE 2-13:  
Line Transient Response.  
FIGURE 2-16:  
Line Transient Response.  
FIGURE 2-14:  
Load Transient Response.  
FIGURE 2-17:  
Load Transient Response.  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
MCP73853  
VDD = 5.2 V  
AC = 100 mVp-p  
OUT = 10 mA  
COUT = 10 F, Ceramic  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
V
I
MCP73853  
VDD = 5.2 V  
VAC = 100 mVp-p  
I
OUT = 100 mA  
COUT = 10 F, X7R, Ceramic  
-80  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Frequency (kHz)  
FIGURE 2-15:  
Power Supply Ripple  
FIGURE 2-18:  
Power Supply Ripple  
Rejection.  
Rejection.  
NOTE: Unless otherwise indicated, VDD = [VREG(Typ) + 1V], IOUT = 10 mA, and TA= +25°C.  
2004-2013 Microchip Technology Inc.  
DS21915C-page 9  
MCP73853/55  
500  
400  
300  
200  
100  
0
300  
295  
290  
285  
280  
275  
270  
265  
260  
255  
250  
VSET = VDD  
VSET = VDD  
RPROG = 1.6 k  
OPEN  
4.8K  
1.6K  
536  
0
TA (°C)  
RPROG ()  
FIGURE 2-19:  
Charge Current (I  
) vs.  
FIGURE 2-20:  
Charge Current (I  
) vs.  
OUT  
OUT  
Programming Resistor (R  
).  
Ambient Temperature (T ).  
PROG  
A
DS21915C-page 10  
2004-2013 Microchip Technology Inc.  
MCP73853/55  
3.0  
PIN DESCRIPTION  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
MCP73853  
PIN FUNCTION TABLE  
MCP73855  
Sym  
Description  
1
2
2
3
VSET  
VDD1  
Voltage Regulation Selection  
Battery Management Input Supply  
Battery Management Input Supply  
Battery Management 0V Reference  
Current Regulation Set  
3
4
VDD2  
4
VSS1  
5
5
PROG  
THREF  
THERM  
TIMER  
VSS3  
6
6
Cell Temperature Sensor Bias  
Cell Temperature Sensor Input  
Timer Set  
7
8
9
8
Battery Management 0V Reference  
Battery Charge Control Output  
Battery Charge Control Output  
Battery Voltage Sense  
10  
11  
12  
13  
14  
15  
16  
17  
VBAT1  
VBAT2  
VBAT3  
VSS2  
9
7
Battery Management 0V Reference  
Logic Enable  
10  
1
EN  
STAT2  
STAT1  
EP  
Fault Status Output  
Charge Status Output  
11  
Exposed Pad, VSS Potential  
3.1  
Voltage Regulation Selection  
(VSET  
3.7  
Timer Set (TIMER)  
)
All safety timers are scaled by CTIMER/0.1 µF.  
Connect to VSS for 4.1V regulation voltage. Connect to  
VDD for 4.2V regulation voltage.  
3.8  
Battery Charge Control Output  
(VBAT1, VBAT2  
)
3.2  
Battery Management Input Supply  
(VDD1, VDD2  
Connect to positive terminal of battery. Drain terminal  
of internal P-channel MOSFET pass transistor. Bypass  
to VSS with a minimum of 4.7 µF to ensure loop stability  
when the battery is disconnected.  
)
A supply voltage of [VREG(Typ) + 0.3V] to 5.5V is  
recommended. Bypass to VSS with a minimum of  
4.7 µF.  
3.9  
Battery Voltage Sense (VBAT3)  
3.3  
Battery Management 0V Reference  
(VSS1, VSS2, VSS3  
Voltage sense input. Connect to positive terminal of  
battery. A precision internal resistor divider regulates  
)
the final voltage on this pin to VREG  
.
Connect to negative terminal of battery.  
3.4  
Current Regulation Set (PROG)  
3.10 Logic Enable (EN)  
Preconditioning, fast and termination currents are  
scaled by placing a resistor from PROG to VSS  
Input to force charge termination, initiate charge, clear  
faults or disable automatic recharge.  
.
3.5  
Cell Temperature Sensor Bias  
(THREF)  
3.11 Fault Status Output (STAT2)  
Current-limited, open-drain drive for direct connection  
to an LED for charge status indication. Alternatively, a  
pull-up resistor can be applied for interfacing to a host  
microcontroller.  
THREF is a voltage reference to bias external  
thermistor for continuous cell temperature monitoring  
and pre-qualification.  
3.6  
Cell Temperature Sensor Input  
(THERM)  
3.12 Charge Status Output (STAT1)  
Current-limited, open-drain drive for direct connection  
to a LED for charge status indication. Alternatively, a  
pull-up resistor can be applied for interfacing to a host  
microcontroller.  
Input for an external thermistor for continuous cell-  
temperature monitoring and prequalification. Connect  
to THREF/3 to disable temperature sensing.  
2004-2013 Microchip Technology Inc.  
DS21915C-page 11  
MCP73853/55  
NOTES:  
DS21915C-page 12  
2004-2013 Microchip Technology Inc.  
MCP73853/55  
With VSET tied to VSS, the MCP7385X devices regulate  
to 4.1V or with VSET tied to VDD, the MCP7385X  
devices regulate to 4.2V.  
4.0  
DEVICE OVERVIEW  
The MCP7385X devices are highly-advanced, linear  
charge management controllers. For more information,  
refer to the “Functional Block Diagram” on page 2.  
Figure 4-2 depicts the operational flow algorithm from  
charge initiation to completion and automatic recharge.  
4.4  
Charge Cycle Completion and  
Automatic Recharge  
The MCP7385X devices monitor the charging current  
during the Constant-voltage Regulation mode. The  
charge cycle is considered complete when either the  
charge current has diminished below approximately  
7% of the regulation current (IREG) or the elapsed timer  
has expired.  
4.1  
Charge Qualification and  
Preconditioning  
Upon insertion of a battery or application of an external  
supply, the MCP7385X devices automatically perform a  
series of safety checks to qualify the charge. The input  
source voltage must be above the Undervoltage Lock-  
out (UVLO) threshold, the enable pin must be above the  
logic high level, and the cell temperature monitor must  
be within the upper and lower thresholds (MCP73853  
only). The qualification parameters are continuously  
monitored, with any deviation beyond the limits automat-  
ically suspending or terminating the charge cycle. The  
input voltage must deviate below the UVLO stop  
threshold for at least one clock period to be considered  
valid.  
Assuming all the qualification parameters are met, the  
MCP7385X devices automatically begin a new charge  
cycle when the battery voltage falls below the recharge  
threshold (VRTH).  
4.5  
Thermal Regulation  
The MCP7385X devices limit the charge current based  
on the die temperature. Thermal regulation optimizes  
the charge cycle time while maintaining device reliabil-  
ity. If thermal regulation is entered, the timer is automat-  
ically slowed down to ensure that a charge cycle does  
not terminate prematurely. Figure 4-1 depicts the  
thermal regulation.  
Once the qualification parameters have been met, the  
MCP7385X devices initiate a charge cycle. The charge  
status output is pulled low throughout the charge cycle  
(see Table 5-1 and Table 5-2 for charge status out-  
puts). If the battery voltage is below the preconditioning  
threshold (VPTH), the MCP7385X devices precondition  
the battery with a trickle charge. The preconditioning  
current is set to approximately 10% of the fast charge  
regulation current. The preconditioning trickle charge  
safely replenishes deeply depleted cells and minimizes  
heat dissipation during the initial charge cycle. If the  
battery voltage has not exceeded the preconditioning  
threshold before the preconditioning timer has expired,  
a fault is indicated and the charge cycle is terminated.  
4.2  
Constant Current Regulation –  
Fast Charge  
FIGURE 4-1:  
Current vs. Junction Temperature.  
Typical Maximum Charge  
Preconditioning ends and fast charging begins when  
the battery voltage exceeds the preconditioning thresh-  
old. Fast charge regulates to a constant current (IREG),  
which is set via an external resistor connected to the  
PROG pin. Fast charge continues until either the  
4.6  
Thermal Shutdown  
The MCP7385X devices suspend charge if the die  
temperature exceeds 155°C. Charging resumes when  
the die temperature has cooled by approximately 10°C.  
The thermal shutdown is a secondary safety feature in  
the event that there is a failure within the thermal  
regulation circuitry.  
battery voltage reaches the regulation voltage (VREG  
or the fast charge timer expires; in which case, a fault  
is indicated and the charge cycle is terminated.  
)
4.3  
Constant Voltage Regulation  
When the battery voltage reaches the regulation volt-  
age (VREG), constant voltage regulation begins. The  
MCP7385X devices monitor the battery voltage at the  
VBAT pin. This input is tied directly to the positive termi-  
nal of the battery. The MCP7385X devices select the  
voltage regulation value based on the state of VSET  
.
2004-2013 Microchip Technology Inc.  
DS21915C-page 13  
MCP73853/55  
FIGURE 4-2:  
Operational Flow Algorithm.  
DS21915C-page 14  
2004-2013 Microchip Technology Inc.  
MCP73853/55  
Figure 6-1 depicts a typical application circuit with  
connection of the THERM input. The resistor values of  
RT1 and RT2 are calculated with the following  
equations:  
5.0  
DETAILED DESCRIPTION  
5.1  
Analog Circuitry  
5.1.1  
BATTERY MANAGEMENT INPUT  
For NTC thermistors:  
SUPPLY (V  
, V  
)
DD1  
DD2  
2 RCOLD RHOT  
----------------------------------------------  
RT1  
=
=
The VDD pin is the input supply pin for the MCP7385X  
devices. The MCP7385X devices automatically enter a  
power-down mode if the voltage on the VDD input falls  
below the UVLO voltage (VSTOP). This feature prevents  
draining the battery pack when the VDD supply is not  
present.  
RCOLD RHOT  
2 RCOLD RHOT  
----------------------------------------------  
RT2  
R
COLD – 3 RHOT  
For PTC thermistors:  
2 RCOLD RHOT  
5.1.2  
PROG INPUT  
----------------------------------------------  
RT1  
=
R
HOT RCOLD  
Fast charge current regulation can be scaled by placing  
a programming resistor (RPROG) from the PROG input  
to VSS. Connecting the PROG input to VSS allows a  
maximum fast charge current of 400 mA, typically. The  
minimum fast charge current is 85 mA (Typ) and is set  
by letting the PROG input float. Equation 5-1 calculates  
2 RCOLD RHOT  
----------------------------------------------  
HOT – 3 RCOLD  
RT2  
=
R
Where:  
the value for RPROG  
.
RCOLD and RHOT are the thermistor  
resistance values at the temperature window  
of interest.  
EQUATION 5-1:  
13.32 – 33.3 IREG  
-----------------------------------------------  
14.1 IREG – 1.2  
Applying a voltage equal to VTHREF/3 to the THERM  
input disables temperature monitoring.  
RPROG  
=
Where:  
5.1.5  
TIMER SET INPUT (TIMER)  
I
REG is the desired fast charge current in  
The TIMER input programs the period of the safety tim-  
ers by placing a timing capacitor (CTIMER) between the  
TIMER input pin and VSS. Three safety timers are  
programmed via the timing capacitor:  
amps  
RPROG is in kilohms.  
The preconditioning safety timer period:  
The preconditioning trickle charge current and the  
charge termination current are scaled to approximately  
10% and 7% of IREG, respectively.  
CTIMER  
------------------  
1.0Hours  
tPRECON  
=
0.1F  
5.1.3  
CELL TEMPERATURE SENSOR  
BIAS (THREF)  
The fast charge safety timer period:  
A 2.55V voltage reference is provided to bias an  
external thermistor for continuous cell temperature  
monitoring and prequalification. A ratiometric window  
comparison is performed at threshold levels of  
VTHREF/2 and VTHREF/4.  
CTIMER  
------------------  
1.5Hours  
tFAST  
=
0.1F  
And, the elapsed time termination period:  
CTIMER  
5.1.4  
CELL TEMPERATURE SENSOR  
INPUT (THERM)  
------------------  
3.0Hours  
tTERM  
=
0.1F  
The MCP73853 continuously monitors temperature by  
comparing the voltage between the THERM input and  
VSS with the upper and lower temperature thresholds.  
A negative or positive temperature coefficient, NTC or  
PTC thermistor, and an external voltage divider  
typically develop this voltage. The temperature-  
sensing circuit has its own reference, to which it  
performs a ratiometric comparison. Therefore, it is  
immune to fluctuations in the supply input (VDD). The  
temperature-sensing circuit is removed from the  
system when VDD is not applied, eliminating additional  
discharge of the battery pack.  
The preconditioning timer starts after qualification and  
resets when the charge cycle transitions to the  
constant-current, fast charge phase. The fast charge  
timer and the elapsed timer start after the MCP7385X  
devices transition from preconditioning. The fast  
charge timer resets when the charge cycle transitions  
to the Constant-voltage mode. The elapsed timer  
expires and terminates the charge if the sensed current  
does not diminish below the termination threshold.  
During thermal regulation, the timer is slowed down  
proportional to the charge current.  
2004-2013 Microchip Technology Inc.  
DS21915C-page 15  
MCP73853/55  
5.1.6  
BATTERY VOLTAGE SENSE (V  
)
BAT3  
TABLE 5-2:  
STATUS OUTPUT – MCP73855  
The MCP73853 monitors the battery voltage at the  
VBAT3 pin. This input is tied directly to the positive  
terminal of the battery pack.  
CHARGE CYCLE STATE  
STAT1  
Qualification  
OFF  
ON  
Preconditioning  
Constant Current Fast Charge  
Constant Voltage  
Charge Complete  
Fault  
5.1.7  
BATTERY CHARGE CONTROL  
OUTPUT (V , V  
ON  
)
BAT2  
BAT1  
ON  
The battery charge control output is the drain terminal of  
an internal P-channel MOSFET. The MCP7385X  
devices provide constant-current and constant-voltage  
regulation to the battery pack by controlling this  
MOSFET in the linear region. The battery charge  
control output should be connected to the positive  
terminal of the battery pack.  
OFF  
Flashing (1Hz,  
50% duty cycle)  
THERM Invalid  
Flashing (1Hz,  
50% duty cycle)  
Disabled - Sleep mode  
OFF  
OFF  
Input Voltage Disconnected  
5.2  
Digital Circuitry  
Note:  
OFF state: open-drain is high impedance;  
ON state: open-drain can sink current, typ-  
ically 7 mA; FLASHING: toggles between  
OFF state and ON state.  
5.2.1  
CHARGE STATUS OUTPUTS  
(STAT1, STAT2)  
Two status outputs provide information on the state of  
charge for the MCP73853. One status output provides  
information on the state of charge for the MCP73855.  
The current-limited, open-drain outputs can be used to  
illuminate external LEDs. Optionally, a pull-up resistor  
can be used on the output for communication with a  
host microcontroller. Table 5-1 and Table 5-2 summa-  
rize the state of the status outputs during a charge  
cycle for the MCP73853 and MCP73855, respectively.  
The flashing rate (1 Hz) is based on a timer capacitor  
(CTIMER) of 0.1 µF. The rate varies based on the value  
of the timer capacitor.  
5.2.1.1  
MCP73853 Only  
STAT1 is on whenever the input voltage is above the  
under voltage lockout, the device is enabled, and all  
conditions are normal.  
During a fault condition, the STAT1 status output is off  
and the STAT2 status output flashes. To recover from a  
fault condition, the input voltage must be removed and  
then reapplied, or the enable input, EN, must be deas-  
serted to a logic low, then asserted to a logic high.  
TABLE 5-1: STATUS OUTPUTS – MCP73853  
CHARGE  
STAT1  
STAT2  
CYCLE STATE  
Qualification  
OFF  
ON  
OFF  
OFF  
OFF  
When the voltage on the THERM input is outside the  
preset window, the charge cycle will either not start or  
be suspended. However, the charge cycle is not termi-  
nated, with recovery being automatic. The charge cycle  
resumes (or starts) once the THERM input is valid and  
all other qualification parameters are met.  
Preconditioning  
Constant-  
current Fast  
Charge  
ON  
Constant-  
voltage  
ON  
OFF  
OFF  
ON  
5.2.2  
V
INPUT  
SET  
Charge  
Complete  
Flashing (1 Hz,  
50% duty cycle)  
The VSET input selects the regulated output voltage of  
the MCP7385X devices. With VSET tied to VSS, the  
MCP7385X devices regulate to 4.1V. With VSET tied to  
Fault  
OFF  
OFF  
THERM Invalid  
Flashing (1 Hz,  
50% duty cycle)  
VDD, the MCP7385X devices regulate to 4.2V.  
Disabled -  
Sleep mode  
OFF  
OFF  
OFF  
5.2.3 LOGIC ENABLE (EN)  
The logic enable input pin (EN) can be used to termi-  
nate a charge anytime during the charge cycle, initiate  
a charge cycle or initiate a recharge cycle.  
Input Voltage  
Disconnected  
OFF  
Note:  
OFF state: open-drain is high-impedance;  
ON state: open-drain can sink current,  
typically 7 mA; FLASHING: toggles  
between OFF and ON states.  
Applying a logic high input signal to the EN pin, or tying  
it to the input source, enables the device. Applying a  
logic low input signal disables the device and termi-  
nates a charge cycle. When disabled, the device’s  
supply current is reduced to 0.28 µA, typically.  
DS21915C-page 16  
2004-2013 Microchip Technology Inc.  
MCP73853/55  
cells. The algorithm uses a constant current followed  
by a constant voltage charging method. Figure 6-1  
depicts a typical stand-alone application circuit, while  
Figure 6-2 and Figure 6-3 depict the accompanying  
charge profile.  
6.0  
APPLICATIONS  
The MCP7385X devices are designed to operate in  
conjunction with a host microcontroller or in stand-  
alone applications. The MCP7385X devices provide  
the preferred charge algorithm for Li-Ion/Li-Polymer  
Regulated Wall Cube  
STAT1  
EN  
V
SS2  
or  
16 15 14 13  
USB Power Bus  
V
V
V
V
V
V
V
V
SET  
DD1  
DD2  
SS1  
BAT3  
BAT2  
BAT1  
SS3  
1
2
3
4
12  
11  
10  
9
+
-
Single  
Lithium-Ion  
Cell  
MCP73853  
5
6
7
8
PROG  
TIMER  
C
R
TIMER  
PROG  
R
T1  
R
T2  
FIGURE 6-1:  
Typical Application Circuit.  
Preconditioning  
Mode  
Constant-current  
Mode  
Constant-voltage  
Mode  
Regulation  
Voltage  
(VREG  
)
Regulation  
Current  
(IREG  
)
Charge  
Voltage  
Transition  
Threshold  
(VPTH  
)
Precondition  
Current  
Charge  
Current  
(IPREG  
)
Termination  
Current  
(ITERM  
)
Precondition  
Safety Timer  
Fast Charge  
Safety Timer  
Elapsed Time  
Termination Timer  
FIGURE 6-2:  
Typical Charge Profile.  
2004-2013 Microchip Technology Inc.  
DS21915C-page 17  
MCP73853/55  
Preconditioning  
Mode  
Constant-current  
Mode  
Constant-voltage  
Mode  
Regulation  
Voltage  
(VREG  
)
Regulation  
Current  
(IREG  
)
Charge  
Voltage  
Transition  
Threshold  
(VPTH  
)
Precondition  
Current  
Charge  
Current  
(IPREG  
)
Termination  
Current  
(ITERM  
)
Precondition  
Safety Timer  
Fast Charge  
Safety Timer  
Elapsed Time  
Termination Timer  
FIGURE 6-3:  
Typical Charge Profile in Thermal Regulation.  
DS21915C-page 18  
2004-2013 Microchip Technology Inc.  
MCP73853/55  
6.1.1.3  
EXTERNAL CAPACITORS  
6.1  
Application Circuit Design  
Due to the low efficiency of linear charging, the most  
important factors are thermal design and cost. These  
are a direct function of the input voltage, output current  
and thermal impedance between the battery charger  
and the ambient cooling air. The worst-case situation  
exists when the device has transitioned from the  
Preconditioning mode to the Constant-current mode. In  
this situation, the battery charger has to dissipate the  
maximum power. A trade-off must be made between  
the charge current, cost and thermal requirements of  
the charger.  
The MCP7385X devices are stable with or without a  
battery load. To maintain good AC stability in the  
Constant-voltage mode, a minimum capacitance of  
4.7 µF is recommended to bypass the VBAT pin to VSS  
.
This capacitance provides compensation when there is  
no battery load. In addition, the battery and intercon-  
nections appear inductive at high frequencies. These  
elements are in the control feedback loop during  
Constant-voltage mode. Therefore, the bypass  
capacitance may be necessary to compensate for the  
inductive nature of the battery pack.  
Virtually any good quality output filter capacitor can be  
used, independent of the capacitor’s minimum  
Effective Series Resistance (ESR) value. The actual  
value of the capacitor (and its associated ESR)  
depends on the output load current. A 4.7 µF ceramic,  
tantalum or aluminum electrolytic capacitor at the  
output is usually sufficient to ensure stability for up to  
the maximum output current.  
6.1.1  
COMPONENT SELECTION  
Selection of the external components in Figure 6-1 is  
crucial to the integrity and reliability of the charging  
system. The following discussion is intended to be a  
guide for the component selection process.  
6.1.1.1  
CURRENT PROGRAMMING RESISTOR  
(RPROG  
)
6.1.1.4  
REVERSE BLOCKING PROTECTION  
The preferred fast charge current for Lithium-Ion cells  
is at the 1C rate, with an absolute maximum current at  
the 2C rate. For example, a 500 mAh battery pack has  
a preferred fast charge current of 500 mA. Charging at  
this rate provides the shortest charge cycle times  
without degradation to the battery pack performance or  
life.  
The MCP7385X devices provide protection from a  
faulted or shorted input or from a reversed-polarity  
input source. Without the protection, a faulted or  
shorted input would discharge the battery pack through  
the body diode of the internal pass transistor.  
6.1.1.5  
ENABLE INTERFACE  
400 mA is the typical maximum charge current  
obtainable from the MCP7385X devices. For this situa-  
tion, the PROG input should be connected directly to  
In the stand-alone configuration, the enable pin is gen-  
erally tied to the input voltage. The MCP7385X devices  
automatically enter a low power mode when voltage on  
the VDD input falls below the UVLO voltage (VSTOP),  
reducing the battery drain current to 0.28 µA, typically.  
VSS  
.
6.1.1.2  
THERMAL CONSIDERATIONS  
The worst-case power dissipation in the battery char-  
ger occurs when the input voltage is at its maximum  
and the device has transitioned from the  
Preconditioning mode to the Constant-current mode. In  
this case, the power dissipation is:  
6.1.1.6  
CHARGE STATUS INTERFACE  
Two status outputs provide information on the state of  
charge. The current-limited, open-drain outputs can be  
used to illuminate external LEDs. Refer to Table 5-1  
and Table 5-2 for a summary of the state of the status  
output during a charge cycle.  
PowerDissipation = V  
V  
  I  
PTHMIN REGMAX  
DDMAX  
6.2  
PCB Layout Issues  
Where VDDMAX is the maximum input voltage, IREGMAX  
is the maximum fast charge current, and VPTHMIN is the  
minimum transition threshold voltage. Power  
dissipation with a 5V, +/-10% input voltage source is:  
For optimum voltage regulation, place the battery pack  
as close as possible to the device’s VBAT and VSS pins.  
It is recommended that the designer minimizes voltage  
drops along the high-current-carrying PCB traces.  
PowerDissipation = 5.5V – 2.7V  475mA = 1.33W  
If the PCB layout is used as a heat sink, adding many  
vias in the heat sink pad helps to conduct more heat to  
the PCB backplane, thus reducing the maximum junc-  
tion temperature.  
With the battery charger mounted on a 1 in2 pad of  
1 oz. copper, the junction temperature rise is approxi-  
mately 50°C. This allows for a maximum operating  
ambient temperature of 35°C before thermal regulation  
is entered.  
2004-2013 Microchip Technology Inc.  
DS21915C-page 19  
MCP73853/55  
NOTES:  
DS21915C-page 20  
2004-2013 Microchip Technology Inc.  
MCP73853/55  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
10-Lead DFN (MCP73855) (3x3x0.9 mm)  
Example  
3855  
I139  
256  
XXXX  
YYWW  
NNN  
PIN 1  
PIN 1  
16-Lead QFN (MCP73853)  
Example  
PIN 1  
PIN 1  
73853  
I/ML  
1139  
256  
Legend: XX...X Customer specific information*  
YY  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard OTP marking consists of Microchip part number, year code, week code, and traceability code.  
2004-2013 Microchip Technology Inc.  
DS21915C-page 21  
MCP73853/55  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS21915C-page 22  
2004-2013 Microchip Technology Inc.  
MCP73853/55  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2004-2013 Microchip Technology Inc.  
DS21915C-page 23  
MCP73853/55  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS21915C-page 24  
2004-2013 Microchip Technology Inc.  
MCP73853/55  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢆꢇꢐꢉꢅꢋꢑꢇꢒꢓꢇꢃꢄꢅꢆꢇꢈꢅꢍꢔꢅꢕꢄꢇꢖꢗꢃꢘꢇMꢇꢙꢚꢙꢚꢛꢜ ꢇ!!ꢇ"ꢓꢆ#ꢇ$ꢎꢐꢒ%  
ꢒꢓꢋꢄ& 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢑꢆꢌ+ꢆꢏꢈꢅ#ꢉꢆ*ꢃꢄꢏ!(ꢅꢑꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢑꢅꢂꢆꢌ+ꢆꢏꢃꢄꢏꢅꢓꢑꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢑ244***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢑꢁꢌꢋ'4ꢑꢆꢌ+ꢆꢏꢃꢄꢏ  
D
D2  
EXPOSED  
PAD  
e
E
E2  
2
1
2
b
1
K
N
N
NOTE 1  
L
TOP VIEW  
BOTTOM VIEW  
A3  
A
A1  
5ꢄꢃ&!  
ꢔꢘ66ꢘꢔ-ꢖ-ꢗꢓ  
ꢐꢃ'ꢈꢄ!ꢃꢋꢄꢅ6ꢃ'ꢃ&!  
ꢔꢘ7  
78ꢔ  
ꢀ:  
ꢙꢁ:/ꢅ0ꢓ1  
ꢙꢁꢛꢙ  
ꢔꢒ9  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
8 ꢈꢉꢆꢇꢇꢅ;ꢈꢃꢏꢍ&  
ꢓ&ꢆꢄ#ꢋ%%ꢅ  
1ꢋꢄ&ꢆꢌ&ꢅꢖꢍꢃꢌ+ꢄꢈ!!  
8 ꢈꢉꢆꢇꢇꢅ<ꢃ#&ꢍ  
-$ꢑꢋ!ꢈ#ꢅꢂꢆ#ꢅ<ꢃ#&ꢍ  
8 ꢈꢉꢆꢇꢇꢅ6ꢈꢄꢏ&ꢍ  
-$ꢑꢋ!ꢈ#ꢅꢂꢆ#ꢅ6ꢈꢄꢏ&ꢍ  
1ꢋꢄ&ꢆꢌ&ꢅ<ꢃ#&ꢍ  
1ꢋꢄ&ꢆꢌ&ꢅ6ꢈꢄꢏ&ꢍ  
7
ꢒꢀ  
ꢒ,  
-
-ꢎ  
ꢙꢁꢚꢙ  
ꢙꢁꢙꢙ  
ꢀꢁꢙꢙ  
ꢙꢁꢙ/  
ꢙꢁꢙꢎ  
ꢙꢁꢎꢙꢅꢗ-3  
ꢕꢁꢙꢙꢅ0ꢓ1  
ꢎꢁ:/  
ꢕꢁꢙꢙꢅ0ꢓ1  
ꢎꢁ:/  
ꢙꢁ,ꢙ  
ꢙꢁꢕꢙ  
M
ꢎꢁ/ꢙ  
ꢎꢁꢚꢙ  
ꢐꢎ  
)
6
ꢎꢁ/ꢙ  
ꢙꢁꢎ/  
ꢙꢁ,ꢙ  
ꢙꢁꢎꢙ  
ꢎꢁꢚꢙ  
ꢙꢁ,/  
ꢙꢁ/ꢙ  
M
1ꢋꢄ&ꢆꢌ&ꢜ&ꢋꢜ-$ꢑꢋ!ꢈ#ꢅꢂꢆ#  
=
ꢒꢓꢋꢄꢊ&  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢂꢆꢌ+ꢆꢏꢈꢅꢃ!ꢅ!ꢆ*ꢅ!ꢃꢄꢏ"ꢇꢆ&ꢈ#ꢁ  
,ꢁ ꢐꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢏꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢏꢅꢑꢈꢉꢅꢒꢓꢔ-ꢅ.ꢀꢕꢁ/ꢔꢁ  
0ꢓ12 0ꢆ!ꢃꢌꢅꢐꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢖꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢗ-32 ꢗꢈ%ꢈꢉꢈꢄꢌꢈꢅꢐꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢑ"ꢉꢑꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢑ ꢌꢍꢄꢋꢇꢋꢏꢊ ꢐꢉꢆ*ꢃꢄꢏ 1ꢙꢕꢜꢀꢎꢝ0  
2004-2013 Microchip Technology Inc.  
DS21915C-page 25  
MCP73853/55  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS21915C-page 26  
2004-2013 Microchip Technology Inc.  
MCP73853/55  
APPENDIX A: REVISION HISTORY  
Revision C (April 2013)  
Following is the list of modifications:  
1. Updated Table 3-1 with the Exposed Pad  
information.  
2. Minor grammatical and spelling corrections.  
Revision B (February 2012)  
Following is the list of modifications:  
3. Updated Section 7.1 “Package Marking  
Information”.  
Revision A (November 2004)  
• Original Release of this Document.  
2004-2013 Microchip Technology Inc.  
DS21915C-page 27  
MCP73853/55  
NOTES:  
DS21915C-page 28  
2004-2013 Microchip Technology Inc.  
MCP73853/55  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
XX  
a)  
MCP73853T-I/ML: Tape and Reel,  
Temperature Package  
Range  
USB compatible charge  
controller with tempera-  
ture monitor  
b)  
MCP73853-I/ML: USB compatible charge  
controller with tempera-  
ture monitor  
Device  
MCP73853:  
USB compatible charge controller with  
temperature monitor  
a)  
b)  
MCP73855T-I/MF: Tape and Reel,  
USB compatible charge  
controller  
MCP73855-I/MF: USB compatible charge  
controller  
MCP73853T: USB compatible charge controller with  
temperature monitor, Tape and Reel  
MCP73855:  
USB compatible charge controller  
MCP73855T: USB compatible charge controller,  
Tape and Reel  
Temperature Range  
Package  
I
= -40C to +85C (Industrial)  
ML  
MF  
=
Plastic Quad Flat No Lead, 4x4 mm Body (QFN),  
16-Lead  
=
Plastic Dual Flat No Lead, 3x3 mm Body (DFN),  
10-Lead  
2004-2013 Microchip Technology Inc.  
DS21915C-page 29  
MCP73853/55  
NOTES:  
DS21915C-page 30  
2004-2013 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
PIC32 logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, BodyCom,  
chipKIT, chipKIT logo, CodeGuard, dsPICDEM,  
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,  
TSHARC, UniWinDriver, WiperLock and ZENA are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2004-2013, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-62077-162-4  
QUALITYMANAGEMENTꢀꢀSYSTEMꢀ  
CERTIFIEDBYDNVꢀ  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS16949==ꢀ  
2004-2013 Microchip Technology Inc.  
DS21915C-page 31  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Osaka  
Tel: 81-66-152-7160  
Fax: 81-66-152-9310  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Korea - Seoul  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-330-9305  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
11/29/11  
DS21915C-page 32  
2004-2013 Microchip Technology Inc.  

相关型号:

MCP73855T-MF

USB Compatible Li-Ion/Li-Polymer Charge Management Controllers
MICROCHIP

MCP73855TIMF

USB Compatible Li-Ion/Li-Polymer Charge Management Controllers
MICROCHIP

MCP73855TIML

USB Compatible Li-Ion/Li-Polymer Charge Management Controllers
MICROCHIP

MCP73861

Advanced Single or Dual Cell, Fully Integrated Li-Ion / Li-Polymer Charge Management Controllers
MICROCHIP

MCP73861-I/ML

Advanced Single or Dual Cell, Fully Integrated Li-Ion / Li-Polymer Charge Management Controllers
MICROCHIP

MCP73861-I/SL

Advanced Single or Dual Cell, Fully Integrated Li-Ion / Li-Polymer Charge Management Controllers
MICROCHIP

MCP73861-I/SLG

暂无描述
MICROCHIP

MCP73861T

Advanced Single or Dual Cell, Fully Integrated Li-Ion/Li-Polymer Charge Management
MICROCHIP

MCP73861T-I/ML

Advanced Single or Dual Cell, Fully Integrated Li-Ion / Li-Polymer Charge Management Controllers
MICROCHIP

MCP73861T-I/MLG

暂无描述
MICROCHIP

MCP73861T-I/SL

Advanced Single or Dual Cell, Fully Integrated Li-Ion / Li-Polymer Charge Management Controllers
MICROCHIP

MCP73861T-I/SLG

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO16, 0.150 INCH, LEAD FREE, PLASTIC, MS-012, SOIC-16
MICROCHIP