MCP73871T-1CAI/ML [MICROCHIP]

Stand-Alone System Load Sharing and Li-Ion / Li-Polymer Battery Charge Management Controller; 独立的系统负载分担与锂离子/锂聚合物电池充电管理控制器
MCP73871T-1CAI/ML
型号: MCP73871T-1CAI/ML
厂家: MICROCHIP    MICROCHIP
描述:

Stand-Alone System Load Sharing and Li-Ion / Li-Polymer Battery Charge Management Controller
独立的系统负载分担与锂离子/锂聚合物电池充电管理控制器

电源电路 电池 电源管理电路 控制器
文件: 总38页 (文件大小:670K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP73871  
Stand-Alone System Load Sharing and Li-Ion / Li-Polymer  
Battery Charge Management Controller  
Features  
Applications  
• Integrated System Load Sharing and Battery  
Charge Management  
• GPSs / Navigators  
• PDAs and Smart Phones  
• Portable Media Players and MP3 Players  
• Digital Cameras  
- Simultaneously Power the System and  
Charge the Li-Ion Battery  
- Voltage Proportional Current Control (VPCC)  
ensures system load has priority over Li-Ion  
battery charge current  
• Bluetooth Headsets  
• Portable Medical Devices  
• Charge Cradles / Docking Stations  
Toys  
- Low-Loss Power-Path Management with  
Ideal Diode Operation  
• Complete Linear Charge Management Controller  
- Integrated Pass Transistors  
Description  
- Integrated Current Sense  
The MCP73871 device is a fully integrated linear  
solution for system load sharing and Li-Ion / Li-Polymer  
battery charge management with ac-dc wall adapter  
and USB port power sources selection. It’s also  
capable of autonomous power source selection  
between input or battery. Along with its small physical  
size, the low number of required external components  
makes the device ideally suited for portable  
applications.  
- Integrated Reverse Discharge Protection  
- Selectable Input Power Sources: USB Port or  
AC-DC Wall Adapter  
• Preset High Accuracy Charge Voltage Options:  
- 4.10V, 4.20V, 4.35V or 4.40V  
- ±0.5% Regulation Tolerance  
• Constant Current / Constant Voltage (CC/CV)  
Operation with Thermal Regulation  
The MCP73871 device automatically obtains power for  
the system load from a single-cell Li-Ion battery or an  
input power source (ac-dc wall adapter or USB port).  
The MCP73871 device specifically adheres to the  
current drawn limits governed by the USB specification.  
With an ac-dc wall adapter providing power to the  
system, an external resistor sets the magnitude of 1A  
maximum charge current while supports up to 1.8A  
total current for system load and battery charge  
current.  
• Maximum 1.8A Total Input Current Control  
• Resistor Programmable Fast Charge Current  
Control: 50 mA to 1A  
• Resistor Programmable Termination Set Point  
• Selectable USB Input Current Control  
- Absolute Maximum: 100 mA (L) / 500 mA (H)  
• Automatic Recharge  
• Automatic End-of-Charge Control  
• Safety Timer With Timer Enable/Disable Control  
• 0.1C Preconditioning for Deeply Depleted Cells  
• Battery Cell Temperature Monitor  
The MCP73871 device employs a constant current /  
constant voltage (CC/CV) charge algorithm with  
selectable charge termination point. The constant  
voltage regulation is fixed with four available options:  
4.10V, 4.20V, 4.35V, or 4.40V to accommodate new,  
emerging battery charging requirements. The  
MCP73871 device also limits the charge current based  
on die temperature during high power or high ambient  
conditions. This thermal regulation optimizes the  
charge cycle time while maintaining device reliability.  
• Undervoltage Lockout (UVLO)  
• Low Battery Status Indicator (LBO)  
• Power-Good Status Indicator (PG)  
• Charge Status and Fault Condition Indicators  
• Numerous Selectable Options Available for a  
Variety of Applications:  
- Refer to Section 1.0 “Electrical  
The MCP73871 device includes a low battery indicator,  
Characteristics” for Selectable Options”  
a
power-good indicator and two charge status  
indicators that allows for outputs with LEDs or  
communication with host microcontrollers. The  
MCP73871 device is fully specified over the ambient  
temperature range of -40°C to +85°C.  
- Refer to the “Product Identification  
System” for Standard Options  
Temperature Range: -40°C to +85°C  
• Packaging: 20-Lead QFN (4 mm x 4 mm)  
© 2009 Microchip Technology Inc.  
DS22090B-page 1  
MCP73871  
Package Types  
MCP73871  
20-Lead QFN  
20 19 18 17 16  
OUT  
1
VBAT  
15  
14  
13  
VPCC 2  
SEL  
VBAT  
EP  
21  
3
4
PROG1  
12 PROG3  
PROG2  
VSS  
11  
THERM 5  
6
7
8
10  
9
Typical Application Circuit  
MCP73871 Typical Application  
Ac-dc Adapter  
or  
USB Port  
18, 19  
2
1, 20  
System  
Load  
IN  
OUT  
VBAT  
10 µF  
4.7 µF  
14, 15, 16  
VPCC  
470Ω  
6
4.7 µF  
PG  
NTC  
470Ω  
470Ω  
THERM 5  
7
8
STAT2  
10 kΩ  
Single-Cell  
Li-Ion Battery  
STAT1  
LBO  
PROG1  
RPROG1  
13  
3
4
SEL  
Hi  
Hi  
Low  
Low  
RPROG3  
12  
PROG3  
PROG2  
TE  
9
Hi  
Hi  
Low  
Low  
17  
VSS 10, 11, EP  
CE  
DS22090B-page 2  
© 2009 Microchip Technology Inc.  
MCP73871  
Functional Block Diagram  
Direction  
Control  
0.2Ω  
OUT  
IN  
G=0.001  
CURRENT  
LIMIT  
+
0.2Ω  
Ideal  
Diode,  
-
V
REF  
Synchronous  
Switch  
Direction  
Control  
V
BAT  
PROG1  
PROG3  
G=0.001  
G=0.001  
G=0.001  
CURRENT  
LIMIT  
+
V
/2  
REF  
-
V
+
REF  
VPCC  
-
SEL  
PROG2  
CA  
+
-
V
REF  
PRECONDITION  
+
V
BAT_SENSE  
-
V
REF  
CHRG  
-
V
REF  
+
VA  
+
-
V
V
REF  
PG  
TERM  
-
REF  
UVLO,  
+
STAT1  
STAT2  
REFERENCE,  
CHARGE  
CONTROL,  
TIMER,  
HTVT  
+
V
REF  
50 µA  
AND  
STATUS  
LOGIC  
-
TE  
CE  
LTVT  
+
THERM  
-
V
SS  
© 2009 Microchip Technology Inc.  
DS22090B-page 3  
MCP73871  
NOTES:  
DS22090B-page 4  
© 2009 Microchip Technology Inc.  
MCP73871  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings†  
V
IN....................................................................................7.0V  
All Inputs and Outputs w.r.t. ................ VSS-0.3V to VDD+0.3V  
(VDD = VIN or VBAT  
)
Maximum Junction Temperature, TJ ............Internally Limited  
Storage temperature .....................................-65°C to +150°C  
ESD protection on all pins  
Human Body Model (1.5 kΩ in Series with 100pF)........4 kV  
Machine Model (200 pF, No Series Resistance).............300V  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, all limits apply for VIN = VREG + 0.3V to 6V, TA = -40°C to +85°C.  
Typical values are at +25°C, VIN = [VREG (typical) + 1.0V]  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Supply Input  
Supply Voltage  
VIN  
ISS  
VREG  
+0.3V  
6
V
Supply Current  
2500  
260  
180  
28  
3750  
350  
300  
50  
µA  
µA  
µA  
µA  
Charging  
Charge Complete  
Standby  
Shutdown  
(VDD < VBAT - 100 mV or  
V
DD < VSTOP)  
UVLO Start Threshold  
UVLO Stop Threshold  
UVLO Hysteresis  
VSTART  
VSTOP  
VHYS  
VREG  
0.05V  
+
VREG  
0.15V  
+
VREG  
0.25V  
+
V
V
VDD= Low-to-High  
VREG  
0.07V  
VREG  
0.07V  
+
VREG  
0.17V  
+
VDD= High-to-Low  
90  
mV  
Voltage Regulation (Constant Voltage Mode)  
Regulated Charge Voltage  
VREG  
4.080  
4.179  
4.328  
4.378  
-0.5  
4.10  
4.20  
4.35  
4.40  
4.121  
4.221  
4.372  
4.422  
+0.5  
V
V
V
VDD=[VREG(typical)+1V]  
IOUT=10 mA  
TA=-5°C to +55°C  
Regulated Charge Voltage Tolerance  
VRTOL  
%
%
TA= +25°C  
-0.75  
+0.75  
0.20  
TA= -5°C to +55°C  
Line Regulation  
|(ΔVBAT/VBAT)/  
0.08  
%/V VDD=[VREG(typical)+1V] to 6V  
OUT=10 mA  
IOUT=10 mA to 150 mA  
DD= [VREG(typical)+1V]  
ΔVDD  
|
I
Load Regulation  
VBAT/VBAT  
|
0.08  
0.18  
%
V
Supply Ripple Attenuation  
PSRR  
-47  
-40  
dB  
dB  
IOUT=10 mA, 1 kHz  
IOUT=10 mA, 10 kHz  
Current Regulation (Fast Charge Constant-Current Mode)  
AC-Adapter Fast Charge Current  
IREG  
90  
100  
110  
mA PROG1 = 10 kΩ  
mA PROG1 = 1 kΩ,  
900  
1000  
1100  
TA=-5°C to +55°C, SEL = Hi  
USB Fast Charge Current  
IREG  
80  
90  
100  
500  
mA PROG2 = Low, SEL = Low,  
(Note 2)  
400  
450  
mA PROG2 = High, SEL = Low,  
(Note 2)  
TA= -5°C to +55°C  
Note 1: The value is ensured by design and not production tested.  
2: The maximum available charge current is also limited by the value set at PROG1 input.  
© 2009 Microchip Technology Inc.  
DS22090B-page 5  
MCP73871  
DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise indicated, all limits apply for VIN = VREG + 0.3V to 6V, TA = -40°C to +85°C.  
Typical values are at +25°C, VIN = [VREG (typical) + 1.0V]  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Current Limit Control (ICLC)  
USB-Port Supply Current Limit  
ILIMIT_USB  
80  
90  
100  
500  
mA PROG2 = Low, SEL = Low  
mA PROG2 = High, SEL = Low  
TA=-5°C to +55°C  
400  
450  
AC-DC Adapter Current Limit  
ILIMIT_AC  
1500  
1650  
1800  
mA SEL = High, TA=-5°C to +55°C  
Voltage Proportional Charge Control (VPCC - Input Voltage Regulation)  
VPCC Input Threshold  
VVPCC  
VRTOL  
ILK  
-3  
1.23  
+3  
1
V
%
IOUT=10 mA  
VPCC Input Threshold Tolerance  
Input Leakage Current  
TA=-5°C to +55°C  
VVPCC = VDD  
0.01  
µA  
Precondition Current Regulation (Trickle Charge Constant-Current Mode)  
Precondition Current Ratio  
IPREG / IREG  
7.5  
10  
12.5  
%
%
PROG1 = 1.0 kΩ to 10 kΩ  
TA=-5°C to +55°C  
Precondition Current Threshold Ratio  
Precondition Hysteresis  
VPTH / VREG  
VPHYS  
69  
72  
75  
VBAT Low-to-High  
105  
mV VBAT High-to-Low  
Automatic Charge Termination Set Point  
Charge Termination Current Ratio  
ITERM  
75  
100  
10  
125  
mA PROG3 = 10 kΩ  
7.5  
12.5  
mA PROG3 = 100 kΩ  
TA=-5°C to +55°C  
Automatic Recharge  
Recharge Voltage Threshold Ratio  
VRTH  
VREG  
-
VREG  
-
VREG  
-
V
VBAT High-to-Low  
0.21V  
0.15V  
200  
200  
200  
30  
0.09V  
IN-to-OUT Pass Transistor ON-Resistance  
ON-Resistance  
RDS_ON  
mΩ VDD = 4.5V, TJ = 105°C  
mΩ VDD = 4.5V, TJ = 105°C  
mΩ VDD = 4.5V, TJ = 105°C  
Charge Transistor ON-Resistance  
ON-Resistance  
RDSON_  
BAT-to-OUT Pass Transistor ON-Resistance  
ON-Resistance  
RDS_ON  
Battery Discharge Current  
Output Reverse Leakage Current  
IDISCHARGE  
40  
µA  
Shutdown  
(VBAT < VDD < VUVLO  
)
30  
30  
-6  
40  
40  
µA  
µA  
µA  
Shutdown (0 < VDD < VBAT)  
VBAT = Power Out, No Load  
Charge Complete  
-13  
Status Indicators - STAT1 (LBO), STAT2, PG  
Sink Current  
ISINK  
VOL  
ILK  
16  
0.4  
35  
1
mA  
V
Low Output Voltage  
ISINK = 4 mA  
Input Leakage Current  
0.01  
1
µA  
High Impedance, VDD on pin  
Low Battery Indicator (LBO)  
Low Battery Detection Threshold  
VLBO  
Disable  
3.0  
VBAT > VIN, PG = Hi-Z  
TA=-5°C to +55°C  
2.85  
2.95  
3.05  
3.15  
3.25  
3.35  
V
V
V
3.1  
3.2  
Low Battery Detection Hysteresis  
VLBO_HYS  
150  
mV VBAT Low-to-High  
Note 1: The value is ensured by design and not production tested.  
2: The maximum available charge current is also limited by the value set at PROG1 input.  
DS22090B-page 6  
© 2009 Microchip Technology Inc.  
MCP73871  
DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise indicated, all limits apply for VIN = VREG + 0.3V to 6V, TA = -40°C to +85°C.  
Typical values are at +25°C, VIN = [VREG (typical) + 1.0V]  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
PROG1 Input (PROG1)  
Charge Impedance Range  
PROG3 Input (PROG3)  
Termination Impedance Range  
PROG2 Input (PROG2)  
Input High Voltage Level  
Input Low Voltage Level  
Input Leakage Current  
Timer Enable (TE)  
RPROG  
1
5
20  
kΩ  
kΩ  
RPROG  
100  
VIH  
VIL  
ILK  
1.8  
0.8  
1
V
V
0.01  
µA  
VPROG2 = VDD  
Input High Voltage Level  
Input Low Voltage Level  
Input Leakage Current  
Chip Enable (CE)  
VIH  
VIL  
ILK  
1.8  
0.8  
1
V
V
Note 1  
Note 1  
0.01  
µA  
VTE = VDD  
Input High Voltage Level  
Input Low Voltage Level  
Input Leakage Current  
Input Source Selection (SEL)  
Input High Voltage Level  
Input Low Voltage Level  
Input Leakage Current  
Thermistor Bias  
VIH  
VIL  
ILK  
1.8  
0.8  
1
V
V
0.01  
µA  
VCE = VDD  
VIH  
VIL  
ILK  
1.8  
0.8  
1
V
V
0.01  
µA  
VSEL = VDD  
Thermistor Current Source  
Thermistor Comparator  
Upper Trip Threshold  
ITHERM  
47  
50  
53  
µA  
2 kΩ < RTHERM < 50 kΩ  
VT1 Low-to-High  
VT2 High-to-Low  
VT1  
VT1HYS  
VT2  
1.20  
1.24  
-40  
1.26  
V
mV  
V
Upper Trip Point Hysteresis  
Lower Trip Threshold  
0.23  
0.25  
40  
0.27  
Lower Trip Point Hysteresis  
Thermal Shutdown  
VT2HYS  
mV  
Die Temperature  
TSD  
150  
10  
°C  
°C  
Die Temperature Hysteresis  
TSDHYS  
Note 1: The value is ensured by design and not production tested.  
2: The maximum available charge current is also limited by the value set at PROG1 input.  
© 2009 Microchip Technology Inc.  
DS22090B-page 7  
MCP73871  
AC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, all limits apply for VIN = 4.6V to 6V.  
Typical values are at +25°C, VDD = [VREG (typical) + 1.0V]  
Parameters  
UVLO Start Delay  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
VDD Low-to-High  
tSTART  
5
ms  
Current Regulation  
Transition Time Out of Precondition  
Current Rise Time Out of Precondition  
Precondition Comparator Filter Time  
Termination Comparator Filter Time  
Charge Comparator Filter Time  
Thermistor Comparator Filter Time  
Elapsed Timer  
tDELAY  
tRISE  
tPRECON  
tTERM  
tCHARGE  
tTHERM  
10  
10  
ms  
ms  
ms  
ms  
ms  
ms  
VBAT < VPTH to VBAT > VPTH  
IOUT Rising to 90% of IREG  
Average VBAT Rise/Fall  
Average IOUT Falling  
0.4  
0.4  
0.4  
0.4  
1.3  
1.3  
1.3  
1.3  
3.2  
3.2  
3.2  
3.2  
Average VBAT Falling  
Average THERM Rise/Fall  
Elapsed Timer Period  
tELAPSED  
0
Hours  
Hours  
Hours  
Hours  
3.6  
5.4  
7.2  
4.0  
6.0  
8.0  
4.4  
6.6  
8.8  
Status Indicators  
Status Output Turn-off  
Status Output Turn-on  
tOFF  
tON  
500  
500  
µs  
µs  
ISINK = 1 mA to 0 mA  
ISINK = 0 mA to 1 mA  
Note 1: Internal safety timer is tested base on internal oscillator frequency measurement.  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: Unless otherwise indicated, all limits apply for VIN = 4.6V to 6V.  
Typical values are at +25°C, VDD = [VREG (typical) + 1.0V]  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
TA  
TJ  
TA  
-40  
-40  
-65  
+85  
+125  
+150  
°C  
°C  
°C  
Thermal Package Resistances  
Thermal Resistance, 20LD-QFN, 4x4  
θJA  
35  
°C/W  
4-Layer JC51-7 Standard Board,  
Natural Convection  
DS22090B-page 8  
© 2009 Microchip Technology Inc.  
MCP73871  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VIN = [VREG(typical) + 1V], IOUT = 10 mA and TA= +25°C, Constant-voltage mode.  
4.240  
4.300  
Temperature = +25°C  
Temperature = +25°C  
4.232  
4.224  
4.216  
4.208  
4.200  
4.192  
4.184  
4.176  
4.280  
4.260  
4.240  
4.220  
4.200  
4.180  
4.160  
4.140  
4.120  
4.100  
V
DD = 5.2V  
IOUT= 900 mA  
IOUT= 500 mA  
IOUT= 100 mA  
IOUT= 10 mA  
4.6  
4.9  
5.1  
5.4  
5.6  
5.9  
Charge Current (mA)  
Supply Voltage (V)  
FIGURE 2-1:  
(V  
Battery Regulation Voltage  
FIGURE 2-4:  
Battery Regulation Voltage (V ).  
Charge Current (I  
) vs.  
OUT  
) vs. Supply Voltage (V ).  
BAT  
DD  
BAT  
40.0  
VBAT = 4.2V  
4.238  
VDD= Floating  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
4.230 IOUT = 1000 mA  
4.222  
IOUT = 500 mA  
4.214  
IOUT = 100 mA  
4.206  
4.198  
4.190  
IOUT = 10 mA  
-45 -30 -15  
0
15 30 45 60 75 90  
-45 -30 -15  
0
15 30 45 60 75 90  
Ambient Temperature (°C)  
Temperature (°C)  
FIGURE 2-2:  
(V  
Battery Regulation Voltage  
FIGURE 2-5:  
Output Leakage Current  
) vs. Ambient Temperature (T ).  
(I  
) vs. Ambient Temperature (T ).  
BAT  
A
DISCHARGE A  
1000  
35.0  
VDD= 5.2V  
VDD= VBAT  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
Temperature = +25°C  
Temperature = +25°C  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
0.0  
1 2  
3
4
5 6  
7
8
9 1011121314151617181920  
3.0  
3.2  
3.4  
3.6  
3.8  
4.0  
4.2  
R
PROG (k)  
Battery Voltage (V)  
FIGURE 2-3:  
Charge Current (I  
) vs.  
FIGURE 2-6:  
Output Leakage Current  
OUT  
Programming Resistor (R  
).  
(I ) vs. Battery Regulation Voltage  
PROG  
DISCHARGE  
(V  
).  
BAT  
© 2009 Microchip Technology Inc.  
DS22090B-page 9  
MCP73871  
Note: Unless otherwise indicated, VIN = [VREG(typical) + 1V], IOUT = 10 mA and TA= +25°C, Constant-voltage mode.  
110  
108  
106  
104  
102  
100  
98  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
VDD= Floating  
Temperature = +25°C  
RPROG = 10 k  
Temperature = +25°C  
96  
94  
92  
0.0  
90  
3.0  
3.2  
3.4  
3.6  
3.8  
4.0  
4.2  
4.5  
4.8  
5.0  
5.3  
5.5  
5.8  
6.0  
Battery Voltage (V)  
Supply Voltage (V)  
FIGURE 2-7:  
Output Leakage Current  
FIGURE 2-10:  
Charge Current (I  
) vs.  
OUT  
(I  
) vs. Battery Voltage (V ).  
Supply Voltage (V ).  
DISCHARGE  
BAT  
DD  
1100  
1060  
1020  
980  
940  
900  
860  
820  
780  
740  
700  
1190  
RPROG = 1 k  
Temperature = +25°C  
1160  
1130  
1100  
1070  
1040  
1010  
980  
950  
920  
890  
860  
RPROG = 1 kΩ  
VDD = 5.2V  
830  
800  
-45 -30 -15  
0
15 30 45 60 75 90  
4.5  
4.8  
5.0  
5.3  
5.5  
5.8  
6.0  
Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-8:  
Charge Current (I  
) vs.  
FIGURE 2-11:  
Charge Current (I  
) vs.  
OUT  
OUT  
Supply Voltage (V ).  
Ambient Temperature (T ).  
DD  
A
110  
108  
106  
104  
102  
100  
98  
550  
RPROG = 2 k  
540  
Temperature = +25°C  
530  
520  
510  
500  
490  
480  
470  
460  
450  
96  
94  
RPROG = 10 kΩ  
DD = 5.2V  
92  
V
90  
-45 -30 -15  
0
15 30 45 60 75 90  
4.5  
4.8  
5.0  
5.3  
5.5  
5.8  
6.0  
Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-9:  
Charge Current (I  
) vs.  
FIGURE 2-12:  
Charge Current (I  
) vs.  
OUT  
OUT  
Supply Voltage (V ).  
Ambient Temperature (T ).  
DD  
A
DS22090B-page 10  
© 2009 Microchip Technology Inc.  
MCP73871  
Note: Unless otherwise indicated, VIN = [VREG(typical) + 1V], IOUT = 10 mA and TA= +25°C, Constant-voltage mode.  
120  
55  
RPROG = 20 kΩ  
100  
80  
60  
40  
20  
0
53  
51  
49  
47  
45  
43  
41  
V
DD = 5.2V  
VDD = 5.2V  
RPROG = 10 k  
-45 -30 -15  
0
15  
30  
45  
60  
75  
90  
25  
50  
75  
100  
125  
150  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-13:  
Charge Current (I  
) vs.  
FIGURE 2-16:  
Charge Current (I  
) vs.  
OUT  
OUT  
Ambient Temperature (T ).  
Junction Temperature (T ).  
A
J
1200  
1000  
800  
52.0  
Temperature = +25°C  
51.5  
51.0  
50.5  
50.0  
49.5  
49.0  
48.5  
48.0  
47.5  
47.0  
600  
400  
VDD = 5.2V  
200  
RPROG = 1 kΩ  
0
25  
50  
75  
100  
125  
150  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
Ambient Temperature (°C)  
Supply Voltage (V)  
FIGURE 2-14:  
Charge Current (I  
) vs.  
FIGURE 2-17:  
Thermistor Current (I  
)
THERM  
OUT  
Junction Temperature (T ).  
vs. Supply Voltage (V ).  
J
DD  
600  
500  
400  
300  
200  
52.0  
VDD = 5.2V  
51.5  
51.0  
50.5  
50.0  
49.5  
49.0  
48.5  
48.0  
47.5  
47.0  
100  
0
VDD = 5.2V  
RPROG = 2 k  
25  
50  
75  
100  
125  
150  
-45 -30 -15  
0
15 30 45 60 75 90  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-15:  
Charge Current (I  
) vs.  
FIGURE 2-18:  
Thermistor Current (I  
)
THERM  
OUT  
Junction Temperature (T ).  
vs. Ambient Temperature (T ).  
J
A
© 2009 Microchip Technology Inc.  
DS22090B-page 11  
MCP73871  
Note: Unless otherwise indicated, VIN = [VREG(typical) + 1V], IOUT = 10 mA and TA= +25°C, Constant-voltage mode.  
0
-10  
-20  
-30  
-40  
-50  
-60  
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.2  
0.1  
0
IOUT = 100 mA  
IOUT = 10 mA  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.2  
-0.001  
0
0.001 0.002 0.003 0.004  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Time (s)  
FIGURE 2-19:  
Power Supply Ripple  
FIGURE 2-22:  
Load Transient Response.  
Rejection (PSRR).  
I
= 100 mA.  
OUT  
9
0.3  
0.1  
0.2  
0.1  
0
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
IOUT = 100 mA  
IOUT = 500 mA  
8.5  
8
7.5  
7
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.3  
-0.5  
-0.7  
6.5  
6
5.5  
5
-0.2  
4.5  
-0.0008 -0.0006 -0.0004 -0.0002  
0
0.0002  
Time (s)  
Time (s)  
FIGURE 2-20:  
Line Transient Response.  
FIGURE 2-23:  
I = 500 mA.  
OUT  
Load Transient Response.  
I
= 100 mA.  
OUT  
9
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
IOUT = 500 mA  
8.5  
8
7.5  
7
6.5  
6
5.5  
5
4.5  
4
-0.0008 -0.0006 -0.0004 -0.0002  
Time (s)  
0
0.0002  
Time (ms)  
FIGURE 2-21:  
= 500 mA.  
Line Transient Response.  
FIGURE 2-24:  
Undervoltage Lockout.  
I
OUT  
DS22090B-page 12  
© 2009 Microchip Technology Inc.  
MCP73871  
Note: Unless otherwise indicated, VIN = [VREG(typical) + 1V], IOUT = 10 mA and TA= +25°C, Constant-voltage mode.  
4.5  
4
2
1.8  
1.6  
1.4  
1.2  
1
3.5  
3
MCP73871  
VDD = 5.2V  
RPROG1 = 1 k  
RPROG3 = 25 kΩ  
2.5  
2
0.8  
0.6  
0.4  
0.2  
0
1.5  
1
0.5  
0
0
10 20 30 40 50 60 70 80  
Time (Minute)  
Time (ms)  
FIGURE 2-25:  
Startup Delay.  
FIGURE 2-27:  
Complete Charge Cycle  
(1000 mAh Li-Ion Battery).  
4.5  
4
0.5  
0.4  
0.3  
0.2  
0.1  
0
4.5  
4
2
1.8  
1.6  
1.4  
1.2  
1
3.5  
3
3.5  
3
MCP73871  
VDD = 5.2V  
SEL = Low  
PROG2 = Low  
Preconditioning Threshold Voltage  
2.5  
2
2.5  
Fast Charge (Constant Current)  
MCP73871  
2
0.8  
0.6  
0.4  
0.2  
0
1.5  
1
1.5  
V
DD = 5.2V  
1
RPROG1 = 1 kΩ  
0.5  
0
RPROG3 = 25 kΩ  
0.5 Preconditioning  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.2  
0.4  
0.6  
0.8  
1
Time (Minute)  
Time (Minutes)  
FIGURE 2-26:  
Complete Charge Cycle  
FIGURE 2-28:  
Typical Charge Profile in  
(130 mAh Li-Ion Battery).  
Preconditioning (1000 mAh Battery).  
© 2009 Microchip Technology Inc.  
DS22090B-page 13  
MCP73871  
NOTES:  
DS22090B-page 14  
© 2009 Microchip Technology Inc.  
MCP73871  
3.0  
PIN DESCRIPTION  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLES  
Pin  
Number  
Symbol  
I/O  
Function  
1, 20  
OUT  
VPCC  
SEL  
O
I
System Output Terminal  
2
3
4
Voltage proportional charge control  
I
Input type selection (Low for USB port, High for ac-dc adapter)  
PROG2  
I
USB port input current limit selection when SEL = Low.  
(Low = 100 mA, High = 500 mA)  
5
6
7
8
THERM  
PG  
I/O  
O
Thermistor monitoring input and bias current  
Power-Good Status Output (Open-Drain)  
Charge Status Output 2 (Open-Drain)  
STAT2  
O
STAT1 /  
LBO  
O
Charge Status Output 1 (Open-Drain). Low battery output indicator when  
VBAT > VIN  
9
TE  
I
Timer Enable; Enables Safety Timer when active Low  
10, 11, EP  
VSS  
Battery Management 0V Reference. EP (Exposed Thermal Pad); There is an  
internal electrical connection between the exposed thermal pad and VSS. The EP  
must be connected to the same potential as the VSS pin on the Printed Circuit  
Board (PCB)  
12  
13  
PROG3  
PROG1  
I/O  
I/O  
Termination set point for both ac-dc adapter and USB port  
Fast charge current regulation setting with SEL = High. Preconditioning set point  
for both USB port and ac-dc adapter.  
14, 15  
16  
VBAT  
VBAT_SENSE  
CE  
I/O  
Battery Positive Input and Output connection  
Battery Voltage Sense  
I/O  
17  
I
I
Device Charge Enable; Enabled when CE = High  
Power Supply Input.  
18, 19  
IN  
Legend: I = Input, O = Output, I/O = Input/Output  
Note: The input pins should always tie to either High or Low, and never allow floating to ensure operation properly.  
3.1  
Power Supply Input (IN)  
3.3  
Voltage Proportional Charge  
Control (VPCC)  
A
supply voltage of VREG + 0.3V to 6V is  
recommended. Bypass to VSS with a minimum of  
4.7 µF.  
If the voltage on the IN pin drops to a preset value,  
determined by the threshold established at the VPCC  
input, due to a limited amount of input current or input  
source impedance, the battery charging current is  
reduced. Further demand from the system is supported  
by the battery, if possible. To active this feature, simply  
supply 1.23V or greater to VPCC pin. This feature can  
be disabled by connecting the VPCC pin to IN.  
3.2  
System Output Terminal (OUT)  
The MCP73871 device powers the system via output  
terminals while independently charging the battery.  
This feature reduces the charge and discharge cycles  
on the battery, allows for proper charge termination and  
the system to run with an absent or defective battery  
pack. Also, this feature gives the system priority on  
input power, allowing the system to power-up with  
deeply depleted battery packs. Bypass to VSS with a  
minimum of 4.7 µF is recommended.  
For example, a system is designed with a 5.5V rated  
DC power supply with ±0.5V tolerance. The worst  
condition of 5V is selected, which is used to calculate  
the VPCC supply voltage with divider.  
© 2009 Microchip Technology Inc.  
DS22090B-page 15  
MCP73871  
The voltage divider equation is shown below:  
3.8  
Charge Current Regulation Set  
(PROG1)  
R2  
------------------  
The maximum constant charge current is set by placing  
a resistor from PROG1 to VSS. PROG1 sets the  
maximum constant charge current for both ac-dc  
adapter and USB port. However, the actual charge  
current is based on input source type and system load  
requirement.  
VVPCC  
=
× VIN = 1.23V  
R1 + R2  
110kΩ  
110kΩ + R1  
-----------------------------  
1.23V =  
× 5V  
R1 = 337.2kΩ  
3.9  
USB-Port Current Regulation Set  
(PROG2)  
The calculated R1 equals to 337.2 kΩ when 110 kΩ is  
selected for R2. The 330 kΩ resistor is selected for R1  
to build the voltage divider for VPCC.  
The MCP73871 device USB-Port current regulation set  
input (PROG2) is a digital input selection. A logic Low  
selects a 1 unit load input current from USB port  
(100 mA); a logic High selects a 5 unit loads input  
current from USB port (500 mA).  
VIN  
330 kΩ  
VPCC  
3.10 Charge Status Output 1 (STAT1)  
STAT1 is an open-drain logic output for connection to  
an LED for charge status indication. Alternatively, a  
pull-up resistor can be applied for interfacing to a host  
microcontroller. Refer to Table 5-1 for a summary of the  
status output during a charge cycle.  
110 kΩ  
FIGURE 3-1:  
Voltage Divider Example.  
3.11 Charge Status Output 2 (STAT2)  
3.4  
Input Source Type Selection (SEL)  
STAT2 is an open-drain logic output for connection to  
an LED for charge status indication. Alternatively, a  
pull-up resistor can be applied for interfacing to a host  
microcontroller. Refer to Table 5-1 for a summary of the  
status output during a charge cycle.  
The input source type selection (SEL) pin is used to  
select input power source for input current limit control  
feature. With the SEL input High, the MCP73871  
device is designed to provide a typical 1.65A to system  
power and charge Li-Ion battery from a regular 5V wall  
adapter. The MCP73871 device limits the input current  
up to 1.8A. When SEL active Low, the input source is  
designed to provide system power and Li-Ion battery  
charging from a USB Port input while adhering to the  
current limits governed by the USB specification.  
3.12 Power-Good (PG)  
The power-good (PG) is an open-drain logic output for  
input power supply indication. The PG output is low  
whenever the input to the MCP73871 device is above  
the UVLO threshold and greater than the battery  
voltage. The PG output can be used as an indication to  
the user via an illuminated LED or to the system via a  
pull-up resistor for interfacing to a host microcontroller  
that an input source other than the battery is supplying  
power. Refer to Table 5-1 for a summary of the status  
output during a charge cycle.  
3.5  
Battery Management 0V Reference  
(VSS)  
Connect to negative terminal of battery, system load  
and input supply.  
3.6  
Battery Charge Control Output  
(VBAT  
)
3.13 Low Battery Output (LBO)  
Connect to positive terminal of Li-Ion / Li-Polymer  
batteries. Bypass to VSS with a minimum of 4.7 µF to  
ensure loop stability when the battery is disconnected.  
STAT1 also serves as low battery output (LBO) if the  
selected MCP73871 is equipped with this feature. It  
reminds the system or end user when the Li-Ion battery  
voltage level is low. The LBO feature enables when the  
system is running from the Li-Ion batteries. The LBO  
indicator can be used as an indication to the user via lit  
up LED or to the system via a pull-up resistor for  
interfacing to a host microcontroller that an input  
source other than the battery is supplying power. Refer  
to Table 5-1 for a summary of the status output during  
a charge cycle.  
3.7  
Battery Voltage Sense  
(VBAT_SENSE  
)
Connect to positive terminal of battery. A precision  
internal voltage sense regulates the final voltage on  
this pin to VREG  
.
DS22090B-page 16  
© 2009 Microchip Technology Inc.  
MCP73871  
3.14 Timer Enable (TE)  
3.16 Charge Enable (CE)  
With the CE input Low, the Li-Ion battery charger  
feature of the MCP73871 will be disabled. The charger  
feature is enabled when CE is active High. Allowing the  
CE pin to float during the charge cycle may cause  
system instability. The CE input is compatible with 1.8V  
logic. Refer to Section 6.0 “Applications” for various  
applications in designing with CE features.  
The timer enable (TE) feature is used to enable or  
disable the internal timer. A low signal on this pin  
enables the internal timer and a high signal disables  
the internal timer. The TE input can be used to disable  
the timer when the system load is substantially limiting  
the available supply current to charge the battery. The  
TE input is compatible with 1.8V logic.  
3.17 Exposed Thermal Pad (EP)  
Note:  
The built-in safety timer is available for the  
following options: 4 HR, 6 HR and 8 HR.  
There is an internal electrical connection between the  
Exposed Thermal Pad (EP) and the VSS pin; they must  
be connected to the same potential.  
3.15 Battery Temperature Monitor  
(THERM)  
The MCP73871 device continuously monitor battery  
temperature during a charge cycle by measuring the  
voltage between the THERM and VSS pins. An internal  
50 µA current source provides the bias for most  
common 10 kΩ negative-temperature coefficient  
thermistors (NTC). The MCP73871 device compares  
the voltage at the THERM pin to factory set thresholds  
of 1.24V and 0.25V, typically. Once a voltage outside  
the thresholds is detected during a charge cycle, the  
MCP73871 device immediately suspends the charge  
cycle. The charge cycle resumes when the voltage at  
the THERM pin returns to the normal range. The  
charge temperature window can be set by placing fixed  
value resistors in series-parallel with a thermistor.  
Refer to Section 6.0 “Applications” for calculations  
of resistance values.  
© 2009 Microchip Technology Inc.  
DS22090B-page 17  
MCP73871  
NOTES:  
DS22090B-page 18  
© 2009 Microchip Technology Inc.  
MCP73871  
4.0  
DEVICE OVERVIEW  
The MCP73871 device is a simple, but fully integrated  
linear charge management controllers with system  
load sharing feature. Figure 4-1 depicts the  
operational flow algorithm.  
SHUTDOWN MODE *  
* Continuously Monitored  
VDD < VUVLO  
VDD < VBAT  
STAT1 = Hi-Z  
STAT2 = Hi-Z  
PG = Hi-Z  
STANDBY MODE *  
VBAT > (VREG +100 mV)  
CE = LOW  
LBO *  
VIN < VBAT  
STAT1 = LOW  
STAT2 = Hi-Z  
PG = Hi-Z  
STAT1 = Hi-Z  
STAT2 = Hi-Z  
PG = LOW  
VBAT < VPTH  
PRECONDITIONING MODE  
Charge Current = IPREG  
STAT1 = LOW  
STAT2 = Hi-Z  
PG = LOW  
Timer Reset  
VBAT > VPTH  
VBAT > VPTH  
FAST CHARGE MODE  
TEMPERATURE FAULT  
TIMER FAULT  
No Charge Current  
No Charge Current  
Charge Current = IREG  
STAT1 = LOW  
STAT2 = LOW  
PG = LOW  
STAT1 = LOW  
STAT2 = LOW  
PG = LOW  
STAT1 = LOW  
STAT2 = Hi-Z  
PG = LOW  
Timer Expired  
Timer Suspended  
Timer Reset  
Timer Enabled  
CONSTANT VOLTAGE MODE  
Charge Voltage = VREG  
STAT1 = LOW  
STAT2 = Hi-Z  
PG = LOW  
IBAT < ITERM  
Timer Expired  
CHARGE COMPLETE MODE  
No Charge Current  
STAT1 = Hi-Z  
STAT2 = LOW  
PG = LOW  
Timer Reset  
FIGURE 4-1:  
MCP73871 Device Flow Chart.  
© 2009 Microchip Technology Inc.  
DS22090B-page 19  
MCP73871  
4.1  
UnderVoltage Lockout (UVLO)  
4.4  
Preconditioning  
An internal undervoltage lockout (UVLO) circuit  
monitors the input voltage and keeps the charger in  
shutdown mode until the input supply rises above the  
UVLO threshold.  
If the voltage at the VBAT pin is less than the  
preconditioning threshold, the MCP73871 device  
enters a preconditioning mode. The preconditioning  
threshold is factory set. Refer to Section 1.0  
“Electrical Characteristics” for preconditioning  
threshold options.  
In the event a battery is present when the input power  
is applied, the input supply must rise approximately  
100 mV above the battery voltage before the  
MCP73871 device become operational.  
In this mode, the MCP73871 device supplies 10% of  
the fast charge current (established with the value of  
the resistor connected to the PROG1 pin) to the  
battery.  
The UVLO circuit places the device in shutdown mode  
if the input supply falls to approximately 100 mV of the  
battery voltage.  
When the voltage at the VBAT pin rises above the  
preconditioning threshold, the MCP73871 device  
enters the constant current (fast charge) mode.  
The UVLO circuit is always active. At any time, the  
input supply is below the UVLO threshold or  
approximately 100 mV of the voltage at the VBAT pin,  
the MCP73871 device is placed in a shutdown mode.  
4.5  
Constant Current Mode - Fast  
Charge  
During any UVLO condition, the battery reverse  
discharge current shall be less than 2 µA.  
During the constant current mode, the programmed  
charge current is supplied to the battery or load. The  
charge current is established using a single resistor  
from PROG1 to VSS. The program resistor and the  
charge current are calculated using the following  
equation:  
4.2  
System Load Sharing  
The system load sharing feature gives the system  
priority on input power, allowing the system to  
power-up with deeply depleted battery packs.  
With the SEL input active Low, the MCP73871 device  
is designed to provide system power and Li-Ion battery  
charging from a USB input while adhering to the current  
limits governed by the USB specification.  
EQUATION 4-1:  
1000V  
RPROG1  
IREG = -------------------  
Where:  
With the SEL input active High, the MCP73871 device  
limits the total supply current to 1.8A (system power  
and charge current combined).  
RPROG  
IREG  
=
=
kilo-ohms (kΩ)  
milliampere (mA)  
Constant current mode is maintained until the voltage  
at the VBAT pin reaches the regulation voltage, VREG  
System  
Direction  
.
Power  
Control  
FET  
0.2Ω  
0.2Ω  
IN  
OUT  
When constant current mode is invoked, the internal  
timer is reset.  
Ideal  
Diode,  
Current  
Limit  
Synchronous  
Switch  
4.5.1  
TIMER EXPIRED DURING  
CONSTANT CURRENT - FAST  
CHARGE MODE  
Charge  
Control  
V
BAT  
If the internal timer expires before the recharge voltage  
threshold is reached, a timer fault is indicated and the  
charge cycle terminates. The MCP73871 device  
remains in this condition until the battery is removed. If  
the battery is removed, the MCP73871 device enters  
the Stand-by mode where it remains until a battery is  
reinserted.  
Charge  
FET  
Direction  
Control  
FIGURE 4-2:  
System Load Sharing  
Diagram.  
4.3  
Charge Qualification  
4.6  
Constant Voltage Mode  
For a charge cycle to begin, all UVLO conditions must  
be met and a battery or output load must be present.  
When the voltage at the VBAT pin reaches the  
regulation voltage, VREG, constant voltage regulation  
begins. The regulation voltage is factory set to 4.10V  
or 4.20V with a tolerance of ±0.5%.  
A charge current programming resistor must be  
connected from PROG1 to VSS when SEL = High.  
When SEL = Low, PROG2 needs to tie to High or Low  
for proper operation.  
DS22090B-page 20  
© 2009 Microchip Technology Inc.  
MCP73871  
4.7  
Charge Termination  
4.9  
Thermal Regulation  
The charge cycle is terminated when, during constant  
voltage mode, the average charge current diminishes  
below a threshold established with the value of a  
resistor connected from PROG3 to VSS or internal timer  
has expired. A 1 ms filter time on the termination  
comparator ensures that transient load conditions do  
not result in premature charge cycle termination. The  
timer period is factory set and can be disabled. Refer to  
Section 1.0 “Electrical Characteristics” for timer  
period options.  
The MCP73871 device limits the charge current based  
on the die temperature. The thermal regulation  
optimizes the charge cycle time while maintaining  
device reliability. Figure 4-3 depicts the thermal  
regulation for the MCP73871 device. Refer to  
Section 1.0 “Electrical Characteristics” for thermal  
package resistances and Section 6.1.1.2 “Thermal  
Considerations” for calculating power dissipation.  
.
1200  
1000  
800  
The program resistor and the charge current are  
calculated using the following equation:  
EQUATION 4-2:  
600  
1000V  
RPROG3  
ITERMINATION = -------------------  
400  
Where:  
VDD = 5.2V  
200  
R
PROG = 1 kΩ  
RPROG  
IREG  
=
=
kilo-ohms (kΩ)  
0
25  
50  
75  
100  
125  
150  
milliampere (mA)  
Ambient Temperature (°C)  
The charge current is latched off and the MCP73871  
device enters charge complete mode. The  
FIGURE 4-3:  
Thermal Regulation  
a
recommended PROG3 resistor values are between  
5 kΩ and 100 kΩ.  
4.10 Thermal Shutdown  
The MCP73871 device suspends charge if the die  
temperature exceeds 150°C. Charging will resume  
when the die temperature has cooled by approximately  
10°C. The thermal shutdown is a secondary safety  
feature in the event that there is a failure within the  
thermal regulation circuitry.  
4.8  
Automatic Recharge  
The MCP73871 device continuously monitors the  
voltage at the VBAT pin in the charge complete mode. If  
the voltage drops below the recharge threshold,  
another charge cycle begins and current is once again  
supplied to the battery or load. The recharge threshold  
is factory set. Refer to Section 1.0 “Electrical  
Characteristics” for recharge threshold options.  
4.11 Temperature Qualification  
The MCP73871 device continuously monitor battery  
temperature during a charge cycle by measuring the  
voltage between the THERM and VSS pins. An internal  
50 µA current source provides the bias for most  
common 10 kΩ negative-temperature coefficient  
thermistors (NTC). The MCP73871 device compares  
the voltage at the THERM pin to factory set thresholds  
of 1.24V and 0.25V, typically. Once a voltage outside  
the thresholds is detected during a charge cycle, the  
MCP73871 device immediately suspends the charge  
cycle. The MCP73871 device suspends charge by  
turning off the charge pass transistor and holding the  
timer value. The charge cycle resumes when the  
voltage at the THERM pin returns to the normal range.  
Note:  
Charge termination and automatic  
recharge features avoid constant charging  
Li-Ion batteries to prolong life of Li-Ion  
batteries while keeping their capacity at  
healthy level.  
© 2009 Microchip Technology Inc.  
DS22090B-page 21  
MCP73871  
4.12 Voltage Proportional Charge  
Control (VPCC)  
4.13 Input Current Limit Control (ICLC)  
If the input current threshold is reached, then the  
battery charging current is reduced. The ICLC tries to  
reach a steady-state condition where the system load  
has priority and the battery is charged with the  
remaining current. No active control limits the current  
to the system. Therefore, if the system demands more  
current than the input can provide or the input ICLC is  
reached, the ideal diode will become forward biased  
and the battery is able to supplement the input current  
to the system load.  
If the voltage on the IN pin drops to a preset value,  
determined by the threshold established at the VPCC  
input, due to a limited amount of input current or input  
source impedance, then the battery charging current is  
reduced. The VPCC control tries to reach  
a
steady-state condition where the system load has  
priority and the battery is charged with the remaining  
current. Therefore, if the system demands more  
current than the input can provide, the ideal diode will  
become forward biased and the battery is able to  
supplement the input current to the system load.  
The ICLC sustains the system load as its highest  
priority. This is done by reducing the non-critical charge  
current while adhering to the current limits governed by  
the USB specification or the maximum ac-dc adapter  
current supported. Further demand from the system is  
supported by the battery, if possible.  
The VPCC sustains the system load as its highest  
priority. It does this by reducing the noncritical charge  
current while maintaining the maximum power output of  
the adapter. Further demand from the system is  
supported by the battery, if possible.  
The VPCC feature functions identically for USB port or  
ac-dc adapter inputs. This feature can be disabled by  
connecting the VPCC to IN pin.  
700  
600  
500  
400  
Input Current  
300  
Battery Current  
Load Current  
200  
100  
0
Ideal  
Diode  
-100  
-200  
0
100 200 300 400 500 600 700  
Load Current (mA)  
FIGURE 4-4:  
Input Current Limit Control -  
USB Port.  
DS22090B-page 22  
© 2009 Microchip Technology Inc.  
MCP73871  
1.24V and 0.25V, typically. Once a voltage outside the  
thresholds is detected during a charge cycle, the  
MCP73871 device immediately suspends the charge  
cycle.  
5.0  
DETAILED DESCRIPTION  
Analog Circuitry  
5.1  
The MCP73871 device suspends charge by turning off  
the pass transistor and holding the timer value. The  
charge cycle resumes when the voltage at the THERM  
pin returns to the normal range.  
5.1.1  
LOAD SHARING AND LI-ION  
BATTERY MANAGEMENT INPUT  
SUPPLY (V )  
IN  
The VIN input is the input supply to the MCP73871  
device. The MCP73871 device can be supplied by  
either AC Adapter (VAC) or USB Port (VUSB) with SEL  
pin. The MCP73871 device automatically powers the  
system with the Li-Ion battery when the VIN input is not  
present.  
If temperature monitoring is not required, place a  
standard 10 kΩ resistor from THERM to VSS  
.
5.2  
Digital Circuitry  
5.2.1  
STATUS INDICATORS AND  
POWER-GOOD (PG)  
5.1.2  
FAST CHARGE CURRENT  
REGULATION SET (PROG1)  
The charge status outputs have two different states:  
Low (L), and High Impedance (Hi-Z). The charge status  
outputs can be used to illuminate LEDs. Optionally, the  
charge status outputs can be used as an interface to a  
host microcontroller. Table 5-1 summarizes the state of  
the status outputs during a charge cycle.  
For the MCP73871 device, the charge current  
regulation can be scaled by placing a programming  
resistor (RPROG1) from the PROG1 pin to VSS. The  
program resistor and the charge current are calculated  
using the following equation:  
EQUATION 5-1:  
TABLE 5-1:  
STATUS OUTPUTS  
1000V  
RPROG1  
CHARGE CYCLE STATE  
STAT1 STAT2  
PG  
IREG = -------------------  
Shutdown (VDD = VBAT  
Shutdown (VDD = IN)  
Preconditioning  
)
Hi-Z  
Hi-Z  
L
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
L
Hi-Z  
L
Where:  
RPROG  
IREG  
=
=
kilo-ohms (kΩ)  
L
milliampere (mA)  
Constant Current  
Constant Voltage  
L
L
L
L
The fast charge current is set for maximum charge  
current from ac-dc adapter and USB port. The  
preconditioning current is 10% (0.1C) to the fast  
charge current.  
Charge Complete - Standby  
Temperature Fault  
Timer Fault  
Hi-Z  
L
L
L
L
L
L
L
Low Battery Output  
No Battery Present  
No Input Power Present  
L
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
L
5.1.3  
BATTERY CHARGE CONTROL  
OUTPUT (V  
Hi-Z  
Hi-Z  
)
Hi-Z  
BAT  
The battery charge control output is the drain terminal  
of an internal P-channel MOSFET. The MCP73871  
device provides constant current and voltage  
regulation to the battery pack by controlling this  
MOSFET in the linear region. The battery charge  
control output should be connected to the positive  
terminal of the battery pack.  
5.2.2  
AC-DC ADAPTER AND USB PORT  
POWER SOURCE REGULATION  
SELECT (SEL)  
With the SEL input Low, the MCP73871 device is  
designed to provide system power and Li-Ion battery  
charging from a USB input while adhering to the current  
limits governed by the USB specification. The host  
microcontroller has the option selecting either a  
100 mA (L) or a 500 mA (H) current limit based on the  
PROG2 input. With the SEL input High, the MCP73871  
device limits the input current to 1.8A. The  
programmed charge current is established using a  
single resistor from PROG1 to VSS when driving SEL  
High.  
5.1.4  
TEMPERATURE QUALIFICATION  
(THERM)  
The MCP73871 device continuously monitors battery  
temperature during a charge cycle by measuring the  
voltage between the THERM and VSS pins. An internal  
50 µA current source provides the bias for most  
common 10 kΩ negative-temperature coefficient  
(NTC) or positive-temperature coefficient (PTC)  
thermistors.The current source is controlled, avoiding  
measurement sensitivity to fluctuations in the supply  
voltage (VDD). The MCP73871 device compares the  
voltage at the THERM pin to factory set thresholds of  
© 2009 Microchip Technology Inc.  
DS22090B-page 23  
MCP73871  
5.2.3  
USB PORT CURRENT  
REGULATION SELECT (PROG2)  
5.2.5  
TIMER ENABLE (TE) OPTION  
The timer enable (TE) input option is used to enable or  
disable the internal timer. A low signal on this pin  
enables the internal timer and a high signal disables  
the internal timer. The TE input can be used to disable  
the timer when the charger is supplying current to  
charge the battery and power the system load. The TE  
input is compatible with 1.8V logic.  
Driving the PROG2 input to a logic Low selects the low  
USB port source current setting (maximum 100 mA).  
Driving the PROG2 input to a logic High selects the  
high USB port source current setting (Maximum  
500 mA).  
5.2.4  
POWER-GOOD (PG)  
The power-good (PG) option is a pseudo open-drain  
output. The PG output can sink current, but not source  
current. However, there is a diode path back to the  
input, and as such, the output should only be pulled up  
to the input. The PG output is low whenever the input  
to the MCP73871 device is above the UVLO threshold  
and greater than the battery voltage. The PG output  
can be used as an indication to the system that an input  
source other than the battery is supplying power.  
DS22090B-page 24  
© 2009 Microchip Technology Inc.  
MCP73871  
and Lithium-Polymer cells Constant-current followed  
by Constant-voltage. Figure 6-1 depicts a typical  
stand-alone MCP73871 application circuit, while  
Figures 6-2 and 6-3 depict the accompanying charge  
profile.  
6.0  
APPLICATIONS  
The MCP73871 device is designed to operate in  
conjunction with host microcontroller or in  
stand-alone applications. The MCP73871 device  
provides the preferred charge algorithm for Lithium-Ion  
a
MCP73871 Device Typical Application  
5V AC-DC Adapter  
or  
USB Port  
18, 19  
1, 20  
System  
Load  
IN  
OUT  
VBAT  
10 µF  
4.7 µF  
14, 15, 16  
470Ω  
6
PG  
470Ω  
470Ω  
7
8
4.7 µF  
STAT2  
NTC  
THERM 5  
PROG1  
STAT1  
LBO  
330 kΩ  
110 kΩ  
10 kΩ  
Single-Cell  
Li-Ion Battery  
2
3
RPROG1  
VPCC  
SEL  
13  
Hi  
Hi  
Low  
Low  
RPROG3  
12  
4
PROG3  
PROG2  
TE  
9
Hi  
Hi  
Low  
Low  
17  
VSS 10, 11, EP  
CE  
FIGURE 6-1:  
MCP73871Typical Stand-Alone Application Circuit with VPCC.  
4.5  
2
4.5  
4
2
1.8  
1.6  
1.4  
1.8  
1.6  
1.4  
1.2  
1
4
3.5  
3.5  
3
3
Preconditioning Threshold Voltage  
1.2  
1
MCP73871  
VDD = 5.2V  
RPROG1 = 1 kΩ  
RPROG3 = 25 kΩ  
2.5  
2.5  
2
Fast Charge (Constant Current)  
MCP73871  
2
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
1.5  
1
1.5  
V
DD = 5.2V  
1
RPROG1 = 1 kΩ  
RPROG3 = 25 kΩ  
0.5  
0
0.5 Preconditioning  
0
0
10 20 30 40 50 60 70 80  
Time (Minute)  
0
0.2  
0.4  
0.6  
0.8  
1
Time (Minute)  
FIGURE 6-2:  
Typical Charge Profile  
FIGURE 6-3:  
Typical Charge Profile in  
(1000 mAh Battery).  
Preconditioning (1000 mAh Battery).  
© 2009 Microchip Technology Inc.  
DS22090B-page 25  
MCP73871  
This power dissipation with the battery charger in the  
QFN-20 package will cause thermal regulation to be  
entered as depicted. Alternatively, the 4 mm x 4 mm  
DFN package could be utilized to reduce heat by  
adding vias on the exposed pad.  
6.1  
Application Circuit Design  
Due to the low efficiency of linear charging, the most  
important factors are thermal design and cost, which  
are a direct function of the input voltage, output current  
and thermal impedance between the battery charger  
and the ambient cooling air. The worst-case situation is  
when the device has transitioned from the  
Preconditioning mode to the Constant Current mode. In  
this situation, the battery charger has to dissipate the  
maximum power. A trade-off must be made between  
the charge current, cost and thermal requirements of  
the charger.  
6.1.1.3  
External Capacitors  
The MCP73871 device is stable with or without a  
battery load. In order to maintain good AC stability in  
the Constant Voltage mode, a minimum capacitance of  
4.7 µF is recommended to bypass the VBAT pin to VSS  
.
This capacitance provides compensation when there is  
no battery load. In addition, the battery and  
interconnections appear inductive at high frequencies.  
These elements are in the control feedback loop during  
Constant Voltage mode. Therefore, the bypass  
capacitance may be necessary to compensate for the  
inductive nature of the battery pack.  
6.1.1  
COMPONENT SELECTION  
Selection of the external components in Figure 6-1 is  
crucial to the integrity and reliability of the charging  
system. The following discussion is intended as a guide  
for the component selection process.  
Virtually any good quality output filter capacitor can be  
used, independent of the capacitor’s minimum  
Effective Series Resistance (ESR) value. The actual  
value of the capacitor (and its associated ESR)  
depends on the output load current. A 4.7 µF ceramic,  
tantalum or aluminum electrolytic capacitor at the  
output is usually sufficient to ensure stability for charge  
currents up to a 1000 mA.  
6.1.1.1  
Charge Current  
The preferred fast charge current for Lithium-Ion cells  
should always follow references and guidances from  
battery manufacturers. For example, a 1000 mAh  
battery pack has a preferred fast charge current of  
0.7C. Charging at 700 mA provides the shortest charge  
cycle times without degradation to the battery pack  
performance or life.  
6.1.1.4  
Reverse-Blocking Protection  
The MCP73871 device provides protection from a  
faulted or shorted input. Without the protection, a  
faulted or shorted input would discharge the battery  
pack through the body diode of the internal pass  
transistor.  
6.1.1.2  
Thermal Considerations  
The worst-case power dissipation in the battery  
charger occurs when the input voltage is at the  
maximum and the device has transitioned from the  
Preconditioning mode to the Constant-current mode. In  
this case, the power dissipation is:  
6.1.1.5  
Temperature Monitoring  
The charge temperature window can be set by placing  
fixed value resistors in series-parallel with a thermistor.  
The resistance values of RT1 and RT2 can be calculated  
with the following equations in order to set the  
temperature window of interest.  
EQUATION 6-1:  
PowerDissipation = (V  
V  
) × I  
PTHMIN REGMAX  
DDMAX  
Where:  
VDDMAX  
IREGMAX  
VPTHMIN  
=
=
=
the maximum input voltage  
For NTC thermistors:  
the maximum fast charge current  
EQUATION 6-2:  
the minimum transition threshold  
voltage  
RT2 × RCOLD  
24kΩ = RT1 + --------------------------------  
R
T2 + RCOLD  
For example, power dissipation with a 5V, ±10% input  
voltage source and 500 mA, ±10% fast charge current  
is:  
RT2 × RHOT  
5kΩ = RT1 + ----------------------------  
T2 + RHOT  
R
Where:  
RT1  
EXAMPLE 6-1:  
=
=
=
the fixed series resistance  
the fixed parallel resistance  
RT2  
PowerDissipation = (5.5V – 2.7V) × 550mA = 1.54W  
RCOLD  
the thermistor resistance at the  
lower temperature of interest  
RHOT  
=
the thermistor resistance at the  
upper temperature of interest  
DS22090B-page 26  
© 2009 Microchip Technology Inc.  
MCP73871  
For example, by utilizing a 10 kΩ at 25°C NTC  
thermistor with a sensitivity index, β, of 3892, the  
charge temperature range can be set to 0°C - 50°C by  
placing a 1.54 kΩ resistor in series (RT1), and a  
69.8 kΩ resistor in parallel (RT2) with the thermistor.  
6.2  
PCB Layout Issues  
For optimum voltage regulation, place the battery pack  
as close as possible to the device’s VBAT and VSS pins,  
recommended to minimize voltage drops along the  
high current-carrying PCB traces.  
6.1.1.6  
Charge Status Interface  
If the PCB layout is used as a heatsink, adding many  
vias in the heatsink pad can help conduct more heat to  
the backplane of the PCB, thus reducing the maximum  
junction temperature.  
A status output provides information on the state of  
charge. The output can be used to illuminate external  
LEDs or interface to a host microcontroller. Refer to  
Table 5-1 for a summary of the state of the status  
output during a charge cycle.  
6.1.1.7  
System Load Current  
The preferred discharge current for Lithium-Ion cells  
should always follow references and guidance from  
battery manufacturers. Due to the safety concerns  
when using Lithium-Ion batteries and power  
dissipation of linear solutions, the system load when  
design with the MCP73871 device is recommended to  
be less than 1A or the maximum discharge rate of the  
selected Lithium-Ion cell. Whichever is smaller is  
recommended.  
The idea diode between VBAT and OUT is designed to  
drive a maximum current up to 2A. The built-in thermal  
shutdown protection may turn the MCP73871 device  
off with high current.  
© 2009 Microchip Technology Inc.  
DS22090B-page 27  
MCP73871  
NOTES:  
DS22090B-page 28  
© 2009 Microchip Technology Inc.  
MCP73871  
7.0  
7.1  
PACKAGING  
Package Marking Information  
20-Lead QFN  
Example:  
Marking  
Code  
Marking  
Code  
Part Number *  
Part Number *  
XXXXX  
XXXXXX  
XXXXXX  
YWWNNN  
73871  
1AA  
MCP73871-1AAI/ML  
MCP73871-1CAI/ML  
MCP73871-1CCI/ML  
MCP73871-2AAI/ML  
MCP73871-2CAI/ML  
MCP73871-2CCI/ML  
MCP73871-3CAI/ML  
MCP73871-3CCI/ML  
MCP73871-4CAI/ML  
MCP73871-4CCI/ML  
1AA  
1CA  
1CC  
2AA  
2CA  
2CC  
3CA  
3CC  
4CA  
4CC  
MCP73871T-1AAI/ML  
MCP73871T-1CAI/ML  
MCP73871T-1CCI/ML  
MCP73871T-2AAI/ML  
MCP73871T-2CAI/ML  
MCP73871T-2CCI/ML  
MCP73871T-3CAI/ML  
MCP73871T-3CCI/ML  
MCP73871T-4CAI/ML  
MCP73871T-4CCI/ML  
1AA  
1CA  
1CC  
2AA  
2CA  
2CC  
3CA  
3CC  
4CA  
4CC  
e
3
I/ML
919256  
* Consult Factory for Alternative Device Options.  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2009 Microchip Technology Inc.  
DS22090B-page 29  
MCP73871  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢆꢇꢐꢉꢅꢋꢑꢇꢒꢓꢇꢃꢄꢅꢆꢇꢈꢅꢍꢔꢅꢕꢄꢇꢖꢗꢃꢘꢇMꢇꢙꢚꢙꢚꢁꢛꢜꢇ  ꢇ!ꢓꢆ"ꢇ#ꢎꢐꢒ$  
ꢒꢓꢋꢄ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢒꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢒꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢕꢃꢍꢊꢌꢍꢎꢃꢒꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢔꢒꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢒ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢒꢁꢍꢌ&3ꢒꢇꢍ*ꢇꢐꢃꢄꢐ  
D
D2  
EXPOSED  
PAD  
e
E2  
E
2
1
b
2
1
K
N
N
NOTE 1  
L
BOTTOM VIEW  
TOP VIEW  
A
A1  
A3  
4ꢄꢃ%  
ꢑꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢕꢙ55ꢙꢕ,ꢗ,ꢘꢔ  
67ꢕ  
ꢕꢙ6  
ꢕꢓ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ9ꢉꢃꢐꢎ%  
ꢔ%ꢇꢄ"ꢌ$$ꢅ  
0ꢌꢄ%ꢇꢍ%ꢅꢗꢎꢃꢍ*ꢄꢉ    
7ꢆꢉꢊꢇꢈꢈꢅ;ꢃ"%ꢎ  
,#ꢒꢌ ꢉ"ꢅꢂꢇ"ꢅ;ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢐ%ꢎ  
,#ꢒꢌ ꢉ"ꢅꢂꢇ"ꢅ5ꢉꢄꢐ%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢅ;ꢃ"%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢅ5ꢉꢄꢐ%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢝ%ꢌꢝ,#ꢒꢌ ꢉ"ꢅꢂꢇ"  
6
ꢓꢀ  
ꢓ+  
,
,ꢏ  
ꢏꢚ  
ꢚꢁ.ꢚꢅ/ꢔ0  
ꢚꢁꢛꢚ  
ꢚꢁ:ꢚ  
ꢚꢁꢚꢚ  
ꢀꢁꢚꢚ  
ꢚꢁꢚ.  
ꢚꢁꢚꢏ  
ꢚꢁꢏꢚꢅꢘ,2  
ꢖꢁꢚꢚꢅ/ꢔ0  
ꢏꢁꢜꢚ  
ꢖꢁꢚꢚꢅ/ꢔ0  
ꢏꢁꢜꢚ  
ꢚꢁꢏ.  
ꢚꢁꢖꢚ  
M
ꢏꢁ<ꢚ  
ꢏꢁ:ꢚ  
ꢑꢏ  
(
5
ꢏꢁ<ꢚ  
ꢚꢁꢀ:  
ꢚꢁ+ꢚ  
ꢚꢁꢏꢚ  
ꢏꢁ:ꢚ  
ꢚꢁ+ꢚ  
ꢚꢁ.ꢚ  
M
=
ꢒꢓꢋꢄꢊ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢂꢇꢍ*ꢇꢐꢉꢅꢃ ꢅ ꢇ)ꢅ ꢃꢄꢐ!ꢈꢇ%ꢉ"ꢁ  
+ꢁ ꢑꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢒꢉꢊꢅꢓꢔꢕ,ꢅ-ꢀꢖꢁ.ꢕꢁ  
/ꢔ01 /ꢇ ꢃꢍꢅꢑꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢑꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢒ!ꢊꢒꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢕꢃꢍꢊꢌꢍꢎꢃꢒ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢑꢊꢇ)ꢃꢄꢐ 0ꢚꢖꢝꢀꢏ</  
DS22090B-page 30  
© 2009 Microchip Technology Inc.  
MCP73871  
ꢒꢓꢋꢄ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢒꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢒꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢕꢃꢍꢊꢌꢍꢎꢃꢒꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢔꢒꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢒ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢒꢁꢍꢌ&3ꢒꢇꢍ*ꢇꢐꢃꢄꢐ  
© 2009 Microchip Technology Inc.  
DS22090B-page 31  
MCP73871  
NOTES:  
DS22090B-page 32  
© 2009 Microchip Technology Inc.  
MCP73871  
APPENDIX A: REVISION HISTORY  
Revision B (May 2009)  
The following is the list of modifications:  
1. Updated the QFN-20 package drawing.  
2. Updated Equation 4-1.  
3. Updated Section 4.7 “Charge Termination”  
and Equation 4-2.  
4. Updated Equation 5-1.  
Revision A (July 2008)  
• Original Release of this Document.  
© 2009 Microchip Technology Inc.  
DS22090B-page 33  
MCP73871  
NOTES:  
DS22090B-page 34  
© 2009 Microchip Technology Inc.  
MCP73871  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples: * *  
PART NO.  
Device  
XX  
X/  
XX  
a)  
b)  
c)  
d)  
e)  
f)  
MCP73871-1AAI/ML: 4.10V PPM Battery  
Output Temp. Package  
Options*  
Charger, 20LD QFN  
pkg.  
MCP73871-1CAI/ML: 4.10V, PPM Battery  
Charger, 20LD QFN  
pkg.  
Device:  
MCP73871: USB/AC Battery Charger with PPM  
MCP73871T: USB/AC Battery Charger with PPM  
(Tape and Reel)  
MCP73871-1CCI/ML: 4.10V, PPM Battery  
Charger, 20LD QFN  
pkg.  
Output Options * *  
* Refer to table below for different operational options.  
* * Consult Factory for Alternative Device Options.  
MCP73871-2AAI/ML: 4.20V, PPM Battery  
Charger, 20LD QFN  
pkg.  
MCP73871-2CAI/ML: 4.20V PPM Battery  
Temperature:  
I
=
=
-40°C to +85°C  
Charger, 20LD QFN  
pkg.  
MCP73871-2CCI/ML: 4.20V PPM Battery  
Package Type:  
ML  
Plastic Quad Flat No Lead (QFN)  
(4x4x0.9 mm Body), 20-lead  
Charger, 20LD QFN  
pkg.  
g)  
h)  
MCP73871-3CAI/ML: 4.35V PPM Battery  
Charger, 20LD QFN  
pkg.  
MCP73871-3CCI/ML: 4.35V PPM Battery  
Charger, 20LD QFN  
pkg.  
* * Consult Factory for Alternative Device Options  
* Operational Output Options  
Output  
Options  
Safety Timer  
Duration (Hours)  
LBO Voltage  
Threshold (V)  
VREG  
1AA  
1CA  
1CC  
2AA  
2CA  
2CC  
3CA  
3CC  
4CA  
4CC  
4.10V  
4.10V  
4.10V  
4.20V  
4.20V  
4.20V  
4.35V  
4.35V  
4.40V  
4.40V  
Disable  
Disabled  
Disabled  
3.1  
6
6
Disable  
Disabled  
Disabled  
3.1  
6
6
6
6
6
6
Disabled  
3.1  
Disabled  
3.1  
* * Consult Factory for Alternative Device Options.  
© 2009 Microchip Technology Inc.  
DS22090B-page 35  
MCP73871  
NOTES:  
DS22090B-page 36  
© 2009 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, rfPIC, SmartShunt and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
FilterLab, Hampshire, Linear Active Thermistor, MXDEV,  
MXLAB, SEEVAL, SmartSensor and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, In-Circuit Serial  
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, nanoWatt XLP,  
PICkit, PICDEM, PICDEM.net, PICtail, PIC32 logo, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select  
Mode, Total Endurance, TSHARC, WiperLock and ZENA are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2009 Microchip Technology Inc.  
DS22090B-page 37  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4080  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
03/26/09  
DS22090B-page 38  
© 2009 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY