MCP9803T-M/SN [MICROCHIP]

DIGITAL TEMP SENSOR-SERIAL, 12BIT(s), 3Cel, RECTANGULAR, SURFACE MOUNT, 0.150 INCH, PLASTIC, MS-012, SOIC-8;
MCP9803T-M/SN
型号: MCP9803T-M/SN
厂家: MICROCHIP    MICROCHIP
描述:

DIGITAL TEMP SENSOR-SERIAL, 12BIT(s), 3Cel, RECTANGULAR, SURFACE MOUNT, 0.150 INCH, PLASTIC, MS-012, SOIC-8

输出元件 传感器 换能器
文件: 总42页 (文件大小:754K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP9800/1/2/3  
2-Wire High-Accuracy Temperature Sensor  
Features:  
Description:  
Temperature-to-Digital Converter  
• Accuracy with 12-bit Resolution:  
Microchip Technology Inc.’s MCP9800/1/2/3 family of  
digital temperature sensors converts temperatures  
between -55°C and +125°C to a digital word. They  
provide an accuracy of ±1°C (maximum) from -10°C to  
+85°C.  
- ±0.5°C (typical) at +25°C  
- ±1°C (maximum) from -10°C to +85°C  
- ±2°C (maximum) from -10°C to +125°C  
- ±3°C (maximum) from -55°C to +125°C  
• User-selectable Resolution: 9-12 bit  
• Operating Voltage Range: 2.7V to 5.5V  
• 2-wire Interface: I2C™/SMBus Compatible  
• Operating Current: 200 µA (typical)  
• Shutdown Current: 1 µA (maximum)  
The  
MCP9800/1/2/3  
family  
comes  
with  
user-programmable registers that provide flexibility for  
temperature sensing applications. The register settings  
allow user-selectable 9-bit to 12-bit temperature  
measurement resolution, configuration of the  
power-saving Shutdown and One-shot (single  
conversion on command while in Shutdown) modes  
and the specification of both temperature alert output  
and hysteresis limits. When the temperature changes  
beyond the specified limits, the MCP9800/1/2/3 outputs  
an alert signal. The user has the option of setting the  
alert output signal polarity as an active-low or  
active-high comparator output for thermostat operation,  
or as temperature event interrupt output for  
microprocessor-based systems.  
• Power-saving One-shot Temperature  
Measurement  
• Available Packages: SOT-23-5, MSOP-8, SOIC-8  
Typical Applications:  
• Personal Computers and Servers  
• Hard Disk Drives and Other PC Peripherals  
• Entertainment Systems  
This sensor has an industry standard 2-wire, I2C™/  
SMBus compatible serial interface, allowing up to eight  
devices to be controlled in a single serial bus. These  
features make the MCP9800/1/2/3 ideal for  
• Office Equipment  
• Data Communication Equipment  
• Mobile Phones  
sophisticated  
applications.  
multi-zone  
temperature-monitoring  
• General Purpose Temperature Monitoring  
Package Types  
Typical Application  
MCP9800  
MCP9802  
MCP9801  
MCP9803  
VDD  
PIC®  
Microcontroller  
SOT-23-5  
V
SOIC, MSOP  
MCP9800/02  
R
V
SDA  
SDA  
1
2
3
4
8
7
6
5
DD  
GND  
1
2
3
5
4
DD  
PIC16F737  
VDD  
SCLK  
A0  
1
2
3
5
SDA  
A1  
A2  
SCLK  
ALERT  
GND  
ALERT  
GND  
SCLK  
ALERT  
4
I/O Port  
RPULL-UP  
MCP9802/03: Serial Bus time-out 35 ms (typ.)  
MCP9800/01: No Serial Bus time-out  
2010 Microchip Technology Inc.  
DS21909D-page 1  
MCP9800/1/2/3  
NOTES:  
DS21909D-page 2  
2010 Microchip Technology Inc.  
MCP9800/1/2/3  
†Notice: Stresses above those listed under “Maximum  
ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
VDD....................................................................... 6.0V  
Voltage at all Input/Output pins .....GND – 0.3V to 5.5V  
Storage temperature ..........................-65°C to +150°C  
Ambient temp. with power applied.....-55°C to +125°C  
Junction Temperature (TJ) ................................. 150°C  
ESD protection on all pins (HBM:MM) .......(4 kV:400V)  
Latch-Up Current at each pin........................ ±200 mA  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = 2.7V to 5.5V, GND = Ground, and  
TA = -55°C to +125°C.  
Parameters  
Power Supply  
Sym  
Min  
Typ  
Max  
Unit  
Conditions  
Operating Voltage Range  
Operating Current  
VDD  
IDD  
2.7  
200  
0.1  
5.5  
400  
1
V
µA  
µA  
Continuous Operation  
Shutdown mode  
Shutdown Current  
ISHDN  
Power-on-Reset Threshold (POR)  
VPOR  
1.7  
0.2  
V
VDD falling edge  
Line Regulation  
Δ°C/ΔV  
°C/V  
VDD = 2.7V to 5.5V  
Temperature Sensor Accuracy  
Accuracy with 12-bit Resolution:  
TA = +25°C  
TACY  
TACY  
TACY  
TACY  
±0.5  
°C  
°C  
°C  
°C  
VDD = 3.3V  
VDD = 3.3V  
VDD = 3.3V  
VDD = 3.3V  
-10°C < TA +85°C  
-10°C < TA +125°C  
-55°C < TA +125°C  
Internal  ADC  
-1.0  
-2.0  
-3.0  
+1.0  
+2.0  
+3.0  
Conversion Time:  
9-bit Resolution  
tCONV  
tCONV  
tCONV  
tCONV  
30  
60  
75  
ms  
ms  
ms  
ms  
33 samples/sec (typical)  
17 samples/sec (typical)  
8 samples/sec (typical)  
4 samples/sec (typical)  
10-bit Resolution  
150  
300  
600  
11-bit Resolution  
120  
240  
12-bit Resolution  
Alert Output (Open-drain)  
High-level Current  
IOH  
1
µA  
V
VOH = 5V  
IOL= 3 mA  
Low-level Voltage  
VOL  
0.4  
Thermal Response  
Response Time  
tRES  
1.4  
s
Time to 63% (89°C)  
27°C (Air) to 125°C (oil bath)  
2010 Microchip Technology Inc.  
DS21909D-page 3  
MCP9800/1/2/3  
DIGITAL INPUT/OUTPUT PIN CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = 2.7V to 5.5V, GND = Ground and  
TA = -55°C to +125°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Serial Input/Output (SCLK, SDA, A0, A1, A2)  
Input  
High-level Voltage  
Low-level Voltage  
Input Current  
VIH  
VIL  
IIN  
0.7 VDD  
0.3 VDD  
+1  
V
V
-1  
µA  
Output (SDA)  
Low-level Voltage  
High-level Current  
Low-level Current  
VOL  
IOH  
IOL  
6
10  
0.4  
1
V
IOL= 3 mA  
µA VOH = 5V  
mA VOL = 0.6V  
pF  
Capacitance  
CIN  
SDA and SCLK Inputs  
Hysteresis  
VHYST 0.05 VDD  
V
Graphical Symbol Description  
INPUT  
OUTPUT  
Voltage  
Voltage  
VDD  
VDD  
VIH  
VOL  
VIL  
Time  
Time  
Time  
Current  
Current  
IOL  
IIN  
IOH  
Time  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = +2.7V to +5.5V, GND = Ground.  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 5L-SOT23  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 8L-MSOP  
TA  
TA  
TA  
-55  
-55  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
(Note 1)  
JA  
JA  
JA  
256  
163  
206  
°C/W  
°C/W  
°C/W  
Note 1: Operation in this range must not cause TJ to exceed Maximum Junction Temperature (+150°C).  
DS21909D-page 4  
2010 Microchip Technology Inc.  
MCP9800/1/2/3  
SERIAL INTERFACE TIMING SPECIFICATIONS  
Electrical Specifications: Unless otherwise indicated, VDD = 2.7V to 5.5V, GND = Ground, -55°C < TA < +125°C,  
CL = 80 pF, and all limits measured to 50% point.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
2-Wire I2C™/SMBus Compatible Interface  
Serial Port Frequency  
fSC  
fSC  
0
35  
400  
400  
kHz I2C MCP9800/01  
10  
2.5  
1.3  
0.6  
20  
20  
0.1  
0
kHz SMBus MCP9802/03  
Clock Period  
tSC  
µs  
µs  
µs  
Low Clock  
tLOW  
High Clock  
tHIGH  
tR  
Rise Time  
300  
300  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
10% to 90% of VDD (SCLK, SDA)  
90% to 10% of VDD (SCLK, SDA)  
Fall Time  
tF  
Data Setup Before SCLK High  
Data Hold After SCLK Low  
Start Condition Setup Time  
Start Condition Hold Time  
Stop Condition Setup Time  
Bus Idle  
tSU-DATA  
tH-DATA  
tSU-START  
tH-START  
tSU-STOP  
tIDLE  
0.9  
0.6  
0.6  
0.6  
1.3  
25  
Time Out  
tOUT  
50  
ms MCP9802/03 only  
Timing Diagram  
Start Condition  
Data Transmission  
Stop Condition  
2010 Microchip Technology Inc.  
DS21909D-page 5  
MCP9800/1/2/3  
NOTES:  
DS21909D-page 6  
2010 Microchip Technology Inc.  
MCP9800/1/2/3  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.  
Note: Unless otherwise noted: VDD = 2.7V to 5.5V.  
3.0  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
TA = +25°C  
VDD = 3.3V  
5 lots  
32 Samples/lot  
160 Samples  
VDD= 3.3V  
12-Bit Resolution  
160 Samples  
2.0  
1.0  
0.0  
-1.0  
-2.0  
-3.0  
Spec. Limits  
-55 -35 -15  
5
25 45 65 85 105 125  
TA (°C)  
Temperature Accuracy (°C)  
FIGURE 2-1:  
Average Temperature  
FIGURE 2-4:  
Temperature Accuracy  
Accuracy vs. Ambient Temperature, VDD = 3.3V.  
Histogram, TA = +25°C.  
3.0  
400  
12-Bit Resolution  
160 Samples  
VDD = 2.7V  
VDD = 3.3V  
VDD = 5.0V  
VDD = 5.5V  
VDD = 2.7V  
VDD = 3.3V  
350  
300  
250  
200  
150  
100  
50  
2.0  
1.0  
VDD = 5.0V  
VDD = 5.5V  
0.0  
-1.0  
-2.0  
-3.0  
-55 -35 -15  
5
25 45 65 85 105 125  
TA (°C)  
-55 -35 -15  
5
25 45 65 85 105 125  
TA (°C)  
FIGURE 2-2:  
Average Temperature  
FIGURE 2-5:  
Supply Current vs. Ambient  
Accuracy vs. Ambient Temperature.  
Temperature.  
3.0  
1
0.8  
0.6  
0.4  
0.2  
0
Resolution  
VDD = 3.3V  
160 Samples  
2.0  
1.0  
11-Bit  
12-Bit  
0.0  
-1.0  
-2.0  
-3.0  
9-Bit  
10-Bit  
-55 -35 -15  
5
25 45 65 85 105 125  
TA (°C)  
-55 -35 -15  
5
25 45 65 85 105 125  
A (°C )  
T
FIGURE 2-3:  
Average Temperature  
FIGURE 2-6:  
Shutdown Current vs.  
Accuracy vs. Ambient Temperature, VDD = 3.3V.  
Ambient Temperature.  
2010 Microchip Technology Inc.  
DS21909D-page 7  
MCP9800/1/2/3  
Note: Unless otherwise noted: VDD = 2.7V to 5.5V.  
145  
125  
105  
85  
48  
Average of 10 samples per package  
VOL = 0.6V  
42  
VDD = 5.5V  
VDD = 3.3V  
VDD = 2.7V  
36  
30  
24  
18  
12  
6
65  
SOIC  
MSOP  
45  
SOT-23  
25  
27°C (Air) to 125°C (Oil bath)  
5
-55 -35 -15  
5
25 45 65 85 105 125  
A (°C)  
-2  
0
2
4
6
8
10 12 14 16 18 20  
T
Time (s)  
FIGURE 2-7:  
Ambient Temperature.  
ALERT and SDA IOL vs.  
FIGURE 2-9:  
Response vs Time.  
MCP980X Thermal  
0.4  
IOL = 3mA  
0.3  
0.2  
0.1  
0
VDD = 5.5V  
VDD = 3.3V  
VDD = 2.7V  
-55 -35 -15  
5
25 45 65 85 105 125  
TA (°C)  
FIGURE 2-8:  
ALERT and SDA Output  
VOL vs. Ambient Temperature.  
DS21909D-page 8  
2010 Microchip Technology Inc.  
MCP9800/1/2/3  
3.0  
PIN DESCRIPTION  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
MCP9800  
MCP9802  
SOT-23-5  
MCP9801  
MCP9803  
MSOP, SOIC  
Symbol  
Function  
5
4
1
2
3
4
5
6
7
8
SDA  
SCLK  
ALERT  
GND  
A2  
Bidirectional Serial Data  
Serial Clock Input  
3
Temperature Alert Output  
Ground  
2
1
Address Select Pin (bit 2)  
Address Select Pin (bit 1)  
Address Select Pin (bit 0)  
Power Supply Input  
A1  
A0  
VDD  
3.1  
Serial Data Pin (SDA)  
3.5  
ALERT Output  
The SDA is a bidirectional input/output pin, used to  
serially transmit data to and from the host controller.  
This pin requires a pull-up resistor to output data.  
The MCP9800/1/2/3’s ALERT pin is an open-drain  
output pin. The device outputs an alert signal when the  
ambient  
temperature  
goes  
beyond  
the  
user-programmed temperature limit.  
3.2  
Serial Clock Pin (SCLK)  
3.6  
Address Pins (A2, A1, A0)  
The SCLK is a clock input pin. All communication and  
timing is relative to the signal on this pin. The clock is  
generated by the host controller on the bus.  
These pins are device or slave address input pins and  
are available only with the MCP9801/03. The device  
addresses for the MCP9800/02 are factory-set.  
3.3  
Power Supply Input (V  
)
DD  
The address pins are the Least Significant bits (LSb) of  
the device address bits. The Most Significant bits  
(MSb) (A6, A5, A4, A3) are factory-set to <1001>. This  
is illustrated in Table 3-2.  
The VDD pin is the power pin. The operating voltage, as  
specified in the DC electrical specification table, is  
applied on this pin.  
TABLE 3-2:  
Device  
SLAVE ADDRESS  
3.4  
Ground (GND)  
A6 A5 A4 A3 A2 A1 A0  
The GND pin is the system ground pin.  
MCP9800/02A0  
MCP9800/02A1  
MCP9800/02A2  
MCP9800/02A3  
MCP9800/02A4  
MCP9800/02A5  
MCP9800/02A6  
MCP9800/02A7  
MCP9801/03  
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
X
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
X
Note:  
User-selectable address is shown by X.  
2010 Microchip Technology Inc.  
DS21909D-page 9  
MCP9800/1/2/3  
NOTES:  
DS21909D-page 10  
2010 Microchip Technology Inc.  
MCP9800/1/2/3  
4.1.1  
DATA TRANSFER  
4.0  
4.1  
SERIAL COMMUNICATION  
2-Wire SMBus/Standard Mode  
I C™ Protocol-Compatible  
Interface  
Data transfers are initiated by a Start condition (Start),  
followed by a 7-bit device address and a read/write bit.  
An Acknowledge (ACK) from the slave confirms the  
reception of each byte. Each access must be  
terminated by a Stop condition (Stop).  
2
The MCP9800/1/2/3 serial clock input (SCL) and the  
bidirectional serial data line (SDA) form a 2-wire  
bidirectional SMBus/Standard mode I2C compatible  
communication port (refer to the Digital Input/Output  
Pin Characteristics Table and Serial Interface  
Timing Specifications Table).  
Repeated communication is initiated after tB-FREE  
.
This device does not support sequential register read/  
write. Each register needs to be addressed using the  
Register Pointer.  
This device supports the Receive Protocol. The  
register can be specified using the pointer for the initial  
read. Each repeated read or receive begins with a Start  
condition and address byte. The MCP9800/1/2/3  
retains the previously selected register. Therefore, it  
outputs data from the previously-specified register  
(repeated pointer specification is not necessary).  
The following bus protocol has been defined:  
TABLE 4-1:  
MCP9800 SERIAL BUS  
PROTOCOL DESCRIPTIONS  
Term  
Description  
Master  
The device that controls the serial bus,  
typically a microcontroller.  
4.1.2  
MASTER/SLAVE  
The bus is controlled by a master device (typically a  
microcontroller) that controls the bus access and  
generates the Start and Stop conditions. The  
MCP9800/1/2/3 is a slave device and does not control  
other devices in the bus. Both master and slave  
devices can operate as either transmitter or receiver.  
However, the master device determines which mode is  
activated.  
Slave  
The device addressed by the master,  
such as the MCP9800/1/2/3.  
Transmitter Device sending data to the bus.  
Receiver  
Start  
Device receiving data from the bus.  
A unique signal from master to initiate  
serial interface with a slave.  
Stop  
A unique signal from the master to  
terminate serial interface from a slave.  
4.1.3  
START/STOP CONDITION  
Read/Write A read or write to the MCP9800/1/2/3  
registers.  
A high-to-low transition of the SDA line (while SCL is  
high) is the Start condition. All data transfers must be  
preceded by a Start condition from the master. If a Start  
condition is generated during data transfer, the  
MCP9800/1/2/3 resets and accepts the new Start  
condition.  
ACK  
A receiver Acknowledges (ACK) the  
reception of each byte by polling the  
bus.  
NAK  
A receiver Not-Acknowledges (NAK) or  
releases the bus to show End-of-Data  
(EOD).  
A low-to-high transition of the SDA line (while SCL is  
high) signifies a Stop condition. If a Stop condition is  
introduced during data transmission, the MCP9800/1/  
2/3 releases the bus. All data transfers are ended by a  
Stop condition from the master.  
Busy  
Communication is not possible  
because the bus is in use.  
Not Busy  
The bus is in the Idle state, both SDA  
and SCL remain high.  
4.1.4  
ADDRESS BYTE  
Data Valid SDA must remain stable before SCL  
becomes high in order for a data bit to  
be considered valid. During normal  
data transfers, SDA only changes state  
while SCL is low.  
Following the Start condition, the host must transmit an  
8-bit address byte to the MCP9800/1/2/3. The address  
for  
the  
MCP9800  
Temperature  
Sensor  
is  
1001,A2,A1,A0’ in binary, where the A2, A1 and A0  
bits are set externally by connecting the corresponding  
pins to VDD 1’ or GND ‘0’. The 7-bit address  
transmitted in the serial bit stream must match the  
selected address for the MCP9800/1/2/3 to respond  
with an ACK. Bit 8 in the address byte is a read/write  
bit. Setting this bit to ‘1’ commands a read operation,  
while ‘0’ commands a write operation (see Figure 4-1).  
2010 Microchip Technology Inc.  
DS21909D-page 11  
MCP9800/1/2/3  
4.1.6  
ACKNOWLEDGE (ACK)  
Address Byte  
Each receiving device, when addressed, is obliged to  
generate an ACK bit after the reception of each byte.  
The master device must generate an extra clock pulse  
for ACK to be recognized.  
SCL  
SDA  
1
2
3
4
5
6
7
8
9
A
C
K
1
0
0
1
A2 A1 A0  
The acknowledging device pulls down the SDA line for  
tSU-DATA before the low-to-high transition of SCL from  
the master. SDA also needs to remain pulled down for  
Start  
Slave  
Address  
Code  
R/W  
Address  
t
H-DATA after a high-to-low transition of SCL.  
PIC18FXXXX Response  
During read, the master must signal an End-of-Data  
(EOD) to the slave by not generating an ACK bit (NAK)  
once the last bit has been clocked out of the slave. In  
this case, the slave will leave the data line released to  
enable the master to generate the Stop condition.  
FIGURE 4-1:  
Device Addressing.  
4.1.5 DATA VALID  
After the Start condition, each bit of data in  
transmission needs to be settled for a time specified by  
tSU-DATA before SCL toggles from low-to-high (see  
“Serial Interface Timing Specifications” on Page 5).  
DS21909D-page 12  
2010 Microchip Technology Inc.  
MCP9800/1/2/3  
5.1  
Temperature Sensor  
5.0  
FUNCTIONAL DESCRIPTION  
The MCP9800/1/2/3 uses the difference in the base-  
emitter voltage of a transistor while its collector current  
is changed from IC1 to IC2. With this method, the VBE  
depends only on the ratio of the two currents and the  
ambient temperature, as shown in Equation 5-1.  
The MCP9800/1/2/3 temperature sensor consists of a  
band-gap type temperature sensor, a  Analog-to-  
Digital Converter (ADC), user-programmable registers  
and a 2-wire I2C protocol-compatible serial interface.  
Resolution  
One-Shot  
EQUATION 5-1:  
kT  
VBE  
=
----- lnIC1 IC2  
q
Shutdown  
0.5°C  
Where:  
0.25°C  
0.125°C  
0.0625°C  
Fault Queue  
T = temperature in kelvin  
Alert Polarity  
VBE = change in diode base-emitter  
voltage  
Alert Comp/Int  
k = Boltzmann's constant  
q = electron charge  
Configuration  
Register  
 ADC  
IC1 and IC2 = currents with n:1 ratio  
Temperature  
Register  
THYST  
5.2  
 Analog-to-Digital Converter  
Band-Gap  
Register  
Temperature  
A Sigma-Delta ADC is used to convert VBE to a digital  
word that corresponds to the transistor temperature.  
The converter has an adjustable resolution from 0.5°C  
(at 30 ms conversion time) to 0.0625°C (at 240 ms  
conversion time). Thus, it allows the user to make  
trade-offs between resolution and conversion time.  
Refer to Section 5.3.2 “Sensor Configuration  
Register (CONFIG)” and Section 5.3.4.7  ADC  
Resolution” for details.  
Sensor  
TSET  
Register  
Register  
Pointer  
I2C™  
Interface  
FIGURE 5-1:  
Functional Block Diagram.  
2010 Microchip Technology Inc.  
DS21909D-page 13  
MCP9800/1/2/3  
5.3  
Registers  
Resolution  
One-Shot  
The MCP9800/1/2/3 has four registers that are  
user-accessible. These registers are specified as the  
Ambient Temperature (TA) register, the Temperature  
Limit-set (TSET) register, the Temperature Hysteresis  
(THYST) register and device Configuration (CONFIG)  
register.  
Shutdown  
Fault Queue  
Alert Polarity  
Alert Comp/Int  
The Ambient Temperature register is a read-only  
register and is used to access the ambient temperature  
data. The data from the ADC is loaded in parallel in the  
register. The Temperature Limit-set and Temperature  
Hysteresis registers are read/write registers that  
provide user-programmable temperature limits. If the  
ambient temperature drifts beyond the programmed  
limits, the MCP9800/1/2/3 outputs an alert signal using  
the ALERT pin (refer to Section 5.3.4.3 “ALERT  
Output Configuration”). The device Configuration  
register provides access for the user to configure the  
MCP9800/1/2/3’s various features. These registers are  
described in further detail in the following sections.  
Configuration  
Register  
ALERT  
Output  
Temperature  
Register  
THYST  
Register  
ALERT Output  
Control Logic  
TSET  
Register  
The registers are accessed by sending Register Point-  
ers to the MCP9800/1/2/3 using the serial interface.  
This is an 8-bit pointer. However, the two Least  
Significant bits (LSbs) are used as pointers and all  
other bits need to be cleared <0>. This device has addi-  
tional registers that are reserved for test and  
calibration. If these registers are accessed, the device  
may not perform according to the specification. The  
pointer description is shown below.  
FIGURE 5-2:  
Register Block Diagram.  
REGISTER 5-1:  
REGISTER POINTER  
U-0  
U-0  
U-0  
0
U-0  
0
U-0  
0
U-0  
R/W-0  
P1  
R/W-0  
P0  
0
0
0
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-2  
bit 1-0  
Unimplemented: Read as ‘0’  
Px<1:0>: Pointer bits  
00= Temperature register (TA)  
01= Configuration register (CONFIG)  
10= Temperature Hysteresis register (THYST  
11= Temperature Limit-set register (TSET  
)
)
.
DS21909D-page 14  
2010 Microchip Technology Inc.  
MCP9800/1/2/3  
TABLE 5-1:  
BIT ASSIGNMENT SUMMARY FOR ALL REGISTERS  
Register  
Pointer  
P1 P0  
Bit Assignment  
MSB/  
LSB  
7
6
5
4
3
2
1
0
Ambient Temperature Register (T )  
A
6
5
4
3
2
1
0
0 0  
MSB  
LSB  
Sign  
2 °C  
2 °C  
2 °C  
2 °C  
0
2 °C  
0
2 °C  
0
2 °C  
0
-1  
-2  
-3  
-4  
2 °C  
2 °C  
2 °C  
2 °C  
Sensor Configuration Register (CONFIG)  
0 1  
LSB  
One-Shot  
Resolution  
Fault Queue  
ALERT  
Polarity  
COMP/INT Shutdown  
Temperature Hysteresis Register (T  
)
HYST  
6
5
4
3
2
1
0
1 0  
MSB  
LSB  
Sign  
2 °C  
0
2 °C  
2 °C  
2 °C  
2 °C  
2 °C  
2 °C  
-1  
2 °C  
0
0
0
0
0
0
Temperature Limit-Set Register (T  
)
SET  
6
5
4
3
2
1
0
1 1  
MSB  
LSB  
Sign  
2 °C  
0
2 °C  
2 °C  
2 °C  
2 °C  
2 °C  
2 °C  
-1  
2 °C  
0
0
0
0
0
0
2010 Microchip Technology Inc.  
DS21909D-page 15  
MCP9800/1/2/3  
5.3.1  
AMBIENT TEMPERATURE  
REGISTER (TA)  
EQUATION 5-2:  
TA = Code 24  
The MCP9800/1/2/3 has a 16-bit read-only Ambient  
Temperature register that contains 9-bit to 12-bit  
temperature data. (0.5°C to 0.0625°C resolutions,  
respectively). This data is formatted in two’s  
complement. The bit assignments, as well as the  
corresponding resolution, is shown in the register  
assignment below.  
Where:  
TA = Ambient Temperature (°C)  
Code = MCP9800 output in decimal  
The refresh rate of this register depends on the  
selected ADC resolution. It takes 30 ms (typical) for  
9-bit data and 240 ms (typical) for 12-bit data. Since  
this register is double-buffered, the user can read the  
register  
while  
the  
MCP9800/1/2/3  
performs  
Analog-to-Digital conversion in the background. The  
decimal code to ambient temperature conversion is  
shown in Equation 5-2:  
REGISTER 5-2:  
Upper Half:  
R-0  
AMBIENT TEMPERATURE REGISTER (TA) – ADDRESS <0000 0000>b  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
Sign  
26 °C  
25 °C  
24 °C  
23 °C  
22 °C  
21 °C  
20 °C  
bit 15  
bit 8  
Lower Half:  
R-0  
-1 °C/bit  
R-0  
2-2 °C  
R-0  
2-3 °C  
R-0  
2-4 °C  
R-0  
0
R-0  
0
R-0  
0
R-0  
0
2
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
Note 1: When the 0.5°C, 0.25°C or 0.125°C resolutions are selected, bit 6, bit 7 or bit 8 will remain clear <0>,  
respectively.  
DS21909D-page 16  
2010 Microchip Technology Inc.  
MCP9800/1/2/3  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
Note:  
It is not necessary to  
select the Register  
Pointer if it was set  
from the previous read/  
write.  
SCL  
SDA  
A
C
K
A
C
K
A
2
A
1
A
0
S
1
0
0
1
0
0
0
0
0
0
0
0
W
(see Section 4.1.1)  
Address Byte  
TA Pointer  
PIC18FXXX  
PIC18FXXX  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCL  
A
C
K
A
C
K
N
A
K
A
2
A
1
A
0
0
0
0
1
1
S
1
0
0
1
R
0
0
1
0
1
0
0
0
0
0
0
P
SDA  
Address Byte  
LSB Data  
MSB Data  
Master  
Master  
PIC18FXXX  
FIGURE 5-3:  
Timing Diagram for Reading +25.25°C Temperature from the TA Register (See  
Section 5.3.1 “Ambient Temperature Register (TA)”).  
2010 Microchip Technology Inc.  
DS21909D-page 17  
MCP9800/1/2/3  
5.3.2  
SENSOR CONFIGURATION  
REGISTER (CONFIG)  
The MCP9800/1/2/3 has an 8-bit read/write  
Configuration register that allows the user to select the  
different features. These features include shutdown,  
ALERT output select as comparator or interrupt output,  
ALERT output polarity, fault queue cycle, temperature  
measurement resolution and One-shot mode (single  
conversion while in shutdown). These functions are  
described in detail in the following sections.  
REGISTER 5-3:  
R/W-0  
CONFIGURATION REGISTER (CONFIG) – ADDRESS <0000 0001>b  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
One-Shot  
Resolution  
Fault Queue  
ALERT  
Polarity  
COMP/INT  
Shutdown  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
ONE-SHOT bit  
1= Enabled  
0= Disabled (Power-up default)  
bit 5-6  
 ADC RESOLUTION bits  
00= 9 bit or 0.5°C (Power-up default)  
01= 10 bit or 0.25°C  
10= 11 bit or 0.125°C  
11= 12 bit or 0.0625°C  
bit 3-4  
FAULT QUEUE bits  
00= 1 (Power-up default)  
01= 2  
10= 4  
11= 6  
bit 2  
bit 1  
bit 0  
ALERT POLARITY bit  
1= Active-high  
0= Active-low (Power-up default)  
COMP/INT bit  
1= Interrupt mode  
0= Comparator mode (Power-up default)  
SHUTDOWN bit  
1= Enable  
0= Disable (Power-up default)  
DS21909D-page 18  
2010 Microchip Technology Inc.  
MCP9800/1/2/3  
• Writing to the CONFIG Register to change the resolution to 0.0625°C <0110 0000>b.  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCL  
SDA  
A
C
K
A
C
K
A
2
A
1
A
0
S
1
0
0
1
W
0
0
0
0
0
0
0
1
Address Byte  
CONFIG Pointer  
PIC18FXXX  
PIC18FXXX  
1
2
3
4
5
6
7
8
1
A
C
K
0
1
1
0
0
P
0
0
0
MSB Data  
PIC18FXXX  
• Reading the CONFIG Register.  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
Note:  
It is not necessary to  
select the Register  
Pointer if it was set  
from the previous read/  
write  
SCL  
SDA  
A
A
C
K
A
2
A
1
A
0
C
S
1
0
0
1
0
0
0
0
0
0
0
1
W
K
(see Section 4.1.1).  
Address Byte  
CONFIG Pointer  
PIC18FXXX  
PIC18FXXX  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCL  
A
C
K
N
A
K
A
2
A
1
A
0
S
1
0
0
1
R
0
1
1
0
0
0
0
0
P
SDA  
Address Byte  
Data  
PIC18FXXX  
FIGURE 5-4:  
Timing Diagram for Writing and Reading from the Configuration Register (See  
Section 5.3.2 “Sensor Configuration Register (CONFIG)”).  
2010 Microchip Technology Inc.  
DS21909D-page 19  
MCP9800/1/2/3  
5.3.3  
TEMPERATURE HYSTERESIS  
REGISTER (THYST  
The MCP9800/1/2/3 has  
)
a
16-bit read/write  
Temperature Hysteresis register that contains a 9-bit  
data in two’s compliment format. This register is used  
to set a hysteresis for the TSET limit. Therefore, the data  
represents a minimum temperature limit. If the ambient  
temperature drifts below the specified limit, the  
MCP9800/1/2/3 asserts an alert output (refer to  
Section 5.3.4.3 “ALERT Output Configuration”).  
This register uses the nine Most Significant bits (MSbs)  
and all other bits are “don’t cares”.  
The power-up default value of THYST register is 75°C,  
or <0100 1011 0>bin binary.  
REGISTER 5-4:  
Upper Half:  
R/W-0  
TEMPERATURE HYSTERESIS REGISTER (THYST) – ADDRESS <0000 0010>b  
R/W-1  
26 °C  
R/W-0  
25 °C  
R/W-0  
24 °C  
R/W-1  
23 °C  
R/W-0  
22 °C  
R/W-1  
21 °C  
R/W-1  
20 °C  
Sign  
bit 15  
bit 8  
Lower Half:  
R/W-0  
R-0  
0
R-0  
0
R-0  
0
R-0  
0
R-0  
0
R-0  
0
R-0  
0
2
-1 °C  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS21909D-page 20  
2010 Microchip Technology Inc.  
MCP9800/1/2/3  
• Writing to the THYST Register to set the temperature hysteresis to 95°C <0101 1111 0000 0000>b.  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCL  
SDA  
A
C
K
A
C
K
A
2
A
1
A
0
S
1
0
0
1
W
0
0
0
0
0
0
1
0
Address Byte  
THYST Pointer  
PIC18FXXX  
PIC18FXXX  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
A
C
K
A
C
K
0
1
0
1
1
P
1
1
1
0
0
0
0
0
0
0
0
MSB Data  
LSB Data  
PIC18FXXX  
PIC18FXX  
• Reading the THYST Register.  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
Note:  
It is not necessary to  
select the Register  
Pointer if it was set  
from the previous read/  
write  
SCL  
SDA  
A
A
C
K
A
2
A
1
A
0
C
S
1
0
0
1
0
0
0
0
0
0
1
0
W
K
(see Section 4.1.1).  
Address Byte  
THYST Pointer  
PIC18FXXX  
PIC18FXXX  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCL  
A
C
K
A
C
K
N
A
K
A
2
A
1
A
0
S
1
0
0
1
R
0
1
0
1
1
1
1
1
0
0
0
0
0
0
0
0
P
SDA  
Address Byte  
LSB Data  
MSB Data  
Master  
Master  
PIC18FXXX  
FIGURE 5-5:  
Timing Diagram for Writing and Reading from the Temperature Hysteresis Register  
(See Section 5.3.3 “Temperature Hysteresis Register (THYST)”).  
2010 Microchip Technology Inc.  
DS21909D-page 21  
MCP9800/1/2/3  
5.3.4  
TEMPERATURE LIMIT-SET  
REGISTER (TSET  
)
The MCP9800/1/2/3 has  
a
16-bit read/write  
Temperature Limit-Set register (TSET) which contains a  
9-bit data in two’s compliment format. This data  
represents a maximum temperature limit. If the ambient  
temperature exceeds this specified limit, the  
MCP9800/1/2/3 asserts an alert output. (Refer to  
Section 5.3.4.3 “ALERT Output Configuration”).  
This register uses the nine Most Significant bits (MSbs)  
and all other bits are “don’t cares”.  
The power-up default value of the TSET register is  
80°C, or <0101 0000 0>b in binary.  
REGISTER 5-5:  
Upper Half:  
R/W-0  
TEMPERATURE LIMIT-SET REGISTER (TSET) – ADDRESS <0000 0011>b  
R/W-1  
26 °C  
R/W-0  
25 °C  
R/W-1  
24 °C  
R/W-0  
23 °C  
R/W-0  
22 °C  
R/W-0  
21 °C  
R/W-0  
20 °C  
Sign  
bit 15  
bit 8  
Lower Half:  
R/W-0  
R-0  
0
R-0  
0
R-0  
0
R-0  
0
R-0  
0
R-0  
0
R-0  
0
2
-1 °C  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS21909D-page 22  
2010 Microchip Technology Inc.  
MCP9800/1/2/3  
• Writing to the TSET Register to set the temperature limit to 90°C, <0101 1010 0000 0000>b  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCL  
SDA  
A
C
K
A
C
K
A
2
A
1
A
0
S
1
0
0
1
W
0
0
0
0
0
0
1
1
Address Byte  
TSET Pointer  
PIC18FXXX  
PIC18FXXX  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
A
C
K
A
C
K
0
1
0
1
1
P
0
1
0
0
0
0
0
0
0
0
0
MSB Data  
LSB Data  
PIC18FXXX  
PIC18FXX  
• Reading the TSET Register.  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
Note:  
It is not necessary to  
select the Register  
Pointer if it was set  
from the previous read/  
write.  
SCL  
SDA  
A
A
C
K
A
2
A
1
A
0
C
S
1
0
0
1
0
0
0
0
0
0
1
1
W
K
(see Section 4.1.1)  
Address Byte  
TSET Pointer  
PIC18FXXX  
PIC18FXXX  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCL  
A
C
K
A
C
K
N
A
K
A
2
A
1
A
0
S
1
0
0
1
R
0
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
P
SDA  
Address Byte  
LSB Data  
MSB Data  
Master  
Master  
PIC18FXXX  
FIGURE 5-6:  
Timing Diagram for Writing and Reading from the Temperature Limit-set Register  
(See Section 5.3.4 “Temperature Limit-Set Register (TSET)”).  
2010 Microchip Technology Inc.  
DS21909D-page 23  
MCP9800/1/2/3  
5.3.4.1  
Shutdown Mode  
5.3.4.3  
ALERT Output Configuration  
The Shutdown mode disables all power-consuming  
activities (including temperature sampling operations)  
while leaving the serial interface active. The device  
consumes 2 µA (maximum) in this mode. It remains in  
this mode until the Configuration register is updated to  
enable continuous conversion or until power is  
recycled.  
The ALERT output can be configured as either a  
comparator output or as Interrupt Output mode using  
bit 1 of CONFIG. The polarity can also be specified as  
an active-high or active-low using bit 2 of CONFIG. The  
following sections describe each output mode, while  
Figure 5-7 gives a graphical description.  
5.3.4.4  
Comparator Mode  
In Shutdown mode, the CONFIG, TA, TSET and THYST  
registers can be read or written to; however, the serial  
bus activity will increase the shutdown current.  
In Comparator mode, the ALERT output is asserted  
when TA is greater than TSET. The pin remains active  
until TA is lower than THYST. The Comparator mode is  
useful for thermostat-type applications, such as turning  
on a cooling fan or triggering a system shutdown when  
the temperature exceeds a safe operating range.  
5.3.4.2  
One-Shot Mode  
The MCP9800/1/2/3 can also be used in a One-shot  
mode that can be selected using bit 7 of the CONFIG  
register. The One-shot mode performs a single  
temperature measurement and returns to Shutdown  
mode. This mode is especially useful for low-power  
applications where temperature is measured upon  
command from a controller. For example, a 9-bit TA in  
One-shot mode consumes 200 µA (typical) for 30 ms  
and 0.1 µA (typical) during shutdown.  
In Comparator mode, if the device enters the Shutdown  
mode with asserted ALERT output, the output remains  
active during shutdown. The device must be operating  
in continuous conversion, with TA below THYST, for the  
ALERT output to be deasserted.  
5.3.4.5  
Interrupt Mode  
In Interrupt mode, the ALERT output is asserted when  
TA is greater than TSET. However, the output is  
deasserted when the user performs a read from any  
register. This mode is designed for interrupt-driven,  
microcontroller-based systems. The microcontroller  
receiving the interrupt will have to acknowledge the  
interrupt by reading any register from the MCP9800/1/  
2/3. This will clear the interrupt and the ALERT pin will  
become deasserted. When TA drifts below THYST, the  
MCP9800/1/2/3 outputs another interrupt and the  
controller needs to read a register to deassert the  
ALERT output. Shutting down the device will also reset,  
or deassert, the ALERT output.  
To access this feature, the device needs to initially be  
in Shutdown mode. This is done by sending a byte to  
the CONFIG register with bit 0 set <1> and bit 7 cleared  
<0>. Once the device is in Shutdown mode, the  
CONFIG register needs to be written to again, with bit  
0 and bit 7 set <1>. This begins the single conversion  
cycle of tCONV, 30ms for 9-bit data. Once the  
conversion is completed, TA is updated and bit 7 of  
CONFIG becomes cleared <0> by the MCP9800/1/2/3.  
TABLE 5-2:  
SHUTDOWN AND ONE-SHOT  
MODE DESCRIPTION  
One-Shot Shutdown  
Operational Mode  
(Bit 7)  
(Bit 0)  
TSET  
Continuous Conversion  
Shutdown  
0
0
1
0
1
0
TA  
Continuous Conversion  
(One-shot is ignored)  
THYST  
One-shot (Note 1)  
1
1
Note 1: The shutdown command <01> needs to  
be programmed before sending a  
one-shot command <11>.  
ALERT  
Comparator mode  
Active-low  
ALERT  
Interrupt mode  
Active-low  
Register  
Read  
*
* See Section 5.3.4.5 “Interrupt Mode”  
FIGURE 5-7:  
Alert Output.  
DS21909D-page 24  
2010 Microchip Technology Inc.  
MCP9800/1/2/3  
5.3.4.6  
Fault Queue  
5.4  
Summary of Power-up Condition  
The fault queue feature can be used as a filter to lessen  
the probability of spurious activation of the ALERT pin.  
TA must remain above TSET for the consecutive  
number of conversion cycles selected using the Fault  
Queue bits. Bit 3 and bit 4 of CONFIG can be used to  
select up to six fault queue cycles. For example, if six  
fault queues are selected, TA must be greater than  
TSET for six consecutive conversions before ALERT is  
asserted as a comparator or an interrupt output.  
The MCP9800/1/2/3 has an internal Power-on Reset  
(POR) circuit. If the power supply voltage VDD glitches  
down to the 1.7V (typical) threshold, the device resets  
the registers to the power-up default settings.  
Table 5-4 shows the power-up default summary.  
TABLE 5-4:  
Register  
POWER-UP DEFAULTS  
Data  
Power-up Defaults  
(Hex)  
This queue setting also applies for THYST. If six fault  
queues are selected, TA must remain below THYST for  
six consecutive conversions before ALERT is  
deasserted (Comparator mode) or before another  
interrupt is asserted (Interrupt mode).  
TA  
0000  
A000  
9600  
00  
0°C  
80°C  
TSET  
THYST  
Pointer  
75°C  
Temperature register  
5.3.4.7  
 ADC Resolution  
Continuous Conversion  
Comparator mode  
Active-low Output  
Fault Queue 1  
The MCP9800/1/2/3 provides access to select the ADC  
resolution from 9-bit to 12-bit (0.5°C to 0.0625°C  
resolution) using bit 6 and bit 5 of the CONFIG register.  
The user can gain better insight into the trends and  
characteristics of the ambient temperature by using a  
finer resolution. Increasing the resolution also reduces  
the quantization error. Figure 2-3 shows accuracy  
versus resolution.  
CONFIG  
00  
9-bit Resolution  
At power-up, the MCP9800/1/2/3 has an inherent 2 ms  
(typical) power-up delay before updating the registers  
with default values and start a conversion cycle. This  
delay reduces register corruption due to unsettled  
power. After power-up, it takes tCONV for the TCN75A  
to update the TA register with valid temperature data.  
Table 5-3 shows the TA register conversion time for the  
corresponding resolution.  
TABLE 5-3:  
RESOLUTION AND  
CONVERSION TIME  
Bits  
Resolution  
tCONV (typical)  
9
0.5  
0.25  
30 ms  
60 ms  
10  
11  
12  
0.125  
0.0625  
120 ms  
240 ms  
2010 Microchip Technology Inc.  
DS21909D-page 25  
MCP9800/1/2/3  
NOTES:  
DS21909D-page 26  
2010 Microchip Technology Inc.  
MCP9800/1/2/3  
The ALERT output can be wired with a number of other  
open-drain devices. In such applications, the output  
needs to be programmed as an active-low output. Most  
systems will require pull-up resistors for this  
configuration.  
6.0  
6.1  
APPLICATIONS INFORMATION  
Connecting to the Serial Bus  
The SDA and SCL serial interface are open-drain pins  
that require pull-up resistors. This configuration is  
shown in Figure 6-1.  
6.3  
Layout Considerations  
The MCP9800/1/2/3 does not require any additional  
components besides the master controller in order to  
measure temperature. However, it is recommended  
that a decoupling capacitor of 0.1 µF to 1 µF be used  
between the VDD and GND pins. A high-frequency  
ceramic capacitor is recommended. It is necessary for  
the capacitor to be located as close as possible to the  
power pins in order to provide effective noise  
protection.  
VDD  
MCP9800/1/2/3  
R
R
SDA  
SCL  
PIC®  
MCU  
For applications where a switching regulator is used to  
power the sensor, it is recommended to add a 200Ω  
resistor in series to VDD to filter out the switcher noise  
from the sensor. It is also recommended to add the  
series resistor in applications where a linear regulator  
is used to step-down a switching regulator voltage to  
power the sensor. For example, if a linearly regulated  
3.3V from a 5V switching regulator is used to power the  
sensor, add a 200series resistor (refer to Figure 6-3).  
FIGURE 6-1:  
Interface.  
Pull-up Resistors on Serial  
The MCP9800/1/2/3 is designed to meet 0.4V  
(maximum) voltage drop at 3 mA of current. This allows  
the MCP9800/1/2/3 to drive lower values of pull-up  
resistors and higher bus capacitance. In this  
application, all devices on the bus must meet the same  
pull-down current requirements.  
MCP9800/1/2/3  
200  
Switching  
Regulator  
VDD  
6.2  
Typical Application  
0.1 µF  
bypass  
Microchip provides several microcontroller product  
lines with Master Synchronous Serial Port modules  
(MSSP) that include the I2C interface mode. This  
module implements all master and slave functions and  
simplifies the firmware development overhead.  
Figure 6-2 shows a typical application using the  
PIC16F737 as a master to control other Microchip  
slave products, such as EEPROM, fan speed  
controllers and the MCP9800 temperature sensor  
connected to the bus.  
MCP9800/1/2/3  
200  
Switching  
Regulator  
Linear  
Regulator  
VDD  
0.1 µF  
bypass  
FIGURE 6-3:  
Single Resistor.  
Power-supply Filter Using a  
6.4  
Thermal Considerations  
SDA  
SCL  
The MCP9800/1/2/3 measures temperature by  
monitoring the voltage of a diode located in the die. A  
low-impedance thermal path between the die and the  
Printed Circuit Board (PCB) is provided by the pins.  
Therefore, the MCP9800/1/2/3 effectively monitors the  
temperature of the PCB. However, the thermal path for  
the ambient air is not as efficient because the plastic  
device package functions as a thermal insulator.  
PIC16F737  
Microcontroller  
24LC01  
EEPROM  
TC654  
Fan Speed  
Controller  
TCN75A  
Temperature  
Sensor  
A potential for self-heating errors can exist if the  
MCP9800/1/2/3 SDA and SCL communication lines  
are heavily loaded with pull-ups. Typically, the  
self-heating error is negligible because of the relatively  
small current consumption of the MCP9800/1/2/3.  
However, in order to maximize the temperature  
accuracy, the SDA and SCL pins need to be lightly  
loaded.  
FIGURE 6-2:  
Bus.  
Multiple Devices on I2C™  
2010 Microchip Technology Inc.  
DS21909D-page 27  
MCP9800/1/2/3  
NOTES:  
DS21909D-page 28  
2010 Microchip Technology Inc.  
MCP9800/1/2/3  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Lead SOT-23  
Example:  
MCP9800  
Part Number  
Part Number  
MCP9802  
XXNN  
MCP9800A0T-M/OT  
MCP9800A1T-M/OT  
MCP9800A2T-M/OT  
MCP9800A3T-M/OT  
MCP9800A4T-M/OT  
MCP9800A5T-M/OT  
MCP9800A6T-M/OT  
MCP9800A7T-M/OT  
LDNN  
LENN  
LFNN  
LGNN  
LHNN  
LJNN  
LKNN  
LLNN  
MCP9802A0T-M/OT  
MCP9802A1T-M/OT  
MCP9802A2T-M/OT  
MCP9802A3T-M/OT  
MCP9802A4T-M/OT  
MCP9802A5T-M/OT  
MCP9802A6T-M/OT  
MCP9802A7T-M/OT  
JKNN  
JLNN  
JMNN  
JPNN  
JQNN  
JRNN  
JSNN  
JTNN  
Example:  
8-Lead MSOP  
9803M  
044256  
XXXXX  
YWWNNN  
8-Lead SOIC (150 mil)  
Example:  
XXXXXXXX  
XXXXYYWW  
MCP9803  
SN1044  
NNN  
256  
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
3
e
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2010 Microchip Technology Inc.  
DS21909D-page 29  
MCP9800/1/2/3  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢏꢒꢖꢆꢗꢍꢏꢒꢁꢘꢙꢚ  
ꢛꢔꢊꢃꢜ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
ꢬꢆꢃꢍꢇꢕꢭꢮꢮꢭꢕꢌꢣꢌꢯꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉꢮꢃꢄꢃꢍꢇ  
ꢕꢭꢰ  
ꢰꢱꢕ  
ꢕꢛꢲ  
ꢰꢐꢄꢳꢅꢓꢉꢈꢑꢉꢪꢃꢆꢇꢰ  
ꢮꢅꢊꢋꢉꢪꢃꢍꢎꢒ  
ꢗꢁꢴꢟꢉꢠꢜꢡ  
ꢱꢐꢍꢇꢃꢋꢅꢉꢮꢅꢊꢋꢉꢪꢃꢍꢎꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢵꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢹꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢹꢃꢋꢍꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢮꢅꢆꢚꢍꢒ  
ꢧꢈꢈꢍꢉꢮꢅꢆꢚꢍꢒ  
ꢧꢈꢈꢍꢔꢓꢃꢆꢍ  
ꢧꢈꢈꢍꢉꢛꢆꢚꢏꢅ  
ꢮꢅꢊꢋꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢮꢅꢊꢋꢉꢹꢃꢋꢍꢒ  
ꢅꢀ  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
ꢀꢁꢴꢗꢉꢠꢜꢡ  
ꢗꢁꢴꢗ  
ꢗꢁꢷꢴ  
ꢗꢁꢗꢗ  
ꢘꢁꢘꢗ  
ꢀꢁꢸꢗ  
ꢘꢁꢙꢗ  
ꢗꢁꢀꢗ  
ꢗꢁꢸꢟ  
ꢗꢻ  
ꢀꢁꢞꢟ  
ꢀꢁꢸꢗ  
ꢗꢁꢀꢟ  
ꢸꢁꢘꢗ  
ꢀꢁꢷꢗ  
ꢸꢁꢀꢗ  
ꢗꢁꢺꢗ  
ꢗꢁꢷꢗ  
ꢸꢗꢻ  
ꢮꢀ  
ꢗꢁꢗꢷ  
ꢗꢁꢘꢗ  
ꢗꢁꢘꢺ  
ꢗꢁꢟꢀ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀꢘꢙꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀꢞꢁꢟꢕꢁ  
ꢠꢜꢡꢢ ꢠꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉꢣꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏꢤꢉꢅꢖꢊꢎꢍꢉꢥꢊꢏꢐꢅꢉꢇꢒꢈꢦꢆꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ ꢎꢒꢆꢈꢏꢈꢚꢤ ꢂꢓꢊꢦꢃꢆꢚ ꢡꢗꢞꢼꢗꢴꢀꢠ  
DS21909D-page 30  
2010 Microchip Technology Inc.  
MCP9800/1/2/3  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010 Microchip Technology Inc.  
DS21909D-page 31  
MCP9800/1/2/3  
ꢝꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢞꢋꢌꢓꢔꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢇꢄꢌꢟꢄꢠꢃꢆꢕꢞꢍꢖꢆꢗꢞꢍꢏꢇꢚ  
ꢛꢔꢊꢃꢜ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
D
N
E
E1  
NOTE 1  
2
b
1
e
c
φ
A2  
A
L
L1  
A1  
ꢬꢆꢃꢍꢇꢕꢭꢮꢮꢭꢕꢌꢣꢌꢯꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉꢮꢃꢄꢃꢍꢇ  
ꢕꢭꢰ  
ꢰꢱꢕ  
ꢕꢛꢲ  
ꢰꢐꢄꢳꢅꢓꢉꢈꢑꢉꢪꢃꢆꢇꢰ  
ꢪꢃꢍꢎꢒ  
ꢗꢁꢺꢟꢉꢠꢜꢡ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢵꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑꢉ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢹꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢹꢃꢋꢍꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢮꢅꢆꢚꢍꢒ  
ꢧꢈꢈꢍꢉꢮꢅꢆꢚꢍꢒ  
ꢗꢁꢙꢟ  
ꢗꢁꢗꢗ  
ꢗꢁꢷꢟ  
ꢀꢁꢀꢗ  
ꢗꢁꢴꢟ  
ꢗꢁꢀꢟ  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
ꢞꢁꢴꢗꢉꢠꢜꢡ  
ꢸꢁꢗꢗꢉꢠꢜꢡ  
ꢸꢁꢗꢗꢉꢠꢜꢡ  
ꢗꢁꢺꢗ  
ꢗꢁꢞꢗ  
ꢗꢁꢷꢗ  
ꢧꢈꢈꢍꢔꢓꢃꢆꢍ  
ꢧꢈꢈꢍꢉꢛꢆꢚꢏꢅ  
ꢮꢀ  
ꢗꢁꢴꢟꢉꢯꢌꢧ  
ꢗꢻ  
ꢷꢻ  
ꢮꢅꢊꢋꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢮꢅꢊꢋꢉꢹꢃꢋꢍꢒ  
ꢗꢁꢗꢷ  
ꢗꢁꢘꢘ  
ꢗꢁꢘꢸ  
ꢗꢁꢞꢗ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ ꢪꢃꢆꢉꢀꢉꢥꢃꢇꢐꢊꢏꢉꢃꢆꢋꢅꢖꢉꢑꢅꢊꢍꢐꢓꢅꢉꢄꢊꢤꢉꢥꢊꢓꢤꢩꢉꢳꢐꢍꢉꢄꢐꢇꢍꢉꢳꢅꢉꢏꢈꢎꢊꢍꢅꢋꢉꢦꢃꢍꢒꢃꢆꢉꢍꢒꢅꢉꢒꢊꢍꢎꢒꢅꢋꢉꢊꢓꢅꢊꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀꢟꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢸꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀꢞꢁꢟꢕꢁ  
ꢠꢜꢡꢢ ꢠꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉꢣꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏꢤꢉꢅꢖꢊꢎꢍꢉꢥꢊꢏꢐꢅꢉꢇꢒꢈꢦꢆꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢯꢌꢧꢢ ꢯꢅꢑꢅꢓꢅꢆꢎꢅꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢩꢉꢐꢇꢐꢊꢏꢏꢤꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢩꢉꢑꢈꢓꢉꢃꢆꢑꢈꢓꢄꢊꢍꢃꢈꢆꢉꢔꢐꢓꢔꢈꢇꢅꢇꢉꢈꢆꢏꢤꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ ꢎꢒꢆꢈꢏꢈꢚꢤ ꢂꢓꢊꢦꢃꢆꢚ ꢡꢗꢞꢼꢀꢀꢀꢠ  
DS21909D-page 32  
2010 Microchip Technology Inc.  
MCP9800/1/2/3  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010 Microchip Technology Inc.  
DS21909D-page 33  
MCP9800/1/2/3  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS21909D-page 34  
2010 Microchip Technology Inc.  
MCP9800/1/2/3  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010 Microchip Technology Inc.  
DS21909D-page 35  
MCP9800/1/2/3  
ꢝꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢛꢖꢆꢡꢆꢛꢄꢓꢓꢔꢢꢣꢆꢙꢤꢥꢦꢆꢎꢎꢆꢧꢔꢅꢨꢆꢗꢍꢏꢩꢪꢚ  
ꢛꢔꢊꢃꢜ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
DS21909D-page 36  
2010 Microchip Technology Inc.  
MCP9800/1/2/3  
APPENDIX A: REVISION HISTORY  
Revision D (November 2010)  
The following is the list of modifications:  
1. Updated Table 3-2 to include all available I2C  
address options for the MCP9800/02.  
2. Added more package markings examples to the  
table in Section 7.1 “Package Marking  
Information”.  
3. Updated the Product Identification System  
section.  
Revision C (September 2010)  
The following is the list of modifications:  
1. Updated Section 6.3 “Layout Considerations”.  
2. Updated package markings drawings.  
3. Removed lead free designation letter G from  
Section 7.0 “Packaging Information” and  
from the Product Identification System page. All  
devices are lead free.  
4. Added Appendix A: Revision History  
Revision B (May 2008)  
The following is the list of modifications:  
1. Added lead free designation letter  
G in  
Section 7.0 “Packaging Information” and in  
the Product Identification System page.  
Revision A (October 2004)  
• Original Release of this Document.  
2010 Microchip Technology Inc.  
DS21906D-page 37  
MCP9800/1/2/3  
NOTES:  
DS21906D-page 38  
2010 Microchip Technology Inc.  
MCP9800/1/2/3  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
XX  
X
–X  
/XX  
a)  
MCP9800A0T-M/OT Slave address ‘000’,  
Slave Tape & Reel Temperature Package  
Address  
Tape and Reel,  
-55C to +125C,  
SOT-23 package.  
Range  
b)  
MCP9800A5T-M/OT Slave address ‘101’,  
Tape and Reel,  
Device:  
MCP9800: Temperature Sensor  
MCP9801: Temperature Sensor  
MCP9802: Temperature Sensor  
MCP9803: Temperature Sensor  
-55C to +125C,  
SOT-23 package.  
a)  
b)  
MCP9801-M/MS  
MCP9801T-M/MS  
-55C to +125C,  
8LD MSOP package.  
Tape and Reel, -55C  
to +125C,  
A0 = Slave address set to ‘000’  
A1 = Slave address set to ‘001’  
A2 = Slave address set to ‘010’  
A3 = Slave address set to ‘011’  
A4 = Slave address set to ‘100’  
A5 = Slave address set to ‘101’  
A6 = Slave address set to ‘110’  
A7 = Slave address set to ‘111’  
8LD MSOP package.  
-55C to +125C,  
8LD SOIC package.  
Tape and Reel, -55C  
to +125C,  
c)  
d)  
MCP9801-M/SN  
MCP9801T-M/SN  
8LD SOIC package.  
a)  
b)  
MCP9802A0T-M/OT Slave address ‘000’,  
Tape and Reel, -55C  
to +125C, SOT-23  
package.  
MCP9802A5T-M/OT Slave address ‘101’,  
Tape and Reel, -55C  
to +125C, SOT-23  
package.  
Tape and Reel:  
=
=
Blank  
Tape and Reel  
T
   
-55 C to +125 C  
Temperature Range:  
Package:  
M
=
a)  
b)  
MCP9803-M/MS  
MCP9803T-M/MS  
-55C to +125C,  
OT  
MS  
SN  
=
=
=
Plastic Small Outline Transistor (SOT-23), 5-lead  
Plastic Micro Small Outline (MSOP), 8-lead  
Plastic SOIC, (150 mil Body), 8-lead  
8LD MSOP package.  
Tape and Reel, -55C  
to +125C,  
8LD MSOP package.  
-55C to +125C,  
8LD SOIC package.  
Tape and Reel, -55C  
to +125C,  
c)  
d)  
MCP9803-M/SN  
MCP9803T-M/SN  
8LD SOIC package.  
2010 Microchip Technology Inc.  
DS21909D-page 39  
MCP9800/1/2/3  
NOTES:  
DS21909D-page 40  
2010 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
32  
PIC logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,  
TSHARC, UniWinDriver, WiperLock and ZENA are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2010, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-60932-662-3  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
2010 Microchip Technology Inc.  
DS21909D-page 41  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Fax: 886-7-330-9305  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
08/04/10  
DS21909D-page 42  
2010 Microchip Technology Inc.  

相关型号:

MCP9803T-M/SNG

2-Wire High-Accuracy Temperature Sensor
MICROCHIP

MCP9804

±0.25°C Typ. Accuracy Digital Temperature Sensor
MICROCHIP

MCP9804-E/MC

±0.25°C Typ. Accuracy Digital Temperature Sensor
MICROCHIP

MCP9804-E/MCBBB

Serial Switch/Digital Sensor, 16 Bit(s), 1Cel, Rectangular, Surface Mount
MICROCHIP

MCP9804-E/MS

±0.25°C Typ. Accuracy Digital Temperature Sensor
MICROCHIP

MCP9804T

±0.25°C Typ. Accuracy Digital Temperature Sensor
MICROCHIP

MCP9804T-E/MC

±0.25°C Typ. Accuracy Digital Temperature Sensor
MICROCHIP

MCP9804T-E/MCBBB

Serial Switch/Digital Sensor, 16 Bit(s), 1Cel, Rectangular, Surface Mount
MICROCHIP

MCP9804T-E/MCVAO

Serial Switch/Digital Sensor, 16 Bit(s), 1Cel, Rectangular, Surface Mount
MICROCHIP

MCP9804T-E/MS

±0.25°C Typ. Accuracy Digital Temperature Sensor
MICROCHIP

MCP9804T-E/MSBBB

Serial Switch/Digital Sensor, 16 Bit(s), 1Cel, Square, Surface Mount
MICROCHIP

MCP9805

Memory Module Digital Temperature Sensor
MICROCHIP