MIC2204YMMTR [MICROCHIP]

2A SWITCHING REGULATOR, 2200kHz SWITCHING FREQ-MAX, PDSO10, LEAD FREE, MSOP-10;
MIC2204YMMTR
型号: MIC2204YMMTR
厂家: MICROCHIP    MICROCHIP
描述:

2A SWITCHING REGULATOR, 2200kHz SWITCHING FREQ-MAX, PDSO10, LEAD FREE, MSOP-10

开关 光电二极管
文件: 总11页 (文件大小:150K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC2204  
Micrel, Inc.  
MIC2204  
High-Efficiency 2MHz Synchronous Buck Converter  
General Description  
Features  
The Micrel MIC2204 is a high-efficiency, 2MHz PWM syn-  
chronous buck switching regulator. Power conversion effi-  
ciency of above 95% is easily obtainable over a wide range  
of applications. A proprietary internal compensation tech-  
nique ensures stability with the smallest possible inductor  
and ceramic output capacitor.  
• Input voltage range: 2.3V to 5.5V  
• Output down to 1V/ 600mA  
• 2MHz PWM operation  
• Ultra-fast transient response (typical 200kHz GBW)  
• Internal compensation  
• All ceramic capacitors  
• >95% efficiency  
The MIC2204 operates from 2.3V to 5.5V input and features  
internal power MOSFETs that can supply over 600mA of  
outputcurrentwithoutputvoltagesdownto1V. TheMIC2204  
implementsaconstant2MHzpulse-width-modulation(PWM)  
controlschemewhichreducesspuriousnoiseinsensitiveRF  
and communication applications. Additionally, the MIC2204  
canbesynchronizedtoanexternalclock,ormultipleMIC2204s  
can easily be daisy-chained with the SYNCLOCK feature.  
TheMIC2204hasahighbandwidthloop(typ. 200kHz) which  
allows ultra-fast transient response times. This is very useful  
when powering applications that require fast dynamic re-  
sponses, such as the CPU cores and RF circuitry in high-  
performance cellular phones and PDAs.  
• Fully integrated MOSFET switches  
• Easily synchronized to external clock  
• SYNCLOCK feature to daisy-chain multiple 2204s  
• <340µA quiescent current  
• Logic controlled micropower shutdown  
• Thermal shutdown and current limit protection  
• 10-pin MSOP and 3mm×3mm MLF™-10L  
• –40°C to +125°C junction temperature range  
Applications  
• High-efficiency portable power  
• Cellular phones  
The MIC2204 is available in 10-pin MSOP and 3mm × 3mm  
MLF™-10L package options with an operating junction tem-  
perature range from –40°C to 125°C .  
• PDAs  
• 802.11 WLAN power supplies  
• RF power supplies  
• Li Ion battery powered applications  
Typical Application  
Efficiency  
4.7µH  
vs. Output Current  
3.3V  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
500mA  
MIC2204BMM  
1
2
3
4
5
10  
9
4.2VIN  
5VIN  
3.6VIN  
2.3V to 6V  
SYNC_IN  
SYNC_OUT  
EN  
4.7µF  
8
7
6
10nF  
3.3VOUT  
0
100 200 300 400 500  
OUTPUT CURRENT (mA)  
Adjustable Output Synchronous Buck Converter  
MLF and MicroLeadFrame are trademarks of Amkor Technology, Inc.  
Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
M9999-042205  
April 2005  
1
MIC2204  
Micrel, Inc.  
Ordering Information  
Part Number  
MIC2204BMM  
MIC2204YMM  
MIC2204BML  
MIC2204YML  
Voltage  
Junction Temp. Range  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
Package  
Lead Finish  
Standard  
Lead-Free  
Standard  
Lead-Free  
Adjustable  
Adjustable  
Adjustable  
Adjustable  
10-pin MSOP  
10-pin MSOP  
10-pin MLF™  
10-pin MLF™  
Pin Configuration  
SW  
VIN  
1
2
3
4
5
10 GND  
SW  
VIN  
1
2
3
4
5
10 GND  
9
8
7
6
GND  
GND  
BIAS  
FB  
GND  
GND  
BIAS  
9
8
7
6
SYNC_IN  
SYNC_OUT  
EN  
SYNC_IN  
SYNC_OUT  
EN  
FB  
MSOP-10 (MM)  
MLF-10 (ML)  
Pin Description  
Pin Number  
Pin Name  
Pin Function  
1
2
3
SW  
VIN  
SYNC_IN  
Switch (Output): Internal power MOSFET output switches.  
Supply Voltage (Input): Requires bypass capacitor to GND.  
SYNC_IN for the MIC2204: Sync the main switching frequency to an  
external clock. Tie pin to ground if not using this function. Tying SYNC_IN  
high reduces the switching frequency to 1.6MHz (See “Applications Informa-  
tion” section).  
4
SYNC_OUT  
EN  
SYNC_OUT an open collector output to feed into SYNC_IN. Float or ground  
the SYNC_OUT pin if not using sync out function.  
5
A low level EN will power down the device, reducing the quiescent current to  
under 15µA (typ. 6.5µA).  
6
7
FB  
Input to the error amplifier, connect to the external resistor divider network to  
set the output voltage.  
BIAS  
Internal circuit bias supply, nominally 2.3V. Must be de-coupled to signal  
ground with a 0.01µF capacitor.  
8, 9, 10  
GND  
Ground.  
M9999-042205  
2
April 2005  
MIC2204  
Micrel, Inc.  
Absolute Maximum Ratings(1)  
Operating Ratings(3)  
Supply Voltage (V ) .......................................................6V  
Supply Voltage (V ) ................................... +2.3V to +5.5V  
IN  
IN  
Output Switch Voltage (V ) ..........................................6V  
Junction Temperature (T ) ................ –40°C T +125°C  
SW  
J
J
Logic Input Voltage (V , V  
)............... V to –0.3V  
Package Thermal Resistance  
EN  
SYNC_IN  
IN  
(2)  
Power Dissipation  
MSOP (θ ) .......................................................115°C/W  
JA  
3mm×3mm MLF™-10L (θ )...............................60°C/W  
Storage Temperature (T ) ....................... –65°C to +150°C  
JA  
S
Electrical Characteristics(4)  
TA = 25°C with VIN =VEN = 3.5V, unless otherwise noted. Bold values indicate –40°C < TJ < +125°C  
Parameter  
Supply Voltage Range  
Current Limit  
Condition  
Min  
2.3  
0.6  
Typ  
Max  
5.5  
2
450  
15  
Units  
V
A
µA  
µA  
V
%
%
%
VFB = 0.7V  
VFB = 1.1V  
EN = 0V  
1.2  
320  
6.0  
1.0  
0.2  
0.2  
Quiescent Current  
Feedback Voltage  
0.98  
1.02  
Output Voltage Line Regulation  
Output Voltage Load Regulation  
Maximum Duty Cycle  
VOUT = 1V, VIN = 2.3V to 5.5V, ILOAD= 100mA  
0mA < ILOAD < 500mA  
VFB = 0.7V  
100  
Switch On-Resistance  
ISW = 300mA, VFB = 0.7V  
ISW = –300mA, VFB = 1.1V  
0.72  
0.55  
2
Oscillator Frequency  
Sync Frequency Range  
SYNC_IN Threshold  
Sync Minimum Pulse Width  
SYNC_IN Input Current  
Enable Threshold  
Enable Hysteresis  
Enable Input Current  
Overtemperature Shutdown  
1.8  
1.8  
2.2  
2.5  
MHz  
MHz  
V
ns  
µA  
V
mV  
µA  
°C  
°C  
1.2  
10  
1
0.72  
20  
1
2
0.96  
0.52  
2
160  
20  
Overtemperature Shutdown  
Hysteresis  
Notes:  
1.  
2.  
3.  
4.  
Exceeding the ABSOLUTE MAXIMUM RATINGS may damage device.  
Absolute maximum power dissipation is limited by maximum junction temperature where P  
The device is not guaranteed to function outside its operating rating.  
Specification for packaged product only.  
= (T  
–T ) ÷ θ .  
J(MAX) A JA  
D(MAX)  
April 2005  
3
M9999-042205  
MIC2204  
Micrel, Inc.  
Typical Characteristics  
Efficiency  
Efficiency  
Efficiency  
vs. Output Current  
vs. Output Current  
vs. Output Current  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
4.2VIN  
95  
4VIN  
90  
4.2VIN  
85  
3.6VIN  
3.3VIN  
3.6VIN  
80  
3.5VIN  
5VIN  
75  
3VIN  
70  
65  
60  
1.8VOUT  
3.3VOUT  
55  
2.5VOUT  
50  
0
100 200 300 400 500  
OUTPUT CURRENT (mA)  
0
100 200 300 400 500  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
V
Output Voltage  
BIAS  
Output Voltage  
vs. Temperature  
vs. Output Current  
vs. Supply Voltage  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.01  
1.01  
1.005  
1
1.0075  
1.005  
1.0025  
1
0.9975  
0.995  
0.9925  
0.99  
0.995  
0.99  
VFB = 0V  
0
2
4
6
0
0.1  
0.2  
0.3  
0.4  
0.5  
-40 -20  
0
20 40 60 80 100 120  
SUPPLY VOLTAGE (V)  
OUTPUT CURRENT (A)  
TEMPERATURE (°C)  
Quiescent Current  
vs. Temperature  
Bias Supply  
Quiescent Current  
vs. Supply Voltage  
vs. Temperature  
2.32  
2.318  
2.316  
2.314  
2.312  
2.31  
350  
300  
250  
200  
150  
100  
50  
318  
316  
314  
312  
310  
308  
306  
304  
302  
300  
298  
2.308  
2.306  
2.304  
2.302  
VFB = 0V  
VIN = 3.6V  
0
-40 -20  
0
20 40 60 80 100 120  
0
1
2
3
4
5
6
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Frequency  
Enable Threshold  
vs. Temperature  
Enable Threshold  
vs. Supply Voltage  
vs. Temperature  
2.40  
2.30  
2.20  
2.10  
2.00  
1.90  
1.80  
1.70  
1.60  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Enable On  
Enable Off  
VIN = 3.6V  
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
-40 -20 0  
2.3 2.8 3.3 3.8 4.3 4.8 5.3  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
M9999-042205  
4
April 2005  
MIC2204  
Micrel, Inc.  
Functional Characteristics  
Enable Transient  
Disable Transient  
VIN = 3.6V  
VOUT = 1V  
L = 4.7µH  
C = 10µF  
VIN = 3.6V  
VOUT = 1V  
L = 4.7µH  
C = 10µF  
IOUT = 500mA  
TIME (40µs/div.)  
TIME (40µs/div.)  
Line Transient  
Load Transient  
VIN = 3.6V  
VOUT = 2V  
L = 4.7µH  
C = 4.7µF  
VOUT = 1V  
L = 4.7µH  
C = 10µF  
IOUT = 500mA  
TIME (200µs/div.)  
TIME (20µs/div.)  
Switch Node Output Ripple  
VIN = 3.6V  
IOUT = 500mA  
VOUT = 1V L = 4.7µH  
C = 10µF X5R  
TIME (400ns/div.)  
April 2005  
5
M9999-042205  
MIC2204  
Micrel, Inc.  
Block Diagram  
VIN  
CIN  
SYNC_OUT  
VIN  
Oscillator  
Ramp  
SYNC_IN  
Generator  
BIAS  
Internal  
Supply  
PWM  
Comparator  
Error  
SW  
Amplifier  
VOUT  
Driver  
COUT  
1.0V  
EN  
MIC2204  
PGND  
FB  
MIC2204 Block Diagram  
M9999-042205  
6
April 2005  
MIC2204  
Micrel, Inc.  
SYNC_OUT  
Functional Description  
Since SYNC_OUT is an open collector output that provides  
a signal equal to the internal oscillator frequency, multiple  
MIC2204s to be connected together in a master-slave con-  
figuration for frequency matching of the converters. A typical  
10kis recommended for a pull-up resistor.  
VIN  
VIN provides power to the output and to the internal bias  
supply. The supply voltage range is from 2.3V to 5.5V. A  
minimum 1µF ceramic is recommended for bypassing the  
input supply.  
BIAS  
Enable  
The bias supply is an internal 2.3V linear regulator that  
supplies the internal biasing voltage to the MIC2204. A 10nF  
ceramiccapacitorisrequiredonthispinforbypassing. Donot  
use the BIAS pin as a supply. The BIAS pin was designed to  
supply internal power and not external circuitry.  
The enable pin provides a logic level control of the output. In  
the off state, supply current of the device is greatly reduced  
(typically 6.5µA). Also, in the off state, the output drive is  
placed in a “tri-stated” condition, where both the high-side  
P-ChannelMOSFETandthelow-sideN-Channelareinanoff  
or non-conducting state. Do not drive the enable pin above  
the supply voltage.  
Feedback  
The feedback pin provides the control path to control the  
output. A resistor divider connecting the feedback to the  
output is used to adjust the desired output voltage. Refer to  
the “Feedback” material in the Applications Information”  
section for more detail.  
SYNC_IN  
SYNC_IN enables the ability to change the fundamental  
switching frequency. The SYNC_IN frequency has a mini-  
mum frequency of 1.8MHz and a maximum sync frequency  
of 2.5MHz.  
Careful attention should be paid to not driving the SYNC_IN  
pingreaterthanthesupplyvoltage.Whilethiswillnotdamage  
the device, it will cause improper operation.  
MIC2204  
“Master”  
VIN  
SW  
BIAS  
10k  
SYNC_IN  
SYNC_OUT  
FB  
MIC2204  
“Slave”  
VIN  
SW  
BIAS  
SYNC_IN  
SYNC_OUT  
FB  
Figure 1. SYNC_OUT  
April 2005  
7
M9999-042205  
MIC2204  
Micrel, Inc.  
The size requirements refer to the area and height require-  
ments that are necessary to fit a particular design. Please  
refer to the inductor dimensions on their data sheet.  
Applications Information  
Input Capacitor  
A minimum 1µF ceramic is recommended on the VIN pin for  
bypassing. X5R or X7R dielectrics are recommended for the  
input capacitor. Y5V dielectrics are not recommended: they  
lose most of their capacitance over temperature and also  
become resistive at high frequencies. This reduces their  
ability to filter out high frequency noise.  
DC resistance is also important. While DCR is inversely  
proportional to size, DCR can represent a significant effi-  
ciency loss. Refer to the Efficiency Considerations ” below  
for a more detailed description.  
Table 1 below shows a list of recommended 4.7µH inductors  
by manufacturer, part number and key specifications.  
Output Capacitor  
Bias Capacitor  
TheMIC2204wasdesignedspecificallyfortheuseofa4.7µF  
ceramic output capacitor. The output capacitor requires  
either an X7R or X5R dielectric. Y5V and Z5U dielectric  
capacitors, aside from the undesirable effect of their wide  
variation in capacitance over temperature, become resistive  
at high frequencies. Using Y5V or Z5U capacitors will cause  
instabilityintheMIC2204. Foroutputvoltageslessthan1.6V,  
a 10µF capacitor may be required for stability. See the  
“Compensation” section for more detail.  
A small 10nF ceramic capacitor is required to bypass the  
BIAS pin. The use of low ESR ceramics provides improved  
filtering for the bias supply.  
Efficiency Considerations  
Efficiency is defined as the amount of useful output power,  
divided by the amount of power consumed.  
OUT   
VOUT ×I  
Efficiency % =  
×100  
Total output capacitance should not exceed 15µF. Large  
values of capacitance can cause current limit to engage  
duringstart-up. Iflargerthan15µFisrequired, afeed-forward  
capacitor from the output to the feedback node should be  
used to slow the start-up time.  
V
IN ×IIN  
Maintaining high-efficiency serves two purposes. It reduces  
power dissipation in the power supply, reducing the need for  
heat sinks and thermal design considerations and it reduces  
consumption of current for battery powered applications.  
Reduced current draw from a battery increases the devices  
operating time, critical in handheld devices.  
Inductor Selection  
Inductor selection will be determined by the following (not  
necessarily in the order of importance):  
There are two loss terms in switching converters: DC losses  
• Inductance  
and switching losses. DC losses are simply the power dissi-  
2
• Rated current value  
pation of I R. For example, power is dissipated in the high-  
• Size requirements  
side switch during the on cycle, where power loss is equal to  
• DC resistance (DCR)  
the high-side MOSFET R  
multiplied by the Switch  
DSON  
2
The MIC2204 is designed for use with a 4.7µH inductor.  
Current . During the off cycle, the low-side N-Channel  
MOSFETconducts,alsodissipatingpower.Deviceoperating  
current also reduces efficiency. The product of the quiescent  
(operating)currentandthesupplyvoltageisanotherDCloss.  
Thecurrentrequiredtodrivethegatesonandoffataconstant  
2MHz frequency and the switching transitions make up the  
switching losses.  
Maximum current ratings of the inductor are generally given  
in two methods: permissible DC current and saturation cur-  
rent. Permissible DC current can be rated either for a 40°C  
temperature rise or a 10% loss in inductance. Ensure the  
inductor selected can handle the maximum operating cur-  
rent. When saturation current is specified, make sure that  
there is enough margin that the peak current will not saturate  
the inductor.  
Manufacturer  
Sumida  
Murata  
P/N  
H(mm)  
2
2.6  
2.2  
2.74  
W(mm)  
3.2  
3.2  
2.7  
3.8  
L(mm)  
3.2  
4.6  
3.4  
3.8  
DCR(m)  
81  
CDRH2D18-4R7  
LQH43CN4R7M01  
LQH32CN4R7M11  
1008PS-472M  
150  
195  
350  
Murata  
Coilcraft  
Low Profile  
TDK  
LDR5610T-4R7MR90  
CMD4D06  
1
0.8  
5.2  
6.3  
5.8  
5.8  
240  
216  
Sumida  
Table 1. Component Selection Table  
M9999-042205  
8
April 2005  
MIC2204  
Micrel, Inc.  
Figure 2 shows an efficiency curve. On the non-shaded  
portion, from 0 to 200mA, efficiency losses are dominated by  
quiescent current losses, gate drive and transition losses. In  
thiscase,lowersupplyvoltagesyieldgreaterefficiencyinthat  
they require less current to drive the MOSFETs and have  
reduced input power consumption.  
ingoutputvoltageregulation. Withatypicalgainbandwidthof  
200kHz, the MIC2204 is capable of extremely fast transient  
responses.  
The MIC2204 is designed to be stable with a 4.7µH inductor  
and a 4.7µF ceramic (X5R) output capacitor for output  
voltages greater than 1.6V. For output voltages less than  
1.6V, a 10µF capacitor is required. Also, when a feed forward  
capacitor is used, the gain bandwidth is increased to unity  
gain. This will also require increasing the output capacitor to  
10µF.  
Efficiency  
vs. Output Current  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
4.2VIN  
5VIN  
3.6VIN  
Feedback  
The MIC2204 provides a feedback pin to adjust the output  
voltage to the desired level. This pin connects internally to an  
error amplifier. The error amplifier then compares the voltage  
at the feedback to the internal 1V reference voltage and  
adjuststheoutputvoltagetomaintainregulation.Tocalculate  
the resistor divider network for the desired output is as  
follows:  
3.3VOUT  
0
100 200 300 400 500  
OUTPUT CURRENT (A)  
Figure 2.  
On the shaded region, 200mA to 500mA, efficiency loss is  
R1  
OUT  
V
REF  
R2 =  
dominated by MOSFET R and inductor losses. Higher  
DSON  
V
inputsupplyvoltageswillincreasetheGate-to-Sourcethresh-  
1
old on the internal MOSFETs, reducing the internal R  
.
DSON  
ThisimprovesefficiencybyreducingDClossesinthedevice.  
All but the inductor losses are inherent to the device, making  
inductor selection even more critical in efficiency calcula-  
tions. As the inductors are reduced in size, the DC resistance  
(DCR) can become quite significant. The DCR losses can be  
calculated as follows:  
Where V  
is 1.0V and V  
is the desired output voltage.  
REF  
OUT  
A10korlowerresistorvaluefromtheoutputtothefeedback  
isrecommended. Largerresistorvaluesrequireanadditional  
capacitor(feed-forward)fromtheoutputtothefeedback. The  
large high-side resistor value and the parasitic capacitance  
on the feedback pin (~10pF) can cause an additional pole in  
the loop. The additional pole can create a phase loss at  
high-frequency.Thisphaselossdegradestransientresponse  
by reducing phase margin. Adding feed-forward capacitance  
negates the parasitic capacitive effects of the feedback pin.  
A minimum 1000pF capacitor is recommended for feed-  
forward capacitance.  
2
L
=I  
x DCR  
PD OUT  
Fromthat,thelossinefficiencyduetoinductorresistancecan  
be calculated as follows:  
V
OUT  
×I  
OUT  
OUT  
OUT  
Efficiency Loss = 1  
×100  
V
×I  
+ L  
PD  
Also, largefeedbackresistorvaluesincreasetheimpedance,  
makingthefeedbacknodemoresusceptibletonoisepick-up.  
A feed-forward capacitor would also reduce noise pick-up by  
providing a low impedance path to the output.  
When using a feed-forward capacitor, the gain bandwidth of  
the device reaches unity gain at high-frequency. Therefore,  
output capacitance will need to be increased to a minimum  
10µF. For more information on output capacitor selection for  
stability, see the “Compensation ” section.  
Efficiency loss due to DCR is minimal at light loads and gains  
significance as the load is increased. Inductor selection  
becomes a trade-off between efficiency and size in this case.  
Compensation  
The MIC2204 is an internally compensated, voltage-mode  
buck regulator. Voltage mode is achieved by creating an  
internal 2MHz ramp signal and using the output of the error  
amplifier to pulsewidth modulate the switch node, maintain-  
April 2005  
9
M9999-042205  
MIC2204  
Micrel, Inc.  
PWM Operation  
Synchronization  
The MIC2204 is a pulsewidth modulation (PWM) controller.  
By controlling the ratio of on-to-off time, or duty cycle, a  
regulated DC output voltage is achieved. As load or supply  
voltage changes, so does the duty cycle to maintain a  
constantoutputvoltage. Incaseswheretheinputsupplyruns  
into a dropout condition, the MIC2204 will run at 100% duty  
cycle.  
SYNC_IN allows the user to change the frequency from  
2MHz up to 2.5MHz or down to 1.8MHz. This controls the  
fundamentalfrequencyandalltheresultantharmonics.Main-  
taining a predictable frequency creates the ability to either  
shift the harmonics away from sensitive carrier and IF fre-  
quency bands, or to accurately filter out specific harmonic  
frequencies.  
The MIC2204 provides constant switching at 2MHz with  
synchronous internal MOSFETs. The internal MOSFETs  
include a high-side P-Channel MOSFET from the input  
supply to the switch pin and an N-Channel MOSFET from the  
switchpintoground. Sincethelow-sideN-ChannelMOSFET  
provides the current during the off cycle, a free wheeling  
Schottkydiodefromtheswitchnodetogroundisnotrequired.  
Connecting the SYNC_OUT function pin to the SYNC_IN of  
other MIC2204s will synchronize multiple MIC2204s in a  
daisy-chain. Synchronizing multiple MIC2204s means that  
regulatorswillrunatthesamefundamentalfrequency,result-  
ing in matched harmonic frequencies and simplifying design  
for sensitive communication equipment.  
PWM control provides fixed frequency operation. By main-  
taining a constant switching frequency, predictable funda-  
mental and harmonic frequencies are achieved. Other meth-  
ods of regulation, such as burst and skip modes, have  
frequency spectrums that change with load and can interfere  
with sensitive communication equipment.  
M9999-042205  
10  
April 2005  
MIC2204  
Micrel, Inc.  
Package Information  
3.15 (0.122)  
2.85 (0.114)  
DIMENSIONS:  
MM (INCH)  
4.90 BSC (0.193)  
3.10 (0.122)  
2.90 (0.114)  
1.10 (0.043)  
0.94 (0.037)  
0.26 (0.010)  
0.10 (0.004)  
0.30 (0.012)  
0.15 (0.006)  
0.50 BSC (0.020)  
0.15 (0.006)  
0.05 (0.002)  
6° MAX  
0° MIN  
0.70 (0.028)  
0.40 (0.016)  
10-Pin MSOP (MM)  
DIMENSIONS: mm  
+0.15  
0.85  
–0.05  
+0.15  
–0.15  
1.60  
0.80  
+0.15  
3.00 BSC.  
–0.15  
+0.04  
1.50 BSC.  
1.50 BSC.  
0.01  
–0.01  
0.48 typ.  
0.20 dia  
PIN 1 ID  
+0.07  
–0.05  
0.23  
1
2
3
1
2
3
+0.15  
–0.15  
1.15  
+0.15  
2.30  
–0.15  
3.00 BSC.  
0.50 BSC.  
+0.15  
–0.05  
0.40  
TOP  
BOTTOM  
SEATING PLANE  
TERMINAL TIP  
+0.07  
–0.05  
0.23  
+0.04  
–0.01  
0.01  
0.50 BSC.  
0.50 BSC.  
TERMINAL TIP  
ODD TERMINAL SIDE  
EVEN TERMINAL SIDE  
10-Pin MLF™ (ML)  
MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com  
This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use.  
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can  
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into  
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s  
use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully indemnify  
Micrel for any damages resulting from such use or sale.  
© 2004 Micrel, Incorporated.  
April 2005  
11  
M9999-042205  

相关型号:

MIC2204_05

High-Efficiency 2MHz Synchronous Buck Converter
MICREL

MIC2205

2MHz PWM Synchronous Buck Regulator with LDO Standby Mode
MICREL

MIC2205-1.38YML

2MHz PWM Synchronous Buck Regulator with LDO Standby Mode
MICREL

MIC2205-1.38YML

2A SWITCHING REGULATOR, 2200kHz SWITCHING FREQ-MAX, DSO10
MICROCHIP

MIC2205-1.38YML-TR

2A SWITCHING REGULATOR, 2200kHz SWITCHING FREQ-MAX, PDSO10
MICROCHIP

MIC2205-1.38YMLTR

2A SWITCHING REGULATOR, 2200kHz SWITCHING FREQ-MAX, PDSO10, 3 X 3 MM, LEAD FREE, MLF-10
MICREL

MIC2205-1.3YML

2MHz PWM Synchronous Buck Regulator with LDO Standby Mode
MICREL

MIC2205-1.3YML

2A SWITCHING REGULATOR, 2200kHz SWITCHING FREQ-MAX, DSO10
MICROCHIP

MIC2205-1.3YML-TR

2A SWITCHING REGULATOR, 2200kHz SWITCHING FREQ-MAX, PDSO10
MICROCHIP

MIC2205-1.58YML

2MHz PWM Synchronous Buck Regulator with LDO Standby Mode
MICREL

MIC2205-1.58YML-TR

2A SWITCHING REGULATOR, 2200kHz SWITCHING FREQ-MAX, PDSO10
MICROCHIP

MIC2205-1.58YMLTR

2A SWITCHING REGULATOR, 2200kHz SWITCHING FREQ-MAX, PDSO10, 3 X 3 MM, LEAD FREE, MLF-10
MICREL