MIC2215-KYMLTR [MICROCHIP]

High PSRR, Low Noise μCap Triple LDO;
MIC2215-KYMLTR
型号: MIC2215-KYMLTR
厂家: MICROCHIP    MICROCHIP
描述:

High PSRR, Low Noise μCap Triple LDO

文件: 总22页 (文件大小:528K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC2215  
High PSRR, Low Noise μCap Triple LDO  
Features  
General Description  
• Input Voltage Range: +2.25V to +5.5V  
• 70 dB PSRR  
The MIC2215 is a high performance, triple LDO voltage  
regulator, with each regulator capable of providing  
250 mA continuous output current.  
• Stable with Ceramic Output Capacitor  
• High Output Accuracy:  
Ideal for battery-operated applications, the MIC2215  
offers 1% initial accuracy, extremely low dropout  
voltage (100 mV @ 150 mA), and low ground current at  
light load (typically 110 μA per regulator). Equipped  
with a noise bypass pin and featuring very high power  
supply ripple rejection (PSRR) of up to 80 dB, the  
MIC2215 provides the lowest noise and highest  
efficiency solution for RF applications in portable  
electronics such as cellular phones and wireless LAN  
applications.  
- ±1.0% Initial Accuracy  
- ±2.0% over Temperature  
• Low Dropout Voltage of 100 mV @ 150 mA  
• Low Quiescent Current: 110 μA per Regulator  
• Fast Turn-On Time: 30 μs  
• Zero Off-Mode Current  
• Thermal Shutdown Protection  
• Current Limit Protection  
Equipped with TTL logic-compatible enable pins, each  
of the regulators in the MIC2215 can be put into a zero  
current off mode where the supply current is much less  
than 1 μA when all the regulators are disabled. The  
MIC2215 is a μCap design, which enables a stable  
output with small ceramic output capacitors, reducing  
both cost and required board space for output  
bypassing.  
• Tiny 16-Pin 4 mm x 4 mm QFN Package  
Applications  
• Cellular Phones  
• PCs and Peripherals  
• Wireless LAN Cards  
• PDAs  
The MIC2215 is available in the miniature 16-pin,  
4 mm x 4 mm QFN package.  
• GPS  
Package Types  
MIC2215-AAA  
16-Lead QFN (ML) (Adj.)  
(Top View)  
MIC2215-XXX  
16-Lead QFN (ML) (Fixed)  
(Top View)  
16  
15  
14 13  
16  
15  
14 13  
OUT1  
VIN1  
VIN3  
GND  
12  
OUT1  
VIN1  
VIN3  
GND  
1
2
3
4
12  
1
2
3
4
11  
10  
9
11  
10  
9
VIN2  
GND  
BYP  
VIN2  
GND  
BYP  
OUT2  
OUT2  
5
6
7
8
5
6
7
8
2019 Microchip Technology Inc.  
DS20006274A-page 1  
MIC2215  
Typical Application Circuit  
MIC2215-xxx_ML  
VIN1  
VIN2  
VIN3  
EN1  
VOUT1  
VOUT2  
VOUT3  
Rx Chain  
Tx Chain  
Synth/TCXO/VCO  
OFF ON  
OFF ON  
OFF ON  
EN2  
EN3  
CBYP  
GND  
COUT = 1μF  
Ceramic  
C
IN = 1μF  
Ceramic  
Functional Block Diagrams  
MIC2215 ADJUSTABLE BLOCK DIAGRAM  
MIC2215 FIXED BLOCK DIAGRAM  
VIN1  
EN1  
VIN1  
EN1  
VOUT1  
VOUT1  
Current  
Limit  
Current  
Limit  
Error  
Amp  
Error  
Amp  
ADJ1  
VOUT2  
VIN2  
EN2  
VOUT2  
VOUT3  
VIN2  
EN2  
Current  
Limit  
Current  
Limit  
Error  
Amp  
Error  
Amp  
ADJ2  
VOUT3  
VIN3  
EN3  
VIN3  
EN3  
Current  
Limit  
Current  
Limit  
Error  
Amp  
Error  
Amp  
GND  
GND  
ADJ3  
BYP  
Quick-  
Start  
Thermal  
Limit  
Quick-  
Start  
Thermal  
Limit  
VREF  
VREF  
BYP  
DS20006274A-page 2  
2019 Microchip Technology Inc.  
MIC2215  
1.0  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
Supply Voltage (VIN) ......................................................................................................................................... 0V to +7V  
Enable Voltage (VEN) ........................................................................................................................................ 0V to +7V  
Power Dissipation (Note 1) ....................................................................................................................Internally Limited  
ESD Rating ............................................................................................................................................................ Note 2  
Operating Ratings ††  
Supply Voltage (VIN1)..............................................................................................................................+2.25V to +5.5V  
Supply Voltage (VIN2, VIN3) ........................................................................................................................+2.25V to VIN1  
Enable Voltage (VEN) ........................................................................................................................................0V to VIN1  
† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at those or any other conditions above those indicated  
in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
†† Notice: The device is not guaranteed to function outside its operating ratings.  
Note 1: The maximum allowable power dissipation of any TA (ambient temperature) is PD(MAX) = (TJ(MAX) – TA) ÷  
θJA. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the  
regulator will go into thermal shutdown.  
2: Devices are ESD sensitive. Handling precautions recommended.  
ELECTRICAL CHARACTERISTICS  
Electrical Characteristics: VIN1 = VIN2 = VIN3 = VOUT (highest nominal) +1.0V; COUT = 1.0 μF, IOUT = 100 μA; TJ =  
+25°C, bold values indicate –40°C TJ +125°C unless noted. Note 1  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
–1  
1
Output Voltage Accuracy  
%
–2  
2
Output Voltage Temperature  
Coefficient  
40  
ppm/°C  
%/V  
Line Regulation  
0.015  
0.3  
0.3  
0.5  
0.7  
VIN = VOUT + 1V to 5.5V  
IOUT = 100 μA to 250 mA  
Valid only for VOUT = 1.8V  
IOUT = 100 μA  
Load Regulation  
%
2
32  
IOUT = 50 mA  
Dropout Voltage  
VDO  
63  
mV  
IOUT = 100 mA  
100  
170  
280  
110  
420  
0.2  
150  
275  
400  
150  
550  
1
IOUT = 150 mA  
IOUT = 250 mA  
IOUT1 = IOUT2 = IOUT3 = 100 μA  
IOUT1 = 100 μA; IOUT2/IOUT3 = off  
IOUT1 = IOUT2 = IOUT3 = 250 mA  
VEN1 = VEN2 = VEN3 = 0V  
Ground Current  
IGND  
μA  
μA  
Quiescent Current  
IQ  
Note 1: Specification for packaged product only.  
2019 Microchip Technology Inc.  
DS20006274A-page 3  
MIC2215  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: VIN1 = VIN2 = VIN3 = VOUT (highest nominal) +1.0V; COUT = 1.0 μF, IOUT = 100 μA; TJ =  
+25°C, bold values indicate –40°C TJ +125°C unless noted. Note 1  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
VIN = VOUT + 1.0V; IOUT = 150 mA,  
70  
f = 0.1 kHz to 1 kHz, CBYP =  
0.1 μF  
VIN = VOUT + 0.4V; IOUT = 150 mA,  
Ripple Rejection  
PSRR  
60  
45  
dB  
f = 0.1 kHz to 1 kHz, CBYP =  
0.1 μF  
VIN = VOUT + 0.2V; IOUT = 150 mA,  
f = 0.1 kHz to 1 kHz, CBYP  
=
0.1 μF  
Current Limit  
ILIM  
350  
700  
30  
mA  
μVRMS  
μs  
VOUT = 0V (All regulators)  
CBYP = 0.1 μF, f = 10 Hz to  
100 kHz  
Output Voltage Noise  
Turn-On Time  
tON  
30  
100  
CBYP = 0.01 μF  
Enable Input  
1.5  
0.4  
Logic Low (Regulator shutdown)  
Logic High (Regulator enabled)  
VIL < 0.4V (Regulator shutdown)  
VIH > 1.5V (Regulator enabled)  
Enable Input Voltage  
Enable Input Current  
VEN  
V
1.0  
0.01  
IEN  
μA  
Note 1: Specification for packaged product only.  
TEMPERATURE SPECIFICATIONS  
Parameters  
Temperature Ranges  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Operating Junction Temperature  
Range  
TJ  
–40  
+125  
°C  
Note 1  
Storage Temperature Range  
Lead Temperature  
TS  
–65  
+150  
+260  
°C  
°C  
TLEAD  
Soldering, 5 sec.  
Package Thermal Resistance  
Thermal Resistance, QFN 16-Ld  
θJA  
45  
°C/W  
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable  
junction temperature and the thermal resistance from junction to air (i.e., TA, TJ, JA). Exceeding the  
maximum allowable power dissipation will cause the device operating junction temperature to exceed the  
maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.  
DS20006274A-page 4  
2019 Microchip Technology Inc.  
MIC2215  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
TA = +25°C, unless otherwise noted.  
160  
140  
120  
100  
80  
3.03  
3.02  
3.01  
3.00  
2.99  
2.98  
2.97  
LOAD = 100mA  
LOAD = 50mA  
LOAD = 0mA  
60  
40  
20  
0
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (° C)  
TEMPERATURE (° C)  
FIGURE 2-1:  
Ground Current vs.  
FIGURE 2-4:  
Output Voltage vs.  
Temperature for LDO 1.  
Temperature for LDO 1.  
140  
3.03  
3.02  
3.01  
3.00  
2.99  
2.98  
2.97  
LOAD = 100mA  
120  
100  
80  
60  
40  
20  
0
LOAD = 50mA  
LOAD = 0mA  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (° C)  
TEMPERATURE (° C)  
FIGURE 2-5:  
Temperature for LDO 2.  
Output Voltage vs.  
FIGURE 2-2:  
Temperature for LDO 2.  
Ground Current vs.  
3.03  
3.02  
3.01  
3.00  
2.99  
2.98  
2.97  
140  
LOAD = 100mA  
120  
100  
80  
60  
40  
20  
0
LOAD = 50mA  
LOAD = 0mA  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (° C)  
TEMPERATURE (° C)  
FIGURE 2-6:  
Temperature for LDO 3.  
Output Voltage vs.  
FIGURE 2-3:  
Temperature for LDO 3.  
Ground Current vs.  
2019 Microchip Technology Inc.  
DS20006274A-page 5  
MIC2215  
250  
200  
1.4  
1.2  
1
E nable ON  
E nable OFF  
250mA LOAD  
150  
100  
0.8  
0.6  
0.4  
0.2  
0
150mA LOAD  
50 50mA LOAD  
VOUT = 3V  
0
-40 -20  
0
20 40 60 80 100 120  
2.25  
3
3.75  
4.5  
5.25  
TEMPERATURE (° C)  
SUPPLY VOLTAGE (V)  
FIGURE 2-7:  
Dropout Voltage vs.  
FIGURE 2-10:  
Enable Threshold vs.  
Temperature for LDO 1.  
Supply Voltage for LDO 1.  
250  
1.4  
E nable ON  
E nable OFF  
1.2  
1
200  
250mA LOAD  
150  
0.8  
0.6  
0.4  
0.2  
0
150mA LOAD  
100  
50mA LOAD  
50  
0
VOUT = 3V  
-40 -20  
0
20 40 60 80 100 120  
2.25  
3
3.75  
4.5  
5.25  
TEMPERATURE (° C)  
SUPPLY VOLTAGE (V)  
FIGURE 2-8:  
Dropout Voltage vs.  
FIGURE 2-11:  
Enable Threshold vs.  
Temperature for LDO 2.  
Supply Voltage for LDO 2.  
250  
200  
1.4  
E nable ON  
E nable OFF  
1.2  
1
250mA LOAD  
150  
100  
50  
0.8  
0.6  
0.4  
0.2  
0
150mA LOAD  
50mA LOAD  
VOUT = 3V  
0
-40 -20  
0
20 40 60 80 100 120  
2.25  
3
3.75  
4.5  
5.25  
TEMPERATURE (° C)  
SUPPLY VOLTAGE (V)  
FIGURE 2-9:  
Dropout Voltage vs.  
FIGURE 2-12:  
Enable Threshold vs.  
Temperature for LDO 3.  
Supply Voltage for LDO 3.  
DS20006274A-page 6  
2019 Microchip Technology Inc.  
MIC2215  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
160  
140  
120  
100  
80  
LDO 1  
LDO 2  
60  
LDO 3  
3
40  
C BYP = 0.1PF  
4.5 5.25  
20  
0
0
2.25  
3.75  
0
50  
100 150 200 250  
SUPPLY VOLTAGE (V)  
OUTPUT CURRENT (mA)  
FIGURE 2-13:  
Enable Delay vs. Supply  
FIGURE 2-16:  
Ground Current vs. Load  
Voltage.  
Current for LDO 3.  
160  
140  
120  
100  
80  
3.020  
3.015  
3.010  
3.005  
3.000  
2.995  
2.990  
2.985  
2.980  
60  
40  
20  
0
0
50  
100 150 200 250  
0
50  
100 150 200 250  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
FIGURE 2-14:  
Ground Current vs. Load  
FIGURE 2-17:  
Load Regulation LDO 1.  
Current for LDO 1.  
3.020  
3.015  
3.010  
3.005  
3.000  
2.995  
2.990  
2.985  
160  
140  
120  
100  
80  
60  
40  
20  
2.980  
0
0
50  
100 150 200 250  
0
50  
100 150 200 250  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
FIGURE 2-18:  
Load Regulation LDO 2.  
FIGURE 2-15:  
Ground Current vs. Load  
Current for LDO 2.  
2019 Microchip Technology Inc.  
DS20006274A-page 7  
MIC2215  
3.020  
3.015  
3.010  
3.005  
3.000  
2.995  
2.990  
2.985  
2.980  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
0
50  
100 150 200 250  
0
50  
100 150 200 250  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
FIGURE 2-19:  
Load Regulation LDO 3.  
FIGURE 2-22:  
Dropout Voltage vs. Output  
Current for LDO 3.  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
250mA  
150mA  
100PA  
60  
60  
40  
40  
VOUT = 3V  
20  
20  
0
0
0
50  
100 150 200 250  
0
1
2
3
4
5
OUTPUT CURRENT (mA)  
SUPPLY VOLTAGE (V)  
FIGURE 2-20:  
Dropout Voltage vs. Output  
FIGURE 2-23:  
Ground Current vs. Supply  
Current for LDO 1.  
Voltage for LDO 1.  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
250mA  
150mA  
100PA  
60  
60  
40  
40  
VOUT = 3V  
20  
20  
0
0
0
50  
100 150 200 250  
0
1
2
3
4
5
OUTPUT CURRENT (mA)  
SUPPLY VOLTAGE (V)  
FIGURE 2-21:  
Dropout Voltage vs. Output  
FIGURE 2-24:  
Ground Current vs. Supply  
Current for LDO 2.  
Voltage for LDO 2.  
DS20006274A-page 8  
2019 Microchip Technology Inc.  
MIC2215  
200  
180  
160  
140  
120  
100  
80  
3.5  
3
250mA  
2.5  
2
100PA  
150mA  
1.5  
1
100PA  
60  
10mA  
250mA  
40  
VOUT = 3V  
0.5  
0
20  
0
0
1
2
3
4
5
1
2
3
4
5
0
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
FIGURE 2-25:  
Ground Current vs. Supply  
FIGURE 2-28:  
Output Voltage vs. Supply  
Voltage for LDO 3.  
Voltage for LDO 3.  
3.5  
3
-90  
-80  
-70  
600mV'  
1V'  
2.5  
-60  
-50  
-40  
-30  
-20  
-10  
0
400mV'  
2
100PA  
1.5  
1
200mV'  
C BYP = 0.1PF  
VIN = VOUT + 'V  
ILOAD = 150mA  
10mA  
0.5  
0
250mA  
0
1
2
3
4
5
1M  
10K  
1K  
FREQUENCY (Hz)  
100K  
100  
SUPPLY VOLTAGE (V)  
FIGURE 2-26:  
Output Voltage vs. Supply  
FIGURE 2-29:  
Power Supply Rejection  
Voltage for LDO 1.  
Ratio, 3V  
.
OUT  
3.5  
3
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
C BYP = 1PF  
C BYP = 0.1PF  
C BYP = 10nF  
2.5  
100PA  
2
C BYP = 1nF  
C BYP = 0  
1.5  
1
10mA  
250mA  
VIN = VOUT +1V  
ILOAD = 150mA  
0.5  
0
0
1
2
3
4
5
1K  
10K  
100K 1M  
100  
SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
FIGURE 2-27:  
Voltage for LDO 2.  
Output Voltage vs. Supply  
FIGURE 2-30:  
Ratio vs. C  
Power Supply Rejection  
.
BYPASS  
2019 Microchip Technology Inc.  
DS20006274A-page 9  
MIC2215  
80  
70  
60  
50  
40  
30  
20  
LDO 1  
LDO 2  
LDO 3  
VIN = VOUT + 1V  
C BYP = 0.1PF  
ILOAD = 150mA  
10  
0
100  
1K  
10K  
100K  
1M  
FREQUENCY (Hz)  
FIGURE 2-31:  
Power Supply Rejection  
Ratio.  
DS20006274A-page 10  
2019 Microchip Technology Inc.  
MIC2215  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
Pin Number Pin Name  
Description  
1
2
3
VOUT1  
VIN1  
Output voltage of regulator 1 (250 mA). Connect externally to pin 16.  
Supply input of regulator 1 (highest input voltage required for common circuitry).  
Supply input of regulator 2.  
VIN2  
Output voltage of regulator 2 (250 mA). For fixed output device, connect pins 4 and 5  
externally.  
4
VOUT2  
VOUT2  
(Fixed)  
Output voltage of regulator 2 (250 mA). For fixed output device, connect pins 4 and 5  
externally.  
5
ADJ2  
(Adj.)  
Adjust Input. Feedback input for regulator 2.  
Enable input to regulator 1. Enables regulator 1 output. Active-high input.  
High = on, low = off.  
6
7
8
9
EN1  
EN2  
Enable input to regulator 2. Enables regulator 2 output. Active-high input.  
High = on, low = off.  
Enable input to regulator 3. Enables regulator 3 output. Active-high input.  
High = on, low = off.  
EN3  
Reference Bypass: Connect external 0.01 μF to GND to reduce output noise. May be  
left open.  
CBYP  
10  
11  
12  
GND  
GND  
VIN3  
Ground.  
Ground.  
Supply input of regulator 3.  
Output voltage of regulator 3 (250 mA). For fixed output device, connect pins 13 and  
14 externally.  
13  
VOUT3  
VOUT3  
(Fixed)  
Output voltage of regulator 3 (250 mA). For fixed output device, connect pins 13 and  
14 externally.  
14  
ADJ3  
(Adj.)  
Adjust Input. Feedback input for regulator 3.  
No Connect. Not internally connected.  
NC  
(Fixed)  
15  
ADJ1  
(Adj.)  
Adjust Input. Feedback input for regulator 1.  
16  
VOUT1  
GND  
Output voltage of regulator 1 (250 mA). Connect externally to pin 1.  
Ground.  
EP  
2019 Microchip Technology Inc.  
DS20006274A-page 11  
MIC2215  
operating temperature range and are the most stable  
type of ceramic capacitors. Z5U and Y5V dielectric  
capacitors change value by as much as 50% and 60%,  
respectively, over their operating temperature ranges.  
To use a ceramic chip capacitor with Y5V dielectric, the  
value must be much higher than an X7R ceramic  
capacitor to ensure the same minimum capacitance  
over the equivalent operating temperature range.  
4.0  
FUNCTIONAL DESCRIPTION  
The MIC2215 is a triple, low-noise CMOS LDO.  
Designed specifically for noise-critical applications in  
handheld or battery-powered devices, the MIC2215  
comes equipped with a noise reduction feature to filter  
the output noise via an external capacitor. Other  
features of the MIC2215 include a separate logic  
compatible enable pin for each channel, current limit,  
thermal shutdown, and ultra-fast transient response, all  
within a small QFN package.  
5.4  
Bypass Pin  
A capacitor can be placed from the noise bypass pin to  
ground to reduce output voltage noise. The capacitor  
bypasses the internal reference. There is one single  
internal reference shared by each output, therefore the  
bypassing affects each regulator. A 0.1 μF capacitor is  
recommended for applications that require low-noise  
outputs. The bypass capacitor can be increased,  
further reducing noise and improving PSRR. Turn-on  
time increases slightly with respect to bypass  
capacitance.  
The MIC2215 is specifically designed to work with  
low-ESR ceramic capacitors, reducing the amount of  
board space necessary for power applications, which is  
critical in handheld wireless devices.  
5.0  
5.1  
APPLICATION INFORMATION  
Enable/Shutdown  
The MIC2215 comes with three active-high enable pins  
that allow each individual regulator to be either  
disabled or enabled. Forcing the enable pin low  
disables the respective regulator and sends it into a  
zero off-mode current state. In this state, current  
consumed by the individual regulator goes nearly to  
zero. This is true for both regulators 2 and 3. Regulator  
1’s input supply pin is also used to power the internal  
reference. When any regulator, either 1, 2, or 3, is  
enabled, an additional 20 μA for the reference will be  
drawn through VIN1. All three must be disabled to enter  
the zero current off-mode state. Forcing the enable pin  
high enables each respective output voltage. This part  
is CMOS and none of the enable pins can be left  
5.5  
Internal Reference  
The internal band gap, or reference, is powered from  
the VIN1 input. Due to some of the input noise (PSRR)  
contributions being imposed on the band gap, it is  
important to make VIN1 as clean as possible with good  
bypassing close to the input.  
5.6  
Multiple Input Supplies  
The MIC2215 can be used with multiple input supplies  
when desired. The only requirement, aside from  
maintaining the voltages within the operating ranges, is  
that VIN1 always remains the highest voltage potential.  
floating;  
a floating enable pin may cause an  
indeterminate state on the output.  
5.7  
No-Load Stability  
5.2  
Input Capacitor  
The MIC2215 will remain stable and in regulation with  
no load, unlike many other voltage regulators. This is  
especially important in CMOS RAM keep-alive  
applications.  
The MIC2215 is a high performance, high bandwidth  
device. Therefore, it requires a well-bypassed input  
supply for optimal performance. A small 0.1 μF  
capacitor placed close to the input is recommended to  
aid in noise performance. Low-ESR ceramic capacitors  
provide optimal performance at a minimum of space.  
Additional high-frequency capacitors, such as small  
valued NPO dielectric type capacitors, help to filter out  
high frequency noise and are good practice in any  
RF-based circuit.  
5.8  
Thermal Considerations  
The MIC2215 is designed to provide up to 250 mA of  
current per channel in a very small package. Maximum  
power dissipation can be calculated based on the  
output current and the voltage drop across the part. To  
determine the maximum power dissipation of the  
package, use the junction-to-ambient thermal  
resistance of the device and the following basic  
equation:  
5.3  
Output Capacitor  
The MIC2215 requires an output capacitor for stability.  
The design requires 1 μF or greater on the output to  
maintain stability. The design is optimized for use with  
low-ESR ceramic chip capacitors. X7R/X5R  
dielectric-type ceramic capacitors are recommended  
because of their temperature performance. X7R-type  
capacitors change capacitance by 15% over their  
EQUATION 5-1:  
PDMAX = T J MAX T A  JA  
DS20006274A-page 12  
2019 Microchip Technology Inc.  
MIC2215  
The maximum junction temperature of the die (TJ(MAX)  
)
practice to calculate the maximum ambient  
is +125° and is also the ambient operating temperature  
(TA). θJA is layout dependent; the junction-to-ambient  
thermal resistance for the MIC2215 can be found in the  
Temperature Specifications section.  
temperature for a 125°C junction temperature.  
Calculating maximum ambient temperature follows:  
EQUATION 5-5:  
The actual power dissipation of the regulator circuit can  
be determined using the following equation:  
T AMAX = T J MAX PD  JA  
T AMAX = 125C 540mW 43C/W  
T AMAX = 101C  
EQUATION 5-2:  
PDTOTAL = PDLDO1 + PDLDO2 + PDLDO3  
Where:  
P
DLDO1 = (VIN1 – VOUT1) x IOUT1  
For more information, please refer to the Designing  
with Low-Dropout Voltage Regulators Handbook.  
PDLDO2 = (VIN2 – VOUT2) x IOUT2  
PDLDO3 = (VIN3 – VOUT3) x IOUT3  
5.9  
Adjustable Regulator Application  
Substituting PD(MAX) for PD and solving for the  
operating conditions that are critical to the application  
will give the maximum operating conditions for the  
regulator circuit. For example, when operating the  
MIC2215 at 60°C with a minimum footprint layout, the  
maximum load currents can be calculated as follows:  
Adjustable regulators use the ratio of two resistors to  
multiply the reference voltage to produce the desired  
output voltage. The MIC2215 can be adjusted from  
1.25V to 5.5V, the maximum VDROPOUT, by using two  
external resistors (Figure 5-1). The resistors set the  
output voltage based on the following equation:  
EQUATION 5-3:  
EQUATION 5-6:  
PDMAX = 125C – 60C  43C/W = 1.511W  
R1  
R2  
V OUT = V REF 1 + ------  
The junction-to-ambient thermal resistance for the  
minimum footprint is 43°C/W. The maximum power  
dissipation must not be exceeded for proper operation.  
Using a lithium-ion battery as the supply voltage  
(2.8V/250 mA for channel 1, 3V/100 mA for channel 2,  
and 2.8V/50 mA for channel 3), maximum power can  
be calculated as follows:  
Where:  
V
REF = 1.25V  
MIC2215-AAA_ML  
OUT1  
ADJ1  
EQUATION 5-4:  
R1  
R2  
PDLDO1 = 4.2V – 2.8V   250mA  
PDLDO1 = 350mW  
PDLDO2 = 4.2V – 3.0V   100mA  
PDLDO2 = 120mW  
PDLDO3 = 4.2V – 2.8V   50mA  
PDLDO3 = 70mW  
FIGURE 5-1:  
Adjustable Output.  
PDTOTAL = 350mW + 120mW + 70mW  
PDTOTAL = 540mW  
The calculation shows that the device is well below the  
maximum allowable power dissipation of 1.511W for a  
60°C ambient temperature. After the maximum power  
dissipation has been calculated, it is always good  
2019 Microchip Technology Inc.  
DS20006274A-page 13  
MIC2215  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
16-Lead QFN*  
Example  
XXXX  
XXXXXX  
WNNN  
2215  
PMMYML  
7084  
Legend: XX...X Product code or customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC® designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
e
3
)
, , Pin one index is identified by a dot, delta up, or delta down (triangle  
mark).  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information. Package may or may not include  
the corporate logo.  
Underbar (_) and/or Overbar () symbol may not be to scale.  
DS20006274A-page 14  
2019 Microchip Technology Inc.  
MIC2215  
16-Lead 4 mm x 4 mm QFN Package Outline and Recommended Land Pattern  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging.  
2019 Microchip Technology Inc.  
DS20006274A-page 15  
MIC2215  
NOTES:  
DS20006274A-page 16  
2019 Microchip Technology Inc.  
MIC2215  
APPENDIX A: REVISION HISTORY  
Revision A (November 2019)  
• Converted Micrel document MIC2215 to Micro-  
chip data sheet template DS20006247A.  
• Minor grammatical text changes throughout.  
• Added additional value and condition for Load  
Regulation in the Electrical Characteristics table.  
2019 Microchip Technology Inc.  
DS20006274A-page 17  
MIC2215  
NOTES:  
DS20006274A-page 18  
2019 Microchip Technology Inc.  
MIC2215  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.  
Examples:  
Device  
-X  
X
X
X
XX  
-XX  
a) MIC2215-AAAYML-TR:MIC2215, Adjustable Output  
Voltages, –40°C to +125°C  
Part No.  
VOUT1  
VOUT2  
VOUT3  
Junction Package  
Temp.  
Range  
Media  
Type  
Temperature Range,  
16-Lead QFN, 5,000/Reel  
b) MIC2215-MMGYML-TR:MIC2215, 2.8V/2.8V/1.8V  
Output Voltages,  
Device:  
MIC2215:  
High PSRR, Low Noise μCap Triple LDO  
–40°C to +125°C  
Temperature Range,  
16-Lead QFN, 5,000/Reel  
A
F
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
Adjustable  
1.5V  
1.6V  
1.8V  
1.85V  
1.9V  
2.0V  
2.1V  
2.5V  
2.6V  
2.65V  
2.7V  
2.8V  
2.85V  
2.9V  
3.0V  
3.1V  
3.2V  
3.3V  
3.4V  
3.5V  
3.6V  
c) MIC2215-MMMYML-TR:MIC2215, 2.8V/2.8V/2.8V  
Output Voltages,  
W
G
D
Y
H
E
J
K
I
L
M
N
O
P
Q
R
S
T
–40°C to +125°C  
Temperature Range,  
16-Lead QFN, 5,000/Reel  
d) MIC2215-PMMYML-TR:MIC2215, 3.0V/2.8V/2.8V  
Output Voltages,  
–40°C to +125°C  
Temperature Range,  
16-Lead QFN, 5,000/Reel  
V
OUT1, VOUT2,  
VOUT3 Options:  
e) MIC2215-PPGYML-TR:MIC2215, 3.0V/3.0V/1.8V  
Output Voltages,  
–40°C to +125°C  
Temperature Range,  
16-Lead QFN, 5,000/Reel  
U
V
f) MIC2215-PPMYML-TR:MIC2215, 3.0V/3.0V/2.8V  
Output Voltages,  
–40°C to +125°C  
Temperature Range,  
16-Lead QFN, 5,000/Reel  
Junction  
Temperature  
Range:  
Y
=
–40°C to +125°C, RoHS-Compliant  
g) MIC2215-PPPYML-TR:MIC2215, 3.0V/3.0V/3.0V  
Output Voltages,  
–40°C to +125°C  
Temperature Range,  
16-Lead QFN, 5,000/Reel  
Package:  
ML  
TR  
=
=
16-Lead 4 mm x 4 mm QFN  
5,000/Reel  
Media Type:  
Note 1:  
Tape and Reel identifier only appears in the  
catalog part number description. This identifier is  
used for ordering purposes and is not printed on  
the device package. Check with your Microchip  
Sales Office for package availability with the  
Tape and Reel option.  
2019 Microchip Technology Inc.  
DS20006274A-page 19  
MIC2215  
NOTES:  
DS20006274A-page 20  
2019 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, Adaptec,  
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT,  
chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex,  
flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck,  
LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi,  
Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer,  
PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire,  
Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST,  
SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,  
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA  
are registered trademarks of Microchip Technology Incorporated in  
the U.S.A. and other countries.  
APT, ClockWorks, The Embedded Control Solutions Company,  
EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load,  
IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision  
Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire,  
SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,  
TimePictra, TimeProvider, Vite, WinPath, and ZL are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard,  
CryptoAuthentication, CryptoAutomotive, CryptoCompanion,  
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average  
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial  
Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker,  
KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,  
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,  
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,  
PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple  
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,  
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,  
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and  
ZENA are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
The Adaptec logo, Frequency on Demand, Silicon Storage  
Technology, and Symmcom are registered trademarks of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology Germany  
II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in  
other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2019, Microchip Technology Incorporated, All Rights Reserved.  
ISBN: 978-1-5224-5230-0  
For information regarding Microchip’s Quality Management Systems,  
please visit www.microchip.com/quality.  
2019 Microchip Technology Inc.  
DS20006274A-page 21  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Australia - Sydney  
Tel: 61-2-9868-6733  
India - Bangalore  
Tel: 91-80-3090-4444  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
China - Beijing  
Tel: 86-10-8569-7000  
India - New Delhi  
Tel: 91-11-4160-8631  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8665-5511  
India - Pune  
Tel: 91-20-4121-0141  
Finland - Espoo  
Tel: 358-9-4520-820  
China - Chongqing  
Tel: 86-23-8980-9588  
Japan - Osaka  
Tel: 81-6-6152-7160  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
China - Dongguan  
Tel: 86-769-8702-9880  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Guangzhou  
Tel: 86-20-8755-8029  
Korea - Daegu  
Tel: 82-53-744-4301  
Germany - Garching  
Tel: 49-8931-9700  
China - Hangzhou  
Tel: 86-571-8792-8115  
Korea - Seoul  
Tel: 82-2-554-7200  
Germany - Haan  
Tel: 49-2129-3766400  
Austin, TX  
Tel: 512-257-3370  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Malaysia - Kuala Lumpur  
Tel: 60-3-7651-7906  
Germany - Heilbronn  
Tel: 49-7131-72400  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
China - Nanjing  
Tel: 86-25-8473-2460  
Malaysia - Penang  
Tel: 60-4-227-8870  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Qingdao  
Philippines - Manila  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-532-8502-7355  
Tel: 63-2-634-9065  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shanghai  
Tel: 86-21-3326-8000  
Singapore  
Tel: 65-6334-8870  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Shenyang  
Tel: 86-24-2334-2829  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Shenzhen  
Tel: 86-755-8864-2200  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Suzhou  
Tel: 86-186-6233-1526  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Wuhan  
Tel: 86-27-5980-5300  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Italy - Padova  
Tel: 39-049-7625286  
Houston, TX  
Tel: 281-894-5983  
China - Xian  
Tel: 86-29-8833-7252  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
China - Xiamen  
Tel: 86-592-2388138  
Norway - Trondheim  
Tel: 47-7288-4388  
China - Zhuhai  
Tel: 86-756-3210040  
Poland - Warsaw  
Tel: 48-22-3325737  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
DS20006274A-page 22  
2019 Microchip Technology Inc.  
05/14/19  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY