MIC231560YML-T5 [MICROCHIP]

1.5A, 3MHz Synchronous Buck Regulator with HyperLight Load® and I2C Control for Dynamic Voltage Scaling;
MIC231560YML-T5
型号: MIC231560YML-T5
厂家: MICROCHIP    MICROCHIP
描述:

1.5A, 3MHz Synchronous Buck Regulator with HyperLight Load® and I2C Control for Dynamic Voltage Scaling

文件: 总32页 (文件大小:651K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC23156  
1.5A, 3 MHz Synchronous Buck Regulator with HyperLight Load®  
and I2C Control for Dynamic Voltage Scaling  
Features  
General Description  
• Input Voltage: 2.7V to 5.5V  
• Up to 1.5A Output Current  
• 1 MHz I2C Controlled Adjustable Output:  
The MIC23156 is a high-efficiency, 1.5A synchronous  
buck regulator with HyperLight Load® mode and  
dynamic voltage scaling control through I2C. HyperLight  
Load provides very high efficiency at light loads and  
ultra-fast transient response. The ability to dynamically  
change the output voltage and maintain high output volt-  
age accuracy make the MIC23156 perfectly suited for  
supplying processor core voltages. An additional benefit  
of this proprietary architecture is very low output ripple  
voltage, throughout the entire load range, with the use of  
small output capacitors. Fast mode plus I2C provides  
output voltage and chip enable/disable control from a  
standard I2C bus with I2C clock rates of 100 kHz,  
400 kHz, and 1 MHz.  
-
VOUT = 0.7 to 2.4V in 10 mV Steps  
• High Output Voltage Accuracy  
(±1.5% over Temperature)  
• Fast Pin-Selectable Output Voltage  
• Programmable Soft-Start Using External Capaci-  
tor  
• Ultra-Low Quiescent Current of 30 µA when  
Not Switching  
• Thermal Shutdown and Current-Limit Protection  
• Safe Start-Up into Pre-Biased Output  
• Stable with 1 µH Output Inductor and  
2.2 µF Ceramic Capacitor  
The MIC23156 is designed for use with 1 µH, and an  
output capacitor as small as 2.2 µF, that enables a total  
solution size less than 1 mm in height.  
• Up to 93% Peak Efficiency  
• –40°C to +125°C Junction Temperature Range  
Package Types  
• Available in 16-ball, 0.4 mm pitch, 1.81 mm x  
1.71 mm Wafer Level Chip-Scale (WLCSP) and  
17-pin, 2.8 mm x 2.5 mm QFN Packages  
16-Ball 1.81 mm x 1.71 mm WLCSP (CS)  
(Top View)  
1
2
3
4
Applications  
SCL  
SDA  
SNS  
SS  
A
B
C
D
• Mobile Handsets  
• Solid-State Drives (SSD)  
• WiFi/WiMx/WiBro Modules  
• Portable Applications  
VI2C  
SW  
VSEL  
SW  
PGOOD  
PVIN  
AVIN  
AGND  
EN  
PGND  
PGND  
PVIN  
17-Pin 2.5 mm x 2.8 mm QFN (ML)  
(Top View)  
16  
17  
1
15  
VI2C  
SCL  
SDA  
SNS  
SS  
PGND  
PGND  
PVIN  
PVIN  
VSEL  
2
3
4
5
6
14  
13  
12  
11  
10  
NC  
EN  
9
8
7
2017 Microchip Technology Inc.  
DS20005919A-page 1  
MIC23156  
Typical Application Schematic  
U1  
APPLICATIONS  
PROCESSOR  
MIC23156  
CORE  
PVIN  
SW  
VIN  
SUPPLY  
SNS  
AVIN  
PGOOD  
VSEL  
POR  
EN  
VSEL  
VI2C  
EN  
SS  
VI2C  
SCL  
PGND  
I2C HIGH-SPEED  
MODE BUS  
SDA  
AGND  
Efficiency (VOUT = 2.4V) vs. Output Current  
100  
90  
80  
70  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5V  
60  
50  
40  
30  
20  
10  
0
COUT = 2.2 µF  
L = 1 µH  
10  
100  
1000  
10000  
OUTPUT CURRENT (mA)  
DS20005919A-page 2  
2017 Microchip Technology Inc.  
MIC23156  
1.0  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings†  
Input Supply Voltage (AVIN, PVIN, VI2C)....................................................................................................... –0.3V to +6V  
Switch Voltage (SW) ....................................................................................................................................–0.3V to AVIN  
Logic Voltage (EN, PGOOD)........................................................................................................................–0.3V to AVIN  
Logic Voltage (VSEL, SCL, SDA)..................................................................................................................0.3V to VI2C  
Analog Input Voltage (SNS, SS) ..................................................................................................................–0.3V to AVIN  
Power Dissipation (TA = +70°C).............................................................................................................Internally Limited  
ESD Rating(1).............................................................................................................................................................2 kV  
Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This  
is a stress rating only and functional operation of the device at those or any other conditions above those indi-  
cated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
Note 1: Devices are ESD-sensitive. Handling precautions are recommended. Human body model, 1.5 kin series  
with 100 pF.  
Operating Ratings(1)  
Input Supply Voltage (AVIN, PVIN, VI2C).................................................................................................... +2.7V to +5.5V  
Switch Voltage (SW) .........................................................................................................................................0V to AVIN  
Logic Voltage (EN, PGOOD).............................................................................................................................0V to AVIN  
Logic Voltage (VSEL, SCL, SDA).......................................................................................................................0V to VI2C  
Analog Input Voltage (SNS, SS) .......................................................................................................................0V to AVIN  
Note 1: The device is not ensured to function outside the operating range.  
2017 Microchip Technology Inc.  
DS20005919A-page 3  
MIC23156  
(1)  
TABLE 1-1:  
ELECTRICAL CHARACTERISTICS  
Electrical Specifications: unless otherwise specified, T = +25°C; AV = PV = V = V  
= 3.6V; L = 1.0 µH; C  
= 2.2  
A
IN  
IN  
EN  
VI2C  
OUT  
µF. Boldface values indicate –40°C  
TJ +125°C.  
Symbol Parameter  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
VIN  
Supply Input Voltage Range  
Enable Logic Pin Low Threshold  
Enable Logic Pin High Threshold  
VSEL Logic Pin Low Threshold  
VSEL Logic Pin High Threshold  
Logic Pin Input Current  
2.7  
0.1  
5.5  
V
V
ENLOW  
ENHIGH  
IVSEL_LO  
IVSEL_HI  
IEN  
0.5  
Logic low  
1.2  
V
Logic high  
0.3 x VI2C  
V
Logic low  
0.7 x VI2C  
V
Logic high  
2
µA  
Pins: EN and VSEL  
Undervoltage Lockout  
Threshold  
UVLO  
2.45  
2.55  
75  
2.65  
V
Rising  
Undervoltage Lockout  
Hysteresis  
UVLO_HYS  
TSHD  
mV Falling  
Shutdown Temperature  
(Threshold)  
160  
°C  
Shutdown Temperature  
Hysteresis  
TSHD_HYST  
ISHDN  
20  
5
°C  
Shutdown Supply Current  
0.1  
µA  
VEN = 0V  
DC-to-DC Converter  
VOUT  
Output Voltage Accuracy  
–1.5  
30  
+1.5  
50  
%
µA  
V
VOUT = 1V, IOUT = 10 mA  
IOUT = 0 mA,  
VFB > 1.2 * VOUT  
IQ  
Quiescent Supply Current  
Output Voltage Range  
VOUT  
0.7  
2.4  
3.0V < VAVIN < 4.5V,  
ILOAD = 10 mA  
VOUT/VOUT  
VOUT/VOUT  
Output Voltage Line Regulation  
Output Voltage Load Regulation  
0.02  
0.04  
0.17  
%/V  
%
20 mA < IOUT < 1A  
ISW = +100 mA, high-side  
switch PMOS (QFN)  
ISW = +100 mA, high-side  
switch PMOS (WLCSP)  
0.15  
0.15  
0.13  
RSWON  
Switch-On Resistance  
ISW = –100 mA, low-side  
switch NMOS (QFN)  
ISW = –100 mA, low-side  
switch NMOS (WLCSP)  
ILIM  
fSW  
DMAX  
Current Limit (DC Value)  
Oscillator Switching Frequency  
Maximum Duty Cycle  
DVS Step-Size  
1.7  
2.9  
3
5.1  
A
MHz  
%
VOUT = 1V  
80  
19  
Frequency = 3 MHz  
mV  
VOUT = 90%,  
CSS = 120 pF  
tSS  
Soft Start Time  
250  
µs  
Note 1: Specifications are for packaged product only.  
DS20005919A-page 4  
2017 Microchip Technology Inc.  
MIC23156  
(1)  
TABLE 1-1:  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: unless otherwise specified, T = +25°C; AV = PV = V = V  
= 3.6V; L = 1.0 µH; C  
= 2.2  
A
IN  
IN  
EN  
VI2C  
OUT  
µF. Boldface values indicate –40°C  
TJ +125°C.  
Symbol Parameter  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
I2C Interface (Assuming 550 pF Total Bus Capacitance  
10110111, 0xB7  
10110110, 0xB6  
Read (Binary, Hex)  
Write (Binary, Hex)  
SCL, SDA  
I2C Address  
VIL  
VIH  
Low-Level Input Voltage  
High-Level Input Voltage  
0.3 x VI2C  
V
V
0.7 x VI2C  
SCL, SDA  
Open-drain pull-down on  
SDA during read back,  
ISDA = 500 µA  
RSDA_PD  
SDA Pull-Down Resistance  
20  
W
Power Good (PG)  
VOUT < 80% VNOM  
IPGOOD = -500 µA  
,
VPG_LOW  
IPG_LEAK  
VPG_TH  
PGOOD Output Low  
86  
100  
5
5
mV  
µA  
%
PGOOD Output Leakage  
PGOOD Threshold  
VOUT = VNOM  
96  
VOUT ramping up  
(% of VOUT < VNOM  
)
VPG_HYS  
PGOOD Hysteresis  
%
Note 1: Specifications are for packaged product only.  
2017 Microchip Technology Inc.  
DS20005919A-page 5  
MIC23156  
TEMPERATURE SPECIFICATIONS (Note 1)  
Parameters  
Temperature Ranges  
Symbol Min.  
Typ.  
Max.  
Units  
Conditions  
Storage Temperature  
TS  
TJ  
–65  
+150  
+260  
+125  
°C  
°C  
°C  
Lead Temperature  
Soldering, 10 sec.  
Junction Temperature Range  
Package Thermal Resistances  
Thermal Resistance WLCSP 16-Ball  
Thermal Resistance QFN-17  
–40  
JA  
JA  
150  
89  
°C/W  
°C/W  
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable  
junction temperature and the thermal resistance from junction to air (i.e., TA, TJ, JA). Exceeding the max-  
imum allowable power dissipation will cause the device operating junction temperature to exceed the max-  
imum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.  
DS20005919A-page 6  
2017 Microchip Technology Inc.  
MIC23156  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10000000  
1000000  
100000  
10000  
1000  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5V  
100  
COUT = 2.2 µF  
L = 1 µH  
VOUT = 1.0V  
COUT = 2.2 µF  
10  
100  
1000  
10000  
100000 1000000  
10  
100  
1000  
10000  
CSS (pF)  
OUTPUT CURRENT (mA)  
FIGURE 2-1:  
Efficiency (V  
= 2.4V) vs.  
FIGURE 2-4:  
V
Rise Time vs. C  
.
OUT  
OUT  
SS  
Output Current.  
100  
90  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
80  
VIN = 5V  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 4.2V  
VIN = 3.6V  
VIN = 2.7V  
COUT = 2.2 µF  
L = 1 µH  
TA = 25\C  
VOUT = 1.0V  
2.5  
2.5  
10  
100  
1000  
10000  
3
3.5  
4
4.5  
5
5.5  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
FIGURE 2-2:  
Efficiency (V  
= 1.8V) vs.  
FIGURE 2-5:  
Current Limit vs. Input  
OUT  
Output Current.  
Voltage.  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 5V  
VIN = 3.6V  
VIN = 2.7V  
VIN = 3.6V  
COUT = 2.2 µF  
L = 1 µH  
VOUT = 1.0V  
-40 -20  
0
20  
40  
60  
80 100 120  
10  
100  
1000  
10000  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
FIGURE 2-6:  
Temperature.  
Current Limit vs.  
FIGURE 2-3:  
Output Current.  
Efficiency (V  
= 1.0V) vs.  
OUT  
2017 Microchip Technology Inc.  
DS20005919A-page 7  
MIC23156  
1.9  
1.875  
1.85  
1.825  
1.8  
45  
40  
35  
30  
25  
20  
15  
10  
125°C  
C  
25°C  
IOUT = 1 mA  
IOUT = 20 mA  
1.775  
1.75  
1.725  
1.7  
-40°C  
IOUT = 120 mA  
NO SWITCHING  
VOUT > VOUTNOM * 1.2  
COUT = 2.2 µF  
VOUTNOM = 1.8V  
COUT = 2.2 µF  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
FIGURE 2-7:  
Quiescent Current vs. Input  
FIGURE 2-10:  
Line Regulation (HLL).  
Voltage.  
1.9  
1.875  
1.85  
30  
25  
20  
15  
10  
5
1.825  
1.8  
1.775  
1.75  
VIN = 3.6V  
VOUTNOM = 1.8V  
1.725  
VOUT = 0V  
COUT = 2.2 µF  
COUT = 2.2 µF  
1.7  
0
0
250  
500  
750  
1000 1250 1500  
2.5  
3
3.5  
4
4.5  
5 5.5  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
FIGURE 2-11:  
Load Regulation.  
FIGURE 2-8:  
Shutdown Current vs. Input  
Voltage.  
1.020  
1.015  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
0.980  
1.9  
1.875  
1.85  
IOUT = 1.5A  
1.825  
1.8  
IOUT = 1A  
1.775  
1.75  
IOUT = 300 mA  
VIN = 3.6V  
OUT = 1.0V  
VOUTNOM = 1.8V  
COUT = 2.2 µF  
V
1.725  
IOUT = 10 mA  
1.7  
2.5  
-40 -20  
0
20  
40  
60  
80 100 120  
3
3.5  
4
4.5  
5
5.5  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
FIGURE 2-12:  
Temperature.  
Output Voltage vs.  
FIGURE 2-9:  
Line Regulation (CCM).  
DS20005919A-page 8  
2017 Microchip Technology Inc.  
MIC23156  
1.2  
1.1  
1
11  
10.5  
10  
ENABLE RISING  
ENABLE FALLING  
0.9  
0.8  
0.7  
0.6  
0.5  
9.5  
9
IOUT = 250 mA  
COUT = 2.2 µF  
2.5  
3
3.5  
4
4.5  
5
5.5  
0
25  
50  
75  
100  
125  
150  
175  
INPUT VOLTAGE (V)  
DAC VOLTAGE CODE  
FIGURE 2-13:  
Enable Threshold vs. Input  
FIGURE 2-16:  
Output Voltage vs. DAC  
Voltage.  
DNL.  
100%  
95%  
90%  
85%  
80%  
75%  
5
4
3
2
1
0
PGOOD RISING  
PGOOD FALLING  
VIN = 3.6V  
VOUTNOM = 1.0V  
COUT = 2.2 µF  
70%  
2.5  
3
3.5  
4
4.5  
5
5.5  
-40  
-20  
0
20  
40  
60  
80  
100 120  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
FIGURE 2-14:  
PGOOD Threshold vs. Input  
FIGURE 2-17:  
Switching Frequency vs.  
Voltage.  
Temperature.  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
2.6  
2.2  
1.8  
1.4  
1
1.0 µH  
2.2 µH  
IOUT = 250 mA  
COUT = 2.2 µF  
VOUT = 1.8V  
COUT = 2.2 µF  
0.0  
10  
0.6  
0
100  
1000  
10000  
25  
50  
75  
100  
125  
150  
175  
DAC VOLTAGE CODE  
OUTPUT CURRENT (mA)  
FIGURE 2-15:  
Output Voltage vs. DAC  
FIGURE 2-18:  
Switching Frequency vs.  
Linearity.  
Output Current.  
2017 Microchip Technology Inc.  
DS20005919A-page 9  
MIC23156  
VIN = 3.6V, VOUT = 1.8V  
COUT = 2.2 μF, L = 1 μH  
VOUT  
(AC-COUPLED)  
(50 mV/div)  
VOUT  
(AC-COUPLED)  
(10 mV/div)  
SW  
(2V/div)  
SW  
(2V/div)  
IL  
IL  
VIN = 3.6V, VOUT = 1.8V  
OUT = 2.2 μF, L = 1 μH  
(500 mA/div)  
(1A/div)  
C
Time (100 ns/div)  
Time (40 μs/div)  
FIGURE 2-19:  
Switching Waveform  
FIGURE 2-22:  
Switching Waveform  
Discontinuous Mode (1 mA).  
Continuous Mode (1.5A).  
VIN = 3.6V, VOUT = 1.8V  
COUT = 2.2 μF, L = 1 μH  
VOUT  
(AC-COUPLED)  
(50 mV/div)  
VOUT  
(AC-COUPLED)  
(50 mV/div)  
SW  
(2V/div)  
V
= 3.6V  
VIN = 1.8V  
C
OUT = 2.2 μF  
IL  
IOUT  
(200 mA/div)  
LO=UT1 μH  
(500 mA/div)  
Time (1 μs/div)  
Time (40 μs/div)  
FIGURE 2-20:  
Switching Waveform  
FIGURE 2-23:  
Load Transient (50 mA  
Discontinuous Mode (50 mA).  
to 750 mA).  
VOUT  
(AC-COUPLED)  
(10 mV/div)  
VOUT  
(AC-COUPLED)  
(50 mV/div)  
V
= 3.6V  
VIN = 1.8V  
C
OUT = 2.2 μF  
LO=UT1 μH  
SW  
(2V/div)  
IL  
IOUT  
(500 mA/div)  
VIN = 3.6V, VOUT = 1.8V  
(500 mA/div)  
C
OUT = 2.2 μF, L = 1 μH  
Time (100 ns/div)  
Time (40 μs/div)  
FIGURE 2-21:  
Switching Waveform  
FIGURE 2-24:  
Load Transient (50 mA to 1A).  
Continuous Mode (500 mA).  
DS20005919A-page 10  
2017 Microchip Technology Inc.  
MIC23156  
VOUT  
(AC-COUPLED)  
(50 mV/div)  
V
= 3.6V TO 5.5V  
VIONUT = 1.8V  
VIN  
(2V/div)  
C
= 2.2 μF  
LO=UT1 μH  
VIN = 3.6V  
V
= 1.8V  
VOUT  
(AC-COUPLED)  
(50 mV/div)  
COUT = 2.2 μF  
LO=UT1 μH  
IOUT  
(200 mA/div)  
Time (40 μs/div)  
Time (100 μs/div)  
FIGURE 2-25:  
Load Transient (200 mA  
FIGURE 2-28:  
Line Transient (3.6V to  
to 600 mA).  
5.5V @ 1.5A).  
VOUT  
(AC-COUPLED)  
(100 mV/div)  
VOUT  
(AC-COUPLED)  
(50 mV/div)  
V
= 3.6V  
VIN = 1.8V  
OUT = 2.2 μF  
PGOOD  
V
= 3.6V  
C
VIN = 1.8V  
LO=UT1 μH  
(500 mV/div)  
C
OUT = 2.2 μF  
IOUT  
(500 mA/div)  
IOUT  
(500 mA/div)  
LO=UT1 μH  
Time (40 μs/div)  
Time (100 μs/div)  
FIGURE 2-26:  
Load Transient (200 mA  
FIGURE 2-29:  
Power Good During Load  
to 1.5A).  
Transient (200 mA to 1.5A).  
VOUT  
(AC-COUPLED)  
(50 mV/div)  
V
= 3.6V TO 5.5V  
VIN = 1.8V  
COUT = 2.2 μF  
LO=UT1 μH  
VIN  
(2V/div)  
VOUT  
(AC-COUPLED)  
(50 mV/div)  
V
= 3.6V  
VIN = 1.8V  
C
OUT = 2.2 μF  
LO=UT1 μH  
PGOOD  
(2V/div)  
IOUT  
(500 mA/div)  
Time (40 μs/div)  
Time (100 μs/div)  
FIGURE 2-27:  
Load Transient (200 mA  
FIGURE 2-30:  
Power Good During Line  
to 1.5A).  
Transient (3.6V to 5.5V @ 1.5A).  
2017 Microchip Technology Inc.  
DS20005919A-page 11  
MIC23156  
VSEL  
(5V/div)  
VEN  
(2V/div)  
VOUT  
VOUT  
(400 mV/div)  
PGOOD  
(500 mV/div)  
VIN = 3.6V , V = 1.0V  
CSOSUT= 120 pF  
C
= 2.2 μFO, UIOTUT = 20 mA  
(400 mV/div)  
VIN = V = 3.6V  
IIN  
C
= I22C.2 μF, IOUT = 250 mA  
PGOOD  
(500 mV/div)  
(50 mA/div)  
CSOSUT= 120 pF  
Time (200 μs/div)  
Time (1 ms/div)  
FIGURE 2-31:  
Power Good During Start-up.  
FIGURE 2-33:  
V
During V  
Transition.  
OUT  
SEL  
VIN = 3.6V , V = 1.0V  
C
= 2.2 μFO, UIOTUT = 20 mA  
CSOSUT= 120 pF  
VEN  
(2V/div)  
VOUT  
(500 mV/div)  
PGOOD  
(500 mV/div)  
Time (20 μs/div)  
FIGURE 2-32:  
Power Good During  
Shutdown.  
DS20005919A-page 12  
2017 Microchip Technology Inc.  
MIC23156  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
Ball  
PIN FUNCTION TABLE  
Pin  
Pin  
Number Number  
Pin Function  
Name  
WLCSP  
QFN  
A1  
A2  
A3  
A4  
2
3
4
5
SCL  
SDA  
SNS  
SS  
Fast Mode Plus 1 MHz I2C Clock Input Pin.  
Fast Mode Plus 1 MHz I2C Data Input/Output Pin.  
Sense: Connect to VOUT, close to output capacitor to sense VOUT  
.
Programmable Soft Start: Connect capacitor to AGND.  
Power Connection for I2C Bus Voltage: Connect this pin to the voltage domain of  
the I2C bus supply. Do not leave floating.  
Pin Selectable: Output voltage of either of two I2C Voltage registers. Do not leave  
B1  
B2  
1
VI2C  
11  
VSEL  
floating.  
B3  
7
PGOOD Power Good Indicator: Use an external pull-up resistor to supply.  
B4  
8
AVIN  
SW  
Input Voltage to Power Analog Functions: Connect decoupling capacitor to ground.  
Switch Connection: Internal power MOSFET output switches.  
C1, C2  
C3, D3  
16, 17  
12, 13  
PVIN  
Input Voltage to Power Switches: Connect decoupling capacitor to ground.  
Analog Ground: Connect to central ground point where all high-current paths meet  
(CIN, COUT, and PGND) for best operation.  
C4  
D1, D2  
D4  
9
14, 15  
10  
AGND  
PGND Power Ground Connection.  
Enable: Logic high enables operation of voltage regulator. Logic low shuts down  
the device. Do not leave floating.  
EN  
NC  
6
No Connect.  
2017 Microchip Technology Inc.  
DS20005919A-page 13  
MIC23156  
4.0  
FUNCTIONAL DESCRIPTION  
PVIN  
SW  
PGND  
SNS  
DRIVER/  
CURRENT LIMIT  
ERROR  
AMPLIFIER  
tON/tOFF  
TIMER  
EN  
AVIN  
VREF  
VI2C  
SDA  
SCL  
VSEL  
CONTROL LOGIC:  
I2C AND DAC  
SS  
PGOOD  
AGND  
FIGURE 4-1:  
Functional Block Diagram.  
4.1  
PVIN  
4.4  
SW  
The Power Input Supply (PVIN) pin provides power to  
the internal MOSFETs for the Switch mode regulator  
section. The PVIN operating range is 2.7V to 5.5V, so an  
input capacitor with a minimum voltage rating of 6.3V is  
recommended. Due to the high switching speed, a mini-  
mum 2.2 µF bypass capacitor, placed close to PVIN and  
the Power Ground (PGND) pin, is required.  
The Switch (SW) pin connects directly to one end of the  
inductor and provides the current path during switching  
cycles. The other end of the inductor is connected to the  
SNS pin, output capacitor and the load. Due to the  
high-speed switching on this pin, the Switch node should  
be routed away from sensitive nodes whenever possible.  
4.5  
SNS  
4.2  
AVIN  
The Sense (SNS) pin is connected to the output of the  
device to provide feedback to the control circuitry. The  
SNS connection should be placed close to the output  
capacitor.  
Analog VIN (AVIN) pin provides power to the internal  
control and analog supply circuitry. AVIN must be tied to  
PVIN through a 10RC filter. Careful layout should be  
considered to ensure that any high-frequency switch-  
ing noise caused by PVIN is reduced before reaching  
AVIN. A 2.2 µF capacitor, as close to AVIN as possible,  
is recommended.  
4.6  
AGND  
The Analog Ground (AGND) pin is the ground path for  
the biasing and control circuitry. The current loop for  
the signal ground should be separate from the Power  
Ground (PGND) loop.  
4.3  
EN  
A logic high signal on the Enable pin activates the out-  
put voltage of the device. A logic low signal on the  
Enable pin deactivates the output and reduces supply  
current to 0.1 µA. Do not leave the EN pin floating.  
MIC23156 features external soft start circuitry via the  
Soft Start (SS) pin that reduces inrush current and  
prevents the output voltage from overshooting when  
EN is driven logic high. Do not leave the EN pin floating.  
4.7  
PGND  
The Power Ground (PGND) pin is the ground path for  
the high current in PWM mode. The current loop for  
the power ground should be as small as possible and  
separate from the Analog Ground (AGND) loop, as  
applicable.  
DS20005919A-page 14  
2017 Microchip Technology Inc.  
MIC23156  
4.8  
PGOOD  
4.11 VSEL  
The Power Good (PGOOD) pin is an open-drain out-  
put, which indicates logic high when the output voltage  
is typically above 90% of its steady state voltage. A  
pull-up resistor of more than 5 kshould be connected  
Selectable Output Voltage pin of either of two I2C  
Voltage registers. A logic low selects Buck Register 1  
and logic high selects Buck Register 2. If no I2C pro-  
gramming is used, the output voltages will be as per the  
default Voltage register values. Do not leave floating.  
from PGOOD to VOUT  
.
4.9  
SS  
4.12 SCL  
The Soft Start (SS) pin is used to control the output  
voltage ramp-up time. The approximate equation for  
The I2C Clock Input pin provides a reference clock for  
clocking in the data signal. This is a Fast mode plus  
1 MHz input pin and requires a 4.7 kpull-up resistor.  
the ramp time in seconds is: 820 x 103 x ln(10) x CSS  
.
For example, for CSS = 120 pF, tRISE 230 µs. Refer to  
the Figure 2-4 graph in Section 2.0 “Typical Perfor-  
mance Curves”. The minimum recommended value  
for CSS is 120 pF.  
4.13 SDA  
The I2C Data Input/Output pin allows for data to be  
written to and read from the MIC23156. This is a Fast  
mode plus 1 MHz I2C pin and requires a 4.7 kpull-up  
resistor.  
4.10 VI2C  
Power Connection pin for the I2C bus voltage. Connect  
this pin to the voltage domain of the I2C bus supply.  
2017 Microchip Technology Inc.  
DS20005919A-page 15  
MIC23156  
Ensure the inductor selected can handle the maximum  
operating current. When saturation current is specified,  
make sure that there is enough margin so that the peak  
current does not cause the inductor to saturate. Peak  
current can be calculated as noted in Equation 5-1:  
5.0  
APPLICATION INFORMATION  
The MIC23156 is a high-performance, DC-to-DC  
step-down regulator offering a small solution size and  
supporting up to 1.5A. The device is available in a  
2.8 mm x 2.5 mm QFN and a 1.81 mm x 1.71 mm  
WLCSP package. Using the HyperLight Load® switch-  
ing scheme, the MIC23156 is able to maintain high  
efficiency and exceptional voltage accuracy throughout  
the entire load range, while providing ultra-fast load tran-  
sient response. Another beneficial feature is the ability to  
dynamically change the output voltage in steps of  
10 mV. The following subsections provide additional  
device application information.  
EQUATION 5-1:  
CALCULATING PEAK  
CURRENT  
1 – VOUT/VIN  
IPEAK = IOUT + V  
OUT   
[
]
2 f L  
As shown by Equation 5-1, the peak inductor current is  
inversely proportional to the switching frequency and  
the inductance. The lower the switching frequency or  
the inductance, the higher the peak current. As input  
voltage increases, the peak current also increases.  
5.1  
Input Capacitor  
A 2.2 µF (or larger) ceramic capacitor should be placed  
as close as possible to the PVIN and AVIN pins with a  
short trace for good noise performance. X5R or X7R  
type ceramic capacitors are recommended for better  
tolerance over temperature. The Y5V and Z5U type  
temperature rating ceramic capacitors are not recom-  
mended due to their large reduction in capacitance  
over temperature, and increased resistance at high  
frequencies. These issues reduce their ability to filter  
out high-frequency noise. The rated voltage of the input  
capacitor should be at least 20% higher than the  
maximum operating input voltage over the operating  
temperature range.  
The size of the inductor depends upon the requirements  
of the application. Refer to the “Typical Application  
Schematic” section for details.  
DC Resistance (DCR) is also important. While DCR is  
inversely proportional to size, it can represent a signifi-  
cant efficiency loss. Refer to Section 5.6 “Efficiency  
Considerations”.  
The transition between Continuous Conduction Mode  
(CCM) to HyperLight Load mode is determined by the  
inductor ripple current and the load current.  
Figure 5-1 shows the signals for the High-Side Drive  
(HSD) switch for tON control, the inductor current and  
the Low-Side Drive (LSD) switch for tOFF control.  
5.2  
Output Capacitor  
Output capacitor selection is also a trade-off between  
performance, size and cost. Increasing the output  
capacitor will lead to an improved transient response,  
however, the size and cost also increase. The  
MIC23156 is designed for use with a 2.2 µF or greater  
ceramic output capacitor. A low-Equivalent Series  
Resistance (low-ESR) ceramic output capacitor is  
recommended, based upon performance, size and  
cost. Both the X7R and X5R temperature rating capac-  
itors are recommended. Refer to Table 5-1 for  
additional information.  
HSD  
IN HLL MODE  
T
ON FIXED,  
TOFF VARIABLE  
IOUT  
IINDUCTOR  
-50 mA  
LOAD  
INCREASING  
LSD  
TDL  
HSD  
IN CCM MODE  
TON VARIABLE,  
TOFF FIXED  
IOUT  
IINDUCTOR  
5.3  
Inductor Selection  
Inductor selection is a balance between efficiency,  
stability, cost, size and rated current. Since the  
MIC23156 is compensated internally, the recommended  
inductance of L is limited from 0.47 µH to 2.2 µH to  
ensure system stability.  
LSD  
FIGURE 5-1:  
HSD Signals for t Control,  
ON  
Inductor Current and LSD for t  
Control.  
OFF  
For faster transient response, a 0.47 µH inductor will  
yield the best result. For lower output ripple, a 2.2 µH  
inductor is recommended.  
Maximum current ratings of the inductor are generally  
given in two methods; permissible DC current and sat-  
uration current. Permissible DC current can be rated  
either for a +40°C temperature rise or a 10% to 30%  
loss in inductance.  
DS20005919A-page 16  
2017 Microchip Technology Inc.  
MIC23156  
In HLL mode, the inductor is charged with a fixed tON  
pulse on the High-Side Drive (HSD) switch. After this,  
the LSD is switched on and current falls at a rate of  
VOUT/L. The controller remains in HLL mode while the  
inductor falling current is detected to cross at approxi-  
mately 200 mA. When the LSD (or tOFF) time reaches  
its minimum, and the inductor falling current is no  
longer able to reach this 200 mA threshold, the part is  
in CCM mode and switching at a virtually constant  
frequency.  
Efficiency (VOUT = 1.8V) vs.  
Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 5V  
VIN = 4.2V  
VIN = 3.6V  
VIN = 2.7V  
Table 5-1 optimizes the inductor to output capacitor  
combination for maintaining a minimum phase margin  
of 45°.  
COUT = 2.2 µF  
L = 1 µH  
TABLE 5-1:  
MAXIMUM C  
vs. INDUCTOR  
OUT  
10  
100  
1000  
10000  
Minimum Recommended Maximum  
Inductor  
OUTPUT CURRENT (mA)  
COUT  
COUT  
COUT  
FIGURE 5-2:  
Efficiency Under Load.  
0.47 µH  
1.0 µH  
2.2 µH  
2.2 µF  
2.2 µF  
2.2 µF  
4.7 µF  
2.2 µF  
2.2 µF  
25 µF  
15 µF  
6.8 µF  
Figure 5-2 shows an efficiency curve. From a 10 mA  
load to 1.5A, efficiency losses are dominated by quies-  
cent current losses, gate drive and transition losses. By  
using the HyperLight Load mode, the MIC23156 is able  
to maintain high efficiency at low-output currents.  
5.4  
Duty Cycle  
The typical maximum duty cycle of the MIC23156 is  
80%.  
Over 200 mA efficiency loss is dominated by MOSFET  
RDSON and inductor losses. Higher input supply  
voltages will increase the gate-to-source threshold on  
the internal MOSFETs, thereby reducing the internal  
RDSON. This improves efficiency by reducing DC  
losses in the device. All but the inductor losses are  
inherent to the device. In which case, inductor selection  
becomes increasingly critical in efficiency calculations.  
As the inductors are reduced in size, the DC Resis-  
tance (DCR) can become quite significant. The DCR  
losses can be calculated as shown in Equation 5-3:  
5.5  
Thermal Shutdown  
When the internal die temperature of MIC23156  
reaches 160°C, the internal driver is disabled until the  
die temperature falls below 140°C.  
5.6  
Efficiency Considerations  
Efficiency is defined as the amount of useful output  
power, divided by the amount of power supplied, as  
shown in Equation 5-2:  
EQUATION 5-3:  
CALCULATING DCR  
LOSSES  
EQUATION 5-2:  
EFFICIENCY  
CALCULATION  
PDCR = IOUT2 DCR  
VOUT IOUT  
VIN IIN  
From that, the loss in efficiency due to inductor  
resistance can be calculated as in Equation 5-4:  
Efficiency % =  
100  
EQUATION 5-4:  
LOSS IN EFFICIENCY DUE  
TO INDUCTOR  
RESISTANCE  
There are two types of losses in switching converters:  
DC losses and switching losses. DC losses are simply  
the power dissipation of I2R. Power is dissipated in the  
high-side switch during the on cycle. Power loss is equal  
to the high-side MOSFET RDSON, multiplied by the  
switch current squared. During the off cycle, the low-side  
N-channel MOSFET conducts, also dissipating power.  
Device operating current also reduces efficiency. The  
product of the quiescent (operating) current and the  
supply voltage represents another DC loss. The current  
required in driving the gates on and off at a constant  
3 MHz frequency, and the switching transitions, make up  
the switching losses.  
VOUT IOUT  
OUT IOUT PDCR  
Efficiency Loss = 1 –  
[
100  
]
V
Efficiency loss due to DCR is minimal at light loads and  
gains significance as the load is increased. Inductor  
selection becomes a trade-off between efficiency and  
size in this case.  
2017 Microchip Technology Inc.  
DS20005919A-page 17  
MIC23156  
5.7  
HyperLight Load Mode  
Switching Frequency vs.  
Output Current  
The MIC23156 uses a minimum on and off-time propri-  
etary control loop. When the output voltage falls below  
the regulation threshold, the error comparator begins a  
switching cycle that turns the PMOS on and keeps it on  
for the duration of the minimum on-time; this increases  
the output voltage. If the output voltage is over the  
regulation threshold, then the error comparator turns  
the PMOS off for a minimum off-time until the output  
drops below the threshold. The NMOS acts as an ideal  
rectifier that conducts when the PMOS is off. Using a  
NMOS switch instead of a diode allows for a lower  
voltage drop across the switching device when it is on.  
The synchronous switching combination between the  
PMOS and the NMOS allows the control loop to work  
in Discontinuous mode for light load operations. In Dis-  
continuous mode, the MIC23156 works in HyperLight  
Load to regulate the output. As the output current  
increases, the off-time decreases, thus providing more  
energy to the output. This switching scheme improves  
the efficiency of MIC23156 during light load currents by  
only switching when it is needed. As the load current  
increases, the MIC23156 goes into Continuous  
Conduction Mode (CCM) and switches at a frequency  
centered at 3 MHz. The equation to calculate the load  
when the MIC23156 goes into Continuous Conduction  
Mode may be approximated by Equation 5-5:  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.0 µH  
2.2 µH  
VOUT = 1.8V  
COUT = 2.2 µF  
10  
100  
1000  
10000  
OUTPUT CURRENT (mA)  
FIGURE 5-3:  
Current.  
SW Frequency vs. Output  
5.8  
Output Voltage Setting  
The MIC23156 features dynamic voltage scaling and  
setting hardware that allow the output voltage of the  
buck regulator to be changed on-the-fly, in increments  
of 10 mV. The output voltage is set according to one of  
two registers that behave identically: BUCK_OUT1  
when VSEL = 0and BUCK_OUT2 when VSEL = 1. If the  
BUCK_OUT value is changed while the VSEL is selected  
and the regulator is enabled, then the output voltage will  
immediately change to the new value using Dynamic  
Voltage Scaling (DVS). Equation 5-6 describes the  
relationship between the register value and the output  
voltage:  
EQUATION 5-5:  
CALCULATING LOAD  
WHEN IN CONTINUOUS  
CONDUCTION MODE  
(VIN – VOUT) D  
ILOAD  
>
2L f  
As shown in Equation 5-5, the load at which the  
MIC23156 transitions from HyperLight Load mode to  
PWM mode is a function of the Input Voltage (VIN), Out-  
put Voltage (VOUT), Duty Cycle (D), Inductance (L) and  
frequency (f). As shown in Figure 5-3, as the output  
current increases, the switching frequency also  
increases until the MIC23156 goes from HyperLight  
Load mode to PWM mode, at approximately 200 mA.  
The MIC23156 will switch at a relatively constant  
frequency, around 3 MHz, once the output current is  
over 200 mA.  
EQUATION 5-6:  
REGISTER VALUE AND  
OUTPUT VOLTAGE  
RELATIONSHIP  
VOUT = 0.7 + (0.01 REGBUCK_OUT  
)
Note that the maximum output voltage is 2.4V, corre-  
sponding to a register setting of 170 (0b10101010,  
0xAA). An example of this calculation is demonstrated  
in Section 5.13 “Calculating DAC Voltage Code”.  
DS20005919A-page 18  
2017 Microchip Technology Inc.  
MIC23156  
5.9  
I2C Interface  
5.10 I2C Register Summary  
Figure 5-4 shows the communications required for  
write and read operations via the I2C interface. The  
black lines show master communications and the red  
lines show the slave communications. During a write  
operation, the master must drive SDA and SCL for all  
stages, except the Acknowledgment (A) stage shown  
in red, which are provided by the slave (MIC23156).  
There are three I2C Read/Write registers that are 8 bits  
in length. All registers are reset to a zero state when-  
ever EN 0.5V and set (reset) to their default values on  
the transition of EN 1.5V. All registers are accessible  
by I2C.  
TABLE 5-2:  
Reg.  
REGISTER BIT FIELD MAP  
The read operation begins first with a dataless write to  
select the register address from which to read. A restart  
sequence is issued, followed by a read command and  
a data read.  
D7  
D6  
D5  
D4  
1
2
TSD  
UVLO  
PGOOD  
BUCK_OUT1  
BUCK_OUT2  
The MIC23156 responds to a slave address of Hex 0xB6  
and 0xB7 for write and read operations, respectively,  
or binary 1011011x (where ‘x’ is the read/write bit,  
0= write, 1= read).  
3
Reg.  
1
D3  
D2  
D1  
D0  
SSL  
BUCK_EN  
2
BUCK_OUT1  
BUCK_OUT2  
The register address is eight bits wide and carries the  
address of the MIC23156 register to be operated upon.  
Only the lower three bits are used.  
3
5.11 Enable/Status Register (001b/01h)  
WRITE PROTOCOL  
The Enable/Status register is written to enable the out-  
put regulator (BUCK_EN) and Soft Start Extension  
mode (SSL). It is read to interrogate the status of Ther-  
mal Shutdown (TSD), Undervoltage Lockout (UVLO)  
and Power Good (PGOOD) status of the regulator. See  
Register 5-1 for additional information.  
SLAVE  
REGISTER  
ADDRESS  
DATA  
ADDRESS  
SDA  
SCL  
1011011 0  
0
0
0
P
S
W A  
A
A
5.12 Buck Register 1 (010b/02h) and  
Buck Register 2 (011b/03h)  
READ PROTOCOL  
SLAVE  
REGISTER  
ADDRESS  
SLAVE  
ADDRESS  
DATA  
ADDRESS  
These registers are written to set the output voltage to  
any one of 170 levels in 10 mV steps. Values above  
decimal 170 are equivalent to setting the register  
to 170. The two registers correspond to one of two  
states, which is selectable by the VSEL input pin. This  
allows the regulator to be quickly switched between  
two voltage levels (e.g., enabled and standby). When  
VSEL = 0, the output voltage is controlled by BUCK_OUT1  
(REG2). When VSEL = 1, then the output voltage is  
controlled by BUCK_OUT2 (REG3). See Register 5-2  
and Register 5-3 for additional information.  
SDA  
1011011 0  
SCL  
0
0
1011011  
1
0
0
S
W A  
A
Sr  
R
A
A
P
S = START  
= WRITE  
Sr= RESTART  
R = READ  
W
A = ACKNOWLEDGE P = STOP  
FIGURE 5-4:  
for Read/Write Operations via I C Interface.  
Required Communications  
2
2017 Microchip Technology Inc.  
DS20005919A-page 19  
MIC23156  
REGISTER 5-1:  
REG1: ENABLE AND STATUS REGISTER  
r-0  
R-0  
R-0  
R-0  
r-0  
r-0  
R/W-0  
SSL  
R/W-1  
TSD  
UVLO  
PGOOD  
BUCK_EN  
bit 7  
bit 0  
Legend:  
r = Reserved bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
Reserved: Not used  
TSD: Thermal Shutdown Status bit  
This register bit will be set by internal hardware if a thermal shutdown event is triggered by the die  
temperature which exceeds the shutdown temperature.  
bit 5  
bit 4  
UVLO: Undervoltage Lockout Status bit  
This register bit will be set by internal hardware when the undervoltage lockout circuit is active and  
cleared when VIN exceeds the UVLO threshold.  
PGOOD: Power Good Status bit  
This register bit will be set when the buck regulator output voltage is > nominally 10% of the output  
voltage set points, as specified by VSEL, BUCK_OUT1 and BUCK_OUT2. This regulator has the same  
function as the PGOOD output pin.  
bit 3-2  
bit 1  
Reserved: Not used  
SSL: Long Soft Start Enable bit  
If this bit is set, then the internal soft start resistor is increased and the soft start time will be extended.  
BUCK_EN: Buck Regulator Enable bit  
bit 0  
Setting this bit will enable and turn on the buck regulator output. Clearing this bit will disable the buck  
regulator output.  
DS20005919A-page 20  
2017 Microchip Technology Inc.  
MIC23156  
REGISTER 5-2:  
REG2: BUCK_OUT1 REGISTER  
R/W-0x1E  
R/W-0x1E  
R/W-0x1E  
R/W-0x1E  
R/W-0x1E  
R/W-0x1E  
R/W-0x1E  
R/W-0x1E  
bit 0  
BUCK_OUT1<7:0>  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7-0  
BUCK_OUT1<7:0>: Buck Output Voltage 1 bits (setting for VSEL = 0)  
Setting this register value will change the output regulation point for the buck regulator when VSEL = 0.  
If the buck is enabled and VSEL = 0, changing the value will immediately cause the output voltage to  
transition to the new set point.  
REGISTER 5-3:  
REG3: BUCK_OUT2 REGISTER  
R/W-0x0A  
R/W-0x0A  
R/W-0x0A  
R/W-0x0A  
R/W-0x0A  
R/W-0x0A  
R/W-0x0A  
R/W-0x0A  
bit 0  
BUCK_OUT2<7:0>  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7-0  
BUCK_OUT2<7:0>: Buck Output Voltage 2 bits (setting for VSEL = 1)  
Setting this register value will change the output regulation point for the buck regulator when VSEL = 1.  
If the buck is enabled and VSEL = 1, changing the value will immediately cause the output voltage to  
transition to the new set point.  
2017 Microchip Technology Inc.  
DS20005919A-page 21  
MIC23156  
5.13 Calculating DAC Voltage Code  
If the desired output voltage is 1.8V, then using Equation 5-7:  
EQUATION 5-7:  
CALCULATING DAC VOLTAGE  
(1.8 – 0.7)  
=
0.01  
VOUT = 0.7 + (0.01 REGBUCK_OUT) REGBUCK_OUT  
Note: REGBUCK_OUT = 110in decimal, 6E in Hex or ‘0110 1110’ in binary.  
DS20005919A-page 22  
2017 Microchip Technology Inc.  
MIC23156  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
Example  
17-Lead QFN*  
JQA  
371  
XXX  
NNN  
Example  
16-Ball WLCSP*  
J5  
1722  
943  
XX  
YYWW  
NNN  
Legend: XX...X Product code or customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC® designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
e
3
)
, , Pin one index is identified by a dot, delta up, or delta down (triangle  
mark).  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information. Package may or may not include  
the corporate logo.  
Underbar (_) and/or Overbar () symbol may not be to scale.  
2017 Microchip Technology Inc.  
DS20005919A-page 23  
MIC23156  
6.2  
Package Details  
The following sections give the technical details of the packages.  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging.  
DS20005919A-page 24  
2017 Microchip Technology Inc.  
MIC23156  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging.  
2017 Microchip Technology Inc.  
DS20005919A-page 25  
MIC23156  
NOTES:  
DS20005919A-page 26  
2017 Microchip Technology Inc.  
MIC23156  
APPENDIX A: REVISION HISTORY  
Revision A (December 2017)  
• Converted Micrel document MIC23156 to  
Microchip data sheet DS20005919A.  
• Minor text changes throughout document.  
2017 Microchip Technology Inc.  
DS20005919A-page 27  
MIC23156  
NOTES:  
DS20005919A-page 28  
2017 Microchip Technology Inc.  
MIC23156  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.  
Examples:  
PART NO.  
Device  
XX  
X
X
XX  
a) MIC23156-0YCS-TR: MIC23156, 1.0V/0.8V Default  
Output Voltage, –40°C to +125°C  
Junction Temp. Range,  
Media  
Type  
Default  
Junction Temp. Package  
Range  
Output Voltage  
16-Ball WLCSP, 3,000/Reel  
MIC23156:  
1.5A, 3 MHz Synchronous Buck Regulator  
with HyperLight Load and I C Control for  
Dynamic Voltage Scaling  
b) MIC23156-0YML-TR: MIC23156, 1.0V/0.8V Default  
Output Voltage, –40°C to +125°C  
Junction Temp. Range,  
®
2
Device:  
17-Lead CQFN, 5,000/Reel  
Output Voltage:  
0
=
1.0V (V  
= Low), 0.8V (V  
= High)  
c) MIC23156-0YML-T5: MIC23156, 1.0V/0.8V Default  
Output Voltage, –40°C to +125°C  
Junction Temp. Range,  
SEL  
SEL  
Junction  
Temperature  
Range:  
17-Lead CQFN, 500/Reel  
Y
=
–40°C to +125°C  
Note 1:  
Tape and Reel identifier only appears in the  
catalog part number description. This identifier is  
used for ordering purposes and is not printed on  
the device package. Check with your Microchip  
Sales Office for package availability with the  
Tape and Reel option.  
CS  
ML  
=
=
16-Ball 1.81 mm x 1.71 mm WLCSP  
17-Lead 2.5 mm x 2.8 mm CQFN  
Package:  
T5  
TR  
TR  
=
=
=
500/Reel (ML Package only)  
5,000/Reel (ML Package only)  
3,000/Reel (CS Package only)  
Media Type:  
2017 Microchip Technology Inc.  
DS20005919A-page 29  
MIC23156  
NOTES:  
DS20005919A-page 30  
2017 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate, AVR,  
AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory,  
CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ,  
KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus,  
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,  
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip  
Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST  
Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
and other countries.  
ClockWorks, The Embedded Control Solutions Company,  
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,  
mTouch, Precision Edge, and Quiet-Wire are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo,  
CodeGuard, CryptoAuthentication, CryptoCompanion,  
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average  
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial  
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,  
KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF,  
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,  
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,  
PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple  
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,  
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,  
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and  
ZENAare trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
Silicon Storage Technology is a registered trademark of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip Technology  
Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
QUALITYMANAGEMENTꢀꢀSYSTEMꢀ  
CERTIFIEDBYDNVꢀ  
© 2017, Microchip Technology Incorporated, All Rights Reserved.  
ISBN: 978-1-5224-2478-9  
== ISO/TS16949==ꢀ  
2017 Microchip Technology Inc.  
DS20005919A-page 31  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Australia - Sydney  
Tel: 61-2-9868-6733  
India - Bangalore  
Tel: 91-80-3090-4444  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
China - Beijing  
Tel: 86-10-8569-7000  
India - New Delhi  
Tel: 91-11-4160-8631  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8665-5511  
India - Pune  
Tel: 91-20-4121-0141  
Finland - Espoo  
Tel: 358-9-4520-820  
China - Chongqing  
Tel: 86-23-8980-9588  
Japan - Osaka  
Tel: 81-6-6152-7160  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
China - Dongguan  
Tel: 86-769-8702-9880  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Guangzhou  
Tel: 86-20-8755-8029  
Korea - Daegu  
Tel: 82-53-744-4301  
Germany - Garching  
Tel: 49-8931-9700  
China - Hangzhou  
Tel: 86-571-8792-8115  
Korea - Seoul  
Tel: 82-2-554-7200  
Germany - Haan  
Tel: 49-2129-3766400  
Austin, TX  
Tel: 512-257-3370  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Malaysia - Kuala Lumpur  
Tel: 60-3-7651-7906  
Germany - Heilbronn  
Tel: 49-7131-67-3636  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
China - Nanjing  
Tel: 86-25-8473-2460  
Malaysia - Penang  
Tel: 60-4-227-8870  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Qingdao  
Philippines - Manila  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-532-8502-7355  
Tel: 63-2-634-9065  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shanghai  
Tel: 86-21-3326-8000  
Singapore  
Tel: 65-6334-8870  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Shenyang  
Tel: 86-24-2334-2829  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Shenzhen  
Tel: 86-755-8864-2200  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Suzhou  
Tel: 86-186-6233-1526  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Wuhan  
Tel: 86-27-5980-5300  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Italy - Padova  
Tel: 39-049-7625286  
Houston, TX  
Tel: 281-894-5983  
China - Xian  
Tel: 86-29-8833-7252  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
China - Xiamen  
Tel: 86-592-2388138  
Norway - Trondheim  
Tel: 47-7289-7561  
China - Zhuhai  
Tel: 86-756-3210040  
Poland - Warsaw  
Tel: 48-22-3325737  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
DS20005919A-page 32  
2017 Microchip Technology Inc.  
10/25/17  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY