MIC3002BMLTR [MICROCHIP]

ATM/SONET/SDH SUPPORT CIRCUIT, QCC24, 4 X 4 MM, MLF-24;
MIC3002BMLTR
型号: MIC3002BMLTR
厂家: MICROCHIP    MICROCHIP
描述:

ATM/SONET/SDH SUPPORT CIRCUIT, QCC24, 4 X 4 MM, MLF-24

ATM 异步传输模式 电信 电信集成电路
文件: 总65页 (文件大小:1142K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC3002  
FOM Management IC with Internal  
Calibration  
General Description  
Features  
The MIC3002 is a fiber optic module controller which enables  
the implementation of sophisticated, hot-pluggable fiber optic  
transceivers with intelligent laser control and an internally  
calibrated Digital Diagnostic Monitoring Interface per SFF-  
8472. It essentially integrates all non-datapath functions of an  
SFP transceiver into a tiny (4mm x 4mm) QFN package. It  
• Extensive temperature range  
• Alarms and Warnings interrupt and TXFAULT masks  
• Capability to support up to four chips on the serial  
interface  
• LUT to compensate for chip-FOM case temperature  
difference  
also works well as  
a
microcontroller peripheral in  
• APC or constant-current laser bias  
transponders or 10Gbps transceivers.  
• Turbo mode for APC loop start-up and shorter laser turn  
on time  
• Supports multiple laser types and bias circuit topologies  
• Integrated digital temperature sensor  
• Temperature compensation of modulation, bias, and  
fault levels via NVRAM look-up tables  
A highly configurable automatic power control (APC) circuit  
controls laser bias. Bias and modulation are temperature  
compensated using dual DACs, an on-chip temperature  
sensor, and NVRAM look-up tables. A programmable  
internal feedback resistor provides a wide dynamic range for  
the APC. Controlled laser turn-on facilitates hot plugging.  
An analog-to-digital converter converts the measured  
temperature, voltage, bias current, transmit power, and  
received power from analog to digital. An EEPOT provides  
front-end adjustment of RX power. Each parameter is  
compared against user-programmed warning and alarm  
thresholds. Analog comparators and DACs provide high-  
speed monitoring of received power and critical laser  
operating parameters. Data can be reported as either  
internally calibrated or externally calibrated.  
• NVRAM to support GBIC/SFP serial ID function  
• User writable EEPROM scratchpad  
• Diagnostic monitoring interface per SFF-8472  
– Monitors and reports critical parameters:  
temperature, bias current, TX and RX optical power,  
and supply voltage  
– S/W control and monitoring of TXFAULT, RXLOS,  
RATESELECT, and TXDISABLE  
– Internal or external calibration  
– EEPOT for adjusting RX power measurement  
• Power-on hour meter  
An interrupt output, power-on hour meter, and data-ready  
bits add user friendliness beyond SFF-8472. The interrupt  
output and data-ready bits reduce overhead in the host  
system. The power-on hour meter logs operating hours using  
an internal real-time clock and stores the result in NVRAM.  
• Interrupt capability  
• Extensive test and calibration features  
• 2-wire SMBus-compatible serial interface  
• SFP/SFP+ MSA and SFF-8472 compliant  
• 3.0V to 3.6V power supply range  
• 5V-tolerant I/O  
In addition to the features listed above which are already  
implemented in the previous controller MIC3001, the  
MIC3002 features an extensive temperature range, options  
to mask alarms and warnings interrupt and TXFAULT, and  
ability to support up to four chips with the same address on  
the serial interface.  
• Available in (4mm x 4mm) 24-pin QFN package  
Communication with the MIC3002 is via an industry standard  
2-wire serial interface. Nonvolatile memory is provided for  
serial ID, configuration, and separate OEM and user  
scratchpad spaces. Two-level password protection guards  
against data corruption.  
Applications  
• SFP/SFP+ optical transceivers  
• SONET/SDH transceivers and transponders  
• Fibre Channel transceivers  
• 10Gbps transceivers  
• Free space optical communications  
• Proprietary optical links  
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Ordering Information  
Part Number  
Package Type  
Junction Temp. Range  
–45°C to +105°C  
Package Marking  
Lead Finish  
MIC3002BML  
MIC3002BMLTR(1)  
MIC3002GML  
24-pin QFN  
24-pin QFN  
24-pin QFN  
3002  
3002  
Sn-Pb  
Sn-Pb  
–45°C to +105°C  
–45°C to +105°C  
3002  
Pb-Free  
NiPdAu  
with Pb-Free bar-line indicator  
MIC3002GMLTR(1)  
24-pin QFN  
–45°C to +105°C  
3002  
Pb-Free  
NiPdAu  
with Pb-Free bar-line indicator  
1. Note:  
2. Tape and Reel.  
2
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Contents  
Pin Configuration............................................................................................................................................................. 7  
Pin Description ................................................................................................................................................................ 7  
Absolute Maximum Ratings ............................................................................................................................................ 9  
Operating Ratings ........................................................................................................................................................... 9  
Electrical Characteristics................................................................................................................................................. 9  
Timing Diagram............................................................................................................................................................. 14  
Address Map ................................................................................................................................................................. 15  
Block Diagram............................................................................................................................................................... 18  
Analog-to-Digital Converter/Signal Monitoring.............................................................................................................. 18  
Temperature Reading Compensation........................................................................................................................... 19  
Alarms and Warnings Interrupt Source Masking .......................................................................................................... 20  
Alarms and Warnings as TXFAULT Source ................................................................................................................. 21  
Alarms and Warnings Latch.......................................................................................................................................... 21  
SMBus Multipart Support .............................................................................................................................................. 21  
Calibration Modes ......................................................................................................................................................... 22  
A/ External Calibration............................................................................................................................................ 22  
Voltage.................................................................................................................................................................... 22  
Temperature ........................................................................................................................................................... 22  
Bias Current............................................................................................................................................................ 22  
TX Power................................................................................................................................................................ 22  
RX Power................................................................................................................................................................ 23  
B/ Internal Calibration ............................................................................................................................................. 23  
Temperature Offset................................................................................................................................................. 25  
C/ ADC Result Registers Reading.......................................................................................................................... 25  
RXPOT ......................................................................................................................................................................... 25  
Laser Diode Bias Control .............................................................................................................................................. 25  
Laser Modulation Control.............................................................................................................................................. 26  
Power ON and Laser Start-Up ...................................................................................................................................... 27  
Fault Comparators ........................................................................................................................................................ 28  
SHDN and TXFIN.......................................................................................................................................................... 29  
Temperature Measurement........................................................................................................................................... 29  
Diode Faults .................................................................................................................................................................. 29  
Temperature Compensation ......................................................................................................................................... 29  
Alarms and Warning Flags............................................................................................................................................ 32  
Control and Status I/O................................................................................................................................................... 32  
System Timing............................................................................................................................................................... 34  
Warm Resets................................................................................................................................................................. 36  
Power-On Hour Meter................................................................................................................................................... 36  
Test and Calibration Features....................................................................................................................................... 37  
Serial Port Operation..................................................................................................................................................... 38  
Page Writes................................................................................................................................................................... 38  
Acknowledge Polling....................................................................................................................................................... 39  
Write Protection and Data Security.................................................................................................................................. 39  
OEM Password........................................................................................................................................................ 39  
User Password......................................................................................................................................................... 39  
3
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Detailed Register Descriptions...................................................................................................................................... 40  
Alarm Threshold Registers............................................................................................................................................ 40  
Warning Threshold Registers........................................................................................................................................ 43  
ADC Result Registers ................................................................................................................................................... 45  
Alarm Flags ................................................................................................................................................................... 48  
Warning Flags ............................................................................................................................................................... 49  
Warning Status Register 0 (WARN0)............................................................................................................................ 49  
Warning Status Register 1 (WARN1)............................................................................................................................ 49  
OEM Password Entry (OEMPW) .................................................................................................................................. 50  
USER Password Setting (USRPWSET) ....................................................................................................................... 50  
USER Password (USRPW)........................................................................................................................................... 51  
Power-On Hours ........................................................................................................................................................... 51  
Data Ready Flags (DATARDY)..................................................................................................................................... 51  
USER Control Register (USRCTL) ............................................................................................................................... 52  
OEM Configuration Register 0 (OEMCFG0)................................................................................................................. 52  
OEM Configuration Register 1 (OEMCFG1)................................................................................................................. 53  
OEM Configuration Register 2 (OEMCFG2)................................................................................................................. 54  
APC Setpoint x ............................................................................................................................................................. 54  
Modulation Setpoint x ................................................................................................................................................... 54  
I
BIAS Fault Threshold (IBFLT)......................................................................................................................................... 55  
Transmit Power Fault Threshold (TXFLT) .................................................................................................................... 55  
Loss-Of-Signal Threshold (LOSFLT) ............................................................................................................................ 55  
Fault Suppression Timer (FLTTMR) ............................................................................................................................. 55  
Fault Mask (FLTMSK)................................................................................................................................................... 56  
OEM Password Setting (OEMPWSET) ........................................................................................................................ 56  
OEM Calibration 0 (OEMCAL0) .................................................................................................................................... 57  
OEM Calibration 1 (OEMCAL1) .................................................................................................................................... 57  
OEM Calibration 1 (LUT Index)..................................................................................................................................... 58  
OEM Configuration 3 (OEMCFG3) ............................................................................................................................... 58  
BIAS DAC Setting (APCDAC) Current VBIAS Setting.................................................................................................. 58  
Modulation DAC Setting (MODDAC) Current VMOD Setting....................................................................................... 59  
OEM Readback Register (OEMRD) ............................................................................................................................. 59  
Signal Detect Threshold (LOSFLTn)............................................................................................................................. 59  
RX EEPOT Tap Selection (RXPOT)............................................................................................................................. 60  
OEM Configuration 4 (OEMCFG4) ............................................................................................................................... 60  
OEM Configuration 5 (OEMCFG5) ............................................................................................................................... 61  
OEM Configuration 6 (OEMCFG6) ............................................................................................................................... 62  
Power-On Hour Meter Data (POHDATA) ..................................................................................................................... 62  
OEM Scratchpad Registers (SCRATCHn).................................................................................................................... 63  
RX Power Look-up Table (RXLUTn)............................................................................................................................. 63  
Calibration Constants (CALn) ....................................................................................................................................... 63  
Manufacturer ID Register.............................................................................................................................................. 64  
Device ID Register ....................................................................................................................................................... 64  
Package Information ..................................................................................................................................................... 65  
4
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
List of Figures  
Figure 1. MIC3002 Block Diagram................................................................................................................................ 18  
Figure 2. Analog-to-Digital Converter Block Diagram................................................................................................... 18  
Figure 3. Internal Calibration RX Power Linear Approximation .................................................................................... 25  
Figure 4. RXPOT Block Diagram .................................................................................................................................. 25  
Figure 5. MIC3002 APC and Modulation Control Block Diagram................................................................................ 26  
Figure 6. Programmable Feedback Resistor ................................................................................................................ 26  
Figure 7. Transmitter Configurations Supported by MIC3002 ..................................................................................... 26  
Figure 8. V  
MOD  
Configured as Voltage Output with Gain .......................................................................................... 27  
Figure 9. MIC3002 Power-ON Timing.......................................................................................................................... 28  
Figure 10. Fault Comparator Logic ............................................................................................................................... 28  
Figure 11. Saturation Detector...................................................................................................................................... 29  
Figure 12. RXLOS Comparator Logic ........................................................................................................................... 29  
Figure 13. Control and Status I/O Logic........................................................................................................................ 33  
Figure 14. Transmitter ON-OFF Timing....................................................................................................................... 34  
Figure 15. Initialization Timing with TXDISABLE Asserted.......................................................................................... 34  
Figure 16. Initialization Timing with TXDISABLE Not Asserted.................................................................................. 34  
Figure 17. Loss-of-Signal (LOS) Timing ...................................................................................................................... 35  
Figure 18. Transmit Fault Timing .................................................................................................................................. 28  
Figure 19. Successfully Clearing a Fault Condition ..................................................................................................... 36  
Figure 20. Unsuccessful Attempt to Clear a Fault ....................................................................................................... 36  
Figure 21. Write Byte Protocol ..................................................................................................................................... 38  
Figure 22. Read Byte Protocol..................................................................................................................................... 38  
Figure 23. Read_Word Protocol................................................................................................................................... 38  
Figure 24. Four-Byte Page_White Protocol ................................................................................................................. 39  
5
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
List of Tables  
Table 1. MIC3002 Address Map, Serial Address = A0h................................................................................................ 15  
Table 2. MIC3002 Address Map, Serial Address = A2h................................................................................................ 15  
Table 3. Temperature Compensation Tables, Serial Address = A4h ............................................................................ 16  
Table 4. OEM Configuration Registers, Serial Address = A6h...................................................................................... 17  
Table 5. A/D Input Signal Ranges and Resolutions...................................................................................................... 19  
Table 6. VAUX Input Signal Ranges and Resolutions .................................................................................................... 19  
Table 7. LUT for Temperature Reading Compensation................................................................................................ 20  
Table 8. Alarms Interrupt Sources Masking Bits........................................................................................................... 20  
Table 9. Warnings Interrupt Sources Masking Bits....................................................................................................... 21  
Table 10. LSB Values of Offset Coefficients................................................................................................................. 23  
Table 11. Internal Calibration Coefficient Memory Map – Part I................................................................................... 24  
Table 12. Internal Calibration Coefficient Memory Map – Part II.................................................................................. 24  
Table 13. Shutdown State of SHDN vs. Configuration Bits ......................................................................................... 27  
Table 14. Shutdown State of VBIAS vs. Configuration Bits............................................................................................ 27  
Table 15. Shutdown State of VMOD vs. Configuration Bits............................................................................................ 27  
Table 16. Temperature Compensation Look-up Tables ............................................................................................... 30  
Table 17. APC Temperature Compensation Look-Up Table....................................................................................... 31  
Table 18. VMOD Temperature Compensation Look-Up Table....................................................................................... 31  
Table 19. IBIAS Comparator Temperature Compensation Look-Up Table..................................................................... 31  
Table 20. BIAS Current High Alarm Temperature Compensation Table...................................................................... 31  
Table 22. MIC3002 Events............................................................................................................................................ 33  
Table 23. Power-On Hour Meter Result Format .......................................................................................................... 36  
Table 24. Test and Diagnostic Features ...................................................................................................................... 37  
6
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Pin Configuration  
24-Pin QFN  
Pin Description  
Pin Number  
Pin Name  
Pin Function  
Analog Input. Feedback voltage for the APC loop op-amp. Polarity and scale are programmable  
via the APC configuration bits. Connect to V if APC is not used.  
1
FB  
BIAS  
2
VMPD  
Analog Input. Multiplexed A/D converter input for monitoring transmitted optical power via a  
monitor photodiode. In most applications, VMPD will be connected directly to FB. The input range  
is 0 - V  
or 0 - V  
/4 depending on the setting of the APC configuration bits  
REF  
REF  
3
4
5
GNDA  
VDDA  
VILD–  
Ground return for analog functions.  
Power supply input for analog functions.  
Analog Input. Reference terminal for the multiplexed pseudo-differential A/D converter inputs for  
monitoring laser bias current via a sense resistor (VILD+ is the sensing input). Tie to V  
or GND  
DD  
to reference the voltage sensed on VILD+ to V  
DD  
or GND, respectively. Limited common-mode  
voltage range, see “Applications Information” section for more details.  
Analog Input. Multiplexed A/D input for monitoring laser bias current via a sense resistor (signal  
input); accommodates inputs referenced to V or GND (see pin 5 description). Limited common-  
6
7
VILD+  
DD  
mode voltage range, see “Applications Information” section for more details.  
SHDN/TXFIN  
Digital output/Input; programmable polarity. When used as shutdown output (SHDN), OEMCFG3-2  
set to 0, SHDN is asserted at the detection of a fault condition if OEMCFG4-7 is set to 0. If the  
latter bit is set to 1, a fault condition will not assert SHDN. When programmed as TXFIN, it is an  
input for external fault signals to be ORed with the internal fault sources to drive TXFAULT.  
8
VRX  
Analog Input. Multiplexed A/D converter input for monitoring received optical power. The input  
range is 0 to V  
. A 5-bit programmable EEPOT on this pin provides for coarse calibration and  
REF  
ranging of the RX power measurement.  
9
XPN  
Analog Input/Output. Optional connection to an external PN junction for sensing temperature at a  
remote location. The Zone bit in OEMCFG1 determines whether temperature is measured using  
the on-chip sensor or the remote PN junction.  
10  
TXFAULT  
Digital Output; Open-Drain, programmable polarity. If OEMCFG5-4 is set to 0, a high level  
indicates a hardware fault impeding transmitter operation. The state of this pin is always reflected  
in the TXFLT bit.  
7
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Pin Description  
Pin Number  
Pin Name  
Pin Function  
11  
TXDISABLE  
Digital Input; Active High. The transmitter is disabled when this line is high or the STXDIS bit is  
set. The state of this input is always reflected in the TXDIS bit.  
12  
13  
14  
DATA  
CLK  
Digital I/O; Open-drain. Bi-directional serial data input/output.  
Digital Input; Serial clock input.  
VIN/INT  
If bit 4 (IE) in USRCTL register is set to 0 (default), this pin is configured as analog input. If IE bit  
is set to 1, this pin is configured as open-drain output. Analog Input: Multiplexed A/D input for  
monitoring supply voltage. 0V to 5.5V input range. Open-drain output: outputs the internally  
generated interrupt signal /INT.  
15  
RSIN  
Digital Input; Rate Select Input; ORed with rate select bit to determine the state of the RSOUT pin.  
The state of this pin is always reflected in the RSEL bit.  
16  
17  
18  
19  
GNDD  
NC  
Ground return for digital functions.  
No connection. This pin is used for test purposes and must be left unconnected.  
Power supply input for digital functions.  
VDDD  
RXLOS  
Digital Output; programmable polarity Open-Drain. Indicates the loss of the received signal as  
indicated by a level of received optical power below the programmed RXLOS comparator  
threshold; may be wire-ORed with external signals. Normal operation is indicated by a Low level  
when OEMCFG6-3 is set to 0 and a high level when OEMCFG6-3 is set to 1. RXLOS is de-  
asserted when VRX > LOSFLTn. The LOS bit reflects the state of RXLOS whether driven by the  
MIC3002 or an external circuit.  
20  
RS0/GPO  
Digital Output. Open-Drain or push-pull. When used as rate select output, it represents the  
receiver rate select as per SFF. This output is controlled by the SRSEL bit ORed with RSIN input  
and is open drain only. When used as a general-purpose, non-volatile output, it is controlled by  
the GPO configuration bits in OEMCFG3.  
21  
22  
COMP  
VBIAS  
Analog Output, compensation terminal. Connect a capacitor between this pin and GNDA or V  
DDA  
with appropriate value to tune the APC loop time constant to a desirable value.  
Analog Output. Buffered DAC output capable of sourcing or sinking up to 10mA under control of  
the APC function to drive an external transistor for laser diode D.C. bias. The output and  
feedback polarity are programmable to accommodate either a NPN or a PNP transistor to drive a  
common-anode or common-cathode laser diode.  
23  
24  
VMOD–  
VMOD+  
Analog Input. Inverting terminal of VMOD buffer op-amp. Connect to V  
+ (gain = 1) or  
MOD  
feedback resistors network to set a different gain  
Analog Output. Buffered DAC output to set the modulation current on the laser driver IC. Operates  
with either a 0– V  
or a (V –V  
) – V  
output swing so as to generate either a ground-  
REF  
referenced programmed voltage. A simple external circuit can be used to  
DD REF  
DD  
referenced or a V  
DD  
generate a programmable current for those drivers that require a current rather than a voltage  
input. See “Applications Information” section for more details.  
8
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Absolute Maximum Ratings(1)  
Operating Ratings(2)  
Power Supply Voltage, V .................................+3.8V  
Power Supply Voltage, V  
/V  
..... +3.0V to +3.6V  
DD  
DDA DDD  
Voltage on CLK, DATA, TXFAULT, VIN, RXLOS,  
DISABLE, RSIN..................................–0.3V to +6.0V  
Ambient Temperature Range (T ) ... –40°C to +105°C  
A
Package Thermal Resistance  
Voltage On Any Other Pin...............0.3V to V +0.3V  
DD  
QFN (θ )...............................................43°C/W  
JA  
Power Dissipation, T = 85°C ............................... 1.5W  
A
Junction Temperature (T ).................................. 150°C  
J
Storage Temperature (T ) ................. –65°C to +150°C  
S
(3)  
ESD Ratings  
Human Body Model............................................. 2kV  
Machine Model.................................................. 300V  
Soldering (20sec).................................................260ºC  
Electrical Characteristics  
For typical values, TA = 25°C, VDDA = VDDD = +3.3V, unless otherwise noted. Bold values are guaranteed for +3.0V ≤  
(8)  
(VDDA = VDDD) ≤ 3.6V, T  
≤ TA ≤ T  
(max)  
(min)  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
Power Supply  
IDD  
Supply Current  
CLK = DATA = V  
= V  
DDA  
;
2.3  
3.5  
mA  
DDD  
TXDISABLE low; all DACs at full-  
scale; all A/D inputs at full-scale; all  
other pins open.  
CLK = DATA = V  
DDD  
= V  
DDA  
;
2.3  
3.5  
mA  
V
TXDISABLE high; FLTDAC at full-  
scale; all A/D inputs at full-scale; all  
other pins open.  
VPOR  
Power-on Reset Voltage  
All registers reset to default values;  
A/D conversions initiated.  
2.9  
2.98  
VUVLO  
VHYST  
tPOR  
Under-Voltage Lockout Threshold  
Power-on Reset Hysteresis Voltage  
Power-on Reset Time  
Note 5  
2.5  
2.73  
170  
50  
V
mV  
µs  
(4)  
VDD > VPOR  
VREF  
Reference Voltage  
1.210 1.225 1.240  
1.7  
V
Voltage Reference Line Regulation  
mV/V  
VREF/VDDA  
Temperature-to-Digital Converter Characteristics  
–40°C ≤ TA ≤ +105°C(6)  
–40°C ≤ TA ≤ +105°C(6)  
Note 4  
Local Temperature Measurement  
Error  
±1  
±1  
±3  
±3  
°C  
°C  
Remote Temperature  
Measurement Error  
tCONV  
Conversion Time  
Sample Period  
60  
ms  
ms  
tSAMPLE  
100  
Remote Temperature Input, XPN  
Current to External Diode(4)  
IF  
XPN at high level, clamped to 0.6V.  
XPN at low level, clamped to 0.6V.  
192  
12  
400  
µA  
µA  
7
9
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Voltage-to-Digital Converter Characteristics (V , V  
, V  
, V  
, V  
±)  
RX AUX BIAS MPD ILD  
Condition  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
–40°C ≤ TA ≤ +105°C(6)  
Voltage Measurement Error  
±1  
±2.0  
%fs  
tCONV  
Conversion Time  
Sample Period  
Note 4  
Note 4  
10  
ms  
ms  
tSAMPLE  
100  
Voltage Input, VIN (Pin 14 used as an ADC Input)  
VIN  
Input Voltage Range  
Input Current  
–0.3 ≤ VDD ≤ 3.6V  
GNDA  
5.5  
V
ILEAK  
CIN  
VIN = VDD or GND; VAUX = VIN  
55  
10  
µA  
pF  
nput Capacitance  
Digital-to-Voltage Converter Characteristics (V  
, V )  
MOD BIAS  
–40°C ≤ TA ≤ +105°C(6)  
Note 4  
Accuracy  
±1  
2.0  
20  
±1  
%fs  
ms  
tCONV  
DNL  
Conversion Time  
Differential Non-linearity Error  
Note 4  
±0.5  
LSB  
Bias Current Sense Inputs, V  
+, V –  
ILD ILD  
VILD  
Differential Input Signal Range,  
0
VREF/4  
±1  
mV  
| VILD+ – VILD  
|
VILD+ input current  
VILDinput current  
| VILD+ – VILD| = 0.3V  
Input Capacitance  
IIN+  
IIN–  
µA  
µA  
µA  
pF  
VILDreferred to VDDA  
VILDreferred to GND  
+150  
-150  
10  
CIN  
APC Op Amp, FB, V  
, COMP  
BIAS  
GBW  
Gain Bandwidth Product  
CCOMP = 20pF; Gain = 1  
1
1
MHz  
TCVOS  
Input Offset Voltage Temperature  
Coefficient(4)  
µV/°C  
VOUT  
Output Voltage Swing  
IOUT = 10mA, SRCE bit = 1  
IOUT = -10mA, SRCE bit = 0  
GNDA  
1.25  
VDDA  
V
V
V
DDA -1.25  
ISC  
Output Short-Circuit Current  
Short Circuit Withstand Time  
Power Supply Rejection Ratio  
55  
mA  
sec  
dB  
TJ ≤ 150°C(4)  
tSC  
PSRR  
CCOMP = 20pF; Gain = 1, to GND  
CCOMP = 20pF; Gain = 1, to VDD  
CCOMP = 20pF, Note 4  
55  
40  
AMIN  
Minimum Stable Gain  
Slew Rate  
1
V/V  
CCOMP = 20pF; Gain = 1  
3
V/µs  
V/t  
Internal Feedback Resistor Tolerance  
±20  
25  
%
RFB  
Internal Feedback Resistor  
Temperature Coefficient  
ppm/C  
RFB/t  
ISTART  
Laser Start-up Current Magnitude  
START = 01h  
START = 02h  
START = 04h  
START = 08h  
0.375  
0.750  
1.500  
3.000  
10  
mA  
mA  
mA  
mA  
pF  
CIN  
Pin Capacitance  
10  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Electrical Characteristics  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
V
Buffer Op-Amp, V  
+, V –  
MOD MOD  
MOD  
GBW  
Gain Bandwidth  
CCOMP = 20pF; Gain = 1  
1
1
MHz  
TCVOS  
Input Offset Voltage  
µV/°C  
Temperature Coefficient  
VMOD– Input Current  
IBIAS  
VOUT  
ISC  
±0.1  
35  
±1  
µA  
mV  
mA  
sec  
dB  
Output Voltage Swing  
IOUT = ±1mA  
GNDA+75  
V
DDA-75  
Output Short-Circuit Current  
Short Circuit Withstand Time  
Power Supply Rejection Ratio  
TJ ≤ 150°C(4)  
tSC  
PSRR  
CCOMP = 20pF; Gain = 1, to GND  
CCOMP = 20pF; Gain = 1, to VDD  
CCOMP = 20pF  
65  
44  
dB  
AMIN  
Minimum Stable Gain  
Slew Rate  
1
V/V  
V/µs  
pF  
CCOMP = 20pF; Gain = 1  
1
V/T  
CIN  
Pin Capacitance  
10  
Control and Status I/O, TXDISABLE, TXFAULT, RSIN, RSOUT(GPO), SHDN(TXFIN), RXLOS, /INT  
VIL  
Low Input Voltage  
High Input Voltage  
Low Output Voltage  
0.8  
0.3  
V
V
V
V
VIH  
VOL  
VOH  
2.0  
IOL ≤ 3mA  
IOH ≤ 3mA  
High Output Voltage  
VDDD–0.3  
(applies to SHDN only)  
ILEAK  
CIN  
Input Current  
±1  
µA  
pF  
Input Capacitance  
10  
10  
Transmit Optical Power Input, V  
MPD  
Input Voltage Range  
VIN  
Note 4  
GNDA  
VDDA  
VREF  
VDDA  
V
V
VRX  
Input Signal Range  
BIASREF=0  
BIASREF=1  
Note 4  
VDDA–VREF  
V
CIN  
Input Capacitance  
Input Current  
pF  
µA  
ILEAK  
±1  
Received Optical Power Input, VRX, RXPOT  
Input Voltage Range  
Note 4  
GNDA  
0
VDDA  
VREF  
V
V
VRX  
Valid Input Signal Range  
(ADC Input Range)  
RRXPOT(32)  
End-to-End Resistance  
Resistor Tolerance  
RXPOT = 1Fh  
32  
KΩ  
±20  
25  
%
RXPOT  
Resistor Temperature  
Coefficient  
ppm/C  
RXPOT/T  
Divider Ratio Accuracy  
Input Current  
00 ≤ RXPOT ≤ 1Fh  
RXPOT = 0 (disconnected)  
Note 4  
-5  
+5  
±1  
%
VRX/VRXPOT  
ILEAK  
µA  
pF  
µA  
CIN  
Input Capacitance  
Input Current  
10  
ILEAK  
±1  
11  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Electrical Characteristics  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
Control and Status I/O Timing, TXFAULT, TXDISABLE, RSIN, RSOUT, and RXLOS  
tOFF  
tON  
TXDISABLE Assert Time  
From input asserted to optical output  
at 10% of nominal, CCOMP = 10nF.  
10  
1
µs  
TXDISABLE De-assert Time  
From input de-asserted to optical  
ms  
output at 90% of nominal, CCOMP  
=
10nF.  
tINIT  
Initialization Time  
From power on or transmitter enabled  
to optical output at 90% of nominal  
and TX_FAULT de-asserted.(4)  
300  
ms  
tINIT2  
Power-on Initialization Time  
TXFAULT Assert Time  
From power on to APC loop-enabled.  
200  
ms  
µs  
tFAULT  
From fault condition to TXFAULT  
assertion.(4)  
95  
tRESET  
Fault Reset Time  
Length of time TXDISABLE must be  
asserted to reset fault condition.  
10  
µs  
µs  
µs  
ms  
µs  
tLOSS_ON  
tLOSS_OFF  
tDATA  
RXLOS Assert Time  
From loss of signal to RXLOS  
asserted.  
95  
100  
400  
1
RXLOS De-assert Time  
Analog Parameter Data Ready  
From signal acquisition to LOS de-  
asserted.  
From power on to valid analog  
parameter data available.(4)  
tPROP_IN  
TXFAULT, TXDISABLE, RXLOS, Time from input change to  
RSIN Input Propagation Time  
corresponding internal register bit set  
or cleared.(4)  
tPROP_OUT TXFAULT, RSOUT, /INT Output  
Propagation Time  
From an internal register bit set or  
cleared to corresponding output  
change.(4)  
1
µs  
Fault Comparators  
0.475  
0.525  
Fault Suppression Timer Clock  
Period  
Note 4  
0.5  
ms  
φFLTTMR  
Accuracy  
-3  
+3  
%/F.S.  
µs  
tREJECT  
VSAT  
Glitch Rejection  
Maximum length pulse that will not  
cause output to change state.(4)  
4.5  
%VDDA  
%VDDA  
Saturation Detection Threshold  
High level  
Low level  
95  
5
Power-On Hour Meter  
Timebase Accuracy  
0°C ≤ TA ≤ +70°C(4)  
–40°C ≤ TA ≤ +105°C  
Note 4  
+5  
-5  
%
%
+10  
-10  
Resolution  
10  
hours  
Non-Volatile (FLASH) Memory  
13  
tWR  
Write Cycle Time(7)  
From STOP of a one to four-byte write  
transaction.(4)  
ms  
100  
Data Retention  
years  
10,000  
Endurance Minimum Permitted Number  
Write Cycles  
cycles  
12  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Serial Data I/O Pin, Data  
Symbol  
Parameter  
Condition  
IOL = 3mA  
IOL = 6mA  
Min  
2.1  
Typ  
Max  
0.4  
Units  
VOL  
Low Output Voltage  
V
V
0.6  
0.8  
VIL  
Low Input Voltage  
High Input Voltage  
Input Current  
V
VIH  
V
±1  
ILEAK  
CIN  
µA  
pF  
Input Capacitance  
Note 4  
10  
10  
Serial Clock Input, CLK  
0.8  
±1  
VIL  
Low Input Voltage  
2.7V ≤ VDD ≤ 3.6V  
2.7V ≤ VDD ≤ 3.6V  
V
V
2.1  
VIH  
High Input Voltage  
Input Current  
ILEAK  
µA  
pF  
CIN  
Input Capacitance  
Note 4  
Serial Interface Timing(4)  
2.5  
100  
300  
100  
t1  
t2  
t3  
t4  
CLK (clock) Period  
µs  
ns  
ns  
ns  
Data In Setup Time to CLK High  
Data Out Stable After CLK Low  
Data Low Setup Time to CLK  
Low  
Start Condition  
Stop Condition  
100  
t5  
Data High Hold Time After CLK  
High  
ns  
400  
tDATA  
Data Ready Time  
From power on to completion of one  
set of ADC conversions; analog data  
available via serial interface.  
ms  
Notes:  
1. Exceeding the absolute maximum rating may damage the device.  
2. The device is not guaranteed to function outside its operating rating.  
3. Devices are ESD sensitive. Handling precautions recommended.  
4. Guaranteed by designing and/or testing of related parameters. Not 100% tested in production.  
5. The MIC3000 will attempt to enter its shutdown state when VDD falls below VUVLO. This operation requires time to complete. If the supply voltage  
falls too rapidly, the operation may not be completed.  
6. Does not include quantization error.  
7. The MIC3002 will not respond to serial bus transactions during an EEPROM write-cycle. The host will receive a NACK during tWR  
.
8. Final test on outgoing product is performed at TA = +25°C.  
13  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Timing Diagram  
Serial Interface Timing  
14  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Address Map  
Address(s)  
Field Size Name  
(Bytes)  
Description  
0 –95  
96  
Serial ID defined by SEP MSA  
G-P NVRAM; R/W under valid OEM password.  
Vendor specific EEPROM  
96 – 127  
128 – 255  
32  
Vendor Specific  
Reserved  
128  
Reserved for future use. G-P NVRAM; R/W under valid OEM  
password.  
Table 1. MIC3002 Address Map, Serial Address = A0h  
Address(s)  
Field Size  
(Bytes)  
HEX  
DEC  
Name  
Description  
00-27  
0-39  
40  
Alarm and Warning  
Threshold  
High/low limits for warning and alarms; writeable using OEM p/w; read-  
only otherwise.  
28-37  
38-5B  
40-55  
56-91  
16  
36  
Reserved  
Reserved – do not write; reads undefined.  
Calibration Constants Numerical constants for external calibration; writeable using OEM p/w;  
read-only otherwise.  
5C-5E  
5F  
92-94  
3
1
10  
4
1
1
2
2
2
2
7
Reserved  
Reserved – do not write; reads undefined.  
G-P NVRAM; writeable using OEM p/w; ready only otherwise.  
Real time analog parameter data.  
95  
Checksum  
Analog Data  
Reserved  
60-69  
6A-6D  
6E  
96-105  
106-109  
110  
Reserved – do not write; reads undefined.  
Control and status bits.  
Control/Status Bits  
Reserved  
6F  
111  
Reserved – do not write; reads undefined.  
Alarm status bits; read only.  
70-71  
72-73  
74-75  
76-77  
78-7E  
112-113  
114-115  
116-117  
118-119  
120-126  
Alarm Flags  
Reserved  
Reserved – do not write; reads undefined.  
Warning status bits; read only.  
Warning Flags  
Reserved  
Reserved – do not write; reads undefined.  
OEMPW  
OEM password entry field. The OEM password location can be selected  
to be 78-7B (120-123) or 7B-7E (123-126) by setting the bit OEMCFG5  
bit 2 to 0 (default) or 1.  
7F  
127  
1
Vendor Specific  
User Scratchpad  
ALT_USRCTL  
Vendor specific. Reserved – do not write; reads undefined.  
80-DD  
DE  
128-221 94  
222  
User writeable EEPROM. G-P NVRAM; R/W using any valid password.  
1
Alternate location for USRCTL register. Set bit OEMCFG6-2 to 1 to  
select this location. Can be used as a scratch pad if not selected.  
DF-F5  
F6  
223-245 23  
User Scratchpad  
USRPWSET  
USRPW  
User writeable EEPROM. G-P NVRAM; R/W using any valid password.  
User password setting; read/write using any p/w; returns zero otherwise.  
User password register  
246  
1
1
2
F7  
247  
F8-F9  
248-249  
Alarms Masks  
Bit =1: corresponding alarm not masked  
Bit = 0: corresponding alarm masked  
FA-FB  
250-251  
2
Warnings Masks  
Bit =1: corresponding warning not masked  
Bit = 0: corresponding warning masked  
FC-FE  
FF  
252-254  
255  
3
1
Reserved  
USRCTL  
Reserved – do not write; reads undefined.  
End-user control and status bits If ALT-USRCTL is not selected. Can be  
used as a scratch pad if not selected.  
Table 2. MIC3002 Address Map, Serial Address = A2h  
15  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Address(s)  
Field Size  
(Bytes)  
HEX  
DEC  
Name  
Description  
00-3F  
0-63  
64  
64  
BIASLUT1  
Bias temperature compensation L.U.T. first 64 entries. Additional 12  
entries are located in A6: 90-9B.  
40-7F  
80-BF  
C0-FF  
64-127  
MODLUT1  
IFTLUT1  
Modulation temperature compensation L.U.T. first 64 entries. Additional  
12 entries are located in A6: A0-AB.  
128-191 64  
192-255 64  
Bias current fault threshold temperature compensation L.U.T. first 64  
entries. Additional 12 entries are located in A6: B0-BB.  
HATLUT1  
Bias current high alarm threshold temperature compensation L.U.T. first  
64 entries. Additional 12 entries are located in A6: C0-CB.  
Table 3. Temperature Compensation Tables, Serial Address = A4h  
Address(s)  
Field Size  
(Bytes)  
HEX  
00  
01  
02  
03  
04  
05  
06  
07  
DEC  
Name  
Description  
0
1
2
3
4
5
6
7
1
1
1
1
1
1
1
1
OEMCFG0  
OEMCFG1  
OEMCFG2  
APCSET0  
APCSET1  
APCSET2  
MODSET0  
IBFLT  
OEM configuration register 0  
OEM configuration register 1  
OEM configuration register 2  
APC setpoint register 0  
APC setpoint register 1  
APC setpoint register 2  
Modulation setpoint register 0  
Bias current fault-comparator threshold. This register is temperature  
compensated  
08  
8
1
1
1
1
4
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
TXPFLT  
TX power fault threshold  
09  
9
LOSFLT  
RX LOS fault-comparator threshold  
Fault comparator timer setting  
Fault source mask bits  
0A  
0B  
0C-0F  
10  
10  
11  
12-15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28-29  
30  
31  
FLTTMR  
FLTMSK  
OEMPWSET  
OEMCAL0  
OEMCAL1  
LUTINDX  
OEMCFG3  
APCDAC  
MODDAC  
OEMREAD  
LOSFLTn  
RXPOT  
Password for access to OEM areas  
OEM calibration register 0  
11  
OEM calibration register 1  
12  
Look-up table index read-back  
OEM configuration register 3  
13  
14  
Reads back current APC DAC value (setpoint+offset)  
Reads back current modulation DAC value (setpoint+offset)  
Reads back OEM calibration data  
LOS De-assert threshold  
15  
16  
17  
18  
RXPOT tap selection  
19  
OEMCFG4  
OEMCFG5  
OEMCFG6  
SCRATCH  
MODSET 1  
MODSET 2  
OEM configuration register 4  
1A  
1B  
1C-1D  
1E  
1F  
OEM configuration register 5  
OEM configuration register 6  
Reserved – do not write; reads undefined.  
Modulation setpoint register 1  
Modulation setpoint register 2  
16  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
20-27  
28-47  
48-57  
32-39  
8
POHDATA  
RXLUT  
Power-on hour meter scratchpad  
40-71  
72-87  
32  
16  
RX power calibration look-up table. Eight sets of slope and offset  
CALCOEF  
Slope and offset coefficients used for Temperature, Voltage, Bias, and  
TXPOWER internal calibration  
58-5F  
60-86  
88-95  
8
SCRATCH  
TCTRLUT  
OEM scratchpad area  
96-134  
39  
LUT to temperature-compensate temperature results and/or  
temperature to be used by parameters compensation LUT.  
87-8F  
90-9B  
9C-9F  
A0-AB  
135-143  
9
SCRATCH  
BIASLUT2  
SCRATCH  
MODLUT2  
SCRATCH  
IFTLUT2  
OEM scratchpad area.  
144-155 12  
156-159  
160-171 12  
Bias temperature compensation L.U.T. additional 12 entries.  
OEM scratchpad area  
4
Modulation temperature compensation L.U.T. additional 12 entries.  
OEM scratchpad area.  
AC-AF 172-175 14  
B0-BB 176-187 12  
Bias current fault threshold temperature compensation L.U.T. additional  
12 entries.  
BC-BF 188-191  
4
SCRATCH  
HATLUT2  
OEM scratchpad area  
C0-CB 192-203 12  
Bias current high alarm threshold temperature compensation L.U.T.  
additional 12 entries.  
CC-CF 204-207  
4
SCRATCH  
OEM scratchpad area  
D0-DD 208-221 14  
RXLUTSEG  
RXPWR calibration segments delimiters. Each of the eight segments can  
have its own slope and offset.  
DE-FA 222-250 128  
SCRATCH  
POH  
OEM scratchpad area  
FB-FC  
FD  
251-252  
253  
2
1
1
1
Power on hour meter result; read only  
Data ready bits for each measured parameter; read only  
Manufacturer identification (Micrel = 42 = 2Ah)  
Device and die revision  
Data Ready Flags  
MFG_ID  
FE  
254  
FF  
255  
DEV_ID  
Table 4. OEM Configuration Registers, Serial Address = A6h  
17  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Block Diagram  
Figure 1. MIC3002 Block Diagram  
Analog-to-Digital Converter/Signal Monitoring  
A block diagram of the monitoring circuit is shown below.  
Each of the five analog parameters monitored by the  
MIC3002 are sampled in sequence. All five parameters  
are sampled and the results updated within the tCONV  
internal given in the “Electrical Characteristics” section. In  
OEM, Mode, the channel that is normally used to  
measure VIN may be assigned to measure the level of the  
VDDA pin or one of five other nodes. This provides a kind  
of analog loopback for debug and test purposes. The  
VAUX bits in OEMCFG0 control which voltage source is  
being sampled. The various VAUX channels are level-  
shifted differently depending on the signal source,  
resulting in different LSB values and signal ranges. See  
Table 5.  
Figure 2. Analog-to-Digital Converter Block Diagram  
18  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Channel  
ADC Resolution  
(bits)  
Conditions  
Input Range (V)  
LSB(1)  
TEMP  
VAUX  
VMPD  
8 or 9  
N/A  
1°C or 0.5°C  
8
8
See Table 6  
GAIN = 0; BIASREF = 0  
GAIN = 0; BIASREF = 1  
GAIN = 1; BIASREF = 0  
GAIN = 1; BIASREF = 1  
VILD- = VDDA  
GNDA - VREF  
4.77mV  
1.17mV  
4.77mV  
0.298mV  
VDDA – (VDDA – VREF  
GNDA - VREF/4  
)
/4  
VDDA – (VDDA – VREF  
VDDA – (VDDA – VREF  
GNDA - VREF  
)
VILD  
VRX  
8
)
VILD- = GNDA  
12  
RXPOT = 00  
0 - VREF  
Table 5. A/D Input Signal Ranges and Resolutions  
Note:  
1. Assumes typical VREF value of 1.22V.  
Channel  
VIN  
VAUX [2:0]  
000 = 00h  
0001 = 01h  
010 = 02h  
011 = 03h  
100 = 04h  
101 = 05h  
110 = 06h  
Input Range (V)  
0.5V to 5.5V  
0.5V to 5.5V  
0.5V to 5.5V  
0.5V to 5.5V  
0V to VREF  
LSB(1) (mV)  
25.6mV  
25.6mV  
25.6mV  
25.6mV  
4.77mV  
4.77mV  
4.77mV  
VDDA  
VBIAS  
VMOD  
APCDAC  
MODDAC  
FLTDAC  
0V to VREF  
0V to VREF  
Table 6. VAUX Input Signal Ranges and Resolutions  
Note:  
1. Assumes typical VREF value of 1.22V.  
Temperature Reading Compensation  
The resolution of this table is 0.5ºC/bit. The number  
entered should be twice the temperature difference. For  
example if the chip-case temperature difference is 5ºC,  
the value to be entered should be 2x5=10.  
The sensed temperature by the MIC3002 can be  
temperature compensated and converted to the optical  
module case temperature to be monitored or used for  
modulation and other parameters (L.U.T.s). There are 39  
entries (bytes) at address A6: 96-134 (60-86h) where the  
OEM can enter the temperature difference between the  
chip (sensed) temperature and the measured module  
case temperature over the operating temperature range.  
Table 7 shows the correspondence between the entries  
and temperature intervals.  
19  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Entry  
Address  
Temperature Range  
t -45 ºC  
0
1
2
A6: 96 (60h)  
A6: 97 (61h)  
A6: 98 (62h)  
-44 ºC ≤ t -41 ºC  
-40 ºC ≤ t -37 ºC  
…………………………………………………………………………………  
…………………………………………………………………………………  
36  
37  
38  
A6: 97 (61h)  
A6: 97 (61h)  
A6: 134 (86h)  
96 ºC ≤ t ≤ 99 ºC  
100 ≤ t ≤ 103 ºC  
t ≥ 104 ºC  
Table 7. L.U.T. for Temperature Reading Compensation  
Alarms and Warnings Interrupt Source Masking  
Table 8 shows the locations of the masking bits. The  
warning or alarm is masked if the corresponding bit is  
set to 1.  
Alarms and warnings set the flags and Interrupt when  
they are asserted if they are not masked (default). If an  
alarm or warning is masked, it will not set the Interrupt.  
Serial Address A2h Default Value  
Description  
Byte  
Bit  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
Masking bit for Temp High Alarm interrupt source  
0
Masking bit for Temp Low Alarm interrupt source  
Masking bit for Voltage High Alarm interrupt source  
Masking bit for Voltage Low Alarm interrupt source  
Masking bit for Bias High Alarm interrupt source  
Masking bit for Bias Low Alarm interrupt source  
Masking bit for TX Power High Alarm interrupt source  
Masking bit for TX Power Low Alarm interrupt source  
Masking bit for RX Power High Alarm interrupt source  
Masking bit for RX Power Low Alarm interrupt source  
0
248  
0
0
0
0
0
0
1
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
249  
Table 8. Alarms Interrupt Sources Masking Bits  
20  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Serial Address A2h Default Value  
Description  
Byte  
Bit  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
0
Masking bit for Temp High Warning interrupt source  
Masking bit for Temp Low Warning interrupt source  
Masking bit for Voltage High Warning interrupt source  
Masking bit for Voltage Low Warning interrupt source  
Masking bit for Bias High Warning interrupt source  
Masking bit for Bias Low Warning interrupt source  
Masking bit for TX Power High Warning interrupt source  
Masking bit for TX Power Low Warning interrupt source  
Masking bit for RX Power High Warning interrupt source  
Masking bit for RX Power Low Warning interrupt source  
0
0
250  
0
0
0
0
0
0
1
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
251  
Table 9. Warnings Interrupt Sources Masking Bits  
Alarms and Warnings as TXFAULT Source  
SMBus Multipart Support  
Alarms and warnings are not sources for TXFAULT with  
the default setting. To set alarms as a TXFAULT source  
set OEMCFG4 bit 6 to 1. To set warnings as a  
TXFAULT, source set OEMCFG4 bit 7 to 1. The alarms  
and warnings TXFAULT sources can be masked  
individually in the same way shown in Tables 7 and 8.  
If more than one MIC3002 device shares the same serial  
interface and multipart mode is selected on them  
(OEMCFG5 bit 3 = 1), then pin 7 and pin 20 become  
SMBus address bits 3 and 4 respectively. Therefore, the  
parts should have a different setting on those pins to  
create four address combinations based upon pin 7 and  
pin 20 state, (00, 01, 10, 11) where 0 is a pull down to  
GND and 1 is a pull up to VCC. The parts come from the  
factory with the same address (A0) and multipart mode  
OFF (OEMCFG5 bit 3 = 0). After power up, write 1 to  
OEMCFG5 bit 3 to turn ON multipart mode, which is  
done to all parts at the same time since they all respond  
to serial address A0 at this point. With multipart mode  
ON, the parts have different addresses based on the  
states of pins 7 and 20. Another option is to access each  
part individually, set their single mode address in  
OEMCFG2 bits [4-7] to different values and then turn  
OFF multipart mode to return to normal mode where the  
parts have new different address.  
Alarms and Warnings Latch  
Alarms and warnings are latched with the default setting,  
i.e., the flags once asserted remain ON until the register  
is read or TXDSABLE is toggled. If OEMCFG4 bit 5 is  
set to 1, the warnings are not latched and will be set and  
reset with the warning condition. Reading the register or  
toggling TXDISABLE will clear the flag. If OEMCFG4 bit  
4 is set to 1, the alarms are not latched and will be set  
and reset with the alarm condition. Reading the register  
or toggling TXDISABLE will clear the flag.  
21  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Calibration Modes  
The value of the least significant bit (LSB) of IBIASh is  
given by:  
The default mode of calibration in the MIC3002 is  
external calibration, for which INTCAL bit (bit 0 in  
OEMCF3 register) is set to 0. The internal calibration  
mode is selected by setting INTCAL bit to 1.  
(2)  
A/ External Calibration  
Per SFF-8472, the value of the bias current LSB is 2µA.  
The conversion factor, “slope”, needed is therefore:  
The voltage and temperature values returned by the  
MIC3002’s A/D converter are internally calibrated. The  
binary values of TEMPh:TEMPl and VOLTh:VOLTl are in  
the format called for by SFF-8472 under Internal  
Calibration.  
The tolerance of the sense resistor directly impacts the  
accuracy of the bias current measurement. It is  
recommended that the sense resistor chosen be 1%  
accurate or better. The offset correction, if needed, can  
be determined by shutting down the laser, i.e., asserting  
TXDISABLE, and measuring the bias current. Any non-  
zero result gives the offset required. The offset will be  
equal and opposite to the result of the “zero current”  
measurement.  
SFF-8472 calls for a set of calibration constants to be  
stored by the transceiver OEM at specific non-volatile  
memory locations; refer to SFF-8472 specifications for  
memory map of calibration coefficient. The MIC3002  
provides the non-volatile memory required for the  
storage of these constants. The Digital Diagnostic  
Monitoring Interface specification should be consulted  
for full details. Slopes and offsets are stored for use with  
voltage, temperature, bias current, and transmitted  
power measurements. Coefficients for a fourth-order  
polynomial are provided for use with received power  
measurements. The host system can retrieve these  
constants and use them to process the measured data.  
TX Power  
Transmit power is sensed via a resistor carrying the  
monitor photodiode current. In most applications, the  
signal at VMPD will be feedback voltage on FB. The  
VMPD voltage may be measured relative to GND or  
VDDA depending on the setting of the BIASREF bit in  
OEMCFG1. The value returned by the A/D is therefore a  
voltage analogous to transmit power. The binary value in  
TXOPh (TXOPl is always zero) is related to transmit  
power by:  
Voltage  
The voltage values returned by the MIC3002’s A/D  
converter are internally calibrated. The binary values of  
VOLTh:VOLTl are in the format called for by SFF-8472  
under Internal Calibration. Since VINh:VINl requires no  
processing, the corresponding slope should be set to  
one and the offset to zero.  
Temperature  
The temperature values returned by the MIC3002’s A/D  
converter are internally calibrated. The binary values of  
TEMPh:TEMPl are in the format called for by SFF-8472  
under Internal Calibration.  
(3)  
For a given implementation, the value of RSENSE is  
known. It is either the value of the external resistor or the  
chosen value of RFB used in the application. The  
constant, K, will likely have to be determined through  
experimentation or closed-loop calibration, as it depends  
on the monitoring photodiode responsivity and coupling  
efficiency.  
Bias Current  
Bias current is sensed via an external sense resistor as  
a voltage appearing between VILD+ and VILD-. The  
value returned by the A/D is therefore a voltage  
analogous to bias current. Bias current, IBIAS, is simply  
VVILD/RSENSE. The binary value in IBIASh (IBIASl is  
always zero) is related to bias current by:  
It should be noted that the APC circuit acts to hold the  
transmitted power constant. The value of transmit power  
reported by the circuit should only vary by a small  
amount as long as APC is functioning correctly.  
(1)  
22  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
RX Power  
The offsets correct for constant errors in the measured  
data. Each offset is a signed, sixteen-bit, fixed-point  
binary number. The bit-weights of the offsets are the  
same as that of the final results. The sixteen-bit offsets  
provide a numerical range of –32768 to +32767 for  
voltage, bias current, transmit power, and receive power.  
The numerical range for the temperature offset is  
–32513 (–128°) to +32512 (+127°) in increments of 256  
(1°). The format for offsets is:  
Received power is sensed as a voltage appearing at  
VRX. It is assumed that this voltage is generated by a  
sense resistor carrying the receiver photodiode current  
or by the RSSI circuit of the receiver. The value returned  
by the A/D is therefore a voltage analogous to received  
power. The binary values in RXOPh and RXOPl are  
related to receive power by:  
[Smmmmmmmllllllll], where S is the sign bit (6)  
(0 = positive, 1 = negative), m is a data bit in  
the most-significant byte and l is a data bit in  
the least significant byte  
RX(mW) = K x VREF x (256 x RXOPh +RXOPl/16)/  
65536  
(4)  
For a given implementation, the constant, K, will likely  
have to be determined through experimentation or  
closed-loop calibration, as it depends upon the gain and  
The most significant byte is always stored in memory at  
the lower numerical address.  
efficiencies  
of  
the  
receiver.  
In  
SFF-8472  
implementations, the external calibration constants can  
describe up to a fourth-order polynomial in case K is  
nonlinear.  
Calibration of voltage, bias current, and TX power are  
performed using the following calculation:  
RESULTn = ADC_RESULTn x SLOPEn +  
OFFSETn  
(7)  
B/ Internal Calibration  
If the INTCAL bit in OEMCFG3 is set to 1 (internal  
calibration selected), the MIC3002 will process each  
piece of data coming out of the A/D converter before  
storing the result in memory. Linear slope/offset  
correction will be applied on a per-channel basis to the  
measured values for voltage, bias current, TX power,  
and RX power. Only compensation is applied to  
temperature.  
Calibration of RX power is performed using the following  
calculation:  
RESULT = ADC_RESULT x SLOPE(m) + (9)  
OFFSET(m)  
where m represents one of the eight linearization  
intervals corresponding to the RX power level.  
The results of these calculations are rounded to sixteen  
bits in length. If the seventeenth most significant bit is a  
one, the result is rounded up to the next higher value. If  
the seventeenth most significant bit is zero, the upper  
sixteen bits remain unchanged. The bit-weights of the  
offsets are the same as that of the final results. For SFF-  
8472 compatible applications, these bit-weights are  
given in Table 10.  
The user must store the appropriate slope/offset  
parameters in memory at the time of transceiver  
calibration. In the case of RX power, a look-up table is  
provided that implements eight-segment piecewise-  
linear correction. This correction may be performed as a  
compensation of the receiver non-linearity over receive  
power level. If static slope/offset correction for RX power  
is desired, the eight coefficient sets can simply be made  
the same. The memory maps for these coefficients are  
shown in Tables 11 and 12. The user must enter the  
seven delimiters of the intervals that fit better the  
receiver response. The diagram in Figure 3 shows the  
link between the delimiters and the sets of  
slopes/offsets.  
Parameter  
Voltage  
Magnitude of LSB  
100µV  
Bias Current  
TX Power  
RX Power  
2µA  
0.1µW  
0.1µW  
The slopes allow for the correction of gain errors. Each  
slope coefficient is an unsigned, sixteen-bit, fixed-point  
binary number in the format:  
Table 10. LSB Values of Offset Coefficients  
[mmmmmmmm.llllllll], where m is a data bit (5)  
in the most-significant byte and l is a data  
bit in the least significant byte  
Slopes are always positive. The binary point is in between  
the two bytes, i.e., between bits 7 and 8. This provides a  
numerical range of 1/256 (0.00391) to 255.997 in steps of  
1/256. The most significant byte is always stored in  
memory at the lower numerical address.  
23  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Address(s)  
Field  
Size  
HEX  
48-49  
4A-4B  
4C-4D  
4E-4F  
50-51  
52-53  
54-55  
DEC  
72-73  
74-75  
76-77  
78-79  
80-81  
82-83  
84-85  
Name  
Description  
2
2
2
2
2
2
2
RESERVED  
RESERVED  
VSLPh:VSLPl  
Reserved. (There is no slope for temperature.) Do not write; reads undefined.  
Reserved. (There is no offset for temperature.) Do not write; reads undefined.  
Voltage slope; unsigned fixed-point; MSB is at lower physical address.  
VOFFh:VOFFl Voltage offset; signed fixed point; MSB is at lower physical address.  
ISLPh:ISLPl  
IOFFh:IOFFl  
Bias current slope; unsigned fixed-point; MSB is at lower physical address.  
Bias current offset; signed fixed point; MSB is at lower physical address.  
TX power slope; unsigned fixed-point; MSB is at lower physical address.  
TXSLPh:  
TXSLPl  
56-57  
86-87  
2
TXOFFh:  
TXOFFl  
TX power offset; signed fixed point; MSB is at lower physical address.  
Table 11. Internal Calibration Coefficient Memory Map – Part I  
Address(s)  
Field  
Size  
HEX  
DEC  
Name  
Description  
28-29  
40-41  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
RXSLP0h:  
RXSLP0l  
RX power slope 0; unsigned fixed-point; MSB is at lower physical address.  
2A-2B  
2C-2D  
2E-2F  
30-31  
32-33  
34-35  
36-37  
38-39  
3A-3B  
3C-3D  
3E-3F  
40-41  
42-43  
44-45  
46-47  
42-43  
44-45  
46-47  
48-49  
50-51  
52-53  
54-55  
56-57  
58-59  
60-61  
62-63  
64-65  
66-67  
68-69  
70-71  
RXOFF0h:  
RXOFF0l  
RX power offset 0; signed twos-complement; MSB is at lower physical address.  
RX power slope 1; unsigned fixed-point; MSB is at lower physical address.  
RX power offset 1; signed twos-complement; MSB is at lower physical address.  
RX power slope 2; unsigned fixed-point; MSB is at lower physical address.  
RX power offset 2; signed twos-complement; MSB is at lower physical address.  
RX power slope 3; unsigned fixed-point; MSB is at lower physical address.  
RX power offset 3; signed twos-complement; MSB is at lower physical address.  
RX power slope 4; unsigned fixed-point; MSB is at lower physical address.  
RX power offset 4; signed twos-complement; MSB is at lower physical address.  
RX power slope 5; unsigned fixed-point; MSB is at lower physical address.  
RX power offset 5; signed twos-complement; MSB is at lower physical address.  
RX power slope 6; unsigned fixed-point; MSB is at lower physical address.  
RX power offset 6; signed twos-complement; MSB is at lower physical address.  
RX power slope 7; signed twos-complement; MSB is at lower physical address.  
RX power offset 7; signed fixed-point; MSB is at lower physical address.  
RXSLP1h:  
RXSLP1l  
RXOFF1h:  
RXOFF1l  
RXSLP2h:  
RXSLP2l  
RXOFF2h:  
RXOFF2l  
RXSLP3h:  
RXSLP3l  
RXOFF3h:  
RXOFF3l  
RXSLP4h:  
RXSLP4l  
RXOFF4h:  
RXOFF4l  
RXSLP5h:  
RXSLP5l  
RXOFF5h:  
RXOFF5l  
RXSLP6h:  
RXSLP6l  
RXOFF6h:  
RXOFF6l  
RXSLP7h:  
RXSLP7l  
RXOFF7h:  
RXOFF7l  
Table 12. Internal Calibration Coefficient Memory Map – Part II  
24  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Figure 3. Internal Calibration RX Power Linear Approximation  
Temperature Offset  
At all other settings of RXPOT, there will be a 32kΩ (typical)  
load seen on VRX.  
In both internal and external calibration, the temperature  
offset is set in the temperature reading compensation LUT  
(see subsection above). Bit 5 in OMCFG5 (A6:1Ah) must  
be set to 1 in order to enable temperature reading  
compensation. Since the resolution of that L.U.T. is 0.5ºC,  
the entered value should be twice the real value. For  
example, if the content of the L.U.T. is 0 for all the entries  
and the offset is 5ºC, then the offset value to be added to  
the entries content is 10. The new content of the L.U.T.  
entries will be 0+10=10.  
C/ ADC Result Registers Reading  
The ADC result registers should be read as 16-bit registers  
under internal calibration while under external calibration  
they should be read as 8-bit or 16-bit registers at the MSB  
address. For example, TX power should be read under  
internal calibration as 16 bits at address A2 : 66–67 and  
h
Figure 4. RXPOT Block Diagram  
Laser Diode Bias Control  
under external calibration as 8 bits at address A2 : 66 . 9-  
h
h
bit temperature results and 12-bit receive power results  
should always be read as 16-bit quantities.  
The MIC3002 can be configured to generate a constant bias  
current using electrical feedback, or regulate average  
transmitted optical power using a feedback signal from a  
monitor photodiode, refer to Figure 5. An operational  
RXPOT  
A
programmable, non-volatile digitally controlled  
potentiometer is provided for adjusting the gain of the  
receive power measurement signal chain in the analog  
domain. Five bits in the RXPOT register are used to set  
and adjust the position of potentiometer. RXPOT functions  
as a programmable divider or attenuator. It is adjustable in  
steps from 1:1 (no divider action) down to 1/32 in steps of  
1/32. If RXPOT is set to zero, then the divider is bypassed  
completely. There will be no scaling of the input signal, and  
the resistor network will be disconnected from the VRX pin.  
amplifier is used to control laser bias current via the V  
BIAS  
output. The VBIAS pin can drive a maximum of ±10mA. An  
external bipolar transistor provides current gain. The polarity  
of the op amp’s output is programmable BIASREF in  
OEMCFG1 in order to accommodate either NPN or PNP  
transistors that drive common anode and common cathode  
laser, respectively. Additionally, the polarity of the feedback  
signal is programmable for use with either common-emitter  
or emitter-follower transistor circuits.  
25  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Furthermore, the reference level for the APC circuit is  
selectable to accommodate electrical, i.e., current  
feedback, or optical feedback via a monitor photodiode.  
Finally, any one of seven different internal feedback  
resistors can be selected. This internal resistor can be  
used alone or in parallel with an external resistor. This wide  
range of adjustability (50:1) accommodates a wide range  
of photodiode current, i.e., wide range of transmitter output  
power. The APC operating point can be kept near the mid-  
scale value of the APC DAC, insuring maximum SNR,  
maximum effective resolution for digital diagnostics, and  
the widest possible DAC adjustment range for temperature  
compensation, etc. See Figure 6.  
Laser Modulation Control  
As shown in Figure 5, a temperature-compensated DAC is  
provided to set and control the laser modulation current via  
an external laser driver circuit. MODREF in OEMCFG0  
selects whether the V  
DAC output swings up from  
MOD  
ground or down from V  
. If the laser driver requires a  
DD  
voltage input to set the modulation current, the MIC3002’s  
output can drive it directly. If a current input is required,  
V
MOD  
a fixed resistor can be used between the driver and the  
output. Several different configurations are possible as  
V
MOD  
shown in Figure 8.  
When APC is on, i.e., the APCCAL bit in OEMCAL0 is set to  
0, the value corresponding to the current temperature is  
taken from the MODLUT look-up table, added to MODSET,  
The APCCAL bit in OEMCAL0 is used to turn the APC  
function on and off. It will be turned off in the MIC3002’s  
default state as shipped from the factory. When APC is on,  
the value in the selected APCSETx register is added to the  
signed value taken from the APC look-up table and loaded  
and loaded into the V  
DAC. When APC is off, the value  
MOD  
in V  
is loaded directly into the V  
DAC, bypassing the  
MOD  
MOD  
look-up table entirely. This provides for direct modulation  
control for setup and calibration. The MODREF bit  
determines the DACs response to higher or lower numeric  
values.  
into the V  
DAC. When APC is off, the V  
DAC may  
BIAS  
BIAS  
be written directly via the V  
register, bypassing the  
BIAS  
look-up table entirely. This provides direct control of the  
laser diode bias during setup and calibration. In either  
case, the V  
DAC setting is reported in the APCDAC  
BIAS  
register. The APCCFG bits determine the DACs response  
to higher or lower numeric values.  
Figure 5. MIC3002 APC and Modulation Control  
Block Diagram  
Figure 7. Transmitter Configurations  
Supported by MIC3002  
Figure 6. Programmable Feedback Resistor  
26  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Shutdown State  
Configuration Bits  
OE  
0
SPOL  
SHDN  
Hi-Z  
Don’t Care  
1
0
1
≈GND  
1
≈V  
DD  
Table 13. Shutdown State of SHDN vs.  
Configuration Bits  
Configuration Bits  
VBIAS Shutdown State  
OE  
0
INV  
BIASREF  
VBIAS  
Hi-Z  
Don’t Care Don’t Care  
1
Don’t Care  
Don’t Care  
0
1
≈GND  
1
≈V  
DD  
Table 14. Shutdown State of VBIAS vs.  
Configuration Bits  
Configuration Bits  
VMOD Shutdown State  
OE  
0
MODREF  
VMOD  
Hi-Z  
Figure 8. V  
MOD  
Configured as Voltage Output  
with Gain  
Don’t Care  
1
0
1
≈GND  
1
≈V  
DD  
Power ON and Laser Start-Up  
When power is applied, then the MIC3002 initializes its  
internal registers and state machine. This process takes  
Table 15. Shutdown State of VMOD vs.  
Configuration Bits  
t
, about 50ms. Following t  
, analog-to-digital  
POR  
POR  
In order to facilitate hot-plugging, the laser diode is not  
turned on until t after Power-On. Following t  
conversions begin, serial communication is possible, and  
the POR bit and data ready bits may be polled. The first  
,
INIT2  
INIT2  
set of analog data will be available t  
after t  
.
and assuming TXDISABLE is not asserted, the DACs  
will be loaded with their initial values. Since t is  
CONV  
POR  
MIC3002s are shipped from the factory with the output  
enable bit, OE, set to zero, off. The MIC3002’s power-up  
default state, therefore, is APC off, V , and  
CONV  
much less than t  
, the first set of analog data,  
INIT2  
, V  
BIAS MOD  
including temperature, is available at t  
. Temperature  
INIT2  
SHDN outputs disabled. V  
, V  
BIAS MOD  
, and SHDN will  
compensation will be applied to the DAC values if  
enabled. APC will begin if OE is asserted. (If the output  
be floating (high impedance) and the laser diode, if  
connected, will be off. Once the device is incorporated  
into a transceiver and properly configured, then the  
enable bit, OE, is not set, the V  
, V  
, and SHDN  
MOD  
BIAS  
outputs will float indefinitely.) Figure 9 shows the power-  
up timing of the MIC3002. If TXDISABLE is asserted at  
shutdown states of SHDN, V  
and V  
will be  
BIAS  
MOD  
determined by the state of the APC configuration and  
OE bits. Tables 13, 14, and 15 illustrate the shutdown  
states of the various laser control outputs versus the  
control bits.  
power-up, the V  
and V  
outputs will stay in their  
MOD  
BIAS  
shutdown states following MIC3002 initialization. A/D  
conversions will begin, but the laser will remain off.  
27  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Figure 9. MIC3002 Power-On Timing (OE = 1)  
Fault Comparators  
Thermal diode faults are detected within the temperature  
measurement subsystem when an out-of-range signal is  
detected. A window comparator circuit monitors the voltage  
on the compensation capacitor to detect APC op-amp  
saturation (Figure 11). Op-amp saturation indicates that  
some fault has occurred in the control loop such as loss of  
feedback. The saturation detector is blanked for a time,  
tFLTTMR, following laser turn-on since the compensation  
voltage will essentially be zero at turn-on. The FLTTMR  
interval is programmable from 0.5ms to 127ms (typical) in  
increments of 0.5ms (tFLTTMR). Note that a saturation  
comparator cannot be relied upon to meet certain eye-  
safety standards that require 100ms response times. This is  
because the operation of a saturation detector is limited by  
the loop bandwidth, i.e., the choice of CCOMP. Even if the  
comparator itself was very fast, it would be subject to the  
limited slew-rate of the APC op-amp. Only the other fault  
In addition to detecting and reporting the events specified  
in SFF-8472, the MIC3002 also monitors five fault  
conditions: inadequate supply voltage, thermal diode  
faults, excessive bias current, excessive transmit power,  
and APC op-amp saturation. Comparators monitor these  
parameters in order to respond quickly to fault conditions  
that could indicate link failure or safety issues, see Figure  
10. When a fault is detected, the laser is shut down and  
TXFAULT is asserted. Each fault source may be  
independently disabled using the FLTMSK register.  
FLTMSK is non-volatile, allowing faults to be masked only  
during calibration and testing or permanently.  
comparator  
channels  
will  
meet  
<100ms  
timing  
requirements.  
The MIC3002 can also except and respond to fault inputs  
from external devices. See “SHDN and TXFIN” section.  
A similar comparator circuit monitors received signal  
strength and asserts RXLOS when loss-of-signal is  
detected (Figure 12). RXLOS will be asserted when and if  
VRX drops below the level programmed in LOSFLT.  
Hysteresis is implemented such that RXLOS will be de-  
asserted when VRX subsequently rises above the level  
programmed in LOSFLTn. The loss-of-signal comparator  
may be disabled completely by setting the LOSDIS bit in  
OEMCFG3. Once the LOS comparator is disabled, an  
external device may drive RXLOS. The state of the RXLOS  
pin is reported in the CNTRL register regardless of whether  
it is driven by the internal comparator or by an external  
device.  
A
programmable digital-to-analog converter  
Figure 10. Fault Comparator Logic  
provides the comparator reference voltages for monitoring  
28  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
received signal strength, transmit power, and bias  
current. Glitches less than 10ms (typical) in length are  
rejected by the fault comparators. Since laser bias current  
varies greatly with temperature, there is a temperature  
compensation look-up table for the bias current fault DAC  
value.  
When a fault condition is detected, the laser will be  
shutdown immediately and TXFAULT will be asserted.  
The VMOD, VBIAS, and SHDN if enabled, OEMCFG5-7 is  
set to 1, outputs will be driven to their shutdown state  
according to the state of the configuration bits. The  
shutdown states of VMOD, VBIAS, and SHDN versus the  
configuration bit settings are shown in Table 13, Table 14,  
and Table 15.  
Figure 12. RXLOS Comparator Logic  
Temperature Measurement  
SHDN and TXFIN  
SHDN and TXFIN are optional functions of pin 7. SHDN  
is an output function and is designed to drive a redundant  
safety switch in the laser current path. TXFIN is an input  
function and serves as an input for fault signals from  
external devices that must be reported to the host via  
TXFAULT. The SHDN function is designed for  
applications in which the MIC3002 is performing all APC  
and laser management tasks. The TXFIN function is for  
situations in which an external device such as a laser  
diode driver IC is performing laser management tasks,  
including fault detection.  
The temperature-to-digital converter for both internal and  
external temperature data is built around a switched current  
source and an eight-bit/nine-bit analog-to-digital converter.  
The temperature is calculated by measuring the forward  
voltage of a diode junction at two different bias current  
levels. An internal multiplexer directs the current source’s  
output to either an internal or external diode junction. The  
value of the ZONE bit in OEMCFG1 determines whether  
readings are taken from the on-chip sensor or from the XPN  
input. The external PN junction may be embedded in an  
integrated circuit, or it may be a diode-connected discrete  
transistor. This data is also used as the input to the  
temperature compensation look-up tables. Each time  
temperature is sampled and an updated value acquired,  
new corrective values for IMOD and the APC setpoint are  
read from the corresponding tables, added to the set  
values, and transferred to the DACs.  
If the TXFIN bit in OEMCFG3 is zero (the default mode),  
SHDN will be activated anytime the laser is off. Thus, it  
will be active if 1) TXDISABLE is asserted, 2) STXDIS in  
CNTRL, is set, or 3) a fault is detected. SHDN is a push-  
pull logic output. Its polarity is programmable via the  
SPOL bit in OEMCFG1.  
If TXFIN is set to one, pin 7 serves as an input that  
accepts fault signals from external devices such as laser  
diode driver ICs. Multiple TXFAULT signals cannot simply  
be wire-ORed together as they are open-drain and active  
high. The input polarity is programmable via the TXFPOL  
bit in OEMCFG3. TXFIN is logically ORed with the  
MIC3002’s internal fault sources to produce TXFAULT  
and determine the value of the transmit fault bit in  
CNTRL. See Figure 10.  
Diode Faults  
The MIC3002 is designed to respond in a failsafe manner to  
hardware faults in the temperature sensing circuitry. If the  
connection to the sensing diode is lost or the sense line is  
shorted to VDD or ground, the temperature data reported by  
the A/D converter will be forced to its full-scale value  
(+127°C). The diode fault flag, DFLT, will be set in  
OEMCFG1, TXFAULT will be asserted, and the high  
temperature alarm and warning flags will be set. The  
reported temperature will remain +127°C until the fault  
condition is cleared. Diode faults may be reset by toggling  
TXDISABLE, as with any other fault. Diode faults will not be  
detected at power up until the first A/D conversion cycle is  
completed. Diode faults are not reported while TXDISABLE  
is asserted.  
Temperature Compensation  
Since the performance characteristics of laser diodes and  
photodiodes change with operating temperature, the  
Figure 11. Saturation Detector  
29  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
MIC3002 provides a facility for temperature compensation  
of the A.P.C. loop set-point, laser modulation current, bias  
current fault comparator threshold, and bias current high  
alarm flag threshold. Temperature compensation is  
performed using a look-up table (LUT) that stores values  
corresponding to each measured temperature over a  
150°C span. Four identical tables reside at serial address  
A4h and A6h as summarized in Table 16. Each table  
entry is a signed twos complement number that is used  
as an offset to the parameter being compensated. The  
default value of all table entries is zero, giving a flat  
response.  
(11)  
If the measured temperature is greater than the maximum  
table value, the highest value in each table is used. If the  
measured temperature is less than the minimum, the  
minimum value is used. Hysteresis is employed to further  
enhance noise immunity and prevent oscillation about a  
table threshold. Each table entry spans two degrees C. The  
table index will not change unless the new temperature  
average results in a table index beyond the midpoint of the  
next entry in either direction. There is therefore 2 to 3°C of  
hysteresis on temperature compensation changes. The  
table index will never oscillate due to quantization noise as  
the hysteresis is much larger than ±1⁄2 LSB.  
The A/D converter reports a new temperature sample  
each tCONV. This occurs at roughly 10Hz. To prevent  
temperature oscillation due to thermal or electrical noise,  
sixteen successive temperature samples are averaged  
together and used to index the L.U.T.s. Temperature  
compensation results are therefore. updated at 16xtCONV  
intervals, or about 1.6 seconds. This can be expressed as  
shown in Equation 10:  
(10)  
Serial  
Byte  
Function  
Address  
Addresses  
Each time an updated average value is acquired, a new  
offset value for the APC setpoint is read from the  
corresponding look-up table (see Table 17) and  
transferred to the APC circuitry. This is illustrated in  
Equation 11. In a same way, new offset values are taken  
from similar look-up tables (see Table 18 and Table 19),  
added to the nominal values and transferred into the  
modulation and fault comparator DACs. The bias current  
high alarm threshold is compensated using a fourth look-  
up table (see Table 20). This compensation happens  
internally and does not affect any host-accessible  
registers.  
I2CADR+4h  
00h–3Fh  
40h–7Fh  
APC Look-up Table  
I
Look-up Table  
MOD  
80h–BFh  
C0h–FFh  
IFLT Look-up Table  
Bias High Alarm Look-up  
Table  
I2CADR+6h  
90h–9Bh  
A0h–ABh  
APC Look-up Table (cont.)  
I
Look-up Table  
MOD  
(cont.)  
B0h–BBh  
C0h–CBh  
IFLT Look-up Table (cont.)  
Bias High Alarm Look-up  
Table (cont.)  
Table 16. Temperature Compensation Look-up Tables  
30  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Serial Address Register  
Table  
Offset  
Temperature  
Offset (°C)  
Serial Address Register  
Address  
Table  
Offset  
Temperature  
Offset (°C)  
Address  
00h  
0
-45  
80h  
-45  
I2CADR+4h  
I2CADR+4h  
01h  
1
-44  
-43  
81h  
82h  
-44  
-43  
8Eh  
3Fh  
90h  
63  
64  
80  
81  
82  
83  
8Fh  
B0  
63  
64  
80  
81  
82  
83  
I2CADR+6h  
I2CADR+6h  
9A  
74  
102  
BA  
74  
102  
103  
103  
9B  
75  
≥ 104  
BB  
75  
≥ 104  
Table 17. APC Temperature Compensation  
Look-Up Table  
Table 19. IBIAS Comparator Temperature Compensation  
Look-Up Table  
Serial Address Register Table  
Address Offset  
Temperature  
Offset (°C)  
Serial Address Register  
Address  
Table  
Offset  
Temperature  
Offset (°C)  
40h  
0
-45  
I2CADR+4h  
C0h  
-45  
I2CADR+4h  
41h  
1
-44  
-43  
C1h  
C2h  
-44  
-43  
FEh  
7Fh  
A0  
63  
64  
80  
81  
82  
83  
FFh  
C0  
63  
64  
80  
81  
82  
83  
I2CADR+6h  
I2CADR+6h  
AA  
74  
102  
CA  
74  
102  
103  
103  
AB  
75  
≥ 104  
Table 20. BIAS Current High Alarm Temperature  
Compensation Table  
Table 18. VMOD Temperature Compensation  
Look-Up Table  
31  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
The internal state machine calculates a new table index  
each time a new average temperature value becomes  
available. This table index is derived from the average  
temperature value. The table index is then converted into  
a table address for each of the four look-up tables. These  
operations can be expressed as:  
Control and Status I/O  
The logic for the transceiver control and status I/O is shown  
schematically in Figure 13. Note that the internal drivers on  
RXLOS, RATE_SELECT, and TXFAULT are all open-drain.  
These signals may be driven either by the internal logic or  
external drivers connected to the corresponding MIC3002  
pins. In any case, the signal level appearing at the pins of  
the MIC3002 will be reported in the control register status  
bits.  
(12)  
Note that the control bits for TX_DISABLE and  
RATE_SELECT and the status bits for TXFAULT and  
RXLOS do not meet the timing requirements as specified in  
the SFP MSA or the GBIC Specification, revision 5.5 (SFF-  
8053) for the hardware signals. The speed of the serial  
interface limits the rate at which these functions can be  
manipulated and/or reported. The response time for the  
control and status bits is given in the “Electrical  
Characteristics” subsection.  
where TAVG(n) is the current average temperature; and  
TABLE_ADDRESS=INDEX+BASE_ADDRES  
where BASE_ADDRESS is the physical base address of  
each table, i.e., 00 , 40 , 80 , or C0 (tables reside in the  
h
h
h
h
I2CADR+4h and I2CADR+6h pages of memory).  
At any given time, the current table index can be read in  
the LUTINDX register.  
Alarms and Warning Flags  
There are 20 different conditions that will cause the  
MIC3002 to set one of the bits in the WARNx or ALARMx  
registers. These conditions are listed in Table 22. The  
less critical of these events generate warning flags by  
setting a bit in WARN0 or WARN1. The more critical  
events cause bits to be set in ALARM0 or ALARM1.  
An event occurs when any alarm or warning condition  
becomes true. Each event causes its corresponding  
status bit in ALARM0, ALARM1, WARN0, or WARN1 to  
be set. This action cannot be masked by the host. The  
status bit will remain set until the host reads that  
particular status register, a power on-off cycle occurs, or  
the host toggles TXDISABLE.  
If TXDISABLE is asserted at any time during normal  
operation, A/D conversions continue. The A/D results for  
all parameters will continue to be reported. All events will  
be reported in the normal way. If they have not already  
been individually cleared by read operations, when  
TXDISABLE is de-asserted, all status registers will be  
cleared.  
32  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Event  
Condition  
MIC3002 Response  
Set ALARM0[7]  
Set ALARM0[6]  
Set ALARM0[5]  
Set ALARM0[4]  
Set ALARM0[3]  
Set ALARM0[2]  
Set ALARM0[1]  
Set ALARM0[0]  
Set ALARM1[7]  
Set ALARM1[6]  
Set WARN0[7]  
Set WARN0[6]  
Set WARN0[5]  
Set WARN0[4]  
Set WARN0[3]  
Set WARN0[2]  
Set WARN0[1]  
Set WARN0[0]  
Set WARN1[7]  
Set WARN1[6]  
Temperature high alarm  
Temperature low alarm  
Voltage high alarm  
Voltage low alarm  
TEMP > TMAX  
TEMP < TMIN  
VIN > VMAX  
VIN < VMIN  
TX bias high alarm  
TX bias low alarm  
IBIAS > IBMAX  
IBIAS < IBMIN  
TXOP > TXMAX  
TXOP < TXMIN  
RXOP > RXMAX  
RXOP < RXMIN  
TEMP > THIGH  
TEMP < TLOW  
VIN > VHIGH  
TX power high alarm  
TX power low alarm  
RX power high alarm  
RX power low alarm  
Temperature high warning  
Temperature low warning  
Voltage high warning  
Voltage low warning  
TX bias high warning  
TX bias low warning  
TX power high warning  
TX power low warning  
RX power high warning  
RX power low warning  
VIN < VLOW  
IBIAS > IBHIGH  
IBIAS < IBLOW  
TXOP > TXHIGH  
TXOP < TXLOW  
RXOP > RXHIGH  
RXOP < RXLOW  
Table 22. MIC3002 Events  
Figure 13. Control and Status I/O Logic  
33  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
System Timing  
The timing specifications for MIC3002 control and status  
I/O are given in the “Electrical Characteristics” subsection.  
Figure 14. Transmitter ON-OFF Timing  
Figure 15. Initialization Timing with TXDISABLE Asserted  
Figure 16. Initialization Timing with TXDISABLE Not Asserted  
34  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Figure 17. Loss-of-Signal (LOS) Timing  
Figure 18. Transmit Fault Timing  
35  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Figure 19. Successfully Clearing a Fault Condition  
Figure 20. Unsuccessful Attempt to Clear a Fault  
Warm Resets  
memory. This implies a range of at least twenty years.  
Actual results will depend upon the operating conditions  
and write-cycle endurance of the part in question.  
The MIC3002 can be reset to its power-on default state  
during operation by setting the reset bit in OEMCFG0.  
When this bit is set, TXFAULT and RXLOS will be de-  
asserted, all registers will be restored to their normal  
power-on default values, and any A/D conversion in  
progress will be halted and the results discarded. The  
state of the MIC3002 following this operation is  
indistinguishable from a power-on reset.  
Two registers, POHH and POHl, contain a 15-bit power-on  
hour measurement and an error flag, POHFLT. Great care  
has been taken to make the MIC3002’s hour meter immune  
to data corruption and to insure that valid data is maintained  
across power cycles. The hour meter employs multiple data  
copies and error correction codes to maintain data validity.  
This data is stored in the POHDATA registers. If POHFLT is  
set, however, the power-on hour meter data has been  
corrupted and should be ignored.  
Power-On Hour Meter  
The Power-On Hour meter logs operating hours using an  
internal real-time clock and stores the result in NVRAM.  
The hour count is incremented at ten-hour intervals in the  
middle of each interval. The first increment therefore  
takes place five hours after power-on. Time is  
accumulated whenever the MIC3002 is powered. The  
hour meter’s time base is accurate to 5% over all  
MIC3002 operating conditions. The counter is capable of  
storing counts of more than thirty years, but is ultimately  
limited by the write-cycle endurance of the non-volatile  
It is recommended that a two-byte (or more) sequential  
read operation be performed on POHh and POHl to insure  
coherency between the two registers. These registers are  
accessible by the OEM using a valid OEM password. The  
only operation that should be performed on these registers  
is to clear the hour meters initial value, if necessary, at the  
time of product shipment. The hour meter result may be  
cleared by setting all eight POHDATA bytes to 00 .  
h
Power-On Hour Result Format  
High Byte, POHH  
Elapsed Time / 10 Hours, MSBs  
MSB  
Low Byte, POHI  
Elapsed Time / 10 Hours, LSBs  
LSB  
Error Flag  
Table 23. Power-On Hour Meter Result Format  
36  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Test and Calibration Features  
features are available via registers in the OEM area. As  
shown in Table 24, these features include:  
Numerous features are included in the MIC3002 to  
facilitate development, testing, and diagnostics. These  
Function  
Description  
Control  
Register(s)  
Analog loop-back  
Provides analog visibility of op-amp and DAC outputs via the ADC  
Disables the fault comparator  
OEMCFG0  
OEMCAL0  
OEMCAL0  
Fault comparator disable control  
Fault comparator spin-on-channel  
mode  
Selects a single fault comparator channel  
Fault comparator output read-back  
RSOUT, /INT read-back  
Allows host to read individual fault comparator outputs  
Allows host to read the state of these pins  
OEMRD  
OEMRD  
Inhibit EEPROM write cycles  
APC calibration mode  
Speeds repetitive writes to registers backed up by NVRAM  
OEMCAL0  
OEMCAL0  
Allows direct writes to MODDAC and APCDAC (temperature  
compensation not used)  
Continuity checking  
Halt A/D  
Forcing of RXLOS, TXFAULT, /INT  
OEMCAL0  
OEMCAL1  
OEMCAL1  
OEMCAL1  
OEMCAL1  
OEMCAL1  
Stops A/D conversions; ADC in one-shot mode  
Indicates ADC status  
ADC idle flag  
A/D one-shot mode  
A/D spin-on-channel mode  
Channel selection  
Performs a single A/D conversion on the selected input channel  
Selects a single input channel  
Selects ADC or fault comparator channel for spin-on-channel  
modes  
LUT index read-back  
Permits visibility of the LUT index calculated by the state-machine  
Facilitates presence detection and version control  
LUTINDX  
Manufacturer and device ID registers  
MFG_ID,  
DEV_ID  
Table 24. Test and Diagnostic Features  
37  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Serial Port Operation  
Page Writes  
The MIC3002 uses standard Write_Byte, Read_Byte, and  
Read_Word operations for communication with its host. It  
also supports Page_Write and Sequential_Read  
transactions. The Write_Byte operation involves sending  
the device’s slave address (with the R/W bit low to signal a  
write operation), followed by the address of the register to  
be operated upon and the data byte. The Read_Byte  
operation is a composite write and read operation: the host  
first sends the device’s slave address followed by the  
register address, as in a write operation. A new start bit  
must then be sent to the MIC3002, followed by a repeat of  
the slave address with the R/W bit (LSB) set to the high  
(read) state. The data to be read from the part may then be  
clocked out. A Read_Word is similar, but two successive  
data bytes are clocked out rather than one. These  
protocols are shown in Figures 21 to 24.  
To increase the speed of multi-byte writes, the MIC3002  
allows up to four consecutive bytes (one page) to be written  
before the internal write cycle begins. The entire non-volatile  
memory array is organized into four-byte pages. Each page  
begins on a register address boundary where the last two  
bits of the address are 00 . Thus, the page is composed of  
b
any four consecutive bytes having the addresses xxxxxx00 ,  
b
xxxxxx01 , xxxxxx10 , and xxxxxx11 .  
b
b
b
The page write sequence begins just like a Write_Byte  
operation with the host sending the slave address, R/W bit  
low, register address, etc. After the first byte is sent the host  
should receive an acknowledge. Up to three more bytes can  
be sent in sequence. The MIC3002 will acknowledge each  
one and increment its internal address register in anticipation  
of the next byte. After the last byte is sent, the host issues a  
STOP. The MIC3002’s internal write process then begins. If  
more than four bytes are sent, the MIC3002’s internal  
address counter wraps around to the beginning of the four-  
byte page.  
The MIC3002 will respond to up to four sequential slave  
addresses depending upon whether it is in OEM or User  
mode. A match between one of the MIC3002’s addresses  
and the address specified in the serial bit stream must be  
made to initiate communication. The MIC3002 responds to  
slave addresses A0 and A2 in User Mode; it also  
To accelerate calibration and testing, NVRAM write cycles  
can be disabled completely by setting the WRINH bit in  
OEMCAL0. Writes to registers that do not have NVRAM  
backup, will not incur write-cycle delays when writes are  
inhibited. Write operations on registers that exist only in  
NVRAM will still incur write cycle delays.  
h
h
responds to A4 and A6 in OEM Mode (assuming  
h
h
I2CADR = Ax ).  
h
Figure 21. Write Byte Protocol  
Figure 22. Read Byte Protocol  
Figure 23. Read_Word Protocol  
38  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Figure 24. Four-Byte Page White Protocol  
Acknowledge Polling  
password is entered, the MIC3002 OEM areas will be  
accessible. The OEM areas may be re-secured by writing an  
incorrect password value at OEMPW, e.g., all zeroes. In all  
cases, OEMPW must be written LSB first through MSB last.  
The OEM areas will be inaccessible following the final write  
operation to OEMPW’s LSB. The OEMPW field is reset to all  
zeros at power on. Any values written to these locations will be  
readable by the host regardless of the locked/unlocked status  
The MIC3002’s non-volatile memory cannot be accessed  
during the internal write process. To allow for maximum  
speed bulk writes, the MIC3002 supports acknowledge  
polling. The MIC3002 will not acknowledge serial bus  
transactions while internal writes are in progress. The host  
may therefore monitor for the end of the write process by  
periodically checking for an acknowledgement.  
of the device. If OEMPWSET is set to zero (00000000 ), the  
h
Write Protection and Data Security  
MIC3002 will remain unlocked regardless of the contents of the  
OEMPW field. This is the factory default security setting.  
OEM Password  
A password is required to access the OEM areas of the  
MIC3002, specifically the non-volatile memory, look-up  
tables, and registers at serial addresses A4 and A6 . A four-  
Note that a valid OEM password allows access to the OEM  
and user areas of the chip, i.e., the entire memory map,  
regardless of any user password that may be in place. Once  
the OEM areas are locked, the user password can provide  
access and write protection for the user areas.  
h
h
byte field, OEMPWSET, at serial address A6 is used for  
h
setting the OEM password. The OEM password is set by  
writing OEMPWSET with the new value. The password  
comparison is performed following the write to the MSB of  
the OEMPW, address 7B (or 7Eh) at serial address A2 .  
User Password  
A password is required to access the USER areas of the  
MIC3002, specifically, the non-volatile memory at serial  
addresses A0 and A2 . A one-byte field, USRPWSET at serial  
h
h
Therefore, this byte must be written last. A four-byte burst-  
h
h
write sequence to address 78 (or 7Bh) may be used as this  
address A2 is used for setting the USER password.  
h
h
will result in the MSB being written last. The new password  
will not take effect until after a power-on reset occurs or a  
warm reset is performed using the RST bit in OEMCFG0.  
This allows the new password to be verified before it takes  
effect.  
USRPWSET is compared to the USRPW field at serial address  
A2 . If the two fields match, access is allowed to the USER  
h
areas of the MIC3002 non-volatile memory at serial addresses  
A0 and A2 . The USER password is set by writing  
h
h
USRPWSET with the new value. The new password will not  
take effect until after a power-on reset occurs or a warm reset  
is performed using the RST bit in OEMCFG0. This allows the  
new password to be verified before it takes effect.  
The corresponding four-byte field for password entry,  
OEMPW, is located at serial address A2 . This field is  
h
therefore always visible to the host system. OEMPW is  
compared to the four-byte OEMPWSET field at serial  
Note also that a valid OEM password allows access to the  
OEM and user areas of the chip, i.e., the entire memory map,  
regardless of any user password that may be in place. Once  
the OEM areas are locked, the user password can then provide  
access and write protection for the user areas. If a valid OEM  
password is in place, the user password will have no effect.  
address A6 . If the two fields match, access is allowed to the  
h
OEM areas of the MIC3002 non-volatile memory at serial  
addresses A4 and A6 . If OEMPWSET is all zeroes, no  
h
h
password security will exist. The value in OEMPW will be  
ignored. This helps prevent a deliberately unsecured  
MIC3002 from being inadvertently locked. Once a valid  
39  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Detailed Register Descriptions  
Note: Serial bus addresses shown assume that I2CADR = Axh.  
Alarm Threshold Registers  
Temperature High Alarm Threshold  
D[7]  
read/write  
D[6]  
read/write  
D[5]  
read/write  
D[4]  
read/write  
D[3]  
read/write  
D[2]  
read/write  
D[1]  
read/write  
D[0]  
read/write  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00 (0°C)  
b h  
A2  
h
MSB (TXMAHh): 00 = 00  
h
LSB (TXMAHl): 00 = 01  
h
Each LSB of TMAXh represents one degree centigrade. This register is to be used in conjunction with TMAXl to yield a sixteen-  
bit temperature value.  
The value in this register is uncalibrated. The nine MSbits of threshold value (TMAXh;TMAXl) are compared bit to bit to the  
nine MSbits value of the temperature reading (TEMPh;TEMPl).. Alarm bit Ax is set if Reading > Threshold.  
Temperature Low Alarm Threshold  
D[7]  
D[6]  
D[5] read/write  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00 (0°C)  
b h  
A2  
h
MSB (TMINh): 02 = 02  
h
LSB (TMINl): 02 = 02  
h
Each LSB of TMINh represents one degree centigrade. TMINh is to be used in conjunction with TMINl to yield a sixteen-bit  
temperature value. The value in this register is uncalibrated. The nine MSbits of threshold value (TMINh;TMINl) are compared,  
bit to bit, to The nine MSbits value of the temperature reading (TEMPh;TEMPl). Alarm bit Ax is set if Reading < Threshold.  
Voltage High Alarm Threshold  
D[5] read/write  
D[4]  
read/write  
D[3]  
read/write  
D[2]  
read/write  
D[1]  
read/write  
D[0]  
read/write  
D[7]  
read/write  
D[6]  
read/write  
Default Value  
Serial Address  
Bytes Address  
0000 0000 = 00 (0V)  
b h  
A2  
h
MSB (VMAXh): 08 = 08  
h
LSB (VMAXl): 09 = 09  
h
Each LSB of VMAXh represents 25.6mV and each LSB of VMAXl represents 0.1mV. The sixteen bits threshold value  
(VMAXh;VMAXl) is compared bit to bit to the sixteen bits value of the voltage reading (VINh;VINl). Alarm bit Ax is set if Reading  
> Threshold.  
40  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Voltage Low Alarm Threshold  
D[7]  
read/write  
D[6]  
read/write  
D[5]  
read/write  
D[4]  
read/write  
D[3]  
read/write  
D[2]  
read/write  
D[1]  
read/write  
D[0]  
read/write  
Default Value  
Serial Address  
Bytes Address  
0000 0000 = 00 (0V)  
b h  
A2  
h
MSB (VMINh): 10 = 0A  
h
LSB (VMINl): 11 = 0B  
h
Each LSB of VMINh represents 25.6mV and each LSB of VMINl represents 0.1mV. The sixteen bits threshold value  
(VMINh;VMINl) is compared bit to bit to the sixteen bits value of the voltage reading (VINh;VINl). Alarm bit Ax is set if Reading  
< Threshold.  
Bias Current High Alarm Threshold  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default Value  
Serial Address  
Bytes Address  
0000 0000 = 00 (0mA)  
b h  
A2  
h
MSB (IMAXh): 16 = 10  
h
LSB (IMAXl): 17 = 11  
h
Each LSB of IMAXh represents 512µA and each LSB of IMAXl represents 2µA. The sixteen bits threshold value (IMAXh;IMAXl)  
is compared, bit to bit, to the sixteen bits value of the bias current reading (ILDh:ILDl). Alarm bit Ax is set if Reading >  
Threshold.  
Bias Current Low Alarm Threshold  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00 (0mA)  
b h  
A2  
h
MSB (IMINh): 18 = 12  
h
LSB (IMINl): 19 = 13  
h
Each LSB of IMINh represents 512µA and each LSB of IMINl represents 2µA. The sixteen bits threshold value (IMINh;IMINl) is  
compared, bit to bit, to the sixteen bits value of the bias current reading (ILDh:ILDl). Alarm bit Ax is set if Reading < Threshold.  
TX Optical Power High Alarm  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00 (0mW)  
b h  
A2  
h
MSB (TXMAXh): 24 = 18  
h
LSB (TXMAXl): 25 = 19 24 = 18  
h
h
Each LSB of TXMAXh represents 25.6µW. This register is to be used in conjunction with TXMAXl to yield a sixteen-bit value.  
The values in TXMAXh:TXMAXl are in an unsigned binary format. The value in this register is uncalibrated. The sixteen bits  
threshold value (TXMAXh;TXMAXl) is compared, bit to bit, to the sixteen bits value of the TX power reading (TXOPh:TXOPl).  
Alarm bit Ax is set if Reading > Threshold.  
41  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
TX Optical Power Low Alarm  
D[7]  
read/write  
D[6]  
read/write  
D[5]  
read/write  
D[4]  
read/write  
D[3]  
read/write  
D[2]  
read/write  
D[1]  
read/write  
D[0]  
read/write  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00 (0mW)  
b h  
A2  
h
MSB (TXMAXh): 24 = 18  
h
LSB (TXMAXl): 25 = 19  
h
Each LSB of TXMINh represents 25.6µW. This register is to be used in conjunction with TXMINl to yield a sixteen-bit value.  
The values in TXMINh:TMINl are in an unsigned binary format. The value in this register is uncalibrated. The sixteen bits  
threshold value (TXMINh;TXMINl) is compared, bit to bit, to the sixteen bits value of the RTX power reading (TXOPh:TXOPl).  
Alarm bit Ax is set if Reading < Threshold.  
RX Optical Power High Alarm Threshold MSB (RXMAXh)  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default Value  
Serial Address  
Bytes Address  
0000 0000 = 00 (0mW)  
b h  
A2  
h
MSB (RXMAXh): 32 = 20  
h
LSB (RXMAXl): 33 = 21  
h
Each LSB of RXMAXh represents 25.6µW. This register is to be used in conjunction with RXMAXl to yield a sixteen-bit value.  
The value in this register is uncalibrated. The sixteen bits threshold value (RXMAXh;RXMAXl) is compared, bit to bit, to the  
sixteen bits value of the RX power reading (RXOPh:RXOPl). Alarm bit Ax is set if Reading > Threshold.  
RX Optical Power Low Alarm Threshold  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00 (0mW)  
b h  
A2  
h
MSB (RXMINh): 34 = 22  
h
LSB (RXMINl): 35 = 23  
h
Each LSB of RXMINh represents 25.6µW. This register is to be used in conjunction with RXMINl to yield a sixteen-bit value.  
The value in this register is uncalibrated. The sixteen bits threshold value (RXMINh;RXMINl) is compared, bit to bit, to the  
sixteen bits value of the RX power reading (RXOPh:RXOPl). Alarm bit Ax is set if Reading < Threshold.  
42  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Warning Threshold Registers  
Temperature High Warning Threshold  
D[7]  
read/write  
D[6]  
read/write  
D[5]  
read/write  
D[4]  
read/write  
D[3]  
read/write  
D[2]  
read/write  
D[1]  
read/write  
D[0]  
read/write  
Default Value  
Serial Address  
Bytes Address  
0000 0000 = 00 (0°C)  
b h  
A2  
h
MSB (THIGHh): 04 = 04  
h
LSB (THIGHl): 05 = 05  
h
Each LSB of THIGHh represents one degree centigrade. This register is to be used in conjunction with THIGHl to yield a  
sixteen-bit temperature value. The value in this register is uncalibrated. The nine MSbits of threshold value (THIGHh;THIGHl)  
are compared, bit to bit, to the nine MSbits value of the temperature reading (TEMPh;TEMPl).. Warning bit Wx is set if Reading  
> Threshold.  
Temperature Low Warning Threshold  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default Value  
Serial Address  
Bytes Address  
0000 0000 = 00 (0°C)  
b h  
A2  
h
MSB (TLOWh): 06 = 06  
h
LSB (TLOWl): 06 = 06  
h
Each LSB of TLOWh represents one degree centigrade. This register is to be used in conjunction with TLOWl to yield a  
sixteen-bit temperature value. The value in this register is uncalibrated. The threshold value (THIGHh;THIGHl) is compared, bit  
to bit, to the value of the temperature reading (TEMPh;TEMPl). Warning bit Wx is set if Reading < Threshold,  
Voltage High Warning Threshold  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default Value  
Serial Address  
Bytes Address  
0000 0000 = 00 (0V)  
b h  
A2  
h
MSB (VHIGHh): 12 = 0C  
h
LSB (VHIGHl): 13 = 0D 12 = 0C  
h
h
Each LSB of VHIGHh represents 25.6mV. This register is to be used in conjunction with VHIGHl to yield a sixteen-bit value.  
The value in this register is uncalibrated. The threshold value (VHIGHh;VHIGHl) is compared. bit to bit. to the value of the  
voltage reading (VINh;VINl). Warning bit Wx is set if Reading > Threshold.  
Voltage Low Warning Threshold  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00 (0V)  
b h  
A2  
h
MSB (VLOWh): 14 = 0E  
h
LSB (VLOWl): 15 = 0F  
h
Each LSB of VLOWh represents 25.6mV. This register is to be used in conjunction with VLOWl to yield a sixteen-bit value. The  
value in this register is uncalibrated. The threshold value (VLOWh;VLOWl) is compared. bit to bit, to the value of the voltage  
reading (VINh;VINl). Warning bit Wx is set if Reading < Threshold.  
43  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Bias Current High Warning Threshold  
D[7]  
read/write  
D[6]  
read/write  
D[5]  
read/write  
D[4]  
read/write  
D[3]  
read/write  
D[2]  
read/write  
D[1]  
read/write  
D[0]  
read/write  
Default Value  
Serial Address  
Bytes Address  
0000 0000 = 00 (0mA)  
b h  
A2  
h
MSB (IHIGHh): 20 = 14  
h
LSB (IHIGHl): 21 = 15  
h
Each LSB of IHIGHh represents 512µA and each LSB of IHIGHl represents 2µA. The sixteen bits threshold value  
(IHIGHh;IHIGHl) is compared, bit to bit, to the sixteen bits value of the bias current reading (ILDh:ILDl). Warning bit Wx is set if  
Reading > Threshold.  
Bias Current Low Warning Threshold  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default Value  
Serial Address  
Bytes Address  
0000 0000 = 00 (0mA)  
b h  
A2  
h
MSB (ILOWh): 22 = 16  
h
LSB (ILOWl): 23 = 17  
h
Each LSB of ILOWh represents 512µA and each LSB of ILOWl represents 2µA. The sixteen bits threshold value  
(ILOWh;ILOWl) is compared, bit to bit, to the sixteen bits value of the bias current reading (ILDh:ILDl). Warning bit Wx is set if  
Reading < Threshold.  
TX Optical Power High Warning MSB (TXHIGHh)  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default Value  
Serial Address  
Bytes Address  
0000 0000 = 00 (0mW)  
b h  
A2  
h
MSB (TXHIGHh): 28 = 1C  
h
LSB (TXHIGHl): 29 = 1D  
h
Each LSB of TXHIGHh represents 25.6µW. This register is to be used in conjunction with TXHIGHl to yield a sixteen-bit value.  
The values in TXHIGHh:TXHIGHl are in an unsigned binary format. The value in this register is uncalibrated. The sixteen bits  
threshold value (TXHIGHh;TXHIGHl) is compared, bit to bit, to the sixteen bits value of the TX power reading (TXOPh:TXOPl).  
Warning bit Wx is set if Reading > Threshold.  
TX Optical Power Low Warning  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00 (0mW)  
b h  
A2  
h
MSB (TXLOWh): 30 = 1E  
h
LSB (TXLOWl): 31 = 1F  
h
Each LSB of TXLOWh represents 25.6µW. This register is to be used in conjunction with TXLOWl to yield a sixteen-bit value.  
The values in TXLOWh:TLOWl are in an unsigned binary format. The value in this register is uncalibrated. The sixteen bits  
threshold value (TXLOWh;TXLOWl) is compared, bit to bit, to the sixteen bits value of the TX power reading (TXOPh:TXOPl).  
Warning bit Wx is set if Reading < Threshold.  
44  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
RX Optical Power High Warning Threshold  
D[7]  
read/write  
D[6]  
read/write  
D[5]  
read/write  
D[4]  
read/write  
D[3]  
read/write  
D[2]  
read/write  
D[1]  
read/write  
D[0]  
read/write  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00 (0mW)  
b h  
A2  
h
MSB (RXHIGHh): 36 = 24  
h
LSB (RXHIGHl): 37 = 25  
h
Each LSB of RXHIGHh represents 25.6µW and each ach LSB of RXHIGHl represents 0.1µW.. The value in this register is  
uncalibrated. The sixteen bits threshold value (RXHIGHh;RXHIGHl) is compared, bit to bit, to the sixteen bits value of the RX  
power reading (RXOPh:RXOPl). Warning bit Wx is set if Reading > Threshold.  
RX Optical Power Low Warning Threshold  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00 (0mW)  
b h  
A2  
h
38 = 26  
h
Each LSB of RXLOWh represents 25.6µW and each eah LSB of RXLOWl represents 0.1µW. The value in this register is  
uncalibrated. The sixteen bits threshold value (RXlOWh;RXLOWl) is compared, bit to bit, to the sixteen bits value of the RX  
power reading (RXOPh:RXOPl). Warning bit Wx is set if Reading > Threshold.  
Checksum (CHKSUM)  
Checksum of bytes 0 - 94 at serial address A2h  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00 (0°C)  
b h  
A2  
h
95 = 5F  
h
This register is provided for compliance with SFF-8472. It is implemented as general-purpose non-volatile memory. Read/write  
access is possible whenever a valid OEM password has been entered. CHKSUM is read-only in USER mode.  
ADC Result Registers  
Temperature Result  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
Default Value  
(1)  
0000 0000 = 00 (0°C)  
b
h
Serial Address  
Byte Address  
A2  
h
MSB (TEMPh): 96 = 60  
h
LSB (TEMPl): 97 = 61  
h
Each LSB of TEMPh represents one degree centigrade. The TEMPh register is to be used in conjunction with TEMPl to yield a  
sixteen-bit temperature value. If OEMCFG6 bit 1 is a zero, temperature is read to 1°C resolution in TEMPh only, and TEMPl is  
zero. If OEMCFG6 bit 1 is a one, then temperature is read to 0.5°C resolution as a nine-bit value consisting of TEMPh and the  
MS bit of TEMPl. The lower seven bits of TEMPl are zero.  
45  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Voltage  
D[7]  
read-only  
D[6]  
read-only  
D[5]  
read-only  
D[4]  
read-only  
D[3]  
read-only  
D[2]  
read-only  
D[1]  
read-only  
D[0]  
read-only  
Default Value  
(2)  
0000 0000 = 00 (0V)  
b
h
Serial Address  
Byte Address  
A2  
h
MSB (VINh): 98 = 62  
h
LSB (VINl): 99 = 63  
h
Each LSB of VINh represents 25.6mV. VINh register is to be used in conjunction with VINl to yield a sixteen-bit value. The  
values in VINh:VlNl are in an unsigned binary format. The value in this register is uncalibrated. The host should process the  
results using the scale factor and offset provided. See the External Calibration section. In the MIC3002, VINl will always return  
zero. It is provided for compliance with SFF-8472.  
Notes:  
1. TEMPh will contain measured temperature data after the completion of one conversion.  
2. VINh will contain measured data after one A/D conversion cycle.  
Laser Diode Bias Current  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
Default Value  
(3)  
0000 0000 = 00 (0mA)  
b
h
Serial Address  
Byte Address  
A2  
h
MSB (ILDh):100 = 64  
h
LSB (ILDl):100 = 65  
h
ILDh is to be used in conjunction with ILDl to yield a sixteen-bit value. The values in ILDh:ILDl are in an unsigned binary format.  
The value in this register is uncalibrated. The host should process the results using the scale factor and offset provided. See  
the External Calibration sections. In the MIC3002, ILDl will always return zero. It is provided for compliance with SFF-8472.  
Transmitted Optical Power  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
Default Value  
(5)  
0000 0000 = 00 (0mW)  
b
h
Serial Address  
Byte Address  
A2  
h
MSB (TXOPh): 102 = 66  
h
LSB (TXOPl): 103 = 67  
h
Each LSB of TXOPh represents 25.6µW. THOPh is to be used in conjunction with TXOPl to yield a sixteen-bit value. The  
values in TXOPh:TXOPl are in an unsigned binary format. The value in this register is uncalibrated. The host should process  
the results using the scale factor and offset provided. See the External Calibration section. In the MIC3002, this TXOPl will  
always return zero. It is provided for compliance with SFF-8472.  
Notes:  
3. ILDh will contain measured data after one A/D conversion cycle.  
4. The scale factor corresponding to the sense resistor used must be set in the configuration register.  
5. TXOPh will contain measured data after one A/D conversion cycle.  
46  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Received Optical Power  
D[7]  
read-only  
D[6]  
read-only  
D[5]  
read-only  
D[4]  
read-only  
D[3]  
read-only  
D[2]  
read-only  
D[1]  
read-only  
D[0]  
read-only  
Default Value  
(6)  
0000 0000 = 00 (0mW)  
b
h
Serial Address  
Byte Address  
A2  
h
MSB (RXOPh): 104 = 68  
h
LSB (RXOPl): 105 = 69  
h
Each LSB of RXOPl represents 25.6µW and each LSB of RXOPl represents 0.1µW. RXOPh is to be used in conjunction with  
RXOPl to yield a sixteen-bit value. The values in RXOPh:RXOPl are in an unsigned binary format. The value in this register is  
uncalibrated. The host should process the results using the scale factor and offset provided. See the External Calibration  
section.  
Control and Status (CNTRL)  
D[7]  
TXDIS  
read-only  
D[6]  
STXDIS  
read/write  
D[5]  
reserved  
D[4]  
RSEL  
read/write  
D[3]  
SRSEL  
read/write  
D[2]  
XFLT  
read-only  
D[1]  
LOS  
read-only  
D[0]  
POR  
read-only  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00  
b
h
A2  
h
110 = 6E  
h
Bit(s)  
Function  
Operation  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
TXDIS  
STXDIS  
D[5]  
Reflects the state of the TXDISABLE pin  
Soft transmit disable  
1 = disabled, 0 = enabled, read only.  
1 = disabled; 0 = enabled.  
Reserved  
Reserved - always write as zero.  
1 = high; 0 = low.  
RSEL  
SREL  
TXFLT  
LOS  
Reflects the state of the RSEL pin  
Soft rate select  
1 = high (2Gbps); 0 = low (1Gbps).  
1 = high (fault); 0 = low (no fault).  
Reflects the state of the TXFAULT pin  
Loss of signal. Reflects the state of the LOS pin  
1 = high (loss of signal); 0 = low (no loss  
of signal).  
D[0]  
POR  
MIC3002 power-on status  
0 = POR complete, analog data ready;  
1 = POR in progress.  
Notes:  
6.  
RXOPh will contain measured data after one A/D conversion cycle.  
47  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Alarm Flags  
Alarm Status Register 0 (ALARM0)  
D[7]  
A7  
D[6]  
A6  
D[5]  
A5  
D[4]  
A4  
D[3]  
A3  
D[2]  
A2  
D[1]  
A1  
D[0]  
A1  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00 (no events pending)  
b h  
A2  
h
112 = 70  
h
The power-up default value is 00 . Following the first A/D conversion, however, any of the bits may be set depending upon the  
h
results.  
Bit(s)  
Function  
Operation  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
High temperature alarm, TEMP > TMAXh  
Low temperature alarm, TEMPh< TMIN  
High voltage alarm, VIN > VMAX  
Low voltage alarm, VIN < VMIN  
High laser diode bias alarm, IBIAS > IMAX  
Low laser diode bias alarm, IBIAS < IMIN  
1 = condition exists, 0 = normal/OK.  
1 = condition exists, 0 = normal/OK.  
1 = condition exists, 0 = normal/OK.  
1 = condition exists, 0 = normal/OK.  
1 = condition exists, 0 = normal/OK.  
1 = condition exists, 0 = normal/OK.  
1 = condition exists, 0 = normal/OK.  
High transmit optical power alarm,  
TXOP > TXMAX  
D[0]  
A0  
Low transmit optical power alarm,  
TXOP < TXMIN  
1 = condition exists, 0 = normal/OK.  
Alarm Status Register 1 (ALARM1)  
D[7]  
A15  
D[6]  
A14  
D[5]  
reserved  
D[4]  
reserved  
D[3]  
reserved  
D[2]  
reserved  
D[1]  
reserved  
D[0]  
reserved  
read-only  
read-only  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00 (no events pending)  
b h  
A2  
h
113 = 71  
h
The power-up default value is 00 . Following the first A/D conversion, however, any of the bits may be set depending upon the  
h
results.  
Bit(s)  
Function  
Operation  
D[7]  
D[6]  
A15  
A14  
High received power (overload) alarm, RXOP 1 = condition exists, 0 = normal/OK.  
> RXMAX  
Low received power (LOS) alarm, RXOP < 1 = condition exists, 0 = normal/OK.  
RXMIN  
D[5:0]  
Reserved  
Reserved - always write as zero.  
48  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Warning Flags  
Warning Status Register 0 (WARN0)  
D[7]  
W7  
D[6]  
W6  
D[5]  
W5  
D[4]  
W4  
D[3]  
W3  
D[2]  
W2  
D[1]  
W1  
D[0]  
W1  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
0000 0000 = 00 (no events pending)  
Default Value  
Serial Address  
Byte Address  
b
h
A2  
h
116 = 74  
h
The power-up default value is 00 . Following the first A/D conversion, however, any of the bits may be set depending upon the  
h
results.  
Bit(s)  
Function  
Operation  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
W7  
W6  
W5  
W4  
W3  
W2  
W1  
High temperature warning, TEMP > THIGH  
Low temperature warning, TEMP < TLOW  
High voltage warning, VIN > VHIGH  
Low voltage warning, VIN < VLOW  
High laser diode bias warning, IBIAS > IHIGH  
Low laser diode bias warning, IBIAS < ILOW  
1 = condition exists, 0 = normal/OK.  
1 = condition exists, 0 = normal/OK.  
1 = condition exists, 0 = normal/OK.  
1 = condition exists, 0 = normal/OK.  
1 = condition exists, 0 = normal/OK.  
1 = condition exists, 0 = normal/OK.  
1 = condition exists, 0 = normal/OK.  
High transmit optical power warning,  
TXOP > TXHIGH  
D[0]  
W0  
Low transmit optical power warning,  
TXOP < TXLOW  
1 = condition exists, 0 = normal/OK.  
Warning Status Register 1 (WARN1)  
D[7]  
W15  
D[6]  
W14  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00 (no events pending)  
b h  
A2  
h
117 = 75  
h
The power-up default value is 00 . Following the first A/D conversion, however, any of the bits may be set depending upon the  
h
results.  
Bit(s)  
Function  
Operation  
D[7]  
W15  
W14  
Received power high warning, RXOP >  
RXHIGH  
1 = condition exists, 0 = normal/OK.  
D[6]  
Received power low warning, RXOP < RXMIN  
Reserved  
1 = condition exists, 0 = normal/OK.  
Reserved - always write as zero.  
D[5:0]  
49  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
OEM Password Entry (OEMPW)  
D[7]  
read/write  
D[6]  
read/write  
D[5]  
read/write  
D[4]  
read/write  
D[3]  
read/write  
D[2]  
read/write  
D[1]  
read/write  
D[0]  
read/write  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00 (reset to zero at power-on)  
b h  
A2  
h
If OEMCFG5-2 = 0: 120 – 123 = 78 - 7B  
(MSB is 7B  
h
h
h
If OEMCFG5-2 = 1: 123– 126 = 7B – 7E  
(MSB is 7E )  
h
h
h
This four-byte field is for entry of the password required to access the OEM area of the MIC3002’s memory and registers. A  
valid OEM password will also permit access to the user areas of memory. The byte at address 123 (7B ), 126 (7E ) if  
h
h
OMGFG5 bit2 =1, is the most significant byte. This field is compared to the four-byte OEMPWSET field at serial address A6h,  
bytes 12 to 15. If the two fields match, access is allowed to the OEM areas of the MIC3002 non-volatile memory at serial  
addresses A4 and A6 . The OEM password is set by writing the new value into OEMPWSET. The password comparison is  
h
h
performed following the write to the MSB, address 7B (7E if OEMCFG5-2 = 1). This byte must be written last!  
h
h
A four-byte burst-write sequence to address 78 (7B if OEMCFG5-2 = 1) may be used as this will result in the MSB being  
h
h
written last. The new password will not take effect until after a power-on reset occurs or a warm reset is performed using the  
RST bit in OEMCFG0. This allows the new password to be verified before it takes effect. This field is reset to all zeros at power  
on. Any values written to these locations will be readable by the host regardless of the locked/unlocked status of the device. If  
OEMPWSET is set to zero (00000000 ), the MIC3002 will remain unlocked regardless of the contents of the OEMPW field.  
h
This is the factory default security setting.  
Byte  
Weight  
3
2
1
0
OEM Password Entry, Most Significant Byte (Address = 7Bh resp. 7Eh)  
OEM Password Entry, 2nd Most Significant Byte (Address = 7Ah resp. 7Dh)  
OEM Password Entry, 2nd Least Significant Byte (Address = 79h resp. 7Ch)  
OEM Password Entry, Least Significant Byte (Address = 78h resp. 7Bh)  
USER Password Setting (USRPWSET)  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default Value  
0000 0000 = 00  
b
h
Serial Address  
Byte Address  
A2  
h
246 = F6  
h
This register is for setting the password required to access the USER area of the MIC3002’s memory and registers. This field is  
compared to the USRPW field at serial address A2 , byte 247(F7h). If the two fields match, access is allowed to the USER  
h
areas of the MIC3002 non-volatile memory at serial addresses A0h and A2h. If a valid USER password has not been entered,  
writes to the serial ID fields, USRCTRL, and the user scratchpad areas of A0 and A2 will not be allowed, and USRPWSET  
h
h
will be unreadable (returns all zeroes).  
A USER password is set by writing the new value into USRPWSET. The new password will not take effect until after a power-  
on reset occurs or a warm reset is performed using the RST bit in OEMCFG0. This allows the new password to be verified  
before it takes effect. This register is non-volatile and will be maintained through power and reset cycles. A valid USER or OEM  
password is required for access to this register. Otherwise, this register will read as 00 . Note: a valid OEM password overrides  
h
the USER password setting. If a valid OEM password is currently in place, the user password will have no effect.  
50  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
USER Password (USRPW)  
D[7]  
read/write  
D[6]  
read/write  
D[5]  
read/write  
D[4]  
read/write  
D[3]  
read/write  
D[2]  
read/write  
D[1]  
read/write  
D[0]  
read/write  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00  
b
h
A2  
h
247 = F7  
h
USER passwords are entered in this field. This field is compared to the USRPWSET field at serial address A2h, byte 246  
(F6h). If the two fields match, access is allowed to the USER areas of the MIC3002 non-volatile memory at serial addresses  
A0h and A2h. If a valid USER password has not been entered, writes to the serial ID fields and user scratchpad areas of A0h  
and A2h will not be allowed and USRPWSET will be unreadable (returns all zeroes).  
Power-On Hours  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default Value  
Serial Address  
Bytes Address  
0000 0000 = 00  
b
h
A6  
h
MSB (POHh): 251 = FB  
h
LSB (POHl): 252 = FC  
h
The lower seven bits of POHh register contain the most-significant bits of the 15-bit power-on hours measurement. POHFLT is  
an error flag. The value in POHh should be combined with the Power-on Hours, Low Byte, POHl, to yield the complete result.  
If POHFLT is set, the power-on hour meter data has been corrupted and should be ignored. It is recommended that a two-byte  
(or more) sequential read operation be performed on POHh and POHl to insure coherency between the two registers. This  
register is non-volatile and will be maintained through power and reset cycle.  
POHh Bit(s)  
D[7]  
Function  
Operation  
Power-on hours fault flag  
Power-on hours, high byte  
1 = fault; 0 = no fault.  
Non-volatile.  
D[6:0]  
Data Ready Flags (DATARDY)  
D[7]  
TRDY  
read/write  
D[6]  
VRDY  
read/write  
D[5]  
IRDY  
read/write  
D[4]  
TXRDY  
read/write  
D[3]  
RXDY  
read/write  
D[2]  
reserved  
D[1]  
reserved  
D[0]  
reserved  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00  
b
h
A6  
h
253 = FD  
h
When the A/D conversion for a given parameter is completed and the results available to the host, the corresponding data  
ready flag will be set. The flag will be cleared when the host reads the corresponding result register.  
Bit(s)  
Function  
Operation  
D[7]  
D[6]  
TRDY  
VRDY  
IRDY  
Temperature data ready flag  
Voltage data ready flag  
Bias current data ready flag  
Transmit power data ready flag  
Receive power data ready flag  
Reserved  
0 = old data; 1 = new data ready  
0 = old data; 1 = new data ready  
0 = old data; 1 = new data ready  
0 = old data; 1 = new data ready  
0 = old data; 1 = new data ready  
Reserved  
D[5]  
D[4]  
TXRDY  
RXRDY  
D[3]  
D[2:0]  
51  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
D[7]  
MIC3002  
USER Control Register (USRCTL)  
D[6]  
PORM  
read/write  
D[5]  
PORS  
read/write  
D[4]  
IE  
D[3]  
APCSEL[1]  
read/write  
D[2]  
D[1]  
D[0]  
APCSEL[0]  
read/write  
MODSEL[1]  
read/write  
MODSEL[0]  
read/write  
read/write  
read/write  
Default Value  
Serial Address  
Byte Address  
0010 0000 = 20  
b
h
A2  
h
255 = FF if OMCFG6 bit 2 = 0  
h
222 = DE if OMCFG6 bit 2 = 1  
h
This register provides for control of the nominal APC setpoint and management of interrupts by the end-user. APCSEL[1:0]  
select which of the APC setpoint registers, APCSET0, APCSET1, or APCSET2 are used as the nominal automatic power  
control setpoint.  
IE must be set for any interrupts to occur. If PORM is set, the power-on event will generate an interrupt and warm resets using  
RST will not generate a POR interrupt. When a power-on interrupt occurs, assuming PORM=1, PORS will be set. PORS will be  
cleared and the interrupt output de-asserted when USRCTL is read by the host. If IE is set while /INT is asserted, /INT will be  
de-asserted. The host must still clear the various status flags by reading them. If PORM is set following the setting of PORS,  
PORS will remain set, and /INT will not be de-asserted, until USRCTL is read by the host.  
PORM, IE, and APCSEL are non-volatile and will be maintained through power and reset cycles. A valid USER password is  
required for access to this register.  
Bit  
Function  
Operation  
D[7]  
D[6]  
Reserved  
Always write as zero; reads undefined.  
PORM  
PORS  
Power-on interrupt mask  
1 = POR interrupts enabled; 0 = disabled; read/write;  
non-volatile.  
D[5]  
Power-on interrupt flag  
1 = POR interrupt occurred; 0 = no POR interrupt;  
read-only.  
D[4]  
IE  
Global interrupt enable  
1 = enabled; 0 = disabled; read/write; non-volatile.  
D[3:2]  
APCSEL  
Selects APC setpoint register  
00 = APCSET0, 01 = APCSET1, 10 = APCSET2;  
11 = reserved; read/write; non-volatile.  
D[1:0]  
MODSEL Selects Modulation setpoint register  
00 = MODSET0, 01 = MODSET1, 10 = MODSET2, 11 =  
reserved; read/write; non volatile.  
OEM Configuration Register 0 (OEMCFG0)  
D[5] D[4] D[3]  
OE MODREF  
reserved  
D[7]  
RST  
write only  
D[6]  
ZONE  
read/write  
D[2]  
VAUX[2]  
read/write  
D[1]  
VAUX[1]  
read/write  
D[0]  
VAUX[0]  
read/write  
DFLT  
read only  
reserved  
Default Value  
0000 0000 = 00  
b
h
Serial Address  
Byte Address  
A6  
h
00 = 00  
h
A write to OEMCFG0 will result in any A/D conversion in progress being aborted and the result discarded. The A/D will begin a  
new conversion sequence once the write operation is complete. All bits in OEMCFG0 are non-volatile except DFLT and RST. A  
valid OEM password is required for access to this register.  
Bit(s)  
Function  
Operation  
D[7]  
D[6]  
D[5]  
D[4]  
RST  
ZONE  
DFLT  
OE  
0 = no action; 1 = reset; write-only.  
0 = internal; 1 = external; non-volatile.  
1 = diode fault; 0 = OK.  
Selects temperature zone.  
Diode fault flag.  
Output enable for SHDN, V  
,
1 = enabled; 0 = hi-Z; non-volatile.  
MOD  
52  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
and V  
.
BIAS  
D[3]  
MODREF Selects whether V  
is  
1 = V ; 0 = GND; non-volatile.  
DD  
MOD  
referenced to ground or V  
.
DD  
D[2:0]  
VAUX[2:0] Selects the voltage reported in  
VINh:VINl.  
000 = V ; 001 = V  
IN DDA  
100 = APCDAC; 101 = MODDAC; 110 = FLTDAC; non-  
volatile  
; 010 = V  
; 011 = V ;  
MOD  
BIAS  
OEM Configuration Register 1 (OEMCFG1)  
D[7]  
INV  
read/write  
D[6]  
GAIN  
read/write  
D[5]  
BIASREF  
read/write  
D[4]  
RFB[2]  
read/write  
D[3]  
RFB[1]  
read/write  
D[2]  
RFB[0]  
read/write  
D[1]  
SRCE  
read/write  
D[0]  
SPOL  
read/write  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00  
b
h
A6  
h
1 = 01  
h
A write to OEMCFG1 will result in any A/D conversion in progress being aborted and the result discarded. The A/D will begin a  
new conversion sequence once the write operation is complete. All bits in OEMCFG1 are non-volatile and will be maintained  
through power and reset cycles. A valid OEM password is required for access to this register.  
Bit(s)  
INV  
Function  
Operation  
D[7]  
Inverts the APC op-amp inputs.  
When set to “0” the BIAS DAC  
output is connected to the “+”input  
and FB is connected to the “–” input  
of the op amp. Set to “0” to use the  
ADC feedback loop.  
0 = emitter follower (no inversion);  
1 = common emitter (inverted); read/write; non-volatile.  
D[6]  
GAIN  
Sets the feedback voltage range by  
changing the APCDAC output  
swing; 0-VREF for optical feedback,  
1 = VREF/4 full scale;  
0 = VREF full scale; read/write; non-volatile.  
0-VREF/4 for electrical feedback.  
D[5]  
BIASREF  
RFB[2:0]  
Selects whether FB and VMPD are  
referenced to ground or VDD and  
1 = VDD; 0 = GND; read/write; non-volatile.  
selects feedback resistor termination  
voltage (VDDA or GNDA).  
D[4:2]  
Selects internal feedback resistance. 000 = ∞;  
(Resistors will be terminated to VDDA  
or GNDA according to BIASREF.)  
001 = 800Ω,  
010 = 1.6kΩ,  
011 = 3.2kΩ,  
100 = 6.4kΩ,  
101 = 12.8kΩ,  
110 = 25.6kΩ,  
111 = 51.2kΩ;  
read/write; non-volatile.  
D[1]  
D[0]  
SRCE  
SPOL  
VBIAS source vs. sink drive.  
1 = source (NPN),  
0 = sink (PNP); read/write; non-volatile.  
Polarity of shutdown output, SHDN,  
when active.  
1 = high;  
0 = low; read/write; non-volatile.  
53  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
OEM Configuration Register 2 (OEMCFG2)  
D[7]  
I2CADR[3]  
read/write  
D[6]  
I2CADR[2]  
read/write  
D[5]  
I2CADR[1]  
read/write  
D[4]  
I2CADR[0]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
Default Value  
Serial Address  
Byte Address  
1010 xxxx = xx (slave address = 1010xxx )  
b h b  
A6  
h
2 = 02  
h
CAUTION: Changes to I2CADR take effect immediately! Any accesses following a write to I2CADR must be to the newly  
programmed serial bus address. A valid OEM password is required for access to this register. This register is non-volatile and  
will be maintained through power and reset cycles.  
Bit(s)  
Function  
Operation  
D[7:4]  
D[3:0]  
I2CADR[3:0] Upper four MSBs of the serial bus  
slave address; writes take effect  
immediately.  
Read/write; non-volatile.  
Reserved  
Read/write; non-volatile.  
APC Setpoint x (APCSETx)  
Automatic power control setpoint (unsigned binary) used when APCSEL[1:0] = 00  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default Value  
Serial Address  
Bytes Address  
0000 0000 = 00  
b
h
A6  
h
APCSET0: 3 = 03  
APCSET1: 4 = 04  
APCSET2: 5 = 05  
h
h
h
When A.P.C. is on, i.e., the APCCAL bit in OEMCAL0 is set, the value in APCSETx is added to the signed value taken from the  
A.P.C. look-up table and loaded into the VBIAS DAC. When A.P.C. is off, the value in APCSET is loaded directly into the  
VBIAS DAC, bypassing the look-up table entirely. In either case, the VBIAS DAC setting is reported in the VBIAS register. The  
APCCFG bits determine the DAC’s response to higher or lower numeric values. A valid OEM password is required for access  
to this register. This register is non-volatile and will be maintained through power and reset cycles.  
Modulation Setpoint x (MODSETx)  
Nominal VMOD setpoint  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00  
b
h
A6  
h
MODSET0: 6 = 06  
h
MODSET1: 30 = 1E  
h
MODSET2: 31 = 1F  
h
When A.P.C. is on, the value corresponding to the current temperature is taken from the MODLUT look-up table, added to  
MODSET and loaded into the VMOD DAC. This register is non-volatile and will be maintained through power and reset cycles. A  
valid OEM password is required for access to this register.  
54  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
IBIAS Fault Threshold (IBFLT)  
Bias current fault threshold  
D[7]  
read/write  
D[6]  
read/write  
D[5]  
read/write  
D[4]  
D[3]  
read/write  
D[2]  
read/write  
D[1]  
read/write  
D[0]  
read/write  
read/write  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00  
b
h
A6  
h
7 = 07  
h
A valid OEM password is required for access to this register. This register is non-volatile and will be maintained through power  
and reset cycles. A fault is generated if the bias current is higher than IBFLT value set in this register.  
Transmit Power Fault Threshold (TXFLT)  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00  
b
h
A6  
h
8 = 08  
h
A valid OEM password is required for access to this register. This register is non-volatile and will be maintained through power  
and reset cycles. A fault is generated if the Transmit power is higher than TXFLT value set in this register.  
Loss-Of-Signal Threshold (LOSFLT)  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00  
b
h
A6  
h
9 = 09  
h
A valid OEM password is required for access to this register. This register is non-volatile and will be maintained through power  
and reset cycles. A fault is generated if the received power is lower than LOSFLT value set in this register.  
Byte  
Function  
Operation  
D[7:4]  
Receive loss-of-signal threshold  
Read/write; non-volatile.  
Fault Suppression Timer (FLTTMR)  
Fault suppression interval in increments of 0.5ms  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00  
b
h
A6  
h
10 = 0A  
h
Saturation faults are suppressed for a time, t  
, following laser turn-on. This avoids nuisance tripping while the APC loop  
FLTTMR  
starts up. The length of this interval is (FLTTMRx 0.5ms), typical. A value of zero will result in no fault suppression. A valid  
OEM password is required for access to this register. This register is non-volatile and will be maintained through power and  
reset cycles.  
55  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Fault Mask (FLTMSK)  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
reserved  
OEMIM  
read/write  
POHE  
read/write  
reserved  
SATMSK  
read/write  
TXMSK  
read/write  
IAMSK  
read/write  
DFMSK  
read/write  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00  
b
h
A6  
h
11 = 0B  
h
A valid OEM password is required for access to this register. This register is non-volatile and will be maintained through power  
and reset cycles.  
Bit  
Function  
Operation  
D[7]  
D[6]  
D[5:4]  
D[3]  
D[2]  
D[1]  
D[0]  
OEMIM  
POHE  
D[5:4]  
OEM interrupt mask bit  
1 = masked; 0 = enabled; Read/write; non-volatile.  
OEM Power-on Hour Meter enable bit 1 = enabled; 0 = disabled; Read/write; non-volatile.  
Reserved  
Always write as zero; reads undefined.  
SATMSK APC saturation fault mask bit  
1 = masked; 0 = enabled; Read/write; non-volatile.  
1 = masked; 0 = enabled; Read/write; non-volatile.  
1 = masked; 0 = enabled; Read/write; non-volatile.  
1 = masked; 0 = enabled; Read/write; non-volatile.  
TXMSK  
IAMSK  
DFMSK  
High TX optical power fault mask bit  
Bias current high alarm mask bit  
Diode fault mask bit  
OEM Password Setting (OEMPWSET)  
D[4] D[3]  
read/write  
D[7]  
read/write  
D[6]  
read/write  
D[5]  
read/write  
D[2]  
read/write  
D[1]  
read/write  
D[0]  
read/write  
read/write  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00  
b
h
A6  
h
12 - 15 = 0C - 0F ; 0C = MSB  
h
h
h
This four-byte field is the password required for access to the OEM area of the MIC3002’s memory and registers. The byte at  
address 12 (0C ) is the most significant byte. This field is compared to the four-byte OEMPW field at serial address A2 , byte  
h
h
120 to 123 if OMCFG6-2 = 0, or byte 123 to 126 if OEMCFG6-2 = 1. If the two fields match, access is allowed to the OEM  
areas of the MIC3002 non-volatile memory at serial addresses A4 and A6 . The OEM password may be set by writing the  
h
h
new value into OEMPWSET. The new password will not take effect until after a power-on reset occurs or a warm reset is  
performed using the RST bit in OEMCFG0. This allows the new password to be verified before it takes effect. These registers  
are non-volatile and will be maintained through power and reset cycles. A valid OEM password is required for access to this  
register.  
Byte  
Weight  
3
2
1
0
OEM Password, Most Significant Byte  
OEM Password, 2nd Most Significant Byte  
OEM Password, 2nd Least Significant Byte  
OEM Password, Least Significant Byte  
56  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
D[7]  
MIC3002  
OEM Calibration 0 (OEMCAL0)  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
FLTDIS  
read/write  
FSPIN  
read/write  
WRINH  
read/write  
APCCAL  
read/write  
FRCINT  
read/write  
FRCTXF  
read/write  
FRCLOS  
read/write  
reserved  
Default Value  
0000 0000 = 00  
b
h
Serial Address  
Byte Address  
A6  
h
16 = 10  
h
A valid OEM password is required for access to this register.  
Bit  
Function  
Operation  
D[7]  
D[6]  
Reserved  
Always write as zero; reads undefined.  
FLTDIS  
FSPIN  
Fault comparator disable; inhibits output  
of fault comparators when set.  
0 = faults enabled; 1 = disabled; Read/write.  
D[5]  
Fault comparator “spin-on-channel” mode  
select; do not enable ADC and FC spin-  
on-channel modes simultaneously.  
0 = normal operation; 1 = spin on channel; Read/write.  
D[4]  
D[3]  
WRINH  
Inhibit NVRAM write cycles.  
0 = normal operation; 1 = inhibit writes; Read/write.  
0 = normal mode; 1 = calibration mode; Read/write.  
APCCAL Selects APC calibration mode - DACs  
may be controlled directly.  
D[2]  
D[1]  
D[0]  
FRCINT Forces the assertion of /INT  
FRCTXF Forces the assertion of TXFAULT  
FDCLOS Forces the assertion of RXLOS  
0 = normal operation; 1 = asserted; Read/write.  
0 = normal operation; 1 = asserted; Read/write.  
0 = normal operation; 1 = asserted; Read/write.  
OEM Calibration 1 (OEMCAL1)  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
ADSTP  
ADIDL  
1SHOT  
ADSPIN  
SPIN[2]  
SPIN[1]  
SPIN[0]  
reserved  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00  
b
h
A6  
h
17 = 11  
h
A valid OEM password is required for access to this register.  
Bit  
Function  
Operation  
D[7]  
D[6]  
Reserved  
Always write as zero; reads undefined.  
ADSTP  
Stop ADC Halts the analog to digital  
converter  
0 = normal operation; 1 = stopped; Read/write.  
D[5]  
D[4]  
D[3]  
ADIDL  
ADC idle flag  
0 = busy; 1 = idle; Read/write.  
1SHOT  
Triggers one-shot A/D conversion cycle  
0 = normal operation; 1 = one-shot; Read/write.  
0 = normal operation; 1 = spin-on-channel; Read/write.  
ADSPIN Selects ADC spin-on-channel mode; do  
not enable ADC and FC spin-on-channel  
modes simultaneously  
D[2],  
D[1], D[0]  
SPIN[2:0] ADC and fault comparator (FC) channel  
select for spin-on-channel mode; do not  
enable ADC and FC spin-on-channel  
modes simultaneously  
ADC: 000 = temperature; 001 = voltage; 010 = VILD;  
011 = VMPD; 100 = VRX; FC: 001 = VILD;  
001 = VMPD; 010 = VRX; Read/write.  
57  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
OEM Calibration 1 (LUT Index)  
D[7]  
D[6]  
read/write  
D[5]  
read/write  
D[4]  
read/write  
D[3]  
read/write  
D[2]  
read/write  
D[1]  
read/write  
D[0]  
read/write  
read/write  
Default Value  
0000 0000 = 00  
b
h
Serial Address  
Byte Address  
A6  
h
18 = 12h  
The look-up table index is derived from the current temperature measurement as follows:  
INDEX = TAVG / 2  
where TAVG(n) is the current average temperature. This register allows the current table index to be read by the host. The table  
base address must be added to LUTINDX to form a complete table index in physical memory. A valid OEM password is  
required for access to this register. Otherwise, reads are undefined.  
OEM Configuration 3 (OEMCFG3)  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
LUTSEL  
TXFPOL  
read/write  
GPOD  
read/write  
GPOM  
read/write  
GPOC  
read/write  
TXFIN  
read/write  
LOSDIS  
read/write  
INTCAL  
read/write  
read/write  
Default Value  
0000 1000 = 08  
b
h
Serial Address  
Byte Address  
A6  
h
19 = 13  
h
This register is non-volatile and will be maintained through power and reset cycles. A valid OEM password is required for  
access to this register. GPOD and GPOC are ignored when GPOM = 0. TXFPOL is ignored if TXFIN = 0.  
Bit  
Function  
Operation  
D[7]  
D[6]  
D[5]  
LUTSEL RX power look-up table input  
selection bit  
1 = RX power;  
0 = temperature; read/write; ignored if INTCAL = 0.  
TXFPOL TXFIN active polarity select; a fault  
is indicated when TXFIN = TXFPOL  
0 = active-low;  
1 = active-high; read/write; ignored if TXFIN = 0.  
GPOD  
GPO output drive  
0 = open drain;  
1 = push-pull; read/write; ignored if GPOM = 0.  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
GPOM  
GPOC  
TXFIN  
GPO/RSOUT mode select  
GPO output control  
0 = RSOUT; 1 = GPO; read/write.  
0 = low; 1 = high; read/write; ignored if GPOM = 0.  
0 = SHDN; 1 = TXFIN; read/write.  
TXFIN mode select  
LOSDIS RXLOS comparator disable  
INTCAL Calibration mode select  
0 = enabled; 1 = disabled; read/write.  
0 = external calibration;  
1 = internal calibration; read/write.  
BIAS DAC Setting (APCDAC)  
Current VBIAS Setting  
D[7]  
D[6]  
read only  
D[5]  
read only  
D[4]  
read only  
D[3]  
read only  
D[2]  
read only  
D[1]  
read only  
D[0]  
read only  
read only  
Default Value  
0000 0000 = 00  
b
h
Serial Address  
Byte Address  
A6  
h
20 = 14  
h
This register reflects (reads back) the value set in the APC register (APCSET0, APCSET1, or APCSET2 whichever is  
selected). A valid OEM password is required for access to this register.  
58  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Modulation DAC Setting (MODDAC)  
Current VMOD Setting  
D[7]  
D[6]  
read only  
D[5]  
read only  
D[4]  
read only  
D[3]  
read only  
D[2]  
read only  
D[1]  
read only  
D[0]  
read only  
read only  
Default Value  
0000 0000 = 00  
b
h
Serial Address  
Byte Address  
A6  
h
21 = 15  
h
This register reflects (reads back) the value set in the MODSET register. A valid OEM password is required for access to this  
register.  
OEM Readback Register (OEMRD)  
D[7]  
D[6]  
reserved  
D[5]  
reserved  
D[4]  
INT  
read only  
D[3]  
D[2]  
IBFLT  
D[1]  
TXFLT  
D[0]  
RSOUT  
reserved  
APCSAT  
read only  
read only  
read only  
read only  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00  
b
h
A6  
h
22 = 16  
h
This register reflects (reads back) the status of the bits corresponding to the parameters defined below. A valid OEM password  
is required for access to this register. Otherwise, reads are undefined and writes are ignored.  
Bit  
Function  
Operation  
D[7:5]  
D[4]  
Reserved  
Always write as zero; reads undefined.  
1 = interrupt; 0 = no interrupt.  
INT  
Mirrors state of /INT but active-high;  
not state of physical pin!  
D[3]  
D[2]  
D[1]  
D[0]  
APCSAT APC saturation fault comparator  
output state  
1 = fault; 0 = normal operation.  
IBFLT  
TXFLT  
RSOUT  
State of IBIAS over-current fault  
comparator output  
1 = fault; 0 = normal operation; read-only.  
1 = fault; 0 = normal operation; read-only.  
1 = high; 0 = low; Read-only.  
State of transmit power fault  
comparator output  
State of the rate select output pin,  
RSOUT  
Signal Detect Threshold (LOSFLTn)  
D[4] D[3]  
read/write read/write  
D[7]  
D[6]  
read/write  
D[5]  
read/write  
D[2]  
read/write  
D[1]  
read/write  
D[0]  
read/write  
read/write  
Default Value  
0000 0000 = 00  
b
h
Serial Address  
Byte Address  
A6  
h
23 = 17  
h
This register works in conjunction with the LOSFLT register to control the operation of the loss of signal comparator. The  
comparator’s output, RXLOS, is asserted when the input on VRX falls below the level in LOSFLT. The output will then be de-  
asserted when the VRX signal rises above LOSFLTn. The input signal is subject to scaling by the RXPOT. If the LOS  
comparator is disabled, i.e., LOSDIS = 1, this register is ignored. A valid OEM password is required for access to this register.  
This register is non-volatile and will be maintained through power and reset cycles.  
59  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
RX EEPOT Tap Selection (RXPOT)  
D[7]  
D[6]  
reserved  
D[5]  
reserved  
D[4]  
D[3]  
D[2]  
read/write  
D[1]  
read/write  
D[0]  
read/write  
reserved  
read/write  
read/write  
Default Value  
0000 0000 = 00  
b
h
Serial Address  
Byte Address  
A6  
h
24 = 18  
h
This register is non-volatile and will be maintained through power and reset cycles. A valid OEM password is required for  
access to these registers.  
Bit(s)  
D[7:5]  
D[4:0]  
Function  
Operation  
Reserved  
Reserved. Always write as zero; reads undefined.  
Read/write; non-volatile.  
RXPOT tap selection:  
00000 = No divider action; POT  
disconnected  
00001 = 31/32  
00010 = 30/32  
11110 = 2/32  
11111 = 1/32  
OEM Configuration 4 (OEMCFG4)  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
reserved  
reserved  
read/write  
read/write  
read/write  
reserved  
reserved  
read/write  
Default Value  
0000 0000 = 00  
b
h
Serial Address  
Byte Address  
A6  
h
25 = 19  
h
This register is non-volatile and will be maintained through power and reset cycles. A valid OEM password is required for  
access to these registers.  
Bit(s)  
Function  
Operation  
D[7]  
Allows Warnings to assert  
TXFAULT  
0: Warnings do not assert TXFAULT  
1: Warnings assert TXFAULT  
The RXPWR low warning flag does not assert TXFAULT  
0: Alarms do not assert TXFAULT  
1: Alarms assert TXFAULT  
D[6]  
D[5]  
Allows Alarms to assert  
TXFAULT  
The RXPWR low alarm flag does not assert TXFAULT  
Warning Latch  
0: Warnings flags are latched. They are cleared by reading the register or  
toggling TXDISABLE.  
1: Warnings flags are not latched., i.e. they are set and reset with alarm  
condition. The flags are also cleared by reading the register or toggling  
TXDISABLE.  
D[4]  
Alarm Latch  
0: Alarms flags are latched. They are cleared by reading the register or  
toggling TXDISABLE.  
1: Alarms flags are not latched., i.e. they are set and reset with alarm  
condition. The flags are also cleared by reading the register or toggling  
TXDISABLE.  
60  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
I
[3:0]  
I
current level selection:  
Read/write; non-volatile.  
START  
START  
0000 = No I  
current  
START  
0001 - 1111 = 0.375mA x  
I
[3:0]  
START  
I
is used to speed up  
START  
the laser start-up after a fault  
occurs. The charging current  
of the compensation cap starts  
from I  
instead of  
START  
ramping up from 0.  
OEM Configuration 5 (OEMCFG5)  
D[7]  
D[6]  
reserved  
D[5]  
reserved  
D[4]  
D[3]  
D[2]  
read/write  
D[1]  
read/write  
D[0]  
read/write  
reserved  
reserved  
read/write  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00  
b
h
A6  
h
26 = 1A  
h
This register is non-volatile and will be maintained through power and reset cycles. A valid OEM password is required for  
access to these registers.  
Bit(s)  
Function  
Operation  
D[7]  
SHDN output enable / disable  
0: SHDN is enabled. TXFAULT will trigger SHDN output  
1: SHDN is disabled. TXFAULT has no effect on SHDN output  
This applies when pin 7 is set as SHDN output.  
0: The temperature used to index into the LUTs is not compensated (sensed  
D[6]  
D[5]  
Temperature-compensation of  
the temperature used to access temperature used)  
the L.U.T.s.  
1: The temperature used to index the LUTs is temperature-compensated  
(module case temperature used)  
Temperature-compensation of  
the temperature result in the  
temperature register.  
0: The temperature result in the temperature register is not compensated  
(sensed temperature sed)  
1: The temperature result in the temperature register is compensated  
(module case temperature used)  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
Polarity of TXFAULT  
0: TXFAULT is active high  
1: TXFAULT is active low  
0: Multipart mode off  
SMBUS multipart support  
OEM password location  
1: Multipart mode on  
0: A6h 120-123 (78h-7Bh)  
1: A6h 123-126 (7Bh-7Eh)  
0: SMBUS timeout enabled  
1: SMBUS timeout disabled  
0: Clear DACs when the laser is off  
1: Do not clear the DACs when laser is off  
SMBUS timeout enable /  
disable  
DACs reset  
61  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
OEM Configuration 6 (OEMCFG6)  
D[7]  
D[6]  
reserved  
D[5]  
reserved  
D[4]  
D[3]  
D[2]  
read/write  
D[1]  
read/write  
D[0]  
read/write  
reserved  
reserved  
read/write  
Default Value  
0000 0000 = 00  
b
h
Serial Address  
Byte Address  
A6  
h
27 = 1B  
h
This register is non-volatile and will be maintained through power and reset cycles. A valid OEM password is required for  
access to these registers.  
Bit(s)  
D[5-7]  
D[4]  
Function  
Operation  
Reserved  
TXDISABLE debounce enable 0: TXDISABLE is not debounced  
/ disable  
1: TXDISABLE is debounced. Glitches less than 5 ms are rejected. Set the  
bit to 1 is a mechanical switch is used for TXDISABLE. Set to 0 for normal  
operation to assure compliance to the SFP MSA.  
D[3]  
RXLOS Polarity  
0: RXLOS low for normal operation and high with a loss of signal condition.  
1: RXLOS high for normal operation (signal detected) and low with a loss of  
signal (no signal detected) condition.  
D[2]  
D[1]  
D[0]  
USRCTRL register location  
Temperature resolution  
TXFAULT clear mode  
0: A2 255 (FFh)  
1: A2 222 (DEh)  
0: Temperature is measured to a resolution of 1ºC  
1: Temperature is measured to a resolution of 0.5ºC  
0: TXFAULT remains set until TXDISABLE is toggled  
1: TXFAULT is in continuous mode and follows the state of the faults.  
Power-On Hour Meter Data (POHDATA)  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default Value  
0000 0000 = 00  
b
h
Serial Address  
Byte Address  
A6  
h
32-39 = 20 - 27  
h
h
These registers are used for backing up the POH result during power cycles. At power-up, the POH meter selects the larger of  
the two values as the initial count. Incremental results are stored in alternate register pairs. The power-on hour meter may be  
reset or preset by writing to these registers. These registers are non-volatile and will be maintained through power and reset  
cycles. A valid OEM password is required for access to these registers.  
Byte  
Weight  
3
2
1
0
POHA, high-byte  
POHA, low-byte  
POHB, high-byte  
POHB, low-byte  
62  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
OEM Scratchpad Registers (SCRATCHn)  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00  
b
h
A6  
h
135-143 (87-8F )  
h
156-159 (9C-9F )  
h
172-175 (AC-AF )  
h
188-191 (BC-BF )  
h
204-207 (CC-CF )  
h
222-250 (DE-FA )  
h
The scratchpad registers are general-purpose non-volatile memory locations. They can be freely read from and written to any  
time the MIC3002 is in OEM mode.  
RX Power Look-up Table (RXLUTn)  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00  
b
h
A6  
h
40-71 = 28 - 47  
h
h
These registers are non-volatile and will be maintained through power and reset cycles. A valid OEM password is required for  
access to these registers.  
Bytes  
Definition  
RXSLP0h  
RXSLP0l  
RXOFF0h  
RXOFF0l  
RXSLP1h  
RXSLP1l  
RXOFF1h  
RXOFF1l  
RX Slope 0, High Byte.  
RX Slope 0, Low Byte.  
RX Offset 0, High Byte.  
RX Offset 0, Low Byte.  
RX Slope 1, High Byte.  
RX Slope 1, Low Byte.  
RX Offset 1, High Byte.  
RX Offset 1, Low Byte.  
RXSLP7h  
RXSLP7l  
RXOFF7h  
RXOFF7l  
RX Slope 7, High Byte.  
RX Slope 7, Low Byte.  
RX Offset 7, High Byte.  
RX Offset 7, Low Byte.  
Calibration Constants (CALn)  
Default Value  
0000 0000 = 00  
b
h
Serial Address  
Byte Address  
A6  
h
74 - 87 = 4A h - 57h  
These registers are non-volatile and will be maintained through power and reset cycles. A valid OEM password is required for  
access to these registers.  
63  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Bytes  
VSLP0h  
VSLP0l  
VOFFh  
VOFF0l  
ISLP0h  
ISLP0l  
Definition  
Voltage Slope, High Byte.  
Voltage Slope, Low Byte.  
Voltage Offset, High Byte.  
Voltage Offset, Low Byte.  
Bias Current Slope, High Byte.  
Bias Current Slope, Low Byte.  
Bias Current Offset, High Byte.  
Bias Current Offset, Low Byte.  
TX Power Slope, High Byte.  
TX Power Slope, Low Byte.  
TX Power Offset, High Byte.  
TX Power Offset, Low Byte.  
IOFFh  
IOFF0l  
TXSLPh  
TXSLPl  
TXOFFh  
TXOFFl  
Manufacturer ID Register (MFG_ID)  
Identifies Micrel as the manufacturer of the device. Always returns 2Ah  
D[7]  
D[6]  
read only  
D[5]  
read only  
D[4]  
D[3]  
D[2]  
read only  
D[1]  
read only  
D[0]  
read only  
read only  
read only  
read only  
Default Value  
0010 1010 = 2A  
b
h
Serial Address  
Byte Address  
A6  
h
254 = FE  
h
The value in this register, in combination with the DEV_ID register, serve to identify the MIC3002 and its revision number to  
software. This register is read-only.  
Bit(s)  
Function  
Operation  
D[7:0]  
Identifies Micrel as the manufacturer of the device. Always  
Read only. Always returns A  
h
returns 2A .  
h
Device ID Register (DEV_ID)  
D[7]  
D[6]  
read only  
D[5]  
read only  
D[4]  
D[3]  
D[2]  
read only  
D[1]  
read only  
D[0]  
read only  
read only  
read only  
read only  
MIC3002 DEVICE ID  
DIE REVISION  
always reads 0 at D[5-7] and 1 at D[4]  
Default Value  
Serial Address  
Byte Address  
0001 xxxx = 1x  
b
h
A6  
h
255 = FF  
h
The value in this register, in combination with the MFG_ID register, serve to identify the MIC3002 and its revision number to  
software. This register is read-only.  
64  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  
Micrel, Inc.  
MIC3002  
Package Information  
24-Pin QFN  
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http:/www.micrel.com  
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for  
its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a  
product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for  
surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury  
to the user. A Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and  
Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.  
© 2007 Micrel, Incorporated.  
65  
M9999-073107-B  
hbwhelp@micrel.com or (408) 955-1690  
July 2007  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY