MIC33M656-SAYMP-TR [MICROCHIP]

Switching Regulator;
MIC33M656-SAYMP-TR
型号: MIC33M656-SAYMP-TR
厂家: MICROCHIP    MICROCHIP
描述:

Switching Regulator

开关 输出元件
文件: 总46页 (文件大小:792K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC33M656  
6A, Power Module Buck Converter  
with HyperLight Load® and I2C Interface  
The I2C interface allows programming the output  
Features  
voltage, between 0.6V and 1.28V with 5 mV resolution,  
or between 0.6V and 3.84V with 10 mV and 20 mV  
resolution. Three different default voltage options  
(0.6V, 0.9V and 1.0V) are provided so that the applica-  
tion can be started with a safe voltage level and then  
moved to high-performance modes under I2C control.  
• Input Voltage Range: 2.4V to 5.5V  
• 6A Output Current  
• Multiple Faults Indication through I2C  
• I2C Programmable:  
- Output voltage: 0.6V-1.28V, 5 mV resolution;  
0.6V-3.84V, 10/20 mV resolution  
An open-drain Power Good output facilitates output  
voltage monitoring and sequencing. If set in shutdown  
(EN = GND), the MIC33M656 typically draws 1.5 µA,  
while the output is discharged through a 10pull-down  
(if the output discharge feature is enabled).  
- Slew rate: 0.2 ms/V-3.2 ms/V  
- On time (switching frequency)  
- High-side current limit: 3.5A-10A  
- Enable delay: 0.2 ms-3 ms  
The MIC33M656 pinout is compatible with the  
MIC33M650, so that applications can be easily  
converted.  
- Output discharge when disabled (EN = GND)  
• High Efficiency (up to 95%)  
• Ultra-Fast Transient Response  
The 2.4V to 5.5V input voltage range, low shutdown and  
quiescent currents make the MIC33M656 ideal for  
single-cell Li-ion battery-powered applications. The 100%  
duty cycle capability provides low dropout operation,  
extending operating range in portable systems.  
• ±1.5% Output Voltage Accuracy Over  
Line/Load/Temperature Range  
• Safe Start-up with Pre-Biased Output  
• Typical 1.5 µA Shutdown Supply Current  
• Low Dropout (100% Duty Cycle) Operation  
• I2C Speed, Up to 3.4 MHz  
The MIC33M656 is available in a thermally efficient,  
53-Lead, 6 mm x 10 mm x 3 mm B1QFN package, with  
an operating junction temperature range from -40°C to  
+125°C.  
• Latch-Off Thermal Shutdown Protection  
• Latch-Off Current Limit Protection  
• Meets CISPR32 Class B Emissions  
• Power Good (PG) Open-Drain Output  
• Package: 53-Lead, 6 mm x 10 mm B1QFN  
Applications  
• Solid-State Drives (SSD)  
• FPGAs, DSP and Low-Voltage ASIC Power  
General Description  
The Microchip MIC33M656 is an I2C programmable,  
high-efficiency, low-voltage input, 6A current, synchro-  
nous step-down regulator power module with  
integrated inductor. The Constant-On-Time (COT) con-  
trol architecture with HyperLight Load® mode provides  
very high efficiency at light loads, while still having  
ultra-fast transient response.  
FIGURE 1:  
CISPR32, Class B (VIN = 5V, VOUT = 1V,  
OUT = 6A).  
Radiated Emissions,  
I
2019 Microchip Technology Inc.  
DS20006256A-page 1  
MIC33M656  
Package Types  
MIC33M656  
53-Pin B1QFN*  
6 mm x 10 mm  
AUX_A  
GND  
47  
48  
49  
50  
51  
52  
27  
26  
25  
24  
23  
22  
21  
20  
OUT  
OUT  
OUT  
EP_OUT  
SDA  
EN  
PG  
P
P
GND  
GND  
EP_P  
GND  
V
OUT  
GND  
A
SW  
SW  
SW  
EP_SW  
AUX_PV  
IN  
53  
EP_PGND  
*
Includes Exposed Thermal Pads (EP); see Table 3-1.  
Typical Application  
MIC33M656  
SVIN  
SW  
OUT  
VOUT  
1.0V/6A  
VIN  
PVIN  
2.4V to 5.5V  
10 μF  
Opt.  
47 μF  
47 μF  
AUX_PVIN  
PGND  
EN  
EN  
VIN  
VIN  
2.4 kΩ  
VIN  
2.4 kΩ  
AUX_AGND  
AGND  
100k  
VOUT  
PG  
SDA  
SCL  
SDA  
SCL  
Power Good  
Ordering Information  
Default Status at Power-up  
Output Voltage  
Range/Step  
High-Side  
CurrentLimit  
(typical)  
Output  
Pull-Down When  
Disabled  
Part Number  
Output  
TON[1:0]  
(ns)  
Soft Start  
Speed  
Overtemp  
Latch-Off  
Voltage  
MIC33M656-HAYMP 1.0V  
10A  
10A  
10A  
[
[
[
10] – 130 ns 800 µs/V Latch-Off after  
Yes  
Yes  
Yes  
0.600V-1.280V/5 mV  
0.600V-1.280V/5 mV  
4 OT Cycles  
MIC33M656-FAYMP  
0.9V  
10] – 130 ns 800 µs/V Latch-Off after  
4 OT Cycles  
MIC33M656-SAYMP 1.0 V  
10] – 130 ns 800 µs/V Latch-Off after  
0.600V-1.280V/10 mV  
1.280V-3.840V/20 mV  
4 OT Cycles  
DS20006256A-page 2  
2019 Microchip Technology Inc.  
MIC33M656  
Functional Block Diagram  
SVIN  
1 μF  
10Ω  
AUX_PVIN  
10 μF  
TON  
ADJUST  
PVIN  
VIN  
2.4V to 5.5V  
MINIMUM  
TOFF  
2 x 0.1 μF  
10 μF  
UVLO  
HSD  
2.225V/2.072V  
SW  
EN  
Control  
Logic  
OT  
L1  
0.47 μH  
V
/6A  
OUT  
165°C/143°C  
2 x 0.1 μF  
PD  
ZC  
2x  
47 μF  
PVIN  
LSD  
RIPPLE  
INJECTION  
PGND  
COMP  
EA  
SDA  
SCL  
I2C  
CONTROL  
AND  
8-Bit  
DAC  
PD  
REGISTERS  
VIN  
100k  
AGND  
VREF -9%  
PG  
PG  
DELAY  
2019 Microchip Technology Inc.  
DS20006256A-page 3  
MIC33M656  
NOTES:  
DS20006256A-page 4  
2019 Microchip Technology Inc.  
MIC33M656  
1.0  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings†  
SVIN, PVIN to AGND...................................................................................................................................... -0.3V to +6V  
VSW to AGND ................................................................................................................................................ -0.3V to +6V  
VEN to AGND................................................................................................................................................ -0.3V to PVIN  
VPG to AGND................................................................................................................................................ -0.3V to PVIN  
VSDA, VSCLto AGND .................................................................................................................................... -0.3V to PVIN  
PVIN to SVIN.............................................................................................................................................. -0.3V to +0.3V  
AGND to PGND ........................................................................................................................................... -0.3V to +0.3V  
Junction Temperature .......................................................................................................................................... +150°C  
Storage Temperature (TS)...................................................................................................................... -65°C to +150°C  
Lead Temperature (soldering, 10s)...................................................................................................................... +260°C  
ESD Rating (Note 1)  
HBM................................................................................................................................................................. 2000V  
CDM................................................................................................................................................................. 1500V  
Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This  
is a stress rating only and functional operation of the device at those or any other conditions above those indicated  
in the operational sections of this specification is not intended. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
Note 1: Devices are ESD-sensitive. Handling precautions recommended. Human body model, 1.5 kin series with  
100 pF.  
(1)  
Operating Ratings  
Supply Voltage (PVIN).................................................................................................................................. 2.4V to 5.5V  
Enable Voltage (VEN) ...................................................................................................................................... 0V to PVIN  
Power Good (PG) Pull-up Voltage (VPU_PG)................................................................................................... 0V to 5.5V  
AUX_PVIN to PVIN .....................................................................................................................0V (shorted in operation)  
AUX_AGND to AGND ...................................................................................................................0V (shorted in operation)  
Maximum Output Current............................................................................................................................................. 6A  
Junction Temperature (TJ) ..................................................................................................................... -40°C to +125°C  
Note 1: The device is not ensured to function outside the operating range.  
2019 Microchip Technology Inc.  
DS20006256A-page 5  
MIC33M656  
(1,2)  
ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise specified, PVIN = 5V; VOUT = 1.0V; COUT = 2 x 47 µF; TA = +25°C.  
Boldface values indicate -40°C TJ +125°C.  
Parameter  
VIN Supply  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
Input Range  
PVIN  
2.4  
5.5  
V
V
Undervoltage Lockout  
Threshold  
UVLO  
2.15  
2.225  
2.35  
SVIN rising  
SVIN falling  
Undervoltage Lockout  
Hysteresis  
UVLO_H  
153  
V
Operating Supply Current  
Shutdown Current  
IIN0  
60  
100  
µA  
µA  
VFB = 1.2V, non-switching  
ISHDN  
1.5  
10  
VEN = 0V, PVIN = SVIN = 5.5V,  
VSW = VSDA= VSCL = 0V,  
-40°C TJ +105°C  
20  
µA  
VEN = 0V, PVIN = SVIN = 5.5V,  
VSW = VSDA= VSCL = 0V,  
-40°C TJ +125°C  
Output Voltage  
Output Accuracy  
VOUT_ACC  
VOUT_STEP  
VOUT_STEP  
-1.5  
5
1.5  
%
VOUT from 0.6V to 1.28V (includes  
line and load regulation)  
Output Voltage Step  
(options HAYMP, FAYMP)  
mV  
mV  
VOUT from 0.6V to 1.28V  
Output Voltage Step  
(option SAYMP)  
10  
20  
VOUT from 0.6V to 1.28V  
VOUT from 1.28V to 3.84V  
Line Regulation  
0.06  
%
%
VOUT = 1.0V, VIN = 2.5 to 5.5V,  
IOUT = 300 mA  
Load Regulation  
0.2  
VOUT = 1.0V, IOUT = 0A to 6A  
Enable Control  
EN Logic Level High  
EN Logic Level Low  
EN Low Input Current  
EN High Input Current  
Enable Delay (Two Bits)  
Enable Lockout Delay  
VEN_H  
VEN_L  
IEN_L  
1.2  
V
V
VEN Rising, regulator enabled  
VEN falling, regulator shutdown  
VEN = 0V  
0.4  
500  
500  
0.01  
0.01  
nA  
nA  
IEN_H  
VEN = 5.5V  
0.15  
0.85  
1.70  
2.55  
0.25  
0.4  
1.20  
2.35  
3.5  
ms  
ms  
ms  
ms  
EN_DELAY[1:0] = 00, default  
EN_DELAY[1:0] = 01  
EN_DELAY[1:0] = 10  
EN_DELAY[1:0] = 11  
1
2
3
Note 1: Specification for packaged product only.  
2: Characterized in open loop.  
DS20006256A-page 6  
2019 Microchip Technology Inc.  
MIC33M656  
(1,2)  
ELECTRICAL CHARACTERISTICS  
(CONTINUED)  
Electrical Specifications: Unless otherwise specified, PVIN = 5V; VOUT = 1.0V; COUT = 2 x 47 µF; TA = +25°C.  
Boldface values indicate -40°C TJ +125°C.  
Parameter  
Internal DAC Slew Rate (Four Bits)  
Slew Rate Time (time to 1V) TRISE  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
100  
250  
200  
400  
300  
550  
µs/V SLEW_RATE[3:0] = 0000  
µs/V SLEW_RATE[3:0] = 0001  
µs/V SLEW_RATE[3:0] = 0010  
µs/V SLEW_RATE[3:0] = 0011, default  
µs/V SLEW_RATE[3:0] = 0100  
µs/V SLEW_RATE[3:0] = 0101  
µs/V SLEW_RATE[3:0] = 0110  
µs/V SLEW_RATE[3:0] = 0111  
µs/V SLEW_RATE[3:0] = 1000  
µs/V SLEW_RATE[3:0] = 1001  
µs/V SLEW_RATE[3:0] = 1010  
µs/V SLEW_RATE[3:0] = 1011  
µs/V SLEW_RATE[3:0] = 1100  
µs/V SLEW_RATE[3:0] = 1101  
µs/V SLEW_RATE[3:0] = 1110  
µs/V SLEW_RATE[3:0] = 1111  
400  
600  
800  
600  
800  
1000  
1250  
1450  
1700  
1900  
2150  
2350  
2600  
2800  
3020  
3250  
3480  
3710  
750  
1000  
1200  
1400  
1600  
1800  
2000  
2200  
2400  
2600  
2800  
3000  
3200  
950  
1100  
1300  
1450  
1650  
1800  
2000  
2180  
2350  
2520  
2690  
TON Control/Switching Frequency (Two Bits)  
Switching On Time  
TON  
260  
180  
130  
105  
1.6  
ns  
VOUT = 1V, TON[1:0] = 00  
VOUT = 1V, TON[1:0] = 01  
VOUT = 1V, TON[1:0] = 10  
VOUT = 1V, TON[1:0] = 11  
Switching Frequency  
Maximum Duty Cycle  
FREQ  
MHz VOUT = 1V, TON[1:0] = 10,  
IOUT = 3A  
2.2  
MHz VOUT = 3.3V, TON[1:0] = 10,  
IOUT = 3A  
DCMAX  
100  
%
Note 1: Specification for packaged product only.  
2: Characterized in open loop.  
2019 Microchip Technology Inc.  
DS20006256A-page 7  
MIC33M656  
(1,2)  
ELECTRICAL CHARACTERISTICS  
(CONTINUED)  
Electrical Specifications: Unless otherwise specified, PVIN = 5V; VOUT = 1.0V; COUT = 2 x 47 µF; TA = +25°C.  
Boldface values indicate -40°C TJ +125°C.  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
Short-Circuit Protection  
High-Side MOSFET Forward  
Current Limit  
ILIM_HS  
2.1  
4.0  
6.4  
8.0  
3.5  
5.0  
8.5  
10.0  
3.0  
4.2  
6.8  
8.0  
-3  
4.9  
6.5  
10.6  
12.0  
A
ILIM[1:0] = 00  
ILIM[1:0] = 01  
ILIM[1:0] = 10  
ILIM[1:0] = 11, default  
ILIM[1:0] = 00  
Low-Side MOSFET Forward  
Current Limit  
ILIM_LS  
A
ILIM[1:0] = 01  
ILIM[1:0] = 10  
ILIM[1:0] = 11, default  
Low-Side MOSFET Negative  
Current Limit  
ILIM_NEG  
IZC_TH  
HICCUP  
-2  
-4  
A
A
N-Channel Zero-Crossing  
Threshold  
0.9  
8
Current Limit Pulses before  
Hiccup  
Cycles  
ms  
Hiccup Period before Restart  
Internal MOSFETs  
1
High-Side On-Resistance  
Low-Side On-Resistance  
RDS-ON-HS  
RDS-ON-LS  
30  
16  
10  
60  
40  
50  
mISW = 1A  
mISW = -1A  
Output Discharge Resistance RDS-ON-DSC  
VEN = 0V, VSW = 5.5V,  
from VOUT to PGND  
SW Leakage Current  
Power Good (PG)  
ILEAK_SW  
1
10  
µA  
PVIN = 5.5V, VSW = 5.5V, VEN = 0V  
PG Threshold  
PG_TH  
PG_HYS  
87  
91  
4
95  
%VOUT VOUT rising (good)  
PG Hysteresis  
%VOUT VOUT falling  
PG Blanking Time  
PG_BLANK  
PG_LEAK  
PG_SINKV  
65  
30  
µs  
PG Output Leakage Current  
PG Sink Low Voltage  
I2C Interface (SCL, SDA)  
Low-Level Input Voltage  
High-Level Input Voltage  
High-Level Input Current  
Low-Level Input Current  
Logic 0 Output Voltage  
SCL,SDA Pin Capacitance  
SDA Pull-Down Resistance  
nA  
200  
mV  
VOUT = 0V, IPG = 10 mA  
VIL  
VIH  
0
1.2  
-1  
0.4  
5.5  
1
V
V
SVIN = 5.5V  
SVIN = 5.5V  
II2C_H  
II2C_L  
0.01  
0.01  
µA  
µA  
V
-1  
1
VOL  
0.4  
ISDA = 3 mA, ISCL = 3 mA  
I2C_CAP  
SDA_PD  
0.7  
80  
pF  
Note 1: Specification for packaged product only.  
2: Characterized in open loop.  
DS20006256A-page 8  
2019 Microchip Technology Inc.  
MIC33M656  
(1,2)  
ELECTRICAL CHARACTERISTICS  
(CONTINUED)  
Electrical Specifications: Unless otherwise specified, PVIN = 5V; VOUT = 1.0V; COUT = 2 x 47 µF; TA = +25°C.  
Boldface values indicate -40°C TJ +125°C.  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
I2C Interface Timing  
Maximum SCL Clock  
Frequency  
SCL_CLOCK  
100  
400  
3.4  
kHz Standard mode  
kHz Fast mode  
MHz High-Speed mode  
Thermal Shutdown  
Thermal Shutdown  
TSHDN  
165  
22  
°C  
°C  
°C  
TJ rising  
TJ falling  
TJ rising  
Thermal Shutdown Hysteresis TSHDN_HYST  
Thermal Warning Threshold  
TThWrn  
118  
4
Thermal Latch-Off Soft Start  
Cycles  
TH_LATCH  
Note 1: Specification for packaged product only.  
2: Characterized in open loop.  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: Unless otherwise specified, PVIN = 5V; VOUT = 1.0V; COUT = 2 x 47 µF; TA = +25°C.  
Boldface values indicate -40°C TJ +125°C.  
Parameters  
Temperature Ranges  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Junction Temperature  
TJ  
TA  
40  
+125  
+150  
°C  
°C  
Storage Temperature Range  
Package Thermal Resistances  
-65  
Thermal Resistance,  
JA  
45  
°C/W  
53-Lead 6 mm x 10 mm x 3 mm B1QFN  
2019 Microchip Technology Inc.  
DS20006256A-page 9  
MIC33M656  
NOTES:  
DS20006256A-page 10  
2019 Microchip Technology Inc.  
MIC33M656  
2.0  
TYPICAL CHARACTERISTIC CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VIN = PVIN = AUX_PVIN = 5V; VOUT = 1V; COUT = 2 x 47 µF; TA = +25°C.  
61  
80  
VOUT = 1.0V  
60  
IOUT = 0 mA  
75  
HLL mode  
59  
70  
58  
VOUT = 3.3V  
65  
60  
55  
50  
45  
57  
56  
55  
54  
53  
VOUT = 1.0V  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
2.5  
3
3.5  
VIN (V)  
4
4.5  
5
Ambient Temperature (°C)  
FIGURE 2-1:  
Operating Supply Current vs.  
FIGURE 2-4:  
Operating Supply Current vs.  
Input Voltage, Switching.  
Temperature, Switching.  
40  
35  
11  
10  
9
8
7
6
5
ILIM = 10A  
HHiigghh-SSiiddeeOONn--RReessisistatanncece  
30  
25  
20  
15  
10  
5
ILIM = 8.5A  
ILIM = 5A  
Low-Side On-Resistance  
Low Side ON-Resistance  
ILIM = 3.5A  
4
3
2
1
VIN = 5.0V  
VOUT = 1V  
0
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-2:  
High-Side Current Limits vs.  
FIGURE 2-5:  
RDS(on) vs. Temperature.  
Temperature (VOUT = 1.0V), Closed Loop.  
21  
19  
17  
100.00  
90.00  
80.00  
70.00  
60.00  
50.00  
40.00  
30.00  
20.00  
10.00  
VIN = 3.3V  
15  
13  
11  
9
ILIM = 10A  
ILIM = 8.5A  
ILIM = 5A  
VIN = 5.0V  
7
5
VIN = 5.0V  
3
ILIM = 3.5A  
VOUT = 0.6V  
VOUT = 3.3V  
1
0.00  
0.0001  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
0.001  
0.01  
0.1  
1
10  
IOUT (A)  
Ambient Temperature (°C)  
FIGURE 2-6:  
Efficiency vs. Load Current  
FIGURE 2-3:  
High-Side Current Limits vs.  
(VOUT = 0.6V).  
Temperature (VOUT = 3.3V), Closed Loop.  
2019 Microchip Technology Inc.  
DS20006256A-page 11  
MIC33M656  
Note: Unless otherwise indicated, VIN = PVIN = AUX_PVIN = 5V; VOUT = 1V; COUT = 2 x 47 µF; TA = +25°C.  
100.00  
90.00  
80.00  
70.00  
60.00  
50.00  
40.00  
30.00  
20.00  
10.00  
0.00  
0.06  
0.04  
0.02  
0
FPWM mode  
IOUT = 300 mA  
VIN = 5.0V  
VIN = 3.3V  
VOUT = 0.6V  
VOUT = 1.0V  
VOUT = 3.3V  
VOUT = 1V  
0.0001  
0.001  
0.01  
0.1  
1
10  
2.5  
3
3.5  
4
4.5  
5
5.5  
IOUT (A)  
VIN (V)  
FIGURE 2-7:  
Efficiency vs. Load Current  
FIGURE 2-10:  
Line Regulation: Output  
(VOUT = 1.0V).  
Voltage Variation vs. Input Voltage.  
100.00  
90.00  
80.00  
70.00  
60.00  
50.00  
40.00  
30.00  
20.00  
10.00  
0.00  
FPWM mode  
IN = 5V  
0.14  
0.12  
0.1  
V
VOUT = 0.6V  
VOUT = 1.0V  
VOUT = 2.5V  
VOUT = 3.3V  
VIN = 5.5V  
VIN = 4.0V  
0.08  
0.06  
0.04  
0.02  
0
VOUT = 3.3V  
0
1
2
3
4
5
6
0.0001  
0.001  
0.01  
0.1  
1
10  
IOUT (A)  
IOUT (A)  
FIGURE 2-8:  
Efficiency vs. Load Current  
FIGURE 2-11:  
Load Regulation: VOUT  
(VOUT = 3.3V).  
Voltage Variation vs. IOUT  
.
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
2.2  
1.9  
1.6  
1.3  
1
VOUT = 1V  
VOUT = 0.6V  
VIN = 5.0V  
TON[1:0] = 11  
TON[1:0] = 10  
TON[1:0] = 11  
TON[1:0] = 10  
TON[1:0] = 01  
TON[1:0] = 00  
TON[1:0] = 01  
TON[1:0] = 00  
0.7  
0
2
4
6
2.5  
3
3.5  
VIN (V)  
4
4.5  
5
IOUT (A)  
FIGURE 2-9:  
DCM/FPWM IOUT Threshold  
FIGURE 2-12:  
Switching Frequency vs.  
vs. VIN.  
IOUT (VOUT = 0.6V).  
DS20006256A-page 12  
2019 Microchip Technology Inc.  
MIC33M656  
Note: Unless otherwise indicated, VIN = PVIN = AUX_PVIN = 5V; VOUT = 1V; COUT = 2 x 47 µF; TA = +25°C.  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
VOUT = 1.0V  
VOUT = 1V  
3.5  
2.9  
2.3  
1.7  
1.1  
0.5  
IOUT= 2.0A  
VIN = 5.0V  
TON[1:0] = 11  
TON[1:0] = 11  
TON[1:0] = 10  
TON[1:0] = 10  
TON[1:0] = 01  
TON[1:0] = 01  
TON[1:0] = 00  
TON[1:0] = 00  
2.5  
3.5  
4.5  
5.5  
0
2
4
6
VIN (V)  
IOUT (A)  
FIGURE 2-13:  
Switching Frequency vs.  
FIGURE 2-16:  
Switching Frequency vs. VIN  
IOUT (VOUT = 1.0V).  
(VOUT = 1.0V).  
VOUT = 3.3V  
3.5  
VOUT = 3.3V  
3.5  
IOUT = 2.0A  
VIN = 5.0V  
TON[1:0] = 11  
TON[1:0] = 11  
2.9  
2.9  
2.3  
1.7  
1.1  
0.5  
2.3 TON[1:0] = 10  
TON[1:0] = 10  
1.7  
TON[1:0] = 01  
TON[1:0] = 00  
TON[1:0] = 01  
TON[1:0] = 00  
1.1  
0.5  
4
4.5  
5
5.5  
0
2
4
6
IOUT (A)  
VIN (V)  
FIGURE 2-14:  
Switching Frequency vs.  
FIGURE 2-17:  
Switching Frequency vs. VIN  
IOUT (VOUT = 3.3V).  
(VOUT = 3.3V).  
VOUT = 0.6V  
3.5  
IOUT = 2.0A  
2.9  
TON[1:0] = 11  
2.3  
1.7  
TON[1:0] = 10  
TON[1:0] = 01  
1.1  
TON[1:0] = 00  
0.5  
2.5  
3.5  
4.5  
5.5  
VIN (V)  
FIGURE 2-15:  
Switching Frequency vs. VIN  
(VOUT = 0.6V).  
2019 Microchip Technology Inc.  
DS20006256A-page 13  
MIC33M656  
Note: Unless otherwise indicated, VIN = PVIN = AUX_PVIN = 5V; COUT = 2 x 47 µF; TON[1:0] = 11; ILIM[1:0] = 11;  
VOUT = 1V; TA = +25°C.  
EN  
5V/div  
VIN  
5V/div  
VOUT  
500 mV/div  
VOUT  
500 mV/div  
SW  
5V/div  
PG  
5V/div  
IO  
2A/div  
PG  
5V/div  
80 µs/div  
2 ms/div  
FIGURE 2-18:  
VIN Turn-On (EN = PVIN).  
FIGURE 2-21:  
EN Turn-Off, RLOAD = 0.3.  
9
,1  
ꢀ9ꢁGLY  
EN  
2V/div  
9
VOUT  
500 mV/div  
287  
ꢀꢂꢂ P9ꢁGLY  
3*  
ꢀ9ꢁGLY  
PG  
5V/div  
SW  
5V/div  
6:  
ꢀ9ꢁGLY  
1 ms/div  
ꢃꢂꢂ —VꢁGLY  
FIGURE 2-19:  
VIN Turn-Off (EN = PVIN)  
,
FIGURE 2-22:  
EN Turn-On into Pre-Biased  
R
LOAD = 0.3.  
Output (Vpre-bias = 0.8V).  
EN  
5V/div  
EN  
5V/div  
VOUT  
500 mV/div  
VOUT  
500 mV/div  
PG  
5V/div  
PG  
5V/div  
SW  
5V/div  
IO  
2A/div  
2 ms/div  
2 ms/div  
FIGURE 2-20:  
EN Turn-On, RLOAD = 0.3.  
FIGURE 2-23:  
Power-up into Short Circuit.  
DS20006256A-page 14  
2019 Microchip Technology Inc.  
MIC33M656  
Note: Unless otherwise indicated, VIN = PVIN = AUX_PVIN = 5V; COUT = 2 x 47 µF; TON[1:0] = 11; ILIM[1:0] = 11;  
VOUT = 1V; TA = +25°C.  
VIN  
5V/div  
VOUT  
1V/div  
VOUT  
50 mV/div  
AC coupled  
IOUT  
5A/div  
SW 5V/div  
PG  
5V/div  
IO  
5A/div  
SW  
5V/div  
1 µs/div  
2 ms/div  
FIGURE 2-24:  
Output Current Limit  
FIGURE 2-27:  
Switching Waveforms –  
Threshold.  
IOUT = 6A.  
Step from 0.5A to 6A  
PG  
5V/div  
VOUT  
1V/div  
VOUT  
100 mV/div  
IO  
10A/div  
SW  
5V/div  
SW  
5V/div  
PG  
5V/div  
IO  
5A/div  
1 ms/div  
80 µs/div  
FIGURE 2-25:  
Hiccup Mode Short-Circuit  
FIGURE 2-28:  
Load Transient Response.  
Current Limit Response.  
Step from 4.5V to 5.5V  
VIN  
5V/div  
PG  
5V/div  
VIN  
2V/div  
VOUT  
50 mV/div  
AC coupled  
VOUT, 10 mV/div  
AC coupled  
SW  
5V/div  
IO  
IO  
2A/div  
50 mA/div  
1 µs/div  
1 ms/div  
FIGURE 2-29:  
Line Transient Response.  
FIGURE 2-26:  
Switching Waveforms –  
IOUT = 50 mA, HLL.  
2019 Microchip Technology Inc.  
DS20006256A-page 15  
MIC33M656  
NOTES:  
DS20006256A-page 16  
2019 Microchip Technology Inc.  
MIC33M656  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
Pin Number  
2, 3, 4, 5, 23, 24,  
PIN FUNCTION TABLE  
Symbol  
Description  
Power Ground is the ground path for the MIC33M650 power module.  
PGND  
39, 40  
1, 53  
AUX_PVIN  
SW  
Auxiliary Power Input Voltage Pins: Connect externally to PVIN.  
6, 7, 8, 9, 10, 11, 12,  
13, 14, 15, 16, 17,  
18, 19, 20, 21, 22  
Switch Node Pins. SW connects to the internal MOSFETs and inductor.  
Do not connect any external load to this point.  
41, 42  
PVIN  
OUT  
Power Supply Voltage Pins.  
Output Side Connection Pins.  
25, 26, 27, 28, 29,  
30, 31, 32, 33, 34,  
35, 36, 37, 38  
43, 44  
SVIN  
Analog Voltage Input Pins: The power to the internal reference and  
control sections of the MIC33M650. Internally connected to PVIN through  
a 10resistor.  
46, 47  
45  
AUX_AGND  
SCL  
Auxiliary Analog Ground Pins: Connect externally to AGND  
I2C Clock (Input) Pin: I2C serial bus clock input.  
.
48  
SDA  
I2C Data (Input/Output) Pin: I2C serial bus data bidirectional pin.  
49  
EN  
Enable (Input) Pin: Logic high enables the operation of the regulator. The  
EN pin should not be left floating.  
50  
51  
PG  
Power Good (Output) Pin: This is an open-drain output that indicates  
when the output voltage is higher than the 91% limit.  
VOUT  
Output Voltage Sense (Input) Pin: This pin is used to remotely sense the  
output voltage. Connect VOUT as close to the output capacitor as possible  
to sense the output voltage.  
52  
54  
55  
56  
57  
AGND  
Analog Ground Pin: Internal signal ground for all low-power circuits.  
Exposed Thermal Pad: Internally connected to OUT.  
EP_OUT  
EP_SW  
EP_PGND  
EP_PVIN  
Exposed Thermal Pad: Internally connected to SW node.  
Exposed Thermal Pad: Internally connected to PGND  
.
Exposed Thermal Pad: Internally connected to PVIN.  
3.1  
Power Ground Pin (P  
)
3.3  
Input Voltage Pin (PV )  
IN  
GND  
PGND is the ground path for the MIC33M656 buck  
converter power stage. The PGND pin connects to the  
sources of the low-side N-channel MOSFET, the nega-  
tive terminals of the input capacitors and the negative  
terminals of the output capacitors. The loop for the  
Power Ground should be as small as possible and  
separate from the Analog Ground (AGND) loop.  
Input supply to the source of the internal high-side  
P-channel MOSFET. The PVIN operating voltage range  
is from 2.4V to 5.5V. An input capacitor between PVIN  
and the Power Ground (PGND) pin is required and  
placed as close as possible to the IC.  
3.4  
Analog Voltage Input Pin (SV )  
IN  
The power to the internal reference and control  
sections of the MIC33M656. Internally connected to  
PVIN through a 10resistor.  
3.2  
Switch Node Pin (SW)  
Switching node output pin which connects to the inter-  
nal MOSFETs and inductor. This is a high-frequency  
connection; therefore, traces should be kept as short  
and as wide as practical.  
2019 Microchip Technology Inc.  
DS20006256A-page 17  
MIC33M656  
2
3.5  
I C Clock Input Pin (SCL)  
3.11 Auxiliary Analog Ground Pins  
(AUX_A  
)
GND  
The SCL pin is the serial interface’s serial clock pin.  
This pin is connected to the host controller SCL pin.  
Connect these pins to AGND to make use of the internal  
decoupling capacitor for SVIN pin filtering.  
The MIC33M656 is a slave device, so its SCL pin is  
only an input.  
3.12 Auxiliary Input Voltage Pins  
2
3.6  
I C Data Input/Output Pin (SDA)  
(AUX_PV )  
IN  
The SDA pin is the serial interface’s serial data pin.  
This pin is connected to the host controller SDA pin.  
The SDA pin has an open-drain N-channel driver.  
Connect these pins to PVIN to make use of the internal  
10 µF capacitor for PVIN filtering/decoupling.  
3.13  
P
Exposed Pad (EP_P  
)
GND  
GND  
3.7  
Enable Pin (EN)  
Electrically connected to the PGND pins. Connect with  
thermalviastothegroundplanetoensureadequateheat  
sinking. See Section 8.0 “Packaging Information”.  
Logic high enables operation of the regulator. Logic low  
will shut down the device. In the OFF state, the supply  
current of the device is greatly reduced (typically  
1.5 µA). The EN pin should not be left open.  
3.14 OUT Exposed Pad (EP_OUT)  
Electrically connected to the OUT pins. Must be  
externally connected to the output power connection.  
3.8  
Power Good Pin (PG)  
This is an open-drain output that indicates when the  
rising output voltage is higher than the 91% threshold.  
There is a 4% hysteresis; therefore, PG will return low  
when the output voltage falls below 87% of the target  
regulation voltage.  
3.15 SW Exposed Pad (EP_SW)  
Electrically connected to the SW node.  
3.16 PV Exposed Pad (EP_PV )  
IN  
IN  
3.9  
Output Voltage Sense Pin (V  
)
OUT  
Electrically connected to the PVIN pins. Must be  
connected to the input power connection.  
This pin is used to remotely sense the output voltage.  
Connect to VOUT as close to the output capacitor as  
possible to sense the output voltage. This pin also  
provides the path to discharge the output through an  
internal 10resistor when the device is disabled.  
3.10 Analog Ground Pin (A  
)
GND  
Internal signal ground for all low-power circuits.  
Connect to ground plane. For best load regulation, the  
connection path from AGND to the output capacitor  
ground terminal should be free from parasitic voltage  
drops.  
DS20006256A-page 18  
2019 Microchip Technology Inc.  
MIC33M656  
4.3  
Enable (EN Pin)  
4.0  
4.1  
FUNCTIONAL DESCRIPTION  
Device Overview  
When the EN pin is pulled low, the IC is in a shutdown  
state with all internal circuits disabled and with the  
Power Good (PG) output low. During shutdown, the  
part typically consumes 1.5 µA. When the EN pin is  
pulled high, the start-up sequence is initiated. There is  
a programmable enable delay that is used to delay the  
start of the output ramp. The enable delay timer can be  
programmed to one of four time intervals of 0.25 ms,  
1 ms, 2 ms or 3 ms in the CTRL1 register. Note that if  
the 0 ms delay setting is chosen, there is an internal  
delay of 250 µs before the part will start to switch in  
order to bias up internal circuitry.  
The MIC33M656 is a high-efficiency 6A peak current,  
synchronous buck regulator with HyperLight Load  
mode. The module integrates the inductor alongside  
high-frequency, ripple dampening capacitors on the  
input and output of the converter and decoupling  
capacitor for the signal input. The Constant-On-Time  
(COT) control architecture with automatic HyperLight  
Load mode provides very high efficiency at light loads  
and ultra-fast transient response.  
The MIC33M656 output voltage is programmed  
through the I2C interface, in the range of 0.6V to 1.28V,  
with 5 mV resolution (options YMP, HAYMP and  
FAYMP), or between 0.6V and 3.84V (option SAYMP).  
The latter option has a 10 mV resolution, from 0.6V up  
to 1.28V and a 20 mV resolution, from 1.28V to 3.84V.  
2
4.4  
I C Programming  
The MIC33M656 behaves as an I2C slave, accessible  
at 0x5B (7-bit addressing).  
The I2C interface remains active and the MIC33M656  
can be programmed whether the Enable pin is high or  
low, as long as the input voltage is above the UVLO  
threshold. This feature is useful in applications where a  
housekeeping MCU preconfigures the MIC33M656  
before enabling power delivery. The registers do not  
get reset when the enable pin is low. The output voltage  
can be programmed to a new value with I2C, regard-  
less of the EN pin status. If the EN pin is high, the  
output voltage will move to the newly programmed  
value on-the-fly, with the programmed slew rate.  
The 2.4V to 5.5V input voltage operating range makes  
the device ideal for single-cell Li-ion battery-powered  
applications. Automatic HyperLight Load mode  
provides very high efficiency at light loads.  
This device focuses on high output voltage accuracy.  
Total output error is less than 1.5% over line, load and  
temperature.  
The MIC33M656 buck regulator uses an adaptive  
Constant-On-Time control method. The adaptive on-time  
control scheme is employed to obtain a nearly constant  
switching frequency in Continuous Conduction mode.  
Overcurrent protection is implemented by sensing the  
current on both the low-side and high-side internal power  
MOSFETs. The device includes an internal soft start func-  
tion, which reduces the power supply input surge current  
at start-up by controlling the output voltage rise time.  
4.5  
Power Good (PG)  
The Power Good output is generally used for power  
sequencing where the Power Good output is tied to the  
enable output of another regulator. This technique  
avoids all the regulators powering up at the same time,  
causing large inrush current.  
4.2  
HyperLight Load Mode (HLL)  
The Power Good output is an open-drain output. During  
start-up, when the output voltage is rising, the Power  
Good output goes high by means of an external pull-up  
resistor when the output voltage reaches 91% of its set  
value. The Power Good threshold has 4% hysteresis, so  
the Power Good output stays high until the output voltage  
falls below 87% of the set value. A built-in 65 µs blanking  
time is incorporated to prevent nuisance tripping.  
HLL is a power-saving switching mode. In HLL, the  
switching frequency is not constant over the operation  
current range. At light loads, the fixed on-time opera-  
tion, coupled with low-side MOSFET diode emulation,  
causes the switching frequency to decrease. This  
reduces switching and drive losses, and increases  
efficiency. The HLL switching mode can be disabled for  
reduced output ripple and low noise by setting the  
FPWM bit in the CTRL2 register.  
The pull-up resistor from the PG pin can be connected  
to VIN, VOUT or an external source that is less than or  
equal to VIN. The PG pin can be connected to another  
regulator’s enable pin for sequencing of the outputs.  
The PG output is deasserted as soon as the Enable pin  
is pulled low, or an input undervoltage condition or any  
other Fault is detected.  
2019 Microchip Technology Inc.  
DS20006256A-page 19  
MIC33M656  
4.6  
Output Soft Discharge Option  
4.10 100% Duty Cycle Operation  
To ensure a known output condition when the device is  
turned off, then back on again, the output is actively  
discharged to ground by means of an internal 10  
resistor. The active discharge resistor can be enabled  
or disabled through I2C in the CTRL2 register.  
The MIC33M656 can deliver 100% duty cycle. To  
achieve 100% duty cycle, the high-side switch is  
latched on when the duty cycle reaches around 92%  
and stays latched until the output voltage falls 4%  
below its regulated value. This feature is especially  
useful in battery-operated applications. It is recom-  
mended that this feature is enabled together with the  
highest TON setting, corresponding to the lowest  
switching frequency (TON[1:0] = 00 in the CTRL1 reg-  
ister). The high-side latch circuitry can be disabled by  
setting the DIS_100PCT bit in the CTRL2 register to ‘1’.  
4.7  
Output Voltage Setting  
The MIC33M656 output voltage has an 8-bit control DAC  
that can be programmed from 0.6V to 1.28V, in 5 mV  
increments, for part options HAYMP and FAYMP. Option  
SAYMP can be programmed from 0.6V, up to 1.28V, with  
10 mV resolution and from 1.28V up to 3.84V, with 20 mV  
resolution. This can be programmed in the Output Voltage  
Control (VOUT) register.  
4.11 Switching Frequency  
The switching frequency of the MIC33M656 is indirectly  
set by programming the TON value. The equation  
below provides an estimation for the resulting switching  
frequency:  
The output voltage sensing pin, VOUT, should be  
connected exactly to the desired Point-of-Load (POL)  
regulation, avoiding parasitic resistive drops.  
4.8  
Converter Stability/Output  
Capacitor  
EQUATION 4-2:  
V
1
TON  
OUT  
fSW  
=
-------------- ---------  
The MIC33M656 utilizes an internal compensation  
network and it is designed to provide stable operation  
with output capacitors from 47 µF to 1000 µF. This  
greatly simplifies the design where supplementary  
output capacitance can be added without affecting  
stability.  
VIN  
Equation 4-2 is valid only in Continuous Conduction  
mode and for a loss-less converter. In practice, losses  
will cause an increase of the switching frequency with  
respect to the ideal case. As the load current increases,  
losses will increase too and so will the switching  
frequency.  
4.9  
Soft Start  
Excess bulk capacitance on the output can cause  
excessive input inrush current. The MIC33M656 inter-  
nal soft start feature forces the output voltage to rise  
gradually, keeping the inrush current at reasonable  
levels. This is particularly important in battery-powered  
applications. The ramp rate can be set in the CTRL2  
register by means of the SLEW_RATE[3:0] bits (see  
Register 7-2).  
The on-time calculation is adaptive, in that the TON  
value is modulated based on the input voltage, and on  
the target output voltage, to stabilize the switching  
frequency against their variations. Losses are not  
accounted for.  
The table below highlights the resulting On Time (TON  
)
for typical output voltages:  
When the enable pin goes high, the output voltage  
starts to rise. Once the soft start period has finished,  
the Power Good comparator is enabled and if the  
output voltage is above 91% of the nominal regulation  
voltage, then the Power Good output goes high.  
TABLE 4-1:  
ON-TIME CALCULATIONS  
TON  
VIN (V) VOUT (V) [00]  
[01]  
[10]  
[11]  
The output voltage soft start time is determined by the  
soft start equation below. The Soft Start Time, tSS, can  
be calculated using Equation 4-1.  
5
0.6  
1
140  
260  
520  
740  
930  
380  
110  
180  
340  
490  
610  
270  
100  
130  
200  
260  
310  
170  
80  
105  
150  
190  
220  
130  
1.8  
2.5  
3.3  
1
EQUATION 4-1:  
tSS = V  
tRAMP  
OUT  
3.3  
tSS = 1.0V 800s V  
tSS = 800s = 0.8ms  
Where:  
V
=
=
1.0V  
800 µs/V  
OUT  
t
RAMP  
DS20006256A-page 20  
2019 Microchip Technology Inc.  
MIC33M656  
4.12 Undervoltage Protection (UVLO)  
4.14 Safe Start-up into a Pre-Biased  
Output  
Undervoltage protection ensures that the IC has  
enough voltage to bias the internal circuitry properly  
and provide sufficient gate drive for the power  
MOSFETs. When the input voltage starts to rise, both  
power MOSFETs are off and the Power Good output is  
pulled low. The IC starts at approximately 2.225V typi-  
cal and has a nominal 153 mV of hysteresis to prevent  
chattering between the UVLO high and low states.  
The MIC33M656 is designed for safe start-up into a  
pre-biased output in forced PWM. This feature prevents  
high negative inductor current flow in a pre-bias condition,  
which can damage the IC. This is achieved by not allow-  
ing forced PWM until the control loop commands eight  
switching cycles. After eight cycles, the low-side negative  
current limit is switched from 0A to -3A. The cycle counter  
is reset to zero if the Enable pin is pulled low, or an input  
undervoltage condition or any other Fault is detected.  
4.13 Overtemperature Fault  
The MIC33M656 monitors the die junction temperature  
to keep the IC operating properly. If the IC junction  
temperature exceeds +118°C, the warning flag,  
“OT_WARN”, is set, but does not affect the operation  
mode. It automatically resets if the junction temperature  
drops below the temperature threshold. If the IC junction  
temperature exceeds +165°C, both power MOSFETs  
are immediately turned off. The IC is allowed to start  
when the die temperature falls below +143°C.  
4.15 Current Limiting  
The MIC33M656 regulator uses both high-side and  
low-side current sense for current limiting. When the  
high-side current sense threshold is reached, the  
high-side MOSFET is turned off and the low-side  
MOSFET is turned on. The low-side MOSFET stays on  
until the current falls to 80% of the high-side current  
threshold value, then the high-side current can be turned  
on again. If the overload condition lasts for more than  
seven cycles, the MIC33M656 enters hiccup current lim-  
iting and both MOSFETs are turned off. There is a 1 ms  
cool-off period before the MOSFETs are allowed to be  
turned on. If the regulator has another hiccup event  
before it reaches the Power Good threshold on restart, it  
will again turn off both MOSFETs and wait for 1 ms. If  
this happens more than three times in a row, then the  
part will enter the Latch-Off state, which will permanently  
turn off both MOSFETs until the part is reset by toggling  
the EN pin, recycling power or via an I2C command.  
During the Fault condition, several changes will occur in  
the STATUS Register. The OT bit will go high, indicating  
the junction temperature reached +165°C, while the  
OT_WARN automatically resets. If the controller is  
enabled to restart after the first thermal shutdown event  
(OT_LATCH bit in CTRL2 register is set), the SSD bit will  
go low and the HICCUP bit will go high. Finally, the PG bit  
in the FAULT register (address 0x03) will go low and the  
PG pin will be pulled low until the output voltage has  
restarted and is once again in regulation. The I2C inter-  
face remains active and all the values stored in registers  
are maintained. When the die temperature decreases  
below the lower thermal shutdown threshold, and the  
MIC33M656 resumes switching with the output voltage  
going back in regulation, the global Power Good output is  
pulled high, but the Overtemperature Fault bit, OT, is still  
set to ‘1’. To clear the Fault, either recycle input power or  
write a logic ‘0’ to the Overtemperature bit, OT, in the  
FAULT register.  
During a hiccup event, the HICCUP bit in the STATUS  
Register will go high and the SSD bit will go low until the  
output has recovered. The Power Good FAULT register  
bit, PG, will also go low and the PG pin will be pulled low.  
In latch-off, the LATCH_OFF status bit is set to ‘1’.  
The high-side current limit can be programmed by  
setting the ILIM[1:0] bits in the CTRL1 register. For max-  
imum efficiency and current limit precision, the highest  
current limit must be programmed together with a higher  
TON setting (corresponding to a lower frequency).  
During recovery from a thermal shutdown event, if the  
regulator hits another thermal shutdown event before  
Power Good can be achieved, the controller will again  
reset. If this happens four times in a row, the part will be in  
a Latch-Off state and the MOSFETs are permanently  
latched off. The LATCH_OFF bit in the STATUS Register  
will be set to ‘1’, which will latch off the MIC33M656. The  
device can be restarted by toggling the enable input, by  
recycling the input power or by software Enable Control  
(EN_CON). This latch-off feature eliminates the thermal  
stress on the MIC33M656 during a Fault event. The  
OT_LATCH bit in the CTRL2 register can be set to ‘0’,  
which will cause this latch-off to happen after the first over-  
temperature event, instead of waiting for four consecutive  
overtemperatures. This is a more conservative approach  
to protect the part and is available to the user.  
4.16 Thermal Considerations  
Although the MIC33M656 is capable of delivering up to  
6A under load, the package thermal resistance and the  
device internal power dissipation may dictate some  
limitations to the continuous output current.  
As a reference, for VIN = 5V, VOUT = 1V, IOUT = 5A, the  
DT100108 Evaluation Board application shows a  
stable +40°C chip self-heating.  
For VIN = 5V, VOUT = 3.3V, the same self-heating is  
produced at about 4A.  
If operated above the rated junction temperature,  
electrical parameters may drift beyond characterized  
specifications. The MIC33M656 is protected under all  
circumstances by thermal shutdown.  
2019 Microchip Technology Inc.  
DS20006256A-page 21  
MIC33M656  
NOTES:  
DS20006256A-page 22  
2019 Microchip Technology Inc.  
MIC33M656  
The type of output capacitor is usually determined by its  
Equivalent Series Resistance (ESR). Voltage and RMS  
current capability are two other important factors to con-  
sider when selecting the output capacitor. Recommended  
capacitor types are ceramic, OS-CON and POSCAP. The  
output capacitor ESR is usually the main cause of the out-  
put ripple. The output capacitor ESR also affects the con-  
trol loop from a stability point of view. The maximum value  
of ESR is calculated using Equation 5-1.  
5.0  
5.1  
APPLICATION INFORMATION  
Power-up State  
When power is first applied to the MIC33M656 and the  
Enable pin is high, all I2C registers are loaded with their  
default values and the device starts delivering power to  
the output based on those default values. After the soft  
start ramp has finished, these registers can be recon-  
figured. These new settings are saved, even if the  
Enable pin is pulled low. When the Enable pin is pulled  
high again, the MIC33M656 is configured to the new  
register settings, not the original default settings. To set  
the I2C registers to their original settings, the input  
power has to be recycled.  
EQUATION 5-1:  
V  
OUTPP  
ESR  
---------------------------------  
C
I  
OUT  
LPP  
Where:  
ΔV  
=
=
Peak-to-Peak Output Voltage Ripple  
Peak-to-Peak Inductor Current Ripple  
When power is first applied to the MIC33M656 and the  
Enable pin is low, all I2C registers can be configured.  
When the Enable pin is pulled high, the regulator will  
power up with the new I2C register settings. Again, these  
register settings will not be lost when the Enable pin is  
pulled low. If power is recycled, the register settings are  
lost and they will have to be reprogrammed.  
OUT(PP)  
ΔI  
L(PP)  
The peak-to-peak inductor current ripple can be  
calculated by using the formula in Equation 5-3.  
EQUATION 5-2:  
VOUT (VIN(MAX) – VOUT  
VIN(MAX) fSW L  
)
5.2  
Output Voltage Sensing  
IL(PP)  
=
To achieve accurate output voltage regulation, the VOUT  
pin (internal feedback divider top terminal) should be  
Kelvin connected as close as possible to the point of reg-  
ulation top terminal. Since both the internal reference and  
the internal feedback divider’s bottom terminal refer to  
AGND, it is important to minimize voltage drops between  
AGND and the point of regulation return terminal (typically,  
the ground terminal of the output capacitor which is  
closest to the load).  
Where:  
L
=
0.47 µH  
The total output ripple is a combination of the ESR and  
output capacitance. The total ripple is calculated in  
Equation 5-3.  
EQUATION 5-3:  
2
I  
2
LPP  
------------------------------------------  
V  
=
+
I  
ESR  
C
5.3  
Digital Voltage Control (DVC)  
OUTPP  
LPP  
C
f 8  
OUT SW  
OUT  
When the buck converter is programmed to a lower volt-  
age, the regulator is placed into forced PWM mode and  
the Power Good monitor is blanked during the transition  
time.  
Where:  
C
=
=
Output Capacitance Value  
Switching Frequency  
OUT  
f
SW  
The output capacitor RMS current is calculated in  
Equation 5-4.  
5.4  
Output Capacitor Selection  
The MIC33M656 utilizes an internal compensation  
network and is designed to provide stable operation,  
with output capacitors from 47 μF to 1000 μF. This  
greatly simplifies the design, where supplementary  
output capacitance can be added without affecting  
stability.  
EQUATION 5-4:  
I  
LPP  
I
= ---------------------  
12  
C
OUTRMS  
The power dissipated in the output capacitor is:  
EQUATION 5-5:  
2
P
= I  
ESR  
DISSCOUT  
COUTRMS  
COUT  
2019 Microchip Technology Inc.  
DS20006256A-page 23  
MIC33M656  
TABLE 5-1:  
I2C BUS CONSTRAINTS  
Standard Fast High-Speed  
Mode Mode Mode  
0 to 100 0 to 400 0 to 1700 0 to 3400  
5.5  
Input Capacitor Selection  
The MIC33M656 integrates high-frequency input  
bypass capacitors connected between PVIN and PGND  
,
and an additional 10 µF, low-ESR ceramic capacitor for  
input ripple smoothing, connected between PGND and  
AUX_PVIN. Therefore, the connection between PVIN  
and AUX_PVIN should have very low stray resistance  
and inductance (i.e., many vias) to take advantage of  
the internal 10 µF capacitor. While the internal 10 µF  
capacitor can support the RMS ripple current, addi-  
tional external input ceramic capacitors can be added  
optionally to further attenuate the input voltage ripple  
amplitude. The need for additional external input  
capacitance also depends on the impedance of the  
input supply distribution network.  
Bit Rate  
(kbits/s)  
Max Cap  
Load (pF)  
400  
1000  
N/A  
400  
300  
50  
400  
160  
100  
80  
Rise Time  
(ns)  
Spike  
Filtered (ns)  
10  
EQUATION 5-6:  
V
CC VOLmax  
Rpmin= ----------------------------------------------  
IOL  
2
5.6  
I C Bus Pull-ups Selection  
Where:  
The optimal pull-up resistors must be strong enough  
such that the RC constant of the bus is not too large  
(causing the line not to rise to a logical high before  
being pulled low), but weak enough for the IC to drive  
the line low (see Table 5-1).  
V
=
=
=
Pull-up Reference Voltage (i.e., V )  
IN  
CC  
V
(max)  
0.4V  
OL  
I
3 mA  
OL  
DS20006256A-page 24  
2019 Microchip Technology Inc.  
MIC33M656  
2
6.0  
I C INTERFACE DESCRIPTION  
The I2C bus is for 2-way, 2-line communication  
between different ICs or modules. The two lines are: a  
Serial Data line (SDA) and a Serial Clock line (SCL).  
Both lines must be connected to a positive supply via a  
pull-up resistor. Data transfer may be initiated only  
when the bus is not busy. MIC33M656 is a slave only  
device (i.e., it cannot generate a SCL signal and does  
not have SCL clock stretching capability). Every data  
transfer, to and from the MIC33M656, must be initiated  
by a master device which drives the SCL line.  
SDA  
SCL  
Change of data  
allowed  
Data line stable;  
data valid  
FIGURE 6-1:  
6.1  
Bit Transfer Diagram.  
Start (Sr) condition. A low-to-high transition of the data  
line while the clock is high is defined as the Stop  
condition (P). Start and Stop conditions are always  
generated by the master. The bus is considered to be  
busy after the Start condition. The bus is considered to  
be free again a certain time after the Stop condition.  
The bus stays busy if a Repeated Start (Sr) is  
generated instead of a Stop condition.  
Bit Transfer  
One data bit is transferred during each clock pulse. The  
data on the SDA line must remain stable during the  
high period of the clock pulse as changes in the data  
line, at this time, will be interpreted as control signals.  
6.2  
Start and Stop Conditions  
Both data and clock lines remain high when the bus is  
not busy. A high-to-low transition of the data line, while  
the clock is high, is defined as the Start (S) or Repeated  
SDA  
SDA  
SCL  
S
SCL  
P
Stop Condition  
Start Condition  
START condition  
FIGURE 6-2:  
Start and Stop Conditions.  
2019 Microchip Technology Inc.  
DS20006256A-page 25  
MIC33M656  
means that the master will write information to a  
selected slave. A ‘1’ in this position means that the  
master will read information from the slave. When an  
address is sent, each device in a system compares the  
first seven bits after the Start condition with its address.  
If they match, the device considers itself addressed by  
the master as a slave-receiver or slave-transmitter,  
depending on the R/W bit.  
6.3  
Device Address  
The MIC33M656 device uses a fixed 7-bit address,  
which is set in hardware. This address is ‘0x5B’.  
6.4  
Acknowledge  
The number of data bytes transferred between the Start  
and the Stop conditions, from transmitter to receiver, is  
not limited. Each byte of eight bits is followed by one  
Acknowledge bit. The Acknowledge bit is a high level  
put on the bus by the transmitter, whereas the master  
generates an extra Acknowledge related clock pulse.  
The device that Acknowledges has to pull down the  
SDA line during the Acknowledge clock pulse, so that  
the SDA line is stable low during the high period of the  
Acknowledge related clock pulse; setup and hold times  
must be taken into account.  
A command byte is a data byte which selects a register  
on the device. The Least Significant six bits of the com-  
mand byte determine the address of the register that  
needs to be written.  
The data to port are the 8-bit data that need to be written  
to the selected register. This is followed by the  
Acknowledge from the slave and then the Stop  
condition.  
The Write command is as follows and it is illustrated in  
the timing diagram shown in Figure 6-3:  
A slave receiver, which is addressed, must generate an  
Acknowledge after the reception of each byte.  
1. Send Start sequence.  
Also, a master receiver must generate an Acknowledge  
after the reception of each byte that has been clocked  
out of the slave transmitter, except on the last received  
byte. A master receiver must signal an end of data to  
the transmitter by not generating an Acknowledge on  
the last byte that has been clocked out of the slave  
transmitter. In this event, the transmitter must leave the  
data line high to enable the master to generate a Stop  
condition.  
2. Send 7-bit slave address.  
3. Send the R/W bit – ‘0’ to indicate a write  
operation.  
4. Wait for Acknowledge from the slave.  
5. Send the command byte containing the address  
that needs to be written.  
6. Wait for Acknowledge from the slave.  
7. Receive the 8-bit data from the master and write  
them to the slave register, indicated in Step 5,  
starting from the MSB.  
6.5  
Bus Transactions  
8. Acknowledge from the slave.  
9. Send Stop sequence.  
6.5.1  
SINGLE WRITE  
The first seven bits of the first byte make up the slave  
address. The eighth bit is the LSb (Least Significant  
bit). It determines the direction of the message (R/W).  
A ‘0’ in the least significant position of the first byte  
Note:  
Writing to a non-existing register location  
will have no effect.  
1
2
3
4
5
6
7
8
9
SCL  
Data to port  
DATA 1  
Slave address  
Command byte  
S
0
A
0
0
A
A
P
SDA  
ACK from  
Slave  
START condition  
R/W  
ACK from  
Slave  
ACK from  
Slave  
DATA 1 VALID  
Data out from port  
FIGURE 6-3:  
Single Write Timing Diagram.  
DS20006256A-page 26  
2019 Microchip Technology Inc.  
MIC33M656  
7. Send Start sequence again (Repeated Start  
condition).  
6.5.2  
SINGLE READ  
This reads a single byte from a device, from a  
designated register. The register is specified through  
the command byte.  
8. Send the 7-bit slave address.  
9. Send R/W bit – ‘1’ to indicate a read operation.  
10. Wait for Acknowledge from the slave.  
The Read command is as follows and it is illustrated in  
the timing diagram of Figure 6-4 below.  
11. Receive the 8-bit data from the slave starting  
from MSB.  
1. Send Start sequence.  
12. Acknowledge from the master. On the received  
byte, the master receiver issues a NACK in  
place of an ACK to signal the end of the data  
transfer.  
2. Send 7-bit slave address.  
3. Send the R/W bit – ‘0’ to indicate a write operation.  
4. Wait for Acknowledge from the slave.  
5. Send the register address that needs to be read.  
6. Wait for Acknowledge from the slave.  
13. Send Stop sequence.  
Note:  
Attempts to read from a non-existing  
register location will return all zeros.  
Slave address  
Command byte  
(cont.)  
* * *  
SDA  
S
0
A
A
ACK from  
Slave  
START  
condition  
R/W  
ACK from Slave  
Slave address  
Data from register  
DATA (first byte)  
(cont.)  
* * *  
Sr  
1
A
A
P
(repeated)  
START condition  
STOP  
condition  
R/W  
ACK from Slave  
At this moment master-transmitter becomes master-receiver  
and slave-receiver becomes slave-transmitter  
FIGURE 6-4:  
Single Read Timing Diagram.  
2019 Microchip Technology Inc.  
DS20006256A-page 27  
MIC33M656  
NOTES:  
DS20006256A-page 28  
2019 Microchip Technology Inc.  
MIC33M656  
2
7.0  
REGISTER MAP AND I C  
PROGRAMMABILITY  
The MIC33M656 internal registers are summarized in  
the MIC33M656 Register Map.  
TABLE 7-1:  
Address  
0x00  
MIC33M656 REGISTER MAP  
Register Name  
Control Register (CTRL1)  
TON[1:0]  
ILIM[1:0]  
Output Control Register (CTRL2)  
OT_LATCH PULL_DN  
EN_DELAY[1:0]  
EN_INT  
EN_CON  
0x01  
DIS_100PCT  
FPWM  
SLEW_RATE[3:0]  
0x02  
0x03  
Output Voltage Register (VOUT)  
VO[7:0]  
Status and Fault Register (FAULT)  
OT_WARN  
EN_STAT BOOT_ERR  
SSD  
HICCUP  
OT  
LATCH_OFF  
PG  
REGISTER 7-1:  
CTRL1: CONTROL REGISTER (ADDRESS 0x00)  
R/W-V R/W-V R/W-V R/W-0 R/W-0  
ILIM[1:0] EN_DELAY[1:0]  
R/W-V  
TON[1:0]  
bit 7  
R/W-0  
R/W-0  
EN_CON  
bit 0  
EN_INT  
Legend:  
V = Factory programmed POR value  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-4  
bit 3-2  
TON[1:0]: On Time  
00 = Low frequency  
01 = Medium frequency  
10 = High frequency  
11 = Very high frequency  
ILIM[1:0]: High-Side Peak Current Limit  
00 = 3.5A  
01 = 5A  
10 = 8.5A  
11 = 10A  
EN_DELAY[1:0]: Enable Delay  
00 = 250 µs  
01 = 1 ms  
10 = 2 ms  
11 = 3 ms  
bit 1  
bit 0  
EN_INT: Enable Bit Register Control  
0 = Register controlled  
1 = Enable pin controlled  
EN_CON: Enable Control  
0 = Off  
1 = On  
2019 Microchip Technology Inc.  
DS20006256A-page 29  
MIC33M656  
REGISTER 7-2:  
CTRL2: OUTPUT CONTROL REGISTER (ADDRESS 0x01)  
R/W-0  
DIS_100PCT  
bit 7  
R/W-0  
FPWM  
R/W-V  
R/W-V  
R/W-V  
R/W-V  
R/W-V  
R/W-V  
bit 0  
OT_LATCH  
PULLDN  
SLEW_RATE[3:0]  
Legend:  
V = Factory programmed POR value  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3-0  
DIS_100PCT: Disable 100% Duty Cycle  
0 = 100% DC  
1 = Disable 100% DC  
FPWM: Force PWM  
0 = HLL  
1 = FPWM  
OT_LATCH: Overtemperature Latch  
0 = Latch off immediately  
1 = Latch off after four OT cycles  
PULLDN: Enable/Disable Regulator Pull-Down when Power-Down  
0 = No pull-down  
1 = Pull-down  
SLEW_RATE[3:0]: Step Slew Rate Time in µs/V  
0000 = 200  
0001 = 400  
0010 = 600  
0011 = 800  
0100 = 1000  
0101 = 1200  
0110 = 1400  
0111 = 1600  
1000 = 1800  
1001 = 2000  
1010 = 2200  
1011 = 2400  
1100 = 2600  
1101 = 2800  
1110 = 3000  
1111 = 3200  
DS20006256A-page 30  
2019 Microchip Technology Inc.  
MIC33M656  
REGISTER 7-3:  
VOUT: OUTPUT VOLTAGE CONTROL REGISTER (ADDRESS 0x02)  
R/W-V R/W-V R/W-V R/W-V R/W-V R/W-V  
VO[7:0]  
R/W-V  
R/W-V  
bit 0  
bit 7  
Legend:  
V = Factory programmed POR value  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
VO[7:0]: Output Voltage Control (HAYMP, FAYMP options)  
For codes 0x00 to 0x76: 0.6V.  
0x80 = 0.645  
0x81 = 0.65V  
0x82 = 0.655V  
0x83 = 0.66V  
0x84 = 0.665V  
0x85 = 0.67V  
0x86 = 0.675V  
0x87 = 0.68V  
0x88 = 0.685V  
0x89 = 0.69V  
0x8A = 0.695V  
0x8B = 0.7V  
0xA0 = 0.805V  
0xA1 = 0.81V  
0xA2 = 0.815V  
0xA3 = 0.82V  
0xA4 = 0.825V  
0xA5 = 0.83V  
0xA6 = 0.835V  
0xA7 = 0.84V  
0xA8 = 0.845V  
0xA9 = 0.85V  
0xAA = 0.855V  
0xAB = 0.86V  
0xAC = 0.865V  
0xAD = 0.87V  
0xAE = 0.875V  
0xAF = 0.88V  
0xB0 = 0.885V  
0xB1 = 0.89V  
0xB2 = 0.895V  
0xB3 = 0.9V  
0xC0 = 0.965  
0xC1 = 0.97V  
0xC2 = 0.975V  
0xC3 = 0.98V  
0xC4 = 0.985V  
0xC5 = 0.99V  
0xC6 = 0.995V  
0xC7 = 1V  
0xE0 = 1.125V  
0xE1 = 1.13V  
0xE2 = 1.135V  
0xE3 = 1.14V  
0xE4 = 1.145V  
0xE5 = 1.15V  
0xE6 = 1.155V  
0xE7 = 1.16V  
0xE8 = 1.165V  
0xE9 = 1.17V  
0xEA = 1.175V  
0xEB = 1.18V  
0xEC = 1.185V  
0xED = 1.19V  
0xEE = 1.195V  
0xEF = 1.2V  
0xC8 = 1.005V  
0xC9 = 1.01V  
0xCA = 1.015V  
0xCB = 1.02V  
0xCC = 1.025V  
0xCD = 1.03V  
0xCE = 1.035V  
0xCF = 1.04V  
0xD0 = 1.045V  
0xD1 = 1.05V  
0xD2 = 1.055V  
0xD3 = 1.06V  
0xD4 = 1.065V  
0xD5 = 1.07V  
0xD6 = 1.075V  
0xD7 = 1.08V  
0xD8 = 1.085V  
0xD9 = 1.09V  
0xDA = 1.095V  
0xDB = 1.1V  
0x8C = 0.705V  
0x8D = 0.71V  
0x8E = 0.715V  
0x8F = 0.72V  
0x90 = 0.725V  
0x91 = 0.73V  
0x92 = 0.735V  
0x93 = 0.74V  
0x94 = 0.745V  
0x95 = 0.75V  
0x96 = 0.755V  
0x97 = 0.76V  
0x98 = 0.765V  
0x99 = 0.77V  
0x9A = 0.775V  
0x9B = 0.78V  
0x9C = 0.785V  
0x9D = 0.79V  
0x9E = 0.795V  
0x9F = 0.8V  
0xF0 = 1.205V  
0xF1 = 1.21V  
0xF2 = 1.215V  
0xF3 = 1.22V  
0xF4 = 1.225V  
0xF5 = 1.23V  
0xF6 = 1.235V  
0xF7 = 1.24V  
0xF8 = 1.245V  
0xF9 = 1.25V  
0xFA = 1.255V  
0xFB = 1.26V  
0xFC = 1.265V  
0xFD = 1.27V  
0xFE = 1.275V  
0xFF = 1.28V  
0xB4 = 0.905V  
0xB5 = 0.91V  
0xB6 = 0.915V  
0xB7 = 0.92V  
0xB8 = 0.925V  
0xB9 = 0.93V  
0xBA = 0.935V  
0xBB = 0.94V  
0xBC = 0.945V  
0xBD = 0.95V  
0xBE = 0.955V  
0xBF = 0.96V  
0x77 = 0.6V  
0x78 = 0.605V  
0x79 = 0.61V  
0x7A = 0.615V  
0x7B = 0.62V  
0x7C = 0.625V  
0x7D = 0.63V  
0x7E = 0.635V  
0x7F = 0.64V  
0xDC = 1.105V  
0xDD = 1.11V  
0xDE = 1.115V  
0xDF = 1.12V  
2019 Microchip Technology Inc.  
DS20006256A-page 31  
MIC33M656  
REGISTER 7-3:  
VOUT: OUTPUT VOLTAGE CONTROL REGISTER (ADDRESS 0x02) (CONTINUED)  
bit 7-0  
VO[7:0]: Output Voltage Control (SAYMP option)  
For codes 0x00 to 0x3B: 0.6V.  
0x40 = 0.65V 0x60 = 0.97V 0x80 = 1.3V  
0xA0 = 1.94V 0xC0 = 2.58V 0xE0 = 3.22V  
0xE1 = 3.24V  
0x42 = 0.67V 0x62 = 0.99V 0x82 = 1.34V 0xA2 = 1.98V 0xC2 = 2.62V 0xE2 = 3.26V  
0x43 = 0.68V 0x63 = 1V 0x83 = 1.36V 0xA3 = 2V 0xC3 = 2.64V 0xE3 = 3.28V  
0x44 = 0.69V 0x64 = 1.01V 0x84 = 1.38V 0xA4 = 2.02V 0xC4 = 2.66V 0xE4 = 3.3V  
0x45 = 0.7V 0x65 = 1.02V 0x85 = 1.4V 0xA5 = 2.04V 0xC5 = 2.68V 0xE5 = 3.32V  
0x46 = 0.71V 0x66 = 1.03V 0x86 = 1.42V 0xA6 = 2.06V 0xC6 = 2.7V 0xE6 = 3.34V  
0x47 = 0.72V 0x67 = 1.04V 0x87 = 1.44V 0xA7 = 2.08V 0xC7 = 2.72V 0xE7 = 3.36V  
0x48 = 0.73V 0x68 = 1.05V 0x88 = 1.46V 0xA8 = 2.1V 0xC8 = 2.74V 0xE8 = 3.38V  
0x41 = 0.66V 0x61 = 0.98V 0x81 = 1.32V 0xA1 = 1.96V 0xC1 = 2.6V  
0x49 = 0.74V 0x69 = 1.06V 0x89 = 1.48V 0xA9 = 2.12V 0xC9 = 2.76V 0xE9 = 3.4V  
0x4A = 0.75V 0x6A = 1.07V 0x8A = 1.5V 0xAA = 2.14V 0xCA = 2.78V 0xEA = 3.42V  
0x4B = 0.76V 0x6B = 1.08V 0x8B = 1.52V 0xAB = 2.16V 0xCB = 2.8V 0xEB = 3.44V  
0x4C = 0.77V 0x6C = 1.09V 0x8C = 1.54V 0xAC = 2.18V 0xCC = 2.82V 0xEC = 3.46V  
0x4D = 0.78V 0x6D = 1.1V 0x8D = 1.56V 0xAD = 2.2V 0xCD = 2.84V 0xED = 3.48V  
0x4E = 0.79V 0x6E = 1.11V 0x8E = 1.58V 0xAE = 2.22V 0xCE = 2.86V 0xEE = 3.5V  
0x4F = 0.8V  
0x50 = 0.81V 0x70 = 1.13V 0x90 = 1.62V 0xB0 = 2.26V 0xD0 = 2.9V  
0x51 = 0.82V 0x71 = 1.14V 0x91 = 1.64V 0xB1 = 2.28V 0xD1 = 2.92V 0xF1 = 3.56V  
0x52 = 0.83V 0x72 = 1.15V 0x92 = 1.66V 0xB2 = 2.3V 0xD2 = 2.94V 0xF2 = 3.58V  
0x53 = 0.84V 0x73 = 1.16V 0x93 = 1.68V 0xB3 = 2.32V 0xD3 = 2.96V 0xF3 = 3.6V  
0x54 = 0.85V 0x74 = 1.17V 0x94 = 1.7V 0xB4 = 2.34V 0xD4 = 2.98V 0xF4 = 3.62V  
0x55 = 0.86V 0x75 = 1.18V 0x95 = 1.72V 0xB5 = 2.36V 0xD5 = 3V 0xF5 = 3.64V  
0x56 = 0.87V 0x76 = 1.19V 0x96 = 1.74V 0xB6 = 2.38V 0xD6 = 3.02V 0xF6 = 3.66V  
0x57 = 0.88V 0x77 = 1.2V 0x97 = 1.76V 0xB7 = 2.4V 0xD7 = 3.04V 0xF7 = 3.68V  
0x58 = 0.89V 0x78 = 1.21V 0x98 = 1.78V 0xB8 = 2.42V 0xD8 = 3.06V 0xF8 = 3.7V  
0x59 = 0.9V 0x79 = 1.22V 0x99 = 1.8V 0xB9 = 2.44V 0xD9 = 3.08V 0xF9 = 3.72V  
0x6F = 1.12V 0x8F = 1.6V 0xAF = 2.24V 0xCF = 2.88V 0xEF = 3.52V  
0xF0 = 3.54V  
0x5A = 0.91V 0x7A = 1.23V 0x9A = 1.82V 0xBA = 2.46V 0xDA = 3.1V 0xFA = 3.74V  
0x5B = 0.92V 0x7B = 1.24V 0x9B = 1.84V 0xBB = 2.48V 0xDB = 3.12V 0xFB = 3.76V  
0x3B = 0.6V  
0x3C = 0.61V 0x5C = 0.93V 0x7C = 1.25V 0x9C = 1.86V 0xBC = 2.5V 0xDC = 3.14V 0xFC = 3.78V  
0x3D = 0.62V 0x5D = 0.94V 0x7D = 1.26V 0x9D = 1.88V 0xBD = 2.52V 0xDD = 3.16V 0xFD = 3.8V  
0x3E = 0.63V 0x5E = 0.95V 0x7E = 1.27V 0x9E = 1.9V 0xBE = 2.54V 0xDE = 3.18V 0xFE = 3.82V  
0x3F = 0.64V 0x5F = 0.96V 0x7F = 1.28V 0x9F = 1.92V 0xBF = 2.56V 0xDF = 3.2V 0xFF = 3.84V  
DS20006256A-page 32  
2019 Microchip Technology Inc.  
MIC33M656  
REGISTER 7-4:  
FAULT: STATUS AND FAULT REGISTER (ADDRESS 0x03)  
R-0  
OT_WARN  
bit 7  
R-0  
R-0  
R-0  
R-0  
R-0  
OT  
R-0  
R-0  
PG  
EN_STAT  
BOOT_ERR  
SSD  
HICCUP  
LATCH_OFF  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
OT_WARN: Overtemperature Warning  
0 = No Fault  
1 = Fault  
EN_STAT: Buck On/Off Control  
0 = Off  
1 = On  
BOOT_ERR: Boot-up Error  
0 = No Fault  
1 = Fault  
SSD: Soft Start Done  
0 = Ramp not done  
1 = Ramp done  
HICCUP: Current Limit Hiccup  
0 = Not in Hiccup mode  
1 = In Hiccup mode  
OT: Overtemperature  
0 = No Fault  
1 = Fault  
LATCH_OFF: Overcurrent or Overtemperature Fault Latch-Off  
0 = No Fault  
1 = Fault (device is latched off)  
PG: Power Good  
0 = Power not good  
1 = Power good  
2019 Microchip Technology Inc.  
DS20006256A-page 33  
MIC33M656  
NOTES:  
DS20006256A-page 34  
2019 Microchip Technology Inc.  
MIC33M656  
8.0  
8.1  
PACKAGING INFORMATION  
Package Marking Information  
53-Lead B1QFN  
Example  
XXXXX  
MIC  
33M656  
XXXXXXXXX  
XXXXXXXXX  
FAY-TR  
5256  
WNNN  
PIN 1  
PIN 1  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2019 Microchip Technology Inc.  
DS20006256A-page 35  
MIC33M656  
53-Lead Very Thick Plastic Quad Flat, No Lead Package (QDA) - 6x10x3.05 mm Body  
[B1QFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
53X  
0.08 C  
0.10 C  
D
A
NOTE 1  
B
E
53  
1
2
(DATUM B)  
(DATUM A)  
2X  
0.05 C  
2X  
TOP VIEW  
0.05 C  
A1  
0.10  
C A B  
(A3)  
D2  
A
2X K6  
D3  
C
2X K1  
SEATING  
PLANE  
D2  
3X K2  
20  
27  
SIDE VIEW  
19  
28  
0.10  
C A B  
K5  
E2  
E3  
E6  
E5  
K3  
2
1
E4  
46  
K4  
NOTE 1  
53  
47  
D4  
53X b  
0.10  
0.05  
C A B  
C
e
BOTTOM VIEW  
Microchip Technology Drawing C04-1272 Rev B Sheet 1 of 2  
DS20006256A-page 36  
2019 Microchip Technology Inc.  
MIC33M656  
53-Lead Very Thick Plastic Quad Flat, No Lead Package (QDA) - 6x10x3.05 mm Body  
[B1QFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Units  
Dimension Limits  
MILLIMETERS  
NOM  
MIN  
MAX  
Number of Terminals  
Pitch  
Overall Height  
Standoff  
Terminal Thickness  
Overall Length  
N
53  
0.50 BSC  
3.00  
e
A
2.95  
0.00  
3.05  
0.05  
A1  
A3  
D
D2  
D3  
D4  
E
E2  
E3  
E4  
E5  
E6  
K1  
K2  
K3  
K4  
K5  
K6  
b
0.02  
0.203 REF  
6.00 BSC  
1.275  
0.65  
Exposed Pad Length  
Exposed Pad Length  
Exposed Pad Length  
Overall Width  
Exposed Pad Width  
Exposed Pad Width  
Exposed Pad Width  
Exposed Pad Width  
Exposed Pad Width  
Package Edge to Exposed Pad  
Package Edge to Exposed Pad  
Exposed Pad to Exposed Pad  
Exposed Pad to Exposed Pad  
Exposed Pad to Exposed Pad  
Exposed Pad to Exposed Pad  
Terminal Width  
1.225  
0.60  
0.55  
1.325  
0.70  
0.65  
0.60  
10.00 BSC  
4.525  
1.625  
0.50  
0.65  
6.623  
0.90  
4.475  
1.575  
0.45  
0.60  
6.573  
0.85  
0.85  
1.90  
0.45  
0.45  
0.45  
0.20  
0.45  
4.575  
1.675  
0.55  
0.70  
6.673  
0.95  
0.95  
2.00  
0.55  
0.55  
0.55  
0.30  
0.55  
0.90  
1.95  
0.50  
0.50  
0.50  
0.25  
0.50  
Terminal Length  
L
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package is saw singulated  
3. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-1272 Rev B Sheet 2 of 2  
2019 Microchip Technology Inc.  
DS20006256A-page 37  
MIC33M656  
53-Lead Very Thick Plastic Quad Flat, No Lead Package (QDA) - 6x10x3.05 mm Body  
[B1QFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
C1  
X2  
X4  
G1  
53  
47  
G2  
1
2
46  
G7  
Y6  
Y2  
G3  
ØV  
Y5  
C2  
G4  
Y4  
Y3  
G5  
EV  
19  
28  
Y1  
20  
27  
G6  
X1  
SILK SCREEN  
X3  
E
Microchip Technology Drawing C04-3272 Rev B Sheet 1 of 2  
DS20006256A-page 38  
2019 Microchip Technology Inc.  
MIC33M656  
53-Lead Very Thick Plastic Quad Flat, No Lead Package (QDA) - 6x10x3.05 mm Body  
[B1QFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
RECOMMENDED LAND PATTERN  
Units  
Dimension Limits  
MILLIMETERS  
NOM  
MIN  
MAX  
Contact Pitch  
E
0.50 BSC  
5.68  
9.68  
Contact Pad Spacing  
Contact Pad Spacing  
Contact Pad Width (X53)  
C1  
C2  
X1  
0.30  
1.02  
0.65  
1.68  
1.33  
4.58  
0.70  
6.62  
0.70  
0.55  
Contact Pad Length (X53)  
Center Pad Width  
Center Pad Length  
Center Pad Width (X4)  
Center Pad Length (X2)  
Center Pad Width  
Center Pad Length  
Center Pad Length  
Center Pad Length  
Contact Pad to Center Pad (X2)  
Contact Pad to Contact Pad (X48)  
Contact Pad to Center Pad  
Contact Pad to Center Pad  
Contact Pad to Center Pad  
Contact Pad to Center Pad  
Contact Pad to Center Pad  
Thermal Via Diameter  
Thermal Via Pitch (X12)  
Y1  
X2  
Y2  
X3  
Y3  
X4  
Y4  
Y5  
Y6  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
V
0.45  
0.20  
0.45  
0.45  
0.20  
0.20  
0.30  
0.33  
1.20  
EV  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during  
reflow process  
3. Thermal vias are centered within each exposed pad.  
Microchip Technology Drawing C04-3272 Rev B Sheet 2 of 2  
2019 Microchip Technology Inc.  
DS20006256A-page 39  
MIC33M656  
NOTES:  
DS20006256A-page 40  
2019 Microchip Technology Inc.  
MIC33M656  
APPENDIX A: REVISION HISTORY  
Revision A (September 2019)  
• Initial release of this Data Sheet.  
2019 Microchip Technology Inc.  
DS20006256A-page 41  
MIC33M656  
NOTES:  
DS20006256A-page 42  
2019 Microchip Technology Inc.  
MIC33M656  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
XX  
X
PART NO.  
Device  
XX  
Examples:  
Package  
Temperature  
Range  
Tape and Reel  
Option  
a) MIC33M656-FAYMP-TR: 0.9V Output, -40C to +125C  
Temperature Range,  
53-Lead B1QFN Package,  
Tape and Reel  
b) MIC33M656-HAYMP-TR: 1.0V Output, -40C to +125C  
Temperature Range,  
Device:  
MIC33M656: 6A, Power Module Buck Converter with  
HyperLight Load® and I2C Interface  
53-Lead B1QFN Package,  
Tape and Reel  
c) MIC33M656-SAYMP-TR: 1.0V Output, -40C to +125C  
Temperature Range,  
Output Voltage FA = 0.9V  
Option:  
HA = 1.0V  
53-Lead B1QFN Package,  
Tape and Reel  
SA = 1.0V, with 10 mV or 20 mV resolution  
Junction  
Temperature  
Range:  
Y
= -40C to +125C  
Package:  
MP = 53 Lead 6 mm x 10 mm x 3 mm Very Thick  
Plastic Quad Flat, No Lead (B1QFN)  
Note 1: Tape and Reel identifier only appears in the catalog  
part number description. This identifier is used for  
ordering purposes and is not printed on the device  
package. Check with Microchip for package  
Tape and Reel  
Option:  
TR = Tape and Reel(1)  
availability with the Tape and Reel option.  
2019 Microchip Technology Inc.  
DS20006256A-page 43  
MIC33M656  
NOTES:  
DS20006256A-page 44  
2019 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, Adaptec,  
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT,  
chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex,  
flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck,  
LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi,  
Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer,  
PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire,  
Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST,  
SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,  
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA  
are registered trademarks of Microchip Technology Incorporated in  
the U.S.A. and other countries.  
APT, ClockWorks, The Embedded Control Solutions Company,  
EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load,  
IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision  
Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire,  
SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,  
TimePictra, TimeProvider, Vite, WinPath, and ZL are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard,  
CryptoAuthentication, CryptoAutomotive, CryptoCompanion,  
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average  
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial  
Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker,  
KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,  
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,  
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,  
PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple  
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,  
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,  
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and  
ZENA are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
The Adaptec logo, Frequency on Demand, Silicon Storage  
Technology, and Symmcom are registered trademarks of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology Germany  
II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in  
other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2019, Microchip Technology Incorporated, All Rights Reserved.  
ISBN: 978-1-5224-5073-3  
For information regarding Microchip’s Quality Management Systems,  
please visit www.microchip.com/quality.  
2019 Microchip Technology Inc.  
DS20006256A-page 45  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Australia - Sydney  
Tel: 61-2-9868-6733  
India - Bangalore  
Tel: 91-80-3090-4444  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
China - Beijing  
Tel: 86-10-8569-7000  
India - New Delhi  
Tel: 91-11-4160-8631  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8665-5511  
India - Pune  
Tel: 91-20-4121-0141  
Finland - Espoo  
Tel: 358-9-4520-820  
China - Chongqing  
Tel: 86-23-8980-9588  
Japan - Osaka  
Tel: 81-6-6152-7160  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
China - Dongguan  
Tel: 86-769-8702-9880  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Guangzhou  
Tel: 86-20-8755-8029  
Korea - Daegu  
Tel: 82-53-744-4301  
Germany - Garching  
Tel: 49-8931-9700  
China - Hangzhou  
Tel: 86-571-8792-8115  
Korea - Seoul  
Tel: 82-2-554-7200  
Germany - Haan  
Tel: 49-2129-3766400  
Austin, TX  
Tel: 512-257-3370  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Malaysia - Kuala Lumpur  
Tel: 60-3-7651-7906  
Germany - Heilbronn  
Tel: 49-7131-72400  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
China - Nanjing  
Tel: 86-25-8473-2460  
Malaysia - Penang  
Tel: 60-4-227-8870  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Qingdao  
Philippines - Manila  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-532-8502-7355  
Tel: 63-2-634-9065  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shanghai  
Tel: 86-21-3326-8000  
Singapore  
Tel: 65-6334-8870  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Shenyang  
Tel: 86-24-2334-2829  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Shenzhen  
Tel: 86-755-8864-2200  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Suzhou  
Tel: 86-186-6233-1526  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Wuhan  
Tel: 86-27-5980-5300  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Italy - Padova  
Tel: 39-049-7625286  
Houston, TX  
Tel: 281-894-5983  
China - Xian  
Tel: 86-29-8833-7252  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
China - Xiamen  
Tel: 86-592-2388138  
Norway - Trondheim  
Tel: 47-7288-4388  
China - Zhuhai  
Tel: 86-756-3210040  
Poland - Warsaw  
Tel: 48-22-3325737  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
DS20006256A-page 46  
2019 Microchip Technology Inc.  
05/14/19  

相关型号:

MIC3490-1.8YM5

Fixed Positive LDO Regulator
MICROCHIP

MIC3490-1.8YM5-TR

Fixed Positive LDO Regulator, 1.8V, 0.45V Dropout, PDSO5
MICROCHIP

MIC3490-2.5YM5

Fixed Positive LDO Regulator
MICROCHIP

MIC3490-2.5YM5-TR

Fixed Positive LDO Regulator, 2.5V, 0.45V Dropout, PDSO5
MICROCHIP

MIC3490-3.0YM5

Fixed Positive LDO Regulator
MICROCHIP

MIC3490-3.0YM5-TR

Fixed Positive LDO Regulator, 3V, 0.45V Dropout, PDSO5
MICROCHIP

MIC3490-3.3YM5

Fixed Positive LDO Regulator
MICROCHIP

MIC3490-3.3YM5-TR

Fixed Positive LDO Regulator, 3.3V, 0.45V Dropout, PDSO5
MICROCHIP

MIC3490-5.0YM5

Fixed Positive LDO Regulator
MICROCHIP

MIC35152

1.5A, Low Voltage μCap LDO Regulator
MICREL

MIC35152WD

1.5A, Low Voltage μCap LDO Regulator
MICREL

MIC35302

3A, Low Voltage μCap LDO Regulator
MICREL