MIC5219-3.6YMM [MICROCHIP]

3.6V FIXED POSITIVE LDO REGULATOR, 0.6V DROPOUT, PDSO8;
MIC5219-3.6YMM
型号: MIC5219-3.6YMM
厂家: MICROCHIP    MICROCHIP
描述:

3.6V FIXED POSITIVE LDO REGULATOR, 0.6V DROPOUT, PDSO8

光电二极管 输出元件 调节器
文件: 总14页 (文件大小:371K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC5219  
500mA-Peak Output LDO Regulator  
General Description  
Features  
The MIC5219 is an efficient linear voltage regulator with high  
peak output current capability, very-low-dropout voltage, and  
better than 1% output voltage accuracy. Dropout is typically  
10mV at light loads and less than 500mV at full load.  
• 500mA output current capability  
SOT-23-5 package - 500mA peak  
®
2mm×2mm MLF package - 500mA continuous  
®
2mm×2mm Thin MLF package - 500mA  
continuous  
TheMIC5219isdesignedtoprovideapeakoutputcurrentfor  
start-upconditionswherehigherinrushcurrentisdemanded.  
It features a 500mA peak output rating. Continuous output  
current is limited only by package and layout.  
MSOP-8 package - 500mA continuous  
• Low 500mV maximum dropout voltage at full load  
• Extremely tight load and line regulation  
• Tiny SOT-23-5 and MM8™ power MSOP-8 package  
• Ultra-low-noise output  
• Low temperature coefficient  
• Current and thermal limiting  
• Reversed-battery protection  
• CMOS/TTL-compatible enable/shutdown control  
• Near-zero shutdown current  
The MIC5219 can be enabled or shut down by a CMOS or  
TTL compatible signal. When disabled, power consumption  
drops nearly to zero. Dropout ground current is minimized to  
helpprolongbatterylife.Otherkeyfeaturesincludereversed-  
batteryprotection,currentlimiting,overtemperatureshutdown,  
and low noise performance with an ultra-low-noise option.  
The MIC5219 is available in adjustable or fixed output volt-  
®
Applications  
• Laptop, notebook, and palmtop computers  
• Cellular telephones and battery-powered equipment  
• Consumer and personal electronics  
ages in the space-saving 6-pin (2mm × 2mm) MLF , 6-pin  
®
®
(2mm × 2mm) Thin MLF SOT-23-5 and MM8 8-pin power  
MSOP packages. For higher power requirements see the  
MIC5209 or MIC5237.  
• PC Card V and V regulation and switching  
• SMPS post-regulator/DC-to-DC modules  
• High-efficiency linear power supplies  
All support documentation can be found on Micrel’s web site  
at www.micrel.com.  
CC  
PP  
Typical Applications  
MIC5219-5.0BMM  
1
2
3
4
8
7
6
5
ENABLE  
SHUTDOWN  
MIC5219-3.3BM5  
VIN 6V  
VOUT5V  
1
2
3
5
VIN 4V  
VOUT3.3V  
2.2µF  
tantalum  
4
ENABLE  
SHUTDOWN  
2.2µF  
tantalum  
470pF  
470pF  
5V Ultra-Low-Noise Regulator  
3.3V Ultra-Low-Noise Regulator  
VOUT  
VOUT  
COUT  
VIN  
EN  
VIN  
EN  
MIC5219YMT  
MIC5219-x.xYML  
+
ENABLE  
SHUTDOWN  
ENABLE  
SHUTDOWN  
R1  
R2  
6
1
6
5
4
1
2
3
CBYP  
(optional)  
2.2µF  
5
4
2
3
470pF  
Ultra-Low-Noise Regulator (Adjustable)  
Ultra-Low-Noise Regulator (Fixed)  
MM8 is a registered trademark of Micrel, Inc.  
MicroLeadFrame and MLF are registered trademarks of Amkor Technology, Inc..  
Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
June 2009  
1
M0371-061809  
Micrel, Inc.  
MIC5219  
Ordering Information  
Part Number  
Marking  
Standard  
Pb-Free  
Standard  
Pb-Free*  
Volts  
2.5V  
2.85V  
3.0V  
3.3V  
3.6V  
5.0V  
Adj.  
Temp. Range  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
Package  
MIC5219-2.5BMM  
MIC5219-2.85BMM  
MIC5219-3.0BMM  
MIC5219-3.3BMM  
MIC5219-3.6BMM  
MIC5219-5.0BMM  
MIC5219BMM  
MIC5219-2.5YMM  
MIC5219-2.85YMM  
MIC5219-3.0YMM  
MIC5219-3.3YMM  
MIC5219-3.6YMM  
MIC5219-5.0YMM  
MIC5219YMM  
MSOP-8  
MSOP-8  
MSOP-8  
MSOP-8  
MSOP-8  
MSOP-8  
MSOP-8  
MIC5219-2.5BM5  
MIC5219-2.6BM5  
MIC5219-2.7BM5  
MIC5219-2.8BM5  
MIC5219-2.8BML  
MIC5219-2.85BM5  
MIC5219-2.9BM5  
MIC5219-3.1BM5  
MIC5219-3.0BM5  
MIC5219-3.0BML  
MIC5219-3.3BM5  
MIC5219-3.3BML  
MIC5219-3.6BM5  
MIC5219-5.0BM5  
MIC5219BM5  
MIC5219-2.5YM5  
MIC5219-2.6YM5  
MIC5219-2.7YM5  
MIC5219-2.8YM5  
MIC5219-2.8YML  
MIC5219-2.85YM5  
MIC5219-2.9YM5  
MIC5219-3.1YM5  
MIC5219-3.0YM5  
MIC5219-3.0YML  
MIC5219-3.3YM5  
MIC5219-3.3YML  
MIC5219-3.6YM5  
MIC5219-5.0YM5  
MIC5219YM5  
LG25  
LG26  
LG27  
LG28  
G28  
LG2J  
LG29  
LG31  
LG30  
G30  
LG33  
G33  
LG36  
LG50  
LGAA  
LG25  
LG26  
LG27  
LG28  
G28  
LG2J  
LG29  
LG31  
LG30  
G30  
LG33  
G33  
LG36  
LG50  
LGAA  
GAA  
G50  
2.5V  
2.6V  
2.7V  
2.8V  
2.8V  
2.85V  
2.9V  
3.1V  
3.0V  
3.0V  
3.3V  
3.3V  
3.6V  
5.0V  
Adj.  
SOT-23-5  
SOT-23-5  
SOT-23-5  
SOT-23-5  
6-Pin 2×2 MLF®  
SOT-23-5  
SOT-23-5  
SOT-23-5  
SOT-23-5  
6-Pin 2×2 MLF®  
SOT-23-5  
6-Pin 2×2 MLF®  
SOT-23-5  
SOT-23-5  
SOT-23-5  
MIC5219YMT  
Adj.  
–40°C to +125°C 6-Pin 2x2 Thin MLF®**  
–40°C to +125°C 6-Pin 2x2 Thin MLF®**  
MIC5219-5.0YMT  
5.0V  
Other voltages available. Consult Micrel for details.  
* Over/underbar may not be to scale. ** Pin 1 identifier = ▲.  
Pin Configuration  
EN  
IN  
GND  
GND  
GND  
GND  
1
2
3
4
8
7
6
5
EN GND IN  
3
2
1
6
BYP  
EN  
GND  
IN  
1
2
3
LGxx  
5
4
NC  
OUT  
BYP  
4
5
OUT  
BYP  
OUT  
®
MIC5219-x.xBML  
MIC5219-x.xBM5 / SOT-23-5  
Fixed Voltages  
MIC5219-x.xBMM / MM8 / MSOP-8  
Fixed Voltages  
®
6-Pin 2mm × 2mm MLF (ML)  
(Top View)  
(Top View)  
(Top View)  
EN  
IN  
GND  
GND  
GND  
GND  
EN GND IN  
1
2
3
4
8
7
6
5
3
2
1
6
5
4
NC  
Part  
EN  
GND  
IN  
1
2
3
Identification  
LGAA  
OUT  
BYP  
ADJ  
OUT  
4
5
ADJ  
OUT  
MIC5219BM5 / SOT-23-5  
Adjustable Voltage  
(Top View)  
MIC5219YMT  
MIC5219YMM / MIC5219BMM  
®
®
6-Pin 2mm × 2mm Thin MLF (MT)  
MM8 MSOP-8  
Adjustable Voltage  
(Top View)  
(Top View)  
June 2009  
2
M0371-061809  
Micrel, Inc.  
MIC5219  
Pin Description  
Pin No.  
Pin No.  
Pin No.  
Pin Name  
Pin Function  
MLF-6  
MSOP-8  
SOT-23-5  
TMLF-6  
3
2
4
1
2
5–8  
3
1
2
5
3
IN  
Supply Input.  
GND  
OUT  
EN  
Ground: MSOP-8 pins 5 through 8 are internally connected.  
Regulator Output.  
1
Enable (Input): CMOS compatible control input. Logic high = enable; logic  
low or open = shutdown.  
6
4 (fixed)  
4 (fixed)  
BYP  
Reference Bypass: Connect external 470pF capacitor to GND to reduce  
output noise. May be left open.  
5(NC)  
EP  
4 (adj.)  
4 (adj.)  
ADJ  
Adjust (Input): Feedback input. Connect to resistive voltage-divider network.  
GND  
Ground: Internally connected to the exposed pad. Connect externally to  
GND pin.  
June 2009  
3
M0371-061809  
Micrel, Inc.  
MIC5219  
Absolute Maximum Ratings(1)  
Operating Ratings(2)  
Supply Input Voltage (V )..............................–20V to +20V  
Supply Input Voltage (V )............................ +2.5V to +12V  
IN  
IN  
Power Dissipation (P )............................. Internally Limited  
Enable Input Voltage (V )....................................0V to V  
D
EN  
IN  
Junction Temperature (T )........................ –40°C to +125°C  
Junction Temperature (T )........................ –40°C to +125°C  
J
J
Storage Temperature (T ) ........................ –65°C to +150°C  
Package Thermal Resistance........................... see Table 1  
S
Lead Temperature (Soldering, 5 sec.) ....................... 260°C  
Electrical Characteristics(3)  
VIN = VOUT + 1.0V; COUT = 4.7µF, IOUT = 100µA; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +125°C; unless noted.  
Symbol  
Parameter  
Conditions  
Min Typical Max  
Units  
VOUT  
Output Voltage Accuracy  
variation from nominal VOUT  
–1  
–2  
1
2
%
%
ΔVOUT/ΔT  
ppm/°C  
Output Voltage  
Note 4  
40  
Temperature Coefficient  
ΔVOUT/VOUT Line Regulation  
VIN = VOUT + 1V to 12V  
IOUT = 100µA to 500mA, Note 5  
IOUT = 100µA  
0.009  
0.05  
10  
0.05  
0.1  
%/V  
%
ΔVOUT/VOUT Load Regulation  
0.5  
0.7  
VIN – VOUT  
Dropout Voltage(6)  
60  
80  
mV  
mV  
mV  
mV  
µA  
IOUT = 50mA  
115  
175  
350  
80  
175  
250  
IOUT = 150mA  
300  
400  
IOUT = 500mA  
500  
600  
IGND  
Ground Pin Current(7, 8)  
VEN ≥ 3.0V, IOUT = 100µA  
VEN ≥ 3.0V, IOUT = 50mA  
VEN ≥ 3.0V, IOUT = 150mA  
VEN ≥ 3.0V, IOUT = 500mA  
130  
170  
350  
1.8  
650  
900  
µA  
2.5  
3.0  
mA  
mA  
12  
20  
25  
Ground Pin Quiescent Current(8)  
VEN ≤ 0.4V  
0.05  
0.10  
75  
3
µA  
µA  
dB  
mA  
VEN ≤ 0.18V  
8
PSRR  
ILIMIT  
Ripple Rejection  
Current Limit  
f = 120Hz  
VOUT = 0V  
700  
0.05  
500  
300  
1000  
ΔVOUT/ΔPD  
eno  
Thermal Regulation  
Output Noise(10)  
Note 9  
%/W  
nV/ Hz  
IOUT = 50mA, COUT = 2.2µF, CBYP = 0  
IOUT = 50mA, COUT = 2.2µF, CBYP = 470pF  
nV/ Hz  
ENABLE Input  
VENL  
Enable Input Logic-Low Voltage  
VEN = logic low (regulator shutdown)  
0.4  
0.18  
V
VEN = logic high (regulator enabled)  
VENL ≤ 0.4V  
2.0  
2
V
IENL  
IENH  
Enable Input Current  
0.01  
0.01  
5
–1  
µA  
µA  
µA  
VENL ≤ 0.18V  
–2  
VENH ≥ 2.0V  
20  
25  
June 2009  
4
M0371-061809  
Micrel, Inc.  
MIC5219  
Notes:  
1. Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating  
the device outside of its operating ratings. The maximum allowable power dissipation is a function of the maximum junction temperature, T (max),  
J
the junction-to-ambient thermal resistance, θ , and the ambient temperature, T . The maximum allowable power dissipation at any ambient  
JA  
A
temperature is calculated using: P (max) = (T (max) – T ) ÷ θ . Exceeding the maximum allowable power dissipation will result in excessive die  
D
J
A
JA  
temperature, and the regulator will go into thermal shutdown. See Table 1 and the “Thermal Considerations” section for details.  
2. The device is not guaranteed to function outside its operating rating.  
3. Specification for packaged product only.  
4. Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.  
5. Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range  
from 100µA to 500mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.  
6. Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differen-  
tial.  
7. Ground pin current is the regulator quiescent current plus pass transistor base current. The total current drawn from the supply is the sum of the load  
current plus the ground pin current.  
8.  
V
is the voltage externally applied to devices with the EN (enable) input pin.  
EN  
9. Thermal regulation is defined as the change in output voltage at a time “t” after a change in power dissipation is applied, excluding load or line regu-  
lation effects. Specifications are for a 500mA load pulse at V = 12V for t = 10ms.  
IN  
10. C  
is an optional, external bypass capacitor connected to devices with a BYP (bypass) or ADJ (adjust) pin.  
BYP  
June 2009  
5
M0371-061809  
Micrel, Inc.  
MIC5219  
Typical Characteristics  
Power Supply  
Rejection Ratio  
Power Supply  
Rejection Ratio  
Power Supply  
Rejection Ratio  
0
0
-20  
0
-20  
VIN = 6V  
VOUT = 5V  
VIN = 6V  
VOUT = 5V  
VIN = 6V  
VOUT = 5V  
-20  
-40  
-60  
-40  
-40  
-60  
-60  
IOUT = 100mA  
C OUT = 1µF  
-80  
-80  
-80  
IOUT = 100µA  
C OUT = 1µF  
IOUT = 1mA  
C OUT = 1µF  
-100  
-100  
-100  
1k  
1k  
1k  
10k  
1M 10M  
10k  
1M 10M  
10k  
1M 10M  
100k  
10 100  
100k  
10 100  
100k  
10 100  
1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 E+7  
FREQUENCY (Hz)  
1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 E+7  
FREQUENCY (Hz)  
1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 E+7  
FREQUENCY (Hz)  
Power Supply  
Power Supply  
Power Supply Ripple Rejection  
Rejection Ratio  
Rejection Ratio  
vs. Voltage Drop  
0
0
60  
VIN = 6V  
VIN = 6V  
50  
VOUT = 5V  
VOUT = 5V  
-20  
-20  
1mA  
40  
-40  
-60  
-40  
-60  
30  
20  
10  
0
10mA  
IOUT = 100mA  
IOUT = 1mA  
C OUT = 2.2µF  
C BYP = 0.01µF  
IOUT = 100µA  
C OUT = 2.2µF  
C BYP = 0.01µF  
-80  
-80  
C OUT = 1µF  
0.3 0.4  
-100  
-100  
1k  
1k  
10k  
1M 10M  
10k  
1M 10M  
100k  
10 100  
100k  
10 100  
1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 E+7  
FREQUENCY (Hz)  
1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 E+7  
FREQUENCY (Hz)  
0
0.1  
0.2  
VOLTAGE DROP (V)  
Power Supply Ripple Rejection  
vs. Voltage Drop  
Noise Performance  
10  
Noise Performance  
100  
10  
1
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10mA, C  
= 1µF  
OUT  
1
0.1  
1mA  
100mA  
10mA  
0.1  
IOUT = 100mA  
10mA  
0.01  
0.01  
0.001  
0.0001  
VOUT = 5V  
1mA  
C OUT = 2.2µF  
C BYP = 0.01µF  
0.001  
0.0001  
C OUT = 10µF  
electrolytic  
VOUT = 5V  
10  
1E+1 1E+2 1E1+k3 1E+4 1E+5 1E+6 1E+7  
100 10k 100k 1M 10M  
1k  
0
0.1  
0.2  
0.3  
0.4  
10  
10k 100k 1M 10M  
1E+1 11E0+02 1E+3 1E+4 E+5 1E+6 1E+7  
FREQUENCY (Hz)  
VOLTAGE DROP (V)  
FREQUENCY (Hz)  
Dropout Voltage  
vs. Output Current  
Dropout Characteristics  
Noise Performance  
10  
1
400  
300  
200  
100  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
I
=100µA  
L
100mA  
0.1  
I =100mA  
0.01  
0.001  
0.0001  
1mA  
L
VOUT = 5V  
C OUT = 10µF  
electrolytic  
C BYP = 100pF  
I =500mA  
L
10mA  
0
100 200 300 400 500  
OUTPUT CURRENT (mA)  
0
1
2
3
4
5
6
7
8
9
1k  
10  
10k 100k 1M 10M  
1E+1 11E0+02 1E+3 1E+4 E+5 1E+6 1E+7  
FREQUENCY (Hz)  
INPUT VOLTAGE (V)  
June 2009  
6
M0371-061809  
Micrel, Inc.  
MIC5219  
Ground Current  
vs. Output Current  
Ground Current  
vs. Supply Voltage  
Ground Current  
vs. Supply Voltage  
12  
10  
8
25  
20  
15  
10  
5
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
6
I =100 mA  
L
4
2
I =100µA  
I =500mA  
L
L
0
0
0
100 200 300 400 500  
OUTPUT CURRENT (mA)  
0
1
2
3
4
5
6
7
8
9
0
2
4
6
8
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
June 2009  
7
M0371-061809  
Micrel, Inc.  
MIC5219  
Block Diagrams  
OUT  
IN  
VOUT  
COUT  
VIN  
BYP  
CBYP  
(optional)  
Bandgap  
Ref.  
EN  
Current Limit  
Thermal Shutdown  
MIC5219-x.xBM5/M/YMT  
GND  
Ultra-Low-Noise Fixed Regulator  
OUT  
R1  
IN  
VOUT  
COUT  
VIN  
R2  
CBYP  
(optional)  
Bandgap  
Ref.  
EN  
Current Limit  
Thermal Shutdown  
MIC5219BM5/MM/YMT  
GND  
Ultra-Low-Noise Adjustable Regulator  
June 2009  
8
M0371-061809  
Micrel, Inc.  
MIC5219  
Thermal Considerations  
Applications Information  
The MIC5219 is designed to provide 200mA of continuous  
current in two very small profile packages. Maximum power  
dissipationcanbecalculatedbasedontheoutputcurrentand  
the voltage drop across the part. To determine the maximum  
powerdissipationofthepackage,usethethermalresistance,  
junction-to-ambient, of the device and the following basic  
equation.  
TheMIC5219isdesignedfor150mAto200mAoutputcurrent  
applicationswhereahighcurrentspike(500mA)isneededfor  
short, start-up conditions. Basic application of the device will  
be discussed initially followed by a more detailed discussion  
of higher current applications.  
Enable/Shutdown  
Forcing EN (enable/shutdown) high (>2V) enables the  
regulator. EN is compatible with CMOS logic. If the enable/  
shutdown feature is not required, connect EN to IN (supply  
input). See Figure 5.  
TJ (max ) − TA  
(
)
PD (max ) =  
θJA  
T (max) is the maximum junction temperature of the die,  
Input Capacitor  
J
125°C, and T is the ambient operating temperature. θ  
A
JA  
A 1µF capacitor should be placed from IN to GND if there is  
more than 10 inches of wire between the input and the AC  
filter capacitor or if a battery is used as the input.  
is layout dependent; Table 1 shows examples of thermal  
resistance, junction-to-ambient, for the MIC5219.  
Package  
θ
JA Recommended  
Minimum Footprint 2oz. Copper  
θJA 1" Squareꢀ θJC  
Output Capacitor  
An output capacitor is required between OUT and GND to  
prevent oscillation. The minimum size of the output capacitor  
is dependent upon whether a reference bypass capacitor is  
MM8® (MM)  
160°C/W  
220°C/W  
90°C/W  
70°C/W  
170°C/W  
30°C/W  
130°C/W  
SOT-23-5 (M5)  
2×2 MLF® (ML)  
used. 1µF minimum is recommended when C  
is not used  
BYP  
2×2 Thin  
(see Figure 5). 2.2µF minimum is recommended when C  
BYP  
MLF® (MT)  
90°C/W  
is 470pF (see Figure 6). For applications <3V, the output  
capacitor should be increased to 22µF minimum to reduce  
start-up overshoot. Larger values improve the regulator’s  
transient response. The output capacitor value may be in-  
creased without limit.  
Table 1. MIC5219 Thermal Resistance  
The actual power dissipation of the regulator circuit can be  
determined using one simple equation.  
P = (V – V  
) I  
+ V I  
IN GND  
D
IN  
OUT OUT  
The output capacitor should have an ESR (equivalent series  
resistance) of about 1Ω or less and a resonant frequency  
above 1MHz. Ultra-low-ESR capacitors could cause oscilla-  
tion and/or underdamped transient response. Most tantalum  
or aluminum electrolytic capacitors are adequate; film types  
will work, but are more expensive. Many aluminum electro-  
lytics have electrolytes that freeze at about –30°C, so solid  
tantalums are recommended for operation below –25°C.  
Substituting P (max) for P and solving for the operating  
D
D
conditions that are critical to the application will give the  
maximum operating conditions for the regulator circuit. For  
example, if we are operating the MIC5219-3.3BM5 at room  
temperature, with a minimum footprint layout, we can deter-  
mine the maximum input voltage for a set output current.  
125 °C 25°C  
(
)
At lower values of output current, less output capacitance is  
needed for stability. The capacitor can be reduced to 0.47µF  
for current below 10mA, or 0.33µF for currents below 1mA.  
PD(max ) =  
220°C / W  
P (max) = 455mW  
D
No-Load Stability  
Thethermalresistance,junction-to-ambient,fortheminimum  
footprintis220°C/W,takenfromTable1.Themaximumpower  
dissipation number cannot be exceeded for proper opera-  
tion of the device. Using the output voltage of 3.3V, and an  
output current of 150mA, we can determine the maximum  
input voltage. Ground current, maximum of 3mA for 150mA  
of output current, can be taken from the “Electrical Charac-  
teristics” section of the data sheet.  
TheMIC5219willremainstableandinregulationwithnoload  
(other than the internal voltage divider) unlike many other  
voltage regulators. This is especially important in CMOS  
RAM keep-alive applications.  
Reference Bypass Capacitor  
BYP is connected to the internal voltage reference. A 470pF  
capacitor (C  
) connected from BYP to GND quiets this  
BYP  
455mW = (V – 3.3V) × 150mA + V × 3mA  
455mW = (150mA) × V + 3mA × V – 495mW  
950mW = 153mA × V  
reference, providing a significant reduction in output noise  
(ultra-low-noise performance). C reduces the regulator  
IN  
IN  
BYP  
IN  
IN  
phase margin; when using C , output capacitors of 2.2µF  
BYP  
IN  
or greater are generally required to maintain stability.  
V
= 6.2V  
MAX  
IN  
The start-up speed of the MIC5219 is inversely proportional  
to the size of the reference bypass capacitor. Applications  
requiring a slow ramp-up of output voltage should consider  
Therefore, a 3.3V application at 150mA of output current  
can accept a maximum input voltage of 6.2V in a SOT-23-5  
package. For a full discussion of heat sinking and thermal  
effects on voltage regulators, refer to the “Regulator Ther-  
malssectionofMicrel’sDesigningwithLow-DropoutVoltage  
Regulators handbook.  
larger values of C . Likewise, if rapid turn-on is necessary,  
BYP  
consider omitting C  
.
BYP  
June 2009  
9
M0371-061809  
Micrel, Inc.  
MIC5219  
Peak Current Applications  
xBMM, the power MSOP package part. These graphs show  
three typical operating regions at different temperatures. The  
lower the temperature, the larger the operating region. The  
graphs were obtained in a similar way to the graphs for the  
MIC5219-x.xBM5, taking all factors into consideration and  
using two different board layouts, minimum footprint and 1"  
square copper PC board heat sink. (For further discussion  
of PC board heat sink characteristics, refer to “Application  
Hint 17, Designing PC Board Heat Sinks” .)  
TheMIC5219isdesignedforapplicationswherehighstart-up  
currents are demanded from space constrained regulators.  
This device will deliver 500mA start-up current from a SOT-  
23-5 or MM8 package, allowing high power from a very low  
profiledevice.TheMIC5219cansubsequentlyprovideoutput  
current that is only limited by the thermal characteristics of  
the device. You can obtain higher continuous currents from  
the device with the proper design. This is easily proved with  
some thermal calculations.  
Theinformationusedtodeterminethesafeoperatingregions  
can be obtained in a similar manner such as determining  
typical power dissipation, already discussed. Determining  
the maximum power dissipation based on the layout is the  
first step, this is done in the same manner as in the previous  
two sections. Then, a larger power dissipation number multi-  
plied by a set maximum duty cycle would give that maximum  
power dissipation number for the layout. This is best shown  
through an example. If the application calls for 5V at 500mA  
for short pulses, but the only supply voltage available is  
8V, then the duty cycle has to be adjusted to determine an  
average power that does not exceed the maximum power  
dissipation for the layout.  
If we look at a specific example, it may be easier to follow.  
TheMIC5219canbeusedtoprovideupto500mAcontinuous  
output current. First, calculate the maximum power dissipa-  
tion of the device, as was done in the thermal considerations  
section. Worst case thermal resistance (θ = 220°C/W for  
the MIC5219-x.xBM5), will be used for this example.  
JA  
TJ (max ) − TA  
(
)
PD (max ) =  
θJA  
Assuming a 25°C room temperature, we have a maximum  
power dissipation number of  
125 °C 25°C  
(
)
% DC  
ꢀ 100 ꢀ  
ꢀ  
ꢀ  
PD (max ) =  
Avg.P = ꢀ  
ꢀ V – V  
I
+ V I  
IN GND  
(
)
D
IN  
OUT  
OUT  
220 °C /W  
P (max) = 455mW  
D
% DC  
ꢀ  
ꢀ  
ꢀ  
455mW = ꢀ  
ꢀ 100 ꢀ  
(
8V – 5V 500mA + 8V × 20mA  
)
Then we can determine the maximum input voltage for a  
5-voltregulatoroperatingat500mA, usingworstcaseground  
current.  
% Duty Cycle  
ꢀ  
455mW = ꢀ  
ꢀ 100  
ꢀ  
ꢀ1.66W  
ꢀ  
P (max) = 455mW = (V – V  
) I  
+ V I  
IN GND  
D
IN  
OUT OUT  
% Duty Cycle  
100  
I
= 500mA  
= 5V  
OUT  
0.274 =  
V
I
OUT  
% Duty Cycle Max = 27.4%  
= 20mA  
GND  
455mW = (V – 5V) 500mA + V × 20mA  
With an output current of 500mAand a three-volt drop across  
the MIC5219-xxBMM, the maximum duty cycle is 27.4%.  
IN  
IN  
2.995W = 520mA × V  
IN  
Applications also call for a set nominal current output with a  
greateramountofcurrentneededforshortdurations.Thisisa  
trickysituation,butitiseasilyremedied.Calculatetheaverage  
power dissipation for each current section, then add the two  
numbers giving the total power dissipation for the regulator.  
For example, if the regulator is operating normally at 50mA,  
but for 12.5% of the time it operates at 500mA output, the  
total power dissipation of the part can be easily determined.  
First, calculate the power dissipation of the device at 50mA.  
We will use the MIC5219-3.3BM5 with 5V input voltage as  
our example.  
2.955W  
520mA  
VIN(max ) =  
= 5.683V  
Therefore, to be able to obtain a constant 500mAoutput cur-  
rent from the 5219-5.0BM5 at room temperature, you need  
extremely tight input-output voltage differential, barely above  
the maximum dropout voltage for that current rating.  
You can run the part from larger supply voltages if the proper  
precautions are taken. Varying the duty cycle using the en-  
able pin can increase the power dissipation of the device by  
maintaining a lower average power figure. This is ideal for  
applicationswherehighcurrentisonlyneededinshortbursts.  
Figure1showsthesafeoperatingregionsfortheMIC5219-x.  
xBM5 at three different ambient temperatures and at differ-  
ent output currents. The data used to determine this figure  
assumed a minimum footprint PCB design for minimum heat  
sinking. Figure 2 incorporates the same factors as the first  
figure, but assumes a much better heat sink.A1" square cop-  
per trace on the PC board reduces the thermal resistance of  
thedevice.Thisimprovedthermalresistanceimprovespower  
dissipation and allows for a larger safe operating region.  
P × 50mA = (5V – 3.3V) × 50mA + 5V × 650µA  
D
P × 50mA = 173mW  
D
However, this is continuous power dissipation, the actual  
on-time for the device at 50mA is (100%-12.5%) or 87.5%  
of the time, or 87.5% duty cycle. Therefore, P must be mul-  
D
tiplied by the duty cycle to obtain the actual average power  
dissipation at 50mA.  
Figures3and4showsafeoperatingregionsfortheMIC5219-x.  
June 2009  
10  
M0371-061809  
Micrel, Inc.  
MIC5219  
10  
8
10  
8
10  
8
100mA  
100mA  
100mA  
200mA  
6
6
6
200mA  
200mA  
300mA  
4
4
4
300mA  
300mA  
60  
400mA  
2
0
2
2
500mA  
400mA  
400mA  
20  
500mA  
40  
500mA  
40  
DUTY CYCLE (%)  
0
0
0
0
0
0
20  
60  
80  
100  
0
60  
80  
100  
0
20  
40  
80  
100  
DUTY CYCLE (%)  
DUTY CYCLE (%)  
a. 25°C Ambient  
b. 50°C Ambient  
c. 85°C Ambient  
Figure 1. MIC5219-x.xBM5 (SOT-23-5) on Minimum Recommended Footprint  
10  
8
10  
8
10  
8
100mA  
100mA  
100mA  
200mA  
6
200mA  
6
6
200mA  
300mA  
4
4
4
300mA  
80  
400mA  
20  
300mA  
2
2
2
400mA  
20  
400mA  
500mA  
20 40  
500mA  
40 60  
500mA  
40 60  
DUTY CYCLE (%)  
0
0
0
80  
100  
0
100  
0
60  
DUTY CYCLE (%)  
80  
100  
DUTY CYCLE (%)  
a. 25°C Ambient  
b. 50°C Ambient  
c. 85°C Ambient  
2
Figure 2. MIC5219-x.xBM5 (SOT-23-5) on 1-inch Copper Cladding  
10  
8
10  
8
10  
8
100mA  
300mA  
100mA  
100mA  
200mA  
6
6
6
200mA  
200mA  
300mA  
300mA  
4
4
4
400mA  
20  
400mA  
20  
2
2
2
400mA  
500mA  
500mA  
40  
500mA  
20 40  
DUTY CYCLE (%)  
0
0
0
40  
60  
80  
100  
0
60  
80  
100  
0
60  
80  
100  
DUTY CYCLE (%)  
DUTY CYCLE (%)  
a. 25°C Ambient  
b. 50°C Ambient  
c. 85°C Ambient  
Figure 3. MIC5219-x.xBMM (MSOP-8) on Minimum Recommended Footprint  
10  
8
10  
8
10  
8
200mA  
300mA  
100mA  
300mA  
200mA  
300mA  
200mA  
6
6
6
400mA  
400mA  
4
4
4
400mA  
20  
500mA  
500mA  
2
2
2
500mA  
40  
0
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
0
60  
80  
100  
DUTY CYCLE (%)  
DUTY CYCLE (%)  
DUTY CYCLE (%)  
a. 25°C Ambient  
b. 50°C Ambient  
c. 85°C Ambient  
2
Figure 4. MIC5219-x.xBMM (MSOP-8) on 1-inch Copper Cladding  
June 2009  
11  
M0371-061809  
Micrel, Inc.  
MIC5219  
P × 50mA = 0.875 × 173mW  
MIC5219-x.x  
D
VIN  
VOUT  
P × 50mA = 151mW  
IN  
OUT  
BYP  
GND  
D
The power dissipation at 500mA must also be calculated.  
EN  
2.2µF  
P × 500mA = (5V – 3.3V) 500mA + 5V × 20mA  
D
470pF  
P × 500mA = 950mW  
D
This number must be multiplied by the duty cycle at which it  
would be operating, 12.5%.  
Figure 6. Ultra-Low-Noise Fixed Voltage Regulator  
P × = 0.125 × 950mW  
D
Figure 6 includes the optional 470pF noise bypass capacitor  
between BYP and GND to reduce output noise. Note that the  
P × = 119mW  
D
minimum value of C  
capacitor is used.  
must be increased when the bypass  
The total power dissipation of the device under these condi-  
tions is the sum of the two power dissipation figures.  
OUT  
Adjustable Regulator Circuits  
P
P
P
= P × 50mA + P × 500mA  
D D  
= 151mW + 119mW  
= 270mW  
D(total)  
D(total)  
D(total)  
MIC5219  
VIN  
VOUT  
1µF  
IN  
OUT  
ADJ  
R1  
R2  
EN  
The total power dissipation of the regulator is less than the  
maximumpowerdissipationoftheSOT-23-5packageatroom  
temperature, on a minimum footprint board and therefore  
would operate properly.  
GND  
Multilayer boards with a ground plane, wide traces near the  
pads, and large supply-bus lines will have better thermal  
conductivity.  
Figure 7. Low-Noise Adjustable Voltage Regulator  
Figure 7 shows the basic circuit for the MIC5219 adjustable  
regulator.Theoutputvoltageisconfiguredbyselectingvalues  
for R1 and R2 using the following formula:  
For additional heat sink characteristics, please refer to Mi-  
crel “Application Hint 17, Designing P.C. Board Heat Sinks”,  
included in Micrel’s Databook. For a full discussion of heat  
sinking and thermal effects on voltage regulators, refer to  
“RegulatorThermals” section of Micrel’s Designing with Low-  
Dropout Voltage Regulators handbook.  
R2  
ꢀ  
ꢀR1  
ꢀ  
ꢀ  
V
= 1.242V ꢀ + 1ꢀ  
OUT  
AlthoughADJisahigh-impedanceinput,forbestperformance,  
R2 should not exceed 470kΩ.  
MIC5219  
Fixed Regulator Circuits  
MIC5219-x.x  
VIN  
VOUT  
1µF  
VIN  
VOUT  
IN  
OUT  
BYP  
IN  
OUT  
ADJ  
R1  
R2  
EN  
EN  
GND  
GND  
2.2µF  
470pF  
Figure 5. Low-Noise Fixed Voltage Regulator  
Figure 8. Ultra-Low-Noise Adjustable Application  
Figure5showsabasicMIC5219-x.xBMXxed-voltageregu-  
lator circuit. A 1µF minimum output capacitor is required for  
basic fixed-voltage applications.  
Figure 8 includes the optional 470pF bypass capacitor from  
ADJ to GND to reduce output noise.  
June 2009  
12  
M0371-061809  
Micrel, Inc.  
MIC5219  
Package Information  
8-Pin MSOP (MM)  
SOT-23-5 (M5)  
June 2009  
13  
M0371-061809  
Micrel, Inc.  
MIC5219  
®
6-Pin MLF (ML)  
®
6-Pin Thin MLF (MT)  
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
t e l + 1 (408) 944-0800 f a x + 1 (408) 474-1000 w e b http://www.micrel.com  
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.  
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can  
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into  
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s  
use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser’s own risk and Purchaser agrees to fully indemnify  
Micrel for any damages resulting from such use or sale.  
© 2005 Micrel, Incorporated.  
June 2009  
14  
M0371-061809  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY