MIC7400YFL-TR [MICROCHIP]

IC REG BUCK BOOST PROG SYNC;
MIC7400YFL-TR
型号: MIC7400YFL-TR
厂家: MICROCHIP    MICROCHIP
描述:

IC REG BUCK BOOST PROG SYNC

文件: 总62页 (文件大小:3088K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC7400  
Configurable PMIC, Five Channel Buck Regulator Plus One Boost  
®
2
with HyperLight Load and I C Control  
Features  
General Description  
• Input Voltage: 2.4V to 5.5V  
The MIC7400 is a powerful, highly integrated,  
configurable, power management IC (PMIC) featuring  
five synchronous buck regulators, one boost regulator  
and high-speed I2C interface with an internal  
EEPROM.  
• Five Independent Synchronous Bucks up to 3A  
• One Independent Non-Synchronous Boost  
200 mA  
• 200 µA Quiescent Current (All Regulators On)  
The device offers two distinct modes of operation—  
“stand-by mode” and “normal mode”—intended to  
provide an energy-optimized solution suitable for  
portable handheld, and infotainment applications.  
• 93% Peak Buck Efficiency, 85% Typical Efficiency  
at 1 mA  
• Dual Power Modes: Stand-by and Normal Mode  
• I2C Interface up to 3.4 MHz  
• I2C On-the-Fly EEPROM Programmability,  
Featuring:  
In normal mode, the programmable switching  
converters can be configured to support a variety of  
features, including start-up sequencing, timing,  
soft-start ramp, output voltage levels, current-limit  
levels and output discharge for each channel.  
- Buck and Boost Output Voltage Scaling  
- Power-on-Reset Threshold and Delay  
- Power-Up Sequencing/Sequencing Delay  
- Buck and Boost Current-Limit  
In stand-by mode the PMIC can be configured in a low  
power state by either disabling an output or by  
changing the output voltage to another voltage level,  
either lower or higher than normal-mode. In general, it's  
assumed that the voltage in standby mode is lower than  
the one in normal mode. Independent exit from  
stand-by mode can be achieved either by I2C  
communication or the external STBY pin.  
- Buck and Boost Pull-Down when Disabled  
- Individual ON, OFF, and Stand-by Modes  
- Soft-Start and Global Power-Good Masking  
• 23 µA Buck Typical Quiescent Current  
• 70 µA Boost Typical Quiescent Current  
• 1.5% Output Accuracy over  
Temperature/Line/Load  
The device has five synchronous buck regulators with  
high-speed adaptive on-time control supporting even  
the challenging ultra-fast transient requirement for  
Core supplies. One boost regulator provides a flash  
memory programming supply that delivers up to  
200 mA of output current. The boost is equipped with  
• 2.0 MHz Boost Switching Frequency  
• 1.3 MHz Buck Operation in Continuous Mode  
• Ultra-Fast Buck Transient Response  
• 15 mm x 15 mm x 1.25 mm Solution Size  
• Thermal Shutdown and Current-Limit Protection  
an output disconnect switch that opens if  
short-to-ground fault is detected.  
a
• 36-Pin 4.5 mm x 4.5 mm x 0.85 mm FQFN  
Package (0.4 mm Pitch)  
An internal EEPROM enables a single-chip solution  
across many platforms by allowing the designer to  
customize the PMIC for their design. Modifications can  
be made without the need to re-approve a new PMIC,  
saving valuable design resources and time.  
• –40°C to +125°C Junction Temperature Range  
Applications  
• Client and Enterprise Solid State Drives (SSD)  
• Consumer and In-Vehicle Infotainment Devices  
• Multimedia Devices  
All switchers provide light load efficiency with  
HyperLight Load® mode for buck and PFM mode for  
boost. An additional benefit of this proprietary  
architecture is very low output ripple voltage throughout  
the entire load range with the use of small output  
capacitors. The MIC7400 is designed for use with a  
small inductors (down to 0.47 µH for buck, 1.5 µH for  
boost), and an output capacitor as small as 10 µF for  
buck, enabling a total solution size of 15 mm x 15 mm  
and less than 1 mm height.  
• Portable Handheld Devices  
• Security Cameras  
• Gaming Machines  
• Service Provider Gateways  
2017 Microchip Technology Inc.  
DS20005887A-page 1  
MIC7400  
Typical Application Circuit  
10μF  
22μF  
2.2μH  
PVIN2  
SW2 PGND2  
OUT2  
ISNS  
PVIN3  
SW3  
ZC  
PVIN1  
SYNC  
BUCK2  
10μF  
10μF  
ISNS  
ISNS  
ON-TIME  
ON-TIME  
CONTROL  
CONTROL  
2.2μH  
2.2μH  
SW1  
SYNC  
BUCK1  
SYNC  
BUCK3  
DAC  
DAC  
DAC  
22μF  
22μF  
ZC  
ZC  
PGND3  
OUT3  
PGND1  
OUT1  
MIC7400  
FAULT  
BIASING  
CIRCUIT  
SEQUENCY  
CONTROL  
MONITOR  
(OTP, OCP)  
PVIN6  
PVIN4  
DAC ARRAY  
AND  
10μF  
ANALOG  
ISNS  
10μF  
CONTROL  
SOFT-START  
ISNS  
ON-TIME  
OSC  
ON/OFF  
PWM  
CONTROL  
2.2μH  
STAND-BY  
POWER  
MANAGEMENT  
CONTROL  
DIGITAL  
CONTROL  
2.2μH  
SW4  
PVIN6O  
SW6  
SYNC  
BUCK4  
BOOST  
ISNS  
DAC  
DAC  
22μF  
22μF  
PGND4  
OUT4  
ZC  
DIG CTRL  
DAC  
ANALOG CTRL  
PGND6  
OUT6  
SDA  
SCL  
I2C  
INTERFACE  
AVIN  
UVLO  
EEPROM  
ANALOG CTRL  
DIG CTRL  
AND BG  
AGND  
SYNC  
BUCK5  
ISNS  
ZC  
PG  
POR  
COMPARATOR  
POR  
VSLT  
STBY  
DIG CTRL  
OUT5  
SW5  
PVIN5  
PGND5  
22μF  
2.2μH  
10μF  
DS20005887A-page 2  
2017 Microchip Technology Inc.  
MIC7400  
Block Diagram  
MIC7400  
EEPROM  
SDA  
SCL  
I2C INTERFACE  
REGISTERS  
PG  
POR  
(REFERENCED TO AVIN)  
FAULT MONITOR  
DAC ARRAY  
VSLT  
STBY  
SEQUENCE  
CONTROLLER  
AVIN  
INPUT LEVEL DETECT  
UVLO  
THERMAL  
SENSOR  
SLOW  
OSC  
VOTLAGE REFERENCE  
AGND  
AGND  
PVIN1  
SW1  
PVIN2  
ISNS  
ISNS  
ON-TIME  
ON-TIME  
CONTROL  
CONTROL  
SW2  
SYNC  
BUCK  
SYNC  
BUCK  
ZC  
ZC  
PGND1  
OUT1  
PGND2  
OUT2  
PVIN6  
PVIN3  
SW3  
ISNS  
ON/OFF  
ISNS  
PWM  
ON-TIME  
CONTROL  
CONTROL  
PVIN6O  
SW6  
BOOST  
ISNS  
SYNC  
BUCK  
ZC  
PGND6  
OUT6  
PGND3  
OUT3  
PVIN5  
PVIN4  
ISNS  
ISNS  
ON-TIME  
CONTROL  
ON-TIME  
CONTROL  
SW4  
SYNC  
BUCK  
SYNC  
BUCK  
SW5  
ZC  
ZC  
PGND4  
OUT4  
PGND5  
OUT5  
2017 Microchip Technology Inc.  
DS20005887A-page 3  
MIC7400  
1.0  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
Supply Voltages (PVIN[1-6])........................................................................................................................... –0.3V to +6V  
Analog Supply Voltage (AVIN) ...................................................................................................................... –0.3V to +6V  
Buck Output Voltages (VOUT[1-5])................................................................................................................. –0.3V to +6V  
Boost Output Voltage (VOUT6).................................................................................................................... –0.3V to +20V  
Buck Switch Voltages (VSW[1-5])................................................................................................................... –0.3V to +6V  
Boost Switch Voltage (VSW6) ..................................................................................................................... –0.3V to +20V  
Power Good Voltage (VPG) ......................................................................................................................... –0.3V to AVIN  
Power-On Reset Output (VPOR)................................................................................................................... –0.3V to +6V  
POR Threshold Voltage (VVSLT)................................................................................................................... –0.3V to +6V  
Standby Voltage (VSTBY)..............................................................................................................................0.3V to +6V  
I2C IO (VSDA, VSCL)..................................................................................................................................... –0.3V to AVIN  
AGND to PGND[1-6] ................................................................................................................................. –0.3V to +0.3V  
ESD Rating (Note 1).......................................................................................................................HBM: 2 kV; MM: 200V  
Operating Ratings ‡  
Input Voltage (PVIN[1-6]) ............................................................................................................................+2.4V to +5.5V  
Analog Input Voltage (AVIN) ......................................................................................................................+2.4V to +5.5V  
Buck Output Voltage Range (VOUT[1-5]) ....................................................................................................+0.8V to +3.3V  
Boost Output Voltage Range (VOUT6) ...........................................................................................................+7V to +14V  
Power Good Voltage (VPG) .............................................................................................................................. 0V to AVIN  
Power-On Reset Output (VPOR)....................................................................................................................... 0V to AVIN  
POR Threshold Voltage (VVSLT)....................................................................................................................... 0V to AVIN  
Standby Voltage (VSTBY).................................................................................................................................. 0V to AVIN  
I2C IO (VSDA, VSCL).......................................................................................................................................... 0V to AVIN  
† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at those or any other conditions above those indicated  
in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended  
periods may affect device reliability. Specifications are for packaged product only.  
‡ Notice: The device is not guaranteed to function outside its operating ratings.  
Note 1: Devices are ESD sensitive. Handling precautions are recommended. Human body model, 1.5 kin series  
with 100 pF.  
DS20005887A-page 4  
2017 Microchip Technology Inc.  
 
MIC7400  
TABLE 1-1:  
ELECTRICAL CHARACTERISTICS  
Electrical Characteristics: VIN = AVIN = PVIN(1-6) = 5.0V; VOUT1 = 1.8V; VOUT2 = 1.1V; VOUT3 = 1.8V; VOUT4  
=
1.05V; VOUT5 = 1.25V; VOUT6 = 12V. TA = +25°C, unless otherwise noted. Bold values indicate –40°C TJ +125°C.  
Note 1  
Parameter  
Min.  
Typ.  
Max.  
Units Conditions  
Input Supply (VIN)  
Input Voltage Range (AVIN, PVIN[1-6]  
)
2.4  
5.5  
V
Operating Quiescent Current into AVIN  
(Note 2, Note 3)  
200  
240  
µA  
VIN = 5.0V; IOUT = 0A  
Operating Quiescent Current into PVIN  
(Note 2)  
0.3  
1.0  
µA  
VIN = 5.0V; IOUT = 0A  
Undervoltage Lockout Threshold  
Undervoltage Lockout Hysteresis  
Standby Input (STBY)  
Logic Level High  
2.15  
2.25  
150  
2.35  
V
AVIN Rising  
mV  
1.2  
0.4  
200  
200  
V
Logic Level Low  
V
Bias Current into Pin  
nA  
nA  
µs  
VSTBY = VIN  
Bias Current out of Pin  
VSTBY = 0V  
Rising/Falling Edge Reset Deglitch  
100  
POR Threshold Input (VSLT  
)
Logic Level High  
1.2  
Logic Level Low  
0.4  
200  
200  
Bias Current Into Pin  
Bias Current Out of Pin  
VVSLT = VIN  
VVSLT = 0V  
Power-On-Reset (POR) Comparator  
POR Upper Comparator Range  
POR Lower Comparator Range  
POR Upper Comparator Range  
POR Lower Comparator Range  
Power Reset Output (POR) and Timer  
POR Delay  
2.646  
2.548  
3.626  
3.528  
2.7  
2.6  
3.7  
3.6  
2.754  
2.652  
3.774  
3.672  
V
V
V
V
AVIN Rising, VVSLT = 0V  
AVIN Falling, VVSLT = 0V  
AVIN Rising, VVSLT = VIN  
AVIN Falling, VVSLT = VIN  
18  
20  
50  
75  
22  
ms  
µs  
POR Deglitch Delay  
AVIN Falling  
POR Output Low Voltage  
400  
200  
mV  
nA  
IPOR = 10 mA (sinking)  
POR Leakage Current  
VPOR = 5.5V  
Global Power Good Output (PG)  
Buck Power Good Threshold Voltage  
Buck Hysteresis (Note 4)  
87  
91  
4
95  
%VOUT VOUT[1-5] Rising  
%VOUT VOUT[1-5] Falling  
%VOUT VOUT[6] Rising  
Boost Power Good Threshold Voltage  
Boost Hysteresis (Note 4)  
87  
91  
95  
380  
75  
mV  
mV  
nA  
µs  
VOUT[6] Falling  
PG = 10 mA (sinking)  
VPG = 5.5V  
Power Good Output Low Voltage  
Power Good Leakage Current  
Power Good Deglitch Delay  
Output Sequencing Delay (Note 4)  
Thermal Protection  
400  
200  
I
0.01  
100  
1
VOUT[1-6] Falling  
0.96  
1.04  
ms  
Thermal Shutdown  
160  
20  
°C  
°C  
TJ Rising  
Thermal Hysteresis  
2017 Microchip Technology Inc.  
DS20005887A-page 5  
MIC7400  
TABLE 1-1:  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: VIN = AVIN = PVIN(1-6) = 5.0V; VOUT1 = 1.8V; VOUT2 = 1.1V; VOUT3 = 1.8V; VOUT4  
=
1.05V; VOUT5 = 1.25V; VOUT6 = 12V. TA = +25°C, unless otherwise noted. Bold values indicate –40°C TJ +125°C.  
Note 1  
Parameter  
Min.  
Typ.  
Max.  
Units Conditions  
Synchronous Buck (VOUT1 - VOUT5  
)
Buck Output Voltage Accuracy (OUT[1-5])  
Typical Output Voltage 1 Accuracy  
(Note 5)  
–1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
%
%
%
%
%
Includes Load, Line, and Reference  
Typical Output Voltage 2 Accuracy  
(Note 5)  
–1.5  
–1.5  
–1.5  
–1.5  
Includes Load, Line, and Reference  
Includes Load, Line, and Reference  
Includes Load, Line, and Reference  
Includes Load, Line, and Reference  
Typical Output Voltage 3 Accuracy  
(Note 5)  
Typical Output Voltage 4 Accuracy  
(Note 5)  
Typical Output Voltage 5 Accuracy  
(Note 5)  
Output Voltage 1 Accuracy (Note 5)  
Output Voltage 2 Accuracy (Note 5)  
Output Voltage 3 Accuracy (Note 5)  
Output Voltage 4 Accuracy (Note 5)  
Output Voltage 5 Accuracy (Note 5)  
Load Regulation  
–1  
–1  
–1  
–1  
–1  
1
1
%
%
%
%
%
%
%
1
1
1
0.1  
0.05  
IOUT = 10 mA to IOUT(MAX)  
VIN = 3.3V to 5.0V  
Line Regulation  
Buck Soft-Start  
Soft-Start (1-5) LSB (Note 4, Note 6)  
Buck Internal MOSFETs  
3.84  
4.0  
4.16  
µs/step  
High-Side On-Resistance  
75  
54  
40  
37  
30  
90  
mꢀ  
mꢀ  
mꢀ  
mꢀ  
V
IN = 3.3V; ISW[1-5] = 200 mA  
High-Side On-Resistance  
VIN = 5.0V; ISW[1-5] = 200 mA  
Low-Side On-Resistance  
V
IN = 3.3V; ISW[1-5] = –200 mA  
IN = 5.0V; ISW[1-5] = –200 mA  
Low-Side On-Resistance  
V
Output Pull-Down Resistance  
Buck Controller Timing  
200  
VSW[1-5] = 0V  
Fixed On-Time (Note 7)  
220  
80  
ns  
ns  
VIN = 3.3; VOUT = 1.0V; IOUT = 1.0A  
Minimum OFF-Time  
Buck Current-Limit (OUT1 - OUT5)  
Buck 1 Current-Limit Threshold  
Buck 2 Current-Limit Threshold  
Buck 3 Current-Limit Threshold  
Buck 4 Current-Limit Threshold  
Buck 5 Current-Limit Threshold  
3.075  
3.075  
3.075  
4.88  
4.1  
4.1  
4.1  
6.1  
4.1  
5.125  
5.125  
5.125  
7.32  
A
A
A
A
A
See Table 4-3 for IPROG Settings  
See Table 4-3 for IPROG Settings  
See Table 4-3 for IPROG Settings  
See Table 4-3 for IPROG Settings  
See Table 4-3 for IPROG Settings  
3.075  
5.125  
With Respect to Buck [x]  
Current-Limit  
Gross High-Side Current-Limit [1-5]  
Zero Cross Threshold  
150  
0
%
mV  
Zero crossing detector  
DS20005887A-page 6  
2017 Microchip Technology Inc.  
MIC7400  
TABLE 1-1:  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: VIN = AVIN = PVIN(1-6) = 5.0V; VOUT1 = 1.8V; VOUT2 = 1.1V; VOUT3 = 1.8V; VOUT4  
=
1.05V; VOUT5 = 1.25V; VOUT6 = 12V. TA = +25°C, unless otherwise noted. Bold values indicate –40°C TJ +125°C.  
Note 1  
Parameter  
Min.  
–1.5  
Typ.  
Max.  
1.5  
Units Conditions  
Boost (VOUT6  
)
Boost Output Voltage (VOUT6  
)
Typical Output Voltage Accuracy  
(Note 5)  
%
Includes Load, Line, and Reference  
Output Voltage Accuracy (Note 5)  
Load Regulation  
–1  
0.2  
0.2  
148  
1
%
%
IOUT6 = 1.0 mA to 200 mA  
Line Regulation  
%
VIN = 2.4V to 5.5V; IOUT6 = 10 mA  
VOUT6 Discharge Current  
111  
185  
mA  
VIN = 3.3V; VOUT6 = 12V  
Boost Soft-Start Step Duration  
Soft-Start 6 LSB (Note 4, Note 6)  
Boost Internal MOSFETs  
Low-Side On-Resistance  
Low-Side On-Resistance  
Boost Disconnect MOSFETs  
Disconnect Switch On-Resistance  
Disconnect Switch Current-Limit  
Boost Switching Frequency  
Switching Frequency (PWM Mode)  
Minimum Duty Cycle  
3.84  
4.0  
4.16  
µs/step  
160  
140  
mꢀ  
mꢀ  
V
IN = 3.3V; ISW1 = –100 mA  
IN = 5.0V; ISW1 = –100 mA  
V
90  
5
mꢀ  
IPVIN6O = 100 mA; VIN = 3.3V  
A
1.92  
35  
2.0  
40  
85  
2.08  
45  
MHz  
%
Maximum Duty Cycle  
80  
90  
%
Boost Current-Limit  
NMOS Current-Limit Threshold  
I2C Interface  
2.24  
A
I2C Interface (SCL, SDA)  
Low Level Input Voltage  
1.2  
–200  
–200  
0.4  
V
V
High Level Input Voltage  
Low Level Input Current  
0.01  
0.01  
20  
200  
200  
nA  
nA  
High Level Input Current  
SDA Pull-Down Resistance  
SDA Logic 0 Output Voltage  
CLK, DATA Pin Capacitance  
I²C Interface Timing (Note 4)  
0.4  
V
I
SDA = 3 mA  
0.7  
pF  
100  
400  
3.4  
kHz  
kHz  
MHz  
Standard Mode  
SCL Clock Frequency  
Fast Mode  
High Speed Mode (Note 4)  
Note 1: Specifications are for packaged product only.  
2: Tested in a non-switching configuration.  
3: When all outputs are configured to the minimum programmable voltage.  
4: Guaranteed by design.  
5: Not tested in a closed loop configuration.  
6: The soft-start time is calculated using the following equation: tsoftstart = [(VOUT_PROGRAM – 0.15)/0.05 +1) ×  
tRAMP  
.
7: Buck frequency is calculated using the following equation fSW = (VOUT/VIN) × (1/tON).  
2017 Microchip Technology Inc.  
DS20005887A-page 7  
 
 
 
MIC7400  
TEMPERATURE SPECIFICATIONS (Note 1)  
Parameters  
Temperature Ranges  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Junction Operating Temperature  
Range  
TJ  
–40  
–40  
+125  
+150  
°C  
°C  
Ambient Storage Temperature Range  
Package Thermal Resistance  
Thermal Resistance FQFN-36Ld  
TS  
JA  
30  
°C/W  
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable  
junction temperature and the thermal resistance from junction to air (i.e., TA, TJ, JA). Exceeding the  
maximum allowable power dissipation will cause the device operating junction temperature to exceed the  
maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.  
DS20005887A-page 8  
2017 Microchip Technology Inc.  
 
MIC7400  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
FIGURE 2-1:  
Buck Efficiency (LDCR =  
FIGURE 2-4:  
Buck Efficiency (LDCR =  
0 m) vs. Output Current.  
40 m) vs. Output Current.  
FIGURE 2-2:  
Buck Efficiency (LDCR =  
FIGURE 2-5:  
Buck Efficiency (LDCR =  
0 m) vs. Output Current.  
40 m) vs. Output Current.  
FIGURE 2-3:  
Boost Efficiency (12V) vs.  
FIGURE 2-6:  
Output Voltage vs. Output  
Output Current.  
Current.  
2017 Microchip Technology Inc.  
DS20005887A-page 9  
MIC7400  
FIGURE 2-7:  
Buck Efficiency (LDCR =  
FIGURE 2-10:  
Buck Output Voltage (1.0V)  
116 m) vs. Output Current.  
vs. Output Current.  
FIGURE 2-11:  
Regulator vs. Output Current.  
Buck Output Voltage  
FIGURE 2-8:  
116 m) vs. Output Current.  
Buck Efficiency (LDCR =  
FIGURE 2-12:  
Buck Line Regulation vs.  
FIGURE 2-9:  
Output Voltage vs.  
Input Voltage.  
Temperature.  
DS20005887A-page 10  
2017 Microchip Technology Inc.  
MIC7400  
FIGURE 2-13:  
Output Current.  
Dropout Output Voltage vs.  
FIGURE 2-16:  
Output Voltage.  
Current-Limit Threshold vs.  
Output Current-Limit vs.  
Programmed Current-Limit  
FIGURE 2-17:  
Output Voltage.  
FIGURE 2-14:  
Current vs. Input Voltage.  
V
Operating Supply  
IN  
FIGURE 2-18:  
vs. Measured Current-Limit.  
FIGURE 2-15:  
vs. Input Voltage.  
Buck 2 Switching Frequency  
2017 Microchip Technology Inc.  
DS20005887A-page 11  
MIC7400  
VIN = 3.3V  
VIN  
(2V/div)  
VIN = 3.3V  
VIN  
(2V/div)  
VOUT4  
VOUT4  
(1V/div)  
(1V/div)  
VOUT4 = 1.05V/0.1A  
VOUT2 = 1.1V/0.1A  
VOUT4 = 1.05V/0.1A  
VOUT2 = 1.1V/0.1A  
VOUT2  
(1V/div)  
VOUT2  
(1V/div)  
VOUT3 = 1.8V/0.1A  
VOUT3  
(1V/div)  
VOUT3  
(1V/div)  
V
V
OUT3 = 1.8V/0.1A  
OUT1 = 1.8V/0.1A  
VOUT1 = 1.8V/0.1A  
VOUT1  
VOUT1  
(1V/div)  
(1V/div)  
V
OUT5 = 1.8V/0.1A  
VOUT5  
(1V/div)  
VOUT5 = 1.25V/0.1A  
VOUT5  
(1V/div)  
VOUT6 = 1.8V/0.1A  
VOUT6  
(5V/div)  
VOUT6  
(10V/div)  
V
OUT6 = 12V/0.1A  
V
(2V/diPvG)  
V
(2V/diPvG)  
Time (1.0ms/div)  
Time (1.0ms/div)  
FIGURE 2-19:  
Hot Plug – Rising V .  
FIGURE 2-21:  
Unplug – Falling V .  
IN  
IN  
FIGURE 2-20:  
POR Timing.  
FIGURE 2-22:  
STBY Delay.  
DS20005887A-page 12  
2017 Microchip Technology Inc.  
MIC7400  
FIGURE 2-23:  
Buck Soft-Start.  
FIGURE 2-26:  
POR Delay.  
FIGURE 2-24:  
Boost Soft-Start.  
FIGURE 2-27:  
Output Pull-Down  
Resistance.  
FIGURE 2-25:  
Standard Delay.  
FIGURE 2-28:  
Buck 2 Load Transient –  
10 mA to 1A.  
2017 Microchip Technology Inc.  
DS20005887A-page 13  
MIC7400  
FIGURE 2-29:  
10 mA to 3A.  
Buck 4 Load Transient –  
Buck 2 Load Transient –  
Buck 4 Load Transient –  
FIGURE 2-32:  
10 mA to 0.2A.  
Buck 2 Load Transient –  
FIGURE 2-30:  
200 mA to 1A.  
FIGURE 2-33:  
10 mA to 0.5A.  
Buck 4 Load Transient –  
FIGURE 2-31:  
FIGURE 2-34:  
Boost 6 Load Transient –  
0.5A to 3A.  
10 mA to 200 mA.  
DS20005887A-page 14  
2017 Microchip Technology Inc.  
MIC7400  
FIGURE 2-35:  
10 mA to 50 mA.  
Boost 6 Load Transient –  
Buck 4 Line Transient –  
Boost 6 Line Transient –  
FIGURE 2-38:  
Cross Regulation.  
FIGURE 2-39:  
Waveforms.  
Buck 2 PWM Switching  
FIGURE 2-36:  
3.3V to 5.0V.  
FIGURE 2-40:  
Buck 2 PFM Switching  
FIGURE 2-37:  
Waveforms.  
3.3V to 5.0V.  
2017 Microchip Technology Inc.  
DS20005887A-page 15  
MIC7400  
FIGURE 2-41:  
Waveforms.  
Buck 4 PWM Switching  
Buck 4 PFM Switching  
Boost 6 PWM Switching  
FIGURE 2-44:  
Waveforms.  
Boost 6 PFM Switching  
FIGURE 2-42:  
Waveforms.  
FIGURE 2-45:  
– No Load.  
Input Supply Inrush Current  
FIGURE 2-43:  
Waveforms.  
DS20005887A-page 16  
2017 Microchip Technology Inc.  
MIC7400  
FIGURE 2-46:  
Input Supply Inrush Current  
FIGURE 2-48:  
Rising Edge Trigger  
– Loaded.  
Standby.  
FIGURE 2-47:  
Falling Edge Trigger  
Standby (DEFAULT).  
2017 Microchip Technology Inc.  
DS20005887A-page 17  
MIC7400  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
31  
28  
29  
34  
36 35  
33 32  
30  
1
27  
26  
SW1  
PVIN1  
SW2  
PVIN2  
2
25  
24  
23  
22  
PVIN6  
PVIN6O  
SW6  
OUT2  
PVIN3  
SW3  
3
4
5
EP  
6
7
PGND6  
OUT6  
PVIN5  
PGND3  
21  
20  
OUT3  
PVIN4  
SW4  
8
9
19 SW5  
18  
10  
12  
14  
15 16 17  
11  
13  
FIGURE 3-1:  
MIC7400 Pin Configuration.  
TABLE 3-1:  
PIN FUNCTION TABLE  
Pin Number Pin Name  
Description  
Switch Pin 2 (Output): Inductor connection for the synchronous step-down regulator.  
Connect the inductor between the output capacitor and the SW2 pin.  
1
2
SW2  
Power Supply Voltage 2 (Input): Input supply to the source of the internal high-side  
P-channel MOSFET. An input capacitor between PVIN2 and the power ground PGND2  
pin is required and should be placed as close as possible to the IC.  
PVIN2  
Output Voltage Sense 2 (Input): This pin is used to sense the output voltage. Connect  
OUT2 as close to the output capacitor as possible to sense output voltage. Also  
provides the path to discharge the output through an internal 90resistor when  
disabled. This pull-down feature is programmed through the PULLD[x] register.  
3
OUT2  
Power Supply Voltage 3 (Input): Input supply to the source of the internal high-side  
P-channel MOSFET. An input capacitor between PVIN3 and the power ground PGND3  
pin is required and should be placed as close as possible to the IC.  
4
5
6
PVIN3  
SW3  
Switch Pin 3 (Output): Inductor connection for the synchronous step-down regulator.  
Connect the inductor between the output capacitor and the SW3 pin.  
Power Ground 3: The power ground for the synchronous buck converter power stage.  
PGND3 The PGND pin connects to the sources of the internal low-side N-Channel MOSFET, the  
negative terminals of input capacitors, and the negative terminals of output capacitors.  
Output Voltage Sense 3 (Input): This pin is used to sense the output voltage. Connect  
OUT3 as close to the output capacitor as possible to sense output voltage. Also  
provides the path to discharge the output through an internal 90resistor when  
7
OUT3  
disabled. This pull-down feature is programmed through the PULLD[x] register.  
Power Supply Voltage 4 (Input): Input supply to the source of the internal high-side  
8
9
PVIN4  
SW4  
P-channel MOSFET. An input capacitor between PVIN4 and the power ground PGND4  
pin is required and to be placed as close as possible to the IC.  
Switch Pin 4 (Output): Inductor connection for the synchronous step-down regulator.  
Connect the inductor between the output capacitor and the SW4 pin.  
DS20005887A-page 18  
2017 Microchip Technology Inc.  
 
MIC7400  
TABLE 3-1:  
PIN FUNCTION TABLE (CONTINUED)  
Pin Number Pin Name  
Description  
Power Ground 4: The power ground for the synchronous buck converter power stage.  
10  
11  
PGND4 The PGND pin connects to the source of the internal low-side N-Channel MOSFET, the  
negative terminals of input capacitors, and the negative terminals of output capacitors.  
Output Voltage Sense 4 (Input): This pin is used to sense the output voltage. Connect  
the OUT4 as close to the output capacitor as possible to sense output voltage. Also  
provides the path to discharge the output through an internal 90resistor when  
OUT4  
disabled. This pull-down feature is programmed through the PULLD[x] register.  
Standby Reset (Input): Standby mode allows the total power consumption to be reduced  
by either lowering a supply voltage or turning it off. The IC can be placed in standby  
mode while operating in normal mode by a high-to-low transition (DEFAULT) on the  
STBY input. When this occurs, the STBY_MODEB bit will be set to logic “0”. Either a  
12  
13  
STBY  
SDA  
low-to-high transition on the STBY pin or an I2C write command to the STBY_MODEB  
bit sets all of the regulators to their normal mode default settings. This pin can be driven  
with either a digital signal or open collector output. Do not let this pin float. Connect to  
ground or VIN. A pull-down resistor of 100 kor less can also be used. There are both  
a high-to-low (DEFAULT) and low-to-high normal to standby trigger options available.  
High-Speed Mode 3.4 MHz I2C Data (Input/Output): This is an open-drain, bidirectional  
data pin. Data is read on the rising edge of the SCL and data is clocked out on the  
falling edge of the SCL. External pull-up resistors are required.  
Analog Ground: Internal signal ground for all low power circuits. Connect to ground  
plane for best operation.  
High-Speed Mode 3.4 MHz I2C Clock (Input): I2C serial clock line open-drain input.  
14  
15  
AGND  
SCL  
External pull-up resistors are required.  
Power-on-Reset (Output): This is an open-drain output that goes high after the POR  
delay time elapses. The POR delay time starts as soon as the AVIN pin voltage rises  
above the upper threshold set by the PORUP register. The POR output goes low  
without delay when AVIN falls below the lower threshold set by the PORDN register.  
16  
17  
POR  
Output Voltage Sense 5 (Input): This pin is used to sense the output voltage. Connect  
OUT5 as close to the output capacitor as possible to sense output voltage. Also  
provides the path to discharge the output through an internal 90resistor when  
disabled. This pull-down feature is programmed through the PULLD[x] register.  
OUT5  
Power Ground 5: The power ground for the synchronous buck converter power stage.  
18  
19  
20  
PGND5 The PGND pin connects to the source of the internal low-side N-Channel MOSFET, the  
negative terminals of input capacitors, and the negative terminals of output capacitors.  
Switch Pin 5 (Output): Inductor connection for the synchronous step-down regulator.  
Connect the inductor between the output capacitor and the SW5 pin.  
SW5  
Power Supply Voltage 5 (Input): Input supply to the source of the internal high-side  
PVIN5  
OUT6  
P-channel MOSFET. An input capacitor between PVIN5 and the power ground PGND5  
pin is required and should be placed as close as possible to the IC.  
Output Voltage 6 Sense (Input): This pin is used to sense the output voltage. Connect  
OUT6 as close to the output capacitor as possible to sense output voltage. Also  
provides the path to discharge the output through an internal programmable current  
source when disabled. This pull-down feature is programmed through the PULLD[x]  
register.  
21  
Power Ground 6: The power ground for the boost converter power stage. The PGND  
22  
23  
PGND6 pin connects to the source of the internal low-side N-Channel MOSFET, the negative  
terminals of input capacitors, and the negative terminals of output capacitors.  
Switch Pin 6 (Input): Inductor connection for the boost regulator. Connect the inductor  
SW6  
between the PVIN6O and SW6 pin.  
2017 Microchip Technology Inc.  
DS20005887A-page 19  
MIC7400  
TABLE 3-1:  
PIN FUNCTION TABLE (CONTINUED)  
Pin Number Pin Name  
Description  
Power Supply Voltage 6 (Output): This pin is the output of the power disconnect switch  
for the boost regulator. When the boost regulator is on, an internal switch provides a  
current path for the boost inductor. In shutdown, an internal P-channel MOSFET is  
24  
PVIN6O turned off and disconnects the boost output from the input supply. This feature  
eliminates current draw from the input supply during shutdown. An input capacitor  
between PVIN6O and the power ground PGND6 pin is required and place as close as  
possible to the IC.  
25  
26  
PVIN6  
Power Supply Voltage 6 (Input): Input supply to the internal disconnect switch.  
Power Supply Voltage 1 (Input): Input supply to the source of the internal high-side  
P-channel MOSFET. An input capacitor between PVIN1 and the power ground PGND1  
pin is required and should be placed as close as possible to the IC.  
PVIN1  
Switch Pin 1 (Output): Inductor connection for the synchronous step-down regulator.  
Connect the inductor between the output capacitor and the SW1 pin.  
27  
28  
SW1  
Power Ground 1: The power ground for the synchronous buck converter power stage.  
PGND1 The PGND pin connects to the source of the internal low-side N-Channel MOSFET, the  
negative terminals of input capacitors, and the negative terminals of output capacitors.  
Output Voltage Sense 1 (Input): This pin is used to sense the output voltage remotely.  
Connect OUT1 as close to output capacitor as possible to sense output voltage. This  
feature also provides the path to discharge the output through an internal 90resistor  
when disabled. The pull-down feature is programmed through the PULLD[x] register.  
29  
30  
31  
32  
OUT1  
POR Selection Threshold (Input): A high on this pin sets the PORUP and PORDN  
registers to their upper threshold limits and a low to their lower threshold limits. Do not  
leave floating.  
VSLT  
AVIN  
Analog Voltage Supply (Input): The start-up sequence begins as soon as the AVIN pin  
voltage rises above the IC’s UVLO upper threshold. The outputs do not turn off until  
AVIN pin voltage falls below the lower threshold limit. A 2.2 µF ceramic capacitor from  
the AVIN pin to AGND pin must be placed next to the IC.  
Analog Ground: Internal signal ground for all low power circuits. Connect directly to the  
layer 2 ground plane. Layer 2 is the point where all the PGNDs and AGND are  
connected. Do not connect PGND and AGND together on the top layer.  
AGND  
33  
34  
NC  
NC  
No Connect. Must be left floating.  
No Connect. Must be left floating.  
Global Power Good (Output): This is an open-drain output that is pulled high when all  
the regulator power good flags are high. If an output falls below the power good  
threshold or a thermal fault occurs, the global power good flag is pulled low. There is a  
falling edge de-glitch time of 50 µs to prevent false triggering on output voltage  
transients. A power good mask feature programmed through the PGOOD_MASK[x]  
registers can be used to ignore a power good fault. When masked an individual power  
good fault will not cause the global power good output to de-assert. Do not connect the  
power good pull-up resistor to a voltage higher than AVIN.  
35  
PG  
Power Ground 2: The power ground for the synchronous buck converter power stage.  
36  
PGND2 The PGND pin connects to the source of the internal low-side N-Channel MOSFET, the  
negative terminals of input capacitors, and the negative terminals of output capacitors.  
EP  
ePAD  
Exposed Pad: Must be connected to the GND plane for full output power to be realized.  
DS20005887A-page 20  
2017 Microchip Technology Inc.  
MIC7400  
The MIC7400 has a current-mode boost regulator that  
can deliver up to 200 mA of output current and only  
consumes 70 µA of quiescent current. The 2.0 MHz  
switching frequency allows small chip inductors to be  
used. Programmable overcurrent sensing protects the  
boost from overloads and an output disconnect switch  
opens to protect against a short-circuit condition.  
Soft-start is also programmable and controls both the  
rising and falling output.  
4.0  
FUNCTIONAL DESCRIPTION  
The MIC7400 is one of the industry’s most-advanced  
PMIC designed for solid state drives (SSD) on the  
market today. It is a multi-channel solution that offers  
software-configurable soft-start, sequencing, and  
digital voltage control (DVC) that minimizes PC board  
area. These features usually require a pin for  
programming. However, this approach makes the IC  
larger by increasing pin count, and also increases BOM  
cost due to the external components.  
4.1  
Programmable Buck Soft-Start  
Control  
The following is a complete list of programmable  
features:  
The MIC7400 soft-start feature forces the output  
voltage to rise gradually, which limits the inrush current  
during start-up. A slower output rise time will draw a  
lower input surge current. The soft-start time is based  
on the least significant bit (LSB) of an internal DAC and  
the speed of the ramp rate, as shown in Figure 4-1.  
This illustrates the soft-start waveform for all five  
synchronous buck converters. The initial step starts at  
150 mV and each subsequent step is 50 mV.  
• Buck output voltage (0.8V – 3.3V/50 mV steps)  
• Boost output voltage (7.0V – 14V/ 200 mV steps)  
• Power-on-reset (2.25V – 4.25V/50 mV steps)  
• Power-on-reset delay (5 ms – 160 ms/5 ms steps)  
• Power-up sequencing (6 time slots)  
• Power-up sequencing delay (0 ms – 7 ms/1 ms  
steps)  
• Soft-start (4 µs – 1024 µs per step)  
• Buck current limit threshold  
- (1.1A to 6.1A/0.5A steps)  
• Boost current limit threshold  
VOUT  
- (1.76A to 2.6A/0.12A steps)  
• Boost pull-down (37 mA to 148 mA/37 mA steps)  
• Buck pull-down (90)  
• Buck standby output voltage programmable  
• Buck standby programmable standby current limit  
• Boost standby output voltage programmable  
50mV  
• Boost standby programmable standby current  
limit  
tRAMP  
150mV  
• Global power good masking  
These features give the system designer the flexibility  
to customize the MIC7400 for their application. For  
example, VOUT1 current-limit can be programmed to  
4.1A and VOUT2 can be set to 1.1A. These outputs can  
be programmed to come up at the same time or 2.0 ms  
apart. In addition, in power-saving standby mode, the  
outputs can either be turned off or programmed to a  
lower voltage. With this programmability, the MIC7400  
can be used in multiple platforms.  
TIME  
tSOFT-START  
FIGURE 4-1:  
Buck Soft-Start.  
The output ramp rate (tRAMP) is set by the soft-start  
registers. Each output ramp rate can be individually set  
from 4 µs to 1024 µs, see Table 4-1 for details.  
The soft-start time tSS can be calculated by  
Equation 4-1:  
The MIC7400 buck regulators are adaptive on-time  
synchronous step-down DC-to-DC regulators. They  
are designed to operate over a wide input voltage  
range from 2.4V to 5.5V and provide a regulated output  
voltage at up to 3.0A of output current. An adaptive  
on-time control scheme is employed to obtain a  
constant switching frequency and to simplify the control  
compensation. The device includes an internal  
soft-start function which reduces the power supply  
input surge current at start-up by controlling the output  
voltage rise time.  
EQUATION 4-1:  
VOUT – 0.15V  
---------------------------------  
tSS  
=
tRAMP  
50mV  
Where:  
tSS = Output rise time.  
VOUT = Output voltage.  
tRAMP = Output dwell time.  
2017 Microchip Technology Inc.  
DS20005887A-page 21  
 
 
MIC7400  
For example:  
EQUATION 4-2:  
VOUT  
1.8V – 0.15V  
¨VOUT  
-------------------------------  
tSS  
=
8s  
50mV  
tSS = 264s  
50mV  
Where:  
VOUT = 1.8V  
tRAMP = 8.0 µs  
tRAMP  
VOUT_INIT  
Δt  
TIME  
TABLE 4-1:  
BUCK OUTPUTS DEFAULT  
SOFT-START TIME (DEFAULT)  
FIGURE 4-3:  
Buck DVC Control Ramp.  
VOUT  
tRAMP  
tSS  
The ramp time is determined by Equation 4-3:  
VOUT1  
VOUT2  
VOUT3  
VOUT4  
VOUT5  
1.8V  
1.1V  
8 µs  
8 µs  
8 µs  
8 µs  
8 µs  
264 µs  
152 µs  
264 µs  
144 µs  
176 µs  
EQUATION 4-3:  
1.8V  
VOUT VOUT_INIT  
1.05V  
1.25V  
---------------------------------------------  
t =  
tRAMP  
50mV  
Figure 4-2 shows the output of Buck 1 ramping up  
cleanly, starting from 0.15V to its final 1.1V value.  
Where:  
VOUT_INIT = Initial output voltage.  
VOUT = Final output voltage.  
tRAMP = Output dwell time.  
When the regulator is programmed to a lower voltage,  
then the output voltage ramps down at a rate  
determined by the output ramp rate (tRAMP), the output  
capacitance and the external load. Small loads result in  
slow output voltage decay and heavy loads cause the  
decay to be controlled by the DAC ramp rate.  
VIN = 5.0V  
VOUT2 = 1.1V  
VOUT2  
(200mV/div)  
IOUT4 = 500mA  
tSS = 203μs; DS = 152μs  
In Figure 4-4, VOUT1 is switched to stand-by mode with  
an I2C command and then switched back to normal  
mode either by an I2C command or a low-to-high  
transition of the STBY pin. In this case, the rise and fall  
Time (40μs/div)  
times are the same due to a 1A load on VOUT1  
.
FIGURE 4-2:  
Buck Soft-Start.  
DVC Rise/Fall – 64μs/Step  
4.2  
Buck Digital Voltage Control (DVC)  
The output voltage has a 6-bit control DAC that can be  
programmed from 0.8V to 3.3V in 50 mV increments. If  
the output is programmed to a higher voltage, then the  
output ramps up, as shown in Figure 4-3.  
VOUT1  
STAND-BY  
(500mV/div)  
VOUT1  
WAKE-UP  
(500mV/div)  
Time (400μs/div)  
DS20005887A-page 22  
2017 Microchip Technology Inc.  
 
 
 
MIC7400  
FIGURE 4-4:  
Buck DVC Control Ramp.  
EQUATION 4-4:  
4.3  
Programmable Boost Soft-Start  
Control  
tSS = T1 + T2  
VOUT – 1.4V  
The boost soft-start time is divided into two parts as  
shown in Figure 4-5. T1 is a fixed 367 µs delay starting  
from when the internal enable goes high. This delay  
gives enough time for the disconnect switch to turn on  
and bring the inductor voltage to VIN before the boost is  
turned on. There is a 50 µs delay that is controlled by  
the parasitic capacitance (CGD) of the disconnect  
switch before the output starts to rise.  
------------------------------  
T2 =  
tRAMP  
0.2V  
12V – 1.4V  
---------------------------  
T2 =  
16s  
0.2V  
Where:  
After the T1 period, the DAC output ramp starts, T2.  
The total soft-start time, tSS, is the sum of both periods.  
Figure 4-6 displays the actual boost soft-start  
waveform.  
T1 = 367 µs  
T2 = 848 µs  
tSS = 367 µs + 848 µs = 1.215 ms  
VOUT = Output voltage.  
t
RAMP = Output dwell time = 16 µs.  
12V  
4.4  
Boost Digital Voltage Control  
(DVC)  
~ 50μs  
t1  
~ VIN  
BOOST  
12V  
(PVIN6O)  
The boost output control works the same way as the  
buck, except that the voltage steps are 200 mV, see  
Figure 4-7. When the boost is programmed to a lower  
voltage the output ramps down at a rate determined by  
the output ramp rate (tRAMP), the output capacitance  
and the external load. During both the ramp up and  
down time, the power good output is blanked and if the  
power good mask bit is set to “1”.  
T2  
T1  
367μs  
DAC  
(INTERNAL)  
EN6  
(INTERNAL)  
FIGURE 4-5:  
Boost Soft-Start Ramp.  
VOUT  
1.21ms  
¨VOUT  
200mV  
VIN = 5.0V  
VOUT6 = 12V  
tRAMP  
VOUT6  
(2V/div)  
I
OUT6 = 10mA  
VOUT_INIT  
tSS = 1.21ms  
¨t  
TIME  
Time (200μs/div)  
FIGURE 4-7:  
Boost DVC Control Ramp.  
FIGURE 4-6:  
Boost Soft-Start.  
The ramp time can be computed using the following  
equation:  
2017 Microchip Technology Inc.  
DS20005887A-page 23  
 
 
 
MIC7400  
EQUATION 4-5:  
TABLE 4-3:  
IOUT(MAX)  
BUCK CURRENT-LIMIT  
REGISTER SETTINGS  
VOUT VOUT_INIT  
IPROG  
BINARY  
HEX  
---------------------------------------------  
t =  
tRAMP  
0.2V  
0.5A  
1.0A  
1.5A  
2.0A  
2.5A  
3.0A  
1.1A  
2.1A  
3.1A  
4.1A  
5.1A  
6.1A  
1111  
1101  
1011  
1001  
0111  
0101  
F’h  
D’h  
B’h  
9’h  
7’h  
5’h  
Where:  
VOUT_INIT = Initial output voltage.  
TABLE 4-2:  
BOOST OUTPUT DEFAULT  
SOFT-START TIME  
The output can be turned back on by recycling the input  
power or by software control. To clear the overcurrent  
fault by software control, set the enable register bit to  
“0” then clear the overcurrent fault by setting the fault  
register bit to “0”. This will clear the overcurrent and  
power good status registers. Now the output can be  
re-enabled by setting the enable register bit to “1”.  
VOUT  
tRAMP  
tSS  
VOUT6  
12V  
16 µs  
1.215 ms  
4.5  
Buck Current-Limit  
The MIC7400 buck regulators have high-side  
current-limiting that can be varied by a 4-bit code. If the  
regulator remains in current-limit for more than seven  
consecutive PWM cycles, the output is latched off, the  
overcurrent status register bit is set to 1, the  
power-good status register bit is set to 0 and the global  
power good (PG) output pin is pulled low. An  
overcurrent fault on one output will not disable the  
remaining outputs. Table 4-3 shows the current-limit  
register settings verses output current. The  
current-limit register setting is set at twice the  
maximum output current.  
During start-up sequencing, once an overcurrent  
condition is sensed, the fault register is set to “1” and  
the start-up sequence will stop and no further outputs  
will be enabled. See Figure 4-9 for default start-up  
sequence.  
4.6  
Boost Current-Limit  
The boost current-limit features cycle-by-cycle  
protection. The duty cycle is cut immediately once the  
current-limit is hit. When the boost current-limit is hit for  
five consecutive cycles, the FAULT signal is asserted  
and remains asserted with the boost converter keeping  
on running until the boost is powered off.  
This protects the boost in normal overload conditions,  
but not in a short-to-ground case. For a short-circuit to  
ground, the boost current-limit will not be able to limit  
the inductor current. This short-circuit condition is  
sensed by the current in the disconnect switch. When  
the disconnect switch current limit is hit for four  
consecutive master clock cycles (2 MHz), regardless if  
the boost is switching or not, both the disconnect switch  
and boost are latched off automatically and the FAULT  
signal is asserted.  
The output can be turned back on by recycling the input  
power or by software control. To clear the overcurrent  
fault by software control, set the enable register bit to  
“0” then clear the overcurrent fault by setting the fault  
register bit to “0”.  
DS20005887A-page 24  
2017 Microchip Technology Inc.  
 
MIC7400  
through the initialization process. The DELAY register’s  
STDEL bits set the delay between powering up each  
regulator at initial power up.  
4.7  
Global Power Good Pin  
The global power-good output indicates that all the  
outputs are above the 91% limit after the power-up  
sequence is completed. Once the power-up sequence  
is complete, the global power good output stays high  
unless an output falls below its power-good limit, a  
thermal fault occurs, the input voltage drops below the  
lower UVLO threshold or an output is turned OFF by  
setting the enable register bit to “0” unless the  
PGOOD_MASK[x] bit is set to “1” (Default).  
The sequencing registers allow the outputs to come up  
in any order. There are six time slots that an output can  
be configured to power up in. Each time slot can be  
programmed for up to six regulators to be turned on at  
once or none at all.  
Figure 4-9 shows an example of this feature. VOUT4 is  
enabled in time slot 1. After a 1 ms delay, VOUT2 and  
VOUT3 are enabled at the same time in time slot 2. The  
1 ms is the standard delay for all of the outputs and can  
be programmed from 0 ms to 7 ms in 1 ms steps. Next,  
VOUT1 is powered up in time slot 3 and VOUT5 in time  
slot 4. There are no regulators programmed for time  
slot 5. Finally, VOUT6 is powered up in time slot 6. The  
global power good output, VPG, goes high as soon as  
the last output reaches 91% of its final value.  
A power-good mask bit can be used to control the  
global power good output. The power-good mask  
feature is programmed through the PGOOD_MASK[x]  
registers and is used to ignore an individual  
power-good fault. When masked, PGOOD_MASK[x]  
bit is set to “1”, an individual power good fault will not  
cause the global power good output to de-assert.  
If all the PGOOD_MASK[x] bits are set to “1”, then the  
power good output de-asserts as soon as the first  
output starts to rise. The PGOOD_MASK[x] bit of the  
last output must be set to “0” to have the PG output stay  
low until the last output reaches 91% of its final value.  
VIN  
VIN = 3.3V  
(2V/div)  
VOUT4  
(1V/div)  
VOUT4 = 1.05V/0.1A  
VOUT2 = 1.1V/0.1A  
The global power-good output is an open-drain output.  
A pull-up resistor can be connected to VIN or VOUT. Do  
not connect the pull-up resistor to a voltage higher than  
AVIN.  
VOUT2  
(1V/div)  
VOUT3 = 1.8V/0.1A  
VOUT3  
(1V/div)  
4.8  
Standard Delay  
VOUT1 = 1.8V/0.1A  
VOUT1  
(1V/div)  
There is a programmable timer that is used to set the  
standard delay time between each time slot. The timer  
starts as soon as the previous time slot’s output power  
good goes high. When the delay completes, the  
regulators assigned to that time slot are enabled, see  
Figure 4-8.  
V
OUT5 = 1.8V/0.1A  
VOUT5  
(1V/div)  
VOUT6 = 1.8V/0.1A  
VOUT6  
(5V/div)  
V
(2V/diPvG)  
Time (1.0ms/div)  
FIGURE 4-9:  
Hot Plug – V Rising.  
IN  
VOUT4  
(500mV/div)  
4.10 VSLT Pin  
The power-on-reset threshold toggles between two  
different ranges by driving the VSLT pin high or low.  
The lower range of 2.25V to 3.25V is selected when the  
VSLT pin is tied to ground. The upper range, 3.25V to  
4.25V, is selected when the VSLT pin is tied to VIN.  
VOUT2  
(500mV/div)  
4.11 Programmable Power-on-Reset  
(POR) Delay  
Time (400μs/div)  
FIGURE 4-8:  
Standard Delay Time.  
The POR output pin provides the user with a way to let  
the SOC know that the input power is failing. If the input  
voltage falls below the power-on reset lower threshold  
level, the POR output immediately goes low. The lower  
threshold is set in the PORDN register and the upper  
threshold uses PORUP register.  
4.9  
Power-Up Sequencing  
When power is first applied to the MIC7400, all I2C  
registers are loaded with their default values from the  
EEPROM. There is about a 1.5 ms delay before the  
first regulator is enabled while the MIC7400 goes  
2017 Microchip Technology Inc.  
DS20005887A-page 25  
 
 
 
MIC7400  
The low-to-high POR transition can be delayed from  
5 ms to 160 ms in 5 ms increments. This feature can be  
used to signal the SOC that the power supplies are  
stable. The PORDEL register sets the delay of the POR  
pin. The POR delay starts as soon as the AVIN pin  
voltage rises above the power-on reset upper threshold  
limit. Figure 4-10 shows the POR operation.  
4.13 Stand-By Mode  
In stand-by mode, efficiency can be improved by  
lowering the output voltage to the standby mode value  
or turning an output off completely. There are two  
registers used for setting the output voltage,  
normal-mode register and stand-by mode register. The  
default power-up voltages are set in the normal-mode  
registers.  
An I2C write command to the STBY_CTRL_REG  
register or the STBY pin can be used to set the  
MIC7400 into stand-by mode. Figure 4-12 shows an  
I2C write command implementation. In stand-by mode,  
the output can be programmed to a lower voltage or  
turned completely off. When disabled, the output will be  
soft-discharged to zero if the PULLD[1-6] register are  
set to 1. If PULLD[x] = 0 the output drifts to PGND at a  
rate determined by the load current and output  
capacitance.  
VIN  
(1V/div)  
20ms  
VPOR  
(2V/div)  
In stand-by, if an output is disabled, the global power  
Time (10ms/div)  
good  
output  
is  
not  
affected  
when  
the  
FIGURE 4-10:  
POR.  
PGOOD_MASK[x] is set to logic 1. If the  
PGOOD_MASK[x] is set to logic 0, then the global  
power good flag is pulled low. In Figure 4-12, all the  
PGOOD_MASK[x] bits are set to logic 1.  
4.12 Power-Down Sequencing  
When power is removed from VIN, all the regulators try  
to maintain the output voltage until the input voltage  
falls below the UVLO limit of 2.35V as shown in  
Figure 4-11.  
VSDA  
(2V/div)  
V
IN = 3.3V  
VOUT4  
VIN  
(2V/div)  
(1V/div)  
VOUT4  
(1V/div)  
VOUT4 = 1.05V/0.1A  
VOUT2  
(1V/div)  
V
OUT2 = 1.1V/0.1A  
VOUT2  
(1V/div)  
VOUT3  
(1V/div)  
VOUT3  
(1V/div)  
V
V
OUT3 = 1.8V/0.1A  
OUT1 = 1.8V/0.1A  
VOUT1  
(1V/div)  
VOUT1  
(1V/div)  
VOUT5 = 1.25V/0.1A  
VOUT5  
(1V/div)  
VOUT5  
(1V/div)  
VOUT6  
(10V/div)  
V
OUT6 = 12V/0.1A  
VOUT6  
(10V/div)  
V
(2V/diPvG)  
V
(2V/diPvG)  
Time (1.0ms/div)  
FIGURE 4-11:  
Hot Unplug – V Falling.  
IN  
Time (1.0ms/div)  
2
FIGURE 4-12:  
I C Stand-by Mode.  
DS20005887A-page 26  
2017 Microchip Technology Inc.  
 
 
 
MIC7400  
4.14 Resistive Discharge  
Standby (STBY) – Wake-Up  
To ensure a known output condition in stand-by mode,  
the output is actively discharged to ground if the output  
is disabled. Setting the buck pull down register field  
PULLD[1-5] = 1 connects a 90pull down resistor from  
OUT[x] to PGND[x] when the MIC7400 is disabled. If  
PULLD[x] = 0 the output drifts to PGND at a rate  
determined by the load current and the output  
capacitance value. The boost has a programmable  
pull-down current level from 37 mA to 148 mA. In  
Figure 4-13, the top trace shows the normal pull down  
and the bottom trace is with the 90pull-down.  
VSTBY  
(2V/div)  
VOUT4  
(1V/div)  
VOUT2  
(1V/div)  
VOUT3  
(1V/div)  
1kŸ EXTERNAL  
PULLDOWN  
VOUT1  
(1V/div)  
VOUT5  
(1V/div)  
VOUT5  
(500mV/div)  
90Ÿ INTERNAL  
PULLDOWN  
VOUT6  
(10V/div)  
VOUT5  
(500mV/div)  
V
(2V/diPvG)  
Time (200μs/div)  
Time (10ms/div)  
FIGURE 4-13:  
Output Pull-Down  
FIGURE 4-14:  
STBY-to-NORMAL  
Resistance.  
Transition (DEFAULT).  
4.15 STBY Pin  
4.16 Safe Start-Up into a Pre-Biased  
Output  
A pin-selectable STBY input allows the MIC7400 to be  
placed into standby or normal mode. In standby mode,  
the individual regulator can be turned on or off or the  
output voltage can be set to a different value. If the  
regulators are turned off, standby mode cuts the  
quiescent current by 23 µA for each buck regulator and  
70 µA for the boost.  
The MIC7400 is designed for safe start-up into a  
pre-biased output. This prevents large negative  
inductor currents that can cause the output voltage to  
dip and excessive output voltage oscillations. A zero  
crossing comparator is used to detect a negative  
inductor current. If a negative inductor current is  
detected, the low-side synchronous MOSFET  
functions as a diode and is immediately turned off.  
Figure 4-14 illustrates the STBY pin operation. A  
low-to-high transition on the STBY pin switches the  
output from standby mode to normal mode. There is a  
100 µs STBY de-glitch time to eliminate nuisance  
tripping then all the regulators are enabled at the same  
time and ramp up with their programmed ramp rates. A  
high-to-low transition on the STBY pin switches the  
output from normal mode to standby mode.  
Figure 4-15 shows a 1V output pre-bias at 0.5V at  
start-up, see VOUT4 trace. The inductor current, trace  
IL4, is not allowed to go negative by more than 0.5A  
before the low-side switch is turned off. This feature  
prevents high negative inductor current flow in a  
pre-bias condition which can damage the IC.  
2017 Microchip Technology Inc.  
DS20005887A-page 27  
 
 
MIC7400  
4.18 Total Power Dissipation  
The total power dissipation in the MIC7400 package is  
equal to the sum of the power loss of each regulator:  
EQUATION 4-8:  
PD_TOTAL SUMPD_SWITCHERS  
Once the total power dissipation is calculated, the IC  
junction temperature can be estimated using  
Equation 4-9:  
FIGURE 4-15:  
Pre-Biased Output Voltage.  
4.17 Buck Regulator Power Dissipation  
EQUATION 4-9:  
The total power dissipation in a MIC7400 is a  
combination of the five buck regulators and the boost  
dissipation. The buck regulators (OUT1 to OUT5)  
dissipation is approximately the switcher’s input power  
minus the switcher’s output power and minus the  
power loss in the inductor:  
T
JMAXTA + PD_TOTAL  JA  
Where:  
TJ(MAX) = The maximum junction temperature.  
TA = The ambient temperature.  
EQUATION 4-6:  
θJA = The junction-to-ambient thermal resistance  
of the package (30°C/W).  
PD_BUCK VIN IIN VOUT IOUT PL_LOSS  
Figure 4-16 shows the measured junction temperature  
versus power dissipation of the MIC7400 evaluation  
board. The actual junction temperature of the IC  
depends upon many factors. The significant factors  
influencing the die temperature rise are copper  
thickness in the PCB, the surface area available for  
convection heat transfer, air flow and power dissipation  
from other components, including inductors, SOCs and  
processor ICs. It is good engineering practice to  
measure all power components temperature during the  
final design review using a thermal couple or IR  
thermometer, see the Thermal Measurements  
sub-section for details.  
While the boost power dissipation is estimated by  
Equation 4-7:  
EQUATION 4-7:  
PD_BOOST VIN IIN VOUT IOUT PL_LOSS  
Vf IOUT  
Although the maximum output current for a single buck  
regulator can be as much as 3A, the MIC7400 will  
thermal limit and will not support this high output  
current on all outputs at the same time.  
DS20005887A-page 28  
2017 Microchip Technology Inc.  
 
 
MIC7400  
4.20 Overtemperature Fault  
140  
120  
100  
80  
An overtemperature fault is triggered when the IC  
junction temperature reaches 160°C. When this  
occurs, both the overtemperature fault flag is set to “1”,  
the global power good output is pulled low and all the  
outputs are turned off. During the fault condition the I2C  
interface remains active and all registers values are  
maintained.  
y = 30.866x + 24.869  
60  
When the die temperature decreases by 20°C the  
overtemperature fault bit can be cleared. To clear the  
fault, either recycle power or write a logic “0” to the over  
temperature fault register. Once the fault bit is cleared,  
the outputs power up to their default values and are  
sequenced according to the time slot settings.  
40  
TA = 25°C  
20  
0
0
1
2
3
4
POWER DISSIPATION (W)  
4.21 Input Voltage “Hot Plug”  
FIGURE 4-16:  
Power Dissipation.  
High voltage spikes of twice the input voltage can  
appear on the MIC7400 PVIN pins if a battery pack is  
hot-plugged to the input supply voltage connection as  
shown in Figure 4-18 (Trace 1). These spikes are due  
to the inductance of the wires to the battery and the  
very low inductance and ESR of the ceramic input  
capacitors. This problem can be solved by placing a  
150 µF POS capacitor across the input terminals.  
Figure 4-18 (Trace 2) shows that the high voltage spike  
is greatly reduced to a value below the maximum  
allowable input voltage rating.  
4.19 Power Derating  
The MIC7400 package has a 2W power dissipation  
limit. To keep the IC junction temperature below a  
125°C design limit, the output power has to be limited  
above an ambient temperature of 65°C. Figure 4-17  
shows the power dissipation derating curve.  
140  
120  
100  
80  
60  
40  
20  
0
0
0.5  
1
1.5  
2
2.5  
POWER DISSIPATION (W)  
FIGURE 4-17:  
Power Derating Curve.  
FIGURE 4-18:  
Spike.  
Hot Plug Input Voltage  
The maximum power dissipation of the package can be  
calculated by Equation 4-10:  
4.22 Thermal Measurements  
EQUATION 4-10:  
Measuring the IC’s case temperature is recommended  
to ensure it is within its operating limits. Although this  
might seem like a very elementary task, it is easy to get  
erroneous results. The most common mistake is to use  
the standard thermal couple that comes with a thermal  
meter. This thermal couple wire gauge is large  
(typically 22 gauge) and behaves like a heatsink,  
resulting in a lower case measurement.  
T
JMAXTA  
-------------------------------  
DMAX  
P
JA  
Where:  
TJ(MAX) = The maximum junction temperature  
(125°C).  
TA = The ambient temperature.  
θJA = The junction-to-ambient thermal resistance  
of the package (30°C/W).  
2017 Microchip Technology Inc.  
DS20005887A-page 29  
 
 
 
MIC7400  
Two reliable methods of temperature measurement are  
a
smaller thermal couple wire or an infrared  
thermometer. If a thermal couple wire is used, it must  
be constructed of 36 gauge wire or higher (smaller wire  
size) to minimize the wire heat-sinking effect. In  
addition, the thermal couple tip must be covered in  
either thermal grease or thermal glue to make sure that  
the thermal couple junction is making good contact with  
the case of the IC. Omega brand thermal couple  
(5SC-TT-K-36-36) is adequate for most applications.  
Whenever possible, an infrared thermometer is  
recommended. The measurement spot size of most  
infrared thermometers is too large for an accurate  
reading on a small form factor ICs. However, an IR  
thermometer from Optris has a 1 mm spot size, which  
makes it a good choice for measuring the hottest point  
on the case. An optional stand makes it easy to hold the  
beam on the IC for long periods of time.  
DS20005887A-page 30  
2017 Microchip Technology Inc.  
MIC7400  
5.0  
5.1  
TIMING DIAGRAMS  
Normal Power-Up Sequence for Outputs  
The STDEL register sets the delay between powering up of each regulator at initial power-up (see power-up sequencing  
in Figure 5-1). Once all the internal power good registers PGOOD[1-6] are all “1”, then the global PG pin goes high  
without delay (see the Global Power Good Pin section for more information).  
The PORDEL register sets the delay for the POR flag pin. The POR delay time starts as soon as the AVIN pin voltage  
rises above the system UVLO upper threshold set by the PORUP register. The POR output goes low without delay if  
AVIN falls below the lower UVLO threshold set by the PORDN register.  
POR UPPER  
THRESHOLD  
POR LOWER  
THRESHOLD  
2.7V  
2.6V  
2.35V  
UVLO RISING  
UVLO FALLING  
2.3V  
tPOR_DELAY  
20ms  
VIN  
BOOT-LOAD TIME  
2ms  
VPOR  
tDLY  
1ms  
tSS  
VOUT1  
tDLY  
1ms  
tSS  
VOUT2  
tDLY  
1ms  
tSS  
VOUT3  
tDLY  
1ms  
tSS  
VOUT4  
tDLY  
1ms  
tSS  
VOUT5  
tSS  
tDLY  
1ms  
VOUT6  
VPG  
FIGURE 5-1:  
MIC7400 Power-Up/Down.  
2017 Microchip Technology Inc.  
DS20005887A-page 31  
 
MIC7400  
5.2  
Standby (STBY) Pin (Wake-Up)  
An I2C write command to the STBY_CTRL_REG register or the STBY pin can be used to set the MIC7400 into standby  
mode. The standby (STBY) pin provides a hardware-specific manner in which to wake-up from stand-by mode and go  
into normal mode. Figure 5-2 shows the STBY pin operation. A low-to-high transition on the STBY pin switches the  
output from stand-by mode to normal mode.  
There is a 100 µs STBY deglitch time to eliminate nuisance tripping, then all the regulators are enabled at the same time  
and ramp up with their programmed ramp rates.  
V
(DEFAUSLTTBY)  
0V  
FORCES  
03h BIT [6] = ‘1’  
ALL CHANNELS ARE FORCED TO  
ALL CHANNELS RETURN TO  
THEIR DEFAULT STATE  
THEIR STANDBY STATES  
VSTBY  
(INVP)  
0V  
tSS  
VOUT1  
0V  
0V  
tSS  
VOUT2  
tSS  
VOUT3  
0V  
0V  
0V  
tSS  
VOUT4  
tSS  
VOUT5  
tSS  
VOUT6  
0V  
0V  
PG  
POWER GOOD IS MASKED  
PGOOD_MASK [1-6] = ‘1’  
FIGURE 5-2:  
MIC7400 STBY Function (DEFAULT).  
DS20005887A-page 32  
2017 Microchip Technology Inc.  
 
MIC7400  
• If possible, place vias to the ground plane close to  
the each input capacitor ground terminal, but not  
in the way of the high di/dit current path.  
6.0  
PCB LAYOUT GUIDELINES  
PCB layout is critical to achieve reliable, stable, and  
efficient performance. A ground plane is required to  
control EMI and minimize the inductance in power,  
signal, and return paths.  
• Use either X7R or X5R dielectric input capacitors.  
Do not use Y5V or Z5U type capacitors.  
• Do not replace the ceramic input capacitor with  
any other type of capacitor. Any type of capacitor  
can be placed in parallel with the input capacitor.  
To minimize EMI and output noise, follow these layout  
recommendations to ensure proper operation:  
• In “Hot-Plug” applications, a Tantalum or  
Electrolytic bypass capacitor must be used to limit  
the over-voltage spike seen on the input supply  
with power is suddenly applied.  
6.1  
General  
• Most of the heat removed from the IC is due to the  
exposed pad (EP) on the bottom of the IC  
conducting heat into the internal ground planes  
and the ground plane on the bottom side of the  
board. Use at least 16 vias for the EP to ground  
plane connection.  
6.4  
Inductor  
• Keep the inductor connection to the switch node  
(SW) short.  
• Do not connect the PGND and AGND traces  
together on the top layer. The single point  
connection is made on the layer 2 ground plane.  
• Do not route any digital lines underneath or close  
to the inductor.  
To minimize noise, place a ground plane  
underneath the inductor.  
• Do not put a via directly in front of a high current  
pin, SW, PGND, or PVIN. This will increase the  
trace resistance and parasitic inductance.  
6.5  
Output Capacitor  
• Do not place a via in between the input and output  
capacitor ground connection. Put it to the inside of  
the output capacitor and in the way of the high  
di/dt current path.  
• Use a wide trace to connect the output capacitor  
ground terminal to the input capacitor ground  
terminal.  
• Route all power traces on the top layer.  
• The OUT[1-6] trace should be separate from the  
power trace and connected as close as possible  
to the output capacitor. Sensing a long  
high-current load trace can degrade the DC load  
regulation.  
• Place the input capacitors first and put them as  
close as possible to the IC.  
6.2  
IC  
• The 2.2 µF ceramic capacitor, which is connected  
to the AVIN pin, must be located right at the IC.  
The AVIN pin is very noise sensitive and  
placement of the capacitor is very critical. Use  
wide traces to connect to the AVIN and AGND  
pins.  
• The analog ground pin (AGND) must be  
connected directly to the ground planes. Do not  
route the SGND pin to the PGND Pad on the top  
layer.  
• Use wide traces to route the input and output  
power lines.  
• Use Layer 5 as an input voltage power plane.  
• Layer 2 and the bottom layer (Layer 6) are ground  
planes.  
6.3  
Input Capacitor  
• A 10 µF X5R or X7R dielectrics ceramic capacitor  
is recommended on each of the PVIN pins for  
bypassing.  
• Place the input capacitors on the same side of the  
board and as close to the IC as possible.  
• Keep both the PVIN pin and PGND connections  
short.  
2017 Microchip Technology Inc.  
DS20005887A-page 33  
MIC7400  
6.6  
Proper Termination of Unused Pins  
Many designs will not require all six DC/DC output voltages. In these cases, the unused pin must be connected to either  
VIN or GND. The schematic in Figure 6-1 shows where to tie the unused pins and Table 6-1 summarizes the  
connections.  
VIN  
VIN  
+
C15  
150μF  
R7  
0ȍ  
PGND  
PGND  
R6  
499kȍ  
VIN  
C1  
2.2μF  
R1  
100kȍ  
VSLT  
PG  
2
VSLT  
26  
29  
VIN  
PVIN2  
PVIN1  
VIN  
C9  
L2  
OUT1  
10μF  
2.2μH  
VOUT2  
1.1V/0.5A  
1
3
SW2  
27  
28  
SW1  
C10  
22μF  
OUT2  
PGND2  
36  
PGND  
VIN  
PGND1  
MIC7400  
4
PVIN3  
25  
PVIN6  
VIN  
C11  
10μF  
L3  
2.2μH  
VOUT3  
1.8V/0.5A  
5
7
6
SW3  
24  
23  
PVIN6O  
SW6  
C12  
22μF  
OUT3  
PGND3  
PGND  
VIN  
22  
21  
20  
PGND6  
OUT6  
8
PVIN4  
C13  
10μF  
L4  
1.0μH  
PVIN5  
VIN  
VOUT4  
1.05V/2.5A  
9
11  
10  
SW4  
C7  
10μF  
L5  
C14  
22μF  
2.2μH  
OUT4  
PGND4  
19  
17  
18  
VOUT5  
SW5  
OUT5  
1.25V/1.0A  
PGND  
C8  
22μF  
VIN  
PGND5  
PGND  
VIN  
R4  
100kȍ  
VIN  
TP14  
R8  
NF  
R5  
2kȍ  
R3  
2kȍ  
4
3
SDA  
CLK  
VIN  
2
1
NC  
STAND-BY  
STAND-BY  
POR  
GND  
PG  
VSLT  
FIGURE 6-1:  
Connections for Unused Pins.  
SUMMARIZATION OF UNUSED PIN CONNECTIONS  
TABLE 6-1:  
Unused  
VIN  
PGND  
Boost  
Buck  
POR  
PVIN6, PGIN6O, VOUT6  
PVIN[x], VOUT[x}  
PGND6, SW6  
PGND[6], SW[x]  
POR  
DS20005887A-page 34  
2017 Microchip Technology Inc.  
 
 
MIC7400  
2
7.0  
I C CONTROL REGISTER  
The MIC7400 I2C Read/Write registers are detailed here. During normal operation, the configuration data can be saved  
into non-volatile registers in EEPROM by addressing the chip and writing to SAVECONFIG key = 66’h. Saving CONFIG  
data to EEPROM takes time so the external host should poll the MIC7400 and read the CONFIG bit[1] of EEPROM  
Ready register 01’h to determine the end of programming.  
All transactions start with a control byte sent from the I2C master device. The control byte begins with a START  
condition, followed by a 7-bit slave address. The slave address is seven bits long followed by an eighth bit which is a  
data direction bit (R/W), a “0” indicates a transmission (WRITE) and a “1” indicates a request for data (READ). A data  
transfer is always terminated by a STOP condition that is generated by the master.  
7.1  
Serial Port Operation  
7.1.1  
EXTERNAL HOST INTERFACE  
Bidirectional I2C port capable of Standard (up to 100 kbits/s), Fast (up to 400 kbits/s), Fast Plus (up to 1 Mbit/s) and High  
Speed (up to 3.4 Mbit/s) as defined in the I2C-Bus Specification.  
The MIC7400 acts as an I2C slave when addressed by the external host. The MIC7400 slave address uses a fixed 7-bit  
code and is followed by an R/W bit which is part of the control word that is right after the start bit as shown in Figure 7-1  
in the Device Address column.  
The MIC7400 can receive multiple data bytes after a single address byte and automatically increments its register  
pointer to block fill internal volatile memory. Byte data is latched after individual bytes are received so multi-byte transfers  
could be corrupted if interrupted mid-stream.  
No system clock is required by the digital core for I2C access from the external host (only the host SCL clock is  
assumed).  
In order to prevent spurious operation of the I2C, if a start bit is seen, then any partial communication is aborted and  
new I2C data is allowed. Start bit is when SDA goes low when SCL is high. Stop bit is when SDA goes high when SCL  
is high. Normal I2C exchange is shown in Figure 7-1.  
FIGURE 7-1:  
Read/Write Protocol.  
2017 Microchip Technology Inc.  
DS20005887A-page 35  
 
MIC7400  
2
7.1.2  
SPECIAL HOST I C COMMANDS  
The following commands are all 2 byte communications:  
• Byte1 = Device address with write bit set, LSB = 0.  
• Byte2 = Special key.  
Special keys include the following:  
• SAVECONFIG Key = 66’h. Saves the shadow register configuration data into EEPROM registers 03’h through  
23’h.  
• RESET Key = 6A’h. Reloads only NORMAL mode voltage and current limit settings then enables the regulator to  
NORMAL mode with no soft-start, no sequencing, and no delays. Then it clears the STANDBY register bit 6 in  
register 03’h.  
• RELOAD Key = 6B’h. Reloads all data from EEPROM into the shadow registers. No other actions are performed,  
including soft-start, sequencing, and delay.  
• REBOOT Key = 6C’h. Turns all regulators OFF, reloads EEPROM data into shadow registers, then re-sequences  
the regulators with the programmed soft-start and sequence delays.  
• SEQUENCE Key = 6D’h. Turns all regulators OFF, restarts the sequencer including soft-start and sequence  
delays.  
OBS: In order to use the Special Keys, FORCE_CLK_ON bit 2 of the Internal Clock control register (0x2F’h) must be  
set to “1”. After the action has completed, the FORCE_CLK_ON bit can be cleared by writing “0”.  
DS20005887A-page 36  
2017 Microchip Technology Inc.  
MIC7400  
8.0  
8.1  
REGISTER SETTINGS DESCRIPTIONS  
Power Good Register (00’h)  
This register indicates when the regulators 1 – 6 output voltage is above 91% of the target value. The MIC7400  
deglitches the input signal for 50 µs in order to prevent false events. The global PG pin indicator is functional ‘AND’ of  
all the power good indicators during sequencing. Once the power-up sequence is complete, the global power good  
output stays high unless an output falls below its power-good limit, a thermal fault occurs, the input voltage drops below  
the lower UVLO threshold or an output is turned OFF by setting the enable register bit to “0” if the PGOOD_MASK[x]  
bit is set to “0”.  
TABLE 8-1:  
POWER GOOD STATUS REGISTER  
PGOOD1-6_REG  
Register Name  
Power Good Status Register  
0x00’h  
Address  
Field  
Bit  
R/W  
Default  
Description  
Power Good indicator for Regulator 1  
PGOOD1  
PGOOD2  
PGOOD3  
PGOOD4  
PGOOD5  
PGOOD6  
0
R
0
0 = Buck Not Valid  
Power Good indicator for Regulator 2  
0 = Buck Not Valid 1 = Buck Valid  
Power Good indicator for Regulator 3  
0 = Buck Not Valid 1 = Buck Valid  
Power Good indicator for Regulator 4  
0 = Buck Not Valid 1 = Buck Valid  
Power Good indicator for Regulator 5  
0 = Buck Not Valid 1 = Buck Valid  
Power Good indicator for Regulator 6  
0 = Boost Not Valid 1 = Boost Valid  
1 = Buck Valid  
1
2
3
4
5
R
R
R
R
R
0
0
0
0
0
Reserved  
Reserved  
6
7
R/W  
R/W  
0
0
Not Used  
Not Used  
8.2  
EEPROM-Ready Register (01’h)  
This register indicates the status of EEPROM to external I2C host.  
The READY bit = 1 when the Trim and Configuration data have been loaded into core from EEPROM after reset, reboot  
or reload and the chip is ready for operation. If the SAVE1 bit in register 04’h is read in as logic 1, the configuration  
registers will not be loaded from the EEPROM memory and the READY bit will still get set indicating that any startup  
procedure involving the EEPROM memory is complete. The READY bit will be set to 1 after loading or attempting to  
load Trim and Configuration data from EEPROM into volatile memory. The Trim data will always be loaded and if SAVE1  
bit in register 04’h is set to logic 0, Configuration data is also loaded. Regardless of the SAVE1 bit being set or not, after  
the loading operation the READY bit is set to 1.  
The CONFIG bit = 1 when the Configuration data have been saved to EEPROM after the SAVECONFIG Code is issued  
from the Host. If CONFIG=1 before the SAVECONFIG code is issued, CONFIG will be cleared immediately and then  
will be set to logic 1 again once all Configuration data is written to the EEPROM memory.  
The EEPREAD and EEPWRITE bits indicate if an EEPROM read or write fault has occurred. These bits should be read  
and cleared prior to reloading data from the EEPROM memory.  
2017 Microchip Technology Inc.  
DS20005887A-page 37  
MIC7400  
TABLE 8-2:  
EEPROM STATUS REGISTER  
Register Name  
STATUS_REG  
EEPROM Status Register  
0x01’h  
Address  
Field  
Bit  
R/W  
Default  
Description  
Indicate ready for operation when the trim and configuration data  
has been loaded.  
READY  
0
R
0
0 = Data not loaded  
Indicate Configuration saved to EEPROM  
0 = Configuration not saved 1 = Configuration saved  
Not Used  
1 = Chip ready  
CONFIG  
1
R
0
Reserved  
Reserved  
Reserved  
Reserved  
2
3
4
5
R
0
0
0
0
R/W  
R/W  
R/W  
Not Used  
Not Used  
Not Used  
EEPROM Read  
EEPROM Write  
EEPREAD  
EEPWRITE  
6
7
R/W  
R/W  
0
0
0 = No Fault  
0 = No Fault  
1 = Fault  
1 = Fault  
8.3  
Fault Registers (02’h)  
This register indicates the overcurrent flag for each regulator and one global overtemperature (OT). These register bits  
are set by an overcurrent condition and reset by writing a logic “0” to each bit by the I2C host. The respective channel  
must be restarted to enter normal functionality in order to successfully clear the over current fault.  
If the fault condition persists, the bit will be set to logic “1” again immediately by the MIC7400 after it is written to logic  
“0” by the host.  
TABLE 8-3:  
OVERCURRENT STATUS FAULT REGISTER  
Register Name  
FAULT_REG  
Overcurrent Status Fault Register  
Address  
Field  
0x02’h  
Bit  
R/W  
Default  
Description  
Regulator 1 Overcurrent  
REG1OC  
REG2OC  
REG3OC  
REG4OC  
REG5OC  
0
R/W  
R/W  
R/W  
R/W  
R/W  
0
0 = No Fault  
Regulator 2 Overcurrent  
0 = No Fault  
Regulator 3 Overcurrent  
0 = No Fault  
Regulator 4 Overcurrent  
0 = No Fault  
Regulator 5 Overcurrent  
0 = No Fault  
Regulator 6 Overcurrent  
0 = No Fault  
1 = Fault  
1 = Fault  
1 = Fault  
1 = Fault  
1 = Fault  
1
2
3
4
0
0
0
0
REG6OC  
Reserved  
OT  
5
6
7
R/W  
R/W  
R/W  
0
0
0
1 = Fault  
Reserved  
Overtemperature  
0 = No Fault  
1 = Fault  
DS20005887A-page 38  
2017 Microchip Technology Inc.  
MIC7400  
8.4  
Standby Register (03’h)  
This register controls standby mode operation. Global standby mode can either be enabled by I2C or by changing the  
logic state of the STBY input pin. Global standby is controlled by the STBY_MODEB bit. When STBY_MODEB [6] = 1  
then the regulators output voltages are set to their normal mode output voltage settings, (05’h – 0A’h) registers. When  
STBY_MODEB [6] = 0 then regulators output voltages are set to the standby mode output voltage settings, (0B’h – 10’h)  
registers. If STBY [1-6] register is set to logic “0”, then the output is shut off in standby mode.  
The global power good flag is asserted when an output is disabled unless the power good mask bit (PGOOD_MASK[x])  
is set to 1.  
TABLE 8-4:  
STANDBY REGISTER  
STBY_CTRL_REG  
Register Name  
Standby Register  
0x03’h  
Address  
Field  
Bit  
R/W  
Default  
Description  
Regulator 1 Standby Voltage Control  
STBY1  
STBY2  
STBY3  
STBY4  
STBY5  
STBY6  
0
R/W  
1
0 = OFF  
Regulator 2 Standby Voltage Control  
0 = OFF 1 = ON  
Regulator 3 Standby Voltage Control  
0 = OFF 1 = ON  
Regulator 4 Standby Voltage Control  
0 = OFF 1 = ON  
Regulator 5 Standby Voltage Control  
0 = OFF 1 = ON  
Regulator 6 Standby Voltage Control  
0 = OFF 1 = ON  
1 = ON  
1
2
3
4
5
R/W  
R/W  
R/W  
R/W  
R/W  
1
1
1
1
1
Global Standby Control  
STBY_MODEB  
SAVE1  
6
7
R/W  
R/W  
1
0
0 = All regulators in Standby  
1 = All regulators in Normal  
Mode  
Mode  
Save Configuration  
0 = Configuration Saved to  
EEPROM  
1 = Configuration Not Saved to  
EEPROM  
8.5  
Enable/Disable Register (04’h)  
This register controls the enable/disable of each DC/DC regulators. When EN(n) bit transitions from “0” to “1”, then the  
regulator(n) is enabled with soft-start unless the STBY_MODEB register bit in register 03’h is set to logic “0”.  
The configuration save bit “SAVE1” should be cleared by customer before saving configuration data to EEPROM. This  
bit is used during power up to indicate via the Status register (00’h) that configuration data has previously been stored.  
TABLE 8-5:  
ENABLE REGISTER  
EN_REG  
Register Name  
Enable Register  
0x04’h  
Address  
Field  
Bit  
R/W  
Default  
Description  
Regulator 1 ON/OFF Control bit  
EN1  
EN2  
EN3  
0
R/W  
1
0 = OFF  
Regulator 2 ON/OFF Control bit  
0 = OFF 1 = ON  
Regulator 3 ON/OFF Control  
0 = OFF 1 = ON  
1 = ON  
1
2
R/W  
R/W  
1
1
2017 Microchip Technology Inc.  
DS20005887A-page 39  
MIC7400  
TABLE 8-5:  
ENABLE REGISTER (CONTINUED)  
Register Name  
EN_REG  
Enable Register  
0x04’h  
Address  
Field  
Bit  
R/W  
Default  
Description  
Regulator 4 ON/OFF Control  
EN4  
EN5  
EN6  
3
R/W  
R/W  
R/W  
1
0 = OFF  
Regulator 5 ON/OFF Control  
0 = OFF 1 = ON  
Regulator 6 ON/OFF Control  
1 = ON  
4
5
1
1
0 = OFF  
1 = ON  
Reserved  
Reserved  
6
7
R/W  
R/W  
0
0
Not Used  
Not Used  
8.6  
Regulator Output Voltage Setting NORMAL Mode (05’h – 09’h)  
One register for each regulator output (OUT1 – OUT5). Sets output voltage of regulator for NORMAL mode operation.  
TABLE 8-6:  
DVC REGISTERS FOR OUT[1 – 5]  
OUT1-5_REG  
Register  
Name  
DVC Registers for OUT[1-5]  
OUT1 = 0x05’h; OUT2 = 0x06’h; OUT3 = 0x07’h  
OUT4 = 0x08’h; OUT5 = 0x09’h  
Address  
Field  
Bit  
R/W  
Default  
Description  
Output Voltage setting of OUT[1-5]  
DVC from 3.3V to 0.8V in –50 mV steps  
000000 = 3.30V 010000 = 2.50V 100000 = 1.70V 110000 = 0.90V  
000001 = 3.25V 010001 = 2.45V 100001 = 1.65V 110001 = 0.85V  
000010 = 3.20V 010010 = 2.40V 100010 = 1.60V 110010 = 0.80V  
000011 = 3.15V 010011 = 2.35V 100011 = 1.55V 110011 = 0.80V  
000100 = 3.10V 010100 = 2.30V 100100 = 1.50V 110100 = 0.80V  
000101 = 3.05V 010101 = 2.25V 100101 = 1.45V 110101 = 0.80V  
000110 = 3.00V 010110 = 2.20V 100110 = 1.40V 110110 = 0.80V  
000111 = 2.95V 010111 = 2.15V 100111 = 1.35V 110111 = 0.80V  
001000 = 2.90V 011000 = 2.10V 101000 = 1.30V 111000 = 0.80V  
001001 = 2.85V 011001 = 2.05V 101001 = 1.25V 111001 = 0.80V  
001010 = 2.80V 011010 = 2.00V 101010 = 1.20V 111010 = 0.80V  
001011 = 2.75V 011011 = 1.95V 101011 = 1.15V 111011 = 0.80V  
001100 = 2.70V 011100 = 1.90V 101100 = 1.10V 111100 = 0.80V  
001101 = 2.65V 011101 = 1.85V 101101 = 1.05V 111101 = 0.80V  
001110 = 2.60V 011110 = 1.80V 101110 = 1.00V 111110 = 0.80V  
OUT1 = 011110  
(1.8V)  
OUT2 = 101100  
(1.1V)  
OUT3 = 011110  
(1.8V)  
OUT4 = 101101  
(1.05V)  
OUT[1-5]  
5:0  
R/W  
OUT5 = 101001  
(1.25V)  
001111 = 2.55V  
011111 = 1.75V  
101111 = 0.95V  
111111 = 0.80V  
6
7
0
0
Not Used  
Not Used  
DS20005887A-page 40  
2017 Microchip Technology Inc.  
MIC7400  
8.7  
Boost Regulator Output Voltage Setting NORMAL Mode (0A’h)  
Sets output voltage of the boost regulator (OUT6) in NORMAL mode operation.  
TABLE 8-7:  
DVC REGISTERS FOR OUT6  
OUT6_REG  
Register Name  
DVC Registers  
0x0A’h  
Address  
Field  
Bit  
R/W  
Default  
Description  
DVC from 14V to 7V in 200 mV decrements  
000000 = 14.0V 010000 = 10.8V  
100000 = 7.6V  
100001 = 7.4V  
100010 = 7.2V  
100011 = 7.0V  
100100 = 7.0V  
100101 = 7.0V  
100110 = 7.0V  
100111 = 7.0V  
101000 = 7.0V  
101001 = 7.0V  
101010 = 7.0V  
101011 = 7.0V  
101100 = 7.0V  
101101 = 7.0V  
101110 = 7.0V  
101111 = 7.0V  
110000 = 7.0V  
000001 = 13.8V 010001 = 10.6V  
000010 = 13.6V 010010 = 10.4V  
000011 = 13.4V 010011 = 10.2V  
000100 = 13.2V 010100 = 10.0V  
110001 = 7.0V  
110010 = 7.0V  
110011 = 7.0V  
110100 = 7.0V  
110101 = 7.0V  
110110 = 7.0V  
110111 = 7.0V  
111000 = 7.0V  
111001 = 7.0V  
111010 = 7.0V  
111011 = 7.0V  
111100 = 7.0V  
111101 = 7.0V  
111110 = 7.0V  
111111 = 7.0V  
000101 = 13.0V  
000110 = 12.8V  
000111 = 12.6V  
001000 = 12.4V  
001001 = 12.2V  
001010 = 12.0V  
001011 = 11.8V  
001100 = 11.6V  
001101 = 11.4V  
001110 = 11.2V  
001111 = 11.0V  
010101 = 9.8V  
010110 = 9.6V  
010111 = 9.4V  
011000 = 9.2V  
011001 = 9.0V  
011010 = 8.8V  
011011 = 8.6V  
011100 = 8.4V  
011101 = 8.2V  
011110 = 8.0V  
011111 = 7.8V  
001010  
(12V)  
OUT6  
5:0  
R/W  
6
7
0
0
Not Used  
Not Used  
2017 Microchip Technology Inc.  
DS20005887A-page 41  
MIC7400  
8.8  
Regulator Voltage Setting STBY Mode (0B’h – 0F’h)  
This register is used to sets the output voltage of regulators 1 – 5 in STBY mode operation.  
TABLE 8-8:  
STANDBY REGISTERS  
STBY_OUT1-5_REG  
Register  
Name  
Standby DVC Registers  
OUT1 = 0x0B’h; OUT2 = 0x0C’h; OUT3 = 0x0D’h  
OUT4 = 0x0E’h; OUT5 = 0x0F’h  
Address  
Field  
Bit  
R/W  
Default  
Description  
Output Voltage setting of OUT[1-5]  
DVC from 3.3V to 0.8V in –50 mV steps  
000000 = 3.30V 010000 = 2.50V 100000 = 1.70V 110000 = 0.90V  
000001 = 3.25V 010001 = 2.45V 100001 = 1.65V 110001 = 0.85V  
000010 = 3.20V 010010 = 2.40V 100010 = 1.60V 110010 = 0.80V  
000011 = 3.15V 010011 = 2.35V 100011 = 1.55V 110011 = 0.80V  
000100 = 3.10V 010100 = 2.30V 100100 = 1.50V 110100 = 0.80V  
000101 = 3.05V 010101 = 2.25V 100101 = 1.45V 110101 = 0.80V  
000110 = 3.00V 010110 = 2.20V 100110 = 1.40V 110110 = 0.80V  
000111 = 2.95V 010111 = 2.15V 100111 = 1.35V 110111 = 0.80V  
001000 = 2.90V 011000 = 2.10V 101000 = 1.30V 111000 = 0.80V  
001001 = 2.85V 011001 = 2.05V 101001 = 1.25V 111001 = 0.80V  
001010 = 2.80V 011010 = 2.00V 101010 = 1.20V 111010 = 0.80V  
001011 = 2.75V 011011 = 1.95V 101011 = 1.15V 111011 = 0.80V  
001100 = 2.70V 011100 = 1.90V 101100 = 1.10V 111100 = 0.80V  
001101 = 2.65V 011101 = 1.85V 101101 = 1.05V 111101 = 0.80V  
OUT1 = 011110  
(1.8V)  
OUT2 = 101100  
(1.1V)  
OUT3 = 011110  
(1.8V)  
OUT4 = 101101  
(1.05V)  
SB_OUT  
[1-5]  
5:0  
R/W  
OUT5 = 101001  
(1.25V)  
001110 = 2.60V 011110 = 1.80V 101110 = 1.00V  
001111 = 2.55V 011111 = 1.75V 101111 = 0.95V  
111110 = 0.80V  
111111 = 0.80V  
6
7
0
0
Not Used  
Not Used  
DS20005887A-page 42  
2017 Microchip Technology Inc.  
MIC7400  
8.9  
Boost Regulator Output Voltage Setting STBY Mode (10’h)  
Sets output voltage of the boost regulator (OUT6) for STBY mode operation.  
TABLE 8-9:  
STANDBY DVC REGISTER FOR OUT6  
STBY_OUT6_REG  
Register Name  
DVC Registers  
0x10’h  
Address  
Field  
Bit  
R/W  
Default  
Description  
DVC from 14V to 7V in 200 mV decrements  
000000 = 14.0V 010000 = 10.8V  
100000 = 7.6V  
100001 = 7.4V  
100010 = 7.2V  
100011 = 7.0V  
100100 = 7.0V  
100101 = 7.0V  
100110 = 7.0V  
100111 = 7.0V  
101000 = 7.0V  
101001 = 7.0V  
101010 = 7.0V  
101011 = 7.0V  
101100 = 7.0V  
101101 = 7.0V  
101110 = 7.0V  
101111 = 7.0V  
110000 = 7.0V  
000001 = 13.8V 010001 = 10.6V  
000010 = 13.6V 010010 = 10.4V  
000011 = 13.4V 010011 = 10.2V  
000100 = 13.2V 010100 = 10.0V  
110001 = 7.0V  
110010 = 7.0V  
110011 = 7.0V  
110100 = 7.0V  
110101 = 7.0V  
110110 = 7.0V  
110111 = 7.0V  
111000 = 7.0V  
111001 = 7.0V  
111010 = 7.0V  
111011 = 7.0V  
111100 = 7.0V  
111101 = 7.0V  
111110 = 7.0V  
111111 = 7.0V  
000101 = 13.0V  
000110 = 12.8V  
000111 = 12.6V  
001000 = 12.4V  
001001 = 12.2V  
001010 = 12.0V  
001011 = 11.8V  
001100 = 11.6V  
001101 = 11.4V  
001110 = 11.2V  
001111 = 11.0V  
010101 = 9.8V  
010110 = 9.6V  
010111 = 9.4V  
011000 = 9.2V  
011001 = 9.0V  
011010 = 8.8V  
011011 = 8.6V  
011100 = 8.4V  
011101 = 8.2V  
011110 = 8.0V  
011111 = 7.8V  
001010  
(12V)  
SB_OUT6  
5:0  
R/W  
6
7
0
0
Not Used  
Not Used  
8.10 Sequence Register (11’h)  
Each regulator can be assigned to start in any one of six sequencing slots (1 to 6). If starting in slot 1, the regulator starts  
immediately. If starting in any other slot, the regulator must wait for the PGOOD = 1 flags of all regulators assigned to  
the preceding slot and then wait for the specified delay time (register 17’h) i.e., all PGOODs in preceding state flag then  
the delay timer is started and when delay completes the regulator is enabled.  
Each regulator will delay its startup (after the appropriate preceding PGOOD flags) by the delay set in the Delay Register  
(17’h), unless the regulator is assigned to sequence state 0.  
If all default Enable bits = 0 the IC starts up, but no outputs are enabled.  
Sequencing is only used during initial startup, and not used when outputs are enabled via I2C command. If outputs are  
enabled via I2C, then soft-start is still active, but start-up delays (timed from preceding PGOODs) are not.  
TABLE 8-10: SEQUENCE STATE 1 REGISTER  
Register Name  
Address  
SEQ1_REG  
Sequence Register  
0x11’h  
Field  
Bit  
R/W  
Default  
Description  
1 = Regulator 1 will Start in  
REG1SQ1  
REG2SQ1  
REG3SQ1  
0
R/W  
R/W  
R/W  
0
0 = No Start  
0 = No Start  
0 = No Start  
Sequence State 1  
1 = Regulator 2 will Start in  
Sequence State 1  
1
2
0
0
1 = Regulator 3 will Start in  
Sequence State 1  
2017 Microchip Technology Inc.  
DS20005887A-page 43  
MIC7400  
TABLE 8-10: SEQUENCE STATE 1 REGISTER (CONTINUED)  
Register Name  
Address  
SEQ1_REG  
Sequence Register  
0x11’h  
Field  
Bit  
R/W  
Default  
Description  
1 = Regulator 4 will Start in  
REG4SQ1  
REG5SQ1  
REG6SQ1  
3
R/W  
R/W  
R/W  
1
0 = No Start  
0 = No Start  
0 = No Start  
Sequence State 1  
1 = Regulator 5 will Start in  
Sequence State 1  
4
5
0
0
1 = Regulator 6 will Start in  
Sequence State 1  
6
7
R/W  
R/W  
0
0
Reserved  
Reserved  
TABLE 8-11: SEQUENCE STATE 2 REGISTER  
Register Name  
Address  
SEQ2_REG  
Sequence Register  
0x12’h  
Field  
Bit  
R/W  
Default  
Description  
1 = Regulator 1 will Start in  
REG1SQ2  
REG2SQ2  
REG3SQ2  
REG4SQ2  
REG5SQ2  
REG6SQ2  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0 = No Start  
0 = No Start  
0 = No Start  
0 = No Start  
0 = No Start  
0 = No Start  
Sequence State 2  
1 = Regulator 2 will Start in  
Sequence State 2  
1
2
3
4
5
1
1
0
0
0
1 = Regulator 3 will Start in  
Sequence State 2  
1 = Regulator 4 will Start in  
Sequence State 2  
1 = Regulator 5 will Start in  
Sequence State 2  
1 = Regulator 6 will Start in  
Sequence State 2  
6
7
R/W  
R/W  
0
0
Reserved  
Reserved  
TABLE 8-12: SEQUENCE STATE 3 REGISTER  
Register Name  
Address  
SEQ3_REG  
Sequence Register  
0x13’h  
Field  
Bit  
R/W  
Default  
Description  
1 = Regulator 1 will Start in  
REG1SQ3  
REG2SQ3  
REG3SQ3  
REG4SQ3  
REG5SQ3  
REG6SQ3  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1
0 = No Start  
0 = No Start  
0 = No Start  
0 = No Start  
0 = No Start  
0 = No Start  
Sequence State 3  
1 = Regulator 2 will Start in  
Sequence State 3  
1
2
3
4
5
0
0
0
0
0
1 = Regulator 3 will Start in  
Sequence State 3  
1 = Regulator 4 will Start in  
Sequence State 3  
1 = Regulator 5 will Start in  
Sequence State 3  
1 = Regulator 6 will Start in  
Sequence State 3  
DS20005887A-page 44  
2017 Microchip Technology Inc.  
MIC7400  
TABLE 8-12: SEQUENCE STATE 3 REGISTER (CONTINUED)  
Register Name  
Address  
SEQ3_REG  
Sequence Register  
0x13’h  
Field  
Bit  
R/W  
Default  
Description  
6
7
R/W  
R/W  
0
0
Reserved  
Reserved  
TABLE 8-13: SEQUENCE STATE 4 REGISTER  
Register Name  
Address  
SEQ4_REG  
Sequence Register  
0x14’h  
Field  
Bit  
R/W  
Default  
Description  
1 = Regulator 1 will Start in  
Sequence State 4  
REG1SQ4  
REG2SQ4  
REG3SQ4  
REG4SQ4  
REG5SQ4  
REG6SQ4  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0 = No Start  
0 = No Start  
0 = No Start  
0 = No Start  
0 = No Start  
0 = No Start  
1 = Regulator 2 will Start in  
Sequence State 4  
1
2
3
4
5
0
0
0
1
0
1 = Regulator 3 will Start in  
Sequence State 4  
1 = Regulator 4 will Start in  
Sequence State 4  
1 = Regulator 5 will Start in  
Sequence State 4  
1 = Regulator 6 will Start in  
Sequence State 4  
6
7
R/W  
R/W  
0
0
Reserved  
Reserved  
TABLE 8-14: SEQUENCE STATE 5 REGISTER  
Register Name  
Address  
SEQ5_REG  
Sequence Register  
0x15’h  
Field  
Bit  
R/W  
Default  
Description  
1 = Regulator 1 will Start in  
REG1SQ5  
REG2SQ5  
REG3SQ5  
REG4SQ5  
REG5SQ5  
REG6SQ5  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0 = No Start  
0 = No Start  
0 = No Start  
0 = No Start  
0 = No Start  
0 = No Start  
Sequence State 5  
1 = Regulator 2 will Start in  
Sequence State 5  
1
2
3
4
5
0
0
0
0
0
1 = Regulator 3 will Start in  
Sequence State 5  
1 = Regulator 4 will Start in  
Sequence State 5  
1 = Regulator 5 will Start in  
Sequence State 5  
1 = Regulator 6 will Start in  
Sequence State 5  
6
7
R/W  
R/W  
0
0
Reserved  
Reserved  
2017 Microchip Technology Inc.  
DS20005887A-page 45  
MIC7400  
TABLE 8-15: SEQUENCE STATE 6 REGISTER  
Register Name  
Address  
SEQ6_REG  
Sequence Register  
0x16’h  
Field  
Bit  
R/W  
Default  
Description  
1 = Regulator 1 will Start in  
REG1SQ6  
REG2SQ6  
REG3SQ6  
REG4SQ6  
REG5SQ6  
REG6SQ6  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0 = No Start  
0 = No Start  
0 = No Start  
0 = No Start  
0 = No Start  
0 = No Start  
Sequence State 6  
1 = Regulator 2 will Start in  
Sequence State 6  
1
2
3
4
5
0
0
0
0
1
1 = Regulator 3 will Start in  
Sequence State 6  
1 = Regulator 4 will Start in  
Sequence State 6  
1 = Regulator 5 will Start in  
Sequence State 6  
1 = Regulator 6 will Start in  
Sequence State 6  
6
7
R/W  
R/W  
0
0
Reserved  
Reserved  
8.11 Delay Register (17’h)  
The STDEL register sets the delay between powering up of each regulator at initial power up (see Figure 5-1). Once all  
the internal power good registers PGOOD[1-6] are all “1”, then the global PG pin goes high without delay.  
The PORDEL register sets the delay for the POR flag pin. The POR delay time starts as soon as AVIN pin voltage rises  
above the system UVLO upper threshold set by the PORUP register (21’h). The POR output goes low without delay if  
AVIN falls below the lower UVLO threshold set by the PORDN register (22’h).  
TABLE 8-16: DELAY REGISTER  
Register Name  
Address  
DELAY_CNTL_REG  
Delay Register  
0x17’h  
Field  
Bit  
R/W  
Default  
Description  
Delay Time from 0 ms to 7 ms in 1 ms increment  
001  
(1 ms)  
STDEL  
2:0  
7:3  
R/W  
000 = 0 ms  
001 = 1 ms  
010 = 2 ms  
011 = 3 ms  
100 = 4 ms  
101 = 5 ms  
110 = 6 ms  
111 = 7 ms  
Delay Time from 5 ms to 160 ms in 5 ms increment  
00000 = 5ms  
00001 = 10ms  
00010 = 15ms  
00011 = 20ms  
00100 = 25ms  
00101 = 30ms  
00110 = 35ms  
00111 = 40ms  
01000 = 45ms  
01001 = 50ms  
01010 = 55ms  
01011 = 60ms  
01100 = 65ms  
01101 = 70ms  
01110 = 75ms  
01111 = 80ms  
10000 = 85ms  
10001 = 90ms  
10010 = 95ms  
10011 = 100ms  
11000 = 125ms  
11001 = 130ms  
11010 = 135ms  
11011 = 140ms  
00011  
(20 ms)  
PORDEL  
R/W  
10100 = 105ms 11100 = 145ms  
10101 = 110ms  
10110 = 115ms  
10111 = 120ms  
11101 = 150ms  
11110 = 155ms  
11111 = 160ms  
DS20005887A-page 46  
2017 Microchip Technology Inc.  
 
MIC7400  
8.12 Soft-Start Registers (18’h – 1A’h)  
When regulator(n) is turned on from either the Enable Register (04’h) in NORMAL mode or from the Standby Register  
(03’h) in STANDBY mode, the three REG(n)SS soft-start bits are used to control both the rising and falling ramp rate of  
the outputs.  
In NORMAL mode, the outputs are stepped from the current regulator voltage settings to a newly programmed regulator  
voltage setting or to the default value.  
On power-up, the regulator voltage output is set to the lowest possible voltage setting, which is 3F’h. The voltage  
regulator will change by one step or increment at a time. The amount of time between each step is controlled by the  
soft-start registers. Table 8-17 details the amount of time for each encoded soft-start value.  
TABLE 8-17: SOFT-START REGISTER SPEED SETTINGS  
Register  
R/W  
Default  
Description  
Soft-Start Time from 4 µs to 512 µs  
SS_SPEED = 0  
R/W  
000  
000 = 4 µs  
001 = 8 µs  
010 = 16 µs  
011 = 32 µs  
100 = 64 µs  
110 = 256 µs  
111 = 512 µs  
101 = 128 µs  
Soft-Start Time from 8 µs to 1024 µs  
SS_SPEED = 1  
R/W  
000  
000 = 8 µs  
010 = 32 µs  
011 = 64 µs  
100 = 128 µs  
110 = 512 µs  
001 = 16 µs  
101 = 256 µs 111 = 1024 µs  
TABLE 8-18: SOFT-START REGISTER OUT1 AND OUT2  
Register Name  
Address  
SS1-2_REG  
Soft-Start Register for VOUT1 and VOUT2  
0x18’h  
Field  
Bit  
R/W  
Default  
Description  
001  
(8 µs)  
REG1SS  
2:0  
R/W  
OUT1 Soft-Start Time. See Table 8-17 for Soft-Start settings.  
001  
(8 µs)  
REG2SS  
5:3  
6
R/W  
R/W  
R/W  
OUT2 Soft-Start Time. See Table 8-17 for Soft-Start settings.  
Reserved  
0
Sets the speed of the clock to slow or fast for different clock divi-  
sion, see Table 8-17. 0 = Slow speed; 1 = Fast speed.  
SS_SPEED  
7
0
TABLE 8-19: SOFT-START REGISTER OUT3 AND OUT4  
Register Name  
Address  
SS3-4_REG  
Soft-Start Register for VOUT3 and VOUT4  
0x19’h  
Field  
Bit  
R/W  
Default  
Description  
001  
(8 µs)  
REG3SS  
REG4SS  
2:0  
R/W  
R/W  
OUT3 Soft-Start Time. See Table 8-17 for Soft-Start settings.  
OUT4 Soft-Start Time. See Table 8-17 for Soft-Start settings.  
001  
(8 µs)  
5:3  
6
7
R/W  
R/W  
0
0
Reserved  
Reserved  
2017 Microchip Technology Inc.  
DS20005887A-page 47  
 
MIC7400  
TABLE 8-20: SOFT-START REGISTER OUT5 AND OUT6  
Register Name  
Address  
SS5-6_REG  
Soft-Start Register for VOUT5 and VOUT6  
0x1A’h  
Field  
Bit  
R/W  
Default  
Description  
001  
(8 µs)  
REG5SS  
REG6SS  
2:0  
R/W  
R/W  
OUT5 Soft-Start Time. See Table 8-17 for Soft-Start settings.  
OUT6 Soft-Start Time. See Table 8-17 for Soft-Start settings.  
010  
(16 µs)  
5:3  
6
7
R/W  
R/W  
0
0
Reserved  
Reserved  
8.13 Current-Limit (Normal Mode) Registers (1B’h – 1D’h)  
This register is used to set the current limit for each DC/DC regulator in normal mode operation.  
TABLE 8-21: CURRENT-LIMIT REGISTER I  
AND I  
OUT2  
OUT1  
Register Name  
Address  
ILIMIT_1-2_REG  
Current-Limit Register for VOUT1 and VOUT2  
0x1B’h  
Field  
Bit  
R/W  
Default  
Description  
Normal current-limit for regulator 1 from 8.6A to 1.1A in 0.5A dec-  
rements  
0000 = 8.6A  
0001 = 8.1A  
0010 = 7.6A  
0011 = 7.1A  
0100 = 6.6A  
0101 = 6.1A  
0110 = 5.6A  
0111 = 5.1A  
1000 = 4.6A  
1001 = 4.1A  
1010 = 3.6A  
1011 = 3.1A  
1100 = 2.6 A  
1101 = 2.1A  
1110 = 1.6A  
1111 = 1.1A  
1001  
(4.1A)  
REG1CL  
REG2CL  
3:0  
R/W  
Normal current-limit for regulator 2 from 8.6A to 1.1A in 0.5A dec-  
rements  
0000 = 8.6A  
0001 = 8.1A  
0010 = 7.6A  
0011 = 7.1A  
0100 = 6.6A  
0101 = 6.1A  
0110 = 5.6A  
0111 = 5.1A  
1000 = 4.6A  
1001 = 4.1A  
1010 = 3.6A  
1011 = 3.1A  
1100 = 2.6 A  
1101 = 2.1A  
1110 = 1.6A  
1111 = 1.1A  
1001  
(4.1A)  
7:4  
R/W  
TABLE 8-22: CURRENT-LIMIT REGISTER I  
AND I  
OUT4  
OUT3  
Register Name  
Address  
ILIMIT_3-4_REG  
Current-Limit Register for VOUT3 and VOUT4  
0x1C’h  
Field  
Bit  
R/W  
Default  
Description  
Normal current-limit for regulator 3 from 8.6A to 1.1A in 0.5A dec-  
rements  
0000 = 8.6A  
0001 = 8.1A  
0010 = 7.6A  
0011 = 7.1A  
0100 = 6.6A  
0101 = 6.1A  
0110 = 5.6A  
0111 = 5.1A  
1000 = 4.6A  
1001 = 4.1A  
1010 = 3.6A  
1011 = 3.1A  
1100 = 2.6 A  
1101 = 2.1A  
1110 = 1.6A  
1111 = 1.1A  
1001  
(4.1A)  
REG3CL  
3:0  
R/W  
Normal current-limit for regulator 4 from 8.6A to 1.1A in 0.5A dec-  
rements  
0000 = 8.6A  
0001 = 8.1A  
0010 = 7.6A  
0011 = 7.1A  
0100 = 6.6A  
0101 = 6.1A  
0110 = 5.6A  
0111 = 5.1A  
1000 = 4.6A  
1001 = 4.1A  
1010 = 3.6A  
1011 = 3.1A  
1100 = 2.6 A  
1101 = 2.1A  
1110 = 1.6A  
1111 = 1.1A  
0101  
(6.1A)  
REG4CL  
7:4  
R/W  
DS20005887A-page 48  
2017 Microchip Technology Inc.  
MIC7400  
TABLE 8-23: CURRENT-LIMIT REGISTER I  
AND I  
OUT6  
OUT5  
Register Name  
Address  
ILIMIT_5-6_REG  
Current-Limit Register for VOUT5 and VOUT6  
0x1D’h  
Field  
Bit  
R/W  
Default  
Description  
Normal current-limit for regulator 5 from 8.6A to 1.1A in 0.5A dec-  
rements  
0000 = 8.6A  
0001 = 8.1A  
0010 = 7.6A  
0011 = 7.1A  
0100 = 6.6A  
0101 = 6.1A  
0110 = 5.6A  
0111 = 5.1A  
1000 = 4.6A  
1001 = 4.1A  
1010 = 3.6A  
1011 = 3.1A  
1100 = 2.6 A  
1101 = 2.1A  
1110 = 1.6A  
1111 = 1.1A  
1001  
(4.1A)  
REG5CL  
3:0  
R/W  
Current-limit from 2.6A to 1.78A in 0.12A decrements  
011  
(2.24A)  
REG6CL  
6:4  
7
R/W  
R/W  
000 = 2.6A  
010 = 2.36A  
011 = 2.24A  
100 = 2.12A  
101 = 2.00A  
110 = 1.88A  
111 = 1.76A  
001 = 2.48A  
0
0 = Current-Limit On  
1 = Current-Limit Off  
8.14 Current-Limit (STBY Mode) Registers (1E’h – 20’h)  
This register is used to set the current-limit for each DC/DC regulator when in standby (STBY) mode operation.  
TABLE 8-24: STANDBY CURRENT-LIMIT REGISTER I AND I  
OUT1  
OUT2  
Register Name  
Address  
STBY_ILIMIT_1-2_REG  
Standby Current-Limit Register for VOUT1 and VOUT2  
0x1E’h  
Field  
Bit  
R/W  
Default  
Description  
Standby current-limit for regulator 1 from 8.6A to 1.1A in 0.5A dec-  
rements  
0000 = 8.6A  
0001 = 8.1A  
0010 = 7.6A  
0011 = 7.1A  
0100 = 6.6A  
0101 = 6.1A  
0110 = 5.6A  
0111 = 5.1A  
1000 = 4.6A  
1001 = 4.1A  
1010 = 3.6A  
1011 = 3.1A  
1100 = 2.6 A  
1101 = 2.1A  
1110 = 1.6A  
1111 = 1.1A  
1001  
(4.1A)  
SB1CL  
SB2CL  
3:0  
R/W  
Standby current-limit for regulator 2 from 8.6A to 1.1A in 0.5A dec-  
rements  
0000 = 8.6A  
0001 = 8.1A  
0010 = 7.6A  
0011 = 7.1A  
0100 = 6.6A  
0101 = 6.1A  
0110 = 5.6A  
0111 = 5.1A  
1000 = 4.6A  
1001 = 4.1A  
1010 = 3.6A  
1011 = 3.1A  
1100 = 2.6 A  
1101 = 2.1A  
1110 = 1.6A  
1111 = 1.1A  
1001  
(4.1A)  
7:4  
R/W  
TABLE 8-25: STANDBY CURRENT-LIMIT REGISTER I  
AND I  
OUT4  
OUT3  
Register Name  
Address  
STBY_ILIMIT_3-4_REG  
Standby Current-Limit Register for VOUT3 and VOUT4  
0x1F’h  
Field  
Bit  
R/W  
Default  
Description  
Standby current-limit for regulator 3 from 8.6A to 1.1A in 0.5A  
decrements  
0000 = 8.6A  
0001 = 8.1A  
0010 = 7.6A  
0011 = 7.1A  
0100 = 6.6A  
0101 = 6.1A  
0110 = 5.6A  
0111 = 5.1A  
1000 = 4.6A  
1001 = 4.1A  
1010 = 3.6A  
1011 = 3.1A  
1100 = 2.6 A  
1101 = 2.1A  
1110 = 1.6A  
1111 = 1.1A  
1001  
(4.1A)  
SB3CL  
3:0  
R/W  
2017 Microchip Technology Inc.  
DS20005887A-page 49  
MIC7400  
TABLE 8-25: STANDBY CURRENT-LIMIT REGISTER I  
AND I  
(CONTINUED)  
OUT3  
OUT4  
Register Name  
Address  
STBY_ILIMIT_3-4_REG  
Standby Current-Limit Register for VOUT3 and VOUT4  
0x1F’h  
Field  
Bit  
R/W  
Default  
Description  
Standby current-limit for regulator 4 from 8.6A to 1.1A in 0.5A  
decrements  
0000 = 8.6A  
0001 = 8.1A  
0010 = 7.6A  
0011 = 7.1A  
0100 = 6.6A  
0101 = 6.1A  
0110 = 5.6A  
0111 = 5.1A  
1000 = 4.6A  
1001 = 4.1A  
1010 = 3.6A  
1011 = 3.1A  
1100 = 2.6 A  
1101 = 2.1A  
1110 = 1.6A  
1111 = 1.1A  
0101  
(6.1A)  
SB4CL  
7:4  
R/W  
TABLE 8-26: STANDBY CURRENT-LIMIT REGISTER I  
AND I  
OUT6  
OUT5  
Register Name  
Address  
STBY_ILIMIT_5-6_REG  
Standby Current-Limit Register for VOUT5 and VOUT6  
0x20’h  
Field  
Bit  
R/W  
Default  
Description  
Standby current-limit for regulator 5 from 8.6A to 1.1A in 0.5A dec-  
rements  
0000 = 8.6A  
0001 = 8.1A  
0010 = 7.6A  
0011 = 7.1A  
0100 = 6.6A  
0101 = 6.1A  
0110 = 5.6A  
0111 = 5.1A  
1000 = 4.6A  
1001 = 4.1A  
1010 = 3.6A  
1011 = 3.1A  
1100 = 2.6 A  
1101 = 2.1A  
1110 = 1.6A  
1111 = 1.1A  
1001  
(4.1A)  
SB5CL  
3:0  
R/W  
Current-limit from 2.6A to 1.78A in 0.12A decrements  
011  
(2.24A)  
SB6CL  
6:4  
7
R/W  
R/W  
000 = 2.6A  
010 = 2.36A  
011 = 2.24A  
100 = 2.12A  
101 = 2.00A  
110 = 1.88A  
111 = 1.76A  
001 = 2.48A  
0
0 = Current-Limit On  
1 = Current-Limit Off  
8.15 Power-on-Reset (POR) Threshold Voltage Setting Register (21’h and 22’h)  
This register is used to set the rising and falling threshold of power-on-reset (POR) comparator. The POR threshold  
voltage setting is based on the logic level of the VSLT pin in addition to the register bits. Refer to Table 8-16 for POR  
time delay settings.  
TABLE 8-27: RISING AND FALLING POWER-ON-RESET THRESHOLD VOLTAGE SETTINGS  
Rising and Falling Power-On-Reset Threshold Voltage  
Condition  
Setting  
Pin  
Bit  
R/W  
Default  
Description  
3.3V to 2.3V in 50 mV decrements  
00000 = 3.25V 01000 = 2.85V 10000 = 2.45V 11000 = 2.25V  
00001 = 3.20V 01001 = 2.80V 10001 = 2.40V 11001 = 2.25V  
00010 = 3.15V 01010 = 2.75V 10010 = 2.35V 11010 = 2.25V  
VSCLT = 0  
4:0  
R/W  
00000 00011 = 3.10V 01011 = 2.70V 10011 = 2.30V 11011 = 2.25V  
00100 = 3.05V 01100 = 2.65V 10100 = 2.25V 11100 = 2.25V  
00101 = 3.00V 01101 = 2.60V 10101 = 2.25V 11101 = 2.25V  
00110 = 2.95V 01110 = 2.55V 10110 = 2.25V 11110 = 2.25V  
00111 = 2.90V 01111 = 2.50V 10111 = 2.25V 11111 = 2.25V  
DS20005887A-page 50  
2017 Microchip Technology Inc.  
 
MIC7400  
TABLE 8-27: RISING AND FALLING POWER-ON-RESET THRESHOLD VOLTAGE SETTINGS  
Rising and Falling Power-On-Reset Threshold Voltage  
Setting  
Condition  
Pin  
Bit  
R/W  
Default  
Description  
4.3V to 3.3V in 50 mV decrements  
00000 = 4.25V 01000 = 3.85V 10000 = 3.45V 11000 = 3.25V  
00001 = 4.20V 01001 = 3.80V 10001 = 3.40V 11001 = 3.25V  
00010 = 4.15V 01010 = 3.75V 10010 = 3.35V 11010 = 3.25V  
VSCLT = 1  
4:0  
R/W  
00000 00011 = 4.10V 01011 = 3.70V 10011 = 3.30V 11011 = 3.25V  
00100 = 4.05V 01100 = 3.65V 10100 = 3.25V 11100 = 3.25V  
00101 = 4.00V 01101 = 3.60V 10101 = 3.25V 11101 = 3.25V  
00110 = 3.95V 01110 = 3.55V 10110 = 3.25V 11110 = 3.25V  
00111 = 3.90V 01111 = 3.50V 10111 = 3.25V 11111 = 3.25V  
The three most significant bits [7:5] in registers 21’h and 22’h are used to mask the output voltage power-good flag after  
the start-up sequenced is finished.  
TABLE 8-28: POWER-ON-RESET RISING THRESHOLD VOLTAGE SETTING REGISTER (21’H)  
Register Name  
Address  
PORUP_REG  
Power-on-Reset Rising Threshold  
0x21’h  
Field  
Bit  
R/W  
Default  
Description  
PORUP  
4:0  
R/W  
01011  
See Table 8-27  
PGOOD_MASK  
1
5
6
7
R/W  
R/W  
R/W  
1
1
1
0 = Do not mask PGOOD1  
1 = Mask PGOOD1  
1 = Mask PGOOD2  
1 = Mask PGOOD3  
PGOOD_MASK  
2
0 = Do not mask PGOOD2  
0 = Do not mask PGOOD3  
PGOOD_MASK  
3
TABLE 8-29: POWER-ON-RESET FALLING THRESHOLD VOLTAGE SETTING REGISTER (22’H)  
Register Name  
Address  
PORDN_REG  
Power-on-Reset Falling Threshold  
0x22’h  
Field  
Bit  
R/W  
Default  
Description  
PORDN  
4:0  
R/W  
01101  
See Table 8-27  
PGOOD_MASK  
4
5
6
7
R/W  
R/W  
R/W  
1
1
1
0 = Do not mask PGOOD4  
1 = Mask PGOOD4  
1 = Mask PGOOD5  
1 = Mask PGOOD6  
PGOOD_MASK  
5
0 = Do not mask PGOOD5  
0 = Do not mask PGOOD6  
PGOOD_MASK  
6
2017 Microchip Technology Inc.  
DS20005887A-page 51  
MIC7400  
8.16 Pull-Down When Disabled Register (23’h)  
This register is used to set the preference of enabling/disabling a pull-down FET when the DC/DC regulators are  
disabled. The pull-down value for buck regulators 1 through 5 is 90. The pull-down current value for the boost regulator  
6 is programmable.  
TABLE 8-30: PULL-DOWN WHEN DISABLED REGISTER  
Register Name  
Address  
PULLDN1-6_REG  
Pull-Down When Disabled Register  
0x23’h  
Field  
Bit  
R/W  
Default  
Description  
Enable/Disable the pull-down on Regulator 1 when power down.  
0 = No Pull-Down; 1 = Pull-Down  
PULLD1  
PULLD2  
PULLD3  
PULLD4  
PULLD5  
PULLD6C  
PULLD6  
0
R/W  
0
0
Enable/Disable the pull-down on Regulator 2 when power down.  
0 = No Pull-Down; 1 = Pull-Down  
1
2
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Enable/Disable the pull-down on Regulator 3 when power down.  
0 = No Pull-Down; 1 = Pull-Down  
0
Enable/Disable the pull-down on Regulator 4 when power down.  
0 = No Pull-Down; 1 = Pull-Down  
3
0
Enable/Disable the pull-down on Regulator 5 when power down.  
0 = No Pull-Down; 1 = Pull-Down  
4
0
Sets Boost Pull-Down Current Level  
00 = 148 mA; 01 = 111 mA; 10 = 74 mA; 11 = 37 mA  
6:5  
7
00  
0
Enable/Disable the pull-down on Regulator 6 when power down.  
0 = No Pull-Down; 1 = Pull-Down  
8.17 Internal Clock Control Register  
This register houses the Force_CLK_ON bit 2 used when sending the special commands keys. Bit 2 of this register is  
used to set the PMIC clock to permanently be enabled in order to execute the new command. This bit should be cleared  
after the command has been executed in order to save power (the internal clock logic will shut down the clock  
automatically when not needed).  
TABLE 8-31: INTERNAL CLOCK CONTROL REGISTER  
Register Name  
Address  
Force Clock Register  
Internal Clock Control Register  
0x2F’h  
Field  
Bit  
R/W  
Default  
Description  
0
1
R/W  
R/W  
0
0
Reserved  
Reserved  
0=No action.  
FORCE_-  
CLK_ON  
2
R/W  
0
1= Force the internal clock to keep running and not be turned off  
by the power down logic.  
3
4
5
6
7
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
DS20005887A-page 52  
2017 Microchip Technology Inc.  
MIC7400  
9.0  
9.1  
PACKAGING INFORMATION  
Package Marking Information  
36-Pin FQFN*  
(Configurable)  
Example  
36-Pin FQFN*  
(Configured)  
Example  
XXXX  
NNN  
7400  
102  
Legend: XX...X Product code or customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC® designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
e
3
)
, , Pin one index is identified by a dot, delta up, or delta down (triangle  
mark).  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information. Package may or may not include  
the corporate logo.  
Underbar (_) and/or Overbar () symbol may not be to scale.  
2017 Microchip Technology Inc.  
DS20005887A-page 53  
MIC7400  
36-Lead 4.5 mm x 4.5 mm FQFN Package Outline and Recommended Land Pattern  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging.  
DS20005887A-page 54  
2017 Microchip Technology Inc.  
MIC7400  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging.  
2017 Microchip Technology Inc.  
DS20005887A-page 55  
MIC7400  
NOTES:  
DS20005887A-page 56  
2017 Microchip Technology Inc.  
MIC7400  
APPENDIX A: REVISION HISTORY  
Revision A (November 2017)  
• Converted Micrel document MIC7400 to Micro-  
chip data sheet DS20005887A.  
• Minor text changes throughout.  
2017 Microchip Technology Inc.  
DS20005887A-page 57  
MIC7400  
NOTES:  
DS20005887A-page 58  
2017 Microchip Technology Inc.  
MIC7400  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.  
Examples:  
PART NO.  
Device  
–XXXX  
X
XX  
–XX  
a) MIC7400YFL-T5: Configurable PMIC, Five Chan-  
nel Buck Regulator Plus One  
Output  
Voltages  
Junction Temp. Package Media Type  
Range  
Boost with HyperLight Load and  
I C Control, 1.8V, 1.1V, 1.8V,  
2
1.05V, 1.25V, 12V Output Volt-  
ages, –40°C to +125°C Temp.  
Range, 36-Lead FQFN, 500/  
Reel  
Device:  
MIC7400:  
Configurable PMIC, Five Channel Buck  
Regulator Plus One Boost with HyperLight  
Load and I C Control  
®
2
Output Voltages: <blank>= 1.8V, 1.1V, 1.8V, 1.05V, 1.25V, 12V  
b) MIC7400-  
XXXXYFL-TR:  
Configurable PMIC, Five Chan-  
nel Buck Regulator Plus One  
Boost with HyperLight Load and  
XXXX  
=
Configurable (Contact Marketing for Options)  
2
I C Control, Configurable Output  
Junction  
Temperature  
Range:  
Y
=
–40°C to +125°C  
Voltages, –40°C to +125°C  
Temp. Range, 36-Lead FQFN,  
5,000/Reel  
c) MIC7400YFL:  
Configurable PMIC, Five Chan-  
nel Buck Regulator Plus One  
Boost with HyperLight Load and  
Package:  
FL  
=
36-Lead 4.5 mm x 4.5 mm FQFN  
2
Media Type:  
<blank>= 1/Tube  
T5  
TR  
I C Control, 1.8V, 1.1V, 1.8V,  
=
=
500/Reel  
5,000/Reel  
1.05V, 1.25V, 12V Output Volt-  
ages, –40°C to +125°C Temp.  
Range, 36-Lead FQFN, 1/Tube  
d) MIC7400-  
XXXXYFL-T5:  
Configurable PMIC, Five Chan-  
nel Buck Regulator Plus One  
Boost with HyperLight Load and  
2
I C Control, Configurable Output  
Voltages, –40°C to +125°C  
Temp. Range, 36-Lead FQFN,  
500/Reel  
Note 1:  
Tape and Reel identifier only appears in the  
catalog part number description. This identifier is  
used for ordering purposes and is not printed on  
the device package. Check with your Microchip  
Sales Office for package availability with the  
Tape and Reel option.  
2017 Microchip Technology Inc.  
DS20005887A-page 59  
MIC7400  
NOTES:  
DS20005887A-page 60  
2017 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate, AVR,  
AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory,  
CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ,  
KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus,  
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,  
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip  
Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST  
Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
and other countries.  
ClockWorks, The Embedded Control Solutions Company,  
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,  
mTouch, Precision Edge, and Quiet-Wire are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo,  
CodeGuard, CryptoAuthentication, CryptoCompanion,  
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average  
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial  
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,  
KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF,  
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,  
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,  
PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple  
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,  
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,  
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and  
ZENAare trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
Silicon Storage Technology is a registered trademark of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip Technology  
Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
QUALITYMANAGEMENTꢀꢀSYSTEMꢀ  
CERTIFIEDBYDNVꢀ  
© 2017, Microchip Technology Incorporated, All Rights Reserved.  
ISBN: 978-1-5224-2382-9  
== ISO/TS16949==ꢀ  
2017 Microchip Technology Inc.  
DS20005887A-page 61  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Finland - Espoo  
Tel: 358-9-4520-820  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
France - Saint Cloud  
Tel: 33-1-30-60-70-00  
India - Pune  
Tel: 91-20-3019-1500  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Germany - Garching  
Tel: 49-8931-9700  
Germany - Haan  
Austin, TX  
Tel: 512-257-3370  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Boston  
Tel: 49-2129-3766400  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
Germany - Heilbronn  
Tel: 49-7131-67-3636  
China - Dongguan  
Tel: 86-769-8702-9880  
Germany - Karlsruhe  
Tel: 49-721-625370  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Guangzhou  
Tel: 86-20-8755-8029  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Korea - Seoul  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Israel - Ra’anana  
Tel: 972-9-744-7705  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Detroit  
Novi, MI  
Tel: 248-848-4000  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Houston, TX  
Tel: 281-894-5983  
Italy - Padova  
Tel: 39-049-7625286  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Shanghai  
Tel: 86-21-3326-8000  
Fax: 86-21-3326-8021  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Norway - Trondheim  
Tel: 47-7289-7561  
Los Angeles  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Poland - Warsaw  
Tel: 48-22-3325737  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Romania - Bucharest  
Tel: 40-21-407-87-50  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Raleigh, NC  
Tel: 919-844-7510  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
New York, NY  
Tel: 631-435-6000  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
DS20005887A-page 62  
2017 Microchip Technology Inc.  
11/07/16  

相关型号:

MIC7400_15

Configurable PMIC, Five-Channel Buck Regulator Plus One-Boost with HyperLight Load® and I2C Control
MICREL

MIC7401

Configurable PMIC, Five-Channel Buck Regulator plus One-Boost with HyperLight Load®, I2C Control, and Enable
MICROCHIP

MIC7401YFL

Power Supply Support Circuit
MICROCHIP

MIC7401YFL-TR

IC REG BUCK BOOST PROG SYNC
MICROCHIP

MIC74BQS

2-Wire Serial I/O Expander and Fan Controller Advance Information
MICREL

MIC74BQSTR

Micro Peripheral IC, PDSO16
MICREL

MIC74YQS

2-Wire Serial I/O Expander and Fan Controller
MICREL

MIC74YQSTR

8 I/O, PIA-GENERAL PURPOSE, PDSO16, LEAD FREE, QSOP-16
MICREL

MIC74_06

2-Wire Serial I/O Expander and Fan Controller
MICREL

MIC79050

Simple Lithium-Ion Battery Charger Preliminary Information
MICREL

MIC79050-4.2BM

Simple Lithium-Ion Battery Charger Preliminary Information
MICREL

MIC79050-4.2BMM

Simple Lithium-Ion Battery Charger Preliminary Information
MICREL