MTD6505_14 [MICROCHIP]

3-Phase Sinusoidal Sensorless Brushless Motor Driver;
MTD6505_14
型号: MTD6505_14
厂家: MICROCHIP    MICROCHIP
描述:

3-Phase Sinusoidal Sensorless Brushless Motor Driver

文件: 总22页 (文件大小:1481K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MTD6505  
3-Phase Sinusoidal Sensorless Brushless Motor Driver  
Features  
Description  
• 180° Sinusoidal Drive for High Efficiency and Low  
Acoustic Noise  
The MTD6505 device is a 3-phase, full-wave  
sensorless driver for brushless DC (BLDC) motors. It  
features 180° sinusoidal drive, high-torque output and  
silent drive. With the adaptive features, parameters and  
wide range of power supplies (2V to 5.5V), the  
MTD6505 is intended to cover a broad range of motor  
characteristics, while requiring minimum external  
components. Speed control can be achieved through  
either PSM or PWM.  
• Position Sensorless BLDC Drivers  
(no Hall Effect Sensor required)  
• Integrated Power Transistors  
• Supports 2V to 5.5V Power Supplies  
• Programming Resistor (RPROG) Settings to Fit  
Motor Constant (KM) Range from 3.25 mV/Hz to  
52 mV/Hz  
The compact packaging and the minimal bill of  
materials make the MTD6505 device extremely  
cost-efficient in fan applications. For example, the CPU  
cooling fans in notebook computers require designs  
that provide low acoustic noise, low mechanical  
vibration, and are highly efficient. The frequency  
generator (FG) output enables precision speed control  
in closed-loop applications.  
• Direction Control:  
- Forward direction: connect DIR pin to GND or  
leave floating  
- Reverse direction: connect DIR pin to VBIAS  
or 3V  
• Speed Control through Power Supply Modulation  
(PSM) and/or Pulse-Width Modulation (PWM)  
• Built-in Frequency Generator (FG Output Signal)  
The MTD6505 device includes Lockup Protection mode  
to turn off the output current when the motor is in a lock  
condition, with an automatic recovery feature to restart  
the fan when the lock condition is removed. Motor  
overcurrent limitation and thermal shutdown protection  
are included for safety-enhanced operations.  
• Built-in Lockup Protection and Automatic  
Recovery Circuit  
• Built-in Overcurrent Limitation  
• Built-in Thermal Shutdown Protection  
• Built-in Overvoltage Protection  
• No External Tuning Required  
• Available Package:  
The MTD6505 is available in a compact, thermally-  
enhanced, 10-lead 3 mm x 3 mm UDFN package.  
10-Lead 3mm x 3mm UDFN  
Package Types  
Applications  
MTD6505  
3x3 UDFN*  
• Notebook CPU Cooling Fans  
• 5V 3-Phase BLDC  
1
2
3
4
5
10  
9
FG  
RPROG  
VBIAS  
PWM  
DIR  
EP  
11  
VDD  
8
OUT1  
OUT2  
OUT3  
7
6
GND  
*Includes Exposed Thermal Pad (EP); see Table 3-1.  
2011-2014 Microchip Technology Inc.  
DS20002281C-page 1  
MTD6505  
Functional Block Diagram  
VBIAS  
VDD  
FG  
VDD  
OUT3  
OUT2  
OUT1  
CPU + Peripherals  
PWM  
DIR  
GND  
Thermal  
Protection  
Short-Circuit  
Protection  
Nonvolatile  
Memory  
Motor Phase  
Detection  
Circuit  
Overcurrent  
Protection  
Adjustable  
KM  
RPROG  
RPROG Sense  
DS20002281C-page 2  
2011-2014 Microchip Technology Inc.  
MTD6505  
Typical Application  
VDD  
R1  
KM0 KM1, 2  
KM3  
VBIAS VBIAS  
FG  
10 PWM  
1
2
3
4
5
R2  
RPROG  
VBIAS  
DIR  
9
VDD  
C1  
VDD  
8
OUT1  
OUT2  
OUT3  
7
C2  
GND  
6
Recommended External Components for Typical Application  
Element  
Type/Value  
Comment  
C1  
C2  
R1  
R2  
1 µF  
1 µF  
Connect as close as possible to IC input pins  
Connect as close as possible to IC input pins  
Connect to VLOGIC on microcontroller side (FG Pull-Up)  
10 k  
3.9 kor 24 kΩ  
Select appropriate programming resistor value, see  
Table 4-2  
2011-2014 Microchip Technology Inc.  
DS20002281C-page 3  
MTD6505  
NOTES:  
DS20002281C-page 4  
2011-2014 Microchip Technology Inc.  
MTD6505  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification  
is not implied. Exposure to maximum rating conditions  
for extended periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings†  
Power Supply Voltage (V  
) ...................... -0.7 to +7.0V  
DD_MAX  
Maximum Output Voltage (V  
)............... -0.7 to +7.0V  
)....................1000 mA  
OUT_MAX  
(1)  
Maximum Output Current (I  
FG Maximum Output Voltage (V  
Note 1: IOUT is also internally limited, according  
to the limits defined in the “Electrical  
Characteristics” table.  
OUT_MAX  
) ........... -0.7 to +7.0V  
FG_MAX  
FG Maximum Output Current (I  
) ......................5.0 mA  
FG_MAX  
V
Maximum Voltage (V  
) ................ -0.7 to +4.0V  
) ................ -0.7 to +7.0V  
2: Reference Printed Circuit Board (PCB),  
according to JEDEC standard EIA/JESD  
51-9.  
BIAS  
BIAS_MAX  
PWM Maximum Voltage (V  
PWM_MAX  
(2)  
Allowable Power Dissipation (P  
).........................1.5W  
D_MAX  
Maximum Junction Temperature (T )..........................+150°C  
J
ESD protection on all pins2 kV  
ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise specified, all limits are established for VDD = 2.0V to 5.5V, TA = +25°C  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Power Supply Voltage  
Power Supply Current  
Standby Current  
VDD  
IVDD  
2
5
5.5  
10  
40  
V
mA  
µA  
VDD = 5V  
IVDD_STB  
30  
PWM = 0V, VDD = 5V  
(Standby mode)  
OUTX  
High Resistance  
RON(H)  
RON(L)  
RON(H+L)  
VBIAS  
0.75  
0.75  
1.5  
1.1  
1.3  
2.4  
IOUT = 0.5A, VDD = 5V  
Note 1  
OUTX  
Low Resistance  
IOUT = 0.5A, VDD = 5V  
Note 1  
OUTX  
Total Resistance  
IOUT = 0.5A, VDD = 5V  
Note 1  
VBIAS Internal  
Supply Voltage  
3
VDD – 0.2  
V
V
VDD = 3.2V to 5.5V  
VDD < 3.2V  
PWM Input Frequency  
PWM Input H Level  
PWM Input L Level  
fPWM  
1
100  
kHz  
V
VPWM_H  
VPWM_L  
RPWM_0  
0.55 VDD  
VDD  
VDD 4.5V  
VDD 4.5V  
PWM = 0V  
0
0.2 VDD  
V
PWM Internal Pull-Up  
Resistor  
266  
kΩ  
PWM Internal Pull-Up  
Resistor  
RPWM  
133  
kΩ  
PWM duty-cycle > 0%  
DIR Input H Level  
DIR Input L Level  
VDIR_H  
VDIR_L  
RDIR  
VBIAS – 0.5  
VBIAS  
0.2 VDD  
200  
V
V
VDD 4.5V  
VDD 4.5V  
0
DIR Internal Pull-Down  
Resistor  
100  
kΩ  
FG Output Pin Low-  
Level Voltage  
VOL_FG  
ILH_FG  
TRUN  
– 10  
0.5  
5
0.25  
10  
V
µA  
s
IFG = -1 mA  
VFG = 5.5V  
FG Output Pin Leakage  
Current  
Lock Protection  
Operating Time  
Lock Protection Waiting  
Time  
TWAIT  
4.5  
5.5  
s
Note 2  
Note 3  
Overcurrent Protection  
Overvoltage Protection  
IOC_MOT  
VOV  
750  
7.2  
mA  
V
2011-2014 Microchip Technology Inc.  
DS20002281C-page 5  
MTD6505  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all limits are established for VDD = 2.0V to 5.5V, TA = +25°C  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Short Protection on  
High Side  
IOC_SW_H  
2.57  
A
Short Protection on  
Low Side  
IOC_SW_L  
-2.83  
A
Thermal Shutdown  
TSD  
170  
25  
°C  
°C  
Thermal Shutdown  
Hysteresis  
TSD_HYS  
Note 1: Minimum and maximum parameters are not production tested and are specified by design and validation.  
2: Related to the internal oscillator frequency (see Figure 2-1).  
3: 750 mA is the standard option for MTD6505. Additional overcurrent protection levels are available upon  
request. Please contact factory for different overcurrent protection values.  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: Unless otherwise specified, all limits are established for VDD = 2.0V to 5.5V, TA = +25°C.  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Temperature Ranges  
Operating Temperature  
TOPR  
TSTG  
-40  
-55  
+125  
+150  
°C  
°C  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 10LD-UDFN 3x3  
JA  
JC  
96.6  
12  
°C/W  
°C/W  
DS20002281C-page 6  
2011-2014 Microchip Technology Inc.  
MTD6505  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless indicated, TA = +25°C, VDD = 2.0V to 5.5V, OUT1, 2, 3 and PWM open.  
2.5  
2
1
0.5  
0
VDD = 5.5V  
VDD=5.5V  
VDD = 2V  
V
DD = 2V  
-0.5  
-1  
1.5  
1
-1.5  
-2  
-2.5  
-3  
-3.5  
-4  
0.5  
0
-4.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
FIGURE 2-1:  
Oscillator Frequency  
FIGURE 2-4:  
Inputs (PWM, DIR) VIL vs.  
Deviation vs. Temperature.  
Temperature.  
3
2.5  
2
3.14  
3.12  
3.1  
VDD = 5.5V  
3.08  
3.06  
3.04  
3.02  
3
1.5  
1
VDD = 2V  
0.5  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
FIGURE 2-2:  
Internal Regulated Voltage  
FIGURE 2-5:  
Inputs (PWM, DIR) VIH vs.  
(VBIAS) vs. Temperature.  
Temperature.  
3.5  
3
6
5.5  
5
4.5  
4
V
DD = 2V  
2.5  
2
3.5  
3
1.5  
1
2.5  
2
1.5  
1
VDD = 5.5V  
0.5  
0
0.5  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Temperature (°C)  
VDD (V)  
FIGURE 2-3:  
Internal Regulated Voltage  
FIGURE 2-6:  
Outputs RON High-Side  
(VBIAS) vs. Supply Voltage (VDD).  
Resistance vs. Temperature.  
2011-2014 Microchip Technology Inc.  
DS20002281C-page 7  
MTD6505  
Note: Unless indicated, TA = +25°C, VDD = 2.0V to 5.5V, OUT1, 2, 3 and PWM open.  
6
5.5  
5
0
-5  
VDD = 2V  
4.5  
4
-10  
-15  
-20  
-25  
-30  
-35  
-40  
3.5  
3
2.5  
2
VDD = 2V  
1.5  
1
VDD = 5.5V  
VDD = 5.5V  
0.5  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
FIGURE 2-7:  
Outputs RON Low-Side  
FIGURE 2-10:  
PWM Pull-Up Current vs.  
Resistance vs. Temperature.  
Temperature.  
7
6
VDD = 5.5V  
5
4
VDD = 2V  
3
2
1
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
FIGURE 2-8:  
Supply Current vs.  
FIGURE 2-11:  
Typical Output on Start-Up.  
Temperature.  
60  
50  
40  
30  
20  
10  
0
VDD = 5.5V  
VDD = 2V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
FIGURE 2-12:  
Typical Outputs on Closed  
FIGURE 2-9:  
Standby Current vs.  
Loop.  
Temperature.  
DS20002281C-page 8  
2011-2014 Microchip Technology Inc.  
MTD6505  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
MTD6505 PIN FUNCTION TABLE  
Pin  
Number  
Type  
Name  
Function  
1
2
3
4
5
6
7
8
9
O
I
FG  
Motor Speed Indication Output Pin  
RPROG KM Parameter Setting with External Resistors Pin, see Table 4-2 for values  
O
O
O
I
VBIAS  
OUT1  
OUT2  
GND  
OUT3  
VDD  
Internal Regulator Output Pin (for decoupling only)  
Single-Phase Coil Output Pin  
Single-Phase Coil Output Pin  
Negative Voltage Supply Pin (ground)  
Single-Phase Coil Output Pin  
Positive Voltage Supply Pin for Motor Driver  
DIR  
Motor Rotation Direction Pin  
- Forward direction: connect this pin to GND or leave floating  
- Reverse direction: connect this pin to VBIAS  
10  
11  
I
PWM  
EP  
PWM Input Signal Pin for Speed Control  
Exposed Thermal Pad Pin (Connect to the ground plan for better thermal  
dissipation)  
Legend: I = Input; O = Output  
2011-2014 Microchip Technology Inc.  
DS20002281C-page 9  
MTD6505  
NOTES:  
DS20002281C-page 10  
2011-2014 Microchip Technology Inc.  
MTD6505  
4.3  
Frequency Generator Function  
4.0  
FUNCTIONAL DESCRIPTION  
The Frequency Generator output (FG) is a “Hall Effect  
Sensor equivalent” digital output, giving information to  
an external controller about the speed and phase of the  
motor. The FG pin is an open-drain output, connecting  
to a logical voltage level through an external pull-up  
resistor. When a lock or an out-of-sync situation is  
detected by the driver, this output is set to  
high-impedance until the motor is restarted. Leave the  
pin open when it is not used.  
The MTD6505 generates a full-wave signal to drive a  
3-phase BLDC motor. High efficiency and low power  
consumption are achieved due to CMOS transistors  
and synchronous rectification drive type.  
4.1  
Speed Control  
The rotational speed of the motor can be controlled  
either through the PWM digital input signal or by acting  
directly on the power supply (VDD). When the PWM  
signal is High (or left open), the motor rotates at full  
speed. When the PWM signal is low, the IC outputs are  
set to high-impedance and the motor is stopped.  
4.4  
Lock-Up Protection and Automatic  
Restart  
If the motor is blocked and cannot rotate freely, a  
lock-up protection circuit detects it and disables the  
driver by setting its outputs to high-impedance to  
prevent the motor coil from burnout. After a “waiting  
time” (TWAIT), the lock-up protection is released and  
normal operation resumes for a given time (TRUN). If  
the motor is still blocked, a new period of waiting time  
is started. TWAIT and TRUN timings are fixed internally,  
so that no external capacitor is required.  
By changing the PWM duty cycle, the speed can be  
adjusted. Thus, the user has freedom to choose the  
PWM system frequency within a wide range (from  
1 kHz to 100 kHz).  
Since the PWM pin has an internal pull-up resistor  
connected to VDD, it is recommended to drive it  
between 0V and high Z. The PWM driver must be able  
to support the pull-up resistor current to drive the pin.  
See “PWM Internal Pull-Up Resistor” in Section 1.0,  
Electrical Characteristics.  
4.5  
Overcurrent Protection  
The output transistor activation always occurs at a fixed  
rate of 30 kHz, which is outside the range of audible  
frequencies.  
The motor peak current is limited by the driver to  
750 mA (standard value), thus limiting the maximum  
power dissipation in the coils.  
Note 1: The PWM frequency has no direct effect  
on the motor speed and is asynchronous  
with the activation of the output transistors.  
4.6  
Thermal Shutdown  
The MTD6505 device has a thermal protection function  
which detects when the die temperature exceeds  
TJ = +170°C. When this temperature is reached, the  
circuit enters Thermal Shutdown mode, and outputs  
OUT1, OUT2 and OUT3 are disabled (high-imped-  
ance), avoiding IC destruction and allowing the circuit  
to cool down. When the junction temperature (TJ) drops  
below +145°C, normal operation resumes.  
2: The standard output frequency is 30 kHz.  
A 20 kHz output frequency option is  
available upon request.  
4.2  
Motor Rotation Direction  
The current-carrying order of the outputs depends on  
the DIR pin state (“Rotation Direction”) and is illustrated  
in Table 4-1. The DIR pin is not designed for dynamic  
direction change during operation.  
The thermal detection circuit has +25°C hysteresis.  
Thermal shutdown  
TABLE 4-1:  
MOTOR ROTATION  
DIRECTION OPTIONS  
(DIR PIN)  
Normal  
operation  
Rotation  
Direction  
Outputs Activation  
Sequence  
DIR Pin State  
TJ  
Connected  
to GND  
Forward OUT1 OUT2 OUT3  
+145°  
+170°  
or Floating  
FIGURE 4-1:  
Hysteresis.  
Thermal Protection  
Connected  
to VBIAS  
Reverse OUT3 OUT2 OUT1  
2011-2014 Microchip Technology Inc.  
DS20002281C-page 11  
MTD6505  
4.7  
Overvoltage Shutdown  
4.10 Defining the Correct R  
Value  
PROG  
The MTD6505 device has an overvoltage protection  
function which detects when the VDD voltage exceeds  
VOV = +7.2V. When this temperature is reached, the  
circuit enters Thermal Shutdown mode and outputs  
OUT1, OUT2 and OUT3 are disabled  
This section explains how to define the correct KM  
value for a specific fan. The KM is linked to the RPROG  
(see Table 4-2). An incorrect KM selection can create  
issues or reduce efficiency.  
(high-impedance).  
4.10.1  
OPERATION  
Follow the next steps to define the right RPROG value:  
4.8  
Internal Voltage Regulator  
1. Apply a constant stream of air to a fan that is not  
connected.  
VBIAS voltage is generated internally and is used to  
supply internal logical blocks. The VBIAS pin is used to  
connect an external decoupling capacitor (1 µF or  
higher). Notice that this pin is for IC internal use, and is  
not designed to supply DC current to external blocks.  
2. Using an oscilloscope, measure the waveform  
between two phases when the fan is rotating.  
3. Measure the generated peak-to-peak voltage  
(VP-P) value and the frequency (f).  
4. Compute KM based on the measured VP-P and  
f (in mV/Hz):  
4.9  
Back Electromotive Force (BEMF)  
Coefficient Setting  
KM is the electro-mechanical coupling coefficient of the  
motor (also referred to as “motor constant” or “BEMF  
constant”). Depending on the conventions in use, the  
exact definition of KM and its measurement criteria can  
vary among motor manufacturers. To accommodate  
various motor applications, the MTD6505 provides  
options to facilitate diverse BEMF coefficients.  
EQUATION 4-1:  
KM COMPUTE  
VP P  
K
= -------------  
M
2f  
KM should be constant for all fan rotation speeds; but,  
for the KM measurement, the fan rotation speed (due to  
the air stream) should be close to nominal.  
The MTD6505 defines BEMF coefficient (KM) as the  
peak value of the phase-to-phase BEMF voltage,  
normalized to the electrical speed of the motor. The  
following table offers methods to set the KM value for  
the MTD6505 device.  
Note:  
This is a theoretical procedure that does  
not take care of the harmonics generated  
by the BEMF. This information has to be  
taken for indication only.  
TABLE 4-2:  
KM SETTINGS  
KM (mV/Hz) Range  
Phase-to-Phase  
KM  
Option  
RPROG  
Min.  
Max.  
KM0  
KM1  
KM2  
KM3  
3.25  
6.5  
13  
6.5  
13  
26  
52  
GND  
24 k  
3.9 k  
VBIAS  
26  
The RPROG sensing is actually a sequence that is  
controlled by the firmware. For any given RPROG, the  
internal control block will output the corresponding KM  
range.  
DS20002281C-page 12  
2011-2014 Microchip Technology Inc.  
MTD6505  
5.0  
5.1  
PACKAGING INFORMATION  
Package Marking Information  
10-Lead UDFN (3x3x0.5 mm)  
Example  
AAAD  
1441  
256  
Device  
Code  
MTD6505T-E/NA  
AAAD  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC® designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
e
3
*
)
e
3
Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over  
to the next line, thus limiting the number of available characters for customer-specific  
information.  
2011-2014 Microchip Technology Inc.  
DS20002281C-page 13  
MTD6505  
DS20002281C-page 14  
2011-2014 Microchip Technology Inc.  
MTD6505  
2011-2014 Microchip Technology Inc.  
DS20002281C-page 15  
MTD6505  
DS20002281C-page 16  
2011-2014 Microchip Technology Inc.  
MTD6505  
APPENDIX A: REVISION HISTORY  
Revision C (December 2014)  
The following is the list of modifications:  
1. Changed the title of the document.  
2. Changed the minimum and maximum values for  
DIR Input H Level in the Electrical Characteris-  
tics table.  
3. Updated Section 4.0 “Functional Descrip-  
tion”. Added new Section 4.7 “Overvoltage  
Shutdown”.  
4. Minor editorial corrections.  
Revision B (October 2013)  
The following is the list of modifications:  
1. Updated the Absolute Maximum Ratings†  
section with the correct VBIAS parameter.  
2. Updated the Thermal Resistance values in the  
Temperature Specifications table.  
3. Added Figure 2-11 and Figure 2-12.  
4. Added Section 4.10 “Defining the Correct  
RPROG Value”.  
5. Minor grammatical and editorial corrections.  
Revision A (November 2011)  
• This is the original release of this document.  
2011-2014 Microchip Technology Inc.  
DS20002281C-page 17  
MTD6505  
NOTES:  
DS20002281C-page 18  
2011-2014 Microchip Technology Inc.  
MTD6505  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
T
-X  
/XX  
Examples:  
a) MTD6505T-E/NA Tape and Reel,  
Tape & Reel Temperature Package  
Extended Temperature  
10-Lead UDFN Package  
Device:  
MTD6505T: 3-Phase Sinusoidal Sensorless Brushless  
Motor Driver (Tape and Reel)  
Temperature Range:  
Package:  
E
=
=
Extended -40°C to +125°C  
NA  
Plastic Dual Flat, thermally-enhanced,  
3x3x0.5 mm Body (UDFN)  
2011-2014 Microchip Technology Inc.  
DS20002281C-page 19  
MTD6505  
NOTES:  
DS20002281C-page 20  
2011-2014 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer,  
LANCheck, MediaLB, MOST, MOST logo, MPLAB,  
32  
OptoLyzer, PIC, PICSTART, PIC logo, RightTouch, SpyNIC,  
SST, SST Logo, SuperFlash and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
The Embedded Control Solutions Company and mTouch are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo,  
CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit  
Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet,  
KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo,  
MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code  
Generation, PICDEM, PICDEM.net, PICkit, PICtail,  
RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total  
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,  
WiperLock, Wireless DNA, and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
GestIC is a registered trademarks of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip  
Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2011-2014, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
ISBN: 978-1-63276-918-3  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2011-2014 Microchip Technology Inc.  
DS20002281C-page 21  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-3019-1500  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Germany - Dusseldorf  
Tel: 49-2129-3766400  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Austin, TX  
Tel: 512-257-3370  
Germany - Pforzheim  
Tel: 49-7231-424750  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Korea - Seoul  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Italy - Venice  
Tel: 39-049-7625286  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
Poland - Warsaw  
Tel: 48-22-3325737  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Houston, TX  
Tel: 281-894-5983  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
Los Angeles  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
New York, NY  
Tel: 631-435-6000  
San Jose, CA  
Tel: 408-735-9110  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Canada - Toronto  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
03/25/14  
DS20002281C-page 22  
2011-2014 Microchip Technology Inc.  

相关型号:

MTD6508-ADJE/JQ

IC MOTOR DRIVER PAR 16UQFN
MICROCHIP

MTD6508-E/JQ

BRUSHLESS DC MOTOR CONTROLLER
MICROCHIP

MTD6508-E/NA

BRUSHLESS DC MOTOR CONTROLLER
MICROCHIP

MTD6508T-E/JQ

BRUSHLESS DC MOTOR CONTROLLER
MICROCHIP

MTD6508T-E/NA

BRUSHLESS DC MOTOR CONTROLLER
MICROCHIP

MTD6508T-FG2E/NA

Brushless DC Motor Controller, 1A, CMOS, PDSO10
MICROCHIP

MTD655

5 Port 10M/100M Hub With 2 port Switch
ETC

MTD658

8 Port 10M/100M Hub With 2 port Switch
ETC

MTD658E

5/8 Port 10/100 Hub Build_in Bridge And Memory
ETC

MTD6N08

Power Field-Effect Transistor, 6A I(D), 80V, 0.25ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252
MOTOROLA

MTD6N08-1

6A, 80V, 0.25ohm, N-CHANNEL, Si, POWER, MOSFET, TO-251
MOTOROLA

MTD6N10

POWER FIELD EFFECT TRANSISTOR, N-CHANNEL ENHANCEMENT-MODE SILICON GATE, DPAK FOR SURFACE MOUNT OR INSERTION MOUNT
MOTOROLA