PIC12F629T-I/SNVAO [MICROCHIP]

RISC Microcontroller, 8-Bit, FLASH, 20MHz, CMOS, PDSO8;
PIC12F629T-I/SNVAO
型号: PIC12F629T-I/SNVAO
厂家: MICROCHIP    MICROCHIP
描述:

RISC Microcontroller, 8-Bit, FLASH, 20MHz, CMOS, PDSO8

时钟 微控制器 光电二极管 外围集成电路 装置
文件: 总136页 (文件大小:1423K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC12F629/675  
Data Sheet  
8-Pin, Flash-Based 8-Bit  
CMOS Microcontrollers  
2010 Microchip Technology Inc.  
DS41190G  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
32  
PIC logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,  
TSHARC, UniWinDriver, WiperLock and ZENA are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2010, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-60932-160-4  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
DS41190G-page 2  
2010 Microchip Technology Inc.  
PIC12F629/675  
8-Pin Flash-Based 8-Bit CMOS Microcontroller  
High-Performance RISC CPU:  
Low-Power Features:  
• Only 35 Instructions to Learn  
- All single-cycle instructions except branches  
• Operating Speed:  
• Standby Current:  
- 1 nA @ 2.0V, typical  
• Operating Current:  
- DC – 20 MHz oscillator/clock input  
- DC – 200 ns instruction cycle  
• Interrupt Capability  
- 8.5 A @ 32 kHz, 2.0V, typical  
- 100 A @ 1 MHz, 2.0V, typical  
• Watchdog Timer Current  
- 300 nA @ 2.0V, typical  
• Timer1 Oscillator Current:  
- 4 A @ 32 kHz, 2.0V, typical  
• 8-Level Deep Hardware Stack  
• Direct, Indirect, and Relative Addressing modes  
Special Microcontroller Features:  
Peripheral Features:  
• Internal and External Oscillator Options  
- Precision Internal 4 MHz oscillator factory  
calibrated to ±1%  
• 6 I/O Pins with Individual Direction Control  
• High Current Sink/Source for Direct LED Drive  
• Analog Comparator module with:  
- One analog comparator  
- External Oscillator support for crystals and  
resonators  
- 5 s wake-up from Sleep, 3.0V, typical  
• Power-Saving Sleep mode  
- Programmable on-chip comparator voltage  
reference (CVREF) module  
• Wide Operating Voltage Range – 2.0V to 5.5V  
• Industrial and Extended Temperature Range  
• Low-Power Power-on Reset (POR)  
- Programmable input multiplexing from device  
inputs  
- Comparator output is externally accessible  
• Analog-to-Digital Converter module (PIC12F675):  
- 10-bit resolution  
• Power-up Timer (PWRT) and Oscillator Start-up  
Timer (OST)  
• Brown-out Detect (BOD)  
- Programmable 4-channel input  
- Voltage reference input  
• Watchdog Timer (WDT) with Independent  
Oscillator for Reliable Operation  
• Timer0: 8-Bit Timer/Counter with 8-Bit  
Programmable Prescaler  
• Multiplexed MCLR/Input Pin  
• Interrupt-on-Pin Change  
• Enhanced Timer1:  
• Individual Programmable Weak Pull-ups  
• Programmable Code Protection  
• High Endurance Flash/EEPROM Cell  
- 100,000 write Flash endurance  
- 1,000,000 write EEPROM endurance  
- Flash/Data EEPROM Retention: > 40 years  
- 16-bit timer/counter with prescaler  
- External Gate Input mode  
- Option to use OSC1 and OSC2 in LP mode  
as Timer1 oscillator, if INTOSC mode  
selected  
• In-Circuit Serial ProgrammingTM (ICSPTM) via  
two pins  
Program  
Memory  
Data Memory  
10-bit A/D  
(ch)  
Timers  
8/16-bit  
Device  
I/O  
Comparators  
Flash  
(words)  
SRAM  
(bytes)  
EEPROM  
(bytes)  
PIC12F629  
PIC12F675  
1024  
1024  
64  
64  
128  
128  
6
6
4
1
1
1/1  
1/1  
* 8-bit, 8-pin devices protected by Microchip’s Low Pin Count Patent: U.S. Patent No. 5,847,450. Additional U.S. and  
foreign patents and applications may be issued or pending.  
2010 Microchip Technology Inc.  
DS41190G-page 3  
PIC12F629/675  
Pin Diagrams  
8-pin PDIP, SOIC, DFN-S, DFN  
VSS  
1
2
8
7
VDD  
GP0/CIN+/ICSPDAT  
GP5/T1CKI/OSC1/CLKIN  
GP4/T1G/OSC2/CLKOUT  
GP3/MCLR/VPP  
GP1/CIN-/ICSPCLK  
3
4
6
5
GP2/T0CKI/INT/COUT  
1
2
3
4
8
7
6
5
VDD  
VSS  
GP5/T1CKI/OSC1/CLKIN  
GP0/AN0/CIN+/ICSPDAT  
GP4/AN3/T1G/OSC2/CLKOUT  
GP3/MCLR/VPP  
GP1/AN1/CIN-/VREF/ICSPCLK  
GP2/AN2/T0CKI/INT/COUT  
DS41190G-page 4  
2010 Microchip Technology Inc.  
PIC12F629/675  
Table of Contents  
1.0 Device Overview......................................................................................................................................................................... 7  
2.0 Memory Organization.................................................................................................................................................................. 9  
3.0 GPIO Port ................................................................................................................................................................................. 21  
4.0 Timer0 Module.......................................................................................................................................................................... 29  
5.0 Timer1 Module with Gate Control ............................................................................................................................................. 32  
6.0 Comparator Module .................................................................................................................................................................. 37  
7.0 Analog-to-Digital Converter (A/D) Module (PIC12F675 only) ................................................................................................... 43  
8.0 Data EEPROM Memory ............................................................................................................................................................ 49  
9.0 Special Features of the CPU .................................................................................................................................................... 53  
10.0 Instruction Set Summary ........................................................................................................................................................... 71  
11.0 Development Support ............................................................................................................................................................... 81  
12.0 Electrical Specifications ............................................................................................................................................................ 85  
13.0 DC and AC Characteristics Graphs and Tables ..................................................................................................................... 107  
14.0 Packaging Information ............................................................................................................................................................ 117  
Appendix A: Data Sheet Revision History ......................................................................................................................................... 127  
Appendix B: Device Differences ....................................................................................................................................................... 127  
Appendix C: Device Migrations ......................................................................................................................................................... 128  
®
Appendix D: Migrating from other PIC Devices .............................................................................................................................. 128  
Index ................................................................................................................................................................................................. 129  
On-Line Support ................................................................................................................................................................................ 133  
Systems Information and Upgrade Hot Line ..................................................................................................................................... 133  
Reader Response ............................................................................................................................................................................. 134  
Product Identification System ........................................................................................................................................................... 135  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
2010 Microchip Technology Inc.  
DS41190G-page 5  
PIC12F629/675  
NOTES:  
DS41190G-page 6  
2010 Microchip Technology Inc.  
PIC12F629/675  
Sheet, and is highly recommended reading for a better  
understanding of the device architecture and operation  
of the peripheral modules.  
1.0  
DEVICE OVERVIEW  
This document contains device specific information for  
the PIC12F629/675. Additional information may be  
found in the PIC® Mid-Range Reference Manual  
(DS33023), which may be obtained from your local  
Microchip Sales Representative or downloaded from  
the Microchip web site. The Reference Manual should  
be considered a complementary document to this Data  
The PIC12F629 and PIC12F675 devices are covered  
by this Data Sheet. They are identical, except the  
PIC12F675 has a 10-bit A/D converter. They come in  
8-pin PDIP, SOIC, MLF-S and DFN packages.  
Figure 1-1 shows a block diagram of the PIC12F629/  
675 devices. Table 1-1 shows the pinout description.  
FIGURE 1-1:  
PIC12F629/675 BLOCK DIAGRAM  
13  
8
Data Bus  
Program Counter  
Flash  
GP0/AN0/CIN+  
Program  
Memory  
GP1/AN1/CIN-/VREF  
GP2/AN2/T0CKI/INT/COUT  
GP3/MCLR/VPP  
GP4/AN3/T1G/OSC2/CLKOUT  
GP5/T1CKI/OSC1/CLKIN  
RAM  
File  
Registers  
8-Level Stack  
(13-bit)  
1K x 14  
64 x 8  
Program  
Bus  
14  
RAM  
Addr(1)  
9
Addr MUX  
Instruction Reg  
7
Indirect  
Addr  
Direct Addr  
8
FSR Reg  
STATUS Reg  
Internal  
4 MHz  
8
Oscillator  
3
MUX  
Instruction  
Decode &  
Control  
Power-up  
Timer  
ALU  
Timing  
Generation  
Oscillator  
Start-up Timer  
8
OSC1/CLKIN  
OSC2/CLKOUT  
Power-on  
Reset  
W Reg  
VDD, VSS  
Watchdog  
Timer  
Brown-out  
Detect  
T1G  
T1CKI  
Timer0  
Timer1  
T0CKI  
Analog  
Comparator  
Analog to Digital Converter  
EEDATA  
and reference  
(PIC12F675 only)  
128 bytes  
DATA  
8
EEPROM  
EEADDR  
CIN- CIN+ COUT  
VREF  
AN0 AN1 AN2 AN3  
Note 1: Higher order bits are from STATUS register.  
2010 Microchip Technology Inc.  
DS41190G-page 7  
PIC12F629/675  
TABLE 1-1:  
PIC12F629/675 PINOUT DESCRIPTION  
Input  
Type  
Output  
Type  
Name  
Function  
Description  
GP0/AN0/CIN+/ICSPDAT  
GP0  
TTL  
CMOS Bidirectional I/O w/ programmable pull-up and  
interrupt-on-change  
AN0  
CIN+  
AN  
AN  
A/D Channel 0 input  
Comparator input  
ICSPDAT  
GP1  
TTL  
TTL  
CMOS Serial programming I/O  
GP1/AN1/CIN-/VREF/  
ICSPCLK  
CMOS Bidirectional I/O w/ programmable pull-up and  
interrupt-on-change  
AN1  
CIN-  
AN  
AN  
AN  
ST  
ST  
A/D Channel 1 input  
Comparator input  
VREF  
External voltage reference  
Serial programming clock  
ICSPCLK  
GP2  
GP2/AN2/T0CKI/INT/COUT  
CMOS Bidirectional I/O w/ programmable pull-up and  
interrupt-on-change  
AN2  
T0CKI  
INT  
AN  
ST  
ST  
A/D Channel 2 input  
TMR0 clock input  
External interrupt  
COUT  
CMOS Comparator output  
GP3/MCLR/VPP  
GP3  
TTL  
Input port w/ interrupt-on-change  
MCLR  
VPP  
ST  
HV  
Master Clear  
Programming voltage  
GP4/AN3/T1G/OSC2/  
CLKOUT  
GP4  
TTL  
CMOS Bidirectional I/O w/ programmable pull-up and  
interrupt-on-change  
AN3  
AN  
ST  
A/D Channel 3 input  
TMR1 gate  
T1G  
OSC2  
XTAL  
Crystal/resonator  
CLKOUT  
CMOS FOSC/4 output  
GP5/T1CKI/OSC1/CLKIN  
GP5  
TTL  
CMOS Bidirectional I/O w/ programmable pull-up and  
interrupt-on-change  
T1CKI  
OSC1  
CLKIN  
VSS  
ST  
TMR1 clock  
XTAL  
ST  
Crystal/resonator  
External clock input/RC oscillator connection  
Ground reference  
VSS  
VDD  
Power  
Power  
VDD  
Positive supply  
Legend: Shade = PIC12F675 only  
TTL = TTL input buffer, ST = Schmitt Trigger input buffer  
DS41190G-page 8  
2010 Microchip Technology Inc.  
PIC12F629/675  
2.2  
Data Memory Organization  
2.0  
2.1  
MEMORY ORGANIZATION  
Program Memory Organization  
The data memory (see Figure 2-2) is partitioned into  
two banks, which contain the General Purpose  
Registers and the Special Function Registers. The  
Special Function Registers are located in the first 32  
locations of each bank. Register locations 20h-5Fh are  
General Purpose Registers, implemented as static  
RAM and are mapped across both banks. All other  
RAM is unimplemented and returns ‘0’ when read. RP0  
(STATUS<5>) is the bank select bit.  
The PIC12F629/675 devices have a 13-bit program  
counter capable of addressing an 8K x 14 program  
memory space. Only the first 1K x 14 (0000h-03FFh)  
for the PIC12F629/675 devices is physically imple-  
mented. Accessing a location above these boundaries  
will cause a wrap-around within the first 1K x 14 space.  
The Reset vector is at 0000h and the interrupt vector is  
at 0004h (see Figure 2-1).  
• RP0 = 0Bank 0 is selected  
• RP0 = 1Bank 1 is selected  
FIGURE 2-1:  
PROGRAM MEMORY MAP  
AND STACK FOR THE  
DSTEMP/675  
Note: The IRP and RP1 bits STATUS<7:6> are  
reserved and should always be maintained  
as ‘0’s.  
PC<12:0>  
2.2.1  
GENERAL PURPOSE REGISTER  
FILE  
CALL, RETURN  
RETFIE, RETLW  
13  
The register file is organized as 64 x 8 in the  
PIC12F629/675 devices. Each register is accessed,  
either directly or indirectly, through the File Select  
Register FSR (see Section 2.4 “Indirect Addressing,  
INDF and FSR Registers”).  
Stack Level 1  
Stack Level 2  
Stack Level 8  
Reset Vector  
000h  
Interrupt Vector  
0004  
0005  
On-chip Program  
Memory  
03FFh  
0400h  
1FFFh  
2010 Microchip Technology Inc.  
DS41190G-page 9  
PIC12F629/675  
2.2.2  
SPECIAL FUNCTION REGISTERS  
FIGURE 2-2:  
DATA MEMORY MAP OF  
THE PIC12F629/675  
The Special Function Registers are registers used by  
the CPU and peripheral functions for controlling the  
desired operation of the device (see Table 2-1). These  
registers are static RAM.  
File  
File  
Address  
Address  
(1)  
(1)  
Indirect addr.  
TMR0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
Indirect addr.  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
OPTION_REG  
PCL  
The special registers can be classified into two sets:  
core and peripheral. The Special Function Registers  
associated with the “core” are described in this section.  
Those related to the operation of the peripheral  
features are described in the section of that peripheral  
feature.  
PCL  
STATUS  
FSR  
STATUS  
FSR  
GPIO  
TRISIO  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
TMR1L  
TMR1H  
T1CON  
PCON  
OSCCAL  
WPU  
IOC  
CMCON  
VRCON  
EEDATA  
EEADR  
EECON1  
(1)  
EECON2  
(2)  
(2)  
(2)  
ADRESH  
ADCON0  
ADRESL  
(2)  
ANSEL  
General  
Purpose  
Registers  
accesses  
20h-5Fh  
64 Bytes  
5Fh  
60h  
DFh  
E0h  
7Fh  
FFh  
Bank 0  
Bank 1  
Unimplemented data memory locations, read as ‘0’.  
1: Not a physical register.  
2: PIC12F675 only.  
DS41190G-page 10  
2010 Microchip Technology Inc.  
PIC12F629/675  
TABLE 2-1:  
Address  
SPECIAL FUNCTION REGISTERS SUMMARY  
Value on  
POR, BOD  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 0  
00h  
01h  
02h  
03h  
INDF(1)  
TMR0  
Addressing this Location uses Contents of FSR to Address Data Memory  
Timer0 Module’s Register  
0000 0000 20,61  
xxxx xxxx  
0000 0000  
0001 1xxx  
29  
19  
14  
PCL  
Program Counter’s (PC) Least Significant Byte  
IRP(2)  
RP1(2)  
RP0  
TO  
PD  
Z
DC  
C
STATUS  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
FSR  
Indirect Data Memory Address Pointer  
xxxx xxxx  
--xx xxxx  
20  
21  
19  
15  
17  
32  
32  
GPIO  
GPIO5  
GPIO4  
GPIO3  
GPIO2  
GPIO1  
GPIO0  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
PCLATH  
T0IE  
Write Buffer for Upper 5 bits of Program Counter  
---0 0000  
0000 0000  
00-- 0--0  
INTCON  
PIR1  
GIE  
PEIE  
ADIF  
INTE  
GPIE  
CMIF  
T0IF  
INTF  
GPIF  
EEIF  
TMR1IF  
Unimplemented  
TMR1L  
TMR1H  
Holding Register for the Least Significant Byte of the 16-bit Timer1  
Holding Register for the Most Significant Byte of the 16-bit Timer1  
xxxx xxxx  
xxxx xxxx  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
T1CON  
TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
TMR1CS TMR1ON -000 0000  
35  
38  
44  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
CMCON  
-0-0 0000  
COUT  
CINV  
CIS  
CM2  
CM1  
CM0  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
ADRESH(3)  
ADCON0(3)  
Most Significant 8 bits of the Left Shifted A/D Result or 2 bits of the Right Shifted Result  
ADFM VCFG CHS1 CHS0 GO/DONE  
xxxx xxxx  
ADON  
00-- 0000 45,61  
Legend: — = unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition,  
shaded = unimplemented  
Note 1: This is not a physical register.  
2: These bits are reserved and should always be maintained as ‘0’.  
3: PIC12F675 only.  
2010 Microchip Technology Inc.  
DS41190G-page 11  
PIC12F629/675  
TABLE 2-1:  
Address  
SPECIAL FUNCTION REGISTERS SUMMARY (CONTINUED)  
Value on  
POR, BOD  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 1  
80h  
81h  
82h  
83h  
INDF(1)  
Addressing this Location uses Contents of FSR to Address Data Memory  
0000 0000 20,61  
1111 1111 14,31  
OPTION_REG  
PCL  
GPPU  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
DC  
PS0  
C
Program Counter’s (PC) Least Significant Byte  
0000 0000  
0001 1xxx  
19  
14  
IRP(2)  
RP1(2)  
STATUS  
RP0  
Indirect Data Memory Address Pointer  
TO  
PD  
Z
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
FSR  
TRISIO  
xxxx xxxx  
20  
21  
19  
15  
16  
18  
18  
21  
23  
42  
TRISIO5  
TRISIO4  
TRISIO3  
TRISIO2  
TRISIO1  
TRISIO0 --11 1111  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
PCLATH  
INTCON  
PIE1  
T0IE  
Write Buffer for Upper 5 bits of Program Counter  
---0 0000  
GIE  
PEIE  
ADIE  
INTE  
GPIE  
CMIE  
T0IF  
INTF  
GPIF  
0000 0000  
EEIE  
TMR1IE  
00-- 0--0  
Unimplemented  
PCON  
POR  
BOD  
---- --0x  
Unimplemented  
CAL5  
OSCCAL  
CAL4  
CAL3  
CAL2  
CAL1  
CAL0  
1000 00--  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
WPU  
IOC  
WPU5  
IOC5  
WPU4  
IOC4  
WPU2  
IOC2  
WPU1  
IOC1  
WPU0  
IOC0  
--11 -111  
--00 0000  
IOC3  
Unimplemented  
Unimplemented  
VREN  
VRCON  
0-0- 0000  
VRR  
VR3  
VR2  
VR1  
WR  
VR0  
RD  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
EEDATA  
Data EEPROM Data Register  
0000 0000  
-000 0000  
---- x000  
---- ----  
xxxx xxxx  
49  
49  
50  
50  
44  
EEADR  
Data EEPROM Address Register  
EECON1  
EECON2(1)  
ADRESL(3)  
ANSEL(3)  
WRERR  
WREN  
EEPROM Control Register 2  
Least Significant 2 bits of the Left Shifted A/D Result of 8 bits or the Right Shifted Result  
ADCS2 ADCS1 ADCS0 ANS3 ANS2 ANS1  
ANS0  
-000 1111 46,61  
Legend: — = unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition,  
shaded = unimplemented  
Note 1: This is not a physical register.  
2: These bits are reserved and should always be maintained as ‘0’.  
3: PIC12F675 only.  
DS41190G-page 12  
2010 Microchip Technology Inc.  
PIC12F629/675  
For example, CLRF STATUSwill clear the upper three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
2.2.2.1  
STATUS Register  
The STATUS register, shown in Register 2-1, contains:  
• the arithmetic status of the ALU  
• the Reset status  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register, because these instructions do not  
affect any Status bits. For other instructions not affect-  
ing any Status bits, see the “Instruction Set Summary”.  
• the bank select bits for data memory (SRAM)  
The STATUS register can be the destination for any  
instruction, like any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 1: Bits IRP and RP1 (STATUS<7:6>) are not  
used by the PIC12F629/675 and should  
be maintained as clear. Use of these bits  
is not recommended, since this may affect  
upward compatibility with future products.  
2: The C and DC bits operate as a Borrow  
and Digit Borrow out bit, respectively, in  
subtraction. See the SUBLW and SUBWF  
instructions for examples.  
REGISTER 2-1:  
Reserved  
IRP  
STATUS: STATUS REGISTER (ADDRESS: 03h OR 83h)  
Reserved  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
bit 5  
IRP: This bit is reserved and should be maintained as ‘0’  
RP1: This bit is reserved and should be maintained as ‘0’  
RP0: Register Bank Select bit (used for direct addressing)  
0= Bank 0 (00h - 7Fh)  
1= Bank 1 (80h - FFh)  
bit 4  
bit 3  
bit 2  
bit 1  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction, or SLEEPinstruction  
0= A WDT Time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions)  
For borrow, the polarity is reversed.  
1= A carry-out from the 4th low order bit of the result occurred  
0= No carry-out from the 4th low order bit of the result  
bit 0  
C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note:  
For borrow the polarity is reversed. A subtraction is executed by adding the two’s complement of the second  
operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the  
source register.  
2010 Microchip Technology Inc.  
DS41190G-page 13  
PIC12F629/675  
2.2.2.2  
OPTION Register  
Note: To achieve a 1:1 prescaler assignment for  
TMR0, assign the prescaler to the WDT by  
setting PSA bit to ‘1’ (OPTION<3>). See  
Section 4.4 “Prescaler”.  
The OPTION register is a readable and writable  
register, which contains various control bits to  
configure:  
• TMR0/WDT prescaler  
• External GP2/INT interrupt  
• TMR0  
• Weak pull-ups on GPIO  
REGISTER 2-2:  
R/W-1  
OPTION_REG: OPTION REGISTER (ADDRESS: 81h)  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
GPPU  
INTEDG  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
GPPU: GPIO Pull-up Enable bit  
1= GPIO pull-ups are disabled  
0= GPIO pull-ups are enabled by individual PORT latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of GP2/INT pin  
0= Interrupt on falling edge of GP2/INT pin  
T0CS: TMR0 Clock Source Select bit  
1= Transition on GP2/T0CKI pin  
0= Internal instruction cycle clock (CLKOUT)  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on GP2/T0CKI pin  
0= Increment on low-to-high transition on GP2/T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the TIMER0 module  
PS2:PS0: Prescaler Rate Select bits  
Bit Value TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
DS41190G-page 14  
2010 Microchip Technology Inc.  
PIC12F629/675  
2.2.2.3  
INTCON Register  
Note: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate  
interrupt flag bits are clear prior to enabling  
an interrupt.  
The INTCON register is a readable and writable  
register, which contains the various enable and flag bits  
for TMR0 register overflow, GPIO port change and  
external GP2/INT pin interrupts.  
REGISTER 2-3:  
INTCON: INTERRUPT CONTROL REGISTER (ADDRESS: 0Bh OR 8Bh)  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
GPIE  
R/W-0  
T0IF  
R/W-0  
INTF  
R/W-0  
GPIF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
GIE: Global Interrupt Enable bit  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
T0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 interrupt  
0= Disables the TMR0 interrupt  
INTE: GP2/INT External Interrupt Enable bit  
1= Enables the GP2/INT external interrupt  
0= Disables the GP2/INT external interrupt  
GPIE: Port Change Interrupt Enable bit(1)  
1= Enables the GPIO port change interrupt  
0= Disables the GPIO port change interrupt  
T0IF: TMR0 Overflow Interrupt Flag bit(2)  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INTF: GP2/INT External Interrupt Flag bit  
1= The GP2/INT external interrupt occurred (must be cleared in software)  
0= The GP2/INT external interrupt did not occur  
GPIF: Port Change Interrupt Flag bit  
1= When at least one of the GP5:GP0 pins changed state (must be cleared in software)  
0= None of the GP5:GP0 pins have changed state  
Note 1: IOC register must also be enabled to enable an interrupt-on-change.  
2: T0IF bit is set when TIMER0 rolls over. TIMER0 is unchanged on Reset and should be initialized before  
clearing T0IF bit.  
2010 Microchip Technology Inc.  
DS41190G-page 15  
PIC12F629/675  
2.2.2.4  
PIE1 Register  
The PIE1 register contains the interrupt enable bits, as  
shown in Register 2-4.  
Note: Bit PEIE (INTCON<6>) must be set to  
enable any peripheral interrupt.  
REGISTER 2-4:  
PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1 (ADDRESS: 8Ch)  
R/W-0  
EEIE  
R/W-0  
ADIE  
U-0  
U-0  
R/W-0  
CMIE  
U-0  
U-0  
R/W-0  
TMR1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
EEIE: EE Write Complete Interrupt Enable bit  
1= Enables the EE write complete interrupt  
0= Disables the EE write complete interrupt  
ADIE: A/D Converter Interrupt Enable bit (PIC12F675 only)  
1= Enables the A/D converter interrupt  
0= Disables the A/D converter interrupt  
bit 5-4  
bit 3  
Unimplemented: Read as ‘0’  
CMIE: Comparator Interrupt Enable bit  
1= Enables the comparator interrupt  
0= Disables the comparator interrupt  
bit 2-1  
bit 0  
Unimplemented: Read as ‘0’  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
DS41190G-page 16  
2010 Microchip Technology Inc.  
PIC12F629/675  
2.2.2.5  
PIR1 Register  
The PIR1 register contains the interrupt flag bits, as  
shown in Register 2-5.  
Note: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User  
software should ensure the appropriate  
interrupt flag bits are clear prior to enabling  
an interrupt.  
REGISTER 2-5:  
PIR1: PERIPHERAL INTERRUPT REGISTER 1 (ADDRESS: 0Ch)  
R/W-0  
EEIF  
R/W-0  
ADIF  
U-0  
U-0  
R/W-0  
CMIF  
U-0  
U-0  
R/W-0  
TMR1IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
EEIF: EEPROM Write Operation Interrupt Flag bit  
1= The write operation completed (must be cleared in software)  
0= The write operation has not completed or has not been started  
ADIF: A/D Converter Interrupt Flag bit (PIC12F675 only)  
1= The A/D conversion is complete (must be cleared in software)  
0= The A/D conversion is not complete  
bit 5-4  
bit 3  
Unimplemented: Read as ‘0’  
CMIF: Comparator Interrupt Flag bit  
1= Comparator input has changed (must be cleared in software)  
0= Comparator input has not changed  
bit 2-1  
bit 0  
Unimplemented: Read as ‘0’  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed (must be cleared in software)  
0= TMR1 register did not overflow  
2010 Microchip Technology Inc.  
DS41190G-page 17  
PIC12F629/675  
2.2.2.6  
PCON Register  
The Power Control (PCON) register contains flag bits  
to differentiate between a:  
• Power-on Reset (POR)  
• Brown-out Detect (BOD)  
• Watchdog Timer Reset (WDT)  
• External MCLR Reset  
The PCON Register bits are shown in Register 2-6.  
REGISTER 2-6:  
PCON: POWER CONTROL REGISTER (ADDRESS: 8Eh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
POR  
R/W-x  
BOD  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-2  
bit 1  
Unimplemented: Read as ‘0’  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0  
BOD: Brown-out Detect Status bit  
1= No Brown-out Detect occurred  
0= A Brown-out Detect occurred (must be set in software after a Brown-out Detect occurs)  
2.2.2.7  
OSCCAL Register  
The Oscillator Calibration register (OSCCAL) is used to  
calibrate the internal 4 MHz oscillator. It contains 6 bits  
to adjust the frequency up or down to achieve 4 MHz.  
The OSCCAL register bits are shown in Register 2-7.  
REGISTER 2-7:  
OSCCAL: OSCILLATOR CALIBRATION REGISTER (ADDRESS: 90h)  
R/W-1  
R/W-0  
CAL4  
R/W-0  
CAL3  
R/W-0  
CAL2  
R/W-0  
CAL1  
R/W-0  
CAL0  
U-0  
U-0  
CAL5  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-2  
CAL5:CAL0: 6-bit Signed Oscillator Calibration bits  
111111= Maximum frequency  
100000= Center frequency  
000000= Minimum frequency  
bit 1-0  
Unimplemented: Read as ‘0’  
DS41190G-page 18  
2010 Microchip Technology Inc.  
PIC12F629/675  
2.3.2  
STACK  
2.3  
PCL and PCLATH  
The PIC12F629/675 family has an 8-level deep x 13-bit  
wide hardware stack (see Figure 2-1). The stack space  
is not part of either program or data space and the  
Stack Pointer is not readable or writable. The PC is  
PUSHed onto the stack when a CALL instruction is  
executed, or an interrupt causes a branch. The stack is  
POPed in the event of a RETURN, RETLWor a RETFIE  
instruction execution. PCLATH is not affected by a  
PUSH or POP operation.  
The Program Counter (PC) is 13-bits wide. The low byte  
comes from the PCL register, which is a readable and  
writable register. The high byte (PC<12:8>) is not  
directly readable or writable and comes from PCLATH.  
On any Reset, the PC is cleared. Figure 2-3 shows the  
two situations for the loading of the PC. The upper  
example in Figure 2-3 shows how the PC is loaded on  
a write to PCL (PCLATH<4:0> PCH). The lower  
example in Figure 2-3 shows how the PC is loaded  
during a CALL or GOTO instruction (PCLATH<4:3>   
PCH).  
The stack operates as a circular buffer. This means that  
after the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
FIGURE 2-3:  
LOADING OF PC IN  
DIFFERENT SITUATIONS  
PCH  
PCL  
Note 1: There are no Status bits to indicate Stack  
Overflow or Stack Underflow conditions.  
12  
8
7
0
Instruction with  
PCL as  
Destination  
PC  
2: There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the  
CALL, RETURN, RETLW and RETFIE  
instructions, or the vectoring to an  
interrupt address.  
8
PCLATH<4:0>  
PCLATH  
5
ALU result  
PCH  
12 11 10  
PC  
PCL  
8
7
0
GOTO, CALL  
PCLATH<4:3>  
PCLATH  
11  
2
Opcode <10:0>  
2.3.1  
COMPUTED GOTO  
A computed GOTOis accomplished by adding an offset  
to the PC (ADDWF PCL). When performing a table read  
using a computed GOTO method, care should be  
exercised if the table location crosses a PCL memory  
boundary (each 256-byte block). Refer to the  
Application Note, “Implementing  
a Table Read”  
(AN556).  
2010 Microchip Technology Inc.  
DS41190G-page 19  
PIC12F629/675  
A simple program to clear RAM location 20h-2Fh using  
indirect addressing is shown in Example 2-1.  
2.4  
Indirect Addressing, INDF and  
FSR Registers  
The INDF register is not a physical register. Addressing  
the INDF register will cause indirect addressing.  
EXAMPLE 2-1:  
INDIRECT ADDRESSING  
MOVLW  
MOVWF  
CLRF  
INCF  
BTFSS  
GOTO  
0x20  
FSR  
INDF  
FSR  
;initialize pointer  
;to RAM  
;clear INDF register  
;inc pointer  
Indirect addressing is possible by using the INDF  
register. Any instruction using the INDF register  
actually accesses data pointed to by the File Select  
Register (FSR). Reading INDF itself indirectly will  
produce 00h. Writing to the INDF register indirectly  
results in a no operation (although Status bits may be  
affected). An effective 9-bit address is obtained by  
concatenating the 8-bit FSR register and the IRP bit  
(STATUS<7>), as shown in Figure 2-2.  
NEXT  
FSR,4 ;all done?  
NEXT ;no clear next  
;yes continue  
CONTINUE  
FIGURE 2-2:  
DIRECT/INDIRECT ADDRESSING PIC12F629/675  
Direct Addressing  
From Opcode  
Indirect Addressing  
(1)  
(1)  
7
RP1  
RP0  
6
0
0
IRP  
FSR Register  
Bank Select  
180h  
Location Select  
Bank Select Location Select  
00  
01  
10  
11  
00h  
Data  
Not Used  
Memory  
7Fh  
1FFh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
For memory map detail see Figure 2-2.  
Note 1: The RP1 and IRP bits are reserved; always maintain these bits clear.  
DS41190G-page 20  
2010 Microchip Technology Inc.  
PIC12F629/675  
register are maintained set when using them as analog  
inputs. I/O pins configured as analog inputs always  
read ‘0’.  
3.0  
GPIO PORT  
There are as many as six general purpose I/O pins  
available. Depending on which peripherals are  
enabled, some or all of the pins may not be available as  
general purpose I/O. In general, when a peripheral is  
enabled, the associated pin may not be used as a  
general purpose I/O pin.  
Note: The ANSEL (9Fh) and CMCON (19h)  
registers (9Fh) must be initialized to  
configure an analog channel as a digital  
input. Pins configured as analog inputs will  
read ‘0’. The ANSEL register is defined for  
the PIC12F675.  
Note: Additional information on I/O ports may be  
found in the PIC® Mid-Range Reference  
Manual, (DS33023).  
EXAMPLE 3-1:  
INITIALIZING GPIO  
BCF  
STATUS,RP0  
GPIO  
07h  
CMCON  
STATUS,RP0  
ANSEL  
0Ch  
;Bank 0  
;Init GPIO  
;Set GP<2:0> to  
;digital IO  
;Bank 1  
;Digital I/O  
;Set GP<3:2> as inputs  
;and set GP<5:4,1:0>  
;as outputs  
3.1  
GPIO and the TRISIO Registers  
CLRF  
MOVLW  
MOVWF  
BSF  
CLRF  
MOVLW  
MOVWF  
GPIO is an 6-bit wide, bidirectional port. The  
corresponding data direction register is TRISIO.  
Setting a TRISIO bit (= 1) will make the corresponding  
GPIO pin an input (i.e., put the corresponding output  
driver in a High-Impedance mode). Clearing a TRISIO  
bit (= 0) will make the corresponding GPIO pin an  
output (i.e., put the contents of the output latch on the  
selected pin). The exception is GP3, which is input-only  
and its TRISIO bit will always read as ‘1’. Example 3-1  
shows how to initialize GPIO.  
TRISIO  
3.2  
Additional Pin Functions  
Every GPIO pin on the PIC12F629/675 has an  
interrupt-on-change option and every GPIO pin, except  
GP3, has a weak pull-up option. The next two sections  
describe these functions.  
Reading the GPIO register reads the status of the pins,  
whereas writing to it will write to the PORT latch. All  
write operations are read-modify-write operations.  
Therefore, a write to a port implies that the port pins are  
read, this value is modified, and then written to the  
PORT data latch. GP3 reads ‘0’ when MCLREN = 1.  
3.2.1  
WEAK PULL-UP  
Each of the GPIO pins, except GP3, has an individually  
configurable weak internal pull-up. Control bits WPUx  
enable or disable each pull-up. Refer to Register 3-3.  
Each weak pull-up is automatically turned off when the  
port pin is configured as an output. The pull-ups are  
disabled on a Power-on Reset by the GPPU bit  
(OPTION<7>).  
The TRISIO register controls the direction of the  
GP pins, even when they are being used as analog  
inputs. The user must ensure the bits in the TRISIO  
REGISTER 3-1:  
GPIO: GPIO REGISTER (ADDRESS: 05h)  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
GPIO5  
GPIO4  
GPIO3  
GPIO2  
GPIO1  
GPIO0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
GPIO<5:0>: General Purpose I/O pin  
1= Port pin is >VIH  
0= Port pin is <VIL  
2010 Microchip Technology Inc.  
DS41190G-page 21  
PIC12F629/675  
REGISTER 3-2:  
TRISIO: GPIO TRI-STATE REGISTER (ADDRESS: 85h)  
U-0  
U-0  
R/W-1  
R/W-1  
R-1  
R/W-1  
R/W-1  
R/W-1  
TRISIO5  
TRISIO4  
TRISIO3  
TRISIO2  
TRISIO1  
TRISIO0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TRISIO<5:0>: General Purpose I/O Tri-State Control bit  
1= GPIO pin configured as an input (tri-stated)  
0= GPIO pin configured as an output  
Note:  
TRISIO<3> always reads ‘1’.  
REGISTER 3-3:  
WPU: WEAK PULL-UP REGISTER (ADDRESS: 95h)  
U-0  
U-0  
R/W-1  
WPU5  
R/W-1  
WPU4  
U-0  
R/W-1  
WPU2  
R/W-1  
WPU1  
R/W-1  
WPU0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
WPU<5:4>: Weak Pull-up Register bit  
1= Pull-up enabled  
0= Pull-up disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
WPU<2:0>: Weak Pull-up Register bit  
1= Pull-up enabled  
0= Pull-up disabled  
Note 1: Global GPPU must be enabled for individual pull-ups to be enabled.  
2: The weak pull-up device is automatically disabled if the pin is in Output mode (TRISIO = 0).  
DS41190G-page 22  
2010 Microchip Technology Inc.  
PIC12F629/675  
This interrupt can wake the device from Sleep. The  
user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
3.2.2  
INTERRUPT-ON-CHANGE  
Each of the GPIO pins is individually configurable as an  
interrupt-on-change pin. Control bits IOC enable or  
disable the interrupt function for each pin. Refer to  
Register 3-4. The interrupt-on-change is disabled on a  
Power-on Reset.  
a) Any read or write of GPIO. This will end the  
mismatch condition.  
b) Clear the flag bit GPIF.  
A mismatch condition will continue to set flag bit GPIF.  
Reading GPIO will end the mismatch condition and  
allow flag bit GPIF to be cleared.  
For enabled interrupt-on-change pins, the values are  
compared with the old value latched on the last read of  
GPIO. The ‘mismatch’ outputs of the last read are OR’d  
together to set, the GP Port Change Interrupt flag bit  
(GPIF) in the INTCON register.  
Note: If a change on the I/O pin should occur  
when the read operation is being executed  
(start of the Q2 cycle), then the GPIF inter-  
rupt flag may not get set.  
REGISTER 3-4:  
IOC: INTERRUPT-ON-CHANGE GPIO REGISTER (ADDRESS: 96h)  
U-0  
U-0  
R/W-0  
IOC5  
R/W-0  
IOC4  
R/W-0  
IOC3  
R/W-0  
IOC2  
R/W-0  
IOC1  
R/W-0  
IOC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
IOC<5:0>: Interrupt-on-Change GPIO Control bits  
1= Interrupt-on-change enabled  
0= Interrupt-on-change disabled  
Note 1: Global Interrupt Enable (GIE) must be enabled for individual interrupts to be recognized.  
2010 Microchip Technology Inc.  
DS41190G-page 23  
PIC12F629/675  
FIGURE 3-1:  
BLOCK DIAGRAM OF GP0  
AND GP1 PINS  
Analog  
Input Mode  
3.3  
Pin Descriptions and Diagrams  
Each GPIO pin is multiplexed with other functions. The  
pins and their combined functions are briefly described  
here. For specific information about individual functions  
such as the comparator or the A/D, refer to the  
appropriate section in this Data Sheet.  
Data Bus  
D
Q
Q
VDD  
WR  
WPU  
CK  
Weak  
3.3.1  
GP0/AN0/CIN+  
GPPU  
RD  
WPU  
Figure 3-1 shows the diagram for this pin. The GP0 pin  
is configurable to function as one of the following:  
VDD  
• a general purpose I/O  
D
Q
Q
• an analog input for the A/D (PIC12F675 only)  
• an analog input to the comparator  
WR  
PORT  
CK  
I/O pin  
3.3.2  
GP1/AN1/CIN-/VREF  
D
Q
Q
Figure 3-1 shows the diagram for this pin. The GP1 pin  
is configurable to function as one of the following:  
WR  
TRISIO  
CK  
VSS  
Analog  
Input Mode  
• as a general purpose I/O  
RD  
TRISIO  
• an analog input for the A/D (PIC12F675 only)  
• an analog input to the comparator  
RD  
PORT  
• a voltage reference input for the A/D (PIC12F675  
only)  
D
Q
Q
Q
Q
D
CK  
WR  
IOC  
EN  
RD  
IOC  
D
EN  
Interrupt-on-Change  
RD PORT  
To Comparator  
To A/D Converter  
DS41190G-page 24  
2010 Microchip Technology Inc.  
PIC12F629/675  
3.3.3  
GP2/AN2/T0CKI/INT/COUT  
3.3.4  
GP3/MCLR/VPP  
Figure 3-2 shows the diagram for this pin. The GP2 pin  
is configurable to function as one of the following:  
Figure 3-3 shows the diagram for this pin. The GP3 pin  
is configurable to function as one of the following:  
• a general purpose I/O  
• a general purpose input  
• as Master Clear Reset  
• an analog input for the A/D (PIC12F675 only)  
• the clock input for TMR0  
FIGURE 3-3:  
BLOCK DIAGRAM OF GP3  
• an external edge triggered interrupt  
• a digital output from the comparator  
Data Bus  
MCLRE  
I/O pin  
Reset  
FIGURE 3-2:  
BLOCK DIAGRAM OF GP2  
RD  
TRISIO  
VSS  
Analog  
Input Mode  
Data Bus  
D
MCLRE  
VSS  
Q
Q
VDD  
RD  
PORT  
WR  
CK  
Weak  
WPU  
D
Q
Q
Q
Q
D
CK  
WR  
IOC  
GPPU  
Analog  
RD  
WPU  
EN  
COUT  
Input  
RD  
IOC  
Enable  
Mode  
D
VDD  
D
Q
Q
EN  
WR  
PORT  
CK  
Interrupt-on-Change  
COUT  
1
0
RD PORT  
I/O pin  
D
Q
Q
WR  
TRISIO  
CK  
VSS  
Analog  
Input Mode  
RD  
TRISIO  
RD  
PORT  
D
Q
Q
Q
D
D
CK  
WR  
IOC  
EN  
RD  
IOC  
Q
EN  
Interrupt-on-Change  
RD PORT  
To TMR0  
To INT  
To A/D Converter  
2010 Microchip Technology Inc.  
DS41190G-page 25  
PIC12F629/675  
3.3.5  
GP4/AN3/T1G/OSC2/CLKOUT  
3.3.6  
GP5/T1CKI/OSC1/CLKIN  
Figure 3-4 shows the diagram for this pin. The GP4 pin  
is configurable to function as one of the following:  
Figure 3-5 shows the diagram for this pin. The GP5 pin  
is configurable to function as one of the following:  
• a general purpose I/O  
• a general purpose I/O  
• a TMR1 clock input  
• a crystal/resonator connection  
• a clock input  
• an analog input for the A/D (PIC12F675 only)  
• a TMR1 gate input  
• a crystal/resonator connection  
• a clock output  
FIGURE 3-5:  
BLOCK DIAGRAM OF GP5  
FIGURE 3-4:  
BLOCK DIAGRAM OF GP4  
INTOSC  
Mode  
Analog  
TMR1LPEN(1)  
VDD  
Input Mode  
CLK  
Data Bus  
D
Modes(1)  
VDD  
Q
Q
Data Bus  
D
Q
Q
WR  
CK  
Weak  
WR  
WPU  
CK  
WPU  
Weak  
GPPU  
RD  
GPPU  
RD  
WPU  
WPU  
Oscillator  
Circuit  
Oscillator  
Circuit  
OSC1  
OSC2  
VDD  
VDD  
D
Q
Q
CLKOUT  
Enable  
WR  
PORT  
CK  
FOSC/4  
1
0
D
Q
Q
I/O pin  
I/O pin  
WR  
CK  
D
Q
Q
PORT  
CLKOUT  
Enable  
WR  
TRISIO  
CK  
VSS  
VSS  
D
Q
Q
INTOSC  
Mode  
INTOSC/  
RC/EC(2)  
RD  
TRISIO  
WR  
TRISIO  
CK  
CLKOUT  
Enable  
(2)  
RD  
PORT  
RD  
TRISIO  
Analog  
Input Mode  
D
Q
Q
RD  
PORT  
Q
Q
D
CK  
WR  
IOC  
D
Q
Q
EN  
Q
D
D
RD  
IOC  
CK  
WR  
IOC  
EN  
D
RD  
IOC  
EN  
Q
Interrupt-on-Change  
EN  
Interrupt-on-Change  
RD PORT  
RD PORT  
To TMR1 or CLKGEN  
To TMR1 T1G  
To A/D Converter  
Note 1: Timer1 LP Oscillator enabled  
Note 1: CLK modes are XT, HS, LP, LPTMR1 and CLKOUT  
Enable.  
2: When using Timer1 with LP oscillator, the Schmitt  
Trigger is by-passed.  
2: With CLKOUT option.  
DS41190G-page 26  
2010 Microchip Technology Inc.  
PIC12F629/675  
TABLE 3-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH GPIO  
Value on  
POR,  
Value on all  
other  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BOD  
Resets  
05h  
GPIO  
INTCON  
GIE  
PEIE  
COUT  
INTEDG  
GP5  
T0IE  
GP4  
INTE  
CINV  
T0SE  
GP3  
GPIE  
CIS  
GP2  
T0IF  
CM2  
PS2  
GP1  
INTF  
CM1  
PS1  
GP0  
GPIF  
CM0  
PS0  
--xx xxxx  
0000 0000  
-0-0 0000  
1111 1111  
--uu uuuu  
0000 000u  
-0-0 0000  
1111 1111  
--11 1111  
--11 -111  
--00 0000  
-000 1111  
0Bh/8Bh  
19h  
CMCON  
OPTION_REG  
TRISIO  
WPU  
81h  
GPPU  
T0CS  
PSA  
85h  
TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO0 --11 1111  
95h  
WPU5  
IOC5  
WPU4  
IOC4  
WPU2  
IOC2  
WPU1  
IOC1  
WPU0  
IOC0  
--11 -111  
--00 0000  
-000 1111  
96h  
IOC  
IOC3  
ANS3  
9Fh  
ANSEL  
ADCS2  
ADCS1  
ADCS0  
ANS2  
ANS1  
ANS0  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as ‘0’. Shaded cells are not used by GPIO.  
2010 Microchip Technology Inc.  
DS41190G-page 27  
PIC12F629/675  
NOTES:  
DS41190G-page 28  
2010 Microchip Technology Inc.  
PIC12F629/675  
Counter mode is selected by setting the T0CS bit  
(OPTION_REG<5>). In this mode, the Timer0 module  
will increment either on every rising or falling edge of  
pin GP2/T0CKI. The incrementing edge is determined  
4.0  
TIMER0 MODULE  
The Timer0 module timer/counter has the following  
features:  
by  
the  
source  
edge  
(T0SE)  
control  
bit  
• 8-bit timer/counter  
(OPTION_REG<4>). Clearing the T0SE bit selects the  
rising edge.  
• Readable and writable  
• 8-bit software programmable prescaler  
• Internal or external clock select  
• Interrupt on overflow from FFh to 00h  
• Edge select for external clock  
Note: Counter mode has specific external clock  
requirements. Additional information on  
these requirements is available in the PIC®  
Mid-Range  
(DS33023).  
Reference  
Manual,  
Figure 4-1 is a block diagram of the Timer0 module and  
the prescaler shared with the WDT.  
4.2  
Timer0 Interrupt  
Note: Additional information on the Timer0  
module is available in the PIC® Mid-Range  
Reference Manual, (DS33023).  
A Timer0 interrupt is generated when the TMR0  
register timer/counter overflows from FFh to 00h. This  
overflow sets the T0IF bit. The interrupt can be masked  
by clearing the T0IE bit (INTCON<5>). The T0IF bit  
(INTCON<2>) must be cleared in software by the  
Timer0 module Interrupt Service Routine before re-  
enabling this interrupt. The Timer0 interrupt cannot  
wake the processor from Sleep since the timer is shut-  
off during Sleep.  
4.1  
Timer0 Operation  
Timer mode is selected by clearing the T0CS bit  
(OPTION_REG<5>). In Timer mode, the Timer0  
module will increment every instruction cycle (without  
prescaler). If TMR0 is written, the increment is inhibited  
for the following two instruction cycles. The user can  
work around this by writing an adjusted value to the  
TMR0 register.  
FIGURE 4-1:  
BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
CLKOUT  
(= FOSC/4)  
Data Bus  
0
1
8
1
SYNC 2  
Cycles  
TMR0  
T0CKI  
pin  
0
0
1
Set Flag bit T0IF  
on Overflow  
T0CS  
T0SE  
8-bit  
Prescaler  
PSA  
8
PSA  
1
0
PS0 - PS2  
WDT  
Time-out  
Watchdog  
Timer  
PSA  
WDTE  
Note 1: T0SE, T0CS, PSA, PS0-PS2 are bits in the OPTION register.  
2010 Microchip Technology Inc.  
DS41190G-page 29  
PIC12F629/675  
a small RC delay of 20 ns) and low for at least 2TOSC  
(and a small RC delay of 20 ns). Refer to the electrical  
specification of the desired device.  
4.3  
Using Timer0 with an External  
Clock  
When no prescaler is used, the external clock input is  
the same as the prescaler output. The synchronization  
of T0CKI, with the internal phase clocks, is accom-  
plished by sampling the prescaler output on the Q2 and  
Q4 cycles of the internal phase clocks. Therefore, it is  
necessary for T0CKI to be high for at least 2TOSC (and  
Note: The ANSEL (9Fh) and CMCON (19h)  
registers must be initialized to configure an  
analog channel as a digital input. Pins  
configured as analog inputs will read ‘0’.  
The ANSEL register is defined for the  
PIC12F675.  
REGISTER 4-1:  
R/W-1  
OPTION_REG: OPTION REGISTER (ADDRESS: 81h)  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
GPPU  
INTEDG  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
GPPU: GPIO Pull-up Enable bit  
1= GPIO pull-ups are disabled  
0= GPIO pull-ups are enabled by individual PORT latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of GP2/INT pin  
0= Interrupt on falling edge of GP2/INT pin  
T0CS: TMR0 Clock Source Select bit  
1= Transition on GP2/T0CK pin  
0= Internal instruction cycle clock (CLKOUT)  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on GP2/T0CKI pin  
0= Increment on low-to-high transition on GP2/T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the TIMER0 module  
PS2:PS0: Prescaler Rate Select bits  
Bit Value TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
DS41190G-page 30  
2010 Microchip Technology Inc.  
PIC12F629/675  
EXAMPLE 4-1:  
CHANGING PRESCALER  
(TIMER0WDT)  
4.4  
Prescaler  
An 8-bit counter is available as a prescaler for the  
Timer0 module, or as a postscaler for the Watchdog  
Timer. For simplicity, this counter will be referred to as  
“prescaler” throughout this Data Sheet. The prescaler  
assignment is controlled in software by the control bit  
PSA (OPTION_REG<3>). Clearing the PSA bit will  
assign the prescaler to Timer0. Prescale values are  
selectable via the PS2:PS0 bits (OPTION_REG<2:0>).  
BCF  
STATUS,RP0 ;Bank 0  
CLRWDT  
CLRF  
;Clear WDT  
;Clear TMR0 and  
; prescaler  
TMR0  
BSF  
STATUS,RP0 ;Bank 1  
MOVLW  
MOVWF  
CLRWDT  
b’00101111’ ;Required if desired  
OPTION_REG ; PS2:PS0 is  
; 000 or 001  
The prescaler is not readable or writable. When  
assigned to the Timer0 module, all instructions writing  
to the TMR0 register (e.g., CLRF 1, MOVWF 1,  
BSF 1, x....etc.) will clear the prescaler. When  
assigned to WDT, a CLRWDT instruction will clear the  
prescaler along with the Watchdog Timer.  
;
MOVLW  
MOVWF  
BCF  
b’00101xxx’ ;Set postscaler to  
OPTION_REG ; desired WDT rate  
STATUS,RP0 ;Bank 0  
4.4.1  
SWITCHING PRESCALER  
ASSIGNMENT  
To change prescaler from the WDT to the TMR0  
module, use the sequence shown in Example 4-2. This  
precaution must be taken even if the WDT is disabled.  
The prescaler assignment is fully under software  
control (i.e., it can be changed “on the fly” during  
program execution). To avoid an unintended device  
Reset, the following instruction sequence (Example 4-  
1) must be executed when changing the prescaler  
assignment from Timer0 to WDT.  
EXAMPLE 4-2:  
CHANGING PRESCALER  
(WDTTIMER0)  
CLRWDT  
;Clear WDT and  
; postscaler  
BSF  
STATUS,RP0 ;Bank 1  
MOVLW  
b’xxxx0xxx’ ;Select TMR0,  
; prescale, and  
; clock source  
;
MOVWF  
BCF  
OPTION_REG  
STATUS,RP0 ;Bank 0  
TABLE 4-1:  
REGISTERS ASSOCIATED WITH TIMER0  
Value on  
all other  
Resets  
Value on  
POR, BOD  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
01h  
TMR0  
Timer0 Module Register  
GIE PEIE T0IE  
GPPU INTEDG T0CS  
xxxx xxxx uuuu uuuu  
0000 0000 0000 000u  
0Bh/8Bh INTCON  
INTE  
T0SE  
GPIE  
PSA  
T0IF  
PS2  
INTF  
PS1  
GPIF  
PS0  
81h  
85h  
OPTION_REG  
TRISIO  
1111 1111 1111 1111  
TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO0 --11 1111 --11 1111  
Legend: — = Unimplemented locations, read as ‘0’, u= unchanged, x= unknown.  
Shaded cells are not used by the Timer0 module.  
2010 Microchip Technology Inc.  
DS41190G-page 31  
PIC12F629/675  
The Timer1 Control register (T1CON), shown in  
Register 5.1, is used to enable/disable Timer1 and  
select the various features of the Timer1 module.  
5.0  
TIMER1 MODULE WITH GATE  
CONTROL  
The PIC12F629/675 devices have a 16-bit timer.  
Figure 5-1 shows the basic block diagram of the Timer1  
module. Timer1 has the following features:  
Note: Additional information on timer modules is  
available in the PIC® Mid-Range Refer-  
ence Manual, (DS33023).  
• 16-bit timer/counter (TMR1H:TMR1L)  
• Readable and writable  
• Internal or external clock selection  
• Synchronous or asynchronous operation  
• Interrupt on overflow from FFFFh to 0000h  
• Wake-up upon overflow (Asynchronous mode)  
• Optional external enable input (T1G)  
• Optional LP oscillator  
FIGURE 5-1:  
TIMER1 BLOCK DIAGRAM  
TMR1ON  
TMR1GE  
T1G  
TMR1ON  
TMR1GE  
Set Flag bit  
TMR1IF on  
Overflow  
TMR1  
Synchronized  
Clock Input  
0
TMR1L  
TMR1H  
1
LP Oscillator  
T1SYNC  
OSC1  
OSC2  
1
0
Synchronize  
Detect  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
2
Sleep Input  
T1CKPS<1:0>  
INTOSC  
w/o CLKOUT  
TMR1CS  
T1OSCEN  
LP  
DS41190G-page 32  
2010 Microchip Technology Inc.  
PIC12F629/675  
5.1  
Timer1 Modes of Operation  
5.2  
Timer1 Interrupt  
Timer1 can operate in one of three modes:  
The Timer1 register pair (TMR1H:TMR1L) increments  
to FFFFh and rolls over to 0000h. When Timer1 rolls  
over, the Timer1 interrupt flag bit (PIR1<0>) is set. To  
enable the interrupt on rollover, you must set these bits:  
• 16-bit timer with prescaler  
• 16-bit synchronous counter  
• 16-bit asynchronous counter  
• Timer1 interrupt Enable bit (PIE1<0>)  
• PEIE bit (INTCON<6>)  
In Timer mode, Timer1 is incremented on every  
instruction cycle. In Counter mode, Timer1 is  
incremented on the rising edge of the external clock  
input T1CKI. In addition, the Counter mode clock can  
be synchronized to the microcontroller system clock  
or run asynchronously.  
• GIE bit (INTCON<7>).  
The interrupt is cleared by clearing the TMR1IF in the  
Interrupt Service Routine.  
Note: The TMR1H:TTMR1L register pair and the  
TMR1IF bit should be cleared before  
enabling interrupts.  
In counter and timer modules, the counter/timer clock  
can be gated by the T1G input.  
If an external clock oscillator is needed (and the  
microcontroller is using the INTOSC w/o CLKOUT),  
Timer1 can use the LP oscillator as a clock source.  
5.3  
Timer1 Prescaler  
Timer1 has four prescaler options allowing 1, 2, 4, or 8  
divisions of the clock input. The T1CKPS bits  
(T1CON<5:4>) control the prescale counter. The  
prescale counter is not directly readable or writable;  
however, the prescaler counter is cleared upon a write  
to TMR1H or TMR1L.  
Note: In Counter mode, a falling edge must be  
registered by the counter prior to the first  
incrementing rising edge.  
FIGURE 5-2:  
TIMER1 INCREMENTING EDGE  
T1CKI = 1  
when TMR1  
Enabled  
T1CKI = 0  
when TMR1  
Enabled  
Note 1: Arrows indicate counter increments.  
2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the  
clock.  
2010 Microchip Technology Inc.  
DS41190G-page 33  
PIC12F629/675  
REGISTER 5-1:  
T1CON: TIMER1 CONTROL REGISTER (ADDRESS: 10h)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TMR1GE  
T1CKPS1  
T1CKPS0  
T1OSCEN  
T1SYNC  
TMR1CS  
TMR1ON  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
TMR1GE: Timer1 Gate Enable bit  
If TMR1ON = 0:  
This bit is ignored  
If TMR1ON = 1:  
1= Timer1 is on if T1G pin is low  
0= Timer1 is on  
bit 5-4  
bit 3  
T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale Value  
10= 1:4 Prescale Value  
01= 1:2 Prescale Value  
00= 1:1 Prescale Value  
T1OSCEN: LP Oscillator Enable Control bit  
If INTOSC without CLKOUT oscillator is active:  
1= LP oscillator is enabled for Timer1 clock  
0= LP oscillator is off  
Else:  
This bit is ignored  
bit 2  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock.  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from T1OSO/T1CKI pin (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
DS41190G-page 34  
2010 Microchip Technology Inc.  
PIC12F629/675  
5.4  
Timer1 Operation in  
5.5  
Timer1 Oscillator  
Asynchronous Counter Mode  
A crystal oscillator circuit is built-in between pins OSC1  
(input) and OSC2 (amplifier output). It is enabled by  
setting control bit T1OSCEN (T1CON<3>). The  
oscillator is a low-power oscillator rated up to 37 kHz. It  
will continue to run during Sleep. It is primarily intended  
for a 32 kHz crystal. Table 9-2 shows the capacitor  
selection for the Timer1 oscillator.  
If control bit T1SYNC (T1CON<2>) is set, the external  
clock input is not synchronized. The timer continues to  
increment asynchronous to the internal phase clocks.  
The timer will continue to run during Sleep and can  
generate an interrupt on overflow, which will wake-up  
the processor. However, special precautions in  
software are needed to read/write the timer  
(Section 5.4.1 “Reading and Writing Timer1 in  
Asynchronous Counter Mode”).  
The Timer1 oscillator is shared with the system LP  
oscillator. Thus, Timer1 can use this mode only when  
the system clock is derived from the internal oscillator.  
As with the system LP oscillator, the user must provide  
a software time delay to ensure proper oscillator  
start-up.  
Note: The ANSEL (9Fh) and CMCON (19h)  
registers must be initialized to configure an  
analog channel as a digital input. Pins  
configured as analog inputs will read ‘0’.  
The ANSEL register is defined for the  
PIC12F675.  
While enabled, TRISIO4 and TRISIO5 are set. GP4  
and GP5 read ‘0’ and TRISIO4 and TRISIO5 are read  
1’.  
Note: The oscillator requires a start-up and stabi-  
lization time before use. Thus, T1OSCEN  
should be set and a suitable delay  
observed prior to enabling Timer1.  
5.4.1  
READING AND WRITING TIMER1 IN  
ASYNCHRONOUS COUNTER MODE  
Reading TMR1H or TMR1L, while the timer is running  
from an external asynchronous clock, will ensure a  
valid read (taken care of in hardware). However, the  
user should keep in mind that reading the 16-bit timer  
in two 8-bit values itself, poses certain problems, since  
the timer may overflow between the reads.  
5.6  
Timer1 Operation During Sleep  
Timer1 can only operate during Sleep when setup in  
Asynchronous Counter mode. In this mode, an external  
crystal or clock source can be used to increment the  
counter. To setup the timer to wake the device:  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write  
contention may occur by writing to the timer registers,  
while the register is incrementing. This may produce an  
unpredictable value in the timer register.  
• Timer1 must be on (T1CON<0>)  
• TMR1IE bit (PIE1<0>) must be set  
• PEIE bit (INTCON<6>) must be set  
Reading the 16-bit value requires some care.  
Examples 12-2 and 12-3 in the PIC® Mid-Range MCU  
Family Reference Manual (DS33023) show how to  
read and write Timer1 when it is running in  
Asynchronous mode.  
The device will wake-up on an overflow. If the GIE bit  
(INTCON<7>) is set, the device will wake-up and jump  
to the Interrupt Service Routine on an overflow.  
TABLE 5-1:  
REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on  
Value on  
POR, BOD  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
0Bh/8Bh INTCON GIE  
PEIE  
ADIF  
T0IE  
INTE  
GPIE  
CMIF  
T0IF  
INTF  
GPIF 0000 0000 0000 000u  
TMR1IF 00-- 0--0 00-- 0--0  
xxxx xxxx uuuu uuuu  
0Ch  
0Eh  
0Fh  
10h  
8Ch  
PIR1  
EEIF  
TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx uuuu uuuu  
T1CON  
PIE1  
TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON -000 0000 -uuu uuuu  
ADIE CMIE TMR1IE 00-- 0--0 00-- 0--0  
EEIE  
Legend: x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used by the Timer1 module.  
2010 Microchip Technology Inc.  
DS41190G-page 35  
PIC12F629/675  
NOTES:  
DS41190G-page 36  
2010 Microchip Technology Inc.  
PIC12F629/675  
The Comparator Control Register (CMCON), shown  
in Register 6-1, contains the bits to control the  
comparator.  
6.0  
COMPARATOR MODULE  
The PIC12F629/675 devices have one analog  
comparator. The inputs to the comparator are  
multiplexed with the GP0 and GP1 pins. There is an  
on-chip Comparator Voltage Reference that can also  
be applied to an input of the comparator. In addition,  
GP2 can be configured as the comparator output.  
REGISTER 6-1:  
CMCON: COMPARATOR CONTROL REGISTER (ADDRESS: 19h)  
U-0  
R-0  
U-0  
R/W-0  
CINV  
R/W-0  
CIS  
R/W-0  
CM2  
R/W-0  
CM1  
R/W-0  
CM0  
COUT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
COUT: Comparator Output bit  
When CINV = 0:  
1= VIN+ > VIN-  
0= VIN+ < VIN-  
When CINV = 1:  
1= VIN+ < VIN-  
0= VIN+ > VIN-  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
CINV: Comparator Output Inversion bit  
1= Output inverted  
0= Output not inverted  
bit 3  
CIS: Comparator Input Switch bit  
When CM2:CM0 = 110or 101:  
1= VIN- connects to CIN+  
0= VIN- connects to CIN-  
bit 2-0  
CM2:CM0: Comparator Mode bits  
Figure 6-2 shows the Comparator modes and CM2:CM0 bit settings  
2010 Microchip Technology Inc.  
DS41190G-page 37  
PIC12F629/675  
TABLE 6-1:  
OUTPUT STATE VS. INPUT  
CONDITIONS  
6.1  
Comparator Operation  
A single comparator is shown in Figure 6-1, along with  
the relationship between the analog input levels and  
the digital output. When the analog input at VIN+ is less  
than the analog input VIN-, the output of the comparator  
is a digital low level. When the analog input at VIN+ is  
greater than the analog input VIN-, the output of the  
comparator is a digital high level. The shaded areas of  
the output of the comparator in Figure 6-1 represent  
the uncertainty due to input offsets and response time.  
Input Conditions  
CINV  
COUT  
VIN- > VIN+  
VIN- < VIN+  
VIN- > VIN+  
VIN- < VIN+  
0
0
1
1
0
1
1
0
FIGURE 6-1:  
SINGLE COMPARATOR  
Note: To use CIN+ and CIN- pins as analog  
inputs, the appropriate bits must be  
programmed in the CMCON (19h) register.  
VIN+  
VIN-  
+
Output  
The polarity of the comparator output can be inverted  
by setting the CINV bit (CMCON<4>). Clearing CINV  
results in a non-inverted output. A complete table  
showing the output state versus input conditions and  
the polarity bit is shown in Table 6-1.  
VIN-  
VIN+  
Output  
Note:  
CINV bit (CMCON<4>) is clear.  
DS41190G-page 38  
2010 Microchip Technology Inc.  
PIC12F629/675  
6.2  
Comparator Configuration  
There are eight modes of operation for the comparator.  
The CMCON register, shown in Register 6-1, is used to  
select the mode. Figure 6-2 shows the eight possible  
modes. The TRISIO register controls the data direction  
of the comparator pins for each mode. If the  
Comparator mode is changed, the comparator output  
level may not be valid for a specified period of time.  
Refer to the specifications in Section 12.0 “Electri-  
cal Specifications”.  
Note: Comparator interrupts should be disabled  
during a Comparator mode change. Other-  
wise, a false interrupt may occur.  
FIGURE 6-2:  
COMPARATOR I/O OPERATING MODES  
Comparator Reset (POR Default Value - low power)  
Comparator Off (Lowest power)  
CM2:CM0 = 111  
CM2:CM0 = 000  
GP1/CIN-  
GP0/CIN+  
A
A
GP1/CIN-  
GP0/CIN+  
D
D
Off (Read as ‘0’)  
Off (Read as ‘0’)  
GP2/COUT  
D
GP2/COUT  
D
Comparator without Output  
Comparator w/o Output and with Internal Reference  
CM2:CM0 = 010  
CM2:CM0 = 100  
GP1/CIN-  
GP0/CIN+  
A
A
GP1/CIN-  
GP0/CIN+  
A
D
COUT  
COUT  
GP2/COUT  
D
GP2/COUT  
D
From CVREF Module  
Comparator with Output and Internal Reference  
Multiplexed Input with Internal Reference and Output  
CM2:CM0 = 011  
CM2:CM0 = 101  
GP1/CIN-  
GP0/CIN+  
A
D
GP1/CIN-  
GP0/CIN+  
A
A
CIS = 0  
CIS = 1  
COUT  
COUT  
GP2/COUT  
D
GP2/COUT  
D
From CVREF Module  
From CVREF Module  
Comparator with Output  
Multiplexed Input with Internal Reference  
CM2:CM0 = 001  
CM2:CM0 = 110  
GP1/CIN-  
GP0/CIN+  
A
A
GP1/CIN-  
GP0/CIN+  
A
A
CIS = 0  
CIS = 1  
COUT  
COUT  
GP2/COUT  
D
GP2/COUT  
D
From CVREF Module  
A = Analog Input, ports always reads ‘0’  
D = Digital Input  
CIS = Comparator Input Switch (CMCON<3>)  
2010 Microchip Technology Inc.  
DS41190G-page 39  
PIC12F629/675  
range by more than 0.6V in either direction, one of the  
diodes is forward biased and a latch-up may occur. A  
6.3  
Analog Input Connection  
Considerations  
maximum  
source  
impedance  
of  
10 k  
is  
A simplified circuit for an analog input is shown in  
Figure 6-3. Since the analog pins are connected to a  
digital output, they have reverse biased diodes to VDD  
and VSS. The analog input, therefore, must be between  
VSS and VDD. If the input voltage deviates from this  
recommended for the analog sources. Any external  
component connected to an analog input pin, such as  
a capacitor or a Zener diode, should have very little  
leakage current.  
FIGURE 6-3:  
ANALOG INPUT MODE  
VDD  
VT = 0.6V  
RIC  
Rs < 10K  
AIN  
Leakage  
±500 nA  
CPIN  
5 pF  
VA  
VT = 0.6V  
Vss  
Legend:  
CPIN  
VT  
= Input Capacitance  
= Threshold Voltage  
ILEAKAGE  
RIC  
= Leakage Current at the pin due to Various Junctions  
= Interconnect Resistance  
RS  
= Source Impedance  
VA  
= Analog Voltage  
The TRISIO<2> bit functions as an output enable/  
disable for the GP2 pin while the comparator is in an  
Output mode.  
6.4  
Comparator Output  
The comparator output, COUT, is read through the  
CMCON register. This bit is read-only. The comparator  
output may also be directly output to the GP2 pin in  
three of the eight possible modes, as shown in  
Figure 6-2. When in one of these modes, the output on  
GP2 is asynchronous to the internal clock. Figure 6-4  
shows the comparator output block diagram.  
Note 1: When reading the GPIO register, all pins  
configured as analog inputs will read as a  
0’. Pins configured as digital inputs will  
convert an analog input according to the  
TTL input specification.  
2: Analog levels on any pin that is defined as  
a digital input, may cause the input buffer  
to consume more current than is  
specified.  
FIGURE 6-4:  
MODIFIED COMPARATOR OUTPUT BLOCK DIAGRAM  
GP0/CIN+  
GP1/CIN-  
CVREF  
To GP2/T0CKI pin  
To Data Bus  
RD CMCON  
Q
Q
D
EN  
CINV  
CM2:CM0  
Set CMIF bit  
D
RD CMCON  
EN  
Reset  
DS41190G-page 40  
2010 Microchip Technology Inc.  
PIC12F629/675  
The following equations determine the output voltages:  
6.5  
Comparator Reference  
VRR = 1 (low range): CVREF = (VR3:VR0 / 24) x VDD  
The comparator module also allows the selection of an  
internally generated voltage reference for one of the  
comparator inputs. The internal reference signal is  
used for four of the eight Comparator modes. The  
VRCON register, Register 6-2, controls the voltage  
reference module shown in Figure 6-5.  
VRR = 0 (high range): CVREF = (VDD / 4) + (VR3:VR0 x  
VDD / 32)  
6.5.2  
VOLTAGE REFERENCE  
ACCURACY/ERROR  
6.5.1  
CONFIGURING THE VOLTAGE  
REFERENCE  
The full range of VSS to VDD cannot be realized due to  
the construction of the module. The transistors on the  
top and bottom of the resistor ladder network  
(Figure 6-5) keep CVREF from approaching VSS or  
VDD. The Voltage Reference is VDD derived and there-  
fore, the CVREF output changes with fluctuations in  
VDD. The tested absolute accuracy of the Comparator  
Voltage Reference can be found in Section 12.0  
“Electrical Specifications”.  
The voltage reference can output 32 distinct voltage  
levels, 16 in a high range and 16 in a low range.  
FIGURE 6-5:  
COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM  
16 Stages  
8R  
R
R
R
R
VDD  
VRR  
8R  
16-1 Analog  
MUX  
VREN  
CVREF to  
Comparator  
Input  
VR3:VR0  
While the comparator is enabled during Sleep, an inter-  
rupt will wake-up the device. If the device wakes up  
from Sleep, the contents of the CMCON and VRCON  
registers are not affected.  
6.6  
Comparator Response Time  
Response time is the minimum time, after selecting a  
new reference voltage or input source, before the  
comparator output is ensured to have a valid level. If  
the internal reference is changed, the maximum delay  
of the internal voltage reference must be considered  
when using the comparator outputs. Otherwise, the  
maximum delay of the comparators should be used  
(Table 12-7).  
6.8  
Effects of a Reset  
A device Reset forces the CMCON and VRCON  
registers to their Reset states. This forces the  
comparator module to be in the Comparator Reset  
mode, CM2:CM0 = 000and the voltage reference to its  
off state. Thus, all potential inputs are analog inputs  
with the comparator and voltage reference disabled to  
consume the smallest current possible.  
6.7  
Operation During Sleep  
Both the comparator and voltage reference, if enabled  
before entering Sleep mode, remain active during  
Sleep. This results in higher Sleep currents than shown  
in the power-down specifications. The additional cur-  
rent consumed by the comparator and the voltage ref-  
erence is shown separately in the specifications. To  
minimize power consumption while in Sleep mode, turn  
off the comparator, CM2:CM0 = 111, and voltage refer-  
ence, VRCON<7> = 0.  
2010 Microchip Technology Inc.  
DS41190G-page 41  
PIC12F629/675  
REGISTER 6-2:  
R/W-0  
VRCON: VOLTAGE REFERENCE CONTROL REGISTER (ADDRESS: 99h)  
U-0  
R/W-0  
VRR  
R/W-0  
R/W-0  
VR3  
R/W-0  
VR2  
R/W-0  
VR1  
R/W-0  
VR0  
VREN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
VREN: CVREF Enable bit  
1= CVREF circuit powered on  
0= CVREF circuit powered down, no IDD drain  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
VRR: CVREF Range Selection bit  
1= Low range  
0= High range  
bit 4  
Unimplemented: Read as ‘0’  
bit 3-0  
VR3:VR0: CVREF value selection 0 VR [3:0] 15  
When VRR = 1: CVREF = (VR3:VR0 / 24) * VDD  
When VRR = 0: CVREF = VDD/4 + (VR3:VR0 / 32) * VDD  
The user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
6.9  
Comparator Interrupts  
The comparator interrupt flag is set whenever there is  
a change in the output value of the comparator.  
Software will need to maintain information about the  
status of the output bits, as read from CMCON<6>, to  
determine the actual change that has occurred. The  
CMIF bit, PIR1<3>, is the comparator interrupt flag.  
This bit must be reset in software by clearing it to ‘0’.  
Since it is also possible to write a ‘1’ to this register, a  
simulated interrupt may be initiated.  
a) Any read or write of CMCON. This will end the  
mismatch condition.  
b) Clear flag bit CMIF.  
A mismatch condition will continue to set flag bit CMIF.  
Reading CMCON will end the mismatch condition, and  
allow flag bit CMIF to be cleared.  
Note: If a change in the CMCON register (COUT)  
should occur when a read operation is  
being executed (start of the Q2 cycle), then  
the CMIF (PIR1<3>) interrupt flag may not  
get set.  
The CMIE bit (PIE1<3>) and the PEIE bit (INT-  
CON<6>) must be set to enable the interrupt. In addi-  
tion, the GIE bit must also be set. If any of these bits are  
cleared, the interrupt is not enabled, though the CMIF  
bit will still be set if an interrupt condition occurs.  
TABLE 6-2:  
REGISTERS ASSOCIATED WITH COMPARATOR MODULE  
Value on  
Value on  
POR, BOD  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
0Bh/8Bh  
0Ch  
INTCON  
PIR1  
GIE  
EEIF  
PEIE  
ADIF  
COUT  
ADIE  
T0IE  
INTE  
GPIE  
CMIF  
CIS  
T0IF  
INTF  
GPIF  
0000 0000 0000 000u  
TMR1IF 00-- 0--0 00-- 0--0  
CM0  
TMR1IE 00-- 0--0 00-- 0--0  
19h  
CMCON  
PIE1  
CINV  
CM2  
CM1  
-0-0 0000 -0-0 0000  
8Ch  
EEIE  
CMIE  
85h  
TRISIO  
VRCON  
TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO0 --11 1111 --11 1111  
VRR VR3 VR2 VR1 VR0 0-0- 0000 0-0- 0000  
99h  
VREN  
Legend:  
x = unknown, u = unchanged, - = unimplemented, read as ‘0’. Shaded cells are not used by the comparator module.  
DS41190G-page 42  
2010 Microchip Technology Inc.  
PIC12F629/675  
circuit. The output of the sample and hold is connected  
to the input of the converter. The converter generates a  
binary result via successive approximation and stores  
the result in a 10-bit register. The voltage reference  
used in the conversion is software selectable to either  
VDD or a voltage applied by the VREF pin. Figure 7-1  
shows the block diagram of the A/D on the PIC12F675.  
7.0  
ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
(PIC12F675 ONLY)  
The Analog-to-Digital converter (A/D) allows  
conversion of an analog input signal to a 10-bit binary  
representation of that signal. The PIC12F675 has four  
analog inputs, multiplexed into one sample and hold  
FIGURE 7-1:  
A/D BLOCK DIAGRAM  
VDD  
VCFG = 0  
VCFG = 1  
VREF  
GP0/AN0  
GP1/AN1/VREF  
GP2/AN2  
ADC  
10  
GO/DONE  
GP4/AN3  
ADFM  
CHS1:CHS0  
10  
ADON  
ADRESH ADRESL  
VSS  
controls the voltage reference selection. If VCFG is set,  
then the voltage on the VREF pin is the reference;  
otherwise, VDD is the reference.  
7.1  
A/D Configuration and Operation  
There are two registers available to control the  
functionality of the A/D module:  
7.1.4  
CONVERSION CLOCK  
1. ADCON0 (Register 7-1)  
2. ANSEL (Register 7-2)  
The A/D conversion cycle requires 11 TAD. The source  
of the conversion clock is software selectable via the  
ADCS bits (ANSEL<6:4>). There are seven possible  
clock options:  
7.1.1  
ANALOG PORT PINS  
The ANS3:ANS0 bits (ANSEL<3:0>) and the TRISIO  
bits control the operation of the A/D port pins. Set the  
corresponding TRISIO bits to set the pin output driver  
to its high-impedance state. Likewise, set the  
corresponding ANS bit to disable the digital input  
buffer.  
• FOSC/2  
• FOSC/4  
• FOSC/8  
• FOSC/16  
• FOSC/32  
Note: Analog voltages on any pin that is defined  
as a digital input may cause the input  
buffer to conduct excess current.  
• FOSC/64  
• FRC (dedicated internal RC oscillator)  
For correct conversion, the A/D conversion clock  
(1/TAD) must be selected to ensure a minimum TAD of  
1.6 s. Table 7-1 shows a few TAD calculations for  
selected frequencies.  
7.1.2  
CHANNEL SELECTION  
There are four analog channels on the PIC12F675,  
AN0 through AN3. The CHS1:CHS0 bits  
(ADCON0<3:2>) control which channel is connected to  
the sample and hold circuit.  
7.1.3  
VOLTAGE REFERENCE  
There are two options for the voltage reference to the  
A/D converter: either VDD is used, or an analog voltage  
applied to VREF is used. The VCFG bit (ADCON0<6>)  
2010 Microchip Technology Inc.  
DS41190G-page 43  
PIC12F629/675  
TABLE 7-1:  
TAD vs. DEVICE OPERATING FREQUENCIES  
Device Frequency  
A/D Clock Source (TAD)  
Operation  
2 TOSC  
ADCS2:ADCS0  
20 MHz  
100 ns(2)  
200 ns(2)  
400 ns(2)  
800 ns(2)  
1.6 s  
5 MHz  
4 MHz  
500 ns(2)  
1.0 s(2)  
2.0 s  
1.25 MHz  
1.6 s  
3.2 s  
000  
100  
001  
101  
010  
110  
x11  
400 ns(2)  
800 ns(2)  
1.6 s  
4 TOSC  
8 TOSC  
6.4 s  
16 TOSC  
32 TOSC  
64 TOSC  
A/D RC  
3.2 s  
6.4 s  
12.8 s(3)  
2 - 6 s(1,4)  
4.0 s  
12.8 s(3)  
25.6 s(3)  
51.2 s(3)  
2 - 6 s(1,4)  
8.0 s(3)  
16.0 s(3)  
2 - 6 s(1,4)  
3.2 s  
2 - 6 s(1,4)  
Legend:Shaded cells are outside of recommended range.  
Note 1: The A/D RC source has a typical TAD time of 4 s for VDD > 3.0V.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: When the device frequency is greater than 1 MHz, the A/D RC clock source is only recommended if the  
conversion will be performed during Sleep.  
previous conversion. After an aborted conversion, a  
2 TAD delay is required before another acquisition can  
be initiated. Following the delay, an input acquisition is  
automatically started on the selected channel.  
7.1.5  
STARTING A CONVERSION  
The A/D conversion is initiated by setting the  
GO/DONE bit (ADCON0<1>). When the conversion is  
complete, the A/D module:  
Note: The GO/DONE bit should not be set in the  
• Clears the GO/DONE bit  
same instruction that turns on the A/D.  
• Sets the ADIF flag (PIR1<6>)  
• Generates an interrupt (if enabled)  
7.1.6  
CONVERSION OUTPUT  
If the conversion must be aborted, the GO/DONE bit  
can be cleared in software. The ADRESH:ADRESL  
registers will not be updated with the partially complete  
The A/D conversion can be supplied in two formats: left  
or right shifted. The ADFM bit (ADCON0<7>) controls  
the output format. Figure 7-2 shows the output formats.  
A/D  
conversion  
sample.  
Instead,  
the  
ADRESH:ADRESL registers will retain the value of the  
FIGURE 7-2:  
10-BIT A/D RESULT FORMAT  
ADRESH  
ADRESL  
LSB  
(ADFM = 0)  
MSB  
Bit 7  
Bit 0  
Bit 7  
Bit 0  
10-bit A/D Result  
Unimplemented: Read as ‘0’  
(ADFM = 1)  
MSB  
LSB  
Bit 0  
Bit 7  
Bit 0  
Bit 7  
Unimplemented: Read as ‘0’  
10-bit A/D Result  
DS41190G-page 44  
2010 Microchip Technology Inc.  
PIC12F629/675  
REGISTER 7-1:  
R/W-0  
ADCON0: A/D CONTROL REGISTER (ADDRESS: 1Fh)  
R/W-0  
VCFG  
U-0  
U-0  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
R/W-0  
ADON  
ADFM  
GO/DONE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
ADFM: A/D Result Formed Select bit  
1= Right justified  
0= Left justified  
VCFG: Voltage Reference bit  
1= VREF pin  
0= VDD  
bit 5-4  
bit 3-2  
Unimplemented: Read as ‘0’  
CHS1:CHS0: Analog Channel Select bits  
00= Channel 00 (AN0)  
01= Channel 01 (AN1)  
10= Channel 02 (AN2)  
11= Channel 03 (AN3)  
bit 1  
bit 0  
GO/DONE: A/D Conversion Status bit  
1= A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle.  
This bit is automatically cleared by hardware when the A/D conversion has completed.  
0= A/D conversion completed/not in progress  
ADON: A/D Conversion Status bit  
1= A/D converter module is operating  
0= A/D converter is shut-off and consumes no operating current  
2010 Microchip Technology Inc.  
DS41190G-page 45  
PIC12F629/675  
REGISTER 7-2:  
ANSEL: ANALOG SELECT REGISTER (ADDRESS: 9Fh)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-1  
ANS3  
R/W-1  
ANS2  
R/W-1  
ANS1  
R/W-1  
ANS0  
ADCS2  
ADCS1  
ADCS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
ADCS<2:0>: A/D Conversion Clock Select bits  
000= Fosc/2  
001= Fosc/8  
010= Fosc/32  
x11= FRC (clock derived from a dedicated internal oscillator = 500 kHz max)  
100= Fosc/4  
101= Fosc/16  
110= Fosc/64  
bit 3-0  
ANS3:ANS0: Analog Select bits  
(Between analog or digital function on pins AN<3:0>, respectively.)  
1= Analog input; pin is assigned as analog input(1)  
0= Digital I/O; pin is assigned to port or special function  
Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups, and inter-  
rupt-on-change. The corresponding TRISIO bit must be set to Input mode in order to allow external control  
of the voltage on the pin.  
DS41190G-page 46  
2010 Microchip Technology Inc.  
PIC12F629/675  
is decreased, the acquisition time may be decreased.  
After the analog input channel is selected (changed),  
this acquisition must be done before the conversion  
can be started.  
7.2  
A/D Acquisition Requirements  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 7-3. The source  
impedance (RS) and the internal sampling switch (RSS)  
impedance directly affect the time required to charge  
the capacitor CHOLD. The sampling switch (RSS)  
impedance varies over the device voltage (VDD), see  
Figure 7-3. The maximum recommended imped-  
ance for analog sources is 10 k. As the impedance  
To calculate the minimum acquisition time,  
Equation 7-1 may be used. This equation assumes  
that 1/2 LSb error is used (1024 steps for the A/D).  
The 1/2 LSb error is the maximum error allowed for  
the A/D to meet its specified resolution.  
To calculate the minimum acquisition time, TACQ, see  
the PIC® Mid-Range Reference Manual (DS33023).  
EQUATION 7-1:  
ACQUISITION TIME  
TACQ  
= Amplifier Settling Time +  
Hold Capacitor Charging Time +  
Temperature Coefficient  
= TAMP + TC + TCOFF  
= 2s + TC + [(Temperature -25°C)(0.05s/°C)]  
= CHOLD (RIC + RSS + RS) In(1/2047)  
= - 120pF (1k+ 7k+ 10k) In(0.0004885)  
= 16.47s  
= 2s + 16.47s + [(50°C -25C)(0.05s/C)  
= 19.72s  
TC  
TACQ  
Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.  
2: The charge holding capacitor (CHOLD) is not discharged after each conversion.  
3: The maximum recommended impedance for analog sources is 10 k. This is required to meet the pin  
leakage specification.  
FIGURE 7-3:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1K  
RSS  
RS  
CHOLD  
CPIN  
5 pF  
= DAC capacitance  
= 120 pF  
VA  
I LEAKAGE  
± 500 nA  
VT = 0.6V  
VSS  
Legend: CPIN  
= input capacitance  
= threshold voltage  
6V  
5V  
VT  
I LEAKAGE = leakage current at the pin due to  
VDD 4V  
3V  
various junctions  
= interconnect resistance  
= sampling switch  
2V  
RIC  
SS  
CHOLD  
= sample/hold capacitance (from DAC)  
5 6 7 8 9 1011  
Sampling Switch  
(k)  
2010 Microchip Technology Inc.  
DS41190G-page 47  
PIC12F629/675  
When the A/D clock source is something other than  
RC, a SLEEPinstruction causes the present conversion  
to be aborted, and the A/D module is turned off. The  
ADON bit remains set.  
7.3  
A/D Operation During Sleep  
The A/D converter module can operate during Sleep.  
This requires the A/D clock source to be set to the  
internal RC oscillator. When the RC clock source is  
selected, the A/D waits one instruction before starting  
the conversion. This allows the SLEEPinstruction to be  
executed, thus eliminating much of the switching noise  
from the conversion. When the conversion is complete,  
the GO/DONE bit is cleared, and the result is loaded  
into the ADRESH:ADRESL registers. If the A/D  
interrupt is enabled, the device awakens from Sleep. If  
the A/D interrupt is not enabled, the A/D module is  
turned off, although the ADON bit remains set.  
7.4  
Effects of Reset  
A device Reset forces all registers to their Reset state.  
Thus the A/D module is turned off and any pending  
conversion is aborted. The ADRESH:ADRESL  
registers are unchanged.  
TABLE 7-2:  
SUMMARY OF A/D REGISTERS  
Value on  
POR,  
BOD  
Value on  
all other  
Resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
05h  
GPIO  
GPIO5  
T0IE  
GPIO4  
INTE  
GPIO3  
GPIE  
CMIF  
GPIO2  
T0IF  
GPIO1  
INTF  
GPIO0 --xx xxxx --uu uuuu  
GPIF 0000 0000 0000 000u  
TMR1IF 00-- 0--0 00-- 0--0  
0Bh, 8Bh INTCON  
GIE  
EEIF  
PEIE  
ADIF  
0Ch  
1Eh  
1Fh  
85h  
8Ch  
9Eh  
9Fh  
PIR1  
ADRESH Most Significant 8 bits of the Left Shifted A/D result or 2 bits of the Right Shifted Result  
xxxx xxxx uuuu uuuu  
00-- 0000 00-- 0000  
ADCON0  
TRISIO  
PIE1  
ADFM  
VCFG  
CHS1  
CHS0  
GO  
ADON  
TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO0 --11 1111 --11 1111  
CMIE TMR1IE 00-- 0--0 00-- 0--0  
EEIE  
ADIE  
ADRESL Least Significant 2 bits of the Left Shifted A/D Result or 8 bits of the Right Shifted Result  
ANSEL ADCS2 ADCS1 ADCS0 ANS3 ANS2 ANS1 ANS0  
xxxx xxxx uuuu uuuu  
-000 1111 -000 1111  
Legend: x= unknown, u= unchanged, -= unimplemented read as ‘0’. Shaded cells are not used for A/D converter module.  
DS41190G-page 48  
2010 Microchip Technology Inc.  
PIC12F629/675  
The EEPROM data memory allows byte read and write.  
A byte write automatically erases the location and  
writes the new data (erase before write). The EEPROM  
data memory is rated for high erase/write cycles. The  
write time is controlled by an on-chip timer. The write  
time will vary with voltage and temperature as well as  
from chip to chip. Please refer to AC Specifications for  
exact limits.  
8.0  
DATA EEPROM MEMORY  
The EEPROM data memory is readable and writable  
during normal operation (full VDD range). This memory  
is not directly mapped in the register file space.  
Instead, it is indirectly addressed through the Special  
Function Registers. There are four SFRs used to read  
and write this memory:  
• EECON1  
When the data memory is code-protected, the CPU  
may continue to read and write the data EEPROM  
memory. The device programmer can no longer access  
this memory.  
• EECON2 (not a physically implemented register)  
• EEDATA  
• EEADR  
Additional information on the data EEPROM is  
available in the PIC® Mid-Range Reference Manual,  
(DS33023).  
EEDATA holds the 8-bit data for read/write, and  
EEADR holds the address of the EEPROM location  
being accessed. PIC12F629/675 devices have 128  
bytes of data EEPROM with an address range from 0h  
to 7Fh.  
REGISTER 8-1:  
R/W-0  
EEDAT: EEPROM DATA REGISTER (ADDRESS: 9Ah)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EEDAT7  
bit 7  
EEDAT6  
EEDAT5  
EEDAT4  
EEDAT3  
EEDAT2  
EEDAT1  
EEDAT0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
EEDATn: Byte value to write to or read from data EEPROM  
REGISTER 8-2:  
EEADR: EEPROM ADDRESS REGISTER (ADDRESS: 9Bh)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EADR6  
EADR5  
EADR4  
EADR3  
EADR2  
EADR1  
EADR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Should be set to ‘0’  
EEADR: Specifies one of 128 locations for EEPROM Read/Write Operation  
bit 6-0  
2010 Microchip Technology Inc.  
DS41190G-page 49  
PIC12F629/675  
of the read or write operation. The inability to clear the  
WR bit in software prevents the accidental, premature  
termination of a write operation.  
8.1  
EEADR  
The EEADR register can address up to a maximum of  
128 bytes of data EEPROM. Only seven of the eight  
bits in the register (EEADR<6:0>) are required. The  
MSb (bit 7) is ignored.  
The WREN bit, when set, will allow a write operation.  
On power-up, the WREN bit is clear. The WRERR bit is  
set when a write operation is interrupted by a MCLR  
Reset, or a WDT Time-out Reset during normal  
operation. In these situations, following Reset, the user  
can check the WRERR bit, clear it, and rewrite the  
location. The data and address will be cleared,  
therefore, the EEDATA and EEADR registers will need  
to be re-initialized.  
The upper bit should always be ‘0’ to remain upward  
compatible with devices that have more data EEPROM  
memory.  
8.2  
EECON1 and EECON2 Registers  
EECON1 is the control register with four low-order bits  
physically implemented. The upper four bits are non-  
implemented and read as ‘0’s.  
Interrupt flag bit EEIF in the PIR1 register is set when  
write is complete. This bit must be cleared in software.  
Control bits RD and WR initiate read and write,  
respectively. These bits cannot be cleared, only set, in  
software. They are cleared in hardware at completion  
EECON2 is not a physical register. Reading EECON2  
will read all ‘0’s. The EECON2 register is used  
exclusively in the data EEPROM write sequence.  
REGISTER 8-3:  
EECON1: EEPROM CONTROL REGISTER (ADDRESS: 9Ch)  
U-0  
U-0  
U-0  
U-0  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
WRERR  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
WRERR: EEPROM Error Flag bit  
1= A write operation is prematurely terminated (any MCLR Reset, any WDT Reset during normal  
operation or BOD detect)  
0= The write operation completed  
bit 2  
bit 1  
WREN: EEPROM Write Enable bit  
1= Allows write cycles  
0= Inhibits write to the data EEPROM  
WR: Write Control bit  
1= Initiates a write cycle (The bit is cleared by hardware once write is complete. The WR bit can only  
be set, not cleared, in software.)  
0= Write cycle to the data EEPROM is complete  
bit 0  
RD: Read Control bit  
1= Initiates an EEPROM read (Read takes one cycle. RD is cleared in hardware. The RD bit can only  
be set, not cleared, in software).  
0= Does not initiate an EEPROM read  
DS41190G-page 50  
2010 Microchip Technology Inc.  
PIC12F629/675  
After a write sequence has been initiated, clearing the  
WREN bit will not affect this write cycle. The WR bit will  
be inhibited from being set unless the WREN bit is set.  
8.3  
Reading the EEPROM Data  
Memory  
To read a data memory location, the user must write  
the address to the EEADR register and then set  
control bit RD (EECON1<0>), as shown in  
Example 8-1. The data is available, in the very next  
cycle, in the EEDATA register. Therefore, it can be  
read in the next instruction. EEDATA holds this value  
until another read, or until it is written to by the user  
(during a write operation).  
At the completion of the write cycle, the WR bit is  
cleared in hardware and the EE Write Complete  
Interrupt Flag bit (EEIF) is set. The user can either  
enable this interrupt or poll this bit. The EEIF bit  
(PIR<7>) register must be cleared by software.  
8.5  
Write Verify  
Depending on the application, good programming  
practice may dictate that the value written to the data  
EEPROM should be verified (see Example 8-3) to the  
desired value to be written.  
EXAMPLE 8-1:  
DATA EEPROM READ  
BSF  
STATUS,RP0  
;Bank 1  
;
;Address to read  
;EE Read  
;Move data to W  
MOVLW CONFIG_ADDR  
MOVWF EEADR  
EXAMPLE 8-3:  
WRITE VERIFY  
BSF  
MOVF  
EECON1,RD  
EEDATA,W  
BCF  
:
STATUS,RP0  
;Bank 0  
;Any code  
BSF  
MOVF  
STATUS,RP0  
EEDATA,W  
;Bank 1 READ  
8.4  
Writing to the EEPROM Data  
Memory  
;EEDATA not changed  
;from previous write  
;YES, Read the  
BSF  
EECON1,RD  
To write an EEPROM data location, the user must first  
write the address to the EEADR register and the data  
to the EEDATA register. Then the user must follow a  
specific sequence to initiate the write for each byte, as  
shown in Example 8-2.  
;value written  
XORWF EEDATA,W  
BTFSS STATUS,Z  
;Is data the same  
;No, handle error  
;Yes, continue  
GOTO  
:
WRITE_ERR  
EXAMPLE 8-2:  
DATA EEPROM WRITE  
8.5.1  
USING THE DATA EEPROM  
high-endurance, byte  
BSF  
BSF  
BCF  
STATUS,RP0  
EECON1,WREN  
INTCON,GIE  
;Bank 1  
;Enable write  
;Disable INTs  
;Unlock write  
;
;
;
The data EEPROM is  
a
addressable array that has been optimized for the  
storage of frequently changing information (e.g.,  
program variables or other data that are updated  
often). Frequently changing values will typically be  
updated more often than specifications D120 or  
D120A. If this is not the case, an array refresh must be  
performed. For this reason, variables that change  
infrequently (such as constants, IDs, calibration, etc.)  
should be stored in Flash program memory.  
MOVLW 55h  
MOVWF EECON2  
MOVLW AAh  
MOVWF EECON2  
BSF  
BSF  
EECON1,WR  
INTCON,GIE  
;Start the write  
;Enable INTS  
The write will not initiate if the above sequence is not  
exactly followed (write 55h to EECON2, write AAh to  
EECON2, then set WR bit) for each byte. We strongly  
recommend that interrupts be disabled during this  
code segment. A cycle count is executed during the  
required sequence. Any number that is not equal to the  
required cycles to execute the required sequence will  
prevent the data from being written into the EEPROM.  
8.6  
Protection Against Spurious Write  
There are conditions when the device may not want to  
write to the data EEPROM memory. To protect against  
spurious EEPROM writes, various mechanisms have  
been built in. On power-up, WREN is cleared. Also, the  
Power-up Timer (72 ms duration) prevents  
EEPROM write.  
Additionally, the WREN bit in EECON1 must be set to  
enable write. This mechanism prevents accidental  
writes to data EEPROM due to errant (unexpected)  
code execution (i.e., lost programs). The user should  
keep the WREN bit clear at all times, except when  
updating EEPROM. The WREN bit is not cleared  
by hardware.  
The write initiate sequence and the WREN bit together  
help prevent an accidental write during:  
• brown-out  
• power glitch  
• software malfunction  
2010 Microchip Technology Inc.  
DS41190G-page 51  
PIC12F629/675  
8.7  
Data EEPROM Operation During  
Code Protect  
Data memory can be code protected by programming  
the CPD bit to ‘0’.  
When the data memory is code protected, the CPU is  
able to read and write data to the data EEPROM. It is  
recommended to code protect the program memory  
when code protecting data memory. This prevents  
anyone from programming zeroes over the existing  
code (which will execute as NOPs) to reach an added  
routine, programmed in unused program memory,  
which outputs the contents of data memory.  
Programming unused locations to ‘0’ will also help  
prevent data memory code protection from becoming  
breached.  
TABLE 8-1:  
REGISTERS/BITS ASSOCIATED WITH DATA EEPROM  
Value on all  
other  
Resets  
Value on  
POR, BOD  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Ch  
9Ah  
9Bh  
9Ch  
9Dh  
PIR1  
EEIF  
ADIF  
CMIF  
TMR1IF 00-- 0--0 00-- 0--0  
0000 0000 0000 0000  
EEDATA  
EEADR  
EEPROM Data Register  
EEPROM Address Register  
-000 0000 -000 0000  
EECON1  
EECON2  
WRERR WREN  
WR  
RD  
---- x000 ---- q000  
---- ---- ---- ----  
(1)  
EEPROM Control Register 2  
Legend: x= unknown, u= unchanged, - = unimplemented read as ‘0’, q= value depends upon condition.  
Shaded cells are not used by data EEPROM module.  
Note 1: EECON2 is not a physical register.  
DS41190G-page 52  
2010 Microchip Technology Inc.  
PIC12F629/675  
The PIC12F629/675 has a Watchdog Timer that is  
controlled by Configuration bits. It runs off its own RC  
oscillator for added reliability. There are two timers that  
offer necessary delays on power-up. One is the  
Oscillator Start-up Timer (OST), intended to keep the  
chip in Reset until the crystal oscillator is stable. The  
other is the Power-up Timer (PWRT), which provides a  
fixed delay of 72 ms (nominal) on power-up only,  
designed to keep the part in Reset while the power  
supply stabilizes. There is also circuitry to reset the  
device if a brown-out occurs, which can provide at least  
a 72 ms Reset. With these three functions on-chip,  
most applications need no external Reset circuitry.  
9.0  
SPECIAL FEATURES OF THE  
CPU  
Certain special circuits that deal with the needs of real  
time applications are what sets a microcontroller apart  
from other processors. The PIC12F629/675 family has  
a host of such features intended to:  
• maximize system reliability  
• minimize cost through elimination of external  
components  
• provide power saving operating modes and offer  
code protection  
These features are:  
The Sleep mode is designed to offer a very low current  
Power-down mode. The user can wake-up from Sleep  
through:  
• Oscillator selection  
• Reset  
• External Reset  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Detect (BOD)  
• Interrupts  
• Watchdog Timer wake-up  
• An interrupt  
Several oscillator options are also made available to  
allow the part to fit the application. The INTOSC option  
saves system cost while the LP crystal option saves  
power. A set of Configuration bits are used to select  
various options (see Register 9.2).  
• Watchdog Timer (WDT)  
• Sleep  
• Code protection  
• ID Locations  
• In-Circuit Serial Programming  
2010 Microchip Technology Inc.  
DS41190G-page 53  
PIC12F629/675  
9.1  
Configuration Bits  
Note:  
Address 2007h is beyond the user program  
memory space. It belongs to the special con-  
figuration memory space (2000h-3FFFh),  
which can be accessed only during program-  
ming. See PIC12F629/675 Programming  
Specification for more information.  
The Configuration bits can be programmed (read as  
0’), or left unprogrammed (read as ‘1’) to select various  
device configurations, as shown in Register 9.2. These  
bits are mapped in program memory location 2007h.  
REGISTER 9-1:  
CONFIG: CONFIGURATION WORD (ADDRESS: 2007h)  
R/P-1 R/P-1  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
BG1  
BG0  
CPD  
CP  
BODEN MCLRE PWRTE WDTE F0SC2 F0SC1 F0SC0  
bit 0  
bit 13  
Legend:  
P = Programmed using ICSP™  
R = Readable bit  
Writable bit  
1 = bit is set  
U = Unimplemented bit, read as ‘0’  
-n = Value at POR  
0 = bit is cleared  
x = bit is unknown  
(1)  
bit 13-12  
BG1:BG0: Bandgap Calibration bits for BOD and POR voltage  
00= Lowest bandgap voltage  
11= Highest bandgap voltage  
bit 11-9  
bit 8  
Unimplemented: Read as ‘0’  
(2)  
CPD: Data Code Protection bit  
1= Data memory code protection is disabled  
0= Data memory code protection is enabled  
(3)  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
CP: Code Protection bit  
1= Program Memory code protection is disabled  
0= Program Memory code protection is enabled  
(4)  
BODEN: Brown-out Detect Enable bit  
1= BOD enabled  
0= BOD disabled  
(5)  
MCLRE: GP3/MCLR Pin Function Select bit  
1= GP3/MCLR pin function is MCLR  
0= GP3/MCLR pin function is digital I/O, MCLR internally tied to VDD  
PWRTE: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
WDTE: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled  
FOSC2:FOSC0: Oscillator Selection bits  
111= RC oscillator: CLKOUT function on GP4/OSC2/CLKOUT pin, RC on GP5/OSC1/CLKIN  
110= RC oscillator: I/O function on GP4/OSC2/CLKOUT pin, RC on GP5/OSC1/CLKIN  
101= INTOSC oscillator: CLKOUT function on GP4/OSC2/CLKOUT pin, I/O function on GP5/OSC1/CLKIN  
100= INTOSC oscillator: I/O function on GP4/OSC2/CLKOUT pin, I/O function on GP5/OSC1/CLKIN  
011= EC: I/O function on GP4/OSC2/CLKOUT pin, CLKIN on GP5/OSC1/CLKIN  
010= HS oscillator: High speed crystal/resonator on GP4/OSC2/CLKOUT and GP5/OSC1/CLKIN  
001= XT oscillator: Crystal/resonator on GP4/OSC2/CLKOUT and GP5/OSC1/CLKIN  
000= LP oscillator: Low-power crystal on GP4/OSC2/CLKOUT and GP5/OSC1/CLKIN  
Note 1: The Bandgap Calibration bits are factory programmed and must be read and saved prior to erasing the device as spec-  
ified in the PIC12F629/675 Programming Specification. These bits are reflected in an export of the Configuration Word.  
Microchip Development Tools maintain all Calibration bits to factory settings.  
2: The entire data EEPROM will be erased when the code protection is turned off.  
3: The entire program memory will be erased, including OSCCAL value, when the code protection is turned off.  
4: Enabling Brown-out Detect does not automatically enable Power-up Timer.  
5: When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled.  
DS41190G-page 54  
2010 Microchip Technology Inc.  
PIC12F629/675  
FIGURE 9-2:  
EXTERNAL CLOCK INPUT  
OPERATION (HS, XT, EC,  
OR LP OSC  
9.2  
Oscillator Configurations  
9.2.1  
OSCILLATOR TYPES  
CONFIGURATION)  
The PIC12F629/675 can be operated in eight different  
oscillator option modes. The user can program three  
Configuration bits (FOSC2 through FOSC0) to select  
one of these eight modes:  
Clock from  
External System  
OSC1  
PIC12F629/675  
OSC2(1)  
• LP  
• XT  
• HS  
• RC  
Low-Power Crystal  
Open  
Crystal/Resonator  
High-Speed Crystal/Resonator  
External Resistor/Capacitor (2 modes)  
Note 1: Functions as GP4 in EC Osc mode.  
• INTOSC Internal Oscillator (2 modes)  
• EC External Clock In  
TABLE 9-1:  
CAPACITOR SELECTION FOR  
CERAMIC RESONATORS  
Note: Additional information on oscillator config-  
urations is available in the PIC® Mid-  
Range Reference Manual, (DS33023).  
Ranges Characterized:  
Mode  
Freq.  
OSC1(C1)  
OSC2(C2)  
9.2.2  
CRYSTAL OSCILLATOR / CERAMIC  
RESONATORS  
XT  
455 kHz  
2.0 MHz  
4.0 MHz  
68-100 pF  
15-68 pF  
15-68 pF  
68-100 pF  
15-68 pF  
15-68 pF  
In XT, LP or HS modes a crystal or ceramic resonator  
is connected to the OSC1 and OSC2 pins to establish  
oscillation (see Figure 9-1). The PIC12F629/675  
oscillator design requires the use of a parallel cut  
crystal. Use of a series cut crystal may yield a  
frequency outside of the crystal manufacturers  
specifications. When in XT, LP or HS modes, the  
device can have an external clock source to drive the  
OSC1 pin (see Figure 9-2).  
HS  
8.0 MHz  
16.0 MHz  
10-68 pF  
10-22 pF  
10-68 pF  
10-22 pF  
Note 1: Higher capacitance increases the stability  
of the oscillator but also increases the  
start-up time. These values are for design  
guidance only. Since each resonator has  
its own characteristics, the user should  
consult the resonator manufacturer for  
appropriate values of external  
FIGURE 9-1:  
CRYSTAL OPERATION (OR  
CERAMIC RESONATOR)  
HS, XT OR LP OSC  
components.  
TABLE 9-2:  
CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
CONFIGURATION  
OSC1  
Mode  
Freq.  
OSC1(C1)  
OSC2(C2)  
To Internal  
Logic  
C1(1)  
LP  
32 kHz  
68-100 pF  
68-100 pF  
XTAL  
XT  
HS  
100 kHz  
2 MHz  
4 MHz  
68-150 pF  
15-30 pF  
15-30 pF  
150-200 pF  
15-30 pF  
15-30 pF  
Sleep  
RF(3)  
OSC2  
RS(2)  
C2(1)  
PIC12F629/675  
8 MHz  
10 MHz  
20 MHz  
15-30 pF  
15-30 pF  
15-30 pF  
15-30 pF  
15-30 pF  
15-30 pF  
Note 1: See Table 9-1 and Table 9-2 for recommended  
values of C1 and C2.  
2: A series resistor may be required for AT strip cut  
crystals.  
3: RF varies with the Oscillator mode selected  
(Approx. value = 10 M  
Note 1: Higher capacitance increases the stability  
of the oscillator but also increases the  
start-up time. These values are for design  
guidance only. Rs may be required in HS  
mode as well as XT mode to avoid  
overdriving crystals with low drive level  
specification. Since each crystal has its  
own characteristics, the user should  
consult the crystal manufacturer for  
appropriate values of external  
components.  
2010 Microchip Technology Inc.  
DS41190G-page 55  
PIC12F629/675  
9.2.3  
EXTERNAL CLOCK IN  
9.2.5  
INTERNAL 4 MHZ OSCILLATOR  
For applications where a clock is already available  
elsewhere, users may directly drive the PIC12F629/  
675 provided that this external clock source meets the  
AC/DC timing requirements listed in Section 12.0  
“Electrical Specifications”. Figure 9-2 shows how  
an external clock circuit should be configured.  
When calibrated, the internal oscillator provides a fixed  
4
MHz (nominal) system clock. See Electrical  
Specifications, Section 12.0 “Electrical Specifica-  
tions”, for information on variation over voltage and  
temperature.  
Two options are available for this Oscillator mode  
which allow GP4 to be used as a general purpose I/O  
or to output FOSC/4.  
9.2.4  
RC OSCILLATOR  
For applications where precise timing is not a  
requirement, the RC oscillator option is available. The  
operation and functionality of the RC oscillator is  
dependent upon a number of variables. The RC  
oscillator frequency is a function of:  
9.2.5.1  
Calibrating the Internal Oscillator  
A calibration instruction is programmed into the last  
location of program memory. This instruction is a  
RETLW XX, where the literal is the calibration value.  
The literal is placed in the OSCCAL register to set the  
calibration of the internal oscillator. Example 9-1  
demonstrates how to calibrate the internal oscillator.  
For best operation, decouple (with capacitance) VDD  
and VSS as close to the device as possible.  
• Supply voltage  
• Resistor (REXT) and capacitor (CEXT) values  
• Operating temperature.  
The oscillator frequency will vary from unit to unit due  
to normal process parameter variation. The difference  
in lead frame capacitance between package types will  
also affect the oscillation frequency, especially for low  
CEXT values. The user also needs to account for the  
tolerance of the external R and C components.  
Figure 9-3 shows how the R/C combination is  
connected.  
Note: Erasing the device will also erase the pre-  
programmed internal calibration value for  
the internal oscillator. The calibration value  
must be saved prior to erasing part as  
specified in the PIC12F629/675 Program-  
ming specification. Microchip Develop-  
ment Tools maintain all Calibration bits to  
factory settings.  
Two options are available for this Oscillator mode  
which allow GP4 to be used as a general purpose I/O  
or to output FOSC/4.  
EXAMPLE 9-1:  
CALIBRATING THE  
INTERNAL OSCILLATOR  
FIGURE 9-3:  
RC OSCILLATOR MODE  
BSF  
CALL  
MOVWF OSCCAL  
BCF  
STATUS, RP0  
3FFh  
;Bank 1  
;Get the cal value  
;Calibrate  
VDD  
PIC12F629/675  
STATUS, RP0  
;Bank 0  
REXT  
GP5/OSC1/  
CLKIN  
Internal  
Clock  
9.2.6  
CLKOUT  
CEXT  
VSS  
The PIC12F629/675 devices can be configured to  
provide a clock out signal in the INTOSC and RC  
oscillator modes. When configured, the oscillator  
frequency divided by four (FOSC/4) is output on the  
GP4/OSC2/CLKOUT pin. FOSC/4 can be used for test  
purposes or to synchronize other logic.  
FOSC/4  
GP4/OSC2/CLKOUT  
DS41190G-page 56  
2010 Microchip Technology Inc.  
PIC12F629/675  
They are not affected by a WDT wake-up, since this is  
viewed as the resumption of normal operation. TO and  
PD bits are set or cleared differently in different Reset  
situations as indicated in Table 9-4. These bits are  
used in software to determine the nature of the Reset.  
See Table 9-7 for a full description of Reset states of all  
registers.  
9.3  
Reset  
The PIC12F629/675 differentiates between various  
kinds of Reset:  
a) Power-on Reset (POR)  
b) WDT Reset during normal operation  
c) WDT Reset during Sleep  
A simplified block diagram of the on-chip Reset Circuit  
is shown in Figure 9-4.  
d) MCLR Reset during normal operation  
e) MCLR Reset during Sleep  
f) Brown-out Detect (BOD)  
The MCLR Reset path has a noise filter to detect and  
ignore small pulses. See Table 12-4 in Electrical  
Specifications Section for pulse-width specification.  
Some registers are not affected in any Reset condition;  
their status is unknown on POR and unchanged in any  
other Reset. Most other registers are reset to a “Reset  
state” on:  
• Power-on Reset  
• MCLR Reset  
• WDT Reset  
• WDT Reset during Sleep  
• Brown-out Detect (BOD) Reset  
FIGURE 9-4:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
Reset  
MCLR/  
VPP pin  
SLEEP  
WDT  
WDT  
Module  
Time-out  
Reset  
VDD Rise  
Detect  
Power-on Reset  
VDD  
Brown-out  
Detect  
S
R
Q
Q
BODEN  
OST/PWRT  
OST  
10-bit Ripple Counter  
Chip_Reset  
OSC1/  
CLKIN  
pin  
PWRT  
10-bit Ripple Counter  
On-chip(1)  
RC OSC  
Enable PWRT  
Enable OST  
See Table 9-3 for time-out situations.  
Note 1: This is a separate oscillator from the INTOSC/EC oscillator.  
2010 Microchip Technology Inc.  
DS41190G-page 57  
PIC12F629/675  
For additional information, refer to Application Note  
AN607, “Power-up Trouble Shooting”.  
9.3.1  
MCLR  
PIC12F629/675 devices have a noise filter in the  
MCLR Reset path. The filter will detect and ignore  
small pulses.  
9.3.3  
POWER-UP TIMER (PWRT)  
The Power-up Timer provides a fixed 72 ms (nominal)  
time-out on power-up only, from POR or Brown-out  
Detect. The Power-up Timer operates on an internal  
RC oscillator. The chip is kept in Reset as long as  
PWRT is active. The PWRT delay allows the VDD to  
rise to an acceptable level. A Configuration bit, PWRTE  
can disable (if set) or enable (if cleared or  
programmed) the Power-up Timer. The Power-up  
Timer should always be enabled when Brown-out  
Detect is enabled.  
It should be noted that a WDT Reset does not drive  
MCLR pin low.  
The behavior of the ESD protection on the MCLR pin  
has been altered from previous devices of this family.  
Voltages applied to the pin that exceed its specification  
can result in both MCLR Resets and excessive current  
beyond the device specification during the ESD event.  
For this reason, Microchip recommends that the MCLR  
pin no longer be tied directly to VDD. The use of an RC  
network, as shown in Figure 9-5, is suggested.  
The Power-up Time delay will vary from chip to chip  
and due to:  
An internal MCLR option is enabled by setting the  
MCLRE bit in the Configuration Word. When enabled,  
MCLR is internally tied to VDD. No internal pull-up  
option is available for the MCLR pin.  
• VDD variation  
Temperature variation  
• Process variation.  
FIGURE 9-5:  
RECOMMENDED MCLR  
CIRCUIT  
See DC parameters for details (Section 12.0 “Electri-  
cal Specifications”).  
VDD  
R1  
9.3.4  
OSCILLATOR START-UP TIMER  
(OST)  
PIC12F629/675  
1 kor greater  
The Oscillator Start-up Timer (OST) provides a 1024  
oscillator cycle (from OSC1 input) delay after the  
PWRT delay is over. This ensures that the crystal  
oscillator or resonator has started and stabilized.  
MCLR  
C1  
The OST time-out is invoked only for XT, LP and HS  
modes and only on Power-on Reset or wake-up from  
Sleep.  
0.1 f  
(optional, not critical)  
9.3.2  
POWER-ON RESET (POR)  
The on-chip POR circuit holds the chip in Reset until  
VDD has reached a high enough level for proper  
operation. To take advantage of the POR, simply tie the  
MCLR pin through a resistor to VDD. This will eliminate  
external RC components usually needed to create  
Power-on Reset. A maximum rise time for VDD is  
required. See Electrical Specifications for details (see  
Section 12.0 “Electrical Specifications”). If the BOD  
is enabled, the maximum rise time specification does  
not apply. The BOD circuitry will keep the device in  
Reset until VDD reaches VBOD (see Section 9.3.5  
“Brown-Out Detect (BOD)”).  
Note: The POR circuit does not produce an  
internal Reset when VDD declines.  
When the device starts normal operation (exits the  
Reset condition), device operating parameters (i.e.,  
voltage, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in Reset until the operating  
conditions are met.  
DS41190G-page 58  
2010 Microchip Technology Inc.  
PIC12F629/675  
On any Reset (Power-on, Brown-out, Watchdog, etc.),  
the chip will remain in Reset until VDD rises above  
BVDD (see Figure 9-6). The Power-up Timer will now  
be invoked, if enabled, and will keep the chip in Reset  
an additional 72 ms.  
9.3.5  
BROWN-OUT DETECT (BOD)  
The PIC12F629/675 members have on-chip Brown-out  
Detect circuitry. A Configuration bit, BODEN, can  
disable (if clear/programmed) or enable (if set) the  
Brown-out Detect circuitry. If VDD falls below VBOD for  
greater than parameter (TBOD) in Table 12-4 (see  
Section 12.0 “Electrical Specifications”), the  
Brown-out situation will reset the device. This will occur  
regardless of VDD slew-rate. A Reset is not guaranteed  
to occur if VDD falls below VBOD for less than parameter  
(TBOD).  
Note: A Brown-out Detect does not enable the  
Power-up Timer if the PWRTE bit in the  
Configuration Word is set.  
If VDD drops below BVDD while the Power-up Timer is  
running, the chip will go back into a Brown-out Detect  
and the Power-up Timer will be re-initialized. Once VDD  
rises above BVDD, the Power-up Timer will execute a  
72 ms Reset.  
FIGURE 9-6:  
BROWN-OUT SITUATIONS  
VDD  
VBOD  
Internal  
Reset  
72 ms(1)  
VDD  
VBOD  
Internal  
Reset  
<72 ms  
72 ms(1)  
VDD  
VBOD  
Internal  
Reset  
72 ms(1)  
Note 1: 72 ms delay only if PWRTE bit is programmed to ‘0’.  
9.3.6  
TIME-OUT SEQUENCE  
9.3.7  
POWER CONTROL (PCON) STATUS  
REGISTER  
On power-up, the time-out sequence is as follows: first,  
PWRT time-out is invoked after POR has expired.  
Then, OST is activated. The total time-out will vary  
based on oscillator configuration and PWRTE bit  
status. For example, in EC mode with PWRTE bit  
erased (PWRT disabled), there will be no time-out at  
all. Figure 9-7, Figure 9-8 and Figure 9-9 depict time-  
out sequences.  
The power CONTROL/STATUS register, PCON  
(address 8Eh) has two bits.  
Bit 0 is BOD (Brown-out). BOD is unknown on Power-  
on Reset. It must then be set by the user and checked  
on subsequent Resets to see if BOD = 0, indicating that  
a brown-out has occurred. The BOD Status bit is a  
“don’t care” and is not necessarily predictable if the  
brown-out circuit is disabled (by setting BODEN bit = 0  
in the Configuration Word).  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire. Then  
bringing MCLR high will begin execution immediately  
(see Figure 9-8). This is useful for testing purposes or  
to synchronize more than one PIC12F629/675 device  
operating in parallel.  
Bit 1 is POR (Power-on Reset). It is a ‘0’ on Power-on  
Reset and unaffected otherwise. The user must write a  
1’ to this bit following a Power-on Reset. On a  
subsequent Reset, if POR is ‘0’, it will indicate that a  
Power-on Reset must have occurred (i.e., VDD may  
have gone too low).  
Table 9-6 shows the Reset conditions for some special  
registers, while Table 9-7 shows the Reset conditions  
for all the registers.  
2010 Microchip Technology Inc.  
DS41190G-page 59  
PIC12F629/675  
TABLE 9-3:  
TIME-OUT IN VARIOUS SITUATIONS  
Power-up  
Brown-out Detect  
Wake-up  
Oscillator Configuration  
from Sleep  
PWRTE = 0  
PWRTE = 1  
PWRTE = 0  
PWRTE = 1  
XT, HS, LP  
TPWRT +  
1024•TOSC  
1024•TOSC  
TPWRT +  
1024•TOSC  
1024•TOSC  
1024•TOSC  
RC, EC, INTOSC  
TPWRT  
TPWRT  
TABLE 9-4:  
POR  
STATUS/PCON BITS AND THEIR SIGNIFICANCE  
BOD  
TO  
PD  
0
1
u
u
u
0
u
u
1
1
0
0
1
1
u
0
Power-on Reset  
Brown-out Detect  
WDT Reset  
WDT Wake-up  
u
u
u
u
u
1
u
0
MCLR Reset during normal operation  
MCLR Reset during Sleep  
Legend: u = unchanged, x = unknown  
TABLE 9-5: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT  
Address Name  
Value on all  
other  
Value on  
POR, BOD  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Resets(1)  
03h  
8Eh  
STATUS  
PCON  
IRP  
RP1  
RPO  
TO  
PD  
Z
DC  
C
0001 1xxx 000q quuu  
POR  
BOD ---- --0x ---- --uq  
Legend:u= unchanged, x= unknown, -= unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: Other (non Power-up) Resets include MCLR Reset, Brown-out Detect and Watchdog Timer Reset during  
normal operation.  
TABLE 9-6:  
INITIALIZATION CONDITION FOR SPECIAL REGISTERS  
Program  
Counter  
STATUS  
Register  
PCON  
Register  
Condition  
Power-on Reset  
000h  
000h  
0001 1xxx  
000u uuuu  
---- --0x  
---- --uu  
MCLR Reset during normal operation  
MCLR Reset during Sleep  
WDT Reset  
000h  
000h  
0001 0uuu  
0000 uuuu  
uuu0 0uuu  
0001 1uuu  
uuu1 0uuu  
---- --uu  
---- --uu  
---- --uu  
---- --10  
---- --uu  
WDT Wake-up  
PC + 1  
Brown-out Detect  
000h  
PC + 1(1)  
Interrupt Wake-up from Sleep  
Legend:u= unchanged, x= unknown, -= unimplemented bit, reads as ‘0’.  
Note 1: When the wake-up is due to an interrupt and global enable bit GIE is set, the PC is loaded with the  
interrupt vector (0004h) after execution of PC + 1.  
DS41190G-page 60  
2010 Microchip Technology Inc.  
PIC12F629/675  
TABLE 9-7:  
Register  
INITIALIZATION CONDITION FOR REGISTERS  
• MCLR Reset during  
• Wake-up from Sleep  
through interrupt  
• Wake-up from Sleep  
through WDT Time-out  
normal operation  
Power-on  
Reset  
Address  
• MCLR Reset during Sleep  
• WDT Reset  
• Brown-out Detect(1)  
W
00h/80h  
01h  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
INDF  
TMR0  
xxxx xxxx  
0000 0000  
0001 1xxx  
xxxx xxxx  
--xx xxxx  
---0 0000  
0000 0000  
00-- 0--0  
-000 0000  
-0-0 0000  
xxxx xxxx  
00-- 0000  
1111 1111  
--11 1111  
00-- 0--0  
---- --0x  
1000 00--  
--11 -111  
--00 0000  
0-0- 0000  
0000 0000  
-000 0000  
---- x000  
---- ----  
xxxx xxxx  
-000 1111  
uuuu uuuu  
0000 0000  
000q quuu(4)  
uuuu uuuu  
--uu uuuu  
---0 0000  
0000 000u  
00-- 0--0  
-uuu uuuu  
-0-0 0000  
uuuu uuuu  
00-- 0000  
1111 1111  
--11 1111  
00-- 0--0  
---- --uu(1,6)  
1000 00--  
--11 -111  
--00 0000  
0-0- 0000  
0000 0000  
-000 0000  
---- q000  
---- ----  
uuuu uuuu  
-000 1111  
uuuu uuuu  
PC + 1(3)  
PCL  
02h/82h  
03h/83h  
04h/84h  
05h  
STATUS  
FSR  
uuuq quuu(4)  
uuuu uuuu  
--uu uuuu  
---u uuuu  
uuuu uuqq(2)  
qq-- q--q(2,5)  
-uuu uuuu  
-u-u uuuu  
uuuu uuuu  
uu-- uuuu  
uuuu uuuu  
--uu uuuu  
uu-- u--u  
---- --uu  
uuuu uu--  
uuuu uuuu  
--uu uuuu  
u-u- uuuu  
uuuu uuuu  
-uuu uuuu  
---- uuuu  
---- ----  
uuuu uuuu  
-uuu uuuu  
GPIO  
PCLATH  
INTCON  
PIR1  
0Ah/8Ah  
0Bh/8Bh  
0Ch  
T1CON  
CMCON  
ADRESH  
ADCON0  
OPTION_REG  
TRISIO  
PIE1  
10h  
19h  
1Eh  
1Fh  
81h  
85h  
8Ch  
PCON  
8Eh  
OSCCAL  
WPU  
90h  
95h  
IOC  
96h  
VRCON  
EEDATA  
EEADR  
EECON1  
EECON2  
ADRESL  
ANSEL  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
Legend:u= unchanged, x= unknown, -= unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt  
vector (0004h).  
4: See Table 9-6 for Reset value for specific condition.  
5: If wake-up was due to data EEPROM write completing, Bit 7 = 1; A/D conversion completing, Bit 6 = 1;  
Comparator input changing, bit 3 = 1; or Timer1 rolling over, bit 0 = 1. All other interrupts generating a  
wake-up will cause these bits to = u.  
6: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.  
2010 Microchip Technology Inc.  
DS41190G-page 61  
PIC12F629/675  
FIGURE 9-7:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
FIGURE 9-8:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
FIGURE 9-9:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
DS41190G-page 62  
2010 Microchip Technology Inc.  
PIC12F629/675  
determined by polling the interrupt flag bits. The  
interrupt flag bit(s) must be cleared in software before  
re-enabling interrupts to avoid multiple interrupt  
requests.  
9.4  
Interrupts  
The PIC12F629/675 has 7 sources of interrupt:  
• External Interrupt GP2/INT  
• TMR0 Overflow Interrupt  
• GPIO Change Interrupts  
• Comparator Interrupt  
Note 1: Individual interrupt flag bits are set,  
regardless of the status of their  
corresponding mask bit or the GIE bit.  
• A/D Interrupt (PIC12F675 only)  
• TMR1 Overflow Interrupt  
• EEPROM Data Write Interrupt  
2: When an instruction that clears the GIE  
bit is executed, any interrupts that were  
pending for execution in the next cycle  
are ignored. The interrupts which were  
ignored are still pending to be serviced  
when the GIE bit is set again.  
The Interrupt Control register (INTCON) and Peripheral  
Interrupt register (PIR) record individual interrupt  
requests in flag bits. The INTCON register also has  
individual and Global Interrupt Enable (GIE) bits.  
A Global Interrupt Enable bit, GIE (INTCON<7>)  
enables (if set) all unmasked interrupts, or disables (if  
cleared) all interrupts. Individual interrupts can be  
disabled through their corresponding enable bits in  
INTCON register and PIE register. GIE is cleared on  
Reset.  
The return from interrupt instruction, RETFIE, exits  
interrupt routine, as well as sets the GIE bit, which  
re-enables unmasked interrupts.  
The following interrupt flags are contained in the  
INTCON register:  
• INT pin interrupt  
• GP port change interrupt  
• TMR0 overflow interrupt  
The peripheral interrupt flags are contained in the  
special register PIR1. The corresponding interrupt  
enable bit is contained in special register PIE1.  
The following interrupt flags are contained in the PIR  
register:  
• EEPROM data write interrupt  
• A/D interrupt  
• Comparator interrupt  
• Timer1 overflow interrupt  
When an interrupt is serviced:  
• The GIE is cleared to disable any further interrupt  
• The return address is pushed onto the stack  
• The PC is loaded with 0004h  
Once in the Interrupt Service Routine, the source(s) of  
the interrupt can be determined by polling the interrupt  
flag bits. The interrupt flag bit(s) must be cleared in  
software before re-enabling interrupts to avoid GP2/  
INT recursive interrupts.  
For external interrupt events, such as the INT pin, or  
GP port change interrupt, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends upon when the interrupt event occurs (see  
Figure 9-11). The latency is the same for one or two-  
cycle instructions. Once in the Interrupt Service  
Routine, the source(s) of the interrupt can be  
2010 Microchip Technology Inc.  
DS41190G-page 63  
PIC12F629/675  
FIGURE 9-10:  
INTERRUPT LOGIC  
IOC-GP0  
IOC0  
IOC-GP1  
IOC1  
IOC-GP2  
IOC2  
IOC-GP3  
IOC3  
IOC-GP4  
IOC4  
IOC-GP5  
IOC5  
T0IF  
T0IE  
Wake-up (If in Sleep mode)  
Interrupt to CPU  
INTF  
INTE  
TMR1IF  
TMR1IE  
GPIF  
GPIE  
CMIF  
CMIE  
PEIE  
GIE  
(1)  
ADIF  
ADIE  
EEIF  
EEIE  
Note 1: PIC12F675 only.  
DS41190G-page 64  
2010 Microchip Technology Inc.  
PIC12F629/675  
9.4.1  
GP2/INT INTERRUPT  
9.4.3  
GPIO INTERRUPT  
External interrupt on GP2/INT pin is edge-triggered;  
either rising if INTEDG bit (OPTION<6>) is set, of  
falling, if INTEDG bit is clear. When a valid edge  
appears on the GP2/INT pin, the INTF bit (INT-  
CON<1>) is set. This interrupt can be disabled by  
clearing the INTE control bit (INTCON<4>). The INTF  
bit must be cleared in software in the Interrupt Service  
Routine before re-enabling this interrupt. The GP2/INT  
interrupt can wake-up the processor from Sleep if the  
INTE bit was set prior to going into Sleep. The status of  
the GIE bit decides whether or not the processor  
branches to the interrupt vector following wake-up. See  
Section 9.7 “Power-Down Mode (Sleep)” for details  
on Sleep and Figure 9-13 for timing of wake-up from  
Sleep through GP2/INT interrupt.  
An input change on GPIO change sets the GPIF  
(INTCON<0>) bit. The interrupt can be enabled/  
disabled by setting/clearing the GPIE (INTCON<3>)  
bit. Plus individual pins can be configured through the  
IOC register.  
Note: If a change on the I/O pin should occur  
when the read operation is being executed  
(start of the Q2 cycle), then the GPIF  
interrupt flag may not get set.  
9.4.4  
COMPARATOR INTERRUPT  
See Section 6.9 “Comparator Interrupts” for  
description of comparator interrupt.  
9.4.5  
A/D CONVERTER INTERRUPT  
Note: The ANSEL (9Fh) and CMCON (19h)  
registers must be initialized to configure an  
analog channel as a digital input. Pins  
configured as analog inputs will read ‘0’.  
The ANSEL register is defined for the  
PIC12F675.  
After a conversion is complete, the ADIF flag (PIR<6>)  
is set. The interrupt can be enabled/disabled by setting  
or clearing ADIE (PIE<6>).  
See Section 7.0 “Analog-to-Digital Converter (A/D)  
Module (PIC12F675 only)” for operation of the A/D  
converter interrupt.  
9.4.2  
TMR0 INTERRUPT  
An overflow (FFh 00h) in the TMR0 register will  
set the T0IF (INTCON<2>) bit. The interrupt can  
be enabled/disabled by setting/clearing T0IE  
(INTCON<5>) bit. For operation of the Timer0 module,  
see Section 4.0 “Timer0 Module”.  
FIGURE 9-11:  
INT PIN INTERRUPT TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT  
3
4
INT pin  
1
1
Interrupt Latency  
INTF Flag  
(INTCON<1>)  
5
2
GIE bit  
(INTCON<7>)  
INSTRUCTION FLOW  
PC  
PC + 1  
0004h  
0005h  
PC  
PC + 1  
Instruction  
Fetched  
Inst (PC+1)  
Inst (0004h)  
Inst (PC)  
Inst (0005h)  
Inst (0004h)  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Inst (PC)  
Inst (PC - 1)  
Note 1: INTF flag is sampled here (every Q1).  
2: Asynchronous interrupt latency = 3-4 TCY. Synchronous latency = 3 TCY, where TCY = instruction cycle time. Latency  
is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.  
3: CLKOUT is available only in RC Oscillator mode.  
4: For minimum width of INT pulse, refer to AC specs.  
5: INTF is enabled to be set any time during the Q4-Q1 cycles.  
2010 Microchip Technology Inc.  
DS41190G-page 65  
PIC12F629/675  
TABLE 9-8:  
SUMMARY OF INTERRUPT REGISTERS  
Value on all  
other  
Resets  
Value on  
POR, BOD  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh INTCON  
GIE  
EEIF  
EEIE  
PEIE  
ADIF  
ADIE  
T0IE  
INTE  
GPIE  
CMIF  
CMIE  
T0IF  
INTF  
GPIF  
0000 0000 0000 000u  
0Ch  
8Ch  
PIR1  
PIE1  
TMR1IF 00-- 0--0 00-- 0--0  
TMR1IE 00-- 0--0 00-- 0--0  
Legend: x= unknown, u= unchanged, - = unimplemented read as ‘0’, q = value depends upon condition.  
Shaded cells are not used by the interrupt module.  
9.5  
Context Saving During Interrupts  
9.6  
Watchdog Timer (WDT)  
During an interrupt, only the return PC value is saved  
on the stack. Typically, users may wish to save key  
registers during an interrupt (e.g., W register and  
STATUS register). This must be implemented in  
software.  
The Watchdog Timer is a free running, on-chip RC  
oscillator, which requires no external components. This  
RC oscillator is separate from the external RC oscillator  
of the CLKIN pin and INTOSC. That means that the  
WDT will run, even if the clock on the OSC1 and OSC2  
pins of the device has been stopped (for example, by  
execution of a SLEEP instruction). During normal  
operation, a WDT Time-out generates a device Reset.  
If the device is in Sleep mode, a WDT Time-out causes  
the device to wake-up and continue with normal  
operation. The WDT can be permanently disabled by  
programming the Configuration bit WDTE as clear  
(Section 9.1 “Configuration Bits”).  
Example 9-2 stores and restores the STATUS and W  
registers. The user register, W_TEMP, must be defined  
in both banks and must be defined at the same offset  
from the bank base address (i.e., W_TEMP is defined  
at 0x20 in Bank 0 and it must also be defined at 0xA0  
in Bank 1). The user register, STATUS_TEMP, must be  
defined in Bank 0. The Example 9-2:  
• Stores the W register  
9.6.1  
WDT PERIOD  
• Stores the STATUS register in Bank 0  
• Executes the ISR code  
The WDT has a nominal time-out period of 18 ms, (with  
no prescaler). The time-out periods vary with  
temperature, VDD and process variations from part to  
part (see DC specs). If longer time-out periods are  
desired, a prescaler with a division ratio of up to 1:128  
can be assigned to the WDT under software control by  
writing to the OPTION register. Thus, time-out periods  
up to 2.3 seconds can be realized.  
• Restores the STATUS (and bank select bit  
register)  
• Restores the W register  
EXAMPLE 9-2:  
SAVING THE STATUS AND  
W REGISTERS IN RAM  
;copy W to temp register,  
could be in either bank  
;swap status to be saved into W  
;change to bank 0 regardless of  
current bank  
MOVWF W_TEMP  
The CLRWDTand SLEEPinstructions clear the WDT  
and the prescaler, if assigned to the WDT, and prevent  
it from timing out and generating a device Reset.  
SWAPF STATUS,W  
BCF  
STATUS,RP0  
MOVWF STATUS_TEMP ;save status to bank 0 register  
:
The TO bit in the STATUS register will be cleared upon  
a Watchdog Timer Time-out.  
:(ISR)  
:
SWAPF STATUS_TEMP,W;swap STATUS_TEMP register into  
W, sets bank to original state  
;move W into STATUS register  
;swap W_TEMP  
9.6.2  
WDT PROGRAMMING  
CONSIDERATIONS  
MOVWF STATUS  
SWAPF W_TEMP,F  
SWAPF W_TEMP,W  
;swap W_TEMP into W  
It should also be taken in account that under worst-  
case conditions (i.e., VDD = Min., Temperature = Max.,  
Max. WDT prescaler) it may take several seconds  
before a WDT Time-out occurs.  
DS41190G-page 66  
2010 Microchip Technology Inc.  
PIC12F629/675  
FIGURE 9-12:  
WATCHDOG TIMER BLOCK DIAGRAM  
CLKOUT  
(= FOSC/4)  
Data Bus  
0
8
1
0
SYNC 2  
Cycles  
1
TMR0  
T0CKI  
pin  
0
Set Flag bit T0IF  
on Overflow  
T0CS  
T0SE  
8-bit  
Prescaler  
PSA  
1
8
PSA  
1
0
PS0 - PS2  
WDT  
Time-out  
Watchdog  
Timer  
PSA  
WDTE  
Note 1: T0SE, T0CS, PSA, PS0-PS2 are bits in the OPTION register.  
TABLE 9-9:  
SUMMARY OF WATCHDOG TIMER REGISTERS  
Value on all  
other  
Resets  
Value on  
POR, BOD  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
81h  
OPTION_REG GPPU INTEDG T0CS  
Config. bits CP  
T0SE  
PSA  
PS2  
PS1  
PS0  
1111 1111 1111 1111  
2007h  
BODEN MCLRE PWRTE WDTE F0SC2 F0SC1 F0SC0 uuuu uuuu uuuu uuuu  
Legend: u= Unchanged, shaded cells are not used by the Watchdog Timer.  
2010 Microchip Technology Inc.  
DS41190G-page 67  
PIC12F629/675  
The first event will cause a device Reset. The two latter  
events are considered a continuation of program exe-  
cution. The TO and PD bits in the STATUS register can  
be used to determine the cause of device Reset. The  
PD bit, which is set on power-up, is cleared when Sleep  
is invoked. TO bit is cleared if WDT Wake-up occurred.  
9.7  
Power-Down Mode (Sleep)  
The Power-down mode is entered by executing a  
SLEEPinstruction.  
If the Watchdog Timer is enabled:  
• WDT will be cleared but keeps running  
• PD bit in the STATUS register is cleared  
• TO bit is set  
When the SLEEP instruction is being executed, the  
next instruction (PC + 1) is pre-fetched. For the device  
to wake-up through an interrupt event, the correspond-  
ing interrupt enable bit must be set (enabled). Wake-up  
is regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEPinstruction, then branches to the interrupt  
address (0004h). In cases where the execution of the  
instruction following SLEEP is not desirable, the user  
should have an NOPafter the SLEEPinstruction.  
• Oscillator driver is turned off  
• I/O ports maintain the status they had before  
Sleep was executed (driving high, low, or  
high-impedance).  
For lowest current consumption in this mode, all I/O  
pins should be either at VDD, or VSS, with no external  
circuitry drawing current from the I/O pin and the com-  
parators and CVREF should be disabled. I/O pins that  
are high-impedance inputs should be pulled high or low  
externally to avoid switching currents caused by float-  
ing inputs. The T0CKI input should also be at VDD or  
VSS for lowest current consumption. The contribution  
from on-chip pull-ups on GPIO should be considered.  
Note: If the global interrupts are disabled (GIE is  
cleared), but any interrupt source has both  
its interrupt enable bit and the correspond-  
ing interrupt flag bits set, the device will  
immediately wake-up from Sleep. The  
SLEEPinstruction is completely executed.  
The MCLR pin must be at a logic high level (VIHMC).  
Note: It should be noted that a Reset generated  
by a WDT Time-out does not drive MCLR  
pin low.  
The WDT is cleared when the device wakes up from  
Sleep, regardless of the source of wake-up.  
9.7.1  
WAKE-UP FROM SLEEP  
The device can wake-up from Sleep through one of the  
following events:  
1. External Reset input on MCLR pin  
2. Watchdog Timer Wake-up (if WDT was enabled)  
3. Interrupt from GP2/INT pin, GPIO change, or a  
peripheral interrupt.  
FIGURE 9-13:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT(4)  
INT pin  
(2)  
TOST  
INTF flag  
(INTCON<1>)  
Interrupt Latency  
(Note 2)  
GIE bit  
(INTCON<7>)  
Processor in  
Sleep  
INSTRUCTION FLOW  
PC  
PC  
PC + 1  
PC + 2  
PC + 2  
PC + 2  
0004h  
0005h  
Instruction  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = Sleep  
Inst(PC - 1)  
Fetched  
Instruction  
Executed  
Dummy cycle  
Dummy cycle  
Sleep  
Inst(PC + 1)  
Inst(0004h)  
Note 1: XT, HS or LP Oscillator mode assumed.  
2: TOST = 1024TOSC (drawing not to scale). Approximately 1 s delay will be there for RC Osc mode. See Section 12 for wake-up from  
Sleep delay in INTOSC mode.  
3: GIE = 1assumed. In this case after wake-up, the processor jumps to the interrupt routine. If GIE = 0, execution will continue in-line.  
4: CLKOUT is not available in XT, HS, LP or EC Osc modes, but shown here for timing reference.  
DS41190G-page 68  
2010 Microchip Technology Inc.  
PIC12F629/675  
FIGURE 9-14:  
TYPICAL IN-CIRCUIT  
SERIAL PROGRAMMING  
CONNECTION  
9.8  
Code Protection  
If the code protection bit(s) have not been  
programmed, the on-chip program memory can be  
read out for verification purposes.  
To Normal  
Note: The entire data EEPROM and Flash  
program memory will be erased when the  
code protection is turned off. The INTOSC  
calibration data is also erased. See  
PIC12F629/675 Programming Specifica-  
tion for more information.  
Connections  
External  
Connector  
Signals  
PIC12F629/675  
+5V  
0V  
VDD  
VSS  
VPP  
GP3/MCLR/VPP  
9.9  
ID Locations  
GP1  
GP0  
CLK  
Four memory locations (2000h-2003h) are designated  
as ID locations where the user can store checksum or  
other code identification numbers. These locations are  
not accessible during normal execution but are  
readable and writable during Program/Verify. Only the  
Least Significant 7 bits of the ID locations are used.  
Data I/O  
VDD  
To Normal  
Connections  
9.10 In-Circuit Serial Programming  
The PIC12F629/675 microcontrollers can be serially  
programmed while in the end application circuit. This is  
simply done with two lines for clock and data, and three  
other lines for:  
9.11 In-Circuit Debugger  
Since in-circuit debugging requires the loss of clock,  
data and MCLR pins, MPLAB® ICD 2 development with  
an 8-pin device is not practical. A special 14-pin  
PIC12F675-ICD device is used with MPLAB ICD 2 to  
provide separate clock, data and MCLR pins and frees  
all normally available pins to the user.  
• power  
• ground  
• programming voltage  
This allows customers to manufacture boards with  
unprogrammed devices, and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom  
firmware to be programmed.  
This special ICD device is mounted on the top of the  
header and its signals are routed to the MPLAB ICD 2  
connector. On the bottom of the header is an 8-pin  
socket that plugs into the user’s target via the 8-pin  
stand-off connector.  
The device is placed into a Program/Verify mode by  
holding the GP0 and GP1 pins low, while raising the  
MCLR (VPP) pin from VIL to VIHH (see Programming  
Specification). GP0 becomes the programming data  
and GP1 becomes the programming clock. Both GP0  
and GP1 are Schmitt Trigger inputs in this mode.  
When the ICD pin on the PIC12F675-ICD device is  
held low, the In-Circuit Debugger functionality is  
enabled. This function allows simple debugging  
functions when used with MPLAB ICD 2. When the  
microcontroller has this feature enabled, some of the  
resources are not available for general use. Table 9-10  
shows which features are consumed by the  
background debugger:  
After Reset, to place the device into Programming/  
Verify mode, the PC is at location 00h. A 6-bit  
command is then supplied to the device. Depending on  
the command, 14-bits of program data are then  
supplied to or from the device, depending on whether  
the command was a load or a read. For complete  
details of serial programming, please refer to the  
Programming Specifications.  
TABLE 9-10: DEBUGGER RESOURCES  
I/O pins  
Stack  
ICDCLK, ICDDATA  
1 level  
Program Memory  
Address 0h must be NOP  
A typical In-Circuit Serial Programming connection is  
shown in Figure 9-14.  
300h-3FEh  
For more information, see 8-Pin MPLAB ICD 2 Header  
Information Sheet (DS51292) available on Microchip’s  
web site (www.microchip.com).  
2010 Microchip Technology Inc.  
DS41190G-page 69  
PIC12F629/675  
NOTES:  
DS41190G-page 70  
2010 Microchip Technology Inc.  
PIC12F629/675  
For example, a CLRF GPIOinstruction will read GPIO,  
clear all the data bits, then write the result back to  
GPIO. This example would have the unintended result  
that the condition that sets the GPIF flag would be  
cleared.  
10.0 INSTRUCTION SET SUMMARY  
The PIC12F629/675 instruction set is highly orthogonal  
and is comprised of three basic categories:  
Byte-oriented operations  
Bit-oriented operations  
TABLE 10-1: OPCODE FIELD  
DESCRIPTIONS  
Literal and control operations  
Each PIC12F629/675 instruction is a 14-bit word  
divided into an opcode, which specifies the instruction  
type, and one or more operands, which further specify  
the operation of the instruction. The formats for each of  
the categories is presented in Figure 10-1, while the  
various opcode fields are summarized in Table 10-1.  
Field  
Description  
f
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
W
b
k
Bit address within an 8-bit file register  
Literal field, constant data or label  
Table 10-2 lists the instructions recognized by the  
MPASMTM assembler. A complete description of  
each instruction is also available in the PIC® Mid-  
Range Reference Manual (DS33023).  
x
Don’t care location (= 0or 1).  
The assembler will generate code with x = 0.  
It is the recommended form of use for  
compatibility with all Microchip software tools.  
For byte-oriented instructions, ‘f’ represents a file  
register designator and ‘d’ represents a destination  
designator. The file register designator specifies which  
file register is to be used by the instruction.  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1.  
PC  
TO  
PD  
Program Counter  
Time-out bit  
The destination designator specifies where the result of  
the operation is to be placed. If ‘d’ is zero, the result is  
placed in the W register. If ‘d’ is one, the result is placed  
in the file register specified in the instruction.  
Power-down bit  
For bit-oriented instructions, ‘b’ represents a bit field  
designator, which selects the bit affected by the  
operation, while ‘f’ represents the address of the file in  
which the bit is located.  
FIGURE 10-1:  
GENERAL FORMAT FOR  
INSTRUCTIONS  
Byte-oriented file register operations  
13  
8
7
6
0
For literal and control operations, ‘k’ represents an 8-  
bit or 11-bit constant, or literal value.  
OPCODE  
d
f (FILE #)  
d = 0for destination W  
d = 1for destination f  
One instruction cycle consists of four oscillator periods;  
for an oscillator frequency of 4 MHz, this gives a normal  
instruction execution time of 1 s. All instructions are  
executed within a single instruction cycle, unless a  
conditional test is true, or the program counter is  
changed as a result of an instruction. When this occurs,  
the execution takes two instruction cycles, with the  
second cycle executed as a NOP.  
f = 7-bit file register address  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7
6
0
OPCODE  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
Note: To maintain upward compatibility with  
future products, do not use the OPTION  
and TRISIOinstructions.  
Literal and control operations  
General  
All instruction examples use the format ‘0xhh’ to  
represent a hexadecimal number, where ‘h’ signifies a  
hexadecimal digit.  
13  
8
7
0
0
OPCODE  
k (literal)  
k = 8-bit immediate value  
10.1 Read-Modify-Write Operations  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
Any instruction that specifies a file register as part of  
the instruction performs a Read-Modify-Write (R-M-W)  
operation. The register is read, the data is modified,  
and the result is stored according to either the instruc-  
tion, or the destination designator ‘d’. A read operation  
is performed on a register even if the instruction writes  
to that register.  
k (literal)  
2010 Microchip Technology Inc.  
DS41190G-page 71  
PIC12F629/675  
TABLE 10-2: PIC12F629/675 INSTRUCTION SET  
14-Bit Opcode  
Mnemonic,  
Description  
Operands  
Status  
Affected  
Cycles  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
f, d  
f, d  
f
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00 0111 dfff ffff C,DC,Z  
1,2  
1,2  
2
00 0101 dfff ffff  
00 0001 lfff ffff  
00 0001 0xxx xxxx  
00 1001 dfff ffff  
00 0011 dfff ffff  
00 1011 dfff ffff  
00 1010 dfff ffff  
00 1111 dfff ffff  
00 0100 dfff ffff  
00 1000 dfff ffff  
00 0000 lfff ffff  
00 0000 0xx0 0000  
00 1101 dfff ffff  
00 1100 dfff ffff  
Z
Z
Z
Z
Z
-
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
1,2  
1,2  
1,2,3  
1,2  
1,2,3  
1,2  
1,2  
DECFSZ  
INCF  
Z
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
Z
Z
Move W to f  
No Operation  
-
f, d  
f, d  
f, d  
f, d  
f, d  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Swap nibbles in f  
Exclusive OR W with f  
C
C
1,2  
1,2  
1,2  
1,2  
1,2  
00 0010 dfff ffff C,DC,Z  
00 1110 dfff ffff  
00 0110 dfff ffff  
Z
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1
1
1 (2)  
1 (2)  
01 00bb bfff ffff  
1,2  
1,2  
3
01 01bb bfff ffff  
01 10bb bfff ffff  
01 11bb bfff ffff  
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
-
k
k
k
-
k
-
-
k
k
Add literal and W  
AND literal with W  
Call subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11 111x kkkk kkkk C,DC,Z  
11 1001 kkkk kkkk  
10 0kkk kkkk kkkk  
00 0000 0110 0100  
10 1kkk kkkk kkkk  
11 1000 kkkk kkkk  
11 00xx kkkk kkkk  
00 0000 0000 1001  
11 01xx kkkk kkkk  
00 0000 0000 1000  
00 0000 0110 0011  
Z
TO,PD  
Z
Inclusive OR literal with W  
Move literal to W  
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into Standby mode  
Subtract W from literal  
Exclusive OR literal with W  
TO,PD  
11 110x kkkk kkkk C,DC,Z  
11 1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself (e.g., MOVF GPIO, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an external  
device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if  
assigned to the Timer0 module.  
3: If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
Note: Additional information on the mid-range instruction set is available in the PIC® Mid-Range MCU Family Ref-  
erence Manual (DS33023).  
DS41190G-page 72  
2010 Microchip Technology Inc.  
PIC12F629/675  
10.2 Instruction Descriptions  
ADDLW  
Add Literal and W  
BCF  
Bit Clear f  
Syntax:  
[label] ADDLW  
0 k 255  
k
Syntax:  
[label] BCF f,b  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
0 f 127  
0 b 7  
(W) + k (W)  
C, DC, Z  
Operation:  
0 (f<b>)  
Status Affected:  
Description:  
None  
The contents of the W register  
are added to the eight-bit literal ‘k’  
and the result is placed in the W  
register.  
Bit ‘b’ in register ‘f’ is cleared.  
BSF  
Bit Set f  
ADDWF  
Add W and f  
Syntax:  
[label] BSF f,b  
Syntax:  
[label] ADDWF f,d  
Operands:  
0 f 127  
0 b 7  
Operands:  
0 f 127  
d   
Operation:  
1 (f<b>)  
Operation:  
(W) + (f) (destination)  
Status Affected:  
Description:  
None  
Status Affected: C, DC, Z  
Bit ‘b’ in register ‘f’ is set.  
Description:  
Add the contents of the W register  
with register ‘f’. If ‘d’ is 0, the  
result is stored in the W register. If  
‘d’ is 1, the result is stored back in  
register ‘f’.  
BTFSS  
Bit Test f, Skip if Set  
ANDLW  
AND Literal with W  
Syntax:  
[label] BTFSS f,b  
Syntax:  
[label] ANDLW  
0 k 255  
k
Operands:  
0 f 127  
0 b < 7  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .AND. (k) (W)  
Operation:  
skip if (f<b>) = 1  
Z
Status Affected: None  
The contents of W register are  
AND’ed with the eight-bit literal  
‘k’. The result is placed in the W  
register.  
Description: If bit ‘b’ in register ‘f’ is ‘0’, the next  
instruction is executed.  
If bit ‘b’ is ‘1’, then the next  
instruction is discarded and a NOP  
is executed instead, making this a  
2TCY instruction.  
ANDWF  
AND W with f  
Syntax:  
[label] ANDWF f,d  
Operands:  
0 f 127  
d   
Operation:  
(W) .AND. (f) (destination)  
Status Affected:  
Description:  
Z
AND the W register with register  
‘f’. If ‘d’ is 0, the result is stored in  
the W register. If ‘d’ is 1, the result  
is stored back in register ‘f’.  
2010 Microchip Technology Inc.  
DS41190G-page 73  
PIC12F629/675  
BTFSC  
Bit Test, Skip if Clear  
CLRWDT  
Clear Watchdog Timer  
Syntax:  
[label] BTFSC f,b  
Syntax:  
[ label ] CLRWDT  
Operands:  
0 f 127  
0 b 7  
Operands:  
Operation:  
None  
00h WDT  
0 WDT prescaler,  
1 TO  
Operation:  
skip if (f<b>) = 0  
Status Affected: None  
1 PD  
Description:  
If bit ‘b’ in register ‘f’ is ‘1’, the next  
instruction is executed.  
Status Affected: TO, PD  
If bit ‘b’, in register ‘f’, is ‘0’, the  
next instruction is discarded, and  
a NOPis executed instead, making  
this a 2TCY instruction.  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the  
prescaler of the WDT.  
Status bits TO and PD are set.  
CALL  
Call Subroutine  
COMF  
Complement f  
Syntax:  
[ label ] CALL k  
0 k 2047  
Syntax:  
[ label ] COMF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
Operation:  
(f) (destination)  
Status Affected:  
Description:  
Z
Status Affected: None  
The contents of register ‘f’ are  
complemented. If ‘d’ is 0, the  
result is stored in W. If ‘d’ is 1, the  
result is stored back in register ‘f’.  
Description:  
Call Subroutine. First, return  
address (PC + 1) is pushed onto  
the stack. The eleven-bit immedi-  
ate address is loaded into PC bits  
<10:0>. The upper bits of the PC  
are loaded from PCLATH. CALLis  
a two-cycle instruction.  
DECF  
Decrement f  
CLRF  
Clear f  
Syntax:  
[label] DECF f,d  
Syntax:  
[label] CLRF  
0 f 127  
f
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
00h (f)  
1 Z  
Operation:  
(f) - 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Decrement register ‘f’. If ‘d’ is 0,  
the result is stored in the W  
register. If ‘d’ is 1, the result is  
stored back in register ‘f’.  
The contents of register ‘f’ are  
cleared and the Z bit is set.  
CLRW  
Clear W  
Syntax:  
[ label ] CLRW  
Operands:  
Operation:  
None  
00h (W)  
1 Z  
Status Affected:  
Description:  
Z
W register is cleared. Zero bit (Z)  
is set.  
DS41190G-page 74  
2010 Microchip Technology Inc.  
PIC12F629/675  
DECFSZ  
Decrement f, Skip if 0  
INCFSZ  
Increment f, Skip if 0  
Syntax:  
[ label ] DECFSZ f,d  
Syntax:  
[ label ] INCFSZ f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) - 1 (destination);  
Operation:  
(f) + 1 (destination),  
skip if result = 0  
skip if result = 0  
Status Affected: None  
Status Affected: None  
Description:  
The contents of register ‘f’ are  
Description:  
The contents of register ‘f’ are  
decremented. If ‘d’ is 0, the result  
is placed in the W register. If ‘d’ is  
1, the result is placed back in  
register ‘f’.  
incremented. If ‘d’ is 0, the result  
is placed in the W register. If ‘d’ is  
1, the result is placed back in  
register ‘f’.  
If the result is 1, the next instruc-  
tion is executed. If the result is 0,  
then a NOPis executed instead,  
making it a 2TCY instruction.  
If the result is 1, the next instruc-  
tion is executed. If the result is 0,  
a NOPis executed instead, making  
it a 2TCY instruction.  
GOTO  
Unconditional Branch  
IORLW  
Inclusive OR Literal with W  
Syntax:  
[ label ] GOTO k  
0 k 2047  
Syntax:  
[ label ] IORLW k  
0 k 255  
Operands:  
Operation:  
Operands:  
Operation:  
Status Affected:  
Description:  
k PC<10:0>  
PCLATH<4:3> PC<12:11>  
(W) .OR. k (W)  
Z
Status Affected: None  
The contents of the W register are  
OR’ed with the eight-bit literal ‘k’.  
The result is placed in the W  
register.  
Description:  
GOTOis an unconditional branch.  
The eleven-bit immediate value is  
loaded into PC bits <10:0>. The  
upper bits of PC are loaded from  
PCLATH<4:3>. GOTOis a two-  
cycle instruction.  
IORWF  
Inclusive OR W with f  
INCF  
Increment f  
Syntax:  
[ label ] IORWF f,d  
Syntax:  
[ label ] INCF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(W) .OR. (f) (destination)  
Operation:  
(f) + 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Inclusive OR the W register with  
register ‘f’. If ‘d’ is 0, the result is  
placed in the W register. If ‘d’ is 1,  
the result is placed back in  
register ‘f’.  
The contents of register ‘f’ are  
incremented. If ‘d’ is 0, the result  
is placed in the W register. If ‘d’ is  
1, the result is placed back in  
register ‘f’.  
2010 Microchip Technology Inc.  
DS41190G-page 75  
PIC12F629/675  
MOVWF  
Move W to f  
[ label ] MOVWF  
0 f 127  
(W) (f)  
MOVF  
Move f  
Syntax:  
f
Syntax:  
Operands:  
[ label ] MOVF f,d  
Operands:  
Operation:  
Status Affected:  
Description:  
0 f 127  
d [0,1]  
Operation:  
(f) (dest)  
None  
Status Affected:  
Description:  
Z
Move data from W register to  
register ‘f’.  
The contents of register f is  
moved to a destination dependent  
upon the status of d. If d = 0,  
the destination is W register. If d =  
1, the destination is file register f  
itself. d = 1is useful to test a file  
register since status flag Z is  
affected.  
Words:  
1
Cycles:  
Example:  
1
MOVWF OPTION  
Before Instruction  
OPTION = 0xFF  
W
=
0x4F  
Words:  
1
1
After Instruction  
OPTION = 0x4F  
W
Cycles:  
Example:  
=
0x4F  
MOVF  
FSR, 0  
After Instruction  
W
=
value in FSR  
register  
Z
=
1
NOP  
No Operation  
MOVLW  
Syntax:  
Move literal to W  
Syntax:  
[ label ] NOP  
[ label ] MOVLW k  
0 k 255  
Operands:  
Operation:  
Status Affected:  
Description:  
Words:  
None  
Operands:  
Operation:  
No operation  
k (W)  
None  
Status Affected: None  
No operation.  
Description:  
The eight-bit literal ‘k’ is loaded into  
W register. The “don’t cares” will  
assemble as ‘0’s.  
1
Cycles:  
1
NOP  
Example:  
Words:  
1
1
Cycles:  
Example:  
MOVLW  
0x5A  
After Instruction  
W
=
0x5A  
DS41190G-page 76  
2010 Microchip Technology Inc.  
PIC12F629/675  
RETFIE  
Return from Interrupt  
[ label ] RETFIE  
None  
RETLW  
Return with literal in W  
[ label ] RETLW k  
0 k 255  
Syntax:  
Syntax:  
Operands:  
Operation:  
Operands:  
Operation:  
TOS PC,  
1GIE  
k (W);  
TOS PC  
Status Affected:  
Description:  
None  
Status Affected:  
Description:  
None  
Return from Interrupt. Stack is  
POPed and Top-of-Stack (TOS) is  
loaded in the PC. Interrupts are  
enabled by setting Global  
Interrupt Enable bit, GIE  
The W register is loaded with the  
eight-bit literal ‘k’. The program  
counter is loaded from the top of  
the stack (the return address).  
This is a two-cycle instruction.  
(INTCON<7>). This is a two-cycle  
instruction.  
Words:  
1
2
Cycles:  
Example:  
Words:  
1
CALL TABLE;W contains  
table  
Cycles:  
Example:  
2
;offset value  
RETFIE  
;W now has table value  
TABLE  
After Interrupt  
PC = TOS  
GIE =  
1
ADDWF PCL;W = offset  
RETLW k1 ;Begin table  
RETLW k2  
;
RETLW kn ; End of table  
Before Instruction  
W
=
0x07  
After Instruction  
W
=
value of k8  
RETURN  
Return from Subroutine  
Syntax:  
[ label ] RETURN  
None  
Operands:  
Operation:  
TOS PC  
Status Affected: None  
Description: Return from subroutine. The stack  
is POPed and the top of the stack  
(TOS) is loaded into the program  
counter. This is a two-cycle  
instruction.  
2010 Microchip Technology Inc.  
DS41190G-page 77  
PIC12F629/675  
SUBLW  
Subtract W from Literal  
RLF  
Rotate Left f through Carry  
Syntax:  
[ label ] SUBLW k  
0 k 255  
Syntax:  
[ label ] RLF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
k - (W) W)  
Status Affected: C, DC, Z  
Operation:  
See description below  
C
Description:  
The W register is subtracted (2’s  
Status Affected:  
Description:  
complement method) from the  
eight-bit literal ‘k’. The result is  
placed in the W register.  
The contents of register ‘f’ are rotated  
one bit to the left through the Carry  
Flag. If ‘d’ is 0, the result is placed in  
the W register. If ‘d’ is 1, the result is  
stored back in register ‘f’.  
C
Register f  
SUBWF  
Subtract W from f  
Syntax:  
[ label ] SUBWF f,d  
Operands:  
0 f 127  
d [0,1]  
RRF  
Rotate Right f through Carry  
Syntax:  
[ label ] RRF f,d  
Operation:  
(f) - (W) destination)  
Operands:  
0 f 127  
d [0,1]  
Status  
Affected:  
C, DC, Z  
Operation:  
See description below  
C
Description:  
Subtract (2’s complement method)  
W register from register ‘f’. If ‘d’ is  
0, the result is stored in the W  
register. If ‘d’ is 1, the result is  
stored back in register ‘f’.  
Status Affected:  
Description:  
The contents of register ‘f’ are  
rotated one bit to the right through  
the Carry Flag. If ‘d’ is 0, the result  
is placed in the W register. If ‘d’ is  
1, the result is placed back in  
register ‘f’.  
SWAPF  
Swap Nibbles in f  
C
Register f  
Syntax:  
[ label ] SWAPF f,d  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
SLEEP  
Syntax:  
[ label ] SLEEP  
None  
Status Affected: None  
Operands:  
Operation:  
Description: The upper and lower nibbles of  
00h WDT,  
0 WDT prescaler,  
1 TO,  
register ‘f’ are exchanged. If ‘d’ is  
0, the result is placed in the W  
register. If ‘d’ is 1, the result is  
placed in register ‘f’.  
0 PD  
Status Affected:  
Description:  
TO, PD  
The power-down Status bit, PD is  
cleared. Time-out Status bit, TO  
is set. Watchdog Timer and its  
prescaler are cleared.  
The processor is put into Sleep  
mode with the oscillator stopped.  
DS41190G-page 78  
2010 Microchip Technology Inc.  
PIC12F629/675  
XORLW  
Exclusive OR Literal with W  
XORWF  
Exclusive OR W with f  
Syntax:  
[label] XORLW k  
0 k 255  
Syntax:  
[label] XORWF f,d  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
0 f 127  
d [0,1]  
(W) .XOR. k W)  
Z
Operation:  
(W) .XOR. (f) destination)  
Status Affected:  
Description:  
Z
The contents of the W register  
are XOR’ed with the eight-bit  
literal ‘k’. The result is placed in  
the W register.  
Exclusive OR the contents of the  
W register with register ‘f’. If ‘d’ is  
0, the result is stored in the W  
register. If ‘d’ is 1, the result is  
stored back in register ‘f’.  
2010 Microchip Technology Inc.  
DS41190G-page 79  
PIC12F629/675  
NOTES:  
DS41190G-page 80  
2010 Microchip Technology Inc.  
PIC12F629/675  
11.1 MPLAB Integrated Development  
Environment Software  
11.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers and dsPIC® digital signal  
controllers are supported with a full range of software  
and hardware development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16/32-bit  
microcontroller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• A single graphical interface to all debugging tools  
- Simulator  
• Compilers/Assemblers/Linkers  
- MPLAB C Compiler for Various Device  
Families  
- Programmer (sold separately)  
- In-Circuit Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- HI-TECH C for Various Device Families  
- MPASMTM Assembler  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- MPLAB Assembler/Linker/Librarian for  
Various Device Families  
• Customizable data windows with direct edit of  
contents  
• Simulators  
• High-level source code debugging  
• Mouse over variable inspection  
- MPLAB SIM Software Simulator  
• Emulators  
• Drag and drop variables from source to watch  
windows  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debuggers  
• Extensive on-line help  
• Integration of select third party tools, such as  
IAR C Compilers  
- MPLAB ICD 3  
- PICkit™ 3 Debug Express  
• Device Programmers  
- PICkit™ 2 Programmer  
- MPLAB PM3 Device Programmer  
The MPLAB IDE allows you to:  
• Edit your source files (either C or assembly)  
• One-touch compile or assemble, and download to  
emulator and simulator tools (automatically  
updates all project information)  
• Low-Cost Demonstration/Development Boards,  
Evaluation Kits, and Starter Kits  
• Debug using:  
- Source files (C or assembly)  
- Mixed C and assembly  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
2010 Microchip Technology Inc.  
DS41190G-page 81  
PIC12F629/675  
11.2 MPLAB C Compilers for Various  
Device Families  
11.5 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLAB C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC18,  
PIC24 and PIC32 families of microcontrollers and the  
dsPIC30 and dsPIC33 families of digital signal control-  
lers. These compilers provide powerful integration  
capabilities, superior code optimization and ease of  
use.  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
11.3 HI-TECH C for Various Device  
Families  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The HI-TECH C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC  
family of microcontrollers and the dsPIC family of digital  
signal controllers. These compilers provide powerful  
integration capabilities, omniscient code generation  
and ease of use.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
11.6 MPLAB Assembler, Linker and  
Librarian for Various Device  
Families  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The compilers include a macro assembler, linker, pre-  
processor, and one-step driver, and can run on multiple  
platforms.  
MPLAB Assembler produces relocatable machine  
code from symbolic assembly language for PIC24,  
PIC32 and dsPIC devices. MPLAB C Compiler uses  
the assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
11.4 MPASM Assembler  
The MPASM Assembler is a full-featured, universal  
macro assembler for PIC10/12/16/18 MCUs.  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• Rich directive set  
• Flexible macro language  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• MPLAB IDE compatibility  
• User-defined macros to streamline  
assembly code  
• Conditional assembly for multi-purpose  
source files  
• Directives that allow complete control over the  
assembly process  
DS41190G-page 82  
2010 Microchip Technology Inc.  
PIC12F629/675  
11.7 MPLAB SIM Software Simulator  
11.9 MPLAB ICD 3 In-Circuit Debugger  
System  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
MPLAB ICD 3 In-Circuit Debugger System is Micro-  
chip’s most cost effective high-speed hardware  
debugger/programmer for Microchip Flash Digital Sig-  
nal Controller (DSC) and microcontroller (MCU)  
devices. It debugs and programs PIC® Flash microcon-  
trollers and dsPIC® DSCs with the powerful, yet easy-  
to-use graphical user interface of MPLAB Integrated  
Development Environment (IDE).  
The MPLAB ICD 3 In-Circuit Debugger probe is  
connected to the design engineer’s PC using a high-  
speed USB 2.0 interface and is connected to the target  
with a connector compatible with the MPLAB ICD 2 or  
MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3  
supports all MPLAB ICD 2 headers.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C Compilers,  
and the MPASM and MPLAB Assemblers. The soft-  
ware simulator offers the flexibility to develop and  
debug code outside of the hardware laboratory envi-  
ronment, making it an excellent, economical software  
development tool.  
11.10 PICkit 3 In-Circuit Debugger/  
Programmer and  
11.8 MPLAB REAL ICE In-Circuit  
Emulator System  
PICkit 3 Debug Express  
The MPLAB PICkit  
programming of  
3
allows debugging and  
and Flash  
dsPIC®  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
PIC®  
microcontrollers at a most affordable price point using  
the powerful graphical user interface of the MPLAB  
Integrated Development Environment (IDE). The  
MPLAB PICkit 3 is connected to the design engineer’s  
PC using a full speed USB interface and can be  
connected to the target via an Microchip debug (RJ-11)  
connector (compatible with MPLAB ICD 3 and MPLAB  
REAL ICE). The connector uses two device I/O pins  
and the reset line to implement in-circuit debugging and  
In-Circuit Serial Programming™.  
The emulator is connected to the design engineer’s PC  
using a high-speed USB 2.0 interface and is connected  
to the target with either a connector compatible with in-  
circuit debugger systems (RJ11) or with the new high-  
speed, noise tolerant, Low-Voltage Differential Signal  
(LVDS) interconnection (CAT5).  
The PICkit 3 Debug Express include the PICkit 3, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
The emulator is field upgradable through future firmware  
downloads in MPLAB IDE. In upcoming releases of  
MPLAB IDE, new devices will be supported, and new  
features will be added. MPLAB REAL ICE offers signifi-  
cant advantages over competitive emulators including  
low-cost, full-speed emulation, run-time variable  
watches, trace analysis, complex breakpoints, a rugge-  
dized probe interface and long (up to three meters) inter-  
connection cables.  
2010 Microchip Technology Inc.  
DS41190G-page 83  
PIC12F629/675  
11.11 PICkit 2 Development  
Programmer/Debugger and  
PICkit 2 Debug Express  
11.13 Demonstration/Development  
Boards, Evaluation Kits, and  
Starter Kits  
The PICkit™ 2 Development Programmer/Debugger is  
a low-cost development tool with an easy to use inter-  
face for programming and debugging Microchip’s Flash  
families of microcontrollers. The full featured  
Windows® programming interface supports baseline  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
(PIC10F,  
PIC12F5xx,  
PIC16F5xx),  
midrange  
(PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30,  
dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit  
microcontrollers, and many Microchip Serial EEPROM  
products. With Microchip’s powerful MPLAB Integrated  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
Development Environment (IDE) the PICkit™  
2
enables in-circuit debugging on most PIC® microcon-  
trollers. In-Circuit-Debugging runs, halts and single  
steps the program while the PIC microcontroller is  
embedded in the application. When halted at a break-  
point, the file registers can be examined and modified.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
The PICkit 2 Debug Express include the PICkit 2, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
11.12 MPLAB PM3 Device Programmer  
Also available are starter kits that contain everything  
needed to experience the specified device. This usually  
includes a single application and debug capability, all  
on one board.  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an MMC card for file  
storage and data applications.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS41190G-page 84  
2010 Microchip Technology Inc.  
PIC12F629/675  
12.0 ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings†  
Ambient temperature under bias........................................................................................................... -40 to +125°C  
Storage temperature ........................................................................................................................ -65°C to +150°C  
Voltage on VDD with respect to VSS ..................................................................................................... -0.3 to +6.5V  
Voltage on MCLR with respect to Vss ..................................................................................................-0.3 to +13.5V  
Voltage on all other pins with respect to VSS ........................................................................... -0.3V to (VDD + 0.3V)  
Total power dissipation(1) ...............................................................................................................................800 mW  
Maximum current out of VSS pin ..................................................................................................................... 300 mA  
Maximum current into VDD pin ........................................................................................................................ 250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)20 mA  
Output clamp current, IOK (Vo < 0 or Vo >VDD)20 mA  
Maximum output current sunk by any I/O pin....................................................................................................25 mA  
Maximum output current sourced by any I/O pin .............................................................................................. 25 mA  
Maximum current sunk by all GPIO ................................................................................................................ 125 mA  
Maximum current sourced all GPIO................................................................................................................ 125 mA  
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOl x IOL).  
† NOTICE: Stresses above those listed under ‘Absolute Maximum Ratings’ may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
Note: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up.  
Thus, a series resistor of 50-100 should be used when applying a “low” level to the MCLR pin, rather than  
pulling this pin directly to VSS.  
2010 Microchip Technology Inc.  
DS41190G-page 85  
PIC12F629/675  
FIGURE 12-1:  
PIC12F629/675 WITH A/D DISABLED VOLTAGE-FREQUENCY GRAPH,  
-40°C TA +125°C  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
VDD  
(Volts)  
0
4
8
10  
12  
16  
20  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
FIGURE 12-2:  
PIC12F675 WITH A/D ENABLED VOLTAGE-FREQUENCY GRAPH,  
-40°C TA +125°C  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
VDD  
(Volts)  
0
4
8
10  
12  
16  
20  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
DS41190G-page 86  
2010 Microchip Technology Inc.  
PIC12F629/675  
FIGURE 12-3:  
PIC12F675 WITH A/D ENABLED VOLTAGE-FREQUENCY GRAPH,  
0°C TA +125°C  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
VDD  
(Volts)  
2.5  
2.2  
2.0  
0
4
8
10  
12  
16  
20  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2010 Microchip Technology Inc.  
DS41190G-page 87  
PIC12F629/675  
12.1 DC Characteristics: PIC12F629/675-I (Industrial), PIC12F629/675-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
No.  
Sym  
Characteristic  
Min Typ† Max Units  
Conditions  
VDD  
Supply Voltage  
FOSC < = 4 MHz:  
D001  
2.0  
2.2  
2.5  
3.0  
4.5  
5.5  
5.5  
5.5  
5.5  
5.5  
V
V
V
V
V
PIC12F629/675 with A/D off  
D001A  
D001B  
D001C  
D001D  
PIC12F675 with A/D on, 0°C to +125°C  
PIC12F675 with A/D on, -40°C to +125°C  
4 MHZ < FOSC < = 10 MHz  
D002  
VDR  
RAM Data Retention  
Voltage(1)  
1.5*  
V
Device in Sleep mode  
D003  
VPOR  
VDD Start Voltage to  
ensure internal Power-on  
Reset signal  
VSS  
V
See section on Power-on Reset for details  
D004  
D005  
SVDD  
VDD Rise Rate to ensure 0.05*  
internal Power-on Reset  
signal  
V/ms See section on Power-on Reset for details  
VBOD  
2.1  
V
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.  
DS41190G-page 88  
2010 Microchip Technology Inc.  
PIC12F629/675  
12.2 DC Characteristics: PIC12F629/675-I (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40C TA +85C for industrial  
Conditions  
Note  
Param  
No.  
Device Characteristics  
Supply Current (IDD)  
Min Typ† Max Units  
VDD  
D010  
D011  
D012  
D013  
D014  
D015  
D016  
D017  
9
16  
28  
A  
A  
A  
A  
A  
A  
A  
A  
mA  
A  
A  
A  
A  
A  
A  
A  
A  
mA  
A  
A  
A  
mA  
mA  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
4.5  
5.0  
FOSC = 32 kHz  
LP Oscillator Mode  
18  
35  
54  
110  
190  
330  
220  
370  
0.6  
70  
150  
280  
450  
280  
650  
1.4  
FOSC = 1 MHz  
XT Oscillator Mode  
FOSC = 4 MHz  
XT Oscillator Mode  
110  
250  
390  
250  
470  
850  
450  
700  
1.1  
FOSC = 1 MHz  
EC Oscillator Mode  
140  
260  
180  
320  
580  
340  
500  
0.8  
180  
320  
580  
2.1  
2.4  
FOSC = 4 MHz  
EC Oscillator Mode  
FOSC = 4 MHz  
INTOSC Mode  
250  
450  
800  
2.95  
3.0  
FOSC = 4 MHz  
EXTRC Mode  
FOSC = 20 MHz  
HS Oscillator Mode  
† Data in “Typ” column is at 5.0V, 25C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave,  
from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O  
pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have  
an impact on the current consumption.  
2010 Microchip Technology Inc.  
DS41190G-page 89  
PIC12F629/675  
12.3 DC Characteristics: PIC12F629/675-I (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40C TA +85C for industrial  
Conditions  
Param  
No.  
Device Characteristics  
Min  
Typ†  
Max Units  
VDD  
Note  
D020  
Power-down Base Current  
(IPD)  
0.99  
1.2  
2.9  
0.3  
1.8  
8.4  
58  
700  
770  
995  
1.5  
3.5  
17  
nA  
nA  
nA  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
nA  
A  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
3.0  
5.0  
WDT, BOD, Comparators, VREF,  
and T1OSC disabled  
D021  
WDT Current(1)  
D022  
D023  
70  
BOD Current(1)  
109  
3.3  
6.1  
11.5  
58  
130  
6.5  
8.5  
16  
Comparator Current(1)  
D024  
D025  
D026  
70  
CVREF Current(1)  
T1 OSC Current(1)  
A/D Current(1)  
85  
100  
160  
6.5  
7.0  
10.5  
775  
138  
4.0  
4.6  
6.0  
1.2  
0.0022 1.0  
† Data in “Typ” column is at 5.0V, 25C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this  
peripheral is enabled. The peripheral current can be determined by subtracting the base IDD or IPD  
current from this limit. Max values should be used when calculating total current consumption.  
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
DS41190G-page 90  
2010 Microchip Technology Inc.  
PIC12F629/675  
12.4 DC Characteristics: PIC12F629/675-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40C TA +125C for extended  
Conditions  
Note  
Param  
No.  
Device Characteristics  
Supply Current (IDD)  
Min Typ† Max Units  
VDD  
D010E  
D011E  
D012E  
D013E  
D014E  
D015E  
D016E  
D017E  
9
16  
28  
A  
A  
A  
A  
A  
A  
A  
A  
mA  
A  
A  
A  
A  
A  
A  
A  
A  
mA  
A  
A  
A  
mA  
mA  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
4.5  
5.0  
FOSC = 32 kHz  
LP Oscillator Mode  
18  
35  
54  
110  
190  
330  
220  
370  
0.6  
70  
150  
280  
450  
280  
650  
1.4  
FOSC = 1 MHz  
XT Oscillator Mode  
FOSC = 4 MHz  
XT Oscillator Mode  
110  
250  
390  
250  
470  
850  
450  
780  
1.1  
FOSC = 1 MHz  
EC Oscillator Mode  
140  
260  
180  
320  
580  
340  
500  
0.8  
180  
320  
580  
2.1  
2.4  
FOSC = 4 MHz  
EC Oscillator Mode  
FOSC = 4 MHz  
INTOSC Mode  
250  
450  
800  
2.95  
3.0  
FOSC = 4 MHz  
EXTRC Mode  
FOSC = 20 MHz  
HS Oscillator Mode  
† Data in “Typ” column is at 5.0V, 25C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave,  
from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O  
pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have  
an impact on the current consumption.  
2010 Microchip Technology Inc.  
DS41190G-page 91  
PIC12F629/675  
12.5 DC Characteristics: PIC12F629/675-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40C TA +125C for extended  
Conditions  
Param  
No.  
Device Characteristics  
Min  
Typ†  
Max Units  
VDD  
Note  
D020E Power-down Base Current  
(IPD)  
0.00099 3.5  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
3.0  
5.0  
WDT, BOD, Comparators, VREF,  
and T1OSC disabled  
0.0012  
0.0029  
0.3  
4.0  
8.0  
6.0  
9.0  
20  
D021E  
WDT Current(1)  
1.8  
8.4  
D022E  
D023E  
58  
70  
BOD Current(1)  
109  
3.3  
130  
10  
Comparator Current(1)  
6.1  
13  
11.5  
58  
24  
D024E  
D025E  
D026E  
70  
CVREF Current(1)  
T1 OSC Current(1)  
A/D Current(1)  
85  
100  
165  
10  
138  
4.0  
4.6  
12  
6.0  
20  
0.0012  
0.0022  
6.0  
8.5  
† Data in “Typ” column is at 5.0V, 25C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this  
peripheral is enabled. The peripheral current can be determined by subtracting the base IDD or IPD  
current from this limit. Max values should be used when calculating total current consumption.  
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
DS41190G-page 92  
2010 Microchip Technology Inc.  
PIC12F629/675  
12.6 DC Characteristics: PIC12F629/675-I (Industrial), PIC12F629/675-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
Input Low Voltage  
I/O ports  
VIL  
D030  
D030A  
D031  
D032  
D033  
D033A  
with TTL buffer  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
0.8  
V
V
V
V
V
V
4.5V VDD 5.5V  
Otherwise  
0.15 VDD  
0.2 VDD  
0.2 VDD  
0.3  
with Schmitt Trigger buffer  
MCLR, OSC1 (RC mode)  
OSC1 (XT and LP modes)  
OSC1 (HS mode)  
Entire range  
(Note 1)  
(Note 1)  
0.3 VDD  
Input High Voltage  
I/O ports  
VIH  
D040  
D040A  
with TTL buffer  
2.0  
VDD  
VDD  
V
V
4.5V VDD 5.5V  
otherwise  
(0.25 VDD+0.8)  
D041  
with Schmitt Trigger buffer  
MCLR  
0.8 VDD  
0.8 VDD  
1.6  
VDD  
VDD  
VDD  
VDD  
VDD  
400*  
entire range  
D042  
V
V
V
V
D043  
OSC1 (XT and LP modes)  
OSC1 (HS mode)  
OSC1 (RC mode)  
(Note 1)  
(Note 1)  
D043A  
D043B  
0.7 VDD  
0.9 VDD  
50*  
D070 IPUR GPIO Weak Pull-up Current  
250  
A VDD = 5.0V, VPIN = VSS  
Input Leakage Current(3)  
D060  
IIL  
I/O ports  
01  
1  
A VSS VPIN VDD,  
Pin at high-impedance  
D060A  
D060B  
D061  
Analog inputs  
VREF  
01  
01  
01  
01  
1  
1  
5  
5  
A VSS VPIN VDD  
A VSS VPIN VDD  
A VSS VPIN VDD  
MCLR(2)  
D063  
OSC1  
A VSS VPIN VDD, XT, HS and  
LP osc configuration  
Output Low Voltage  
D080 VOL I/O ports  
D083 OSC2/CLKOUT (RC mode)  
0.6  
0.6  
V
V
IOL = 8.5 mA, VDD = 4.5V (Ind.)  
IOL = 1.6 mA, VDD = 4.5V (Ind.)  
IOL = 1.2 mA, VDD = 4.5V (Ext.)  
Output High Voltage  
D090 VOH I/O ports  
D092 OSC2/CLKOUT (RC mode)  
VDD - 0.7  
VDD - 0.7  
V
V
IOH = -3.0 mA, VDD = 4.5V (Ind.)  
IOH = -1.3 mA, VDD = 4.5V (Ind.)  
IOH = -1.0 mA, VDD = 4.5V (Ext.)  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use  
an external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
2010 Microchip Technology Inc.  
DS41190G-page 93  
PIC12F629/675  
12.7 DC Characteristics: PIC12F629/675-I (Industrial), PIC12F629/675-E (Extended) (Cont.)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
Capacitive Loading Specs  
on Output Pins  
D100  
D101  
COSC2 OSC2 pin  
15*  
50*  
pF In XT, HS and LP modes when  
external clock is used to drive  
OSC1  
CIO  
All I/O pins  
pF  
Data EEPROM Memory  
Byte Endurance  
Byte Endurance  
D120  
D120A  
D121  
ED  
ED  
100K  
10K  
1M  
100K  
E/W -40C TA +85°C  
E/W +85°C TA +125°C  
VDRW VDD for Read/Write  
VMIN  
5.5  
V
Using EECON to read/write  
VMIN = Minimum operating  
voltage  
D122  
D123  
TDEW Erase/Write cycle time  
TRETD Characteristic Retention  
5
6
ms  
40  
Year Provided no other specifications  
are violated  
D124  
TREF  
Number of Total Erase/Write  
Cycles before Refresh(1)  
1M  
10M  
E/W -40C TA +85°C  
Program Flash Memory  
Cell Endurance  
D130  
D130A  
D131  
EP  
10K  
1K  
100K  
10K  
E/W -40C TA +85°C  
E/W +85°C TA +125°C  
ED  
Cell Endurance  
VPR  
VDD for Read  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
D132  
D133  
D134  
VPEW VDD for Erase/Write  
TPEW Erase/Write cycle time  
TRETD Characteristic Retention  
4.5  
2
5.5  
2.5  
V
ms  
40  
Year Provided no other specifications  
are violated  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: See Section 8.5.1 “Using the Data EEPROM” for additional information.  
DS41190G-page 94  
2010 Microchip Technology Inc.  
PIC12F629/675  
12.8 TIMING PARAMETER SYMBOLOGY  
The timing parameter symbols have been created with  
one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (High-Impedance)  
Low  
Valid  
L
High-Impedance  
FIGURE 12-4:  
LOAD CONDITIONS  
Load Condition 1  
Load Condition 2  
VDD/2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL = 464  
CL = 50 pF for all pins  
15 pF for OSC2 output  
2010 Microchip Technology Inc.  
DS41190G-page 95  
PIC12F629/675  
12.9 AC CHARACTERISTICS: PIC12F629/675 (INDUSTRIAL, EXTENDED)  
FIGURE 12-5:  
EXTERNAL CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
4
Q1  
OSC1  
1
3
4
3
2
CLKOUT  
TABLE 12-1: EXTERNAL CLOCK TIMING REQUIREMENTS  
Param  
Sym  
Characteristic  
Min Typ†  
Max  
Units  
Conditions  
No.  
FOSC External CLKIN Frequency(1) DC  
4
37  
4
kHz LP Osc mode  
MHz XT mode  
DC  
DC  
DC  
20  
20  
37  
4
MHz HS mode  
MHz EC mode  
Oscillator Frequency(1)  
5
kHz LP Osc mode  
MHz INTOSC mode  
MHz RC Osc mode  
MHz XT Osc mode  
MHz HS Osc mode  
DC  
0.1  
1
4
20  
1
TOSC  
External CLKIN Period(1)  
Oscillator Period(1)  
27  
50  
200  
s LP Osc mode  
ns HS Osc mode  
ns EC Osc mode  
ns XT Osc mode  
s LP Osc mode  
ns INTOSC mode  
ns RC Osc mode  
ns XT Osc mode  
ns HS Osc mode  
50  
250  
27  
250  
250  
250  
50  
10,000  
1,000  
Instruction Cycle Time(1)  
200  
TCY  
DC  
ns TCY = 4/FOSC  
2
3
TCY  
TosL, External CLKIN (OSC1) High 2*  
s LP oscillator, TOSC L/H duty cycle  
TosH External CLKIN Low  
20*  
ns HS oscillator, TOSC L/H duty  
cycle  
100 *  
ns XT oscillator, TOSC L/H duty cycle  
ns LP oscillator  
4
TosR, External CLKIN Rise  
TosF External CLKIN Fall  
50*  
25*  
15*  
ns XT oscillator  
ns HS oscillator  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with the  
device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption. All devices are tested to operate at “min” values with an external  
clock applied to OSC1 pin. When an external clock input is used, the ‘max’ cycle time limit is “DC” (no clock)  
for all devices.  
DS41190G-page 96  
2010 Microchip Technology Inc.  
PIC12F629/675  
TABLE 12-2:  
Param  
PRECISION INTERNAL OSCILLATOR PARAMETERS  
Freq.  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
No.  
Tolerance  
1  
2  
3.96  
3.92  
4.00  
4.00  
4.04  
4.08  
MHz VDD = 3.5V, 25C  
MHz 2.5V VDD 5.5V  
0C TA +85C  
FOSC  
F10  
Internal Calibrated  
INTOSC Frequency  
5  
3.80  
4.00  
4.20  
MHz 2.0V VDD 5.5V  
-40C TA +85C (IND)  
-40C TA +125C (EXT)  
s VDD = 2.0V, -40C to +85C  
s VDD = 3.0V, -40C to +85C  
s VDD = 5.0V, -40C to +85C  
6
4
3
8
6
5
TIOSCST  
F14  
Oscillator Wake-up from  
Sleep start-up time*  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
2010 Microchip Technology Inc.  
DS41190G-page 97  
PIC12F629/675  
FIGURE 12-6:  
CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
22  
23  
CLKOUT  
13  
12  
19  
18  
14  
16  
I/O pin  
(Input)  
15  
17  
I/O pin  
(Output)  
New Value  
Old Value  
20, 21  
TABLE 12-3: CLKOUT AND I/O TIMING REQUIREMENTS  
Param  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
No.  
10  
11  
12  
13  
14  
15  
TosH2ckL OSC1to CLOUT  
TosH2ckH OSC1to CLOUT  
75  
75  
35  
35  
200  
200  
100  
100  
20  
ns  
ns  
ns  
ns  
ns  
ns  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
TckR  
TckF  
CLKOUT rise time  
CLKOUT fall time  
TckL2ioV CLKOUTto Port out valid  
TioV2ckH Port in valid before CLKOUT  
TOSC + 200  
ns  
16  
17  
TckH2ioI  
Port in hold after CLKOUT  
0
50  
150 *  
300  
ns  
ns  
ns  
ns  
(Note 1)  
TosH2ioV OSC1(Q1 cycle) to Port out valid  
18  
19  
TosH2ioI OSC1(Q2 cycle) to Port input  
100  
invalid (I/O in hold time)  
TioV2osH Port input valid to OSC1  
0
ns  
(I/O in setup time)  
20  
21  
22  
23  
TioR  
TioF  
Tinp  
Trbp  
Port output rise time  
10  
10  
40  
40  
ns  
ns  
ns  
ns  
Port output fall time  
INT pin high or low time  
GPIO change INT high or low time  
25  
TCY  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25C unless otherwise stated.  
Note 1: Measurements are taken in RC mode where CLKOUT output is 4xTOSC.  
DS41190G-page 98  
2010 Microchip Technology Inc.  
PIC12F629/675  
FIGURE 12-7:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND  
POWER-UP TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
31  
34  
34  
I/O Pins  
FIGURE 12-8:  
BROWN-OUT DETECT TIMING AND CHARACTERISTICS  
VDD  
BVDD  
(Device not in Brown-out Detect)  
(Device in Brown-out Detect)  
35  
Reset (due to BOD)  
(1)  
72 ms time-out  
Note 1: 72 ms delay only if PWRTE bit in Configuration Word is programmed to ‘0’.  
2010 Microchip Technology Inc.  
DS41190G-page 99  
PIC12F629/675  
TABLE 12-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,  
AND BROWN-OUT DETECT REQUIREMENTS  
Param  
No.  
Sym  
TMCL  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
2
TBD  
TBD  
s VDD = 5V, -40°C to +85°C  
MCLR Pulse Width (low)  
TBD  
ms Extended temperature  
31  
TWDT  
TOST  
Watchdog Timer Time-out  
Period  
(No Prescaler)  
10  
10  
17  
17  
25  
30  
ms VDD = 5V, -40°C to +85°C  
ms Extended temperature  
32  
Oscillation Start-up Timer  
Period  
1024TOSC  
TOSC = OSC1 period  
33*  
TPWRT Power-up Timer Period  
28*  
TBD  
72  
TBD  
132*  
TBD  
ms VDD = 5V, -40°C to +85°C  
ms Extended Temperature  
34  
TIOZ  
I/O High-impedance from  
MCLR Low or Watchdog Timer  
Reset  
2.0  
s  
BVDD  
TBOD  
Brown-out Detect Voltage  
Brown-out Hysteresis  
2.025  
TBD  
100*  
2.175  
V
35  
*
Brown-out Detect Pulse Width  
s VDD BVDD (D005)  
These parameters are characterized but not tested.  
† Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
DS41190G-page 100  
2010 Microchip Technology Inc.  
PIC12F629/675  
FIGURE 12-9:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
40  
41  
42  
T1CKI  
45  
46  
48  
47  
TMR0 or  
TMR1  
TABLE 12-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
Sym  
Characteristic  
Min  
Typ† Max Units  
Conditions  
No.  
40*  
Tt0H  
T0CKI High Pulse Width  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
10  
0.5 TCY + 20  
10  
41*  
42*  
Tt0L  
Tt0P  
T0CKI Low Pulse Width  
T0CKI Period  
Greater of:  
20 or TCY + 40  
N
ns N = prescale value  
(2, 4, ..., 256)  
45*  
46*  
47*  
Tt1H  
Tt1L  
T1CKI High Time Synchronous, No Prescaler  
0.5 TCY + 20  
15  
ns  
ns  
Synchronous,  
with Prescaler  
Asynchronous  
30  
0.5 TCY + 20  
15  
ns  
ns  
ns  
T1CKI Low Time Synchronous, No Prescaler  
Synchronous,  
with Prescaler  
Asynchronous  
30  
ns  
Tt1P  
Ft1  
T1CKI Input  
Period  
Synchronous  
Greater of:  
30 or TCY + 40  
N
ns N = prescale value  
(1, 2, 4, 8)  
Asynchronous  
60  
ns  
Timer1 oscillator input frequency range  
DC  
200*  
kHz  
(oscillator enabled by setting bit T1OSCEN)  
48  
TCKEZtmr1 Delay from external clock edge to timer increment  
2 TOSC*  
7
TOSC*  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
2010 Microchip Technology Inc.  
DS41190G-page 101  
PIC12F629/675  
TABLE 12-6: COMPARATOR SPECIFICATIONS  
Standard Operating Conditions  
-40°C to +125°C (unless otherwise stated)  
Comparator Specifications  
Sym Characteristics  
Min  
Typ  
Max  
Units  
Comments  
VOS  
Input Offset Voltage  
0
5.0  
10  
VDD - 1.5  
mV  
V
VCM  
CMRR  
TRT  
Input Common Mode Voltage  
Common Mode Rejection Ratio  
Response Time(1)  
+55*  
db  
ns  
s  
150  
400*  
TMC2COV Comparator Mode Change to  
Output Valid  
10*  
*
These parameters are characterized but not tested.  
Note 1: Response time measured with one comparator input at (VDD - 1.5)/2 while the other input transitions from  
VSS to VDD - 1.5V.  
TABLE 12-7: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS  
Standard Operating Conditions  
Voltage Reference Specifications  
-40°C to +125°C (unless otherwise stated)  
Sym  
Characteristics  
Resolution  
Min  
Typ  
Max  
Units  
Comments  
VDD/24*  
VDD/32  
LSb Low Range (VRR = 1)  
LSb High Range (VRR = 0)  
Absolute Accuracy  
1/2  
1/2*  
LSb Low Range (VRR = 1)  
LSb High Range (VRR = 0)  
Unit Resistor Value (R)  
Settling Time(1)  
2k*  
10*  
s  
*
These parameters are characterized but not tested.  
Note 1: Settling time measured while VRR = 1and VR<3:0> transitions from 0000to 1111.  
DS41190G-page 102  
2010 Microchip Technology Inc.  
PIC12F629/675  
TABLE 12-8: PIC12F675 A/D CONVERTER CHARACTERISTICS:  
Param  
No.  
Sym  
NR  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
A01  
Resolution  
10 bits  
bit  
A02  
EABS Total Absolute  
Error*  
1  
LSb VREF = 5.0V  
A03  
A04  
EIL  
Integral Error  
1  
1  
LSb VREF = 5.0V  
EDL  
Differential Error  
LSb No missing codes to 10 bits  
VREF = 5.0V  
A05  
A06  
A07  
A10  
EFS  
Full Scale Range  
2.2*  
5.5*  
1  
V
EOFF Offset Error  
LSb VREF = 5.0V  
LSb VREF = 5.0V  
EGN  
Gain Error  
1  
(3)  
guaranteed  
Monotonicity  
V
VSS VAIN VREF+  
A20  
A20A  
VREF Reference Voltage  
2.0  
2.5  
VDD + 0.3  
Absolute minimum to ensure 10-bit  
accuracy  
A21  
A25  
A30  
VREF Reference V High  
(VDD or VREF)  
VSS  
VSS  
VDD  
VREF  
10  
V
V
VAIN Analog Input  
Voltage  
ZAIN Recommended  
Impedance of  
Analog Voltage  
Source  
k  
A50  
IREF  
VREF Input  
Current(2)  
10  
1000  
10  
A During VAIN acquisition.  
Based on differential of VHOLD to VAIN.  
A During A/D conversion cycle.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: When A/D is off, it will not consume any current other than leakage current. The power-down current spec  
includes any such leakage from the A/D module.  
2: VREF current is from External VREF or VDD pin, whichever is selected as reference input.  
3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.  
2010 Microchip Technology Inc.  
DS41190G-page 103  
PIC12F629/675  
FIGURE 12-10:  
PIC12F675 A/D CONVERSION TIMING (NORMAL MODE)  
BSF ADCON0, GO  
134  
Q4  
1 TCY  
(1)  
(TOSC/2)  
131  
130  
A/D CLK  
9
8
7
6
3
2
1
0
A/D DATA  
ADRES  
NEW_DATA  
1 TCY  
OLD_DATA  
ADIF  
GO  
DONE  
SAMPLING STOPPED  
132  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
TABLE 12-9: PIC12F675 A/D CONVERSION REQUIREMENTS  
Param  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
No.  
130  
TAD  
A/D Clock Period  
1.6  
s TOSC based, VREF 3.0V  
s TOSC based, VREF full range  
3.0*  
130  
TAD  
A/D Internal RC  
Oscillator Period  
ADCS<1:0> = 11(RC mode)  
s At VDD = 2.5V  
3.0*  
2.0*  
6.0  
4.0  
11  
9.0*  
6.0*  
s At VDD = 5.0V  
131  
132  
TCNV Conversion Time  
(not including  
TAD Set GO bit to new data in A/D result  
register  
Acquisition Time)(1)  
TACQ Acquisition Time  
(Note 2)  
11.5  
s  
5*  
s The minimum time is the amplifier  
settling time. This may be used if the  
“new” input voltage has not changed  
by more than 1 LSb (i.e., 4.1 mV @  
4.096V) from the last sampled  
voltage (as stored on CHOLD).  
134  
TGO  
Q4 to A/D Clock  
Start  
TOSC/2  
If the A/D clock source is selected as  
RC, a time of TCY is added before  
the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
* These parameters are characterized but not tested.  
† Data in “Typ” column is at 5.0V, 25C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 7.1 “A/D Configuration and Operation” for minimum conditions.  
DS41190G-page 104  
2010 Microchip Technology Inc.  
PIC12F629/675  
FIGURE 12-11:  
PIC12F675 A/D CONVERSION TIMING (SLEEP MODE)  
BSF ADCON0, GO  
134  
(1)  
(TOSC/2 + TCY)  
1 TCY  
131  
Q4  
130  
A/D CLK  
9
8
7
3
2
1
0
6
A/D DATA  
NEW_DATA  
1 TCY  
OLD_DATA  
ADRES  
ADIF  
GO  
DONE  
SAMPLING STOPPED  
132  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
TABLE 12-10: PIC12F675 A/D CONVERSION REQUIREMENTS (SLEEP MODE)  
Param  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
No.  
130  
TAD  
A/D Clock Period  
1.6  
s VREF 3.0V  
s VREF full range  
ADCS<1:0> = 11(RC mode)  
s At VDD = 2.5V  
3.0*  
130  
TAD  
A/D Internal RC  
Oscillator Period  
3.0*  
2.0*  
6.0  
4.0  
11  
9.0*  
6.0*  
s At VDD = 5.0V  
131  
132  
TCNV  
TACQ  
Conversion Time  
(not including  
TAD  
Acquisition Time)(1)  
Acquisition Time  
(Note 2)  
11.5  
s  
5*  
s The minimum time is the amplifier  
settling time. This may be used if  
the “new” input voltage has not  
changed by more than 1 LSb (i.e.,  
4.1 mV @ 4.096V) from the last  
sampled voltage (as stored on  
CHOLD).  
134  
TGO  
Q4 to A/D Clock  
Start  
TOSC/2 + TCY  
If the A/D clock source is selected  
as RC, a time of TCY is added  
before the A/D clock starts. This  
allows the SLEEPinstruction to be  
executed.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 7.1 “A/D Configuration and Operation” for minimum conditions.  
2010 Microchip Technology Inc.  
DS41190G-page 105  
PIC12F629/675  
NOTES:  
DS41190G-page 106  
2010 Microchip Technology Inc.  
PIC12F629/675  
13.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES  
The graphs and tables provided in this section are for design guidance and are not tested.  
In some graphs or tables, the data presented are outside specified operating range (i.e., outside specified VDD  
range). This is for information only and devices are ensured to operate properly only within the specified range.  
The data presented in this section is a statistical summary of data collected on units from different lots over a period  
of time and matrix samples. “Typical” represents the mean of the distribution at 25°C. “Max” or “min” represents  
(mean + 3) or (mean - 3) respectively, where is standard deviation, over the whole temperature range.  
FIGURE 13-1:  
TYPICAL IPD vs. VDD OVER TEMP (-40°C TO +25°C)  
Typical Baseline IPD  
6.0E-09  
5.0E-09  
4.0E-09  
3.0E-09  
2.0E-09  
1.0E-09  
0.0E+00  
-40  
0
25  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
FIGURE 13-2:  
TYPICAL IPD vs. VDD OVER TEMP (+85°C)  
Typical Baseline IPD  
3.5E-07  
3.0E-07  
2.5E-07  
2.0E-07  
1.5E-07  
1.0E-07  
5.0E-08  
0.0E+00  
85  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2010 Microchip Technology Inc.  
DS41190G-page 107  
PIC12F629/675  
FIGURE 13-3:  
TYPICAL IPD vs. VDD OVER TEMP (+125°C)  
Typical Baseline IPD  
4.0E-06  
3.5E-06  
3.0E-06  
2.5E-06  
2.0E-06  
1.5E-06  
1.0E-06  
5.0E-07  
0.0E+00  
125  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 13-4:  
MAXIMUM IPD vs. VDD OVER TEMP (-40°C TO +25°C)  
Maximum Baseline IPD  
1.0E-07  
9.0E-08  
8.0E-08  
7.0E-08  
6.0E-08  
5.0E-08  
4.0E-08  
3.0E-08  
2.0E-08  
1.0E-08  
0.0E+00  
-40  
0
25  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
DS41190G-page 108  
2010 Microchip Technology Inc.  
PIC12F629/675  
FIGURE 13-5:  
MAXIMUM IPD vs. VDD OVER TEMP (+85°C)  
Maximum Baseline IPD  
9.0E-07  
8.0E-07  
7.0E-07  
6.0E-07  
5.0E-07  
4.0E-07  
3.0E-07  
2.0E-07  
1.0E-07  
0.0E+00  
85  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 13-6:  
MAXIMUM IPD vs. VDD OVER TEMP (+125°C)  
Maximum Baseline IPD  
9.0E-06  
8.0E-06  
7.0E-06  
6.0E-06  
5.0E-06  
4.0E-06  
3.0E-06  
2.0E-06  
1.0E-06  
0.0E+00  
125  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2010 Microchip Technology Inc.  
DS41190G-page 109  
PIC12F629/675  
FIGURE 13-7:  
TYPICAL IPD WITH BOD ENABLED vs. VDD OVER TEMP (-40°C TO +125°C)  
Typical BOD IPD  
130  
120  
110  
100  
90  
-40  
0
25  
85  
125  
80  
70  
60  
50  
3
3.5  
4
4.5  
5
5.5  
V
DD  
(V)  
FIGURE 13-8:  
TYPICAL IPD WITH CMP ENABLED vs. VDD OVER TEMP (-40°C TO +125°C)  
Typical Comparator IPD  
1.8E-05  
1.6E-05  
1.4E-05  
1.2E-05  
1.0E-05  
8.0E-06  
6.0E-06  
4.0E-06  
2.0E-06  
0.0E+00  
-40  
0
25  
85  
125  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
(V)  
DD  
DS41190G-page 110  
2010 Microchip Technology Inc.  
PIC12F629/675  
FIGURE 13-9:  
TYPICAL IPD WITH A/D ENABLED vs. VDD OVER TEMP (-40°C TO +25°C)  
Typical A/D IPD  
5.0E-09  
4.5E-09  
4.0E-09  
3.5E-09  
3.0E-09  
2.5E-09  
2.0E-09  
1.5E-09  
1.0E-09  
5.0E-10  
0.0E+00  
-40  
0
25  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
V
(V)  
DD  
FIGURE 13-10:  
TYPICAL IPD WITH A/D ENABLED vs. VDD OVER TEMP (+85°C)  
Typical A/D IPD  
3.5E-07  
3.0E-07  
2.5E-07  
2.0E-07  
1.5E-07  
1.0E-07  
5.0E-08  
0.0E+00  
85  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
V
DD  
(V)  
2010 Microchip Technology Inc.  
DS41190G-page 111  
PIC12F629/675  
FIGURE 13-11:  
TYPICAL IPD WITH A/D ENABLED vs. VDD OVER TEMP (+125°C)  
Typical A/D IPD  
3.5E-06  
3.0E-06  
2.5E-06  
2.0E-06  
1.5E-06  
1.0E-06  
5.0E-07  
0.0E+00  
125  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
V
(V)  
DD  
FIGURE 13-12:  
TYPICAL IPD WITH T1 OSC ENABLED vs. VDD OVER TEMP (-40°C TO +125°C),  
32 kHZ, C1 AND C2=50 pF)  
Typical T1 IPD  
1.20E-05  
1.00E-05  
8.00E-06  
6.00E-06  
4.00E-06  
2.00E-06  
0.00E+00  
-40  
0
25  
85  
125  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
(V)  
DD  
DS41190G-page 112  
2010 Microchip Technology Inc.  
PIC12F629/675  
FIGURE 13-13:  
TYPICAL IPD WITH CVREF ENABLED vs. VDD OVER TEMP (-40°C TO +125°C)  
Typical CVREF IPD  
160  
140  
120  
100  
80  
-40  
0
25  
85  
125  
60  
40  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
V
(V)  
DD  
FIGURE 13-14:  
TYPICAL IPD WITH WDT ENABLED vs. VDD OVER TEMP (-40°C TO +125°C)  
Typical WDT IPD  
16  
14  
12  
10  
8
-40  
0
25  
85  
125  
6
4
2
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
V
(V)  
DD  
2010 Microchip Technology Inc.  
DS41190G-page 113  
PIC12F629/675  
FIGURE 13-15:  
MAXIMUM AND MINIMUMINTOSC FREQ vs. TEMPERATURE WITH 0.1F AND  
0.01F DECOUPLING (VDD = 3.5V)  
Internal Oscillator  
Frequency vs Temperature  
4.20E+06  
4.15E+06  
4.10E+06  
4.05E+06  
4.00E+06  
3.95E+06  
3.90E+06  
3.85E+06  
3.80E+06  
-3sigma  
average  
+3sigma  
-40°C  
0°C  
25°C  
85°C  
125°C  
Temperature (°C)  
FIGURE 13-16:  
MAXIMUM AND MINIMUMINTOSC FREQ vs. VDD WITH 0.1F AND 0.01F  
DECOUPLING (+25°C)  
Internal Oscillator  
Frequency vs VDD  
4.20E+06  
4.15E+06  
4.10E+06  
4.05E+06  
4.00E+06  
3.95E+06  
3.90E+06  
3.85E+06  
3.80E+06  
-3sigma  
average  
+3sigma  
2.0V  
2.5V  
3.0V  
3.5V  
4.0V  
4.5V  
5.0V  
5.5V  
VDD (V)  
DS41190G-page 114  
2010 Microchip Technology Inc.  
PIC12F629/675  
FIGURE 13-17:  
TYPICAL WDT PERIOD vs. VDD (-40C TO +125C)  
WDT Time-out  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
-40  
0
25  
85  
125  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
V
(V)  
DD  
2010 Microchip Technology Inc.  
DS41190G-page 115  
PIC12F629/675  
NOTES:  
DS41190G-page 116  
2010 Microchip Technology Inc.  
PIC12F629/675  
14.0 PACKAGING INFORMATION  
14.1 Package Marking Information  
8-Lead PDIP (Skinny DIP)  
Example  
12F629-I  
XXXXXXXX  
XXXXXNNN  
YYWW  
/017  
e3  
0215  
8-Lead SOIC  
Example  
12F629-E  
XXXXXXXX  
XXXXYYWW  
NNN  
/0215  
e3  
017  
8-Lead DFN-S  
Example  
XXXXXXX  
XXXXXXX  
XXYYWW  
NNN  
12F629  
-E/021  
0215  
017  
e
3
Example  
8-Lead DFN (4x4 mm)  
XXXXXX  
XXXXXX  
XXXX  
0610  
e
3
XXXXXX  
YYWW  
NNN  
017  
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2010 Microchip Technology Inc.  
DS41190G-page 117  
PIC12F629/675  
14.2 Package Details  
The following sections give the technical details of the packages.  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢐꢁꢂꢋꢐꢃꢆꢑꢇꢒꢆꢓꢆꢔꢕꢕꢆꢖꢋꢈꢆꢗꢘꢅꢙꢆꢚꢇꢍꢏꢇꢛ  
ꢜꢘꢊꢃꢝ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
A1  
c
e
eB  
b1  
b
6ꢄꢃ&!  
ꢚ7,8.ꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
<
ꢁꢀꢕꢕꢅ1ꢐ,  
M
ꢁꢀ-ꢕ  
M
ꢁ-ꢀꢕ  
ꢁꢎꢘꢕ  
ꢁ-?ꢘ  
ꢁꢀ-ꢕ  
ꢁꢕꢀꢕ  
ꢁꢕ?ꢕ  
ꢁꢕꢀ<  
M
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
ꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
1ꢆ!ꢈꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
ꢐꢍꢋ"ꢇ#ꢈꢉꢅ&ꢋꢅꢐꢍꢋ"ꢇ#ꢈꢉꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
7
ꢗꢎ  
ꢗꢀ  
.
.ꢀ  
9
)ꢀ  
)
ꢈ1  
M
ꢁꢎꢀꢕ  
ꢁꢀꢛꢘ  
M
ꢁꢀꢀꢘ  
ꢁꢕꢀꢘ  
ꢁꢎꢛꢕ  
ꢁꢎꢖꢕ  
ꢁ-ꢖ<  
ꢁꢀꢀꢘ  
ꢁꢕꢕ<  
ꢁꢕꢖꢕ  
ꢁꢕꢀꢖ  
M
ꢁ-ꢎꢘ  
ꢁꢎ<ꢕ  
ꢁꢖꢕꢕ  
ꢁꢀꢘꢕ  
ꢁꢕꢀꢘ  
ꢁꢕꢜꢕ  
ꢁꢕꢎꢎ  
ꢁꢖ-ꢕ  
ꢙꢃꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
6ꢓꢓꢈꢉꢅ9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
9ꢋ*ꢈꢉꢅ9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅꢝꢋ*ꢅꢐꢓꢆꢌꢃꢄꢑꢅꢅꢏ  
ꢜꢘꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢏꢅꢐꢃꢑꢄꢃ%ꢃꢌꢆꢄ&ꢅ,ꢍꢆꢉꢆꢌ&ꢈꢉꢃ!&ꢃꢌꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢁꢕꢀꢕ/ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2ꢅ1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢀ<1  
DS41190G-page 118  
2010 Microchip Technology Inc.  
PIC12F629/675  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢞꢖꢄꢈꢈꢆꢟꢎꢊꢈꢋꢐꢃꢆꢑꢞꢜꢒꢆꢓꢆꢜꢄꢠꢠꢘꢡꢢꢆꢔꢣꢤꢕꢆꢖꢖꢆꢗꢘꢅꢙꢆꢚꢞꢟꢏꢥꢛ  
ꢜꢘꢊꢃꢝ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D
e
N
E
E1  
NOTE 1  
1
2
3
α
h
b
h
c
φ
A2  
A
L
A1  
L1  
β
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
<
ꢀꢁꢎꢜꢅ1ꢐ,  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
ꢐ&ꢆꢄ#ꢋ%%ꢅꢅ  
M
ꢀꢁꢎꢘ  
ꢕꢁꢀꢕ  
M
M
M
ꢀꢁꢜꢘ  
M
ꢕꢁꢎꢘ  
ꢗꢎ  
ꢗꢀ  
.
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
?ꢁꢕꢕꢅ1ꢐ,  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
,ꢍꢆ'%ꢈꢉꢅ@ꢋꢓ&ꢃꢋꢄꢆꢇA  
3ꢋꢋ&ꢅ9ꢈꢄꢑ&ꢍ  
.ꢀ  
-ꢁꢛꢕꢅ1ꢐ,  
ꢖꢁꢛꢕꢅ1ꢐ,  
ꢕꢁꢎꢘ  
ꢕꢁꢖꢕ  
M
M
ꢕꢁꢘꢕ  
ꢀꢁꢎꢜ  
9
3ꢋꢋ&ꢓꢉꢃꢄ&  
3ꢋꢋ&ꢅꢗꢄꢑꢇꢈ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ1ꢋ&&ꢋ'  
9ꢀ  
ꢀꢁꢕꢖꢅꢝ.3  
ꢕꢟ  
ꢕꢁꢀꢜ  
ꢕꢁ-ꢀ  
ꢘꢟ  
M
M
M
M
M
<ꢟ  
)
ꢕꢁꢎꢘ  
ꢕꢁꢘꢀ  
ꢀꢘꢟ  
ꢘꢟ  
ꢀꢘꢟ  
ꢜꢘꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢏꢅꢐꢃꢑꢄꢃ%ꢃꢌꢆꢄ&ꢅ,ꢍꢆꢉꢆꢌ&ꢈꢉꢃ!&ꢃꢌꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢕꢁꢀꢘꢅ''ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢘꢜ1  
2010 Microchip Technology Inc.  
DS41190G-page 119  
PIC12F629/675  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢞꢖꢄꢈꢈꢆꢟꢎꢊꢈꢋꢐꢃꢆꢑꢞꢜꢒꢆꢓꢆꢜꢄꢠꢠꢘꢡꢢꢆꢔꢣꢤꢕꢆꢖꢖꢆꢗꢘꢅꢙꢆꢚꢞꢟꢏꢥꢛ  
ꢜꢘꢊꢃꢝ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
DS41190G-page 120  
2010 Microchip Technology Inc.  
PIC12F629/675  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢦꢈꢄꢊꢢꢆꢜꢘꢆꢂꢃꢄꢅꢆꢇꢄꢌꢧꢄꢨꢃꢆꢑꢩꢦꢒꢆꢓꢆꢪꢫꢬꢆꢖꢖꢆꢗꢘꢅꢙꢆꢚꢍꢦꢜꢁꢞꢛ  
ꢜꢘꢊꢃꢝ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
e
D
L
b
N
N
K
E
E2  
EXPOSED PAD  
NOTE 1  
NOTE 1  
1
2
1
2
D2  
BOTTOM VIEW  
TOP VIEW  
A
A3  
A1  
NOTE 2  
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
<
ꢀꢁꢎꢜꢅ1ꢐ,  
ꢕꢁ<ꢘ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢐ&ꢆꢄ#ꢋ%%ꢅ  
,ꢋꢄ&ꢆꢌ&ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
7
ꢗꢀ  
ꢗ-  
ꢕꢁ<ꢕ  
ꢕꢁꢕꢕ  
ꢀꢁꢕꢕ  
ꢕꢁꢕꢘ  
ꢕꢁꢕꢀ  
ꢕꢁꢎꢕꢅꢝ.3  
ꢘꢁꢕꢕꢅ1ꢐ,  
?ꢁꢕꢕꢅ1ꢐ,  
ꢖꢁꢕꢕ  
ꢎꢁ-ꢕ  
ꢕꢁꢖꢕ  
.
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ9ꢈꢄꢑ&ꢍ  
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ>ꢃ#&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ>ꢃ#&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ9ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢞ&ꢋꢞ.$ꢓꢋ!ꢈ#ꢅꢂꢆ#  
ꢒꢎ  
.ꢎ  
)
9
C
-ꢁꢛꢕ  
ꢎꢁꢎꢕ  
ꢕꢁ-ꢘ  
ꢕꢁꢘꢕ  
ꢕꢁꢎꢕ  
ꢖꢁꢀꢕ  
ꢎꢁꢖꢕ  
ꢕꢁꢖ<  
ꢕꢁꢜꢘ  
M
ꢕꢁ?ꢕ  
M
ꢜꢘꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢂꢆꢌ4ꢆꢑꢈꢅ'ꢆꢊꢅꢍꢆ ꢈꢅꢋꢄꢈꢅꢋꢉꢅ'ꢋꢉꢈꢅꢈ$ꢓꢋ!ꢈ#ꢅ&ꢃꢈꢅ)ꢆꢉ!ꢅꢆ&ꢅꢈꢄ#!ꢁ  
-ꢁ ꢂꢆꢌ4ꢆꢑꢈꢅꢃ!ꢅ!ꢆ*ꢅ!ꢃꢄꢑ"ꢇꢆ&ꢈ#ꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢀꢎꢎ1  
2010 Microchip Technology Inc.  
DS41190G-page 121  
PIC12F629/675  
ꢜꢘꢊꢃꢝ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
DS41190G-page 122  
2010 Microchip Technology Inc.  
PIC12F629/675  
8-Lead Plastic Dual Flat, No Lead Package (MD) – 4x4x0.9 mm Body [DFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Microchip Technology Drawing C04-131E Sheet 1 of 2  
2010 Microchip Technology Inc.  
DS41190G-page 123  
PIC12F629/675  
8-Lead Plastic Dual Flat, No Lead Package (MD) – 4x4x0.9 mm Body [DFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Microchip Technology Drawing C04-131E Sheet 2 of 2  
DS41190G-page 124  
2010 Microchip Technology Inc.  
PIC12F629/675  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢦꢈꢄꢊꢢꢆꢜꢘꢆꢂꢃꢄꢅꢆꢇꢄꢌꢧꢄꢨꢃꢆꢑꢩDꢒꢆꢓꢆꢭꢫꢭꢫꢕꢣꢤꢆꢖꢖꢆꢗꢘꢅꢙꢆꢚꢍꢦꢜꢛ  
ꢜꢘꢊꢃꢝ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
2010 Microchip Technology Inc.  
DS41190G-page 125  
PIC12F629/675  
NOTES:  
DS41190G-page 126  
2010 Microchip Technology Inc.  
PIC12F629/675  
APPENDIX A: DATA SHEET  
REVISION HISTORY  
APPENDIX B: DEVICE  
DIFFERENCES  
The differences between the PIC12F629/675 devices  
listed in this data sheet are shown in Table B-1.  
Revision A  
This is a new data sheet.  
TABLE B-1:  
Feature  
A/D  
DEVICE DIFFERENCES  
PIC12F629 PIC12F675  
Revision B  
Added characterization graphs.  
Updated specifications.  
No  
Yes  
Added notes to indicate Microchip programmers  
maintain all Calibration bits to factory settings and the  
PIC12F675 ANSEL register must be initialized to  
configure pins as digital I/O.  
Updated MLF-S package name to DFN-S.  
Revision C  
Revision D (01/2007)  
Updated Package Drawings; Replace PICmicro with  
PIC; Revised Product ID example (b).  
Revision E (03/2007)  
Replaced Package Drawings (Rev. AM); Replaced  
Development Support Section.  
Revision F (09/2009)  
Updated Registers to new format; Added information to  
the “Package Marking Information” (8-Lead DFN) and  
“Package Details” sections (8-Lead Dual Flat, No Lead  
Package (MD) 4X4X0.9 mm Body (DFN)); Added Land  
Patterns for SOIC (SN) and DFN-S (MF) packages;  
Updated Register 3-2; Added MD Package to the  
Product identification System chapter; Other minor  
corrections.  
Revision G (03/2010)  
Updated the Instruction Set Summary section, adding  
pages 76 and 77.  
2010 Microchip Technology Inc.  
DS41190G-page 127  
PIC12F629/675  
APPENDIX C: DEVICE MIGRATIONS  
APPENDIX D: MIGRATING FROM  
OTHER PIC®  
This section is intended to describe the functional and  
electrical specification differences when migrating  
between functionally similar devices (such as from a  
PIC16C74A to a PIC16C74B).  
DEVICES  
This discusses some of the issues in migrating from  
other PIC devices to the PIC12F6XX family of devices.  
Not Applicable  
D.1  
PIC12C67X to PIC12F6XX  
TABLE 1:  
Feature  
FEATURE COMPARISON  
PIC12C67X PIC12F6XX  
Max Operating Speed  
Max Program Memory  
A/D Resolution  
10 MHz  
2048 bytes  
8-bit  
20 MHz  
1024 bytes  
10-bit  
Data EEPROM  
16 bytes  
5
64 bytes  
8
Oscillator Modes  
Brown-out Detect  
Internal Pull-ups  
Interrupt-on-change  
Comparator  
N
Y
GP0/1/3  
GP0/1/3  
N
GP0/1/2/4/5  
GP0/1/2/3/4/5  
Y
Note: This device has been designed to perform  
to the parameters of its data sheet. It has  
been tested to an electrical specification  
designed to determine its conformance  
with these parameters. Due to process  
differences in the manufacture of this  
device, this device may have different  
performance characteristics than its earlier  
version. These differences may cause this  
device to perform differently in your  
application than the earlier version of this  
device.  
Note: The user should verify that the device  
oscillator starts and performs as expected.  
Adjusting the loading capacitor values and/  
or the oscillator mode may be required.  
DS41190G-page 128  
2010 Microchip Technology Inc.  
PIC12F629/675  
Interrupts .................................................................... 42  
Operation.................................................................... 38  
Operation During SLEEP............................................ 41  
Output......................................................................... 40  
Reference................................................................... 41  
Response Time .......................................................... 41  
Comparator Specifications................................................ 102  
Comparator Voltage Reference Specifications................. 102  
Configuration Bits ............................................................... 54  
Configuring the Voltage Reference..................................... 41  
Crystal Operation................................................................ 55  
Customer Change Notification Service............................. 133  
Customer Notification Service .......................................... 133  
Customer Support............................................................. 133  
INDEX  
A
A/D...................................................................................... 43  
Acquisition Requirements ........................................... 47  
Block Diagram............................................................. 43  
Calculating Acquisition Time....................................... 47  
Configuration and Operation....................................... 43  
Effects of a RESET..................................................... 48  
Internal Sampling Switch (Rss) Impedance................ 47  
Operation During SLEEP............................................ 48  
PIC12F675 Converter Characteristics ...................... 103  
Source Impedance...................................................... 47  
Summary of Registers ................................................ 48  
Absolute Maximum Ratings ................................................ 85  
AC Characteristics  
D
Data EEPROM Memory  
Industrial and Extended .............................................. 96  
ADCON0  
Associated Registers/Bits........................................... 52  
Code Protection.......................................................... 52  
EEADR Register......................................................... 49  
EECON1 Register ...................................................... 49  
EECON2 Register ...................................................... 49  
EEDATA Register....................................................... 49  
Data Memory Organization................................................... 9  
DC Characteristics  
A/D Control register (ADDRESS  
1Fh) .................................................................... 45  
Additional Pin Functions ..................................................... 21  
Interrupt-on-Change.................................................... 23  
Weak Pull-up............................................................... 21  
Analog Input Connection Considerations............................ 40  
Analog-to-Digital Converter. See A/D  
Extended and Industrial.............................................. 93  
Industrial..................................................................... 88  
Development Support......................................................... 81  
Device Differences............................................................ 127  
Device Migrations ............................................................. 128  
Device Overview................................................................... 7  
Assembler  
MPASM Assembler..................................................... 82  
B
Block Diagram  
TMR0/WDT Prescaler................................................. 29  
Block Diagrams  
E
Analog Input Mode...................................................... 40  
Analog Input Model..................................................... 47  
Comparator Output ..................................................... 40  
Comparator Voltage Reference .................................. 41  
GP0 and GP1 Pins...................................................... 24  
GP2............................................................................. 25  
GP3............................................................................. 25  
GP4............................................................................. 26  
GP5............................................................................. 26  
On-Chip Reset Circuit................................................. 57  
RC Oscillator Mode..................................................... 56  
Timer1......................................................................... 32  
Watchdog Timer.......................................................... 67  
Brown-out  
EEADR — EEPROM Address Register (ADDRESS  
9Bh)............................................................................ 49  
EECON1 — EEPROM Control register (Address  
9Ch)............................................................................ 50  
EEPROM Data Memory  
Reading ...................................................................... 51  
Spurious Write............................................................ 51  
Write Verify................................................................. 51  
Writing ........................................................................ 51  
Electrical Specifications...................................................... 85  
Errata.................................................................................... 5  
F
Firmware Instructions ......................................................... 71  
Associated Registers .................................................. 60  
Brown-out Detect (BOD)..................................................... 59  
Brown-out Detect Timing and Characteristics..................... 99  
G
General Purpose Register File ............................................. 9  
GPIO  
Associated Registers.................................................. 27  
GPIO — GPIO register (ADDRESS  
C
C Compilers  
MPLAB C18 ................................................................ 82  
Calibrated Internal RC Frequencies.................................... 97  
CLKOUT ............................................................................. 56  
Code Examples  
05H)............................................................................ 21  
GPIO Port........................................................................... 21  
GPIO, TRISIO Registers..................................................... 21  
I
Changing Prescaler .................................................... 31  
Data EEPROM Read .................................................. 51  
Data EEPROM Write .................................................. 51  
Initializing GPIO .......................................................... 21  
Saving STATUS and W Registers in RAM ................. 66  
Write Verify ................................................................. 51  
Code Protection .................................................................. 69  
Comparator......................................................................... 37  
Associated Registers .................................................. 42  
Configuration............................................................... 39  
Effects of a RESET..................................................... 41  
I/O Operating Modes................................................... 39  
ID Locations........................................................................ 69  
In-Circuit Debugger............................................................. 69  
In-Circuit Serial Programming............................................. 69  
Indirect Addressing, INDF and FSR Registers ................... 20  
Instruction Format............................................................... 71  
Instruction Set..................................................................... 71  
ADDLW....................................................................... 73  
ADDWF ...................................................................... 73  
ANDLW....................................................................... 73  
ANDWF ...................................................................... 73  
MOVF ......................................................................... 76  
2010 Microchip Technology Inc.  
DS41190G-page 129  
PIC12F629/675  
BCF.............................................................................73  
BSF.............................................................................73  
BTFSC ........................................................................74  
BTFSS ........................................................................73  
CALL...........................................................................74  
CLRF...........................................................................74  
CLRW .........................................................................74  
CLRWDT.....................................................................74  
COMF .........................................................................74  
DECF ..........................................................................74  
DECFSZ......................................................................75  
GOTO .........................................................................75  
INCF............................................................................75  
INCFSZ.......................................................................75  
IORLW ........................................................................75  
IORWF........................................................................75  
MOVLW ......................................................................76  
MOVWF ......................................................................76  
NOP ............................................................................76  
RETFIE .......................................................................77  
RETLW .......................................................................77  
RETURN.....................................................................77  
RLF .............................................................................78  
RRF.............................................................................78  
SLEEP ........................................................................78  
SUBLW .......................................................................78  
SUBWF.......................................................................78  
SWAPF .......................................................................78  
XORLW.......................................................................79  
XORWF.......................................................................79  
Summary Table...........................................................72  
Internal 4 MHz Oscillator.....................................................56  
Internal Sampling Switch (Rss) Impedance ........................47  
Internet Address................................................................133  
Interrupts.............................................................................63  
A/D Converter .............................................................65  
Comparator.................................................................65  
Context Saving............................................................66  
GP2/INT......................................................................65  
GPIO...........................................................................65  
Summary of Registers ................................................66  
TMR0 ..........................................................................65  
IOC — INTERRUPT-ON-CHANGE GPIO register  
Stack........................................................................... 19  
Pin Descriptions and Diagrams .......................................... 24  
Pinout Descriptions  
PIC12F629 ................................................................... 8  
PIC12F675 ................................................................... 8  
Power Control/Status Register (PCON).............................. 59  
Power-Down Mode (SLEEP) .............................................. 68  
Power-on Reset (POR)....................................................... 58  
Power-up Timer (PWRT) .................................................... 58  
Prescaler............................................................................. 31  
Switching Prescaler Assignment ................................ 31  
Program Memory Organization............................................. 9  
Programming, Device Instructions...................................... 71  
R
RC Oscillator....................................................................... 56  
Reader Response............................................................. 134  
READ-MODIFY-WRITE OPERATIONS ............................. 71  
Registers  
ANSEL (Analog Select) .............................................. 46  
CONFIG (Configuration Word) ................................... 54  
EEADR (EEPROM Address) ...................................... 50  
EECON1 (EEPROM Control) ..................................... 51  
EEDAT (EEPROM Data)............................................ 49  
INTCON (Interrupt Control)......................................... 15  
IOCB (Interrupt-on-Change GPIO)............................. 24  
Maps  
PIC12F629 ......................................................... 10  
PIC12F675 ......................................................... 10  
OPTION_REG (Option).................................. 14, 30, 31  
OSCCAL (Oscillator Calibration) ................................ 18  
PCON (Power Control) ............................................... 18  
PIE1 (Peripheral Interrupt Enable 1)........................... 16  
PIR1 (Peripheral Interrupt 1)....................................... 17  
STATUS ..................................................................... 14  
T1CON (Timer1 Control) ............................................ 34  
VRCON (Voltage Reference Control)......................... 42  
WPU (Weak Pull-up)................................................... 23  
RESET................................................................................ 57  
Revision History................................................................ 127  
S
Software Simulator (MPLAB SIM) ...................................... 83  
Special Features of the CPU .............................................. 53  
Special Function Registers................................................. 10  
Special Functions Registers Summary............................... 11  
STATUS — STATUS Register (ADDRESS  
(ADDRESS 96h) .................................................................23  
M
MCLR..................................................................................58  
Memory Organization  
03h or 83h) ................................................................. 13  
T
Data EEPROM Memory..............................................49  
Microchip Internet Web Site..............................................133  
Migrating from other PICmicro Devices ............................128  
MPLAB ASM30 Assembler, Linker, Librarian .....................82  
MPLAB Integrated Development Environment Software ....81  
MPLAB PM3 Device Programmer.......................................84  
MPLAB REAL ICE In-Circuit Emulator System...................83  
MPLINK Object Linker/MPLIB Object Librarian ..................82  
Time-out Sequence ............................................................ 59  
Timer0................................................................................. 29  
Associated Registers.................................................. 31  
External Clock............................................................. 30  
Interrupt ...................................................................... 29  
Operation.................................................................... 29  
T0CKI ......................................................................... 30  
Timer1  
O
Associated Registers.................................................. 35  
Asynchronous Counter Mode..................................... 35  
Reading and Writing........................................... 35  
Interrupt ...................................................................... 33  
Modes of Operations .................................................. 33  
Operation During SLEEP............................................ 35  
Oscillator..................................................................... 35  
Prescaler .................................................................... 33  
Timer1 Module with Gate Control....................................... 32  
Timing Diagrams  
OPCODE Field Descriptions...............................................71  
Oscillator Configurations.....................................................55  
Oscillator Start-up Timer (OST) ..........................................58  
P
Packaging .........................................................................117  
Details.......................................................................118  
Marking .....................................................................117  
PCL and PCLATH...............................................................19  
Computed GOTO........................................................19  
DS41190G-page 130  
2010 Microchip Technology Inc.  
PIC12F629/675  
CLKOUT and I/O......................................................... 98  
External Clock............................................................. 96  
INT Pin Interrupt.......................................................... 65  
PIC12F675 A/D Conversion (Normal Mode)............. 104  
PIC12F675 A/D Conversion Timing  
(SLEEP Mode).......................................................... 105  
RESET, Watchdog Timer, Oscillator Start-up Timer  
and Power-up Timer .................................................. 99  
Time-out Sequence on Power-up (MCLR not Tied to  
VDD)/  
Case 1 ................................................................ 62  
Case 2 ................................................................ 62  
Time-out Sequence on Power-up  
(MCLR Tied to VDD).................................................... 62  
Timer0 and Timer1 External Clock ........................... 101  
Timer1 Incrementing Edge.......................................... 33  
Timing Parameter Symbology............................................. 95  
TRISIO — GPIO Tri-state REGISTER (Address  
85H) ............................................................................ 22  
V
Voltage Reference Accuracy/Error ..................................... 41  
W
Watchdog Timer  
Summary of Registers ................................................ 67  
Watchdog Timer (WDT)...................................................... 66  
WPU — Weak pull-up Register (ADDRESS  
95h)............................................................................. 22  
WWW Address.................................................................. 133  
WWW, On-Line Support ....................................................... 5  
2010 Microchip Technology Inc.  
DS41190G-page 131  
PIC12F629/675  
NOTES:  
DS41190G-page 132  
2010 Microchip Technology Inc.  
PIC12F629/675  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change  
Notification and follow the registration instructions.  
2010 Microchip Technology Inc.  
DS41190G-page 133  
PIC12F629/675  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
PIC12F629/675  
DS41190G  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS41190G-page 134  
2010 Microchip Technology Inc.  
PIC12F629/675  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature  
Range  
Package  
Pattern  
a)  
PIC12F629 - E/P 301 = Extended Temp., PDIP  
package, 20 MHz, QTP pattern #301.  
PIC12F675 - I/SN = Industrial temp., SOIC  
package, 20 MHz.  
b)  
Device:  
PIC12F6XX: Standard VDD range  
PIC12F6XXT: (Tape and Reel)  
Temperature  
Range:  
I
E
=
=
-40C to +85C (Industrial)  
-40C to +125C (Extended)  
Package:  
P
=
=
=
=
PDIP  
SN  
MF  
MD  
SOIC (Gull wing, 3.90 mm body)  
MLF-S  
8-Lead Plastic Dual Flat, No Lead (4X4) (DFN)  
Pattern:  
3-Digit Pattern Code for QTP (blank otherwise)  
* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of  
each oscillator type.  
2010 Microchip Technology Inc.  
DS41190G-page 135  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
01/05/10  
DS41190G-page 136  
2010 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY