PIC12F635TE/STQTP [MICROCHIP]

8/14-PIN FLASH-BASED, 8-BIT CMOS MICROCONTROLLERS WITH NANOWATT TECHNOLOGY; 8月14日-PIN基于闪存的8位CMOS采用纳瓦技术的微控制器
PIC12F635TE/STQTP
型号: PIC12F635TE/STQTP
厂家: MICROCHIP    MICROCHIP
描述:

8/14-PIN FLASH-BASED, 8-BIT CMOS MICROCONTROLLERS WITH NANOWATT TECHNOLOGY
8月14日-PIN基于闪存的8位CMOS采用纳瓦技术的微控制器

闪存 微控制器
文件: 总196页 (文件大小:3306K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC12F635/PIC16F636/639  
Data Sheet  
8/14-Pin Flash-Based,  
8-Bit CMOS Microcontrollers  
with nanoWatt Technology  
*8-bit, 8-pin Devices Protected by Microchip’s Low Pin Count Patent: U. S. Patent No. 5,847,450. Additional U.S. and  
foreign patents and applications may be issued or pending.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-  
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,  
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,  
RELATED TO THE INFORMATION, INCLUDING BUT NOT  
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,  
MERCHANTABILITY OR FITNESS FOR PURPOSE.  
Microchip disclaims all liability arising from this information and  
its use. Use of Microchip’s products as critical components in  
life support systems is not authorized except with express  
written approval by Microchip. No licenses are conveyed,  
implicitly or otherwise, under any Microchip intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart, rfPIC, and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
PICMASTER, SEEVAL, SmartSensor and The Embedded  
Control Solutions Company are registered trademarks of  
Microchip Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, dsPICDEM,  
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,  
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial  
Programming, ICSP, ICEPIC, MPASM, MPLIB, MPLINK,  
MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail,  
PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel and Total  
Endurance are trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2005, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 quality system certification for  
its worldwide headquarters, design and wafer fabrication facilities in  
Chandler and Tempe, Arizona and Mountain View, California in  
October 2003. The Company’s quality system processes and  
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
DS41232B-page ii  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
8/14-Pin Flash-Based, 8-Bit CMOS Microcontrollers  
With nanoWatt Technology  
High-Performance RISC CPU:  
Peripheral Features:  
• Only 35 instructions to learn:  
- All single-cycle instructions except branches  
• Operating speed:  
• 6/12 I/O pins with individual direction control:  
- High-current source/sink for direct LED drive  
- Interrupt-on-pin change  
- DC – 20 MHz oscillator/clock input  
- DC – 200 ns instruction cycle  
• Interrupt capability  
• 8-level deep hardware stack  
• Direct, Indirect and Relative Addressing modes  
- Individually programmable weak pull-ups/  
pull-downs  
- Ultra Low-Power Wake-up  
• Analog comparator module with:  
- Up to two analog comparators  
- Programmable on-chip voltage reference  
(CVREF) module (% of VDD)  
Special Microcontroller Features:  
• Precision Internal Oscillator:  
- Factory calibrated to ±1%  
- Comparator inputs and outputs externally  
accessible  
- Software selectable frequency range of  
8 MHz to 31 kHz  
• Timer0: 8-bit timer/counter with 8-bit  
programmable prescaler  
- Software tunable  
• Enhanced Timer1:  
- Two-Speed Start-up mode  
- 16-bit timer/counter with prescaler  
- External Gate Input mode  
- Crystal fail detect for critical applications  
• Clock mode switching for low power operation  
• Power-saving Sleep mode  
• Wide operating voltage range (2.0V-5.5V)  
• Industrial and Extended Temperature range  
• Power-on Reset (POR)  
- Option to use OSC1 and OSC2 in LP mode  
as Timer1 oscillator if INTOSC mode  
selected  
• KEELOQ® compatible hardware Cryptographic  
module  
• In-Circuit Serial ProgrammingTM (ICSPTM) via  
two pins  
• Wake-up Reset (WUR)  
• Independent weak pull-up/pull-down resistors  
• Programmable Low-Voltage Detect (PLVD)  
• Power-up Timer (PWRT) and Oscillator Start-up  
Timer (OST)  
Low Frequency Analog Front-End Features  
(PIC16F639 only):  
• Brown-out Detect (BOD) with software control  
option  
• Enhanced Low-Current Watchdog Timer (WDT)  
with on-chip oscillator (software selectable  
nominal 268 seconds with full prescaler) with  
software enable  
• Three input pins for 125 kHz LF input signals  
• High input detection sensitivity (3 mVPP, typical)  
• Demodulated data, Carrier clock or RSSI output  
selection  
• Input carrier frequency: 125 kHz, typical  
• Input modulation frequency: 4 kHz, maximum  
• Multiplexed Master Clear with pull-up/input pin  
• Programmable code protection (program and  
data independent)  
• 8 internal configuration registers  
• Bidirectional transponder communication  
(LF talk back)  
• High-Endurance Flash/EEPROM cell:  
- 100,000 write Flash endurance  
- 1,000,000 write EEPROM endurance  
- Flash/Data EEPROM Retention: > 40 years  
• Programmable antenna tuning capacitance  
(up to 63 pF, 1 pF/step)  
• Low standby current: 5 μA (with 3 channels  
enabled), typical  
• Low operating current: 15 μA (with 3 channels  
enabled), typical  
Low Power Features:  
• Serial Peripheral Interface (SPI™) with internal  
MCU and external devices  
• Supports Battery Back-up mode and batteryless  
operation with external circuits  
• Standby Current:  
- 1 nA @ 2.0V, typical  
• Operating Current:  
- 8.5 μA @ 32 kHz, 2.0V, typical  
- 100 μA @ 1 MHz, 2.0V, typical  
• Watchdog Timer Current:  
- 1 μA @ 2.0V, typical  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 1  
PIC12F635/PIC16F636/639  
Program Memory  
Flash (words)  
Data Memory  
LowFrequency  
Analog  
Device  
I/O  
Comparators  
SRAM (bytes)  
EEPROM (bytes)  
Front-End  
PIC12F635  
PIC16F636  
PIC16F639  
1024  
2048  
2048  
64  
128  
256  
256  
6
1
2
2
N
N
Y
128  
128  
12  
12  
Pin Diagrams  
8-Pin PDIP, SOIC, DFN-S  
8
1
2
VDD  
VSS  
7
GP5/T1CKI/OSC1/CLKIN  
GP4/T1G/OSC2/CLKOUT  
GP3/MCLR/VPP  
GP0/C1IN+/ICSPDAT/ULPWU  
GP1/C1IN-/ICSPCLK  
3
4
6
5
GP2/T0CKI/INT/C1OUT  
14-Pin PDIP, SOIC, TSSOP  
VDD  
1
2
3
4
5
6
7
VSS  
14  
13  
12  
11  
10  
9
RA5/T1CKI/OSC1/CLKIN  
RA4/T1G/OSC2/CLKOUT  
RA0/C1IN+/ICSPDAT/ULPWU  
RA1/C1IN-/VREF/ICSPCLK  
RA3/MCLR/VPP  
RC5  
RC4/C2OUT  
RC3  
RA2/T0CKI/INT/C1OUT  
RC0/C2IN+  
RC1/C2IN-  
RC2  
8
20-Pin SSOP  
VDD  
RA5/T1CKI/OSC1/CLKIN  
RA4/T1G/OSC2/CLKOUT  
RA3/MCLR/VPP  
VSS  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
RA0/C1IN+/ICSPDAT/ULPWU  
RA1/C1IN-/VREF/ICSPCLK  
RA2/TOCKI/INT/C1OUT  
RC0/C2IN+  
17  
16  
RC5  
RC4/C2OUT  
RC1/C2IN-/CS  
15  
14  
13  
12  
11  
RC3/LFDATA/RSSI/CCLK/SDIO  
RC2/SCLK/ALERT  
(3)  
(4)  
VDDT  
VSST  
LCZ  
LCY  
LCCOM  
LCX  
Note 1: Any references to PORTA, RAn, TRISA and TRISAn refer to GPIO, GPn, TRISIO and TRISIOn, respectively.  
2: Additional information on I/O ports may be found in the “PICmicro® Mid-Range MCU Family Reference  
Manual” (DS33023).  
3: VDDT is the supply voltage of the Analog Front-End section (PIC16F639 only). VDDT is treated as VDD in  
this document unless otherwise stated.  
4: VSST is the ground reference voltage of the Analog Front-End section (PIC16F639 only). VSST is treated  
as VSS in this document unless otherwise stated.  
DS41232B-page 2  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 5  
2.0 Memory Organization................................................................................................................................................................. 11  
3.0 Clock Sources ............................................................................................................................................................................ 29  
4.0 I/O Ports ..................................................................................................................................................................................... 39  
5.0 Timer0 Module ........................................................................................................................................................................... 53  
6.0 Timer1 Module with Gate Control............................................................................................................................................... 56  
7.0 Comparator Module.................................................................................................................................................................... 61  
8.0 Programmable Low-Voltage Detect (PLVD) Module.................................................................................................................. 71  
9.0 Data EEPROM Memory ............................................................................................................................................................. 73  
10.0 KeeLoq Compatible Cryptographic Module................................................................................................................................ 77  
11.0 Analog Front-End (AFE) Functional Description (PIC16F639 Only) .......................................................................................... 79  
12.0 Special Features of the CPU.................................................................................................................................................... 111  
13.0 Instruction Set Summary.......................................................................................................................................................... 131  
14.0 Development Support............................................................................................................................................................... 141  
15.0 Electrical Specifications............................................................................................................................................................ 147  
16.0 DC and AC Characteristics Graphs and Tables....................................................................................................................... 173  
17.0 Packaging Information.............................................................................................................................................................. 175  
On-Line Support  
185  
Systems Information and Upgrade Hot Line ..................................................................................................................................... 185  
Reader Response............................................................................................................................................................................. 186  
Appendix A: Data Sheet Revision History......................................................................................................................................... 187  
Appendix B: Product Identification System....................................................................................................................................... 193  
Worldwide Sales and Service ........................................................................................................................................................... 194  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
• Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 3  
PIC12F635/PIC16F636/639  
NOTES:  
DS41232B-page 4  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
The PIC12F635/PIC16F636/639 devices are covered  
by this data sheet. Figure 1-1 shows a block diagram of  
the PIC12F635/PIC16F636/639 devices. Table 1-1  
shows the pinout description.  
1.0  
DEVICE OVERVIEW  
This document contains device specific information for  
the PIC12F635/PIC16F636/639 devices. Additional  
information may be found in the “PICmicro® Mid-Range  
MCU Family Reference Manual” (DS33023), which may  
be obtained from your local Microchip Sales  
Representative or downloaded from the Microchip web  
site. The reference manual should be considered a  
complementary document to this data sheet and is  
highly recommended reading for a better understanding  
of the device architecture and operation of the peripheral  
modules.  
FIGURE 1-1:  
PIC12F635 BLOCK DIAGRAM  
Configuration  
13  
8
GPIO  
Data Bus  
Program Counter  
GP0/C1IN+/ICSPDAT/ULPWU  
GP1/C1IN-/ICSPCLK  
Flash  
1K x 14  
Program  
Memory  
GP2/T0CKI/INT/C1OUT  
GP3/MCLR/VPP  
RAM  
64 bytes  
8-level Stack  
(13-bit)  
GP4/T1G/OSC2/CLKOUT  
GP5/T1CKI/OSC1/CLKIN  
File  
Registers  
Program  
Bus  
14  
RAM Addr  
9
Addr MUX  
Instruction reg  
Indirect  
Addr  
7
Direct Addr  
8
FSR reg  
Status reg  
8
3
Power-up  
Timer  
MUX  
Instruction  
Decode and  
Control  
Oscillator  
Start-up Timer  
ALU  
Power-on  
Reset  
OSC1/CLKIN  
8
Timing  
Generation  
Watchdog  
Timer  
W reg  
Brown-out  
Detect  
OSC2/CLKOUT  
Programmable  
8 MHz  
Internal  
Oscillator Oscillator  
31 kHz  
Internal  
Low-Voltage Detect  
Wake-up  
Reset  
T1G  
VDD VSS  
MCLR  
T1CKI  
Timer0  
Timer1  
T0CKI  
Cryptographic  
Module  
1 Analog  
Comparator  
and Reference  
EEDAT  
128 bytes  
Data  
EEPROM  
EEADDR  
C1IN- C1IN+ C1OUT  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 5  
PIC12F635/PIC16F636/639  
FIGURE 1-2:  
PIC16F636 BLOCK DIAGRAM  
Configuration  
13  
8
Data Bus  
PORTA  
Program Counter  
RA0/C1IN+/ICSPDAT/ULPWU  
RA1/C1IN-/VREF/ICSPCLK  
RA2/T0CKI/INT/C1OUT  
RA3/MCLR/VPP  
Flash  
2K x 14  
Program  
Memory  
RAM  
128  
bytes  
8-level Stack  
(13-bit)  
RA4/T1G/OSC2/CLKOUT  
RA5/T1CKI/OSC1/CLKIN  
File  
Registers  
Program  
Bus  
14  
RAM Addr  
9
Addr MUX  
Instruction reg  
PORTC  
Indirect  
Addr  
7
Direct Addr  
8
RC0/C2IN+  
RC1/C2IN-  
RC2  
FSR reg  
RC3  
Status reg  
8
RC4/C2OUT  
RC5  
3
Power-up  
Timer  
MUX  
Oscillator  
Instruction  
Decode and  
Control  
Start-up Timer  
ALU  
Power-on  
Reset  
8
Watchdog  
Timer  
OSC1/CLKIN  
W reg  
Timing  
Generation  
Brown-out  
Detect  
OSC2/CLKOUT  
Programmable  
Low-Voltage Detect  
8 MHz  
Internal  
Oscillator Oscillator  
31 kHz  
Internal  
Wake-up  
Reset  
T1CKI T1G  
VDD  
VSS  
MCLR  
Timer0  
Timer1  
T0CKI  
2 Analog Comparators  
and Reference  
Cryptographic  
Module  
EEDAT  
256 bytes  
Data  
EEPROM  
EEADDR  
C1IN- C1IN+ C1OUT C2IN- C2IN+ C2OUT  
DS41232B-page 6  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 1-3:  
PIC16F639 BLOCK DIAGRAM  
Configuration  
13  
8
PORTA  
Data Bus  
Program Counter  
RA0/C1IN+/ICSPDAT/ULPWU  
RA1/C1IN-/VREF/ICSPCLK  
RA2/T0CKI/INT/C1OUT  
RA3/MCLR/VPP  
Flash  
2K x 14  
Program  
Memory  
RAM  
128  
8-level Stack  
(13-bit)  
bytes  
RA4/T1G/OSC2/CLKOUT  
RA5/T1CKI/OSC1/CLKIN  
File  
Registers  
Program  
Bus  
14  
RAM Addr (1)  
9
Addr MUX  
Instruction reg  
PORTC  
Indirect  
Addr  
7
Direct Addr  
RC0/C2IN+  
8
RC1/C2IN-/CS  
FSR reg  
RC2/SCLK/ALERT  
RC3/LFDATA/RSSI/CCLK/SDIO  
RC4/C2OUT  
Status reg  
8
RC5  
3
MUX  
Power-up  
Timer  
Oscillator  
Instruction  
Decode and  
Control  
Start-up Timer  
ALU  
Power-on  
Reset  
8
Watchdog  
Timer  
OSC1/CLKIN  
W reg  
Timing  
Generation  
VDDT  
VSST  
Brown-out  
Detect  
125 kHz  
Analog Front-End  
(AFE)  
OSC2/CLKOUT  
Programmable  
Low-voltage Detect  
LCCOM  
8 MHz  
Internal  
31 kHz  
Internal  
Wake-up  
Reset  
T1CKI T1G  
Oscillator Oscillator  
LCX LCY LCZ  
VDD VSS  
MCLR  
Timer0  
Timer1  
T0CKI  
2 Analog  
Comparators  
and Reference  
EEDAT  
256 bytes  
DATA  
KEELOQ Module  
EEPROM  
EEADDR  
C1IN- C1IN+ C1OUTC2IN-  
C2IN+ C2OUT  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 7  
PIC12F635/PIC16F636/639  
TABLE 1-1:  
PIC12F635 PINOUT DESCRIPTIONS  
Input Output  
Name  
Function  
Description  
Type  
Type  
VDD  
VDD  
GP5  
D
Power supply for microcontroller.  
GP5/T1CKI/OSC1/CLKIN  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-  
change. Individually enabled pull-up/pull-down.  
T1CKI  
OSC1  
CLKIN  
GP4  
ST  
XTAL  
ST  
Timer1 clock.  
XTAL connection.  
TOSC reference clock.  
GP4/T1G/OSC2/CLKOUT  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-  
change. Individually enabled pull-up/pull-down.  
T1G  
OSC2  
CLKOUT  
GP3  
ST  
Timer1 gate.  
XTAL XTAL connection.  
CMOS TOSC/4 reference clock.  
GP3/MCLR/VPP  
TTL  
General purpose input. Individually controlled  
interrupt-on-change.  
MCLR  
ST  
Master Clear Reset. Pull-up enabled when configured as  
MCLR.  
VPP  
HV  
ST  
Programming voltage.  
GP2/T0CKI/INT/C1OUT  
GP2  
CMOS General purpose I/O. Individually controlled  
interrupt-on-change. Individually enabled  
pull-up/pull-down.  
T0CKI  
INT  
ST  
ST  
External clock for Timer0.  
External interrupt.  
C1OUT  
GP1  
CMOS Comparator 1 output.  
GP1/C1IN-/ICSPCLK  
TTL  
CMOS General purpose I/O. Individually controlled  
interrupt-on-change. Individually enabled  
pull-up/pull-down.  
C1IN-  
ICSPCLK  
GP0  
AN  
ST  
Comparator 1 input – negative.  
Serial programming clock.  
GP0/C1IN+/ICSPDAT/ULPWU  
TTL  
General purpose I/O. Individually controlled  
interrupt-on-change. Individually enabled  
pull-up/pull-down.  
Selectable Ultra Low-Power Wake-up pin.  
C1IN+  
AN  
Comparator 1 input – positive.  
ICSPDAT TTL  
CMOS Serial programming data I/O.  
ULPWU  
VSS  
AN  
D
Ultra Low-Power Wake-up input.  
VSS  
Ground reference for microcontroller.  
Legend: AN = Analog input or output  
HV = High Voltage  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
XTAL = Crystal  
D = Direct  
TTL = TTL compatible input  
DS41232B-page 8  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
TABLE 1-2:  
PIC16F636 PINOUT DESCRIPTIONS  
Input Output  
Name  
Function  
Description  
Type  
Type  
VDD  
VDD  
RA5  
D
Power supply for microcontroller.  
RA5/T1CKI/OSC1/CLKIN  
TTL  
CMOS General purpose I/O. Individually controlled  
interrupt-on-change. Individually enabled pull-up/pull-down.  
T1CKI  
OSC1  
CLKIN  
RA4  
ST  
XTAL  
ST  
Timer1 clock.  
XTAL connection.  
TOSC reference clock.  
RA4/T1G/OSC2/CLKOUT  
RA3/MCLR/VPP  
TTL  
CMOS General purpose I/O. Individually controlled  
interrupt-on-change. Individually enabled pull-up/pull-down.  
T1G  
OSC2  
CLKOUT  
RA3  
ST  
Timer1 gate.  
XTAL XTAL connection.  
CMOS TOSC/4 reference clock.  
TTL  
General purpose input. Individually controlled  
interrupt-on-change.  
MCLR  
ST  
Master Clear Reset. Pull-up enabled when  
configured as MCLR.  
VPP  
RC5  
HV  
TTL  
TTL  
Programming voltage.  
RC5  
CMOS General purpose I/O.  
CMOS General purpose I/O.  
CMOS Comparator 2 output.  
CMOS General purpose I/O.  
CMOS General purpose I/O.  
CMOS General purpose I/O.  
RC4/C2OUT  
RC4  
C2OUT  
RC3  
RC3  
TTL  
TTL  
TTL  
AN  
RC2  
RC2  
RC1/C2IN-  
RC1  
C2IN-  
RC0  
Comparator 1 input – negative.  
RC0/C2IN+  
TTL  
AN  
CMOS General purpose I/O.  
C2IN+  
RA2  
Comparator 1 input – positive.  
RA2/T0CKI/INT/C1OUT  
ST  
CMOS General purpose I/O. Individually controlled  
interrupt-on-change. Individually enabled pull-up/pull-down.  
T0CKI  
INT  
ST  
ST  
External clock for Timer0.  
External interrupt.  
C1OUT  
RA1  
CMOS Comparator 1 output.  
RA1/C1IN-/VREF/ICSPCLK  
RA0/C1IN+/ICSPDAT/ULPWU  
TTL  
CMOS General purpose I/O. Individually controlled  
interrupt-on-change. Individually enabled pull-up/pull-down.  
C1IN-  
ICSPCLK  
RA0  
AN  
ST  
Comparator 1 input – negative.  
Serial programming clock.  
TTL  
General purpose I/O. Individually controlled  
interrupt-on-change. Individually enabled pull-up/pull-down.  
Selectable Ultra Low-Power Wake-up pin.  
C1IN+  
AN  
Comparator 1 input – positive.  
ICSPDAT TTL  
CMOS Serial programming data I/O.  
ULPWU  
VSS  
AN  
D
Ultra Low-Power Wake-up input.  
VSS  
Ground reference for microcontroller.  
Legend: AN = Analog input or output  
HV = High Voltage  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
XTAL = Crystal  
D = Direct  
TTL = TTL compatible input  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 9  
PIC12F635/PIC16F636/639  
TABLE 1-3:  
PIC16F639 PINOUT DESCRIPTIONS  
Input  
Type  
Output  
Type  
Name  
Function  
Description  
VDD  
VDD  
RA5  
D
Power supply for microcontroller  
RA5/T1CKI/OSC1/CLKIN  
TTL  
CMOS  
General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up/pull-down.  
T1CKI  
OSC1  
CLKIN  
RA4  
ST  
XTAL  
ST  
Timer1 clock  
XTAL connection  
TOSC/4 reference clock  
TTL  
CMOS  
General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up/pull-down.  
RA4/T1G/OSC2/CLKOUT  
RA3/MCLR/VPP  
ST  
Timer1 gate  
T1G  
OSC2  
CLKOUT  
RA3  
XTAL  
XTAL connection  
CMOS  
TOSC reference clock  
TTL  
General purpose input. Individually controlled interrupt-on-change.  
Master Clear Reset. Pull-up enabled when configured as MCLR.  
MCLR  
VPP  
ST  
HV  
TTL  
TTL  
Programming voltage  
RC5  
RC5  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
General purpose I/O  
RC4/C2OUT  
RC4  
General purpose I/O  
C2OUT  
RC3  
Comparator2 output  
RC3/LFDATA/RSSI/CCLK/SDIO  
TTL  
General purpose I/O  
LFDATA  
RSSI  
Digital output representation of analog input signal to LC pins.  
Current Received signal strength indicator. Analog current that is proportional  
to input amplitude.  
CCLK  
SDIO  
VDDT  
TTL  
D
CMOS  
Carrier clock output  
Input/Output for SPI communication  
VDDT  
Power supply for Analog Front-End. In this document, VDDT is treated  
the same as VDD, unless otherwise stated.  
LCZ  
LCZ  
LCY  
AN  
AN  
AN  
AN  
D
125 kHz analog Z channel input  
125 kHz analog Y channel input  
125 kHz analog X channel input  
Common reference for analog inputs  
LCY  
LCX  
LCX  
LCCOM  
VSST  
LCCOM  
VSST  
Ground reference for Analog Front-End. In this document, VSST is  
treated the same as VSS, unless otherwise stated.  
RC2  
SCLK  
ALERT  
RC1  
TTL  
TTL  
CMOS  
General purpose I/O  
RC2/SCLK/ALERT  
RC1/C2IN-/CS  
Digital clock input for SPI communication  
Output with internal pull-up resistor for AFE error signal  
General purpose I/O  
OD  
TTL  
AN  
CMOS  
C2IN-  
Comparator1 input - negative  
Chip select input for SPI communication with internal pull-up resistor  
TTL  
CS  
RC0  
RC0/C2IN+  
TTL  
AN  
ST  
CMOS  
General purpose I/O  
C2IN+  
RA2  
Comparator1 input - positive  
RA2/T0CKI/INT/C1OUT  
CMOS  
General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up/pull-down.  
T0CKI  
INT  
ST  
ST  
External clock for Timer0  
External Interrupt  
C1OUT  
RA1  
CMOS  
CMOS  
Comparator1 output  
RA1/C1IN-/VREF/ICSPCLK  
TTL  
General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up/pull-down.  
C1IN-  
ICSPCLK  
RA0  
AN  
ST  
Comparator1 input – negative  
Serial Programming Clock  
RA0/C1IN+/ICSPDAT/ULPWU  
TTL  
General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up/pull-down. Selectable Ultra Low-Power  
Wake-up pin.  
C1IN+  
ICSPDAT  
ULPWU  
VSS  
AN  
TTL  
AN  
D
CMOS  
Comparator1 input – positive  
Serial Programming Data IO  
Ultra Low-Power Wake-up input  
Ground reference for microcontroller  
VSS  
Legend:  
AN = Analog input or output  
HV = High Voltage  
TTL = TTL compatible input  
CMOS = CMOS compatible input or output  
D
OD  
=
=
Direct  
Direct  
ST  
= Schmitt Trigger input with CMOS levels  
= Crystal  
XTAL  
DS41232B-page 10  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 2-1: PROGRAM MEMORY MAP AND  
STACK OF THE PIC12F635  
2.0  
2.1  
MEMORY ORGANIZATION  
Program Memory Organization  
PC<12:0>  
CALL, RETURN  
RETFIE, RETLW  
The PIC12F635/PIC16F636/639 devices have a 13-bit  
program counter capable of addressing an 8K x 14  
program memory space. Only the first 1K x 14  
(0000h-03FFh, for the PIC12F635) and 2K x 14  
(0000h-07FFh, for the PIC16F636/639) is physically  
implemented. Accessing a location above these  
boundaries will cause a wrap around within the first  
2K x 14 space. The Reset vector is at 0000h and the  
interrupt vector is at 0004h (see Figure 2-1).  
13  
Stack Level 1  
Stack Level 8  
Reset Vector  
0000h  
2.2  
Data Memory Organization  
Interrupt Vector  
0004h  
0005h  
The data memory (see Figure 2-2) is partitioned into  
two banks, which contain the General Purpose  
Registers (GPR) and the Special Function Registers  
(SFR). The Special Function Registers are located in  
the first 32 locations of each bank. Register locations  
20h-7Fh in Bank 0 and A0h-BFh in Bank 1 are GPRs,  
implemented as static RAM for the PIC16F636/639.  
For the PIC12F635, register locations 40h through 7Fh  
are GPRs implemented as static RAM. Register  
locations F0h-FFh in Bank 1 point to addresses 70h-  
7Fh in Bank 0. All other RAM is unimplemented and  
returns ‘0’ when read. RP0 (STATUS<5>) is the bank  
select bit.  
On-chip Program  
Memory  
03FFh  
0400h  
Access 0-3FFh  
1FFFh  
FIGURE 2-2: PROGRAM MEMORY MAP AND  
STACK OF THE PIC16F636/639  
PC<12:0>  
TABLE 2-1:  
BANK SELECTION  
CALL, RETURN  
RETFIE, RETLW  
13  
RP0  
0
RP1  
0
Bank  
0
1
2
3
Stack Level 1  
Stack Level 8  
1
0
0
1
1
1
Reset Vector  
0000h  
0004h  
0005h  
Interrupt Vector  
On-chip Program  
Memory  
07FFh  
0800h  
Access 0-7FFh  
1FFFh  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 11  
PIC12F635/PIC16F636/639  
2.2.1  
GENERAL PURPOSE REGISTER  
The register file is organized as 64 x 8 for the  
PIC12F635 and 128 x 8 for the PIC16F636/639. Each  
register is accessed, either directly or indirectly,  
through the File Select Register, FSR (see Section 2.4  
“Indirect Addressing, INDF and FSR Registers”).  
2.2.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers (SFRs) are registers  
used by the CPU and peripheral functions for controlling  
the desired operation of the device (see Figure 2-1).  
These registers are static RAM.  
The special registers can be classified into two sets:  
core and peripheral. The Special Function Registers  
associated with the “core” are described in this section.  
Those related to the operation of the peripheral  
features are described in the section of that peripheral  
feature.  
DS41232B-page 12  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 2-3:  
PIC12F635 SPECIAL FUNCTION REGISTERS  
File File  
Address Address  
Indirect addr.(1) 00h Indirect addr.(1) 80h  
OPTION_REG 81h  
File  
Address  
File  
Address  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
1A0h  
TMR0  
PCL  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
PCL  
STATUS  
FSR  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
STATUS  
FSR  
GPIO  
TRISIO  
Accesses  
00h-0Bh  
Accesses  
80h-8Bh  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
TMR1L  
TMR1H  
T1CON  
PCON  
OSCCON  
OSCTUNE  
CRCON  
CRDAT0(2)  
CRDAT1(2)  
CRDAT2(2)  
CRDAT3(2)  
LVDCON  
WPUDA  
IOCA  
WDA  
WDTCON  
CMCON0  
CMCON1  
VRCON  
EEDAT  
EEADR  
EECON1  
EECON2(1)  
3Fh  
40h  
General  
Purpose  
Register  
64 Bytes  
EFh  
F0h  
FFh  
16Fh  
170h  
17Fh  
1EFh  
1F0h  
1FFh  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
Accesses  
Bank 0  
7Fh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Unimplemented data memory locations, read as ‘0’.  
Note 1: Not a physical register.  
®
2: CRDAT<3:0> are KEELOQ hardware peripheral related registers and require the execution of the  
“KEELOQ® Encoder License Agreement” regarding implementation of the module and access to related  
registers. The “KEELOQ® Encoder License Agreement” may be accessed through the Microchip web site  
located at www.microchip.com/KEELOQ or by contacting your local Microchip Sales Representative.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 13  
PIC12F635/PIC16F636/639  
FIGURE 2-4:  
PIC16F636/639 SPECIAL FUNCTION REGISTERS  
File  
Address  
File  
Address  
File  
Address  
File  
Address  
Indirect addr.(1) 00h  
Indirect addr. (1) 80h  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
1A0h  
TMR0  
PCL  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
OPTION_REG 81h  
PCL  
STATUS  
FSR  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
STATUS  
FSR  
PORTA  
TRISA  
Accesses  
00h-0Bh  
Accesses  
80h-8Bh  
PORTC  
TRISC  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
TMR1L  
TMR1H  
T1CON  
PCON  
OSCCON  
OSCTUNE  
CRCON  
CRDAT0(2)  
CRDAT1(2)  
CRDAT2(2)  
CRDAT3(2)  
LVDCON  
WPUDA  
IOCA  
WDA  
WDTCON  
CMCON0  
CMCON1  
VRCON  
EEDAT  
EEADR  
EECON1  
EECON2(1)  
General  
Purpose  
Register  
32 Bytes  
General  
Purpose  
Register  
96 Bytes  
BFh  
C0h  
EFh  
16Fh  
170h  
17Fh  
1EFh  
1F0h  
1FFh  
F0h  
FFh  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
Accesses  
Bank 0  
7Fh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Unimplemented data memory locations, read as ‘0’.  
Note 1: Not a physical register.  
2: CRDAT<3:0> are KEELOQ hardware peripheral related registers and require the execution of the “KEELOQ  
®
Encoder License Agreement” regarding implementation of the module and access to related registers. The  
®
“KEELOQ Encoder License Agreement” may be accessed through the Microchip web site located at  
www.microchip.com/KEELOQ or by contacting your local Microchip Sales Representative.  
DS41232B-page 14  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
TABLE 2-2:  
PIC12F635 SPECIAL FUNCTION REGISTERS SUMMARY BANK 0  
Value on  
Value on  
Addr Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR/BOD/ all other  
(1)  
WUR  
Resets  
Bank 0  
00h INDF  
Addressing this location uses contents of FSR to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
01h TMR0  
02h PCL  
Timer0 Module Register  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
--xx xx00 --uu uu00  
Program Counter’s (PC) Least Significant Byte  
03h STATUS  
04h FSR  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address Pointer  
05h GPIO  
GP5  
GP4  
GP3  
GP2  
GP1  
GP0  
06h  
07h  
08h  
09h  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
0Ah PCLATH  
0Bh INTCON  
0Ch PIR1  
Write Buffer for upper 5 bits of Program Counter  
---0 0000 ---0 0000  
0000 0000 0000 0000  
(2)  
GIE  
EEIF  
PEIE  
LVDIF  
T0IE  
CRIF  
INTE  
RAIE  
C1IF  
T0IF  
INTF  
RAIF  
OSFIF  
TMR1IF 000- 00-0 000- 00-0  
0Dh  
0Eh TMR1L  
0Fh TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1  
10h T1CON  
Unimplemented  
Holding Register for the Least Significant Byte of the 16-bit TMR1  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000 uuuu uuuu  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
18h WDTCON  
19h CMCON0  
1Ah CMCON1  
C1OUT  
WDTPS3 WDTPS2 WDTPS1 WDTPS0 SWDTEN ---0 1000 ---0 1000  
C1INV  
CIS  
CM2  
CM1  
CM0  
-0-0 0000 -0-0 0000  
T1GSS CMSYNC ---- --10 ---- --10  
1Bh  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
1Ch  
1Dh  
1Eh  
1Fh  
Legend:  
— = Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition,  
shaded = unimplemented  
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
2: MCLR and WDT Reset do not affect the previous value data latch. The RAIF bit will be cleared upon Reset but will set  
again if the mismatch exists.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 15  
PIC12F635/PIC16F636/639  
TABLE 2-3:  
PIC12F635 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1  
Value on  
Value on  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR/BOD/ all other  
(1)  
WUR  
Resets  
Bank 1  
80h INDF  
Addressing this location uses contents of FSR to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
81h OPTION_REG RAPU INTEDG  
T0CS  
Program Counter’s (PC) Least Significant Byte  
IRP RP1 RP0 TO PD  
Indirect Data Memory Address Pointer  
T0SE  
PSA  
PS2  
PS1  
PS0  
C
1111 1111 1111 1111  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
82h PCL  
83h STATUS  
84h FSR  
Z
DC  
85h TRISIO  
TRISIO5 TRISIO4 TRISIO3 TRISIO2 TRISIO1 TRISIO0 --11 1111 --11 1111  
86h  
87h  
88h  
89h  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
8Ah PCLATH  
8Bh INTCON  
8Ch PIE1  
Write Buffer for upper 5 bits of Program Counter  
---0 0000 ---0 0000  
0000 0000 0000 0000  
(3)  
GIE  
EEIE  
PEIE  
LVDIE  
T0IE  
CRIE  
INTE  
RAIE  
C1IE  
T0IF  
INTF  
RAIF  
OSFIE  
TMR1IE 000- 00-0 000- 00-0  
8Dh  
Unimplemented  
8Eh PCON  
IRCF2  
ULPWUE SBODEN WUR  
POR  
LTS  
BOD  
SCS  
--01 q-qq --0u u-uu  
-110 q000 -110 x000  
8Fh OSCCON  
90h OSCTUNE  
IRCF1  
IRCF0  
TUN4  
OSTS  
TUN3  
HTS  
TUN2  
TUN1  
TUN0 ---0 0000 ---u uuuu  
91h  
92h  
93h  
Unimplemented  
Unimplemented  
Unimplemented  
94h LVDCON  
IRVST  
LVDEN  
LVDL2  
LVDL1  
LVDL0 --00 -000 --00 -000  
(2)  
95h WPUDA  
96h IOCA  
WPUDA5 WPUDA4  
WPUDA2 WPUDA1 WPUDA0 --11 -111 --11 -111  
IOCA5  
WDA5  
IOCA4  
WDA4  
IOCA3  
IOCA2  
WDA2  
IOCA1  
WDA1  
IOCA0 --00 0000 --00 0000  
WDA0 --11 -111 --11 -111  
(2)  
97h WDA  
9Bh  
Unimplemented  
VREN  
99h VRCON  
9Ah EEDAT  
9Bh EEADR  
9Ch EECON1  
9Dh EECON2  
VRR  
VR3  
VR2  
VR1  
VR0  
0-0- 0000 0-0- 0000  
EEDAT7 EEDAT6 EEDAT5 EEDAT4 EEDAT3 EEDAT2 EEDAT1 EEDAT0 0000 0000 0000 0000  
EEADR7 EEADR6 EEADR5 EEADR4 EEADR3 EEADR2 EEADR1 EEADR0 0000 0000 0000 0000  
WRERR WREN  
WR  
RD  
---- x000 ---- q000  
---- ---- ---- ----  
EEPROM Control Register 2 (not a physical register)  
Unimplemented  
9Eh  
9Fh  
Unimplemented  
Legend:  
— = Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition,  
shaded = unimplemented  
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
2: GP3 pull-up is enabled when pin is configured as MCLR in the Configuration Word register.  
3: MCLR and WDT Reset do not affect the previous value data latch. The RAIF bit will be cleared upon Reset, but will set  
again if the mismatch exists.  
DS41232B-page 16  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
TABLE 2-4:  
PIC16F636/639 SPECIAL FUNCTION REGISTERS SUMMARY BANK 0  
Value on  
Value on  
Addr Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR/BOD/ all other  
(1)  
WUR  
Resets  
Bank 0  
00h INDF  
Addressing this location uses contents of FSR to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
01h TMR0  
02h PCL  
Timer0 Module Register  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuxx  
--xx xx00 --uu uu00  
Program Counter’s (PC) Least Significant Byte  
03h STATUS  
04h FSR  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
RA1  
RC1  
C
Indirect Data Memory Address Pointer  
05h PORTA  
RA5  
RC5  
RA4  
RC4  
RA3  
RC3  
RA2  
RC2  
RA0  
RC0  
06h  
Unimplemented  
07h PORTC  
--xx xx00 --uu uu00  
08h  
09h  
Unimplemented  
Unimplemented  
0Ah PCLATH  
0Bh INTCON  
0Ch PIR1  
Write Buffer for upper 5 bits of Program Counter  
---0 0000 ---0 0000  
0000 0000 0000 0000  
(2)  
GIE  
EEIF  
PEIE  
LVDIF  
T0IE  
CRIF  
INTE  
C2IF  
RAIE  
C1IF  
T0IF  
INTF  
RAIF  
OSFIF  
TMR1IF 0000 00-0 0000 00-0  
0Dh  
0Eh TMR1L  
0Fh TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1  
10h T1CON  
Unimplemented  
Holding Register for the Least Significant Byte of the 16-bit TMR1  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000 uuuu uuuu  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
18h WDTCON  
19h CMCON0 C2OUT C1OUT  
1Ah CMCON1  
C2INV  
WDTPS3 WDTPS2 WDTPS1 WDTPS0 SWDTEN ---0 1000 ---0 1000  
C1INV  
CIS  
CM2  
CM1  
CM0  
0000 0000 0000 0000  
T1GSS C2SYNC ---- --10 ---- --10  
1Bh  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
1Ch  
1Dh  
1Eh  
1Fh  
Legend:  
— = Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition,  
shaded = unimplemented  
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
2: MCLR and WDT Reset do not affect the previous value data latch. The RAIF bit will be cleared upon Reset but will set  
again if the mismatch exists.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 17  
PIC12F635/PIC16F636/639  
TABLE 2-5:  
PIC16F636/639 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1  
Value on  
Value on  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR/BOD/ all other  
(1)  
WUR  
Resets  
Bank 1  
80h INDF  
Addressing this location uses contents of FSR to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
81h OPTION_REG RAPU INTEDG  
T0CS  
Program Counter’s (PC) Least Significant Byte  
IRP RP1 RP0 TO PD  
Indirect Data Memory Address Pointer  
T0SE  
PSA  
PS2  
PS1  
PS0  
C
1111 1111 1111 1111  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
82h PCL  
83h STATUS  
84h FSR  
Z
DC  
85h TRISA  
TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 --11 1111 --11 1111  
86h  
Unimplemented  
87h TRISC  
TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 --11 1111 --11 1111  
88h  
89h  
Unimplemented  
Unimplemented  
8Ah PCLATH  
8Bh INTCON  
8Ch PIE1  
Write Buffer for upper 5 bits of Program Counter  
---0 0000 ---0 0000  
0000 0000 0000 0000  
(3)  
GIE  
EEIE  
PEIE  
LVDIE  
T0IE  
CRIE  
INTE  
C2IE  
RAIE  
C1IE  
T0IF  
INTF  
RAIF  
OSFIE  
TMR1IE 0000 00-0 0000 00-0  
8Dh  
Unimplemented  
8Eh PCON  
IRCF2  
ULPWUE SBODEN WUR  
POR  
LTS  
BOD  
SCS  
--01 q-qq --0u u-uu  
-110 q000 -110 x000  
8Fh OSCCON  
90h OSCTUNE  
IRCF1  
IRCF0  
TUN4  
OSTS  
TUN3  
HTS  
TUN2  
TUN1  
TUN0 ---0 0000 ---u uuuu  
91h  
92h  
93h  
Unimplemented  
Unimplemented  
Unimplemented  
94h LVDCON  
IRVST  
LVDEN  
LVDL2  
LVDL1  
LVDL0 --00 -000 --00 -000  
(2)  
95h WPUDA  
96h IOCA  
WPUDA5 WPUDA4  
WPUDA2 WPUDA1 WPUDA0 --11 -111 --11 -111  
IOCA5  
WDA5  
IOCA4  
WDA4  
IOCA3  
IOCA2  
WDA2  
IOCA1  
WDA1  
IOCA0 --00 0000 --00 0000  
WDA0 --11 -111 --11 -111  
(2)  
97h WDA  
9Bh  
Unimplemented  
VREN  
99h VRCON  
9Ah EEDAT  
9Bh EEADR  
9Ch EECON1  
9Dh EECON2  
VRR  
VR3  
VR2  
VR1  
VR0  
0-0- 0000 0-0- 0000  
EEDAT7 EEDAT6 EEDAT5 EEDAT4 EEDAT3 EEDAT2 EEDAT1 EEDAT0 0000 0000 0000 0000  
EEADR7 EEADR6 EEADR5 EEADR4 EEADR3 EEADR2 EEADR1 EEADR0 0000 0000 0000 0000  
WRERR WREN  
WR  
RD  
---- x000 ---- q000  
---- ---- ---- ----  
EEPROM Control Register 2 (not a physical register)  
Unimplemented  
9Eh  
9Fh  
Unimplemented  
Legend:  
— = Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition,  
shaded = unimplemented  
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
2: RA3 pull-up is enabled when pin is configured as MCLR in the Configuration Word register.  
3: MCLR and WDT Reset do not affect the previous value data latch. The RAIF bit will be cleared upon Reset but will set  
again if the mismatch exists.  
DS41232B-page 18  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
TABLE 2-6:  
PIC12F635/PIC16F636/639 SPECIAL FUNCTION REGISTERS SUMMARY BANK 2  
Value on  
POR/BOD/  
WUR  
Value on  
all other  
Resets  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
Bank 2  
10Ch  
10Dh  
10Eh  
10Fh  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
GO/DONE ENC/DEC  
110h CRCON  
111h CRDAT0  
112h CRDAT1  
113h CRDAT2  
114h CRDAT3  
CRREG1 CRREG0 00-- --00 00-- --00  
0000 0000 0000 0000  
(2)  
(2)  
(2)  
(2)  
Cryptographic Data Register 0  
Cryptographic Data Register 1  
Cryptographic Data Register 2  
Cryptographic Data Register 3  
Unimplemented  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
115h  
116h  
Unimplemented  
Legend:  
— = Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition,  
shaded = unimplemented  
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
2:  
CRDAT<3:0> are KEELOQ® hardware peripheral related registers and require the execution of the “KEELOQ Encoder License Agreement”  
regarding implementation of the module and access to related registers. The “KEELOQ Encoder License Agreement” may be accessed  
through the Microchip web site located at www.microchip.com/KEELOQ or by contacting your local Microchip Sales Representative.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 19  
PIC12F635/PIC16F636/639  
For example, CLRF STATUS, will clear the upper three  
bits and set the Z bit. This leaves the Status register as  
000u u1uu(where u= unchanged).  
2.2.2.1  
Status Register  
The Status register, shown in Register 2-1, contains:  
• the arithmetic status of the ALU  
• the Reset status  
It is recommended, therefore, that only BCF, BSF, SWAPF  
and MOVWF instructions are used to alter the Status  
register, because these instructions do not affect any  
Status bits. For other instructions not affecting any Status  
bits, see Section 13.0 “Instruction Set Summary”.  
• the bank select bits for data memory (SRAM)  
The Status register can be the destination for any  
instruction, like any other register. If the Status register is  
the destination for an instruction that affects the Z, DC or  
C bits, then the write to these three bits is disabled.  
These bits are set or cleared according to the device  
logic. Furthermore, the TO and PD bits are not writable.  
Therefore, the result of an instruction with the Status  
register as destination may be different than intended.  
Note 1: The C and DC bits operate as a Borrow  
and Digit Borrow out bit, respectively, in  
subtraction. See the SUBLW and SUBWF  
instructions for examples.  
REGISTER 2-1:  
STATUS – STATUS REGISTER (ADDRESS: 03h OR 83h)  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
bit 7  
bit 0  
bit 7  
IRP: Register Bank Select bit (used for indirect addressing)  
1= Bank 2, 3 (100h-1FFh)  
0= Bank 0, 1 (00h-FFh)  
bit 6-5  
RP<1:0>: Register Bank Select bits (used for direct addressing)  
11= Bank 3 (180h-1FFh)  
10= Bank 2 (100h-17Fh)  
01= Bank 1 (80h-FFh)  
00= Bank 0 (00h-7Fh)  
Each bank is 128 bytes.  
bit 4  
bit 3  
bit 2  
bit 1  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit Carry/Borrow bit (ADDWF, ADDLW, SUBLW, SUBWFinstructions)  
For Borrow, the polarity is reversed.  
1= A carry-out from the 4th low-order bit of the result occurred  
0= No carry-out from the 4th low-order bit of the result  
bit 0  
C: Carry/Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note:  
For Borrow, the polarity is reversed. A subtraction is executed by adding the two’s  
complement of the second operand. For rotate (RRF, RLF) instructions, this bit is  
loaded with either the high-order or low-order bit of the source register.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41232B-page 20  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
2.2.2.2  
Option Register  
Note:  
To achieve a 1:1 prescaler assignment for  
TMR0, assign the prescaler to the WDT by  
The Option register is a readable and writable register  
which contains various control bits to configure:  
setting  
the  
PSA  
bit  
to  
1’  
• TMR0/WDT prescaler  
• External RA2/INT interrupt  
• TMR0  
(OPTION_REG<3>). See Section 5.4  
“Prescaler”.  
• Weak pull-up/pull-downs on PORTA  
REGISTER 2-2:  
OPTION_REG – OPTION REGISTER (ADDRESS: 81h)  
R/W-1  
RAPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RAPU: PORTA Pull-up/Pull-down Enable bit  
1= PORTA pull-ups/pull-downs are disabled  
0= PORTA pull-ups/pull-downs are enabled by individual port latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of RA2/INT pin  
0= Interrupt on falling edge of RA2/INT pin  
T0CS: TMR0 Clock Source Select bit  
1= Transition on RA2/T0CKI pin  
0= Internal instruction cycle clock (CLKOUT)  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on RA2/T0CKI pin  
0= Increment on low-to-high transition on RA2/T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS<2:0>: Prescaler Rate Select bits  
Bit Value TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
‘1’ = Bit is set  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 21  
PIC12F635/PIC16F636/639  
2.2.2.3  
INTCON Register  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the Global  
Interrupt Enable bit, GIE (INTCON<7>).  
User software should ensure the appropri-  
ate interrupt flag bits are clear prior to  
enabling an interrupt.  
The INTCON register is a readable and writable  
register which contains the various enable and flag bits  
for TMR0 register overflow, PORTA change and  
external RA2/INT pin interrupts.  
REGISTER 2-3:  
INTCON – INTERRUPT CONTROL REGISTER (ADDRESS: 0Bh OR 8Bh)  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
RAIE(1)  
R/W-0  
T0IF(2)  
R/W-0  
INTF  
R/W-0  
RAIF(3)  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
GIE: Global Interrupt Enable bit  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
T0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 interrupt  
0= Disables the TMR0 interrupt  
INTE: RA2/INT External Interrupt Enable bit  
1= Enables the RA2/INT external interrupt  
0= Disables the RA2/INT external interrupt  
RAIE: PORTA Change Interrupt Enable bit(1)  
1= Enables the PORTA change interrupt  
0= Disables the PORTA change interrupt  
T0IF: TMR0 Overflow Interrupt Flag bit(2)  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INTF: RA2/INT External Interrupt Flag bit  
1= The RA2/INT external interrupt occurred (must be cleared in software)  
0= The RA2/INT external interrupt did not occur  
RAIF: PORTA Change Interrupt Flag bit(3)  
1= When at least one of the PORTA <5:0> pins changed state (must be cleared in software)  
0= None of the PORTA <5:0> pins have changed state  
Note 1: IOCA register must also be enabled.  
2: T0IF bit is set when Timer0 rolls over. Timer0 is unchanged on Reset and should  
be initialized before clearing the T0IF bit.  
3: MCLR and WDT Reset do not affect the previous value data latch. The RAIF bit will  
be cleared upon Reset but will set again if the mismatch exists.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41232B-page 22  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
2.2.2.4  
PIE1 Register  
The PIE1 register contains the interrupt enable bits, as  
shown in Register 2-4.  
Note:  
Bit PEIE (INTCON<6>) must be set to  
enable any peripheral interrupt.  
REGISTER 2-4:  
PIE1 — PERIPHERAL INTERRUPT ENABLE REGISTER 1 (ADDRESS: 8Ch)  
R/W-0  
EEIE  
R/W-0  
LVDIE  
R/W-0  
CRIE  
R/W-0  
C2IE(1)  
R/W-0  
C1IE  
R/W-0  
OSFIE  
U-0  
R/W-0  
TMR1IE  
bit 0  
bit 7  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
EEIE: EE Write Complete Interrupt Enable bit  
1= Enables the EE write complete interrupt  
0= Disables the EE write complete interrupt  
LVDIE: Low-Voltage Detect Interrupt Enable bit  
1= Enables the LVD interrupt  
0= Disables the LVD interrupt  
CRIE: Cryptographic Interrupt Enable bit  
1= Enables the cryptographic interrupt  
0= Disables the cryptographic interrupt  
C2IE: Comparator 2 Interrupt Enable bit(1)  
1= Enables the Comparator 2 interrupt  
0= Disables the Comparator 2 interrupt  
C1IE: Comparator 1 Interrupt Enable bit  
1= Enables the Comparator 1 interrupt  
0= Disables the Comparator 1 interrupt  
OSFIE: Oscillator Fail Interrupt Enable bit  
1= Enables the oscillator fail interrupt  
0= Disables the oscillator fail interrupt  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
TMR1IE: Timer1 Interrupt Enable bit  
1= Enables the Timer1 interrupt  
0= Disables the Timer1 interrupt  
Note 1: PIC16F636/639 only.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 23  
PIC12F635/PIC16F636/639  
2.2.2.5  
PIR1 Register  
The PIR1 register contains the interrupt flag bits, as  
shown in Register 2-5.  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the Global  
Interrupt Enable bit, GIE (INTCON<7>).  
User software should ensure the  
appropriate interrupt flag bits are clear  
prior to enabling an interrupt.  
REGISTER 2-5:  
PIR1 – PERIPHERAL INTERRUPT REQUEST REGISTER 1 (ADDRESS: 0Ch)  
R/W-0  
EEIF  
R/W-0  
LVDIF  
R/W-0  
CRIF  
R/W-0  
C2IF(1)  
R/W-0  
C1IF  
R/W-0  
OSFIF  
U-0  
R/W-0  
TMR1IF  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
EEIF: EEPROM Write Operation Interrupt Flag bit  
1= The write operation completed (must be cleared in software)  
0= The write operation has not completed or has not been started  
LVDIF: Low-Voltage Detect Interrupt Flag bit  
1= The supply voltage has crossed selected LVD voltage (must be cleared in software)  
0= The supply voltage has not crossed selected LVD voltage  
CRIF: Cryptographic Interrupt Flag bit  
1= The Cryptographic module has completed an operation (must be cleared in software)  
0= The Cryptographic module has not completed an operation or is Idle  
C2IF: Comparator 2 Interrupt Flag bit(1)  
1= Comparator output (C2OUT bit) has changed (must be cleared in software)  
0= Comparator output (C2OUT bit) has not changed  
C1IF: Comparator 1 Interrupt Flag bit  
1= Comparator output (C1OUT bit) has changed (must be cleared in software)  
0= Comparator output (C1OUT bit) has not changed  
OSFIF: Oscillator Fail Interrupt Flag bit  
1= System oscillator failed, clock input has changed INTOSC (must be cleared in software)  
0= System clock operating  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
TMR1IF: Timer1 Interrupt Flag bit  
1= Timer1 rolled over (must be cleared in software)  
0= Timer1 has not rolled over  
Note 1: PIC16F636/639 only.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41232B-page 24  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
The PCON register also controls the Ultra Low-Power  
Wake-up and software enable of the BOD.  
2.2.2.6  
PCON Register  
The Power Control (PCON) register (see Table 12-3)  
contains flag bits to differentiate between a:  
The PCON register bits are shown in Register 2-6.  
• Power-on Reset (POR)  
• Wake-up Reset (WUR)  
• Brown-out Detect (BOD)  
• Watchdog Timer Reset (WDT)  
• External MCLR Reset  
REGISTER 2-6:  
PCON – POWER CONTROL REGISTER (ADDRESS: 8Eh)  
U-0  
U-0  
R/W-0  
ULPWUE SBODEN(1)  
R/W-1  
R/W-x  
WUR  
U-0  
R/W-0  
POR  
R/W-x  
BOD  
bit 7  
bit 0  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
ULPWUE: Ultra Low-Power Wake-up Enable bit  
1= Ultra Low-Power Wake-up enabled  
0= Ultra Low-Power Wake-up disabled  
bit 4  
bit 3  
SBODEN: Software BOD Enable bit(1)  
1= BOD enabled  
0= BOD disabled  
WUR: Wake-up Reset Status bit  
1= No Wake-up Reset occurred  
0= A Wake-up Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0  
BOD: Brown-out Detect Status bit  
1= No Brown-out Detect occurred  
0= A Brown-out Detect occurred (must be set in software after a Brown-out Detect occurs)  
Note 1: BODEN<1:0> = 01in the Configuration Word register for SBODEN to control the  
Brown-out Detect module.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 25  
PIC12F635/PIC16F636/639  
2.3.1  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL). When  
performing a table read using a computed GOTO  
method, care should be exercised if the table location  
crosses a PCL memory boundary (each 256-byte  
block). Refer to the Application Note AN556,  
“Implementing a Table Read” (DS00556).  
COMPUTED GOTO  
2.3  
PCL and PCLATH  
The Program Counter (PC) is 13 bits wide. The low byte  
comes from the PCL register, which is a readable and  
writable register. The high byte (PC<12:8>) is not  
directly readable or writable and comes from PCLATH.  
On any Reset, the PC is cleared. Figure 2-5 shows the  
two situations for the loading of the PC. The upper  
example in Figure 2-5 shows how the PC is loaded on a  
write to PCL (PCLATH<4:0> PCH). The lower  
example in Figure 2-5 shows how the PC is loaded  
during a CALL or GOTO instruction (PCLATH<4:3> →  
PCH).  
2.3.2  
STACK  
The PIC12F635/PIC16F636/639 family has an 8-  
level x 13-bit wide hardware stack (see Figure 2-1).  
The stack space is not part of either program or data  
space and the Stack Pointer is not readable or writable.  
The PC is PUSHed onto the stack when a CALL  
instruction is executed or an interrupt causes a branch.  
The stack is POPed in the event of a RETURN, RETLW  
or a RETFIE instruction execution. PCLATH is not  
affected by a PUSH or POP operation.  
FIGURE 2-5:  
LOADING OF PC IN  
DIFFERENT SITUATIONS  
PCH  
PCL  
Instruction with  
12  
8
7
0
PCL as  
Destination  
PC  
The stack operates as a circular buffer. This means that  
after the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
8
PCLATH<4:0>  
PCLATH  
5
ALU Result  
PCH  
12 11 10  
PC  
PCL  
Note 1: There are no Status bits to indicate stack  
overflow or stack underflow conditions.  
8
7
0
GOTO, CALL  
2: There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the CALL,  
RETURN, RETLWand RETFIEinstructions  
or the vectoring to an interrupt address.  
PCLATH<4:3>  
PCLATH  
11  
2
Opcode<10:0>  
DS41232B-page 26  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
A simple program to clear RAM location 20h-2Fh using  
indirect addressing is shown in Example 2-1.  
2.4  
Indirect Addressing, INDF and  
FSR Registers  
The INDF register is not a physical register. Addressing  
the INDF register will cause indirect addressing.  
EXAMPLE 2-1:  
INDIRECT ADDRESSING  
MOVLW 0x20  
MOVWF FSR  
CLRF INDF  
INCF FSR  
;initialize pointer  
;to RAM  
;clear INDF register  
;INC POINTER  
Indirect addressing is possible by using the INDF  
register. Any instruction using the INDF register  
actually accesses data pointed to by the File Select  
Register (FSR). Reading INDF itself indirectly will  
produce 00h. Writing to the INDF register indirectly  
results in a no operation (although Status bits may be  
affected). An effective 9-bit address is obtained by  
concatenating the 8-bit FSR and the IRP bit  
(STATUS<7>), as shown in Figure 2-6.  
NEXT  
BTFSS FSR,4 ;all done?  
GOTO  
NEXT  
;no clear next  
;yes continue  
CONTINUE  
FIGURE 2-6:  
DIRECT/INDIRECT ADDRESSING PIC12F635/PIC16F636/639  
Direct Addressing  
From Opcode  
Indirect Addressing  
7
6
0
0
IRP  
File Select Register  
RP1 RP0  
Bank Select  
180h  
Location Select  
Bank Select  
Location Select  
00h  
00  
01  
10  
11  
Data  
Memory  
7Fh  
1FFh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Note: For memory map detail, see Figure 2-2.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 27  
PIC12F635/PIC16F636/639  
NOTES:  
DS41232B-page 28  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
The PIC12F635/PIC16F636/639 can be configured in  
one of eight clock modes.  
3.0  
3.1  
CLOCK SOURCES  
Overview  
1. EC – External clock with I/O on RA4.  
2. LP – Low gain crystal or Ceramic Resonator  
The PIC12F635/PIC16F636/639 has a wide variety of  
clock sources and selection features to allow it to be  
used in a wide range of applications, while maximizing  
performance and minimizing power consumption.  
Oscillator mode.  
3. XT – Medium gain crystal or Ceramic Resonator  
Oscillator mode.  
4. HS – High gain crystal or Ceramic Resonator  
mode.  
Figure 3-1 illustrates  
PIC12F635/PIC16F636/639 clock sources.  
a
block diagram of the  
5. RC – External Resistor-Capacitor (RC) with  
FOSC/4 output on RA4.  
Clock sources can be configured from external oscillators,  
quartz crystal resonators, ceramic resonators and  
Resistor-Capacitor (RC) circuits. In addition, the system  
clock source can be configured from one of two internal  
oscillators, with a choice of speeds selectable via  
software. Additional clock features include:  
6. RCIO – External Resistor-Capacitor (RC) with I/O  
on RA4.  
7. INTOSC – Internal oscillator with FOSC/4 output  
on RA4 and I/O on RA5.  
8. INTOSCIO – Internal oscillator with I/O on RA4  
and RA5.  
• Selectable system clock source between external  
or internal via software.  
• Two-Speed Clock Start-up mode, which  
minimizes latency between external oscillator  
start-up and code execution.  
• Fail-Safe Clock Monitor (FSCM) designed to  
detect a failure of the external clock source (LP,  
XT, HS, EC or RC modes) and switch to the  
internal oscillator.  
Clock source modes are configured by the FOSC<2:0>  
bits in the Configuration Word register (see  
Section 12.0 “Special Features of the CPU”). The  
internal clock can be generated by two oscillators. The  
HFINTOSC is a high-frequency calibrated oscillator. The  
LFINTOSC is a low-frequency uncalibrated oscillator.  
FIGURE 3-1:  
PIC12F635/PIC16F636/639 CLOCK SOURCE BLOCK DIAGRAM  
FOSC<2:0>  
(Configuration Word)  
External Oscillator  
SCS  
(OSCCON<0>)  
OSC2  
OSC1  
Sleep  
LP, XT, HS, RC, RCIO, EC  
IRCF<2:0>  
(OSCCON<6:4>)  
System Clock  
(CPU and Peripherals)  
8 MHz  
111  
110  
101  
Internal Oscillator  
4 MHz  
2 MHz  
1 MHz  
HFINTOSC(1)  
8 MHz  
100  
011  
010  
001  
000  
500 kHz  
250 kHz  
125 kHz  
31 kHz  
LFINTOSC(2)  
31 kHz  
Power-up Timer (PWRT)  
Watchdog Timer (WDT)  
Fail-Safe Clock Monitor (FSCM)  
Note 1: HFINTOSC = High-Frequency Calibrated Internal Oscillator.  
2: LFINTOSC = Low-Frequency Internal Oscillator is not calibrated.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 29  
PIC12F635/PIC16F636/639  
3.2  
Clock Source Modes  
3.3  
External Clock Modes  
Clock source modes can be classified as external or  
internal.  
3.3.1  
OSCILLATOR START-UP TIMER (OST)  
If the PIC12F635/PIC16F636/639 is configured for LP,  
XT or HS modes, the Oscillator Start-up Timer (OST)  
counts 1024 oscillations from the OSC1 pin following a  
Power-on Reset (POR) and the Power-up Timer  
(PWRT) has expired (if configured), or a wake-up from  
Sleep. During this time, the program counter does not  
increment and program execution is suspended. The  
OST ensures that the oscillator circuit, using a quartz  
crystal resonator or ceramic resonator, has started and  
is providing a stable system clock to the PIC12F635/  
PIC16F636/639.  
External clock modes rely on external circuitry for the  
clock source. Examples are oscillator modules (EC  
mode), quartz crystal resonators or ceramic resonators  
(LP, XT and HS modes) and Resistor-Capacitor (RC  
mode) circuits.  
Internal clock sources are contained internally within  
PIC12F635/PIC16F636/639. The device has two inter-  
nal oscillators: the 8 MHz High-Frequency Internal  
Oscillator (HFINTOSC) and 31 kHz Low-Frequency  
Internal Oscillator (LFINTOSC).  
The system clock can be selected between external or  
internal clock sources via the System Clock Selection  
(SCS) bit (see Section 3.5 “Clock Switching”).  
When switching between clock sources, a delay is  
required to allow the new clock to stabilize. Table 3-1  
shows oscillator delay examples.  
In order to minimize latency between external oscillator  
start-up and code execution, the Two-Speed Clock Start-  
up mode can be selected (see Section 3.6 “Two-Speed  
Clock Start-up Mode”).  
TABLE 3-1:  
OSCILLATOR DELAY EXAMPLES  
Switch From  
Switch To  
Frequency  
Oscillator Delay  
LFINTOSC  
HFINTOSC  
31 kHz  
125 kHz-8 MHz  
Sleep/POR  
5 μs-10 μs (approx.)  
Sleep/POR  
LFINTOSC (31 kHz)  
Sleep/POR  
EC, RC  
EC, RC  
DC – 20 MHz  
DC – 20 MHz  
31 kHz-20 MHz  
125 kHz-8 MHz  
CPU Start-up  
LP, XT, HS  
HFINTOSC  
1024 Clock Cycles (OST)  
LFINTOSC (31 kHz)  
1 μs (approx.)  
DS41232B-page 30  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
3.3.2  
EC MODE  
FIGURE 3-3:  
QUARTZ CRYSTAL  
OPERATION (LP, XT OR  
HS MODE)  
The External Clock (EC) mode allows an externally  
generated logic level as the system clock source.  
When operating in this mode, an external clock source  
is connected to the OSC1 pin and the RA5 pin is  
available for general purpose I/O. Figure 3-2 shows the  
pin connections for EC mode.  
PIC12F635/PIC16F636/639  
OSC1  
To Internal  
Logic  
The Oscillator Start-up Timer (OST) is disabled when  
EC mode is selected. Therefore, there is no delay in  
operation after a Power-on Reset (POR) or wake-up  
from Sleep. Because the PIC12F635/PIC16F636/639  
design is fully static, stopping the external clock input  
will have the effect of halting the device while leaving all  
data intact. Upon restarting the external clock, the  
device will resume operation as if no time had elapsed.  
C1  
Quartz  
Crystal  
(2)  
RF  
Sleep  
OSC2  
(1)  
RS  
C2  
Note 1: A series resistor (RS) may be required for  
quartz crystals with low drive level.  
2: The value of RF varies with the Oscillator  
mode selected (typically between 2 MΩ to  
10 MΩ).  
FIGURE 3-2:  
EXTERNAL CLOCK (EC)  
MODE OPERATION  
OSC1/CLKIN  
Clock from  
Note 1: Quartz  
crystal  
characteristics  
vary  
Ext. System  
PIC12F635/PIC16F636/639  
according to type, package and  
manufacturer. The user should consult the  
manufacturer data sheets for specifications  
and recommended application.  
I/O (OSC2)  
RA4  
3.3.3  
LP, XT, HS MODES  
2: Always verify oscillator performance over  
the VDD and temperature range that is  
expected for the application.  
The LP, XT and HS modes support the use of quartz  
crystal resonators or ceramic resonators connected to  
the OSC1 and OSC2 pins (Figure 3-1). The mode  
selects a low, medium or high gain setting of the  
internal inverter-amplifier to support various resonator  
types and speed.  
FIGURE 3-4:  
CERAMIC RESONATOR  
OPERATION  
(XT OR HS MODE)  
LP Oscillator mode selects the lowest gain setting of  
the internal inverter-amplifier. LP mode current  
consumption is the least of the three modes. This mode  
is best suited to drive resonators with a low drive level  
specification, for example, tuning fork type crystals.  
PIC12F635/PIC16F636/639  
OSC1  
To Internal  
Logic  
C1  
C2  
XT Oscillator mode selects the intermediate gain  
setting of the internal inverter-amplifier. XT mode  
current consumption is the medium of the three modes.  
This mode is better suited to drive resonators with a  
medium drive level specification, for example, low-  
frequency AT-cut quartz crystal resonators.  
(3)  
(2)  
Sleep  
RP  
RF  
OSC2  
(1)  
RS  
Ceramic  
Resonator  
HS Oscillator mode selects the highest gain setting of  
the internal inverter-amplifier. HS mode current  
consumption is the highest of the three modes. This  
mode is better suited for resonators that require a high  
drive setting, for example, high-frequency AT-cut  
quartz crystal resonators or ceramic resonators.  
Note 1: A series resistor (RS) may be required for  
ceramic resonators with low drive level.  
2: The value of RF varies with the Oscillator  
mode selected (typically between 2 MΩ to  
10 MΩ).  
3: An additional parallel feedback resistor (RP)  
may be required for proper ceramic resonator  
operation (typical value 1 MΩ).  
Figure 3-3 and Figure 3-4 show typical circuits for  
quartz crystal and ceramic resonators, respectively.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 31  
PIC12F635/PIC16F636/639  
3.3.4  
EXTERNAL RC MODES  
3.4  
Internal Clock Modes  
The External Resistor-Capacitor (RC) modes support  
the use of an external RC circuit. This allows the  
designer maximum flexibility in frequency choice while  
keeping costs to a minimum when clock accuracy is not  
required. There are two modes, RC and RCIO.  
The PIC12F635/PIC16F636/639 has two independent,  
internal oscillators that can be configured or selected  
as the system clock source.  
1. The HFINTOSC (High-Frequency Internal  
Oscillator) is factory calibrated and operates at  
8 MHz. The frequency of the HFINTOSC can be  
user adjusted ±12% via software using the  
OSCTUNE register (Register 3-1).  
In RC mode, the RC circuit connects to the OSC1 pin.  
The OSC2/CLKOUT pin outputs the RC oscillator  
frequency divided by 4. This signal may be used to  
provide a clock for external circuitry, synchronization,  
calibration, test or other application requirements.  
Figure 3-5 shows the RC mode connections.  
2. The LFINTOSC (Low-Frequency Internal  
Oscillator) is uncalibrated and operates at  
approximately 31 kHz.  
The system clock speed can be selected via software  
using the Internal Oscillator Frequency Select (IRCF)  
bits.  
FIGURE 3-5:  
RC MODE  
VDD  
The system clock can be selected between external or  
internal clock sources via the System Clock Selection  
(SCS) bit (see Section 3.5 “Clock Switching”).  
REXT  
Internal  
Clock  
OSC1  
CEXT  
VSS  
3.4.1  
LFINTOSC AND LFINTOSCIO  
MODES  
PIC12F635/PIC16F636/639  
OSC2/CLKOUT  
The LFINTOSC and LFINTOSCIO modes configure  
the internal oscillators as the system clock source  
when the device is programmed using the oscillator  
selection (FOSC) bits in the Configuration Word  
register (Register 12-1).  
FOSC/4  
Recommended values: 3 kΩ ≤ REXT 100 kΩ  
CEXT > 20 pF  
In RCIO mode, the RC circuit is connected to the OSC1  
pin. The OSC2 pin becomes an additional general  
purpose I/O pin. The I/O pin becomes bit 4 of PORTA  
(RA4). Figure 3-6 shows the RCIO mode connections.  
In LFINTOSC mode, the OSC1 pin is available for  
general purpose I/O. The OSC2/CLKOUT pin outputs  
the selected internal oscillator frequency divided by 4.  
The CLKOUT signal may be used to provide a clock for  
external circuitry, synchronization, calibration, test or  
other application requirements.  
FIGURE 3-6:  
RCIO MODE  
VDD  
In LFINTOSCIO mode, the OSC1 and OSC2 pins are  
REXT  
available for general purpose I/O.  
Internal  
Clock  
OSC1  
3.4.2  
HFINTOSC  
CEXT  
The High-Frequency Internal Oscillator (HFINTOSC) is  
a factory calibrated 8 MHz internal clock source. The  
frequency of the HFINTOSC can be altered  
approximately ±12% via software using the OSCTUNE  
register (Register 3-1).  
PIC12F635/PIC16F636/639  
I/O (OSC2)  
VSS  
RA4  
Recommended values: 3 kΩ ≤ REXT 100 kΩ  
CEXT > 20 pF  
The output of the HFINTOSC connects to a postscaler  
and multiplexer (see Figure 3-1). One of seven  
frequencies can be selected via software using the  
IRCF bits (see Section 3.4.4 “Frequency Select Bits  
(IRCF)”).  
The RC oscillator frequency is a function of the supply  
voltage, the resistor (REXT) and capacitor (CEXT)  
values and the operating temperature. In addition to  
this, the oscillator frequency will vary from unit to unit  
due to normal threshold voltage. Furthermore, the  
difference in lead frame capacitance between package  
types will also affect the oscillation frequency or for low  
CEXT values. The user also needs to take into account  
variation due to tolerance of external RC components  
used.  
The HFINTOSC is enabled by selecting any frequency  
between 8 MHz and 125 kHz (IRCF 000) as the  
system clock source (SCS = 1), or when Two-Speed  
Start-up is enabled (IESO = 1and IRCF 000).  
The HF Internal Oscillator (HTS) bit (OSCCON<2>)  
indicates whether the HFINTOSC is stable or not.  
DS41232B-page 32  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
When the OSCTUNE register is modified, the  
HFINTOSC frequency will begin shifting to the new  
frequency. The HFINTOSC clock will stabilize within  
1 ms. Code execution continues during this shift. There  
is no indication that the shift has occurred.  
3.4.2.1  
OSCTUNE Register  
The HFINTOSC is factory calibrated but can be  
adjusted in software by writing to the OSCTUNE  
register (Register 3-1).  
The OSCTUNE register has a tuning range of  
approximately ±12%. The default value of the  
OSCTUNE register is ‘0’. The value is a 5-bit two’s  
complement number. Due to process variation, the  
monotonicity and frequency step cannot be specified.  
OSCTUNE does not affect the LFINTOSC frequency.  
Operation of features that depend on the LFINTOSC  
clock source frequency, such as the Power-up Timer  
(PWRT), Watchdog Timer (WDT), Fail-Safe Clock  
Monitor (FSCM) and peripherals, are not affected by  
the change in frequency.  
REGISTER 3-1:  
OSCTUNE – OSCILLATOR TUNING REGISTER (ADDRESS: 90h)  
U-0  
U-0  
U-0  
R/W-0  
TUN4  
R/W-0  
TUN3  
R/W-0  
TUN2  
R/W-0  
TUN1  
R/W-0  
TUN0  
bit 7  
bit 0  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
TUN<4:0>: Frequency Tuning bits  
01111= Maximum frequency  
01110=  
00001=  
00000= Oscillator module is running at the calibrated frequency.  
11111=  
10000= Minimum frequency  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 33  
PIC12F635/PIC16F636/639  
3.4.3  
LFINTOSC  
3.4.5  
HFINTOSC AND LFINTOSC CLOCK  
SWITCH TIMING  
The Low-Frequency Internal Oscillator (LFINTOSC) is  
an uncalibrated (approximate) 31 kHz internal clock  
source.  
When switching between the LFINTOSC and the  
HFINTOSC, the new oscillator may already be shut  
down to save power. If this is the case, there is a 10 μs  
delay after the IRCF bits are modified before the  
frequency selection takes place. The LTS/HTS bits will  
reflect the current active status of the LFINTOSC and  
the HFINTOSC oscillators. The timing of a frequency  
selection is as follows:  
The output of the LFINTOSC connects to a postscaler  
and multiplexer (see Figure 3-1). 31 kHz can be  
selected via software using the IRCF bits (see  
Section 3.4.4 “Frequency Select Bits (IRCF)”). The  
LFINTOSC is also the clock source for the Power-up  
Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe  
Clock Monitor (FSCM).  
1. IRCF bits are modified.  
2. If the new clock is shut down, a 10 μs clock start-  
The LFINTOSC is enabled by selecting 31 kHz  
(IRCF = 000) as the system clock source (SCS = 1), or  
when any of the following are enabled:  
up delay is started.  
3. Clock switch circuitry waits for a falling edge of  
the current clock.  
• Two-Speed Start-up (IESO = 1and IRCF = 000)  
• Power-up Timer (PWRT)  
• Watchdog Timer (WDT)  
4. CLKOUT is held low and the clock switch  
circuitry waits for a rising edge in the new clock.  
5. CLKOUT is now connected with the new clock.  
HTS/LTS bits are updated as required.  
• Fail-Safe Clock Monitor (FSCM)  
The LF Internal Oscillator (LTS) bit (OSCCON<1>)  
indicates whether the LFINTOSC is stable or not.  
6. Clock switch is complete.  
If the internal oscillator speed selected is between  
8 MHz and 125 kHz, there is no start-up delay before  
the new frequency is selected. This is because the old  
and the new frequencies are derived from the  
HFINTOSC via the postscaler and multiplexer.  
3.4.4  
FREQUENCY SELECT BITS (IRCF)  
The output of the 8 MHz HFINTOSC and 31 kHz  
LFINTOSC connects to a postscaler and multiplexer  
(see Figure 3-1). The Internal Oscillator Frequency  
Select bits, IRCF<2:0> (OSCCON<6:4>), select the  
frequency output of the internal oscillators. One of eight  
frequencies can be selected via software:  
Note:  
Care must be taken to ensure a valid  
voltage or frequency selection is chosen.  
See voltage vs. frequency diagrams  
(Figure 15-2, Figure 15-3 and Figure 15-4)  
for more detail.  
• 8 MHz  
• 4 MHz (Default after Reset)  
• 2 MHz  
• 1 MHz  
• 500 kHz  
• 250 kHz  
• 125 kHz  
• 31 kHz  
Note:  
Following any Reset, the IRCF bits are set  
to ‘110’ and the frequency selection is set  
to 4 MHz. The user can modify the IRCF  
bits to select a different frequency.  
DS41232B-page 34  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
When the PIC12F635/PIC16F636/639 is configured for  
LP, XT or HS modes, the Oscillator Start-up Timer  
3.5  
Clock Switching  
The system clock source can be switched between  
external and internal clock sources via software using  
the System Clock Select (SCS) bit.  
(OST) is enabled (see Section 3.3.1 “Oscillator Start-  
up Timer (OST)”). The OST timer will suspend  
program execution until 1024 oscillations are counted.  
Two-Speed Start-up mode minimizes the delay in code  
execution by operating from the internal oscillator as  
the OST is counting. When the OST count reaches  
1024 and the OSTS bit (OSCCON<3>) is set, program  
execution switches to the external oscillator.  
3.5.1  
SYSTEM CLOCK SELECT (SCS) BIT  
The System Clock Select (SCS) bit (OSCCON<0>)  
selects the system clock source that is used for the  
CPU and peripherals.  
When SCS = 0, the system clock source is determined  
by configuration of the FOSC<2:0> bits in the  
Configuration Word register (Register 12-1).  
3.6.1  
TWO-SPEED START-UP MODE  
CONFIGURATION  
Two-Speed Start-up mode is configured by the  
following settings:  
When SCS = 1, the system clock source is chosen by  
the internal oscillator frequency selected by the IRCF  
bits. After a Reset, SCS is always cleared.  
• IESO = 1(CONFIG<10>) Internal/External  
Switchover bit.  
• SCS = 0.  
• FOSC configured for LP, XT or HS mode.  
• Two-Speed Start-up mode is entered after:  
• Power-on Reset (POR) and, if enabled, after  
PWRT has expired, or  
Note:  
Any automatic clock switch, which may  
occur from Two-Speed Start-up or Fail-  
Safe Clock Monitor, does not update the  
SCS bit. The user can monitor the OSTS  
(OSCCON<3>) to determine the current  
system clock source.  
• Wake-up from Sleep.  
3.5.2  
OSCILLATOR START-UP TIME-OUT  
STATUS BIT  
If the external clock oscillator is configured to be  
anything other than LP, XT or HS mode, then Two-  
Speed Start-up is disabled. This is because the external  
clock oscillator does not require any stabilization time  
after POR or an exit from Sleep.  
The Oscillator Start-up Time-out Status (OSTS) bit  
(OSCCON<3>) indicates whether the system clock is  
running from the external clock source, as defined by  
the FOSC bits, or from the internal clock source. In  
particular, OSTS indicates that the Oscillator Start-up  
Timer (OST) has timed out for LP, XT or HS modes.  
3.6.2  
TWO-SPEED START-UP  
SEQUENCE  
The Two-Speed Start-up sequence is listed below.  
1. Wake-up from Power-on Reset or Sleep.  
3.6  
Two-Speed Clock Start-up Mode  
2. Instructions begin execution by the internal  
oscillator at the frequency set in the IRCF bits  
(OSCCON<6:4>).  
Two-Speed Start-up mode provides additional power  
savings by minimizing the latency between external  
oscillator start-up and code execution. In applications  
that make heavy use of the Sleep mode, Two-Speed  
Start-up will remove the external oscillator start-up time  
from the time spent awake and can reduce the overall  
power consumption of the device.  
3. OST enabled to count 1024 clock cycles.  
4. OST timed out, wait for falling edge of the  
internal oscillator.  
5. OSTS is set.  
This mode allows the application to wake-up from  
Sleep, perform a few instructions using the INTOSC as  
the clock source and go back to Sleep without waiting  
for the primary oscillator to become stable.  
6. System clock held low until the next falling edge  
of new clock (LP, XT or HS mode).  
7. System clock is switched to external clock  
source.  
Note:  
Executing a SLEEP instruction will abort  
the oscillator start-up time and will cause  
the OSTS bit (OSCCON<3>) to remain  
clear.  
3.6.3  
CHECKING EXTERNAL/INTERNAL  
CLOCK STATUS  
Checking the state of the OSTS bit (OSCCON<3>) will  
confirm if the PIC12F635/PIC16F636/639 is running  
from the external clock source, as defined by the FOSC  
bits in the Configuration Word register (Register 12-1)  
or the internal oscillator.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 35  
PIC12F635/PIC16F636/639  
FIGURE 3-7:  
TWO-SPEED START-UP  
Q1 Q2 Q3 Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
INTOSC  
TOST  
OSC1  
0
1
1022 1023  
OSC2  
Program Counter  
PC  
PC + 1  
PC + 2  
System Clock  
The frequency of the internal oscillator will depend upon  
the value contained in the IRCF bits (OSCCON<6:4>).  
Upon entering the Fail-Safe condition, the OSTS bit  
(OSCCON<3>) is automatically cleared to reflect that  
the internal oscillator is active and the WDT is cleared.  
The SCS bit (OSCCON<0>) is not updated. Enabling  
FSCM does not affect the LTS bit.  
3.7  
Fail-Safe Clock Monitor  
The Fail-Safe Clock Monitor (FSCM) is designed to  
allow the device to continue to operate in the event of  
an oscillator failure. The FSCM can detect oscillator  
failure at any point after the device has exited a Reset  
or Sleep condition and the Oscillator Start-up Timer  
(OST) has expired.  
The FSCM sample clock is generated by dividing the  
LFINTOSC clock by 64. This will allow enough time  
between FSCM sample clocks for a system clock edge  
to occur. Figure 3-8 shows the FSCM block diagram.  
FIGURE 3-8:  
FSCM BLOCK DIAGRAM  
Clock Monitor  
Latch (CM)  
On the rising edge of the sample clock, the monitoring  
latch (CM = 0) will be cleared. On a falling edge of the  
primary system clock, the monitoring latch will be set  
(CM = 1). In the event that a falling edge of the sample  
clock occurs and the monitoring latch is not set, a clock  
failure has been detected. The assigned internal  
oscillator is enabled when FSCM is enabled, as  
reflected by the IRCF.  
(edge-triggered)  
Primary  
Clock  
S
Q
LFINTOSC  
Oscillator  
÷ 64  
C
Q
31 kHz  
(~32 μs)  
488 Hz  
(~2 ms)  
Clock  
Failure  
Detected  
Note 1: Two-Speed Start-up is automatically  
enabled when the Fail-Safe Clock  
Monitor mode is enabled.  
2: Primary clocks with a frequency of  
~488 Hz will be considered failed by  
FSCM. A slow starting oscillator can  
cause an FCSM interrupt.  
The FSCM function is enabled by setting the FCMEN  
bit in the Configuration Word register (Register 12-1). It  
is applicable to all external clock options (LP, XT, HS,  
EC, RC or I/O modes).  
In the event of an external clock failure, the FSCM will  
set the OSFIF bit (PIR1<2>) and generate an oscillator  
fail interrupt if the OSFIE bit (PIE1<2>) is set. The  
device will then switch the system clock to the internal  
oscillator. The system clock will continue to come from  
the internal oscillator unless the external clock recovers  
and the Fail-Safe condition is exited.  
DS41232B-page 36  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
The Fail-Safe condition must be cleared before the  
OSFIF flag can be cleared.  
3.7.1  
FAIL-SAFE CONDITION CLEARING  
The Fail-Safe condition is cleared after a Reset, the  
execution of a SLEEPinstruction, or a modification of the  
SCS bit. While in Fail-Safe condition, the PIC12F635/  
PIC16F636/639 uses the internal oscillator as the  
system clock source. The IRCF bits (OSCCON<6:4>)  
can be modified to adjust the internal oscillator  
frequency without exiting the Fail-Safe condition.  
FIGURE 3-9:  
Sample Clock  
FSCM TIMING DIAGRAM  
Oscillator  
Failure  
System  
Clock  
Output  
CM Output  
(Q)  
Failure  
Detected  
OSCFIF  
CM Test  
CM Test  
CM Test  
Note:  
The system clock is normally at a much higher frequency than the sample clock. The relative  
frequencies in this example have been chosen for clarity.  
3.7.2  
RESET OR WAKE-UP FROM SLEEP  
Note:  
Due to the wide range of oscillator start-up  
times, the Fail-Safe circuit is not active  
during oscillator start-up (i.e., after exiting  
Reset or Sleep). After an appropriate  
amount of time, the user should check the  
OSTS bit (OSCCON<3>) to verify the  
oscillator start-up and system clock  
switchover has successfully completed.  
The FSCM is designed to detect oscillator failure at any  
point after the device has exited a Reset or Sleep  
condition and the Oscillator Start-up Timer (OST) has  
expired. If the external clock is EC or RC mode,  
monitoring will begin immediately following these  
events.  
For LP, XT or HS mode, the external oscillator may  
require a start-up time considerably longer than the  
FSCM sample clock time or a false clock failure may be  
detected (see Figure 3-9). To prevent this, the internal  
oscillator is automatically configured as the system  
clock and functions until the external clock is stable (the  
OST has timed out). This is identical to Two-Speed  
Start-up mode. Once the external oscillator is stable,  
the LFINTOSC returns to its role as the FSCM source.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 37  
PIC12F635/PIC16F636/639  
REGISTER 3-2:  
OSCCON – OSCILLATOR CONTROL REGISTER (ADDRESS: 8Fh)  
U-0  
R/W-1  
IRCF2  
R/W-1  
IRCF1  
R/W-0  
IRCF0  
R-1  
OSTS(1)  
R-0  
R-0  
LTS  
R/W-0  
SCS  
HTS  
bit 7  
bit 0  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IRCF<2:0>: Nominal Internal Oscillator Frequency Select bits  
000= 31 kHz  
001= 125 kHz  
010= 250 kHz  
011= 500 kHz  
100= 1 MHz  
101= 2 MHz  
110= 4 MHz  
111= 8 MHz  
bit 3  
bit 2  
bit 1  
bit 0  
OSTS: Oscillator Start-up Time-out Status bit(1)  
1= Device is running from the external system clock defined by FOSC<2:0>  
0= Device is running from the internal system clock (HFINTOSC or LFINTOSC)  
HTS: HFINTOSC (High Frequency – 8 MHz to 125 kHz) Status bit  
1= HFINTOSC is stable  
0= HFINTOSC is not stable  
LTS: LFINTOSC (Low Frequency – 31 kHz) Stable bit  
1= LFINTOSC is stable  
0= LFINTOSC is not stable  
SCS: System Clock Select bit  
1= Internal oscillator is used for system clock  
0= Clock source defined by FOSC<2:0>  
Note 1: Bit resets to ‘0’ with Two-Speed Start-up and LP, XT or HS selected as the Oscillator  
mode or Fail-Safe mode is enabled.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
TABLE 3-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES  
Value on:  
POR, BOD,  
WUR  
Value on  
all other  
Resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Ch  
8Ch  
8Fh  
90h  
PIR1  
EEIF  
EEIE  
LVDIF  
LVDIE  
CRIF  
CRIE  
C2IF  
C2IE  
C1IF  
C1IE  
OSFIF  
OSFIE  
HTS  
TMR1IF 0000 00-0 0000 00-0  
TMR1IE 0000 00-0 0000 00-0  
PIE1  
OSCCON  
OSCTUNE  
CONFIG  
IRCF2 IRCF1 IRCF0  
OSTS  
TUN3  
LTS  
TUN1  
SCS  
-110 x000 -110 x000  
TUN4  
TUN2  
TUN0 ---0 0000 ---u uuuu  
(1)  
2007h  
CPD  
CP  
MCLRE PWRTE WDTE FOSC2 FOSC1 FOSC0  
Legend:  
x= unknown, u= unchanged, — = unimplemented locations read as ‘0’. Shaded cells are not used by oscillators.  
Note 1: See Register 12-1 for operation of all Configuration Word register bits.  
DS41232B-page 38  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
4.2  
Additional Pin Functions  
4.0  
I/O PORTS  
Every PORTA pin on the PIC12F635/PIC16F636/639  
has an interrupt-on-change option and a weak pull-up/  
pull-down option. RA0 has an Ultra Low-Power Wake-  
up option. The next three sections describe these  
functions.  
There are as many as twelve general purpose I/O pins  
available. Depending on which peripherals are  
enabled, some or all of the pins may not be available as  
general purpose I/O. In general, when a peripheral is  
enabled, the associated pin may not be used as a  
general purpose I/O pin.  
4.2.1  
WEAK PULL-UP/PULL-DOWN  
Each of the PORTA pins, except RA3, has an internal  
weak pull-up and pull-down. The WDA bits select either  
a pull-up or pull-down for an individual port bit.  
Individual control bits can turn on the pull-up or pull-  
down. These pull-ups/pull-downs are automatically  
turned off when the port pin is configured as an output,  
as an alternate function or on a Power-on Reset,  
setting the RAPU bit (OPTION_REG<7>). A weak pull-  
up on RA3 is enabled when configured as MCLR in the  
Configuration Word register and disabled when high  
voltage is detected, to reduce current consumption  
through RA3, while in Programming mode.  
4.1  
PORTA and the TRISA Registers  
PORTA is  
a 6-bit wide, bidirectional port. The  
corresponding data direction register is TRISA  
(Register 4-4). Setting a TRISA bit (= 1) will make the  
corresponding PORTA pin an input (i.e., put the  
corresponding output driver in a High-impedance  
mode). Clearing a TRISA bit (= 0) will make the  
corresponding PORTA pin an output (i.e., put the  
contents of the output latch on the selected pin). The  
exception is RA3, which is input only and its TRIS bit will  
always read as ‘1’. Example 4-1 shows how to initialize  
PORTA.  
Note:  
PORTA = GPIO  
TRISA = TRISIO  
Reading the PORTA register (Register 4-3) reads the  
status of the pins, whereas writing to it will write to the  
port latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then written  
to the port data latch. RA3 reads ‘0’ when MCLRE = 1.  
The TRISA register controls the direction of the  
PORTA pins, even when they are being used as analog  
inputs. The user must ensure the bits in the TRISA  
register are maintained set when using them as analog  
inputs. I/O pins configured as analog inputs always  
read ‘0’.  
Note:  
The CMCON0 (19h) register must be  
initialized to configure an analog channel  
as a digital input. Pins configured as  
analog inputs will read ‘0’.  
EXAMPLE 4-1:  
INITIALIZING PORTA  
BCF  
STATUS,RP0  
;Bank 0  
BCF  
CLRF  
STATUS,RP1  
PORTA  
;
;Init PORTA  
;Set RA<2:0> to  
;digital I/O  
;Bank 1  
MOVLW 07h  
MOVWF CMCON0  
BSF  
BCF  
STATUS,RP0  
STATUS,RP1  
;
MOVLW 0Ch  
MOVWF TRISA  
;Set RA<3:2> as inputs  
;and set RA<5:4,1:0>  
;as outputs  
;Bank 0  
BCF  
BCF  
STATUS,RP0  
STATUS,RP1  
;
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 39  
PIC12F635/PIC16F636/639  
REGISTER 4-1:  
WDA – WEAK PULL-UP/PULL-DOWN REGISTER (ADDRESS: 97h)  
U-0  
U-0  
R/W-1  
WDA5  
R/W-1  
WDA4  
U-0  
R/W-1  
WDA2  
R/W-1  
WDA1  
R/W-1  
WDA0  
bit 7  
bit 0  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
WDA<5:4>: Pull-up/Pull-down Selection bits  
1= Pull-up selected  
0= Pull-down selected  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
WDA<2:0>: Pull-up/Pull-down Selection bits  
1= Pull-up selected  
0= Pull-down selected  
Note 1: The weak pull-up/pull-down device is enabled only when the global RAPU bit is  
enabled, the pin is in Input mode (TRIS = 1), the individual WDA bit is enabled  
(WDA = 1) and the pin is not configured as an analog input or clock function.  
2: RA3 pull-up is enabled when the pin is configured as MCLR in the Configuration  
Word register and the device is not in Programming mode.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 4-2:  
WPUDA – WEAK PULL-UP/PULL-DOWN DIRECTION REGISTER (ADDRESS: 95h)  
U-0  
U-0  
R/W-1  
R/W-1  
U-0  
R/W-1  
R/W-1  
R/W-1  
WPUDA5(3) WPUDA4(3)  
WPUDA2 WPUDA1 WPUDA0  
bit 0  
bit 7  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
WPUDA<5:4>: Pull-up/Pull-down Direction Selection bits(3)  
1= Pull-up/pull-down enabled  
0= Pull-up/pull-down disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
WPUDA<2:0>: Pull-up/Pull-down Direction Selection bits  
1= Pull-up/pull-down enabled  
0= Pull-up/pull-down disabled  
Note 1: The weak pull-up/pull-down direction device is enabled only when the global RAPU bit  
is enabled, the pin is in Input mode (TRIS = 1), the individual WPUDA bit is enabled  
(WPUDA = 1) and the pin is not configured as an analog input or clock function.  
2: RA3 pull-up is enabled when the pin is configured as MCLR in the Configuration  
Word register and the device is not in Programming mode.  
3: WPUDA5 bit can be written if INTOSC is enabled and T1OSC is disabled;  
otherwise, the bit can not be written and reads as ‘1’. WPUDA4 bit can be written  
if not configured as OSC2; otherwise, the bit can not be written and reads as ‘1’.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41232B-page 40  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
REGISTER 4-3:  
PORTA – PORTA REGISTER (ADDRESS: 05h)  
U-0  
U-0  
R/W-x  
RA5  
R/W-x  
RA4  
R-x  
R/W-x  
RA2  
R/W-0  
RA1  
R/W-0  
RA0  
RA3  
bit 7  
bit 0  
bit 7-6:  
bit 5-0:  
Unimplemented: Read as ‘0’  
RA<5:0>: PORTA I/O pins  
1= Port pin is > VIH  
0= Port pin is < VIL  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 4-4:  
TRISA – PORTA TRI-STATE REGISTER (ADDRESS: 85h)  
U-0  
U-0  
R/W-1  
R/W-1  
R-1  
R/W-1  
R/W-1  
R/W-1  
TRISA5(2) TRISA4(2) TRISA3(1) TRISA2 TRISA1  
TRISA0  
bit 7  
bit 0  
bit 7-6:  
bit 5-0:  
Unimplemented: Read as ‘0’  
TRISA<5:0>: PORTA Tri-State Control bits(1,2)  
1= PORTA pin configured as an input (tri-stated)  
0= PORTA pin configured as an output  
Note 1: TRISA<3> always reads ‘1’.  
2: TRISA<5:4> always reads ‘1’ in XT, HS and LP Oscillator modes.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 41  
PIC12F635/PIC16F636/639  
A mismatch condition will continue to set flag bit RAIF.  
Reading PORTA will end the mismatch condition and  
allow flag bit RAIF to be cleared. The latch holding the  
last read value is not affected by a MCLR nor BOD  
Reset. After these Resets, the RAIF flag will continue  
to be set if a mismatch is present.  
4.2.2  
INTERRUPT-ON-CHANGE  
Each of the PORTA pins is individually configurable as  
an interrupt-on-change pin. Control bits, IOCAx, enable  
or disable the interrupt function for each pin. Refer to  
Register 4-5. The interrupt-on-change is disabled on a  
Power-on Reset.  
Note:  
If a change on the I/O pin should occur  
when the read operation is being executed  
(start of the Q2 cycle), then the RAIF  
interrupt flag may not get set.  
For enabled interrupt-on-change pins, the values are  
compared with the old value latched on the last read of  
PORTA. The ‘mismatch’ outputs of the last read are  
OR’d together to set the PORTA Change Interrupt Flag  
bit (RAIF) in the INTCON register (Register 2-3).  
This interrupt can wake the device from Sleep. The  
user, in the Interrupt Service Routine, clears the  
interrupt by:  
a) Any read or write of PORTA. This will end the  
mismatch condition, then  
b) Clear the flag bit RAIF.  
REGISTER 4-5:  
IOCA – INTERRUPT-ON-CHANGE PORTA REGISTER (ADDRESS: 96h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IOCA2  
R/W-0  
IOCA1  
R/W-0  
IOCA0  
IOCA5(2) IOCA4(2) IOCA3(3)  
bit 7  
bit 0  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
IOCA<5:0>: Interrupt-on-change PORTA Control bits(2,3)  
1= Interrupt-on-change enabled(1)  
0= Interrupt-on-change disabled  
Note 1: Global Interrupt Enable (GIE) must be enabled for individual interrupts to be  
recognized.  
2: IOCA<5:4> always reads ‘0’ in XT, HS and LP Oscillator modes.  
3: IOCA<3> is ignored when WUR is enabled and the device is in Sleep mode.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41232B-page 42  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
4.2.3  
ULTRA LOW-POWER WAKE-UP  
EXAMPLE 4-2:  
ULTRA LOW-POWER  
WAKE-UP INITIALIZATION  
The Ultra Low-Power Wake-up (ULPWU) on RA0 allows  
a slow falling voltage to generate an interrupt-on-change  
on RA0 without excess current consumption. The mode  
is selected by setting the ULPWUE bit (PCON<5>). This  
enables a small current sink which can be used to  
discharge a capacitor on RA0.  
BCF  
BCF  
BSF  
MOVLW  
MOVWF  
BSF  
BCF  
BCF  
STATUS,RP0  
;Bank 0  
STATUS,RP1  
PORTA,0  
;
;Set RA0 data latch  
;Turn off  
H’7’  
CMCON0  
; comparators  
;Bank 1  
;
;Output high to  
; charge capacitor  
STATUS,RP0  
STATUS,RP1  
TRISA,0  
To use this feature, the RA0 pin is configured to output  
1’ to charge the capacitor, interrupt-on-change for RA0  
is enabled and RA0 is configured as an input. The  
ULPWUE bit is set to begin the discharge and a SLEEP  
instruction is performed. When the voltage on RA0 drops  
below VIL, an interrupt will be generated which will cause  
the device to wake-up. Depending on the state of the  
GIE bit (INTCON<7>), the device will either jump to the  
interrupt vector (0004h) or execute the next instruction  
when the interrupt event occurs. See Section 4.2.2  
“Interrupt-on-change” and Section 12.9.3 “PORTA  
Interrupt” for more information.  
CALL  
BSF  
BSF  
CapDelay  
PCON,ULPWUE ;Enable ULP Wake-up  
IOCA,0  
TRISA,0  
;Select RA0 IOC  
;RA0 to input  
B’10001000’ ;Enable interrupt  
BSF  
MOVLW  
MOVWF  
SLEEP  
INTCON  
; and clear flag  
;Wait for IOC  
This feature provides a low power technique for  
periodically waking up the device from Sleep. The time-  
out is dependent on the discharge time of the RC circuit  
on RA0. See Example 4-2 for initializing the Ultra Low  
Power Wake-up module.  
The series resistor provides overcurrent protection for the  
RA0 pin and can allow for software calibration of the time-  
out (see Figure 4-1). A timer can be used to measure the  
charge time and discharge time of the capacitor. The  
charge time can then be adjusted to provide the desired  
interrupt delay. This technique will compensate for the  
affects of temperature, voltage and component accuracy.  
The Ultra Low-Power Wake-up peripheral can also be  
configured as a simple Programmable Low-Voltage  
Detect or temperature sensor.  
Note:  
For more information, refer to the  
Application Note AN879, Using the  
Microchip Ultra Low-Power Wake-up  
Module” (DS00879).  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 43  
PIC12F635/PIC16F636/639  
4.2.4  
PIN DESCRIPTIONS AND  
DIAGRAMS  
4.2.4.1  
RA0/C1IN+/ICSPDAT/ULPWU  
Figure 4-2 shows the diagram for this pin. The RA0 pin  
is configurable to function as one of the following:  
Each PORTA pin is multiplexed with other functions. The  
pins and their combined functions are briefly described  
here. For specific information about individual functions,  
such as the comparator, refer to the appropriate section  
in this data sheet.  
• a general purpose I/O  
• an analog input to the comparator  
• In-Circuit Serial Programmingdata  
• an analog input for the Ultra Low-Power Wake-up  
FIGURE 4-1:  
BLOCK DIAGRAM OF RA0  
Analog  
Input Mode(1)  
VDD  
Data Bus  
D
Q
Q
Weak  
CK  
WR  
WPUDA  
RAPU  
RD  
Weak  
WPUDA  
D
Q
Q
CK  
WR  
WDA  
VDD  
RD  
WDA  
D
Q
Q
I/O pin  
WR  
CK  
PORTA  
+
VSS  
VT  
D
Q
Q
WR  
TRISA  
CK  
IULP  
0
1
RD  
TRISA  
Analog  
Input Mode(1)  
VSS  
ULPWUE  
RD  
PORTA  
D
Q
Q
Q
D
D
CK  
WR  
IOCA  
Q3  
EN  
RD  
IOCA  
Interrupt-on-  
Change  
Q
EN  
RD PORTA  
Note 1: Comparator mode determines Analog Input mode.  
DS41232B-page 44  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
4.2.4.2  
RA1/C1IN-/VREF/ICSPCLK  
4.2.4.3  
RA2/T0CKI/INT/C1OUT  
Figure 4-2 shows the diagram for this pin. The RA1 pin  
is configurable to function as one of the following:  
Figure 4-3 shows the diagram for this pin. The RA2 pin  
is configurable to function as one of the following:  
• a general purpose I/O  
• a general purpose I/O  
• an analog input to the comparator  
• In-Circuit Serial Programming clock  
• the clock input for TMR0  
• an external edge-triggered interrupt  
• a digital output from the comparator  
FIGURE 4-2:  
BLOCK DIAGRAM OF RA1  
FIGURE 4-3:  
BLOCK DIAGRAM OF RA2  
Analog  
Input Mode(1)  
Data Bus  
D
Q
Q
Data Bus  
D
VDD  
Q
Q
WR  
CK  
WPUDA  
VDD  
WR  
CK  
WPUDA  
Weak  
Weak  
RAPU  
RD  
RAPU  
RD  
WPUDA  
WPUDA  
Weak  
Weak  
D
Q
Q
D
Q
Q
VSS  
WR  
WDA  
CK  
VSS  
WR  
CK  
WDA  
RD  
RD  
WDA  
WDA  
VDD  
D
Q
Q
C1OUT  
VDD  
D
Q
Q
Enable  
WR  
PORTA  
CK  
WR  
PORTA  
CK  
C1OUT  
1
0
I/O pin  
D
Q
Q
I/O pin  
D
Q
Q
WR  
TRISA  
CK  
VSS  
WR  
TRISA  
CK  
VSS  
Analog  
Input Mode(1)  
RD  
TRISA  
RD  
TRISA  
RD  
PORTA  
RD  
PORTA  
D
Q
Q
D
Q
Q
Q
Q
D
CK  
WR  
IOCA  
Q
Q
D
CK  
WR  
IOCA  
Q3  
EN  
RD  
IOCA  
EN  
Q3  
D
RD  
IOCA  
D
EN  
Interrupt-on-  
change  
EN  
Interrupt-on-  
change  
RD PORTA  
RD PORTA  
To Comparator  
To TMR0  
To INT  
Note 1: Comparator mode determines Analog Input mode.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 45  
PIC12F635/PIC16F636/639  
4.2.4.4  
RA3/MCLR/VPP  
Figure 4-4 shows the diagram for this pin. The RA3 pin  
is configurable to function as one of the following:  
• a general purpose input  
• as Master Clear Reset with weak pull-up  
• a high-voltage detect for Program mode entry  
FIGURE 4-4:  
BLOCK DIAGRAM OF RA3  
VDD  
Weak  
MCLRE  
Program  
Mode  
HV Detect  
Reset  
MCLRE  
Data Bus  
Input  
pin  
RD  
TRISA  
VSS  
MCLRE  
RD  
VSS  
Q3  
PORTA  
D
Q
Q
Q
Q
D
CK  
WR  
IOCA  
EN  
RD  
IOCA  
D
EN  
RD PORTA  
Interrupt-on-  
change  
WURE  
Sleep  
DS41232B-page 46  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
4.2.4.5  
RA4/T1G/OSC2/CLKOUT  
4.2.4.6  
RA5/T1CKI/OSC1/CLKIN  
Figure 4-5 shows the diagram for this pin. The RA4 pin  
is configurable to function as one of the following:  
Figure 4-6 shows the diagram for this pin. The RA5 pin  
is configurable to function as one of the following:  
• a general purpose I/O  
• a TMR1 gate input  
• a crystal/resonator connection  
• a clock output  
• a general purpose I/O  
• a TMR1 clock input  
• a crystal/resonator connection  
• a clock input  
FIGURE 4-5:  
BLOCK DIAGRAM OF RA4  
FIGURE 4-6:  
BLOCK DIAGRAM OF RA5  
Data Bus  
D
Data Bus  
D
CLK(1) Modes  
VDD  
CLK(1) Modes  
VDD  
Q
Q
Q
Q
WR  
WR  
CK  
CK  
WPUDA  
WPUDA  
Weak  
Weak  
RAPU  
RAPU  
RD  
RD  
WPUDA  
WPUDA  
Weak  
Weak  
D
Q
Q
D
Q
Q
VSS  
VSS  
WR  
WR  
WDA  
CK  
CK  
WDA  
Oscillator  
Circuit  
RD  
WDA  
RD  
WDA  
Oscillator  
Circuit  
OSC1  
VDD  
CLKOUT  
Enable  
OSC2  
VDD  
D
Q
Q
Fosc/4  
1
0
WR  
PORTA  
CK  
D
Q
Q
WR  
PORTA  
CK  
I/O pin  
I/O pin  
CLKOUT  
Enable  
D
Q
Q
VSS  
WR  
TRISA  
CK  
D
Q
Q
VSS  
INTOSC/  
RC/EC(2)  
WR  
TRISA  
INTOSC  
Mode  
CK  
RD  
TRISA  
CLKOUT  
Enable  
(2)  
RD  
TRISA  
RD  
PORTA  
XTAL  
D
Q
Q
RD  
PORTA  
Q
Q
D
CK  
WR  
IOCA  
D
Q
Q
Q3  
EN  
Q
Q
D
CK  
WR  
IOCA  
RD  
IOCA  
EN  
Q3  
D
RD  
IOCA  
D
EN  
Interrupt-on-  
change  
EN  
Interrupt-on-  
change  
RD PORTA  
RD PORTA  
T1G To Timer1  
T1G To Timer1  
Note 1: Oscillator modes are XT, HS, LP and LPTMR1.  
Note 1: Oscillator modes are XT, HS, LP, LPTMR1 and  
CLKOUT Enable.  
2: When using Timer1 with LP oscillator, the  
Schmitt Trigger is bypassed.  
2: With CLKOUT option.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 47  
PIC12F635/PIC16F636/639  
TABLE 4-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on:  
POR, BOD, all other  
WUR Resets  
Value on  
Add  
r
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
05h PORTA  
RA5  
T0IE  
RA4  
RA3  
RA2  
T0IF  
RA1  
RA0  
--xx xx00 --uu uu00  
0Bh/ INTCON  
8Bh  
GIE  
PEIE  
INTE  
RAIE  
INTF  
RAIF 0000 0000 0000 0000  
0Eh TMR1L  
0Fh TMR1H  
10h T1CON  
1Ah CMCON1  
19h CMCON0  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000 uuuu uuuu  
T1GSS C2SYNC ---- --10 ---- --10  
C2OUT C1OUT  
C2INV  
T0CS  
C1INV  
T0SE  
CIS  
PSA  
CM2  
PS2  
CM1  
PS1  
CM0  
PS0  
0000 0000 0000 0000  
1111 1111 1111 1111  
81h OPTION_REG RAPU INTEDG  
85h TRISA  
95h WPUDA  
96h IOCA  
97h WDA  
TRISA5 TRISA4  
WPUDA5 WPUDA4  
TRISA3 TRISA2 TRISA1 TRISA0 --11 1111 --11 1111  
IOCA3  
WPUDA2 WPUDA1 WPUDA0 --11 -111 --11 -111  
IOCA5  
WDA5  
IOCA4  
WDA4  
IOCA2  
WDA2  
IOCA1  
WDA1  
IOCA0 --00 0000 --00 0000  
WDA0 --11 -111 --11 -111  
Legend:  
x= unknown, u= unchanged, — = unimplemented locations read as ‘0’. Shaded cells are not used by PORTA.  
DS41232B-page 48  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 4-7:  
BLOCK DIAGRAM OF RC0  
AND RC1  
4.3  
PORTC  
PORTC is a general purpose I/O port consisting of 6  
bidirectional pins. The pins can be configured for either  
digital I/O or analog input to comparator. For specific  
information about individual functions, refer to the  
appropriate section in this data sheet.  
Data Bus  
VDD  
D
Q
Q
WR  
PORTC  
CK  
Note:  
The CMCON0 (19h) register must be ini-  
tialized to configure an analog channel as  
a digital input. Pins configured as analog  
inputs will read ‘0’.  
I/O pin  
D
Q
Q
WR  
TRISC  
CK  
VSS  
Analog Input  
EXAMPLE 4-3:  
INITIALIZING PORTC  
Mode  
BCF  
BCF  
CLRF  
MOVLW  
MOVWF  
BSF  
BCF  
MOVLW  
MOVWF  
STATUS,RP0  
STATUS,RP1  
PORTC  
;Bank 0  
;
;Init PORTC  
;Set RC<4,1:0> to  
;digital I/O  
;Bank 1  
RD  
TRISC  
07h  
RD  
PORTC  
CMCON0  
STATUS,RP0  
STATUS,RP1  
0Ch  
To Comparators  
;Set RC<3:2> as inputs  
;and set RC<5:4,1:0>  
;as outputs  
TRISC  
4.3.3  
RC2  
BCF  
BCF  
STATUS,RP0  
STATUS,RP1  
;Bank 0  
;
The RC2 pin is configurable to function as a general  
purpose I/O.  
4.3.1  
RC0/C2IN+  
4.3.4  
RC3  
The RC0 pin is configurable to function as one of the  
following:  
The RC3 pin is configurable to function as a general  
purpose I/O.  
• a general purpose I/O  
• an analog input to the comparator  
4.3.5  
RC5  
4.3.2  
RC1/C2IN-  
The RC5 pin is configurable to function as a general  
purpose I/O.  
The RC1 pin is configurable to function as one of the  
following:  
FIGURE 4-8:  
BLOCK DIAGRAM OF  
RC2, RC3 AND RC5  
• a general purpose I/O  
• an analog input to the comparator  
Data Bus  
VDD  
D
CK  
Q
Q
WR  
PORTC  
I/O pin  
D
Q
Q
WR  
TRISC  
CK  
VSS  
RD  
TRISC  
RD  
PORTC  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 49  
PIC12F635/PIC16F636/639  
4.3.6  
RC4/C2OUT  
The RC4 pin is configurable to function as one of the  
following:  
• a general purpose I/O  
• a digital output from the comparator  
FIGURE 4-9:  
BLOCK DIAGRAM OF RC4  
C2OUT Enable  
C2OUT  
Data Bus  
VDD  
D
Q
Q
WR  
PORTC  
CK  
1
0
I/O pin  
D
Q
Q
WR  
TRISC  
CK  
VSS  
RD  
TRISC  
RD  
PORTC  
DS41232B-page 50  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
REGISTER 4-6:  
PORTC – PORTC REGISTER (ADDRESS: 07h)  
U-0  
U-0  
R/W-x  
RC5  
R/W-x  
RC4  
R/W-x  
RC3  
R/W-x  
RC2  
R/W-0  
RC1  
R/W-0  
RC0  
bit 7  
bit 0  
bit 7-6:  
bit 5-0:  
Unimplemented: Read as ‘0’  
RC<5:0>: PORTC General Purpose I/O Pin bits  
1= Port pin is > VIH  
0= Port pin is < VIL  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 4-7:  
TRISC – PORTC TRI-STATE REGISTER (ADDRESS: 87h)  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
TRISC5  
TRISC4  
TRISC3  
TRISC2  
TRISC1  
TRISC0  
bit 7  
bit 0  
bit 7-6:  
bit 5-0:  
Unimplemented: Read as ‘0’  
TRISC<5:0>: PORTC Tri-State Control bit  
1= PORTC pin configured as an input (tri-stated)  
0= PORTC pin configured as an output  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
TABLE 4-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on:  
POR, BOD,  
WUR  
Value on  
all other  
Resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
07h  
PORTC  
RC5  
RC4  
RC3  
CIS  
RC2  
CM2  
RC1  
CM1  
RC0  
CM0  
--xx xx00 --uu uu00  
0000 0000 0000 0000  
19h  
CMCON0 C2OUT C1OUT C2INV  
TRISC  
x= unknown, u= unchanged, — = unimplemented locations read as ‘0’. Shaded cells are not used by PORTC.  
C1INV  
87h  
TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 --11 1111 --11 1111  
Legend:  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 51  
PIC12F635/PIC16F636/639  
NOTES:  
DS41232B-page 52  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
Counter mode is selected by setting the T0CS bit  
(OPTION_REG<5>). In this mode, the Timer0 module  
will increment either on every rising or falling edge of  
pin RA2/T0CKI. The incrementing edge is determined  
5.0  
TIMER0 MODULE  
The Timer0 module timer/counter has the following  
features:  
by  
the  
source  
edge  
(T0SE)  
control  
bit  
• 8-bit timer/counter  
(OPTION_REG<4>). Clearing the T0SE bit selects the  
rising edge.  
• Readable and writable  
• 8-bit software programmable prescaler  
• Internal or external clock select  
• Interrupt on overflow from FFh to 00h  
• Edge select for external clock  
Note:  
Counter mode has specific external clock  
requirements. Additional information on  
these requirements is available in the  
PICmicro® Mid-Range MCU Family  
Reference Manual” (DS33023).  
Figure 5-1 is a block diagram of the Timer0 module and  
the prescaler shared with the WDT.  
Note:  
Additional information on the Timer0  
module is available in the “PICmicro® Mid-  
Range MCU Family Reference Manual”  
(DS33023).  
5.2  
Timer0 Interrupt  
A Timer0 interrupt is generated when the TMR0  
register timer/counter overflows from FFh to 00h. This  
overflow sets the T0IF bit (INTCON<2>). The interrupt  
can be masked by clearing the T0IE bit (INTCON<5>).  
The T0IF bit must be cleared in software by the Timer0  
module Interrupt Service Routine before re-enabling  
this interrupt. The Timer0 interrupt cannot wake the  
processor from Sleep since the timer is shut off during  
Sleep.  
5.1  
Timer0 Operation  
Timer mode is selected by clearing the T0CS bit  
(OPTION_REG<5>). In Timer mode, the Timer0  
module will increment every instruction cycle (without  
prescaler). If TMR0 is written, the increment is inhibited  
for the following two instruction cycles. The user can  
work around this by writing an adjusted value to the  
TMR0 register.  
FIGURE 5-1:  
BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
CLKOUT  
(= FOSC/4)  
Data Bus  
0
1
8
1
SYNC/2  
Cycles  
TMR0  
T0CKI  
pin  
0
0
1
Set Flag bit T0IF  
on Overflow  
T0CS  
T0SE  
8-bit  
Prescaler  
PSA  
8
PSA  
WDTE  
SWDTEN  
1
PS<2:0>  
WDT  
Time-out  
16-bit  
Prescaler  
0
16  
Watchdog  
Timer  
LFINTOSC  
PSA  
WDTPS<3:0>  
Note 1: T0SE, T0CS, PSA, PS<2:0> are bits in the Option register, WDTPS<3:0> are bits in the WDTCON register.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 53  
PIC12F635/PIC16F636/639  
5.3  
Using Timer0 with an External  
Clock  
When no prescaler is used, the external clock input is the  
same as the prescaler output. The synchronization of  
T0CKI, with the internal phase clocks, is accomplished  
by sampling the prescaler output on the Q2 and Q4  
cycles of the internal phase clocks. Therefore, it is  
necessary for T0CKI to be high for at least 2 TOSC (and a  
small RC delay of 20 ns) and low for at least 2 TOSC (and  
a small RC delay of 20 ns). Refer to the electrical  
specification of the desired device.  
Note:  
The CMCON0 (19h) register must be ini-  
tialized to configure an analog channel as  
a digital input. Pins configured as analog  
inputs will read ‘0’.  
REGISTER 5-1:  
OPTION_REG – OPTION REGISTER (ADDRESS: 81h)  
R/W-1  
RAPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RAPU: PORTA Pull-up Enable bit  
1= PORTA pull-ups are disabled  
0= PORTA pull-ups are enabled by individual values in the WPUDA register  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of RA2/T0CKI/INT/C1OUT pin  
0= Interrupt on falling edge of RA2/T0CKI/INT/C1OUT pin  
T0CS: TMR0 Clock Source Select bit  
1= Transition on RA2/T0CKI/INT/C1OUT pin  
0= Internal instruction cycle clock (CLKOUT)  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on RA2/T0CKI/INT/C1OUT pin  
0= Increment on low-to-high transition on RA2/T0CKI/INT/C1OUT pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS<2:0>: Prescaler Rate Select bits  
Bit Value TMR0 Rate WDT Rate(1)  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
Note 1: A dedicated 16-bit WDT postscaler is available for the PIC12F635/PIC16F636/639.  
See Section 12.11 “Watchdog Timer (WDT)” for more information.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41232B-page 54  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
EXAMPLE 5-1:  
CHANGING PRESCALER  
(TIMER0 WDT)  
5.4  
Prescaler  
An 8-bit counter is available as a prescaler for the  
Timer0 module, or as a postscaler for the Watchdog  
Timer. For simplicity, this counter will be referred to as  
“prescaler” throughout this data sheet. The prescaler  
assignment is controlled in software by the control bit,  
PSA (OPTION_REG<3>). Clearing the PSA bit will  
assign the prescaler to Timer0. Prescale values are  
selectable via the PS<2:0> bits (OPTION_REG<2:0>).  
BCF  
STATUS,RP0  
;Bank 0  
;
BCF  
STATUS,RP1  
CLRWDT  
CLRF  
;Clear WDT  
;Clear TMR0 and  
; prescaler  
;Bank 1  
;
;Required if desired  
; PS2:PS0 is  
; 000 or 001  
;
TMR0  
BSF  
BCF  
STATUS,RP0  
STATUS,RP1  
MOVLW  
MOVWF  
CLRWDT  
b’00101111’  
OPTION_REG  
The prescaler is not readable or writable. When  
assigned to the Timer0 module, all instructions writing  
to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1,  
x....etc.) will clear the prescaler. When assigned to  
WDT, a CLRWDT instruction will clear the prescaler  
along with the Watchdog Timer.  
MOVLW  
MOVWF  
BCF  
b’00101xxx’  
OPTION_REG  
STATUS,RP0  
STATUS,RP1  
;Set postscaler to  
; desired WDT rate  
;Bank 0  
BCF  
;
5.4.1  
SWITCHING PRESCALER  
ASSIGNMENT  
To change prescaler from the WDT to the TMR0  
module, use the sequence shown in Example 5-2. This  
precaution must be taken even if the WDT is disabled.  
The prescaler assignment is fully under software control  
(i.e., it can be changed “on the fly” during program  
execution). To avoid an unintended device Reset, the  
following instruction sequence (Example 5-1 and  
Example 5-2) must be executed when changing the  
prescaler assignment from Timer0 to WDT.  
EXAMPLE 5-2:  
CHANGING PRESCALER  
(WDT TIMER0)  
CLRWDT  
;Clear WDT and  
;prescaler  
;Bank 1  
BSF  
BCF  
STATUS,RP0  
STATUS,RP1  
;
MOVLW  
b’xxxx0xxx’  
;Select TMR0,  
;prescale, and  
;clock source  
MOVWF  
BCF  
BCF  
OPTION_REG  
STATUS,RP0  
STATUS,RP1  
;
;Bank 0  
;
TABLE 5-1:  
REGISTERS ASSOCIATED WITH TIMER0  
Value on  
Bit 0 POR, BOD,  
WUR  
Value on  
all other  
Resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
01h  
TMR0  
Timer0 Module Register  
GIE PEIE T0IE  
OPTION_REG RAPU INTEDG T0CS  
TRISA  
— = Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the Timer0 module.  
xxxx xxxx uuuu uuuu  
0Bh/8Bh INTCON  
INTE  
RAIE  
PSA  
T0IF  
PS2  
INTF  
PS1  
RAIF 0000 0000 0000 0000  
81h  
T0SE  
PS0  
1111 1111 1111 1111  
85h  
TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 --11 1111 --11 1111  
Legend:  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 55  
PIC12F635/PIC16F636/639  
NOTES:  
DS41232B-page 56  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
The Timer1 Control register (T1CON), shown in  
Register 6-1, is used to enable/disable Timer1 and  
select the various features of the Timer1 module.  
6.0  
TIMER1 MODULE WITH GATE  
CONTROL  
The PIC12F635/PIC16F636/639 has a 16-bit timer.  
Figure 6-1 shows the basic block diagram of the Timer1  
module. Timer1 has the following features:  
Note:  
Additional information on timer modules is  
available in the “PICmicro® Mid-Range  
MCU  
Family  
Reference  
Manual”  
• 16-bit timer/counter (TMR1H:TMR1L)  
• Readable and writable  
(DS33023).  
• Internal or external clock selection  
• Synchronous or asynchronous operation  
• Interrupt on overflow from FFFFh to 0000h  
• Wake-up upon overflow (Asynchronous mode)  
• Optional external enable input:  
- Selectable gate source: T1G or C2 output  
(T1GSS)  
- Selectable gate polarity (T1GINV)  
• Optional LP oscillator  
FIGURE 6-1:  
TIMER1 ON THE PIC12F635/PIC16F636/639 BLOCK DIAGRAM  
TMR1ON  
TMR1GE  
T1GINV  
TMR1ON  
TMR1GE  
Set Flag bit  
To C2 Comparator Module  
TMR1 Clock  
TMR1IF on  
Overflow  
(1)  
TMR1  
Synchronized  
Clock Input  
0
TMR1L  
TMR1H  
1
Oscillator  
(3)  
T1SYNC  
OSC1/T1CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
0
OSC2/T1G  
2
Sleep Input  
T1CKPS<1:0>  
INTOSC  
No CLKOUT  
TMR1CS  
T1OSCEN  
1
0
(2)  
C2OUT  
T1GSS  
Note 1: Timer1 increments on the rising edge.  
2: C2OUT for PIC16F636/639, C1OUT for PIC12F635.  
3: ST Buffer is low-power type when using LP oscillator, or high-speed type when using T1CKI.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 57  
PIC12F635/PIC16F636/639  
6.1  
Timer1 Modes of Operation  
6.3  
Timer1 Prescaler  
Timer1 can operate in one of three modes:  
Timer1 has four prescaler options, allowing 1, 2, 4 or 8  
divisions of the clock input. The T1CKPS bits  
(T1CON<5:4>) control the prescale counter. The  
prescale counter is not directly readable or writable;  
however, the prescaler counter is cleared upon a write  
to TMR1H or TMR1L.  
• 16-bit timer with prescaler  
• 16-bit synchronous counter  
• 16-bit asynchronous counter  
In Timer mode, Timer1 is incremented on every  
instruction cycle. In Counter mode, Timer1 is incremented  
on the rising edge of the external clock input T1CKI. In  
addition, the Counter mode clock can be synchronized to  
the microcontroller system clock or run asynchronously.  
6.4  
Timer1 Gate  
Timer1 gate source is software configurable to be the  
T1G pin or the output of Comparator 2. This allows the  
device to directly time external events using T1G or  
analog events using Comparator 2. See CMCON1  
(Register 7-2) for selecting the Timer1 gate source.  
This feature can simplify the software for many other  
applications.  
In Counter and Timer modules, the counter/timer clock  
can be gated by the Timer1 gate, which can be selected  
as either the T1G pin or the Comparator 2 output.  
If an external clock oscillator is needed (and the  
microcontroller is using the INTOSC w/o CLKOUT),  
Timer1 can use the LP oscillator as a clock source.  
Note:  
TMR1GE bit (T1CON<6>) must be set to  
use either T1G or C2OUT as the Timer1  
gate source. See Register 7-2 for more  
information on selecting the Timer1 gate  
source.  
Note:  
In Counter mode, a falling edge must be  
registered by the counter prior to the first  
incrementing rising edge.  
6.2  
Timer1 Interrupt  
Timer1 gate can be inverted using the T1GINV bit  
(T1CON<7>), whether it originates from the T1G pin or  
Comparator 2 output. This configures Timer1 to  
measure either the active-high or active-low time  
between events.  
The Timer1 register pair (TMR1H:TMR1L) increments  
to FFFFh and rolls over to 0000h. When Timer1 rolls  
over, the Timer1 interrupt flag bit (PIR1<0>) is set. To  
enable the interrupt on rollover, you must set these bits:  
• Timer1 interrupt enable bit (PIE1<0>)  
• PEIE bit (INTCON<6>)  
• GIE bit (INTCON<7>).  
The interrupt is cleared by clearing the TMR1IF bit in  
the Interrupt Service Routine.  
Note:  
The TMR1H:TTMR1L register pair and the  
TMR1IF bit should be cleared before  
enabling interrupts.  
FIGURE 6-2:  
TIMER1 INCREMENTING EDGE  
T1CKI = 1  
when TMR1  
Enabled  
T1CKI = 0  
when TMR1  
Enabled  
Note 1: Arrows indicate counter increments.  
2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of  
the clock.  
DS41232B-page 58  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
REGISTER 6-1:  
T1CON – TIMER1 CONTROL REGISTER (ADDRESS: 10h)  
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0  
T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
R/W-0  
R/W-0  
bit 7  
bit 0  
bit 7  
bit 6  
T1GINV: Timer1 Gate Invert bit(1)  
1= Timer1 gate is inverted  
0= Timer1 gate is not inverted  
TMR1GE: Timer1 Gate Enable bit(2)  
If TMR1ON = 0:  
This bit is ignored.  
If TMR1ON = 1:  
1= Timer1 is on if Timer1 gate is not active  
0= Timer1 is on  
bit 5-4  
bit 3  
T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
T1OSCEN: LP Oscillator Enable Control bit  
If INTOSC without CLKOUT oscillator is active:  
1= LP oscillator is enabled for Timer1 clock  
0= LP oscillator is off  
Else:  
This bit is ignored.  
bit 2  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock.  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from T1CKI pin (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Note 1: T1GINV bit inverts the Timer1 gate logic, regardless of source.  
2: TMR1GE bit must be set to use either T1G pin or C2OUT, as selected by the  
T1GSS bit (CMCON1<1>), as a Timer1 gate source.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 59  
PIC12F635/PIC16F636/639  
6.5  
Timer1 Operation in  
6.6  
Timer1 Oscillator  
Asynchronous Counter Mode  
A crystal oscillator circuit is built-in between pins OSC1  
(input) and OSC2 (amplifier output). It is enabled by  
setting control bit, T1OSCEN (T1CON<3>). The  
oscillator is a low-power oscillator rated up to 31 kHz. It  
will continue to run during Sleep. It is primarily intended  
for a 32 kHz crystal. Table 3-1 shows the capacitor  
selection for the Timer1 oscillator.  
If control bit T1SYNC (T1CON<2>) is set, the external  
clock input is not synchronized. The timer continues to  
increment asynchronous to the internal phase clocks.  
The timer will continue to run during Sleep and can  
generate an interrupt on overflow, which will wake-up the  
processor. However, special precautions in software are  
needed to read/write the timer (see Section 6.5.1  
“Reading and Writing Timer1 in Asynchronous  
Counter Mode”).  
The Timer1 oscillator is shared with the system LP  
oscillator. Thus, Timer1 can use this mode only when  
the primary system clock is derived from the internal  
oscillator. As with the system LP oscillator, the user  
must provide a software time delay to ensure proper  
oscillator start-up.  
Note:  
The CMCON0 (19h) register must be  
initialized to configure an analog channel  
as a digital input. Pins configured as  
analog inputs will read ‘0’.  
TRISA5 and TRISA4 bits are set when the Timer1  
oscillator is enabled. RA5 and RA4 bits read as ‘0’ and  
TRISA5 and TRISA4 bits read as ‘1’.  
6.5.1  
READING AND WRITING TIMER1 IN  
ASYNCHRONOUS COUNTER  
MODE  
Note:  
The oscillator requires a start-up and  
stabilization time before use. Thus,  
T1OSCEN should be set and a suitable  
delay observed prior to enabling Timer1.  
Reading TMR1H or TMR1L while the timer is running  
from an external asynchronous clock will ensure a valid  
read (taken care of in hardware). However, the user  
should keep in mind that reading the 16-bit timer in two  
8-bit values itself, poses certain problems, since the  
timer may overflow between the reads.  
6.7  
Timer1 Operation During Sleep  
Timer1 can only operate during Sleep when set up in  
Asynchronous Counter mode. In this mode, an external  
crystal or clock source can be used to increment the  
counter. To set up the timer to wake the device:  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write  
contention may occur by writing to the timer registers  
while the register is incrementing. This may produce an  
unpredictable value in the timer register.  
• Timer1 must be on (T1CON<0>)  
• TMR1IE bit (PIE1<0>) must be set  
• PEIE bit (INTCON<6>) must be set  
Reading the 16-bit value requires some care.  
Examples in the “PICmicro® Mid-Range MCU Family  
Reference Manual” (DS33023) show how to read and  
write Timer1 when it is running in Asynchronous mode.  
The device will wake-up on an overflow. If the GIE bit  
(INTCON<7>) is set, the device will wake-up and jump  
to the Interrupt Service Routine (0004h) on an overflow.  
If the GIE bit is clear, execution will continue with the  
next instruction.  
TABLE 6-1:  
REGISTERS ASSOCIATED WITH TIMER1  
Value on  
POR, BOD,  
WUR  
Value on  
all other  
Resets  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh/  
8Bh  
INTCON  
PIR1  
GIE  
PEIE  
T0IE  
INTE  
C2IF  
RAIE  
C1IF  
T0IF  
INTF  
RAIF  
0000 0000 0000 0000  
0Ch  
0Eh  
0Fh  
10h  
1Ah  
EEIF  
LVDIF  
CRIF  
OSFIF  
TMR1IF 0000 00-0 0000 00-0  
xxxx xxxx uuuu uuuu  
TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx uuuu uuuu  
T1CON T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000 uuuu uuuu  
CMCON  
1
T1GSS C2SYNC ---- --10 ---- --10  
8Ch  
PIE1  
EEIE  
LVDIE  
CRIE  
C2IE  
C1IE  
OSFIE  
TMR1IE 0000 00-0 0000 00-0  
Legend:  
x= unknown, u= unchanged, — = unimplemented, read as ‘0’. Shaded cells are not used by the Timer1 module.  
DS41232B-page 60  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
The CMCON0 register (Register 7-1) controls the  
comparator input and output multiplexers. A block  
diagram of the various comparator configurations is  
shown in Figure 7-4.  
7.0  
COMPARATOR MODULE  
The comparator module contains two analog  
comparators. The inputs to the comparators are  
multiplexed with I/O port pins RA0, RA1, RC0 and RC1,  
while the outputs are multiplexed to pins RA2 and RC4.  
An on-chip Comparator Voltage Reference (CVREF)  
can also be applied to the inputs of the comparators.  
Note:  
The PIC12F635 has only 1 comparator.  
The comparator on the PIC12F635  
behaves like comparator  
PIC16F636/639.  
2
of the  
REGISTER 7-1:  
CMCON0 – COMPARATOR CONTROL 0 REGISTER (ADDRESS: 19h)  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
CIS  
R/W-0  
CM2  
R/W-0  
CM1  
R/W-0  
CM0  
bit 0  
C2OUT(1) C1OUT(2) C2INV(1) C1INV(2)  
bit 7  
bit 7  
C2OUT: Comparator 2 Output bit(1)  
When C2INV = 0:  
1= C2 VIN+ > C2 VIN-  
0= C2 VIN+ < C2 VIN-  
When C2INV = 1:  
1= C2 VIN+ < C2 VIN-  
0= C2 VIN+ > C2 VIN-  
bit 6  
C1OUT: Comparator 1 Output bit(2)  
When C1INV = 0:  
1= C1 VIN+ > C1 VIN-  
0= C1 VIN+ < C1 VIN-  
When C1INV = 1:  
1= C1 VIN+ < C1 VIN-  
0= C1 VIN+ > C1 VIN-  
bit 5  
bit 4  
bit 3  
C2INV: Comparator 2 Output Inversion bit(1)  
1= C2 output inverted  
0= C2 output not inverted  
C1INV: Comparator 1 Output Inversion bit(2)  
1= C1 output inverted  
0= C1 output not inverted  
CIS: Comparator Input Switch bit  
When CM<2:0> = 010:  
1= C1 VIN- connects to RA0  
C2 VIN- connects to RC0  
0= C1 VIN- connects to RA1  
C2 VIN- connects to RC1  
When CM<2:0> = 001:  
1= C1 VIN- connects to RA0  
0= C1 VIN- connects to RA1  
bit 2-0  
CM<2:0>: Comparator Mode bits  
Figure 7-4 shows the Comparator modes and CM<2:0> bit settings.  
Note 1: PIC16F636/639 only. Reads as ‘0’ for PIC12F635.  
2: PIC12F635 bit names are COUT and CINV.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 61  
PIC12F635/PIC16F636/639  
FIGURE 7-1:  
SINGLE COMPARATOR  
7.1  
Comparator Operation  
A single comparator is shown in Figure 7-1 along with  
the relationship between the analog input levels and  
the digital output. When the analog input at VIN+ is less  
than the analog input VIN-, the output of the comparator  
is a digital low level. When the analog input at VIN+ is  
greater than the analog input VIN-, the output of the  
comparator is a digital high level. The shaded areas of  
the output of the comparator in Figure 7-1 represent  
the uncertainty due to input offsets and response time.  
VIN+  
VIN-  
+
Output  
VIN-  
VIN+  
Note:  
To use CIN+ and CIN- pins as analog  
inputs, the appropriate bits must be  
programmed in the CMCON0 (19h)  
register.  
Output  
The polarity of the comparator output can be inverted  
by setting the CxINV bits (CMCON0<5:4>). Clearing  
CxINV results in a non-inverted output. A complete  
table showing the output state versus input conditions  
and the polarity bit is shown in Table 7-1.  
7.2  
Analog Input Connection  
Considerations  
A simplified circuit for an analog input is shown in  
Figure 7-2. Since the analog pins are connected to a  
digital output, they have reverse biased diodes to VDD  
and VSS. The analog input, therefore, must be between  
VSS and VDD. If the input voltage deviates from this  
range by more than 0.6V in either direction, one of the  
diodes is forward biased and a latch-up may occur. A  
maximum source impedance of 10 kΩ is recommended  
for the analog sources. Any external component  
connected to an analog input pin, such as a capacitor or  
a Zener diode, should have very little leakage current.  
TABLE 7-1:  
OUTPUT STATE VS. INPUT  
CONDITIONS  
Input Conditions  
CINV  
CxOUT  
VIN- > VIN+  
VIN- < VIN+  
VIN- > VIN+  
VIN- < VIN+  
0
0
1
1
0
1
1
0
Note 1: When reading the Port register, all pins  
configured as analog inputs will read as a  
0’. Pins configured as digital inputs will  
convert as analog inputs according to the  
input specification.  
2: Analog levels on any pin defined as a  
digital input may cause the input buffer to  
consume more current than is specified.  
FIGURE 7-2:  
ANALOG INPUT MODEL  
VDD  
VT = 0.6V  
RIC  
Rs < 10 kΩ  
AIN  
ILEAKAGE  
±500 nA  
CPIN  
5 pF  
VA  
VT = 0.6V  
Vss  
Legend:  
CPIN  
VT  
= Input Capacitance  
= Threshold Voltage  
ILEAKAGE = Leakage Current at the pin due to various junctions  
RIC  
RS  
VA  
= Interconnect Resistance  
= Source Impedance  
= Analog Voltage  
DS41232B-page 62  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
7.3  
Comparator Configuration  
There are eight modes of operation for the comparators.  
The CMCON0 register is used to select these modes.  
Figure 7-3 and Figure 7-4 show the eight possible  
modes. The TRISA and TRISC registers control the data  
direction of the comparator output pins for each mode. If  
the Comparator mode is changed, the comparator  
output level may not be valid for the specified mode  
change delay shown in Section 15.0 “Electrical  
Specifications”.  
Note:  
Comparator interrupts should be disabled  
during Comparator mode change.  
Otherwise, a false interrupt may occur.  
a
FIGURE 7-3:  
COMPARATOR I/O OPERATING MODES FOR PIC12F635  
Comparator Off (Lowest Power)(1)  
Comparator Reset (POR Default Value – Low Power)  
CM<2:0> = 000  
CM<2:0> = 111  
GP1/CIN-  
GP0/CIN+  
A
A
GP1/CIN-  
GP0/CIN+  
D
D
Off (Read as ‘0’)  
Off (Read as ‘0’)  
GP2/C1OUT  
D
GP2/C1OUT  
D
Comparator without Output  
Comparator w/o Output and with Internal Reference  
CM<2:0> = 010  
CM<2:0> = 100  
GP1/CIN-  
GP0/CIN+  
A
A
GP1/CIN-  
GP0/CIN+  
A
D
C1OUT  
C1OUT  
GP2/C1OUT  
D
GP2/C1OUT  
D
From CVREF Module  
Comparator with Output and Internal Reference  
Multiplexed Input with Internal Reference and Output  
CM<2:0> = 011  
CM<2:0> = 101  
GP1/CIN-  
GP0/CIN+  
A
D
GP1/CIN-  
GP0/CIN+  
A
A
CIS = 0  
CIS = 1  
C1OUT  
C1OUT  
GP2/C1OUT  
D
GP2/C1OUT  
D
From CVREF Module  
From CVREF Module  
Comparator with Output  
Multiplexed Input with Internal Reference  
CM<2:0> = 001  
CM<2:0> = 110  
GP1/CIN-  
GP0/CIN+  
A
A
GP1/CIN-  
GP0/CIN+  
A
A
CIS = 0  
CIS = 1  
C1OUT  
C1OUT  
GP2/C1OUT  
D
GP2/C1OUT  
D
From CVREF Module  
Legend: A = Analog Input, ports always read ‘0’  
CIS = Comparator Input Switch (CMCON0<3>)  
D = Digital Input  
Note 1: Lowest power statement assures valid digital stats on GPO, GP1 and GP2.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 63  
PIC12F635/PIC16F636/639  
FIGURE 7-4:  
COMPARATOR I/O OPERATING MODES FOR PIC16F636/639  
Comparator Reset (POR Default Value)  
CM<2:0> = 000  
Comparators Off (Lowest Power)(1)  
CM<2:0> = 111  
A
D
VIN-  
VIN-  
RA1  
RA0  
RA1  
RA0  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
C1  
C2  
C1  
C2  
VIN+  
VIN+  
A
D
A
A
D
D
VIN-  
VIN-  
RC1  
RC0  
RC1  
RC0  
VIN+  
VIN+  
Four Inputs Multiplexed to Two Comparators  
Two Independent Comparators  
CM<2:0> = 010  
CM<2:0> = 100  
A
A
VIN-  
RA1  
RA1  
RA0  
CIS = 0  
CIS = 1  
VIN-  
A
C1OUT  
C2OUT  
C1  
C2  
VIN+  
A
RA0  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
A
A
RC1  
RC0  
VIN-  
CIS = 0  
CIS = 1  
A
A
VIN-  
RC1  
RC0  
VIN+  
VIN+  
From CVREF Module  
Two Common Reference Comparators  
CM<2:0> = 011  
Two Common Reference Comparators with Outputs  
CM<2:0> = 110  
A
A
VIN-  
VIN-  
RA1  
RA0  
RA1  
C1OUT  
C2OUT  
C1OUT  
C2OUT  
C1  
C2  
C1  
C2  
VIN+  
VIN+  
D
D
RA2/C1OUT  
A
A
A
A
VIN-  
VIN-  
RC1  
RC0  
RC1  
RC0  
VIN+  
VIN+  
RC4/C2OUT  
One Independent Comparator  
CM<2:0> = 101  
Three Inputs Multiplexed to Two Comparators  
CM<2:0> = 001  
D
VIN-  
A
RA1  
RA0  
RA1  
CIS = 0  
CIS = 1  
VIN-  
Off (Read as ‘0’)  
C1  
C2  
VIN+  
D
A
RA0  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
A
A
VIN-  
A
A
VIN-  
RC1  
RC0  
RC1  
RC0  
C2OUT  
VIN+  
VIN+  
A = Analog Input, ports always read ‘0’  
CIS = Comparator Input Switch (CMCON0<3>)  
Legend:  
D = Digital Input  
DS41232B-page 64  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 7-5:  
PIC12F635 COMPARATOR C1 OUTPUT BLOCK DIAGRAM  
C1INV  
C1SYNC  
To TMR1  
0
To C1OUT pin  
1
Q
Q
D
TMR1  
Clock Source  
EN  
(1)  
To Data Bus  
D
EN  
RD CMCON  
Set C2IF bit  
Q
D
RD CMCON  
EN  
CL  
Reset  
Note 1: Comparator 1 output is latched on falling edge of T1 clock source.  
FIGURE 7-6:  
PIC16F636/639 COMPARATOR C1 OUTPUT BLOCK DIAGRAM  
C1INV  
To C1OUT pin  
To Data Bus  
Q
D
EN  
RD CMCON  
Set C1IF bit  
Q
D
RD CMCON  
EN  
CL  
NRESET  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 65  
PIC12F635/PIC16F636/639  
FIGURE 7-7:  
PIC16F636/639 COMPARATOR C2 OUTPUT BLOCK DIAGRAM  
C2INV  
C2SYNC  
To TMR1  
0
To C2OUT pin  
1
Q
Q
D
TMR1  
Clock Source  
EN  
(1)  
To Data Bus  
D
EN  
RD CMCON  
Set C2IF bit  
Q
D
RD CMCON  
EN  
CL  
Reset  
Note 1: Comparator 2 output is latched on falling edge of T1 clock source.  
REGISTER 7-2:  
CMCON1 – COMPARATOR CONTROL 1 REGISTER (ADDRESS: 1Ah)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
(1)  
T1GSS  
C2SYNC  
bit 7  
bit 0  
bit 7-2:  
bit 1  
Unimplemented: Read as ‘0’  
T1GSS: Timer1 Gate Source Select bit  
1= Timer1 gate source is T1G pin (RA4 must be configured as digital input)  
0= Timer1 gate source is Comparator 2 output  
(2)  
bit 0  
C2SYNC: Comparator 2 Synchronize bit  
1= C2 output synchronized with falling edge of Timer1 clock  
0= C2 output not synchronized with Timer1 clock  
Note 1: C2SYNC is C1SYNC in PIC12F635.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41232B-page 66  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
The CxIE bits (PIE1<4:3>) and the PEIE bit  
(INTCON<6>) must be set to enable the interrupts. In  
addition, the GIE bit must also be set. If any of these  
bits are cleared, the interrupt is not enabled, though the  
CxIF bits will still be set if an interrupt condition occurs.  
7.4  
Comparator Outputs  
The comparator outputs are read through the  
CMCON0 register. These bits are read-only. The  
comparator outputs may also be directly output to the  
RA2 and RC4 I/O pins. When enabled, multiplexers in  
the output path of the RA2 and RC4 pins will switch  
and the output of each pin will be the unsynchronized  
output of the comparator. The uncertainty of each of  
the comparators is related to the input offset voltage  
and the response time given in the specifications.  
Figure 7-5 and Figure 7-6 show the output block  
diagrams for Comparator 1 and 2.  
The user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
a) Any read or write of CMCON0. This will end the  
mismatch condition.  
b) Clear flag bits CxIF.  
A mismatch condition will continue to set flag bits CxIF.  
Reading CMCON0 will end the mismatch condition and  
allow flag bits CxIF to be cleared.  
The TRIS bits will still function as an output enable/  
disable for the RA2 and RC4 pins while in this mode.  
Note:  
If a change in the CMCON0 register  
(CxOUT) should occur when a read  
operation is being executed (start of the  
Q2 cycle), then the CxIF (PIR1<4:3>)  
interrupt flags may not get set.  
The polarity of the comparator outputs can be changed  
using the C1INV and C2INV bits (CMCON0<5:4>).  
Timer1 gate source can be configured to use the T1G  
pin or Comparator 2 output as selected by the T1GSS bit  
(CMCON1<1>). This feature can be used to time the  
duration or interval of analog events. The output of  
Comparator 2 can also be synchronized with Timer1 by  
setting the C2SYNC bit (CMCON1<0>). When enabled,  
the output of Comparator 2 is latched on the falling edge  
of the Timer1 clock source. If a prescaler is used with  
Timer1, Comparator 2 is latched after the prescaler. To  
prevent a race condition, the Comparator 2 output is  
latched on the falling edge of the Timer1 clock source  
and Timer1 increments on the rising edge of its clock  
source. See Figure 7-6, Comparator C2 Output Block  
Diagram and Figure 5-1, Timer1 on the PIC12F635/  
PIC16F636/639 Block Diagram for more information.  
It is recommended to synchronize Comparator 2 with  
Timer1 by setting the C2SYNC bit when Comparator 2  
is used as the Timer1 gate source. This ensures Timer1  
does not miss an increment if Comparator 2 changes  
during an increment.  
7.5  
Comparator Interrupts  
The comparator interrupt flags are set whenever there  
is a change in the output value of its respective  
comparator. Software will need to maintain information  
about the status of the output bits, as read from  
CMCON0<7:6>, to determine the actual change that  
has occurred. The CxIF bits (PIR1<4:3>) are the  
Comparator Interrupt Flags. These bits must be reset in  
software by clearing them to ‘0’. Since it is also possible  
to write a ‘1’ to this register, a simulated interrupt may  
be initiated.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 67  
PIC12F635/PIC16F636/639  
EQUATION 7-1:  
7.6  
Comparator Reference  
The comparator module also allows the selection of an  
internally generated voltage reference for one of the  
comparator inputs. The VRCON register (Register 7-3)  
controls the voltage reference module shown in  
Figure 7-8.  
VRR = 1 (low range): CVREF = (VR<3:0>/24) x VDD  
VRR = 0 (high range):  
CVREF = (VDD/4) + (VR<3:0> x VDD/32)  
7.6.2  
VOLTAGE REFERENCE  
ACCURACY/ERROR  
7.6.1  
CONFIGURING THE VOLTAGE  
REFERENCE  
The voltage reference is VDD derived and therefore, the  
CVREF output changes with fluctuations in VDD. The  
tested absolute accuracy of the comparator voltage  
reference can be found in Section 15.0 “Electrical  
Specifications”.  
The voltage reference can output 32 distinct voltage  
levels, 16 in a high range and 16 in a low range.  
The following equation determines the output voltages:  
FIGURE 7-8:  
COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM  
16 Stages  
8R  
R
R
R
R
VDD  
VRR  
8R  
16-1 Analog  
MUX  
VREN  
CVREF to  
Comparator  
Input  
VR<3:0>  
DS41232B-page 68  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
While the comparator is enabled during Sleep, an  
interrupt will wake-up the device. If the GIE bit  
7.7  
Comparator Response Time  
Response time is the minimum time, after selecting a  
new reference voltage or input source, before the  
comparator output is ensured to have a valid level. If  
the internal reference is changed, the maximum delay  
of the internal voltage reference must be considered  
when using the comparator outputs. Otherwise, the  
maximum delay of the comparators should be used  
(Table 15-7).  
(INTCON<7>) is set, the device will jump to the  
interrupt vector (0004h) and if clear, continues  
execution with the next instruction. If the device wakes  
up from Sleep, the contents of the CMCON0, CMCON1  
and VRCON registers are not affected.  
7.9  
Effects of a Reset  
A device Reset forces the CMCON0, CMCON1 and  
VRCON registers to their Reset states. This forces the  
comparator module to be in the Comparator Reset  
mode, CM<2:0> = 000and the voltage reference to its  
OFF state. Thus, all potential inputs are analog inputs  
with the comparator and voltage reference disabled to  
consume the smallest current possible.  
7.8  
Operation During Sleep  
The comparators and voltage reference, if enabled  
before entering Sleep mode, remain active during  
Sleep. This results in higher Sleep currents than shown  
in the power-down specifications. The additional  
current consumed by the comparator and the voltage  
reference is shown separately in the specifications. To  
minimize power consumption while in Sleep mode, turn  
off the comparator, CM<2:0> = 111 and voltage  
reference, VRCON<7> = 0.  
REGISTER 7-3:  
VRCON – VOLTAGE REFERENCE CONTROL REGISTER (ADDRESS: 99h)  
R/W-0  
VREN  
U-0  
R/W-0  
VRR  
R/W-0  
R/W-0  
VR3  
R/W-0  
VR2  
R/W-0  
VR1  
R/W-0  
VR0  
bit 7  
bit 0  
bit 7  
VREN: CVREF Enable bit  
1= CVREF circuit powered on  
0= CVREF circuit powered down, no IDD drain and CVREF = VSS  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
VRR: CVREF Range Selection bit  
1= Low range  
0= High range  
bit 4  
Unimplemented: Read as ‘0’  
bit 3-0  
VR<3:0>: CVREF Value Selection bits 0 VR<3:0> 15  
When VRR = 1:  
CVREF = (VR<3:0>/24) * VDD  
When VRR = 0:  
CVREF = VDD/4 + (VR<3:0>/32) * VDD  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 69  
PIC12F635/PIC16F636/639  
NOTES:  
DS41232B-page 70  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
8.1  
Voltage Trip Points  
8.0  
PROGRAMMABLE  
LOW-VOLTAGE DETECT  
(PLVD) MODULE  
The PIC12F635/PIC16F636/639 device supports eight  
internal PLVD trip points. See Register 8-1 for available  
PLVD trip point voltages.  
The Programmable Low-Voltage Detect module is an  
interrupt driven supply level detection. The voltage  
detection monitors the internal power supply.  
REGISTER 8-1:  
LVDCON – LOW-VOLTAGE DETECT CONTROL REGISTER (ADDRESS: 94h)  
U-0  
U-0  
R-0  
R/W-0  
U-0  
R/W-1  
LVDL2  
R/W-0  
LVDL1  
R/W-0  
LVDL0  
IRVST  
LVDEN  
bit 7  
bit 0  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
IRVST: Internal Reference Voltage Stable Status Flag bit  
1= Indicates that the PLVD is stable and PLVD interrupt is reliable  
0= Indicates that the PLVD is not stable and PLVD interrupt should not be enabled  
bit 4  
LVDEN: Low-Voltage Detect Power Enable bit  
1= Enables PLVD, powers up PLVD circuit and supporting reference circuitry  
0= Disables PLVD, powers down PLVD and supporting circuitry  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
LVDL<2:0>: Low-Voltage Detection Limit bits (nominal values)  
111= 4.5V  
110= 4.2V  
101= 4.0V  
100= 2.3V (default)  
011= 2.2V  
010= 2.1V  
001= 2.0V  
000= 1.9V(1)  
Note 1: Not tested and below minimum VDD.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
TABLE 8-1:  
REGISTERS ASSOCIATED WITH PROGRAMMABLE LOW-VOLTAGE DETECT  
Value on  
POR, BOD,  
WUR  
Value on  
all other  
Resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
94h  
LVDCON  
IRVST LVDEN  
LVDL2 LVDL1 LVDL0 --00 -000 --00 -000  
0Bh/8Bh INTCON  
GIE  
PEIE  
LVDIF  
LVDIE  
T0IE  
CRIF  
CRIE  
INTE  
C2IF  
RAIE  
C1IF  
C1IE  
T0IF  
INTF  
RAIF  
0000 0000 0000 0000  
0Ch  
PIR1  
PIE1  
EEIF  
EEIE  
OSFIF  
OSFIE  
TMR1IF 0000 00-0 0000 00-0  
TMR1IE 0000 00-0 0000 00-0  
(1)  
8Ch  
C2IE  
Legend:  
x= unknown, u= unchanged, — = unimplemented, read as ‘0’. Shaded cells are not used by the comparator or  
comparator voltage reference module.  
Note 1: PIC16F636/639 only.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 71  
PIC12F635/PIC16F636/639  
NOTES:  
DS41232B-page 72  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
The EEPROM data memory allows byte read and write.  
A byte write automatically erases the location and  
9.0  
DATA EEPROM MEMORY  
The EEPROM data memory is readable and writable  
during normal operation (full VDD range). This memory  
is not directly mapped in the register file space.  
Instead, it is indirectly addressed through the Special  
Function Registers. There are four SFRs used to read  
and write this memory:  
writes the new data (erase before write). The EEPROM  
data memory is rated for high erase/write cycles. The  
write time is controlled by an on-chip timer. The write  
time will vary with voltage and temperature as well as  
from chip-to-chip. Please refer to A/C specifications in  
Section 15.0 “Electrical Specifications” for exact  
limits.  
• EECON1  
• EECON2 (not a physically implemented register)  
When the data memory is code-protected, the CPU  
may continue to read and write the data EEPROM  
memory. The device programmer can no longer access  
the data EEPROM data and will read zeroes.  
• EEDAT  
• EEADR  
EEDAT holds the 8-bit data for read/write and EEADR  
holds the address of the EEPROM location being  
accessed. PIC16F636/639 has 256 bytes of data  
EEPROM and the PIC12F635 has 64 bytes.  
Additional information on the data EEPROM is  
available in the “PICmicro® Mid-Range MCU Family  
Reference Manual” (DS33023).  
REGISTER 9-1:  
EEDAT – EEPROM DATA REGISTER (ADDRESS: 9Ah)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EEDAT7  
EEDAT6 EEDAT5 EEDAT4 EEDAT3 EEDAT2 EEDAT1 EEDAT0  
bit 0  
bit 7  
bit 7-0  
EEDATn: Byte Value to Write to or Read From Data EEPROM bits  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 9-2:  
EEADR – EEPROM ADDRESS REGISTER (ADDRESS: 9Bh)  
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0  
EEADR7(1) EEADR6 EEADR5 EEADR4 EEADR3 EEADR2 EEADR1 EEADR0  
R/W-0  
R/W-0  
bit 7  
bit 0  
bit 7-0  
EEADR: Specifies 1 of 256 Locations for EEPROM Read/Write Operation bits  
Note 1: PIC16F636/639 only. Read as ‘0’ on PIC12F635.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 73  
PIC12F635/PIC16F636/639  
The WREN bit, when set, will allow a write operation.  
On power-up, the WREN bit is clear. The WRERR bit is  
set when a write operation is interrupted by a MCLR  
Reset, or a WDT Time-out Reset during normal  
operation. In these situations, following Reset, the user  
can check the WRERR bit, clear it and rewrite the  
location. The data and address will be cleared.  
Therefore, the EEDAT and EEADR registers will need  
to be re-initialized.  
9.1  
EECON1 AND EECON2 Registers  
EECON1 is the control register with four low-order bits  
physically implemented. The upper four bits are non-  
implemented and read as ‘0’s.  
Control bits RD and WR initiate read and write,  
respectively. These bits cannot be cleared, only set in  
software. They are cleared in hardware at completion  
of the read or write operation. The inability to clear the  
WR bit in software prevents the accidental, premature  
termination of a write operation.  
Interrupt flag, EEIF bit (PIR1<7>), is set when write is  
complete. This bit must be cleared in software.  
EECON2 is not a physical register. Reading EECON2  
will read all ‘0’s. The EECON2 register is used  
exclusively in the data EEPROM write sequence.  
Note:  
The EECON1, EEDAT and EEADR  
registers should not be modified during a  
data EEPROM write (WR bit = 1).  
REGISTER 9-3:  
EECON1 – EEPROM CONTROL 1 REGISTER (ADDRESS: 9Ch)  
U-0  
U-0  
U-0  
U-0  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
WRERR  
bit 7  
bit 0  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
WRERR: EEPROM Error Flag bit  
1= A write operation is prematurely terminated (any MCLR Reset, any WDT Reset during  
normal operation or BOD detect)  
0= The write operation completed  
bit 2  
bit 1  
WREN: EEPROM Write Enable bit  
1= Allows write cycles  
0= Inhibits write to the data EEPROM  
WR: Write Control bit  
1= Initiates a write cycle (The bit is cleared by hardware once write is complete. The WR bit  
can only be set, not cleared, in software.)  
0= Write cycle to the data EEPROM is complete  
bit 0  
RD: Read Control bit  
1= Initiates an EEPROM read (Read takes one cycle. RD is cleared in hardware. The RD bit  
can only be set, not cleared, in software.)  
0= Does not initiate an EEPROM read  
Legend:  
S = Bit can only be set  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41232B-page 74  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
After a write sequence has been initiated, clearing the  
WREN bit will not affect this write cycle. The WR bit will  
be inhibited from being set unless the WREN bit is set.  
9.2  
Reading the EEPROM Data  
Memory  
To read a data memory location, the user must write the  
address to the EEADR register and then set control bit  
RD (EECON1<0>), as shown in Example 9-1. The data  
is available, in the very next cycle, in the EEDAT  
register. Therefore, it can be read in the next  
instruction. EEDAT holds this value until another read,  
or until it is written to by the user (during a write  
operation).  
At the completion of the write cycle, the WR bit is  
cleared in hardware and the EE Write Complete  
Interrupt Flag bit (EEIF) is set. The user can either  
enable this interrupt or poll this bit. The EEIF bit  
(PIR1<7>) must be cleared by software.  
9.4  
Write Verify  
Depending on the application, good programming  
practice may dictate that the value written to the data  
EEPROM should be verified (see Example 9-3) to the  
desired value to be written.  
EXAMPLE 9-1:  
DATA EEPROM READ  
BSF  
BCF  
STATUS,RP0  
STATUS,RP1  
;Bank 1  
;
;
;Address to read  
;EE Read  
;Move data to W  
MOVLW  
MOVWF  
BSF  
CONFIG_ADDR  
EEADR  
EECON1,RD  
EEDAT,W  
EXAMPLE 9-3:  
WRITE VERIFY  
BSF  
STATUS,RP0 ;Bank 1  
MOVF  
BCF  
MOVF  
STATUS,RP1  
EEDAT,W  
;
;EEDAT not changed  
;from previous write  
;YES, Read the  
;value written  
9.3  
Writing to the EEPROM Data  
Memory  
BSF  
EECON1,RD  
XORWF EEDAT,W  
BTFSS STATUS,Z  
To write an EEPROM data location, the user must first  
write the address to the EEADR register and the data  
to the EEDAT register. Then the user must follow a  
specific sequence to initiate the write for each byte, as  
shown in Example 9-2.  
;Is data the same  
;No, handle error  
;Yes, continue  
GOTO  
:
WRITE_ERR  
9.4.1  
USING THE DATA EEPROM  
high-endurance, byte  
EXAMPLE 9-2:  
DATA EEPROM WRITE  
The data EEPROM is  
a
BSF  
BCF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
STATUS,RP0  
STATUS,RP1  
EECON1,WREN  
INTCON,GIE  
55h  
EECON2  
AAh  
EECON2  
EECON1,WR  
INTCON,GIE  
;Bank 1  
;
;Enable write  
;Disable INTs  
;Unlock write  
;
;
;
addressable array that has been optimized for the  
storage of frequently changing information (e.g.,  
program variables or other data that are updated often).  
The maximum endurance for any EEPROM cell is  
specified as D120. D124 specifies a maximum number  
of writes to any EEPROM location before a refresh is  
required of infrequently changing memory locations.  
;Start the write  
;Enable INTS  
9.4.2  
EEPROM ENDURANCE  
BSF  
As an example, hypothetically, a data EEPROM is  
64 bytes long and has an endurance of 1M writes. It  
also has a refresh parameter of 10M writes. If every  
memory location in the cell were written the maximum  
number of times, the data EEPROM would fail after  
64M write cycles. If every memory location, save 1,  
were written the maximum number of times, the data  
EEPROM would fail after 63M write cycles, but the one  
remaining location could fail after 10M cycles. If proper  
refreshes occurred, then the lone memory location  
would have to be refreshed 6 times for the data to  
remain correct.  
The write will not initiate if the above sequence is not  
exactly followed (write 55h to EECON2, write AAh to  
EECON2, then set WR bit) for each byte. We strongly  
recommend that interrupts be disabled during this  
code segment. A cycle count is executed during the  
required sequence. Any number that is not equal to the  
required cycles to execute the required sequence will  
prevent the data from being written into the EEPROM.  
Additionally, the WREN bit in EECON1 must be set to  
enable write. This mechanism prevents accidental  
writes to data EEPROM due to errant (unexpected)  
code execution (i.e., lost programs). The user should  
keep the WREN bit clear at all times, except when  
updating EEPROM. The WREN bit is not cleared  
by hardware.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 75  
PIC12F635/PIC16F636/639  
9.5  
Protection Against Spurious Write  
9.6  
Data EEPROM Operation During  
Code Protection  
There are conditions when the user may not want to  
write to the data EEPROM memory. To protect against  
spurious EEPROM writes, various mechanisms have  
been built in. On power-up, WREN is cleared. Also, the  
Power-up Timer (nominal 64 ms duration) prevents  
EEPROM write.  
Data memory can be code-protected by programming  
the CPD bit in the Configuration Word (Register 12-1)  
to ‘0’.  
When the data memory is code-protected, the CPU is  
able to read and write data to the data EEPROM. It is  
recommended to code-protect the program memory  
when code-protecting data memory. This prevents  
anyone from programming zeroes over the existing  
code (which will execute as NOPs) to reach an added  
routine, programmed in unused program memory,  
which outputs the contents of data memory.  
Programming unused locations in program memory to  
0’ will also help prevent data memory code protection  
from becoming breached.  
The write initiate sequence and the WREN bit together  
help prevent an accidental write during:  
• Brown-out  
• Power glitch  
• Software malfunction  
TABLE 9-1:  
REGISTERS/BITS ASSOCIATED WITH DATA EEPROM  
Value on  
POR, BOD,  
WUR  
Value on  
all other  
Resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh/8Bh INTCON  
GIE  
EEIF  
EEIE  
PEIE  
LVDIF  
LVDIE  
T0IE  
CRIF  
CRIE  
INTE  
RAIE  
C1IF  
C1IE  
T0IF  
INTF  
RAIF 0000 0000 0000 0000  
TMR1IF 0000 00-0 0000 00-0  
TMR1IE 0000 00-0 0000 00-0  
(1)  
0Ch  
PIR1  
C2IF  
C2IE  
OSFIF  
OSFIE  
(1)  
8Ch  
PIE1  
9Ah  
EEDAT  
EEDAT7 EEDAT6 EEDAT5 EEDAT4 EEDAT3 EEDAT2 EEDAT1 EEDAT0 0000 0000 0000 0000  
(1)  
9Bh  
EEADR EEADR7 EEADR6 EEADR5 EEADR4 EEADR3 EEADR2 EEADR1 EEADR0 0000 0000 0000 0000  
9Ch  
EECON1  
WRERR WREN  
WR  
RD  
---- x000 ---- q000  
---- ---- ---- ----  
9Dh  
EECON2 EEPROM Control Register 2 (not a physical register)  
Legend:  
x= unknown, u= unchanged, — = unimplemented read as ‘0’, q= value depends upon condition.  
Shaded cells are not used by the data EEPROM module.  
Note 1: PIC16F636/639 only.  
DS41232B-page 76  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
®
10.0 KEELOQ COMPATIBLE  
CRYPTOGRAPHIC MODULE  
To obtain information regarding the implementation of  
the KEELOQ module, Microchip Technology requires  
®
the execution of the “KEELOQ Encoder License  
Agreement”.  
®
The “KEELOQ Encoder License Agreement” may be  
accessed through the Microchip web site located at  
www.microchip.com/KEELOQ. Further information may  
be obtained by contacting your local Microchip Sales  
Representative.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 77  
PIC12F635/PIC16F636/639  
NOTES:  
DS41232B-page 78  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
11.2 Modulation Circuit  
11.0 ANALOG FRONT-END (AFE)  
FUNCTIONAL DESCRIPTION  
(PIC16F639 ONLY)  
The modulation circuit consists of a modulation  
transistor (FET), internal tuning capacitors and external  
LC antenna components. The modulation transistor  
The PIC16F639 device consists of the PIC16F636  
device and low frequency (LF) Analog Front-End  
(AFE), with the AFE section containing three analog-  
input channels for signal detection and LF talk-back.  
This section describes the Analog Front-End (AFE) in  
detail.  
and the internal tuning capacitors are connected  
between the LC input pin and LCCOM pin. Each LC  
input has its own modulation transistor.  
When the modulation transistor turns on, its low Turn-on  
Resistance (RM) clamps the induced LC antenna  
voltage. The coil voltage is minimized when the  
modulation transistor turns-on and maximized when the  
modulation transistor turns-off. The modulation  
transistor’s low Turn-on Resistance (RM) results in a  
high modulation depth.  
The PIC16F639 device can detect a 125 kHz input  
signal as low as 1 mVpp and transmit data by using  
internal LF talk-back modulation or via an external  
transmitter. The PIC16F639 can also be used for  
various bidirectional communication applications.  
Figure 11-3 and Figure 11-4 show application examples  
of the device.  
The LF talk-back is achieved by turning on and off the  
modulation transistor.  
The modulation data comes from the microcontroller  
section via the digital SPI interface as “Clamp On”,  
“Clamp Off” commands. Only those inputs that are  
enabled will execute the clamp command. A basic  
block diagram of the modulation circuit is shown in  
Figure 11-1 and Figure 11-2.  
Each analog input channel has internal tuning  
capacitance, sensitivity control circuits, an input signal  
strength limiter and an LF talk-back modulation  
transistor. An Automatic Gain Control (AGC) loop is  
used for all three input channel gains. The output of  
each channel is OR'd and fed into a demodulator. The  
digital output is passed to the LFDATA pin. Figure 11-1  
shows the block diagram of the AFE and Figure 11-2  
shows the LC input path.  
The modulation FET is also shorted momentarily after  
Soft Reset and Inactivity timer time-out.  
11.3 Tuning Capacitor  
There are a total of eight Configuration registers. Six of  
them are used for AFE operation options, one for  
column parity bits and one for status indication of AFE  
operation. Each register has 9 bits including one row  
parity bit. These registers are readable and writable by  
SPI (Serial Protocol Interface) commands except for  
the Status register, which is read-only.  
Each channel has internal tuning capacitors for external  
antenna tuning. The capacitor values are programmed  
by the Configuration registers up to 63 pF, 1 pF per step.  
Note:  
The user can control the tuning capacitor  
by programming the AFE Configuration  
registers.  
11.1 RF Limiter  
11.4 Variable Attenuator  
The RF Limiter limits LC pin input voltage by de-Q’ing  
the attached LC resonant circuit. The absolute voltage  
limit is defined by the silicon process’s maximum  
allowed input voltage (see Section 15.0 “Electrical  
Specifications”). The limiter begins de-Q’ing the  
external LC antenna when the input voltage exceeds  
VDE_Q, progressively de-Q’ing harder to reduce the  
antenna input voltage.  
The variable attenuator is used to attenuate, via AGC  
control, the input signal voltage to avoid saturating the  
amplifiers and demodulators.  
Note:  
The variable attenuator function is  
accomplished by the device itself. The  
user cannot control its function.  
The signal levels from all 3 channels are combined  
such that the limiter attenuates all 3 channels  
uniformly, in respect to the channel with the strongest  
signal.  
11.5 Sensitivity Control  
The sensitivity of each channel can be reduced by the  
channel’s Configuration register sensitivity setting.  
This is used to desensitize the channel from optimum.  
Note:  
The user can desensitize the channel  
sensitivity by programming the AFE  
Configuration registers.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 79  
PIC12F635/PIC16F636/639  
11.6 AGC Control  
11.10 Demodulator  
The AGC controls the variable attenuator to limit the  
internal signal voltage to avoid saturation of internal  
amplifiers and demodulators (Refer to Section 11.4  
“Variable Attenuator”).  
The Demodulator consists of a full-wave rectifier, low  
pass filter, peak detector and Data Slicer that detects  
the envelope of the input signal.  
11.11 Data Slicer  
The signal levels from all 3 channels are combined  
such that AGC attenuates all 3 channels uniformly in  
respect to the channel with the strongest signal.  
The Data Slicer consists of a reference generator and  
comparator. The Data Slicer compares the input with  
the reference voltage. The reference voltage comes  
from the minimum modulation depth requirement  
setting and input peak voltage. The data from all 3  
channels are OR’d together and sent to the output  
enable filter.  
Note:  
The AGC control function is accomplished  
by the device itself. The user cannot  
control its function.  
11.7 Fixed Gain Amplifiers 1 and 2  
FGA1 and FGA2 provides a maximum two-stage gain  
of 40 dB.  
11.12 Output Enable Filter  
The Output Enable Filter enables the LFDATA output  
once the incoming signal meets the wake-up sequence  
requirements (see Section 11.15 “Configurable  
Output Enable Filter”).  
Note:  
The user cannot control the gain of these  
two amplifiers.  
11.8 Auto Channel Selection  
11.13 RSSI (Received Signal Strength  
Indicator)  
The Auto Channel Selection feature is enabled if the  
Auto Channel Select bit AUTOCHSEL<8> in Configu-  
ration Register 5 (Register 11-6) is set, and disabled if  
the bit is cleared. When this feature is active (i.e.,  
AUTOCHSE <8> = 1), the control circuit checks the  
demodulator output of each input channel immediately  
after the AGC settling time (TSTAB). If the output is high,  
it allows this channel to pass data, otherwise it is  
blocked.  
The RSSI provides a current which is proportional to the  
input signal amplitude (see Section 11.31.3 “Received  
Signal Strength Indicator (RSSI) Output”).  
11.14 Analog Front-End Timers  
The AFE has an internal 32 kHz RC oscillator. The  
oscillator is used in several timers:  
The status of this operation is monitored by AFE Status  
Register 7 bits <8:6> (Register 11-8). These bits indicate  
the current status of the channel selection activity, and  
automatically updates for every Soft Reset period. The  
auto channel selection function resets after each Soft  
Reset (or after Inactivity timer time-out). Therefore, the  
blocked channels are reenabled after Soft Reset.  
• Inactivity timer  
• Alarm timer  
• Pulse Width timer  
• Period timer  
• AGC settling timer  
11.14.1 RC OSCILLATOR  
This feature can make the output signal cleaner by  
blocking any channel that was not high at the end of  
TAGC. This function works only for demodulated data  
output, and is not applied for carrier clock or RSSI  
output.  
The RC oscillator is low power, 32 kHz ± 10% over  
temperature and voltage variations.  
11.9 Carrier Clock Detector  
The Detector senses the input carrier cycles. The  
output of the Detector switches digitally at the signal  
carrier frequency. Carrier clock output is available  
when the output is selected by the DATOUT bit in the  
AFE Configuration Register 1 (Register 11-2).  
DS41232B-page 80  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
The timer is reset when the:  
11.14.2 INACTIVITY TIMER  
• CS pin is low (any SPI command).  
• Output enable filter is disabled.  
The Inactivity Timer is used to automatically return the  
AFE to Standby mode, if there is no input signal. The  
time-out period is approximately 16 ms (TINACT), based  
on the 32 kHz internal clock.  
• LFDATA pin is enabled (signal passed output  
enable filter).  
The purpose of the Inactivity Timer is to minimize AFE  
current draw by automatically returning the AFE to the  
lower current Standby mode, if there is no input signal  
for approximately 16 ms.  
The timer starts when:  
• Receiving a LF signal.  
The timer causes a low output on the ALERT pin when:  
The timer is reset when:  
• Output enable filter is enabled and modulated  
input signal is present for TALARM, but does not  
pass the output enable filter requirement.  
• An amplitude change in LF input signal, either  
high-to-low or low-to-high  
• CS pin is low (any SPIcommand)  
Note:  
The Alarm timer is disabled if the output  
enable filter is disabled.  
• Timer-related Soft Reset  
The timer starts when:  
11.14.4 PULSE WIDTH TIMER  
• AFE receives any LF signal  
The timer causes an AFE Soft Reset when:  
The Pulse Width Timer is used to verify that the  
received output enable sequence meets both the  
minimum TOEH and minimum TOEL requirements.  
• A previously received LF signal does not change  
either high-to-low or low-to-high for TINACT  
11.14.5 PERIOD TIMER  
The Soft Reset returns the AFE to Standby mode where  
most of the analog circuits, such as the AGC,  
demodulator and RC oscillator, are powered down. This  
returns the AFE to the lower Standby Current mode.  
The Period Timer is used to verify that the received  
output enable sequence meets the maximum TOET  
requirement.  
11.14.6 AGC SETTLING TIMER (TAGC)  
11.14.3 ALARM TIMER  
This timer is used to keep the output enable filter in  
Reset while the AGC settles on the input signal. The  
time-out period is approximately 3.5 ms. At end of this  
time (TAGC), the input should remain high (TPAGC),  
otherwise the counting is aborted and a Soft Reset is  
issued. See Figure 11-6 for details.  
The Alarm Timer is used to notify the MCU that the AFE  
is receiving LF signal that does not pass the output  
enable filter requirement. The time-out period is  
approximately 32 ms (TALARM) in the presence of  
continuing noise.  
The Alarm Timer time-out occurs if there is an input  
signal for longer than 32 ms that does not meet the  
output enable filter requirements. The Alarm Timer  
time-out causes:  
Note 1: The AFE needs continuous and  
uninterrupted high input signal during  
AGC settling time (TAGC). Any absence of  
signal during this time may reset the timer  
and a new input signal is needed for AGC  
settling time, or may result in improper  
AGC gain settings which will produce  
invalid output.  
a) The ALERT pin to go low.  
b) The ALARM bit to set in the AFE Status  
Configuration 7 register (Register 11-8).  
The MCU is informed of the Alarm timer time-out by  
monitoring the ALERT pin. If the Alarm timer time-out  
occurs, the MCU can take appropriate actions such as  
lowering channel sensitivity or disabling channels. If  
the noise source is ignored, the AFE can return to a  
lower standby current draw state.  
2: The rest of the AFE section wakes up if any  
of these input channels receive the AGC  
settling time correctly. AFE Status Register  
7 bits <4:2> (Register 11-8) indicate which  
input channels have waken up the AFE  
first. Valid input signal on multiple input pins  
can cause more than one channel's  
indicator bit to be set.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 81  
PIC12F635/PIC16F636/639  
FIGURE 11-1:  
FUNCTIONAL BLOCK DIAGRAM – ANALOG FRONT-END  
÷ 64  
AGC  
LCX  
Detector  
WAKEX  
Tune X  
RF  
Lim  
Sensitivity  
Control X  
Mod  
A
÷ 64  
LCCOM  
WAKEY  
AGC  
LCY  
Σ
Detector  
WAKEZ  
Tune Y  
RF  
Lim  
Sensitivity  
Control Y  
Mod  
A
LCCOM  
÷ 64  
AGC  
LCZ  
Detector  
Tune Z  
RF  
Lim  
Sensitivity  
Control Z  
Watchdog  
Mod  
A
B
Modulation  
Depth  
To Sensitivity X  
32 kHZ  
Oscillator  
AGC  
Timer  
Output Enable  
Filter  
LCCOM  
To Sensitivity Y  
To Sensitivity Z  
AGC Preserve  
Command Decoder/Controller  
To Modulation  
Transistors  
To Tuning Cap X  
To Tuning Cap Y  
To Tuning Cap Z  
Configuration  
Registers  
RSSI  
SCLK/ALERT  
CS  
LFDATA/RSSI/  
CCLK/SDIO  
VSST  
VDDT  
MCU  
DS41232B-page 82  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 11-2:  
LC INPUT PATH  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 83  
PIC12F635/PIC16F636/639  
FIGURE 11-3:  
BIDIRECTIONAL PASSIVE KEYLESS ENTRY (PKE) SYSTEM APPLICATION EXAMPLE  
d
e
s
t
e
p
d
y
o
r
C
c
n
E
e
s
)
n
F
o
H
p
U
s
(
e
R
LED  
LED  
UHF  
Transmitter  
UHF  
Receiver  
Ant. X  
Ant. Y  
Ant. Z  
d
n
a
H
m
k
m
5
o
2
C
1
F
(
L
PIC16F639  
)
z
MCU  
(PIC16F636)  
LF  
+
Transmitter/  
Receiver  
3 Input  
Analog Front-End  
Base Station  
Transponder  
FIGURE 11-4:  
PASSIVE KEYLESS ENTRY (PKE) TRANSPONDER CONFIGURATION EXAMPLE  
+3V  
315 MHz  
VDD  
VSS  
1
20  
19  
18  
+3V  
+3V  
S0  
S3  
2
S1  
S4  
3
S2  
S5  
4
17  
16  
RF Circuitry  
LED  
Data  
5
(UHF TX)  
RFEN  
CS  
6
15  
14  
13  
12  
11  
LFDATA/RSSI/CCLK/SDIO  
SCLK/ALERT  
VSST  
LCCOM  
LCZ  
7
+3V  
VDDT  
LCX  
LCY  
8
9
10  
air-core  
coil  
ferrite-core  
coil  
ferrite-core  
coil  
DS41232B-page 84  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
11.15 Configurable Output Enable Filter  
The purpose of this filter is to enable the LFDATA output  
and wake the microcontroller only after receiving a  
specific sequence of pulses on the LC input pins.  
Therefore, it prevents the AFE from waking up the  
microcontroller due to noise or unwanted input signals.  
The circuit compares the timing of the demodulated  
header waveform with a pre-defined value, and enables  
the demodulated LFDATA output when a match occurs.  
The output enable filter consists of a high (TOEH) and  
low duration (TOEL) of a pulse immediately after the  
AGC settling gap time. The selection of high and low  
times further implies a max period time. The output  
enable high and low times are determined by SPI  
interface programming. Figure 11-5 and Figure 11-6  
show the output enable filter waveforms.  
There should be no missing cycles during TOEH.  
Missing cycles may result in failing the output enable  
condition.  
FIGURE 11-5:  
OUTPUT ENABLE FILTER TIMING  
Required Output Enable Sequence  
Data Packet  
Start bit  
TSTAB  
(TAGC + TPAGC)  
Demodulator  
Output  
TGAP  
t TOEH  
t TOEL  
AGC  
Gap Pulse  
AFE Wake-up  
and AGC Stabilization  
LFDATA output is enabled  
on this rising edge  
t
TOET  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 85  
PIC12F635/PIC16F636/639  
FIGURE 11-6:  
OUTPUT ENABLE FILTER TIMING EXAMPLE (DETAILED)  
Start bit  
LFDATA Output  
LF Coil Input  
3.5 ms  
TPAGC  
TGAP  
Gap  
Pulse  
Low  
t TOEL  
t TE  
Current  
Standby  
Mode  
(need  
“high”)  
TAGC  
(AGC settling time)  
t TOEH  
t TOET  
TSTAB  
(AFE Stabilization)  
Filter  
starts  
Filter is passed and  
LFDATA is enabled  
Legend:  
TAGC = AGC stabilization time  
TE = Time element of pulse  
TGAP = AGC stabilization gap  
TOEH = Minimum output enable filter high time  
TOEL = Minimum output enable filter low time  
TOET = Maximum output enable filter period  
TPAGC = High time after TAGC  
TSTAB = TAGC + TPAGC  
DS41232B-page 86  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
If the filter resets due to a long high (TOEH > TOET), the  
high-pulse timer will not begin timing again until after a  
gap of TE and another low-to-high transition occurs on  
TABLE 11-1: TYPICAL OUTPUT ENABLE  
FILTER TIMING  
OEH  
OEL  
TOEH  
(ms)  
TOEL  
(ms)  
TOET  
the demodulator output.  
<1:0>  
<1:0>  
(ms)  
Disabling the output enable filter disables the TOEH and  
TOEL requirement and the AFE passes all received LF  
data. See Figure 11-10, Figure 11-11 and Figure 11-12  
for examples.  
01  
01  
01  
01  
00  
01  
10  
11  
1
1
1
1
1
1
2
4
3
3
4
6
When viewed from an application perspective, from the  
pin input, the actual output enable filter timing must fac-  
tor in the analog delays in the input path (such as  
demodulator charge and discharge times).  
10  
10  
10  
10  
00  
01  
10  
11  
2
2
2
2
1
1
2
4
4
4
5
8
TOEH - TDR + TDF  
TOEL + TDR - TDF  
The output enable filter starts immediately after TGAP,  
the gap after AGC stabilization period.  
11  
11  
11  
11  
00  
01  
10  
11  
4
4
4
4
1
1
2
4
6
6
11.16 Input Sensitivity Control  
8
10  
The AFE is designed to have typical input sensitivity of  
3 mVPP. This means any input signal with amplitude  
greater than 3 mVPP can be detected. The AFE’s internal  
AGC loop regulates the detecting signal amplitude when  
the input level is greater than approximately 20 mVPP.  
This signal amplitude is called “AGC-active level”. The  
AGC loop regulates the input voltage so that the input  
signal amplitude range will be kept within the linear range  
of the detection circuits without saturation. The AGC  
Active Status bit (AGCACT<5>) in the AFE Status  
Register 7 (Register 11-8) is set if the AGC loop  
regulates the input voltage.  
00  
XX  
Filter Disabled  
Note 1: Typical at room temperature and  
VDD = 3.0V, 32 kHz oscillator.  
TOEH is measured from the rising edge of the demodulator  
output to the first falling edge. The pulse width must fall  
within TOEH t TOET.  
TOEL is measured from the falling edge of the  
demodulator output to the rising edge of the next pulse.  
The pulse width must fall within TOEL t TOET.  
Table 11-2 shows the input sensitivity comparison when  
the AGCSIG option is used. When AGCSIG option bit is  
set, the demodulated output is available only when the  
AGC loop is active (see Table 11-1). The AFE has also  
input sensitivity reduction options per each channel. The  
Configuration Register 3 (Register 11-4), Configuration  
Register 4 (Register 11-5) and Configuration Register 5  
(Register 11-6) have the option to reduce the channel  
gains from 0 dB to approximately -30 dB.  
TOET is measured from rising edge to the next rising  
edge (i.e., the sum of TOEH and TOEL). The pulse width  
must be t TOET. If the Configuration Register 0  
(Register 11-1), OEL<8:7> is set to ‘00’, then TOEH  
must not exceed TOET and TOEL must not exceed  
TINACT.  
The filter will reset, requiring a complete new successive  
high and low period to enable LFDATA, under the  
following conditions.  
• The received high is not greater than the  
configured minimum TOEH value.  
• During TOEH, a loss of signal > 56 μs. A loss of  
signal < 56 μs may or may not cause a filter  
Reset.  
• The received low is not greater than the  
configured minimum TOEL value.  
• The received sequence exceeds the maximum  
TOET value:  
- TOEH + TOEL > TOET  
- or TOEH > TOET  
- or TOEL > TOET  
• A Soft Reset SPI command is received.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 87  
PIC12F635/PIC16F636/639  
TABLE 11-2: INPUT SENSITIVITY VS. MODULATED SIGNAL STRENGTH SETTING (AGCSIG <7>)  
Input  
Sensitivity  
(Typical)  
AGCSIG<7>  
(Config. Register 5)  
Description  
0
Disabled – the AFE passes signal of any amplitude level it is capable of  
detecting (demodulated data and carrier clock).  
3.0 mVPP  
1
Enabled – No output until AGC Status = 1(i.e., VPEAK 20 mVPP)  
(demodulated data and carrier clock).  
20 mVPP  
• Provides the best signal to noise ratio.  
11.17 Input Channels (Enable/Disable)  
11.19 AGC Preserve  
Each channel can be individually enabled or disabled  
by programming bits in Configuration Register 0<3:1>  
(Register 11-1).  
The AGC preserve feature allows the AFE to preserve  
the AGC value during the AGC settling time (TAGC) and  
apply the value to the data slicing circuit for the following  
data streams instead of using a new tracking value. This  
feature is useful to demodulate the input signal correctly  
when the input has random amplitude variations at a  
given time period. This feature is enabled when the AFE  
receives an AGC Preserve On command and disabled  
if it receives an AGC Preserve Off command. Once the  
AGC Preserve On command is received, the AFE  
acquires a new AGC value during each AGC settling  
time and preserves the value until a Soft Reset or an  
AGC Preserve Off command is issued. Therefore, it  
does not need to issue another AGC Preserve On  
command. An AGC Preserve Off command is needed to  
The purpose of having an option to disable a particular  
channel is to minimize current draw by powering down  
as much circuitry as possible, if the channel is not  
needed for operation. The exact circuits disabled when  
an input is disabled are amplifiers, detector, full-wave  
rectifier, data slicer, and modulation FET. However, the  
RF input limiter remains active to protect the silicon  
from excessive antenna input voltages.  
11.18 AGC Amplifier  
The circuit automatically amplifies input signal voltage  
levels to an acceptable level for the data slicer. Fast  
attack and slow release by nature, the AGC tracks the  
carrier signal level and not the modulated data bits.  
disable  
Section 11.32.2.5 “AGC Preserve On Command”  
and Section 11.32.2.6 “AGC Preserve Off  
Command” for AGC Preserve commands).  
the  
AGC  
preserve  
feature  
(see  
The AGC inherently tracks the strongest of the three  
antenna input signals. The AGC requires an AGC  
stabilization time (TAGC).  
The AGC will attempt to regulate a channel’s peak  
signal voltage into the data slicer to a desired regulated  
AGC voltage – reducing the input path’s gain as the  
signal level attempts to increase above regulated AGC  
voltage, and allowing full amplification on signal levels  
below the regulated AGC voltage.  
The AGC has two modes of operation:  
1. During the AGC settling time (TAGC), the AGC  
time constant is fast, allowing a reasonably short  
acquisition time of the continuous input signal.  
2. After TAGC, the AGC switches to a slower time  
constant for data slicing.  
Also, the AGC is frozen when the input signal envelope  
is low. The AGC tracks only high envelope levels.  
DS41232B-page 88  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
TABLE 11-3: SETTING FOR MINIMUM  
MODULATION DEPTH  
11.20 Soft Reset  
The AFE issues a Soft Reset in the following events:  
REQUIREMENT  
MODMIN Bits  
(Config. Register 5)  
a) After Power-on Reset (POR),  
b) After Inactivity timer time-out,  
c) If an “Abort” occurs,  
Modulation Depth  
Bit 6  
Bit 5  
d) After receiving SPI Soft Reset command.  
0
0
1
1
0
1
0
1
50% (default)  
75%  
The “Abort” occurs if there is no positive signal  
detected at the end of the AGC stabilization period  
(TAGC). The Soft Reset initializes internal circuits and  
brings the AFE into a low current Standby mode  
operation. The internal circuits that are initialized by the  
Soft Reset include:  
25%  
12%  
• Output Enable Filter  
• AGC circuits  
• Demodulator  
• 32 kHz Internal Oscillator  
The Soft Reset has no effect on the Configuration register  
setup, except for some of the AFE Status Register 7 bits.  
(Register 11-8).  
The circuit initialization takes one internal clock cycle  
(1/32 kHz = 31.25 μs). During the initialization, the  
modulation transistors between each input and  
LCCOM pins are turned-on to discharge any internal/  
external parasitic charges. The modulation transistors  
are turned-off immediately after the initialization time.  
The Soft Reset is executed in Active mode only. It is not  
valid in Standby mode.  
11.21 Minimum Modulation Depth  
Requirement for Input Signal  
The AFE demodulates the modulated input signal if the  
modulation depth of the input signal is greater than the  
minimum requirement that is programmed in the AFE  
Configuration Register 5 (Register 11-6). Figure 11-7  
shows the definition of the modulation depth and  
examples. MODMIN<6:5> of the Configuration Register  
5 offer four options. They are 75%, 50%, 25% and 12%,  
with a default setting of 50%.  
The purpose of this feature is to enhance the  
demodulation integrity of the input signal. The 12%  
setting is the best choice for the input signal with weak  
modulation depth, which is typically observed near the  
high-voltage base station antenna and also at far-  
distance from the base station antenna. It gives the  
best demodulation sensitivity, but is very susceptible to  
noise spikes that can result in a bit detection error. The  
75% setting can reduce the bit errors caused by noise,  
but gives the least demodulation sensitivity. See  
Table 11-3 for minimum modulation depth requirement  
settings.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 89  
PIC12F635/PIC16F636/639  
FIGURE 11-7:  
MODULATION DEPTH EXAMPLES  
(a) Modulation Depth Definition  
Amplitude  
A - B  
A
X 100%  
Modulation Depth (%) =  
B
A
t
(b) LFDATA Output vs. Input vs. Minimum Modulation Depth Setting  
Amplitude  
10 mVPP  
Coil Input Strength  
7 mVPP  
10 - 7  
10  
X 100% = 30%  
Modulation Depth (%) =  
t
Input signal with modulation depth = 30%  
Demodulated LFDATA Output when MODMIN Setting = 25%  
(LFDATA output = toggled)  
t
Amplitude  
Demodulated LFDATA Output if MODMIN Setting = 50%  
(LFDATA output = not toggled)  
t
0
DS41232B-page 90  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
11.22 Low Current Sleep Mode  
11.25 Error Detection of AFE  
Configuration Register Data  
The Sleep command from the microcontroller, via an  
SPI Interface command, places the AFE into an ultra  
Low-current mode. All circuits including the RF Limiter,  
except the minimum circuitry required to retain register  
memory and SPI capability, will be powered down to  
minimize the AFE current draw. Power-on Reset or any  
SPI command, other than Sleep command, is required  
to wake the AFE from Sleep.  
The AFE's Configuration registers are volatile memory.  
Therefore, the contents of the registers can be  
corrupted or cleared by any electrical incidence such  
as battery disconnect. To ensure the data integrity, the  
AFE has an error detection mechanism using row and  
column parity bits of the Configuration register memory  
map. The bit 0 of each register is a row parity bit which  
is calculated over the eight configuration bits (from bit 1  
to bit 8). The Column Parity Register (Configuration  
Register 6) holds column parity bits; each bit is  
calculated over the respective columns (Configuration  
registers 0 to 5) of the Configuration bits. The Status  
register is not included for the column parity bit  
calculation. Parity is to be odd. The parity bit set or  
cleared makes an odd number of set bits. The user  
needs to calculate the row and column parity bits using  
the contents of the registers and program them. During  
operation, the AFE continuously calculates the row and  
column parity bits of the configuration memory map. If  
a parity error occurs, the AFE lowers the SCLK/ALERT  
pin (interrupting the microcontroller section) indicating  
the configuration memory has been corrupted or  
unloaded and needs to be reprogrammed.  
11.23 Low Current Standby Mode  
The AFE is in Standby mode when no LF signal is  
present on the antenna inputs but the AFE is powered  
and ready to receive any incoming signals.  
11.24 Low Current Operating Mode  
The AFE is in Low-current Operating mode when a LF  
signal is present on an LF antenna input and internal  
circuitry is switching with the received data.  
At an initial condition after a Power-On-Reset, the  
values of the registers are all clear (default condition).  
Therefore, the AFE will issue the parity bit error by  
lowering the SCLK/ALERT pin. If user reprograms the  
registers with correct parity bits, the SCLK/ALERT pin  
will be toggled to logic high level immediately.  
The parity bit errors do not change or affect the AFE's  
functional operation.  
Table 11-4 shows an example of the register values  
and corresponding parity bits.  
TABLE 11-4: AFE CONFIGURATION REGISTER PARITY BIT EXAMPLE  
Bit 0  
(Row Parity)  
Register Name  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3 Bit 2  
Bit 1  
Configuration Register 0  
Configuration Register 1  
Configuration Register 2  
Configuration Register 3  
Configuration Register 4  
Configuration Register 5  
1
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
1
1
1
1
0
1
Configuration Register 6  
(Column Parity Register)  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 91  
PIC12F635/PIC16F636/639  
11.26 Factory Calibration  
11.28 Battery Back-up and Batteryless  
Operation  
Microchip calibrates the AFE to reduce the device-to-  
device variation in standby current, internal timing and  
sensitivity, as well as channel-to-channel sensitivity  
variation.  
The device supports both battery back-up and  
batteryless operation by the addition of external  
components, allowing the device to be partially or  
completely powered from the field.  
11.27 De-Q’ing of Antenna Circuit  
Figure 11-8 shows an example of the external circuit for  
the battery back-up.  
When the transponder is close to the base station, the  
transponder coil may develop coil voltage higher than  
VDE_Q. This condition is called “near field”. The AFE  
detects the strong near field signal through the AGC  
control, and de-Q’ing the antenna circuit to reduce the  
input signal amplitude.  
Note:  
Voltage on LCCOM combined with coil input  
voltage must not exceed the maximum LC  
input voltage.  
FIGURE 11-8:  
LF FIELD POWERING AND BATTERY BACK-UP EXAMPLE  
VBAT  
VDD  
LCX  
LCY  
LCZ  
RLIM  
DFLAT1  
DBLOCK  
CPOOL  
LX  
DLIM  
CX  
LY  
Air Coil  
CY  
LZ  
CZ  
LCCOM  
DFLAT2  
CCOM  
RCOM  
Legend: CCOM = LCCOM charging capacitor.  
CPOOL = Pool capacitor (or battery back-up capacitor), charges in field and powers device.  
DBLOCK = Battery protection from reverse charge.  
Schottky for low forward bias drop.  
DFLAT = Field rectifier diodes.  
DLIM = Voltage limiting diode, may be required to limit VDD voltage when in strong fields.  
RCOM = Ccom discharge path.  
RLIM = Current limiting resistor, required for air coil in strong fields.  
DS41232B-page 92  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
11.29 Demodulator  
The demodulator recovers the modulation data from  
the received signal, containing carrier plus data, by  
appropriate envelope detection. The demodulator has  
a fast rise (charge) time (TDR) and a fall time (TDF)  
appropriate to an envelope of input signal (see  
Section 15.0 “Electrical Specifications” for TDR  
and TDF specifications). The demodulator contains  
the full-wave rectifier, low-pass filter, peak detector  
and data slicer.  
FIGURE 11-9:  
DEMODULATOR CHARGE AND DISCHARGE  
Signal into LC input pins  
Full-wave Rectifier output  
Data Slicer output  
(demodulator output)  
TDR  
TDF  
For a clean data output or to save operating power, the  
input channels can be individually enabled or disabled. If  
more than one channel is enabled, the output is the sum  
of each output of all enabled channels. There will be no  
valid output if all three channels are disabled. When the  
demodulated output is selected, the output is available in  
two different conditions depending on how the options of  
Configuration Register 0 (Register 11-1) are set: Output  
Enable Filter is disabled or enabled.  
11.30 Power-On Reset  
This circuit remains in a Reset state until a sufficient  
supply voltage is applied to the AFE. The Reset  
releases when the supply is sufficient for correct AFE  
operation, nominally VPOR of AFE.  
The Configuration registers are all cleared on a Power-  
on Reset. As the Configuration registers are protected  
by odd row and column parity, the ALERT pin will be  
pulled down – indicating to the microcontroller section  
that the AFE configuration memory is cleared and  
requires loading.  
Related Configuration register bits:  
• Configuration Register 1 (Register 11-2),  
DATOUT <8:7>:  
- bit 8 bit 7  
11.31 LFDATA Output Selection  
0
0
1
0
0: Demodulator Output  
1: Carrier Clock Output  
0: RSSI Output  
The LFDATA output can be configured to pass the  
Demodulator output, Received Signal Strength Indicator  
(RSSI) output, or Carrier Clock. See Configuration  
Register 1 (Register 11-2) for more details.  
1: RSSI Output  
• Configuration Register 0 (Register 11-1): all bits  
11.31.1 DEMODULATOR OUTPUT  
The demodulator output is the default configuration of  
the output selection. This is the output of an envelope  
detection circuit. See Figure 11-9 for the demodulator  
output.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 93  
PIC12F635/PIC16F636/639  
Case I. When Output Enable Filter is disabled: Demodulated output is available immediately after the AGC stabilization  
time (TAGC). Figure 11-10 shows an example of demodulated output when the Output Enable Filter is disabled.  
FIGURE 11-10:  
INPUT SIGNAL AND DEMODULATOR OUTPUT WHEN THE OUTPUT ENABLE  
FILTER IS DISABLED  
Input Signal  
LFDATA Output  
Case II. When Output Enable Filter is enabled: Demodulated output is available only if the incoming signal meets the  
enable filter timing criteria that is defined in the Configuration Register 0 (Register 11-1). If the criteria is met, the output  
is available after the low timing (TOEL) of the Enable Filter. Figure 11-11 and Figure 11-12 shows examples of  
demodulated output when the Output Enable Filter is enabled.  
FIGURE 11-11:  
INPUT SIGNAL AND DEMODULATOR OUTPUT (WHEN OUTPUT ENABLE  
FILTER IS ENABLED AND INPUT MEETS FILTER TIMING REQUIREMENTS)  
Input Signal  
LFDATA Output  
DS41232B-page 94  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 11-12:  
NO DEMODULATOR OUTPUT (WHEN OUTPUT ENABLE FILTER IS ENABLED  
BUT INPUT DOES NOT MEET FILTER TIMING REQUIREMENTS)  
Input Signal  
No LFDATA Output  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 95  
PIC12F635/PIC16F636/639  
11.31.2 CARRIER CLOCK OUTPUT  
When the Carrier Clock output is selected, the LFDATA  
output is a square pulse of the input carrier clock and  
available as soon as the AGC stabilization time (TAGC) is  
completed. There are two Configuration register options  
for the carrier clock output: (a) clock divide-by one or (b)  
clock divide-by four, depending on bit DATOUT<7> of  
Configuration Register 2 (Register 11-3). The carrier  
clock output is available immediately after the AGC  
settling time. The Output Enable Filter, AGCSIG, and  
MODMIN options are applicable for the carrier clock  
output in the same way as the demodulated output. The  
input channel can be individually enabled or disabled for  
the output. If more than one channel is enabled, the  
output is the sum of each output of all enabled channels.  
Therefore, the carrier clock output waveform is not as  
precise as when only one channel is enabled. It is  
recommended to enable one channel only if a precise  
output waveform is desired.  
There will be no valid output if all three channels are  
disabled. See Figure 11-13 for carrier clock output  
examples.  
Related Configuration register bits:  
• Configuration Register 1 (Register 11-2),  
DATOUT <8:7>:  
bit 8 bit 7  
0
0
1
1
0: Demodulator Output  
1: Carrier Clock Output  
0: RSSI Output  
1: RSSI Output  
• Configuration Register 2 (Register 11-3),  
CLKDIV<7>:  
0: Carrier Clock/1  
1: Carrier Clock/4  
• Configuration Register 0 (Register 11-1): all bits  
are affected  
• Configuration Register 5 (Register 11-6)  
DS41232B-page 96  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 11-13:  
CARRIER CLOCK OUTPUT EXAMPLES  
(A) CARRIER CLOCK OUTPUT WITH CARRIER/1 OPTION  
Carrier Clock Output  
Carrier Input  
(B) CARRIER CLOCK OUTPUT WITH CARRIER/4 OPTION  
Carrier Clock Output  
Carrier Input  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 97  
PIC12F635/PIC16F636/639  
11.31.3 RECEIVED SIGNAL STRENGTH  
INDICATOR (RSSI) OUTPUT  
FIGURE 11-14:  
RSSI OUTPUT PATH  
An analog current is available at the LFDATA pin when  
the Received Signal Strength Indicator (RSSI) output is  
selected for the AFE’s Configuration register. The analog  
current is linearly proportional to the input signal strength  
(see Figure 11-15).  
RSSI Output Current  
Generator  
Current Output  
VDD  
Off  
All timers in the circuit, such as inactivity timer, alarm  
timer, and AGC settling time, are disabled during the  
RSSI mode. Therefore, the RSSI output is not affected  
by the AGC settling time, and available immediately  
when the RSSI option is selected. The AFE enters  
Active mode immediately when the RSSI output is  
selected. The MCU I/O pin (RC3) connected to the  
LFDATA pin, must be set to high-impedance state  
during the RSSI Output mode.  
if RSSI active  
RC3/LFDATA/RSSI/CCLK Pin  
RSSIFET  
When the AFE receives an SPI command during the  
RSSI output, the RSSI mode is temporary disabled  
until the SPI interface communication is completed. It  
returns to the RSSI mode again after the SPI interface  
communication is completed. The AFE holds the RSSI  
mode until another output type is selected (CS low  
turns off the RSSI signal). To obtain the RSSI output  
for a particular input channel, or to save operating  
power, the input channel can be individually enabled  
or disabled. If more than one channel is enabled, the  
RSSI output is from the strongest signal channel.  
There will be no valid output if all three channels are  
disabled.  
RSSI Pull-down MOSFET  
(controlled by Config. 2, bit 8)  
Related AFE Configuration register bits:  
• Configuration Register 1 (Register 11-2),  
DATOUT<8:7>:  
bit 8 bit 7  
0
0
1
1
0: Demodulated Output  
1: Carrier Clock Output  
0: RSSI Output  
1: RSSI Output  
• Configuration Register 2 (Register 11-3),  
RSSIFET<8>:  
0: Pull-Down MOSFET off  
1: Pull-Down MOSFET on.  
Note:  
The pull-down MOSFET option is valid  
only when the RSSI output is selected.  
The MOSFET is not controllable by users  
when Demodulated or Carrier Clock  
output option is selected.  
• Configuration Register 0 (Register 11-1): all bits  
are affected.  
DS41232B-page 98  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 11-15:  
RSSI OUTPUT CURRENT VS. INPUT SIGNAL LEVEL EXAMPLE  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
1
2
3
4
5
6
7
8
9
10  
Input Voltage (VPP)  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 99  
PIC12F635/PIC16F636/639  
11.31.3.1 ANALOG-TO-DIGITAL DATA  
CONVERSION OF RSSI SIGNAL  
11.32 AFE Configuration  
11.32.1 SPI COMMUNICATION  
The AFE’s RSSI output is an analog current. It needs an  
external analog-to-digital (ADC) data conversion device  
for digitized output. The ADC data conversion can be  
accomplished by using a stand-alone external ADC  
device or by firmware utilizing MCU's internal  
comparator along with a few external resistors and a  
capacitor. For slope ADC implementations, the external  
capacitor at the LFDATA pad needs to be discharged  
before data sampling. For this purpose, the internal pull-  
down MOSFET on the LFDATA pad can be utilized. The  
MOSFET can be turned on or off with bit RSSIFET<8> of  
the Configuration Register 2 (Register 11-3). When it is  
turned on, the internal MOSFET provides a discharge  
path for the external capacitor. This MOSFET option is  
valid only if RSSI output is selected and not controllable  
by users for demodulated or carrier clock output options.  
The AFE SPI interface communication is used to read  
or write the AFE’s Configuration registers and to send  
command only messages. For the SPI interface, the  
device has three pads; CS, SCLK/ALERT, and  
LFDATA/RSSI/CCLK/SDIO. Figure 11-15, Figure 11-  
14, Figure 11-16 and Figure 11-17 shows examples of  
the SPI communication sequences.  
When the device powers up, these pins will be high-  
impedance inputs until firmware modifies them  
appropriately. The AFE pins connected to the MCU  
pins will be as follows.  
CS  
• Pin is permanently an input with an internal pull-up.  
SCLK/ALERT  
• Pin is an open collector output when CS is high.  
An internal pull-up resistor exists internal to the  
AFE to ensure no spurious SPI communication  
between powering and the MCU configuring its  
pins. This pin becomes the SPI clock input when  
CS is low.  
See separate application notes for various external ADC  
implementation methods for this device.  
LFDATA/RSSI/CCLK/SDIO  
• Pin is a digital output (LFDATA) so long as CS is  
high. During SPI communication, the pin is the  
SPI data input (SDI) unless performing a register  
Read, where it will be the SPI data output (SDO).  
FIGURE 11-16:  
POWER-UP SEQUENCE  
CS  
SCLK/ALERT  
ALERT  
(open collector  
output)  
LFDATA/RSSI/  
CCLK/SDIO  
LFDATA  
(output)  
DS41232B-page 100  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 11-17:  
SPI WRITE SEQUENCE  
TCSH  
2
6
CS  
TCSSC  
TSCCS TCS1  
TCS0  
16 Clocks for Write Command, Address and Data  
4
THI  
TLO  
7
SCLK/  
ALERT  
MSb  
THD  
LSb  
SCLK  
(input)  
ALERT  
(output)  
1/FSCLK  
ALERT  
(output)  
1
TSU  
LFDATA/RSSI/  
CCLK/SDIO  
LFDATA  
(output)  
SDI  
(input)  
LFDATA  
(output)  
5
3
MCU SPI Write Details:  
1.  
Drive the AFE’s open collector ALERT output low.  
to ensure no false clocks occur when CS drops  
Drop CS.  
2.  
AFE SCLK/ALERT becomes SCLK input  
LFDATA/RSSI/CCLK/SDIO becomes SDI input  
3.  
4.  
Change LFDATA/RSSI/CCLK/SDIO connected pin to output.  
driving SPI data  
Clock in 16-bit SPI Write sequence - command, address, data and parity bit.  
command, address, data and parity bit  
5.  
6.  
7.  
Change LFDATA/RSSI/CCLK/SDIO connected pin to input.  
Raise CS to complete the SPI Write.  
Change SCLK/ALERT back to input.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 101  
PIC12F635/PIC16F636/639  
FIGURE 11-18:  
SPI READ SEQUENCE  
TCSH  
TCSH  
9
6
7
2
CS  
10  
4
8
16 Clocks for Read Result  
16 Clocks for Read Command,  
Address and Dummy Data  
TCS  
0
TCSSC  
TSCCS  
CSSC TCS1  
TCSSC  
TCS1  
T
TCS  
0
T
HI  
TLO  
SCLK/ALERT  
MSb  
LSb  
SCLK  
(input)  
SCLK  
(input)  
ALERT  
(output)  
ALERT  
(output)  
ALERT  
(output)  
1/FSCLK  
1
TSU THD  
T
DO  
LFDATA/RSSI/  
CCLK/SDIO  
3
LFDATA  
(output)  
SDO  
(output)  
LFDATA  
(output)  
SDI  
(input)  
LFDATA  
(output)  
5
MCU SPI Read Details:  
7.  
8.  
Drop CS.  
1.  
2.  
Drive the AFE’s open collector ALERT output low.  
To ensure no false clocks occur when CS drops.  
Drop CS  
AFE SCLK/ALERT becomes SCLK input.  
LFDATA/RSSI/CCLK/SDIO becomes SDO output.  
Clock out 16-bit SPI Read result.  
AFE SCLK/ALERT becomes SCLK input.  
LFDATA/RSSI/CCLK/SDIO becomes SDI input.  
First seven bits clocked-out are dummy bits.  
Next eight bits are the Configuration register data.  
The last bit is the Configuration register row parity bit.  
3.  
4.  
Change LFDATA/RSSI/CCLK/SDIO connected pin to output.  
Driving SPI data.  
Clock in 16-bit SPI Read sequence.  
Command, address and dummy data.  
Change LFDATA/RSSI/CCLK/SDIO connected pin to input.  
Raise CS to complete the SPI Read entry of command and address.  
9.  
Raise CS to complete the SPI Read.  
10. Change SCLK/ALERT back to input.  
5.  
6.  
Note:  
The TCSH is considered as one clock. Therefore, the  
Configuration register data appears at 6th clock after TCSH.  
DS41232B-page 102  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
The AFE operates in SPI mode 0,0. In mode 0,0 the  
clock idles in the low state (Figure 11-19). SDI data is  
loaded into the AFE on the rising edge of SCLK and  
SDO data is clocked out on the falling edge of SCLK.  
There must be multiples of 16 clocks (SCLK) while CS  
is low or commands will abort.  
11.32.2 COMMAND DECODER/  
CONTROLLER  
The circuit executes 8 SPI commands from the MCU.  
The command structure is:  
Command (3 bits) + Configuration Address (4 bits) +  
Data Byte and Row Parity Bit received by the AFE Most  
Significant bit first. Table 11-5 shows the available SPI  
commands.  
TABLE 11-5: SPI COMMANDS (AFE)  
Row  
Command Address  
Data  
Description  
Parity  
Command only – Address and Data are “Don’t Care”, but need to be clocked in regardless.  
000  
001  
010  
011  
100  
101  
XXXX  
XXXX  
XXXX  
XXXX  
XXXX  
XXXX  
XXXX XXXX  
XXXX XXXX  
XXXX XXXX  
XXXX XXXX  
XXXX XXXX  
XXXX XXXX  
X
X
X
X
X
X
Clamp on – enable modulation circuit  
Clamp off – disable modulation circuit  
Enter Sleep mode (any other command wakes the AFE)  
AGC Preserve On – to temporarily preserve the current AGC level  
AGC Preserve Off – AGC again tracks strongest input signal  
Soft Reset – resets various circuit blocks  
Read Command – Data will be read from the specified register address.  
110  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
Config Byte 0  
Config Byte 1  
Config Byte 2  
Config Byte 3  
Config Byte 4  
Config Byte 5  
Column Parity  
AFE Status  
P
P
P
P
P
P
P
X
General – options that may change during normal operation  
LCX antenna tuning and LFDATA output format  
LCY antenna tuning  
LCZ antenna tuning  
LCX and LCY sensitivity reduction  
LCZ sensitivity reduction and modulation depth  
Column parity byte for Config Byte 0 -> Config Byte 5  
AFE status – parity error, which input is active, etc.  
Write Command – Data will be written to the specified register address.  
111  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
Config Byte 0  
Config Byte 1  
Config Byte 2  
Config Byte 3  
Config Byte 4  
Config Byte 5  
Column Parity  
Not Used  
P
P
P
P
P
P
P
X
General – options that may change during normal operation  
LCX antenna tuning and LFDATA output format  
LCY antenna tuning  
LCZ antenna tuning  
LCX and LCY sensitivity reduction  
LCZ sensitivity reduction and modulation depth  
Column parity byte for Config Byte 0 -> Config Byte 5  
Register is readable, but not writable  
Note:  
‘P’ denotes the row parity bit (odd parity) for the respective data byte.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 103  
PIC12F635/PIC16F636/639  
FIGURE 11-19:  
CS  
DETAILED SPI INTERFACE TIMING (AFE)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
SCLK  
SDIO  
MSb  
LSb  
Data Byte  
Row  
Parity Bit  
Command  
Address  
11.32.2.1 Clamp On Command  
11.32.2.5 AGC Preserve On Command  
This command results in activating (turning on) the  
modulation transistors of all enabled channels; channels  
enabled in Configuration Register 0 (Register 11-1).  
This command results in preserving the AGC level  
during each AGC settling time and apply the value to  
the data slicing circuit for the following data stream. The  
preserved AGC value is reset by a Soft Reset, and a  
new AGC value is acquired and preserved when it  
starts a new AGC settling time. This feature is disabled  
by an AGC Preserve Off command (see Section 11.19  
“AGC Preserve”).  
11.32.2.2 Clamp Off Command  
This command results in de-activating (turning off) the  
modulation transistors of all channels.  
11.32.2.3 Sleep Command  
11.32.2.6 AGC Preserve Off Command  
This command places the AFE in Sleep mode –  
minimizing current draw by disabling all but the  
essential circuitry. Any other command wakes the AFE  
(example: Clamp Off command).  
This command disables the AGC preserve feature and  
returns the AFE to the normal AGC tracking mode, fast  
tracking during AGC settling time and slow tracking  
after that (see Section 11.19 “AGC Preserve”).  
11.32.2.4 Soft Reset Command  
11.32.3 CONFIGURATION REGISTERS  
The AFE issues a Soft Reset when it receives an  
external Soft Reset command. The external Soft Reset  
command is typically used to end a SPI communication  
sequence or to initialize the AFE for the next signal  
detection sequence, etc. See Section 11.20 “Soft  
Reset” for more details on Soft Reset.  
The AFE includes 8 Configuration registers, including a  
column parity register and AFE Status register. All  
registers are readable and writable via SPI, except  
Status register, which is readable only. Bit 0 of each  
register is a row parity bit (except for the AFE Status  
Register 7) that makes the register contents an odd  
number.  
If a Soft Reset command is sent during a “Clamp-on”  
condition, the AFE still keeps the “Clamp-on” condition  
after the Soft Reset execution. The Soft Reset is  
executed in Active mode only, not in Standby mode.  
The SPI Soft Reset command is ignored if the AFE is  
not in Active mode.  
DS41232B-page 104  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
TABLE 11-6: ANALOG FRONT-END CONFIGURATION REGISTERS SUMMARY  
Register Name  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Configuration Register 0  
Configuration Register 1  
Configuration Register 2  
Configuration Register 3  
Configuration Register 4  
OEH  
DATOUT  
RSSIFET CLKDIV  
Unimplemented  
Channel X Sensitivity Control  
OEL  
ALRTIND LCZEN  
LCYEN  
LCXEN  
R0PAR  
R1PAR  
R2PAR  
R3PAR  
R4PAR  
R5PAR  
R6PAR  
PEI  
Channel X Tuning Capacitor  
Channel Y Tuning Capacitor  
Channel Z Tuning Capacitor  
Channel Y Sensitivity Control  
Channel Z Sensitivity Control  
Configuration Register 5 AUTOCHSEL AGCSIG MODMIN MODMIN  
Column Parity Register 6  
AFE Status Register 7  
Column Parity Bits  
AGCACT Wake-up Channel Indicators  
Active Channel Indicators  
ALARM  
REGISTER 11-1: CONFIGURATION REGISTER 0 (ADDRESS: 0000)  
R/W-0  
OEH1  
R/W-0  
OEH0  
R/W-0  
OEL1  
R/W-0  
OEL0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R0PAR  
bit 0  
ALRTIND  
LCZEN  
LCYEN  
LCXEN  
bit 8  
bit 8-7  
bit 6-5  
OEH<1:0>: Output Enable Filter High Time (TOEH) bit  
00= Output Enable Filter disabled (no wake-up sequence required, passes all signal to LFDATA)  
01= 1 ms  
10= 2 ms  
11= 4 ms  
OEL<1:0>: Output Enable Filter Low Time (TOEL) bit  
00= 1 ms  
01= 1 ms  
10= 2 ms  
11= 4 ms  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
ALRTIND: ALERT bit, output triggered by:  
1= Parity error and/or expired Alarm timer (receiving noise, see Section 11.14.3 “Alarm Timer”)  
0= Parity error  
LCZEN: LCZ Enable bit  
1= Disabled  
0= Enabled  
LCYEN: LCY Enable bit  
1= Disabled  
0= Enabled  
LCXEN: LCX Enable bit  
1= Disabled  
0= Enabled  
R0PAR: Register Parity bit – set/cleared so the 9-bit register contains odd parity – an odd number of set bits  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
- n = Value at POR  
x = Bit is unknown  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 105  
PIC12F635/PIC16F636/639  
REGISTER 11-2: CONFIGURATION REGISTER 1 (ADDRESS: 0001)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DATOUT1 DATOUT0 LCXTUN5 LCXTUN4 LCXTUN3 LCXTUN2 LCXTUN1 LCXTUN0  
bit 8  
R1PAR  
bit 0  
bit 8-7  
DATOUT<1:0>: LFDATA Output type bit  
00= Demodulated output  
01= Carrier Clock output  
10= RSSI output  
11= RSSI output  
bit 6-1  
bit 0  
LCXTUN<5:0>: LCX Tuning Capacitance bit  
000000=+0 pF (Default)  
:
111111=+63 pF  
R1PAR: Register Parity Bit – set/cleared so the 9-bit register contains odd parity – an odd number of set bits  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
- n = Value at POR  
x = Bit is unknown  
REGISTER 11-3: CONFIGURATION REGISTER 2 (ADDRESS: 0010)  
R/W-0  
RSSIFET  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CLKDIV  
LCYTUN5 LCYTUN4 LCYTUN3 LCYTUN2 LCYTUN1 LCYTUN0  
R2PAR  
bit 0  
bit 8  
RSSIFET: Pull-down MOSFET on LFDATA pad bit (controllable by user in the RSSI mode only)  
1= Pull-down RSSI MOSFET on  
0= Pull-down RSSI MOSFET off  
bit 7  
CLKDIV: Carrier Clock Divide-by bit  
1= Carrier Clock/4  
0= Carrier Clock/1  
bit 6-1  
LCYTUN<5:0>: LCY Tuning Capacitance bit  
000000=+0 pF (Default)  
:
111111=+63 pF  
bit 0  
R2PAR: Register Parity bit – set/cleared so the 9-bit register contains odd parity – an odd number of set bits  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
- n = Value at POR  
x = Bit is unknown  
DS41232B-page 106  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
REGISTER 11-4: CONFIGURATION REGISTER 3 (ADDRESS: 0011)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
LCZTUN5 LCZTUN4 LCZTUN3 LCZTUN2 LCZTUN1 LCZTUN0  
R3PAR  
bit 8  
bit 0  
bit 8-7  
bit 6-1  
Unimplemented: Read as ‘0’  
LCZTUN<5:0>: LCZ Tuning Capacitance bit  
000000=+0 pF (Default)  
:
111111=+63 pF  
bit 0  
R3PAR: Register Parity Bit – set/cleared so the 9-bit register contains odd parity – an odd number of set bits  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
- n = Value at POR  
x = Bit is unknown  
REGISTER 11-5: CONFIGURATION REGISTER 4 (ADDRESS: 0100)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
LCXSEN3 LCXSEN2 LCXSEN1 LCXSEN0 LCYSEN3 LCYSEN2 LCYSEN1 LCYSEN0  
bit 8  
R4PAR  
bit 0  
(1)  
bit 8-5  
LCXSEN<3:0> : Typical LCX Sensitivity Reduction bit  
0000= -0 dB (Default)  
0001= -2 dB  
0010= -4 dB  
0011= -6 dB  
0100= -8 dB  
0101= -10 dB  
0110= -12 dB  
0111= -14 dB  
1000= -16 dB  
1001= -18 dB  
1010= -20 dB  
1011= -22 dB  
1100= -24 dB  
1101= -26 dB  
1110= -28 dB  
1111= -30 dB  
(1)  
bit 4-1  
bit 0  
LCYSEN<3:0> : Typical LCY Sensitivity Reduction bit  
0000= -0 dB (Default)  
:
1111= -30 dB  
R4PAR: Register Parity bit – set/cleared so the 9-bit register contains odd parity – an odd number of set bits  
Note 1: Assured monotonic increment (or decrement) by design.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
- n = Value at POR  
x = Bit is unknown  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 107  
PIC12F635/PIC16F636/639  
REGISTER 11-6: CONFIGURATION REGISTER 5 (ADDRESS: 0101)  
R/W-0  
AUTOCHSEL  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
AGCSIG  
MODMIN1 MODMIN0 LCZSEN3 LCZSEN2 LCZSEN1 LCZSEN0 R5PAR  
bit 0  
bit 8  
AUTOCHSEL: Auto Channel Select bit  
1= Enabled – AFE selects channel(s) that has demodulator output “high” at the end of TSTAB; or otherwise, blocks the  
channel(s).  
0= Disabled AFE follows channel enable/disable bits defined in Register 0  
bit 7  
AGCSIG: Demodulator Output Enable bit, after the AGC loop is active  
1= Enabled – No output until AGC is regulating at around 20 mVPP at input pins. The AGC Active Status bit is set  
when the AGC begins regulating.  
0= Disabled – the AFE passes signal of any level it is capable of detecting  
bit 6-5  
MODMIN<1:0>: Minimum Modulation Depth bit  
00= 50%  
01= 75%  
10= 25%  
11= 12%  
(1)  
bit 4-1  
bit 0  
LCZSEN<3:0> : LCZ Sensitivity Reduction bit  
0000= -0dB (Default)  
:
1111= -30dB  
R5PAR: Register Parity bit – set/cleared so the 9-bit register contains odd parity – an odd number of set bits  
Note 1: Assured monotonic increment (or decrement) by design.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
- n = Value at POR  
x = Bit is unknown  
REGISTER 11-7: COLUMN PARITY REGISTER 6 (ADDRESS: 0110)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R6PAR  
bit 0  
COLPAR7 COLPAR6 COLPAR5 COLPAR4 COLPAR3 COLPAR2 COLPAR1 COLPAR0  
bit 8  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
COLPAR7: Set/Cleared so that this 8th parity bit + the sum of the config register row parity bits contain an odd number of  
set bits.  
COLPAR6: Set/Cleared such that this 7th parity bit + the sum of the 7th bits in config registers 0 through 5 contain an odd  
number of set bits.  
COLPAR5: Set/Cleared such that this 6th parity bit + the sum of the 6th bits in config registers 0 through 5 contain an odd  
number of set bits.  
COLPAR4: Set/Cleared such that this 5th parity bit + the sum of the 5th bits in config registers 0 through 5 contain an odd  
number of set bits.  
COLPAR3: Set/Cleared such that this 4th parity bit + the sum of the 4th bits in config registers 0 through 5 contain an odd  
number of set bits.  
COLPAR2: Set/Cleared such that this 3rd parity bit + the sum of the 3rd bits in config registers 0 through 5 contain an odd  
number of set bits.  
COLPAR1: Set/Cleared such that this 2nd parity bit + the sum of the 2nd bits in config registers 0 through 5 contain an odd  
number of set bits.  
COLPAR0: Set/Cleared such that this 1st parity bit + the sum of the 1st bits in config registers 0 through 5 contain an odd  
number of set bits.  
R6PAR: Register Parity bit – set/cleared so the 9-bit register contains odd parity – an odd number of set bits  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
- n = Value at POR  
x = Bit is unknown  
DS41232B-page 108  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
REGISTER 11-8: AFE STATUS REGISTER 7 (ADDRESS: 0111)  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
PEI  
CHZACT  
CHYACT CHXACT AGCACT WAKEZ  
WAKEY  
WAKEX  
ALARM  
bit 8  
bit 0  
bit 8  
bit 7  
bit 6  
bit 5  
CHZACT: Channel Z Active(1) bit (cleared via Soft Reset)  
1= Channel Z is passing data after TAGC  
0= Channel Z is not passing data after TAGC  
CHYACT: Channel Y Active(1) bit (cleared via Soft Reset)  
1= Channel Y is passing data after TAGC  
0= Channel Y is not passing data after TAGC  
CHXACT: Channel X Active(1) bit (cleared via Soft Reset)  
1= Channel X is passing data after TAGC  
0= Channel X is not passing data after TAGC  
AGCACT: AGC Active Status bit (real time, cleared via Soft Reset)  
1= AGC is active (Input signal is strong). AGC is active when input signal level is approximately >  
20 mVPP range.  
0= AGC is inactive (Input signal is weak)  
bit 4  
bit 3  
bit 2  
bit 1  
WAKEZ: Wake-up Channel Z Indicator Status bit (cleared via Soft Reset)  
1= Channel Z caused a AFE wake-up (passed ÷64 clock counter)  
0= Channel Z did not cause a AFE wake-up  
WAKEY: Wake-up Channel Y Indicator Status bit (cleared via Soft Reset)  
1= Channel Y caused a AFE wake-up (passed ÷64 clock counter)  
0= Channel Y did not cause a AFE wake-up  
WAKEX: Wake-up Channel X Indicator Status bit (cleared via Soft Reset)  
1= Channel X caused a AFE wake-up (passed ÷64 clock counter)  
0= Channel X did not cause a AFE wake-up  
ALARM: Indicates whether an Alarm timer time-out has occurred (cleared via read “Status Register  
command”)  
1= The Alarm timer time-out has occurred. It may cause the ALERT output to go low depending on the  
state of bit 4 of the Configuration register 0  
0= The Alarm timer is not timed out  
bit 0  
PEI: Parity Error Indicator bit – indicates whether a Configuration register parity error has occurred (real  
time)  
1= A parity error has occurred and caused the ALERT output to go low  
0= A parity error has not occurred  
Note 1: Bit is high whenever channel is passing data. Bit is low in Standby mode.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
- n = Value at POR  
x = Bit is unknown  
See Table 11-7 for the bit conditions of the AFE Status  
register after various SPI commands and the AFE  
Power-on Reset.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 109  
PIC12F635/PIC16F636/639  
TABLE 11-7: AFE STATUS REGISTER BIT CONDITION (AFTER POWER-ON RESET AND  
VARIOUS SPI COMMANDS)  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Condition  
CHZACT CHYACT CHXACT AGCACT WAKEZ WAKEY WAKEX ALARM PEI  
POR  
0
u
0
u
0
u
0
u
0
u
0
u
0
u
0
0
1
u
Read Command  
(STATUS Register only)  
Sleep Command  
Soft Reset Executed(1)  
u
0
u
0
u
0
u
0
u
0
u
0
u
0
u
u
u
u
Legend: u= unchanged  
Note 1: See Section 11.20 “Soft Reset” and Section 11.32.2.4 “Soft Reset Command” for the condition of Soft  
Reset execution.  
DS41232B-page 110  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
The PIC12F635/PIC16F636/639 has two timers that  
offer necessary delays on power-up. One is the  
Oscillator Start-up Timer (OST), intended to keep the  
12.0 SPECIAL FEATURES OF THE  
CPU  
chip in Reset until the crystal oscillator is stable. The  
other is the Power-up Timer (PWRT), which provides a  
fixed delay of 64 ms (nominal) on power-up only,  
designed to keep the part in Reset while the power  
supply stabilizes. There is also circuitry to reset the  
device if a brown-out occurs, which can use the Power-  
up Timer to provide at least a nominal 64 ms Reset.  
With these three functions on-chip, most applications  
need no external Reset circuitry.  
The PIC12F635/PIC16F636/639 has a host of features  
intended to maximize system reliability, minimize cost  
through elimination of external components, provide  
power saving features and offer code protection.  
These features are:  
• Reset  
- Power-on Reset (POR)  
- Wake-up Reset (WUR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Detect (BOD)  
• Interrupts  
The Sleep mode is designed to offer a very low-current  
Power-down mode. The user can wake-up from Sleep  
through:  
• External Reset  
• Watchdog Timer Wake-up  
• An Interrupt  
• Watchdog Timer (WDT)  
• Oscillator selection  
• Sleep  
Several oscillator options are also made available to  
allow the part to fit the application. The INTOSC option  
saves system cost while the LP crystal option saves  
power. A set of configuration bits are used to select  
various options (see Register 12-1).  
• Code protection  
• ID Locations  
• In-Circuit Serial Programming  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 111  
PIC12F635/PIC16F636/639  
12.1 Configuration Word Bits  
Note:  
Address 2007h is beyond the user program  
memory space. It belongs to the special  
configuration memory space (2000h-  
3FFFh), which can be accessed only during  
programming. See PIC12F6XX/16F6XX  
Memory Programming Specification”  
(DS41204) for more information.  
The Configuration Word bits can be programmed (read  
as ‘0’), or left unprogrammed (read as ‘1’) to select  
various device configurations as shown in Register 12-1.  
These bits are mapped in program memory location  
2007h.  
REGISTER 12-1: CONFIG – CONFIGURATION WORD (ADDRESS: 2007h)  
U-1  
R/P-1 R/P-1 R/P-1  
R/P-1  
R/P-1  
R/P-1 R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
(1)  
WURE FCMEN IESO BODEN1 BODEN0 CPD  
CP  
MCLRE PWRTE  
WDTE FOSC2 F0SC1 F0SC0  
bit 0  
bit 13  
bit 13  
bit 12  
Unimplemented: Read as ‘1’  
WURE: Wake-up Reset Enable bit  
1= Standard wake-up and continue enabled  
0= Wake-up and Reset enabled  
bit 11  
bit 10  
bit 9-8  
FCMEN: Fail-Safe Clock Monitor Enable bit  
1= Fail-Safe Clock Monitor enabled  
0= Fail-Safe Clock Monitor disabled  
IESO: Internal-External Switchover bit  
1= Internal External Switchover mode enabled  
0= Internal External Switchover mode disabled  
BODEN<1:0>: Brown-out Detect Enable bits  
11= BOD enabled and SBODEN bit disabled  
10= BOD enabled while running and disabled in Sleep. SBODEN bit disabled.  
01= SBODEN in Register 2-6 controls BOD function  
00= BOD and SBODEN disabled  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
CPD: Code Protection Data bit  
1= Data memory is not protected  
0= Data memory is external read protected  
CP: Code Protection bit  
1= Program memory is not code-protected  
0= Program memory is external read and write-protected  
MCLRE: MCLR Pin Function Select bit  
1= MCLR pin is MCLR function and weak internal pull-up is enabled  
0= MCLR pin is alternate function, MCLR function is internally disabled  
(1)  
PWRTE: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
WDTE: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled and can be enabled using SWDTEN in Register 12-2  
FOSC<2:0>: Oscillator Selection bits  
000 = LP oscillator: Low power crystal on RA5/T1CKI/OSC1/CLKIN and RA4/T1G/OSC2/CLKOUT  
001 = XT oscillator: Crystal/resonator on RA5/T1CKI/OSC1/CLKIN and RA4/T1G/OSC2/CLKOUT  
010 = HS oscillator: High-speed crystal/resonator on RA5/T1CKI/OSC1/CLKIN and RA4/T1G/OSC2/CLKOUT  
011 = EC: I/O function on RA4/T1G/OSC2/CLKOUT, CLKIN on RA5/T1CKI/OSC1/CLKIN  
100 = INTOSCIO oscillator: I/O function on RA4/T1G/OSC2/CLKOUT, I/O function on RA5/T1CKI/OSC1/CLKIN  
101 = INTOSC oscillator: CLKOUT function on RA4/T1G/OSC2/CLKOUT, I/O function on RA5/T1CKI/OSC1/CLKIN  
110 = EXTRCIO oscillator: I/O function on RA4/T1G/OSC2/CLKOUT, RC on RA5/T1CKI/OSC1/CLKIN  
111 = EXTRC oscillator: CLKOUT function on RA4/T1G/OSC2/CLKOUT, RC on RA5/T1CKI/OSC1/CLKIN  
Note 1: Enabling Brown-out Detect does not automatically enable the Power-up Timer (PWRT).  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41232B-page 112  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
They are not affected by a WDT wake-up since this is  
viewed as the resumption of normal operation. TO and  
12.2 Reset  
The PIC12F635/PIC16F636/639 differentiates between  
various kinds of Reset:  
PD bits are set or cleared differently in different Reset  
situations, as indicated in Table 12-3. These bits are  
used in software to determine the nature of the Reset.  
See Table 12-4 for a full description of Reset states of  
all registers.  
a) Power-on Reset (POR)  
b) Wake-up Reset (WUR)  
c) WDT Reset during normal operation  
d) WDT Reset during Sleep  
A simplified block diagram of the On-Chip Reset Circuit  
is shown in Figure 12-1.  
e) MCLR Reset during normal operation  
f) MCLR Reset during Sleep  
g) Brown-out Detect (BOD)  
The MCLR Reset path has a noise filter to detect and  
ignore small pulses. See Section 15.0 “Electrical  
Specifications” for pulse width specifications.  
Some registers are not affected in any Reset condition;  
their status is unknown on POR and unchanged in any  
other Reset. Most other registers are reset to a “Reset  
state” on:  
• Power-on Reset  
• MCLR Reset  
• MCLR Reset during Sleep  
• WDT Reset  
• Brown-out Detect  
FIGURE 12-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
Sleep  
WURE  
External Reset  
Sleep  
Wake-up Interrupt  
RA3 Change  
MCLR/VPP pin  
WDT  
WDT  
Module  
Time-out  
Reset  
VDD Rise  
Detect  
Power-on Reset  
VDD  
Brown-out(1)  
Detect  
<1>  
BODEN  
BODEN<0>  
SBODEN  
S
R
OST/PWRT  
Chip_Reset  
OST  
10-bit Ripple Counter  
Q
OSC1/  
CLKI pin  
PWRT  
11-bit Ripple Counter  
LFINTOSC  
Enable PWRT  
Enable OST  
Note 1: Refer to the Configuration Word register (Register 12-1).  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 113  
PIC12F635/PIC16F636/639  
12.3 Power-on Reset  
12.5 MCLR  
The on-chip POR circuit holds the chip in Reset until VDD  
has reached a high enough level for proper operation. To  
take advantage of the POR, simply connect the MCLR  
pin through a resistor to VDD. This will eliminate external  
RC components usually needed to create Power-on  
Reset. A maximum rise time for VDD is required. See  
Section 15.0 “Electrical Specifications” for details. If  
the BOD is enabled, the maximum rise time specification  
does not apply. The BOD circuitry will keep the device in  
Reset until VDD reaches VBOD (see Section 12.6  
“Brown-out Detect (BOD)”).  
PIC12F635/PIC16F636/639 has a noise filter in the  
MCLR Reset path. The filter will ignore small pulses.  
It should be noted that a WDT Reset does not drive  
MCLR pin low. See Figure 12-2 for the recommended  
MCLR circuit.  
An internal MCLR option is enabled by clearing the  
MCLRE bit in the Configuration Word register. When  
cleared, MCLR is internally tied to VDD and an internal  
weak pull-up is enabled for the MCLR pin. In-Circuit  
Serial Programming is not affected by selecting the  
internal MCLR option.  
Note:  
The POR circuit does not produce an  
internal Reset when VDD declines. To  
re-enable the POR, VDD must reach VSS  
for a minimum of 100 μs.  
FIGURE 12-2:  
RECOMMENDED MCLR  
CIRCUIT  
VDD  
R1  
When the device starts normal operation (exits the  
Reset condition), device operating parameters (i.e.,  
voltage, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in Reset until the operating  
conditions are met.  
PIC12F635/PIC16F636/639  
1 kΩ (or greater)  
MCLR  
For additional information, refer to the Application Note  
AN607, “Power-up Trouble Shooting” (DS00607).  
C1  
0.1 μF  
(optional, not critical)  
12.4 Wake-up Reset (WUR)  
The PIC12F635/PIC16F636/639 has a modified wake-  
up from Sleep mechanism. When waking from Sleep,  
the WUR function resets the device and releases Reset  
when VDD reaches an acceptable level.  
If the WURE bit is enabled (‘0’) in the Configuration  
Word register, the device will Wake-up Reset from  
Sleep through one of the following events:  
1. On any event that causes a wake-up event. The  
peripheral must be enabled to generate an  
interrupt or wake-up, GIE state is ignored.  
2. When WURE is enabled, RA3 will always  
generate an interrupt-on-change signal during  
Sleep.  
The WUR, POR and BOD bits in the PCON register  
and the TO and PD bits in the Status register can be  
used to determine the cause of device Reset.  
To allow WUR upon RA3 change:  
1. Enable the WUR function, WURE Configuration  
Bit = 0.  
2. Enable RA3 as an input, MCLRE Configuration  
Bit = 0.  
3. Read PORTA to establish the current state of  
RA3.  
4. Execute SLEEPinstruction.  
5. When RA3 changes state, the device will wake-  
up and then reset. The WUR bit in PCON will be  
cleared to ‘0’.  
DS41232B-page 114  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
On any Reset (Power-on, Brown-out Detect, Watchdog  
Timer, etc.), the chip will remain in Reset until VDD rises  
above VBOD (see Figure 12-3). The Power-up Timer  
will now be invoked, if enabled and will keep the chip in  
Reset an additional nominal 64 ms.  
12.6 Brown-out Detect (BOD)  
The BODEN0 and BODEN1 bits in the Configuration  
Word register select one of four BOD modes. Two  
modes have been added to allow software or hardware  
control of the BOD enable. When BODEN<1:0> = 01,  
the SBODEN bit (PCON<4>) enables/disables the BOD  
allowing it to be controlled in software. By selecting  
BODEN<1:0>, the BOD is automatically disabled in  
Sleep to conserve power and enabled on wake-up. In  
this mode, the SBODEN bit is disabled. See  
Register 12-1 for the Configuration Word definition.  
Note:  
The Power-up Timer is enabled by the  
PWRTE bit in the Configuration Word  
register.  
If VDD drops below VBOD while the Power-up Timer is  
running, the chip will go back into a Brown-out Detect  
and the Power-up Timer will be re-initialized. Once VDD  
rises above VBOD, the Power-up Timer will execute a  
64 ms Reset.  
If VDD falls below VBOD for greater than parameter  
(TBOD) (see Section 15.0 “Electrical Specifications”),  
the Brown-out situation will reset the device. This will  
occur regardless of VDD slew rate. A Reset is not  
ensured to occur if VDD falls below VBOD for less than  
parameter (TBOD).  
FIGURE 12-3:  
BROWN-OUT DETECT SITUATIONS  
VDD  
VBOD  
Internal  
Reset  
(1)  
64 ms  
VDD  
VBOD  
Internal  
Reset  
< 64 ms  
(1)  
64 ms  
VDD  
VBOD  
Internal  
Reset  
(1)  
64 ms  
Note 1: Nominal 64 ms delay only if PWRTE bit is programmed to ‘0’.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 115  
PIC12F635/PIC16F636/639  
12.7 Time-out Sequence  
12.8 Power Control (PCON) Register  
On power-up, the time-out sequence is as follows: first,  
PWRT time-out is invoked after POR has expired, then  
OST is activated after the PWRT time-out has expired.  
The total time-out will vary based on oscillator  
configuration and PWRTE bit status. For example, in EC  
mode with PWRTE bit erased (PWRT disabled), there  
will be no time-out at all. Figure 12-4, Figure 12-5 and  
Figure 12-6 depict time-out sequences. The device can  
execute code from the INTOSC, while OST is active, by  
enabling Two-Speed Start-up or Fail-Safe Clock Monitor  
(See Section 3.6.2 “Two-Speed Start-up Sequence”  
and Section 3.7 “Fail-Safe Clock Monitor”).  
The Power Control register, PCON (address 8Eh), has  
two Status bits to indicate what type of Reset that last  
occurred.  
Bit 0 is BOD (Brown-out). BOD is unknown on Power-  
on Reset. It must then be set by the user and checked  
on subsequent Resets to see if BOD = 0, indicating that  
a Brown-out has occurred. The BOD Status bit is a  
“don’t care” and is not necessarily predictable if the  
brown-out circuit is disabled (BODEN<1:0> = 00in the  
Configuration Word register).  
Bit 1 is POR (Power-on Reset). It is a ‘0’ on Power-on  
Reset and unaffected otherwise. The user must write a  
1’ to this bit following a Power-on Reset. On a  
subsequent Reset, if POR is ‘0’, it will indicate that a  
Power-on Reset has occurred (i.e., VDD may have  
gone too low).  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire. Then  
bringing MCLR high will begin execution immediately  
(see Figure 12-5). This is useful for testing purposes or  
to synchronize more than one PIC12F635/PIC16F636/  
639 device operating in parallel.  
For more information, see Section 4.2.3 “Ultra Low-  
Power Wake-up” and Section 12.6 “Brown-out  
Detect (BOD)”.  
Table 12-5 shows the Reset conditions for some  
special registers, while Table 12-4 shows the Reset  
conditions for all the registers.  
TABLE 12-1: TIME-OUT IN VARIOUS SITUATIONS  
Power-up  
Oscillator  
Brown-out Detect  
Wake-up  
Configuration  
from Sleep  
PWRTE = 0  
PWRTE = 1  
PWRTE = 0  
PWRTE = 1  
XT, HS, LP  
TPWRT + 1024 • TOSC  
TPWRT  
1024 • TOSC  
TPWRT + 1024 • TOSC  
TPWRT  
1024 • TOSC  
1024 • TOSC  
RC, EC, INTOSC  
TABLE 12-2: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT DETECT  
Value on  
POR, BOD,  
WUR  
Value on  
all other  
Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
03h  
STATUS  
PCON  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
0001 1xxx 000q quuu  
--01 q-qq --0u u-uu  
8Eh  
ULPWUE SBODEN WUR  
POR  
BOD  
Legend:  
u= unchanged, x= unknown, — = unimplemented bit, reads as ‘0’, q= value depends on condition. Shaded cells are  
not used by BOD.  
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
DS41232B-page 116  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
TABLE 12-3: PCON BITS AND THEIR SIGNIFICANCE  
POR  
BOD  
WUR  
TO  
PD  
Condition  
0
u
u
u
u
u
u
u
x
0
u
u
u
u
u
0
x
u
u
u
u
u
0
u
1
1
0
0
u
1
1
1
1
1
u
0
u
0
0
1
Power-on Reset  
Brown-out Detect  
WDT Reset  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during Sleep  
Wake-up Reset during Sleep  
Brown-out Detect during Sleep  
Legend: u= unchanged, x= unknown  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 117  
PIC12F635/PIC16F636/639  
FIGURE 12-4:  
TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR)  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
FIGURE 12-5:  
TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR)  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
FIGURE 12-6:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR WITH VDD)  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
DS41232B-page 118  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
TABLE 12-4: INITIALIZATION CONDITION FOR REGISTERS  
MCLR Reset  
Wake-up from Sleep  
through Interrupt  
Wake-up from Sleep  
through WDT Time-out  
Power-on  
Reset  
Wake-up Reset  
WDT Reset  
Brown-out Detect(1)  
Wake-up Reset  
Register  
Address  
W
00h/80h  
01h  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0001 1xxx  
xxxx xxxx  
--xx xx00  
--xx xx00  
---0 0000  
0000 0000  
0000 00-0  
xxxx xxxx  
xxxx xxxx  
0000 0000  
---0 1000  
0000 0000  
---- --10  
1111 1111  
--11 1111  
--11 1111  
0000 00-0  
--01 q-qq  
-110 x000  
---0 0000  
--11 -111  
--00 0000  
--11 -111  
0-0- 0000  
0000 0000  
0000 0000  
---- x000  
---- ----  
xxxx xxxx  
-000 ----  
--00 -000  
00-- --00  
uuuu uuuu  
xxxx xxxx  
uuuu uuuu  
0000 0000  
000q quuu(4)  
uuuu uuuu  
--00 0000  
--00 0000  
---0 0000  
0000 0000  
0000 00-0  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---0 1000  
0000 0000  
---- --10  
1111 1111  
--11 1111  
--11 1111  
0000 00-0  
--0u u-uu(1,5)  
-110 x000  
---u uuuu  
--11 -111  
--00 0000  
--11 -111  
0-0- 0000  
0000 0000  
0000 0000  
---- q000  
---- ----  
uuuu uuuu  
-000 ----  
--00 -000  
00-- --00  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
PC + 1(3)  
INDF  
TMR0  
PCL  
02h/82h  
03h/83h  
04h/84h  
05h  
STATUS  
FSR  
uuuq quuu(4)  
uuuu uuuu  
--uu uu00  
--uu uu00  
---u uuuu  
uuuu uuuu(2)  
uuuu uu-u(2)  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
---u uuuu  
uuuu uuuu  
---- --uu  
uuuu uuuu  
--uu 1uuu  
--uu 1uuu  
uuuu uu-u  
--0u u-uu  
-uuu uuuu  
---u uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
u-u- uuuu  
uuuu uuuu  
uuuu uuuu  
---- uuuu  
---- ----  
uuuu uuuu  
-uuu ----  
--uu -uuu  
uu-- --uu  
PORTA  
PORTC(6)  
PCLATH  
INTCON  
PIR1  
07h  
0Ah/8Ah  
0Bh/8Bh  
0Ch  
TMR1L  
TMR1H  
T1CON  
WDTCON  
CMCON0  
CMCON1  
OPTION_REG  
TRISA  
0Eh  
0Fh  
10h  
18h  
19h  
1Ah  
81h  
85h  
TRISC(6)  
87h  
PIE1  
8Ch  
PCON  
8Eh  
OSCCON  
OSCTUNE  
WPUDA  
IOCA  
8Fh  
90h  
95h  
96h  
WDA  
97h  
VRCON  
EEDAT  
EEADR  
EECON1  
EECON2  
ADRESL  
ADCON1  
LVDCON  
CRCON  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
94h  
110h  
Legend: u= unchanged, x= unknown, -= unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).  
4: See Table 12-5 for Reset value for specific condition.  
5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.  
6: PIC16F636/639 only.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 119  
PIC12F635/PIC16F636/639  
TABLE 12-5: INITIALIZATION CONDITION FOR SPECIAL REGISTERS  
Program  
Counter  
Status  
Register  
PCON  
Register  
Condition  
Power-on Reset  
000h  
000h  
0001 1xxx  
000u uuuu  
0001 0uuu  
0000 uuuu  
uuu0 0uuu  
0001 1uuu  
uuu1 0uuu  
0001 1xxx  
--01 --0x  
--0u --uu  
--0u --uu  
--0u --uu  
--uu --uu  
--01 --10  
--uu --uu  
--01 --0x  
MCLR Reset during normal operation  
MCLR Reset during Sleep  
WDT Reset  
000h  
000h  
WDT Wake-up  
PC + 1  
000h  
PC + 1(1)  
Brown-out Detect  
Interrupt Wake-up from Sleep  
Wake-up Reset  
000h  
Legend: u= unchanged, x= unknown, – = unimplemented bit, reads as ‘0’.  
Note 1: When the wake-up is due to an interrupt and the Global Interrupt Enable bit, GIE, is set, the PC is loaded  
with the interrupt vector (0004h) after execution of PC + 1.  
DS41232B-page 120  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
For external interrupt events, such as the INT pin or  
PORTA change interrupt, the interrupt latency will be  
12.9 Interrupts  
The PIC12F635/PIC16F636/639 has 8 sources of  
interrupt:  
three or four instruction cycles. The exact latency  
depends upon when the interrupt event occurs (see  
Figure 12-8). The latency is the same for one or two-  
cycle instructions. Once in the Interrupt Service  
Routine, the source(s) of the interrupt can be  
determined by polling the interrupt flag bits. The  
interrupt flag bit(s) must be cleared in software before  
re-enabling interrupts to avoid multiple interrupt  
requests.  
• External Interrupt RA2/INT  
• Timer0 Overflow Interrupt  
• PORTA Change Interrupts  
• 2 Comparator Interrupts  
• Timer1 Overflow Interrupt  
• EEPROM Data Write Interrupt  
• Fail-Safe Clock Monitor Interrupt  
Note 1: Individual interrupt flag bits are set,  
regardless of the status of their  
corresponding mask bit or the GIE bit.  
The Interrupt Control register (INTCON) and Peripheral  
Interrupt Request Register 1 (PIR1) record individual  
interrupt requests in flag bits. The INTCON register  
also has individual and global interrupt enable bits.  
2: When an instruction that clears the GIE  
bit is executed, any interrupts that were  
pending for execution in the next cycle  
are ignored. The interrupts, which were  
ignored, are still pending to be serviced  
when the GIE bit is set again.  
A Global Interrupt Enable bit, GIE (INTCON<7>),  
enables (if set) all unmasked interrupts, or disables (if  
cleared) all interrupts. Individual interrupts can be  
disabled through their corresponding enable bits in the  
INTCON register and PIE1 register. GIE is cleared on  
Reset.  
For additional information on Timer1, comparators or  
data EEPROM modules, refer to the respective  
peripheral section.  
The Return from Interrupt instruction, RETFIE, exits  
the interrupt routine, as well as sets the GIE bit, which  
re-enables unmasked interrupts.  
12.9.1  
RA2/INT INTERRUPT  
The following interrupt flags are contained in the  
INTCON register:  
External interrupt on RA2/INT pin is edge-triggered;  
either rising if the INTEDG bit (OPTION<6>) is set, or  
falling if the INTEDG bit is clear. When a valid edge  
appears on the RA2/INT pin, the INTF bit (INTCON<1>)  
is set. This interrupt can be disabled by clearing the  
INTE control bit (INTCON<4>). The INTF bit must be  
cleared in software in the Interrupt Service Routine  
before re-enabling this interrupt. The RA2/INT interrupt  
can wake-up the processor from Sleep if the INTE bit  
was set prior to going into Sleep. The status of the GIE  
bit decides whether or not the processor branches to the  
interrupt vector following wake-up (0004h). See  
Section 12.12 “Power-Down Mode (Sleep)” for details  
on Sleep and Figure 12-10 for timing of wake-up from  
Sleep through RA2/INT interrupt.  
• INT Pin Interrupt  
• PORTA Change Interrupt  
• TMR0 Overflow Interrupt  
The peripheral interrupt flags are contained in the  
special register, PIR1. The corresponding interrupt  
enable bit is contained in special register, PIE1.  
The following interrupt flags are contained in the PIR1  
register:  
• EEPROM Data Write Interrupt  
• 2 Comparator Interrupts  
• Timer1 Overflow Interrupt  
• Fail-Safe Clock Monitor Interrupt  
Note:  
The CMCON0 (19h) register must be  
initialized to configure an analog channel  
as a digital input. Pins configured as  
analog inputs will read ‘0’.  
When an interrupt is serviced:  
• The GIE is cleared to disable any further interrupt.  
• The return address is pushed onto the stack.  
• The PC is loaded with 0004h.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 121  
PIC12F635/PIC16F636/639  
12.9.2  
TMR0 INTERRUPT  
12.9.3  
PORTA INTERRUPT  
An overflow (FFh 00h) in the TMR0 register will set  
the T0IF (INTCON<2>) bit. The interrupt can be  
enabled/disabled by setting/clearing T0IE (INTCON<5>)  
bit. See Section 5.0 “Timer0 Module” for operation of  
the Timer0 module.  
An input change on PORTA change sets the RAIF  
(INTCON<0>) bit. The interrupt can be enabled/  
disabled by setting/clearing the RAIE (INTCON<3>)  
bit. Plus, individual pins can be configured through the  
IOCA register.  
Note:  
If a change on the I/O pin should occur  
when the read operation is being executed  
(start of the Q2 cycle), then the RAIF  
interrupt flag may not get set.  
FIGURE 12-7:  
INTERRUPT LOGIC  
IOC-RA0  
IOCA0  
IOC-RA1  
IOCA1  
IOC-RA2  
IOCA2  
IOC-RA3  
IOCA3  
IOC-RA4  
IOCA4  
IOC-RA5  
IOCA5  
Wake-up (If in Sleep mode)  
Interrupt to CPU  
T0IF  
T0IE  
LVDIF  
LVDIE  
INTF  
INTE  
RAIF  
TMR1IF  
TMR1IE  
RAIE  
C1IF  
C1IE  
PEIE  
GIE  
(1)  
C2IF  
(1)  
C2IE  
EEIF  
EEIE  
OSFIF  
OSFIE  
CRIF  
CRIE  
Note 1: PIC16F636/639 only.  
DS41232B-page 122  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 12-8:  
INT PIN INTERRUPT TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
(3)  
CLKOUT  
(4)  
INT pin  
(1)  
(1)  
(5)  
(2)  
Interrupt Latency  
INTF Flag  
(INTCON<1>)  
GIE bit  
(INTCON<7>)  
Instruction Flow  
PC  
0004h  
PC + 1  
PC + 1  
0005h  
Inst (0005h)  
Inst (0004h)  
PC  
Instruction  
Fetched  
Inst (PC)  
Inst (PC + 1)  
Inst (0004h)  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Inst (PC)  
Inst (PC – 1)  
Note 1: INTF flag is sampled here (every Q1).  
2: Asynchronous interrupt latency = 3-4 TCY. Synchronous latency = 3 TCY, where TCY = instruction cycle time. Latency  
is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.  
3: CLKOUT is available only in INTOSC and RC Oscillator modes.  
4: For minimum width of INT pulse, refer to AC specifications in Section 15.0 “Electrical Specifications”.  
5: INTF is enabled to be set any time during the Q4-Q1 cycles.  
TABLE 12-6: SUMMARY OF INTERRUPT REGISTERS  
Value on  
POR, BOD,  
WUR  
Value on  
all other  
Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh INTCON  
GIE  
EEIF  
EEIE  
PEIE  
LVDIF  
LVDIE  
T0IE  
CRIF  
CRIE  
INTE  
RAIE  
C1IF  
C1IE  
T0IF  
INTF  
RAIF  
0000 0000 0000 0000  
(1)  
0Ch  
PIR1  
PIE1  
C2IF  
C2IE  
OSFIF  
OSFIE  
TMR1IF 0000 00-0 0000 00-0  
TMR1IE 0000 00-0 0000 00-0  
(1)  
8Ch  
Legend:  
x= unknown, u= unchanged, — = unimplemented, read as ‘0’, q= value depends upon condition.  
Shaded cells are not used by the interrupt module.  
Note 1: PIC16F636/639 only.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 123  
PIC12F635/PIC16F636/639  
12.10 Context Saving During Interrupts  
Note:  
The PIC12F635/PIC16F636/639 normally  
does not require saving the PCLATH.  
However, if computed GOTO’s are used in  
the ISR and the main code, the PCLATH  
must be saved and restored in the ISR.  
During an interrupt, only the return PC value is saved  
on the stack. Typically, users may wish to save key  
registers during an interrupt (e.g., W and Status  
registers). This must be implemented in software.  
Since the lower 16 bytes of all banks are common in the  
PIC12F635/PIC16F636/639 (see Figure 2-2), temporary  
holding registers, W_TEMP and STATUS_TEMP, should  
be placed in here. These 16 locations do not require  
banking and therefore, make it easier to context save and  
restore. The same code shown in Example 12-1 can be  
used to:  
• Store the W register.  
• Store the Status register.  
• Execute the ISR code.  
• Restore the Status (and Bank Select Bit register).  
• Restore the W register.  
EXAMPLE 12-1:  
SAVING STATUS AND W REGISTERS IN RAM  
MOVWF  
SWAPF  
CLRF  
MOVWF  
:
W_TEMP  
STATUS,W  
STATUS  
;Copy W to TEMP register  
;Swap status to be saved into W  
;bank 0, regardless of current bank, Clears IRP,RP1,RP0  
;Save status to bank zero STATUS_TEMP register  
STATUS_TEMP  
:(ISR)  
:
;Insert user code here  
SWAPF  
STATUS_TEMP,W  
;Swap STATUS_TEMP register into W  
;(sets bank to original state)  
;Move W into Status register  
;Swap W_TEMP  
MOVWF  
SWAPF  
SWAPF  
STATUS  
W_TEMP,F  
W_TEMP,W  
;Swap W_TEMP into W  
DS41232B-page 124  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
A new prescaler has been added to the path between  
the INTRC and the multiplexers used to select the path  
for the WDT. This prescaler is 16 bits and can be  
programmed to divide the INTRC by 32 to 65536,  
giving the WDT a nominal range of 1 ms to 268s.  
12.11 Watchdog Timer (WDT)  
The PIC12F635/PIC16F636/639 WDT is code and  
functionally compatible with other PIC16F WDT  
modules and adds a 16-bit prescaler to the WDT. This  
allows the user to have a scaler value for the WDT and  
TMR0 at the same time. In addition, the WDT time-out  
value can be extended to 268 seconds. WDT is cleared  
under certain conditions described in Table 12-7.  
12.11.2 WDT CONTROL  
The WDTE bit is located in the Configuration Word  
register. When set, the WDT runs continuously.  
12.11.1 WDT OSCILLATOR  
When the WDTE bit in the Configuration Word register  
is set, the SWDTEN bit (WDTCON<0>) has no effect.  
If WDTE is clear, then the SWDTEN bit can be used to  
enable and disable the WDT. Setting the bit will enable  
it and clearing the bit will disable it.  
The WDT derives its time base from the 31 kHz  
LFINTOSC. The LTS bit does not reflect that the  
LFINTOSC is enabled.  
The value of WDTCON is ‘---0 1000’ on all Resets.  
This gives a nominal time base of 16 ms, which is  
compatible with the time base generated with previous  
PIC12F635/PIC16F636/639 microcontroller versions.  
The PSA and PS<2:0> bits (OPTION_REG) have the  
same function as in previous versions of the PIC16F  
family of microcontrollers. See Section 5.0 “Timer0  
Module” for more information.  
Note:  
When the Oscillator Start-up Timer (OST)  
is invoked, the WDT is held in Reset,  
because the WDT Ripple Counter is used  
by the OST to perform the oscillator delay  
count. When the OST count has expired,  
the WDT will begin counting (if enabled).  
FIGURE 12-9:  
WATCHDOG TIMER BLOCK DIAGRAM  
0
1
From TMR0 Clock Source  
Prescaler(1)  
16-bit WDT Prescaler  
8
PSA  
PS<2:0>  
To TMR0  
PSA  
31 kHz  
LFINTOSC Clock  
WDTPS<3:0>  
1
0
WDTE from Configuration Word Register  
SWDTEN from WDTCON  
WDT Time-out  
Note 1: This is the shared Timer0/WDT prescaler. See Section 5.4 “Prescaler” for more information.  
TABLE 12-7: WDT STATUS  
Conditions  
WDT  
WDTE = 0  
CLRWDTCommand  
Cleared  
Oscillator Fail Detected  
Exit Sleep + System Clock = T1OSC, EXTRC, HFINTOSC, EXTCLK  
Exit Sleep + System Clock = XT, HS, LP  
Cleared until the end of OST  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 125  
PIC12F635/PIC16F636/639  
REGISTER 12-2: WDTCON – WATCHDOG TIMER CONTROL REGISTER (ADDRESS: 18h)  
U-0  
U-0  
U-0  
R/W-0  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
WDTPS3 WDTPS2 WDTPS1 WDTPS0 SWDTEN(1)  
bit 7  
bit 0  
bit 7-5  
bit 4-1  
Unimplemented: Read as ‘0’  
WDTPS<3:0>: Watchdog Timer Period Select bits  
Bit Value = Prescale Rate  
0000 = 1:32  
0001 = 1:64  
0010 = 1:128  
0011 = 1:256  
0100 = 1:512  
0101 = 1:1024  
0110 = 1:2048  
0111 = 1:4096  
1000 = 1:8192  
1001 = 1:16394  
1010 = 1:32768  
1011 = 1:65536  
1100 = reserved  
1101 = reserved  
1110 = reserved  
1111 = reserved  
bit 0  
SWDTEN: Software Enable/Disable for Watchdog Timer bit(1)  
1= WDT is turned on  
0= WDT is turned off  
Note 1: If WDTE configuration bit = 1, then WDT is always enabled, irrespective of this  
control bit. If WDTE configuration bit = 0, then it is possible to turn WDT on/off with  
this control bit.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
TABLE 12-8: SUMMARY OF WATCHDOG TIMER REGISTERS  
Address  
18h  
Name  
WDTCON  
OPTION_REG  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
WDTPS3 WDTPS2 WSTPS1 WDTPS0 SWDTEN  
81h  
RAPU INTEDG  
CPD CP  
Legend: Shaded cells are not used by the Watchdog Timer.  
Note 1: See Register 12-1 for operation of all Configuration Word register bits.  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
2007h(1) CONFIG  
MCLRE PWRTE  
WDTE  
FOSC2 FOSC1 FOSC0  
DS41232B-page 126  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
6. External Interrupt from INT pin.  
12.12 Power-Down Mode (Sleep)  
Other peripherals cannot generate interrupts, since  
during Sleep, no on-chip clocks are present.  
The Power-down mode is entered by executing a  
SLEEPinstruction.  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is prefetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction, then branches to the interrupt  
address (0004h). In cases where the execution of the  
instruction following SLEEP is not desirable, the user  
should have a NOPafter the SLEEPinstruction.  
If the Watchdog Timer is enabled:  
• WDT will be cleared but keeps running.  
• PD bit in the Status register is cleared.  
• TO bit is set.  
• Oscillator driver is turned off.  
• I/O ports maintain the status they had before  
SLEEPwas executed (driving high, low or  
high-impedance).  
For lowest current consumption in this mode, all I/O pins  
should be either at VDD or VSS, with no external circuitry  
drawing current from the I/O pin and the comparators  
and CVREF should be disabled. I/O pins that are high-  
impedance inputs should be pulled high or low externally  
to avoid switching currents caused by floating inputs.  
The T0CKI input should also be at VDD or VSS for lowest  
current consumption. The contribution from on-chip  
pull-ups on PORTA should be considered.  
Note:  
If the global interrupts are disabled (GIE is  
cleared), but any interrupt source has both  
its interrupt enable bit and the corresponding  
interrupt flag bits set, the device will  
immediately wake-up from Sleep. The  
SLEEPinstruction is completely executed.  
The WDT is cleared when the device wakes up from  
Sleep, regardless of the source of wake-up.  
The MCLR pin must be at a logic high level.  
Note 1: It should be noted that a Reset generated  
by a WDT time-out does not drive MCLR  
pin low.  
Note:  
If WUR is enabled (WURE = 0 in  
Configuration Word), then the Wake-up  
Reset module will force a device Reset.  
2: The Analog Front-End (AFE) section in  
the PIC16F639 device is independent of  
the microcontroller’s power-down mode  
(Sleep). See Section 11.32.2.3 “Sleep  
Command” for AFE’s Sleep mode.  
12.12.2 WAKE-UP USING INTERRUPTS  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
12.12.1 WAKE-UP FROM SLEEP  
• If the interrupt occurs before the execution of a  
SLEEPinstruction, the SLEEPinstruction will  
complete as a NOP. Therefore, the WDT and WDT  
prescaler and postscaler (if enabled) will not be  
cleared, the TO bit will not be set and the PD bit  
will not be cleared.  
The device can wake-up from Sleep through one of the  
following events:  
1. External Reset input on MCLR pin.  
2. Watchdog Timer wake-up (if WDT was enabled).  
3. Interrupt from RA2/INT pin, PORTA change or a  
peripheral interrupt.  
• If the interrupt occurs during or after the  
execution of a SLEEPinstruction, the device will  
immediately wake-up from Sleep. The SLEEP  
instruction will be completely executed before the  
wake-up. Therefore, the WDT and WDT prescaler  
and postscaler (if enabled) will be cleared, the TO  
bit will be set and the PD bit will be cleared.  
The first event will cause a device Reset. The two latter  
events are considered a continuation of program  
execution. The TO and PD bits in the Status register  
can be used to determine the cause of device Reset.  
The PD bit, which is set on power-up, is cleared when  
Sleep is invoked. TO bit is cleared if WDT wake-up  
occurred.  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
The following peripheral interrupts can wake the device  
from Sleep:  
1. TMR1 interrupt. Timer1 must be operating as an  
asynchronous counter.  
To ensure that the WDT is cleared, a CLRWDTinstruction  
should be executed before a SLEEPinstruction.  
2. Special event trigger (Timer1 in Asynchronous  
mode using an external clock).  
3. EEPROM write operation completion.  
4. Comparator output changes state.  
5. Interrupt-on-change.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 127  
PIC12F635/PIC16F636/639  
FIGURE 12-10:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT(4)  
INT pin  
(2)  
TOST  
INTF Flag  
(INTCON<1>)  
Interrupt Latency(3)  
GIE bit  
(INTCON<7>)  
Processor in  
Sleep  
INSTRUCTION FLOW  
PC  
PC  
PC + 1  
PC + 2  
PC + 2  
PC + 2  
0004h  
0005h  
Instruction  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = Sleep  
Inst(PC – 1)  
Fetched  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Sleep  
Inst(PC + 1)  
Inst(0004h)  
Note 1: XT, HS or LP Oscillator mode assumed.  
2: TOST = 1024 TOSC (drawing not to scale). This delay does not apply to EC and RC Oscillator modes.  
3: GIE = 1assumed. In this case after wake-up, the processor jumps to 0004h. If GIE = 0, execution will continue in-line.  
4: CLKOUT is not available in XT, HS, LP or EC Oscillator modes, but shown here for timing reference.  
12.13 Code Protection  
12.14 ID Locations  
If the code protection bit(s) have not been  
programmed, the on-chip program memory can be  
read out using ICSP for verification purposes.  
Four memory locations (2000h-2003h) are designated  
as ID locations where the user can store checksum or  
other code identification numbers. These locations are  
not accessible during normal execution but are  
readable and writable during Program/Verify mode.  
Only the Least Significant 7 bits of the ID locations are  
used.  
Note:  
The entire data EEPROM and Flash  
program memory will be erased when the  
code protection is turned off. See the  
PIC12F6XX/16F6XX Memory Program-  
ming Specification” (DS41204) for more  
information.  
DS41232B-page 128  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
12.15 In-Circuit Serial Programming  
12.16 In-Circuit Debugger  
The PIC12F635/PIC16F636/639 microcontrollers can  
be serially programmed while in the end application  
circuit. This is simply done with two lines for clock and  
data and three other lines for:  
Since in-circuit debugging requires the loss of clock,  
data and MCLR pins, MPLAB® ICD 2 development with  
a 14-pin device is not practical. A special 20-pin  
PIC16F636 ICD device is used with MPLAB ICD 2 to  
provide separate clock, data and MCLR pins and frees  
all normally available pins to the user.  
• Power  
• Ground  
Use of the ICD device requires the purchase of a  
special header. On the top of the header is an  
MPLAB ICD 2 connector. On the bottom of the  
header is a 14-pin socket that plugs into the user’s  
target via the 14-pin stand-off connector.  
• Programming Voltage  
This allows customers to manufacture boards with  
unprogrammed devices and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom  
firmware to be programmed.  
When the ICD pin on the PIC16F636 ICD device is held  
low, the In-Circuit Debugger functionality is enabled.  
This function allows simple debugging functions when  
used with MPLAB ICD 2. When the microcontroller has  
this feature enabled, some of the resources are not  
available for general use. Table 12-9 shows which  
features are consumed by the background debugger:  
The device is placed into a Program/Verify mode by hold-  
ing the RA0 and RA1 pins low, while raising the MCLR  
(VPP) pin from VIL to VIHH. See the “PIC12F6XX/16F6XX  
Memory Programming Specification” (DS41204) for  
more information. RA0 becomes the programming data  
and RA1 becomes the programming clock. Both RA0  
and RA1 are Schmitt Trigger inputs in this mode.  
TABLE 12-9: DEBUGGER RESOURCES  
After Reset, to place the device into Program/Verify  
mode, the Program Counter (PC) is at location 00h. A  
6-bit command is then supplied to the device.  
Depending on the command, 14 bits of program data  
are then supplied to or from the device, depending on  
whether the command was a load or a read. For  
complete details of serial programming, please refer to  
the “PIC12F6XX/16F6XX Memory Programming  
Specification” (DS41204).  
Resource  
I/O pins  
Stack  
Description  
ICDCLK, ICDDATA  
1 level  
Program Memory Address 0h must be NOP  
700h-7FFh  
For more information, see the “MPLAB® ICD 2 In-  
Circuit Debugger User’s Guide” (DS51331), available  
on Microchip’s web site (www.microchip.com).  
A typical In-Circuit Serial Programming connection is  
shown in Figure 12-11.  
FIGURE 12-12:  
20-Pin PDIP  
20-PIN ICD PINOUT  
FIGURE 12-11:  
TYPICAL IN-CIRCUIT  
SERIAL PROGRAMMING  
CONNECTION  
In-Circuit Debug Device  
To Normal  
1
20  
NC  
ICDMCLR/VPP  
VDD  
ICDCLK  
ICDDATA  
VSS  
RA0  
RA1  
RA2  
RC0  
RC1  
RC2  
Connections  
2
3
4
5
6
7
8
9
19  
18  
17  
16  
15  
14  
13  
12  
External  
Connector  
Signals  
*
RA5  
RA4  
RA3  
RC5  
RC4  
RC3  
PIC16F636  
+5V  
0V  
VDD  
VSS  
VPP  
MCLR/VPP/RA3  
RA1  
RA0  
CLK  
10  
11  
ICD  
ENPORT  
Data I/O  
*
*
*
To Normal  
Connections  
*Isolation devices (as required).  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 129  
PIC12F635/PIC16F636/639  
NOTES:  
DS41232B-page 130  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
For example, a CLRF GPIOinstruction will read GPIO,  
13.0 INSTRUCTION SET SUMMARY  
clear all the data bits, then write the result back to  
GPIO. This example would have the unintended result  
of clearing the condition that set the GPIF flag.  
The PIC12F635/PIC16F636/639 instruction set is  
highly orthogonal and is comprised of three basic  
categories:  
TABLE 13-1: OPCODE FIELD  
DESCRIPTIONS  
Byte-oriented operations  
Bit-oriented operations  
Literal and control operations  
Field  
Description  
Each PIC16FXXX instruction is a 14-bit word divided  
into an opcode, which specifies the instruction type  
and one or more operands, which further specify the  
operation of the instruction. The formats for each of the  
categories is presented in Figure 13-1, while the  
various opcode fields are summarized in Table 13-1.  
f
W
b
k
x
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
Bit address within an 8-bit file register  
Literal field, constant data or label  
Don’t care location (= 0or 1).  
Table 13-2 lists the instructions recognized by the  
MPASMTM assembler. A complete description of each  
instruction is also available in the “PICmicro® Mid-Range  
MCU Family Reference Manual” (DS33023).  
The assembler will generate code with x = 0.  
It is the recommended form of use for  
compatibility with all Microchip software tools.  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1.  
For byte-oriented instructions, ‘f’ represents a file  
register designator and ‘d’ represents a destination  
designator. The file register designator specifies which  
file register is to be used by the instruction.  
PC Program Counter  
TO Time-out bit  
The destination designator specifies where the result of  
the operation is to be placed. If ‘d’ is zero, the result is  
placed in the W register. If ‘d’ is one, the result is placed  
in the file register specified in the instruction.  
PD Power-down bit  
FIGURE 13-1:  
GENERAL FORMAT FOR  
INSTRUCTIONS  
For bit-oriented instructions, ‘b’ represents a bit field  
designator, which selects the bit affected by the  
operation, while ‘f’ represents the address of the file in  
which the bit is located.  
Byte-oriented file register operations  
13  
8
7
6
0
OPCODE  
d
f (FILE #)  
For literal and control operations, ‘k’ represents an  
8-bit or 11-bit constant, or literal value.  
d = 0for destination W  
d = 1for destination f  
f = 7-bit file register address  
One instruction cycle consists of four oscillator periods;  
for an oscillator frequency of 4 MHz, this gives a normal  
instruction execution time of 1 μs. All instructions are  
executed within a single instruction cycle, unless a  
conditional test is true, or the program counter is  
changed as a result of an instruction. When this occurs,  
the execution takes two instruction cycles, with the  
second cycle executed as a NOP.  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7
6
0
OPCODE  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
Literal and control operations  
Note: To maintain upward compatibility with  
future products, do not use the OPTION  
and TRISinstructions.  
General  
13  
8
7
0
0
OPCODE  
k (literal)  
All instruction examples use the format ‘0xhh’ to  
represent a hexadecimal number, where ‘h’ signifies a  
hexadecimal digit.  
k = 8-bit immediate value  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
13.1 Read-Modify-Write Operations  
k (literal)  
Any instruction that specifies a file register as part of  
the instruction performs a Read-Modify-Write (R-M-W)  
operation. The register is read, the data is modified and  
the result is stored according to either the instruction, or  
the destination designator ‘d’. A read operation is  
performed on a register even if the instruction writes to  
that register.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 131  
PIC12F635/PIC16F636/639  
TABLE 13-2: PIC12F635/PIC16F636/639 INSTRUCTION SET  
14-Bit Opcode  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
DECFSZ  
INCF  
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
f, d  
f, d  
f
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00 0111 dfff ffff C, DC, Z  
1, 2  
1, 2  
2
00 0101 dfff ffff  
00 0001 lfff ffff  
00 0001 0xxx xxxx  
00 1001 dfff ffff  
00 0011 dfff ffff  
00 1011 dfff ffff  
00 1010 dfff ffff  
00 1111 dfff ffff  
00 0100 dfff ffff  
00 1000 dfff ffff  
00 0000 lfff ffff  
00 0000 0xx0 0000  
00 1101 dfff ffff  
00 1100 dfff ffff  
Z
Z
Z
Z
Z
-
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
1, 2  
1, 2  
1, 2, 3  
1, 2  
1, 2, 3  
1, 2  
1, 2  
Z
Z
Z
Move W to f  
No Operation  
-
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
f, d  
f, d  
f, d  
f, d  
f, d  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Swap nibbles in f  
Exclusive OR W with f  
C
C
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
00 0010 dfff ffff C, DC, Z  
00 1110 dfff ffff  
00 0110 dfff ffff  
Z
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1
1
1 (2)  
1 (2)  
01 00bb bfff ffff  
1, 2  
1, 2  
3
01 01bb bfff ffff  
01 10bb bfff ffff  
01 11bb bfff ffff  
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
-
k
k
k
-
k
-
-
k
k
Add literal and W  
AND literal with W  
Call subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11 111x kkkk kkkk C, DC, Z  
11 1001 kkkk kkkk  
10 0kkk kkkk kkkk  
Z
00 0000 0110 0100 TO, PD  
10 1kkk kkkk kkkk  
Inclusive OR literal with W  
Move literal to W  
11 1000 kkkk kkkk  
11 00xx kkkk kkkk  
00 0000 0000 1001  
11 01xx kkkk kkkk  
00 0000 0000 1000  
Z
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into Standby mode  
Subtract W from literal  
Exclusive OR literal with W  
00 0000 0110 0011 TO, PD  
11 110x kkkk kkkk C, DC, Z  
11 1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself (e.g., MOVF GPIO, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an external  
device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if  
assigned to the Timer0 module.  
3: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second  
cycle is executed as a NOP.  
Note:  
Additional information on the mid-range instruction set is available in the “PICmicro® Mid-Range MCU  
Family Reference Manual” (DS33023).  
DS41232B-page 132  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
13.2 Instruction Descriptions  
ADDLW  
Add Literal and W  
BCF  
Bit Clear f  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Syntax:  
[ label ] BCF f,b  
Operands:  
Operation:  
Operands:  
0 f 127  
0 b 7  
(W) + k (W)  
Operation:  
0 (f<b>)  
Status Affected: C, DC, Z  
Status Affected:  
Description:  
None  
Description:  
The contents of the W register are  
added to the eight-bit literal ‘k’ and  
the result is placed in the W register.  
Bit ‘b’ in register ‘f’ is cleared.  
ADDWF  
Add W and f  
BSF  
Bit Set f  
Syntax:  
[ label ] ADDWF f,d  
Syntax:  
[ label ] BSF f,b  
Operands:  
0 f 127  
d ∈ [0,1]  
Operands:  
0 f 127  
0 b 7  
Operation:  
(W) + (f) (destination)  
Operation:  
1 (f<b>)  
Status Affected: C, DC, Z  
Status Affected:  
Description:  
None  
Description:  
Add the contents of the W register  
Bit ‘b’ in register ‘f’ is set.  
with register ‘f’. If ‘d’ is ‘0’, the result  
is stored in the W register. If ‘d’ is ‘1’,  
the result is stored back in register ‘f’.  
ANDLW  
AND Literal with W  
BTFSC  
Bit Test f, Skip if Clear  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Syntax:  
[ label ] BTFSC f,b  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
0 f 127  
0 b 7  
(W) .AND. (k) (W)  
Operation:  
skip if (f<b>) = 0  
Z
Status Affected: None  
The contents of W register are  
AND’ed with the eight-bit literal  
‘k’. The result is placed in the W  
register.  
Description:  
If bit ‘b’ in register ‘f’ is ‘1’, the next  
instruction is executed.  
If bit ‘b’ in register ‘f’ is ‘0’, the next  
instruction is discarded and a NOP  
is executed instead, making this a  
2-cycle instruction.  
ANDWF  
AND W with f  
BTFSS  
Bit Test f, Skip if Set  
Syntax:  
[ label ] ANDWF f,d  
Syntax:  
[ label ] BTFSS f,b  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
0 b < 7  
Operation:  
(W) .AND. (f) (destination)  
Operation:  
skip if (f<b>) = 1  
Status Affected:  
Description:  
Z
Status Affected: None  
AND the W register with register  
‘f’. If ‘d’ is ‘0’, the result is stored in  
the W register. If ‘d’ is ‘1’, the  
Description: If bit ‘b’ in register ‘f’ is ‘0’, the next  
instruction is executed.  
If bit ‘b’ is ‘1’, then the next instruction is  
discarded and a NOPis executed instead,  
making this a 2-cycle instruction.  
result is stored back in register ‘f’.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 133  
PIC12F635/PIC16F636/639  
CALL  
Call Subroutine  
CLRWDT  
Clear Watchdog Timer  
Syntax:  
[ label ] CALL k  
0 k 2047  
Syntax:  
[ label ] CLRWDT  
Operands:  
Operation:  
Operands:  
Operation:  
None  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
00h WDT  
0 WDT prescaler,  
1 TO  
1 PD  
Status Affected: None  
Status Affected: TO, PD  
Description:  
Call subroutine. First, return address  
(PC + 1) is pushed onto the stack.  
The eleven-bit immediate address is  
loaded into PC bits <10:0>. The  
upper bits of the PC are loaded from  
PCLATH. CALLis a two-cycle  
instruction.  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the  
prescaler of the WDT. Status bits,  
TO and PD, are set.  
CLRF  
Clear f  
COMF  
Complement f  
Syntax:  
[label] CLRF  
0 f 127  
f
Syntax:  
[ label ] COMF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
00h (f)  
1 Z  
Operation:  
(f) (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
The contents of register ‘f’ are  
cleared and the Z bit is set.  
The contents of register ‘f’ are  
complemented. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’,  
the result is stored back in  
register ‘f’.  
CLRW  
Clear W  
DECF  
Decrement f  
Syntax:  
[ label ] CLRW  
Syntax:  
[ label ] DECF f,d  
Operands:  
Operation:  
None  
Operands:  
0 f 127  
d [0,1]  
00h (W)  
1 Z  
Operation:  
(f) – 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
W register is cleared. Zero bit (Z)  
is set.  
Decrement register ‘f’. If ‘d’ is ‘0’,  
the result is stored in the W  
register. If ‘d’ is ‘0’, the result is  
stored back in register ‘f’.  
DS41232B-page 134  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
DECFSZ  
Decrement f, Skip if 0  
INCFSZ  
Increment f, Skip if 0  
Syntax:  
[ label ] DECFSZ f,d  
Syntax:  
[ label ] INCFSZ f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) – 1 (destination);  
skip if result = 0  
Operation:  
(f) + 1 (destination),  
skip if result = 0  
Status Affected: None  
Status Affected: None  
Description:  
The contents of register ‘f’ are  
Description:  
The contents of register ‘f’ are  
decremented. If ‘d’ is ‘0’, the result is  
placed in the W register. If ‘d’ is ‘1’,  
the result is placed back in register ‘f’.  
If the result is ‘1’, the next instruction  
is executed. If the result is ‘0’, then a  
NOPis executed instead, making it a  
2-cycle instruction.  
incremented. If ‘d’ is ‘0’, the result is  
placed in the W register. If ‘d’ is ‘1’, the  
result is placed back in  
register ‘f’.  
If the result is ‘1’, the next instruction  
is executed. If the result is ‘0’, a NOPis  
executed instead, making it a 2-cycle  
instruction.  
IORLW  
Inclusive OR Literal with W  
GOTO  
Unconditional Branch  
Syntax:  
[ label ] IORLW k  
0 k 255  
Syntax:  
[ label ] GOTO k  
0 k 2047  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
Operation:  
(W) .OR. k (W)  
Z
k PC<10:0>  
PCLATH<4:3> PC<12:11>  
Status Affected: None  
The contents of the W register are  
OR’ed with the eight-bit literal ‘k’.  
The result is placed in the W  
register.  
Description:  
GOTOis an unconditional branch.  
The eleven-bit immediate value is  
loaded into PC bits <10:0>. The  
upper bits of PC are loaded from  
PCLATH<4:3>. GOTOis a two-cycle  
instruction.  
IORWF  
Inclusive OR W with f  
INCF  
Increment f  
Syntax:  
[ label ] IORWF f,d  
Syntax:  
[ label ] INCF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(W) .OR. (f) (destination)  
Operation:  
(f) + 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Inclusive OR the W register with  
register ‘f’. If ‘d’ is ‘0’, the result is  
placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 135  
PIC12F635/PIC16F636/639  
MOVF  
Move f  
MOVWF  
Move W to f  
[ label ] MOVWF  
0 f 127  
(W) (f)  
Syntax:  
Operands:  
[ label ] MOVF f,d  
Syntax:  
f
0 f 127  
d [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operation:  
(f) (dest)  
None  
Status Affected:  
Encoding:  
Z
00  
0000  
1fff  
ffff  
00  
1000  
dfff  
ffff  
Move data from W register to  
register ‘f’.  
Description:  
The contents of register ‘f’ are  
moved to a destination dependent  
upon the status of ‘d’. If ‘d’ = 0,  
destination is W register. If d = 1,  
the destination is file register ‘f’  
itself. d = 1is useful to test a file  
register, since status flag Z is  
affected.  
Words:  
1
1
Cycles:  
Example:  
MOVWF  
OPTION  
Before Instruction  
OPTION =  
0xFF  
0x4F  
W
=
After Instruction  
Words:  
1
1
OPTION =  
W
0x4F  
0x4F  
Cycles:  
Example:  
=
MOVF  
FSR,  
0
After Instruction  
W
= value in FSR register  
Z
= 1  
MOVLW  
Move Literal to W  
[ label ] MOVLW k  
0 k 255  
NOP  
No Operation  
[ label ] NOP  
None  
Syntax:  
Syntax:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
k (W)  
No operation  
None  
None  
11  
00xx  
kkkk  
kkkk  
00  
0000  
0xx0  
0000  
The eight-bit literal ‘k’ is loaded  
into the W register. The “don’t  
cares” will assemble as ‘0’s.  
No operation.  
1
Cycles:  
1
Words:  
1
1
NOP  
Example:  
Cycles:  
Example:  
MOVLW  
0x5A  
After Instruction  
W
=
0x5A  
DS41232B-page 136  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
RETURN  
Return from Subroutine  
RETFIE  
Return from Interrupt  
[ label ] RETFIE  
None  
Syntax:  
Syntax:  
[ label ] RETURN  
None  
Operands:  
Operation:  
Operands:  
Operation:  
TOS PC,  
1 GIE  
TOS PC  
Status Affected: None  
Status Affected: None  
Description:  
Return from subroutine. The stack  
00  
0000  
0000  
1001  
Encoding:  
is POPed and the top of the stack  
(TOS) is loaded into the program  
counter. This is a two-cycle  
instruction.  
Description:  
Return from interrupt. Stack is POPed  
and Top-of-Stack (TOS) is loaded in  
the PC. Interrupts are enabled by  
setting the Global Interrupt Enable bit,  
GIE (INTCON<7>). This is a  
two-cycle instruction.  
Words:  
1
Cycles:  
Example:  
2
RETFIE  
After Interrupt  
PC  
GIE =  
=
TOS  
1
RETLW  
Return with Literal in W  
[ label ] RETLW k  
0 k 255  
RLF  
Rotate Left f through Carry  
Syntax:  
Syntax:  
Operands:  
[ label ]  
RLF f,d  
Operands:  
Operation:  
0 f 127  
d [0,1]  
k (W);  
TOS PC  
Operation:  
See description below  
C
Status Affected: None  
Status Affected:  
Encoding:  
11  
01xx  
kkkk  
kkkk  
00  
1101  
dfff  
ffff  
Encoding:  
Description:  
The W register is loaded with the  
eight-bit literal ‘k’. The program  
counter is loaded from the top of the  
stack (the return address). This is a  
two-cycle instruction.  
Description:  
The contents of register ‘f’ are  
rotated one bit to the left through  
the CARRY flag. If ‘d’ is ‘0’, the  
result is placed in the W register.  
If ‘d’ is ‘1’, the result is stored  
back in register ‘f’.  
Words:  
1
2
C
Register f  
Cycles:  
Example:  
CALL TABLE;W contains table  
;offset value  
Words:  
1
1
Cycles:  
Example:  
;W now has table value  
TABLE  
RLF  
REG1,0  
Before Instruction  
ADDWF PC ;W = offset  
RETLW k1 ;Begin table  
REG1  
=
=
1110 0110  
0
RETLW k2  
;
C
After Instruction  
REG1  
W
C
=
=
=
1110 0110  
1100 1100  
1
RETLW kn ; End of table  
Before Instruction  
W
=
0x07  
After Instruction  
W
=
value of k8  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 137  
PIC12F635/PIC16F636/639  
RRF  
Rotate Right f through Carry  
SUBWF  
Subtract W from f  
Syntax:  
[ label ] RRF f,d  
Syntax:  
[ label ] SUBWF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
See description below  
Operation:  
(f) - (W) → (destination)  
Status Affected: C  
Status Affected: C, DC, Z  
Description:  
The contents of register ‘f’ are rotated  
Description:  
Subtract (2’s complement method)  
one bit to the right through the  
W register from register ‘f’. If ‘d’ is  
0’, the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
CARRY flag. If ‘d’ is ‘0’, the result is  
placed in the W register. If ‘d’ is ‘1’,  
the result is placed back in register ‘f’.  
C
Register f  
SWAPF  
Swap Nibbles in f  
SLEEP  
Syntax:  
[ label ] SLEEP  
Syntax:  
[ label ] SWAPF f,d  
Operands:  
Operation:  
None  
Operands:  
0 f 127  
d [0,1]  
00h WDT,  
0 WDT prescaler,  
1 TO,  
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
0 PD  
Status Affected: None  
Status Affected:  
Description:  
TO, PD  
Description:  
The upper and lower nibbles of  
The Power-down Status bit, PD,  
is cleared. Time-out Status bit,  
TO, is set. Watchdog Timer and  
its prescaler are cleared.  
The processor is put into Sleep  
mode with the oscillator stopped.  
register ‘f’ are exchanged. If ‘d’ is  
0’, the result is placed in the W  
register. If ‘d’ is ‘1’, the result is  
placed in register ‘f’.  
XORLW  
Exclusive OR Literal with W  
SUBLW  
Subtract W from Literal  
Syntax:  
[label] XORLW k  
0 k 255  
Syntax:  
[ label ] SUBLW k  
0 k 255  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
Operation:  
(W) .XOR. k → (W)  
Z
k - (W) → (W)  
Status Affected: C, DC, Z  
The contents of the W register  
are XOR’ed with the eight-bit  
literal ‘k’. The result is placed in  
the W register.  
Description: The W register is subtracted (2’s  
complement method) from the  
eight-bit literal ‘k’. The result is  
placed in the W register.  
DS41232B-page 138  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
XORWF  
Exclusive OR W with f  
Syntax:  
[ label ] XORWF f,d  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(W) .XOR. (f) → (destination)  
Status Affected:  
Description:  
Z
Exclusive OR the contents of the  
W register with register ‘f’. If ‘d’ is  
0’, the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 139  
PIC12F635/PIC16F636/639  
NOTES:  
DS41232B-page 140  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
14.1 MPLAB Integrated Development  
Environment Software  
14.0 DEVELOPMENT SUPPORT  
The PICmicro® microcontrollers are supported with a  
full range of hardware and software development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16-bit micro-  
controller market. The MPLAB IDE is a Windows®  
based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
• An interface to debugging tools  
- simulator  
- MPLAB C17 and MPLAB C18 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- programmer (sold separately)  
- emulator (sold separately)  
- in-circuit debugger (sold separately)  
• A full-featured editor with color coded context  
• A multiple project manager  
- MPLAB C30 C Compiler  
- MPLAB ASM30 Assembler/Linker/Library  
• Simulators  
• Customizable data windows with direct edit of  
contents  
- MPLAB SIM Software Simulator  
- MPLAB dsPIC30 Software Simulator  
• Emulators  
• High-level source code debugging  
• Mouse over variable inspection  
• Extensive on-line help  
- MPLAB ICE 2000 In-Circuit Emulator  
- MPLAB ICE 4000 In-Circuit Emulator  
• In-Circuit Debugger  
The MPLAB IDE allows you to:  
• Edit your source files (either assembly or C)  
- MPLAB ICD 2  
• One touch assemble (or compile) and download  
to PICmicro emulator and simulator tools  
(automatically updates all project information)  
• Device Programmers  
- PRO MATE® II Universal Device Programmer  
- PICSTART® Plus Development Programmer  
- MPLAB PM3 Device Programmer  
• Low-Cost Demonstration Boards  
- PICDEMTM 1 Demonstration Board  
- PICDEM.netTM Demonstration Board  
- PICDEM 2 Plus Demonstration Board  
- PICDEM 3 Demonstration Board  
- PICDEM 4 Demonstration Board  
- PICDEM 17 Demonstration Board  
- PICDEM 18R Demonstration Board  
- PICDEM LIN Demonstration Board  
- PICDEM USB Demonstration Board  
• Evaluation Kits  
• Debug using:  
- source files (assembly or C)  
- mixed assembly and C  
- machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increasing flexibility  
and power.  
14.2 MPASM Assembler  
The MPASM assembler is a full-featured, universal  
macro assembler for all PICmicro MCUs.  
®
- KEELOQ  
- PICDEM MSC  
- microID®  
- CAN  
The MPASM assembler generates relocatable object  
files for the MPLINK object linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
- PowerSmart®  
- Analog  
The MPASM assembler features include:  
• Integration into MPLAB IDE projects  
• User defined macros to streamline assembly code  
• Conditional assembly for multi-purpose source  
files  
• Directives that allow complete control over the  
assembly process  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 141  
PIC12F635/PIC16F636/639  
14.3 MPLAB C17 and MPLAB C18  
C Compilers  
14.6 MPLAB ASM30 Assembler, Linker  
and Librarian  
The MPLAB C17 and MPLAB C18 Code Development  
Systems are complete ANSI C compilers for Microchip’s  
PIC17CXXX and PIC18CXXX family of microcontrol-  
lers. These compilers provide powerful integration  
capabilities, superior code optimization and ease of use  
not found with other compilers.  
MPLAB ASM30 assembler produces relocatable  
machine code from symbolic assembly language for  
dsPIC30F devices. MPLAB C30 compiler uses the  
assembler to produce it’s object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
• Support for the entire dsPIC30F instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
14.4 MPLINK Object Linker/  
MPLIB Object Librarian  
• Rich directive set  
• Flexible macro language  
The MPLINK object linker combines relocatable  
objects created by the MPASM assembler and the  
MPLAB C17 and MPLAB C18 C compilers. It can link  
relocatable objects from precompiled libraries, using  
directives from a linker script.  
• MPLAB IDE compatibility  
14.7 MPLAB SIM Software Simulator  
The MPLAB SIM software simulator allows code  
development in a PC hosted environment by simulating  
the PICmicro series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file, or user defined key press, to any pin. The  
execution can be performed in Single-Step, Execute  
Until Break or Trace mode.  
The MPLIB object librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The MPLAB SIM simulator fully supports symbolic  
debugging using the MPLAB C17 and MPLAB C18  
C Compilers, as well as the MPASM assembler. The  
software simulator offers the flexibility to develop and  
debug code outside of the laboratory environment,  
making it an excellent, economical software  
development tool.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
14.5 MPLAB C30 C Compiler  
14.8 MPLAB SIM30 Software Simulator  
The MPLAB C30 C compiler is a full-featured, ANSI  
compliant, optimizing compiler that translates standard  
ANSI C programs into dsPIC30F assembly language  
source. The compiler also supports many command  
line options and language extensions to take full  
advantage of the dsPIC30F device hardware  
capabilities and afford fine control of the compiler code  
generator.  
The MPLAB SIM30 software simulator allows code  
development in a PC hosted environment by simulating  
the dsPIC30F series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file, or user defined key press, to any of the pins.  
The MPLAB SIM30 simulator fully supports symbolic  
debugging using the MPLAB C30 C Compiler and  
MPLAB ASM30 assembler. The simulator runs in either  
a Command Line mode for automated tasks, or from  
MPLAB IDE. This high-speed simulator is designed to  
debug, analyze and optimize time intensive DSP  
routines.  
MPLAB C30 is distributed with a complete ANSI C  
standard library. All library functions have been  
validated and conform to the ANSI C library standard.  
The library includes functions for string manipulation,  
dynamic memory allocation, data conversion,  
timekeeping and math functions (trigonometric,  
exponential and hyperbolic). The compiler provides  
symbolic information for high-level source debugging  
with the MPLAB IDE.  
DS41232B-page 142  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
14.9 MPLAB ICE 2000  
High-Performance Universal  
In-Circuit Emulator  
14.11 MPLAB ICD 2 In-Circuit Debugger  
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a  
powerful, low-cost, run-time development tool,  
connecting to the host PC via an RS-232 or high-speed  
The MPLAB ICE 2000 universal in-circuit emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for  
PICmicro microcontrollers. Software control of the  
MPLAB ICE 2000 in-circuit emulator is advanced by  
the MPLAB Integrated Development Environment,  
which allows editing, building, downloading and source  
debugging from a single environment.  
USB interface. This tool is based on the Flash  
PICmicro MCUs and can be used to develop for these  
and other PICmicro microcontrollers. The MPLAB  
ICD 2 utilizes the in-circuit debugging capability built  
into the Flash devices. This feature, along with  
Microchip’s In-Circuit Serial ProgrammingTM (ICSPTM  
)
protocol, offers cost effective in-circuit Flash debugging  
from the graphical user interface of the MPLAB  
Integrated Development Environment. This enables a  
designer to develop and debug source code by setting  
breakpoints, single-stepping and watching variables,  
CPU status and peripheral registers. Running at full  
speed enables testing hardware and applications in  
real-time. MPLAB ICD 2 also serves as a development  
programmer for selected PICmicro devices.  
The MPLAB ICE 2000 is a full-featured emulator system  
with enhanced trace, trigger and data monitoring  
features. Interchangeable processor modules allow the  
system to be easily reconfigured for emulation of  
different processors. The universal architecture of the  
MPLAB ICE in-circuit emulator allows expansion to  
support new PICmicro microcontrollers.  
The MPLAB ICE 2000 in-circuit emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft® Windows 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
14.12 PRO MATE II Universal Device  
Programmer  
The PRO MATE II is a universal, CE compliant device  
programmer with programmable voltage verification at  
VDDMIN and VDDMAX for maximum reliability. It features  
an LCD display for instructions and error messages  
and a modular detachable socket assembly to support  
various package types. In Stand-Alone mode, the  
PRO MATE II device programmer can read, verify and  
program PICmicro devices without a PC connection. It  
can also set code protection in this mode.  
14.10 MPLAB ICE 4000  
High-Performance Universal  
In-Circuit Emulator  
The MPLAB ICE 4000 universal in-circuit emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for high-  
end PICmicro microcontrollers. Software control of the  
MPLAB ICE in-circuit emulator is provided by the  
MPLAB Integrated Development Environment, which  
allows editing, building, downloading and source  
debugging from a single environment.  
14.13 MPLAB PM3 Device Programmer  
The MPLAB PM3 is a universal, CE compliant device  
programmer with programmable voltage verification at  
VDDMIN and VDDMAX for maximum reliability. It features  
a large LCD display (128 x 64) for menus and error  
messages and a modular detachable socket assembly  
to support various package types. The ICSP™ cable  
assembly is included as a standard item. In Stand-Alone  
mode, the MPLAB PM3 device programmer can read,  
verify and program PICmicro devices without a PC  
connection. It can also set code protection in this mode.  
MPLAB PM3 connects to the host PC via an RS-232 or  
The MPLAB ICD 4000 is a premium emulator system,  
providing the features of MPLAB ICE 2000, but with  
increased emulation memory and high-speed  
performance for dsPIC30F and PIC18XXXX devices.  
Its advanced emulator features include complex  
triggering and timing, up to 2 Mb of emulation memory  
and the ability to view variables in real-time.  
USB  
cable.  
MPLAB  
PM3  
has  
high-speed  
communications and optimized algorithms for quick  
programming of large memory devices and incorporates  
an SD/MMC card for file storage and secure data  
applications.  
The MPLAB ICE 4000 in-circuit emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft Windows 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 143  
PIC12F635/PIC16F636/639  
14.14 PICSTART Plus Development  
Programmer  
14.17 PICDEM 2 Plus  
Demonstration Board  
The PICSTART Plus development programmer is an  
easy-to-use, low-cost, prototype programmer. It con-  
nects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient. The  
PICSTART Plus development programmer supports  
most PICmicro devices up to 40 pins. Larger pin count  
devices, such as the PIC16C92X and PIC17C76X,  
may be supported with an adapter socket. The  
PICSTART Plus development programmer is CE  
compliant.  
The PICDEM 2 Plus demonstration board supports many  
18, 28 and 40-pin microcontrollers, including PIC16F87X  
and PIC18FXX2 devices. All the necessary hardware and  
software is included to run the demonstration programs.  
The sample microcontrollers provided with the PICDEM 2  
demonstration board can be programmed with a PRO  
MATE II device programmer, PICSTART Plus  
development programmer, or MPLAB ICD 2 with a  
Universal Programmer Adapter. The MPLAB ICD 2 and  
MPLAB ICE in-circuit emulators may also be used with  
the PICDEM 2 demonstration board to test firmware. A  
prototype area extends the circuitry for additional  
application components. Some of the features include an  
RS-232 interface, a 2 x 16 LCD display, a piezo speaker,  
an on-board temperature sensor, four LEDs and sample  
PIC18F452 and PIC16F877 Flash microcontrollers.  
14.15 PICDEM 1 PICmicro  
Demonstration Board  
The PICDEM 1 demonstration board demonstrates the  
capabilities of the PIC16C5X (PIC16C54 to PIC16C58A),  
PIC16C61, PIC16C62X, PIC16C71, PIC16C8X,  
PIC17C42, PIC17C43 and PIC17C44. All necessary  
hardware and software is included to run basic demo  
programs. The sample microcontrollers provided with the  
PICDEM 1 demonstration board can be programmed with  
a PRO MATE II device programmer or a PICSTART Plus  
development programmer. The PICDEM 1 demonstration  
board can be connected to the MPLAB ICE in-circuit  
emulator for testing. A prototype area extends the circuitry  
for additional application components. Features include  
an RS-232 interface, a potentiometer for simulated  
analog input, push button switches and eight LEDs.  
14.18 PICDEM 3 PIC16C92X  
Demonstration Board  
The PICDEM 3 demonstration board supports the  
PIC16C923 and PIC16C924 in the PLCC package. All  
the necessary hardware and software is included to run  
the demonstration programs.  
14.19 PICDEM 4 8/14/18-Pin  
Demonstration Board  
The PICDEM 4 can be used to demonstrate the  
capabilities of the 8, 14 and 18-pin PIC16XXXX and  
PIC18XXXX MCUs, including the PIC16F818/819,  
PIC16F87/88, PIC16F62XA and the PIC18F1320  
family of microcontrollers. PICDEM 4 is intended to  
showcase the many features of these low pin count  
parts, including LIN and Motor Control using ECCP.  
Special provisions are made for low power operation  
with the supercapacitor circuit and jumpers allow on-  
board hardware to be disabled to eliminate current  
draw in this mode. Included on the demo board are  
provisions for Crystal, RC or Canned Oscillator modes,  
a five volt regulator for use with a nine volt wall adapter  
or battery, DB-9 RS-232 interface, ICD connector for  
programming via ICSP and development with MPLAB  
ICD 2, 2 x 16 liquid crystal display, PCB footprints for H-  
Bridge motor driver, LIN transceiver and EEPROM.  
Also included are: header for expansion, eight LEDs,  
14.16 PICDEM.net Internet/Ethernet  
Demonstration Board  
The PICDEM.net demonstration board is an Internet/  
Ethernet demonstration board using the PIC18F452  
microcontroller and TCP/IP firmware. The board  
supports any 40-pin DIP device that conforms to the  
standard pinout used by the PIC16F877 or  
PIC18C452. This kit features a user friendly TCP/IP  
stack, web server with HTML, a 24L256 Serial  
EEPROM for Xmodem download to web pages into  
Serial EEPROM, ICSP/MPLAB ICD  
2 interface  
connector, an Ethernet interface, RS-232 interface and  
a 16 x 2 LCD display. Also included is the book and  
CD-ROM “TCP/IP Lean, Web Servers for Embedded  
Systems,” by Jeremy Bentham  
four potentiometers, three push buttons and  
a
prototyping area. Included with the kit is a PIC16F627A  
and a PIC18F1320. Tutorial firmware is included along  
with the User’s Guide.  
DS41232B-page 144  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
14.20 PICDEM 17 Demonstration Board  
14.24 PICDEM USB PIC16C7X5  
Demonstration Board  
The PICDEM 17 demonstration board is an evaluation  
board that demonstrates the capabilities of several  
Microchip microcontrollers, including PIC17C752,  
The PICDEM USB Demonstration Board shows off the  
capabilities of the PIC16C745 and PIC16C765 USB  
microcontrollers. This board provides the basis for  
future USB products.  
PIC17C756A, PIC17C762 and PIC17C766.  
A
programmed sample is included. The PRO MATE II  
device programmer, or the PICSTART Plus  
development programmer, can be used to reprogram  
the device for user tailored application development.  
The PICDEM 17 demonstration board supports  
program download and execution from external on-  
board Flash memory. A generous prototype area is  
available for user hardware expansion.  
14.25 Evaluation and  
Programming Tools  
In addition to the PICDEM series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
for these products.  
• KEELOQ evaluation and programming tools for  
Microchip’s HCS Secure Data Products  
14.21 PICDEM 18R PIC18C601/801  
Demonstration Board  
• CAN developers kit for automotive network  
applications  
The PICDEM 18R demonstration board serves to assist  
development of the PIC18C601/801 family of Microchip  
microcontrollers. It provides hardware implementation  
of both 8-bit Multiplexed/Demultiplexed and 16-bit  
Memory modes. The board includes 2 Mb external  
Flash memory and 128 Kb SRAM memory, as well as  
serial EEPROM, allowing access to the wide range of  
memory types supported by the PIC18C601/801.  
• Analog design boards and filter design software  
• PowerSmart battery charging evaluation/  
calibration kits  
• IrDA® development kit  
• microID development and rfLabTM development  
software  
• SEEVAL® designer kit for memory evaluation and  
endurance calculations  
14.22 PICDEM LIN PIC16C43X  
Demonstration Board  
• PICDEM MSC demo boards for Switching mode  
power supply, high-power IR driver, delta sigma  
ADC and flow rate sensor  
The powerful LIN hardware and software kit includes a  
series of boards and three PICmicro microcontrollers.  
The small footprint PIC16C432 and PIC16C433 are  
used as slaves in the LIN communication and feature  
Check the Microchip web page and the latest Product  
Selector Guide for the complete list of demonstration  
and evaluation kits.  
on-board LIN transceivers.  
A PIC16F874 Flash  
microcontroller serves as the master. All three  
microcontrollers are programmed with firmware to  
provide LIN bus communication.  
14.23 PICkitTM 1 Flash Starter Kit  
A complete “development system in a box”, the PICkit  
Flash Starter Kit includes a convenient multi-section  
board for programming, evaluation and development of  
8/14-pin Flash PIC® microcontrollers. Powered via  
USB, the board operates under a simple Windows GUI.  
The PICkit 1 Starter Kit includes the User’s Guide (on  
CD ROM), PICkit 1 tutorial software and code for  
various applications. Also included are MPLAB® IDE  
(Integrated Development Environment) software,  
software and hardware “Tips 'n Tricks for 8-pin Flash  
PIC® Microcontrollers” Handbook and a USB interface  
cable. Supports all current 8/14-pin Flash PIC  
microcontrollers, as well as many future planned  
devices.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 145  
PIC12F635/PIC16F636/639  
NOTES:  
DS41232B-page 146  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
15.0 ELECTRICAL SPECIFICATIONS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias....................................................................................................... -40°C to +125°C  
Storage temperature ........................................................................................................................ -65°C to +150°C  
Voltage on VDD with respect to VSS ................................................................................................... -0.3V to +6.5V  
Voltage on MCLR with respect to Vss ............................................................................................... -0.3V to +13.5V  
Voltage on all other pins with respect to VSS ........................................................................... -0.3V to (VDD + 0.3V)  
Total power dissipation(1) ............................................................................................................................... 800 mW  
Maximum current out of VSS/VSST pin ............................................................................................................ 300 mA  
Maximum current into VDD/VDDT pin............................................................................................................... 250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)............................................................................................................... 20 mA  
Output clamp current, IOK (VO < 0 or VO >VDD)....................................................................................................... 20 mA  
Maximum output current sunk by any I/O pin....................................................................................................25 mA  
Maximum output current sourced by any I/O pin .............................................................................................. 25 mA  
Maximum current sunk by PORTA and PORTC (combined) .......................................................................... 200 mA  
Maximum current sourced PORTA and PORTC (combined).......................................................................... 200 mA  
Maximum LC Input Voltage (LCX, LCY, LCZ)(2) loaded, with device ............................................................ 10.0 VPP  
Maximum LC Input Voltage (LCX, LCY, LCZ)(2) unloaded, without device ................................................. 700.0 VPP  
Maximum Input Current (rms) into device per LC Channel(2) ........................................................................... 10 mA  
Human Body ESD rating........................................................................................................................4000 (min.) V  
Machine Model ESD rating ......................................................................................................................400 (min.) V  
Note 1: Power dissipation for PIC12F635/PIC16F636/639 (AFE section not included) is calculated as follows:  
PDIS = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOL x IOL).  
Power dissipation for AFE section is calculated as follows:  
PDIS = VDD x IACT = 3.6V x 16 μA = 57.6 μW  
2: Specification applies to the PIC16F639 only.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
Note:  
Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up.  
Thus, a series resistor of 50-100Ω should be used when applying a ‘low’ level to the MCLR pin, rather than  
pulling this pin directly to VSS.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 147  
PIC12F635/PIC16F636/639  
FIGURE 15-1:  
PIC12F635/PIC16F636 VOLTAGE-FREQUENCY GRAPH, -40°C TA +125°C  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
VDD  
(Volts)  
0
4
10  
20  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
FIGURE 15-2:  
PIC16F639 VOLTAGE-FREQUENCY GRAPH, -40°C TA +125°C  
5.5  
5.0  
4.5  
4.0  
3.6  
3.0  
2.5  
2.0  
VDD  
(Volts)  
0
4
10  
20  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
DS41232B-page 148  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
15.1 DC Characteristics: PIC12F635/PIC16F636-I (Industrial)  
PIC12F635/PIC16F636-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
DC CHARACTERISTICS  
Param  
Sym  
Characteristic  
Min Typ† Max Units  
Conditions  
No.  
VDD  
Supply Voltage  
D001  
D001C  
D001D  
2.0  
3.0  
4.5  
5.5  
5.5  
5.5  
V
V
V
FOSC < = 4 MHz  
FOSC < = 10 MHz  
FOSC < = 20 MHz  
D002  
VDR  
RAM Data Retention  
Voltage(1)  
1.5*  
V
Device in Sleep mode  
D003  
VPOR  
VDD Start Voltage to  
ensure internal Power-on  
Reset signal  
VSS  
V
See Section 12.3 “Power-on Reset” for  
details.  
D004  
D005  
SVDD  
VBOD  
VDD Rise Rate to ensure 0.05*  
internal Power-on Reset  
signal  
V/ms See Section 12.3 “Power-on Reset” for  
details.  
Brown-out Detect  
2.1  
V
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 149  
PIC12F635/PIC16F636/639  
15.2 DC Characteristics: PIC12F635/PIC16F636-I (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
Conditions  
Param  
No.  
Sym  
Device Characteristics  
Supply Current(1,2)  
Min Typ† Max Units  
VDD  
Note  
D010  
IDD  
9
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
mA  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
4.5  
5.0  
FOSC = 32.768 kHz  
LP Oscillator mode  
18  
35  
D011  
D012  
D013  
D014  
D015  
D016  
D017  
D018  
110  
190  
330  
220  
370  
600  
70  
FOSC = 1 MHz  
XT Oscillator mode  
FOSC = 4 MHz  
XT Oscillator mode  
FOSC = 1 MHz  
EC Oscillator mode  
140  
260  
180  
320  
580  
TBD  
TBD  
TBD  
340  
500  
800  
180  
320  
580  
2.1  
FOSC = 4 MHz  
EC Oscillator mode  
FOSC = 31 kHz  
LFINTOSC mode  
FOSC = 4 MHz  
HFINTOSC mode  
FOSC = 4 MHz  
EXTRC mode  
FOSC = 20 MHz  
HS Oscillator mode  
2.4  
Legend: TBD = To Be Determined  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square  
wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled. MCU only, Analog  
Front-End not included.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O  
pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have  
an impact on the current consumption. MCU only, Analog Front-End not included.  
3: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this  
peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD  
current from this limit. Max values should be used when calculating total current consumption.  
4: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
DS41232B-page 150  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
15.2 DC Characteristics: PIC12F635/PIC16F636-I (Industrial) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
Conditions  
Param  
No.  
Sym  
Device Characteristics  
Min Typ† Max Units  
VDD  
Note  
D020  
IPD  
Power-down Base  
Current(4)  
0.99  
1.2  
2.9  
0.3  
1.8  
8.4  
58  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
nA  
nA  
nA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
2.0 WDT, BOD,  
Comparators, VREF  
and T1OSC disabled  
3.0  
5.0  
D021  
ΔIWDT  
2.0 WDT Current(3)  
3.0  
5.0  
D022A ΔIBOD  
D022B ΔILVD  
3.0 BOD Current(3)  
109  
TBD  
TBD  
TBD  
3.3  
6.1  
11.5  
58  
5.0  
2.0 PLVD Current  
3.0  
5.0  
D023  
D024  
D025  
ΔICMP  
2.0 Comparator Current(3)  
3.0  
5.0  
ΔIVREF  
2.0  
3.0  
5.0  
CVREF Current(3)  
85  
138  
4.0  
4.6  
6.0  
ΔIT1OSC  
2.0 T1OSC Current(3)  
3.0  
5.0  
Legend: TBD = To Be Determined  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square  
wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled. MCU only, Analog  
Front-End not included.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O  
pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have  
an impact on the current consumption. MCU only, Analog Front-End not included.  
3: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this  
peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD  
current from this limit. Max values should be used when calculating total current consumption.  
4: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 151  
PIC12F635/PIC16F636/639  
15.3 DC Characteristics: PIC12F635/PIC16F636-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +125°C for extended  
Conditions  
Param  
No.  
Sym  
Device Characteristics  
Min  
Typ†  
Max  
Units  
VDD  
Note  
(1,2)  
D010E IDD  
Supply Current  
9
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
mA  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
4.5  
5.0  
FOSC = 32.768 kHz  
LP Oscillator mode  
18  
35  
D011E  
110  
190  
330  
220  
370  
600  
70  
FOSC = 1 MHz  
XT Oscillator mode  
D012E  
D013E  
D014E  
D015E  
D016E  
D017E  
D018E  
FOSC = 4 MHz  
XT Oscillator mode  
FOSC = 1 MHz  
EC Oscillator mode  
140  
260  
180  
320  
580  
TBD  
TBD  
TBD  
340  
500  
800  
180  
320  
580  
2.1  
FOSC = 4 MHz  
EC Oscillator mode  
FOSC = 31 kHz  
LFINTOSC  
FOSC = 4 MHz  
IHFINTOSC  
FOSC = 4 MHz  
EXTRC mode  
FOSC = 20 MHz  
HS Oscillator mode  
2.4  
Legend: TBD = To Be Determined  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from  
rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact  
on the current consumption.  
3: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this periph-  
eral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this  
limit. Max values should be used when calculating total current consumption.  
4: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
DS41232B-page 152  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
15.3 DC Characteristics: PIC12F635/PIC16F636-E (Extended) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +125°C for extended  
Conditions  
Param  
No.  
Sym  
Device Characteristics  
Min  
Typ†  
Max  
Units  
VDD  
Note  
D020  
IPD  
Power-down Base  
Current  
0.0009 TBD  
0.0012 TBD  
0.0029 TBD  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
WDT, BOD, Comparators,  
VREF and T1OSC disabled  
(4)  
(3)  
D021  
ΔIWDT  
0.3  
1.8  
8.4  
58  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
WDT Current  
(3)  
D022A ΔIBOD  
D022B ΔILVD  
BOD Current  
109  
TBD  
TBD  
TBD  
3.3  
PLVD Current  
(3)  
D023  
D024  
D025  
ΔICMP  
Comparator Current  
6.1  
11.5  
58  
(3)  
ΔIVREF  
CVREF Current  
85  
138  
4.0  
(3)  
ΔIT1OSC  
T1OSC Current  
4.6  
6.0  
Legend: TBD = To Be Determined  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from  
rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact  
on the current consumption.  
3: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this periph-  
eral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this  
limit. Max values should be used when calculating total current consumption.  
4: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 153  
PIC12F635/PIC16F636/639  
15.4 DC Characteristics: PIC12F635/PIC16F636-I (Industrial)  
PIC12F635/PIC16F636-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O ports:  
D030  
D030A  
D031  
D032  
D033  
D033A  
with TTL buffer  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
0.8  
V
V
V
V
V
V
4.5V VDD 5.5V  
Otherwise  
0.15 VDD  
0.2 VDD  
0.2 VDD  
0.3  
with Schmitt Trigger buffer  
MCLR, OSC1 (RC mode)  
Entire range  
(1)  
OSC1 (XT and LP modes)  
(1)  
OSC1 (HS mode)  
0.3 VDD  
VIH  
Input High Voltage  
I/O ports:  
D040  
D040A  
with TTL buffer  
2.0  
(0.25 VDD +  
0.8)  
VDD  
VDD  
V
V
4.5V VDD 5.5V  
Otherwise  
D041  
with Schmitt Trigger buffer  
MCLR  
0.8 VDD  
0.8 VDD  
1.6  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
Entire range  
D042  
D043  
OSC1 (XT and LP modes)  
OSC1 (HS mode)  
(Note 1)  
(Note 1)  
D043A  
D043B  
0.7 VDD  
0.9 VDD  
OSC1 (RC mode)  
(2)  
IIL  
Input Leakage Current  
D060  
I/O ports  
0.1  
1
μA VSS VPIN VDD,  
Pin at high-impedance  
D060A  
D060B  
D061  
Analog inputs  
VREF  
0.1  
0.1  
0.1  
0.1  
1
1
5
5
μA VSS VPIN VDD  
μA VSS VPIN VDD  
μA VSS VPIN VDD  
(3)  
MCLR  
D063  
OSC1  
μA VSS VPIN VDD, XT, HS and  
LP oscillator configuration  
D070  
IPUR  
VOL  
PORTA Weak Pull-up  
Current  
50*  
250  
400*  
μA VDD = 5.0V, VPIN = VSS  
Output Low Voltage  
I/O ports  
D080  
D083  
0.6  
0.6  
V
V
IOL = 8.5 mA, VDD = 4.5V (Ind.)  
OSC2/CLKOUT (RC mode)  
IOL = 1.6 mA, VDD = 4.5V (Ind.)  
IOL = 1.2 mA, VDD = 4.5V (Ext.)  
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an  
external clock in RC mode.  
2: Negative current is defined as current sourced by the pin.  
3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
4: See Section 9.4.1 “Using the Data EEPROM” for additional information.  
DS41232B-page 154  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
15.4 DC Characteristics: PIC12F635/PIC16F636-I (Industrial)  
PIC12F635/PIC16F636-E (Extended) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
VOH  
IULP  
Output High Voltage  
I/O ports  
D090  
D092  
VDD – 0.7  
VDD – 0.7  
V
V
IOH = -3.0 mA, VDD = 4.5V (Ind.)  
OSC2/CLKOUT (RC mode)  
IOH = -1.3 mA, VDD = 4.5V (Ind.)  
IOH = -1.0 mA, VDD = 4.5V (Ext.)  
D100  
Ultra Low-power Wake-up  
Current  
200  
nA  
Capacitive Loading Specs  
on Output Pins  
D100 COSC2 OSC2 pin  
15*  
50*  
pF In XT, HS and LP modes when  
external clock is used to drive  
OSC1  
D101  
CIO  
All I/O pins  
pF  
Data EEPROM Memory  
Byte Endurance  
Byte Endurance  
VDD for Read/Write  
D120 ED  
D120A ED  
100K  
10K  
1M  
100K  
E/W -40°C TA +85°C  
E/W +85°C TA +125°C  
D121  
VDRW  
VMIN  
5.5  
V
Using EECON1 to read/write  
VMIN = Minimum operating  
voltage  
D122  
D123  
TDEW  
Erase/Write cycle time  
Characteristic Retention  
5
6
ms  
TRETD  
40  
Year Provided no other  
specifications are violated  
D124  
TREF  
Number of Total Erase/Write  
Cycles before Refresh  
1M  
10M  
E/W -40°C TA +85°C  
(1)  
Program Flash Memory  
Cell Endurance  
D130 EP  
D130A ED  
10K  
1K  
100K  
10K  
E/W -40°C TA +85°C  
E/W +85°C TA +125°C  
Cell Endurance  
D131  
VPR  
VDD for Read  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
D132  
D133  
D134  
VPEW  
TPEW  
TRETD  
VDD for Erase/Write  
4.5  
2
5.5  
2.5  
V
Erase/Write cycle time  
Characteristic Retention  
ms  
40  
Year Provided no other  
specifications are violated  
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an  
external clock in RC mode.  
2: Negative current is defined as current sourced by the pin.  
3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
4: See Section 9.4.1 “Using the Data EEPROM” for additional information.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 155  
PIC12F635/PIC16F636/639  
15.5 DC Characteristics: PIC16F639-I (Industrial), PIC16F639-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
No.  
Sym  
Characteristic  
Min Typ† Max Units  
Conditions  
D001  
VDD  
Supply Voltage  
2.0  
2.0  
3.6  
3.6  
V
V
FOSC 10 MHz  
D001A VDDT  
Supply Voltage (AFE)  
Analog Front-End VDD voltage. Treated as  
VDD in this document.  
D002  
D003  
VDR  
RAM Data Retention  
Voltage(1)  
1.5*  
V
V
Device in Sleep mode  
VPOR  
VDD Start Voltage to  
ensure internal Power-on  
Reset signal  
VSS  
See Section 12.3 “Power-on Reset” for  
details.  
D003A VPORT VDD Start Voltage (AFE)  
to ensure internal Power-  
1.8  
V
Analog Front-End POR voltage.  
on Reset signal  
D004  
SVDD  
VDD Rise Rate to ensure 0.05*  
internal Power-on Reset  
signal  
V/ms See Section 12.3 “Power-on Reset” for  
details.  
D005  
D006  
VBOD  
RM  
Brown-out Detect  
2.1  
V
Turn-on Resistance or  
100 Ohm VDD = 3.0V  
Modulation Transistor  
D007  
D008  
RPU  
IAIL  
Digital Input Pull-Up  
Resistor  
CS, SCLK  
50  
200 300 kOhm VDD = 3.6V  
Analog Input Leakage  
Current  
LCX, LCY, LCZ  
LCCOM  
±1  
±1  
μA  
μA  
VDD = 3.6V, VSS VIN VDD, tested at  
Sleep mode  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.  
DS41232B-page 156  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
15.6 DC Characteristics: PIC16F639-I (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
Supply Voltage  
-40°C TA +85°C for industrial  
2.0V VDD 3.6V  
Conditions  
Param  
Sym  
No.  
Device Characteristics  
Supply Current(1,2,3)  
Min  
Typ†  
Max  
Units  
VDD  
Note  
D010  
D011  
D012  
D013  
D014  
D015  
D016  
D017  
D020  
IDD  
9
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
nA  
nA  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
FOSC = 32.768 kHz  
LP Oscillator mode  
18  
110  
190  
220  
370  
70  
FOSC = 1 MHz  
XT Oscillator mode  
FOSC = 4 MHz  
XT Oscillator mode  
FOSC = 1 MHz  
EC Oscillator mode  
140  
180  
320  
TBD  
TBD  
340  
500  
180  
320  
0.99  
1.2  
FOSC = 4 MHz  
EC Oscillator mode  
FOSC = 31 kHz  
LFINTOSC mode  
FOSC = 4 MHz  
HFINTOSC mode  
FOSC = 4 MHz  
EXTRC mode  
IPD  
Power-down Base Current(4)  
WDT, BOD, Comparators,  
VREF and T1OSC disabled  
(excludes AFE)  
D021  
ΔIWDT  
0.3  
1.8  
58  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
2.0  
3.0  
3.0  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
WDT Current(3)  
D022A  
D022B  
ΔIBOD  
ΔILVD  
BOD Current(3)  
PLVD Current  
TBD  
TBD  
3.3  
6.1  
58  
D023  
D024  
D025  
D026  
ΔICMP  
ΔIVREF  
ΔIT1OSC  
IACT  
Comparator Current(3)  
CVREF Current(3)  
85  
4.0  
4.6  
T1OSC Current(3)  
Active Current of AFE only  
(receiving signal)  
CS = VDD; Input = Continuous  
Wave (CW);  
1 LC Input Channel Signal  
3 LC Input Channel Signals  
10  
16  
μA  
μA  
3.6  
3.6  
Amplitude = 300 mVPP.  
All channels enabled.  
D027  
ISTDBY  
Standby Current of AFE only  
(not receiving signal)  
1 LC Input Channel Enabled  
CS = VDD; ALERT = VDD  
3
4
5
5
6
7
μΑ  
μA  
μA  
3.6  
3.6  
3.6  
2 LC Input Channels Enabled  
3 LC Input Channels Enabled  
D028  
ISLEEP  
Sleep Current of AFE only  
0.2  
1
μA  
3.6  
CS = VDD; ALERT = VDD  
Legend:  
TBD = To Be Determined  
Data in ‘Typ’ column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-  
stated, pulled to VDD; MCLR = VDD; WDT disabled. MCU only, Analog Front-End not included.  
Note 1:  
2:  
The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate,  
oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. MCU only, Analog  
Front-End not included.  
3:  
4:  
The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The  
peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when  
calculating total current consumption.  
The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep  
mode, with all I/O pins in high-impedance state and tied to VDD.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 157  
PIC12F635/PIC16F636/639  
15.7 DC Characteristics: PIC16F639-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
Supply Voltage  
-40°C TA +125°C for extended  
2.0V VDD 3.6V  
Conditions  
Param  
Sym  
No.  
Device Characteristics  
Supply Current(1,2)  
Min  
Typ†  
Max  
Units  
VDD  
Note  
D010E  
D011E  
D012E  
D013E  
D014E  
D015E  
D016E  
D017E  
D020  
IDD  
9
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
nA  
nA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
3.0  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
2.0  
3.0  
18  
110  
190  
220  
370  
70  
140  
180  
320  
TBD  
TBD  
340  
500  
180  
320  
0.99  
1.2  
IPD  
Power-down Base Current(4)  
WDT, BOD, Comparators, VREF and  
T1OSC disabled (excludes AFE)  
D021  
ΔIWDT  
0.3  
WDT Current(3)  
1.8  
D022A  
D022B  
ΔIBOD  
ΔILVD  
58  
BOD Current(3)  
PLVD Current  
TBD  
TBD  
3.3  
D023  
D024  
D025  
D026  
ΔICMP  
ΔIVREF  
ΔIT1OSC  
IACT  
Comparator Current(3)  
CVREF Current(3)  
6.1  
58  
85  
4.0  
T1OSC Current(3)  
4.6  
Active Current of AFE only  
(receiving signal)  
CS = VDD; Input = Continuous Wave  
(CW); Amplitude = 300 mVPP. All  
channels enabled.  
1 LC Input Channel Signal  
3 LC Input Channel Signals  
10  
16  
μA  
μA  
3.6  
3.6  
D027  
ISTDBY  
Standby Current of AFE only  
(not receiving signal)  
1 LC Input Channel Enabled  
CS = VDD; ALERT = VDD  
3
4
5
5
6
7
μΑ  
μA  
μA  
3.6  
3.6  
3.6  
2 LC Input Channels Enabled  
3 LC Input Channels Enabled  
D028  
ISLEEP  
Sleep Current of AFE only  
0.2  
1
μA  
3.6  
CS = VDD; ALERT = VDD  
Legend:  
TBD = To Be Determined  
Data in ‘Typ’ column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-  
stated, pulled to VDD; MCLR = VDD; WDT disabled.  
Note 1:  
2:  
3:  
The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate,  
oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.  
The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The  
peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when  
calculating total current consumption.  
4:  
The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep  
mode, with all I/O pins in high-impedance state and tied to VDD.  
DS41232B-page 158  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
15.8 DC Characteristics: PIC16F639-I (Industrial), PIC16F639-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
2.0V VDD 3.6V  
DC CHARACTERISTICS  
Supply Voltage  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O ports:  
with TTL buffer  
D030  
D030A  
D031  
D032  
D033  
D033A  
D034  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
0.15 VDD  
0.2 VDD  
0.2 VDD  
0.3  
V
V
V
V
V
V
with Schmitt Trigger buffer  
MCLR, OSC1 (RC mode)  
OSC1 (XT and LP modes)(1)  
OSC1 (HS mode)(1)  
0.3 VDD  
0.3 VDD  
Digital Input Low Voltage  
Input High Voltage  
Analog Front-End section  
VIH  
I/O ports:  
D040  
with TTL buffer  
D040A  
D041  
(0.25 VDD + 0.8)  
0.8 VDD  
0.8 VDD  
1.6  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
with Schmitt Trigger buffer  
MCLR  
D042  
D043  
OSC1 (XT and LP modes)  
OSC1 (HS mode)  
(Note 1)  
(Note 1)  
D043A  
D043B  
0.7 VDD  
0.9 VDD  
OSC1 (RC mode)  
Digital Input High Voltage  
Analog Front-End section  
D044  
D060  
SCLK, CS, SDIO for Analog  
Front-End (AFE)  
Input Leakage Current(2)  
0.7 VDD  
VDD  
V
IIL  
I/O ports  
0.1  
1
μA  
VSS VPIN VDD,  
Pin at high-impedance  
D060A  
D060B  
D061  
Analog inputs  
VREF  
MCLR(3)  
0.1  
0.1  
0.1  
0.1  
1
1
5
5
μA  
μA  
μA  
μA  
VSS VPIN VDD  
VSS VPIN VDD  
VSS VPIN VDD  
D063  
OSC1  
VSS VPIN VDD, XT, HS and LP  
oscillator configuration  
Digital Input Leakage Current(2)  
VDD = 3.6V, Analog Front-End section  
VSS VPIN VDD  
D064  
SDI for Analog Front-End (AFE)  
1
1
μA  
μA  
D064A  
SCLK, CS for Analog Front-End  
(AFE)  
VPIN VDD  
D070  
IPUR  
VOL  
PORTA Weak Pull-up Current  
Output Low Voltage  
I/O ports  
50*  
250  
400*  
μA  
VDD = 3.6V, VPIN = VSS  
D080  
D083  
0.6  
0.6  
V
V
IOL = 8.5 mA, VDD = 3.6V (Ind.)  
OSC2/CLKOUT (RC mode)  
IOL = 1.6 mA, VDD = 3.6V (Ind.)  
IOL = 1.2 mA, VDD = 3.6V (Ext.)  
Digital Output Low Voltage  
Analog Front-End section  
IOL = 1.0 mA, VDD = 2.0V  
D084  
ALERT, LFDATA/SDIO for  
Analog Front-End (AFE)  
VSS + 0.4  
V
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC  
mode.  
Note 1:  
2:  
3:  
Negative current is defined as current sourced by the pin.  
The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating  
conditions. Higher leakage current may be measured at different input voltages.  
See Section 9.4.1 “Using the Data EEPROM” for additional information  
4:  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 159  
PIC12F635/PIC16F636/639  
15.8 DC Characteristics: PIC16F639-I (Industrial), PIC16F639-E (Extended) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
2.0V VDD 3.6V  
DC CHARACTERISTICS  
Supply Voltage  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
VOH  
Output High Voltage  
I/O ports  
D090  
D092  
VDD – 0.7  
VDD – 0.7  
V
V
IOH = -3.0 mA, VDD = 3.6V (Ind.)  
OSC2/CLKOUT (RC mode)  
IOH = -1.3 mA, VDD = 3.6V (Ind.)  
IOH = -1.0 mA, VDD = 3.6V (Ext.)  
Digital Output High Voltage  
Analog Front-End (AFE) section  
D093  
LFDATA/SDIO for Analog Front-End  
(AFE)  
VDD – 0.5  
V
IOH = -400 μA, VDD = 2.0V  
Capacitive Loading Specs on  
Output Pins  
D100  
COSC2 OSC2 pin  
15*  
pF  
In XT, HS and LP modes when  
external clock is used to drive OSC1  
D101  
D102  
CIO  
All I/O pins  
50*  
pF  
nA  
IULP  
Ultra Low-power Wake-up Current  
Data EEPROM Memory  
Byte Endurance  
200  
D120  
ED  
100K  
10K  
1M  
100K  
E/W -40°C TA +85°C  
E/W +85°C TA +125°C  
D120A ED  
Byte Endurance  
D121  
VDRW  
VDD for Read/Write  
VMIN  
5.5  
V
Using EECON1 to read/write  
VMIN = Minimum operating voltage  
D122  
D123  
TDEW  
Erase/Write cycle time  
Characteristic Retention  
5
6
ms  
TRETD  
40  
Year Provided no other specifications are  
violated  
D124  
TREF  
Number of Total Erase/Write Cycles  
before Refresh(1)  
1M  
10M  
E/W -40°C TA +85°C  
Program Flash Memory  
Cell Endurance  
D130  
EP  
10K  
1K  
100K  
10K  
E/W -40°C TA +85°C  
E/W +85°C TA +125°C  
D130A ED  
Cell Endurance  
D131  
D132  
D133  
D134  
VPR  
VDD for Read  
VMIN  
4.5  
5.5  
5.5  
2.5  
V
V
VMIN = Minimum operating voltage  
VPEW  
TPEW  
TRETD  
VDD for Erase/Write  
Erase/Write cycle time  
Characteristic Retention  
2
ms  
40  
Year Provided no other specifications are  
violated  
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC  
mode.  
Note 1:  
2:  
3:  
Negative current is defined as current sourced by the pin.  
The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating  
conditions. Higher leakage current may be measured at different input voltages.  
See Section 9.4.1 “Using the Data EEPROM” for additional information  
4:  
DS41232B-page 160  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
15.9 Timing Parameter Symbology  
The timing parameter symbols have been created with  
one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCLK  
SS  
SDI  
do  
dt  
SDO  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (High-impedance)  
Low  
Valid  
L
High-impedance  
FIGURE 15-3:  
LOAD CONDITIONS  
Load Condition 1  
Load Condition 2  
VDD/2  
RL  
CL  
CL  
pin  
pin  
VSS  
VSS  
Legend:  
RL = 464Ω  
CL = 50 pF for all pins  
15 pF for OSC2 output  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 161  
PIC12F635/PIC16F636/639  
15.10 AC Characteristics: PIC12F635/PIC16F636/639 (Industrial, Extended)  
FIGURE 15-4:  
EXTERNAL CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
4
Q1  
OSC1  
1
3
3
4
2
CLKOUT  
TABLE 15-1: EXTERNAL CLOCK TIMING REQUIREMENTS  
Param  
Sym  
Characteristic  
Min Typ†  
Max  
Units  
Conditions  
No.  
FOSC External CLKIN Frequency(1) DC  
37  
4
kHz LP Oscillator mode  
MHz XT Oscillator mode  
MHz HS Oscillator mode  
MHz EC Oscillator mode  
kHz LP Oscillator mode  
MHz HFINTOSC Oscillator mode  
MHz RC Oscillator mode  
MHz XT Oscillator mode  
MHz HS Oscillator mode  
μs LP Oscillator mode  
ns HS Oscillator mode  
ns EC Oscillator mode  
ns XT Oscillator mode  
μs LP Oscillator mode  
ns INTOSC Oscillator mode  
ns RC Oscillator mode  
ns XT Oscillator mode  
ns HS Oscillator mode  
ns TCY = 4/FOSC  
DC  
DC  
DC  
20  
20  
Oscillator Frequency(1)  
5
37  
DC  
0.1  
1
4
4
20  
1
TOSC  
External CLKIN Period(1)  
Oscillator Period(1)  
27  
50  
50  
250  
27  
200  
125  
250  
250  
50  
10,000  
1,000  
DC  
2
3
TCY  
Instruction Cycle Time(1)  
200  
TCY  
TosL, External CLKIN (OSC1) High 2*  
μs LP oscillator, TOSC L/H duty cycle  
ns HS oscillator, TOSC L/H duty cycle  
ns XT oscillator, TOSC L/H duty cycle  
ns LP oscillator  
TosH External CLKIN Low  
20*  
100*  
4
TosR, External CLKIN Rise  
TosF External CLKIN Fall  
50*  
25*  
15*  
ns XT oscillator  
ns HS oscillator  
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values  
are based on characterization data for that particular oscillator type under standard operating conditions  
with the device executing code. Exceeding these specified limits may result in an unstable oscillator  
operation and/or higher than expected current consumption. All devices are tested to operate at ‘min’  
values with an external clock applied to OSC1 pin. When an external clock input is used, the ‘max’ cycle  
time limit is ‘DC’ (no clock) for all devices.  
DS41232B-page 162  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
TABLE 15-2: PRECISION INTERNAL OSCILLATOR PARAMETERS  
Param  
No.  
Freq  
Tolerance  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
F10  
FOSC Internal Calibrated  
INTOSC Frequency(1)  
HFINTOSC  
1%  
2%  
8.00  
8.00  
TBD  
TBD  
MHz VDD and Temperature (TBD)  
MHz 2.5V VDD 5.5V  
0°C TA +85°C  
5%  
8.00  
TBD  
MHz 2.0V VDD 5.5V  
-40°C TA +85°C (Ind.)  
-40°C TA +125°C (Ext.)  
F14  
TIOSCST Oscillator Wake-up from  
Sleep Start-up Time*  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
μs VDD = 2.0V, -40°C to +85°C  
μs VDD = 3.0V, -40°C to +85°C  
μs VDD = 5.0V, -40°C to +85°C  
Legend: TBD = To Be Determined  
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to  
the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.  
FIGURE 15-5:  
CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
22  
23  
CLKOUT  
13  
12  
19  
18  
14  
16  
I/O pin  
(Input)  
15  
17  
I/O pin  
(Output)  
New Value  
Old Value  
20, 21  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 163  
PIC12F635/PIC16F636/639  
TABLE 15-3: CLKOUT AND I/O TIMING REQUIREMENTS  
Param  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
No.  
10  
TOSH2CKL  
TOSH2CKH  
TCKR  
OSC1to CLKOUT↓  
75  
75  
35  
35  
50  
200  
200  
100  
100  
20  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
ns  
11  
12  
13  
14  
15  
16  
17  
OSC1to CLKOUT↑  
CLKOUT Rise Time  
TCKF  
CLKOUT Fall Time  
TCKL2IOV  
TIOV2CKH  
TCKH2IOI  
TOSH2IOV  
CLKOUTto Port Out Valid  
Port In Valid before CLKOUT↑  
Port In Hold after CLKOUT↑  
OSC1(Q1 cycle) to Port Out Valid  
TOSC + 200 ns  
0
150*  
300  
ns  
18  
19  
TOSH2IOI  
OSC1(Q2 cycle) to Port Input  
Invalid (I/O in hold time)  
100  
ns  
TIOV2OSH  
Port Input Valid to OSC1↑  
(I/O in setup time)  
0
ns  
20  
21  
22  
23  
TIOR  
TIOF  
TINP  
TRBP  
Port Output Rise Time  
Port Output Fall Time  
INT pin High or Low Time  
10  
10  
40  
40  
ns  
ns  
ns  
ns  
25  
PORTA Change INT High or Low  
Time  
TCY  
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated.  
Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x TOSC.  
FIGURE 15-6:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND  
POWER-UP TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
31  
34  
34  
I/O pins  
DS41232B-page 164  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
FIGURE 15-7:  
BROWN-OUT DETECT TIMING AND CHARACTERISTICS  
VDD  
VBOD  
(Device not in Brown-out Detect)  
(Device in Brown-out Detect)  
35  
Reset (due to BOD)  
(1)  
64 ms Time-out  
Note 1: 64 ms delay only if PWRTE bit in Configuration Word register is programmed to ‘0’.  
TABLE 15-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT DETECT REQUIREMENTS  
Param  
No.  
Sym  
TMCL  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
MCLR Pulse Width (low)  
2
11  
18  
μs VDD = 5.0V, -40°C to +85°C  
24  
ms Extended temperature  
31  
TWDT  
Watchdog Timer Time-out Period  
(no prescaler)  
10  
10  
17  
17  
25  
30  
ms VDD = 5.0V, -40°C to +85°C  
ms Extended temperature  
32  
TOST  
Oscillation Start-up Timer Period  
1024 TOSC  
TOSC = OSC1 period  
33*  
TPWRT Power-up Timer Period  
28*  
TBD  
64  
TBD  
132*  
TBD  
ms VDD = 5.0V, -40°C to +85°C  
ms Extended Temperature  
34  
TIOZ  
I/O High-impedance from MCLR  
Low or Watchdog Timer Reset  
2.0  
μs  
35  
36  
VBOD  
TBOD  
Brown-out Detect Voltage  
2.025  
100*  
2.175  
V
Brown-out Detect Pulse Width  
μs VDD VBOD (D005)  
Legend: TBD = To Be Determined  
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 165  
PIC12F635/PIC16F636/639  
FIGURE 15-8:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
40  
41  
42  
T1CKI  
45  
46  
48  
47  
TMR0 or  
TMR1  
TABLE 15-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
No.  
Sym  
TT0H  
Characteristic  
T0CKI High Pulse Width  
Min  
Typ† Max Units  
Conditions  
40*  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
10  
0.5 TCY + 20  
10  
41*  
42*  
TT0L  
TT0P  
T0CKI Low Pulse Width  
T0CKI Period  
Greater of:  
20 or TCY + 40  
N
ns N = prescale  
value (2, 4,...,  
256)  
45*  
46*  
47*  
TT1H  
TT1L  
TT1P  
T1CKI High  
Time  
Synchronous, No Prescaler  
Synchronous, with Prescaler  
Asynchronous  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
15  
30  
T1CKI Low Time Synchronous, No Prescaler  
Synchronous, with Prescaler  
Asynchronous  
0.5 TCY + 20  
15  
30  
T1CKI Input  
Period  
Synchronous  
Greater of:  
30 or TCY + 40  
N
ns N = prescale  
value (1, 2, 4, 8)  
Asynchronous  
60  
ns  
48  
49  
FT1  
Timer1 Oscillator Input Frequency Range  
(oscillator enabled by setting bit T1OSCEN)  
DC  
200*  
kHz  
TCKEZTMR1 Delay from External Clock Edge to Timer  
increment  
2 TOSC*  
7 TOSC*  
*
These parameters are characterized but not tested.  
Data in ‘Typ’ column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
DS41232B-page 166  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
TABLE 15-6: COMPARATOR SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +125°C  
Sym Characteristics  
Input Offset Voltage  
Min  
Typ  
Max  
Units  
Comments  
VOS  
0
5.0  
10  
VDD 1.5  
mV  
V
VCM  
CMRR  
TRT  
Input Common Mode Voltage  
Common Mode Rejection Ratio  
Response Time(1)  
+55*  
db  
ns  
μs  
150  
400*  
TMC2COV Comparator Mode Change to  
Output Valid  
10*  
*
These parameters are characterized but not tested.  
Note 1: Response time measured with one comparator input at (VDD – 1.5)/2 while the other input transitions from  
VSS to VDD – 1.5V.  
TABLE 15-7: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
Sym. Characteristics  
Resolution  
-40°C TA +125°C  
Min  
Typ  
Max  
Units  
Comments  
VDD/24*  
VDD/32  
LSb Low range (VRR = 1)  
LSb High range (VRR = 0)  
Absolute Accuracy  
1/4*  
1/2*  
LSb Low range (VRR = 1)  
LSb High range (VRR = 0)  
Unit Resistor Value (R)  
Settling Time(1)  
2K*  
Ω
10*  
μs  
*
These parameters are characterized but not tested.  
Note 1: Settling time measured while VRR = 1and VR<3:0> transitions from ‘0000’ to ‘1111‘.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 167  
PIC12F635/PIC16F636/639  
15.11 AC Characteristics: Analog Front-End for PIC16F639 (industrial, extended)  
AC CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Supply Voltage  
Operating temperature  
2.0V VDD 3.6V  
-40°C TAMB +85°C for industrial  
-40°C TAMB +125°C for extended  
Sinusoidal 300 mVPP  
LC Signal Input  
Carrier Frequency  
LCCOM connected to VSS  
125 kHz  
Param  
No.  
Sym.  
Characteristic  
LC Input Sensitivity  
Min  
Typ†  
Max  
Units  
Conditions  
VSENSE  
VDD = 3.0V  
1
3.0  
6
mVPP Output enable filter disabled  
AGCSIG = 0; MODMIN = 00  
(50% modulation depth setting)  
Input = Continuous Wave (CW)  
Output = Logic level transition from low-to-  
high at sensitivity level for CW input.  
VDE_Q  
RFLM  
SADJ  
Coil de-Q’ing Voltage -  
RF Limiter (RFLM) must be active  
3
5
V
VDD = 3.0V, Force IIN = 5 μA  
RF Limiter Turn-on Resistance  
(LCX, LCY, LCZ)  
700  
Ohm VDD = 2.0V, VIN = 8 VDC  
Sensitivity Reduction  
VDD = 3.0V  
0
-30  
dB  
dB  
No sensitivity reduction selected  
Max reduction selected  
Monotonic increment in attenuation value from  
setting = 0000to 1111by design  
VIN_MOD Minimum Modulation Depth  
75% ± 12%  
VDD = 3.0V  
63  
38  
13  
0
75  
50  
25  
12  
87  
62  
37  
24  
%
%
%
%
50% ± 12%  
25% ± 12%  
12% ± 12%  
CTUNX  
LCX Tuning Capacitor  
VDD = 3.0V,  
0
pF  
pF  
Config. Reg. 1, bits <6:1> Setting = 000000  
44.1  
63  
81.9  
63 pF +/- 30%  
Config. Reg. 1, bits <6:1> Setting = 111111  
63 steps, 1 pF/step  
Monotonic increment in capacitor value from  
setting = 000000to 111111by design  
CTUNY  
LCY Tuning Capacitor  
VDD = 3.0V,  
0
pF  
pF  
Config. Reg. 2, bits <6:1> Setting = 000000  
44.1  
63  
81.9  
63 pF +/- 30%  
Config. Reg. 2, bits <6:1> Setting = 111111  
63 steps, 1 pF/step  
Monotonic increment in capacitor value from  
setting = 000000to 111111by design  
FCARRIER Carrier frequency  
125  
4
kHz  
kHz  
Characterized at bench.  
FMOD  
Input modulation frequency  
Input data rate, characterized at bench.  
*
Parameter is characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
Note 1: Required output enable filter high time must account for input path analog delays = TOEH - TDR + TDF  
2: Required output enable filter low time must account for input path analog delays (= TOEL + TDR - TDF)  
DS41232B-page 168  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
15.11 AC Characteristics: Analog Front-End for PIC16F639 (industrial, extended) (Continued)  
AC CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Supply Voltage  
Operating temperature  
2.0V VDD 3.6V  
-40°C TAMB +85°C for industrial  
-40°C TAMB +125°C for extended  
Sinusoidal 300 mVPP  
LC Signal Input  
Carrier Frequency  
LCCOM connected to VSS  
125 kHz  
Param  
No.  
Sym.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
CTUNZ  
LCZ Tuning Capacitor  
VDD = 3.0V,  
0
pF  
pF  
Config. Reg. 3, bits<6:1> Setting = 000000  
44.1  
63  
81.9  
63 pF +/- 30%  
Config. Reg. 3, bits<6:1> Setting = 111111  
63 steps, 1 pF/step  
Monotonic increment in capacitor value from  
setting = 000000to 111111by design  
C_Q  
TDR  
Q of Trimming Capacitors  
50*  
pF  
Characterized at bench test  
Demodulator Charge Time  
(delay time of demodulated output  
to rise)  
50  
μs  
VDD = 3.0V  
MOD depth setting = 50%  
Input conditions:  
Amplitude = 300 mVPP  
Modulation depth = 80%  
TDF  
Demodulator Discharge Time  
(delay time of demodulated output  
to fall)  
50  
μs  
VDD = 3.0V  
MOD depth setting = 50%  
Input conditions:  
Amplitude = 300 mVPP  
Modulation depth = 80%  
TLFDATAR Rise time of LFDATA  
TLFDATAF Fall time of LFDATA  
0.5  
0.5  
μs  
μs  
VDD = 3.0V  
Time is measured from 10% to 90% of  
amplitude  
VDD = 3.0V  
Time is measured from 10% to 90% of  
amplitude  
TAGC  
TPAGC  
TSTAB  
AGC stabilization time  
4
3.5*  
62.5  
ms  
μs  
Time required for AGC stabilization  
Equivalent to two Internal clock cycle (FOSC)  
AGC stabilization time  
High time after AGC settling time  
AGC stabilization time plus high  
time (after AGC settling time)  
(TAGC + TPAGC)  
ms  
TGAP  
TRDY  
Gap time after AGC settling time  
200  
μs  
Typically 1 TE  
Time from exiting Sleep or POR to  
being ready to receive signal  
50*  
ms  
TPRES  
FOSC  
Minimum time AGC level must be  
held after receiving AGC Preserve  
command  
5*  
ms  
AGC level must not change more than 10%  
during TPRES.  
Internal RC oscillator frequency  
(±10%)  
28.8  
32  
35.2  
kHz  
Internal clock trimmed at 32 kHz during test  
TINACT  
TALARM  
RLC  
Inactivity timer time-out  
Alarm timer time-out  
14.4  
28.8  
16  
32  
17.6  
35.2  
ms  
ms  
512 cycles of RC oscillator @ FOSC  
1024 cycles of RC oscillator @ FOSC  
LC Pin Input Impedance  
LCX, LCY, LCZ  
1*  
MOhm Device in Standby mode  
*
Parameter is characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
Note 1: Required output enable filter high time must account for input path analog delays = TOEH - TDR + TDF  
2: Required output enable filter low time must account for input path analog delays (= TOEL + TDR - TDF)  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 169  
PIC12F635/PIC16F636/639  
15.11 AC Characteristics: Analog Front-End for PIC16F639 (industrial, extended) (Continued)  
AC CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Supply Voltage  
Operating temperature  
2.0V VDD 3.6V  
-40°C TAMB +85°C for industrial  
-40°C TAMB +125°C for extended  
Sinusoidal 300 mVPP  
LC Signal Input  
Carrier Frequency  
LCCOM connected to VSS  
125 kHz  
Param  
No.  
Sym.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
TE  
Time element of pulse  
200  
μs  
TOEH  
Minimum output enable filter high  
time  
OEH (Bits Config0<7:6>)  
01= 1 ms  
RC oscillator = FOSC  
Viewed from the pin input:  
(Note 1)  
32 (~1ms)  
64 (~2ms)  
128 (~ms)  
clock  
count  
10= 2 ms  
11= 4 ms  
00= Filter Disabled  
TOEL  
TOET  
Minimum output enable filter low  
time  
OEL (Bits Config0<5:4>)  
00= 1 ms  
RC oscillator = FOSC  
Viewed from the pin input:  
clock (Note 2)  
32 (~1ms)  
32 (~1ms)  
64 (~2ms)  
128 (~4ms)  
count  
01= 1 ms  
10= 2 ms  
11= 4 ms  
Maximum output enable filter  
period  
RC oscillator = FOSC  
OEH OEL  
TOEH TOEL  
1 ms 1 ms  
1 ms 1 ms  
1 ms 2 ms  
1 ms 4 ms  
01  
01  
01  
01  
00  
01  
10  
11  
=
=
=
=
96 (~3ms)  
96 (~3ms)  
128 (~4ms)  
192 (~6ms)  
clock  
count  
10  
10  
10  
10  
00  
01  
10  
11  
=
=
=
=
2 ms 1 ms  
2 ms 1 ms  
2 ms 2 ms  
2 ms 4 ms  
128 (~4ms)  
128 (~4ms)  
160 (~5ms)  
250 (~8ms)  
11  
11  
11  
11  
00  
01  
10  
11  
=
=
=
=
4 ms 1 ms  
4 ms 1 ms  
4 ms 2 ms  
4 ms 4 ms  
192 (~6ms)  
192 (~6ms)  
256 (~8ms)  
320 (~10ms)  
00  
XX = Filter Disabled  
LFDATA output appears as long as input  
signal level is greater than VSENSE.  
IRSSI  
RSSI current output  
100  
μA  
VDD = 3.0V,  
VIN = 0 to 4 VPP  
Linearly increases with input signal amplitude.  
Tested at VIN = 40 mVPP, 400 mVPP, and  
4 VPP  
1
10  
100  
μA  
μA  
μA  
VIN = 40 mVPP  
VIN = 400 mVPP  
VIN = 4 VPP  
IRSSILR RSSI current linearity  
TBD  
*
Parameter is characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
Note 1: Required output enable filter high time must account for input path analog delays = TOEH - TDR + TDF  
2: Required output enable filter low time must account for input path analog delays (= TOEL + TDR - TDF)  
DS41232B-page 170  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
15.12 SPI Timing: Analog Front-End (AFE) for PIC16F639  
AC CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Supply Voltage  
2.0V VDD 3.6V  
Operating temperature  
-40°C TAMB +85°C for industrial  
-40°C TAMB +125°C for extended  
Sinusoidal 300 mVPP  
LC Signal Input  
Carrier Frequency  
LCCOM connected to VSS  
125 kHz  
Param  
Sym  
Characteristic  
Min  
Typ†  
Max  
3
Units  
MHz  
ns  
Conditions  
FSCLK SCLK Frequency  
Tcssc  
100  
CS fall to first SCLK edge  
setup time  
TSU  
THD  
THI  
SDI setup time  
SDI hold time  
30  
50  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK high time  
SCLK low time  
SDO setup time  
150  
150  
TLO  
TDO  
150  
TSCCS SCLK last edge to CS rise  
setup time  
100  
TCSH  
TCS1  
CS high time  
500  
50  
ns  
ns  
CS rise to SCLK edge setup  
time  
TCS0  
SCLK edge to CS fall setup  
time  
50  
ns  
ns  
SCLK edge when CS is high  
TSPIR Rise time of SPI data  
(SPI Read command)  
10  
VDD = 3.0V. Time is measured from 10%  
to 90% of amplitude  
TSPIF  
Fall time of SPI data  
(SPI Read command)  
10  
ns  
VDD = 3.0V. Time is measured from 90%  
to 10% of amplitude  
*
Parameter is characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: Required output enable filter high time must account for input path analog delays = TOEH - TDR + TDF  
2: Required output enable filter low time must account for input path analog delays (= TOEL + TDR - TDF)  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 171  
PIC12F635/PIC16F636/639  
NOTES:  
DS41232B-page 172  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
16.0 DC AND AC  
CHARACTERISTICS GRAPHS  
AND TABLES  
Graphs and Tables are not available at this time.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 173  
PIC12F635/PIC16F636/639  
NOTES:  
DS41232B-page 174  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
17.0 PACKAGING INFORMATION  
17.1 Package Marking Information  
8-Lead PDIP  
Example  
12F635/P  
017  
XXXXXXXX  
XXXXXNNN  
YYWW  
0510  
8-Lead SOIC  
Example  
XXXXXXXX  
XXXXYYWW  
12F635  
/SN0510  
NNN  
017  
8-Lead DFN-S  
Example  
XXXXXX  
XXXXXX  
YYWW  
NNN  
PIC12F  
635/MF  
0510  
017  
14-Lead PDIP  
Example  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
PIC16F636-I/P  
0510017  
YYWWNNN  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
3
e
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
*
Standard PICmicro device marking consists of Microchip part number, year code, week code and  
traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check  
with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP  
price.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 175  
PIC12F635/PIC16F636/639  
17.1 Package Marking Information (Continued)  
14-Lead SOIC  
Example  
XXXXXXXXXXX  
XXXXXXXXXXX  
YYWWNNN  
PIC16F636  
-I/SL  
0510017  
14-Lead TSSOP  
Example  
XXXXXXXX  
YYWW  
F636/ST  
0510  
017  
NNN  
20-Lead SSOP  
Example  
XXXXXXXXXXX  
XXXXXXXXXXX  
PIC16F639  
-I/SS  
YYWWNNN  
0510017  
DS41232B-page 176  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
17.2 Package Details  
The following sections give the technical details of the packages.  
8-Lead Plastic Dual In-line (P) – 300 mil Body (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
β
B1  
B
p
eB  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
8
MAX  
n
p
Number of Pins  
Pitch  
8
.100  
.155  
.130  
2.54  
Top to Seating Plane  
A
.140  
.170  
3.56  
2.92  
3.94  
3.30  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.360  
.125  
.008  
.045  
.014  
.310  
5
.145  
3.68  
0.38  
7.62  
6.10  
9.14  
3.18  
0.20  
1.14  
0.36  
7.87  
5
.313  
.250  
.373  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.385  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
9.46  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
9.78  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-018  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 177  
PIC12F635/PIC16F636/639  
8-Lead Plastic Small Outline (SN) – Narrow, 150 mil Body (SOIC)  
E
E1  
p
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
8
MAX  
n
p
Number of Pins  
Pitch  
8
.050  
.061  
.056  
.007  
.237  
.154  
.193  
.015  
.025  
4
1.27  
Overall Height  
A
.053  
.069  
1.35  
1.32  
1.55  
1.42  
0.18  
6.02  
3.91  
4.90  
0.38  
0.62  
4
1.75  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.052  
.004  
.228  
.146  
.189  
.010  
.019  
0
.061  
.010  
.244  
.157  
.197  
.020  
.030  
8
1.55  
0.25  
6.20  
3.99  
5.00  
0.51  
0.76  
8
§
0.10  
5.79  
3.71  
4.80  
0.25  
0.48  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.008  
.013  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.33  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-057  
DS41232B-page 178  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
8-Lead Plastic Dual Flat No Lead Package (MF) 6x5 mm Body (DFN-S) – Saw Singulated  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 179  
PIC12F635/PIC16F636/639  
14-Lead Plastic Dual In-line (P) – 300 mil Body (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
B1  
β
eB  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
14  
MAX  
n
p
Number of Pins  
Pitch  
14  
.100  
.155  
.130  
2.54  
Top to Seating Plane  
A
.140  
.170  
3.56  
2.92  
0.38  
7.62  
6.10  
18.80  
3.18  
0.20  
1.14  
0.36  
7.87  
5
3.94  
3.30  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.740  
.125  
.008  
.045  
.014  
.310  
5
.145  
3.68  
.313  
.250  
.750  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.760  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
19.05  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
19.30  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-005  
DS41232B-page 180  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
14-Lead Plastic Small Outline (SL) – Narrow, 150 mil Body (SOIC)  
E
E1  
p
D
2
1
B
n
α
h
45°  
c
A2  
A
φ
A1  
L
β
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
14  
MAX  
n
p
Number of Pins  
Pitch  
14  
.050  
.061  
.056  
.007  
.236  
.154  
.342  
.015  
.033  
4
1.27  
Overall Height  
A
.053  
.052  
.004  
.228  
.150  
.337  
.010  
.016  
0
.069  
1.35  
1.32  
1.55  
1.42  
0.18  
5.99  
3.90  
8.69  
0.38  
0.84  
4
1.75  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.061  
.010  
.244  
.157  
.347  
.020  
.050  
8
1.55  
0.25  
6.20  
3.99  
8.81  
0.51  
1.27  
8
§
0.10  
5.79  
3.81  
8.56  
0.25  
0.41  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.008  
.014  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.36  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-065  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 181  
PIC12F635/PIC16F636/639  
14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm Body (TSSOP)  
E
E1  
p
D
2
1
n
B
α
A
c
φ
A1  
A2  
β
L
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
14  
MAX  
n
p
Number of Pins  
Pitch  
14  
.026  
0.65  
Overall Height  
A
.043  
1.10  
0.95  
0.15  
6.50  
4.50  
5.10  
0.70  
8
Molded Package Thickness  
Standoff  
A2  
A1  
E
.033  
.002  
.246  
.169  
.193  
.020  
0
.035  
.004  
.251  
.173  
.197  
.024  
4
.037  
.006  
.256  
.177  
.201  
.028  
8
0.85  
0.05  
0.90  
0.10  
6.38  
4.40  
5.00  
0.60  
4
§
Overall Width  
6.25  
4.30  
4.90  
0.50  
0
Molded Package Width  
Molded Package Length  
Foot Length  
E1  
D
L
φ
Foot Angle  
c
Lead Thickness  
.004  
.007  
0
.006  
.010  
5
.008  
.012  
10  
0.09  
0.19  
0
0.15  
0.25  
5
0.20  
0.30  
10  
Lead Width  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.005” (0.127mm) per side.  
JEDEC Equivalent: MO-153  
Drawing No. C04-087  
DS41232B-page 182  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
20-Lead Plastic Shrink Small Outline (SS) – 209 mil Body, 5.30 mm (SSOP)  
E
E1  
p
D
B
2
1
n
c
A2  
A
f
L
A1  
Units  
Dimension Limits  
INCHES  
NOM  
20  
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
20  
MAX  
n
p
Number of Pins  
Pitch  
.026  
0.65  
-
Overall Height  
A
A2  
A1  
E
-
-
.079  
-
2.00  
1.85  
-
Molded Package Thickness  
Standoff  
.065  
.002  
.291  
.197  
.272  
.022  
.004  
0°  
.069  
-
.073  
-
1.65  
0.05  
7.40  
5.00  
.295  
0.55  
0.09  
0°  
1.75  
-
Overall Width  
.307  
.209  
.283  
.030  
-
.323  
.220  
.289  
.037  
.010  
8°  
7.80  
5.30  
7.20  
0.75  
-
8.20  
5.60  
7.50  
0.95  
0.25  
8°  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
L
c
Lead Thickness  
Foot Angle  
f
4°  
4°  
Lead Width  
B
.009  
-
.015  
0.22  
-
0.38  
*Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions  
shall not exceed .010" (0.254mm) per side.  
JEDEC Equivalent: MO-150  
Drawing No. C04-072  
Revised 11/03/03  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 183  
PIC12F635/PIC16F636/639  
NOTES:  
DS41232B-page 184  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
In addition, there is  
a
Development Systems  
Information Line which lists the latest versions of  
Microchip’s development systems software products.  
This line also provides information on how customers  
can receive currently available upgrade kits.  
The Development Systems Information Line  
numbers are:  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
1-800-755-2345 – United States and most of Canada  
1-480-792-7302 – Other International Locations  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change  
Notification and follow the registration instructions.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 185  
PIC12F635/PIC16F636/639  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
PIC12F635/PIC16F636/639  
DS41232B  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS41232B-page 186  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
APPENDIX A: DATA SHEET  
REVISION HISTORY  
Revision A  
This is a new data sheet.  
Revision B  
Added PIC16F639 to the data sheet.  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 187  
PIC12F635/PIC16F636/639  
NOTES:  
DS41232B-page 188  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
INDEX  
Alarm .................................................................. 81  
Auto Channel Selection...................................... 80  
A
Absolute Maximum Ratings .............................................. 147  
AC Characteristics  
Inactivity ............................................................. 81  
Period ................................................................. 81  
Preamble Counters............................................. 81  
Pulse Width ........................................................ 81  
RC Oscillator ...................................................... 80  
Tuning Capacitor ........................................................ 79  
Variable Attenuator..................................................... 79  
Analog Input Connection Considerations ........................... 62  
Assembler  
Analog Front-End (AFE) for PIC16F639................... 168  
Industrial and Extended ............................................ 162  
Load Conditions........................................................ 161  
AGC Settling ....................................................................... 81  
Analog Front-End  
Configuration Registers  
Summary Table ................................................ 105  
Analog Front-End (AFE) ..................................................... 79  
A/D Data Conversion of RSSI Signal........................ 100  
AFE Status Register Bit Condition............................ 110  
AGC ................................................................ 80, 81, 88  
AGC Preserve............................................................. 88  
Battery Back-up and Batteryless Operation................ 92  
Block Diagrams  
MPASM Assembler .................................................. 141  
B
Block Diagrams  
Analog Input Model..................................................... 62  
Ceramic Resonator Operation.................................... 31  
Clock Source .............................................................. 29  
Comparator C1 Output ............................................... 65  
Comparator C2 Output ............................................... 66  
Comparator I/O Operating Modes for PIC12F635...... 63  
Comparator I/O Operating Modes for  
Bidirectional PKE System Application  
Example...................................................... 84  
Functional ........................................................... 82  
LC Input Path...................................................... 83  
Output Enable Filter Timing ................................ 85  
Output Enable Filter Timing (Detailed) ............... 86  
Carrier Clock Detector ................................................ 80  
Carrier Clock Output ................................................... 96  
Examples............................................................ 97  
Command Decoder/Controller .................................. 103  
Configuration Registers ............................................ 104  
Data Slicer .................................................................. 80  
Demodulator ......................................................... 80, 93  
De-Q’ing of Antenna Circuit ........................................ 92  
Error Detection............................................................ 91  
Factory Calibration...................................................... 92  
Fixed Gain Amplifiers.................................................. 80  
Input Sensitivity Control .............................................. 87  
LF Field Powering/Battery Back-up  
PIC16F636/639 .................................................. 64  
Comparator Voltage Reference (CVREF).................... 68  
External Clock Mode .................................................. 31  
Fail-Safe Clock Monitor (FSCM)................................. 36  
Functional (AFE)......................................................... 82  
In-Circuit Serial Programming Connection ............... 129  
Interrupt Logic........................................................... 122  
On-Chip Reset Circuit............................................... 113  
PIC12F635 Device ....................................................... 5  
PIC16F636 Device ....................................................... 6  
PIC16F639 Device ....................................................... 7  
Quartz Crystal Operation............................................ 31  
RA0 Pin ...................................................................... 44  
RA1 Pin ...................................................................... 45  
RA2 Pin ...................................................................... 45  
RA3 Pin ...................................................................... 46  
RA4 Pin ...................................................................... 47  
RA5 Pin ...................................................................... 47  
RC Mode .................................................................... 32  
RC0 and RC1 Pins ..................................................... 49  
RC2, RC3 and RC5 Pins............................................ 49  
RC4 Pin ...................................................................... 50  
RCIO Mode................................................................. 32  
Recommended MCLR Circuit................................... 114  
Timer1 ........................................................................ 57  
TMR0/WDT Prescaler ................................................ 53  
Watchdog Timer (WDT)............................................ 125  
Brown-out Detect (BOD)................................................... 115  
Associated Registers................................................ 116  
Specifications ........................................................... 165  
Examples............................................................ 92  
LFDATA Output Selection........................................... 93  
Case I ................................................................. 94  
Case II ................................................................ 94  
Low Current Modes  
Operating ............................................................ 91  
Sleep................................................................... 91  
Standby............................................................... 91  
Modulation Circuit ....................................................... 79  
Modulation Depth........................................................ 89  
Examples............................................................ 90  
Output Enable Filter.................................................... 80  
Configurable Smart............................................. 85  
Output Enable Filter Timing (Table)............................ 87  
Power-on Reset .......................................................... 93  
RF Limiter ................................................................... 79  
RSSI...................................................................... 80, 98  
Output Path Diagram .......................................... 98  
Power-up Sequence Diagram........................... 100  
SPI Read Sequence Diagram........................... 102  
SPI Write Sequence Diagram........................... 101  
RSSI Output Current vs. Input Signal Level  
C
C Compilers  
MPLAB C17.............................................................. 142  
MPLAB C18.............................................................. 142  
MPLAB C30.............................................................. 142  
CLKOUT and I/O Timing Requirements........................... 164  
Clock Sources..................................................................... 29  
Associated Registers.................................................. 38  
External Clock Modes................................................. 30  
Internal Clock Modes.................................................. 32  
Modes......................................................................... 30  
Example.............................................................. 99  
Sensitivity Control ....................................................... 79  
Soft Reset ................................................................... 89  
SPI Interface Timing Diagram................................... 104  
Timers................................................................... 80, 81  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 189  
PIC12F635/PIC16F636/639  
Oscillator Configuration...............................................29  
Clock Switching...................................................................35  
Fail-Safe Clock Monitor...............................................36  
Two-Speed Clock Start-up..........................................35  
Code Examples  
Device Overview................................................................... 5  
E
EECON1 (EEPROM Control 1) Register............................ 74  
EECON2 (EEPROM Control 2) Register............................ 74  
EEPROM Data Memory  
Assigning Prescaler to Timer0 ....................................55  
Assigning Prescaler to WDT .......................................55  
Data EEPROM Read ..................................................75  
Data EEPROM Write ..................................................75  
Indirect Addressing .....................................................27  
Initializing PORTA.......................................................39  
Initializing PORTC.......................................................49  
Saving Status and W Registers in RAM ...................124  
Ultra Low-Power Wake-up Initialization ......................43  
Write Verify .................................................................75  
Code Protection ................................................................128  
Comparator Voltage Reference (CVREF) ............................68  
Accuracy/Error ............................................................68  
Configuring..................................................................68  
Specifications............................................................167  
Comparators .......................................................................61  
C2OUT as T1 Gate ...............................................58, 67  
Configurations.............................................................63  
Effects of a Reset........................................................69  
Interrupts.....................................................................67  
Operation ....................................................................62  
Operation During Sleep ..............................................69  
Outputs .......................................................................67  
Response Time...........................................................69  
Specifications............................................................167  
Synchronizing C2OUT w/ Timer1 ...............................67  
Computed GOTO................................................................26  
Configuration Bits..............................................................112  
CPU Features ...................................................................111  
Customer Change Notification Service .............................185  
Customer Notification Service...........................................185  
Customer Support.............................................................185  
Reading ...................................................................... 75  
Write Verify................................................................. 75  
Writing ........................................................................ 75  
Electrical Specifications.................................................... 147  
Errata.................................................................................... 3  
Evaluation and Programming Tools.................................. 145  
External Clock Timing Requirements ............................... 162  
F
Fail-Safe Clock Monitor ...................................................... 36  
Fail-Safe Condition Clearing....................................... 37  
Reset and Wake-up from Sleep.................................. 37  
Firmware Instructions ....................................................... 131  
G
General Purpose Register (GPR) File ................................ 12  
I
ID Locations...................................................................... 128  
In-Circuit Debugger........................................................... 129  
In-Circuit Serial Programming (ICSP)............................... 129  
Indirect Addressing, INDF and FSR Registers ................... 27  
Instruction Format............................................................. 131  
Instruction Set................................................................... 131  
ADDLW..................................................................... 133  
ADDWF..................................................................... 133  
ANDLW..................................................................... 133  
ANDWF..................................................................... 133  
BCF .......................................................................... 133  
BSF........................................................................... 133  
BTFSC...................................................................... 133  
BTFSS ...................................................................... 133  
CALL......................................................................... 134  
CLRF ........................................................................ 134  
CLRW ....................................................................... 134  
CLRWDT .................................................................. 134  
COMF ....................................................................... 134  
DECF........................................................................ 134  
DECFSZ ................................................................... 135  
GOTO ....................................................................... 135  
INCF ......................................................................... 135  
INCFSZ..................................................................... 135  
IORLW...................................................................... 135  
IORWF...................................................................... 135  
MOVF ....................................................................... 136  
MOVLW .................................................................... 136  
MOVWF.................................................................... 136  
NOP.......................................................................... 136  
RETFIE..................................................................... 137  
RETLW ..................................................................... 137  
RETURN................................................................... 137  
RLF........................................................................... 137  
RRF .......................................................................... 138  
SLEEP ...................................................................... 138  
SUBLW..................................................................... 138  
SUBWF..................................................................... 138  
SWAPF..................................................................... 138  
XORLW .................................................................... 138  
XORWF .................................................................... 139  
Summary Table ........................................................ 132  
D
Data EEPROM Memory  
Associated Registers ..................................................76  
Code Protection .................................................... 73, 76  
Endurance...................................................................75  
Protection Against Spurious Write ..............................76  
Using...........................................................................75  
Data Memory.......................................................................11  
DC and AC  
Characteristics Graphs and Tables...........................173  
DC Characteristics  
Extended (PIC12F635/PIC16F636)..........................152  
Extended (PIC16F639) .............................................158  
Industrial (PIC12F635/PIC16F636)...........................150  
Industrial (PIC16F639)..............................................157  
Industrial/Extended (PIC12F635/PIC16F636) .. 149, 154  
Industrial/Extended (PIC16F639)......................156, 159  
Demonstration Boards  
PICDEM 1 .................................................................144  
PICDEM 17 ...............................................................145  
PICDEM 18R ............................................................145  
PICDEM 2 Plus.........................................................144  
PICDEM 3 .................................................................144  
PICDEM 4 .................................................................144  
PICDEM LIN .............................................................145  
PICDEM USB............................................................145  
PICDEM.net Internet/Ethernet ..................................144  
Development Support .......................................................141  
DS41232B-page 190  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
Internal Oscillator Block  
RA1/C1IN-/Vref/ICSPCLK Pin.................................... 45  
INTOSC Specifications ............................................. 163  
Internet Address................................................................ 185  
Interrupts........................................................................... 121  
Associated Registers ................................................ 123  
Comparators ............................................................... 67  
Context Saving.......................................................... 124  
Data EEPROM Memory Write .................................... 74  
Interrupt-on-change .................................................... 42  
PORTA Interrupt-on-change..................................... 122  
RA2/INT .................................................................... 121  
TMR0 ........................................................................ 122  
INTOSC Specifications ..................................................... 163  
RA2/T0CKI/INT/C1OUT Pin ....................................... 45  
RA3/MCLR/VPP PIN.................................................... 46  
RA4/T1G/OSC2/CLKOUT Pin.................................... 47  
RA5/T1CKI/OSC1/CLKIN Pin..................................... 47  
PORTC ............................................................................... 49  
Associated Registers.................................................. 51  
RC0/C2IN+ Pin........................................................... 49  
RC2 Pin ...................................................................... 49  
RC3 Pin ...................................................................... 49  
RC4/C2OUT Pin......................................................... 50  
Power Control (PCON) Register....................................... 116  
Power-Down Mode (Sleep)............................................... 127  
Power-on Reset................................................................ 114  
Power-up Timer (PWRT)  
K
KEELOQ ............................................................................... 77  
Specifications ........................................................... 165  
Precision Internal Oscillator Parameters .......................... 163  
Prescaler  
Shared WDT/Timer0................................................... 55  
Switching Prescaler Assignment ................................ 55  
PRO MATE II Universal Device Programmer................... 143  
Product Identification ........................................................ 193  
Program Memory................................................................ 11  
Program Memory Map and Stack  
PIC12F635 ................................................................. 11  
PIC16F636/639 .......................................................... 11  
Programmable Low-Voltage Detect (PLVD) Module .......... 71  
Programming, Device Instructions.................................... 131  
L
Load Conditions................................................................ 161  
M
MCLR................................................................................ 114  
Internal...................................................................... 114  
Memory Organization.......................................................... 11  
Data ............................................................................ 11  
Data EEPROM Memory.............................................. 73  
Program ...................................................................... 11  
Microchip Internet Web Site.............................................. 185  
MPLAB ASM30 Assembler, Linker, Librarian ................... 142  
MPLAB ICD 2 In-Circuit Debugger ................................... 143  
MPLAB ICE 2000 High-Performance Universal  
R
Reader Response............................................................. 186  
Read-Modify-Write Operations ......................................... 131  
Registers  
In-Circuit Emulator ................................................... 143  
MPLAB ICE 4000 High-Performance Universal  
In-Circuit Emulator ................................................... 143  
MPLAB Integrated Development Environment Software .. 141  
MPLAB PM3 Device Programmer .................................... 143  
MPLINK Object Linker/MPLIB Object Librarian ................ 142  
Analog Front-End (AFE)  
AFE Status Register 7...................................... 109  
Column Parity Register 6.................................. 108  
Configuration Register 0................................... 105  
Configuration Register 1................................... 106  
Configuration Register 2................................... 106  
Configuration Register 3................................... 107  
Configuration Register 4................................... 107  
Configuration Register 5................................... 108  
CMCON0 (Comparator Control 0).............................. 61  
CMCON1 (Comparator Control 1).............................. 66  
CONFIG (Configuration Word) ................................. 112  
EEADR (EEPROM Address)...................................... 73  
EECON1 (EEPROM Control 1) .................................. 74  
EEDAT (EEPROM Data)............................................ 73  
INTCON (Interrupt Control) ........................................ 22  
IOCA (Interrupt-on-change PORTA) .......................... 42  
LVDCON (Low-Voltage Detect Control) ..................... 71  
OPTION_REG (Option)........................................ 21, 54  
OSCCON (Oscillator Control)..................................... 38  
OSCTUNE (Oscillator Tuning).................................... 33  
PCON (Power Control)............................................... 25  
PIE1 (Peripheral Interrupt Enable 1) .......................... 23  
PIR1 (Peripheral Interrupt Request 1)........................ 24  
PORTA ....................................................................... 41  
PORTC....................................................................... 51  
Reset Values ............................................................ 119  
Reset Values (Special Registers)............................. 120  
Status ......................................................................... 20  
T1CON (Timer1 Control) ............................................ 59  
TRISA (PORTA Tri-State) .......................................... 41  
TRISC (PORTC Tri-State).......................................... 51  
VRCON (Voltage Reference Control)......................... 69  
O
Opcode Field Descriptions................................................ 131  
Oscillator Start-up Timer (OST) .......................................... 30  
Specifications............................................................ 165  
P
Packaging ......................................................................... 175  
Details....................................................................... 177  
Marking ..................................................................... 175  
PCL and PCLATH............................................................... 26  
Computed GOTO........................................................ 26  
Stack........................................................................... 26  
PICkit 1 Flash Starter Kit................................................... 145  
PICSTART Plus Development Programmer ..................... 144  
Pin Diagrams ........................................................................ 2  
Pinout Descriptions  
PIC12F635.................................................................... 8  
PIC16F636.................................................................... 9  
PIC16F639.................................................................. 10  
PORTA................................................................................ 39  
Additional Pin Functions ............................................. 39  
Interrupt-on-change ............................................ 42  
Ultra Low-Power Wake-up............................ 39, 43  
Weak Pull-down.................................................. 39  
Weak Pull-up ...................................................... 39  
Associated Registers .................................................. 48  
Pin Descriptions and Diagrams................................... 44  
RA0/C1IN+/ICSPDAT/ULPWU Pin............................. 44  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 191  
PIC12F635/PIC16F636/639  
WDA (Weak Pull-up/Pull-down PORTA).....................40  
WDTCON (Watchdog Timer Control)........................126  
WPUDA (Weak Pull-up/Pull-down Direction PORTA).40  
Reset.................................................................................113  
Revision History ................................................................187  
Timing Parameter Symbology .......................................... 161  
TRISA ................................................................................. 39  
Two-Speed Clock Start-up Mode........................................ 35  
U
Ultra Low-Power Wake-up.................................. 9, 10, 39, 43  
S
V
Software Simulator (MPLAB SIM).....................................142  
Software Simulator (MPLAB SIM30).................................142  
Special Function Registers (SFR).......................................12  
Maps  
Voltage Reference. See Comparator Voltage Reference  
(CVREF).  
W
PIC12F635..........................................................13  
PIC16F636/639...................................................14  
Summary  
Wake-up from Sleep......................................................... 127  
Wake-up Reset (WUR)..................................................... 114  
Wake-up using Interrupts.................................................. 127  
Watchdog Timer (WDT).................................................... 125  
Associated Registers................................................ 126  
Control ...................................................................... 125  
Oscillator................................................................... 125  
Specifications ........................................................... 165  
WWW Address ................................................................. 185  
WWW, On-Line Support ....................................................... 3  
PIC12F635, Bank 0.............................................15  
PIC12F635, Bank 1.............................................16  
PIC12F635/PIC16F636/639, Bank 2 ..................19  
PIC16F636/639, Bank 0......................................17  
PIC16F636/639, Bank 1......................................18  
SPI Timing  
Analog Front-End (AFE) for PIC16F639 ...................171  
Status Register  
IRP Bit.........................................................................20  
RP Bits........................................................................20  
T
Time-out Sequence...........................................................116  
Timer0.................................................................................53  
Associated Registers ..................................................55  
Interrupt.......................................................................53  
Operation ....................................................................53  
T0CKI..........................................................................54  
Using with External Clock ...........................................54  
Timer0 and Timer1  
External Clock Requirements ...................................166  
Timer1.................................................................................57  
Associated Registers ..................................................60  
Asynchronous Counter Mode .....................................60  
Reading and Writing ...........................................60  
Interrupt.......................................................................58  
Modes of Operations...................................................58  
Operation During Sleep ..............................................60  
Oscillator.....................................................................60  
Prescaler.....................................................................58  
Timer1 Gate  
Inverting Gate .....................................................58  
Selecting Source...........................................58, 67  
Synchronizing C2OUT w/ Timer1 .......................67  
TMR1H Register .........................................................57  
TMR1L Register..........................................................57  
Timing Diagrams  
Brown-out Detect (BOD)...........................................165  
Brown-out Detect Situations .....................................115  
CLKOUT and I/O.......................................................163  
External Clock...........................................................162  
Fail-Safe Clock Monitor (FSCM).................................37  
INT Pin Interrupt........................................................123  
Reset, Watchdog Timer, Oscillator Start-up Timer and  
Power-up Timer ................................................164  
Single Comparator ......................................................62  
Time-out Sequence on Power-up (Delayed MCLR) .118  
Time-out Sequence on Power-up (MCLR with VDD).118  
Timer0 and Timer1 External Clock ...........................166  
Timer1 Incrementing Edge..........................................58  
Two-Speed Start-up....................................................36  
Wake-up from Sleep through Interrupt......................128  
DS41232B-page 192  
Preliminary  
© 2005 Microchip Technology Inc.  
PIC12F635/PIC16F636/639  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature Package  
Range  
Pattern  
a)  
PIC12F635-E/P 301 = Extended Temp., PDIP  
package, 20 MHz, QTP pattern #301  
PIC12F635-I/S Industrial Temp., SOIC  
package, 20 MHz  
b)  
=
Device  
PIC12F635: Standard VDD range  
PIC12F635T: (Tape and Reel)  
PIC16F636: Standard VDD range  
PIC16F636T: (Tape and Reel)  
PIC16F639: Standard VDD range  
PIC16F639T: (Tape and Reel)  
Temperature Range  
Package  
I
E
=
=
-40°C to +85°C  
-40°C to +125°C  
MF  
P
SN  
SL  
SS  
ST  
=
=
=
=
=
=
DFN-S (6x5 mm, 8-pin)  
PDIP (300 mil)  
SOIC (Gull wing, 150 mil body, 8-pin)  
SOIC (Gull wing, 150 mil body, 14-pin)  
SSOP (209 mil, 20-pin)  
TSSOP (4.4 mm, 14-pin)  
Pattern  
3-Digit Pattern Code for QTP (blank otherwise)  
© 2005 Microchip Technology Inc.  
Preliminary  
DS41232B-page 193  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
India - Bangalore  
Tel: 91-80-2229-0061  
Fax: 91-80-2229-0062  
Austria - Weis  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http:\\support.microchip.com  
Web Address:  
www.microchip.com  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Denmark - Ballerup  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-5160-8631  
Fax: 91-11-5160-8632  
China - Chengdu  
Tel: 86-28-8676-6200  
Fax: 86-28-8676-6599  
France - Massy  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Japan - Kanagawa  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Atlanta  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Germany - Ismaning  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Korea - Seoul  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Boston  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Westford, MA  
Tel: 978-692-3848  
Fax: 978-692-3821  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
England - Berkshire  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Dallas  
Addison, TX  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Tel: 972-818-7423  
Fax: 972-818-2924  
Taiwan - Hsinchu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shunde  
Detroit  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Qingdao  
Tel: 86-532-502-7355  
Fax: 86-532-502-7205  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
San Jose  
Mountain View, CA  
Tel: 650-215-1444  
Fax: 650-961-0286  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
10/20/04  
DS41232B-page 194  
Preliminary  
© 2005 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY