PIC16C54A-10/P301 [MICROCHIP]

8-BIT, OTPROM, 10 MHz, RISC MICROCONTROLLER, PDIP18, 0.300 INCH, PLASTIC, DIP-18;
PIC16C54A-10/P301
型号: PIC16C54A-10/P301
厂家: MICROCHIP    MICROCHIP
描述:

8-BIT, OTPROM, 10 MHz, RISC MICROCONTROLLER, PDIP18, 0.300 INCH, PLASTIC, DIP-18

可编程只读存储器 时钟 光电二极管 外围集成电路
文件: 总216页 (文件大小:1177K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16C5X  
M
EPROM/ROM-Based 8-Bit CMOS Microcontroller Series  
• 12-bit wide instructions  
Devices Included in this Data Sheet:  
• 8-bit wide data path  
• PIC16C52  
• Seven or eight special function hardware registers  
Two-level deep hardware stack  
• PIC16C54s  
• PIC16CR54s  
• PIC16C55s  
• Direct, indirect and relative addressing modes for  
data and instructions  
• PIC16C56s  
Peripheral Features:  
• 8-bit real time clock/counter (TMR0) with 8-bit  
programmable prescaler  
• PIC16CR56s  
• PIC16C57s  
• PIC16CR57s  
• PIC16C58s  
• Power-On Reset (POR)  
• Device Reset Timer (DRT)  
• PIC16CR58s  
• Watchdog Timer (WDT) with its own on-chip  
RC oscillator for reliable operation  
Note: The letter "s" used following the part  
numbers throughout this document  
indicate plural, meaning there is more  
than one part variety for the indicated  
device.  
• Programmable code-protection  
• Power saving SLEEP mode  
• Selectable oscillator options:  
- RC:  
- XT:  
- HS:  
- LP:  
Low-cost RC oscillator  
High-Performance RISC CPU:  
• Only 33 single word instructions to learn  
Standard crystal/resonator  
High-speed crystal/resonator  
Power saving, low-frequency crystal  
• All instructions are single cycle (200 ns) except for  
program branches which are two-cycle  
• Operating speed: DC - 20 MHz clock input  
DC - 200 ns instruction cycle  
CMOS Technology:  
• Low-power, high-speed CMOS EPROM/ROM  
technology  
EPROM/  
Device  
Pins I/O  
RAM  
• Fully static design  
ROM  
• Wide-operating voltage and temperature range:  
- EPROM Commercial/Industrial 2.0V to 6.25V  
- ROM Commercial/Industrial 2.0V to 6.25V  
- EPROM Extended 2.5V to 6.0V  
- ROM Extended 2.5V to 6.0V  
PIC16C52  
18  
18  
18  
18  
18  
18  
18  
18  
28  
28  
18  
18  
18  
28  
28  
28  
28  
18  
18  
18  
18  
12  
12  
12  
12  
12  
12  
12  
12  
20  
20  
12  
12  
12  
20  
20  
20  
20  
12  
12  
12  
12  
384  
512  
512  
512  
512  
512  
512  
512  
512  
512  
1K  
25  
25  
25  
25  
25  
25  
25  
25  
24  
24  
25  
25  
25  
72  
72  
72  
72  
73  
73  
73  
73  
PIC16C54  
PIC16C54A  
PIC16C54B  
PIC16C54C  
PIC16CR54A  
PIC16CR54B  
PIC16CR54C  
PIC16C55  
• Low-power consumption  
- < 2 mA typical @ 5V, 4 MHz  
- 15 µA typical @ 3V, 32 kHz  
- < 0.6 µA typical standby current  
(with WDT disabled) @ 3V, 0°C to 70°C  
PIC16C55A  
PIC16C56  
PIC16C56A  
PIC16CR56A  
PIC16C57  
1K  
Note: In this document, figure and table titles  
refer to all varieties of the part number  
indicated, (i.e., The title "Figure 14-1:  
Load Conditions - PIC16C54A", also  
refers to PIC16LC54A and PIC16LV54A  
parts).  
1K  
2K  
PIC16C57C  
PIC16CR57B  
PIC16CR57C  
PIC16C58A  
PIC16C58B  
PIC16CR58A  
PIC16CR58B  
2K  
2K  
2K  
2K  
2K  
2K  
2K  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 1  
PIC16C5X  
Pin Diagrams  
PDIP, SOIC, Windowed CERDIP  
PDIP, SOIC, Windowed CERDIP  
18  
17  
16  
15  
14  
RA1  
RA0  
OSC1/CLKIN  
OSC2/CLKOUT  
VDD  
1  
2
3
4
5
6
7
8
9
RA2  
RA3  
T0CKI  
T0CKI  
VDD  
N/C  
•1  
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
MCLR/VPP  
OSC1/CLKIN  
3
OSC2/CLKOUT  
RC7  
MCLR/VPP  
VSS  
VSS  
4
N/C  
5
RC6  
RB7  
RB6  
RB5  
RB4  
13  
12  
RB0  
RB1  
RB2  
RB3  
RA0  
RA1  
RA2  
RA3  
RB0  
RB1  
RB2  
RB3  
RB4  
6
RC5  
RC4  
RC3  
11  
10  
7
8
RC2  
9
RC1  
RC0  
10  
11  
12  
13  
14  
RB7  
RB6  
RB5  
SSOP  
SSOP  
VSS  
1  
2
3
4
5
6
7
8
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
MCLR/VPP  
OSC1/CLKIN  
OSC2/CLKOUT  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RA2  
RA3  
T0CKI  
MCLR/VPP  
VSS  
1  
2
3
4
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
RA1  
RA0  
OSC1/CLKIN  
OSC2/CLKOUT  
T0CKI  
VDD  
VDD  
RA0  
RA1  
RA2  
RA3  
RB0  
RB1  
RB2  
RB3  
RB4  
VSS  
5
6
7
8
VDD  
VDD  
RB7  
RB6  
RB5  
RB4  
VSS  
RB0  
RB1  
9
10  
11  
12  
13  
14  
RB2  
RB3  
9
10  
RC0  
RB7  
RB6  
RB5  
DS30453B-page 2  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
Device Differences  
Device  
Oscillator  
Selection  
(Program)  
Process  
Technology  
(Microns)  
Voltage  
Range  
ROM  
Equivalent  
MCLR  
Filter  
Oscillator  
PIC16C52  
PIC16C54  
PIC16C54A  
PIC16C54B  
PIC16C54C  
PIC16C55  
PIC16C55A  
PIC16C56  
PIC16C56A  
PIC16C57  
PIC16C57C  
PIC16C58A  
3.0-6.25  
2.5-6.25  
2.0-6.25  
2.5-5.5  
User  
Factory  
User  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
0.9  
1.2  
0.9  
0.7  
0.7  
1.7  
0.7  
1.7  
0.7  
1.2  
0.7  
0.9  
PIC16CR54A  
No  
No  
No  
User  
PIC16CR54B  
PIC16CR54C  
Yes  
Yes  
No  
2.5-5.5  
User  
2.5-6.25  
2.5-5.5  
Factory  
User  
Yes  
No  
2.5-6.25  
2.5-5.5  
Factory  
User  
PIC16CR56A  
Yes  
No  
2.5-6.25  
2.5-5.5  
Factory  
User  
PIC16CR57C  
PIC16CR58A  
Yes  
(2)  
2.0-6.25  
User  
No  
PIC16C58B  
2.5-5.5  
2.5-6.25  
2.5-5.5  
2.5-5.5  
2.5-5.5  
2.5-6.25  
2.5-5.5  
2.5-6.25  
2.5-5.5  
User  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
0.7  
1.2  
0.7  
0.7  
0.7  
0.9  
0.7  
0.9  
0.7  
PIC16CR58B  
N/A  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
PIC16CR54A  
PIC16CR54B  
PIC16CR54C  
PIC16CR56A  
PIC16CR57B  
PIC16CR57C  
PIC16CR58A  
PIC16CR58B  
Factory  
Factory  
Factory  
Factory  
Factory  
Factory  
Factory  
Factory  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Note 1: If you change from this device to another device, please verify oscillator characteristics in your application.  
Note 2: In PIC16LV58A, MCLR Filter = Yes  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 3  
PIC16C5X  
Table of Contents  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
General Description.............................................................................................................................................5  
PIC16C5X Device Varieties.................................................................................................................................7  
Architectural Overview.........................................................................................................................................9  
Memory Organization ........................................................................................................................................15  
I/O Ports.............................................................................................................................................................25  
Timer0 Module and TMR0 Register...................................................................................................................27  
Special Features of the CPU .............................................................................................................................31  
Instruction Set Summary ...................................................................................................................................43  
Development Support........................................................................................................................................55  
10.0 Electrical Characteristics - PIC16C52................................................................................................................59  
11.0 Electrical Characteristics - PIC16C54/55/56/57.................................................................................................67  
12.0 DC and AC Characteristics - PIC16C54/55/56/57.............................................................................................81  
13.0 Electrical Characteristics - PIC16CR54A...........................................................................................................89  
14.0 Electrical Characteristics - PIC16C54A ...........................................................................................................103  
15.0 Electrical Characteristics - PIC16CR57B.........................................................................................................117  
16.0 Electrical Characteristics - PIC16C58A ...........................................................................................................131  
17.0 Electrical Characteristics - PIC16CR58A.........................................................................................................145  
18.0 DC and AC Characteristics - PIC16C54A/CR57B/C58A/CR58A ....................................................................159  
19.0 Electrical Characteristics -  
PIC16C54B/C54C/CR54B/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B....................................171  
20.0 DC and AC Characteristics -  
PIC16C54B/C54C/CR54B/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B....................................183  
21.0 Packaging Information.....................................................................................................................................195  
Appendix A: Compatibility ...........................................................................................................................................207  
Index .........................................................................................................................................................................209  
On-Line Support..........................................................................................................................................................211  
PIC16C5X Product Identification System....................................................................................................................213  
PIC16C54/55/56/57 Product Identification System.....................................................................................................214  
To Our Valued Customers  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please check our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.  
Errata  
An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended  
workarounds. As device/documentation issues become known to us, we will publish an errata sheet.The errata will specify the revi-  
sion of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (602) 786-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include lit-  
erature number) you are using.  
Corrections to this Data Sheet  
We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure  
that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing  
or appears in error, please:  
Fill out and mail in the reader response form in the back of this data sheet.  
E-mail us at webmaster@microchip.com.  
We appreciate your assistance in making this a better document.  
DS30453B-page 4  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
1.1  
Applications  
1.0  
GENERAL DESCRIPTION  
The PIC16C5X from Microchip Technology is a family  
of low-cost, high performance, 8-bit, fully static,  
EPROM/ ROM-based CMOS microcontrollers. It  
employs a RISC architecture with only 33 single  
word/single cycle instructions. All instructions are sin-  
gle cycle (200 ns) except for program branches which  
take two cycles. The PIC16C5X delivers performance  
an order of magnitude higher than its competitors in the  
same price category. The 12-bit wide instructions are  
highly symmetrical resulting in 2:1 code compression  
over other 8-bit microcontrollers in its class. The easy  
to use and easy to remember instruction set reduces  
development time significantly.  
The PIC16C5X series fits perfectly in applications rang-  
ing from high-speed automotive and appliance motor  
control to low-power remote transmitters/receivers,  
pointing devices and telecom processors.The EPROM  
technology makes customizing application programs  
(transmitter codes, motor speeds, receiver frequen-  
cies, etc.) extremely fast and convenient. The small  
footprint packages, for through hole or surface mount-  
ing, make this microcontroller series perfect for applica-  
tions with space limitations. Low-cost, low-power, high  
performance, ease of use and I/O flexibility make the  
PIC16C5X series very versatile even in areas where no  
microcontroller use has been considered before (e.g.,  
timer functions, replacement of “glue” logic in larger  
systems, coprocessor applications).  
The PIC16C5X products are equipped with special fea-  
tures that reduce system cost and power requirements.  
The Power-On Reset (POR) and Device Reset Timer  
(DRT) eliminate the need for external reset circuitry.  
There are four oscillator configurations to choose from,  
including the power-saving LP (Low Power) oscillator  
and cost saving RC oscillator. Power saving SLEEP  
mode, Watchdog Timer and code protection features  
improve system cost, power and reliability.  
The UV erasable CERDIP packaged versions are ideal  
for code development, while the cost-effective One  
Time Programmable (OTP) versions are suitable for  
production in any volume. The customer can take full  
advantage of Microchip’s price leadership in OTP  
microcontrollers while benefiting from the OTP’s  
flexibility.  
The PIC16C5X products are supported by  
a
full-featured macro assembler, a software simulator, an  
in-circuit emulator, a ‘C’ compiler, fuzzy logic support  
tools, a low-cost development programmer, and a full  
featured programmer. All the tools are supported on  
IBM PC and compatible machines.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 5  
PIC16C5X  
TABLE 1-1:  
PIC16C5X FAMILY OF DEVICES  
PIC16C52  
PIC16C54s  
20  
PIC16CR54s  
20  
PIC16C55s  
20  
PIC16C56s  
20  
Maximum Frequency  
of Operation (MHz)  
4
Clock  
EPROM Program Memory  
(x12 words)  
384  
512  
512  
1K  
Memory  
ROM Program Memory  
(x12 words)  
512  
RAM Data Memory (bytes)  
Timer Module(s)  
I/O Pins  
25  
25  
25  
24  
25  
Peripherals  
Features  
TMR0  
12  
TMR0  
12  
TMR0  
12  
TMR0  
20  
TMR0  
12  
Number of Instructions  
Packages  
33  
33  
33  
33  
33  
18-pin DIP,  
SOIC  
18-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
28-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
20-pin SSOP  
20-pin SSOP  
28-pin SSOP  
20-pin SSOP  
All PICmicro™ Family devices have Power-on Reset, selectable Watchdog Timer (except PIC16C52), selectable code  
protect and high I/O current capability.  
PIC16CR56s  
20  
PIC16C57s  
20  
PIC16CR57s  
20  
PIC16C58s  
20  
PIC16CR58s  
20  
Maximum Frequency  
of Operation (MHz)  
Clock  
EPROM Program Memory  
(x12 words)  
2K  
2K  
Memory  
ROM Program Memory  
(x12 words)  
1K  
2K  
2K  
RAM Data Memory (bytes)  
25  
72  
72  
73  
73  
Peripherals Timer Module(s)  
TMR0  
12  
TMR0  
20  
TMR0  
20  
TMR0  
12  
TMR0  
12  
I/O Pins  
Number of Instructions  
Packages  
33  
33  
33  
33  
33  
Features  
18-pin DIP,  
SOIC;  
28-pin DIP,  
SOIC;  
28-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
20-pin SSOP  
28-pin SSOP 28-pin SSOP  
20-pin SSOP 20-pin SSOP  
All PICmicro™ Family devices have Power-on Reset, selectable Watchdog Timer (except PIC16C52), selectable code  
protect and high I/O current capability.  
DS30453B-page 6  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
2.3  
Quick-Turnaround-Production (QTP)  
Devices  
2.0  
PIC16C5X DEVICE VARIETIES  
A variety of frequency ranges and packaging options  
are available. Depending on application and  
production requirements, the proper device option can  
be selected using the information in this section. When  
placing orders, please use the PIC16C5X Product  
Identification System at the back of this data sheet to  
specify the correct part number.  
Microchip offers a QTP Programming Service for  
factory production orders. This service is made  
available for users who choose not to program a  
medium to high quantity of units and whose code  
patterns have stabilized. The devices are identical to  
the OTP devices but with all EPROM locations and  
configuration bit options already programmed by the  
factory. Certain code and prototype verification  
procedures apply before production shipments are  
available. Please contact your Microchip Technology  
sales office for more details.  
For the PIC16C5X family of devices, there are four  
device types, as indicated in the device number:  
1. C, as in PIC16C54. These devices have  
EPROM program memory and operate over the  
standard voltage range.  
2. LC, as in PIC16LC54A. These devices have  
EPROM program memory and operate over an  
extended voltage range.  
2.4  
Serialized  
Quick-Turnaround-Production  
(SQTPSM) Devices  
3. LV, as in PIC16LV54A. These devices have  
EPROM program memory and operate over a  
2.0V to 3.8V range.  
Microchip offers the unique programming service  
where a few user-defined locations in each device are  
programmed with different serial numbers. The serial  
numbers may be random, pseudo-random or  
sequential. The devices are identical to the OTP  
devices but with all EPROM locations and  
configuration bit options already programmed by the  
factory.  
4. CR, as in PIC16CR54A. These devices have  
ROM program memory and operate over the  
standard voltage range.  
5. LCR, as in PIC16LCR54B. These devices have  
ROM program memory and operate over an  
extended voltage range.  
Serial programming allows each device to have a  
unique number which can serve as an entry code,  
password or ID number.  
2.1  
UV Erasable Devices (EPROM)  
The UV erasable versions, offered in CERDIP  
packages, are optimal for prototype development and  
pilot programs  
2.5  
Read Only Memory (ROM) Devices  
Microchip offers masked ROM versions of several of  
the highest volume parts, giving the customer a low  
cost option for high volume, mature products.  
UV erasable devices can be programmed for any of  
the four oscillator configurations. Microchip's  
PICSTART and PRO MATE programmers both  
support programming of the PIC16C5X. Third party  
programmers also are available; refer to the Third  
Party Guide for a list of sources.  
2.2  
One-Time-Programmable (OTP)  
Devices  
The availability of OTP devices is especially useful for  
customers expecting frequent code changes and  
updates.  
The OTP devices, packaged in plastic packages,  
permit the user to program them once. In addition to  
the program memory, the configuration bits must be  
programmed.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 7  
PIC16C5X  
NOTES:  
DS30453B-page 8  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
The PIC16C5X device contains an 8-bit ALU and  
3.0  
ARCHITECTURAL OVERVIEW  
working register. The ALU is  
a general purpose  
The high performance of the PIC16C5X family can be  
attributed to number of architectural features  
arithmetic unit. It performs arithmetic and Boolean  
functions between data in the working register and any  
register file.  
a
commonly found in RISC microprocessors. To begin  
with, the PIC16C5X uses a Harvard architecture in  
which program and data are accessed on separate  
buses. This improves bandwidth over traditional von  
Neumann architecture where program and data are  
fetched on the same bus. Separating program and  
data memory further allows instructions to be sized  
differently than the 8-bit wide data word. Instruction  
opcodes are 12-bits wide making it possible to have all  
The ALU is 8-bits wide and capable of addition,  
subtraction, shift and logical operations. Unless  
otherwise mentioned, arithmetic operations are two's  
complement in nature. In two-operand instructions,  
typically one operand is the W (working) register. The  
other operand is either a file register or an immediate  
constant. In single operand instructions, the operand  
is either the W register or a file register.  
single word instructions.  
A 12-bit wide program  
memory access bus fetches a 12-bit instruction in a  
single cycle. A two-stage pipeline overlaps fetch and  
execution of instructions. Consequently, all instructions  
(33) execute in a single cycle (200ns @ 20MHz)  
except for program branches.  
The W register is an 8-bit working register used for  
ALU operations. It is not an addressable register.  
Depending on the instruction executed, the ALU may  
affect the values of the Carry (C), Digit Carry (DC),  
and Zero (Z) bits in the STATUS register. The C and  
DC bits operate as a borrow and digit borrow out bit,  
respectively, in subtraction. See the SUBWFand ADDWF  
instructions for examples.  
The PIC16C52 addresses 384  
x 12 of program  
memory, the PIC16C54s/CR54s and PIC16C55s  
address 512 x 12 of program memory, the  
PIC16C56s/CR56s address 1K  
memory, and the PIC16C57s/CR57s  
PIC16C58s/CR58s address 2K x 12 of program  
memory. All program memory is internal.  
X
12 of program  
and  
A simplified block diagram is shown in Figure 3-1, with  
the corresponding device pins described in Table 3-1.  
The PIC16C5X can directly or indirectly address its  
register files and data memory. All special function  
registers including the program counter are mapped in  
the data memory. The PIC16C5X has  
a highly  
orthogonal (symmetrical) instruction set that makes it  
possible to carry out any operation on any register  
using any addressing mode. This symmetrical nature  
and lack of ‘special optimal situations’ make  
programming with the PIC16C5X simple yet efficient.  
In addition, the learning curve is reduced significantly.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 9  
PIC16C5X  
FIGURE 3-1: PIC16C5X SERIES BLOCK DIAGRAM  
9-11  
T0CKI  
PIN  
OSC1 OSC2 MCLR  
CONFIGURATION WORD  
9-11  
EPROM/ROM  
384 X 12 TO  
2048 X 12  
STACK 1  
STACK2  
“DISABLE” “OSC  
PC  
SELECT”  
WATCHDOG  
TIMER  
12  
2
“CODE  
OSCILLATOR/  
TIMING &  
CONTROL  
PROTECT”  
INSTRUCTION  
REGISTER  
WDT TIME  
OUT  
CLKOUT  
WDT/TMR0  
PRESCALER  
9
12  
8
“SLEEP”  
INSTRUCTION  
DECODER  
6
“OPTION”  
OPTION REG.  
FROM W  
DIRECT ADDRESS  
DIRECT RAM  
ADDRESS  
GENERAL  
PURPOSE  
REGISTER  
FILE  
5
5-7  
8
(SRAM)  
24, 25, 72 or  
73 Bytes  
STATUS  
TMR0  
FSR  
8
DATA BUS  
8
W
ALU  
FROM W  
8
FROM W  
4
FROM W  
8
8
4
8
“TRIS 5”  
“TRIS 6”  
“TRIS 7”  
TRISB PORTB  
TRISA PORTA  
TRISC  
PORTC  
8
4
8
RC7:RC0  
(28-Pin  
RA3:RA0  
RB7:RB0  
Devices Only)  
DS30453B-page 10  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
TABLE 3-1:  
Name  
PINOUT DESCRIPTION - PIC16C52, PIC16C54s, PIC16CR54s, PIC16C56s,  
PIC16CR56s, PIC16C58s, PIC16CR58s  
DIP, SOIC SSOP I/O/P Input  
Description  
No.  
No. Type Levels  
RA0  
RA1  
RA2  
RA3  
17  
18  
1
19  
20  
1
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
TTL  
Bi-directional I/O port  
Bi-directional I/O port  
2
2
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
6
7
8
7
8
9
10  
11  
12  
13  
14  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
9
10  
11  
12  
13  
T0CKI  
3
3
I
ST  
Clock input to Timer0. Must be tied to VSS or VDD, if not in  
use, to reduce current consumption.  
MCLR/VPP  
4
4
I
ST  
Master clear (reset) input/programming voltage input. This  
pin is an active low reset to the device. Voltage on the  
MCLR/VPP pin must not exceed VDD to avoid unintended  
entering of programming mode.  
OSC1/CLKIN  
16  
15  
18  
17  
I
ST  
Oscillator crystal input/external clock source input.  
OSC2/CLKOUT  
O
Oscillator crystal output. Connects to crystal or resonator in  
crystal oscillator mode. In RC mode, OSC2 pin outputs  
CLKOUT which has 1/4 the frequency of OSC1, and denotes  
the instruction cycle rate.  
VDD  
VSS  
14  
5
15,16  
5,6  
P
P
Positive supply for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Legend: I = input, O = output, I/O = input/output,  
P = power, — = Not Used, TTL = TTL input,  
ST = Schmitt Trigger input  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 11  
PIC16C5X  
TABLE 3-2:  
PINOUT DESCRIPTION - PIC16C55s, PIC16C57s, PIC16CR57s  
DIP, SOIC SSOP I/O/P Input  
Name  
Description  
No.  
No. Type Levels  
RA0  
RA1  
RA2  
RA3  
6
7
8
9
5
6
7
8
I/O  
I/O  
I/O  
I/O  
TTL Bi-directional I/O port  
TTL  
TTL  
TTL  
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
10  
11  
12  
13  
14  
15  
16  
17  
9
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL Bi-directional I/O port  
10  
11  
12  
13  
15  
16  
17  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
18  
19  
20  
21  
22  
23  
24  
25  
18  
19  
20  
21  
22  
23  
24  
25  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL Bi-directional I/O port  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
T0CKI  
1
2
I
ST  
Clock input to Timer0. Must be tied to VSS or VDD if not in use  
to reduce current consumption.  
MCLR  
28  
28  
I
ST  
Master clear (reset) input.This pin is an active low reset to the  
device.  
OSC1/CLKIN  
27  
26  
27  
26  
I
ST  
Oscillator crystal input/external clock source input.  
OSC2/CLKOUT  
O
Oscillator crystal output. Connects to crystal or resonator in  
crystal oscillator mode. In RC mode, OSC2 pin outputs  
CLKOUT which has 1/4 the frequency of OSC1, and denotes  
the instruction cycle rate.  
VDD  
VSS  
N/C  
2
4
3,4  
1,14  
P
P
Positive supply for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Unused, do not connect  
3,5  
Legend: I = input, O = output, I/O = input/output,  
P = power, — = Not Used,  
TTL = TTL input, ST = Schmitt Trigger input  
DS30453B-page 12  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
3.1  
Clocking Scheme/Instruction Cycle  
3.2  
Instruction Flow/Pipelining  
The clock input (OSC1/CLKIN pin) is internally divided  
by four to generate four non-overlapping quadrature  
clocks namely Q1, Q2, Q3 and Q4. Internally, the  
program counter is incremented every Q1, and the  
instruction is fetched from program memory and  
latched into instruction register in Q4. It is decoded  
and executed during the following Q1 through Q4. The  
clocks and instruction execution flow is shown in  
Figure 3-2 and Example 3-1.  
An Instruction Cycle consists of four Q cycles (Q1, Q2,  
Q3 and Q4). The instruction fetch and execute are  
pipelined such that fetch takes one instruction cycle  
while decode and execute takes another instruction  
cycle. However, due to the pipelining, each instruction  
effectively executes in one cycle. If an instruction  
causes the program counter to change (e.g., GOTO)  
then two cycles are required to complete the  
instruction (Example 3-1).  
A fetch cycle begins with the program counter (PC)  
incrementing in Q1.  
In the execution cycle, the fetched instruction is  
latched into the Instruction Register (IR) in cycle Q1.  
This instruction is then decoded and executed during  
the Q2, Q3, and Q4 cycles. Data memory is read  
during Q2 (operand read) and written during Q4  
(destination write).  
FIGURE 3-2: CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Q4  
PC  
Internal  
phase  
clock  
PC  
PC+1  
PC+2  
OSC2/CLKOUT  
(RC mode)  
Fetch INST (PC)  
Execute INST (PC-1)  
Fetch INST (PC+1)  
Execute INST (PC)  
Fetch INST (PC+2)  
Execute INST (PC+1)  
EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW  
1. MOVLW 55H  
Fetch 1  
Execute 1  
Fetch 2  
2. MOVWF PORTB  
3. CALL SUB_1  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3  
Flush  
Fetch SUB_1 Execute SUB_1  
All instructions are single cycle, except for any program branches. These take two cycles since the fetch  
instruction is “flushed” from the pipeline while the new instruction is being fetched and then executed.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 13  
 
 
PIC16C5X  
NOTES:  
DS30453B-page 14  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
FIGURE 4-2: PIC16C54s/CR54s/C55s  
4.0  
MEMORY ORGANIZATION  
PROGRAM MEMORY MAP  
AND STACK  
PIC16C5X memory is organized into program memory  
and data memory. For devices with more than 512  
bytes of program memory, a paging scheme is used.  
Program memory pages are accessed using one or  
two STATUS register bits. For devices with a data  
memory register file of more than 32 registers, a  
banking scheme is used. Data memory banks are  
accessed using the File Selection Register (FSR).  
PC<8:0>  
9
CALL, RETLW  
Stack Level 1  
Stack Level 2  
000h  
4.1  
Program Memory Organization  
On-chip  
Program  
Memory  
0FFh  
100h  
The PIC16C52 has a 9-bit Program Counter (PC)  
capable of addressing a 384 x 12 program memory  
space (Figure 4-1). The PIC16C54s, PIC16CR54s and  
PIC16C55s have a 9-bit Program Counter (PC)  
capable of addressing a 512 x 12 program memory  
space (Figure 4-2). The PIC16C56s and PIC16CR56s  
have a 10-bit Program Counter (PC) capable of  
addressing a 1K x 12 program memory space  
(Figure 4-3). The PIC16CR57s, PIC16C58s and  
PIC16CR58s have an 11-bit Program Counter capable  
of addressing a 2K x 12 program memory space  
(Figure 4-4). Accessing a location above the physically  
implemented address will cause a wraparound.  
Reset Vector  
1FFh  
FIGURE 4-3: PIC16C56s/CR56s  
PROGRAM MEMORY MAP  
AND STACK  
PC<9:0>  
10  
CALL, RETLW  
The reset vector for the PIC16C52 is at 17Fh. A NOP  
at the reset vector location will cause a restart at  
location 000h. The reset vector for the PIC16C54s,  
PIC16CR54s and PIC16C55s is at 1FFh. The reset  
vector for the PIC16C56s and PIC16CR56s is at  
3FFh. The reset vector for the PIC16C57s,  
PIC16CR57s, PIC16C58s, and PIC16CR58s is at  
7FFh.  
Stack Level 1  
Stack Level 2  
000h  
On-chip Program  
Memory (Page 0)  
0FFh  
100h  
1FFh  
200h  
On-chip Program  
Memory (Page 1)  
2FFh  
300h  
FIGURE 4-1: PIC16C52 PROGRAM  
MEMORY MAP AND STACK  
PC<8:0>  
Reset Vector  
3FFh  
9
CALL, RETLW  
Stack Level 1  
Stack Level 2  
000h  
On-chip Program  
Memory  
Reset Vector  
17Fh  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 15  
 
 
 
PIC16C5X  
FIGURE 4-4: PIC16C57s/CR57s/C58s/  
CR58s PROGRAM MEMORY  
MAP AND STACK  
PC<10:0>  
11  
CALL, RETLW  
Stack Level 1  
Stack Level 2  
000h  
On-chip Program  
0FFh  
Memory (Page 0)  
100h  
1FFh  
200h  
On-chip Program  
2FFh  
Memory (Page 1)  
300h  
3FFh  
400h  
On-chip Program  
4FFh  
Memory (Page 2)  
500h  
5FFh  
600h  
On-chip Program  
6FFh  
Memory (Page 3)  
700h  
Reset Vector  
7FFh  
DS30453B-page 16  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
4.2  
Data Memory Organization  
FIGURE 4-5: PIC16C52, PIC16C54s,  
PIC16CR54s, PIC16C55s,  
PIC16C56s, PIC16CR56s  
REGISTER FILE MAP  
Data memory is composed of registers, or bytes of  
RAM. Therefore, data memory for a device is specified  
by its register file. The register file is divided into two  
functional groups: special function registers and  
general purpose registers.  
File Address  
INDF(1)  
TMR0  
PCL  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
The special function registers include the TMR0  
register, the Program Counter (PC), the Status  
Register, the I/O registers (ports), and the File Select  
Register (FSR). In addition, special purpose registers  
are used to control the I/O port configuration and  
prescaler options.  
STATUS  
FSR  
PORTA  
PORTB  
The general purpose registers are used for data and  
control information under command of the instructions.  
PORTC(2)  
For the PIC16C52, PIC16C54s, PIC16CR54s,  
PIC16C56s and PIC16CR56s, the register file is  
composed of 7 special function registers and 25  
general purpose registers (Figure 4-5).  
General  
Purpose  
Registers  
0Fh  
10h  
For the PIC16C55s, the register file is composed of 8  
special function registers and 24 general purpose  
registers.  
For the PIC16C57s and PIC16CR57s, the register file  
is composed of 8 special function registers, 24 general  
purpose registers and up to 48 additional general  
purpose registers that may be addressed using a  
banking scheme (Figure 4-6).  
1Fh  
Note 1: Not a physical register. See Section 4.7  
2: PIC16C55s only, others are a general  
purpose register.  
For the PIC16C58s and PIC16CR58s, the register file  
is composed of 7 special function registers, 25 general  
purpose registers and up to 48 additional general  
purpose registers that may be addressed using a  
banking scheme (Figure 4-7).  
4.2.1  
GENERAL PURPOSE REGISTER FILE  
The register file is accessed either directly or indirectly  
through the file select register FSR (Section 4.7).  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 17  
 
PIC16C5X  
FIGURE 4-6: PIC16C57s/CR57s REGISTER FILE MAP  
FSR<6:5>  
File Address  
00h  
00  
01  
10  
11  
INDF(1)  
TMR0  
PCL  
20h  
40h  
60h  
01h  
02h  
03h  
04h  
05h  
06h  
STATUS  
FSR  
Addresses map back to  
addresses in Bank 0.  
PORTA  
PORTB  
07h  
08h  
PORTC  
General  
Purpose  
Registers  
2Fh  
30h  
4Fh  
50h  
6Fh  
0Fh  
10h  
1Fh  
70h  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
3Fh  
5Fh  
7Fh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Note 1: Not a physical register. See Section 4.7  
FIGURE 4-7: PIC16C58s/CR58s REGISTER FILE MAP  
FSR<6:5>  
File Address  
00h  
00  
01  
10  
11  
INDF(1)  
TMR0  
PCL  
20h  
40h  
60h  
01h  
02h  
03h  
04h  
05h  
STATUS  
FSR  
Addresses map back to  
addresses in Bank 0.  
PORTA  
PORTB  
06h  
07h  
General  
Purpose  
Registers  
2Fh  
30h  
4Fh  
50h  
6Fh  
0Fh  
10h  
1Fh  
70h  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
3Fh  
5Fh  
7Fh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Note 1: Not a physical register. See Section 4.7  
DS30453B-page 18  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
4.2.2  
SPECIAL FUNCTION REGISTERS  
The special registers can be classified into two sets.  
The special function registers associated with the  
“core” functions are described in this section. Those  
related to the operation of the peripheral features are  
described in the section for each peripheral feature.  
The Special Function Registers are registers used by  
the CPU and peripheral functions to control the  
operation of the device (Table 4-1).  
TABLE 4-1:  
SPECIAL FUNCTION REGISTER SUMMARY  
Value on  
Power-On  
Reset  
Value on  
MCLR and  
WDT Reset  
Address  
Name  
TRIS  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
N/A  
N/A  
00h  
01h  
I/O control registers (TRISA, TRISB, TRISC)  
1111 1111 1111 1111  
--11 1111 --11 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
OPTION  
INDF  
Contains control bits to configure Timer0 and Timer0/WDT prescaler  
Uses contents of FSR to address data memory (not a physical register)  
8-bit real-time clock/counter  
TMR0  
(1)  
02h  
PCL  
Low order 8 bits of PC  
1111 1111 1111 1111  
0001 1xxx 000q quuu  
1xxx xxxx 1uuu uuuu  
---- xxxx ---- uuuu  
xxxx xxxx uuuu uuuu  
03h  
04h  
05h  
06h  
STATUS  
FSR  
PA2  
PA1  
PA0  
TO  
PD  
Z
DC  
C
Indirect data memory address pointer  
PORTA  
PORTB  
RA3  
RB3  
RA2  
RB2  
RA1  
RB1  
RA0  
RB0  
RB7  
RB6  
RB5  
RB4  
(2)  
07h  
PORTC  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
xxxx xxxx uuuu uuuu  
Legend: Shaded boxes = unimplemented or unused, = unimplemented, read as '0' (if applicable)  
x= unknown, u= unchanged, q= see the tables in Section 7.7 for possible values.  
Note 1: The upper byte of the Program Counter is not directly accessible. See Section 4.5  
for an explanation of how to access these bits.  
2: File address 07h is a general purpose register on the PIC16C52, PIC16C54s, PIC16CR54s, PIC16C56s, PIC16CR56s,  
PIC16C58s and PIC16CR58s.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 19  
PIC16C5X  
not writable. Therefore, the result of an instruction with  
the STATUS register as destination may be different  
than intended.  
4.3  
STATUS Register  
This register contains the arithmetic status of the ALU,  
the RESET status, and the page preselect bits for  
program memories larger than 512 words.  
For example, CLRF STATUSwill clear the upper three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
The STATUS register can be the destination for any  
instruction, as with any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to  
the device logic. Furthermore, the TO and PD bits are  
It is recommended, therefore, that only BCF, BSFand  
MOVWFinstructions be used to alter the STATUS  
register because these instructions do not affect the Z,  
DC or C bits from the STATUS register. For other  
instructions, which do affect STATUS bits, see  
Section 8.0, Instruction Set Summary.  
FIGURE 4-8: STATUS REGISTER (ADDRESS:03h)  
R/W-0  
PA2  
R/W-0  
PA1  
R/W-0  
PA0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
R = Readable bit  
W = Writable bit  
- n = Value at POR reset  
bit7  
6
5
4
3
2
1
bit0  
bit 7:  
PA2: This bit unused at this time.  
Use of the PA2 bit as a general purpose read/write bit is not recommended, since this may affect upward  
compatibility with future products.  
bit 6-5: PA1:PA0: Program page preselect bits (PIC16C56s/CR56s)(PIC16C57s/CR57s)(PIC16C58s/CR58s)  
00 = Page 0 (000h - 1FFh) - PIC16C56s/CR56s, PIC16C57s/CR57s, PIC16C58s/CR58s  
01 = Page 1 (200h - 3FFh) - PIC16C56s/CR56s, PIC16C57s/CR57s, PIC16C58s/CR58s  
10 = Page 2 (400h - 5FFh) - PIC16C57s/CR57s, PIC16C58s/CR58s  
11 = Page 3 (600h - 7FFh) - PIC16C57s/CR57s, PIC16C58s/CR58s  
Each page is 512 words.  
Using the PA1:PA0 bits as general purpose read/write bits in devices which do not use them for program  
page preselect is not recommended since this may affect upward compatibility with future products.  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
TO: Time-out bit  
1 = After power-up, CLRWDTinstruction, or SLEEPinstruction  
0 = A WDT time-out occurred  
PD: Power-down bit  
1 = After power-up or by the CLRWDTinstruction  
0 = By execution of the SLEEPinstruction  
Z: Zero bit  
1 = The result of an arithmetic or logic operation is zero  
0 = The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (for ADDWFand SUBWFinstructions)  
ADDWF  
1 = A carry from the 4th low order bit of the result occurred  
0 = A carry from the 4th low order bit of the result did not occur  
SUBWF  
1 = A borrow from the 4th low order bit of the result did not occur  
0 = A borrow from the 4th low order bit of the result occurred  
bit 0:  
C: Carry/borrow bit (for ADDWF, SUBWFand RRF, RLFinstructions)  
ADDWF  
SUBWF  
RRF or RLF  
1 = A carry occurred  
0 = A carry did not occur  
1 = A borrow did not occur  
0 = A borrow occurred  
Load bit with LSb or MSb, respectively  
DS30453B-page 20  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
By executing the OPTIONinstruction, the contents of  
the W register will be transferred to the OPTION  
register. A RESET sets the OPTION<5:0> bits.  
4.4  
OPTION Register  
The OPTION register is a 6-bit wide, write-only  
register which contains various control bits to  
configure the Timer0/WDT prescaler and Timer0.  
FIGURE 4-9: OPTION REGISTER  
U-0  
U-0  
6
W-1  
T0CS  
5
W-1  
T0SE  
4
W-1  
PSA  
3
W-1  
PS2  
2
W-1  
PS1  
1
W-1  
PS0  
W
U
= Writable bit  
= Unimplemented bit  
bit7  
bit0  
- n = Value at POR reset  
bit 7-6: Unimplemented.  
bit 5:  
bit 4:  
bit 3:  
T0CS: Timer0 clock source select bit  
1 = Transition on T0CKI pin  
0 = Internal instruction cycle clock (CLKOUT)  
T0SE: Timer0 source edge select bit  
1 = Increment on high-to-low transition on T0CKI pin  
0 = Increment on low-to-high transition on T0CKI pin  
PSA: Prescaler assignment bit  
1 = Prescaler assigned to the WDT (not implemented on PIC16C52)  
0 = Prescaler assigned to Timer0  
bit 2-0: PS2:PS0: Prescaler rate select bits  
Bit Value  
Timer0 Rate WDT Rate (not implemented on PIC16C52)  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 21  
PIC16C5X  
4.5  
Program Counter  
FIGURE 4-10: LOADING OF PC  
BRANCH INSTRUCTIONS -  
As a program instruction is executed, the Program  
Counter (PC) will contain the address of the next  
program instruction to be executed. The PC value is  
increased by one every instruction cycle, unless an  
instruction changes the PC.  
PIC16C52, PIC16C54s,  
PIC16CR54s, PIC16C55s  
GOTO Instruction  
8
7
0
For a GOTOinstruction, bits 8:0 of the PC are provided  
by the GOTOinstruction word. The PC Latch (PCL) is  
mapped to PC<7:0> (Figure 4-10 and Figure 4-11).  
PCL  
PC  
Instruction Word  
For the PIC16C56s, PIC16CR56s, PIC16C57s,  
PIC16CR57s, PIC16C58s and PIC16CR58s, a page  
number must be supplied as well. Bit5 and bit6 of the  
STATUS register provide page information to bit9 and  
bit10 of the PC (Figure 4-11 and Figure 4-12).  
CALL or Modify PCL Instruction  
8
7
0
PCL  
PC  
For a CALLinstruction, or any instruction where the  
PCL is the destination, bits 7:0 of the PC again are  
provided by the instruction word. However, PC<8>  
does not come from the instruction word, but is always  
cleared (Figure 4-10 and Figure 4-11).  
Reset to '0'  
Instruction Word  
FIGURE 4-11: LOADING OF PC  
BRANCH INSTRUCTIONS -  
PIC16C56s/PIC16CR56s  
Instructions where the PCL is the destination, or  
Modify PCL instructions, include MOVWF PC, ADDWF  
PC,and BSF PC,5.  
GOTO Instruction  
For the PIC16C56s, PIC16CR56s, PIC16C57s,  
PIC16CR57s, PIC16C58s and PIC16CR58s, a page  
number again must be supplied. Bit5 and bit6 of the  
STATUS register provide page information to bit9 and  
bit10 of the PC (Figure 4-11 and Figure 4-12).  
10  
9
8
7
0
PC  
PCL  
Instruction Word  
Note: Because PC<8> is cleared in the CALL  
instruction, or any Modify PCL instruction,  
all subroutine calls or computed jumps are  
limited to the first 256 locations of any pro-  
gram memory page (512 words long).  
2
PA1:PA0  
7
0
STATUS  
CALL or Modify PCL Instruction  
10  
9
8
7
0
PC  
PCL  
Instruction Word  
Reset to ‘0’  
PA1:PA0  
2
7
0
STATUS  
DS30453B-page 22  
Preliminary  
1998 Microchip Technology Inc.  
 
 
PIC16C5X  
4.5.1  
PAGING CONSIDERATIONS –  
PIC16C56s/CR56s, PIC16C57s/CR57sAND  
PIC16C58s/CR58s  
FIGURE 4-12: LOADING OF PC  
BRANCH INSTRUCTIONS -  
PIC16C57s/PIC16CR57s, AND  
PIC16C58s/PIC16CR58s  
If the Program Counter is pointing to the last address  
of a selected memory page, when it increments it will  
cause the program to continue in the next higher page.  
However, the page preselect bits in the STATUS  
register will not be updated. Therefore, the next GOTO,  
CALL, or Modify PCL instruction will send the program  
to the page specified by the page preselect bits (PA0  
or PA1:PA0).  
GOTO Instruction  
10  
9
8
7
0
PC  
PCL  
Instruction Word  
2
PA1:PA0  
7
0
For example, a NOP at location 1FFh (page 0)  
increments the PC to 200h (page 1). A GOTO xxxat  
200h will return the program to address 0xxh on page  
0 (assuming that PA1:PA0 are clear).  
STATUS  
To prevent this, the page preselect bits must be  
updated under program control.  
CALL or Modify PCL Instruction  
10  
9
8
7
0
PC  
PCL  
4.5.2  
EFFECTS OF RESET  
The Program Counter is set upon a RESET, which  
means that the PC addresses the last location in the  
last page i.e., the reset vector.  
Instruction Word  
Reset to ‘0’  
PA1:PA0  
The STATUS register page preselect bits are cleared  
upon a RESET, which means that page 0 is  
pre-selected.  
2
7
0
STATUS  
Therefore, upon a RESET, a GOTOinstruction at the  
reset vector location will automatically cause the  
program to jump to page 0.  
4.6  
Stack  
PIC16C5X devices have a 9-bit, 10-bit or 11-bit wide,  
two-level hardware push/pop stack (Figure 4-2,  
Figure 4-1, and Figure 4-3 respectively).  
A CALLinstruction will push the current value of stack  
1 into stack 2 and then push the current program  
counter value, incremented by one, into stack level 1. If  
more than two sequential CALL’s are executed, only  
the most recent two return addresses are stored.  
A RETLWinstruction will pop the contents of stack level  
1 into the program counter and then copy stack level 2  
contents into level 1. If more than two sequential  
RETLW’s are executed, the stack will be filled with the  
address previously stored in level 2. Note that the  
W register will be loaded with the literal value specified  
in the instruction. This is particularly useful for the  
implementation of data look-up tables within the  
program memory.  
For the RETLWinstruction, the PC is loaded with the  
Top Of Stack (TOS) contents. All of the devices  
covered in this data sheet have a two-level stack. The  
stack has the same bit width as the device PC.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 23  
PIC16C5X  
4.7  
Indirect Data Addressing; INDF and  
FSR Registers  
EXAMPLE 4-2: HOW TO CLEAR RAM  
USING INDIRECT  
ADDRESSING  
The INDF register is not a physical register.  
Addressing INDF actually addresses the register  
whose address is contained in the FSR register (FSR  
is a pointer). This is indirect addressing.  
movlw 0x10  
;initialize pointer  
movwf FSR  
; to RAM  
NEXT  
clrf  
incf  
INDF  
;clear INDF register  
FSR,F ;inc pointer  
btfsc FSR,4 ;all done?  
goto  
NEXT  
;NO, clear next  
EXAMPLE 4-1: INDIRECT ADDRESSING  
• Register file 05 contains the value 10h  
• Register file 06 contains the value 0Ah  
• Load the value 05 into the FSR register  
• A read of the INDF register will return the value  
of 10h  
• Increment the value of the FSR register by one  
(FSR = 06h)  
• A read of the INDR register now will return the  
value of 0Ah.  
CONTINUE  
:
;YES, continue  
The FSR is either a 5-bit (PIC16C52, PIC16C54s,  
PIC16CR54s, PIC16C55s), 6-bit (PIC16C56s,  
PIC16CR56s), or 7-bit (PIC16C57s, PIC16CR57s,  
PIC16C58s, PIC16CR58s) wide register. It is used in  
conjunction with the INDF register to indirectly address  
the data memory area.  
The FSR<4:0> bits are used to select data memory  
addresses 00h to 1Fh.  
Reading INDF itself indirectly (FSR = 0) will produce  
00h. Writing to the INDF register indirectly results in a  
no-operation (although STATUS bits may be affected).  
PIC16C52, PIC16C54s, PIC16CR54s, PIC16C55s:  
These do not use banking. FSR<6:5> are  
unimplemented and read as '1's.  
A simple program to clear RAM locations 10h-1Fh  
using indirect addressing is shown in Example 4-2.  
PIC16C57s,  
PIC16CR57s,  
PIC16C58s,  
PIC16CR58s: FSR<6:5> are the bank select bits and  
are used to select the bank to be addressed (00=  
bank 0, 01= bank 1, 10= bank 2, 11= bank 3).  
FIGURE 4-13: DIRECT/INDIRECT ADDRESSING  
Direct Addressing  
Indirect Addressing  
(FSR)  
4
(opcode)  
0
5
(FSR)  
0
6
4
5
6
location select  
bank select  
location select  
bank  
00  
01  
10  
11  
00h  
Addresses map back  
to addresses in Bank 0.  
Data  
Memory  
0Fh  
10h  
(1)  
1Fh  
Bank 0  
3Fh  
Bank 1  
5Fh  
Bank 2  
7Fh  
Bank 3  
Note 1: For register map detail see Section 4.2.  
DS30453B-page 24  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16C5X  
5.5  
I/O Interfacing  
5.0  
I/O PORTS  
As with any other register, the I/O registers can be  
written and read under program control. However, read  
instructions (e.g., MOVF PORTB,W) always read the I/O  
pins independent of the pin’s input/output modes. On  
RESET, all I/O ports are defined as input (inputs are at  
hi-impedance) since the I/O control registers (TRISA,  
TRISB, TRISC) are all set.  
The equivalent circuit for an I/O port pin is shown in  
Figure 5-1. All ports may be used for both input and  
output operation. For input operations these ports are  
non-latching. Any input must be present until read by  
an input instruction (e.g., MOVF PORTB, W). The  
outputs are latched and remain unchanged until the  
output latch is rewritten. To use a port pin as output,  
the corresponding direction control bit (in TRISA,  
TRISB) must be cleared (= 0). For use as an input, the  
corresponding TRIS bit must be set. Any I/O pin can  
be programmed individually as input or output.  
5.1  
PORTA  
PORTA is a 4-bit I/O register. Only the low order 4 bits  
are used (RA3:RA0). Bits 7-4 are unimplemented and  
read as '0's.  
FIGURE 5-1: EQUIVALENT CIRCUIT  
FOR A SINGLE I/O PIN  
5.2  
PORTB  
Data  
Bus  
PORTB is an 8-bit I/O register (PORTB<7:0>).  
D
Q
Q
Data  
Latch  
5.3  
PORTC  
VDD  
P
WR  
Port  
CK  
PORTC is an 8-bit I/O register for PIC16C55s,  
PIC16C57s and PIC16CR57s.  
PORTC is a general purpose register for PIC16C52,  
PIC16C54s, PIC16CR54s, PIC16C56s, PIC16C58s  
and PIC16CR58s.  
N
I/O  
pin(1)  
W
Reg  
D
Q
Q
TRIS  
Latch  
VSS  
5.4  
TRIS Registers  
TRIS ‘f’  
CK  
The output driver control registers are loaded with the  
contents of the W register by executing the TRIS f  
instruction. A '1' from a TRIS register bit puts the  
corresponding output driver in a hi-impedance mode.  
A '0' puts the contents of the output data latch on the  
selected pins, enabling the output buffer.  
Reset  
Note:  
A read of the ports reads the pins, not the  
output data latches. That is, if an output  
driver on a pin is enabled and driven high,  
but the external system is holding it low, a  
read of the port will indicate that the pin is  
low.  
RD Port  
Note 1: I/O pins have protection diodes to VDD and VSS.  
The TRIS registers are “write-only” and are set (output  
drivers disabled) upon RESET.  
TABLE 5-1:  
SUMMARY OF PORT REGISTERS  
Value on  
Power-On  
Reset  
Value on  
MCLR and  
WDT Reset  
Address  
Name  
TRIS  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
N/A  
05h  
06h  
07h  
I/O control registers (TRISA, TRISB, TRISC)  
1111 1111 1111 1111  
---- xxxx ---- uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
PORTA  
PORTB  
PORTC  
RA3  
RB3  
RC3  
RA2  
RB2  
RC2  
RA1  
RB1  
RC1  
RA0  
RB0  
RC0  
RB7  
RC7  
RB6  
RC6  
RB5  
RC5  
RB4  
RC4  
Legend: Shaded boxes = unimplemented, read as ‘0’,  
= unimplemented, read as '0', x= unknown, u= unchanged  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 25  
PIC16C5X  
5.6  
I/O Programming Considerations  
BI-DIRECTIONAL I/O PORTS  
EXAMPLE 5-1: READ-MODIFY-WRITE  
INSTRUCTIONS ON AN  
I/O PORT  
;Initial PORT Settings  
; PORTB<7:4> Inputs  
5.6.1  
Some instructions operate internally as read followed  
by write operations. The BCFand BSFinstructions, for  
example, read the entire port into the CPU, execute  
the bit operation and re-write the result. Caution must  
be used when these instructions are applied to a port  
where one or more pins are used as input/outputs. For  
example, a BSFoperation on bit5 of PORTB will cause  
all eight bits of PORTB to be read into the CPU, bit5 to  
be set and the PORTB value to be written to the output  
; PORTB<3:0> Outputs  
;PORTB<7:6> have external pull-ups and are  
;not connected to other circuitry  
;
;
;
PORT latch PORT pins  
---------- ----------  
BCF  
BCF  
MOVLW 03Fh  
TRIS PORTB  
PORTB, 7  
PORTB, 6  
;01pp pppp  
;10pp pppp  
;
11pp pppp  
11pp pppp  
latches. If another bit of PORTB is used as  
a
;10pp pppp  
10pp pppp  
bi-directional I/O pin (say bit0) and it is defined as an  
input at this time, the input signal present on the pin  
itself would be read into the CPU and rewritten to the  
data latch of this particular pin, overwriting the  
previous content. As long as the pin stays in the input  
mode, no problem occurs. However, if bit0 is switched  
into output mode later on, the content of the data latch  
may now be unknown.  
;
;Note that the user may have expected the pin  
;values to be 00pp pppp. The 2nd BCF caused  
;RB7 to be latched as the pin value (High).  
5.6.2  
SUCCESSIVE OPERATIONS ON I/O  
PORTS  
The actual write to an I/O port happens at the end of  
an instruction cycle, whereas for reading, the data  
must be valid at the beginning of the instruction cycle  
(Figure 5-2). Therefore, care must be exercised if a  
write followed by a read operation is carried out on the  
same I/O port. The sequence of instructions should  
allow the pin voltage to stabilize (load dependent)  
before the next instruction, which causes that file to be  
read into the CPU, is executed. Otherwise, the  
previous state of that pin may be read into the CPU  
rather than the new state. When in doubt, it is better to  
separate these instructions with a NOP or another  
instruction not accessing this I/O port.  
Example 5-1 shows the effect of two sequential  
read-modify-write instructions (e.g., BCF, BSF, etc.) on  
an I/O port.  
A pin actively outputting a high or a low should not be  
driven from external devices at the same time in order  
to change the level on this pin (“wired-or”, “wired-and”).  
The resulting high output currents may damage the  
chip.  
FIGURE 5-2: SUCCESSIVE I/O OPERATION  
Q4  
Q4  
Q4  
Q1 Q2  
Q4  
Q3  
Q3  
Q3  
Q3  
Q1 Q2  
PC  
Q1 Q2  
Q1 Q2  
PC + 3  
NOP  
PC + 1  
PC + 2  
NOP  
Instruction  
fetched  
MOVWF PORTB MOVF PORTB,W  
This example shows a write  
to PORTB followed by a read  
from PORTB.  
RB7:RB0  
Port pin  
written here  
Port pin  
sampled here  
Instruction  
executed  
MOVWF PORTB MOVF PORTB,W  
NOP  
(Write to  
PORTB)  
(Read  
PORTB)  
DS30453B-page 26  
Preliminary  
1998 Microchip Technology Inc.  
 
 
PIC16C5X  
Counter mode is selected by setting the T0CS bit  
(OPTION<5>). In this mode, Timer0 will increment  
either on every rising or falling edge of pin T0CKI. The  
incrementing edge is determined by the source edge  
select bit T0SE (OPTION<4>). Clearing the T0SE bit  
selects the rising edge. Restrictions on the external  
clock input are discussed in detail in Section 6.1.  
6.0  
TIMER0 MODULE AND  
TMR0 REGISTER  
The Timer0 module has the following features:  
• 8-bit timer/counter register, TMR0  
- Readable and writable  
• 8-bit software programmable prescaler  
• Internal or external clock select  
- Edge select for external clock  
The prescaler may be used by either the Timer0  
module or the Watchdog Timer, but not both. The  
prescaler assignment is controlled in software by the  
control bit PSA (OPTION<3>). Clearing the PSA bit  
will assign the prescaler to Timer0. The prescaler is  
not readable or writable. When the prescaler is  
assigned to the Timer0 module, prescale values of 1:2,  
1:4,..., 1:256 are selectable. Section 6.2 details the  
operation of the prescaler.  
Figure 6-1 is a simplified block diagram of the Timer0  
module, while Figure 6-2 shows the electrical structure  
of the Timer0 input.  
Timer mode is selected by clearing the T0CS bit  
(OPTION<5>). In timer mode, the Timer0 module will  
increment every instruction cycle (without prescaler). If  
TMR0 register is written, the increment is inhibited for  
the following two cycles (Figure 6-3 and Figure 6-4).  
The user can work around this by writing an adjusted  
value to the TMR0 register.  
A summary of registers associated with the Timer0  
module is found in Table 6-1.  
FIGURE 6-1: TIMER0 BLOCK DIAGRAM  
Data bus  
FOSC/4  
0
1
PSout  
8
1
0
Sync with  
Internal  
Clocks  
TMR0 reg  
T0CKI  
pin  
Programmable  
PSout  
Sync  
(2)  
Prescaler  
(1)  
(2 cycle delay)  
T0SE  
3
(1)  
(1)  
PS2, PS1, PS0  
PSA  
(1)  
T0CS  
Note 1: Bits T0CS, T0SE, PSA, PS2, PS1 and PS0 are located in the OPTION register.  
2: The prescaler is shared with the Watchdog Timer (Figure 6-6).  
FIGURE 6-2: ELECTRICAL STRUCTURE OF T0CKI PIN  
RIN  
T0CKI  
pin  
(1)  
Schmitt Trigger  
Input Buffer  
N
(1)  
VSS  
VSS  
Note 1: ESD protection circuits  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 27  
 
 
PIC16C5X  
FIGURE 6-3: TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALE  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
(Program  
Counter)  
PC-1  
PC  
PC+1  
PC+2  
PC+3  
PC+4  
PC+5  
PC+6  
Instruction  
Fetch  
MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W  
MOVWF TMR0  
T0  
T0+1  
T0+2  
NT0  
NT0  
NT0  
NT0+1  
NT0+2  
Timer0  
Instruction  
Executed  
Read TMR0  
reads NT0 + 1  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0 + 2  
Write TMR0  
executed  
FIGURE 6-4: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
(Program  
Counter)  
PC-1  
PC  
PC+1  
PC+2  
PC+3  
PC+4  
PC+5  
PC+6  
MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W  
MOVWF TMR0  
Instruction  
Fetch  
T0  
T0+1  
NT0+1  
NT0  
Timer0  
Instruction  
Execute  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0 + 1  
Write TMR0  
executed  
TABLE 6-1:  
Address  
REGISTERS ASSOCIATED WITH TIMER0  
Value on  
Power-On  
Reset  
Value on  
MCLR and  
WDT Reset  
Name  
Bit 7  
Timer0 - 8-bit real-time clock/counter  
T0CS T0SE PSA  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
01h  
N/A  
TMR0  
xxxx xxxx uuuu uuuu  
OPTION  
PS2  
PS1  
PS0 --11 1111 --11 1111  
Legend: Shaded cells: Unimplemented bits,  
-= unimplemented, x = unknown, u= unchanged,  
DS30453B-page 28  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
When a prescaler is used, the external clock input is  
divided by the asynchronous ripple counter-type  
prescaler so that the prescaler output is symmetrical.  
For the external clock to meet the sampling  
requirement, the ripple counter must be taken into  
account. Therefore, it is necessary for T0CKI to have a  
period of at least 4TOSC (and a small RC delay of  
40 ns) divided by the prescaler value. The only  
requirement on T0CKI high and low time is that they  
do not violate the minimum pulse width requirement of  
10 ns. Refer to parameters 40, 41 and 42 in the  
electrical specification of the desired device.  
6.1  
Using Timer0 with an External Clock  
When an external clock input is used for Timer0, it  
must meet certain requirements. The external clock  
requirement is due to internal phase clock (TOSC)  
synchronization. Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
6.1.1  
EXTERNAL CLOCK SYNCHRONIZATION  
When no prescaler is used, the external clock input is  
the same as the prescaler output. The synchronization  
of T0CKI with the internal phase clocks is  
accomplished by sampling the prescaler output on the  
Q2 and Q4 cycles of the internal phase clocks  
(Figure 6-5). Therefore, it is necessary for T0CKI to be  
high for at least 2TOSC (and a small RC delay of 20 ns)  
and low for at least 2TOSC (and a small RC delay of  
20 ns). Refer to the electrical specification of the  
desired device.  
6.1.2  
TIMER0 INCREMENT DELAY  
Since the prescaler output is synchronized with the  
internal clocks, there is a small delay from the time the  
external clock edge occurs to the time the Timer0  
module is actually incremented. Figure 6-5 shows the  
delay from the external clock edge to the timer  
incrementing.  
FIGURE 6-5: TIMER0 TIMING WITH EXTERNAL CLOCK  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Small pulse  
External Clock Input or  
misses sampling  
Prescaler Output (2)  
(1)  
External Clock/Prescaler  
Output After Sampling  
(3)  
Increment Timer0 (Q4)  
Timer0  
T0  
T0 + 1  
T0 + 2  
Note 1: Delay from clock input change to Timer0 increment is 3Tosc to 7Tosc. (Duration of Q = Tosc).  
Therefore, the error in measuring the interval between two edges on Timer0 input = ± 4Tosc max.  
2: External clock if no prescaler selected, Prescaler output otherwise.  
3: The arrows indicate the points in time where sampling occurs.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 29  
 
PIC16C5X  
following instruction sequence (Example 6-1) must be  
executed when changing the prescaler assignment from  
Timer0 to the WDT.  
6.2  
Prescaler  
An 8-bit counter is available as a prescaler for the  
Timer0 module, or as a postscaler for the Watchdog  
Timer (WDT) (WDT postscaler not implemented on  
PIC16C52), respectively (Section 6.1.2). For simplicity,  
this counter is being referred to as “prescaler”  
throughout this data sheet. Note that the prescaler  
may be used by either the Timer0 module or the WDT,  
but not both. Thus, a prescaler assignment for the  
Timer0 module means that there is no prescaler for  
the WDT, and vice-versa.  
EXAMPLE 6-1: CHANGING PRESCALER  
(TIMER0WDT)  
1.CLRWDT  
2.CLRF  
;Clear WDT  
TMR0  
;Clear TMR0 & Prescaler  
3.MOVLW '00xx1111’b ;These 3 lines (5, 6, 7)  
4.OPTION  
; are required only if  
; desired  
5.CLRWDT  
;PS<2:0> are 000 or 001  
6.MOVLW '00xx1xxx’b ;Set Postscaler to  
7.OPTION ; desired WDT rate  
The PSA and PS2:PS0 bits (OPTION<3:0>) determine  
prescaler assignment and prescale ratio.  
To change prescaler from the WDT to the Timer0  
module, use the sequence shown in Example 6-2. This  
sequence must be used even if the WDT is disabled. A  
CLRWDTinstruction should be executed before switching  
the prescaler.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g., CLRF 1, MOVWF 1,  
BSF 1,x,etc.) will clear the prescaler. When assigned  
to WDT, a CLRWDT instruction will clear the prescaler  
along with the WDT. The prescaler is neither readable  
nor writable. On a RESET, the prescaler contains all  
'0's.  
EXAMPLE 6-2: CHANGING PRESCALER  
(WDTTIMER0)  
CLRWDT  
;Clear WDT and  
6.2.1  
SWITCHING PRESCALER ASSIGNMENT  
;prescaler  
MOVLW 'xxxx0xxx'  
;Select TMR0, new  
;prescale value and  
;clock source  
The prescaler assignment is fully under software control  
(i.e., it can be changed “on the fly” during program  
execution). To avoid an unintended device RESET, the  
OPTION  
FIGURE 6-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
TCY ( = Fosc/4)  
Data Bus  
8
0
M
U
X
1
M
U
X
T0CKI  
pin  
1
Sync  
2
Cycles  
TMR0 reg  
0
T0SE  
T0CS  
PSA  
0
1
8-bit Prescaler  
M
U
X
8
Watchdog  
Timer  
8 - to - 1MUX  
PS2:PS0  
PSA  
1
0
WDT Enable bit  
MUX  
PSA  
WDT  
Time-Out  
Note: T0CS, T0SE, PSA, PS2:PS0 are bits in the OPTION register.  
WDT not implemented on PIC16C52.  
DS30453B-page 30  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16C5X  
The SLEEP mode is designed to offer a very low  
current power-down mode. The user can wake up from  
SLEEP through external reset or through a Watchdog  
Timer time-out. Several oscillator options are also  
made available to allow the part to fit the application.  
The RC oscillator option saves system cost while the  
LP crystal option saves power. A set of configuration  
bits are used to select various options.  
7.0  
SPECIAL FEATURES OF THE  
CPU  
What sets  
a
microcontroller apart from other  
processors are special circuits that deal with the  
needs of real-time applications. The PIC16C5X family  
of microcontrollers has  
intended to maximize system reliability, minimize cost  
through elimination of external components, provide  
power saving operating modes and offer code  
protection. These features are:  
a host of such features  
7.1  
Configuration Bits  
Configuration bits can be programmed to select  
various device configurations. Two bits are for the  
selection of the oscillator type and one bit is the  
Watchdog Timer enable bit. Nine bits are code  
protection bits (Figure 7-1 and Figure 7-2) for the  
PIC16C54, PIC16CR54, PIC16C56, PIC16CR56,  
PIC16C58, and PIC16CR58 devices.  
• Oscillator selection  
• Reset  
• Power-On Reset (POR)  
• Device Reset Timer (DRT)  
• Watchdog Timer (WDT)  
(not implemented on PIC16C52)  
QTP or ROM devices have the oscillator configuration  
programmed at the factory and these parts are tested  
accordingly (see "Product Identification System"  
diagrams in the back of this data sheet).  
• SLEEP  
• Code protection  
• ID locations (not implemented on PIC16C52)  
The PIC16C5X Family has a Watchdog Timer which  
can be shut off only through configuration bit WDTE. It  
runs off of its own RC oscillator for added reliability.  
There is an 18 ms delay provided by the Device Reset  
Timer (DRT), intended to keep the chip in reset until  
the crystal oscillator is stable. With this timer on-chip,  
most applications need no external reset circuitry.  
FIGURE 7-1: CONFIGURATION WORD FOR  
PIC16CR54A/C54B/CR54B/C54C/CR54C/C55A/C56A/CR56A/C57C/  
CR57B/CR57C/C58B/CR58A/CR58B  
CP  
CP  
10  
CP  
9
CP  
8
CP  
7
CP  
6
CP  
5
CP  
4
CP  
3
WDTE FOSC1 FOSC0  
bit0  
Register: CONFIG  
(1)  
Address  
:
FFFh  
bit11  
2
1
bit 11-3: CP: Code protection bits  
1 = Code protection off  
0 = Code protection on  
bit 2:  
WDTE: Watchdog timer enable bit  
1 = WDT enabled  
0 = WDT disabled  
bit 1-0: FOSC1:FOSC0: Oscillator selection bits  
11 = RC oscillator  
10 = HS oscillator  
01 = XT oscillator  
00 = LP oscillator  
Note 1: Refer to the PIC16C5X Programming Specification (Literature Number DS30190) to deter-  
mine how to access the configuration word.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 31  
 
 
PIC16C5X  
FIGURE 7-2: CONFIGURATION WORD FOR PIC16C52/C54/C54A/C55/C56/C57/C58A  
9
8
7
6
5
4
CP  
3
WDTE FOSC1 FOSC0  
bit0  
Register: CONFIG  
(1)  
Address  
:
FFFh  
bit11  
10  
2
1
bit 11-4: Unimplemented: Read as ’0’  
bit 3:  
CP: Code protection bit.  
1 = Code protection off  
0 = Code protection on  
bit 2:  
WDTE: Watchdog timer enable bit (not implemented on PIC16C52)  
1 = WDT enabled  
0 = WDT disabled  
(2)  
bit 1-0: FOSC1:FOSC0: Oscillator selection bits  
11 = RC oscillator  
10 = HS oscillator  
01 = XT oscillator  
00 = LP oscillator  
Note 1: Refer to the PIC16C5X Programming Specifications (Literature Number DS30190) to deter-  
mine how to access the configuration word.  
2: PIC16C52 supports XT and RC oscillator only.  
PIC16LV54A supports XT, RC and LP oscillator only.  
PIC16LV58A supports XT, RC and LP oscillator only.  
DS30453B-page 32  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
7.2  
Oscillator Configurations  
FIGURE 7-4: EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR LP  
7.2.1  
OSCILLATOR TYPES  
OSC CONFIGURATION)  
PIC16C5Xs can be operated in four different oscillator  
modes. The user can program two configuration bits  
(FOSC1:FOSC0) to select one of these four modes:  
OSC1  
OSC2  
Clock from  
ext. system  
PIC16C5X  
• LP:  
• XT:  
• HS:  
• RC:  
Low Power Crystal  
Open  
Crystal/Resonator  
High Speed Crystal/Resonator  
Resistor/Capacitor  
TABLE 7-1:  
CAPACITOR SELECTION  
FOR CERAMIC RESONATORS  
- PIC16C5X, PIC16CR5X  
Note: Not all oscillator selections available for all  
parts. See Section 7.1.  
Osc  
Type  
Resonator Cap. Range Cap. Range  
7.2.2  
CRYSTAL OSCILLATOR / CERAMIC  
RESONATORS  
Freq  
C1  
C2  
XT  
455 kHz  
2.0 MHz  
4.0 MHz  
22-100 pF  
15-68 pF  
15-68 pF  
22-100 pF  
15-68 pF  
15-68 pF  
In XT, LP or HS modes, a crystal or ceramic resonator  
is connected to the OSC1/CLKIN and OSC2/CLKOUT  
pins to establish oscillation (Figure 7-3). The  
PIC16C5X oscillator design requires the use of a  
parallel cut crystal. Use of a series cut crystal may give  
HS  
4.0 MHz  
8.0 MHz  
16.0 MHz  
15-68 pF  
10-68 pF  
10-22 pF  
15-68 pF  
10-68 pF  
10-22 pF  
a
frequency out of the crystal manufacturers  
Note: These values are for design guidance only.  
Since each resonator has its own charac-  
teristics, the user should consult the reso-  
nator manufacturer for appropriate values  
of external components.  
specifications. When in XT, LP or HS modes, the  
device can have an external clock source drive the  
OSC1/CLKIN pin (Figure 7-4).  
FIGURE 7-3: CRYSTAL OPERATION  
(OR CERAMIC RESONATOR)  
(HS, XT OR LP OSC  
TABLE 7-2:  
CAPACITOR SELECTION  
FOR CRYSTAL OSCILLATOR  
- PIC16C5X, PIC16CR5X  
CONFIGURATION)  
(1)  
C1  
Osc  
Type  
Resonator Cap.Range Cap. Range  
OSC1  
PIC16C5X  
Freq  
C1  
C2  
(1)  
SLEEP  
LP  
32 kHz  
15 pF  
15 pF  
XTAL  
(3)  
RF  
100 kHz  
200 kHz  
15-30 pF  
15-30 pF  
30-47 pF  
15-82 pF  
To internal  
logic  
OSC2  
(2)  
XT  
100 kHz  
200 kHz  
455 kHz  
1 MHz  
2 MHz  
4 MHz  
15-30 pF  
15-30 pF  
15-30 pF  
15-30 pF  
15-30 pF  
15-47 pF  
200-300 pF  
100-200 pF  
15-100 pF  
15-30 pF  
15-30 pF  
15-47 pF  
RS  
(1)  
C2  
Note 1: See Capacitor Selection tables for  
recommended values of C1 and C2.  
2: A series resistor (RS) may be required for  
AT strip cut crystals.  
HS  
4 MHz  
8 MHz  
20 MHz  
15-30 pF  
15-30 pF  
15-30 pF  
15-30 pF  
15-30 pF  
15-30 pF  
3: RF varies with the crystal chosen (approx.  
value = 10 M).  
Note 1: For VDD > 4.5V, C1 = C2 30 pF is  
recommended.  
2: These values are for design guidance only.  
Rs may be required in HS mode as well as  
XT mode to avoid overdriving crystals with  
low drive level specification. Since each  
crystal has its own characteristics, the user  
should consult the crystal manufacturer for  
appropriate values of external components.  
Note: If you change from this device to  
another device, please verify oscillator  
characteristics in your application.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 33  
 
 
PIC16C5X  
7.2.3  
EXTERNAL CRYSTAL OSCILLATOR  
CIRCUIT  
FIGURE 7-6: EXTERNAL SERIES  
RESONANT CRYSTAL  
OSCILLATOR CIRCUIT  
(USING XT, HS OR LP  
Either a prepackaged oscillator or a simple oscillator  
circuit with TTL gates can be used as an external  
crystal oscillator circuit. Prepackaged oscillators  
provide a wide operating range and better stability. A  
well-designed crystal oscillator will provide good  
performance with TTL gates. Two types of crystal  
oscillator circuits can be used: one with parallel  
resonance, or one with series resonance.  
OSCILLATOR MODE)  
To Other  
Devices  
330  
330  
PIC16C5X  
74AS04  
74AS04  
74AS04  
OSC1  
0.1 µF  
Figure 7-5 shows implementation of  
a
parallel  
OSC2  
XTAL  
resonant oscillator circuit. The circuit is designed to  
use the fundamental frequency of the crystal. The  
74AS04 inverter performs the 180-degree phase shift  
that a parallel oscillator requires. The 4.7 kresistor  
provides the negative feedback for stability. The 10 kΩ  
potentiometers bias the 74AS04 in the linear region.  
This circuit could be used for external oscillator  
designs.  
100k  
Note: If you change from this device to  
another device, please verify oscillator  
characteristics in your application.  
7.2.4  
RC OSCILLATOR  
FIGURE 7-5: EXTERNAL PARALLEL  
RESONANT CRYSTAL  
For timing insensitive applications, the RC device  
option offers additional cost savings. The RC oscillator  
frequency is a function of the supply voltage, the  
resistor (Rext) and capacitor (Cext) values, and the  
operating temperature. In addition to this, the oscillator  
frequency will vary from unit to unit due to normal  
process parameter variation. Furthermore, the  
difference in lead frame capacitance between package  
types will also affect the oscillation frequency,  
especially for low Cext values. The user also needs to  
take into account variation due to tolerance of external  
R and C components used.  
OSCILLATOR CIRCUIT  
(USING XT, HS OR LP  
OSCILLATOR MODE)  
+5V  
To Other  
Devices  
10k  
74AS04  
PIC16C5X  
4.7k  
74AS04  
OSC1  
OSC2  
Figure 7-7 shows how the R/C combination is  
connected to the PIC16C5X. For Rext values below  
2.2 k, the oscillator operation may become unstable,  
or stop completely. For very high Rext values  
(e.g., 1 M) the oscillator becomes sensitive to noise,  
humidity and leakage. Thus, we recommend keeping  
Rext between 3 kand 100 k.  
10k  
100k  
XTAL  
10k  
20 pF  
20 pF  
Although the oscillator will operate with no external  
capacitor (Cext = 0 pF), we recommend using values  
above 20 pF for noise and stability reasons. With no or  
small external capacitance, the oscillation frequency  
can vary dramatically due to changes in external  
capacitances, such as PCB trace capacitance or  
package lead frame capacitance.  
Note: If you change from this device to  
another device, please verify oscillator  
characteristics in your application.  
This circuit is also designed to use the fundamental  
frequency of the crystal. The inverter performs a  
180-degree phase shift in a series resonant oscillator  
circuit. The 330 resistors provide the negative  
feedback to bias the inverters in their linear region.  
DS30453B-page 34  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16C5X  
The Electrical Specifications sections show RC  
frequency variation from part to part due to normal  
process variation.  
7.3  
Reset  
PIC16C5X devices may be reset in one of the  
following ways:  
Also, see the Electrical Specifications sections for  
variation of oscillator frequency due to VDD for given  
Rext/Cext values as well as frequency variation due to  
operating temperature for given R, C, and VDD values.  
• Power-On Reset (POR)  
• MCLR reset (normal operation)  
• MCLR wake-up reset (from SLEEP)  
• WDT reset (normal operation)  
• WDT wake-up reset (from SLEEP)  
The oscillator frequency, divided by 4, is available on  
the OSC2/CLKOUT pin, and can be used for test  
purposes or to synchronize other logic.  
Table 7-3 shows these reset conditions for the PCL  
and STATUS registers.  
FIGURE 7-7: RC OSCILLATOR MODE  
Some registers are not affected in any reset condition.  
Their status is unknown on POR and unchanged in  
any other reset. Most other registers are reset to a  
“reset state” on Power-On Reset (POR), MCLR or  
WDT reset. A MCLR or WDT wake-up from SLEEP  
also results in a device reset, and not a continuation of  
operation before SLEEP.  
VDD  
Rext  
Internal  
clock  
OSC1  
N
Cext  
VSS  
PIC16C5X  
The TO and PD bits (STATUS <4:3>) are set or  
cleared depending on the different reset conditions  
(Section 7.7). These bits may be used to determine  
the nature of the reset.  
Fosc/4  
OSC2/CLKOUT  
Table 7-4 lists a full description of reset states of all  
registers. Figure 7-8 shows a simplified block diagram  
of the on-chip reset circuit.  
Note: If you change from this device to  
another device, please verify oscillator  
characteristics in your application.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 35  
PIC16C5X  
TABLE 7-3:  
RESET CONDITIONS FOR SPECIAL REGISTERS  
PCL  
Addr: 02h  
STATUS  
Addr: 03h  
Condition  
Power-On Reset  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
0001 1xxx  
(1)  
MCLR reset (normal operation)  
MCLR wake-up (from SLEEP)  
WDT reset (normal operation)  
WDT wake-up (from SLEEP)  
000u uuuu  
0001 0uuu  
(2)  
0000 uuuu  
0000 0uuu  
Legend: u= unchanged, x= unknown, -= unimplemented read as '0'.  
Note 1: TO and PD bits retain their last value until one of the other reset conditions occur.  
2: The CLRWDTinstruction will set the TO and PD bits.  
TABLE 7-4:  
Register  
RESET CONDITIONS FOR ALL REGISTERS  
Address  
Power-On Reset  
MCLR or WDT Reset  
W
N/A  
N/A  
xxxx xxxx  
1111 1111  
--11 1111  
xxxx xxxx  
xxxx xxxx  
1111 1111  
0001 1xxx  
1xxx xxxx  
---- xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
uuuu uuuu  
1111 1111  
--11 1111  
uuuu uuuu  
uuuu uuuu  
1111 1111  
000q quuu  
1uuu uuuu  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
TRIS  
OPTION  
INDF  
TMR0  
N/A  
00h  
01h  
(1)  
PCL  
02h  
(1)  
STATUS  
03h  
FSR  
04h  
PORTA  
PORTB  
05h  
06h  
(2)  
PORTC  
07h  
General Purpose Register Files  
07-7Fh  
Legend: u= unchanged, x= unknown, -= unimplemented, read as '0',  
q= see tables in Section 7.7 for possible values.  
Note 1: See Table 7-3 for reset value for specific conditions.  
2: General purpose register file on PIC16C52/C54s/CR54s/C56s/CR56s/C58s/CR58s  
FIGURE 7-8: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
Power-Up  
Detect  
POR (Power-On Reset)  
VDD  
MCLR/VPP pin  
WDT Time-out  
RESET  
8-bit Asynch  
S
R
Q
Q
WDT  
On-Chip  
RC OSC  
Ripple Counter  
(Start-Up Timer)  
CHIP RESET  
DS30453B-page 36  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16C5X  
7.4  
Power-On Reset (POR)  
FIGURE 7-9: EXTERNAL POWER-ON  
RESET CIRCUIT (FOR SLOW  
VDD POWER-UP)  
The PIC16C5X family incorporates on-chip Power-On  
Reset (POR) circuitry which provides an internal chip  
reset for most power-up situations. To use this feature,  
the user merely ties the MCLR/VPP pin to VDD. A  
simplified block diagram of the on-chip Power-On  
Reset circuit is shown in Figure 7-8.  
VDD  
VDD  
D
R
R1  
MCLR  
The Power-On Reset circuit and the Device Reset  
Timer (Section 7.5) circuit are closely related. On  
power-up, the reset latch is set and the DRT is reset.  
The DRT timer begins counting once it detects MCLR  
to be high. After the time-out period, which is typically  
18 ms, it will reset the reset latch and thus end the  
on-chip reset signal.  
PIC16C5X  
C
• External Power-On Reset circuit is required  
only if VDD power-up is too slow. The diode D  
helps discharge the capacitor quickly when  
VDD powers down.  
A power-up example where MCLR is not tied to VDD is  
shown in Figure 7-10. VDD is allowed to rise and  
stabilize before bringing MCLR high. The chip will  
actually come out of reset TDRT msec after MCLR  
goes high.  
• R < 40 kis recommended to make sure that  
voltage drop across R does not violate the  
device electrical specification.  
• R1 = 100to 1 kwill limit any current  
flowing into MCLR from external capacitor C  
in the event of MCLR pin breakdown due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS).  
In Figure 7-11, the on-chip Power-On Reset feature is  
being used (MCLR and VDD are tied together). The  
VDD is stable before the start-up timer times out and  
there is no problem in getting a proper reset. However,  
Figure 7-12 depicts a problem situation where VDD  
rises too slowly. The time between when the DRT  
senses a high on the MCLR/VPP pin, and when the  
MCLR/VPP pin (and VDD) actually reach their full value,  
is too long. In this situation, when the start-up timer  
times out, VDD has not reached the VDD (min) value  
and the chip is, therefore, not guaranteed to function  
correctly. For such situations, we recommend that  
external RC circuits be used to achieve longer POR  
delay times (Figure 7-9).  
Note: When the device starts normal operation  
(exits the reset condition), device operat-  
ing parameters (voltage, frequency, tem-  
perature, etc.) must be meet to ensure  
operation. If these conditions are not met,  
the device must be held in reset until the  
operating conditions are met.  
For more information on PIC16C5X POR, see  
Power-Up Considerations - AN522 in the Embedded  
Control Handbook.  
The POR circuit does not produce an internal reset  
when VDD declines.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 37  
 
PIC16C5X  
FIGURE 7-10: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TDRT  
DRT TIME-OUT  
INTERNAL RESET  
FIGURE 7-11: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): FAST VDD RISE TIME  
VDD  
MCLR  
INTERNAL POR  
TDRT  
DRT TIME-OUT  
INTERNAL RESET  
FIGURE 7-12: TIME-OUT SEQUENCE ON POWER-UP (MCLRTIED TO VDD): SLOW VDD RISETIME  
V1  
VDD  
MCLR  
INTERNAL POR  
TDRT  
DRT TIME-OUT  
INTERNAL RESET  
When VDD rises slowly, the TDRT time-out expires long before VDD has reached its final value. In  
this example, the chip will reset properly if, and only if, V1 VDD min  
DS30453B-page 38  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
7.5  
Device Reset Timer (DRT)  
7.6  
Watchdog Timer (WDT) (not  
implemented on PIC16C52)  
The Device Reset Timer (DRT) provides a fixed 18 ms  
nominal time-out on reset. The DRT operates on an  
internal RC oscillator. The processor is kept in RESET  
as long as the DRT is active. The DRT delay allows  
VDD to rise above VDD min., and for the oscillator to  
stabilize.  
The Watchdog Timer (WDT) is a free running on-chip  
RC oscillator which does not require any external  
components. This RC oscillator is separate from the  
RC oscillator of the OSC1/CLKIN pin. That means that  
the WDT will run even if the clock on the OSC1/CLKIN  
and OSC2/CLKOUT pins have been stopped, for  
example, by execution of a SLEEP instruction. During  
normal operation or SLEEP, a WDT reset or wake-up  
reset generates a device RESET.  
Oscillator circuits based on crystals or ceramic  
resonators require a certain time after power-up to  
establish a stable oscillation. The on-chip DRT keeps  
the device in a RESET condition for approximately 18  
ms after the voltage on the MCLR/VPP pin has  
reached a logic high (VIH) level. Thus, external RC  
networks connected to the MCLR input are not  
required in most cases, allowing for savings in  
cost-sensitive and/or space restricted applications.  
The TO bit (STATUS<4>) will be cleared upon a  
Watchdog Timer reset.  
The WDT can be permanently disabled by  
programming the configuration bit WDTE as a '0'  
(Section 7.1). Refer to the PIC16C5X Programming  
Specifications (Literature Number DS30190) to  
determine how to access the configuration word.  
The Device Reset time delay will vary from device to  
device due to VDD, temperature, and process  
variation. See AC parameters for details.  
7.6.1  
WDT PERIOD  
The DRT will also be triggered upon a Watchdog Timer  
time-out. This is particularly important for applications  
using the WDT to wake the PIC16C5X from SLEEP  
mode automatically.  
The WDT has a nominal time-out period of 18 ms,  
(with no prescaler). If a longer time-out period is  
desired, a prescaler with a division ratio of up to 1:128  
can be assigned to the WDT (under software control)  
by writing to the OPTION register. Thus, time-out a  
period of a nominal 2.3 seconds can be realized.  
These periods vary with temperature, VDD and  
part-to-part process variations (see DC specs).  
Under worst case conditions (VDD = Min., Temperature  
= Max., max. WDT prescaler), it may take several  
seconds before a WDT time-out occurs.  
7.6.2  
WDT PROGRAMMING CONSIDERATIONS  
The CLRWDT instruction clears the WDT and the  
postscaler, if assigned to the WDT, and prevents it  
from timing out and generating a device RESET.  
The SLEEP instruction resets the WDT and the  
postscaler, if assigned to the WDT. This gives the  
maximum SLEEP time before a WDT wake-up reset.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 39  
PIC16C5X  
FIGURE 7-13: WATCHDOG TIMER BLOCK DIAGRAM  
From TMR0 Clock Source  
0
M
Postscaler  
1
Watchdog  
Timer  
U
X
8 - to - 1 MUX  
PS2:PS0  
PSA  
WDT Enable  
EPROM Bit  
To TMR0  
1
0
PSA  
MUX  
Note: T0CS, T0SE, PSA, PS2:PS0  
are bits in the OPTION register.  
WDT  
Time-out  
TABLE 7-5:  
SUMMARY OF REGISTERS ASSOCIATED WITH THE WATCHDOG TIMER  
Value on  
Power-On  
Reset  
Value on  
MCLR and  
WDT Reset  
Address  
Name  
OPTION  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
N/A  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
--11 1111 --11 1111  
Legend: Shaded boxes = Not used by Watchdog Timer,  
= unimplemented, read as '0', u= unchanged  
DS30453B-page 40  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
7.7  
Time-Out Sequence and Power Down  
Status Bits (TO/PD)  
7.8  
Reset on Brown-Out  
A brown-out is a condition where device power (VDD)  
dips below its minimum value, but not to zero, and then  
recovers. The device should be reset in the event of a  
brown-out.  
The TO and PD bits in the STATUS register can be  
tested to determine if a RESET condition has been  
caused by a power-up condition, a MCLR or Watchdog  
Timer (WDT) reset, or a MCLR or WDT wake-up reset.  
To reset PIC16C5X devices when a brown-out occurs,  
external brown-out protection circuits may be built, as  
shown in Figure 7-14 and Figure 7-15.  
TABLE 7-6:  
TO/PD STATUS AFTER  
RESET  
FIGURE 7-14: BROWN-OUT PROTECTION  
CIRCUIT 1  
TO  
PD  
RESET was caused by  
Power-up (POR)  
1
u
1
u
(1)  
VDD  
MCLR reset (normal operation)  
1
0
0
0
1
0
MCLR wake-up reset (from SLEEP)  
WDT reset (normal operation)  
VDD  
33k  
WDT wake-up reset (from SLEEP)  
Q1  
Legend: u= unchanged  
10k  
MCLR  
Note 1: The TO and PD bits maintain their status (u) until  
a reset occurs. A low-pulse on the MCLR input  
does not change the TO and PD status bits.  
40k  
PIC16C5X  
These STATUS bits are only affected by events listed  
in Table 7-7.  
This circuit will activate reset when VDD goes below Vz +  
0.7V (where Vz = Zener voltage).  
TABLE 7-7:  
EVENTS AFFECTING TO/PD  
STATUS BITS  
Event  
TO PD  
Remarks  
1
0
1
1
1
u
0
1
Power-up  
FIGURE 7-15: BROWN-OUT PROTECTION  
CIRCUIT 2  
WDT Time-out  
No effect on PD  
SLEEPinstruction  
CLRWDTinstruction  
Legend: u= unchanged  
VDD  
VDD  
Note: A WDT time-out will occur regardless of  
the status of the TO bit. A SLEEPinstruc-  
tion will be executed, regardless of the sta-  
tus of the PD bit.  
R1  
Q1  
MCLR  
R2  
40k  
PIC16C5X  
Table 7-3 lists the reset conditions for the special  
function registers, while Table 7-4 lists the reset  
conditions for all the registers.  
This brown-out circuit is less expensive, although  
less accurate. Transistor Q1 turns off when VDD  
is below a certain level such that:  
R1  
= 0.7V  
VDD •  
R1 + R2  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 41  
 
 
PIC16C5X  
7.9  
Power-Down Mode (SLEEP)  
7.10  
Program Verification/Code Protection  
A device may be powered down (SLEEP) and later  
powered up (Wake-up from SLEEP).  
If the code protection bit(s) have not been  
programmed, the on-chip program memory can be  
read out for verification purposes.  
7.9.1  
SLEEP  
Note: Microchip does not recommend code pro-  
The Power-Down mode is entered by executing a  
tecting windowed devices.  
SLEEPinstruction.  
7.11  
ID Locations (not implemented on  
PIC16C52)  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the TO bit (STATUS<4>) is set, the PD  
bit (STATUS<3>) is cleared and the oscillator driver is  
turned off. The I/O ports maintain the status they had  
before the SLEEP instruction was executed (driving  
high, driving low, or hi-impedance).  
Four memory locations are designated as ID locations  
where the user can store checksum or other  
code-identification numbers. These locations are not  
accessible during normal execution but are readable  
and writable during program/verify.  
It should be noted that a RESET generated by a WDT  
time-out does not drive the MCLR/VPP pin low.  
Use only the lower 4 bits of the ID locations and  
always program the upper 8 bits as '1's.  
For lowest current consumption while powered down,  
the T0CKI input should be at VDD or VSS and the  
MCLR/VPP pin must be at a logic high level.  
Note: Microchip will assign a unique pattern  
number for QTP and SQTP requests and  
for ROM devices. This pattern number will  
be unique and traceable to the submitted  
code.  
7.9.2  
WAKE-UP FROM SLEEP  
The device can wake up from SLEEP through one of  
the following events:  
1. An external reset input on MCLR/VPP pin.  
2. A Watchdog Timer time-out reset (if WDT was  
enabled).  
Both of these events cause a device reset.The TO and  
PD bits can be used to determine the cause of device  
reset.  
The TO bit is cleared if a WDT time-out  
occurred (and caused wake-up). The PD bit, which is  
set on power-up, is cleared when SLEEPis invoked.  
The WDT is cleared when the device wakes from  
sleep, regardless of the wake-up source.  
DS30453B-page 42  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
All instructions are executed within one single  
instruction cycle, unless a conditional test is true or the  
8.0  
INSTRUCTION SET SUMMARY  
Each PIC16C5X instruction is a 12-bit word divided into an  
OPCODE, which specifies the instruction type, and one or  
more operands which further specify the operation of the  
instruction. The PIC16C5X instruction set summary in  
Table 8-2 groups the instructions into byte-oriented,  
bit-oriented, and literal and control operations. Table 8-1  
shows the opcode field descriptions.  
program counter is changed as  
a result of an  
instruction. In this case, the execution takes two  
instruction cycles. One instruction cycle consists of  
four oscillator periods. Thus, for an oscillator frequency  
of 4 MHz, the normal instruction execution time is 1 µs.  
If a conditional test is true or the program counter is  
changed as a result of an instruction, the instruction  
execution time is 2 µs.  
For byte-oriented instructions, 'f' represents a file register  
designator and 'd' represents a destination designator.The  
file register designator is used to specify which one of the  
32 file registers is to be used by the instruction.  
Figure 8-1 shows the three general formats that the  
instructions can have. All examples in the figure use the  
following format to represent a hexadecimal number:  
The destination designator specifies where the result  
of the operation is to be placed. If 'd' is '0', the result is  
placed in the W register. If 'd' is '1', the result is placed  
in the file register specified in the instruction.  
0xhhh  
where 'h' signifies a hexadecimal digit.  
FIGURE 8-1: GENERAL FORMAT FOR  
INSTRUCTIONS  
For bit-oriented instructions, 'b' represents a bit field  
designator which selects the number of the bit affected  
by the operation, while 'f' represents the number of the  
file in which the bit is located.  
Byte-oriented file register operations  
11  
6
5
4
0
OPCODE  
d
f (FILE #)  
For literal and control operations, 'k' represents an  
8 or 9-bit constant or literal value.  
d = 0 for destination W  
d = 1 for destination f  
f = 5-bit file register address  
Bit-oriented file register operations  
11 8 7  
b (BIT #)  
TABLE 8-1:  
OPCODE FIELD  
DESCRIPTIONS  
5
4
0
Field  
Description  
OPCODE  
f (FILE #)  
f
W
b
k
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
b = 3-bit bit address  
f = 5-bit file register address  
Bit address within an 8-bit file register  
Literal field, constant data or label  
Literal and control operations (except GOTO)  
11  
Don't care location (= 0 or 1)  
8
7
0
The assembler will generate code with x = 0. It is  
the recommended form of use for compatibility  
with all Microchip software tools.  
x
d
OPCODE  
k (literal)  
k = 8-bit immediate value  
Literal and control operations - GOTOinstruction  
11 0  
Destination select;  
d = 0 (store result in W)  
d = 1 (store result in file register 'f')  
Default is d = 1  
9
8
OPCODE  
k (literal)  
label Label name  
TOS  
PC  
Top of Stack  
k = 9-bit immediate value  
Program Counter  
Watchdog Timer Counter  
Time-Out bit  
WDT  
TO  
PD  
Power-Down bit  
Destination, either the W register or the specified  
register file location  
dest  
[ ]  
( )  
Options  
Contents  
Assigned to  
< >  
Register bit field  
In the set of  
italics  
User defined term (font is courier)  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 43  
 
PIC16C5X  
TABLE 8-2:  
INSTRUCTION SET SUMMARY  
12-Bit Opcode  
Mnemonic,  
Operands  
Status  
Description  
Cycles MSb  
LSb Affected Notes  
1
1
1
1
1
1
0001 11df ffff  
C,DC,Z 1,2,4  
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
Move W to f  
No Operation  
Rotate left f through Carry  
Rotate right f through Carry  
Subtract W from f  
Swap f  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
DECFSZ  
INCF  
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
f,d  
f,d  
f
0001 01df ffff  
0000 011f ffff  
0000 0100 0000  
0010 01df ffff  
0000 11df ffff  
Z
Z
Z
2,4  
4
Z
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
Z
None  
Z
None  
Z
Z
None  
None  
C
2,4  
2,4  
2,4  
2,4  
2,4  
2,4  
1,4  
1(2) 0010 11df ffff  
0010 10df ffff  
1(2) 0011 11df ffff  
1
1
1
1
1
1
1
1
1
1
0001 00df ffff  
0010 00df ffff  
0000 001f ffff  
0000 0000 0000  
0011 01df ffff  
0011 00df ffff  
0000 10df ffff  
0011 10df ffff  
0001 10df ffff  
2,4  
2,4  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
f, d  
f, d  
f, d  
f, d  
f, d  
C
C,DC,Z 1,2,4  
None  
Z
2,4  
2,4  
Exclusive OR W with f  
BIT-ORIENTED FILE REGISTER OPERATIONS  
1
1
0100 bbbf ffff  
0101 bbbf ffff  
None  
None  
None  
None  
2,4  
2,4  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
1 (2) 0110 bbbf ffff  
1 (2) 0111 bbbf ffff  
LITERAL AND CONTROL OPERATIONS  
1
2
1
2
1
1
1
2
1
1
1
1110 kkkk kkkk  
1001 kkkk kkkk  
0000 0000 0100  
101k kkkk kkkk  
1101 kkkk kkkk  
1100 kkkk kkkk  
0000 0000 0010  
1000 kkkk kkkk  
0000 0000 0011  
0000 0000 0fff  
1111 kkkk kkkk  
Z
None  
AND literal with W  
Call subroutine  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
OPTION  
RETLW  
SLEEP  
TRIS  
k
k
k
k
k
k
k
k
f
1
3
T
Clear Watchdog Timer  
Unconditional branch  
Inclusive OR Literal with W  
Move Literal to W  
Load OPTION register  
Return, place Literal in W  
Go into standby mode  
Load TRIS register  
O, PD  
None  
Z
None  
None  
None  
TO, PD  
None  
Z
Exclusive OR Literal to W  
XORLW  
k
Note 1: The 9th bit of the program counter will be forced to a '0' by any instruction that writes to the PC except for GOTO.  
(See individual device data sheets, Memory Section/Indirect Data Addressing, INDF and FSR Registers)  
2: When an I/O register is modified as a function of itself (e.g. MOVF PORTB, 1), the value used will be that value  
present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven  
low by an external device, the data will be written back with a '0'.  
3: The instruction TRIS f, where f = 5 or 6 causes the contents of the W register to be written to the tristate  
latches of PORTA or B respectively. A '1' forces the pin to a hi-impedance state and disables the output buff-  
ers.  
4: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared  
(if assigned to TMR0).  
DS30453B-page 44  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
ADDWF  
Syntax:  
Add W and f  
[ label ] ADDWF f,d  
0 f 31  
ANDWF  
Syntax:  
AND W with f  
[ label ] ANDWF f,d  
Operands:  
Operands:  
0 f 31  
d
[0,1]  
d
[0,1]  
Operation:  
(W) + (f) (dest)  
Operation:  
(W) .AND. (f) (dest)  
Status Affected: C, DC, Z  
Status Affected:  
Encoding:  
Z
0001  
11df  
ffff  
0001  
01df  
ffff  
Encoding:  
Add the contents of the W register and  
register 'f'. If 'd' is 0 the result is stored  
in the W register. If 'd' is '1' the result is  
stored back in register 'f'.  
The contents of the W register are  
AND’ed with register 'f'. If 'd' is 0 the  
result is stored in the W register. If 'd' is  
'1' the result is stored back in register 'f'.  
Description:  
Description:  
Words:  
1
Words:  
1
1
Cycles:  
Example:  
1
Cycles:  
Example:  
ADDWF FSR, 0  
ANDWF FSR,  
1
Before Instruction  
Before Instruction  
0x17  
W
=
0x17  
W
=
FSR = 0xC2  
FSR = 0xC2  
After Instruction  
After Instruction  
W
=
0xD9  
W
=
0x17  
FSR = 0xC2  
FSR = 0x02  
ANDLW  
And literal with W  
BCF  
Bit Clear f  
Syntax:  
[ label ] ANDLW  
k
Syntax:  
Operands:  
[ label ] BCF f,b  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
0 f 31  
0 b 7  
(W).AND. (k) (W)  
Operation:  
0 (f<b>)  
Z
Status Affected: None  
1110  
kkkk  
kkkk  
0100  
bbbf  
ffff  
Encoding:  
Description:  
Words:  
The contents of the W register are  
AND’ed with the eight-bit literal 'k'. The  
result is placed in the W register.  
Bit 'b' in register 'f' is cleared.  
1
1
Words:  
1
Cycles:  
Cycles:  
Example:  
1
BCF  
FLAG_REG,  
7
Example:  
ANDLW 0x5F  
Before Instruction  
FLAG_REG = 0xC7  
Before Instruction  
0xA3  
W
=
After Instruction  
FLAG_REG = 0x47  
After Instruction  
0x03  
W
=
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 45  
PIC16C5X  
BSF  
Bit Set f  
BTFSS  
Bit Test f, Skip if Set  
Syntax:  
Operands:  
[ label ] BSF f,b  
Syntax:  
[ label ] BTFSS f,b  
0 f 31  
0 b 7  
Operands:  
0 f 31  
0 b < 7  
Operation:  
1 (f<b>)  
Operation:  
skip if (f<b>) = 1  
Status Affected: None  
Status Affected: None  
0101  
bbbf  
ffff  
0111  
bbbf  
ffff  
Encoding:  
Description:  
Words:  
Encoding:  
Bit 'b' in register 'f' is set.  
If bit 'b' in register 'f' is '1' then the next  
instruction is skipped.  
Description:  
1
1
If bit 'b' is '1', then the next instruction  
fetched during the current instruction  
execution, is discarded and an NOP is  
executed instead, making this a 2 cycle  
instruction.  
Cycles:  
BSF  
FLAG_REG,  
7
Example:  
Before Instruction  
FLAG_REG = 0x0A  
Words:  
1
After Instruction  
FLAG_REG = 0x8A  
Cycles:  
Example:  
1(2)  
HERE  
FALSE GOTO  
TRUE  
BTFSS FLAG,1  
PROCESS_CODE  
BTFSC  
Bit Test f, Skip if Clear  
Syntax:  
[ label ] BTFSC f,b  
Operands:  
0 f 31  
0 b 7  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If FLAG<1>  
PC  
Operation:  
skip if (f<b>) = 0  
=
=
=
=
0,  
Status Affected: None  
address (FALSE);  
1,  
address (TRUE)  
bbbf  
ffff  
if FLAG<1>  
PC  
Encoding:  
0110  
If bit 'b' in register 'f' is 0 then the next  
instruction is skipped.  
Description:  
If bit 'b' is 0 then the next instruction  
fetched during the current instruction  
execution is discarded, and an NOP is  
executed instead, making this a 2 cycle  
instruction.  
Words:  
1
Cycles:  
Example:  
1(2)  
HERE  
FALSE GOTO  
TRUE  
BTFSC  
FLAG,1  
PROCESS_CODE  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
if FLAG<1>  
PC  
=
=
=
=
0,  
address (TRUE);  
1,  
address(FALSE)  
if FLAG<1>  
PC  
DS30453B-page 46  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
CALL  
Subroutine Call  
[ label ] CALL  
0 k 255  
CLRW  
Clear W  
Syntax:  
k
Syntax:  
[ label ] CLRW  
None  
Operands:  
Operation:  
Operands:  
Operation:  
(PC) + 1Top of Stack;  
k PC<7:0>;  
00h (W);  
1 Z  
(STATUS<6:5>) PC<10:9>;  
0 PC<8>  
Status Affected:  
Encoding:  
Z
0000  
0100  
0000  
Status Affected: None  
The W register is cleared. Zero bit (Z)  
is set.  
Description:  
1001  
kkkk  
kkkk  
Encoding:  
Subroutine call. First, return address  
(PC+1) is pushed onto the stack. The  
eight bit immediate address is loaded  
into PC bits <7:0>. The upper bits  
PC<10:9> are loaded from STA-  
TUS<6:5>, PC<8> is cleared. CALLis  
a two cycle instruction.  
Description:  
Words:  
1
Cycles:  
Example:  
1
CLRW  
Before Instruction  
0x5A  
W
=
After Instruction  
Words:  
1
2
W
=
0x00  
Cycles:  
Example:  
Z
=
1
HERE  
CALL  
THERE  
Before Instruction  
PC address (HERE)  
CLRWDT  
Clear Watchdog Timer  
[ label ] CLRWDT  
None  
=
Syntax:  
After Instruction  
PC address (THERE)  
TOS =  
=
Operands:  
Operation:  
address (HERE + 1)  
00h WDT;  
0 WDT prescaler (if assigned);  
1 TO;  
1 PD  
CLRF  
Clear f  
Syntax:  
[ label ] CLRF  
f
Status Affected: TO, PD  
Operands:  
Operation:  
0 f 31  
0000  
0000  
0100  
Encoding:  
00h (f);  
1 Z  
The CLRWDTinstruction resets the  
WDT. It also resets the prescaler, if the  
prescaler is assigned to the WDT and  
not Timer0. Status bits TO and PD are  
set.  
Description:  
Status Affected:  
Encoding:  
Z
0000  
011f  
ffff  
The contents of register 'f' are cleared  
and the Z bit is set.  
Description:  
Words:  
1
Cycles:  
Example:  
1
Words:  
1
1
CLRWDT  
Cycles:  
Example:  
Before Instruction  
CLRF  
FLAG_REG  
WDT counter  
=
=
?
Before Instruction  
FLAG_REG  
After Instruction  
WDT counter  
=
0x5A  
0x00  
After Instruction  
WDT prescale =  
0
1
1
FLAG_REG  
Z
=
=
0x00  
1
TO  
PD  
=
=
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 47  
PIC16C5X  
COMF  
Complement f  
DECFSZ  
Syntax:  
Decrement f, Skip if 0  
[ label ] DECFSZ f,d  
0 f 31  
Syntax:  
Operands:  
[ label ] COMF f,d  
0 f 31  
Operands:  
d
[0,1]  
d
[0,1]  
Operation:  
(f) (dest)  
Operation:  
(f) – 1 d; skip if result = 0  
Status Affected:  
Encoding:  
Z
Status Affected: None  
0010  
01df  
ffff  
0010  
11df  
ffff  
Encoding:  
The contents of register 'f' are comple-  
mented. If 'd' is 0 the result is stored in  
the W register. If 'd' is 1 the result is  
stored back in register 'f'.  
The contents of register 'f' are decre-  
mented. If 'd' is 0 the result is placed in  
the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
Description:  
Description:  
If the result is 0, the next instruction,  
which is already fetched, is discarded  
and an NOP is executed instead mak-  
ing it a two cycle instruction.  
Words:  
1
1
Cycles:  
Example:  
COMF  
REG1,0  
Words:  
1
Before Instruction  
REG1  
=
0x13  
0x13  
Cycles:  
Example:  
1(2)  
After Instruction  
HERE  
DECFSZ  
GOTO  
CONTINUE •  
CNT, 1  
LOOP  
REG1  
=
W
=
0xEC  
DECF  
Decrement f  
[ label ] DECF f,d  
0 f 31  
Before Instruction  
PC  
=
address (HERE)  
Syntax:  
After Instruction  
Operands:  
CNT  
if CNT  
PC  
if CNT  
PC  
=
=
=
=
CNT - 1;  
0,  
address (CONTINUE);  
0,  
d
[0,1]  
Operation:  
(f) – 1 (dest)  
Status Affected:  
Encoding:  
Z
address (HERE+1)  
0000  
11df  
ffff  
Decrement register 'f'. If 'd' is 0 the  
result is stored in the W register. If 'd' is  
1 the result is stored back in register 'f'.  
Description:  
GOTO  
Unconditional Branch  
Syntax:  
[ label ] GOTO  
0 k 511  
k
Words:  
1
1
Operands:  
Cycles:  
Example:  
Operation:  
k PC<8:0>;  
STATUS<6:5> PC<10:9>  
DECF  
CNT,  
1
Before Instruction  
Status Affected: None  
CNT  
=
0x01  
0
101k  
kkkk  
kkkk  
Encoding:  
Z
=
GOTOis an unconditional branch. The  
9-bit immediate value is loaded into PC  
bits <8:0>. The upper bits of PC are  
loaded from STATUS<6:5>. GOTOis a  
two cycle instruction.  
Description:  
After Instruction  
CNT  
=
0x00  
1
Z
=
Words:  
1
Cycles:  
Example:  
2
GOTO THERE  
After Instruction  
PC  
=
address (THERE)  
DS30453B-page 48  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
INCF  
Increment f  
IORLW  
Inclusive OR literal with W  
Syntax:  
Operands:  
[ label ] INCF f,d  
Syntax:  
[ label ] IORLW k  
0 f 31  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
d
[0,1]  
(W) .OR. (k) (W)  
Operation:  
(f) + 1 (dest)  
Z
Status Affected:  
Encoding:  
Z
1101  
kkkk  
kkkk  
0010  
10df  
ffff  
The contents of the W register are  
OR’ed with the eight bit literal 'k'. The  
result is placed in the W register.  
The contents of register 'f' are incre-  
mented. If 'd' is 0 the result is placed in  
the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
Description:  
Words:  
1
Cycles:  
Example:  
1
Words:  
1
1
IORLW 0x35  
Cycles:  
Example:  
Before Instruction  
0x9A  
INCF  
CNT,  
1
W
=
Before Instruction  
After Instruction  
CNT  
=
0xFF  
0
W
=
0xBF  
Z
=
Z
=
0
After Instruction  
CNT  
Z
=
=
0x00  
1
IORWF  
Inclusive OR W with f  
[ label ] IORWF f,d  
0 f 31  
Syntax:  
Operands:  
INCFSZ  
Increment f, Skip if 0  
[ label ] INCFSZ f,d  
0 f 31  
d
[0,1]  
Syntax:  
Operation:  
(W).OR. (f) (dest)  
Operands:  
Status Affected:  
Encoding:  
Z
d
[0,1]  
0001  
00df  
ffff  
Operation:  
(f) + 1 (dest), skip if result = 0  
Inclusive OR the W register with regis-  
ter 'f'. If 'd' is 0 the result is placed in  
the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
Description:  
Status Affected: None  
0011  
11df  
ffff  
Encoding:  
The contents of register 'f' are incre-  
mented. If 'd' is 0 the result is placed in  
the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
Description:  
Words:  
1
1
Cycles:  
Example:  
If the result is 0, then the next instruc-  
tion, which is already fetched, is dis-  
carded and an NOP is executed  
instead making it a two cycle instruc-  
tion.  
IORWF  
RESULT, 0  
Before Instruction  
RESULT  
W
=
0x13  
=
0x91  
After Instruction  
Words:  
1
RESULT  
=
=
=
0x13  
0x93  
0
Cycles:  
Example:  
1(2)  
W
Z
HERE  
INCFSZ  
GOTO  
CNT,  
LOOP  
1
CONTINUE •  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
CNT  
if CNT  
PC  
if CNT  
PC  
=
=
=
=
CNT + 1;  
0,  
address (CONTINUE);  
0,  
address (HERE +1)  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 49  
PIC16C5X  
MOVF  
Move f  
MOVWF  
Syntax:  
Move W to f  
[ label ] MOVWF  
0 f 31  
Syntax:  
Operands:  
[ label ] MOVF f,d  
f
0 f 31  
Operands:  
Operation:  
d
[0,1]  
(W) (f)  
Operation:  
(f) (dest)  
Status Affected: None  
Status Affected:  
Encoding:  
Z
0000  
001f  
ffff  
Encoding:  
0010  
00df  
ffff  
Move data from the W register to regis-  
ter 'f'.  
Description:  
The contents of register 'f' is moved to  
destination 'd'. If 'd' is 0, destination is  
the W register. If 'd' is 1, the destination  
is file register 'f'. 'd' is 1 is useful to test  
a file register since status flag Z is  
affected.  
Description:  
Words:  
1
Cycles:  
Example:  
1
MOVWF TEMP_REG  
Before Instruction  
Words:  
1
1
TEMP_REG  
W
=
=
0xFF  
0x4F  
Cycles:  
Example:  
MOVF  
FSR,  
0
After Instruction  
TEMP_REG  
W
=
=
0x4F  
0x4F  
After Instruction  
W
=
value in FSR register  
NOP  
No Operation  
[ label ] NOP  
None  
MOVLW  
Move Literal to W  
[ label ] MOVLW  
0 k 255  
Syntax:  
Syntax:  
k
Operands:  
Operation:  
Operands:  
Operation:  
No operation  
k (W)  
Status Affected: None  
0000  
0000  
0000  
Status Affected: None  
Encoding:  
Description:  
Words:  
1100  
kkkk  
kkkk  
Encoding:  
No operation.  
The eight bit literal 'k' is loaded into the  
W register. The don’t cares will assem-  
ble as 0s.  
Description:  
1
Cycles:  
1
NOP  
Example:  
Words:  
1
Cycles:  
Example:  
1
MOVLW 0x5A  
After Instruction  
W
=
0x5A  
DS30453B-page 50  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
OPTION  
Syntax:  
Load OPTION Register  
[ label ] OPTION  
None  
RLF  
Rotate Left f through Carry  
Syntax:  
Operands:  
[ label ] RLF f,d  
Operands:  
Operation:  
0 f 31  
d
[0,1]  
(W) OPTION  
Status Affected: None  
Operation:  
See description below  
C
0000  
0000  
0010  
Encoding:  
Status Affected:  
Encoding:  
The content of the W register is loaded  
into the OPTION register.  
Description:  
0011  
01df  
ffff  
The contents of register 'f' are rotated  
one bit to the left through the Carry  
Flag. If 'd' is 0 the result is placed in the  
W register. If 'd' is 1 the result is stored  
back in register 'f'.  
Description:  
Words:  
Cycles:  
Example  
1
1
OPTION  
Before Instruction  
register 'f'  
C
W
=
0x07  
0x07  
After Instruction  
OPTION  
Words:  
1
=
Cycles:  
Example:  
1
RLF  
REG1,0  
RETLW  
Return with Literal in W  
Before Instruction  
Syntax:  
[ label ] RETLW  
k
REG1  
C
=
=
1110 0110  
0
Operands:  
Operation:  
0 k 255  
After Instruction  
k (W);  
TOS PC  
REG1  
W
C
=
=
=
1110 0110  
1100 1100  
1
Status Affected: None  
1000  
kkkk  
kkkk  
Encoding:  
The W register is loaded with the eight  
bit literal 'k'. The program counter is  
loaded from the top of the stack (the  
return address). This is a two cycle  
instruction.  
Description:  
RRF  
Rotate Right f through Carry  
[ label ] RRF f,d  
0 f 31  
Syntax:  
Operands:  
d
[0,1]  
Words:  
1
2
Operation:  
See description below  
C
Cycles:  
Example:  
Status Affected:  
Encoding:  
CALL TABLE ;W contains  
;table offset  
;value.  
0011  
00df  
ffff  
The contents of register 'f' are rotated  
one bit to the right through the Carry  
Flag. If 'd' is 0 the result is placed in the  
W register. If 'd' is 1 the result is placed  
back in register 'f'.  
Description:  
;W now has table  
;value.  
TABLE  
ADDWF PC  
RETLW k1  
RETLW k2  
;W = offset  
;Begin table  
;
register 'f'  
C
Words:  
1
Cycles:  
Example:  
1
RETLW kn  
; End of table  
RRF  
REG1,0  
Before Instruction  
W
=
0x07  
Before Instruction  
REG1  
C
=
=
1110 0110  
0
After Instruction  
value of k8  
W
=
After Instruction  
REG1  
W
C
=
=
=
1110 0110  
0111 0011  
0
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 51  
PIC16C5X  
SLEEP  
Enter SLEEP Mode  
SUBWF  
Subtract W from f  
Syntax:  
Syntax:  
[label]  
None  
[label] SUBWF f,d  
SLEEP  
Operands:  
0 f 31  
Operands:  
Operation:  
d
[0,1]  
00h WDT;  
0 WDT prescaler;  
1 TO;  
Operation:  
(f) – (W) → (dest)  
Status Affected: C, DC, Z  
0 PD  
0000  
10df  
ffff  
Encoding:  
Status Affected: TO, PD  
Subtract (2’s complement method) the  
W register from register 'f'. If 'd' is 0 the  
result is stored in the W register. If 'd' is  
1 the result is stored back in register 'f'.  
Description:  
0000  
0000  
0011  
Encoding:  
Time-out status bit (TO) is set. The  
power down status bit (PD) is cleared.  
The WDT and its prescaler are  
cleared.  
Description:  
Words:  
1
1
Cycles:  
The processor is put into SLEEP mode  
with the oscillator stopped. See sec-  
tion on SLEEP for more details.  
SUBWF  
REG1, 1  
Example 1:  
Before Instruction  
Words:  
1
REG1  
W
C
=
=
=
3
2
?
Cycles:  
Example:  
1
SLEEP  
After Instruction  
REG1  
W
C
=
=
=
1
2
1
; result is positive  
Example 2:  
Before Instruction  
REG1  
W
C
=
=
=
2
2
?
After Instruction  
REG1  
W
C
=
=
=
0
2
1
; result is zero  
Example 3:  
Before Instruction  
REG1  
W
C
=
=
=
1
2
?
After Instruction  
REG1  
W
C
=
=
=
FF  
2
0
; result is negative  
DS30453B-page 52  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
SWAPF  
Syntax:  
Swap Nibbles in f  
[ label ] SWAPF f,d  
0 f 31  
XORLW  
Exclusive OR literal with W  
Syntax:  
[label] XORLW  
0 k 255  
k
Operands:  
Operands:  
d
[0,1]  
Operation:  
(W) .XOR. k → (W)  
Z
Operation:  
(f<3:0>) (dest<7:4>);  
(f<7:4>) (dest<3:0>)  
Status Affected:  
Encoding:  
1111  
kkkk  
kkkk  
Status Affected: None  
The contents of the W register are  
XOR’ed with the eight bit literal 'k'. The  
result is placed in the W register.  
Description:  
0011  
10df  
ffff  
Encoding:  
The upper and lower nibbles of register  
'f' are exchanged. If 'd' is 0 the result is  
placed in W register. If 'd' is 1 the result  
is placed in register 'f'.  
Description:  
Words:  
1
Cycles:  
Example:  
1
Words:  
Cycles:  
Example  
1
1
XORLW 0xAF  
Before Instruction  
0xB5  
W
=
SWAPF  
REG1,  
0
After Instruction  
Before Instruction  
REG1  
W
=
0x1A  
=
0xA5  
After Instruction  
REG1  
W
=
=
0xA5  
0X5A  
XORWF  
Exclusive OR W with f  
[ label ] XORWF f,d  
0 f 31  
Syntax:  
Operands:  
TRIS  
Load TRIS Register  
d
[0,1]  
Syntax:  
[ label ] TRIS  
f = 5, 6 or 7  
f
Operation:  
(W) .XOR. (f) → (dest)  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Z
(W) TRIS register f  
0001  
10df  
ffff  
Status Affected: None  
Exclusive OR the contents of the W  
register with register 'f'. If 'd' is 0 the  
result is stored in the W register. If 'd' is  
1 the result is stored back in register 'f'.  
Description:  
0000  
0000  
0fff  
Encoding:  
TRIS register 'f' (f = 5, 6, or 7) is loaded  
with the contents of the W register  
Description:  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
1
TRIS  
PORTA  
REG,1  
XORWF  
Before Instruction  
Before Instruction  
W
=
0XA5  
0XA5  
REG  
=
0xAF  
0xB5  
W
=
After Instruction  
TRISA  
=
After Instruction  
REG  
W
=
=
0x1A  
0xB5  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 53  
PIC16C5X  
NOTES:  
DS30453B-page 54  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
9.3  
ICEPIC: Low-Cost PICmicro™  
In-Circuit Emulator  
9.0  
DEVELOPMENT SUPPORT  
9.1  
Development Tools  
ICEPIC is a low-cost in-circuit emulator solution for the  
Microchip PIC12CXXX, PIC16C5X and PIC16CXXX  
families of 8-bit OTP microcontrollers.  
The PICmicrο microcontrollers are supported with a  
full range of hardware and software development  
tools:  
ICEPIC is designed to operate on PC-compatible  
machines ranging from 286-AT through Pentium  
based machines under Windows 3.x environment.  
ICEPIC features real time, non-intrusive emulation.  
• PICMASTER /PICMASTER CE Real-Time  
In-Circuit Emulator  
• ICEPIC Low-Cost PIC16C5X and PIC16CXXX  
In-Circuit Emulator  
9.4  
PRO MATE II: Universal Programmer  
• PRO MATE II Universal Programmer  
• PICSTART Plus Entry-Level Prototype  
Programmer  
The PRO MATE II Universal Programmer is  
a
full-featured programmer capable of operating in  
stand-alone mode as well as PC-hosted mode. PRO  
MATE II is CE compliant.  
• PICDEM-1 Low-Cost Demonstration Board  
• PICDEM-2 Low-Cost Demonstration Board  
• PICDEM-3 Low-Cost Demonstration Board  
• MPASM Assembler  
The PRO MATE II has programmable VDD and VPP  
supplies which allows it to verify programmed memory  
at VDD min and VDD max for maximum reliability. It has  
an LCD display for displaying error messages, keys to  
enter commands and a modular detachable socket  
assembly to support various package types. In stand-  
alone mode the PRO MATE II can read, verify or  
program PIC12CXXX, PIC14C000, PIC16C5X,  
PIC16CXXX and PIC17CXX devices. It can also set  
configuration and code-protect bits in this mode.  
• MPLAB SIM Software Simulator  
• MPLAB-C17 (C Compiler)  
• Fuzzy Logic Development System  
(fuzzyTECH MP)  
9.2  
PICMASTER: High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
9.5  
PICSTART Plus Entry Level  
Development System  
The PICMASTER Universal In-Circuit Emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for all  
microcontrollers in the PIC14C000, PIC12CXXX,  
PIC16C5X, PIC16CXXX and PIC17CXX families.  
PICMASTER is supplied with the MPLAB Integrated  
Development Environment (IDE), which allows editing,  
“make” and download, and source debugging from a  
single environment.  
The PICSTART programmer is an easy-to-use,  
low-cost prototype programmer. It connects to the PC  
via one of the COM (RS-232) ports. MPLAB Integrated  
Development Environment software makes using the  
programmer simple and efficient. PICSTART Plus is  
not recommended for production programming.  
PICSTART  
Plus  
supports  
all  
PIC12CXXX,  
Interchangeable target probes allow the system to be  
easily reconfigured for emulation of different  
processors. The universal architecture of the  
PICMASTER allows expansion to support all new  
Microchip microcontrollers.  
PIC14C000, PIC16C5X, PIC16CXXX and PIC17CXX  
devices with up to 40 pins. Larger pin count devices  
such as the PIC16C923, PIC16C924 and PIC17C756  
may be supported with an adapter socket. PICSTART  
Plus is CE compliant.  
The PICMASTER Emulator System has been  
designed as  
a real-time emulation system with  
advanced features that are generally found on more  
expensive development tools. The PC compatible 386  
(and higher) machine platform and Microsoft Windows  
3.x environment were chosen to best make these  
features available to you, the end user.  
A CE compliant version of PICMASTER is available for  
European Union (EU) countries.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 55  
PIC16C5X  
connecting it to the microcontroller socket(s). Some  
of the features include an RS-232 interface,  
push-button switches, a potentiometer for simulated  
analog input, a thermistor and separate headers for  
connection to an external LCD module and a keypad.  
Also provided on the PICDEM-3 board is an LCD  
panel, with 4 commons and 12 segments, that is  
capable of displaying time, temperature and day of the  
week. The PICDEM-3 provides an additional RS-232  
interface and Windows 3.1 software for showing the  
demultiplexed LCD signals on a PC. A simple serial  
interface allows the user to construct a hardware  
demultiplexer for the LCD signals.  
9.6  
PICDEM-1 Low-Cost PICmicro  
Demonstration Board  
The PICDEM-1 is a simple board which demonstrates  
the capabilities of several of Microchip’s  
microcontrollers. The microcontrollers supported are:  
PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61,  
PIC16C62X, PIC16C71, PIC16C8X, PIC17C42,  
PIC17C43 and PIC17C44. All necessary hardware  
and software is included to run basic demo programs.  
The users can program the sample microcontrollers  
provided with the PICDEM-1 board, on  
a
PRO MATE II or PICSTART-Plus programmer, and  
easily test firmware. The user can also connect the  
PICDEM-1 board to the PICMASTER emulator and  
download the firmware to the emulator for testing.  
Additional prototype area is available for the user to  
build some additional hardware and connect it to the  
microcontroller socket(s). Some of the features include  
an RS-232 interface, a potentiometer for simulated  
analog input, push-button switches and eight LEDs  
connected to PORTB.  
9.9  
MPLAB™ Integrated Development  
Environment Software  
The MPLAB IDE Software brings an ease of software  
development previously unseen in the 8-bit  
microcontroller market. MPLAB is a windows based  
application which contains:  
• A full featured editor  
• Three operating modes  
- editor  
9.7  
PICDEM-2 Low-Cost PIC16CXX  
Demonstration Board  
- emulator  
- simulator  
The PICDEM-2 is a simple demonstration board that  
supports the PIC16C62, PIC16C64, PIC16C65,  
PIC16C73 and PIC16C74 microcontrollers. All the  
necessary hardware and software is included to  
run the basic demonstration programs. The user  
can program the sample microcontrollers provided  
with the PICDEM-2 board, on a PRO MATE II  
programmer or PICSTART-Plus, and easily test  
firmware. The PICMASTER emulator may also be  
used with the PICDEM-2 board to test firmware.  
Additional prototype area has been provided to the  
user for adding additional hardware and connecting it  
to the microcontroller socket(s). Some of the features  
include a RS-232 interface, push-button switches, a  
potentiometer for simulated analog input, a Serial  
• A project manager  
• Customizable tool bar and key mapping  
• A status bar with project information  
• Extensive on-line help  
MPLAB allows you to:  
• Edit your source files (either assembly or ‘C’)  
• One touch assemble (or compile) and download  
to PICmicro tools (automatically updates all  
project information)  
• Debug using:  
- source files  
- absolute listing file  
Transfer data dynamically via DDE (soon to be  
replaced by OLE)  
2
EEPROM to demonstrate usage of the I C bus and  
• Run up to four emulators on the same PC  
separate headers for connection to an LCD module  
and a keypad.  
The ability to use MPLAB with Microchip’s simulator  
allows a consistent platform and the ability to easily  
switch from the low cost simulator to the full featured  
emulator with minimal retraining due to development  
tools.  
9.8  
PICDEM-3 Low-Cost PIC16CXXX  
Demonstration Board  
The PICDEM-3 is a simple demonstration board that  
supports the PIC16C923 and PIC16C924 in the PLCC  
package. It will also support future 44-pin PLCC  
9.10  
Assembler (MPASM)  
The MPASM Universal Macro Assembler is  
a
microcontrollers with  
a LCD Module. All the  
PC-hosted symbolic assembler. It supports all  
microcontroller series including the PIC12C5XX,  
PIC14000, PIC16C5X, PIC16CXXX, and PIC17CXX  
families.  
necessary hardware and software is included to  
run the basic demonstration programs. The user  
can program the sample microcontrollers provided  
with the PICDEM-3 board, on a PRO MATE II  
programmer or PICSTART Plus with an adapter  
socket, and easily test firmware. The PICMASTER  
emulator may also be used with the PICDEM-3 board  
to test firmware. Additional prototype area has been  
provided to the user for adding hardware and  
MPASM offers full featured Macro capabilities,  
conditional assembly, and several source and listing  
formats. It generates various object code formats to  
support Microchip's development tools as well as third  
party programmers.  
DS30453B-page 56  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
MPASM allows full symbolic debugging from  
PICMASTER, Microchip’s Universal Emulator System.  
9.14  
MP-DriveWay – Application Code  
Generator  
MPASM has the following features to assist in  
developing software for specific use applications.  
MP-DriveWay is an easy-to-use Windows-based  
Application Code Generator. With MP-DriveWay you  
can visually configure all the peripherals in a PICmicro  
device and, with a click of the mouse, generate all the  
initialization and many functional code modules in C  
language. The output is fully compatible with  
Microchip’s MPLAB-C C compiler. The code produced  
is highly modular and allows easy integration of your  
own code. MP-DriveWay is intelligent enough to  
maintain your code through subsequent code  
generation.  
• Provides translation of Assembler source code to  
object code for all Microchip microcontrollers.  
• Macro assembly capability.  
• Produces all the files (Object, Listing, Symbol,  
and special) required for symbolic debug with  
Microchip’s emulator systems.  
• Supports Hex (default), Decimal and Octal source  
and listing formats.  
MPASM provides a rich directive language to support  
programming of the PICmicro. Directives are helpful in  
making the development of your assemble source  
code shorter and more maintainable.  
9.15  
SEEVAL Evaluation and  
Programming System  
The SEEVAL SEEPROM Designer’s Kit supports all  
Microchip 2-wire and 3-wire Serial EEPROMs. The kit  
includes everything necessary to read, write, erase or  
program special features of any Microchip SEEPROM  
product including Smart Serials and secure serials.  
9.11  
Software Simulator (MPLAB-SIM)  
The MPLAB-SIM Software Simulator allows code  
development in a PC host environment. It allows the  
user to simulate the PICmicro series microcontrollers  
on an instruction level. On any given instruction, the  
user may examine or modify any of the data areas or  
provide external stimulus to any of the pins. The  
input/output radix can be set by the user and the  
execution can be performed in; single step, execute  
until break, or in a trace mode.  
The Total Endurance  
Disk is included to aid in  
trade-off analysis and reliability calculations. The total  
kit can significantly reduce time-to-market and result in  
an optimized system.  
9.16  
KEELOQ Evaluation and  
Programming Tools  
MPLAB-SIM fully supports symbolic debugging using  
MPLAB-C and MPASM. The Software Simulator offers  
the low cost flexibility to develop and debug code  
outside of the laboratory environment making it an  
excellent multi-project software development tool.  
KEELOQ evaluation and programming tools support  
Microchips HCS Secure Data Products. The HCS  
evaluation kit includes an LCD display to show  
changing codes, a decoder to decode transmissions,  
and  
a programming interface to program test  
transmitters.  
9.12  
C Compiler (MPLAB-C17)  
The MPLAB-C Code Development System is  
a
complete ‘C’ compiler and integrated development  
environment for Microchip’s PIC17CXXX family of  
microcontrollers. The compiler provides powerful  
integration capabilities and ease of use not found with  
other compilers.  
For easier source level debugging, the compiler  
provides symbol information that is compatible with the  
MPLAB IDE memory display.  
9.13  
Fuzzy Logic Development System  
(fuzzyTECH-MP)  
fuzzyTECH-MP fuzzy logic development tool is  
available in two versions - a low cost introductory  
version, MP Explorer, for designers to gain  
comprehensive working knowledge of fuzzy logic  
system design; and full-featured version,  
a
a
fuzzyTECH-MP, Edition for implementing more  
complex systems.  
Both versions include Microchip’s fuzzyLAB  
demonstration board for hands-on experience with  
fuzzy logic systems implementation.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 57  
24CXX  
PIC12C5XX PIC14000 PIC16C5X PIC16CXXX PIC16C6X PIC16C7XX PIC16C8X PIC16C9XX PIC17C4X  
PIC17C7XX  
25CXX  
93CXX HCSXXX  
EMULATOR PRODUCTS  
PICMASTER  
PICMASTER-CE  
/
(PIC17C75X only)  
In-Circuit Emulator  
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
MPLAB™-ICE  
ICEPIC Low-Cost  
In-Circuit Emulator  
SOFTWARE PRODUCTS  
MPLAB  
Integrated  
Development  
Environment  
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
MPLAB C17  
Compiler  
fuzzyTECH -MP  
Explorer/Edition  
Fuzzy Logic Dev. Tool  
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
MP-DriveWay  
Applications  
Code Generator  
Total Endurance  
Software Model  
ü
PROGRAMMERS  
PICSTART Plus  
Low-Cost  
Universal Dev. Kit  
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
PRO MATE II  
Universal Programmer  
ü
ü
ü
ü
ü
KEELOQ Programmer  
DEMO BOARDS  
SEEVAL Designers Kit  
PICDEM-1  
ü
ü
ü
ü
PICDEM-2  
ü
ü
PICDEM-3  
ü
KEELOQ Evaluation Kit  
ü
PIC16C52  
PIC16C5X  
10.0 ELECTRICAL CHARACTERISTICS - PIC16C52  
Absolute Maximum Ratings†  
Ambient Temperature under bias ...........................................................................................................55°C to +125°C  
Storage Temperature..............................................................................................................................65°C to +150°C  
Voltage on VDD with respect to VSS ..............................................................................................................0 V to +7.5 V  
Voltage on MCLR with respect to VSS............................................................................................................0 V to +14 V  
Voltage on all other pins with respect to VSS ................................................................................–0.6 V to (VDD + 0.6 V)  
(1)  
Total Power Dissipation ....................................................................................................................................800 mW  
Max. Current out of VSS pin...................................................................................................................................150 mA  
Max. Current into VDD pin........................................................................................................................................50 mA  
Max. Current into an input pin (T0CKI only).....................................................................................................................±500 µA  
Input Clamp Current, IIK (VI < 0 or VI > VDD) ....................................................................................................................±20 mA  
Output Clamp Current, IOK (VO < 0 or VO > VDD)............................................................................................................±20 mA  
Max. Output Current sunk by any I/O pin................................................................................................................10 mA  
Max. Output Current sourced by any I/O pin...........................................................................................................10 mA  
Max. Output Current sourced by a single I/O port (PORTA or B)............................................................................10 mA  
Max. Output Current sunk by a single I/O port (PORTA or B).................................................................................10 mA  
Note 1: Power Dissipation is calculated as follows: Pdis = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOL x IOL)  
NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This  
is a stress rating only and functional operation of the device at those or any other conditions above those indicated  
in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 59  
PIC16C5X  
PIC16C52  
10.1  
DC Characteristics: PIC16C52-04 (Commercial)  
PIC16C52-04I (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
DC Characteristics  
Power Supply Pins  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
(1)  
Characteristic  
Sym Min  
Typ  
Max Units  
Conditions  
Supply Voltage  
VDD  
VDR  
IDD  
3.0  
6.25  
V
V
FOSC = DC to 4 MHz  
(2)  
RAM Data Retention Voltage  
1.5*  
Device in SLEEP Mode  
FOSC = 4 MHz, VDD = 5.5 V  
(3,4)  
Supply Current  
1.8  
3.3  
mA  
(5)  
Power Down Current  
IPD  
Commercial  
Industrial  
0.6  
0.6  
9
12  
µA  
µA  
VDD = 3.0 V  
VDD = 3.0 V  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C.This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
Vss, T0CKI = VDD, MCLR = VDD.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: For RC option, does not include current through Rext. The current through the resistor can be estimated by  
the formula: IR = VDD/2Rext (mA) with Rext in k.  
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
DS30453B-page 60  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16C52  
PIC16C5X  
10.2  
DC Characteristics: PIC16C52-04 (Commercial)  
PIC16C52-04I (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature 0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
DC Characteristics  
All Pins Except  
Power Supply Pins  
Operating Voltage VDD range is described in Section 10.1.  
(1)  
Characteristic  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Low Voltage  
I/O ports  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
VIL  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.3 VDD  
V
V
V
V
V
Pin at hi-impedance  
(4)  
RC option only  
XT option  
Input High Voltage  
I/O ports  
VIH  
(5)  
0.45 VDD  
2.0  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
V
For all VDD  
(5)  
4.0 V < VDD 5.5 V  
VDD > 5.5 V  
0.36 VDD  
0.85 VDD  
0.85 VDD  
0.85 VDD  
0.7 VDD  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
(4)  
RC option only  
XT option  
Hysteresis of Schmitt  
Trigger inputs  
VHYS  
IIL  
0.15VDD*  
V
(2,3)  
Input Leakage Current  
For VDD 5.5 V  
VSS VPIN VDD,  
Pin at hi-impedance  
VPIN = VSS + 0.25 V  
VPIN = VDD  
VSS VPIN VDD  
VSS VPIN VDD,  
XT option  
I/O ports  
–1  
–5  
0.5  
+1  
µA  
MCLR  
µA  
µA  
µA  
µA  
0.5  
0.5  
0.5  
+5  
+3  
+3  
T0CKI  
OSC1  
–3  
–3  
Output Low Voltage  
I/O ports  
OSC2/CLKOUT  
VOL  
VOH  
0.6  
0.6  
V
V
IOL = 2.0 mA, VDD = 4.5 V  
IOL = 1.6 mA, VDD = 4.5 V,  
RC option  
Output High Voltage  
(3)  
I/O ports  
VDD – 0.7  
VDD – 0.7  
V
V
IOH = –2.0 mA, VDD = 4.5 V  
IOH = –1.0 mA, VDD = 4.5 V,  
RC option  
OSC2/CLKOUT  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C.This data is for design guidance  
only and is not tested.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltage.  
3: Negative current is defined as coming out of the pin.  
4: For RC option, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C52 be  
driven with external clock in RC mode.  
5: The user may use the better of the two specifications.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 61  
PIC16C5X  
PIC16C52  
10.3  
Timing Parameter Symbology and Load Conditions  
The timing parameter symbols have been created following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase subscripts (pp) and their meanings:  
pp  
T
Time  
2
to  
mc  
osc  
os  
MCLR  
oscillator  
OSC1  
ck  
cy  
drt  
io  
CLKOUT  
cycle time  
device reset timer  
I/O port  
t0  
T0CKI  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
FIGURE 10-1: LOAD CONDITIONS - PIC16C52  
Pin  
CL = 50 pF for all pins except OSC2  
CL  
15 pF for OSC2 in XT mode when  
external clock is used to  
drive OSC1  
VSS  
DS30453B-page 62  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16C52  
PIC16C5X  
10.4  
Timing Diagrams and Specifications  
FIGURE 10-2: EXTERNAL CLOCK TIMING - PIC16C52  
Q4  
Q3  
Q4  
4
Q1  
Q1  
Q2  
OSC1  
1
3
3
4
2
CLKOUT  
TABLE 10-1: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C52  
AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
Operating Voltage VDD range is described in Section 10.1.  
Parameter  
(1)  
No.  
Sym  
Characteristic  
Min Typ  
Max Units  
Conditions  
(2)  
FOSC  
External CLKIN Frequency  
DC  
DC  
0.1  
250  
250  
250  
250  
4
4
MHz XT osc mode  
MHz RC osc mode  
MHz XT osc mode  
(2)  
Oscillator Frequency  
4
(2)  
1
TOSC  
External CLKIN Period  
ns  
ns  
ns  
ns  
ns  
ns  
RC osc mode  
XT osc mode  
RC osc mode  
XT osc mode  
(2)  
Oscillator Period  
10,000  
(3)  
2
3
4
TCY  
Instruction Cycle Time  
4/FOSC  
TosL, TosH Clock in (OSC1) Low or High Time  
TosR, TosF Clock in (OSC1) Rise or Fall Time  
85*  
XT oscillator  
XT oscillator  
25*  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
2: All specified values are based on characterization data for that particular oscillator type under standard operating condi-  
tions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
3: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 63  
PIC16C5X  
PIC16C52  
FIGURE 10-3: CLKOUT AND I/O TIMING - PIC16C52  
Q1  
Q2  
Q3  
Q4  
OSC1  
10  
11  
CLKOUT  
13  
12  
18  
14  
19  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
New Value  
Old Value  
20, 21  
Note: All tests must be done with specified capacitive loads (see data sheet) 50 pF on I/O pins and CLKOUT.  
TABLE 10-2: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16C52  
AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
Operating Voltage VDD range is described in Section 10.1.  
Parameter  
(1)  
Typ  
No.  
Sym  
Characteristic  
(2)  
Min  
Max  
Units  
10  
11  
12  
13  
14  
15  
16  
17  
18  
TosH2ckL  
TosH2ckH  
TckR  
OSC1to CLKOUT↓  
15  
15  
5
30**  
30**  
15**  
15**  
40**  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(2)  
OSC1to CLKOUT↑  
(2)  
CLKOUT rise time  
(2)  
TckF  
CLKOUT fall time  
5
(2)  
CLKOUTto Port out valid  
TckL2ioV  
TioV2ckH  
TckH2ioI  
TosH2ioV  
TosH2ioI  
(2)  
Port in valid before CLKOUT↑  
(2)  
0.25 TCY+30*  
Port in hold after CLKOUT↑  
OSC1(Q1 cycle) to Port out valid  
0*  
(3)  
100*  
OSC1(Q2 cycle) to Port input invalid  
TBD  
(I/O in hold time)  
19  
TioV2osH  
Port input valid to OSC1↑  
TBD  
ns  
(I/O in setup time)  
(3)  
20  
21  
TioR  
TioF  
Port output rise time  
10  
10  
25**  
25**  
ns  
ns  
(3)  
Port output fall time  
*
These parameters are characterized but not tested.  
** These parameters are design targets and are not tested. No characterization data available at this time.  
Note 1: Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
2: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
3: See Figure 10-1 for loading conditions.  
DS30453B-page 64  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C52  
PIC16C5X  
FIGURE 10-4: RESET AND DEVICE RESET TIMER TIMING - PIC16C52  
VDD  
MCLR  
30  
Internal  
POR  
32  
32  
32  
DRT  
Time-out  
Internal  
RESET  
34  
34  
I/O pin  
(Note 1)  
Note 1: I/O pins must be taken out of hi-impedance mode by enabling the output drivers in software.  
TABLE 10-3: RESET AND DEVICE RESET TIMER - PIC16C52  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
Operating Voltage VDD range is described in Section 10.1.  
Parameter  
No.  
(1)  
Sym Characteristic  
Min Typ  
Max Units  
Conditions  
30  
32  
34  
TmcL MCLR Pulse Width (low)  
100*  
9*  
18*  
ns VDD = 5 V  
TDRT Device Reset Timer Period  
TioZ I/O Hi-impedance from MCLR Low  
30*  
ms VDD = 5 V (Commercial)  
ns  
100*  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 65  
PIC16C5X  
PIC16C52  
FIGURE 10-5: TIMER0 CLOCK TIMINGS - PIC16C52  
T0CKI  
40  
41  
42  
TABLE 10-4: TIMER0 CLOCK REQUIREMENTS - PIC16C52  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
Operating Voltage VDD range is described in Section 10.1.  
Parameter  
(1)  
Sym Characteristic  
Min  
Typ  
Max Units Conditions  
No.  
40  
Tt0H T0CKI High Pulse Width - No Prescaler  
- With Prescaler  
0.5 TCY + 20*  
10*  
ns  
ns  
ns  
ns  
41  
42  
Tt0L T0CKI Low Pulse Width - No Prescaler  
- With Prescaler  
0.5 TCY + 20*  
10*  
Tt0P T0CKI Period  
20 or TCY + 40*  
N
ns Whichever is greater.  
N = Prescale Value  
(1, 2, 4,..., 256)  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
DS30453B-page 66  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54/55/56/57  
PIC16C5X  
11.0 ELECTRICAL CHARACTERISTICS - PIC16C54/55/56/57  
Absolute Maximum Ratings†  
Ambient Temperature under bias ...........................................................................................................55°C to +125°C  
Storage Temperature..............................................................................................................................65°C to +150°C  
Voltage on VDD with respect to VSS ............................................................................................................... 0V to +7.5V  
(2)  
Voltage on MCLR with respect to VSS ......................................................................................................... 0V to +14V  
Voltage on all other pins with respect to VSS ................................................................................. –0.6V to (VDD + 0.6V)  
(1)  
Total Power Dissipation ....................................................................................................................................800 mW  
Max. Current out of VSS pin...................................................................................................................................150 mA  
Max. Current into VDD pin......................................................................................................................................100 mA  
Max. Current into an input pin (T0CKI only).....................................................................................................................±500 µA  
Input Clamp Current, IIK (VI < 0 or VI > VDD) ....................................................................................................................±20 mA  
Output Clamp Current, IOK (VO < 0 or VO > VDD)............................................................................................................±20 mA  
Max. Output Current sunk by any I/O pin................................................................................................................25 mA  
Max. Output Current sourced by any I/O pin...........................................................................................................20 mA  
Max. Output Current sourced by a single I/O port (PORTA, B or C) .......................................................................40 mA  
Max. Output Current sunk by a single I/O port (PORTA, B or C) ............................................................................50 mA  
Note 1: Power Dissipation is calculated as follows: Pdis = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOL x IOL)  
Note 2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up.Thus,  
a series resistor of 50 to 100 should be used when applying a “low” level to the MCLR pin rather than pull-  
ing this pin directly to VSS  
NOTICE: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This  
is a stress rating only and functional operation of the device at those or any other conditions above those indicated  
in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 67  
PIC16C5X  
PIC16C54/55/56/57  
TABLE 11-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS  
(RC, XT & 10) AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)  
OSC  
PIC16C5X-RC  
VDD: 3.0 V to 6.25 V  
PIC16C5X-XT  
PIC16C5X-10  
IDD: 3.3 mA max. at 5. V  
IPD: 9 µA max. at 3.0 V, WDT dis  
Freq: 4 MHz max.  
RC  
N/A  
N/A  
VDD: 3.0V to 6.25V  
VDD: 3.0V to 6.25V  
IDD: 1.8 mA typ. at 5.5V  
IPD: 0.6 µA typ. at 3.0V WDT dis  
Freq: 4 MHz max.  
IDD: 3.3 mA max. at 5.5V  
IPD: 9 µA max. at 3.0V, WDT dis  
Freq: 4 MHz max.  
XT  
HS  
LP  
N/A  
VDD: 4.5V to 5.5V  
IDD: 10 mA max. at 5.5V  
IPD: 9 µA max. at 3.0V, WDT dis  
Freq: 10 MHz max.  
N/A  
N/A  
VDD: 2.5V to 6.25V  
VDD: 2.5V to 6.25V  
VDD: 2.5V to 6.25V  
IDD: 15 µA typ. at 3.0V  
IPD: 0.6 µA typ. at 3.0V, WDT dis  
Freq: 40 kHz max.  
IDD: 15 µA typ. at 3.0V  
IPD: 0.6 µA typ. at 3.0V, WDT dis  
Freq: 40 kHz max.  
IDD: 15 µA typ. at 3.0V  
IPD: 0.6 µA typ. at 3.0V, WDT dis  
Freq: 40 kHz max.  
The shaded sections indicate oscillator selections which should work by design, but are not tested. It is recommended  
that the user select the device type from information in unshaded sections.  
TABLE 11-2: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS  
(HS, LP & JW) AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)  
OSC  
PIC16C5X-HS  
PIC16C5X-LP  
PIC16C5X/JW  
VDD: 3.0V to 6.25V  
IDD: 3.3 mA max. at 5.5V  
IPD: 9 µA max. at 3.0V, WDT dis  
Freq: 4 MHz max.  
RC  
N/A  
N/A  
VDD: 3.0V to 6.25V  
IDD: 3.3 mA max. at 5.5V  
IPD: 9 µA max. at 3.0V, WDT dis  
Freq: 4 MHz max.  
XT  
HS  
LP  
N/A  
N/A  
N/A  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
IDD: 20 mA max. at 5.5V  
IPD: 9 µA max. at 3.0V, WDT dis  
Freq: 20 MHz max.  
IDD: 20 mA max. at 5.5V  
IPD: 9 µA max. at 3.0V, WDT dis  
Freq: 20 MHz max.  
VDD: 2.5V to 6.25V  
VDD: 2.5V to 6.25V  
VDD: 2.5V to 6.25V  
IDD: 15 µA typ. at 3.0V  
IPD: 0.6 µA typ. at 3.0V, WDT dis  
Freq: 40 kHz max.  
IDD: 32 µA max. at 32 kHz, 3.0V  
IPD: 9 µA max. at 3.0V, WDT dis  
Freq: 40 kHz max.  
IDD: 32 µA max. at 32 kHz, 3.0V  
IPD: 9 µA max. at 3.0V, WDT dis  
Freq: 40 kHz max.  
The shaded sections indicate oscillator selections which should work by design, but are not tested. It is recommended  
that the user select the device type from information in unshaded sections.  
DS30453B-page 68  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54/55/56/57  
PIC16C5X  
11.1  
DC Characteristics: PIC16C54/55/56/57-RC, XT, 10, HS, LP (Commercial)  
DC Characteristics  
Power Supply Pins  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature 0°C TA +70°C  
(1)  
Characteristic  
Sym Min  
Typ  
Max Units  
Conditions  
Supply Voltage  
PIC16C5X-RC  
PIC16C5X-XT  
PIC16C5X-10  
PIC16C5X-HS  
PIC16C5X-LP  
VDD  
3.0  
3.0  
4.5  
4.5  
2.5  
6.25  
6.25  
5.5  
5.5  
6.25  
V
V
V
V
V
FOSC = DC to 4 MHz  
FOSC = DC to 4 MHz  
FOSC = DC to 10 MHz  
FOSC = DC to 20 MHz  
FOSC = DC to 40 kHz  
(2)  
RAM Data Retention Voltage  
VDR  
1.5*  
VSS  
V
V
Device in SLEEP Mode  
VDD Start Voltage to ensure  
Power-On Reset  
VPOR  
See Section 7.4 for details on  
Power-On Reset  
VDD Rise Rate to ensure  
Power-On Reset  
SVDD 0.05*  
V/ms See Section 7.4 for details on  
Power-On Reset  
(3)  
Supply Current  
PIC16C5X-RC  
PIC16C5X-XT  
PIC16C5X-10  
PIC16C5X-HS  
IDD  
(4)  
1.8  
1.8  
4.8  
4.8  
9.0  
15  
3.3  
3.3  
10  
10  
20  
32  
mA  
mA  
mA  
mA  
mA  
µA  
FOSC = 4 MHz, VDD = 5.5V  
FOSC = 4 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 20 MHz, VDD = 5.5V  
FOSC = 32 kHz, VDD = 3.0V,  
WDT disabled  
PIC16C5X-LP  
(5)  
Power Down Current  
IPD  
4.0  
0.6  
12  
9
µA  
µA  
VDD = 3.0V, WDT enabled  
VDD = 3.0V, WDT disabled  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C.This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through Rext. The current through the resistor can be estimated by the  
formula: IR = VDD/2Rext (mA) with Rext in k.  
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 69  
 
PIC16C5X  
PIC16C54/55/56/57  
11.2  
DC Characteristics: PIC16C54/55/56/57-RCI, XTI, 10I, HSI, LPI (Industrial)  
DC Characteristics  
Power Supply Pins  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +85°C  
(1)  
Characteristic  
Sym Min  
Typ  
Max Units  
Conditions  
Supply Voltage  
PIC16C5X-RCI  
PIC16C5X-XTI  
PIC16C5X-10I  
PIC16C5X-HSI  
PIC16C5X-LPI  
VDD  
3.0  
3.0  
4.5  
4.5  
2.5  
6.25  
6.25  
5.5  
5.5  
6.25  
V
V
V
V
V
FOSC = DC to 4 MHz  
FOSC = DC to 4 MHz  
FOSC = DC to 10 MHz  
FOSC = DC to 20 MHz  
FOSC = DC to 40 kHz  
(2)  
RAM Data Retention Voltage  
VDR  
1.5*  
VSS  
V
V
Device in SLEEP mode  
VDD Start Voltage to ensure  
Power-On Reset  
VPOR  
See Section 7.4 for details on  
Power-On Reset  
VDD Rise Rate to ensure  
Power-On Reset  
SVDD 0.05*  
V/ms See Section 7.4 for details on  
Power-On Reset  
(3)  
Supply Current  
PIC16C5X-RCI  
PIC16C5X-XTI  
PIC16C5X-10I  
PIC16C5X-HSI  
IDD  
(4)  
1.8  
1.8  
4.8  
4.8  
9.0  
15  
3.3  
3.3  
10  
10  
20  
40  
mA  
mA  
mA  
mA  
mA  
µA  
FOSC = 4 MHz, VDD = 5.5V  
FOSC = 4 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 20 MHz, VDD = 5.5V  
FOSC = 32 kHz, VDD = 3.0V,  
WDT disabled  
PIC16C5X-LPI  
(5)  
Power Down Current  
IPD  
4.0  
0.6  
14  
12  
µA  
µA  
VDD = 3.0V, WDT enabled  
VDD = 3.0V, WDT disabled  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C.This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through Rext. The current through the resistor can be estimated by the  
formula: IR = VDD/2Rext (mA) with Rext in k.  
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
DS30453B-page 70  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16C54/55/56/57  
PIC16C5X  
11.3  
DC Characteristics: PIC16C54/55/56/57-RCE, XTE, 10E, HSE, LPE (Extended)  
DC Characteristics  
Power Supply Pins  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C  
(1)  
Characteristic  
Sym Min  
Typ  
Max Units  
Conditions  
Supply Voltage  
PIC16C5X-RCE  
PIC16C5X-XTE  
PIC16C5X-10E  
PIC16C5X-HSE  
PIC16C5X-LPE  
VDD  
3.25  
3.25  
4.5  
6.0  
6.0  
5.5  
5.5  
6.0  
V
V
V
V
V
FOSC = DC to 4 MHz  
FOSC = DC to 4 MHz  
FOSC = DC to 10 MHz  
FOSC = DC to 16 MHz  
FOSC = DC to 40 kHz  
4.5  
2.5  
(2)  
RAM Data Retention Voltage  
VDR  
1.5*  
VSS  
V
V
Device in SLEEP mode  
VDD Start Voltage to ensure  
Power-On Reset  
VPOR  
See Section 7.4 for details on  
Power-On Reset  
VDD rise rate to ensure  
Power-On Reset  
SVDD 0.05*  
V/ms See Section 7.4 for details on  
Power-On Reset  
(3)  
Supply Current  
PIC16C5X-RCE  
PIC16C5X-XTE  
PIC16C5X-10E  
PIC16C5X-HSE  
IDD  
(4)  
1.8  
1.8  
4.8  
4.8  
9.0  
19  
3.3  
3.3  
10  
10  
20  
55  
mA  
mA  
mA  
mA  
mA  
µA  
FOSC = 4 MHz, VDD = 5.5V  
FOSC = 4 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 16 MHz, VDD = 5.5V  
FOSC = 32 kHz, VDD = 3.25V,  
WDT disabled  
PIC16C5X-LPE  
(5)  
Power Down Current  
IPD  
5.0  
0.8  
22  
18  
µA  
µA  
VDD = 3.25V, WDT enabled  
VDD = 3.25V, WDT disabled  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C.This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through Rext. The current through the resistor can be estimated by the  
formula: IR = VDD/2Rext (mA) with Rext in k.  
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 71  
 
PIC16C5X  
PIC16C54/55/56/57  
11.4  
DC Characteristics: PIC16C54/55/56/57-RC, XT, 10, HS, LP (Commercial)  
PIC16C54/55/56/57-RCI, XTI, 10I, HSI, LPI (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
DC Characteristics  
All Pins Except  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
Power Supply Pins  
Operating Voltage VDD range is described in Section 11.1, Section 11.2 and  
Section 11.3.  
(1)  
Characteristic  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Low Voltage  
I/O ports  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
VIL  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.3 VDD  
V
V
V
V
V
Pin at hi-impedance  
(4)  
PIC16C5X-RC only  
PIC16C5X-XT, 10, HS, LP  
Input High Voltage  
I/O ports  
VIH  
(5)  
0.45 VDD  
2.0  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
V
For all VDD  
(5)  
4.0V < VDD 5.5V  
VDD > 5.5V  
0.36 VDD  
0.85 VDD  
0.85 VDD  
0.85 VDD  
0.7 VDD  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
(4)  
PIC16C5X-RC only  
PIC16C5X-XT, 10, HS, LP  
Hysteresis of Schmitt  
Trigger inputs  
VHYS  
IIL  
0.15VDD*  
V
(2,3)  
Input Leakage Current  
For VDD 5.5V  
I/O ports  
–1  
–5  
0.5  
+1  
µA  
VSS VPIN VDD,  
Pin at hi-impedance  
VPIN = VSS + 0.25V  
VPIN = VDD  
VSS VPIN VDD  
VSS VPIN VDD,  
PIC16C5X-XT, 10, HS, LP  
MCLR  
µA  
µA  
µA  
µA  
0.5  
0.5  
0.5  
+5  
+3  
+3  
T0CKI  
OSC1  
–3  
–3  
Output Low Voltage  
I/O ports  
OSC2/CLKOUT  
VOL  
VOH  
0.6  
0.6  
V
V
IOL = 8.7 mA, VDD = 4.5V  
IOL = 1.6 mA, VDD = 4.5V,  
PIC16C5X-RC  
Output High Voltage  
(3)  
I/O ports  
VDD – 0.7  
VDD – 0.7  
V
V
IOH = –5.4 mA, VDD = 4.5V  
IOH = –1.0 mA, VDD = 4.5V,  
PIC16C5X-RC  
OSC2/CLKOUT  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C.This data is for design guidance  
only and is not tested.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltage.  
3: Negative current is defined as coming out of the pin.  
4: For PIC16C5X-RC devices, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C5X be driven with external clock in RC mode.  
5: The user may use the better of the two specifications.  
DS30453B-page 72  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54/55/56/57  
PIC16C5X  
11.5  
DC Characteristics: PIC16C54/55/56/57-RC, XT, 10, HS, LP (Extended)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C  
Operating Voltage VDD range is described in Section 11.1, Section 11.2 and  
Section 11.3.  
DC Characteristics  
All Pins Except  
Power Supply Pins  
(1)  
Characteristic  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Low Voltage  
I/O ports  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
VIL  
Vss  
Vss  
Vss  
Vss  
Vss  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.3 VDD  
V
V
V
V
V
Pin at hi-impedance  
(4)  
PIC16C5X-RC only  
PIC16C5X-XT, 10, HS, LP  
Input High Voltage  
I/O ports  
VIH  
(5)  
0.45 VDD  
2.0  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
V
For all VDD  
(5)  
4.0V < VDD 5.5V  
VDD > 5.5 V  
0.36 VDD  
0.85 VDD  
0.85 VDD  
0.85 VDD  
0.7 VDD  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
(4)  
PIC16C5X-RC only  
PIC16C5X-XT, 10, HS, LP  
Hysteresis of Schmitt  
Trigger inputs  
VHYS  
IIL  
0.15VDD*  
V
(2,3)  
Input Leakage Current  
For VDD 5.5 V  
I/O ports  
–1  
–5  
0.5  
+1  
µA  
VSS VPIN VDD,  
Pin at hi-impedance  
VPIN = VSS + 0.25V  
VPIN = VDD  
VSS VPIN VDD  
VSS VPIN VDD,  
PIC16C5X-XT, 10, HS, LP  
MCLR  
µA  
µA  
µA  
µA  
0.5  
0.5  
0.5  
+5  
+3  
+3  
T0CKI  
OSC1  
–3  
–3  
Output Low Voltage  
I/O ports  
OSC2/CLKOUT  
VOL  
VOH  
0.6  
0.6  
V
V
IOL = 8.7 mA, VDD = 4.5V  
IOL = 1.6 mA, VDD = 4.5V,  
PIC16C5X-RC  
Output High Voltage  
(3)  
I/O ports  
VDD – 0.7  
VDD – 0.7  
V
V
IOH = –5.4 mA, VDD = 4.5V  
IOH = –1.0 mA, VDD = 4.5V,  
PIC16C5X-RC  
OSC2/CLKOUT  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C.This data is for design guidance  
only and is not tested.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltage.  
3: Negative current is defined as coming out of the pin.  
4: For PIC16C5X-RC devices, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C5X be driven with external clock in RC mode.  
5: The user may use the better of the two specifications.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 73  
PIC16C5X  
PIC16C54/55/56/57  
11.6  
Timing Parameter Symbology and Load Conditions  
The timing parameter symbols have been created following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase subscripts (pp) and their meanings:  
pp  
T
Time  
2
to  
mc  
osc  
os  
MCLR  
oscillator  
OSC1  
ck  
cy  
drt  
io  
CLKOUT  
cycle time  
device reset timer  
I/O port  
t0  
T0CKI  
wdt  
watchdog timer  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
FIGURE 11-1: LOAD CONDITIONS - PIC16C54/55/56/57  
Pin  
CL = 50 pF for all pins except OSC2  
CL  
15 pF for OSC2 in XT, HS or LP  
modes when external clock  
is used to drive OSC1  
VSS  
DS30453B-page 74  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16C54/55/56/57  
PIC16C5X  
11.7  
Timing Diagrams and Specifications  
FIGURE 11-2: EXTERNAL CLOCK TIMING - PIC16C54/55/56/57  
Q4  
Q3  
Q4  
4
Q1  
Q1  
Q2  
OSC1  
1
3
3
4
2
CLKOUT  
TABLE 11-3: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54/55/56/57  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 11.1, Section 11.2 and Section 11.3  
Parameter  
No.  
(1)  
Sym  
Characteristic  
Min Typ  
Max Units  
Conditions  
(2)  
FOSC  
External CLKIN Frequency  
DC  
DC  
DC  
DC  
DC  
DC  
0.1  
4
4
MHz XT osc mode  
MHz 10 MHz mode  
10  
20  
16  
40  
4
MHz HS osc mode (Com/Indust)  
MHz HS osc mode (Extended)  
kHz LP osc mode  
(2)  
Oscillator Frequency  
MHz RC osc mode  
4
MHz XT osc mode  
10  
20  
16  
40  
MHz 10 MHz mode  
4
MHz HS osc mode (Com/Indust)  
MHz HS osc mode (Extended)  
kHz LP osc mode  
4
DC  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated.These parameters are for design guidance only  
and are not tested.  
2: All specified values are based on characterization data for that particular oscillator type under standard operating  
conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation  
and/or higher than expected current consumption.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
3: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 75  
PIC16C5X  
PIC16C54/55/56/57  
TABLE 11-3: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54/55/56/57 (CON’T)  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 11.1, Section 11.2 and Section 11.3  
Parameter  
(1)  
No.  
Sym  
Characteristic  
Min Typ  
Max Units  
Conditions  
XT osc mode  
(2)  
1
TOSC  
External CLKIN Period  
250  
100  
50  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
10 MHz mode  
HS osc mode (Com/Indust)  
HS osc mode (Extended)  
LP osc mode  
62.5  
25  
(2)  
Oscillator Period  
250  
250  
100  
50  
RC osc mode  
10,000  
250  
250  
250  
XT osc mode  
10 MHz mode  
HS osc mode (Com/Indust)  
HS osc mode (Extended)  
LP osc mode  
62.5  
25  
(3)  
2
3
TCY  
Instruction Cycle Time  
4/FOSC  
TosL, TosH Clock in (OSC1) Low or High Time  
85*  
20*  
2*  
XT oscillator  
HS oscillator  
LP oscillator  
XT oscillator  
HS oscillator  
LP oscillator  
4
TosR, TosF Clock in (OSC1) Rise or Fall Time  
25*  
25*  
50*  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated.These parameters are for design guidance only  
and are not tested.  
2: All specified values are based on characterization data for that particular oscillator type under standard operating  
conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation  
and/or higher than expected current consumption.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
3: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
DS30453B-page 76  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54/55/56/57  
PIC16C5X  
FIGURE 11-3: CLKOUT AND I/O TIMING - PIC16C54/55/56/57  
Q1  
Q2  
Q3  
Q4  
OSC1  
10  
11  
CLKOUT  
13  
12  
16  
18  
14  
19  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
New Value  
Old Value  
20, 21  
Note: All tests must be done with specified capacitive loads (see data sheet) 50 pF on I/O pins and CLKOUT.  
TABLE 11-4: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16C54/55/56/57  
AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 11.1, Section 11.2 and  
Section 11.3  
Parameter  
(1)  
No.  
Sym  
Characteristic  
(2)  
Min  
Typ  
Max  
Units  
10  
11  
12  
13  
14  
15  
16  
17  
18  
TosH2ckL  
TosH2ckH  
TckR  
OSC1to CLKOUT↓  
15  
15  
5
30**  
30**  
15**  
15**  
40**  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(2)  
OSC1to CLKOUT↑  
(2)  
CLKOUT rise time  
(2)  
TckF  
CLKOUT fall time  
5
(2)  
CLKOUTto Port out valid  
TckL2ioV  
TioV2ckH  
TckH2ioI  
TosH2ioV  
TosH2ioI  
(2)  
Port in valid before CLKOUT↑  
(2)  
0.25 TCY+30*  
Port in hold after CLKOUT↑  
OSC1(Q1 cycle) to Port out valid  
0*  
(3)  
100*  
OSC1(Q2 cycle) to Port input invalid  
TBD  
(I/O in hold time)  
19  
TioV2osH  
Port input valid to OSC1↑  
TBD  
ns  
(I/O in setup time)  
(3)  
20  
21  
TioR  
TioF  
Port output rise time  
10  
10  
25**  
25**  
ns  
ns  
(3)  
Port output fall time  
*
These parameters are characterized but not tested.  
** These parameters are design targets and are not tested. No characterization data available at this time.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
2: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
3: See Figure 11-1 for loading conditions.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 77  
PIC16C5X  
PIC16C54/55/56/57  
FIGURE 11-4: RESET, WATCHDOG TIMER, AND  
DEVICE RESET TIMER TIMING - PIC16C54/55/56/57  
VDD  
MCLR  
30  
Internal  
POR  
32  
32  
32  
DRT  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O pin  
(Note 1)  
Note 1: I/O pins must be taken out of hi-impedance mode by enabling the output drivers in software.  
TABLE 11-5: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16C54/55/56/57  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 11.1, Section 11.2 and Section 11.3  
Parameter  
No.  
(1)  
Sym Characteristic  
Min Typ  
Max Units  
Conditions  
30  
31  
TmcL MCLR Pulse Width (low)  
100*  
9*  
ns VDD = 5.0V  
Twdt Watchdog Timer Time-out Period  
(No Prescaler)  
18*  
30*  
ms VDD = 5.0V (Commercial)  
32  
34  
TDRT Device Reset Timer Period  
9*  
18*  
30*  
ms VDD = 5.0V (Commercial)  
ns  
TioZ I/O Hi-impedance from MCLR Low  
100*  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
DS30453B-page 78  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54/55/56/57  
PIC16C5X  
FIGURE 11-5: TIMER0 CLOCK TIMINGS - PIC16C54/55/56/57  
T0CKI  
40  
41  
42  
TABLE 11-6: TIMER0 CLOCK REQUIREMENTS - PIC16C54/55/56/57  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature 0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 11.1, Section 11.2 and  
Section 11.3  
Parameter  
(1)  
Sym Characteristic  
Min  
Typ  
Max Units Conditions  
No.  
40  
Tt0H T0CKI High Pulse Width - No Prescaler  
- With Prescaler  
0.5 TCY + 20*  
10*  
ns  
ns  
ns  
ns  
41  
42  
Tt0L T0CKI Low Pulse Width - No Prescaler  
- With Prescaler  
0.5 TCY + 20*  
10*  
Tt0P T0CKI Period  
20 or TCY + 40*  
N
ns Whichever is greater.  
N = Prescale Value  
(1, 2, 4,..., 256)  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated.These parameters are for design guidance only  
and are not tested.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 79  
PIC16C5X  
PIC16C54/55/56/57  
NOTES:  
DS30453B-page 80  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54/55/56/57  
PIC16C5X  
12.0 DC AND AC CHARACTERISTICS - PIC16C54/55/56/57  
The graphs and tables provided in this section are for design guidance and are not tested. In some graphs or tables the  
data presented are outside specified operating range (e.g., outside specified VDD range). This is for information only  
and devices will operate properly only within the specified range.  
The data presented in this section is a statistical summary of data collected on units from different lots over a period of  
time. “Typical” represents the mean of the distribution while “max” or “min” represents (mean + 3σ) and (mean – 3σ)  
respectively, where σ is standard deviation.  
FIGURE 12-1: TYPICAL RC OSCILLATOR FREQUENCY vs.TEMPERATURE  
FOSC  
Frequency normalized to +25°C  
FOSC (25°C)  
1.10  
Rext 10 kΩ  
Cext = 100 pF  
1.08  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
VDD = 5.5 V  
VDD = 3.5 V  
0.92  
0.90  
0.88  
0
10  
20  
25  
30  
40  
50  
60  
70  
T(°C)  
TABLE 12-1: RC OSCILLATOR FREQUENCIES  
Average  
Fosc @ 5 V, 25°C  
Cext  
Rext  
20 pF  
3.3 k  
5 k  
4.973 MHz  
3.82 MHz  
2.22 MHz  
262.15 kHz  
1.63 MHz  
1.19 MHz  
684.64 kHz  
71.56 kHz  
660 kHz  
± 27%  
± 21%  
± 21%  
± 31%  
± 13%  
± 13%  
± 18%  
± 25%  
± 10%  
± 14%  
± 15%  
± 19%  
10 k  
100 k  
3.3 k  
5 k  
100 pF  
300 pF  
10 k  
100 k  
3.3 k  
5.0 k  
10 k  
160 k  
484.1 kHz  
267.63 kHz  
29.44 kHz  
The frequencies are measured on DIP packages.  
The percentage variation indicated here is part-to-part variation due to normal process distribution. The variation  
indicated is ±3 standard deviation from average value for VDD = 5 V.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 81  
PIC16C5X  
PIC16C54/55/56/57  
FIGURE 12-2: TYPICAL RC OSCILLATOR  
FREQUENCY vs. VDD,  
FIGURE 12-3: TYPICAL RC OSCILLATOR  
FREQUENCY vs. VDD,  
CEXT = 20 PF  
CEXT = 100 PF  
5.5  
1.8  
R = 3.3k  
R = 3.3k  
5.0  
1.6  
4.5  
1.4  
R = 5k  
R = 5k  
4.0  
1.2  
1.0  
3.5  
3.0  
0.8  
R = 10k  
R = 10k  
2.5  
0.6  
Measured on DIP Packages, T = 25°C  
2.0  
0.4  
Measured on DIP Packages, T = 25°C  
0.2  
1.5  
R = 100k  
0.0  
1.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
R = 100k  
0.5  
FIGURE 12-4: TYPICAL RC OSCILLATOR  
FREQUENCY vs. VDD,  
0.0  
CEXT = 300 PF  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
800  
700  
R = 3.3k  
600  
R = 5k  
500  
400  
300  
200  
100  
0
R = 10k  
Measured on DIP Packages, T = 25°C  
R = 100k  
5.5 6.0  
3.0  
3.5  
4.0  
4.5  
5.0  
VDD (Volts)  
DS30453B-page 82  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54/55/56/57  
PIC16C5X  
FIGURE 12-5: TYPICAL IPD vs. VDD,  
WATCHDOG DISABLED  
FIGURE 12-7: TYPICAL IPD vs. VDD,  
WATCHDOG ENABLED  
2.5  
20  
18  
16  
2.0  
14  
12  
T = 25°C  
T = 25°C  
1.5  
10  
8
1.0  
0.5  
6
4
2
0
0.0  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
VDD (Volts)  
VDD (Volts)  
FIGURE 12-6: MAXIMUM IPD vs. VDD,  
WATCHDOG DISABLED  
FIGURE 12-8: MAXIMUM IPD vs. VDD,  
WATCHDOG ENABLED  
60  
100  
50  
+125˚C  
+85˚C  
10  
40  
–55°C  
+70˚C  
0˚C  
+85°C  
30  
–40˚C  
+125°C  
–40°C  
+70°C  
–55˚C  
1
20  
10  
0
0°C  
0
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
VDD (Volts)  
VDD (Volts)  
IPD, with WDT enabled, has two components:  
The leakage current which increases with higher temperature  
and the operating current of the WDT logic which increases  
with lower temperature. At –40°C, the latter dominates  
explaining the apparently anomalous behavior.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 83  
PIC16C5X  
PIC16C54/55/56/57  
FIGURE 12-9: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS vs. VDD  
2.00  
1.80  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
FIGURE 12-10: VIH, VIL OF MCLR,T0CKI AND OSC1 (IN RC MODE) vs. VDD  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
VDD (Volts)  
5.0  
5.5  
6.0  
Note: These input pins have Schmitt Trigger input buffers.  
FIGURE 12-11: VTH (INPUT THRESHOLD VOLTAGE) OF OSC1 INPUT  
(IN XT, HS, AND LP MODES) vs. VDD  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
DS30453B-page 84  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54/55/56/57  
PIC16C5X  
FIGURE 12-12: TYPICAL IDD vs. FREQUENCY (EXTERNAL CLOCK, 25°C)  
10  
1.0  
0.1  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
0.01  
10k  
100k  
1M  
10M  
100M  
External Clock Frequency (Hz)  
FIGURE 12-13: MAXIMUM IDD vs. FREQUENCY (EXTERNAL CLOCK, –40°C TO +85°C)  
10  
1.0  
7.0  
6.5  
6.0  
0.1  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
0.01  
10k  
100k  
1M  
10M  
100M  
External Clock Frequency (Hz)  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 85  
PIC16C5X  
PIC16C54/55/56/57  
FIGURE 12-14: MAXIMUM IDD vs. FREQUENCY (EXTERNAL CLOCK –55°C TO +125°C)  
10  
1.0  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
0.1  
2.5  
0.01  
10k  
100k  
1M  
10M  
100M  
External Clock Frequency (Hz)  
FIGURE 12-15: WDT TIMER TIME-OUT  
PERIOD vs. VDD  
FIGURE 12-16: TRANSCONDUCTANCE (gm)  
OF HS OSCILLATOR vs. VDD  
50  
45  
40  
9000  
8000  
Max –40°C  
7000  
6000  
35  
30  
5000  
Max +85°C  
Typ +25°C  
25  
4000  
3000  
Max +70°C  
20  
Typ +25°C  
Min +85°C  
15  
2000  
MIn 0°C  
10  
100  
0
MIn –40°C  
5
2
3
4
5
6
7
2
3
4
5
6
7
VDD (Volts)  
VDD (Volts)  
DS30453B-page 86  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54/55/56/57  
PIC16C5X  
FIGURE 12-17: TRANSCONDUCTANCE (gm)  
OF LP OSCILLATOR vs. VDD  
FIGURE 12-19: TRANSCONDUCTANCE (gm)  
OF XT OSCILLATOR vs. VDD  
45  
2500  
40  
Max –40°C  
Max –40°C  
2000  
35  
30  
1500  
25  
Typ +25°C  
Typ +25°C  
20  
1000  
15  
Min +85°C  
500  
10  
Min +85°C  
5
0
0
2
3
4
5
6
7
2
3
4
5
6
7
VDD (Volts)  
VDD (Volts)  
FIGURE 12-18: IOH vs. VOH, VDD = 3 V  
FIGURE 12-20: IOH vs. VOH, VDD = 5 V  
0
0
Min +85°C  
–5  
–10  
Min +85°C  
–10  
–20  
Typ +25°C  
Typ +25°C  
–15  
Max –40°C  
–30  
Max –40°C  
–20  
–40  
–25  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
0
0.5 1.0 1.5 2.0 2.5 3.0  
VOH (Volts)  
VOH (Volts)  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 87  
PIC16C5X  
PIC16C54/55/56/57  
FIGURE 12-21: IOL vs. VOL, VDD = 3 V  
FIGURE 12-22: IOL vs. VOL, VDD = 5 V  
90  
80  
70  
45  
Max –40°C  
Max –40°C  
40  
35  
60  
50  
30  
25  
Typ +25°C  
Typ +25°C  
Min +85°C  
40  
20  
Min +85°C  
30  
20  
15  
10  
10  
0
5
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0  
0.0  
0.5 1.0 1.5 2.0 2.5 3.0  
VOL (Volts)  
VOL (Volts)  
TABLE 12-2: INPUT CAPACITANCE FOR  
PIC16C54/56  
TABLE 12-3: INPUT CAPACITANCE FOR  
PIC16C55/57  
Typical Capacitance (pF)  
Pin  
Typical Capacitance (pF)  
Pin  
18L PDIP  
18L SOIC  
28L PDIP  
(600 mil)  
28L SOIC  
RA port  
RB port  
5.0  
4.3  
RA port  
RB port  
5.2  
5.6  
5.0  
17.0  
6.6  
4.6  
4.5  
4.8  
4.7  
4.1  
17.0  
3.5  
3.5  
3.5  
5.0  
4.3  
MCLR  
17.0  
4.0  
17.0  
3.5  
RC port  
OSC1  
MCLR  
OSC2/CLKOUT  
T0CKI  
4.3  
3.5  
OSC1  
3.2  
2.8  
OSC2/CLKOUT  
T0CKI  
All capacitance values are typical at 25°C. A part-to-part  
variation of ±25% (three standard deviations) should be  
taken into account.  
All capacitance values are typical at 25°C. A part-to-part  
variation of ±25% (three standard deviations) should be  
taken into account.  
DS30453B-page 88  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54A  
PIC16C5X  
13.0 ELECTRICAL CHARACTERISTICS - PIC16CR54A  
Absolute Maximum Ratings†  
Ambient Temperature under bias ...........................................................................................................55°C to +125°C  
Storage Temperature..............................................................................................................................65°C to +150°C  
Voltage on VDD with respect to VSS ..................................................................................................................0 to +7.5V  
(2)  
Voltage on MCLR with respect to VSS ............................................................................................................0 to +14V  
Voltage on all other pins with respect to VSS ................................................................................. –0.6V to (VDD + 0.6V)  
(1)  
Total Power Dissipation ....................................................................................................................................800 mW  
Max. Current out of VSS pin...................................................................................................................................150 mA  
Max. Current into VDD pin........................................................................................................................................50 mA  
Max. Current into an input pin (T0CKI only).....................................................................................................................±500 µA  
Input Clamp Current, IIK (VI < 0 or VI > VDD)....................................................................................................................±20 mA  
Output Clamp Current, IOK (V0 < 0 or V0 > VDD).............................................................................................................±20 mA  
Max. Output Current sunk by any I/O pin................................................................................................................25 mA  
Max. Output Current sourced by any I/O pin...........................................................................................................20 mA  
Max. Output Current sourced by a single I/O port (PORTA or B)............................................................................40 mA  
Max. Output Current sunk by a single I/O port (PORTA or B).................................................................................50 mA  
Note 1: Power Dissipation is calculated as follows: PDIS = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOL x IOL)  
Note 2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA may cause latch-up.Thus,  
a series resistor of 50 to 100should be used when applying a low level to the MCLR pin rather than pulling  
this pin directly to Vss.  
NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 89  
PIC16C5X  
PIC16CR54A  
TABLE 13-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS  
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)  
OSC  
PIC16CR54A-04  
PIC16CR54A-10  
PIC16CR54A-20  
PIC16LCR54A-04  
RC  
VDD: 2.5 V to 6.25 V  
IDD: 3.6 mA max at 6.0 V  
IPD: 6.0 µA max at 2.5 V,  
WDT dis  
N/A  
N/A  
N/A  
Freq: 4 MHz max  
XT  
HS  
LP  
VDD: 2.5 V to 6.25 V  
IDD: 3.6 mA max at 6.0 V  
IPD: 6.0 µA max at 2.5 V,  
WDT dis  
N/A  
N/A  
N/A  
N/A  
Freq: 4.0 MHz max  
VDD: 4.5 V to 5.5 V  
IDD: 10 mA max at 5.5 V  
IPD: 6.0 µA max at 2.5 V,  
WDT dis  
VDD: 4.5 V to 5.5 V  
IDD: 10 mA max at 5.5 V  
IPD: 6.0 µA max at 2.5 V,  
WDT dis  
N/A  
N/A  
Freq: 10 MHz max  
Freq: 20 MHz max  
VDD: 2.0 V to 6.25 V  
IDD: 20 µA max at 32 kHz,  
2.0 V  
IPD: 6.0 µA max at 2.5 V,  
WDT dis  
N/A  
N/A  
Freq: 200 kHz max  
The shaded sections indicate oscillator selections which should work by design, but are not tested. It is recommended  
that the user select the device type from information in unshaded sections.  
DS30453B-page 90  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54A  
PIC16C5X  
13.1  
DC Characteristics: PIC16CR54A-04, 10, 20 (Commercial)  
PIC16CR54A-04I, 10I, 20I (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
DC Characteristics  
Power Supply Pins  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
(1)  
Characteristic  
Sym  
Min Typ  
Max  
Units  
Conditions  
Supply Voltage  
RC and XT options  
HS option  
VDD  
2.5  
4.5  
6.25  
5.5  
V
V
(2)  
RAM Data Retention Voltage  
VDR  
1.5*  
V
V
Device in SLEEP mode  
VDD Start Voltage to ensure  
Power-on Reset  
VPOR  
VSS  
See Section 7.4 for details on  
Power-on Reset  
VDD Rise Rate to ensure  
Power-on Reset  
SVDD 0.05*  
IDD  
V/ms See Section 7.4 for details on  
Power-on Reset  
(3)  
Supply Current  
(4)  
RC and XT options  
2.0  
0.8  
90  
4.8  
9.0  
3.6  
1.8  
350  
10  
mA  
mA  
µA  
FOSC = 4.0 MHz, VDD = 6.0V  
FOSC = 4.0 MHz, VDD = 3.0V  
FOSC = 200 kHz, VDD = 2.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 20 MHz, VDD = 5.5V  
HS option  
mA  
mA  
20  
(5)  
Power-Down Current  
Commercial  
IPD  
IPD  
1.0  
2.0  
3.0  
5.0  
6.0  
8.0*  
15  
µA  
µA  
µA  
µA  
VDD = 2.5V, WDT disabled  
VDD = 4.0V, WDT disabled  
VDD = 6.0V, WDT disabled  
VDD = 6.0V, WDT enabled  
25  
(5)  
Power-Down Current  
Industrial  
1.0  
2.0  
3.0  
3.0  
5.0  
8.0  
10*  
20*  
18  
µA  
µA  
µA  
µA  
µA  
VDD = 2.5V, WDT disabled  
VDD = 4.0V, WDT disabled  
VDD = 4.0V, WDT enabled  
VDD = 6.0V, WDT disabled  
VDD = 6.0V, WDT enabled  
45  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C.This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through Rext. The current through the resistor can be estimated by the  
formula: IR = VDD/2Rext (mA) with Rext in k.  
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 91  
 
PIC16C5X  
PIC16CR54A  
13.2  
DC Characteristics: PIC16CR54A-04E, 10E, 20E (Extended)  
DC Characteristics  
Power Supply Pins  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
–40°C TA +125°C (extended)  
(1)  
Characteristic  
Sym  
Min Typ  
Max Units  
Conditions  
Supply Voltage  
RC, XT and LP options  
HS options  
VDD  
3.25  
4.5  
6.0  
5.5  
V
V
(2)  
RAM Data Retention Voltage  
VDR  
1.5*  
VSS  
V
V
Device in SLEEP mode  
VDD Start Voltage to ensure  
Power-on Reset  
VPOR  
See Section 7.4 for details on  
Power-on Reset  
VDD Rise Rate to ensure  
Power-on Reset  
SVDD 0.05*  
V/ms See Section 7.4 for details on  
Power-on Reset  
(3)  
Supply Current  
IDD  
(4)  
RC and XT options  
1.8  
4.8  
9.0  
3.3  
10  
20  
mA  
mA  
mA  
FOSC = 4.0 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 16 MHz, VDD = 5.5V  
HS option  
(5)  
Power-Down Current  
IPD  
5.0  
0.8  
22  
18  
µA  
µA  
VDD = 3.25V, WDT enabled  
VDD = 3.25V, WDT disabled  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C.This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through Rext. The current through the resistor can be estimated by the  
formula: IR = VDD/2Rext (mA) with Rext in k.  
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
DS30453B-page 92  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16CR54A  
PIC16C5X  
13.3  
DC Characteristics: PIC16LCR54A-04 (Commercial)  
PIC16LCR54A-04I (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
DC Characteristics  
Power Supply Pins  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
(1)  
Characteristic  
Sym  
Min Typ  
Max  
Units Conditions  
Supply Voltage  
VDD  
VDR  
2.0  
6.25  
V
V
V
LP Option  
(2)  
RAM Data Retention Voltage  
1.5*  
VSS  
Device in SLEEP mode  
VDD Start Voltage to ensure  
Power-on Reset  
VPOR  
See Section 7.4 for details on  
Power-on Reset  
VDD Rise Rate to ensure  
Power-on Reset  
SVDD 0.05*  
V/ms See Section 7.4 for details on  
Power-on Reset  
(3)  
Supply Current  
IDD  
IPD  
10  
20  
70  
µA  
µA  
FOSC = 32 kHz, VDD = 2.0V  
FOSC = 32 kHz, VDD = 6.0V  
(5)  
Power-Down Current  
Commercial  
1.0  
2.0  
3.0  
5.0  
6.0  
8.0*  
15  
µA  
µA  
µA  
µA  
VDD = 2.5V, WDT disabled  
VDD = 4.0V, WDT disabled  
VDD = 6.0V, WDT disabled  
VDD = 6.0V, WDT enabled  
25  
(5)  
Power-Down Current  
IPD  
Industrial  
1.0  
2.0  
3.0  
3.0  
5.0  
8.0  
10*  
20*  
18  
µA  
µA  
µA  
µA  
µA  
VDD = 2.5V, WDT disabled  
VDD = 4.0V, WDT disabled  
VDD = 4.0V, WDT enabled  
VDD = 6.0V, WDT disabled  
VDD = 6.0V, WDT enabled  
45  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C.This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through Rext. The current through the resistor can be estimated by the  
formula: IR = VDD/2Rext (mA) with Rext in k.  
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 93  
 
PIC16C5X  
PIC16CR54A  
13.4  
DC Characteristics: PIC16CR54A-04, 10, 20, PIC16LCR54A-04 (Commercial)  
PIC16CR54A-04I, 10I, 20I, PIC16LCR54A-04I (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
DC Characteristics  
All Pins Except  
Power Supply Pins  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
Operating Voltage VDD range is described in Section 13.1 and Section 13.3.  
(1)  
Characteristic  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Low Voltage  
I/O ports  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
VIL  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
V
V
V
V
V
Pin at hi-impedance  
(4)  
RC option only  
XT, HS and LP options  
Input High Voltage  
I/O ports  
VIH  
(5)  
2.0  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
VDD = 3.0V to 5.5V  
Full VDD range  
(5)  
0.6 VDD  
0.85 VDD  
0.85 VDD  
0.85 VDD  
0.85 VDD  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
(4)  
RC option only  
XT, HS and LP options  
Hysteresis of Schmitt  
Trigger inputs  
VHYS 0.15VDD*  
V
(3)  
Input Leakage Current  
IIL  
For VDD 5.5V  
I/O ports  
–1.0  
+1.0  
µA  
VSS VPIN VDD,  
Pin at hi-impedance  
(2)  
MCLR  
–5.0  
µA  
µA  
µA  
µA  
VPIN = VSS + 0.25V  
(2)  
0.5  
0.5  
0.5  
+5.0  
+3.0  
+3.0  
VPIN = VDD  
T0CKI  
OSC1  
–3.0  
–3.0  
VSS VPIN VDD  
VSS VPIN VDD,  
XT, HS and LP options  
Output Low Voltage  
I/O ports  
OSC2/CLKOUT  
VOL  
0.5  
0.5  
V
V
IOL = 10 mA, VDD = 6.0V  
IOL = 1.9 mA, VDD = 6.0V,  
RC option only  
(3)  
Output High Voltage  
VOH  
I/O ports  
OSC2/CLKOUT  
VDD –0.5  
VDD –0.5  
V
V
IOH = –4.0 mA, VDD = 6.0V  
IOH = –0.8 mA, VDD = 6.0V,  
RC option only  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C.This data is for design guidance  
only and is not tested.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltage.  
3: Negative current is defined as coming out of the pin.  
4: For the RC option, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X  
be driven with external clock in RC mode.  
5: The user may use the better of the two specifications.  
DS30453B-page 94  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54A  
PIC16C5X  
13.5  
DC Characteristics: PIC16CR54A-04E, 10E, 20E (Extended)  
DC Characteristics  
All Pins Except  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C  
Power Supply Pins  
Operating Voltage VDD range is described in Section 13.2.  
(1)  
Characteristic  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Low Voltage  
I/O ports  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
VIL  
Vss  
Vss  
Vss  
Vss  
Vss  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.3 VDD  
V
V
V
V
V
Pin at hi-impedance  
(4)  
RC option only  
XT, HS and LP options  
Input High Voltage  
I/O ports  
VIH  
(5)  
0.45 VDD  
2.0  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
V
For all VDD  
(5)  
4.0V < VDD 5.5V  
VDD > 5.5V  
0.36 VDD  
0.85 VDD  
0.85 VDD  
0.85 VDD  
0.7 VDD  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
(4)  
RC option only  
XT, HS and LP options  
Hysteresis of Schmitt  
Trigger inputs  
VHYS 0.15VDD*  
V
(3)  
Input Leakage Current  
IIL  
For VDD 5.5V  
I/O ports  
–1.0  
0.5  
+1.0  
µA  
VSS VPIN VDD,  
Pin at hi-impedance  
(2)  
MCLR  
–5.0  
µA  
µA  
µA  
µA  
VPIN = VSS + 0.25V  
(2)  
0.5  
0.5  
0.5  
+5.0  
+3.0  
+3.0  
VPIN = VDD  
T0CKI  
OSC1  
–3.0  
–3.0  
VSS VPIN VDD  
VSS VPIN VDD,  
XT, HS and LP options  
Output Low Voltage  
I/O ports  
OSC2/CLKOUT  
VOL  
0.6  
0.6  
V
V
IOL = 8.7 mA, VDD = 4.5V  
IOL = 1.6 mA, VDD = 4.5V,  
RC option only  
(3)  
Output High Voltage  
I/O ports  
VOH  
VDD –0.7  
VDD –0.7  
V
V
IOH = –5.4 mA, VDD = 4.5V  
IOH = –1.0 mA, VDD = 4.5V,  
RC option only  
OSC2/CLKOUT  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltage.  
3: Negative current is defined as coming out of the pin.  
4: For the RC option, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X  
be driven with external clock in RC mode.  
5: The user may use the better of the two specifications.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 95  
PIC16C5X  
PIC16CR54A  
13.6  
Timing Parameter Symbology and Load Conditions  
The timing parameter symbols have been created following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase subscripts (pp) and their meanings:  
pp  
T
Time  
2
to  
mc  
osc  
os  
MCLR  
ck  
cy  
drt  
io  
CLKOUT  
cycle time  
device reset timer  
I/O port  
oscillator  
OSC1  
t0  
T0CKI  
wdt  
watchdog timer  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
FIGURE 13-1: LOAD CONDITIONS  
Pin  
CL = 50 pF for all pins except OSC2  
CL  
15 pF for OSC2 in XT, HS or LP  
options when external clock  
is used to drive OSC1  
VSS  
DS30453B-page 96  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16CR54A  
PIC16C5X  
13.7  
Timing Diagrams and Specifications  
FIGURE 13-2: EXTERNAL CLOCK TIMING - PIC16CR54A  
Q4  
Q3  
Q4  
4
Q1  
Q1  
Q2  
OSC1  
1
3
3
4
2
CLKOUT  
TABLE 13-2: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16CR54A  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 13.1, Section 13.2 and Section 13.3.  
Parameter  
No.  
(1)  
Sym  
Characteristic  
Min Typ  
Max Units  
Conditions  
(2)  
FOSC  
External CLKIN Frequency  
DC  
DC  
DC  
DC  
DC  
DC  
0.1  
4.0  
4.0  
4.0  
5.0  
4.0  
4.0  
10  
MHz XT osc mode  
MHz HS osc mode (04)  
MHz HS osc mode (10)  
MHz HS osc mode (20)  
kHz LP osc mode  
20  
200  
4.0  
4.0  
4.0  
10  
(2)  
Oscillator Frequency  
MHz RC osc mode  
MHz XT osc mode  
MHz HS osc mode (04)  
MHz HS osc mode (10)  
MHz HS osc mode (20)  
kHz LP osc mode  
20  
200  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated.These parameters are for design guidance only  
and are not tested.  
2: All specified values are based on characterization data for that particular oscillator type under standard operating  
conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation  
and/or higher than expected current consumption.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
3: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 97  
PIC16C5X  
PIC16CR54A  
TABLE 13-2: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16CR54A (CON’T)  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 13.1, Section 13.2 and Section 13.3.  
Parameter  
(1)  
No.  
Sym  
Characteristic  
Min Typ  
Max Units  
Conditions  
XT osc mode  
(2)  
1
TOSC  
External CLKIN Period  
250  
250  
100  
50  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
HS osc mode (04)  
HS osc mode (10)  
HS osc mode (20)  
LP osc mode  
5.0  
250  
250  
250  
100  
50  
(2)  
Oscillator Period  
RC osc mode  
10,000  
250  
250  
250  
200  
XT osc mode  
HS osc mode (04)  
HS osc mode (10)  
HS osc mode (20)  
LP osc mode  
5.0  
(3)  
2
3
TCY  
Instruction Cycle Time  
4/FOSC  
TosL, TosH Clock in (OSC1) Low or High Time  
50*  
20*  
2.0*  
XT oscillator  
HS oscillator  
LP oscillator  
XT oscillator  
HS oscillator  
LP oscillator  
4
TosR, TosF Clock in (OSC1) Rise or Fall Time  
25*  
25*  
50*  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated.These parameters are for design guidance only  
and are not tested.  
2: All specified values are based on characterization data for that particular oscillator type under standard operating  
conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation  
and/or higher than expected current consumption.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
3: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
DS30453B-page 98  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54A  
PIC16C5X  
FIGURE 13-3: CLKOUT AND I/O TIMING - PIC16CR54A  
Q1  
Q4  
Q2  
Q3  
OSC1  
10  
11  
CLKOUT  
12  
16  
13  
18  
19  
14  
I/O Pin  
(input)  
15  
17  
I/O Pin  
Old Value  
(output)  
New Value  
20, 21  
Note: All tests must be done with specified capacitive loads (see data sheet) 50 pF on I/O pins and CLKOUT.  
TABLE 13-3: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16CR54A  
AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 13.1, Section 13.2 and  
Section 13.3.  
Parameter  
(1)  
No.  
Sym  
Characteristic  
(2)  
Min  
Typ  
Max  
Units  
10  
11  
12  
13  
14  
15  
16  
17  
18  
TosH2ckL  
TosH2ckH  
TckR  
OSC1to CLKOUT↓  
15  
15  
5.0  
5.0  
30**  
30**  
15**  
15**  
40**  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(2)  
OSC1to CLKOUT↑  
(2)  
CLKOUT rise time  
(2)  
TckF  
CLKOUT fall time  
(2)  
CLKOUTto Port out valid  
TckL2ioV  
TioV2ckH  
TckH2ioI  
TosH2ioV  
TosH2ioI  
(2)  
Port in valid before CLKOUT↑  
(2)  
0.25 TCY+30*  
Port in hold after CLKOUT↑  
OSC1(Q1 cycle) to Port out valid  
0*  
(3)  
100*  
OSC1(Q2 cycle) to Port input invalid  
TBD  
(I/O in hold time)  
19  
TioV2osH  
Port input valid to OSC1↑  
TBD  
ns  
(I/O in setup time)  
(3)  
20  
21  
TioR  
TioF  
Port output rise time  
10  
10  
25**  
25**  
ns  
ns  
(3)  
Port output fall time  
*
These parameters are characterized but not tested.  
** These parameters are design targets and are not tested. No characterization data available at this time.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
2: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
3: See Figure 13-1 for loading conditions.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 99  
PIC16C5X  
PIC16CR54A  
FIGURE 13-4: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING - PIC16CR54A  
VDD  
MCLR  
30  
Internal  
POR  
32  
32  
32  
DRT  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O pin  
(Note 1)  
Note 1: I/O pins must be taken out of hi-impedance mode by enabling the output drivers in software.  
TABLE 13-4: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16CR54A  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 13.1, Section 13.2 and Section 13.3.  
Parameter  
No.  
(1)  
Sym Characteristic  
Min Typ  
Max Units  
Conditions  
30  
31  
TmcL MCLR Pulse Width (low)  
1.0*  
7.0*  
µs VDD = 5.0V  
Twdt Watchdog Timer Time-out Period  
(No Prescaler)  
18*  
40*  
ms VDD = 5.0V (Commercial)  
32  
34  
TDRT Device Reset Timer Period  
7.0*  
18*  
30*  
ms VDD = 5.0V (Commercial)  
TioZ I/O Hi-impedance from MCLR Low  
1.0*  
µs  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
DS30453B-page 100  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR54A  
PIC16C5X  
FIGURE 13-5: TIMER0 CLOCK TIMINGS - PIC16CR54A  
T0CKI  
40  
41  
42  
TABLE 13-5: TIMER0 CLOCK REQUIREMENTS - PIC16CR54A  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature 0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 13.1, Section 13.2 and  
Section 13.3.  
Parameter  
(1)  
Sym Characteristic  
Min  
Typ  
Max Units Conditions  
No.  
40  
Tt0H T0CKI High Pulse Width - No Prescaler  
- With Prescaler  
0.5 TCY + 20*  
10*  
ns  
ns  
ns  
ns  
41  
42  
Tt0L T0CKI Low Pulse Width - No Prescaler  
- With Prescaler  
0.5 TCY + 20*  
10*  
Tt0P T0CKI Period  
20 or TCY + 40*  
N
ns Whichever is greater.  
N = Prescale Value  
(1, 2, 4,..., 256)  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated.These parameters are for design guidance only  
and are not tested.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 101  
PIC16C5X  
PIC16CR54A  
NOTES:  
DS30453B-page 102  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54A  
PIC16C5X  
14.0 ELECTRICAL CHARACTERISTICS - PIC16C54A  
Absolute Maximum Ratings  
Ambient temperature under bias............................................................................................................55°C to +125°C  
Storage temperature ............................................................................................................................. –65°C to +150°C  
Voltage on VDD with respect to VSS ..................................................................................................................0 to +7.5V  
Voltage on MCLR with respect to VSS................................................................................................................0 to +14V  
Voltage on all other pins with respect to VSS ................................................................................. –0.6V to (VDD + 0.6V)  
(1)  
Total power dissipation .....................................................................................................................................800 mW  
Max. current out of VSS pin....................................................................................................................................150 mA  
Max. current into VDD pin ......................................................................................................................................100 mA  
Max. current into an input pin (T0CKI only)......................................................................................................................±500 µA  
Input clamp current, IIK (VI < 0 or VI > VDD)....................................................................................................................±20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) ..............................................................................................................±20 mA  
Max. output current sunk by any I/O pin..................................................................................................................25 mA  
Max. output current sourced by any I/O pin ............................................................................................................20 mA  
Max. output current sourced by a single I/O port (PORTA or B) .............................................................................50 mA  
Max. output current sunk by a single I/O port (PORTA or B)...................................................................................50 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOL x IOL)  
NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 103  
PIC16C5X  
PIC16C54A  
TABLE 14-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS  
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)  
OSC  
PIC16C54A-04  
PIC16C54A-10  
PIC16C54A-20  
PIC16LC54A-04  
VDD: 3.0V to 6.25V  
IDD: 2.4 mA max. at  
5.5V  
IPD: 4.0 µA max. at  
3.0V WDT dis  
VDD: 3.0V to 6.25V  
IDD: 1.7 mA typ. at  
5.5V  
IPD: 0.25 µA typ. at  
3.0V WDT dis  
VDD: 3.0V to 6.25V  
IDD: 1.7 mA typ. at  
5.5V  
IPD: 0.25 µA typ. at  
3.0V WDT dis  
VDD: 3.0V to 6.25V  
IDD: 0.5 mA typ. at  
5.5V  
IPD: 0.25 µA typ. at  
3.0V WDT dis  
RC  
Freq: 4 MHz max.  
Freq: 4.0 MHz max.  
Freq: 4.0 MHz max.  
Freq: 4.0 MHz max.  
VDD: 3.0V to 6.25V  
IDD 2.4 mA max. at  
5.5V  
IPD: 4.0 µA max. at  
3.0V WDT dis  
VDD: 3.0V to 6.25V  
IDD: 1.7 mA typ. at  
5.5V  
IPD: 0.25 µA typ. at  
3.0V WDT dis  
VDD: 3.0V to 6.25V  
IDD: 1.7 mA typ. at  
5.5V  
IPD: 0.25 µA typ. at  
3.0V WDT dis  
VDD: 3.0V to 6.25V  
IDD: 0.5 mA typ. at  
5.5V  
IPD: 0.25 µA typ. at  
3.0V WDT dis  
XT  
HS  
Freq: 4 MHz max.  
Freq: 4.0 MHz max.  
Freq: 4.0 MHz max.  
Freq: 4.0 MHz max.  
VDD: 4.5V to 5.5V  
IDD: 8.0 mA max. at  
5.5V  
IPD: 4.0 µA max. at  
3.0V WDT dis  
VDD: 4.5V to 5.5V  
IDD: 16 mA max. at  
5.5V  
IPD: 4.0 µA max. at  
3.0V WDT dis  
Do not use in  
HS mode  
N/A  
Freq: 10 MHz max.  
Freq: 20 MHz max.  
VDD: 3.0V to 6.25V  
IDD: 14 µA typ. at  
32kHz, 3.0V  
IPD: 0.25 µA typ. at  
3.0V WDT dis  
VDD: 2.5V to 6.25V  
IDD: 27 µA max. at  
32kHz, 2.5V  
WDT dis  
IPD: 4.0 µA max. at  
2.5V WDT dis  
Do not use in  
LP mode  
Do not use in  
LP mode  
LP  
Freq: 200 kHz max.  
Freq: 200 kHz max.  
The shaded sections indicate oscillator selections which should work by design, but are not  
tested. It is recommended that the user select the device type from information in unshaded  
sections.  
OSC  
PIC16C54A/JW  
PIC16LV54A-02  
VDD: 3.0V to 6.25V  
IDD: 2.4 mA max. at  
5.5V  
IPD: 4.0 µA max. at  
3.0V WDT dis  
VDD: 2.0V to 3.8V  
IDD: 0.5 mA typ. at  
3.0V  
IPD: 0.25 µA typ. at  
3.0V WDT dis  
RC  
Freq: 4.0 MHz max.  
Freq: 2.0 MHz max.  
VDD: 3.0V to 6.25V  
IDD 2.4 mA max. at  
5.5V  
IPD: 4.0 µA max. at  
3.0V WDT dis  
VDD: 2.0V to 3.8V  
IDD: 0.5 mA typ. at  
3.0V  
IPD: 0.25 µA typ. at  
3.0V WDT dis  
XT  
HS  
Freq: 4.0 MHz max.  
Freq: 2.0 MHz max.  
VDD: 4.5V to 5.5V  
IDD: 8 mA max. at  
5.5V  
IPD: 4.0 µA max. at  
3.0V WDT dis  
Do not use in  
HS mode  
Freq: 10 MHz max.  
VDD: 2.5V to 6.25V  
IDD: 27 µA max. at  
32kHz, 2.5V  
VDD: 2.0V to 3.8V  
IDD: 27 µA max. at  
32kHz, 2.5V  
LP  
WDT dis  
WDT dis  
IPD: 4.0 µA max. at  
2.5V WDT dis  
IPD: 4.0 µA max. at  
2.5V WDT dis  
Freq: 200 kHz max.  
Freq: 200 kHz max.  
The shaded sections indicate oscillator selections  
which should work by design, but are not tested. It  
is recommended that the user select the device  
type from information in unshaded sections.  
DS30453B-page 104  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54A  
PIC16C5X  
14.1  
DC Characteristics: PIC16C54A-04, 10, 20 (Commercial)  
PIC16C54A-04I, 10I, 20I (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
DC Characteristics  
Power Supply Pins  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
(1)  
Characteristic  
Sym Min Typ  
Max Units  
Conditions  
Supply Voltage  
XT, RC and LP options  
HS option  
VDD  
3.0  
4.5  
6.25  
5.5  
V
V
(2)  
RAM Data Retention Voltage  
VDR  
1.5*  
VSS  
V
V
Device in SLEEP mode  
VDD start voltage to ensure  
Power-On Reset  
VPOR  
See Section 7.4 for details on  
Power-on Reset  
VDD rise rate to ensure  
Power-On Reset  
SVDD  
IDD  
0.05*  
V/ms See Section 7.4 for details on  
Power-on Reset  
(3)  
Supply Current  
(4)  
XT and RC options  
1.8  
2.4  
4.5  
14  
2.4 mA FOSC = 4.0 MHz, VDD = 5.5V  
8.0 mA FOSC = 10 MHz, VDD = 5.5V  
16  
29  
37  
HS option  
mA FOSC = 20 MHz, VDD = 5.5V  
µA FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
µA FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
LP option, Commercial  
LP option, Industrial  
17  
(5)  
Power Down Current  
IPD  
Commercial  
4.0  
0.25 4.0  
5.0  
0.3  
12  
µA VDD = 3.0V, WDT enabled  
µA VDD = 3.0V, WDT disabled  
µA VDD = 3.0V, WDT enabled  
µA VDD = 3.0V, WDT disabled  
Industrial  
14  
5.0  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C.This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through Rext. The current through the resistor can be estimated by the  
formula: IR = VDD/2Rext (mA) with Rext in k.  
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 105  
 
PIC16C5X  
PIC16C54A  
14.2  
DC Characteristics: PIC16C54A-04E, 10E, 20E (Extended)  
DC Characteristics  
Power Supply Pins  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
–40°C TA +125°C (extended)  
(1)  
Characteristic  
Sym Min Typ  
Max Units Conditions  
Supply Voltage  
XT and RC options  
HS option  
VDD  
3.5  
4.5  
5.5  
5.5  
V
V
(2)  
RAM Data Retention Voltage  
VDR  
1.5*  
VSS  
V
V
Device in SLEEP mode  
VDD start voltage to ensure  
Power-On Reset  
VPOR  
See Section 7.4 for details on  
Power-on Reset  
VDD rise rate to ensure  
Power-On Reset  
SVDD  
IDD  
0.05*  
V/ms See Section 7.4 for details on  
Power-on Reset  
(3)  
Supply Current  
(4)  
XT and RC options  
1.8  
4.8  
9.0  
3.3 mA FOSC = 4.0 MHz, VDD = 5.5V  
10  
20  
HS option  
mA FOSC = 10 MHz, VDD = 5.5V  
mA FOSC = 20 MHz, VDD = 5.5V  
(5)  
Power Down Current  
IPD  
XT and RC options  
5.0  
0.8  
4.0  
22  
18  
22  
18  
µA VDD = 3.5V, WDT enabled  
µA VDD = 3.5V, WDT disabled  
µA VDD = 3.5V, WDT enabled  
µA VDD = 3.5V, WDT disabled  
HS option  
0.25  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C.This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through Rext. The current through the resistor can be estimated by the  
formula: IR = VDD/2Rext (mA) with Rext in k.  
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
DS30453B-page 106  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54A  
PIC16C5X  
14.3  
DC Characteristics: PIC16LC54A-04 (Commercial)  
PIC16LC54A-04I (Industrial)  
PIC16LC54A-04E (Extended)  
Standard Operating Conditions (unless otherwise specified)  
DC Characteristics  
Power Supply Pins  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–40°C TA +125°C (extended)  
(1)  
Characteristic  
Sym Min Typ  
Max Units  
Conditions  
Supply Voltage  
VDD  
XT, RC and LP options  
2.5  
6.25  
V
V
V
(2)  
RAM Data Retention Voltage  
VDR  
1.5*  
VSS  
Device in SLEEP mode  
VDD start voltage to ensure  
Power-On Reset  
VPOR  
See Section 7.4 for details on  
Power-on Reset  
VDD rise rate to ensure  
Power-On Reset  
SVDD  
IDD  
0.05*  
V/ms See Section 7.4 for details on  
Power-on Reset  
(3)  
Supply Current  
(4)  
XT and RC options  
0.5  
11  
11  
11  
25  
27  
35  
37  
mA FOSC = 4.0 MHz, VDD = 5.5V  
LP option, Commercial  
LP option, Industrial  
LP option, Extended  
µA FOSC = 32 kHz, VDD = 2.5V WDT disabled  
µA FOSC = 32 kHz, VDD = 2.5V WDT disabled  
µA FOSC = 32 kHz, VDD = 2.5V WDT disabled  
(5)  
Power Down Current  
IPD  
Commercial  
2.5  
12  
µA VDD = 2.5V, WDT enabled  
µA VDD = 2.5V, WDT disabled  
µA VDD = 2.5V, WDT enabled  
µA VDD = 2.5V, WDT disabled  
µA VDD = 2.5V, WDT enabled  
µA VDD = 2.5V, WDT disabled  
0.25 4.0  
2.5 14  
0.25 5.0  
2.5 15  
0.25 7.0  
Industrial  
Extended  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guid-  
ance only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through Rext. The current through the resistor can be estimated by the  
formula: IR = VDD/2Rext (mA) with Rext in k.  
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 107  
 
PIC16C5X  
PIC16C54A  
14.4  
DC Characteristics: PIC16LV54A-02 (Commercial)  
PIC16LV54A-02 (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
DC Characteristics  
Power Supply Pins  
Operating Temperature  
0°C TA +70°C (commercial)  
–20°C TA +85°C (industrial)  
(1)  
Characteristic  
Sym Min Typ  
Max Units Conditions  
Supply Voltage  
VDD  
XT, RC and LP options  
2.0  
3.8  
V
V
V
(2)  
RAM Data Retention Voltage  
VDR  
1.5*  
VSS  
Device in SLEEP mode  
VDD start voltage to ensure  
Power-On Reset  
VPOR  
See Section 7.4 for details on  
Power-on Reset  
VDD rise rate to ensure  
Power-On Reset  
SVDD  
IDD  
0.05*  
V/ms See Section 7.4 for details on  
Power-on Reset  
(3)  
Supply Current  
(4)  
XT and RC options  
0.5  
11  
14  
27  
35  
mA FOSC = 2.0 MHz, VDD = 3.0V  
µA FOSC = 32 kHz, VDD = 2.5V, WDT disabled  
µA FOSC = 32 kHz, VDD = 2.5V, WDT disabled  
LP option, Commercial  
LP option, Industrial  
(5)(6)  
Power Down Current  
IPD  
Commercial  
2.5  
0.25 4.0  
3.5  
0.3  
12  
µA VDD = 2.5V, WDT enabled  
µA VDD = 2.5V, WDT disabled  
µA VDD = 2.5V, WDT enabled  
µA VDD = 2.5V, WDT disabled  
Industrial  
14  
5.0  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C.This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through Rext. The current through the resistor can be estimated by the  
formula: IR = VDD/2Rext (mA) with Rext in k.  
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
6: The oscillator start-up time can be as much as 8 seconds for XT and LP oscillator selection, if the SLEEP  
mode is entered or during initial power-up.  
DS30453B-page 108  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54A  
PIC16C5X  
14.5  
DC Characteristics: PIC16C54A-04, 10, 20, PIC16LC54A-04, PIC16LV54A-02 (Commercial)  
PIC16C54A-04I, 10I, 20I, PIC16LC54A-04I, PIC16LV54A-02I (Industrial)  
PIC16C54A-04E, 10E, 20E (Extended)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
DC Characteristics  
All Pins Except  
Power Supply Pins  
–20°C TA +85°C (industrial - PIC16LV54A-02I)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 14.1, Section 14.2 and  
Section 14.3.  
(1)  
Characteristic  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Low Voltage  
VIL  
I/O ports  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.8VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.3 VDD  
V
V
V
V
V
Pin at hi-impedance  
4.0V < VDD 5.5V  
(5)  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
(4)  
RC option only  
XT, HS and LP options  
Input High Voltage  
I/O ports  
VIH  
(5)  
0.2 VDD+1V  
2.0  
0.85 VDD  
0.85 VDD  
0.85 VDD  
0.7 VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
For all VDD  
(5)  
4.0V < VDD 5.5V  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
(4)  
RC option only  
XT, HS and LP options  
Hysteresis of Schmitt  
Trigger inputs  
VHYS 0.15VDD*  
V
(3)  
Input Leakage Current  
IIL  
For VDD 5.5V  
I/O ports  
-1.0  
-5.0  
0.5  
0.5  
0.5  
0.5  
+1.0  
+5.0  
+3.0  
+3.0  
µA VSS VPIN VDD,  
Pin at hi-impedance  
(2)  
MCLR  
µA VPIN = VSS +0.25V  
(2)  
µA VPIN = VDD  
T0CKI  
OSC1  
-3.0  
-3.0  
µA VSS VPIN VDD  
µA VSS VPIN VDD,  
XT, HS and LP options  
Output Low Voltage  
I/O ports  
OSC2/CLKOUT  
VOL  
VOH  
0.6  
0.6  
V
V
IOL = 8.7 mA, VDD = 4.5V  
IOL = 1.6 mA, VDD = 4.5V,  
RC option only  
Output High Voltage  
(3)  
I/O ports  
VDD-0.7  
VDD-0.7  
V
V
IOH = -5.4 mA, VDD = 4.5V  
IOH = -1.0 mA, VDD = 4.5V,  
RC option only  
OSC2/CLKOUT  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C.This data is for design guidance  
only and is not tested.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltage.  
3: Negative current is defined as coming out of the pin.  
4: For the RC option, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X  
be driven with external clock in RC mode.  
5: The user may use the better of the two specifications.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 109  
PIC16C5X  
PIC16C54A  
14.6  
Timing Parameter Symbology and Load Conditions  
The timing parameter symbols have been created following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase subscripts (pp) and their meanings:  
pp  
T
Time  
2
to  
mc  
osc  
os  
MCLR  
ck  
cy  
drt  
io  
CLKOUT  
cycle time  
device reset timer  
I/O port  
oscillator  
OSC1  
t0  
T0CKI  
wdt  
watchdog timer  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
FIGURE 14-1: LOAD CONDITIONS - PIC16C54A  
Pin  
CL = 50 pF for all pins except OSC2  
CL  
15 pF for OSC2 in XT, HS or LP  
options when external clock  
is used to drive OSC1  
VSS  
DS30453B-page 110  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16C54A  
PIC16C5X  
14.7  
Timing Diagrams and Specifications  
FIGURE 14-2: EXTERNAL CLOCK TIMING - PIC16C54A  
Q4  
Q3  
Q4  
4
Q1  
Q1  
Q2  
OSC1  
1
3
3
4
2
CLKOUT  
TABLE 14-2: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54A  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–20°C TA +85°C (industrial - PIC16LV54A-02I)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 14.1, Section 14.2 and Section 14.3.  
Parameter  
No.  
(1)  
Sym  
Characteristic  
Min Typ  
Max Units  
Conditions  
(2)  
FOSC  
External CLKIN Frequency  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
0.1  
0.1  
4
4.0  
2.0  
4.0  
10  
MHz XT osc mode  
MHz XT osc mode (PIC16LV54A)  
MHz HS osc mode (04)  
MHz HS osc mode (10)  
MHz HS osc mode (20)  
kHz LP osc mode  
20  
200  
4.0  
2.0  
4.0  
2.0  
4.0  
10  
(2)  
Oscillator Frequency  
MHz RC osc mode  
MHz RC osc mode (PIC16LV54A)  
MHz XT osc mode  
MHz XT osc mode (PIC16LV54A)  
MHz HS osc mode (04)  
MHz HS osc mode (10)  
MHz HS osc mode (20)  
kHz LP osc mode  
4
4
20  
5
200  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
2: All specified values are based on characterization data for that particular oscillator type under standard operating condi-  
tions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
3: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 111  
PIC16C5X  
PIC16C54A  
TABLE 14-2: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C54A (CON’T)  
AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–20°C TA +85°C (industrial - PIC16LV54A-02I)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 14.1, Section 14.2 and Section 14.3.  
Parameter  
(1)  
No.  
Sym  
Characteristic  
Min Typ  
Max Units  
Conditions  
XT osc mode  
(2)  
1
TOSC  
External CLKIN Period  
250  
500  
250  
100  
50  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
XT osc mode (PIC16LV54A)  
HS osc mode (04)  
HS osc mode (10)  
HS osc mode (20)  
LP osc mode  
5.0  
250  
500  
250  
500  
250  
100  
50  
(2)  
Oscillator Period  
RC osc mode  
RC osc mode (PIC16LV54A)  
XT osc mode  
10,000  
XT osc mode (PIC16LV54A)  
HS osc mode (04)  
HS osc mode (10)  
HS osc mode (20)  
LP osc mode  
250  
250  
250  
200  
5.0  
(3)  
2
3
TCY  
Instruction Cycle Time  
4/FOSC  
TosL, TosH Clock in (OSC1) Low or High Time  
85*  
20*  
2.0*  
XT oscillator  
HS oscillator  
LP oscillator  
XT oscillator  
HS oscillator  
LP oscillator  
4
TosR, TosF Clock in (OSC1) Rise or Fall Time  
25*  
25*  
50*  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
2: All specified values are based on characterization data for that particular oscillator type under standard operating condi-  
tions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
3: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
DS30453B-page 112  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54A  
PIC16C5X  
FIGURE 14-3: CLKOUT AND I/O TIMING - PIC16C54A  
Q1  
Q2  
Q3  
Q4  
OSC1  
10  
11  
CLKOUT  
13  
12  
16  
18  
14  
19  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
New Value  
Old Value  
20, 21  
Note: All tests must be done with specified capacitive loads (see data sheet) 50 pF on I/O pins and CLKOUT.  
TABLE 14-3: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16C54A  
AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–20°C TA +85°C (industrial - PIC16LV54A-02I)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 14.1, Section 14.2 and  
Section 14.3.  
Parameter  
(1)  
No.  
Sym  
Characteristic  
(2)  
Min  
Typ  
Max  
Units  
10  
11  
12  
13  
14  
15  
16  
17  
18  
TosH2ckL  
TosH2ckH  
TckR  
OSC1to CLKOUT↓  
15  
15  
5.0  
5.0  
30**  
30**  
15**  
15**  
40**  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(2)  
OSC1to CLKOUT↑  
(2)  
CLKOUT rise time  
(2)  
TckF  
CLKOUT fall time  
(2)  
CLKOUTto Port out valid  
TckL2ioV  
TioV2ckH  
TckH2ioI  
TosH2ioV  
TosH2ioI  
(2)  
Port in valid before CLKOUT↑  
(2)  
0.25 TCY+30*  
Port in hold after CLKOUT↑  
OSC1(Q1 cycle) to Port out valid  
0*  
(3)  
100*  
OSC1(Q2 cycle) to Port input invalid  
TBD  
(I/O in hold time)  
19  
TioV2osH  
Port input valid to OSC1↑  
TBD  
ns  
(I/O in setup time)  
(3)  
20  
21  
TioR  
TioF  
Port output rise time  
10  
10  
25**  
25**  
ns  
ns  
(3)  
Port output fall time  
*
These parameters are characterized but not tested.  
** These parameters are design targets and are not tested. No characterization data available at this time.  
Note 1: Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
2: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
3: See Figure 14-1 for loading conditions.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 113  
PIC16C5X  
PIC16C54A  
FIGURE 14-4: RESET, WATCHDOG TIMER, AND  
DEVICE RESET TIMER TIMING - PIC16C54A  
VDD  
MCLR  
30  
Internal  
POR  
32  
32  
32  
DRT  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O pin  
(Note 1)  
Note 1: I/O pins must be taken out of hi-impedance mode by enabling the output drivers in software.  
TABLE 14-4: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16C54A  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–20°C TA +85°C (industrial - PIC16LV54A-02I)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 14.1, Section 14.2 and Section 14.3.  
Parameter  
No.  
(1)  
Sym Characteristic  
Min Typ  
Max Units  
Conditions  
30  
TmcL MCLR Pulse Width (low)  
100*  
1µs  
ns VDD = 5.0V  
VDD = 5.0V (PIC16LV54A only)  
31  
Twdt Watchdog Timer Time-out  
Period (No Prescaler)  
9.0*  
18*  
30*  
ms VDD = 5.0V (Commercial)  
32  
34  
TDRT Device Reset Timer Period  
9.0*  
18*  
30*  
ms VDD = 5.0V (Commercial)  
ns  
TioZ I/O Hi-impedance from MCLR  
Low  
100*  
1µs  
(PIC16LV54A only)  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
DS30453B-page 114  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54A  
PIC16C5X  
FIGURE 14-5: TIMER0 CLOCK TIMINGS - PIC16C54A  
T0CKI  
40  
41  
42  
TABLE 14-5: TIMER0 CLOCK REQUIREMENTS - PIC16C54A  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–20°C TA +85°C (industrial - PIC16LV54A-02I)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 14.1, Section 14.2 and  
Section 14.3.  
Parameter  
(1)  
Sym Characteristic  
Min  
Typ  
Max Units Conditions  
No.  
40  
Tt0H T0CKI High Pulse Width - No Prescaler  
- With Prescaler  
0.5 TCY + 20*  
10*  
ns  
ns  
ns  
ns  
41  
42  
Tt0L T0CKI Low Pulse Width - No Prescaler  
- With Prescaler  
0.5 TCY + 20*  
10*  
Tt0P T0CKI Period  
20 or TCY + 40*  
N
ns Whichever is greater.  
N = Prescale Value  
(1, 2, 4,..., 256)  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 115  
PIC16C5X  
PIC16C54A  
NOTES:  
DS30453B-page 116  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR57B  
PIC16C5X  
15.0 ELECTRICAL CHARACTERISTICS - PIC16CR57B  
Absolute Maximum Ratings†  
Ambient Temperature under bias ...........................................................................................................55°C to +125°C  
Storage Temperature..............................................................................................................................65°C to +150°C  
Voltage on VDD with respect to VSS ..................................................................................................................0 to +7.5V  
Voltage on MCLR with respect to VSS................................................................................................................0 to +14V  
Voltage on all other pins with respect to VSS ................................................................................. –0.6V to (VDD + 0.6V)  
(1)  
Total Power Dissipation ....................................................................................................................................800 mW  
Max. Current out of VSS pin...................................................................................................................................150 mA  
Max. Current into VDD pin......................................................................................................................................100 mA  
Max. Current into an input pin (T0CKI only).....................................................................................................................±500 µA  
Input Clamp Current, IIK (VI < 0 or VI > VDD) ...................................................................................................................±20 mA  
Output Clamp Current, IOK (VO < 0 or VO > VDD) ............................................................................................................±20 mA  
Max. Output Current sunk by any I/O pin................................................................................................................25 mA  
Max. Output Current sourced by any I/O pin...........................................................................................................20 mA  
Max. Output Current sourced by a single I/O port (PORTA, B or C) .......................................................................50 mA  
Max. Output Current sunk by a single I/O port (PORTA, B or C) ............................................................................50 mA  
Note 1: Power Dissipation is calculated as follows: PDIS = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOL x IOL)  
NOTICE: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 117  
PIC16C5X  
PIC16CR57B  
TABLE 15-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS  
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)  
OSC  
PIC16CR57B-04  
PIC16CR57B-10  
PIC16CR57B-20  
PIC16LCR57B-04  
RC  
VDD: 3.0V to 6.25V  
IDD: 2.5 mA max at 5.5V  
IPD: 4.0 µA max at 3.0V,  
WDT dis  
N/A  
N/A  
N/A  
Freq: 4.0 MHz max  
XT  
HS  
LP  
VDD: 3.0V to 6.25V  
IDD: 2.5 mA max at 5.5V  
IPD: 4.0 µA max at 3.0V,  
WDT dis  
N/A  
N/A  
N/A  
N/A  
Freq: 4.0 MHz max  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
IDD: 10 mA max at 5.5V  
IPD: 4.0 µA max at 3.0V,  
WDT dis  
IDD: 20 mA max at 5.5V  
IPD: 4.0 µA max at 3.0V,  
WDT dis  
N/A  
N/A  
Freq: 10 MHz max  
Freq: 20 MHz max  
VDD: 2.5V to 6.25V  
IDD: 32 µA max at 32 kHz,  
2.5V  
IPD: 4.0 µA max at 2.5V,  
WDT dis  
N/A  
N/A  
Freq: 200 kHz max  
The shaded sections indicate oscillator selections which should work by design, but are not tested. It is recommended  
that the user select the device type from information in unshaded sections.  
DS30453B-page 118  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR57B  
PIC16C5X  
15.1  
DC Characteristics: PIC16CR57B-04, 10, 20 (Commercial)  
PIC16CR57B-04I, 10I, 20I (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
DC Characteristics  
Power Supply Pins  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
(1)  
Characteristic  
Sym  
Min Typ  
Max  
Units  
Conditions  
Supply Voltage  
RC and XT options  
HS option  
VDD  
3.0  
4.5  
6.25  
5.5  
V
V
(2)  
RAM Data Retention Voltage  
VDR  
1.5*  
VSS  
V
V
Device in SLEEP mode  
VDD Start Voltage to ensure  
Power-on Reset  
VPOR  
See Section 7.4 for details on  
Power-on Reset  
VDD Rise Rate to ensure  
Power-on Reset  
SVDD 0.05*  
V/ms See Section 7.4 for details on  
Power-on Reset  
(3)  
Supply Current  
IDD  
(4)  
RC and XT options  
1.9  
2.5  
4.7  
2.5  
8.0  
17  
mA  
mA  
mA  
FOSC = 4 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 20 MHz, VDD = 5.5V  
HS option  
(5)  
Power-Down Current  
Commercial  
IPD  
4.0  
0.25  
4.0  
12  
4.0  
14  
µA  
µA  
µA  
µA  
VDD = 3.0V, WDT enabled  
VDD = 3.0V, WDT disabled  
VDD = 3.0V, WDT enabled  
VDD = 3.0V, WDT disabled  
Industrial  
0.25  
5.0  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C.This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through Rext. The current through the resistor can be estimated by the  
formula: IR = VDD/2Rext (mA) with Rext in k.  
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 119  
 
PIC16C5X  
PIC16CR57B  
15.2  
DC Characteristics: PIC16CR57B-04E, 10E, 20E (Extended)  
DC Characteristics  
Power Supply Pins  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
–40°C TA +125°C (extended)  
(1)  
Characteristic  
Sym  
Min Typ  
Max Units  
Conditions  
Supply Voltage  
RC and XT options  
HS options  
VDD  
3.25  
4.5  
6.0  
5.5  
V
V
(2)  
RAM Data Retention Voltage  
VDR  
1.5*  
VSS  
V
V
Device in SLEEP mode  
VDD Start Voltage to ensure  
Power-on Reset  
VPOR  
See Section 7.4 for details on  
Power-on Reset  
VDD Rise Rate to ensure  
Power-on Reset  
SVDD 0.05*  
V/ms See Section 7.4 for details on  
Power-on Reset  
(3)  
Supply Current  
IDD  
(4)  
RC and XT options  
1.9  
4.8  
9.0  
3.3  
10  
20  
mA  
mA  
mA  
FOSC = 4 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 20 MHz, VDD = 5.5V  
HS option  
(5)  
Power-Down Current  
IPD  
5.0  
0.8  
22  
18  
µA  
µA  
VDD = 3.25V, WDT enabled  
VDD = 3.25V, WDT disabled  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design  
guidance only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through Rext. The current through the resistor can be estimated by the  
formula: IR = VDD/2Rext (mA) with Rext in k.  
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
DS30453B-page 120  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16CR57B  
PIC16C5X  
15.3  
DC Characteristics: PIC16LCR57B-04 (Commercial)  
PIC16LCR57B-04I (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
DC Characteristics  
Power Supply Pins  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
(1)  
Characteristic  
Sym  
Min Typ  
Max  
Units Conditions  
Supply Voltage  
VDD  
VDR  
2.5  
6.25  
V
V
V
LP option  
(2)  
RAM Data Retention Voltage  
1.5*  
VSS  
Device in SLEEP mode  
VDD Start Voltage to ensure  
Power-on Reset  
VPOR  
See Section 7.4 for details on  
Power-on Reset  
VDD Rise Rate to ensure  
Power-on Reset  
SVDD 0.05*  
V/ms See Section 7.4 for details on  
Power-on Reset  
(3)  
Supply Current  
Commercial  
IDD  
12  
15  
28  
37  
µA  
µA  
FOSC = 32 kHz, VDD = 2.5V,  
WDT disabled  
FOSC = 32 kHz, VDD = 2.5V,  
WDT disabled  
Industrial  
(5)  
Power-Down Current  
IPD  
Commercial  
3.5  
0.2  
3.5  
0.2  
12  
4.0  
14  
µA  
µA  
µA  
µA  
VDD = 2.5V, WDT enabled  
VDD = 2.5V, WDT disabled  
VDD = 2.5V, WDT enabled  
VDD = 2.5V, WDT disabled  
Industrial  
5.0  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C.This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through Rext. The current through the resistor can be estimated by the  
formula: IR = VDD/2Rext (mA) with Rext in k.  
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 121  
 
PIC16C5X  
PIC16CR57B  
15.4  
DC Characteristics: PIC16CR57B-04, 10, 20, PIC16LCR57B-04 (Commercial)  
PIC16CR57B-04I, 10I, 20I, PIC16LCR57B-04I (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
DC Characteristics  
All Pins Except  
Power Supply Pins  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
Operating Voltage VDD range is described in Section 15.1 and Section 15.3.  
(1)  
Characteristic  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Low Voltage  
I/O ports  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
VIL  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.3 VDD  
V
V
V
V
V
Pin at hi-impedance  
(4)  
RC option only  
XT, HS and LP options  
Input High Voltage  
I/O ports  
VIH  
(5)  
0.45 VDD  
2.0  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
V
For all VDD  
(5)  
4.0V < VDD 5.5V  
VDD > 5.5V  
0.36 VDD  
0.85 VDD  
0.85 VDD  
0.85 VDD  
0.7 VDD  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
(4)  
RC option only  
XT, HS and LP options  
Hysteresis of Schmitt  
Trigger inputs  
VHYS 0.15VDD*  
V
(3)  
Input Leakage Current  
IIL  
For VDD 5.5V  
I/O ports  
–1.0  
+1.0  
µA  
VSS VPIN VDD,  
Pin at hi-impedance  
(2)  
MCLR  
–5.0  
µA  
µA  
µA  
µA  
VPIN = VSS + 0.25V  
(2)  
0.5  
0.5  
0.5  
+5.0  
+3.0  
+3.0  
VPIN = VDD  
T0CKI  
OSC1  
–3.0  
–3.0  
VSS VPIN VDD  
VSS VPIN VDD,  
XT, HS and LP options  
Output Low Voltage  
I/O ports  
OSC2/CLKOUT  
VOL  
0.6  
0.6  
V
V
IOL = 8.7 mA, VDD = 4.5V  
IOL = 1.6 mA, VDD = 4.5V,  
RC option only  
(3)  
Output High Voltage  
VOH  
I/O ports  
OSC2/CLKOUT  
VDD –0.7  
VDD –0.7  
V
V
IOH = –5.4 mA, VDD = 4.5V  
IOH = –1.0 mA, VDD = 4.5V,  
RC option only  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C.This data is for design guidance  
only and is not tested.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltage.  
3: Negative current is defined as coming out of the pin.  
4: For the RC option, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X  
be driven with external clock in RC mode.  
5: The user may use the better of the two specifications.  
DS30453B-page 122  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR57B  
PIC16C5X  
15.5  
DC Characteristics: PIC16CR57B-04E, 10E, 20E (Extended)  
DC Characteristics  
All Pins Except  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C  
Power Supply Pins  
Operating Voltage VDD range is described in Section 15.2.  
(1)  
Characteristic  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Low Voltage  
I/O ports  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
VIL  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.3 VDD  
V
V
V
V
V
Pin at hi-impedance  
(4)  
RC option only  
XT, HS and LP options  
Input High Voltage  
I/O ports  
VIH  
(5)  
0.45 VDD  
2.0  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
V
For all VDD  
(5)  
4.0V < VDD 5.5V  
VDD > 5.5V  
0.36 VDD  
0.85 VDD  
0.85 VDD  
0.85 VDD  
0.7 VDD  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
(4)  
RC option only  
XT, HS and LP options  
Hysteresis of Schmitt  
Trigger inputs  
VHYS 0.15VDD*  
V
(3)  
Input Leakage Current  
IIL  
For VDD 5.5V  
I/O ports  
–1.0  
+1.0  
µA  
VSS VPIN VDD,  
Pin at hi-impedance  
(2)  
MCLR  
–5.0  
µA  
µA  
µA  
µA  
VPIN = VSS + 0.25 V  
VPIN = VDD  
VSS VPIN VDD  
(2)  
0.5  
0.5  
0.5  
+5.0  
+3.0  
+3.0  
T0CKI  
OSC1  
–3.0  
–3.0  
VSS VPIN VDD,  
XT, HS and LP options  
Output Low Voltage  
I/O ports  
OSC2/CLKOUT  
VOL  
0.6  
0.6  
V
V
IOL = 8.7 mA, VDD = 4.5V  
IOL = 1.6 mA, VDD = 4.5V,  
RC option only  
(3)  
Output High Voltage  
VOH  
I/O ports  
OSC2/CLKOUT  
VDD –0.7  
VDD –0.7  
V
V
IOH = –5.4 mA, VDD = 4.5V  
IOH = –1.0 mA, VDD = 4.5V,  
RC option only  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltage.  
3: Negative current is defined as coming out of the pin.  
4: For the RC option, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X  
be driven with external clock in RC mode.  
5: The user may use the better of the two specifications.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 123  
PIC16C5X  
PIC16CR57B  
15.6  
Timing Parameter Symbology and Load Conditions  
The timing parameter symbols have been created following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase subscripts (pp) and their meanings:  
pp  
T
Time  
2
to  
mc  
osc  
os  
MCLR  
ck  
cy  
drt  
io  
CLKOUT  
cycle time  
device reset timer  
I/O port  
oscillator  
OSC1  
t0  
T0CKI  
wdt  
watchdog timer  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
FIGURE 15-1: LOAD CONDITIONS  
Pin  
CL = 50 pF for all pins except OSC2  
CL  
15 pF for OSC2 in XT, HS or LP  
options when external clock  
is used to drive OSC1  
VSS  
DS30453B-page 124  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16CR57B  
PIC16C5X  
15.7  
Timing Diagrams and Specifications  
FIGURE 15-2: EXTERNAL CLOCK TIMING - PIC16CR57B  
Q4  
Q3  
Q4  
4
Q1  
Q1  
Q2  
OSC1  
1
3
3
4
2
CLKOUT  
TABLE 15-2: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16CR57B  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 15.1, Section 15.2 and Section 15.3.  
Parameter  
No.  
(1)  
Sym  
Characteristic  
Min Typ  
Max Units  
Conditions  
(2)  
FOSC  
External CLKIN Frequency  
DC  
DC  
DC  
DC  
DC  
DC  
0.1  
4.0  
4.0  
4.0  
5.0  
4.0  
4.0  
10  
MHz XT osc mode  
MHz HS osc mode (04)  
MHz HS osc mode (10)  
MHz HS osc mode (20)  
kHz LP osc mode  
20  
200  
4.0  
4.0  
4.0  
10  
(2)  
Oscillator Frequency  
MHz RC osc mode  
MHz XT osc mode  
MHz HS osc mode (04)  
MHz HS osc mode (10)  
MHz HS osc mode (20)  
kHz LP osc mode  
20  
200  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated.These parameters are for design guidance only  
and are not tested.  
2: All specified values are based on characterization data for that particular oscillator type under standard operating  
conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation  
and/or higher than expected current consumption.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
3: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 125  
PIC16C5X  
PIC16CR57B  
TABLE 15-2: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16CR57B (CON’T)  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 15.1, Section 15.2 and Section 15.3.  
Parameter  
(1)  
No.  
Sym  
Characteristic  
Min Typ  
Max Units  
Conditions  
XT osc mode  
(2)  
1
TOSC  
External CLKIN Period  
250  
250  
100  
50  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
HS osc mode (04)  
HS osc mode (10)  
HS osc mode (20)  
LP osc mode  
5.0  
250  
250  
250  
100  
50  
(2)  
Oscillator Period  
RC osc mode  
10,000  
250  
250  
250  
200  
XT osc mode  
HS osc mode (04)  
HS osc mode (10)  
HS osc mode (20)  
LP osc mode  
5.0  
(3)  
2
3
TCY  
Instruction Cycle Time  
4/FOSC  
TosL, TosH Clock in (OSC1) Low or High Time  
85*  
20*  
2.0*  
XT oscillator  
HS oscillator  
LP oscillator  
XT oscillator  
HS oscillator  
LP oscillator  
4
TosR, TosF Clock in (OSC1) Rise or Fall Time  
25*  
25*  
50*  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated.These parameters are for design guidance only  
and are not tested.  
2: All specified values are based on characterization data for that particular oscillator type under standard operating  
conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation  
and/or higher than expected current consumption.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
3: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
DS30453B-page 126  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR57B  
PIC16C5X  
FIGURE 15-3: CLKOUT AND I/O TIMING - PIC16CR57B  
Q1  
Q4  
Q2  
Q3  
OSC1  
10  
11  
CLKOUT  
12  
16  
13  
18  
19  
14  
I/O Pin  
(input)  
15  
17  
I/O Pin  
Old Value  
(output)  
New Value  
20, 21  
Note: All tests must be done with specified capacitive loads (see data sheet) 50 pF on I/O pins and CLKOUT.  
TABLE 15-3: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16CR57B  
AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 15.1, Section 15.2 and  
Section 15.3.  
Parameter  
(1)  
No.  
Sym  
Characteristic  
(2)  
Min  
Typ  
Max  
Units  
10  
11  
12  
13  
14  
15  
16  
17  
18  
TosH2ckL  
TosH2ckH  
TckR  
OSC1to CLKOUT↓  
15  
15  
5.0  
5.0  
30**  
30**  
15**  
15**  
40**  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(2)  
OSC1to CLKOUT↑  
(2)  
CLKOUT rise time  
(2)  
TckF  
CLKOUT fall time  
(2)  
CLKOUTto Port out valid  
TckL2ioV  
TioV2ckH  
TckH2ioI  
TosH2ioV  
TosH2ioI  
(2)  
Port in valid before CLKOUT↑  
(2)  
0.25 TCY+30*  
Port in hold after CLKOUT↑  
OSC1(Q1 cycle) to Port out valid  
0*  
(3)  
100*  
OSC1(Q2 cycle) to Port input invalid  
TBD  
(I/O in hold time)  
19  
TioV2osH  
Port input valid to OSC1↑  
TBD  
ns  
(I/O in setup time)  
(3)  
20  
21  
TioR  
TioF  
Port output rise time  
10  
10  
25**  
25**  
ns  
ns  
(3)  
Port output fall time  
*
These parameters are characterized but not tested.  
** These parameters are design targets and are not tested. No characterization data available at this time.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated.These parameters are for design guidance only  
and are not tested.  
2: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
3: See Figure 15-1 for loading conditions.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 127  
PIC16C5X  
PIC16CR57B  
FIGURE 15-4: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING - PIC16CR57B  
VDD  
MCLR  
30  
Internal  
POR  
32  
32  
32  
DRT  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O pin  
(Note 1)  
Note 1: I/O pins must be taken out of hi-impedance mode by enabling the output drivers in software.  
TABLE 15-4: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16CR57B  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 15.1, Section 15.2 and Section 15.3.  
Parameter  
No.  
(1)  
Sym Characteristic  
Min Typ  
Max Units  
Conditions  
30  
31  
TmcL MCLR Pulse Width (low)  
1.0*  
9.0*  
µs VDD = 5.0V  
Twdt Watchdog Timer Time-out Period  
(No Prescaler)  
18*  
30*  
ms VDD = 5.0V (Commercial)  
32  
34  
TDRT Device Reset Timer Period  
9.0*  
18*  
30*  
ms VDD = 5.0V (Commercial)  
TioZ I/O Hi-impedance from MCLR Low  
1.0*  
µs  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
DS30453B-page 128  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR57B  
PIC16C5X  
FIGURE 15-5: TIMER0 CLOCK TIMINGS - PIC16CR57B  
T0CKI  
40  
41  
42  
TABLE 15-5: TIMER0 CLOCK REQUIREMENTS - PIC16CR57B  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature 0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 15.1, Section 15.2 and  
Section 15.3.  
Parameter  
(1)  
Sym Characteristic  
Min  
Typ  
Max Units Conditions  
No.  
40  
Tt0H T0CKI High Pulse Width - No Prescaler  
- With Prescaler  
0.5 TCY + 20*  
10*  
ns  
ns  
ns  
ns  
41  
42  
Tt0L T0CKI Low Pulse Width - No Prescaler  
- With Prescaler  
0.5 TCY + 20*  
10*  
Tt0P T0CKI Period  
20 or TCY + 40*  
N
ns Whichever is greater.  
N = Prescale Value  
(1, 2, 4,..., 256)  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated.These parameters are for design guidance only  
and are not tested.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 129  
PIC16C5X  
PIC16CR57B  
NOTES:  
DS30453B-page 130  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C58A  
PIC16C5X  
16.0 ELECTRICAL CHARACTERISTICS - PIC16C58A  
Absolute Maximum Ratings  
Ambient Temperature under bias ...........................................................................................................55°C to +125°C  
Storage Temperature............................................................................................................................. –65°C to +150°C  
Voltage on VDD with respect to VSS ..................................................................................................................0 to +7.5V  
Voltage on MCLR with respect to VSS................................................................................................................0 to +14V  
Voltage on all other pins with respect to VSS ................................................................................. –0.6V to (VDD + 0.6V)  
(1)  
Total Power Dissipation ....................................................................................................................................800 mW  
Max. Current out of VSS pin...................................................................................................................................150 mA  
Max. Current into VDD pin......................................................................................................................................100 mA  
Max. Current into an input pin (T0CKI only).....................................................................................................................±500 µA  
Input Clamp Current, IIK (VI < 0 or VI > VDD) ....................................................................................................................±20 mA  
Output Clamp Current, IOK (VO < 0 or VO > VDD) ............................................................................................................±20 mA  
Max. Output Current sunk by any I/O pin................................................................................................................25 mA  
Max. Output Current sourced by any I/O pin...........................................................................................................20 mA  
Max. Output Current sourced by a single I/O port (PORTA or B)............................................................................50 mA  
Max. Output Current sunk by a single I/O port (PORTA or B).................................................................................50 mA  
Note 1: Power Dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOL x IOL)  
NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 131  
PIC16C5X  
PIC16C58A  
TABLE 16-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS  
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)  
OSC  
PIC16C58A-04  
PIC16C58A-10  
PIC16C58A-20  
PIC16LC58A-04  
VDD: 3.0V to 6.25V  
IDD: 2.5 mA max. at  
5.5V  
IPD: 4.0 µA max. at  
3.0V WDT dis  
VDD: 3.0V to 6.25V  
IDD: 1.8 mA typ. at  
5.5V  
IPD: 0.25 µA typ. at  
3.0V WDT dis  
VDD: 3.0V to 6.25V  
IDD: 1.8 mA typ. at  
5.5V  
IPD: 0.25 µA typ. at  
3.0V WDT dis  
VDD: 3.0V to 6.25V  
IDD: 0.5 mA typ. at  
5.5V  
IPD: 0.25 µA typ. at  
3.0V WDT dis  
RC  
Freq: 4.0 MHz max.  
Freq: 4.0 MHz max.  
Freq: 4.0 MHz max.  
Freq: 4.0 MHz max.  
VDD: 3.0V to 6.25V  
IDD 2.5 mA max. at  
5.5V  
IPD: 4.0 µA max. at  
3.0V WDT dis  
VDD: 3.0V to 6.25V  
IDD: 1.8 mA typ. at  
5.5V  
IPD: 0.25 µA typ. at  
3.0V WDT dis  
VDD: 3.0V to 6.25V  
IDD: 1.8 mA typ. at  
5.5V  
IPD: 0.25 µA typ. at  
3.0V WDT dis  
VDD: 3.0V to 6.25V  
IDD: 0.5 mA typ. at  
5.5V  
IPD: 0.25 µA typ. at  
3.0V WDT dis  
XT  
HS  
Freq: 4.0 MHz max.  
Freq: 4.0 MHz max.  
Freq: 4.0 MHz max.  
Freq: 4.0 MHz max.  
VDD: 4.5V to 5.5V  
IDD: 8.0 mA max. at  
5.5V  
IPD: 4.0 µA max. at  
3.0V WDT dis  
VDD: 4.5V to 5.5V  
IDD: 17 mA max. at  
5.5V  
IPD: 4.0 µA max. at  
3.0V WDT dis  
N/A  
N/A  
Freq: 10 MHz max.  
Freq: 20 MHz max.  
VDD: 3.0V to 6.25V  
IDD: 15 µA typ. at  
32kHz, 3.0V  
VDD: 2.5V to 6.25V  
IDD: 28 µA max. at  
32kHz, 2.5V  
LP  
IPD: 0.25 µA typ. at  
3.0V WDT dis  
Freq: 200 kHz max.  
N/A  
N/A  
WDT dis  
IPD: 4.0 µA max. at  
2.5V WDT dis  
Freq: 200 kHz max.  
The shaded sections indicate oscillator selections which should work by design, but are not  
tested. It is recommended that the user select the device type from information in unshaded  
sections.  
OSC  
PIC16C58A/JW  
PIC16LV58A-02  
VDD: 3.0V to 6.25V  
IDD: 2.5 mA max. at  
5.5V  
IPD: 4.0 µA max. at  
3.0V WDT dis  
VDD: 2.0V to 3.8V  
IDD: 0.5 mA typ. at  
3.0V  
IPD: 0.25 µA typ. at  
3.0V WDT dis  
RC  
Freq: 4.0 MHz max.  
Freq: 2.0 MHz max.  
VDD: 3.0V to 6.25V  
IDD 2.5 mA max. at  
5.5V  
IPD: 4.0 µA max. at  
3.0V WDT dis  
VDD: 2.0V to 3.8V  
IDD: 0.5 mA typ. at  
3.0V  
IPD: 0.25 µA typ. at  
3.0V WDT dis  
XT  
HS  
Freq: 4.0 MHz max.  
Freq: 2.0 MHz max.  
VDD: 4.5V to 5.5V  
IDD: 17 mA max. at  
5.5V  
IPD: 4.0 µA max. at  
3.0V WDT dis  
N/A  
Freq: 20 MHz max.  
VDD: 2.5V to 6.25V  
IDD: 28 µA max. at  
32kHz, 2.5V  
VDD: 2.0V to 3.8V  
IDD: 27 µA max. at  
32kHz, 2.5V  
LP  
WDT dis  
WDT dis  
IPD: 4.0 µA max. at  
2.5V WDT dis  
IPD: 4.0 µA max. at  
2.5V WDT dis  
Freq: 200 kHz max.  
Freq: 200 kHz max.  
The shaded sections indicate oscillator selections  
which should work by design, but are not tested. It  
is recommended that the user select the device  
type from information in unshaded sections.  
DS30453B-page 132  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C58A  
PIC16C5X  
16.1  
DC Characteristics: PIC16C58A-04, 10, 20 (Commercial)  
PIC16C58A-04I, 10I, 20I (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
DC Characteristics  
Power Supply Pins  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
(1)  
Characteristic  
Sym Min Typ  
Max Units  
Conditions  
Supply Voltage  
XT, RC and LP options  
HS option  
VDD  
3.0  
4.5  
6.25  
5.5  
V
V
(2)  
RAM Data Retention Voltage  
VDR  
1.5*  
VSS  
V
V
Device in SLEEP mode  
VDD start voltage to ensure  
Power-On Reset  
VPOR  
See Section 7.4 for details on  
Power-on Reset  
VDD rise rate to ensure  
Power-On Reset  
SVDD  
IDD  
0.05*  
V/ms See Section 7.4 for details on  
Power-on Reset  
(3)  
Supply Current  
(4)  
XT and RC options  
1.9  
2.5  
4.7  
15  
2.5 mA FOSC = 4.0 MHz, VDD = 5.5V  
8.0 mA FOSC = 10 MHz, VDD = 5.5V  
17  
31  
39  
HS option  
mA FOSC = 20 MHz, VDD = 5.5V  
µA FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
µA FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
LP option, Commercial  
LP option, Industrial  
18  
(5)  
Power Down Current  
IPD  
Commercial  
4.0  
0.25 4.0  
5.0  
0.3  
12  
µA VDD = 3.0V, WDT enabled  
µA VDD = 3.0V, WDT disabled  
µA VDD = 3.0V, WDT enabled  
µA VDD = 3.0V, WDT disabled  
Industrial  
14  
5.0  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C.This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through Rext. The current through the resistor can be estimated by the  
formula: IR = VDD/2Rext (mA) with Rext in k.  
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 133  
 
PIC16C5X  
PIC16C58A  
16.2  
DC Characteristics: PIC16C58A-04E, 10E, 20E (Extended)  
DC Characteristics  
Power Supply Pins  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
–40°C TA +125°C (extended)  
(1)  
Characteristic  
Sym Min Typ  
Max Units Conditions  
Supply Voltage  
XT and RC options  
HS option  
VDD  
3.5  
4.5  
5.5  
5.5  
V
V
(2)  
RAM Data Retention Voltage  
VDR  
1.5*  
VSS  
V
V
Device in SLEEP mode  
VDD start voltage to ensure  
Power-On Reset  
VPOR  
See Section 7.4 for details on  
Power-on Reset  
VDD rise rate to ensure  
Power-On Reset  
SVDD  
IDD  
0.05*  
V/ms See Section 7.4 for details on  
Power-on Reset  
(3)  
Supply Current  
(4)  
XT and RC options  
1.9  
4.8  
9.0  
3.3 mA FOSC = 4.0 MHz, VDD = 5.5V  
10  
20  
HS option  
mA FOSC = 10 MHz, VDD = 5.5V  
mA FOSC = 20 MHz, VDD = 5.5V  
(5)  
Power Down Current  
IPD  
XT and RC options  
5.0  
0.8  
4.0  
22  
18  
22  
18  
µA VDD = 3.5V, WDT enabled  
µA VDD = 3.5V, WDT disabled  
µA VDD = 3.5V, WDT enabled  
µA VDD = 3.5V, WDT disabled  
HS option  
0.25  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design  
guidance only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through Rext. The current through the resistor can be estimated by the  
formula: IR = VDD/2Rext (mA) with Rext in k.  
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
DS30453B-page 134  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C58A  
PIC16C5X  
16.3  
DC Characteristics: PIC16LC58A-04 (Commercial)  
PIC16LC58A-04I (Industrial)  
PIC16LC58A-04 (Extended)  
Standard Operating Conditions (unless otherwise specified)  
DC Characteristics  
Power Supply Pins  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–40°C TA +125°C (extended)  
(1)  
Characteristic  
Sym Min Typ  
Max Units  
Conditions  
Supply Voltage  
VDD  
XT, RC and LP options  
2.5  
6.25  
V
V
V
(2)  
RAM Data Retention Voltage  
VDR  
1.5*  
VSS  
Device in SLEEP mode  
VDD start voltage to ensure  
Power-On Reset  
VPOR  
See Section 7.4 for details on  
Power-on Reset  
VDD rise rate to ensure  
Power-On Reset  
SVDD  
IDD  
0.05*  
V/ms See Section 7.4 for details on  
Power-on Reset  
(3)  
Supply Current  
(4)  
XT and RC options  
0.5  
12  
12  
12  
2.5 mA FOSC = 4.0 MHz, VDD = 5.5V  
LP option, Commercial  
LP option, Industrial  
LP option, Extended  
27  
35  
37  
µA FOSC = 32 kHz, VDD = 2.5V WDT disabled  
µA FOSC = 32 kHz, VDD = 2.5V WDT disabled  
µA FOSC = 32 kHz, VDD = 2.5V WDT disabled  
(5)  
Power Down Current  
IPD  
Commercial  
2.5  
12  
µA VDD = 2.5V, WDT enabled  
µA VDD = 2.5V, WDT disabled  
µA VDD = 2.5V, WDT enabled  
µA VDD = 2.5V, WDT disabled  
µA VDD = 2.5V, WDT enabled  
µA VDD = 2.5V, WDT disabled  
0.25 4.0  
2.5 14  
0.25 5.0  
2.5 15  
0.25 7.0  
Industrial  
Extended  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C.This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through Rext. The current through the resistor can be estimated by the  
formula: IR = VDD/2Rext (mA) with Rext in k.  
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 135  
 
PIC16C5X  
PIC16C58A  
16.4  
DC Characteristics: PIC16LV58A-02 (Commercial)  
PIC16LV58A-02 (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
DC Characteristics  
Power Supply Pins  
Operating Temperature  
0°C TA +70°C (commercial)  
–20°C TA +85°C (industrial)  
(1)  
Characteristic  
Sym Min Typ  
Max Units Conditions  
Supply Voltage  
VDD  
XT, RC and LP options  
2.0  
3.8  
V
V
V
(2)  
RAM Data Retention Voltage  
VDR  
1.5*  
VSS  
Device in SLEEP mode  
See section on Power-On Reset for details  
VDD start voltage to ensure  
Power-On Reset  
VPOR  
VDD rise rate to ensure  
Power-On Reset  
SVDD  
IDD  
0.05*  
V/ms See section on Power-On Reset for details  
(3)  
Supply Current  
(4)  
XT and RC options  
0.5  
11  
14  
1.8 mA FOSC = 2.0 MHz, VDD = 3.0V  
27  
35  
LP option, Commercial  
LP option, Industrial  
µA FOSC = 32 kHz, VDD = 2.5V, WDT disabled  
µA FOSC = 32 kHz, VDD = 2.5V, WDT disabled  
(5)(6)  
Power Down Current  
IPD  
Commercial  
2.5  
12  
µA VDD = 2.5V, WDT enabled  
µA VDD = 2.5V, WDT disabled  
µA VDD = 2.5V, WDT enabled  
µA VDD = 2.5V, WDT disabled  
0.25 4.0  
2.5 14  
0.25 5.0  
Industrial  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C.This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through Rext. The current through the resistor can be estimated by the  
formula: IR = VDD/2Rext (mA) with Rext in k.  
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
6: The oscillator start-up time can be as much as 8 seconds for XT and LP oscillator selection, if the SLEEP  
mode is entered or during initial power-up.  
DS30453B-page 136  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C58A  
PIC16C5X  
16.5  
DC Characteristics: PIC16C58A-04, 10, 20, PIC16LC58A-04, PIC16LV58A-02 (Commercial)  
PIC16C58A-04I, 10I, 20I, PIC16LC58A-04I, PIC16LV58A-02I (Industrial)  
PIC16C58A-04E, 10E, 20E (Extended)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
DC Characteristics  
All Pins Except  
Power Supply Pins  
–20°C TA +85°C (industrial - PIC16LV58A)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 16.1, Section 16.2 and  
Section 16.3.  
(1)  
Characteristic  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Low Voltage  
I/O ports  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
VIL  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.3 VDD  
V
V
V
V
V
Pin at hi-impedance  
(4)  
RC option only  
XT, HS and LP options  
Input High Voltage  
I/O ports  
VIH  
(5)  
0.2 VDD+1V  
2.0  
0.85 VDD  
0.85 VDD  
0.85 VDD  
0.7 VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
For all VDD  
(5)  
4.0V < VDD 5.5V  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
(4)  
RC option only  
XT, HS and LP options  
Hysteresis of Schmitt  
Trigger inputs  
VHYS 0.15VDD*  
V
(3)  
Input Leakage Current  
IIL  
For VDD 5.5V  
I/O ports  
-1.0  
-5.0  
0.5  
+1.0  
µA VSS VPIN VDD,  
Pin at hi-impedance  
(2)  
MCLR  
µA VPIN = VSS +0.25V  
(2)  
0.5  
0.5  
0.5  
+5.0  
+3.0  
+3.0  
µA VPIN = VDD  
T0CKI  
OSC1  
-3.0  
-3.0  
µA VSS VPIN VDD  
µA VSS VPIN VDD,  
XT, HS and LP options  
Output Low Voltage  
I/O ports  
OSC2/CLKOUT  
VOL  
VOH  
0.6  
0.6  
V
V
IOL = 8.7 mA, VDD = 4.5V  
IOL = 1.6 mA, VDD = 4.5V,  
RC option only  
Output High Voltage  
(3)  
I/O ports  
VDD-0.7  
VDD-0.7  
V
V
IOH = -5.4 mA, VDD = 4.5V  
IOH = -1.0 mA, VDD = 4.5V,  
RC option only  
OSC2/CLKOUT  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C.This data is for design guidance  
only and is not tested.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltage.  
3: Negative current is defined as coming out of the pin.  
4: For the RC option, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X  
be driven with external clock in RC mode.  
5: The user may use the better of the two specifications.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 137  
PIC16C5X  
PIC16C58A  
16.6  
Timing Parameter Symbology and Load Conditions  
The timing parameter symbols have been created following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase subscripts (pp) and their meanings:  
pp  
T
Time  
2
to  
mc  
osc  
os  
MCLR  
ck  
cy  
drt  
io  
CLKOUT  
cycle time  
device reset timer  
I/O port  
oscillator  
OSC1  
t0  
T0CKI  
wdt  
watchdog timer  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
FIGURE 16-1: LOAD CONDITIONS - PIC16C58A  
Pin  
CL = 50 pF for all pins except OSC2  
CL  
15 pF for OSC2 in XT, HS or LP  
options when external clock  
is used to drive OSC1  
VSS  
DS30453B-page 138  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16C58A  
PIC16C5X  
16.7  
Timing Diagrams and Specifications  
FIGURE 16-2: EXTERNAL CLOCK TIMING - PIC16C58A  
Q4  
Q3  
Q4  
4
Q1  
Q1  
Q2  
OSC1  
1
3
3
4
2
CLKOUT  
TABLE 16-2: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C58A  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–20°C TA +85°C (industrial - PIC16LV58A)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 16.1, Section 16.2 and Section 16.3.  
Parameter  
No.  
(1)  
Sym  
Characteristic  
Min Typ  
Max Units  
Conditions  
(2)  
FOSC  
External CLKIN Frequency  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
0.1  
0.1  
4.0  
4.0  
4.0  
5.0  
4.0  
2.0  
4.0  
10  
MHz XT osc mode  
MHz XT osc mode (PIC16LV58A)  
MHz HS osc mode (04)  
MHz HS osc mode (10)  
MHz HS osc mode (20)  
kHz LP osc mode  
20  
200  
4.0  
2.0  
4.0  
2.0  
4.0  
10  
(2)  
Oscillator Frequency  
MHz RC osc mode  
MHz RC osc mode (PIC16LV58A)  
MHz XT osc mode  
MHz XT osc mode (PIC16LV58A)  
MHz HS osc mode (04)  
MHz HS osc mode (10)  
MHz HS osc mode (20)  
kHz LP osc mode  
20  
200  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated.These parameters are for design guidance only  
and are not tested.  
2: All specified values are based on characterization data for that particular oscillator type under standard operating  
conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation  
and/or higher than expected current consumption.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
3: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 139  
PIC16C5X  
PIC16C58A  
TABLE 16-2: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C58A (CON’T)  
AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–20°C TA +85°C (industrial - PIC16LV58A)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 16.1, Section 16.2 and Section 16.3.  
Parameter  
(1)  
No.  
Sym  
Characteristic  
Min Typ  
Max Units  
Conditions  
XT osc mode  
(2)  
1
TOSC  
External CLKIN Period  
250  
500  
250  
100  
50  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
XT osc mode (PIC16LV58A)  
HS osc mode (04)  
HS osc mode (10)  
HS osc mode (20)  
LP osc mode  
5.0  
250  
500  
250  
500  
250  
100  
50  
(2)  
Oscillator Period  
RC osc mode  
RC osc mode (PIC16LV58A)  
XT osc mode  
10,000  
XT osc mode (PIC16LV58A)  
HS osc mode (04)  
HS osc mode (10)  
HS osc mode (20)  
LP osc mode  
250  
250  
250  
200  
5.0  
(3)  
2
3
TCY  
Instruction Cycle Time  
4/FOSC  
TosL, TosH Clock in (OSC1) Low or High Time  
50*  
20*  
2.0*  
XT oscillator  
HS oscillator  
LP oscillator  
XT oscillator  
HS oscillator  
LP oscillator  
4
TosR, TosF Clock in (OSC1) Rise or Fall Time  
25*  
25*  
50*  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated.These parameters are for design guidance only  
and are not tested.  
2: All specified values are based on characterization data for that particular oscillator type under standard operating  
conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation  
and/or higher than expected current consumption.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
3: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
DS30453B-page 140  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C58A  
PIC16C5X  
FIGURE 16-3: CLKOUT AND I/O TIMING - PIC16C58A  
Q1  
Q2  
Q3  
Q4  
OSC1  
10  
11  
CLKOUT  
13  
12  
16  
18  
14  
19  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
New Value  
Old Value  
20, 21  
Note: Refer to Figure 16-1 for load conditions.  
TABLE 16-3: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16C58A  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–20°C TA +85°C (industrial - PIC16LV58A)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 16.1, Section 16.2 and  
Section 16.3.  
Parameter  
(1)  
No.  
Sym  
Characteristic  
(2)  
Min  
Typ  
Max  
Units  
10  
11  
12  
13  
14  
15  
16  
17  
18  
TosH2ckL  
TosH2ckH  
TckR  
OSC1to CLKOUT↓  
15  
15  
5
30**  
30**  
15**  
15**  
40**  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(2)  
OSC1to CLKOUT↑  
(2)  
CLKOUT rise time  
(2)  
TckF  
CLKOUT fall time  
5
(2)  
CLKOUTto Port out valid  
TckL2ioV  
TioV2ckH  
TckH2ioI  
TosH2ioV  
TosH2ioI  
(2)  
Port in valid before CLKOUT↑  
(2)  
0.25 TCY+30*  
Port in hold after CLKOUT↑  
OSC1(Q1 cycle) to Port out valid  
0*  
(3)  
100*  
OSC1(Q2 cycle) to Port input invalid  
TBD  
(I/O in hold time)  
19  
TioV2osH  
Port input valid to OSC1↑  
TBD  
ns  
(I/O in setup time)  
(3)  
20  
21  
TioR  
TioF  
Port output rise time  
10  
10  
25**  
25**  
ns  
ns  
(3)  
Port output fall time  
*
These parameters are characterized but not tested.  
** These parameters are design targets and are not tested. No characterization data available at this time.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25˚C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
2: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
3: See Figure 16-1 for loading conditions.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 141  
PIC16C5X  
PIC16C58A  
FIGURE 16-4: RESET, WATCHDOG TIMER, AND  
DEVICE RESET TIMER TIMING - PIC16C58A  
VDD  
MCLR  
30  
Internal  
POR  
32  
32  
32  
DRT  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O pin  
(Note 1)  
Note 1: I/O pins must be taken out of hi-impedance mode by enabling the output drivers in software.  
TABLE 16-4: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16C58A  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–20°C TA +85°C (industrial - PIC16LV58A)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 16.1, Section 16.2 and Section 16.3.  
Parameter  
No.  
(1)  
Sym Characteristic  
Min Typ  
Max Units  
Conditions  
30  
TmcL MCLR Pulse Width (low)  
100*  
1µs  
ns VDD = 5.0V  
VDD = 5.0V (PIC16LV58A only)  
31  
Twdt Watchdog Timer Time-out  
Period (No Prescaler)  
9.0*  
18*  
30*  
ms VDD = 5.0V (Commercial)  
32  
34  
TDRT Device Reset Timer Period  
9.0*  
18*  
30*  
ms VDD = 5.0V (Commercial)  
ns  
TioZ I/O Hi-impedance from MCLR  
Low  
100*  
1µs  
(PIC16LV58A only)  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
DS30453B-page 142  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C58A  
PIC16C5X  
FIGURE 16-5: TIMER0 CLOCK TIMINGS - PIC16C58A  
T0CKI  
40  
41  
42  
TABLE 16-5: TIMER0 CLOCK REQUIREMENTS - PIC16C58A  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–20°C TA +85°C (industrial - PIC16LV58A)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 16.1, Section 16.2 and  
Section 16.3.  
Parameter  
(1)  
Sym Characteristic  
Min  
Typ  
Max Units Conditions  
No.  
40  
Tt0H T0CKI High Pulse Width - No Prescaler  
- With Prescaler  
0.5 TCY + 20*  
10*  
ns  
ns  
ns  
ns  
41  
42  
Tt0L T0CKI Low Pulse Width - No Prescaler  
- With Prescaler  
0.5 TCY + 20*  
10*  
Tt0P T0CKI Period  
20 or TCY + 40*  
N
ns Whichever is greater.  
N = Prescale Value  
(1, 2, 4,..., 256)  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated.These parameters are for design guidance only  
and are not tested.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 143  
PIC16C5X  
PIC16C58A  
NOTES:  
DS30453B-page 144  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR58A  
PIC16C5X  
17.0 ELECTRICAL CHARACTERISTICS - PIC16CR58A  
Absolute Maximum Ratings†  
Ambient Temperature under bias ...........................................................................................................55°C to +125°C  
Storage Temperature..............................................................................................................................65°C to +150°C  
Voltage on VDD with respect to VSS ..................................................................................................................0 to +7.5V  
Voltage on MCLR with respect to VSS................................................................................................................0 to +14V  
Voltage on all other pins with respect to VSS ................................................................................. –0.6V to (VDD + 0.6V)  
(1)  
Total Power Dissipation ....................................................................................................................................800 mW  
Max. Current out of VSS pin...................................................................................................................................150 mA  
Max. Current into VDD pin......................................................................................................................................100 mA  
Max. Current into an input pin (T0CKI only).....................................................................................................................±500 µA  
Input Clamp Current, IIK (VI < 0 or VI > VDD) ....................................................................................................................±20 mA  
Output Clamp Current, IOK (VO < 0 or VO> VDD)..............................................................................................................±20 mA  
Max. Output Current sunk by any I/O pin................................................................................................................25 mA  
Max. Output Current sourced by any I/O pin...........................................................................................................20 mA  
Max. Output Current sourced by a single I/O port (PORTA or B)............................................................................50 mA  
Max. Output Current sunk by a single I/O port (PORTA or B).................................................................................50 mA  
Note 1: Power Dissipation is calculated as follows: PDIS = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOL x IOL)  
NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 145  
PIC16C5X  
PIC16CR58A  
TABLE 17-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS  
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)  
OSC  
PIC16CR58A-04  
PIC16CR58A-10  
PIC16CR58A-20  
PIC16LCR58A-04  
RC  
VDD: 3.0V to 6.25V  
IDD: 2.5 mA max at 5.5V  
IPD: 4.0 µA max at 3.0V,  
WDT dis  
N/A  
N/A  
N/A  
Freq: 4.0 MHz max  
XT  
HS  
LP  
VDD: 3.0V to 6.25V  
IDD: 2.5 mA max at 5.5V  
IPD: 4.0 µA max at 3.0V,  
WDT dis  
N/A  
N/A  
N/A  
N/A  
Freq: 4.0 MHz max  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
IDD: 8.0 mA max at 5.5V  
IPD: 4.0 µA max at 3.0V,  
WDT dis  
IDD: 17 mA max at 5.5V  
IPD: 4.0 µA max at 3.0V,  
WDT dis  
N/A  
N/A  
Freq: 10 MHz max  
Freq: 20 MHz max  
VDD: 2.5V to 6.25V  
IDD: 28 µA max at 32 kHz,  
2.5V  
IPD: 4.0 µA max at 2.5V,  
WDT dis  
N/A  
N/A  
Freq: 200 kHz max  
The shaded sections indicate oscillator selections which should work by design, but are not tested. It is recommended  
that the user select the device type from information in unshaded sections.  
DS30453B-page 146  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR58A  
PIC16C5X  
17.1  
DC Characteristics: PIC16CR58A-04, 10, 20 (Commercial)  
PIC16CR58A-04I, 10I, 20I (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
DC Characteristics  
Power Supply Pins  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
(1)  
Characteristic  
Sym  
Min Typ  
Max  
Units  
Conditions  
Supply Voltage  
RC and XT options  
HS option  
VDD  
3.0  
4.5  
6.25  
5.5  
V
V
(2)  
RAM Data Retention Voltage  
VDR  
1.5*  
VSS  
V
V
Device in SLEEP mode  
VDD Start Voltage to ensure  
Power-on Reset  
VPOR  
See Section 7.4 for details on  
Power-on Reset  
VDD Rise Rate to ensure  
Power-on Reset  
SVDD 0.05*  
V/ms See Section 7.4 for details on  
Power-on Reset  
(3)  
Supply Current  
IDD  
(4)  
RC and XT options  
1.9  
2.5  
4.7  
2.5  
8.0  
17  
mA  
mA  
mA  
FOSC = 4.0 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 20 MHz, VDD = 5.5V  
HS option  
(5)  
Power-Down Current  
Commercial  
IPD  
4.0  
0.25  
4.0  
12  
4.0  
14  
µA  
µA  
µA  
µA  
VDD = 3.0V, WDT enabled  
VDD = 3.0V, WDT disabled  
VDD = 3.0V, WDT enabled  
VDD = 3.0V, WDT disabled  
Industrial  
0.25  
5.0  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C.This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through Rext. The current through the resistor can be estimated by the  
formula: IR = VDD/2Rext (mA) with Rext in k.  
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 147  
 
PIC16C5X  
PIC16CR58A  
17.2  
DC Characteristics: PIC16CR58A-04E, 10E, 20E (Extended)  
DC Characteristics  
Power Supply Pins  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
–40°C TA +125°C (extended)  
(1)  
Characteristic  
Sym  
Min Typ  
Max Units  
Conditions  
Supply Voltage  
RC and XT options  
HS options  
VDD  
3.25  
4.5  
6.0  
5.5  
V
V
(2)  
RAM Data Retention Voltage  
VDR  
1.5*  
VSS  
V
V
Device in SLEEP mode  
VDD Start Voltage to ensure  
Power-on Reset  
VPOR  
See Section 7.4 for details on  
Power-on Reset  
VDD Rise Rate to ensure  
Power-on Reset  
SVDD 0.05*  
V/ms See Section 7.4 for details on  
Power-on Reset  
(3)  
Supply Current  
IDD  
(4)  
RC and XT options  
1.9  
4.8  
9.0  
3.3  
10  
20  
mA  
mA  
mA  
FOSC = 4.0 MHz, VDD = 5.5V  
FOSC = 10 MHz, VDD = 5.5V  
FOSC = 20 MHz, VDD = 5.5V  
HS option  
(5)  
Power-Down Current  
IPD  
5.0  
0.8  
22  
18  
µA  
µA  
VDD = 3.25V, WDT enabled  
VDD = 3.25V, WDT disabled  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C.This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through Rext. The current through the resistor can be estimated by the  
formula: IR = VDD/2Rext (mA) with Rext in k.  
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
DS30453B-page 148  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16CR58A  
PIC16C5X  
17.3  
DC Characteristics: PIC16LCR58A-04 (Commercial)  
PIC16LCR58A-04I (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
DC Characteristics  
Power Supply Pins  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
(1)  
Characteristic  
Sym  
Min Typ  
Max  
Units Conditions  
Supply Voltage  
VDD  
VDR  
2.5  
6.25  
V
V
V
LP option  
(2)  
RAM Data Retention Voltage  
1.5*  
VSS  
Device in SLEEP mode  
VDD Start Voltage to ensure  
Power-on Reset  
VPOR  
See Section 7.4 for details on  
Power-on Reset  
VDD Rise Rate to ensure  
Power-on Reset  
SVDD 0.05*  
V/ms See Section 7.4 for details on  
Power-on Reset  
(3)  
Supply Current  
Commercial  
IDD  
12  
15  
28  
37  
µA  
µA  
FOSC = 32 kHz, VDD = 2.5V,  
WDT disabled  
FOSC = 32 kHz, VDD = 2.5V,  
WDT disabled  
Industrial  
(5)  
Power-Down Current  
Commercial  
IPD  
3.5  
0.2  
3.5  
0.2  
12  
4.0  
14  
µA  
µA  
µA  
µA  
VDD = 2.5V, WDT enabled  
VDD = 2.5V, WDT disabled  
VDD = 2.5V, WDT enabled  
VDD = 2.5V, WDT disabled  
Industrial  
5.0  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C.This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through Rext. The current through the resistor can be estimated by the  
formula: IR = VDD/2Rext (mA) with Rext in k.  
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 149  
 
PIC16C5X  
PIC16CR58A  
17.4  
DC Characteristics: PIC16CR58A-04, 10, 20, PIC16LCR58A-04 (Commercial)  
PIC16CR58A-04I, 10I, 20I, PIC16LCR58A-04I (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
DC Characteristics  
All Pins Except  
Power Supply Pins  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
Operating Voltage VDD range is described in Section 17.1 and Section 17.3.  
(1)  
Characteristic  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Low Voltage  
I/O ports  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
VIL  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.3 VDD  
V
V
V
V
V
Pin at hi-impedance  
(4)  
RC option only  
XT, HS and LP options  
Input High Voltage  
I/O ports  
VIH  
(5)  
0.45 VDD  
2.0  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
V
For all VDD  
(5)  
4.0V < VDD 5.5V  
VDD > 5.5V  
0.36 VDD  
0.85 VDD  
0.85 VDD  
0.85 VDD  
0.7 VDD  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
(4)  
RC option only  
XT, HS and LP options  
Hysteresis of Schmitt  
Trigger inputs  
VHYS 0.15VDD*  
V
(3)  
Input Leakage Current  
IIL  
For VDD 5.5V  
I/O ports  
–1.0  
+1.0  
µA  
VSS VPIN VDD,  
Pin at hi-impedance  
(2)  
MCLR  
–5.0  
µA  
µA  
µA  
µA  
VPIN = VSS + 0.25V  
(2)  
0.5  
0.5  
0.5  
+5.0  
+3.0  
+3.0  
VPIN = VDD  
T0CKI  
OSC1  
–3.0  
–3.0  
VSS VPIN VDD  
VSS VPIN VDD,  
XT, HS and LP options  
Output Low Voltage  
I/O ports  
OSC2/CLKOUT  
VOL  
0.6  
0.6  
V
V
IOL = 8.7 mA, VDD = 4.5V  
IOL = 1.6 mA, VDD = 4.5V,  
RC option only  
(3)  
Output High Voltage  
VOH  
I/O ports  
OSC2/CLKOUT  
VDD –0.7  
VDD –0.7  
V
V
IOH = –5.4 mA, VDD = 4.5V  
IOH = –1.0 mA, VDD = 4.5V,  
RC option only  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C.This data is for design guidance  
only and is not tested.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltage.  
3: Negative current is defined as coming out of the pin.  
4: For the RC option, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X  
be driven with external clock in RC mode.  
5: The user may use the better of the two specifications.  
DS30453B-page 150  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR58A  
PIC16C5X  
17.5  
DC Characteristics: PIC16CR58A-04E, 10E, 20E (Extended)  
DC Characteristics  
All Pins Except  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature –40°C TA +125°C (extended)  
Power Supply Pins  
Operating Voltage VDD range is described in Section 17.2.  
(1)  
Characteristic  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Low Voltage  
I/O ports  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
VIL  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.3 VDD  
V
V
V
V
V
Pin at hi-impedance  
(4)  
RC option only  
XT, HS and LP options  
Input High Voltage  
I/O ports  
VIH  
(5)  
0.45 VDD  
2.0  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
V
For all VDD  
(5)  
4.0V < VDD 5.5V  
VDD > 5.5V  
0.36 VDD  
0.85 VDD  
0.85 VDD  
0.85 VDD  
0.7 VDD  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
(4)  
RC option only  
XT, HS and LP options  
Hysteresis of Schmitt  
Trigger inputs  
VHYS 0.15VDD*  
V
(3)  
Input Leakage Current  
IIL  
For VDD 5.5V  
I/O ports  
–1.0  
+1.0  
µA  
VSS VPIN VDD,  
Pin at hi-impedance  
(2)  
MCLR  
–5.0  
µA  
µA  
µA  
µA  
VPIN = VSS + 0.25V  
(2)  
0.5  
0.5  
0.5  
+5.0  
+3.0  
+3.0  
VPIN = VDD  
T0CKI  
OSC1  
–3.0  
–3.0  
VSS VPIN VDD  
VSS VPIN VDD,  
XT, HS and LP options  
Output Low Voltage  
I/O ports  
OSC2/CLKOUT  
VOL  
0.6  
0.6  
V
V
IOL = 8.7 mA, VDD = 4.5V  
IOL = 1.6 mA, VDD = 4.5V,  
RC option only  
(3)  
Output High Voltage  
VOH  
I/O ports  
OSC2/CLKOUT  
VDD –0.7  
VDD –0.7  
V
V
IOH = –5.4 mA, VDD = 4.5V  
IOH = –1.0 mA, VDD = 4.5V,  
RC option only  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltage.  
3: Negative current is defined as coming out of the pin.  
4: For the RC option, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X  
be driven with external clock in RC mode.  
5: The user may use the better of the two specifications.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 151  
PIC16C5X  
PIC16CR58A  
17.6  
Timing Parameter Symbology and Load Conditions  
The timing parameter symbols have been created following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase subscripts (pp) and their meanings:  
pp  
T
Time  
2
to  
mc  
osc  
os  
MCLR  
ck  
cy  
drt  
io  
CLKOUT  
cycle time  
device reset timer  
I/O port  
oscillator  
OSC1  
t0  
T0CKI  
wdt  
watchdog timer  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
FIGURE 17-1: LOAD CONDITIONS - PIC16CR58A  
Pin  
CL = 50 pF for all pins except OSC2  
CL  
15 pF for OSC2 in XT, HS or LP  
options when external clock  
is used to drive OSC1  
VSS  
DS30453B-page 152  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16CR58A  
PIC16C5X  
17.7  
Timing Diagrams and Specifications  
FIGURE 17-2: EXTERNAL CLOCK TIMING - PIC16CR58A  
Q4  
Q3  
Q4  
4
Q1  
Q1  
Q2  
OSC1  
1
3
3
4
2
CLKOUT  
TABLE 17-2: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16CR58A  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 17.1, Section 17.2 and Section 17.3.  
Parameter  
No.  
(1)  
Sym  
Characteristic  
Min Typ  
Max Units  
Conditions  
(2)  
FOSC  
External CLKIN Frequency  
DC  
DC  
DC  
DC  
DC  
DC  
0.1  
4.0  
4.0  
4.0  
5.0  
4.0  
4.0  
10  
MHz XT osc mode  
MHz HS osc mode (04)  
MHz HS osc mode (10)  
MHz HS osc mode (20)  
kHz LP osc mode  
20  
200  
4.0  
4.0  
4.0  
10  
(2)  
Oscillator Frequency  
MHz RC osc mode  
MHz XT osc mode  
MHz HS osc mode (04)  
MHz HS osc mode (10)  
MHz HS osc mode (20)  
kHz LP osc mode  
20  
200  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated.These parameters are for design guidance only  
and are not tested.  
2: All specified values are based on characterization data for that particular oscillator type under standard operating  
conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation  
and/or higher than expected current consumption.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
3: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 153  
PIC16C5X  
PIC16CR58A  
TABLE 17-2: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16CR58A (CON’T)  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 17.1, Section 17.2 and Section 17.3.  
Parameter  
(1)  
No.  
Sym  
Characteristic  
Min Typ  
Max Units  
Conditions  
XT osc mode  
(2)  
1
TOSC  
External CLKIN Period  
250  
250  
100  
50  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
HS osc mode (04)  
HS osc mode (10)  
HS osc mode (20)  
LP osc mode  
5.0  
250  
250  
250  
100  
50  
(2)  
Oscillator Period  
RC osc mode  
10,000  
250  
250  
250  
200  
XT osc mode  
HS osc mode (04)  
HS osc mode (10)  
HS osc mode (20)  
LP osc mode  
5.0  
(3)  
2
3
TCY  
Instruction Cycle Time  
4/FOSC  
TosL, TosH Clock in (OSC1) Low or High Time  
85*  
20*  
2.0*  
XT oscillator  
HS oscillator  
LP oscillator  
XT oscillator  
HS oscillator  
LP oscillator  
4
TosR, TosF Clock in (OSC1) Rise or Fall Time  
25*  
25*  
50*  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated.These parameters are for design guidance only  
and are not tested.  
2: All specified values are based on characterization data for that particular oscillator type under standard operating  
conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation  
and/or higher than expected current consumption.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
3: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
DS30453B-page 154  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR58A  
PIC16C5X  
FIGURE 17-3: CLKOUT AND I/O TIMING - PIC16CR58A  
Q1  
Q4  
Q2  
Q3  
OSC1  
10  
11  
CLKOUT  
12  
16  
13  
18  
19  
14  
I/O Pin  
(input)  
15  
17  
I/O Pin  
Old Value  
(output)  
New Value  
20, 21  
Note: Refer to Figure 17-1 for load conditions.  
TABLE 17-3: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16CR58A  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 17.1, Section 17.2 and  
Section 17.3.  
Parameter  
(1)  
No.  
Sym  
Characteristic  
(2)  
Min  
Typ  
Max  
Units  
10  
11  
12  
13  
14  
15  
16  
17  
18  
TosH2ckL  
TosH2ckH  
TckR  
OSC1to CLKOUT↓  
15  
15  
5.0  
5.0  
30**  
30**  
15**  
15**  
40**  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(2)  
OSC1to CLKOUT↑  
(2)  
CLKOUT rise time  
(2)  
TckF  
CLKOUT fall time  
(2)  
CLKOUTto Port out valid  
TckL2ioV  
TioV2ckH  
TckH2ioI  
TosH2ioV  
TosH2ioI  
(2)  
Port in valid before CLKOUT↑  
(2)  
0.25 TCY+30*  
Port in hold after CLKOUT↑  
OSC1(Q1 cycle) to Port out valid  
0*  
(3)  
100*  
OSC1(Q2 cycle) to Port input invalid  
TBD  
(I/O in hold time)  
19  
TioV2osH  
Port input valid to OSC1↑  
TBD  
ns  
(I/O in setup time)  
(3)  
20  
21  
TioR  
TioF  
Port output rise time  
10  
10  
25**  
25**  
ns  
ns  
(3)  
Port output fall time  
*
These parameters are characterized but not tested.  
** These parameters are design targets and are not tested. No characterization data available at this time.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
2: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
3: See Figure 17-1 for loading conditions.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 155  
PIC16C5X  
PIC16CR58A  
FIGURE 17-4: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING - PIC16CR58A  
VDD  
MCLR  
30  
Internal  
POR  
32  
32  
32  
DRT  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O pin  
(Note 1)  
Note 1: I/O pins must be taken out of hi-impedance mode by enabling the output drivers in software.  
TABLE 17-4: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16CR58A  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 17.1, Section 17.2 and Section 17.3.  
Parameter  
No.  
(1)  
Sym Characteristic  
Min Typ  
Max Units  
Conditions  
30  
31  
TmcL MCLR Pulse Width (low)  
1.0*  
9.0*  
µs VDD = 5.0V  
Twdt Watchdog Timer Time-out Period  
(No Prescaler)  
18*  
30*  
ms VDD = 5.0V (Commercial)  
32  
34  
TDRT Device Reset Timer Period  
9.0*  
18*  
30*  
ms VDD = 5.0V (Commercial)  
TioZ I/O Hi-impedance from MCLR Low  
1.0*  
µs  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
DS30453B-page 156  
Preliminary  
1998 Microchip Technology Inc.  
PIC16CR58A  
PIC16C5X  
FIGURE 17-5: TIMER0 CLOCK TIMINGS - PIC16CR58A  
T0CKI  
40  
41  
42  
TABLE 17-5: TIMER0 CLOCK REQUIREMENTS - PIC16CR58A  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature 0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 17.1, Section 17.2 and  
Section 17.3.  
Parameter  
(1)  
Sym Characteristic  
Min  
Typ  
Max Units Conditions  
No.  
40  
Tt0H T0CKI High Pulse Width - No Prescaler  
- With Prescaler  
0.5 TCY + 20*  
10*  
ns  
ns  
ns  
ns  
41  
42  
Tt0L T0CKI Low Pulse Width - No Prescaler  
- With Prescaler  
0.5 TCY + 20*  
10*  
Tt0P T0CKI Period  
20 or TCY + 40*  
N
ns Whichever is greater.  
N = Prescale Value  
(1, 2, 4,..., 256)  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5.0V, 25°C unless otherwise stated.These parameters are for design guidance only  
and are not tested.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 157  
PIC16C5X  
PIC16CR58A  
NOTES:  
DS30453B-page 158  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54A/CR57B/C58A/CR58A  
PIC16C5X  
18.0 DC AND AC CHARACTERISTICS - PIC16C54A/CR57B/C58A/CR58A  
The graphs and tables provided in this section are for design guidance and are not tested. In some graphs or tables the  
data presented are outside specified operating range (e.g., outside specified VDD range). This is for information only  
and devices will operate properly only within the specified range.  
The data presented in this section is a statistical summary of data collected on units from different lots over a period of  
time. “Typical” represents the mean of the distribution while “max” or “min” represents (mean + 3σ) and (mean – 3σ)  
respectively, where σ is standard deviation.  
FIGURE 18-1: TYPICAL RC OSCILLATOR FREQUENCY vs.TEMPERATURE  
FOSC  
Frequency normalized to +25°C  
FOSC (25°C)  
1.10  
Rext 10 kΩ  
Cext = 100 pF  
1.08  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
VDD = 5.5 V  
VDD = 3.5 V  
0.92  
0.90  
0.88  
0
10  
20  
25  
30  
40  
50  
60  
70  
T(°C)  
TABLE 18-1: RC OSCILLATOR FREQUENCIES  
Average  
Fosc @ 5 V, 25°C  
Cext  
Rext  
20 pF  
3.3 k  
5 k  
4.973 MHz  
3.82 MHz  
2.22 MHz  
262.15 kHz  
1.63 MHz  
1.19 MHz  
684.64 kHz  
71.56 kHz  
660 kHz  
± 27%  
± 21%  
± 21%  
± 31%  
± 13%  
± 13%  
± 18%  
± 25%  
± 10%  
± 14%  
± 15%  
± 19%  
10 k  
100 k  
3.3 k  
5 k  
100 pF  
300 pF  
10 k  
100 k  
3.3 k  
5.0 k  
10 k  
160 k  
484.1 kHz  
267.63 kHz  
29.44 kHz  
The frequencies are measured on DIP packages.  
The percentage variation indicated here is part-to-part variation due to normal process distribution. The variation  
indicated is ±3 standard deviation from average value for VDD = 5 V.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 159  
PIC16C5X  
PIC16C54A/CR57B/C58A/CR58A  
FIGURE 18-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 20 PF  
6.00  
R=3.3K  
5.00  
R=5.0K  
4.00  
3.00  
R=10K  
2.00  
Cext=20pF, T=25C  
1.00  
R=100K  
0.00  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD(Volts)  
FIGURE 18-3: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 100 PF  
1.80  
R=3.3K  
1.60  
1.40  
R=5.0K  
1.20  
1.00  
0.80  
0.60  
R=10K  
Cext=100pF, T=25C  
0.40  
0.20  
R=100K  
0.00  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD(Volts)  
DS30453B-page 160  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54A/CR57B/C58A/CR58A  
PIC16C5X  
FIGURE 18-4: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 300 PF  
700.00  
R=3.3K  
600.00  
500.00  
R=5.0K  
400.00  
300.00  
R=10K  
200.00  
Cext=300pF, T=25C  
100.00  
R=100K  
0.00  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD(Volts)  
FIGURE 18-5: TYPICAL IPD vs. VDD, WATCHDOG DISABLED (25°C)  
2.5  
2
1.5  
1
0.5  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD(Volts)  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 161  
PIC16C5X  
PIC16C54A/CR57B/C58A/CR58A  
FIGURE 18-6: TYPICAL IPD vs. VDD, WATCHDOG ENABLED (25°C)  
25.00  
20.00  
15.00  
10.00  
5.00  
0.00  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD(Volts)  
FIGURE 18-7: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS vs. VDD  
2.00  
1.80  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
DS30453B-page 162  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54A/CR57B/C58A/CR58A  
PIC16C5X  
FIGURE 18-8: VIH, VIL OF MCLR,T0CKI AND OSC1 (IN RC MODE) vs. VDD  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
VDD (Volts)  
5.0  
5.5  
6.0  
Note: These input pins have Schmitt Trigger input buffers.  
FIGURE 18-9: VTH (INPUT THRESHOLD VOLTAGE) OF OSC1 INPUT  
(IN XT, HS, AND LP MODES) vs. VDD  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 163  
PIC16C5X  
PIC16C54A/CR57B/C58A/CR58A  
FIGURE 18-10: TYPICAL IDD vs. FREQUENCY (WDT DIS, RC MODE @ 20 PF, 25°C)  
10000  
1000  
6.0V  
5.5V  
5.0V  
100  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
10  
100000  
1000000  
10000000  
Freq(Hz)  
FIGURE 18-11: MAXIMUM IDD vs. FREQUENCY (WDT DIS, RC MODE @ 20 PF, 40°C TO +85°C)  
10000  
1000  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
100  
10  
100000  
1000000  
10000000  
Freq(Hz)  
DS30453B-page 164  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54A/CR57B/C58A/CR58A  
PIC16C5X  
FIGURE 18-12: TYPICAL IDD vs. FREQUENCY (WDT DIS, RC MODE @ 100 PF, 25°C)  
10000  
1000  
6.0V  
5.5V  
5.0V  
100  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
10  
10000  
100000  
1000000  
10000000  
Freq(Hz)  
FIGURE 18-13: MAXIMUM IDD vs. FREQUENCY (WDT DIS, RC MODE @ 100 PF, 40°C TO +85°C)  
10000  
1000  
6.0V  
5.5V  
5.0V  
100  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
10  
10000  
100000  
1000000  
10000000  
Freq(Hz)  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 165  
PIC16C5X  
PIC16C54A/CR57B/C58A/CR58A  
FIGURE 18-14: TYPICAL IDD vs. FREQUENCY (WDT DIS, RC MODE @ 300 PF, 25°C)  
10000  
1000  
6.0V  
100  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
10  
10000  
100000  
1000000  
Freq(Hz)  
FIGURE 18-15: MAXIMUM IDD vs. FREQUENCY (WDT DIS, RC MODE @ 300 PF, 40°C TO +85°C)  
10000  
1000  
6.0V  
5.5V  
5.0V  
4.5V  
100  
4.0V  
3.5V  
3.0V  
2.5V  
10  
10000  
100000  
1000000  
Freq(Hz)  
DS30453B-page 166  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54A/CR57B/C58A/CR58A  
PIC16C5X  
FIGURE 18-16: WDT TIMER TIME-OUT  
PERIOD vs. VDD  
TABLE 18-2: INPUT CAPACITANCE FOR  
PIC16C54A/C58A  
Typical Capacitance (pF)  
Pin  
50  
45  
40  
18L PDIP  
18L SOIC  
RA port  
RB port  
5.0  
4.3  
5.0  
4.3  
MCLR  
17.0  
4.0  
17.0  
3.5  
OSC1  
35  
OSC2/CLKOUT  
T0CKI  
4.3  
3.5  
30  
3.2  
2.8  
Max +85°C  
All capacitance values are typical at 25°C. A part-to-part  
variation of ±25% (three standard deviations) should be  
taken into account.  
25  
Max +70°C  
20  
Typ +25°C  
15  
MIn 0°C  
10  
MIn –40°C  
5
2
3
4
5
6
7
VDD (Volts)  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 167  
PIC16C5X  
PIC16C54A/CR57B/C58A/CR58A  
FIGURE 18-17: TRANSCONDUCTANCE (gm)  
OF HS OSCILLATOR vs. VDD  
FIGURE 18-18: TRANSCONDUCTANCE (gm)  
OF LP OSCILLATOR vs. VDD  
9000  
45  
8000  
40  
Max –40°C  
Max –40°C  
7000  
6000  
35  
30  
5000  
25  
Typ +25°C  
Typ +25°C  
4000  
3000  
20  
15  
Min +85°C  
2000  
10  
Min +85°C  
100  
0
5
0
2
3
4
5
6
7
2
3
4
5
6
7
VDD (Volts)  
VDD (Volts)  
FIGURE 18-19: TRANSCONDUCTANCE (gm)  
OF XT OSCILLATOR vs. VDD  
2500  
Max –40°C  
2000  
1500  
Typ +25°C  
1000  
Min +85°C  
500  
0
2
3
4
5
6
7
VDD (Volts)  
DS30453B-page 168  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54A/CR57B/C58A/CR58A  
PIC16C5X  
FIGURE 18-20: IOH vs. VOH, VDD = 3 V  
FIGURE 18-22: IOL vs. VOL, VDD = 3 V  
0
45  
40  
35  
Max –40°C  
–5  
Min +85°C  
30  
25  
–10  
Typ +25°C  
Typ +25°C  
Min +85°C  
–15  
20  
Max –40°C  
15  
10  
–20  
5
0
–25  
0
0.5 1.0 1.5 2.0 2.5 3.0  
VOH (Volts)  
0.0  
0.5 1.0 1.5 2.0 2.5 3.0  
VOL (Volts)  
FIGURE 18-21: IOH vs. VOH, VDD = 5 V  
FIGURE 18-23: IOL vs. VOL, VDD = 5 V  
90  
0
Max –40°C  
80  
70  
Min +85°C  
–10  
60  
50  
Typ +25°C  
–20  
Typ +25°C  
40  
Min +85°C  
30  
20  
–30  
Max –40°C  
–40  
10  
0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
VOH (Volts)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0  
VOL (Volts)  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 169  
PIC16C5X  
PIC16C54A/CR57B/C58A/CR58A  
NOTES:  
DS30453B-page 170  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54B/C54C/CR54B/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B  
19.0 ELECTRICAL CHARACTERISTICS -  
PIC16C54B/C54C/CR54B/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR  
58B  
Absolute Maximum Ratings  
Ambient temperature under bias............................................................................................................55°C to +125°C  
Storage temperature ............................................................................................................................. –65°C to +150°C  
Voltage on VDD with respect to VSS ..................................................................................................................0 to +7.5V  
Voltage on MCLR with respect to VSS................................................................................................................0 to +14V  
Voltage on all other pins with respect to VSS ................................................................................. –0.6V to (VDD + 0.6V)  
(1)  
Total power dissipation .....................................................................................................................................800 mW  
Max. current out of VSS pin....................................................................................................................................150 mA  
Max. current into VDD pin ......................................................................................................................................100 mA  
Max. current into an input pin (T0CKI only)......................................................................................................................±500 µA  
Input clamp current, IIK (VI < 0 or VI > VDD)....................................................................................................................±20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) ..............................................................................................................±20 mA  
Max. output current sunk by any I/O pin..................................................................................................................25 mA  
Max. output current sourced by any I/O pin ............................................................................................................20 mA  
Max. output current sourced by a single I/O Port A ................................................................................................50 mA  
Max. output current sourced by a single I/O Port B ................................................................................................50 mA  
Max. output current sunk by a single I/OPort A.......................................................................................................50 mA  
Max. output current sunk by a single I/O Port B .....................................................................................................50 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOL x IOL)  
NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 171  
PIC16C5X  
TABLE 19-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS  
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)  
OSC  
PIC16C5X-04  
PIC16C5X-20  
PIC16C5X/JW  
VDD: 3.0V to 5.5V  
IDD: 2.4 mA max. at  
5.5V  
IPD: 4.0 µA max. at  
3.0V WDT dis  
VDD: 3.0V to 5.5V  
IDD: 1.7 mA typ. at  
5.5V  
IPD: 0.25 µA typ. at  
3.0V WDT dis  
VDD: 3.0V to 5.5V  
IDD: 2.4 mA max. at  
5.5V  
IPD: 4.0 µA max. at  
3.0V WDT dis  
RC  
Freq: 4 MHz max.  
Freq: 4.0 MHz max.  
Freq: 4.0 MHz max.  
VDD: 3.0V to 5.5V  
IDD 2.4 mA max. at  
5.5V  
IPD: 4.0 µA max. at  
3.0V WDT dis  
VDD: 3.0V to 5.5V  
IDD: 1.7 mA typ. at  
5.5V  
IPD: 0.25 µA typ. at  
3.0V WDT dis  
VDD: 3.0V to 5.5V  
IDD 2.4 mA max. at  
5.5V  
IPD: 4.0 µA max. at  
3.0V WDT dis  
XT  
HS  
Freq: 4 MHz max.  
Freq: 4.0 MHz max.  
Freq: 4.0 MHz max.  
VDD: 4.5V to 5.5V  
IDD: 16 mA max. at  
5.5V  
IPD: 4.0 µA max. at  
3.0V WDT dis  
VDD: 4.5V to 5.5V  
IDD: 16 mA max. at  
5.5V  
IPD: 4.0 µA max. at  
3.0V WDT dis  
N/A  
Freq: 20 MHz max.  
Freq: 20 MHz max.  
VDD: 3.0V to 5.5V  
IDD: 14 µA typ. at  
32kHz, 3.0V  
VDD: 3.0V to 5.5V  
IDD: 32 µA max. at  
32kHz, 3.0V  
LP  
IPD: 0.25 µA typ. at  
3.0V WDT dis  
Freq: 200 kHz max.  
N/A  
WDT dis  
IPD: 4.0 µA max. at  
3.0V WDT dis  
Freq: 200 kHz max.  
The shaded sections indicate oscillator selections which should work by  
design, but are not tested. It is recommended that the user select the  
device type from information in unshaded sections.  
DS30453B-page 172  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54B/C54C/CR54B/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B  
19.1  
DC Characteristics: PIC16C54B/C54C/C55A/C56A/C57C/C58B-04, 20 (Commercial)  
PIC16CR54B/CR54C/CR56A/CR57C/CR58B-04, 20 (Commercial)  
PIC16C54B/C54C/C55A/C56A/C57C/C58B-04I, 20I (Industrial)  
PIC16CR54B/CR/54C/CR56A/CR57C/CR58B-04I, 20I (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
DC Characteristics  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
Power Supply Pins  
(1)  
Characteristic  
Sym Min Typ  
Max Units  
Conditions  
Supply Voltage  
XT, RC and LP options  
HS option  
VDD  
3.0  
4.5  
5.5  
5.5  
V
V
(2)  
RAM Data Retention Voltage  
VDR  
1.5*  
VSS  
V
V
Device in SLEEP mode  
VDD start voltage to ensure  
Power-On Reset  
VPOR  
See Section 7.4 for details on  
Power-on Reset  
VDD rise rate to ensure  
Power-On Reset  
SVDD  
IDD  
0.05*  
V/ms See Section 7.4 for details on  
Power-on Reset  
(3)  
Supply Current  
(4)  
XT and RC options  
1.8  
4.5  
14  
2.4 mA FOSC = 4.0 MHz, VDD = 5.5V  
HS option  
LP option, Commercial  
LP option, Industrial  
16  
32  
40  
mA FOSC = 20 MHz, VDD = 5.5V  
µA FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
µA FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
17  
(5)  
Power Down Current  
IPD  
Commercial  
4.0  
12  
µA VDD = 3.0V, WDT enabled  
µA VDD = 3.0V, WDT disabled  
µA VDD = 3.0V, WDT enabled  
µA VDD = 3.0V, WDT disabled  
0.25 4.0  
4.0 14  
0.25 5.0  
Industrial  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C.This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through Rext. The current through the resistor can be estimated by the  
formula: IR = VDD/2Rext (mA) with Rext in k.  
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 173  
 
PIC16C5X  
19.2  
DC Characteristics: PIC16C54B/C54C/C55A/C56A/C57C/C58B-04E, 20E (Extended)  
PIC16CR54B/CR54C/CR56A/CR57C/CR58B-04E, 20E (Extended)  
DC Characteristics  
Power Supply Pins  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
–40°C TA +125°C (extended)  
(1)  
Characteristic  
Sym Min Typ  
Max Units  
Conditions  
Supply Voltage  
XT and RC options  
HS option  
VDD  
3.0  
4.5  
5.5  
5.5  
V
V
(2)  
RAM Data Retention Voltage  
VDR  
1.5*  
VSS  
V
V
Device in SLEEP mode  
VDD start voltage to ensure  
Power-On Reset  
VPOR  
See Section 7.4 for details on  
Power-on Reset  
VDD rise rate to ensure  
Power-On Reset  
SVDD  
IDD  
0.05*  
V/ms See Section 7.4 for details on  
Power-on Reset  
(3)  
Supply Current  
(4)  
XT and RC options  
1.8  
9.0  
3.3 mA FOSC = 4.0 MHz, VDD = 5.5V  
20  
HS option  
mA FOSC = 20 MHz, VDD = 5.5V  
(5)  
Power Down Current  
IPD  
0.3  
4.5  
18  
22  
µA VDD = 3.5V, WDT disabled  
µA VDD = 3.5V, WDT enabled  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C.This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through Rext. The current through the resistor can be estimated by the  
formula: IR = VDD/2Rext (mA) with Rext in k.  
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
DS30453B-page 174  
Preliminary  
1998 Microchip Technology Inc.  
 
PIC16C54B/C54C/CR54B/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B  
19.3  
DC Characteristics: PIC16LC5X-04, PIC16LCR5X-04 (Commercial)  
PIC16LC5X-04I, PIC16LCR5X-04I (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
DC Characteristics  
Power Supply Pins  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
(1)  
Characteristic  
Sym Min Typ  
Max Units  
Conditions  
Supply Voltage  
XT and RC options  
LP options  
VDD  
3.0  
2.5  
5.5  
5.5  
V
V
(2)  
RAM Data Retention Voltage  
VDR  
1.5*  
VSS  
V
V
Device in SLEEP mode  
VDD start voltage to ensure  
Power-On Reset  
VPOR  
See Section 7.4 for details on  
Power-on Reset  
VDD rise rate to ensure  
Power-On Reset  
SVDD  
IDD  
0.05*  
V/ms See Section 7.4 for details on  
Power-on Reset  
(3)  
Supply Current  
(4)  
XT and RC options  
0.5  
11  
14  
2.4 mA FOSC = 4.0 MHz, VDD = 5.5V  
27  
35  
LP option, Commercial  
LP option, Industrial  
µA FOSC = 32 kHz, VDD = 2.5V WDT disabled  
µA FOSC = 32 kHz, VDD = 2.5V WDT disabled  
(5)  
Power Down Current  
IPD  
Commercial  
2.5  
10  
µA VDD = 2.5V, WDT enabled  
µA VDD = 2.5V, WDT disabled  
µA VDD = 2.5V, WDT enabled  
µA VDD = 2.5V, WDT disabled  
0.25 2.0  
2.5 12  
0.25 3.0  
Industrial  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C.This data is for design guidance  
only and is not tested.  
2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on  
the current consumption.  
a) The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to  
Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.  
b) For standby current measurements, the conditions are the same, except that  
the device is in SLEEP mode.  
4: Does not include current through Rext. The current through the resistor can be estimated by the  
formula: IR = VDD/2Rext (mA) with Rext in k.  
5: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 175  
 
PIC16C5X  
19.4  
DC Characteristics: PIC16C54B/C54C/C55A/C56A/C57C/C58B-04, 20, PIC16LCR5X-04 (Commercial)  
PIC16CR54B/CR54C/CR56A/CR57C/CR58B-04, 20 (Commercial)  
PIC16CR5X-04I, 20I (Commercial)  
PIC16C54B/C54C/C55A/C56A/C57C/C58B-04I, 20I, PIC16LC5X-04I (Industrial)  
PIC16C54B/C54C/C55A/C56A/C57C/C58B-04E, 20E (Extended)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–40°C TA +125°C (extended)  
DC Characteristics  
All Pins Except  
Power Supply Pins  
Operating Voltage VDD range is described in Section 19.1, Section 19.2 and  
Section 19.3.  
(1)  
Characteristic  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Low Voltage  
I/O Ports  
I/O Ports  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
VIL  
VSS  
VSS  
VSS  
VSS  
VSS  
0.8 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.3 VDD  
V
V
V
V
V
4.5V <VDD 5.5V  
otherwise  
(4)  
RC option only  
XT, HS and LP options  
Input High Voltage  
VIH  
(5)  
2.0  
0.25 VDD+0.8V  
0.85 VDD  
0.85 VDD  
0.85 VDD  
0.7 VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
4.5V < VDD 5.5V  
otherwise  
I/O ports  
MCLR (Schmitt Trigger)  
T0CKI (Schmitt Trigger)  
OSC1 (Schmitt Trigger)  
OSC1  
(4)  
RC option only  
XT, HS and LP options  
Hysteresis of Schmitt  
Trigger inputs  
VHYS  
IIL  
0.15VDD*  
V
(3)  
Input Leakage Current  
For VDD 5.5V  
I/O ports  
-1.0  
-5.0  
0.5  
+1.0  
µA VSS VPIN VDD,  
Pin at hi-impedance  
(2)  
MCLR  
+5.0  
+3.0  
+3.0  
µA VPIN = VSS +0.25V  
(2)  
0.5  
0.5  
0.5  
µA VPIN = VDD  
T0CKI  
OSC1  
-3.0  
-3.0  
µA VSS VPIN VDD  
µA VSS VPIN VDD,  
XT, HS and LP options  
Output Low Voltage  
I/O ports  
OSC2/CLKOUT  
VOL  
VOH  
0.6  
0.6  
V
V
IOL = 8.7 mA, VDD = 4.5V  
IOL = 1.6 mA, VDD = 4.5V,  
RC option only  
Output High Voltage  
(3)  
I/O ports  
VDD-0.7  
VDD-0.7  
V
V
IOH = -5.4 mA, VDD = 4.5V  
IOH = -1.0 mA, VDD = 4.5V,  
RC option only  
OSC2/CLKOUT  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guidance  
only and is not tested.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified lev-  
els represent normal operating conditions. Higher leakage current may be measured at different input voltage.  
3: Negative current is defined as coming out of the pin.  
4: For the RC option, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C5X be  
driven with external clock in RC mode.  
DS30453B-page 176  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54B/C54C/CR54B/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B  
19.5  
Timing Parameter Symbology and Load Conditions  
The timing parameter symbols have been created following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase subscripts (pp) and their meanings:  
pp  
T
Time  
2
to  
mc  
osc  
os  
MCLR  
ck  
cy  
drt  
io  
CLKOUT  
cycle time  
device reset timer  
I/O port  
oscillator  
OSC1  
t0  
T0CKI  
wdt  
watchdog timer  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
FIGURE 19-1: LOAD CONDITIONS -  
PIC16C54B/C54C/CR54B/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B,  
PIC16CR5X  
Pin  
CL = 50 pF for all pins except OSC2  
CL  
15 pF for OSC2 in XT, HS or LP  
options when external clock  
is used to drive OSC1  
VSS  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 177  
 
PIC16C5X  
19.6  
Timing Diagrams and Specifications  
FIGURE 19-2: EXTERNAL CLOCK TIMING - PIC16C5X, PIC16CR5X  
Q4  
Q3  
Q4  
4
Q1  
Q1  
Q2  
OSC1  
1
3
3
4
2
CLKOUT  
TABLE 19-2: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C5X, PIC16CR5X  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 19.1, Section 19.2 and Section 19.3.  
Parameter  
(1)  
No.  
Sym  
Characteristic  
Min Typ  
Max Units  
Conditions  
(2)  
FOSC  
External CLKIN Frequency  
DC  
DC  
DC  
DC  
DC  
0.455  
4
4.0  
4.0  
20  
MHz XT osc mode  
MHz HS osc mode (04)  
MHz HS osc mode (20)  
kHz LP osc mode  
200  
4.0  
4.0  
4.0  
20  
(2)  
Oscillator Frequency  
MHz RC osc mode  
MHz XT osc mode  
MHz HS osc mode (04)  
MHz HS osc mode (20)  
kHz LP osc mode  
4
5
200  
(2)  
1
TOSC  
External CLKIN Period  
250  
250  
50  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
µs  
XT osc mode  
HS osc mode (04)  
HS osc mode (20)  
LP osc mode  
5.0  
250  
250  
250  
50  
(2)  
Oscillator Period  
RC osc mode  
2,200  
250  
250  
200  
XT osc mode  
HS osc mode (04)  
HS osc mode (20)  
LP osc mode  
5.0  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
2: All specified values are based on characterization data for that particular oscillator type under standard operating condi-  
tions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
3: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
DS30453B-page 178  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54B/C54C/CR54B/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B  
TABLE 19-2: EXTERNAL CLOCK TIMING REQUIREMENTS - PIC16C5X, PIC16CR5X (CON’T)  
AC Characteristics  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 19.1, Section 19.2 and Section 19.3.  
Parameter  
(1)  
No.  
Sym  
Characteristic  
Min Typ  
Max Units  
Conditions  
(3)  
2
3
TCY  
Instruction Cycle Time  
50*  
20*  
2.0*  
4/FOSC  
ns  
ns  
µs  
ns  
ns  
ns  
TosL, TosH Clock in (OSC1) Low or High Time  
XT oscillator  
HS oscillator  
LP oscillator  
XT oscillator  
HS oscillator  
LP oscillator  
4
TosR, TosF Clock in (OSC1) Rise or Fall Time  
25*  
25*  
50*  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
2: All specified values are based on characterization data for that particular oscillator type under standard operating condi-  
tions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption.  
When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
3: Instruction cycle period (TCY) equals four times the input oscillator time base period.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 179  
PIC16C5X  
FIGURE 19-3: CLKOUT AND I/O TIMING - PIC16C5X, PIC16CR5X  
Q1  
Q2  
Q3  
Q4  
OSC1  
10  
11  
CLKOUT  
13  
12  
18  
14  
19  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
New Value  
Old Value  
20, 21  
Note: Refer to Figure 19-1 for load conditions.  
TABLE 19-3: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16C5X, PIC16CR5X  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 19.1, Section 19.2 and  
Section 19.3.  
Parameter  
(1)  
No.  
Sym  
Characteristic  
(2)  
Min  
Typ  
Max  
Units  
10  
11  
12  
13  
14  
15  
16  
17  
18  
TosH2ckL  
TosH2ckH  
TckR  
OSC1to CLKOUT↓  
15  
15  
5.0  
5.0  
30**  
30**  
15**  
15**  
40**  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(2)  
OSC1to CLKOUT↑  
(2)  
CLKOUT rise time  
(2)  
TckF  
CLKOUT fall time  
(2)  
CLKOUTto Port out valid  
TckL2ioV  
TioV2ckH  
TckH2ioI  
TosH2ioV  
TosH2ioI  
(2)  
Port in valid before CLKOUT↑  
(2)  
0.25 TCY+30*  
Port in hold after CLKOUT↑  
OSC1(Q1 cycle) to Port out valid  
0*  
(3)  
100*  
OSC1(Q2 cycle) to Port input invalid  
TBD  
(I/O in hold time)  
19  
TioV2osH  
Port input valid to OSC1↑  
TBD  
ns  
(I/O in setup time)  
(3)  
20  
21  
TioR  
TioF  
Port output rise time  
10  
10  
25**  
25**  
ns  
ns  
(3)  
Port output fall time  
*
These parameters are characterized but not tested.  
** These parameters are design targets and are not tested. No characterization data available at this time.  
Note 1: Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
2: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
3: See Figure 19-1 for loading conditions.  
DS30453B-page 180  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54B/C54C/CR54B/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58B/CR58B  
FIGURE 19-4: RESET, WATCHDOG TIMER, AND  
DEVICE RESET TIMER TIMING - PIC16C5X, PIC16CR5X  
VDD  
MCLR  
30  
Internal  
POR  
32  
32  
32  
DRT  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O pin  
(Note 1)  
Note 1: I/O pins must be taken out of hi-impedance mode by enabling the output drivers in software.  
TABLE 19-4: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16C5X, PIC16CR5X  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 19.1, Section 19.2 and Section 19.3.  
Parameter  
No.  
(1)  
Sym Characteristic  
Min Typ  
Max Units  
Conditions  
30  
31  
TmcL MCLR Pulse Width (low)  
1000*  
9.0*  
ns VDD = 5.0V  
Twdt Watchdog Timer Time-out Period  
(No Prescaler)  
18*  
30*  
ms VDD = 5.0V (Commercial)  
32  
34  
TDRT Device Reset Timer Period  
9.0*  
18*  
30*  
ms VDD = 5.0V (Commercial)  
ns  
TioZ I/O Hi-impedance from MCLR Low 100* 300* 1000*  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 181  
PIC16C5X  
FIGURE 19-5: TIMER0 CLOCK TIMINGS - PIC16C5X, PIC16CR5X  
T0CKI  
40  
41  
42  
TABLE 19-5: TIMER0 CLOCK REQUIREMENTS - PIC16C5X, PIC16CR5X  
AC Characteristics Standard Operating Conditions (unless otherwise specified)  
Operating Temperature  
0°C TA +70°C (commercial)  
–40°C TA +85°C (industrial)  
–40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 19.1, Section 19.2 and  
Section 19.3.  
Parameter  
(1)  
Sym Characteristic  
Min  
Typ  
Max Units Conditions  
No.  
40  
Tt0H T0CKI High Pulse Width - No Prescaler  
- With Prescaler  
0.5 TCY + 20*  
10*  
ns  
ns  
ns  
ns  
41  
42  
Tt0L T0CKI Low Pulse Width - No Prescaler  
- With Prescaler  
0.5 TCY + 20*  
10*  
Tt0P T0CKI Period  
20 or TCY + 40*  
N
ns Whichever is greater.  
N = Prescale Value  
(1, 2, 4,..., 256)  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
DS30453B-page 182  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54B/C54C/CR54B/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58  
20.0 DC AND AC CHARACTERISTICS -  
PIC16C54B/C54C/CR54B/CR54C/C55A/C56A/CR56A/C57C  
/CR57C/C58B/CR58B  
The graphs and tables provided in this section are for design guidance and are not tested. In some graphs or tables the  
data presented are outside specified operating range (e.g., outside specified VDD range). This is for information only  
and devices will operate properly only within the specified range.  
The data presented in this section is a statistical summary of data collected on units from different lots over a period of  
time. “Typical” represents the mean of the distribution while “max” or “min” represents (mean + 3σ) and (mean – 3σ)  
respectively, where σ is standard deviation.  
FIGURE 20-1: TYPICAL RC OSCILLATOR FREQUENCY vs.TEMPERATURE  
FOSC  
Frequency normalized to +25°C  
FOSC (25°C)  
1.10  
Rext 10 kΩ  
Cext = 100 pF  
1.08  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
VDD = 5.5 V  
VDD = 3.5 V  
0.92  
0.90  
0.88  
0
10  
20  
25  
30  
40  
50  
60  
70  
T(°C)  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 183  
PIC16C5X  
TABLE 20-1: RC OSCILLATOR FREQUENCIES  
Average  
Fosc @ 5 V, 25°C  
Cext  
Rext  
20 pF  
3.3 k  
5 k  
4.973 MHz  
3.82 MHz  
2.22 MHz  
262.15 kHz  
1.63 MHz  
1.19 MHz  
684.64 kHz  
71.56 kHz  
660 kHz  
± 27%  
± 21%  
± 21%  
± 31%  
± 13%  
± 13%  
± 18%  
± 25%  
± 10%  
± 14%  
± 15%  
± 19%  
10 k  
100 k  
3.3 k  
5 k  
100 pF  
300 pF  
10 k  
100 k  
3.3 k  
5.0 k  
10 k  
160 k  
484.1 kHz  
267.63 kHz  
29.44 kHz  
The frequencies are measured on DIP packages.  
The percentage variation indicated here is part-to-part variation due to normal process distribution. The variation  
indicated is ±3 standard deviation from average value for VDD = 5 V.  
DS30453B-page 184  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54B/C54C/CR54B/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58  
FIGURE 20-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 20 PF  
6.00  
R=3.3K  
5.00  
R=5.0K  
4.00  
3.00  
R=10K  
2.00  
Cext=20pF, T=25C  
1.00  
R=100K  
0.00  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD(Volts)  
FIGURE 20-3: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 100 PF  
1.80  
R=3.3K  
1.60  
1.40  
R=5.0K  
1.20  
1.00  
0.80  
0.60  
R=10K  
Cext=100pF, T=25C  
0.40  
0.20  
R=100K  
0.00  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD(Volts)  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 185  
PIC16C5X  
FIGURE 20-4: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD, CEXT = 300 PF  
700.00  
R=3.3K  
600.00  
500.00  
R=5.0K  
400.00  
300.00  
R=10K  
200.00  
Cext=300pF, T=25C  
100.00  
R=100K  
0.00  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD(Volts)  
FIGURE 20-5: TYPICAL IPD vs. VDD, WATCHDOG DISABLED (25°C)  
2.5  
2
1.5  
1
0.5  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD(Volts)  
DS30453B-page 186  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54B/C54C/CR54B/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58  
FIGURE 20-6: TYPICAL IPD vs. VDD, WATCHDOG ENABLED (25°C)  
25  
20  
15  
10  
5
0
2.5  
3
3.5  
5
5.5  
6
4
4.5  
VDD (Volts)  
FIGURE 20-7: TYPICAL IPD vs. VDD, WATCHDOG ENABLED (40°C, 85°C)  
35  
30  
25  
20  
15  
10  
5
0
2.5  
3
3.5  
5
5.5  
6
4
4.5  
VDD (Volts)  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 187  
PIC16C5X  
FIGURE 20-8: VTH (INPUT THRESHOLD TRIP POINT VOLTAGE) OF I/O PINS vs. VDD  
2.00  
1.80  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
FIGURE 20-9: VIH, VIL OF MCLR,T0CKI AND OSC1 (IN RC MODE) vs. VDD  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
VDD (Volts)  
5.0  
5.5  
6.0  
Note: These input pins have Schmitt Trigger input buffers.  
FIGURE 20-10: VTH (INPUT THRESHOLD TRIP POINT VOLTAGE) OF OSC1 INPUT  
(IN XT, HS, AND LP MODES) vs. VDD  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
DS30453B-page 188  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54B/C54C/CR54B/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58  
FIGURE 20-11: TYPICAL IDD vs. FREQUENCY (WDT DIS, RC MODE @ 20 PF, 25°C)  
10000  
1000  
5.5V  
100  
4.5V  
3.5V  
2.5V  
10  
100000  
1000000  
10000000  
Freq(Hz)  
FIGURE 20-12: TYPICAL IDD vs. FREQUENCY (WDT DIS, RC MODE @ 100 PF, 25°C)  
10000  
1000  
5.5V  
100  
4.5V  
3.5V  
2.5V  
10  
10000  
100000  
1000000  
10000000  
Freq(Hz)  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 189  
PIC16C5X  
FIGURE 20-13: TYPICAL IDD vs. FREQUENCY (WDT DIS, RC MODE @ 300 PF, 25°C)  
10000  
1000  
100  
5.5V  
4.5V  
3.5V  
2.5V  
10  
10000  
100000  
1000000  
Freq(Hz)  
DS30453B-page 190  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54B/C54C/CR54B/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58  
FIGURE 20-14: WDT TIMER TIME-OUT  
PERIOD vs. VDD  
TABLE 20-2: INPUT CAPACITANCE FOR  
PIC16C54s/C56s/C58s  
Typical Capacitance (pF)  
Pin  
50  
45  
40  
18L PDIP  
18L SOIC  
RA port  
RB port  
5.0  
4.3  
5.0  
4.3  
MCLR  
17.0  
4.0  
17.0  
3.5  
OSC1  
35  
30  
OSC2/CLKOUT  
T0CKI  
4.3  
3.5  
3.2  
2.8  
All capacitance values are typical at 25°C. A part-to-part  
variation of ±25% (three standard deviations) should be  
taken into account.  
Typ +125°C  
25  
Typ +85°C  
20  
15  
Typ +25°C  
Typ –40°C  
10  
5
2
3
4
5
6
7
VDD (Volts)  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 191  
PIC16C5X  
FIGURE 20-15: IOH vs. VOH, VDD = 3 V  
FIGURE 20-17: IOL vs. VOL, VDD = 3 V  
0
45  
Max –40°C  
40  
35  
–5  
Min +85°C  
30  
25  
–10  
Typ +25°C  
Typ +25°C  
Min +85°C  
–15  
20  
Max –40°C  
15  
10  
–20  
5
0
–25  
0
0.5 1.0 1.5 2.0 2.5 3.0  
VOH (Volts)  
0.0  
0.5 1.0 1.5 2.0 2.5 3.0  
VOL (Volts)  
FIGURE 20-16: IOH vs. VOH, VDD = 5 V  
FIGURE 20-18: IOL vs. VOL, VDD = 5 V  
90  
0
Max –40°C  
80  
70  
–10  
60  
50  
Typ +125°C  
Typ +25°C  
–20  
Typ +85°C  
40  
Typ +25°C  
Min +85°C  
Typ –40°C  
30  
20  
–30  
–40  
10  
0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
VOH (Volts)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0  
VOL (Volts)  
DS30453B-page 192  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C54B/C54C/CR54B/CR54C/C55A/C56A/CR56A/C57C/CR57C/C58  
NOTES:  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 193  
PIC16C5X  
NOTES:  
DS30453B-page 194  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
21.0 PACKAGING INFORMATION  
Package Type: K04-007 18-Lead Plastic Dual In-line (P) – 300 mil  
E
D
2
α
n
1
E1  
A1  
A
R
L
c
A2  
B1  
β
p
B
eB  
Units  
INCHES*  
NOM  
0.300  
18  
MILLIMETERS  
Dimension Limits  
PCB Row Spacing  
Number of Pins  
Pitch  
Lower Lead Width  
Upper Lead Width  
Shoulder Radius  
Lead Thickness  
Top to Seating Plane  
Top of Lead to Seating Plane  
Base to Seating Plane  
Tip to Seating Plane  
Package Length  
Molded Package Width  
Radius to Radius Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
MIN  
MAX  
MIN  
NOM  
7.62  
18  
MAX  
n
p
B
B1  
R
c
A
A1  
A2  
L
D
E
E1  
eB  
α
0.100  
0.018  
0.060  
0.005  
0.010  
0.155  
0.095  
0.020  
0.130  
0.895  
0.255  
0.250  
0.349  
10  
2.54  
0.013  
0.023  
0.33  
1.40  
0.46  
1.52  
0.13  
0.25  
3.94  
2.41  
0.51  
3.30  
22.73  
6.48  
6.35  
8.85  
10  
0.58  
0.055  
0.000  
0.005  
0.110  
0.075  
0.000  
0.125  
0.890  
0.245  
0.230  
0.310  
5
0.065  
0.010  
0.015  
0.155  
0.115  
0.020  
0.135  
0.900  
0.265  
0.270  
0.387  
15  
1.65  
0.25  
0.38  
3.94  
2.92  
0.51  
3.43  
22.86  
6.73  
6.86  
9.83  
15  
0.00  
0.13  
2.79  
1.91  
0.00  
3.18  
22.61  
6.22  
5.84  
7.87  
5
β
5
10  
15  
5
10  
15  
*
Controlling Parameter.  
Dimension “B1” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B1.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 195  
PIC16C5X  
Package Type: K04-070 28-Lead Skinny Plastic Dual In-line (SP) – 300 mil  
E
D
2
α
n
1
E1  
A1  
A
R
L
c
B1  
β
A2  
p
eB  
B
Units  
INCHES*  
NOM  
0.300  
28  
MILLIMETERS  
Dimension Limits  
PCB Row Spacing  
Number of Pins  
Pitch  
Lower Lead Width  
Upper Lead Width  
Shoulder Radius  
Lead Thickness  
Top to Seating Plane  
Top of Lead to Seating Plane  
Base to Seating Plane  
Tip to Seating Plane  
Package Length  
Molded Package Width  
Radius to Radius Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
MIN  
MAX  
MIN  
NOM  
7.62  
28  
MAX  
n
p
B
B1  
R
c
0.100  
0.019  
0.053  
0.005  
0.010  
0.150  
0.090  
0.020  
0.130  
1.365  
0.288  
0.283  
0.350  
10  
2.54  
0.016  
0.022  
0.41  
1.02  
0.48  
1.33  
0.13  
0.25  
3.81  
2.29  
0.51  
3.30  
34.67  
7.30  
7.18  
8.89  
10  
0.56  
0.040  
0.000  
0.008  
0.140  
0.070  
0.015  
0.125  
1.345  
0.280  
0.270  
0.320  
5
0.065  
0.010  
0.012  
0.160  
0.110  
0.025  
0.135  
1.385  
0.295  
0.295  
0.380  
15  
1.65  
0.25  
0.30  
4.06  
2.79  
0.64  
3.43  
35.18  
7.49  
7.49  
9.65  
15  
0.00  
0.20  
3.56  
1.78  
0.38  
3.18  
34.16  
7.11  
6.86  
8.13  
5
A
A1  
A2  
L
D
E
E1  
eB  
α
β
5
10  
15  
5
10  
15  
*
Controlling Parameter.  
Dimension “B1” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B1.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
DS30453B-page 196  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
Package Type: K04-079 28-Lead Plastic Dual In-line (P) – 600 mil  
E
D
2
n
1
α
E1  
R
A
A1  
L
c
B1  
β
A2  
p
B
eB  
Units  
Dimension Limits  
PCB Row Spacing  
Number of Pins  
Pitch  
Lower Lead Width  
Upper Lead Width  
Shoulder Radius  
INCHES*  
NOM  
0.600  
28  
MILLIMETERS  
NOM MAX  
MIN  
MAX  
MIN  
15.24  
28  
n
p
B
B1  
R
c
0.100  
0.016  
0.050  
0.005  
0.012  
0.173  
0.101  
0.023  
0.125  
1.395  
0.550  
0.577  
0.660  
10  
2.54  
0.41  
1.27  
0.13  
0.29  
4.38  
2.55  
0.57  
3.18  
35.43  
13.97  
14.66  
16.76  
10  
0.014  
0.018  
0.36  
0.46  
0.040  
0.000  
0.008  
0.160  
0.081  
0.015  
0.115  
1.380  
0.505  
0.567  
0.640  
5
0.060  
0.010  
0.015  
0.185  
0.121  
0.030  
0.135  
1.465  
0.555  
0.587  
0.680  
15  
1.02  
0.00  
0.20  
4.06  
2.04  
0.38  
2.92  
35.05  
12.80  
14.40  
16.26  
5
1.52  
0.25  
0.38  
4.70  
3.06  
0.76  
3.43  
37.20  
14.10  
14.91  
17.27  
15  
Lead Thickness  
Top to Seating Plane  
Top of Lead to Seating Plane  
Base to Seating Plane  
Tip to Seating Plane  
Package Length  
Molded Package Width  
Radius to Radius Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
A
A1  
A2  
L
D
E
E1  
eB  
α
β
5
10  
15  
5
10  
15  
*
Controlling Parameter.  
Dimension “B1” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B1.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 197  
PIC16C5X  
Package Type: K04-051 18-Lead Plastic Small Outline (SO) – Wide, 300 mil  
E1  
p
E
D
2
B
1
n
X
α
45°  
L
R2  
c
A
A1  
R1  
φ
β
L1  
A2  
Units  
Dimension Limits  
Pitch  
INCHES*  
NOM  
0.050  
18  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
1.27  
18  
MAX  
p
n
A
A1  
A2  
Number of Pins  
Overall Pack. Height  
Shoulder Height  
Standoff  
Molded Package Length  
Molded Package Width  
Outside Dimension  
Chamfer Distance  
Shoulder Radius  
Gull Wing Radius  
Foot Length  
0.093  
0.099  
0.058  
0.008  
0.456  
0.296  
0.407  
0.020  
0.005  
0.005  
0.016  
4
0.104  
2.36  
1.22  
2.50  
1.47  
0.19  
11.58  
7.51  
10.33  
0.50  
0.13  
0.13  
0.41  
4
2.64  
1.73  
0.28  
11.73  
7.59  
10.64  
0.74  
0.25  
0.25  
0.53  
8
0.048  
0.004  
0.450  
0.292  
0.394  
0.010  
0.005  
0.005  
0.011  
0
0.068  
0.011  
0.462  
0.299  
0.419  
0.029  
0.010  
0.010  
0.021  
8
0.10  
11.43  
7.42  
10.01  
0.25  
0.13  
0.13  
0.28  
0
D
E
E1  
X
R1  
R2  
L
Foot Angle  
φ
Radius Centerline  
Lead Thickness  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*
L1  
c
B
α
β
0.010  
0.009  
0.014  
0
0.015  
0.011  
0.017  
12  
0.020  
0.012  
0.019  
15  
0.25  
0.23  
0.36  
0
0.38  
0.27  
0.42  
12  
0.51  
0.30  
0.48  
15  
0
12  
15  
0
12  
15  
Controlling Parameter.  
Dimension “B” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
DS30453B-page 198  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
Package Type: K04-052 28-Lead Plastic Small Outline (SO) – Wide, 300 mil  
E1  
E
p
D
B
2
1
n
X
α
45°  
L
R2  
c
A
A1  
φ
R1  
β
L1  
A2  
Units  
Dimension Limits  
Pitch  
INCHES*  
NOM  
0.050  
28  
MILLIMETERS  
NOM MAX  
MIN  
MAX  
MIN  
p
n
1.27  
28  
Number of Pins  
Overall Pack. Height  
Shoulder Height  
Standoff  
Molded Package Length  
Molded Package Width  
Outside Dimension  
Chamfer Distance  
Shoulder Radius  
Gull Wing Radius  
Foot Length  
A
A1  
A2  
0.093  
0.099  
0.058  
0.008  
0.706  
0.296  
0.407  
0.020  
0.005  
0.005  
0.016  
4
0.104  
2.36  
2.50  
1.47  
0.19  
17.93  
7.51  
10.33  
0.50  
0.13  
0.13  
0.41  
4
2.64  
0.048  
0.004  
0.700  
0.292  
0.394  
0.010  
0.005  
0.005  
0.011  
0
0.068  
0.011  
0.712  
0.299  
0.419  
0.029  
0.010  
0.010  
0.021  
8
1.22  
0.10  
17.78  
7.42  
10.01  
0.25  
0.13  
0.13  
0.28  
0
1.73  
0.28  
18.08  
7.59  
10.64  
0.74  
0.25  
0.25  
0.53  
8
D
E
E1  
X
R1  
R2  
L
Foot Angle  
φ
Radius Centerline  
Lead Thickness  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*
L1  
c
B
α
β
0.010  
0.009  
0.014  
0
0.015  
0.011  
0.017  
12  
0.020  
0.012  
0.019  
15  
0.25  
0.23  
0.36  
0
0.38  
0.27  
0.42  
12  
0.51  
0.30  
0.48  
15  
0
12  
15  
0
12  
15  
Controlling Parameter.  
Dimension “B” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 199  
PIC16C5X  
Package Type: K04-072 20-Lead Plastic Shrink Small Outine (SS) – 5.30 mm  
E1  
E
p
D
B
2
n
1
α
L
R2  
c
A
A1  
R1  
φ
L1  
A2  
β
Units  
Dimension Limits  
Pitch  
INCHES  
NOM  
0.026  
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
0.65  
20  
MAX  
p
n
A
A1  
A2  
D
E
E1  
R1  
R2  
L
Number of Pins  
Overall Pack. Height  
Shoulder Height  
Standoff  
Molded Package Length  
Molded Package Width  
Outside Dimension  
Shoulder Radius  
Gull Wing Radius  
Foot Length  
20  
0.073  
0.036  
0.005  
0.283  
0.208  
0.306  
0.005  
0.005  
0.020  
4
0.068  
0.078  
1.73  
0.66  
1.86  
0.91  
0.13  
7.20  
5.29  
7.78  
0.13  
0.13  
0.51  
4
1.99  
0.026  
0.002  
0.278  
0.205  
0.301  
0.005  
0.005  
0.015  
0
0.046  
0.008  
0.289  
0.212  
0.311  
0.010  
0.010  
0.025  
8
1.17  
0.21  
7.33  
5.38  
7.90  
0.25  
0.25  
0.64  
8
0.05  
7.07  
5.20  
7.65  
0.13  
0.13  
0.38  
0
Foot Angle  
φ
Radius Centerline  
Lead Thickness  
Lower Lead Width  
Mold Draft Angle Top  
L1  
c
B
α
β
0.000  
0.005  
0.010  
0
0.005  
0.007  
0.012  
5
0.010  
0.009  
0.015  
10  
0.00  
0.13  
0.25  
0
0.13  
0.18  
0.32  
5
0.25  
0.22  
0.38  
10  
Mold Draft Angle Bottom  
*
0
5
10  
0
5
10  
Controlling Parameter.  
Dimension “B” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
DS30453B-page 200  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
Package Type: K04-073 28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm  
E1  
E
p
D
B
2
1
n
α
L
A
R2  
c
A1  
R1  
A2  
φ
L1  
β
Units  
Dimension Limits  
Pitch  
INCHES  
NOM  
0.026  
28  
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
0.65  
28  
MAX  
p
n
A
A1  
A2  
D
E
E1  
R1  
R2  
L
Number of Pins  
Overall Pack. Height  
Shoulder Height  
Standoff  
Molded Package Length  
Molded Package Width  
Outside Dimension  
Shoulder Radius  
Gull Wing Radius  
Foot Length  
0.068  
0.073  
0.036  
0.005  
0.402  
0.208  
0.306  
0.005  
0.005  
0.020  
4
0.078  
1.73  
0.66  
1.86  
0.91  
0.13  
10.20  
5.29  
7.78  
0.13  
0.13  
0.51  
4
1.99  
0.026  
0.002  
0.396  
0.205  
0.301  
0.005  
0.005  
0.015  
0
0.046  
0.008  
0.407  
0.212  
0.311  
0.010  
0.010  
0.025  
8
1.17  
0.21  
10.33  
5.38  
7.90  
0.25  
0.25  
0.64  
8
0.05  
10.07  
5.20  
7.65  
0.13  
0.13  
0.38  
0
Foot Angle  
φ
Radius Centerline  
Lead Thickness  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*
L1  
c
B
α
β
0.000  
0.005  
0.010  
0
0.005  
0.007  
0.012  
5
0.010  
0.009  
0.015  
10  
0.00  
0.13  
0.25  
0
0.13  
0.18  
0.32  
5
0.25  
0.22  
0.38  
10  
0
5
10  
0
5
10  
Controlling Parameter.  
Dimension “B” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 201  
PIC16C5X  
Package Type: K04-010 18-Lead Ceramic Dual In-line with Window (JW) – 300 mil  
E
D
W2  
2
1
n
W1  
E1  
A
A1  
R
L
c
A2  
B1  
eB  
p
B
Units  
Dimension Limits  
PCB Row Spacing  
Number of Pins  
Pitch  
Lower Lead Width  
Upper Lead Width  
Shoulder Radius  
Lead Thickness  
Top to Seating Plane  
Top of Lead to Seating Plane  
Base to Seating Plane  
Tip to Seating Plane  
Package Length  
INCHES*  
NOM  
0.300  
18  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
7.62  
18  
MAX  
n
p
B
B1  
R
c
A
A1  
A2  
L
D
E
E1  
eB  
W1  
W2  
0.098  
0.100  
0.019  
0.055  
0.013  
0.010  
0.183  
0.111  
0.023  
0.138  
0.900  
0.298  
0.270  
0.385  
0.140  
0.200  
0.102  
2.49  
0.41  
2.54  
0.47  
1.40  
0.32  
0.25  
4.64  
2.82  
0.57  
3.49  
22.86  
7.56  
6.86  
9.78  
0.14  
0.2  
2.59  
0.016  
0.050  
0.010  
0.008  
0.175  
0.091  
0.015  
0.125  
0.880  
0.285  
0.255  
0.345  
0.130  
0.190  
0.021  
0.060  
0.015  
0.012  
0.190  
0.131  
0.030  
0.150  
0.920  
0.310  
0.285  
0.425  
0.150  
0.210  
0.53  
1.52  
0.38  
0.30  
4.83  
3.33  
0.76  
3.81  
23.37  
7.87  
7.24  
10.80  
0.15  
0.21  
1.27  
0.25  
0.20  
4.45  
2.31  
0.00  
3.18  
22.35  
7.24  
6.48  
8.76  
0.13  
0.19  
Package Width  
Radius to Radius Width  
Overall Row Spacing  
Window Width  
Window Length  
*
Controlling Parameter.  
DS30453B-page 202  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
Package Type: K04-013 28-Lead Ceramic Dual In-line with Window (JW) – 600 mil  
E
W
D
2
1
n
E1  
eB  
A
A1  
R
L
c
B1  
A2  
p
B
Units  
INCHES*  
NOM  
0.600  
28  
MILLIMETERS  
Dimension Limits  
PCB Row Spacing  
Number of Pins  
Pitch  
Lower Lead Width  
Upper Lead Width  
Shoulder Radius  
Lead Thickness  
MIN  
MAX  
MIN  
NOM  
15.24  
28  
MAX  
n
p
B
B1  
R
c
A
A1  
A2  
L
D
E
E1  
eB  
W
0.098  
0.100  
0.019  
0.058  
0.005  
0.010  
0.185  
0.128  
0.038  
0.138  
1.460  
0.520  
0.580  
0.660  
0.280  
0.102  
2.49  
0.41  
2.54  
0.47  
2.59  
0.53  
1.65  
0.25  
0.30  
5.08  
3.70  
1.52  
3.81  
37.85  
13.36  
15.24  
18.03  
7.37  
0.016  
0.050  
0.000  
0.008  
0.170  
0.110  
0.015  
0.125  
1.430  
0.514  
0.560  
0.610  
0.270  
0.021  
0.065  
0.010  
0.012  
0.200  
0.146  
0.060  
0.150  
1.490  
0.526  
0.600  
0.710  
0.290  
1.27  
0.00  
1.46  
0.13  
0.20  
0.25  
Top to Seating Plane  
4.32  
4.70  
Top of Lead to Seating Plane  
Base to Seating Plane  
Tip to Seating Plane  
Package Length  
2.78  
3.24  
0.00  
0.95  
3.18  
3.49  
36.32  
13.06  
14.22  
15.49  
6.86  
37.08  
13.21  
14.73  
16.76  
7.11  
Package Width  
Radius to Radius Width  
Overall Row Spacing  
Window Diameter  
*
Controlling Parameter.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 203  
PIC16C5X  
21.1  
Package Marking Information  
18-Lead PDIP  
MMMMMMMMMMMMMMMMM  
Example  
Example  
PIC16C56-  
RCI/P456  
MMMMMMMMMMMMMMMMM  
AABBCDE  
9823 CBA  
28-Lead Skinny PDIP (.300")  
MMMMMMMMMMMMMMMMM  
MMMMMMMMMMMMMMMMM  
PIC16C55-  
RCI/P456  
AABBCDE  
9823 CBA  
28-Lead PDIP (.600")  
Example  
MMMMMMMMMMMMMMM  
MMMMMMMMMMMMMMM  
MMMMMMMMMMMMMMM  
AABBCDE  
PIC16C55-  
XTI/P126  
9842 CDA  
18-Lead SOIC  
Example  
MMMMMMMMMMMM  
MMMMMMMMMMMM  
MMMMMMMMMMMM  
PIC16C54-  
XTI/S0218  
AABBCDE  
9818 CDK  
28-Lead SOIC  
Example  
MMMMMMMMMMMMMMMMMMMM  
MMMMMMMMMMMMMMMMMMMM  
PIC16C57-  
XT/SO  
AABBCDE  
9815 CBK  
Example  
20-Lead SSOP  
MMMMMMMMMMM  
MMMMMMMMMMM  
PIC16C54  
XTI/218  
AABBCDE  
9820 CBP  
28-Lead SSOP  
Example  
MMMMMMMMMMMM  
MMMMMMMMMMMM  
PIC16C57-  
XT/SS123  
AABBCDE  
9825 CBK  
DS30453B-page 204  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
18-Lead CERDIP Windowed  
Example  
Example  
MMMMMMMM  
MMMMMMMM  
AABBCDE  
PIC16C54  
/JW  
9801 CBA  
28-Lead CERDIP Skinny Windowed  
MMMMMMMMMMMMMM  
MMMMMMMMMMMMMM  
PIC16C57  
/JW  
AABBCDE  
9838 CCT  
28-Lead CERDIP Windowed  
Example  
MMMMMMMMMMM  
MMMMMMMMMMM  
PIC16C57  
/JW  
AABBCDE  
9838 CBA  
Legend: MM...M Microchip part number information  
XX...X Customer specific information*  
AA  
BB  
C
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Facility code of the plant at which wafer is manufactured  
O = Outside Vendor  
C = 5” Line  
S = 6” Line  
H = 8” Line  
D
E
Mask revision number  
Assembly code of the plant or country of origin in which  
part was assembled  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask  
rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with  
your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 205  
PIC16C5X  
NOTES:  
DS30453B-page 206  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
APPENDIX A: COMPATIBILITY  
To convert code written for PIC16CXX to PIC16C5X,  
the user should take the following steps:  
1. Check any CALL, GOTO or instructions that  
modify the PC to determine if any program  
memory page select operations (PA2, PA1, PA0  
bits) need to be made.  
2. Revisit any computed jump operations (write to  
PC or add to PC, etc.) to make sure page bits  
are set properly under the new scheme.  
3. Eliminate any special function register page  
switching. Redefine data variables to reallocate  
them.  
4. Verify all writes to STATUS, OPTION, and FSR  
registers since these have changed.  
5. Change reset vector to proper value for  
processor used.  
6. Remove any use of the ADDLW and SUBLW  
instructions.  
7. Rewrite any code segments that use interrupts.  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 207  
PIC16C5X  
NOTES:  
DS30453B-page 208  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
I/O Programming Considerations ...................................... 26  
ICEPIC Low-Cost PIC16CXXX In-Circuit Emulator ........... 55  
ID Locations ................................................................. 31, 42  
INDF .................................................................................. 36  
INDF Register .................................................................... 24  
Indirect Data Addressing ................................................... 24  
Instruction Cycle ................................................................ 13  
Instruction Flow/Pipelining ................................................. 13  
Instruction Set Summary ................................................... 43  
INDEX  
A
Absolute Maximum Ratings ................................... 59, 67, 89  
.......................................................... 103, 117, 131, 145, 171  
ALU ...................................................................................... 9  
Applications .......................................................................... 5  
Architectural Overview ......................................................... 9  
Assembler  
MPASM Assembler .................................................... 56  
K
B
KeeLoq Evaluation and Programming Tools .................. 57  
Block Diagram  
L
On-Chip Reset Circuit ................................................ 36  
PIC16C5X Series ....................................................... 10  
Timer0 ........................................................................ 27  
TMR0/WDT Prescaler ................................................ 30  
Watchdog Timer ......................................................... 40  
Brown-Out Protection Circuit ............................................. 41  
Loading of PC .............................................................. 22, 23  
M
MCLR ................................................................................ 36  
Memory Map ...................................................................... 15  
PIC16C52 .................................................................. 15  
PIC16C54s/CR54s/C55s ........................................... 15  
PIC16C56s/CR56s .................................................... 15  
PIC16C57s/CR57s/C58s ........................................... 16  
Memory Organization ........................................................ 15  
Data Memory ............................................................. 17  
Program Memory ....................................................... 15  
MP-DriveWay™ - Application Code Generator ................. 57  
MPLAB C ........................................................................... 57  
MPLAB Integrated Development Environment  
C
Carry bit ............................................................................... 9  
Clocking Scheme ............................................................... 13  
Code Protection ........................................................... 31, 42  
Configuration Bits ............................................................... 31  
Configuration Word ............................................................ 31  
PIC16C52/C54/C54A/C55/C56/C57/C58A ................ 32  
PIC16CR54A/C54B/CR54B/C56A/CR56A/  
CR57B/C58B/CR58A/CR58B .................................... 31  
Software ............................................................................ 56  
D
O
DC and AC Characteristics - PIC16C54/55/56/57 ............. 81  
DC and AC Characteristics -  
PIC16C54A/CR57B/C58A/CR58A ................................... 159  
DC and AC Characteristics -  
PIC16C54B/CR54B/C56A/CR56A/C58B/CR58B ............ 183  
DC Characteristics ......................... 60, 61, 69, 70, 71, 72, 73  
.................................................... 91, 105, 119, 133, 147, 173  
Development Support ........................................................ 55  
Development Tools ............................................................ 55  
Device Varieties ................................................................... 7  
Digit Carry bit ....................................................................... 9  
One-Time-Programmable (OTP) Devices ............................7  
OPTION ............................................................................. 36  
OPTION Register .............................................................. 21  
OSC selection .................................................................... 31  
Oscillator Configurations ................................................... 33  
Oscillator Types  
HS .............................................................................. 33  
LP .............................................................................. 33  
RC ............................................................................. 33  
XT .............................................................................. 33  
P
E
Package Marking Information .......................................... 204  
Packaging Information ..................................................... 195  
PC ...................................................................................... 22  
PCL .................................................................................... 36  
PIC16C54/55/56/57 Product Identification System ......... 214  
PIC16C5X Product Identification System ........................ 213  
PICDEM-1 Low-Cost PICmicro Demo Board .................... 56  
PICDEM-2 Low-Cost PIC16CXX Demo Board .................. 56  
PICDEM-3 Low-Cost PIC16CXXX Demo Board ............... 56  
PICMASTER In-Circuit Emulator .................................... 55  
PICSTART Plus Entry Level Development System ........ 55  
Pin Configurations ................................................................2  
Pinout Description - PIC16C52s, PIC16C54s,  
Electrical Characteristics  
PIC16C52 .................................................................. 59  
PIC16C54/55/56/57 ................................................... 67  
PIC16C54A .............................................................. 103  
PIC16C54B/CR54B/C56A/CR56A/C58B/CR58B .... 171  
PIC16C58A .............................................................. 131  
PIC16CR54A ............................................................. 89  
PIC16CR57B ........................................................... 117  
PIC16CR58A ........................................................... 145  
Errata ................................................................................... 4  
External Power-On Reset Circuit ....................................... 37  
F
PIC16CR54s, PIC16C56s, PIC16CR56s,  
Family of Devices  
PIC16C58s, PIC16CR58s ................................................. 11  
Pinout Description - PIC16C55s, PIC16C57s,  
PIC16CR57s ...................................................................... 12  
POR  
Device Reset Timer (DRT) .................................. 31, 39  
PD ........................................................................ 35, 41  
Power-On Reset (POR) ................................. 31, 36, 37  
TO ........................................................................ 35, 41  
PORTA ........................................................................ 25, 36  
PIC16C5X .................................................................... 6  
Features ............................................................................... 1  
FSR .................................................................................... 36  
FSR Register ..................................................................... 24  
Fuzzy Logic Dev. System (fuzzyTECH -MP) ................... 57  
I
I/O Interfacing .................................................................... 25  
I/O Ports ............................................................................. 25  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 209  
PIC16C5X  
PORTB .........................................................................25, 36  
PORTC .........................................................................25, 36  
Power-Down Mode (SLEEP) ..............................................42  
Prescaler ............................................................................30  
PRO MATE II Universal Programmer ..............................55  
Program Counter ................................................................22  
Q
Q cycles .............................................................................13  
Quick-Turnaround-Production (QTP) Devices .....................7  
R
RC Oscillator ......................................................................34  
Read Only Memory (ROM) Devices .....................................7  
Read-Modify-Write .............................................................26  
Register File Map  
PIC16C52, PIC16C54s, PIC16CR54s,  
PIC16C55s, PIC16C56s, PIC16CR56s .....................17  
PIC16C57s/CR57s .....................................................18  
PIC16C58s/CR58s .....................................................18  
Registers  
Special Function ........................................................19  
Reset ............................................................................31, 35  
Reset on Brown-Out ...........................................................41  
S
SEEVAL Evaluation and Programming System ..............57  
Serialized Quick-Turnaround-Production  
(SQTP) Devices ...................................................................7  
SLEEP ..........................................................................31, 42  
Software Simulator (MPLAB-SIM) ......................................57  
Special Features of the CPU ..............................................31  
Special Function Registers ................................................19  
Stack ..................................................................................23  
STATUS .............................................................................36  
STATUS Register ...........................................................9, 20  
T
Timer0  
Switching Prescaler Assignment ................................30  
Timer0 (TMR0) Module ..............................................27  
TMR0 with External Clock ..........................................29  
Timing Diagrams and Specifications ......................63, 75, 97  
..........................................................111, 125, 139, 153, 178  
Timing Parameter Symbology and  
Load Conditions .............62, 74, 96, 110, 124, 138, 152, 177  
TMR0 .................................................................................36  
TRIS ...................................................................................36  
TRIS Registers ...................................................................25  
U
UV Erasable Devices ...........................................................7  
W
W ........................................................................................36  
Wake-up from SLEEP ........................................................42  
Watchdog Timer (WDT) ...............................................31, 39  
Period .........................................................................39  
Programming Considerations ....................................39  
WWW, On-Line Support .......................................................4  
Z
Zero bit .................................................................................9  
DS30453B-page 210  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
Systems Information and Upgrade Hot Line  
ON-LINE SUPPORT  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip's development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
Microchip provides on-line support on the Microchip  
World Wide Web (WWW) site.  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape or Microsoft  
Explorer. Files are also available for FTP download  
from our FTP site.  
1-800-755-2345 for U.S. and most of Canada, and  
1-602-786-7302 for the rest of the world.  
980106  
ConnectingtotheMicrochipInternetWebSite  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
ftp://ftp.futureone.com/pub/microchip  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User's Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
Trademarks: The Microchip name, logo, PIC, PICSTART,  
PICMASTER and PRO MATE are registered trademarks  
of Microchip Technology Incorporated in the U.S.A. and  
other countries. PICmicro, FlexROM, MPLAB and fuzzy-  
LAB are trademarks and SQTP is a service mark of Micro-  
chip in the U.S.A.  
• Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
All other trademarks mentioned herein are the property of  
their respective companies.  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
• Conferences for products, Development Systems,  
technical information and more  
• Listing of seminars and events  
1998 Microchip Technology Inc.  
DS30453B-page 211  
PIC16C5X  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS30453B  
Device:  
PIC16C5X  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS30453B-page 212  
1998 Microchip Technology Inc.  
PIC16C5X  
PIC16C5X PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
X
/XX  
XXX  
PART NO.  
Device  
-XX  
Examples:  
Frequency Temperature Package  
Range Range  
Pattern  
a) PIC16C54A -04/P 301 = Commercial  
temp., PDIP package, 4MHz, normalVDD  
limitis, QTP pattern #301.  
(2)  
(3)  
Device  
PIC16C5X , PIC16C5XT  
PIC16LC5X , PIC16LC5XT  
b) PIC16LC58A - 04I/SO = Industrial temp.,  
SOIC package, 4MHz, Extended VDD  
limits.  
(2)  
(3)  
(2)  
(3)  
PIC16CR5X , PIC16CR5XT  
(2)  
(3)  
PIC16LCR5X , PIC16LCR5XT  
(2)  
(3)  
c) PIC16CR54A - 10I/P355 = ROM program  
memory, Industrial temp., PDIP package,  
10MHz, normal VDD limits.  
PIC16LV5X , PIC16LV5XT  
Frequency  
Range  
02  
04  
10  
20  
= 2 MHz  
= 4 MHz  
= 10 MHz  
= 20 MHz  
Note 1: b = blank  
(1)  
(4)  
b
= No type for JW devices  
2:  
C
= Standard VDD range  
LC = Extended VDD range  
CR = ROM Version, Standard VDD  
range  
LCR = ROM Version, Extended VDD  
range  
(1)  
Temperature  
Range  
b
I
= 0°C to +70°C (Commercial)  
= -40°C to +85°C (Industrial)  
= -40°C to +125°C (Automotive)  
E
Package  
JW  
P
= Windowed CERDIP  
= PDIP  
LV = Low Voltage VDD range  
3: T = in tape and reel - SOIC, SSOP  
packages only.  
SO  
SP  
SS  
= SOIC (Gull Wing, 300 mil body)  
= Skinny PDIP (28-pin, 300 mil body)  
= SSOP (209 mil body)  
4: UV erasable devices are tested to all  
available voltage/frequency options.  
Erased devices are oscillator type  
04. The user can select 04, 10 or 20  
oscillators by programmng the appro-  
priate configuration bits.  
Pattern  
3-digit Pattern Code for QTP, ROM (blank otherwise)  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 213  
PIC16C5X  
PIC16C54/55/56/57 PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information (e.g., on pricing or delivery) refer to the factory or the listed sales office.  
X
/XX  
XXX  
PART NO.  
Device  
-XX  
Oscillator Temperature Package  
Type Range  
Pattern  
Examples:  
a) PIC16C54 - XT/PXXX = "XT" oscillator,  
commercial temp., PDIP, QTP pattern.  
(2)  
(2)  
(2)  
(2)  
Device  
PIC16C54, PIC16C54T  
PIC16C55, PIC16C55T  
PIC16C56, PIC16C56T  
PIC16C57, PIC16C57T  
b) PIC16C55 - XTI/SO = "XT" oscillator,  
industrial temp., SOIC (OTP device)  
c) PIC16C55 /JW  
= Commercial temp.  
CERDIP with window.  
Oscillator Type  
RC  
LP  
XT  
HS  
10  
= Resistor Capacitor  
= Low Power Crystal  
= Standard Crystal/Resonator  
= High Speed Crystal  
= 10 MHz Crystal  
d) PIC16C57 - RC/S = "RC" oscillator, com-  
mercial temp., dice in waffle pack.  
(1)  
(3)  
b
= No type for JW devices  
Note 1: b = blank  
(1)  
Temperature  
Range  
b
I
=
0°C to +70°C (Commercial)  
2: T = in tape and reel - SOIC, SSOP  
packages only.  
= -40°C to +85°C (Industrial)  
= -40°C to +125°C (Automotive)  
E
3: UV erasable devices are tested to all  
available voltage/frequency options.  
Erased devices are oscillator type RC.  
The user can select RC, LP, XT or HS  
oscillators by programming the appro-  
priate configuration bits.  
Package  
JW  
P
S
SO  
SP  
SS  
= Windowed CERDIP  
= PDIP  
= Die in Waffle Pack  
= SOIC (Gull Wing, 300 mil body)  
= Skinny PDIP (28 pin, 300 mil body)  
= SSOP (209 mil body)  
Pattern  
3-digit Pattern Code for QTP (blank otherwise)  
Sales and Support  
Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and  
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office (see below)  
2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.  
DS30453B-page 214  
Preliminary  
1998 Microchip Technology Inc.  
PIC16C5X  
NOTES:  
1998 Microchip Technology Inc.  
Preliminary  
DS30453B-page 215  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
AMERICAS (continued)  
ASIA/PACIFIC (continued)  
Corporate Office  
Toronto  
Singapore  
Microchip Technology Inc.  
Microchip Technology Inc.  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-786-7200 Fax: 480-786-7277  
Technical Support: 480-786-7627  
Web Address: http://www.microchip.com  
5925 Airport Road, Suite 200  
Mississauga, Ontario L4V 1W1, Canada  
Tel: 905-405-6279 Fax: 905-405-6253  
#07-02 Prime Centre  
Singapore 188980  
Tel: 65-334-8870 Fax: 65-334-8850  
Taiwan, R.O.C  
Microchip Technology Taiwan  
10F-1C 207  
Tung Hua North Road  
Taipei, Taiwan, ROC  
ASIA/PACIFIC  
Hong Kong  
Microchip Asia Pacific  
Unit 2101, Tower 2  
Atlanta  
Microchip Technology Inc.  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2-401-1200 Fax: 852-2-401-3431  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Tel: 770-640-0034 Fax: 770-640-0307  
Boston  
EUROPE  
Microchip Technology Inc.  
5 Mount Royal Avenue  
Marlborough, MA 01752  
Tel: 508-480-9990 Fax: 508-480-8575  
Beijing  
United Kingdom  
Microchip Technology, Beijing  
Unit 915, 6 Chaoyangmen Bei Dajie  
Dong Erhuan Road, Dongcheng District  
New China Hong Kong Manhattan Building  
Beijing 100027 PRC  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5858 Fax: 44-118 921-5835  
Denmark  
Microchip Technology Denmark ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Chicago  
Microchip Technology Inc.  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 86-10-85282100 Fax: 86-10-85282104  
India  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
Microchip Technology Inc.  
4570 Westgrove Drive, Suite 160  
Addison, TX 75248  
Microchip Technology Inc.  
India Liaison Office  
No. 6, Legacy, Convent Road  
Bangalore 560 025, India  
Tel: 91-80-229-0061 Fax: 91-80-229-0062  
Tel: 972-818-7423 Fax: 972-818-2924  
Dayton  
Microchip Technology Inc.  
Two Prestige Place, Suite 150  
Miamisburg, OH 45342  
Tel: 937-291-1654 Fax: 937-291-9175  
Detroit  
Microchip Technology Inc.  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Japan  
France  
Microchip Technology Intl. Inc.  
Benex S-1 6F  
Arizona Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa 222-0033 Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Germany  
Arizona Microchip Technology GmbH  
Gustav-Heinemann-Ring 125  
D-81739 München, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Korea  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Shanghai  
Microchip Technology  
RM 406 Shanghai Golden Bridge Bldg.  
2077 Yan’an Road West, Hong Qiao District  
Shanghai, PRC 200335  
Italy  
Los Angeles  
Arizona Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Microchip Technology Inc.  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
New York  
Microchip Technology Inc.  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 631-273-5305 Fax: 631-273-5335  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
Tel: 86-21-6275-5700 Fax: 86 21-6275-5060  
11/15/99  
San Jose  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999. The  
Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs and microperipheral  
products. In addition, Microchips quality  
system for the design and manufacture of  
development systems is ISO 9001 certified.  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950 Fax: 408-436-7955  
All rights reserved. © 1999 Microchip Technology Incorporated. Printed in the USA. 11/99  
Printed on recycled paper.  
Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed  
by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchips products  
as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip  
logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.  
1999 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY