PIC16C622AT-04E/SS042 [MICROCHIP]

RISC Microcontroller, 8-Bit, OTPROM, 10MHz, CMOS, PDSO20;
PIC16C622AT-04E/SS042
型号: PIC16C622AT-04E/SS042
厂家: MICROCHIP    MICROCHIP
描述:

RISC Microcontroller, 8-Bit, OTPROM, 10MHz, CMOS, PDSO20

可编程只读存储器 时钟 微控制器 光电二极管 外围集成电路
文件: 总128页 (文件大小:3677K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16C62X  
Data Sheet  
EPROM-Based 8-Bit  
CMOS Microcontrollers  
2003 Microchip Technology Inc.  
DS30235J  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications. No  
representation or warranty is given and no liability is assumed by  
Microchip Technology Incorporated with respect to the accuracy  
or use of such information, or infringement of patents or other  
intellectual property rights arising from such use or otherwise.  
Use of Microchip’s products as critical components in life  
support systems is not authorized except with express written  
approval by Microchip. No licenses are conveyed, implicitly or  
otherwise, under any intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, KEELOQ,  
MPLAB, PIC, PICmicro, PICSTART, PRO MATE and  
PowerSmart are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL  
and The Embedded Control Solutions Company are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
Accuron, Application Maestro, dsPIC, dsPICDEM,  
dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM,  
fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC,  
microPort, Migratable Memory, MPASM, MPLIB, MPLINK,  
MPSIM, PICC, PICkit, PICDEM, PICDEM.net, PowerCal,  
PowerInfo, PowerMate, PowerTool, rfLAB, rfPIC, Select Mode,  
SmartSensor, SmartShunt, SmartTel and Total Endurance are  
trademarks of Microchip Technology Incorporated in the U.S.A.  
and other countries.  
Serialized Quick Turn Programming (SQTP) is a service mark of  
Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2003, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999  
and Mountain View, California in March 2002.  
The Company’s quality system processes and  
procedures are QS-9000 compliant for its  
®
PICmicro 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals,  
non-volatile memory and analog products. In  
addition, Microchip’s quality system for the  
design and manufacture of development  
systems is ISO 9001 certified.  
DS30235J - page ii  
2003 Microchip Technology Inc.  
PIC16C62X  
EPROM-Based 8-Bit CMOS Microcontrollers  
Devices included in this data sheet:  
Pin Diagrams  
Referred to collectively as PIC16C62X.  
PDIP, SOIC, Windowed CERDIP  
• PIC16C620  
• PIC16C621  
• PIC16C622  
• PIC16CR620A  
PIC16C620A  
PIC16C621A  
PIC16C622A  
RA1/AN1  
RA0/AN0  
OSC1/CLKIN  
OSC2/CLKOUT  
VDD  
RB7  
RB6  
RB5  
RA2/AN2/VREF  
RA3/AN3  
RA4/T0CKI  
•1  
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
MCLR/VPP  
VSS  
RB0/INT  
RB1  
RB2  
High Performance RISC CPU:  
RB3  
RB4  
• Only 35 instructions to learn  
• All single cycle instructions (200 ns), except for  
program branches which are two-cycle  
SSOP  
• Operating speed:  
RA1/AN1  
RA0/AN0  
OSC1/CLKIN  
OSC2/CLKOUT  
VDD  
VDD  
RA2/AN2/VREF  
RA3/AN3  
RA4/T0CKI  
•1  
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
- DC - 40 MHz clock input  
- DC - 100 ns instruction cycle  
MCLR/VPP  
VSS  
VSS  
RB0/INT  
RB1  
Program  
Memory  
Data  
Memory  
Device  
RB7  
RB6  
RB5  
RB4  
RB2  
RB3  
PIC16C620  
512  
512  
512  
1K  
80  
96  
PIC16C620A  
PIC16CR620A  
PIC16C621  
Special Microcontroller Features:  
96  
• Power-on Reset (POR)  
80  
• Power-up Timer (PWRT) and Oscillator Start-up  
Timer (OST)  
PIC16C621A  
PIC16C622  
1K  
96  
• Brown-out Reset  
2K  
128  
128  
• Watchdog Timer (WDT) with its own on-chip RC  
oscillator for reliable operation  
PIC16C622A  
• Interrupt capability  
2K  
• Programmable code protection  
• Power saving SLEEP mode  
• 16 special function hardware registers  
• 8-level deep hardware stack  
• Selectable oscillator options  
• Direct, Indirect and Relative addressing modes  
• Serial in-circuit programming (via two pins)  
• Four user programmable ID locations  
Peripheral Features:  
CMOS Technology:  
• 13 I/O pins with individual direction control  
• High current sink/source for direct LED drive  
• Analog comparator module with:  
• Low power, high speed CMOS EPROM  
technology  
• Fully static design  
• Wide operating range  
- 2.5V to 5.5V  
- Two analog comparators  
- Programmable on-chip voltage reference  
(VREF) module  
• Commercial, industrial and extended tempera-  
ture range  
- Programmable input multiplexing from device  
inputs and internal voltage reference  
• Low power consumption  
- Comparator outputs can be output signals  
- < 2.0 mA @ 5.0V, 4.0 MHz  
• Timer0: 8-bit timer/counter with 8-bit  
programmable prescaler  
- 15 µA typical @ 3.0V, 32 kHz  
- < 1.0 µA typical standby current @ 3.0V  
2003 Microchip Technology Inc.  
DS30235J-page 1  
PIC16C62X  
Device Differences  
Process Technology  
(Microns)  
Device  
Voltage Range  
Oscillator  
(3)  
PIC16C620  
2.5 - 6.0  
2.5 - 6.0  
2.5 - 6.0  
2.7 - 5.5  
2.5 - 5.5  
2.7 - 5.5  
2.7 - 5.5  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
0.9  
0.9  
0.9  
0.7  
0.7  
0.7  
0.7  
(3)  
PIC16C621  
(3)  
PIC16C622  
(4)  
PIC16C620A  
(2)  
PIC16CR620A  
(4)  
PIC16C621A  
(4)  
PIC16C622A  
Note 1: If you change from this device to another device, please verify oscillator characteristics in your application.  
2: For ROM parts, operation from 2.5V - 3.0V will require the PIC16LCR62X parts.  
3: For OTP parts, operation from 2.5V - 3.0V will require the PIC16LC62X parts.  
4: For OTP parts, operations from 2.7V - 3.0V will require the PIC16LC62XA parts.  
DS30235J-page 2  
2003 Microchip Technology Inc.  
PIC16C62X  
Table of Contents  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
General Description.................................................................................................................................................................. 5  
PIC16C62X Device Varieties.................................................................................................................................................... 7  
Architectural Overview.............................................................................................................................................................. 9  
Memory Organization ............................................................................................................................................................. 13  
I/O Ports.................................................................................................................................................................................. 25  
Timer0 Module........................................................................................................................................................................ 31  
Comparator Module................................................................................................................................................................ 37  
Voltage Reference Module ..................................................................................................................................................... 43  
Special Features of the CPU .................................................................................................................................................. 45  
10.0 Instruction Set Summary ........................................................................................................................................................ 61  
11.0 Development Support............................................................................................................................................................. 75  
12.0 Electrical Specifications .......................................................................................................................................................... 81  
13.0 Device Characterization Information ..................................................................................................................................... 109  
14.0 Packaging Information.......................................................................................................................................................... 113  
Appendix A: Enhancements.............................................................................................................................................................. 119  
Appendix B: Compatibility................................................................................................................................................................. 119  
Index ............................................................................................................................................................................................... 121  
On-Line Support ................................................................................................................................................................................ 123  
Systems Information and Upgrade Hot Line..................................................................................................................................... 123  
Reader Response............................................................................................................................................................................. 124  
Product Identification System ........................................................................................................................................................... 125  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Micro-  
chip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined  
and enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@mail.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150.  
We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include  
literature number) you are using.  
Customer Notification System  
Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.  
2003 Microchip Technology Inc.  
DS30235J-page 3  
PIC16C62X  
NOTES:  
DS30235J-page 4  
2003 Microchip Technology Inc.  
PIC16C62X  
customization of application programs (detection  
levels, pulse generation, timers, etc.) extremely fast  
and convenient. The small footprint packages make  
this microcontroller series perfect for all applications  
with space limitations. Low cost, low power, high  
performance, ease of use and I/O flexibility make the  
PIC16C62X very versatile.  
1.0  
GENERAL DESCRIPTION  
The PIC16C62X devices are 18 and 20-Pin ROM/  
®
EPROM-based members of the versatile PICmicro  
family of low cost, high performance, CMOS, fully-  
static, 8-bit microcontrollers.  
All PICmicro microcontrollers employ an advanced  
RISC architecture. The PIC16C62X devices have  
enhanced core features, eight-level deep stack, and  
multiple internal and external interrupt sources. The  
separate instruction and data buses of the Harvard  
architecture allow a 14-bit wide instruction word with  
the separate 8-bit wide data. The two-stage instruction  
pipeline allows all instructions to execute in a single  
cycle, except for program branches (which require two  
cycles). A total of 35 instructions (reduced instruction  
set) are available. Additionally, a large register set  
gives some of the architectural innovations used to  
achieve a very high performance.  
1.1  
Family and Upward Compatibility  
Those users familiar with the PIC16C5X family of  
microcontrollers will realize that this is an enhanced  
version of the PIC16C5X architecture. Please refer to  
Appendix A for a detailed list of enhancements. Code  
written for the PIC16C5X can be easily ported to  
PIC16C62X family of devices (Appendix B). The  
PIC16C62X family fills the niche for users wanting to  
migrate up from the PIC16C5X family and not needing  
various peripheral features of other members of the  
PIC16XX mid-range microcontroller family.  
PIC16C62X microcontrollers typically achieve a 2:1  
code compression and a 4:1 speed improvement over  
other 8-bit microcontrollers in their class.  
1.2  
Development Support  
The PIC16C62X family is supported by a full-featured  
macro assembler, a software simulator, an in-circuit  
emulator, a low cost development programmer and a  
full-featured programmer. Third Party “C” compilers are  
also available.  
The PIC16C620A, PIC16C621A and PIC16CR620A  
have 96 bytes of RAM. The PIC16C622(A) has 128  
bytes of RAM. Each device has 13 I/O pins and an 8-  
bit timer/counter with an 8-bit programmable prescaler.  
In addition, the PIC16C62X adds two analog compara-  
tors with a programmable on-chip voltage reference  
module. The comparator module is ideally suited for  
applications requiring a low cost analog interface (e.g.,  
battery chargers, threshold detectors, white goods  
controllers, etc).  
PIC16C62X devices have special features to reduce  
external components, thus reducing system cost,  
enhancing system reliability and reducing power con-  
sumption. There are four oscillator options, of which the  
single pin RC oscillator provides a low cost solution, the  
LP oscillator minimizes power consumption, XT is a  
standard crystal, and the HS is for High Speed crystals.  
The SLEEP (Power-down) mode offers power savings.  
The user can wake-up the chip from SLEEP through  
several external and internal interrupts and RESET.  
A highly reliable Watchdog Timer with its own on-chip  
RC oscillator provides protection against software  
lock- up.  
A UV-erasable CERDIP-packaged version is ideal for  
code development while the cost effective One-Time-  
Programmable (OTP) version is suitable for production  
in any volume.  
Table 1-1 shows the features of the PIC16C62X mid-  
range microcontroller families.  
A simplified block diagram of the PIC16C62X is shown  
in Figure 3-1.  
The PIC16C62X series fits perfectly in applications  
ranging from battery chargers to low power remote  
sensors.  
The  
EPROM  
technology  
makes  
2003 Microchip Technology Inc.  
DS30235J-page 5  
PIC16C62X  
TABLE 1-1:  
PIC16C62X FAMILY OF DEVICES  
PIC16C620(3) PIC16C620A(1)(4) PIC16CR620A(2) PIC16C621(3) PIC16C621A(1)(4) PIC16C622(3) PIC16C622A(1)(4)  
Clock  
Maximum Frequency 20  
of Operation (MHz)  
40  
20  
20  
40  
20  
40  
Memory  
EPROM Program  
Memory  
(x14 words)  
512  
512  
512  
1K  
1K  
2K  
2K  
Data Memory (bytes) 80  
96  
96  
80  
96  
128  
TMR0  
2
128  
TMR0  
2
Peripherals Timer Module(s)  
Comparators(s)  
TMR0  
2
TMR0  
2
TMRO  
2
TMR0  
2
TMR0  
2
Internal Reference  
Voltage  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Features  
Interrupt Sources  
I/O Pins  
4
4
4
4
4
4
4
13  
13  
13  
13  
13  
13  
13  
Voltage Range (Volts) 2.5-6.0  
2.7-5.5  
Yes  
2.5-5.5  
Yes  
2.5-6.0  
Yes  
2.7-5.5  
Yes  
2.5-6.0  
Yes  
2.7-5.5  
Yes  
Brown-out Reset  
Packages  
Yes  
18-pin DIP,  
SOIC;  
20-pin SSOP 20-pin SSOP  
18-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
20-pin SSOP  
18-pin DIP, 18-pin DIP,  
SOIC; SOIC;  
20-pin SSOP 20-pin SSOP  
18-pin DIP,  
SOIC;  
20-pin SSOP 20-pin SSOP  
18-pin DIP,  
SOIC;  
®
All PICmicro Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high  
I/O current capability. All PIC16C62X Family devices use serial programming with clock pin RB6 and data pin RB7.  
Note 1: If you change from this device to another device, please verify oscillator characteristics in your application.  
2: For ROM parts, operation from 2.0V - 2.5V will require the PIC16LCR62XA parts.  
3: For OTP parts, operation from 2.5V - 3.0V will require the PIC16LC62X part.  
4: For OTP parts, operation from 2.7V - 3.0V will require the PIC16LC62XA part.  
DS30235J-page 6  
2003 Microchip Technology Inc.  
PIC16C62X  
2.3  
Quick-Turnaround-Production  
(QTP) Devices  
2.0  
PIC16C62X DEVICE VARIETIES  
A variety of frequency ranges and packaging options  
are available. Depending on application and production  
requirements, the proper device option can be selected  
using the information in the PIC16C62X Product  
Identification System section at the end of this data  
sheet. When placing orders, please use this page of  
the data sheet to specify the correct part number.  
Microchip offers a QTP programming service for  
factory production orders. This service is made  
available for users who chose not to program a medium  
to high quantity of units and whose code patterns have  
stabilized. The devices are identical to the OTP  
devices, but with all EPROM locations and configura-  
tion options already programmed by the factory.  
Certain code and prototype verification procedures  
apply before production shipments are available.  
Please contact your Microchip Technology sales office  
for more details.  
2.1  
UV Erasable Devices  
The UV erasable version, offered in CERDIP package,  
is optimal for prototype development and pilot  
programs. This version can be erased and  
reprogrammed to any of the Oscillator modes.  
2.4  
Serialized Quick-Turnaround-  
SM SM  
Production (SQTP ) Devices  
Microchip's  
PICSTART  
and  
PRO MATE  
programmers both support programming of the  
PIC16C62X.  
Microchip offers a unique programming service where  
a few user-defined locations in each device are  
programmed with different serial numbers. The serial  
numbers may be random, pseudo-random or  
sequential.  
Note: Microchip does not recommend code  
protecting windowed devices.  
2.2  
One-Time-Programmable (OTP)  
Devices  
Serial programming allows each device to have a  
unique number, which can serve as an entry-code,  
password or ID number.  
The availability of OTP devices is especially useful for  
customers who need the flexibility for frequent code  
updates and small volume applications. In addition to  
the program memory, the configuration bits must also  
be programmed.  
2003 Microchip Technology Inc.  
DS30235J-page 7  
PIC16C62X  
NOTES:  
DS30235J-page 8  
2003 Microchip Technology Inc.  
PIC16C62X  
The PIC16C62X devices contain an 8-bit ALU and  
working register. The ALU is a general purpose  
arithmetic unit. It performs arithmetic and Boolean  
functions between data in the working register and any  
register file.  
3.0  
ARCHITECTURAL OVERVIEW  
The high performance of the PIC16C62X family can be  
attributed to number of architectural features  
a
commonly found in RISC microprocessors. To begin  
with, the PIC16C62X uses a Harvard architecture, in  
which, program and data are accessed from separate  
memories using separate busses. This improves  
bandwidth over traditional von Neumann architecture,  
where program and data are fetched from the same  
memory. Separating program and data memory further  
allows instructions to be sized differently than 8-bit  
wide data word. Instruction opcodes are 14-bits wide  
making it possible to have all single word instructions.  
A 14-bit wide program memory access bus fetches a  
14-bit instruction in a single cycle. A two-stage pipeline  
overlaps fetch and execution of instructions.  
Consequently, all instructions (35) execute in a single  
cycle (200 ns @ 20 MHz) except for program branches.  
The ALU is 8-bits wide and capable of addition,  
subtraction, shift and logical operations. Unless  
otherwise mentioned, arithmetic operations are two's  
complement in nature. In two-operand instructions,  
typically one operand is the working register  
(W register). The other operand is a file register or an  
immediate constant. In single operand instructions, the  
operand is either the W register or a file register.  
The W register is an 8-bit working register used for ALU  
operations. It is not an addressable register.  
Depending on the instruction executed, the ALU may  
affect the values of the Carry (C), Digit Carry (DC), and  
Zero (Z) bits in the STATUS register. The C and DC bits  
operate as a Borrow and Digit Borrow out bit,  
respectively, bit in subtraction. See the SUBLW and  
SUBWFinstructions for examples.  
The PIC16C620(A) and PIC16CR620A address  
512 x 14 on-chip program memory. The PIC16C621(A)  
addresses  
1K x 14  
program  
memory.  
The  
PIC16C622(A) addresses 2K x 14 program memory.  
All program memory is internal.  
A simplified block diagram is shown in Figure 3-1, with  
a description of the device pins in Table 3-1.  
The PIC16C62X can directly or indirectly address its  
register files or data memory. All special function  
registers including the program counter are mapped in  
the data memory. The PIC16C62X has an orthogonal  
(symmetrical) instruction set that makes it possible to  
carry out any operation on any register using any  
Addressing mode. This symmetrical nature and lack of  
‘special optimal situations’ make programming with the  
PIC16C62X simple yet efficient. In addition, the  
learning curve is reduced significantly.  
2003 Microchip Technology Inc.  
DS30235J-page 9  
PIC16C62X  
FIGURE 3-1:  
BLOCK DIAGRAM  
Program  
Memory  
Data Memory  
(RAM)  
Device  
PIC16C620  
PIC16C620A  
PIC16CR620A  
PIC16C621  
512 x 14  
512 x 14  
512 x 14  
1K x 14  
1K x 14  
2K x 14  
2K x 14  
80 x 8  
96 x 8  
96 x 8  
80 x 8  
96 x 8  
128 x 8  
128 x 8  
PIC16C621A  
PIC16C622  
PIC16C622A  
Voltage  
Reference  
13  
8
Data Bus  
Program Counter  
EPROM  
Program  
Memory  
RAM  
8-Level Stack  
(13-bit)  
File  
Registers  
Program  
Bus  
14  
RAM Addr (1)  
9
Comparator  
RA0/AN0  
Addr MUX  
Instruction reg  
RA1/AN1  
-
+
Indirect  
Addr  
7
Direct Addr  
RA2/AN2/VREF  
RA3/AN3  
8
-
+
FSR reg  
STATUS reg  
TMR0  
3
MUX  
Power-up  
Timer  
RA4/T0CKI  
Instruction  
Decode &  
Control  
Oscillator  
Start-up Timer  
ALU  
Power-on  
Reset  
Timing  
Generation  
W reg  
I/O Ports  
Watchdog  
Timer  
OSC1/CLKIN  
OSC2/CLKOUT  
Brown-out  
Reset  
PORTB  
MCLR VDD, VSS  
Note 1: Higher order bits are from the STATUS register.  
DS30235J-page 10  
2003 Microchip Technology Inc.  
PIC16C62X  
TABLE 3-1:  
PIC16C62X PINOUT DESCRIPTION  
DIP/SOIC  
Pin #  
SSOP  
Pin #  
Buffer  
Type  
Name  
I/O/P Type  
Description  
OSC1/CLKIN  
Oscillator crystal input/external clock source input.  
16  
18  
I
ST/CMOS  
OSC2/CLKOUT  
Oscillator crystal output. Connects to crystal or resonator  
in Crystal Oscillator mode. In RC mode, OSC2 pin out-  
puts CLKOUT, which has 1/4 the frequency of OSC1  
and denotes the instruction cycle rate.  
15  
17  
O
MCLR/VPP  
Master Clear (Reset) input/programming voltage input.  
This pin is an Active Low Reset to the device.  
4
4
I/P  
ST  
PORTA is a bi-directional I/O port.  
Analog comparator input  
RA0/AN0  
17  
18  
1
19  
20  
1
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
RA1/AN1  
Analog comparator input  
RA2/AN2/VREF  
RA3/AN3  
Analog comparator input or VREF output  
Analog comparator input /output  
2
2
RA4/T0CKI  
Can be selected to be the clock input to the Timer0  
timer/counter or a comparator output. Output is  
open drain type.  
3
3
I/O  
ST  
PORTB is a bi-directional I/O port. PORTB can be  
software programmed for internal weak pull-up on all  
inputs.  
RB0/INT  
RB0/INT can also be selected as an external  
interrupt pin.  
TTL/ST(1)  
6
7
I/O  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
7
8
8
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
TTL  
TTL  
9
9
10  
11  
12  
13  
Interrupt-on-change pin.  
10  
11  
12  
Interrupt-on-change pin.  
Interrupt-on-change pin. Serial programming clock.  
TTL/ST(2)  
RB7  
Interrupt-on-change pin. Serial programming data.  
TTL/ST(2)  
13  
5
14  
5,6  
I/O  
P
VSS  
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
VDD  
14  
15,16  
P
Legend:  
O = output  
I/O = input/output  
I = Input  
P = power  
— = Not used  
ST = Schmitt Trigger input  
TTL = TTL input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
2003 Microchip Technology Inc.  
DS30235J-page 11  
PIC16C62X  
3.1  
Clocking Scheme/Instruction  
Cycle  
3.2  
Instruction Flow/Pipelining  
An “Instruction Cycle” consists of four Q cycles (Q1,  
Q2, Q3 and Q4). The instruction fetch and execute are  
pipelined such that fetch takes one instruction cycle  
while decode and execute takes another instruction  
cycle. However, due to the pipelining, each instruction  
effectively executes in one cycle. If an instruction  
causes the program counter to change (e.g., GOTO)  
then two cycles are required to complete the instruction  
(Example 3-1).  
The clock input (OSC1/CLKIN pin) is internally divided  
by four to generate four non-overlapping quadrature  
clocks namely Q1, Q2, Q3 and Q4. Internally, the  
program counter (PC) is incremented every Q1, the  
instruction is fetched from the program memory and  
latched into the instruction register in Q4. The  
instruction is decoded and executed during the  
following Q1 through Q4. The clocks and instruction  
execution flow is shown in Figure 3-2.  
A fetch cycle begins with the program counter (PC)  
incrementing in Q1.  
In the execution cycle, the fetched instruction is latched  
into the “Instruction Register (IR)” in cycle Q1. This  
instruction is then decoded and executed during the  
Q2, Q3 and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
FIGURE 3-2:  
CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Internal  
phase  
clock  
Q4  
PC  
PC  
PC+1  
PC+2  
OSC2/CLKOUT  
(RC mode)  
Fetch INST (PC)  
Execute INST (PC-1)  
Fetch INST (PC+1)  
Execute INST (PC)  
Fetch INST (PC+2)  
Execute INST (PC+1)  
EXAMPLE 3-1:  
INSTRUCTION PIPELINE FLOW  
1. MOVLW 55h  
Fetch 1  
Execute 1  
Fetch 2  
2. MOVWF PORTB  
Execute 2  
Fetch 3  
3. CALL SUB_1  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3  
Flush  
Fetch SUB_1  
Execute SUB_1  
Note:  
All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction  
is “flushed” from the pipeline, while the new instruction is being fetched and then executed.  
DS30235J-page 12  
2003 Microchip Technology Inc.  
PIC16C62X  
FIGURE 4-2:  
PROGRAM MEMORY MAP  
AND STACK FOR THE  
PIC16C621/PIC16C621A  
4.0  
MEMORY ORGANIZATION  
4.1  
Program Memory Organization  
The PIC16C62X has a 13-bit program counter capable  
of addressing an 8K x 14 program memory space. Only  
PC<12:0>  
13  
CALL, RETURN  
RETFIE, RETLW  
the first 512  
x 14 (0000h - 01FFh) for the  
PIC16C620(A) and PIC16CR620, 1K x 14 (0000h -  
03FFh) for the PIC16C621(A) and 2K x 14 (0000h -  
07FFh) for the PIC16C622(A) are physically  
Stack Level 1  
Stack Level 2  
implemented. Accessing  
a location above these  
boundaries will cause a wrap-around within the first  
512 x 14 space (PIC16C(R)620(A)) or 1K x 14 space  
(PIC16C621(A)) or 2K x 14 space (PIC16C622(A)).  
The RESET vector is at 0000h and the interrupt vector  
is at 0004h (Figure 4-1, Figure 4-2, Figure 4-3).  
Stack Level 8  
RESET Vector  
000h  
FIGURE 4-1:  
PROGRAM MEMORY MAP  
AND STACK FOR THE  
PIC16C620/PIC16C620A/  
PIC16CR620A  
Interrupt Vector  
0004  
0005  
On-Chip Program  
Memory  
PC<12:0>  
13  
CALL, RETURN  
RETFIE, RETLW  
03FFh  
0400h  
Stack Level 1  
Stack Level 2  
1FFFh  
FIGURE 4-3:  
PROGRAM MEMORY MAP  
AND STACK FOR THE  
PIC16C622/PIC16C622A  
Stack Level 8  
RESET Vector  
000h  
PC<12:0>  
13  
CALL, RETURN  
RETFIE, RETLW  
Stack Level 1  
Stack Level 2  
Interrupt Vector  
0004  
0005  
Stack Level 8  
RESET Vector  
On-Chip Program  
Memory  
000h  
01FFh  
0200h  
Interrupt Vector  
0004  
0005  
1FFFh  
On-Chip Program  
Memory  
07FFh  
0800h  
1FFFh  
2003 Microchip Technology Inc.  
DS30235J-page 13  
PIC16C62X  
4.2.1  
GENERAL PURPOSE REGISTER  
FILE  
4.2  
Data Memory Organization  
The data memory (Figure 4-4, Figure 4-5, Figure 4-6  
and Figure 4-7) is partitioned into two banks, which  
contain the General Purpose Registers and the Special  
Function Registers. Bank 0 is selected when the RP0  
bit is cleared. Bank 1 is selected when the RP0 bit  
(STATUS <5>) is set. The Special Function Registers  
are located in the first 32 locations of each bank.  
Register locations 20-7Fh (Bank0) on the  
PIC16C620A/CR620A/621A and 20-7Fh (Bank0) and  
A0-BFh (Bank1) on the PIC16C622 and PIC16C622A  
are General Purpose Registers implemented as static  
RAM. Some Special Purpose Registers are mapped in  
Bank 1.  
The register file is organized as 80 x 8 in the  
PIC16C620/621, 96 x 8 in the PIC16C620A/621A/  
CR620A and 128 x 8 in the PIC16C622(A). Each is  
accessed either directly or indirectly through the File  
Select Register FSR (Section 4.4).  
Addresses F0h-FFh of bank1 are implemented as  
common ram and mapped back to addresses 70h-7Fh  
in bank0 on the PIC16C620A/621A/622A/CR620A.  
DS30235J-page 14  
2003 Microchip Technology Inc.  
PIC16C62X  
FIGURE 4-4:  
DATA MEMORY MAP FOR  
THE PIC16C620/621  
FIGURE 4-5:  
DATA MEMORY MAP FOR  
THE PIC16C622  
File  
Address  
File  
Address  
File  
Address  
File  
Address  
(1)  
(1)  
(1)  
(1)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
INDF  
TMR0  
PCL  
INDF  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
INDF  
INDF  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
OPTION  
PCL  
TMR0  
PCL  
OPTION  
PCL  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
TRISA  
TRISB  
PORTA  
PORTB  
TRISA  
TRISB  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
PCON  
PCON  
CMCON  
VRCON  
CMCON  
VRCON  
A0h  
A0h  
General  
Purpose  
Register  
General  
Purpose  
Register  
General  
Purpose  
Register  
6Fh  
70h  
BFh  
C0h  
FFh  
FFh  
7Fh  
7Fh  
Bank 0  
Bank 1  
Bank 0  
Bank 1  
Unimplemented data memory locations, read as '0'.  
Unimplemented data memory locations, read as '0'.  
Note 1: Not a physical register.  
Note 1: Not a physical register.  
2003 Microchip Technology Inc.  
DS30235J-page 15  
PIC16C62X  
FIGURE 4-6: DATA MEMORY MAP FOR THE  
PIC16C620A/CR620A/621A  
FIGURE 4-7:  
DATA MEMORY MAP FOR  
THE PIC16C622A  
File  
Address  
File  
Address  
File  
Address  
File  
Address  
(1)  
(1)  
(1)  
(1)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
INDF  
INDF  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
INDF  
INDF  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
TMR0  
PCL  
OPTION  
PCL  
TMR0  
PCL  
OPTION  
PCL  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
TRISA  
TRISB  
PORTA  
PORTB  
TRISA  
TRISB  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
PCON  
PCON  
CMCON  
VRCON  
CMCON  
VRCON  
A0h  
A0h  
General  
Purpose  
Register  
General  
Purpose  
Register  
General  
Purpose  
Register  
BFh  
C0h  
6Fh  
70h  
6Fh  
70h  
F0h  
FFh  
F0h  
FFh  
General  
Purpose  
Register  
General  
Purpose  
Register  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
7Fh  
7Fh  
Bank 0  
Bank 1  
Bank 0  
Bank 1  
Unimplemented data memory locations, read as '0'.  
Unimplemented data memory locations, read as '0'.  
Note 1: Not a physical register.  
Note 1: Not a physical register.  
DS30235J-page 16  
2003 Microchip Technology Inc.  
PIC16C62X  
The Special Function Registers can be classified into  
two sets (core and peripheral). The Special Function  
Registers associated with the “core” functions are  
described in this section. Those related to the operation  
of the peripheral features are described in the section  
of that peripheral feature.  
4.2.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers are registers used by  
the CPU and Peripheral functions for controlling the  
desired operation of the device (Table 4-1). These  
registers are static RAM.  
TABLE 4-1:  
SPECIAL REGISTERS FOR THE PIC16C62X  
Value on all  
Value on  
other  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR Reset  
RESETS(1)  
Bank 0  
00h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical xxxx xxxx  
register)  
xxxx xxxx  
01h  
02h  
03h  
04h  
05h  
06h  
TMR0  
PCL  
Timer0 Module’s Register  
xxxx xxxx  
uuuu uuuu  
0000 0000  
000q quuu  
uuuu uuuu  
---u 0000  
uuuu uuuu  
Program Counter's (PC) Least Significant Byte  
0000 0000  
STATUS  
FSR  
IRP(2)  
RP1(2)  
RP0  
TO  
PD  
Z
DC  
C
0001 1xxx  
xxxx xxxx  
---x 0000  
xxxx xxxx  
Indirect data memory address pointer  
PORTA  
PORTB  
RA4  
RB4  
RA3  
RB3  
RA2  
RB2  
RA1  
RB1  
RA0  
RB0  
RB7  
RB6  
RB5  
07h-09h Unimplemented  
0Ah  
0Bh  
0Ch  
PCLATH  
INTCON  
PIR1  
GIE  
T0IE  
Write buffer for upper 5 bits of program counter  
---0 0000  
0000 000x  
-0-- ----  
---0 0000  
0000 000u  
-0-- ----  
PEIE  
CMIF  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0Dh-1Eh Unimplemented  
1Fh  
CMCON  
C2OUT  
C1OUT  
CIS  
CM2  
CM1  
CM0  
00-- 0000  
00-- 0000  
Bank 1  
80h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical  
register)  
xxxx xxxx  
xxxx xxxx  
81h  
82h  
83h  
84h  
85h  
86h  
OPTION  
PCL  
RBPU  
Program Counter's (PC) Least Significant Byte  
IRP(2) RP1(2)  
RP0 TO  
Indirect data memory address pointer  
TRISA4 TRISA3 TRISA2 TRISA1 TRISA0  
TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
1111 1111  
0000 0000  
0001 1xxx  
xxxx xxxx  
---1 1111  
1111 1111  
1111 1111  
0000 0000  
000q quuu  
uuuu uuuu  
---1 1111  
1111 1111  
STATUS  
FSR  
PD  
Z
DC  
C
TRISA  
TRISB  
87h-89h Unimplemented  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
PCLATH  
INTCON  
PIE1  
GIE  
T0IE  
Write buffer for upper 5 bits of program counter  
---0 0000  
0000 000x  
-0-- ----  
---0 0000  
0000 000u  
-0-- ----  
PEIE  
CMIE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
Unimplemented  
PCON  
POR  
BOR  
VR0  
---- --0x  
---- --uq  
8Fh-9Eh Unimplemented  
9Fh VRCON  
VREN  
VROE  
VRR  
VR3  
VR2  
VR1  
000- 0000  
000- 0000  
Legend: — = Unimplemented locations read as ‘0’, u= unchanged, x= unknown,  
q= value depends on condition, shaded = unimplemented  
Note 1: Other (non Power-up) Resets include MCLR Reset, Brown-out Reset and Watchdog Timer Reset during  
normal operation.  
2: IRP & RP1 bits are reserved; always maintain these bits clear.  
2003 Microchip Technology Inc.  
DS30235J-page 17  
PIC16C62X  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register, because these instructions do not  
affect any STATUS bit. For other instructions not  
affecting any STATUS bits, see the “Instruction Set  
Summary”.  
4.2.2.1  
STATUS Register  
The STATUS register, shown in Register 4-1, contains  
the arithmetic status of the ALU, the RESET status and  
the bank select bits for data memory.  
The STATUS register can be the destination for any  
instruction, like any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 1: The IRP and RP1 bits (STATUS<7:6>)  
are not used by the PIC16C62X and  
should be programmed as ’0'. Use of  
these bits as general purpose R/W bits is  
NOT recommended, since this may affect  
upward compatibility with future products.  
2: The C and DC bits operate as a Borrow  
and Digit Borrow out bit, respectively, in  
subtraction. See the SUBLW and SUBWF  
instructions for examples.  
For example, CLRF STATUSwill clear the upper-three  
bits and set the Z bit. This leaves the STATUS register  
as 000uu1uu(where u= unchanged).  
REGISTER 4-1:  
STATUS REGISTER (ADDRESS 03H OR 83H)  
Reserved Reserved  
IRP RP1  
bit 7  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
bit 0  
bit 7  
IRP: Register Bank Select bit (used for indirect addressing)  
1= Bank 2, 3 (100h - 1FFh)  
0= Bank 0, 1 (00h - FFh)  
The IRP bit is reserved on the PIC16C62X; always maintain this bit clear.  
bit 6-5  
RP<1:0>: Register Bank Select bits (used for direct addressing)  
01= Bank 1 (80h - FFh)  
00= Bank 0 (00h - 7Fh)  
Each bank is 128 bytes. The RP1 bit is reserved on the PIC16C62X; always maintain this bit  
clear.  
bit 4  
bit 3  
bit 2  
bit 1  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction, or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions)(for borrow the polarity  
is reversed)  
1= A carry-out from the 4th low order bit of the result occurred  
0= No carry-out from the 4th low order bit of the result  
bit 0  
C: Carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions)  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note: For borrow the polarity is reversed. A subtraction is executed by adding the two’s  
complement of the second operand. For rotate (RRF, RLF) instructions, this bit is  
loaded with either the high or low order bit of the source register.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30235J-page 18  
2003 Microchip Technology Inc.  
PIC16C62X  
4.2.2.2  
OPTION Register  
Note: To achieve a 1:1 prescaler assignment for  
TMR0, assign the prescaler to the WDT  
(PSA = 1).  
The OPTION register is a readable and writable  
register, which contains various control bits to configure  
the TMR0/WDT prescaler, the external RB0/INT  
interrupt, TMR0 and the weak pull-ups on PORTB.  
REGISTER 4-2:  
OPTION REGISTER (ADDRESS 81H)  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RBPU: PORTB Pull-up Enable bit  
1= PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of RB0/INT pin  
0= Interrupt on falling edge of RB0/INT pin  
T0CS: TMR0 Clock Source Select bit  
1= Transition on RA4/T0CKI pin  
0= Internal instruction cycle clock (CLKOUT)  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on RA4/T0CKI pin  
0= Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS<2:0>: Prescaler Rate Select bits  
Bit Value  
TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 1  
1 : 2  
1 : 8  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR  
’0’ = Bit is cleared  
x = Bit is unknown  
2003 Microchip Technology Inc.  
DS30235J-page 19  
PIC16C62X  
4.2.2.3  
INTCON Register  
Note: Interrupt flag bits get set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>).  
The INTCON register is a readable and writable  
register, which contains the various enable and flag bits  
for all interrupt sources except the comparator module.  
See Section 4.2.2.4 and Section 4.2.2.5 for  
description of the comparator enable and flag bits.  
a
REGISTER 4-3:  
INTCON REGISTER (ADDRESS 0BH OR 8BH)  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
RBIE  
R/W-0  
T0IF  
R/W-0  
INTF  
R/W-x  
RBIF  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
GIE: Global Interrupt Enable bit  
1= Enables all un-masked interrupts  
0= Disables all interrupts  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all un-masked peripheral interrupts  
0= Disables all peripheral interrupts  
T0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 interrupt  
0= Disables the TMR0 interrupt  
INTE: RB0/INT External Interrupt Enable bit  
1= Enables the RB0/INT external interrupt  
0= Disables the RB0/INT external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
T0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INTF: RB0/INT External Interrupt Flag bit  
1= The RB0/INT external interrupt occurred (must be cleared in software)  
0= The RB0/INT external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1= When at least one of the RB<7:4> pins changed state (must be cleared in software)  
0= None of the RB<7:4> pins have changed state  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30235J-page 20  
2003 Microchip Technology Inc.  
PIC16C62X  
4.2.2.4  
PIE1 Register  
This register contains the individual enable bit for the  
comparator interrupt.  
REGISTER 4-4:  
PIE1 REGISTER (ADDRESS 8CH)  
U-0  
R/W-0  
CMIE  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as '0'  
CMIE: Comparator Interrupt Enable bit  
1= Enables the Comparator interrupt  
0= Disables the Comparator interrupt  
bit 5-0  
Unimplemented: Read as '0'  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
4.2.2.5  
PIR1 Register  
This register contains the individual flag bit for the  
comparator interrupt.  
Note: Interrupt flag bits get set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User  
software should ensure the appropriate  
interrupt flag bits are clear prior to enabling  
an interrupt.  
REGISTER 4-5:  
PIR1 REGISTER (ADDRESS 0CH)  
U-0  
R/W-0  
CMIF  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as '0'  
CMIF: Comparator Interrupt Flag bit  
1= Comparator input has changed  
0= Comparator input has not changed  
bit 5-0  
Unimplemented: Read as '0'  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR  
’0’ = Bit is cleared  
x = Bit is unknown  
2003 Microchip Technology Inc.  
DS30235J-page 21  
PIC16C62X  
4.2.2.6  
PCON Register  
The PCON register contains flag bits to differentiate  
between a Power-on Reset, an external MCLR Reset,  
WDT Reset or a Brown-out Reset.  
Note: BOR is unknown on Power-on Reset. It  
must then be set by the user and checked  
on subsequent RESETS to see if BOR is  
cleared, indicating  
a
brown-out has  
occurred. The BOR STATUS bit is a "don't  
care" and is not necessarily predictable if  
the brown-out circuit is disabled (by  
programming BODEN  
Configuration word).  
bit  
in  
the  
REGISTER 4-6:  
PCON REGISTER (ADDRESS 8Eh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
POR  
R/W-0  
BOR  
bit 7  
bit 0  
bit 7-2  
bit 1  
Unimplemented: Read as '0'  
POR: Power-on Reset STATUS bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0  
BOR: Brown-out Reset STATUS bit  
1= No Brown-out Reset occurred  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30235J-page 22  
2003 Microchip Technology Inc.  
PIC16C62X  
4.3.2  
STACK  
4.3  
PCL and PCLATH  
The PIC16C62X family has an 8-level deep x 13-bit  
wide hardware stack (Figure 4-2 and Figure 4-3). The  
stack space is not part of either program or data space  
and the stack pointer is not readable or writable. The  
PC is PUSHed onto the stack when a CALLinstruction  
is executed or an interrupt causes a branch. The stack  
is POPed in the event of a RETURN, RETLW or a  
RETFIEinstruction execution. PCLATH is not affected  
by a PUSHor POPoperation.  
The program counter (PC) is 13-bits wide. The low byte  
comes from the PCL register, which is a readable and  
writable register. The high byte (PC<12:8>) is not  
directly readable or writable and comes from PCLATH.  
On any RESET, the PC is cleared. Figure 4-8 shows  
the two situations for the loading of the PC. The upper  
example in the figure shows how the PC is loaded on a  
write to PCL (PCLATH<4:0> PCH). The lower  
example in the figure shows how the PC is loaded  
during a CALL or GOTO instruction (PCLATH<4:3> →  
PCH).  
The stack operates as a circular buffer. This means that  
after the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
FIGURE 4-8:  
LOADING OF PC IN  
DIFFERENT SITUATIONS  
Note 1: There are no STATUS bits to indicate  
stack overflow or stack underflow  
conditions.  
PCH  
PCL  
12  
8
7
0
Instruction with  
PCL as  
PC  
2: There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the  
CALL, RETURN, RETLW and RETFIE  
instructions, or the vectoring to an  
interrupt address.  
Destination  
8
ALU result  
PCLATH<4:0>  
PCLATH  
5
PCH  
12 11 10  
PC  
PCL  
8
7
0
GOTO,CALL  
PCLATH<4:3>  
PCLATH  
11  
2
Opcode <10:0>  
4.3.1  
COMPUTED GOTO  
A computed GOTO is accomplished by adding an  
offset to the program counter (ADDWF PCL). When  
doing a table read using a computed GOTO method,  
care should be exercised if the table location crosses a  
PCL memory boundary (each 256 byte block). Refer to  
the application note, “Implementing a Table Read"  
(AN556).  
2003 Microchip Technology Inc.  
DS30235J-page 23  
PIC16C62X  
EXAMPLE 4-1:  
INDIRECT ADDRESSING  
4.4  
Indirect Addressing, INDF and  
FSR Registers  
movlw  
movwf  
0x20  
;initialize pointer  
;to RAM  
FSR  
The INDF register is not a physical register. Addressing  
the INDF register will cause indirect addressing.  
NEXT clrf  
incf  
INDF  
FSR  
;clear INDF register  
;inc pointer  
btfss  
FSR,7  
NEXT  
;all done?  
Indirect addressing is possible by using the INDF  
register. Any instruction using the INDF register  
actually accesses data pointed to by the File Select  
Register (FSR). Reading INDF itself indirectly will  
produce 00h. Writing to the INDF register indirectly  
results in a no-operation (although STATUS bits may  
be affected). An effective 9-bit address is obtained by  
concatenating the 8-bit FSR register and the IRP bit  
(STATUS<7>), as shown in Figure 4-9. However, IRP  
is not used in the PIC16C62X.  
goto  
;no clear next  
;yes continue  
CONTINUE:  
A simple program to clear RAM location 20h-7Fh using  
indirect addressing is shown in Example 4-1.  
FIGURE 4-9:  
DIRECT/INDIRECT ADDRESSING PIC16C62X  
Direct Addressing  
from opcode  
Indirect Addressing  
RP1 RP0(1)  
bank select  
6
0
0
IRP(1)  
FSR register  
7
bank select  
location select  
location select  
00  
01  
10  
11  
00h  
180h  
not used  
Data  
Memory  
7Fh  
1FFh  
Bank 0  
Bank 1 Bank 2  
Bank 3  
For memory map detail see (Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7).  
Note 1: The RP1 and IRP bits are reserved; always maintain these bits clear.  
DS30235J-page 24  
2003 Microchip Technology Inc.  
PIC16C62X  
5.0  
I/O PORTS  
Note: On RESET, the TRISA register is set to all  
inputs. The digital inputs are disabled and  
the comparator inputs are forced to ground  
to reduce excess current consumption.  
The PIC16C62X have two ports, PORTA and PORTB.  
Some pins for these I/O ports are multiplexed with an  
alternate function for the peripheral features on the  
device. In general, when a peripheral is enabled, that  
pin may not be used as a general purpose I/O pin.  
TRISA controls the direction of the RA pins, even when  
they are being used as comparator inputs. The user  
must make sure to keep the pins configured as inputs  
when using them as comparator inputs.  
5.1  
PORTA and TRISA Registers  
PORTA is a 5-bit wide latch. RA4 is a Schmitt Trigger  
input and an open drain output. Port RA4 is multiplexed  
with the T0CKI clock input. All other RA port pins have  
Schmitt Trigger input levels and full CMOS output  
drivers. All pins have data direction bits (TRIS regis-  
ters), which can configure these pins as input or output.  
The RA2 pin will also function as the output for the  
voltage reference. When in this mode, the VREF pin is a  
very high impedance output and must be buffered prior  
to any external load. The user must configure  
TRISA<2> bit as an input and use high impedance  
loads.  
A '1' in the TRISA register puts the corresponding out-  
put driver in a Hi-impedance mode. A '0' in the TRISA  
register puts the contents of the output latch on the  
selected pin(s).  
In one of the Comparator modes defined by the  
CMCON register, pins RA3 and RA4 become outputs  
of the comparators. The TRISA<4:3> bits must be  
cleared to enable outputs to use this function.  
Reading the PORTA register reads the status of the  
pins, whereas writing to it will write to the port latch. All  
write operations are read-modify-write operations. So a  
write to a port implies that the port pins are first read,  
then this value is modified and written to the port data  
latch.  
EXAMPLE 5-1:  
INITIALIZING PORTA  
CLRF  
PORTA  
;Initialize PORTA by setting  
;output data latches  
MOVLW  
MOVWF  
0X07  
;Turn comparators off and  
CMCON  
;enable pins for I/O  
;functions  
The PORTA pins are multiplexed with comparator and  
voltage reference functions. The operation of these  
pins are selected by control bits in the CMCON  
(comparator control register) register and the VRCON  
(voltage reference control register) register. When  
selected as a comparator input, these pins will read  
as '0's.  
BSF  
STATUS, RP0 ;Select Bank1  
MOVLW  
0x1F  
;Value used to initialize  
;data direction  
MOVWF  
TRISA  
;Set RA<4:0> as inputs  
;TRISA<7:5> are always  
;read as '0'.  
FIGURE 5-1:  
BLOCK DIAGRAM OF  
RA1:RA0 PINS  
FIGURE 5-2: BLOCK DIAGRAM OF RA2 PIN  
Data  
Bus  
Data  
Bus  
D
Q
Q
D
Q
Q
VDD  
VDD  
WR  
PORTA  
CK  
VDD  
VDD  
WR  
PORTA  
P
Data Latch  
CK  
P
D
Q
Data Latch  
RA2  
Pin  
N
WR  
TRISA  
D
Q
I/O  
Pin  
Q
CK  
VSS  
N
WR  
TRISA  
VSS  
TRIS Latch  
CK  
TRIS Latch  
Q
Analog  
Input Mode  
VSS  
VSS  
Analog  
Input Mode  
Schmitt Trigger  
Input Buffer  
RD TRISA  
Schmitt Trigger  
Input Buffer  
Q
D
RD TRISA  
EN  
Q
D
RD PORTA  
EN  
To Comparator  
RD PORTA  
VROE  
VREF  
To Comparator  
2003 Microchip Technology Inc.  
DS30235J-page 25  
PIC16C62X  
FIGURE 5-3:  
BLOCK DIAGRAM OF RA3 PIN  
Data  
Bus  
Comparator Mode = 110  
Comparator Output  
D
Q
Q
VDD  
VDD  
WR  
PORTA  
CK  
P
Data Latch  
D
Q
RA3 Pin  
N
WR  
TRISA  
CK  
Q
VSS  
VSS  
TRIS Latch  
Analog  
Input Mode  
Schmitt Trigger  
Input Buffer  
RD TRISA  
Q
D
EN  
RD PORTA  
To Comparator  
FIGURE 5-4:  
BLOCK DIAGRAM OF RA4 PIN  
Data  
Bus  
Comparator Mode = 110  
Comparator Output  
D
Q
Q
WR  
PORTA  
CK  
Data Latch  
D
Q
RA4 Pin  
N
WR  
TRISA  
CK  
Q
VSS  
VSS  
TRIS Latch  
Schmitt Trigger  
Input Buffer  
RD TRISA  
Q
D
EN  
RD PORTA  
TMR0 Clock Input  
DS30235J-page 26  
2003 Microchip Technology Inc.  
PIC16C62X  
TABLE 5-1:  
PORTA FUNCTIONS  
Buffer  
Name  
Bit #  
Type  
Function  
RA0/AN0  
Input/output or comparator input  
Input/output or comparator input  
bit0  
bit1  
bit2  
bit3  
ST  
ST  
ST  
ST  
RA1/AN1  
RA2/AN2/VREF  
RA3/AN3  
Input/output or comparator input or VREF output  
Input/output or comparator input/output  
RA4/T0CKI  
Input/output or external clock input for TMR0 or comparator output.  
Output is open drain type.  
bit4  
ST  
Legend: ST = Schmitt Trigger input  
TABLE 5-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on  
All Other  
RESETS  
Value on  
POR  
Address Name  
Bit 7  
Bit 6 Bit 5 Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
---x 0000 ---u 0000  
---1 1111 ---1 1111  
05h  
85h  
PORTA  
TRISA  
RA4  
RA3  
RA2  
RA1  
RA0  
TRISA TRISA TRISA TRISA TRISA  
1
4
3
2
0
00-- 0000 00-- 0000  
000- 0000 000- 0000  
1Fh  
9Fh  
CMCON  
VRCON  
C2OUT C1OUT  
CIS  
VR3  
CM2  
VR2  
CM1  
VR1  
CM0  
VR0  
VREN VROE VRR  
Legend: — = Unimplemented locations, read as ‘0’, u = unchanged, x = unknown  
Note: Shaded bits are not used by PORTA.  
2003 Microchip Technology Inc.  
DS30235J-page 27  
PIC16C62X  
This interrupt can wake the device from SLEEP. The  
user, in the interrupt service routine, can clear the  
interrupt in the following manner:  
5.2  
PORTB and TRISB Registers  
PORTB is an 8-bit wide, bi-directional port. The  
corresponding data direction register is TRISB. A '1' in  
the TRISB register puts the corresponding output driver  
in a High Impedance mode. A '0' in the TRISB register  
puts the contents of the output latch on the selected  
pin(s).  
a) Any read or write of PORTB. This will end the  
mismatch condition.  
b) Clear flag bit RBIF.  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition and  
allow flag bit RBIF to be cleared.  
Reading PORTB register reads the status of the pins,  
whereas writing to it will write to the port latch. All write  
operations are read-modify-write operations. So a write  
to a port implies that the port pins are first read, then  
this value is modified and written to the port data latch.  
This interrupt on mismatch feature, together with  
software configurable pull-ups on these four pins allow  
easy interface to a key pad and make it possible for  
wake-up on key-depression. (See AN552, “Implement-  
ing Wake-Up on Key Strokes.)  
Each of the PORTB pins has a weak internal pull-up  
(200 µA typical). A single control bit can turn on all the  
pull-ups. This is done by clearing the RBPU  
(OPTION<7>) bit. The weak pull-up is automatically  
turned off when the port pin is configured as an output.  
The pull-ups are disabled on Power-on Reset.  
Note: If a change on the I/O pin should occur  
when the read operation is being executed  
(start of the Q2 cycle), then the RBIF inter-  
rupt flag may not get set.  
Four of PORTB’s pins, RB<7:4>, have an interrupt on  
change feature. Only pins configured as inputs can  
cause this interrupt to occur (e.g., any RB<7:4> pin  
configured as an output is excluded from the interrupt  
on change comparison). The input pins (of RB<7:4>)  
are compared with the old value latched on the last  
read of PORTB. The “mismatch” outputs of RB<7:4>  
are OR’ed together to generate the RBIF interrupt (flag  
latched in INTCON<0>).  
The interrupt-on-change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt on change  
feature. Polling of PORTB is not recommended while  
using the interrupt-on-change feature.  
FIGURE 5-6:  
BLOCK DIAGRAM OF  
RB<3:0> PINS  
VDD  
RBPU(1)  
FIGURE 5-5:  
BLOCK DIAGRAM OF  
RB<7:4> PINS  
weak  
P
pull-up  
VCC  
VDD  
RBPU(1)  
Data Latch  
weak  
pull-up  
Data Bus  
P
D
Q
VCC  
I/O  
pin  
WR PORTB  
Q
CK  
Data Latch  
VSS  
Data Bus  
D
Q
Q
D
I/O  
pin  
TTL  
Input  
Buffer  
WR PORTB  
CK Q  
WR TRISB  
VSS  
CK Q  
TRIS Latch  
D
Q
WR TRISB  
TTL  
Input  
Buffer  
Q
CK  
RD TRISB  
ST  
Buffer  
Q
D
EN  
RD PORTB  
RD TRISB  
Latch  
D
Q
Q
RB0/INT  
EN  
RD PORTB  
ST  
Buffer  
Set RBIF  
RD PORTB  
Note 1: TRISB = 1 enables weak pull-up if RBPU = '0'  
(OPTION<7>).  
From other  
RB<7:4> pins  
D
EN  
RD PORTB  
RB<7:6> in Serial Programming mode  
Note 1: TRISB = 1 enables weak pull-up if RBPU = '0'  
(OPTION<7>).  
DS30235J-page 28  
2003 Microchip Technology Inc.  
PIC16C62X  
TABLE 5-3:  
Name  
PORTB FUNCTIONS  
Bit #  
Buffer Type  
Function  
(1)  
RB0/INT  
bit0  
TTL/ST  
Input/output or external interrupt input. Internal software programmable  
weak pull-up.  
RB1  
RB2  
RB3  
RB4  
bit1  
bit2  
bit3  
bit4  
TTL  
TTL  
TTL  
TTL  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up.  
RB5  
RB6  
RB7  
bit5  
bit6  
bit7  
TTL  
Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up.  
(2)  
TTL/ST  
Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up. Serial programming clock pin.  
(2)  
TTL/ST  
Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up. Serial programming data pin.  
Legend: ST = Schmitt Trigger, TTL = TTL input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
TABLE 5-4:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on  
All Other  
RESETS  
Value on  
POR  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
06h  
86h  
81h  
PORTB  
TRISB  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
1111 1111 1111 1111  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0  
RBPU INTEDG T0CS T0SE PSA PS2 PS1 PS0  
OPTION  
Legend: u = unchanged, x = unknown  
Note 1: Shaded bits are not used by PORTB.  
2003 Microchip Technology Inc.  
DS30235J-page 29  
PIC16C62X  
EXAMPLE 5-2:  
READ-MODIFY-WRITE  
INSTRUCTIONS ON AN I/O  
PORT  
5.3  
I/O Programming Considerations  
5.3.1  
BI-DIRECTIONAL I/O PORTS  
;Initial PORT settings:  
;
PORTB<7:4> Inputs  
Any instruction which writes, operates internally as a  
read followed by a write operation. The BCFand BSF  
instructions, for example, read the register into the  
CPU, execute the bit operation and write the result  
back to the register. Caution must be used when these  
instructions are applied to a port with both inputs and  
outputs defined. For example, a BSFoperation on bit5  
of PORTB will cause all eight bits of PORTB to be read  
into the CPU. Then the BSFoperation takes place on  
bit5 and PORTB is written to the output latches. If  
another bit of PORTB is used as a bi-directional I/O pin  
(e.g., bit0) and it is defined as an input at this time, the  
input signal present on the pin itself would be read into  
the CPU and re-written to the data latch of this  
particular pin, overwriting the previous content. As long  
as the pin stays in the Input mode, no problem occurs.  
However, if bit0 is switched into Output mode later on,  
the content of the data latch may now be unknown.  
;
PORTB<3:0> Outputs  
;PORTB<7:6> have external pull-up and are not  
;connected to other circuitry  
;
;
;
PORT latch PORT pins  
----------  
---------  
-
BCF PORTB, 7  
BCF PORTB, 6  
BSF STATUS,RP0  
BCF TRISB, 7  
BCF TRISB, 6  
;01pp pppp  
;10pp pppp  
;
11pp pppp  
11pp pppp  
;10pp pppp  
;10pp pppp  
11pp pppp  
10pp pppp  
;
;Note that the user may have expected the pin  
;values to be 00pp pppp. The 2nd BCF caused  
;RB7 to be latched as the pin value (High).  
Reading the port register reads the values of the port  
pins. Writing to the port register writes the value to the  
port latch. When using read-modify-write instructions  
(ex. BCF, BSF, etc.) on a port, the value of the port pins  
is read, the desired operation is done to this value, and  
this value is then written to the port latch.  
5.3.2  
SUCCESSIVE OPERATIONS ON I/O  
PORTS  
The actual write to an I/O port happens at the end of an  
instruction cycle, whereas for reading, the data must be  
valid at the beginning of the instruction cycle (Figure 5-7).  
Therefore, care must be exercised if a write followed by a  
read operation is carried out on the same I/O port. The  
sequence of instructions should be such to allow the pin  
voltage to stabilize (load dependent) before the next  
instruction which causes that file to be read into the CPU  
is executed. Otherwise, the previous state of that pin may  
be read into the CPU rather than the new state. When in  
doubt, it is better to separate these instructions with a NOP  
or another instruction not accessing this I/O port.  
Example 5-2 shows the effect of two sequential read-  
modify-write instructions (ex., BCF, BSF, etc.) on an  
I/O port.  
A pin actively outputting a Low or High should not be  
driven from external devices at the same time in order  
to change the level on this pin (“wired-or”, “wired-and”).  
The resulting high output currents may damage  
the chip.  
FIGURE 5-7:  
SUCCESSIVE I/O OPERATION  
Note:  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
This example shows write to PORTB  
followed by a read from PORTB.  
PC  
PC+2  
PC+3  
PC+1  
PC  
Instruction  
MOVWF, PORTB  
MOVF, PORTB, W  
N
OP  
NOP  
Note that:  
fetched  
Write to  
Read PORTB  
data setup time = (0.25 TCY - TPD)  
where TCY = instruction cycle and  
TPD = propagation delay of Q1  
cycle to output valid.  
PORTB  
RB<7:0>  
Port pin  
Therefore, at higher clock frequen-  
cies, a write followed by a read may  
be problematic.  
sampled here  
TPD  
Execute  
Execute  
Execute  
M VW  
F
M
O
V
PORTB, W  
NOP  
PORTB  
DS30235J-page 30  
2003 Microchip Technology Inc.  
PIC16C62X  
The prescaler is shared between the Timer0 module  
and the Watchdog Timer. The prescaler assignment is  
controlled in software by the control bit PSA  
(OPTION<3>). Clearing the PSA bit will assign the  
prescaler to Timer0. The prescaler is not readable or  
writable. When the prescaler is assigned to the Timer0  
module, prescale value of 1:2, 1:4, ..., 1:256 are  
selectable. Section 6.3 details the operation of the  
prescaler.  
6.0  
TIMER0 MODULE  
The Timer0 module timer/counter has the following  
features:  
• 8-bit timer/counter  
• Readable and writable  
• 8-bit software programmable prescaler  
• Internal or external clock select  
• Interrupt on overflow from FFh to 00h  
• Edge select for external clock  
6.1  
TIMER0 Interrupt  
Figure 6-1 is a simplified block diagram of the Timer0  
module.  
Timer0 interrupt is generated when the TMR0 register  
timer/counter overflows from FFh to 00h. This overflow  
sets the T0IF bit. The interrupt can be masked by  
clearing the T0IE bit (INTCON<5>). The T0IF bit  
(INTCON<2>) must be cleared in software by the  
Timer0 module interrupt service routine before re-  
enabling this interrupt. The Timer0 interrupt cannot  
wake the processor from SLEEP, since the timer is shut  
off during SLEEP. See Figure 6-4 for Timer0 interrupt  
timing.  
Timer mode is selected by clearing the T0CS bit  
(OPTION<5>). In Timer mode, the TMR0 will increment  
every instruction cycle (without prescaler). If Timer0 is  
written, the increment is inhibited for the following two  
cycles (Figure 6-2 and Figure 6-3). The user can work  
around this by writing an adjusted value to TMR0.  
Counter mode is selected by setting the T0CS bit. In  
this mode, Timer0 will increment either on every rising  
or falling edge of pin RA4/T0CKI. The incrementing  
edge is determined by the source edge (T0SE) control  
bit (OPTION<4>). Clearing the T0SE bit selects the  
rising edge. Restrictions on the external clock input are  
discussed in detail in Section 6.2.  
FIGURE 6-1:  
TIMER0 BLOCK DIAGRAM  
Data Bus  
RA4/T0CKI  
pin  
FOSC/4  
0
1
PSout  
8
1
0
Sync with  
Internal  
clocks  
TMR0  
Programmable  
Prescaler  
PSout  
(2 Tcy delay)  
T0SE  
Set Flag bit T0IF  
on Overflow  
PS<2:0>  
PSA  
T0CS  
Note 1: Bits T0SE, T0CS, PS2, PS1, PS0 and PSA are located in the OPTION register.  
2: The prescaler is shared with Watchdog Timer (Figure 6-6).  
FIGURE 6-2:  
TIMER0 (TMR0) TIMING: INTERNAL CLOCK/NO PRESCALER  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
(Program  
Counter)  
PC-1  
PC  
PC+1  
PC+2  
PC+3  
PC+4  
PC+5  
PC+6  
Instruction  
Fetch  
MOVF TMR0,WMOVF TMR0,WMOVF TMR0,WMOVF TMR0,WMOVF TMR0,W  
MOVWF TMR0  
T0  
NT0  
T0+1  
T0+2  
NT0+1  
NT0+2  
TMR0  
Instruction  
Executed  
Read TMR0  
reads NT0 + 1  
Read TMR0 Read TMR0 Read TMR0  
reads NT0  
Read TMR0  
reads NT0 + 2  
Write TMR0  
executed  
reads NT0  
reads NT0  
2003 Microchip Technology Inc.  
DS30235J-page 31  
PIC16C62X  
FIGURE 6-3:  
TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
(Program  
Counter)  
PC-1  
PC  
PC+1  
PC+2  
PC+3  
PC+4  
PC+5  
PC+6  
MOVF TMR0,WMOVF TMR0,WMOVF TMR0,WMOVF TMR0,WMOVF TMR0,W  
MOVWF TMR0  
Instruction  
Fetch  
T0  
T0+1  
NT0+1  
TMR0  
NT0  
Instruction  
Execute  
Read TMR0  
reads NT0  
Read TMR0 Read TMR0 Read TMR0  
reads NT0 reads NT0 reads NT0  
Read TMR0  
reads NT0 + 1  
Write TMR0  
executed  
FIGURE 6-4:  
TIMER0 INTERRUPT TIMING  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
OSC1  
CLKOUT(3)  
TMR0 timer  
FEh  
1
FFh  
1
00h  
01h  
02h  
T0IF bit  
(INTCON<2>)  
GIE bit  
(INTCON<7>)  
Interrupt Latency Time(2)  
PC +1  
INSTRUCTION FLOW  
PC  
PC  
PC +1  
0004h  
0005h  
Instruction  
fetched  
Inst (PC)  
Inst (PC+1)  
Inst (0004h)  
Inst (0005h)  
Inst (0004h)  
Instruction  
executed  
Inst (PC-1)  
Dummy cycle  
Dummy cycle  
Inst (PC)  
Note 1: T0IF interrupt flag is sampled here (every Q1).  
2: Interrupt latency = 3TCY, where TCY = instruction cycle time.  
3: CLKOUT is available only in RC Oscillator mode.  
DS30235J-page 32  
2003 Microchip Technology Inc.  
PIC16C62X  
When a prescaler is used, the external clock input is  
divided by the asynchronous ripple-counter type  
prescaler, so that the prescaler output is symmetrical.  
For the external clock to meet the sampling  
requirement, the ripple-counter must be taken into  
account. Therefore, it is necessary for T0CKI to have a  
period of at least 4TOSC (and a small RC delay of 40 ns)  
divided by the prescaler value. The only requirement  
on T0CKI high and low time is that they do not violate  
the minimum pulse width requirement of 10 ns. Refer to  
parameters 40, 41 and 42 in the electrical specification  
of the desired device.  
6.2  
Using Timer0 with External Clock  
When an external clock input is used for Timer0, it must  
meet certain requirements. The external clock  
requirement is due to internal phase clock (TOSC)  
synchronization. Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
6.2.1  
EXTERNAL CLOCK  
SYNCHRONIZATION  
When no prescaler is used, the external clock input is  
the same as the prescaler output. The synchronization  
of T0CKI with the internal phase clocks is  
accomplished by sampling the prescaler output on the  
Q2 and Q4 cycles of the internal phase clocks  
(Figure 6-5). Therefore, it is necessary for T0CKI to be  
high for at least 2TOSC (and a small RC delay of 20 ns)  
and low for at least 2TOSC (and a small RC delay of  
20 ns). Refer to the electrical specification of the  
desired device.  
6.2.2  
TIMER0 INCREMENT DELAY  
Since the prescaler output is synchronized with the  
internal clocks, there is a small delay from the time the  
external clock edge occurs to the time the TMR0 is  
actually incremented. Figure 6-5 shows the delay from  
the external clock edge to the timer incrementing.  
FIGURE 6-5:  
TIMER0 TIMING WITH EXTERNAL CLOCK  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Small pulse  
misses sampling  
External Clock Input or  
Prescaler output (2)  
(1)  
(3)  
External Clock/Prescaler  
Output after sampling  
Increment Timer0 (Q4)  
Timer0  
T0  
T0 + 1  
T0 + 2  
Note 1: Delay from clock input change to Timer0 increment is 3Tosc to 7Tosc. (Duration of Q = Tosc).  
Therefore, the error in measuring the interval between two edges on Timer0 input = 4Tosc max.  
2: External clock if no prescaler selected, Prescaler output otherwise.  
3: The arrows indicate the points in time where sampling occurs.  
2003 Microchip Technology Inc.  
DS30235J-page 33  
PIC16C62X  
The PSA and PS<2:0> bits (OPTION<3:0>) determine  
the prescaler assignment and prescale ratio.  
6.3  
Prescaler  
An 8-bit counter is available as a prescaler for the  
Timer0 module, or as a postscaler for the Watchdog  
Timer, respectively (Figure 6-6). For simplicity, this  
counter is being referred to as “prescaler” throughout  
this data sheet. Note that there is only one prescaler  
available which is mutually exclusive between the  
Timer0 module and the Watchdog Timer. Thus, a  
prescaler assignment for the Timer0 module means  
that there is no prescaler for the Watchdog Timer and  
vice-versa.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g., CLRF 1,  
MOVWF 1, BSF 1,x....etc.) will clear the prescaler.  
When assigned to WDT, a CLRWDTinstruction will clear  
the prescaler along with the Watchdog Timer. The  
prescaler is not readable or writable.  
FIGURE 6-6:  
BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
Data Bus  
CLKOUT (= Fosc/4)  
8
M
1
0
0
1
U
X
M
T0CKI  
pin  
SYNC  
2
Cycles  
TMR0 reg  
U
X
T0SE  
T0CS  
Set flag bit T0IF  
on Overflow  
PSA  
0
1
8-bit Prescaler  
M
U
X
Watchdog  
Timer  
8
8-to-1MUX  
PS<2:0>  
PSA  
1
0
WDT Enable bit  
M U X  
PSA  
WDT  
Time-out  
Note: T0SE, T0CS, PSA, PS<2:0> are bits in the OPTION register.  
DS30235J-page 34  
2003 Microchip Technology Inc.  
PIC16C62X  
To change prescaler from the WDT to the TMR0  
module, use the sequence shown in Example 6-2. This  
precaution must be taken even if the WDT is disabled.  
6.3.1  
SWITCHING PRESCALER  
ASSIGNMENT  
The prescaler assignment is fully under software  
control (i.e., it can be changed “on-the-fly” during  
program execution). To avoid an unintended device  
EXAMPLE 6-2:  
CHANGING PRESCALER  
(WDTTIMER0)  
RESET, instruction  
(Example 6-1) must be executed when changing the  
the  
following  
sequence  
CLRWDT  
;Clear WDT and  
;prescaler  
prescaler assignment from Timer0 to WDT.)  
BSF  
MOVLW  
STATUS, RP0  
b'xxxx0xxx'  
;Select TMR0, new  
;prescale value and  
;clock source  
EXAMPLE 6-1:  
CHANGING PRESCALER  
(TIMER0WDT)  
MOVWF  
BCF  
OPTION_REG  
STATUS, RP0  
1.BCF  
STATUS, RP0  
;Skip if already in  
;Bank 0  
2.CLRWDT  
3.CLRF  
;Clear WDT  
TMR0  
;Clear TMR0 & Prescaler  
4.BSF  
STATUS, RP0  
'00101111’b;  
OPTION  
;Bank 1  
5.MOVLW  
6.MOVWF  
;These 3 lines (5, 6, 7)  
;are required only if  
;desired PS<2:0> are  
7.CLRWDT  
8.MOVLW  
9.MOVWF  
10.BCF  
;000 or 001  
'00101xxx’b  
OPTION  
;Set Postscaler to  
;desired WDT rate  
;Return to Bank 0  
STATUS, RP0  
TABLE 6-1:  
REGISTERS ASSOCIATED WITH TIMER0  
Value on  
All Other  
RESETS  
Value on  
POR  
Address Name  
Bit 7 Bit 6  
Bit 5 Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
01h  
TMR0  
Timer0 module register  
GIE PEIE T0IE  
RBPU INTEDG T0CS  
xxxx xxxx uuuu uuuu  
0000 000x 0000 000u  
0Bh/8Bh  
INTCON  
INTE  
T0SE  
RBIE  
PSA  
T0IF  
PS2  
INTF  
PS1  
RBIF  
PS0  
81h  
85h  
OPTION  
TRISA  
1111 1111 1111 1111  
---1 1111 ---1 1111  
TRISA4 TRISA3 TRISA2 TRISA1 TRISA0  
Legend: — = Unimplemented locations, read as ‘0’, u = unchanged, x = unknown  
Note: Shaded bits are not used by TMR0 module.  
2003 Microchip Technology Inc.  
DS30235J-page 35  
PIC16C62X  
NOTES:  
DS30235J-page 36  
2003 Microchip Technology Inc.  
PIC16C62X  
The CMCON register, shown in Register 7-1, controls  
the comparator input and output multiplexers. A block  
diagram of the comparator is shown in Figure 7-1.  
7.0  
COMPARATOR MODULE  
The comparator module contains two analog  
comparators. The inputs to the comparators are  
multiplexed with the RA0 through RA3 pins. The On-  
Chip Voltage Reference (Section 8.0) can also be an  
input to the comparators.  
REGISTER 7-1:  
CMCON REGISTER (ADDRESS 1Fh)  
R-0  
R-0  
U-0  
U-0  
R/W-0  
CIS  
R/W-0  
CM2  
R/W-0  
CM1  
R/W-0  
CM0  
C2OUT  
C1OUT  
bit 7  
bit 0  
bit 7  
bit 6  
C2OUT: Comparator 2 output  
1= C2 VIN+ > C2 VIN-  
0= C2 VIN+ < C2 VIN-  
C1OUT: Comparator 1 output  
1= C1 VIN+ > C1 VIN-  
0= C1 VIN+ < C1 VIN-  
bit 5-4  
bit 3  
Unimplemented: Read as ‘0’  
CIS: Comparator Input Switch  
When CM<2:0>: = 001:  
1= C1 VIN- connects to RA3  
0= C1 VIN- connects to RA0  
When CM<2:0> = 010:  
1= C1 VIN- connects to RA3  
C2 VIN- connects to RA2  
0= C1 VIN- connects to RA0  
C2 VIN- connects to RA1  
bit 2-0  
CM<2:0>: Comparator mode.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR  
’0’ = Bit is cleared  
x = Bit is unknown  
2003 Microchip Technology Inc.  
DS30235J-page 37  
PIC16C62X  
mode is changed, the comparator output level may not  
be valid for the specified mode change delay shown  
in Table 12-2.  
7.1  
Comparator Configuration  
There are eight modes of operation for the  
comparators. The CMCON register is used to select  
the mode. Figure 7-1 shows the eight possible modes.  
The TRISA register controls the data direction of the  
comparator pins for each mode. If the Comparator  
Note: Comparator interrupts should be disabled  
during a Comparator mode change other-  
wise a false interrupt may occur.  
FIGURE 7-1:  
COMPARATOR I/O OPERATING MODES  
VIN-  
VIN-  
A
A
D
-
-
Off  
(Read as '0')  
Off  
(Read as '0')  
RA0/AN0  
RA3/AN3  
RA0/AN0  
RA3/AN3  
C1  
C2  
C1  
C2  
VIN+  
VIN+  
D
+
+
VIN-  
VIN-  
A
A
D
D
-
-
Off  
(Read as '0')  
Off  
(Read as '0')  
RA1/AN1  
RA2/AN2  
RA1/AN1  
RA2/AN2  
VIN+  
VIN+  
+
+
CM<2:0> = 000  
C1OUT  
CM<2:0> = 111  
Comparators Reset  
Comparators Off  
VIN-  
A
A
A
-
RA0/AN0  
CIS=0  
CIS=1  
VIN-  
RA0/AN0  
RA3/AN3  
-
C1  
C2  
VIN+  
A
C1OUT  
RA3/AN3  
+
C1  
VIN+  
+
VIN-  
A
A
A
-
RA1/AN1  
CIS=0  
CIS=1  
VIN-  
RA1/AN1  
RA2/AN2  
-
C2OUT  
VIN+  
A
C2OUT  
RA2/AN2  
+
C2  
VIN+  
+
CM<2:0> = 100  
From VREF Module  
Two Independent Comparators  
Four Inputs Multiplexed to  
Two Comparators  
CM<2:0> = 010  
VIN-  
VIN-  
A
A
-
-
RA0/AN0  
RA0/AN0  
C1OUT  
C1OUT  
C1  
C2  
C1  
VIN+  
VIN+  
D
D
+
+
RA3/AN3  
RA3/AN3  
VIN-  
VIN-  
A
A
-
-
RA1/AN1  
RA1/AN1  
C2OUT  
C2OUT  
C2  
VIN+  
VIN+  
A
A
+
+
RA2/AN2  
RA2/AN2  
RA4 Open Drain  
CM<2:0> = 011  
CM<2:0> = 110  
Two Common Reference Comparators  
Two Common Reference Comparators with Outputs  
VIN-  
A
A
CIS=0  
VIN-  
D
-
RA0/AN0  
RA3/AN3  
Off  
(Read as '0')  
RA0/AN0  
-
C1  
VIN+  
CIS=1  
VIN+  
D
C1OUT  
+
C1  
C2  
RA3/AN3  
+
VIN-  
A
-
VIN-  
RA1/AN1  
A
A
-
C2OUT  
C2  
RA1/AN1  
RA2/AN2  
VIN+  
A
C2OUT  
+
VIN+  
RA2/AN2  
+
CM<2:0> = 101  
CM<2:0> = 001  
Three Inputs Multiplexed to  
Two Comparators  
One Independent Comparator  
A = Analog Input, Port Reads Zeros Always  
D = Digital Input  
CIS = CMCON<3>, Comparator Input Switch  
DS30235J-page 38  
2003 Microchip Technology Inc.  
PIC16C62X  
The code example in Example 7-1 depicts the steps  
required to configure the comparator module. RA3 and  
RA4 are configured as digital output. RA0 and RA1 are  
configured as the V- inputs and RA2 as the V+ input to  
both comparators.  
7.3  
Comparator Reference  
An external or internal reference signal may be used  
depending on the comparator Operating mode. The  
analog signal that is present at VIN- is compared to the  
signal at VIN+, and the digital output of the comparator  
is adjusted accordingly (Figure 7-2).  
EXAMPLE 7-1:  
INITIALIZING  
COMPARATOR MODULE  
FIGURE 7-2:  
SINGLE COMPARATOR  
MOVLW 0x03  
MOVWF CMCON  
;Init comparator mode  
;CM<2:0> = 011  
;Init PORTA  
CLRF  
BSF  
PORTA  
VIN+  
VIN-  
+
STATUS,RP0 ;Select Bank1  
Output  
MOVLW 0x07  
MOVWF TRISA  
;Initialize data direction  
;Set RA<2:0> as inputs  
;RA<4:3> as outputs  
;TRISA<7:5> always read ‘0’  
BCF  
CALL  
MOVF  
BCF  
BSF  
BSF  
BCF  
BSF  
BSF  
STATUS,RP0 ;Select Bank 0  
V
DELAY 10  
CMCON,F  
;10µs delay  
VIN-  
;ReadCMCONtoendchangecondition  
;Clear pending interrupts  
VIN+  
PIR1,CMIF  
STATUS,RP0 ;Select Bank 1  
PIE1,CMIE  
;Enable comparator interrupts  
Output  
STATUS,RP0 ;Select Bank 0  
INTCON,PEIE ;Enable peripheral interrupts  
INTCON,GIE ;Global interrupt enable  
7.3.1  
EXTERNAL REFERENCE SIGNAL  
7.2  
Comparator Operation  
When external voltage references are used, the  
comparator module can be configured to have the  
comparators operate from the same or different  
reference sources. However, threshold detector  
applications may require the same reference. The  
reference signal must be between VSS and VDD, and  
can be applied to either pin of the comparator(s).  
A single comparator is shown in Figure 7-2 along with  
the relationship between the analog input levels and  
the digital output. When the analog input at VIN+ is less  
than the analog input VIN-, the output of the comparator  
is a digital low level. When the analog input at VIN+ is  
greater than the analog input VIN-, the output of the  
comparator is a digital high level. The shaded areas of  
the output of the comparator in Figure 7-2 represent  
the uncertainty due to input offsets and response time.  
7.3.2  
INTERNAL REFERENCE SIGNAL  
The comparator module also allows the selection of an  
internally generated voltage reference for the  
comparators. Section 10, Instruction Sets, contains a  
detailed description of the Voltage Reference Module  
that provides this signal. The internal reference signal  
is used when the comparators are in mode  
CM<2:0>=010 (Figure 7-1). In this mode, the internal  
voltage reference is applied to the VIN+ pin of both  
comparators.  
2003 Microchip Technology Inc.  
DS30235J-page 39  
PIC16C62X  
7.4  
Comparator Response Time  
7.5  
Comparator Outputs  
Response time is the minimum time, after selecting a  
new reference voltage or input source, before the  
comparator output has a valid level. If the internal  
reference is changed, the maximum delay of the  
internal voltage reference must be considered when  
using the comparator outputs. Otherwise the maximum  
delay of the comparators should be used (Table 12-2).  
The comparator outputs are read through the CMCON  
register. These bits are read only. The comparator  
outputs may also be directly output to the RA3 and RA4  
I/O pins. When the CM<2:0> = 110, multiplexors in the  
output path of the RA3 and RA4 pins will switch and the  
output of each pin will be the unsynchronized output of  
the comparator. The uncertainty of each of the  
comparators is related to the input offset voltage and the  
response time given in the specifications. Figure 7-3  
shows the comparator output block diagram.  
The TRISA bits will still function as an output enable/  
disable for the RA3 and RA4 pins while in this mode.  
Note 1: When reading the PORT register, all pins  
configured as analog inputs will read as a  
‘0’. Pins configured as digital inputs will  
convert an analog input according to the  
Schmitt Trigger input specification.  
2: Analog levels on any pin that is defined as  
a digital input may cause the input buffer  
to consume more current than is  
specified.  
FIGURE 7-3:  
COMPARATOR OUTPUT BLOCK DIAGRAM  
PORT PINS  
MULTIPLEX  
+
-
To RA3 or  
RA4 Pin  
Bus  
Data  
Q
D
RD CMCON  
EN  
Set  
CMIF  
Bit  
Q
D
FROM  
OTHER  
COMPARATOR  
EN  
CL  
RD CMCON  
NRESET  
DS30235J-page 40  
2003 Microchip Technology Inc.  
PIC16C62X  
wake up the device from SLEEP mode when enabled.  
While the comparator is powered-up, higher SLEEP  
currents than shown in the power-down current  
specification will occur. Each comparator that is  
operational will consume additional current as shown in  
the comparator specifications. To minimize power  
consumption while in SLEEP mode, turn off the  
comparators, CM<2:0> = 111, before entering SLEEP.  
If the device wakes up from SLEEP, the contents of the  
CMCON register are not affected.  
7.6  
Comparator Interrupts  
The comparator interrupt flag is set whenever there is  
a change in the output value of either comparator.  
Software will need to maintain information about the  
status of the output bits, as read from CMCON<7:6>, to  
determine the actual change that has occurred. The  
CMIF bit, PIR1<6>, is the comparator interrupt flag.  
The CMIF bit must be RESET by clearing ‘0’. Since it is  
also possible to write a '1' to this register, a simulated  
interrupt may be initiated.  
7.8  
Effects of a RESET  
The CMIE bit (PIE1<6>) and the PEIE bit  
(INTCON<6>) must be set to enable the interrupt. In  
addition, the GIE bit must also be set. If any of these  
bits are clear, the interrupt is not enabled, though the  
CMIF bit will still be set if an interrupt condition occurs.  
A device RESET forces the CMCON register to its  
RESET state. This forces the comparator module to be  
in the comparator RESET mode, CM<2:0> = 000. This  
ensures that all potential inputs are analog inputs.  
Device current is minimized when analog inputs are  
present at RESET time. The comparators will be  
powered-down during the RESET interval.  
Note: If  
a change in the CMCON register  
(C1OUT or C2OUT) should occur when a  
read operation is being executed (start of  
the Q2 cycle), then the CMIF (PIR1<6>)  
interrupt flag may not get set.  
7.9  
Analog Input Connection  
Considerations  
The user, in the interrupt service routine, can clear the  
interrupt in the following manner:  
A simplified circuit for an analog input is shown in  
Figure 7-4. Since the analog pins are connected to a  
digital output, they have reverse biased diodes to VDD  
and VSS. The analog input therefore, must be between  
VSS and VDD. If the input voltage deviates from this  
range by more than 0.6V in either direction, one of the  
diodes is forward biased and a latchup may occur. A  
a) Any read or write of CMCON. This will end the  
mismatch condition.  
b) Clear flag bit CMIF.  
A mismatch condition will continue to set flag bit CMIF.  
Reading CMCON will end the mismatch condition and  
allow flag bit CMIF to be cleared.  
maximum  
source  
impedance  
of  
10 kΩ  
is  
recommended for the analog sources. Any external  
component connected to an analog input pin, such as  
a capacitor or a Zener diode, should have very little  
leakage current.  
7.7  
Comparator Operation During  
SLEEP  
When a comparator is active and the device is placed  
in SLEEP mode, the comparator remains active and  
the interrupt is functional if enabled. This interrupt will  
FIGURE 7-4:  
ANALOG INPUT MODEL  
VDD  
VT = 0.6V  
RIC  
RS < 10K  
AIN  
ILEAKAGE  
500 nA  
CPIN  
5 pF  
VA  
VT = 0.6V  
VSS  
Legend  
CPIN  
VT  
=
=
=
=
=
=
Input Capacitance  
Threshold Voltage  
ILEAKAGE  
RIC  
Leakage Current at the pin due to various junctions  
Interconnect Resistance  
RS  
VA  
Source Impedance  
Analog Voltage  
2003 Microchip Technology Inc.  
DS30235J-page 41  
PIC16C62X  
TABLE 7-1:  
REGISTERS ASSOCIATED WITH COMPARATOR MODULE  
Value on  
All Other  
RESETS  
Value on  
POR  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1Fh  
9Fh  
0Bh  
0Ch  
8Ch  
85h  
CMCON C2OUT C1OUT  
VRR  
T0IE  
CIS  
VR3  
RBIE  
CM2  
VR2  
T0IF  
CM1  
VR1  
INTF  
CM0  
VR0  
RBIF  
00-- 0000 00-- 0000  
000- 0000 000- 0000  
0000 000x 0000 000u  
-0-- ---- -0-- ----  
-0-- ---- -0-- ----  
VRCON  
INTCON  
PIR1  
VREN  
GIE  
VROE  
PEIE  
CMIF  
CMIE  
INTE  
PIE1  
TRISA  
TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 ---1 1111 ---1 1111  
Legend: x = unknown, u = unchanged, - = unimplemented, read as "0"  
DS30235J-page 42  
2003 Microchip Technology Inc.  
PIC16C62X  
8.1  
Configuring the Voltage Reference  
8.0  
VOLTAGE REFERENCE  
MODULE  
The Voltage Reference can output 16 distinct voltage  
levels for each range. The equations used to calculate  
the output of the Voltage Reference are as follows:  
The Voltage Reference is a 16-tap resistor ladder  
network that provides a selectable voltage reference.  
The resistor ladder is segmented to provide two ranges  
of VREF values and has a power-down function to  
conserve power when the reference is not being used.  
The VRCON register controls the operation of the  
reference as shown in Register 8-1. The block diagram  
is given in Figure 8-1.  
if VRR = 1: VREF = (VR<3:0>/24) x VDD  
if VRR = 0: VREF = (VDD x 1/4) + (VR<3:0>/32) x VDD  
The setting time of the Voltage Reference must be  
considered when changing the VREF output (Table 12-1).  
Example 8-1 shows an example of how to configure the  
Voltage Reference for an output voltage of 1.25V with VDD  
= 5.0V.  
REGISTER 8-1:  
VRCON REGISTER(ADDRESS 9Fh)  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
VREN  
VROE  
VRR  
VR3  
VR2  
VR1  
VR0  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
VREN: VREF Enable  
1= VREF circuit powered on  
0= VREF circuit powered down, no IDD drain  
VROE: VREF Output Enable  
1= VREF is output on RA2 pin  
0= VREF is disconnected from RA2 pin  
VRR: VREF Range selection  
1= Low Range  
0= High Range  
bit 4  
Unimplemented: Read as '0'  
bit 3-0  
VR<3:0>: VREF value selection 0 VR [3:0] 15  
when VRR = 1: VREF = (VR<3:0>/ 24) * VDD  
when VRR = 0: VREF = 1/4 * VDD + (VR<3:0>/ 32) * VDD  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR  
’0’ = Bit is cleared  
x = Bit is unknown  
FIGURE 8-1:  
VOLTAGE REFERENCE BLOCK DIAGRAM  
16 Stages  
VREN  
R
R
R
R
8R  
8R  
VRR  
VR3  
VR0  
VREF  
(From VRCON<3:0>)  
16-1 Analog Mux  
Note: R is defined in Table 12-2.  
2003 Microchip Technology Inc.  
DS30235J-page 43  
PIC16C62X  
EXAMPLE 8-1:  
VOLTAGE REFERENCE  
CONFIGURATION  
8.4  
Effects of a RESET  
A device RESET disables the voltage reference by  
clearing bit VREN (VRCON<7>). This reset also  
disconnects the reference from the RA2 pin by clearing  
bit VROE (VRCON<6>) and selects the high voltage  
range by clearing bit VRR (VRCON<5>). The VREF  
value select bits, VRCON<3:0>, are also cleared.  
MOVLW  
MOVWF  
BSF  
0x02  
; 4 Inputs Muxed  
; to 2 comps.  
CMCON  
STATUS,RP0  
0x0F  
; go to Bank 1  
; RA3-RA0 are  
; inputs  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
TRISA  
8.5  
Connection Considerations  
0xA6  
; enable VREF  
; low range  
VRCON  
The voltage reference module operates independently  
of the comparator module. The output of the reference  
generator may be connected to the RA2 pin if the  
TRISA<2> bit is set and the VROE bit, VRCON<6>, is  
set. Enabling the voltage reference output onto the  
RA2 pin with an input signal present will increase  
current consumption. Connecting RA2 as a digital  
output with VREF enabled will also increase current  
consumption.  
; set VR<3:0>=6  
; go to Bank 0  
; 10µs delay  
BCF  
STATUS,RP0  
DELAY10  
CALL  
8.2  
Voltage Reference Accuracy/Error  
The full range of VSS to VDD cannot be realized due to the  
construction of the module. The transistors on the top  
and bottom of the resistor ladder network (Figure 8-1)  
keep VREF from approaching VSS or VDD. The voltage  
reference is VDD derived and therefore, the VREF output  
changes with fluctuations in VDD. The tested absolute  
accuracy of the voltage reference can be found in  
Table 12-2.  
The RA2 pin can be used as a simple D/A output with  
limited drive capability. Due to the limited drive  
capability, a buffer must be used in conjunction with the  
voltage reference output for external connections to  
VREF. Figure 8-2 shows an example buffering  
technique.  
8.3  
Operation During SLEEP  
When the device wakes up from SLEEP through an  
interrupt or a Watchdog Timer time-out, the contents of  
the VRCON register are not affected. To minimize  
current consumption in SLEEP mode, the voltage  
reference should be disabled.  
FIGURE 8-2:  
VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE  
(1)  
R
RA  
VREF  
+
Module  
VREF Output  
Voltage  
Reference  
Output  
Impedance  
Note 1: R is dependent upon the Voltage Reference Configuration VRCON<3:0> and VRCON<5>.  
TABLE 8-1: REGISTERS ASSOCIATED WITH VOLTAGE REFERENCE  
Value On  
All Other  
RESETS  
Value On  
POR  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
9Fh  
1Fh  
85h  
VRCON  
CMCON  
TRISA  
VREN  
C2OUT  
VROE  
C1OUT  
VRR  
VR3  
CIS  
VR2  
CM2  
VR1  
CM1  
VR0  
CM0  
000- 0000 000- 0000  
00-- 0000 00-- 0000  
TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 ---1 1111 ---1 1111  
Note: - = Unimplemented, read as "0"  
DS30235J-page 44  
2003 Microchip Technology Inc.  
PIC16C62X  
The PIC16C62X devices have a Watchdog Timer  
which is controlled by configuration bits. It runs off its  
own RC oscillator for added reliability. There are two  
timers that offer necessary delays on power-up. One is  
the Oscillator Start-up Timer (OST), intended to keep  
the chip in RESET until the crystal oscillator is stable.  
The other is the Power-up Timer (PWRT), which  
provides a fixed delay of 72 ms (nominal) on power-up  
only, designed to keep the part in RESET while the  
power supply stabilizes. There is also circuitry to  
RESET the device if a brown-out occurs, which pro-  
vides at least a 72 ms RESET. With these three  
functions on-chip, most applications need no external  
RESET circuitry.  
9.0  
SPECIAL FEATURES OF THE  
CPU  
Special circuits to deal with the needs of real-time  
applications are what sets a microcontroller apart from  
other processors. The PIC16C62X family has a host of  
such features intended to maximize system reliability,  
minimize cost through elimination of external compo-  
nents, provide power saving operating modes and offer  
code protection.  
These are:  
1. OSC selection  
2. RESET  
Power-on Reset (POR)  
The SLEEP mode is designed to offer a very low  
current Power-down mode. The user can wake-up from  
SLEEP through external RESET, Watchdog Timer  
wake-up or through an interrupt. Several oscillator  
options are also made available to allow the part to fit  
the application. The RC oscillator option saves system  
cost, while the LP crystal option saves power. A set of  
configuration bits are used to select various options.  
Power-up Timer (PWRT)  
Oscillator Start-up Timer (OST)  
Brown-out Reset (BOR)  
3. Interrupts  
4. Watchdog Timer (WDT)  
5. SLEEP  
6. Code protection  
7. ID Locations  
8. In-Circuit Serial Programming™  
2003 Microchip Technology Inc.  
DS30235J-page 45  
PIC16C62X  
The user will note that address 2007h is beyond  
the user program memory space. In fact, it belongs  
to the special test/configuration memory space  
(2000h – 3FFFh), which can be accessed only during  
programming.  
9.1  
Configuration Bits  
The configuration bits can be programmed (read as '0')  
or left unprogrammed (read as '1') to select various  
device configurations. These bits are mapped in  
program memory location 2007h.  
REGISTER 9-1:  
CONFIGURATION WORD (ADDRESS 2007h)  
BODEN  
PWRTE  
CP0 (2)  
CP1  
CP0 (2)  
CP0 (2)  
CP0 (2)  
CP1  
CP1  
CP1  
WDTE F0SC1 F0SC0  
bit 13  
bit 0  
(2)  
bit 13-8,  
5-4:  
CP<1:0>: Code protection bit pairs  
Code protection for 2K program memory  
11= Program memory code protection off  
10= 0400h-07FFh code protected  
01= 0200h-07FFh code protected  
00= 0000h-07FFh code protected  
Code protection for 1K program memory  
11= Program memory code protection off  
10= Program memory code protection off  
01= 0200h-03FFh code protected  
00= 0000h-03FFh code protected  
Code protection for 0.5K program memory  
11= Program memory code protection off  
10= Program memory code protection off  
01= Program memory code protection off  
00= 0000h-01FFh code protected  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
(1)  
BODEN: Brown-out Reset Enable bit  
1= BOR enabled  
0= BOR disabled  
(1, 3)  
bit 3  
PWRTE: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
bit 2  
WDTE: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled  
bit 1-0  
FOSC1:FOSC0: Oscillator Selection bits  
11= RC oscillator  
10= HS oscillator  
01= XT oscillator  
00= LP oscillator  
Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT) regardless of the  
value of bit PWRTE. Ensure the Power-up Timer is enabled anytime Brown-out Detect Reset is  
enabled.  
2: All of the CP<1:0> pairs have to be given the same value to enable the code protection scheme  
listed.  
3: Unprogrammed parts default the Power-up Timer disabled.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
1 = bit is set  
U = Unimplemented bit, read as ‘0’  
0 = bit is cleared x = bit is unknown  
DS30235J-page 46  
2003 Microchip Technology Inc.  
PIC16C62X  
TABLE 9-1:  
CAPACITOR SELECTION FOR  
CERAMIC RESONATORS  
9.2  
Oscillator Configurations  
9.2.1  
OSCILLATOR TYPES  
Ranges Characterized:  
The PIC16C62X devices can be operated in four  
different oscillator options. The user can program two  
configuration bits (FOSC1 and FOSC0) to select one of  
these four modes:  
Mode  
XT  
Freq  
OSC1(C1)  
OSC2(C2)  
455 kHz  
2.0 MHz  
4.0 MHz  
22 - 100 pF  
15 - 68 pF  
15 - 68 pF  
22 - 100 pF  
15 - 68 pF  
15 - 68 pF  
• LP  
• XT  
• HS  
• RC  
Low Power Crystal  
HS  
8.0 MHz  
16.0 MHz  
10 - 68 pF  
10 - 22 pF  
10 - 68 pF  
10 - 22 pF  
Crystal/Resonator  
High Speed Crystal/Resonator  
Resistor/Capacitor  
Higher capacitance increases the stability of the oscil-  
lator but also increases the start-up time. These  
values are for design guidance only. Since each  
resonator has its own characteristics, the user  
should consult the resonator manufacturer for  
appropriate values of external components.  
9.2.2  
CRYSTAL OSCILLATOR / CERAMIC  
RESONATORS  
In XT, LP or HS modes, a crystal or ceramic resonator  
is connected to the OSC1 and OSC2 pins to establish  
oscillation (Figure 9-1). The PIC16C62X oscillator  
design requires the use of a parallel cut crystal. Use of  
a series cut crystal may give a frequency out of the  
crystal manufacturers specifications. When in XT, LP or  
HS modes, the device can have an external clock  
source to drive the OSC1 pin (Figure 9-2).  
TABLE 9-2:  
CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
Mode  
Freq  
OSC1(C1)  
OSC2(C2)  
32 kHz  
200 kHz  
68 - 100 pF  
15 - 30 pF  
68 - 100 pF  
15 - 30 pF  
LP  
100 kHz  
2 MHz  
4 MHz  
68 - 150 pF 150 - 200 pF  
15 - 30 pF  
15 - 30 pF  
FIGURE 9-1:  
CRYSTAL OPERATION  
(OR CERAMIC  
XT  
HS  
15 - 30 pF  
15 - 30 pF  
RESONATOR) (HS, XT OR  
LP OSC  
CONFIGURATION)  
8 MHz  
10 MHz  
20 MHz  
15 - 30 pF  
15 - 30 pF  
15 - 30 pF  
15 - 30 pF  
15 - 30 pF  
15 - 30 pF  
Higher capacitance increases the stability of the  
oscillator but also increases the start-up time.  
These values are for design guidance only. Rs may  
be required in HS mode as well as XT mode to  
avoid overdriving crystals with low drive level  
specification. Since each crystal has its own  
characteristics, the user should consult the crystal  
manufacturer for appropriate values of external  
components.  
OSC1  
To internal logic  
SLEEP  
C1  
XTAL  
OSC2  
RF  
RS  
See Note  
C2  
PIC16C62X  
See Table 9-1 and Table 9-2 for recommended  
values of C1 and C2.  
Note: A series resistor may be required for  
AT strip cut crystals.  
FIGURE 9-2:  
EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR  
LP OSC  
CONFIGURATION)  
clock from  
ext. system  
OSC1  
PIC16C62X  
OSC2  
Open  
2003 Microchip Technology Inc.  
DS30235J-page 47  
PIC16C62X  
9.2.3  
EXTERNAL CRYSTAL OSCILLATOR  
CIRCUIT  
9.2.4  
RC OSCILLATOR  
For timing insensitive applications the “RC” device  
option offers additional cost savings. The RC oscillator  
frequency is a function of the supply voltage, the  
resistor (REXT) and capacitor (CEXT) values, and the  
operating temperature. In addition to this, the oscillator  
frequency will vary from unit to unit due to normal  
process parameter variation. Furthermore, the  
difference in lead frame capacitance between package  
types will also affect the oscillation frequency,  
especially for low CEXT values. The user also needs to  
take into account variation due to tolerance of external  
R and C components used. Figure 9-5 shows how the  
R/C combination is connected to the PIC16C62X. For  
REXT values below 2.2 k, the oscillator operation may  
become unstable or stop completely. For very high  
REXT values (e.g., 1 M), the oscillator becomes  
sensitive to noise, humidity and leakage. Thus, we  
recommend to keep REXT between 3 kand 100 k.  
Either a prepackaged oscillator can be used or a simple  
oscillator circuit with TTL gates can be built.  
Prepackaged oscillators provide a wide operating  
range and better stability. A well-designed crystal  
oscillator will provide good performance with TTL  
gates. Two types of crystal oscillator circuits can be  
used; one with series resonance or one with parallel  
resonance.  
Figure 9-3 shows implementation of a parallel resonant  
oscillator circuit. The circuit is designed to use the  
fundamental frequency of the crystal. The 74AS04  
inverter performs the 180° phase shift that a parallel  
oscillator requires. The 4.7 kresistor provides the  
negative feedback for stability. The 10 kΩ  
potentiometers bias the 74AS04 in the linear region.  
This could be used for external oscillator designs.  
Although the oscillator will operate with no external  
capacitor (CEXT = 0 pF), we recommend using values  
above 20 pF for noise and stability reasons. With no or  
small external capacitance, the oscillation frequency  
can vary dramatically due to changes in external  
capacitances, such as PCB trace capacitance or  
package lead frame capacitance.  
FIGURE 9-3:  
EXTERNAL PARALLEL  
RESONANT CRYSTAL  
OSCILLATOR CIRCUIT  
+5V  
10k  
To Other  
Devices  
74AS04  
4.7k  
PIC16C62X  
See Section 13.0 for RC frequency variation from part  
to part due to normal process variation. The variation is  
larger for larger R (since leakage current variation will  
affect RC frequency more for large R) and for smaller  
C (since variation of input capacitance will affect RC  
frequency more).  
CLKIN  
74AS04  
10k  
XTAL  
See Section 13.0 for variation of oscillator frequency  
due to VDD for given REXT/CEXT values, as well as  
frequency variation due to operating temperature for  
given R, C and VDD values.  
10k  
20 pF  
20 pF  
The oscillator frequency, divided by 4, is available on  
the OSC2/CLKOUT pin, and can be used for test  
purposes or to synchronize other logic (Figure 3-2 for  
waveform).  
Figure 9-4 shows a series resonant oscillator circuit.  
This circuit is also designed to use the fundamental  
frequency of the crystal. The inverter performs a 180°  
phase shift in a series resonant oscillator circuit. The  
330 kresistors provide the negative feedback to bias  
the inverters in their linear region.  
FIGURE 9-5:  
RC OSCILLATOR MODE  
FIGURE 9-4:  
EXTERNAL SERIES  
RESONANT CRYSTAL  
OSCILLATOR CIRCUIT  
VDD  
PIC16C62X  
REXT  
OSC1  
Internal Clock  
To Other  
Devices  
CEXT  
VDD  
330 kΩ  
330 kΩ  
PIC16C62X  
74AS04  
74AS04  
74AS04  
OSC2/CLKOUT  
FOSC/4  
CLKIN  
0.1 µF  
XTAL  
DS30235J-page 48  
2003 Microchip Technology Inc.  
PIC16C62X  
MCLR Reset, WDT Reset and MCLR Reset during  
SLEEP. They are not affected by a WDT wake-up,  
since this is viewed as the resumption of normal  
operation. TO and PD bits are set or cleared differently  
in different RESET situations as indicated in Table 9-2.  
These bits are used in software to determine the nature  
of the RESET. See Table 9-5 for a full description of  
RESET states of all registers.  
9.3  
RESET  
The PIC16C62X differentiates between various kinds  
of RESET:  
a) Power-on Reset (POR)  
b) MCLR Reset during normal operation  
c) MCLR Reset during SLEEP  
d) WDT Reset (normal operation)  
e) WDT wake-up (SLEEP)  
A simplified block diagram of the on-chip RESET circuit  
is shown in Figure 9-6.  
f) Brown-out Reset (BOR)  
The MCLR Reset path has a noise filter to detect and  
ignore small pulses. See Table 12-5 for pulse width  
specification.  
Some registers are not affected in any RESET  
condition Their status is unknown on POR and  
unchanged in any other RESET. Most other registers  
are reset to a “RESET state” on Power-on Reset,  
FIGURE 9-6:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
RESET  
MCLR/  
VPP Pin  
SLEEP  
WDT  
WDT  
Module  
Time-out  
Reset  
VDD rise  
detect  
Power-on Reset  
VDD  
Brown-out  
Reset  
Q
Q
S
R
BODEN  
OST/PWRT  
OST  
10-bit Ripple-counter  
Chip_Reset  
OSC1/  
CLKIN  
Pin  
PWRT  
10-bit Ripple-counter  
On-chip(1)  
RC OSC  
Enable PWRT  
Enable OST  
See Table 9-1 for time-out situations.  
Note 1: This is a separate oscillator from the RC oscillator of the CLKIN pin.  
2003 Microchip Technology Inc.  
DS30235J-page 49  
PIC16C62X  
The Power-up Time delay will vary from chip-to-chip  
and due to VDD, temperature and process variation.  
See DC parameters for details.  
9.4  
Power-on Reset (POR), Power-up  
Timer (PWRT), Oscillator Start-up  
Timer (OST) and Brown-out Reset  
(BOR)  
9.4.3  
OSCILLATOR START-UP TIMER  
(OST)  
9.4.1  
POWER-ON RESET (POR)  
The Oscillator Start-Up Timer (OST) provides a 1024  
oscillator cycle (from OSC1 input) delay after the  
PWRT delay is over. This ensures that the crystal  
oscillator or resonator has started and stabilized.  
The on-chip POR circuit holds the chip in RESET until  
VDD has reached a high enough level for proper  
operation. To take advantage of the POR, just tie the  
MCLR pin through a resistor to VDD. This will eliminate  
external RC components usually needed to create  
Power-on Reset. A maximum rise time for VDD is  
required. See Electrical Specifications for details.  
The OST time-out is invoked only for XT, LP and HS  
modes and only on Power-on Reset or wake-up from  
SLEEP.  
The POR circuit does not produce an internal RESET  
when VDD declines.  
9.4.4  
BROWN-OUT RESET (BOR)  
The PIC16C62X members have on-chip Brown-out  
Reset circuitry. A configuration bit, BODEN, can  
disable (if clear/programmed) or enable (if set) the  
Brown-out Reset circuitry. If VDD falls below 4.0V refer  
to VBOR parameter D005 (VBOR) for greater than  
parameter (TBOR) in Table 12-5. The brown-out situa-  
tion will RESET the chip. A RESET won’t occur if VDD  
falls below 4.0V for less than parameter (TBOR).  
When the device starts normal operation (exits the  
RESET condition), device operating parameters (volt-  
age, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in RESET until the operating  
conditions are met.  
For additional information, refer to Application Note  
AN607, “Power-up Trouble Shooting”.  
On any RESET (Power-on, Brown-out, Watchdog, etc.)  
the chip will remain in RESET until VDD rises above  
BVDD. The Power-up Timer will now be invoked and will  
keep the chip in RESET an additional 72 ms.  
9.4.2  
POWER-UP TIMER (PWRT)  
The Power-up Timer provides a fixed 72 ms (nominal)  
time-out on power-up only, from POR or Brown-out  
Reset. The Power-up Timer operates on an internal RC  
oscillator. The chip is kept in RESET as long as PWRT  
is active. The PWRT delay allows the VDD to rise to an  
acceptable level. A configuration bit, PWRTE can  
disable (if set) or enable (if cleared or programmed) the  
Power-up Timer. The Power-up Timer should always  
be enabled when Brown-out Reset is enabled.  
If VDD drops below BVDD while the Power-up Timer is  
running, the chip will go back into a Brown-out Reset  
and the Power-up Timer will be re-initialized. Once VDD  
rises above BVDD, the Power-Up Timer will execute a  
72 ms RESET. The Power-up Timer should always be  
enabled when Brown-out Reset is enabled. Figure 9-7  
shows typical Brown-out situations.  
FIGURE 9-7:  
BROWN-OUT SITUATIONS  
VDD  
BVDD  
INTERNAL  
RESET  
72 ms  
VDD  
BVDD  
INTERNAL  
RESET  
<72 ms  
72 ms  
VDD  
BVDD  
INTERNAL  
RESET  
72 ms  
DS30235J-page 50  
2003 Microchip Technology Inc.  
PIC16C62X  
9.4.5  
TIME-OUT SEQUENCE  
9.4.6  
POWER CONTROL (PCON)/  
STATUS REGISTER  
On power-up the time-out sequence is as follows: First  
PWRT time-out is invoked after POR has expired. Then  
OST is activated. The total time-out will vary based on  
oscillator configuration and PWRTE bit status. For  
example, in RC mode with PWRTE bit erased (PWRT  
disabled), there will be no time-out at all. Figure 9-8,  
Figure 9-9 and Figure 9-10 depict time-out sequences.  
The power control/STATUS register, PCON (address  
8Eh), has two bits.  
Bit0 is BOR (Brown-out). BOR is unknown on Power-  
on Reset. It must then be set by the user and checked  
on subsequent RESETS to see if BOR = 0, indicating  
that a brown-out has occurred. The BOR STATUS bit is  
a don’t care and is not necessarily predictable if the  
brown-out circuit is disabled (by setting BODEN bit = 0  
in the Configuration word).  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire. Then  
bringing MCLR high will begin execution immediately  
(see Figure 9-9). This is useful for testing purposes or  
to synchronize more than one PIC16C62X device  
operating in parallel.  
Bit1 is POR (Power-on Reset). It is a ‘0’ on Power-on  
Reset and unaffected otherwise. The user must write a  
‘1’ to this bit following a Power-on Reset. On a  
subsequent RESET, if POR is ‘0’, it will indicate that a  
Power-on Reset must have occurred (VDD may have  
gone too low).  
Table 9-4 shows the RESET conditions for some  
special registers, while Table 9-5 shows the RESET  
conditions for all the registers.  
TABLE 9-1:  
TIME-OUT IN VARIOUS SITUATIONS  
Power-up  
Wake-up  
Brown-out Reset  
Oscillator Configuration  
from SLEEP  
PWRTE = 0  
PWRTE = 1  
XT, HS, LP  
RC  
72 ms + 1024 TOSC  
1024 TOSC  
72 ms + 1024 TOSC  
1024 TOSC  
72 ms  
72 ms  
TABLE 9-2:  
STATUS/PCON BITS AND THEIR SIGNIFICANCE  
POR  
BOR  
TO  
PD  
0
0
0
1
1
1
1
1
X
X
X
0
1
1
1
1
1
0
X
X
0
0
u
1
1
X
0
X
u
0
u
0
Power-on Reset  
Illegal, TO is set on POR  
Illegal, PD is set on POR  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
Legend: u = unchanged, x = unknown  
TABLE 9-3:  
SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT  
Value on all  
other  
(1)  
Value on  
POR Reset  
Address Name  
Bit 7 Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RESETS  
83h  
8Eh  
STATUS  
PCON  
TO  
PD  
0001 1xxx 000q quuu  
BOR ---- --0x ---- --uq  
POR  
Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as ‘0’, q = value depends on condition.  
Note 1: Other (non Power-up) Resets include MCLR Reset, Brown-out Reset and Watchdog Timer Reset during  
normal operation.  
2003 Microchip Technology Inc.  
DS30235J-page 51  
PIC16C62X  
TABLE 9-4:  
INITIALIZATION CONDITION FOR SPECIAL REGISTERS  
Program  
Counter  
STATUS  
Register  
PCON  
Register  
Condition  
Power-on Reset  
000h  
000h  
000h  
000h  
0001 1xxx  
---- --0x  
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
WDT Reset  
000u uuuu  
0001 0uuu  
0000 uuuu  
uuu0 0uuu  
000x xuuu  
uuu1 0uuu  
---- --uu  
---- --uu  
---- --uu  
---- --uu  
---- --u0  
---- --uu  
WDT Wake-up  
PC + 1  
000h  
Brown-out Reset  
(1)  
Interrupt Wake-up from SLEEP  
PC + 1  
Legend: u= unchanged, x= unknown, -= unimplemented bit, reads as ‘0’.  
Note 1: When the wake-up is due to an interrupt and global enable bit, GIE is set, the PC is loaded with the  
interrupt vector (0004h) after execution of PC+1.  
TABLE 9-5:  
INITIALIZATION CONDITION FOR REGISTERS  
MCLR Reset during  
Wake-up from SLEEP  
through interrupt  
normal operation  
MCLR Reset during  
SLEEP  
Wake-up from SLEEP  
through WDT time-out  
WDT Reset  
Brown-out Reset (1)  
Register  
W
Address  
Power-on Reset  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
INDF  
TMR0  
PCL  
00h  
01h  
02h  
xxxx xxxx  
0000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
PC + 1(3)  
STATUS  
000q quuu(4)  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
00-- 0000  
---0 0000  
0000 000u  
uuuq quuu(4)  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uu-- uuuu  
---u uuuu  
03h  
04h  
05h  
06h  
1Fh  
0Ah  
0Bh  
0001 1xxx  
xxxx xxxx  
---x xxxx  
xxxx xxxx  
00-- 0000  
---0 0000  
0000 000x  
FSR  
PORTA  
PORTB  
CMCON  
PCLATH  
INTCON  
uuuu uqqq(2)  
PIR1  
-q-- ----(2,5)  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
-u-- ----  
---- --uu  
uuu- uuuu  
0Ch  
81h  
85h  
86h  
8Ch  
8Eh  
9Fh  
-0-- ----  
1111 1111  
---1 1111  
1111 1111  
-0-- ----  
---- --0x  
000- 0000  
-0-- ----  
1111 1111  
---1 1111  
1111 1111  
-0-- ----  
OPTION  
TRISA  
TRISB  
PIE1  
PCON  
---- --uq(1,6)  
000- 0000  
VRCON  
Legend: u= unchanged, x= unknown, -= unimplemented bit, reads as ‘0’,q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).  
4: See Table 9-4 for RESET value for specific condition.  
5: If wake-up was due to comparator input changing, then bit 6 = 1. All other interrupts generating a wake-up will cause  
bit 6 = u.  
6: If RESET was due to brown-out, then bit 0 = 0. All other RESETS will cause bit 0 = u.  
DS30235J-page 52  
2003 Microchip Technology Inc.  
PIC16C62X  
FIGURE 9-8:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 9-9:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 9-10:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
2003 Microchip Technology Inc.  
DS30235J-page 53  
PIC16C62X  
FIGURE 9-11:  
EXTERNAL POWER-ON  
RESET CIRCUIT (FOR  
SLOW VDD POWER-UP)  
FIGURE 9-13:  
EXTERNAL BROWN-OUT  
PROTECTION CIRCUIT 2  
VDD  
VDD  
VDD  
R1  
VDD  
Q1  
MCLR  
D
R
R2  
40k  
R1  
PIC16C62X  
MCLR  
PIC16C62X  
C
Note 1: This brown-out circuit is less expen-  
sive, albeit less accurate. Transistor  
Q1 turns off when VDD is below a  
certain level such that:  
Note 1: External Power-on Reset circuit is  
required only if VDD power-up slope is  
too slow. The diode D helps discharge  
the capacitor quickly when VDD powers  
down.  
R1  
= 0.7V  
VDD x  
2: < 40 kis recommended to make sure  
that voltage drop across R does not  
violate the device’s electrical specifica-  
tion.  
R1 + R2  
2: Internal Brown-out Reset should be  
disabled when using this circuit.  
3: Resistors should be adjusted for the  
characteristics of the transistor.  
3: R1 = 100to 1 kwill limit any current  
flowing into MCLR from external capaci-  
tor C in the event of MCLR/VPP pin  
breakdown due to Electrostatic  
Discharge (ESD) or Electrical Over-  
stress (EOS).  
FIGURE 9-14:  
EXTERNAL BROWN-OUT  
PROTECTION CIRCUIT 3  
VDD  
FIGURE 9-12:  
EXTERNAL BROWN-OUT  
PROTECTION CIRCUIT 1  
MCP809  
VDD  
bypass  
capacitor  
Vss  
VDD  
VDD  
VDD  
RST  
33k  
MCLR  
PIC16C62X  
10k  
MCLR  
40k  
PIC16C62X  
This brown-out protection circuit employs  
Microchip Technology’s MCP809 microcontroller  
supervisor. The MCP8XX and MCP1XX families  
of supervisors provide push-pull and open  
collector outputs with both high and low active  
RESET pins. There are 7 different trip point  
selections to accommodate 5V and 3V systems.  
Note 1: This circuit will activate RESET when  
VDD goes below (Vz + 0.7V) where  
Vz = Zener voltage.  
2: Internal Brown-out Reset circuitry should  
be disabled when using this circuit.  
DS30235J-page 54  
2003 Microchip Technology Inc.  
PIC16C62X  
Once in the interrupt service routine, the source(s) of  
the interrupt can be determined by polling the interrupt  
flag bits. The interrupt flag bit(s) must be cleared in  
software before re-enabling interrupts to avoid RB0/  
INT recursive interrupts.  
9.5  
Interrupts  
The PIC16C62X has 4 sources of interrupt:  
• External interrupt RB0/INT  
• TMR0 overflow interrupt  
For external interrupt events, such as the INT pin or  
PORTB change interrupt, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends when the interrupt event occurs (Figure 9-16).  
The latency is the same for one or two cycle  
instructions. Once in the interrupt service routine, the  
source(s) of the interrupt can be determined by polling  
the interrupt flag bits. The interrupt flag bit(s) must be  
cleared in software before re-enabling interrupts to  
avoid multiple interrupt requests.  
• PORTB change interrupts (pins RB<7:4>)  
• Comparator interrupt  
The interrupt control register (INTCON) records  
individual interrupt requests in flag bits. It also has  
individual and global interrupt enable bits.  
A global interrupt enable bit, GIE (INTCON<7>)  
enables (if set) all un-masked interrupts or disables (if  
cleared) all interrupts. Individual interrupts can be  
disabled through their corresponding enable bits in  
INTCON register. GIE is cleared on RESET.  
Note 1: Individual interrupt flag bits are set  
regardless of the status of their  
corresponding mask bit or the GIE bit.  
The “return from interrupt” instruction, RETFIE, exits  
interrupt routine, as well as sets the GIE bit, which re-  
enable RB0/INT interrupts.  
2: When an instruction that clears the GIE  
bit is executed, any interrupts that were  
pending for execution in the next cycle  
are ignored. The CPU will execute a NOP  
in the cycle immediately following the  
instruction which clears the GIE bit. The  
interrupts which were ignored are still  
pending to be serviced when the GIE bit  
is set again.  
The INT pin interrupt, the RB port change interrupt and  
the TMR0 overflow interrupt flags are contained in the  
INTCON register.  
The peripheral interrupt flag is contained in the special  
register PIR1. The corresponding interrupt enable bit is  
contained in special registers PIE1.  
When an interrupt is responded to, the GIE is cleared  
to disable any further interrupt, the return address is  
pushed into the stack and the PC is loaded with 0004h.  
FIGURE 9-15:  
INTERRUPT LOGIC  
Wake-up  
T0IF  
T0IE  
(If in SLEEP mode)  
INTF  
INTE  
Interrupt  
to CPU  
RBIF  
RBIE  
CMIF  
CMIE  
PEIE  
GIE  
2003 Microchip Technology Inc.  
DS30235J-page 55  
PIC16C62X  
9.5.1  
RB0/INT INTERRUPT  
9.5.2  
TMR0 INTERRUPT  
External interrupt on RB0/INT pin is edge triggered,  
either rising if INTEDG bit (OPTION<6>) is set, or fall-  
ing, if INTEDG bit is clear. When a valid edge appears  
on the RB0/INT pin, the INTF bit (INTCON<1>) is set.  
This interrupt can be disabled by clearing the INTE  
control bit (INTCON<4>). The INTF bit must be cleared  
in software in the interrupt service routine before re-  
enabling this interrupt. The RB0/INT interrupt can  
wake-up the processor from SLEEP, if the INTE bit was  
set prior to going into SLEEP. The status of the GIE bit  
decides whether or not the processor branches to the  
interrupt vector following wake-up. See Section 9.8 for  
details on SLEEP and Figure 9-18 for timing of wake-  
up from SLEEP through RB0/INT interrupt.  
An overflow (FFh 00h) in the TMR0 register will  
set the T0IF (INTCON<2>) bit. The interrupt can  
be enabled/disabled by setting/clearing T0IE  
(INTCON<5>) bit. For operation of the Timer0 module,  
see Section 6.0.  
9.5.3  
PORTB INTERRUPT  
An input change on PORTB <7:4> sets the RBIF  
(INTCON<0>) bit. The interrupt can be enabled/dis-  
abled by setting/clearing the RBIE (INTCON<4>) bit.  
For operation of PORTB (Section 5.2).  
Note: If a change on the I/O pin should occur  
when the read operation is being executed  
(start of the Q2 cycle), then the RBIF  
interrupt flag may not get set.  
9.5.4  
COMPARATOR INTERRUPT  
See Section 7.6 for complete description of comparator  
interrupts.  
FIGURE 9-16:  
INT PIN INTERRUPT TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT  
3
4
INT pin  
1
1
Interrupt Latency  
INTF flag  
(INTCON<1>)  
5
2
GIE bit  
(INTCON<7>)  
INSTRUCTION FLOW  
PC  
0004h  
PC+1  
PC+1  
0005h  
PC  
Instruction  
fetched  
Inst (PC)  
Inst (PC+1)  
Inst (0004h)  
Inst (0005h)  
Inst (0004h)  
Instruction  
executed  
Dummy Cycle  
Dummy Cycle  
Inst (PC)  
Inst (PC-1)  
Note 1: INTF flag is sampled here (every Q1).  
2: Asynchronous interrupt latency = 3-4 TCY. Synchronous latency = 3 TCY, where TCY = instruction cycle time.  
Latency is the same whether Inst (PC) is a single cycle or a two-cycle instruction.  
3: CLKOUT is available only in RC Oscillator mode.  
4: For minimum width of INT pulse, refer to AC specs.  
5: INTF is enabled to be set anytime during the Q4-Q1 cycles.  
DS30235J-page 56  
2003 Microchip Technology Inc.  
PIC16C62X  
TABLE 9-6:  
SUMMARY OF INTERRUPT REGISTERS  
Value on all  
Value on POR  
other  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
RESETS(1)  
0Bh  
0Ch  
8Ch  
INTCON GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x  
-0-- ----  
-0-- ----  
0000 000u  
-0-- ----  
-0-- ----  
PIR1  
PIE1  
CMIF  
CMIE  
Note 1: Other (non Power-up) Resets include MCLR Reset, Brown-out Reset and Watchdog Timer Reset during normal  
operation.  
9.6  
Context Saving During Interrupts  
During an interrupt, only the return PC value is saved  
on the stack. Typically, users may wish to save key  
registers during an interrupt (e.g., W register and  
STATUS register). This will have to be implemented in  
software.  
Example 9-3 stores and restores the STATUS and W  
registers. The user register, W_TEMP, must be defined  
in both banks and must be defined at the same offset  
from the bank base address (i.e., W_TEMP is defined  
at 0x20 in Bank 0 and it must also be defined at 0xA0  
in Bank 1). The user register, STATUS_TEMP, must be  
defined in Bank 0. The Example 9-3:  
• Stores the W register  
• Stores the STATUS register in Bank 0  
• Executes the ISR code  
• Restores the STATUS (and bank select bit  
register)  
• Restores the W register  
EXAMPLE 9-3:  
SAVING THE STATUS  
AND W REGISTERS IN  
RAM  
MOVWF  
SWAPF  
BCF  
W_TEMP  
;copy W to temp register,  
;could be in either bank  
STATUS,W  
STATUS,RP0  
STATUS_TEMP  
;swap status to be saved  
into W  
;change to bank 0 regardless  
;of current bank  
MOVWF  
;save status to bank 0  
;register  
:
:
(ISR)  
:
SWAPF  
STATUS_TEMP, ;swap STATUS_TEMP register  
W
;into W, sets bank to origi-  
nal  
;state  
MOVWF  
SWAPF  
SWAPF  
STATUS  
;move W into STATUS register  
;swap W_TEMP  
W_TEMP,F  
W_TEMP,W  
;swap W_TEMP into W  
2003 Microchip Technology Inc.  
DS30235J-page 57  
PIC16C62X  
DC specs). If longer time-out periods are desired, a  
prescaler with a division ratio of up to 1:128 can be  
assigned to the WDT under software control by writing  
to the OPTION register. Thus, time-out periods up to  
2.3 seconds can be realized.  
9.7  
Watchdog Timer (WDT)  
The Watchdog Timer is a free running on-chip RC oscil-  
lator which does not require any external components.  
This RC oscillator is separate from the RC oscillator of  
the CLKIN pin. That means that the WDT will run, even  
if the clock on the OSC1 and OSC2 pins of the device  
has been stopped, for example, by execution of a  
SLEEP instruction. During normal operation, a WDT  
time-out generates a device RESET. If the device is in  
SLEEP mode, a WDT time-out causes the device to  
wake-up and continue with normal operation. The WDT  
can be permanently disabled by programming the  
configuration bit WDTE as clear (Section 9.1).  
The CLRWDTand SLEEPinstructions clear the WDT  
and the postscaler, if assigned to the WDT, and prevent  
it from timing out and generating a device RESET.  
The TO bit in the STATUS register will be cleared upon  
a Watchdog Timer time-out.  
9.7.2  
WDT PROGRAMMING  
CONSIDERATIONS  
It should also be taken in account that under worst case  
conditions (VDD = Min., Temperature = Max., max.  
WDT prescaler) it may take several seconds before a  
WDT time-out occurs.  
9.7.1  
WDT PERIOD  
The WDT has a nominal time-out period of 18 ms, (with  
no prescaler). The time-out periods vary with tempera-  
ture, VDD and process variations from part to part (see  
FIGURE 9-17:  
WATCHDOG TIMER BLOCK DIAGRAM  
From TMR0 Clock Source  
(Figure 6-6)  
0
M
Postscaler  
8
1
Watchdog  
Timer  
U
X
8 - to -1 MUX  
PS<2:0>  
PSA  
WDT  
Enable Bit  
To TMR0 (Figure 6-6)  
1
0
PSA  
MUX  
WDT  
Time-out  
Note:  
T0SE, T0CS, PSA, PS<2:0> are bits in the OPTION register.  
TABLE 9-7:  
SUMMARY OF WATCHDOG TIMER REGISTERS  
Value on all  
Value on  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
other  
POR Reset  
RESETS  
2007h  
81h  
Config. bits  
OPTION  
BODEN CP1  
CP0  
PWRTE WDTE FOSC1 FOSC0  
PS2 PS1 PS0  
RBPU INTEDG T0CS  
T0SE PSA  
1111 1111  
1111 1111  
Legend: Shaded cells are not used by the Watchdog Timer.  
_
Note:  
= Unimplemented location, read as “0”  
+ = Reserved for future use  
DS30235J-page 58  
2003 Microchip Technology Inc.  
PIC16C62X  
The first event will cause a device RESET. The two  
latter events are considered a continuation of program  
execution. The TO and PD bits in the STATUS register  
can be used to determine the cause of device RESET.  
PD bit, which is set on power-up, is cleared when  
SLEEP is invoked. TO bit is cleared if WDT wake-up  
occurred.  
9.8  
Power-Down Mode (SLEEP)  
The Power-down mode is entered by executing a  
SLEEPinstruction.  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the PD bit in the STATUS register is  
cleared, the TO bit is set, and the oscillator driver is  
turned off. The I/O ports maintain the status they had,  
before SLEEPwas executed (driving high, low, or hi-  
impedance).  
When the SLEEP instruction is being executed, the  
next instruction (PC + 1) is pre-fetched. For the device  
to wake-up through an interrupt event, the correspond-  
ing interrupt enable bit must be set (enabled). Wake-up  
is regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEPinstruction and then branches to the inter-  
rupt address (0004h). In cases where the execution of  
the instruction following SLEEP is not desirable, the  
user should have an NOPafter the SLEEPinstruction.  
For lowest current consumption in this mode, all I/O  
pins should be either at VDD or VSS with no external  
circuitry drawing current from the I/O pin and the  
comparators and VREF should be disabled. I/O pins that  
are hi-impedance inputs should be pulled high or low  
externally to avoid switching currents caused by float-  
ing inputs. The T0CKI input should also be at VDD or  
VSS for lowest current consumption. The contribution  
from on chip pull-ups on PORTB should be considered.  
The MCLR pin must be at a logic high level (VIHMC).  
Note: If the global interrupts are disabled (GIE is  
cleared), but any interrupt source has both  
its interrupt enable bit and the correspond-  
ing interrupt flag bits set, the device will  
immediately wake-up from SLEEP. The  
SLEEPinstruction is completely executed.  
Note: It should be noted that a RESET generated  
by a WDT time-out does not drive MCLR  
pin low.  
9.8.1  
WAKE-UP FROM SLEEP  
The WDT is cleared when the device wakes up from  
SLEEP, regardless of the source of wake-up.  
The device can wake-up from SLEEP through one of  
the following events:  
1. External RESET input on MCLR pin  
2. Watchdog Timer Wake-up (if WDT was enabled)  
3. Interrupt from RB0/INT pin, RB Port change, or  
the Peripheral Interrupt (Comparator).  
FIGURE 9-18:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT(4)  
INT pin  
Tost(2)  
INTF flag  
(INTCON<1>)  
Interrupt Latency  
(Note 2)  
GIE bit  
(INTCON<7>)  
Processor in  
SLEEP  
INSTRUCTION FLOW  
PC  
PC+1  
PC+2  
PC+2  
PC + 2  
0004h  
0005h  
PC  
Instruction  
fetched  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = SLEEP  
Inst(PC - 1)  
Instruction  
executed  
Dummy cycle  
Dummy cycle  
SLEEP  
Inst(PC + 1)  
Inst(0004h)  
Note 1: XT, HS or LP Oscillator mode assumed.  
2: TOST = 1024TOSC (drawing not to scale) This delay will not be there for RC Osc mode.  
3: GIE = '1' assumed. In this case, after wake-up, the processor jumps to the interrupt routine. If GIE = '0',  
execution will continue in-line.  
4: CLKOUT is not available in these Osc modes, but shown here for timing reference.  
2003 Microchip Technology Inc.  
DS30235J-page 59  
PIC16C62X  
9.9  
Code Protection  
9.11 In-Circuit Serial Programming™  
If the code protection bit(s) have not been  
programmed, the on-chip program memory can be  
read out for verification purposes.  
The PIC16C62X microcontrollers can be serially  
programmed while in the end application circuit. This is  
simply done with two lines for clock and data and three  
other lines for power, ground and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom  
firmware to be programmed.  
Note: Microchip does not recommend code  
protecting windowed devices.  
9.10 ID Locations  
Four memory locations (2000h-2003h) are designated  
as ID locations where the user can store checksum or  
other code identification numbers. These locations are  
not accessible during normal execution, but are  
readable and writable during Program/Verify. Only the  
Least Significant 4 bits of the ID locations are used.  
The device is placed into a Program/Verify mode by  
holding the RB6 and RB7 pins low, while raising the  
MCLR (VPP) pin from VIL to VIHH (see programming  
specification). RB6 becomes the programming clock  
and RB7 becomes the programming data. Both RB6  
and RB7 are Schmitt Trigger inputs in this mode.  
After RESET, to place the device into Programming/  
Verify mode, the program counter (PC) is at location  
00h. A 6-bit command is then supplied to the device.  
Depending on the command, 14-bits of program data  
are then supplied to or from the device, depending if  
the command was a load or a read. For complete  
details of serial programming, please refer to the  
PIC16C6X/7X/9XX  
(DS30228).  
Programming  
Specification  
A typical In-Circuit Serial Programming connection is  
shown in Figure 9-19.  
FIGURE 9-19:  
TYPICAL IN-CIRCUIT  
SERIAL PROGRAMMING  
CONNECTION  
To Normal  
Connections  
External  
Connector  
Signals  
PIC16C62X  
+5V  
0V  
VDD  
VSS  
VPP  
MCLR/VPP  
RB6  
RB7  
CLK  
Data I/O  
VDD  
To Normal  
Connections  
DS30235J-page 60  
2003 Microchip Technology Inc.  
PIC16C62X  
The instruction set is highly orthogonal and is grouped  
into three basic categories:  
10.0 INSTRUCTION SET SUMMARY  
Each PIC16C62X instruction is a 14-bit word divided  
into an OPCODE which specifies the instruction type  
and one or more operands which further specify the  
operation of the instruction. The PIC16C62X instruc-  
tion set summary in Table 10-2 lists byte-oriented, bit-  
oriented, and literal and control operations.  
Table 10-1 shows the opcode field descriptions.  
Byte-oriented operations  
Bit-oriented operations  
Literal and control operations  
All instructions are executed within one single  
instruction cycle, unless a conditional test is true or the  
program counter is changed as a result of an  
instruction. In this case, the execution takes two  
instruction cycles with the second cycle executed as a  
NOP. One instruction cycle consists of four oscillator  
periods. Thus, for an oscillator frequency of 4 MHz, the  
For byte-oriented instructions, 'f' represents a file  
register designator and 'd' represents a destination  
designator. The file register designator specifies which  
file register is to be used by the instruction.  
normal instruction execution time is 1 µs. If  
a
The destination designator specifies where the result of  
the operation is to be placed. If 'd' is zero, the result is  
placed in the W register. If 'd' is one, the result is placed  
in the file register specified in the instruction.  
conditional test is true or the program counter is  
changed as a result of an instruction, the instruction  
execution time is 2 µs.  
Table 10-1 lists the instructions recognized by the  
MPASM™ assembler.  
For bit-oriented instructions, 'b' represents a bit field  
designator which selects the number of the bit affected  
by the operation, while 'f' represents the number of the  
file in which the bit is located.  
Figure 10-1 shows the three general formats that the  
instructions can have.  
For literal and control operations, 'k' represents an  
eight or eleven bit constant or literal value.  
Note: To maintain upward compatibility with  
®
future PICmicro products, do not use the  
OPTIONand TRISinstructions.  
TABLE 10-1: OPCODE FIELD  
DESCRIPTIONS  
All examples use the following format to represent a  
hexadecimal number:  
Field  
Description  
0xhh  
f
W
b
k
x
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
where h signifies a hexadecimal digit.  
Bit address within an 8-bit file register  
Literal field, constant data or label  
FIGURE 10-1:  
GENERAL FORMAT FOR  
INSTRUCTIONS  
Don't care location (= 0 or 1)  
Byte-oriented file register operations  
13  
The assembler will generate code with x = 0. It is the  
recommended form of use for compatibility with all  
Microchip software tools.  
8
7
6
0
OPCODE  
d
f (FILE #)  
d = 0 for destination W  
d = 1 for destination f  
f = 7-bit file register address  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1  
label Label name  
TOS Top of Stack  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7
6
0
PC  
Program Counter  
OPCODE  
f (FILE #)  
PCLAT Program Counter High Latch  
H
b = 3-bit bit address  
f = 7-bit file register address  
GIE Global Interrupt Enable bit  
WDT Watchdog Timer/Counter  
Literal and control operations  
TO  
PD  
Time-out bit  
Power-down bit  
General  
dest Destination either the W register or the specified regis-  
ter file location  
13  
8
7
0
OPCODE  
k (literal)  
[ ]  
( )  
Options  
k = 8-bit immediate value  
Contents  
Assigned to  
Register bit field  
In the set of  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
< >  
0
k (literal)  
italics User defined term (font is courier)  
k = 11-bit immediate value  
2003 Microchip Technology Inc.  
DS30235J-page 61  
PIC16C62X  
TABLE 10-2: PIC16C62X INSTRUCTION SET  
Mnemonic,  
Operands  
Description  
Cycles  
14-Bit Opcode  
Status  
Notes  
Affected  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
f, d Add W and f  
f, d AND W with f  
1
1
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
0111 dfff ffff C,DC,Z  
1,2  
1,2  
2
0101 dfff ffff  
0001 lfff ffff  
0001 0000 0011  
1001 dfff ffff  
0011 dfff ffff  
1011 dfff ffff  
1010 dfff ffff  
1111 dfff ffff  
0100 dfff ffff  
1000 dfff ffff  
0000 lfff ffff  
0000 0xx0 0000  
1101 dfff ffff  
1100 dfff ffff  
Z
Z
Z
Z
Z
f
-
Clear f  
1
CLRW  
COMF  
DECF  
Clear W  
1
f, d Complement f  
f, d Decrement f  
1
1,2  
1
1,2  
DECFSZ  
INCF  
f, d Decrement f, Skip if 0  
f, d Increment f  
1(2)  
1
1,2,3  
1,2  
Z
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
f, d Increment f, Skip if 0  
f, d Inclusive OR W with f  
f, d Move f  
1(2)  
1
1,2,3  
1,2  
Z
Z
1
1,2  
f
-
Move W to f  
1
No Operation  
1
RLF  
f, d Rotate Left f through Carry  
f, d Rotate Right f through Carry  
f, d Subtract W from f  
1
C
C
1,2  
1,2  
1,2  
1,2  
1,2  
RRF  
1
SUBWF  
SWAPF  
XORWF  
1
0010 dfff ffff C,DC,Z  
1110 dfff ffff  
0110 dfff ffff Z  
f, d Swap nibbles in f  
1
f, d Exclusive OR W with f  
1
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
f, b Bit Clear f  
1
1
01  
01  
00bb bfff ffff  
01bb bfff ffff  
10bb bfff ffff  
11bb bfff ffff  
1,2  
1,2  
3
BSF  
f, b Bit Set f  
BTFSC  
BTFSS  
f, b Bit Test f, Skip if Clear  
f, b Bit Test f, Skip if Set  
1 (2) 01  
1 (2) 01  
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
k
k
k
-
Add literal and W  
1
1
2
1
2
1
1
2
2
2
1
1
1
11  
11  
10  
00  
10  
11  
11  
00  
11  
00  
00  
11  
11  
111x kkkk kkkk C,DC,Z  
AND literal with W  
1001 kkkk kkkk  
0kkk kkkk kkkk  
Z
Call subroutine  
CLRWDT  
GOTO  
Clear Watchdog Timer  
Go to address  
0000 0110 0100 TO,PD  
1kkk kkkk kkkk  
k
k
k
-
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
Inclusive OR literal with W  
Move literal to W  
1000 kkkk kkkk  
00xx kkkk kkkk  
0000 0000 1001  
01xx kkkk kkkk  
0000 0000 1000  
Z
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into Standby mode  
Subtract W from literal  
Exclusive OR literal with W  
k
-
-
0000 0110 0011 TO,PD  
110x kkkk kkkk C,DC,Z  
k
k
1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself ( e.g., MOVF PORTB, 1), the value used will be that  
value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and  
is driven low by an external device, the data will be written back with a '0'.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be  
cleared if assigned to the Timer0 Module.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The  
second cycle is executed as a NOP.  
DS30235J-page 62  
2003 Microchip Technology Inc.  
PIC16C62X  
10.1 Instruction Descriptions  
ANDLW  
AND Literal with W  
ADDLW  
Add Literal and W  
[ label ] ADDLW  
0 k 255  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Syntax:  
k
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
(W) .AND. (k) (W)  
(W) + k (W)  
C, DC, Z  
Z
11  
1001  
kkkk  
kkkk  
11  
111x  
kkkk  
kkkk  
The contents of W register are  
AND’ed with the eight bit literal 'k'.  
The result is placed in the W  
register.  
The contents of the W register are  
added to the eight bit literal 'k' and  
the result is placed in the W  
register.  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
1
ANDLW  
0x5F  
ADDLW  
0x15  
Before Instruction  
=
Before Instruction  
=
W
0xA3  
0x03  
W
0x10  
0x25  
After Instruction  
=
After Instruction  
=
W
W
ANDWF  
Syntax:  
AND W with f  
ADDWF  
Syntax:  
Add W and f  
[ label ] ANDWF f,d  
[ label ] ADDWF f,d  
Operands:  
0 f 127  
d ∈ [0,1]  
Operands:  
0 f 127  
d ∈ [0,1]  
Operation:  
(W) .AND. (f) (dest)  
Operation:  
(W) + (f) (dest)  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
C, DC, Z  
00  
0101  
dfff  
ffff  
00  
0111  
dfff  
ffff  
Description:  
AND the W register with register  
'f'. If 'd' is 0, the result is stored in  
the W register. If 'd' is 1, the result  
is stored back in register 'f'.  
Description:  
Add the contents of the W register  
with register 'f'. If 'd' is 0, the result  
is stored in the W register. If 'd' is  
1, the result is stored back in  
register 'f'.  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
1
ANDWF  
FSR,  
1
Before Instruction  
=
ADDWF  
FSR,  
0
W
0x17  
0xC2  
Before Instruction  
=
FSR =  
W
0x17  
0xC2  
After Instruction  
=
FSR =  
W
0x17  
0x02  
After Instruction  
=
FSR =  
W
0xD9  
0xC2  
FSR =  
2003 Microchip Technology Inc.  
DS30235J-page 63  
PIC16C62X  
BCF  
Bit Clear f  
BTFSC  
Bit Test, Skip if Clear  
Syntax:  
Operands:  
[ label ] BCF f,b  
Syntax:  
[ label ] BTFSC f,b  
0 f 127  
0 b 7  
Operands:  
0 f 127  
0 b 7  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
0 (f<b>)  
Operation:  
skip if (f<b>) = 0  
None  
None  
Status Affected:  
Encoding:  
01  
00bb  
bfff  
ffff  
01  
10bb  
bfff  
ffff  
Bit 'b' in register 'f' is cleared.  
Description:  
If bit 'b' in register 'f' is '0', then the  
next instruction is skipped.  
1
1
If bit 'b' is '0', then the next instruc-  
tion fetched during the current  
instruction execution is discarded,  
and a NOPis executed instead,  
making this a two-cycle instruction.  
Cycles:  
BCF  
Before Instruction  
FLAG_REG = 0xC7  
After Instruction  
FLAG_REG = 0x47  
FLAG_REG, 7  
Example  
Words:  
Cycles:  
Example  
1
1(2)  
HERE  
FALSE  
TRUE  
BTFSC  
FLAG,1  
PROCESS_CO  
DE  
GOTO  
BSF  
Bit Set f  
Syntax:  
Operands:  
[ label ] BSF f,b  
0 f 127  
0 b 7  
Before Instruction  
PC  
=
address HERE  
After Instruction  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
1 (f<b>)  
if FLAG<1> = 0,  
None  
PC =  
address TRUE  
if FLAG<1>=1,  
01  
01bb  
bfff  
ffff  
PC =  
address FALSE  
Bit 'b' in register 'f' is set.  
1
1
Cycles:  
BSF  
FLAG_REG,  
7
Example  
Before Instruction  
FLAG_REG = 0x0A  
After Instruction  
FLAG_REG = 0x8A  
DS30235J-page 64  
2003 Microchip Technology Inc.  
PIC16C62X  
BTFSS  
Bit Test f, Skip if Set  
CALL  
Call Subroutine  
Syntax:  
[ label ] BTFSS f,b  
Syntax:  
[ label ] CALL  
0 k 2047  
k
Operands:  
0 f 127  
0 b < 7  
Operands:  
Operation:  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
Operation:  
skip if (f<b>) = 1  
None  
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
None  
01  
11bb  
bfff  
ffff  
10  
0kkk  
kkkk  
kkkk  
Description:  
If bit 'b' in register 'f' is '1', then the  
next instruction is skipped.  
Description:  
Call Subroutine. First, return  
If bit 'b' is '1', then the next instruc-  
tion fetched during the current  
instruction execution, is discarded  
and a NOPis executed instead,  
making this a two-cycle instruction.  
address (PC+1) is pushed onto  
the stack. The eleven bit immedi-  
ate address is loaded into PC bits  
<10:0>. The upper bits of the PC  
are loaded from PCLATH. CALLis  
a two-cycle instruction.  
Words:  
Cycles:  
Example  
1
Words:  
Cycles:  
Example  
1
2
1(2)  
HERE  
FALSE  
TRUE  
BTFSS  
FLAG,1  
PROCESS_CO  
DE  
GOTO  
HERE  
CALL  
THER  
E
Before Instruction  
PC  
After Instruction  
PC  
Before Instruction  
PC  
=
Address HERE  
=
address HERE  
After Instruction  
=
Address THERE  
if FLAG<1> = 0,  
TOS = Address HERE+1  
PC =  
address FALSE  
if FLAG<1> = 1,  
PC =  
address TRUE  
CLRF  
Clear f  
Syntax:  
[ label ] CLRF  
0 f 127  
f
Operands:  
Operation:  
00h (f)  
1 Z  
Status Affected:  
Encoding:  
Z
00  
0001  
1fff  
ffff  
Description:  
The contents of register 'f' are  
cleared and the Z bit is set.  
Words:  
Cycles:  
Example  
1
1
CLRF  
FLAG_REG  
Before Instruction  
FLAG_REG  
After Instruction  
FLAG_REG  
Z
=
0x5A  
=
=
0x00  
1
2003 Microchip Technology Inc.  
DS30235J-page 65  
PIC16C62X  
CLRW  
Clear W  
COMF  
Complement f  
Syntax:  
[ label ] CLRW  
None  
Syntax:  
Operands:  
[ label ] COMF f,d  
Operands:  
Operation:  
0 f 127  
d [0,1]  
00h (W)  
1 Z  
Operation:  
(f) (dest)  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
Z
00  
0001  
0000  
0011  
00  
1001  
dfff  
ffff  
Description:  
W register is cleared. Zero bit (Z)  
is set.  
Description:  
The contents of register 'f' are  
complemented. If 'd' is 0, the  
result is stored in W. If 'd' is 1, the  
result is stored back in register 'f'.  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
1
CLRW  
Before Instruction  
=
COMF  
REG1,0  
W
0x5A  
After Instruction  
Before Instruction  
W
Z
=
=
0x00  
1
REG1  
After Instruction  
REG1  
=
0x13  
=
=
0x13  
W
0xEC  
CLRWDT  
Syntax:  
Clear Watchdog Timer  
[ label ] CLRWDT  
None  
DECF  
Decrement f  
Operands:  
Operation:  
Syntax:  
Operands:  
[ label ] DECF f,d  
00h WDT  
0 WDT prescaler,  
1 TO  
0 f 127  
d [0,1]  
1 PD  
Operation:  
(f) - 1 (dest)  
Status Affected:  
Encoding:  
TO, PD  
Status Affected:  
Encoding:  
Z
00  
0000  
0110  
0100  
00  
0011  
dfff  
ffff  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the  
prescaler of the WDT. STATUS  
bits TO and PD are set.  
Description:  
Decrement register 'f'. If 'd' is 0,  
the result is stored in the W  
register. If 'd' is 1, the result is  
stored back in register 'f'.  
Words:  
Cycles:  
Example  
1
Words:  
Cycles:  
Example  
1
1
1
CLRWDT  
DECF  
CNT,  
1
Before Instruction  
Before Instruction  
CNT  
WDT counter  
After Instruction  
WDT counter  
=
=
?
=
=
0x01  
0
Z
After Instruction  
0x00  
WDT prescaler=  
0
1
1
CNT  
Z
=
=
0x00  
1
TO  
PD  
=
=
DS30235J-page 66  
2003 Microchip Technology Inc.  
PIC16C62X  
DECFSZ  
Syntax:  
Decrement f, Skip if 0  
INCF  
Increment f  
[ label ] DECFSZ f,d  
Syntax:  
Operands:  
[ label ] INCF f,d  
Operands:  
0 f 127  
d [0,1]  
0 f 127  
d [0,1]  
Operation:  
(f) - 1 (dest); skip if result = 0  
Operation:  
(f) + 1 (dest)  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
Z
00  
1011  
dfff  
ffff  
00  
1010  
dfff  
ffff  
Description:  
The contents of register 'f' are  
decremented. If 'd' is 0, the result  
is placed in the W register. If 'd' is  
1, the result is placed back in  
register 'f'.  
Description:  
The contents of register 'f' are  
incremented. If 'd' is 0, the result  
is placed in the W register. If 'd' is  
1, the result is placed back in  
register 'f'.  
If the result is 0, the next instruc-  
tion, which is already fetched, is  
discarded. A NOPis executed  
instead making it a two-cycle  
instruction.  
Words:  
Cycles:  
Example  
1
1
INCF  
CNT,  
1
Before Instruction  
CNT  
Words:  
Cycles:  
Example  
1
=
=
0xFF  
0
Z
1(2)  
After Instruction  
HERE  
DECFSZ  
GOTO  
CNT, 1  
LOOP  
CNT  
Z
=
=
0x00  
1
CONTINUE •  
Before Instruction  
=
PC  
address HERE  
After Instruction  
CNT  
if CNT =  
PC  
if CNT ≠  
PC  
=
CNT - 1  
0,  
=
address CONTINUE  
0,  
=
address HERE+1  
GOTO  
Unconditional Branch  
Syntax:  
[ label ] GOTO  
0 k 2047  
k
Operands:  
Operation:  
k PC<10:0>  
PCLATH<4:3> PC<12:11>  
Status Affected:  
Encoding:  
None  
10  
1kkk  
kkkk  
kkkk  
Description:  
GOTOis an unconditional branch.  
The eleven bit immediate value is  
loaded into PC bits <10:0>. The  
upper bits of PC are loaded from  
PCLATH<4:3>. GOTOis a two-  
cycle instruction.  
Words:  
Cycles:  
Example  
1
2
GOTO THERE  
After Instruction  
=
PC  
Address THERE  
2003 Microchip Technology Inc.  
DS30235J-page 67  
PIC16C62X  
INCFSZ  
Syntax:  
Increment f, Skip if 0  
IORWF  
Inclusive OR W with f  
[ label ] INCFSZ f,d  
Syntax:  
[ label ] IORWF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) + 1 (dest), skip if result = 0  
Operation:  
(W) .OR. (f) (dest)  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
Z
00  
1111  
dfff  
ffff  
00  
0100  
dfff  
ffff  
Description:  
The contents of register 'f' are  
incremented. If 'd' is 0 the result is  
placed in the W register. If 'd' is 1,  
the result is placed back in  
register 'f'.  
Description:  
Inclusive OR the W register with  
register 'f'. If 'd' is 0 the result is  
placed in the W register. If 'd' is 1  
the result is placed back in  
register 'f'.  
If the result is 0, the next instruc-  
tion, which is already fetched, is  
discarded. A NOPis executed  
instead making it a two-cycle  
instruction.  
Words:  
Cycles:  
Example  
1
1
IORWF  
RESULT, 0  
Before Instruction  
RESULT =  
Words:  
Cycles:  
Example  
1
0x13  
0x91  
W
=
1(2)  
After Instruction  
HERE  
INCFSZ  
GOTO  
CNT,  
LOOP  
1
RESULT =  
0x13  
0x93  
1
W
Z
=
=
CONTINUE •  
Before Instruction  
=
MOVLW  
Move Literal to W  
[ label ] MOVLW k  
0 k 255  
PC  
address HERE  
Syntax:  
After Instruction  
=
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
CNT  
CNT + 1  
0,  
if CNT=  
k (W)  
PC  
=
address CONTINUE  
0,  
None  
if CNT≠  
PC  
=
address HERE +1  
11  
00xx  
kkkk  
kkkk  
The eight bit literal 'k' is loaded  
into W register. The don’t cares  
will assemble as 0’s.  
IORLW  
Inclusive OR Literal with W  
[ label ] IORLW k  
0 k 255  
Syntax:  
Words:  
Cycles:  
Example  
1
1
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
(W) .OR. k (W)  
Z
MOVLW  
0x5A  
After Instruction  
=
11  
1000  
kkkk  
kkkk  
W
0x5A  
The contents of the W register is  
OR’ed with the eight bit literal 'k'.  
The result is placed in the W  
register.  
Words:  
Cycles:  
Example  
1
1
IORLW  
0x35  
Before Instruction  
=
W
0x9A  
After Instruction  
W
Z
=
=
0xBF  
1
DS30235J-page 68  
2003 Microchip Technology Inc.  
PIC16C62X  
MOVF  
Move f  
NOP  
No Operation  
Syntax:  
Operands:  
[ label ] MOVF f,d  
Syntax:  
[ label ] NOP  
None  
0 f 127  
d [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
No operation  
None  
Operation:  
(f) (dest)  
Status Affected:  
Encoding:  
Z
00  
0000  
0xx0  
0000  
00  
1000  
dfff  
ffff  
No operation.  
Description:  
The contents of register f is  
1
moved to a destination dependent  
upon the status of d. If d = 0,  
destination is W register. If d = 1,  
the destination is file register f  
itself. d = 1 is useful to test a file  
register since status flag Z is  
affected.  
Cycles:  
1
NOP  
Example  
OPTION  
Load Option Register  
[ label ] OPTION  
None  
Words:  
Cycles:  
Example  
1
1
Syntax:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
MOVF  
FSR,  
0
(W) OPTION  
None  
After Instruction  
=
W
value in FSR  
00  
0000  
0110  
0010  
register  
The contents of the W register are  
loaded in the OPTION register.  
This instruction is supported for  
code compatibility with PIC16C5X  
products. Since OPTION is a read-  
able/writable register, the user can  
directly address it.  
Z
=
1
MOVWF  
Move W to f  
Syntax:  
[ label ] MOVWF  
0 f 127  
(W) (f)  
f
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
Cycles:  
Example  
1
1
None  
00  
0000  
1fff  
ffff  
To maintain upward compatibil-  
®
Move data from W register to reg-  
ister 'f'.  
ity with future PICmicro  
products, do not use this  
instruction.  
Words:  
Cycles:  
Example  
1
1
MOVWF  
OPTION  
Before Instruction  
OPTION =  
0xFF  
0x4F  
W
=
After Instruction  
OPTION =  
0x4F  
0x4F  
W
=
2003 Microchip Technology Inc.  
DS30235J-page 69  
PIC16C62X  
RETFIE  
Return from Interrupt  
RETLW  
Return with Literal in W  
[ label ] RETLW k  
0 k 255  
Syntax:  
[ label ] RETFIE  
Syntax:  
Operands:  
Operation:  
None  
Operands:  
Operation:  
TOS PC,  
1 GIE  
k (W);  
TOS PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
00  
0000  
0000  
1001  
11  
01xx  
kkkk  
kkkk  
Description:  
Return from Interrupt. Stack is  
POPed and Top of Stack (TOS) is  
loaded in the PC. Interrupts are  
enabled by setting Global  
Interrupt Enable bit, GIE  
Description:  
The W register is loaded with the  
eight bit literal 'k'. The program  
counter is loaded from the top of  
the stack (the return address).  
This is a two-cycle instruction.  
(INTCON<7>). This is a two-cycle  
instruction.  
Words:  
Cycles:  
Example  
1
2
Words:  
Cycles:  
Example  
1
CALL TABLE;W contains  
table  
;offset value  
2
RETFIE  
TABLE  
;W now has table value  
After Interrupt  
PC  
=
TOS  
1
GIE =  
ADDWF PC ;W = offset  
RETLW k1 ;Begin table  
RETLW k2  
;
RETLW kn ; End of table  
Before Instruction  
=
W
0x07  
After Instruction  
=
W
value of k8  
RETURN  
Return from Subroutine  
[ label ] RETURN  
None  
Syntax:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
TOS PC  
None  
00  
0000  
0000  
1000  
Return from subroutine. The stack  
is POPed and the top of the stack  
(TOS) is loaded into the program  
counter. This is a two-cycle  
instruction.  
Words:  
Cycles:  
Example  
1
2
RETURN  
After Interrupt  
PC  
=
TOS  
DS30235J-page 70  
2003 Microchip Technology Inc.  
PIC16C62X  
RLF  
Rotate Left f through Carry  
RRF  
Rotate Right f through Carry  
Syntax:  
Operands:  
[ label ]  
RLF f,d  
Syntax:  
Operands:  
[ label ] RRF f,d  
0 f 127  
d [0,1]  
0 f 127  
d [0,1]  
Operation:  
See description below  
C
Operation:  
See description below  
C
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
00  
1101  
dfff  
ffff  
00  
1100  
dfff  
ffff  
Description:  
The contents of register 'f' are  
rotated one bit to the left through  
the Carry Flag. If 'd' is 0, the result  
is placed in the W register. If 'd' is  
1, the result is stored back in  
register 'f'.  
Description:  
The contents of register 'f' are  
rotated one bit to the right through  
the Carry Flag. If 'd' is 0, the result  
is placed in the W register. If 'd' is  
1, the result is placed back in  
register 'f'.  
C
Register f  
C
Register f  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
1
RLF  
REG1,0  
RRF  
REG1,  
0
Before Instruction  
REG1  
C
After Instruction  
=
=
1110 0110  
0
Before Instruction  
REG1  
C
After Instruction  
=
=
1110 0110  
0
REG1  
=
=
=
1110 0110  
1100 1100  
1
W
C
REG1  
W
C
=
=
=
1110 0110  
0111 0011  
0
SLEEP  
Syntax:  
[ label  
]
SLEEP  
Operands:  
Operation:  
None  
00h WDT,  
0 WDT prescaler,  
1 TO,  
0 PD  
Status Affected:  
Encoding:  
TO, PD  
00  
0000  
0110  
0011  
Description:  
The power-down STATUS bit,  
PD is cleared. Time-out  
STATUS bit, TO is set. Watch-  
dog Timer and its prescaler are  
cleared.  
The processor is put into SLEEP  
mode with the oscillator  
stopped. See Section 9.8 for  
more details.  
Words:  
1
Cycles:  
Example:  
1
SLEEP  
2003 Microchip Technology Inc.  
DS30235J-page 71  
PIC16C62X  
SUBLW  
Subtract W from Literal  
SUBWF  
Syntax:  
Subtract W from f  
Syntax:  
[ label ]  
SUBLW k  
[ label ]  
SUBWF f,d  
Operands:  
Operation:  
0 k 255  
Operands:  
0 f 127  
d [0,1]  
k - (W) → (W)  
Operation:  
(f) - (W) → (dest)  
Status  
Affected:  
C, DC, Z  
Status  
Affected:  
C, DC, Z  
Encoding:  
11  
110x  
kkkk  
kkkk  
Encoding:  
00  
0010  
dfff  
ffff  
Description:  
The W register is subtracted (2’s  
complement method) from the eight  
bit literal 'k'. The result is placed in  
the W register.  
Description:  
Subtract (2’s complement method)  
W register from register 'f'. If 'd' is 0,  
the result is stored in the W register.  
If 'd' is 1, the result is stored back in  
register 'f'.  
Words:  
1
1
Cycles:  
Words:  
1
1
Example 1:  
SUBLW  
0x02  
Cycles:  
Before Instruction  
Example 1:  
SUBWF  
REG1,1  
W
C
=
=
1
?
Before Instruction  
REG1=  
3
2
?
After Instruction  
W
C
=
=
W
C
=
1
=
1; result is positive  
After Instruction  
Example 2:  
Before Instruction  
REG1=  
1
W
C
=
=
2
?
W
C
=
=
2
1; result is positive  
After Instruction  
Example 2:  
Before Instruction  
W
C
=
0
REG1=  
2
2
?
=
1; result is zero  
W
C
=
=
Example 3:  
Before Instruction  
After Instruction  
W
C
=
=
3
?
REG1=  
0
W
C
=
=
2
After Instruction  
1; result is zero  
W
C
=
0xFF  
Example 3:  
Before Instruction  
=
0; result is negative  
REG1=  
1
2
?
W
C
=
=
After Instruction  
REG1= 0xFF  
W
C
=
2
=
0; result is negative  
DS30235J-page 72  
2003 Microchip Technology Inc.  
PIC16C62X  
SWAPF  
Syntax:  
Swap Nibbles in f  
XORLW  
Exclusive OR Literal with W  
[ label ] SWAPF f,d  
Syntax:  
[ label  
]
XORLW k  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 k 255  
Operation:  
(f<3:0>) (dest<7:4>),  
(f<7:4>) (dest<3:0>)  
Operation:  
(W) .XOR. k → (W)  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
None  
11  
1010 kkkk kkkk  
00  
1110  
dfff  
ffff  
Description:  
The contents of the W register  
are XOR’ed with the eight bit  
literal 'k'. The result is placed in  
the W register.  
Description:  
The upper and lower nibbles of  
register 'f' are exchanged. If 'd' is  
0, the result is placed in W  
register. If 'd' is 1, the result is  
placed in register 'f'.  
Words:  
1
Cycles:  
Example:  
1
Words:  
Cycles:  
Example  
1
1
XORLW 0xAF  
Before Instruction  
SWAPF  
REG,  
0
W
=
0xB5  
0x1A  
Before Instruction  
After Instruction  
REG1  
=
0xA5  
W
=
After Instruction  
REG1  
W
=
=
0xA5  
0x5A  
XORWF  
Syntax:  
Exclusive OR W with f  
[ label ] XORWF f,d  
TRIS  
Load TRIS Register  
Operands:  
0 f 127  
d [0,1]  
Syntax:  
[ label ] TRIS  
5 f 7  
f
Operation:  
(W) .XOR. (f) → (dest)  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
(W) TRIS register f;  
Status Affected:  
Encoding:  
Z
None  
00  
0110  
dfff  
ffff  
00  
0000  
0110  
0fff  
Description:  
Exclusive OR the contents of the  
W register with register 'f'. If 'd' is  
0, the result is stored in the W  
register. If 'd' is 1, the result is  
stored back in register 'f'.  
The instruction is supported for  
code compatibility with the  
PIC16C5X products. Since TRIS  
registers are readable and  
writable, the user can directly  
address them.  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
1
REG  
XORWF  
1
Before Instruction  
REG  
W
=
=
0xAF  
0xB5  
To maintain upward compatibil-  
®
ity with future PICmicro prod-  
ucts, do not use this  
instruction.  
After Instruction  
REG  
W
=
=
0x1A  
0xB5  
2003 Microchip Technology Inc.  
DS30235J-page 73  
PIC16C62X  
NOTES:  
DS30235J-page 74  
2003 Microchip Technology Inc.  
PIC16C62X  
11.1 MPLAB Integrated Development  
Environment Software  
11.0 DEVELOPMENT SUPPORT  
The PICmicro® microcontrollers are supported with a  
full range of hardware and software development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16-bit micro-  
controller market. The MPLAB IDE is a Windows®  
based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
• An interface to debugging tools  
- simulator  
- MPLAB C17 and MPLAB C18 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- programmer (sold separately)  
- emulator (sold separately)  
- in-circuit debugger (sold separately)  
• A full-featured editor with color coded context  
• A multiple project manager  
- MPLAB C30 C Compiler  
- MPLAB ASM30 Assembler/Linker/Library  
• Simulators  
• Customizable data windows with direct edit of  
contents  
- MPLAB SIM Software Simulator  
- MPLAB dsPIC30 Software Simulator  
• Emulators  
• High level source code debugging  
• Mouse over variable inspection  
• Extensive on-line help  
- MPLAB ICE 2000 In-Circuit Emulator  
- MPLAB ICE 4000 In-Circuit Emulator  
• In-Circuit Debugger  
The MPLAB IDE allows you to:  
• Edit your source files (either assembly or C)  
- MPLAB ICD 2  
• One touch assemble (or compile) and download  
to PICmicro emulator and simulator tools  
(automatically updates all project information)  
• Device Programmers  
- PRO MATE® II Universal Device Programmer  
- PICSTART® Plus Development Programmer  
• Low Cost Demonstration Boards  
- PICDEMTM 1 Demonstration Board  
- PICDEM.netTM Demonstration Board  
- PICDEM 2 Plus Demonstration Board  
- PICDEM 3 Demonstration Board  
- PICDEM 4 Demonstration Board  
- PICDEM 17 Demonstration Board  
- PICDEM 18R Demonstration Board  
- PICDEM LIN Demonstration Board  
- PICDEM USB Demonstration Board  
• Evaluation Kits  
• Debug using:  
- source files (assembly or C)  
- absolute listing file (mixed assembly and C)  
- machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost effective  
simulators, through low cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increasing flexibility  
and power.  
11.2 MPASM Assembler  
®
- KEELOQ  
The MPASM assembler is a full-featured, universal  
macro assembler for all PICmicro MCUs.  
- PICDEM MSC  
- microID®  
- CAN  
The MPASM assembler generates relocatable object  
files for the MPLINK object linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
- PowerSmart®  
- Analog  
The MPASM assembler features include:  
• Integration into MPLAB IDE projects  
• User defined macros to streamline assembly code  
• Conditional assembly for multi-purpose source  
files  
• Directives that allow complete control over the  
assembly process  
2003 Microchip Technology Inc.  
DS30235J-page 75  
PIC16C62X  
11.3 MPLAB C17 and MPLAB C18  
C Compilers  
11.6 MPLAB ASM30 Assembler, Linker,  
and Librarian  
The MPLAB C17 and MPLAB C18 Code Development  
compilers for  
MPLAB ASM30 assembler produces relocatable  
machine code from symbolic assembly language for  
dsPIC30F devices. MPLAB C30 compiler uses the  
assembler to produce it’s object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
Systems are complete ANSI  
C
Microchip’s PIC17CXXX and PIC18CXXX family of  
microcontrollers. These compilers provide powerful  
integration capabilities, superior code optimization and  
ease of use not found with other compilers.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
• Support for the entire dsPIC30F instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
11.4 MPLINK Object Linker/  
MPLIB Object Librarian  
• Rich directive set  
The MPLINK object linker combines relocatable  
objects created by the MPASM assembler and the  
MPLAB C17 and MPLAB C18 C compilers. It can link  
relocatable objects from pre-compiled libraries, using  
directives from a linker script.  
• Flexible macro language  
• MPLAB IDE compatibility  
11.7 MPLAB SIM Software Simulator  
The MPLAB SIM software simulator allows code devel-  
opment in a PC hosted environment by simulating the  
PICmicro series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file, or user defined key press, to any pin. The execu-  
tion can be performed in Single-Step, Execute Until  
Break, or Trace mode.  
The MPLIB object librarian manages the creation and  
modification of library files of pre-compiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The MPLAB SIM simulator fully supports symbolic  
debugging using the MPLAB C17 and MPLAB C18  
C Compilers, as well as the MPASM assembler. The  
software simulator offers the flexibility to develop and  
debug code outside of the laboratory environment,  
making it an excellent, economical software  
development tool.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
11.5 MPLAB C30 C Compiler  
11.8 MPLAB SIM30 Software Simulator  
The MPLAB C30 C compiler is a full-featured, ANSI  
compliant, optimizing compiler that translates standard  
ANSI C programs into dsPIC30F assembly language  
source. The compiler also supports many command-  
line options and language extensions to take full  
advantage of the dsPIC30F device hardware capabili-  
ties, and afford fine control of the compiler code  
generator.  
The MPLAB SIM30 software simulator allows code  
development in a PC hosted environment by simulating  
the dsPIC30F series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file, or user defined key press, to any of the pins.  
The MPLAB SIM30 simulator fully supports symbolic  
debugging using the MPLAB C30 C Compiler and  
MPLAB ASM30 assembler. The simulator runs in either  
a Command Line mode for automated tasks, or from  
MPLAB IDE. This high speed simulator is designed to  
debug, analyze and optimize time intensive DSP  
routines.  
MPLAB C30 is distributed with a complete ANSI C  
standard library. All library functions have been  
validated and conform to the ANSI C library standard.  
The library includes functions for string manipulation,  
dynamic memory allocation, data conversion, time-  
keeping, and math functions (trigonometric, exponen-  
tial and hyperbolic). The compiler provides symbolic  
information for high level source debugging with the  
MPLAB IDE.  
DS30235J-page 76  
2003 Microchip Technology Inc.  
PIC16C62X  
11.9 MPLAB ICE 2000  
High Performance Universal  
In-Circuit Emulator  
11.11 MPLAB ICD 2 In-Circuit Debugger  
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a  
powerful, low cost, run-time development tool,  
connecting to the host PC via an RS-232 or high speed  
USB interface. This tool is based on the FLASH  
PICmicro MCUs and can be used to develop for these  
and other PICmicro microcontrollers. The MPLAB  
ICD 2 utilizes the in-circuit debugging capability built  
into the FLASH devices. This feature, along with  
The MPLAB ICE 2000 universal in-circuit emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for  
PICmicro microcontrollers. Software control of the  
MPLAB ICE 2000 in-circuit emulator is advanced by  
the MPLAB Integrated Development Environment,  
which allows editing, building, downloading and source  
debugging from a single environment.  
Microchip’s In-Circuit Serial ProgrammingTM (ICSPTM  
)
protocol, offers cost effective in-circuit FLASH debug-  
ging from the graphical user interface of the MPLAB  
Integrated Development Environment. This enables a  
designer to develop and debug source code by setting  
breakpoints, single-stepping and watching variables,  
CPU status and peripheral registers. Running at full  
speed enables testing hardware and applications in  
real-time. MPLAB ICD 2 also serves as a development  
programmer for selected PICmicro devices.  
The MPLAB ICE 2000 is a full-featured emulator  
system with enhanced trace, trigger and data monitor-  
ing features. Interchangeable processor modules allow  
the system to be easily reconfigured for emulation of  
different processors. The universal architecture of the  
MPLAB ICE in-circuit emulator allows expansion to  
support new PICmicro microcontrollers.  
The MPLAB ICE 2000 in-circuit emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft® Windows 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
11.12 PRO MATE II Universal Device  
Programmer  
The PRO MATE II is a universal, CE compliant device  
programmer with programmable voltage verification at  
VDDMIN and VDDMAX for maximum reliability. It features  
an LCD display for instructions and error messages  
and a modular detachable socket assembly to support  
various package types. In Stand-Alone mode, the  
PRO MATE II device programmer can read, verify, and  
program PICmicro devices without a PC connection. It  
can also set code protection in this mode.  
11.10 MPLAB ICE 4000  
High Performance Universal  
In-Circuit Emulator  
The MPLAB ICE 4000 universal in-circuit emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for high-  
end PICmicro microcontrollers. Software control of the  
MPLAB ICE in-circuit emulator is provided by the  
MPLAB Integrated Development Environment, which  
allows editing, building, downloading and source  
debugging from a single environment.  
11.13 PICSTART Plus Development  
Programmer  
The PICSTART Plus development programmer is an  
easy-to-use, low cost, prototype programmer. It  
connects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient. The  
PICSTART Plus development programmer supports  
most PICmicro devices up to 40 pins. Larger pin count  
devices, such as the PIC16C92X and PIC17C76X,  
may be supported with an adapter socket. The  
PICSTART Plus development programmer is CE  
compliant.  
The MPLAB ICD 4000 is a premium emulator system,  
providing the features of MPLAB ICE 2000, but with  
increased emulation memory and high speed perfor-  
mance for dsPIC30F and PIC18XXXX devices. Its  
advanced emulator features include complex triggering  
and timing, up to 2 Mb of emulation memory, and the  
ability to view variables in real-time.  
The MPLAB ICE 4000 in-circuit emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft Windows 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
2003 Microchip Technology Inc.  
DS30235J-page 77  
PIC16C62X  
11.14 PICDEM 1 PICmicro  
Demonstration Board  
11.17 PICDEM 3 PIC16C92X  
Demonstration Board  
The PICDEM 1 demonstration board demonstrates the  
capabilities of the PIC16C5X (PIC16C54 to  
PIC16C58A), PIC16C61, PIC16C62X, PIC16C71,  
PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All  
necessary hardware and software is included to run  
basic demo programs. The sample microcontrollers  
provided with the PICDEM 1 demonstration board can  
be programmed with a PRO MATE II device program-  
mer, or a PICSTART Plus development programmer.  
The PICDEM 1 demonstration board can be connected  
to the MPLAB ICE in-circuit emulator for testing. A  
prototype area extends the circuitry for additional  
application components. Features include an RS-232  
interface, a potentiometer for simulated analog input,  
push button switches and eight LEDs.  
The PICDEM 3 demonstration board supports the  
PIC16C923 and PIC16C924 in the PLCC package. All  
the necessary hardware and software is included to run  
the demonstration programs.  
11.18 PICDEM 4 8/14/18-Pin  
Demonstration Board  
The PICDEM 4 can be used to demonstrate the capa-  
bilities of the 8-, 14-, and 18-pin PIC16XXXX and  
PIC18XXXX MCUs, including the PIC16F818/819,  
PIC16F87/88, PIC16F62XA and the PIC18F1320  
family of microcontrollers. PICDEM 4 is intended to  
showcase the many features of these low pin count  
parts, including LIN and Motor Control using ECCP.  
Special provisions are made for low power operation  
with the supercapacitor circuit, and jumpers allow on-  
board hardware to be disabled to eliminate current  
draw in this mode. Included on the demo board are pro-  
visions for Crystal, RC or Canned Oscillator modes, a  
five volt regulator for use with a nine volt wall adapter  
or battery, DB-9 RS-232 interface, ICD connector for  
programming via ICSP and development with MPLAB  
ICD 2, 2x16 liquid crystal display, PCB footprints for H-  
Bridge motor driver, LIN transceiver and EEPROM.  
Also included are: header for expansion, eight LEDs,  
four potentiometers, three push buttons and a proto-  
typing area. Included with the kit is a PIC16F627A and  
a PIC18F1320. Tutorial firmware is included along with  
the User’s Guide.  
11.15 PICDEM.net Internet/Ethernet  
Demonstration Board  
The PICDEM.net demonstration board is an Internet/  
Ethernet demonstration board using the PIC18F452  
microcontroller and TCP/IP firmware. The board  
supports any 40-pin DIP device that conforms to the  
standard pinout used by the PIC16F877 or  
PIC18C452. This kit features a user friendly TCP/IP  
stack, web server with HTML, a 24L256 Serial  
EEPROM for Xmodem download to web pages into  
Serial EEPROM, ICSP/MPLAB ICD 2 interface con-  
nector, an Ethernet interface, RS-232 interface, and a  
16 x 2 LCD display. Also included is the book and  
CD-ROM “TCP/IP Lean, Web Servers for Embedded  
Systems,” by Jeremy Bentham  
11.19 PICDEM 17 Demonstration Board  
The PICDEM 17 demonstration board is an evaluation  
board that demonstrates the capabilities of several  
Microchip microcontrollers, including PIC17C752,  
11.16 PICDEM 2 Plus  
Demonstration Board  
PIC17C756A, PIC17C762 and PIC17C766.  
A
The PICDEM 2 Plus demonstration board supports  
many 18-, 28-, and 40-pin microcontrollers, including  
PIC16F87X and PIC18FXX2 devices. All the neces-  
sary hardware and software is included to run the dem-  
onstration programs. The sample microcontrollers  
provided with the PICDEM 2 demonstration board can  
be programmed with a PRO MATE II device program-  
mer, PICSTART Plus development programmer, or  
MPLAB ICD 2 with a Universal Programmer Adapter.  
The MPLAB ICD 2 and MPLAB ICE in-circuit emulators  
may also be used with the PICDEM 2 demonstration  
board to test firmware. A prototype area extends the  
circuitry for additional application components. Some  
of the features include an RS-232 interface, a 2 x 16  
LCD display, a piezo speaker, an on-board temperature  
sensor, four LEDs, and sample PIC18F452 and  
PIC16F877 FLASH microcontrollers.  
programmed sample is included. The PRO MATE II  
device programmer, or the PICSTART Plus develop-  
ment programmer, can be used to reprogram the  
device for user tailored application development. The  
PICDEM 17 demonstration board supports program  
download and execution from external on-board  
FLASH memory. A generous prototype area is  
available for user hardware expansion.  
DS30235J-page 78  
2003 Microchip Technology Inc.  
PIC16C62X  
11.20 PICDEM 18R PIC18C601/801  
Demonstration Board  
11.23 PICDEM USB PIC16C7X5  
Demonstration Board  
The PICDEM 18R demonstration board serves to assist  
development of the PIC18C601/801 family of Microchip  
microcontrollers. It provides hardware implementation  
of both 8-bit Multiplexed/De-multiplexed and 16-bit  
Memory modes. The board includes 2 Mb external  
FLASH memory and 128 Kb SRAM memory, as well as  
serial EEPROM, allowing access to the wide range of  
memory types supported by the PIC18C601/801.  
The PICDEM USB Demonstration Board shows off the  
capabilities of the PIC16C745 and PIC16C765 USB  
microcontrollers. This board provides the basis for  
future USB products.  
11.24 Evaluation and  
Programming Tools  
In addition to the PICDEM series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
for these products.  
11.21 PICDEM LIN PIC16C43X  
Demonstration Board  
• KEELOQ evaluation and programming tools for  
Microchip’s HCS Secure Data Products  
The powerful LIN hardware and software kit includes a  
series of boards and three PICmicro microcontrollers.  
The small footprint PIC16C432 and PIC16C433 are  
used as slaves in the LIN communication and feature  
on-board LIN transceivers. A PIC16F874 FLASH  
microcontroller serves as the master. All three micro-  
controllers are programmed with firmware to provide  
LIN bus communication.  
• CAN developers kit for automotive network  
applications  
• Analog design boards and filter design software  
• PowerSmart battery charging evaluation/  
calibration kits  
• IrDA® development kit  
• microID development and rfLabTM development  
software  
11.22 PICkitTM 1 FLASH Starter Kit  
• SEEVAL® designer kit for memory evaluation and  
endurance calculations  
A complete "development system in a box", the PICkit  
FLASH Starter Kit includes a convenient multi-section  
board for programming, evaluation, and development  
of 8/14-pin FLASH PIC® microcontrollers. Powered via  
USB, the board operates under a simple Windows GUI.  
The PICkit 1 Starter Kit includes the user's guide (on  
CD ROM), PICkit 1 tutorial software and code for vari-  
ous applications. Also included are MPLAB® IDE  
(Integrated Development Environment) software, soft-  
ware and hardware "Tips 'n Tricks for 8-pin FLASH  
PIC® Microcontrollers" Handbook and a USB Interface  
Cable. Supports all current 8/14-pin FLASH PIC  
microcontrollers, as well as many future planned  
devices.  
• PICDEM MSC demo boards for Switching mode  
power supply, high power IR driver, delta sigma  
ADC, and flow rate sensor  
Check the Microchip web page and the latest Product  
Line Card for the complete list of demonstration and  
evaluation kits.  
2003 Microchip Technology Inc.  
DS30235J-page 79  
PIC16C62X  
NOTES:  
DS30235J-page 80  
2003 Microchip Technology Inc.  
PIC16C62X  
12.0 ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings †  
Ambient Temperature under bias.............................................................................................................. -40° to +125°C  
Storage Temperature ................................................................................................................................ -65° to +150°C  
Voltage on any pin with respect to VSS (except VDD and MCLR) .......................................................-0.6V to VDD +0.6V  
Voltage on VDD with respect to VSS ................................................................................................................ 0 to +7.5V  
Voltage on MCLR with respect to VSS (Note 2) .................................................................................................0 to +14V  
Voltage on RA4 with respect to VSS...........................................................................................................................8.5V  
Total power Dissipation (Note 1)...............................................................................................................................1.0W  
Maximum Current out of VSS pin ..........................................................................................................................300 mA  
Maximum Current into VDD pin .............................................................................................................................250 mA  
Input Clamp Current, IIK (VI <0 or VI> VDD)...................................................................................................................... 20 mA  
Output Clamp Current, IOK (VO <0 or VO>VDD)................................................................................................................ 20 mA  
Maximum Output Current sunk by any I/O pin........................................................................................................25 mA  
Maximum Output Current sourced by any I/O pin...................................................................................................25 mA  
Maximum Current sunk by PORTA and PORTB...................................................................................................200 mA  
Maximum Current sourced by PORTA and PORTB..............................................................................................200 mA  
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOl x IOL).  
2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latchup. Thus,  
a series resistor of 50-100should be used when applying a "low" level to the MCLR pin rather than pulling  
this pin directly to VSS.  
NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
2003 Microchip Technology Inc.  
DS30235J-page 81  
PIC16C62X  
FIGURE 12-1:  
PIC16C62X VOLTAGE-FREQUENCY GRAPH, -40°C TA +125°C  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
VDD  
(Volts)  
3.0  
2.5  
2.0  
0
4
10  
20  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency.  
Please reference the Product Identification System section for the maximum rated speed of the parts.  
FIGURE 12-2:  
PIC16LC62X VOLTAGE-FREQUENCY GRAPH, -40°C TA +125°C  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
VDD  
(Volts)  
3.0  
2.5  
2.0  
0
4
10  
20  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency.  
Please reference the Product Identification System section for the maximum rated speed of the parts.  
DS30235J-page 82  
2003 Microchip Technology Inc.  
PIC16C62X  
FIGURE 12-3:  
PIC16C62XA VOLTAGE-FREQUENCY GRAPH, 0°C TA +70°C  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
VDD  
(Volts)  
3.0  
2.5  
2.0  
0
4
10  
20  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency.  
Please reference the Product Identification System section for the maximum rated speed of the parts.  
FIGURE 12-4:  
PIC16C62XA VOLTAGE-FREQUENCY GRAPH, -40°C TA 0°C, +70°C TA ≤  
+125°C  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
VDD  
(Volts)  
3.0  
2.5  
2.0  
0
4
10  
20  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency.  
Please reference the Product Identification System section for the maximum rated speed of the parts.  
2003 Microchip Technology Inc.  
DS30235J-page 83  
PIC16C62X  
FIGURE 12-5:  
PIC16LC620A/LC621A/LC622A VOLTAGE-FREQUENCY GRAPH,  
-40°C TA 0°C  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
VDD  
(Volts)  
2.7  
2.5  
2.0  
0
4
10  
20  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency.  
Please reference the Product Identification System section for the maximum rated speed of the parts.  
FIGURE 12-6:  
PIC16LC620A/LC621A/LC622A VOLTAGE-FREQUENCY GRAPH,  
0°C TA +125°C  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
VDD  
(Volts)  
3.0  
2.5  
2.0  
0
4
10  
20  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency.  
Please reference the Product Identification System section for the maximum rated speed of the parts.  
DS30235J-page 84  
2003 Microchip Technology Inc.  
PIC16C62X  
FIGURE 12-7:  
PIC16CR62XA VOLTAGE-FREQUENCY GRAPH, 0°C TA +70°C  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
VDD  
(Volts)  
3.0  
2.5  
2.0  
0
4
10  
20  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency.  
Please reference the Product Identification System section for the maximum rated speed of the parts.  
FIGURE 12-8:  
PIC16CR62XA VOLTAGE-FREQUENCY GRAPH, -40°C TA 0°C,  
+70°C TA +125°C  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
VDD  
(Volts)  
3.0  
2.5  
2.0  
0
4
10  
20  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency.  
Please reference the Product Identification System section for the maximum rated speed of the parts.  
2003 Microchip Technology Inc.  
DS30235J-page 85  
PIC16C62X  
FIGURE 12-9:  
PIC16LCR62XA VOLTAGE-FREQUENCY GRAPH, -40°C TA +125°C  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
VDD  
(VOLTS)  
3.0  
2.5  
2.0  
0
4
10  
20  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency.  
Please reference the Product Identification System section for the maximum rated speed of the parts.  
DS30235J-page 86  
2003 Microchip Technology Inc.  
PIC16C62X  
FIGURE 12-10:  
PIC16C620A/C621A/C622A/CR620A - 40 VOLTAGE-FREQUENCY GRAPH,  
0°C TA +70°C  
6.0  
5.5  
5.0  
4.5  
VDD  
(Volts)  
4.0  
3.5  
3.0  
2.5  
0
40  
4
10  
20  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency.  
Please reference the Product Identification System section for the maximum rated speed of the parts.  
3: Operation between 20 to 40 MHz requires the following:  
VDD between 4.5V. and 5.5V  
OSC1 externally driven  
OSC2 not connected  
HS mode  
Commercial temperatures  
Devices qualified for 40 MHz operation have -40 designation (ex: PIC16C620A-40/P).  
2003 Microchip Technology Inc.  
DS30235J-page 87  
PIC16C62X  
12.1 DC Characteristics: PIC16C62X-04 (Commercial, Industrial, Extended)  
PIC16C62X-20 (Commercial, Industrial, Extended)  
PIC16LC62X-04 (Commercial, Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
PIC16C62X  
0°C TA +70°C for commercial and  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
PIC16LC62X  
0°C TA +70°C for commercial and  
-40°C TA +125°C for extended  
Operating voltage VDD range is the PIC16C62X range.  
Param. Sym  
No.  
Characteristic  
Supply Voltage  
Min Typ† Max Units  
Conditions  
D001  
D001  
D002  
VDD  
VDD  
VDR  
3.0  
2.5  
6.0  
6.0  
V
V
V
See Figures 12-1, 12-2, 12-3, 12-4, and 12-5  
See Figures 12-1, 12-2, 12-3, 12-4, and 12-5  
Device in SLEEP mode  
Supply Voltage  
RAM Data Retention Voltage(1)  
RAM Data Retention Voltage(1)  
1.5*  
D002  
D003  
VDR  
1.5*  
Vss  
V
V
Device in SLEEP mode  
VPOR VDD start voltage to ensure  
See section on Power-on Reset for details  
Power-on Reset  
D003  
D004  
D004  
VPOR VDD start voltage to  
VSS  
V
See section on Power-on Reset for details  
ensure Power-on Reset  
SVDD VDD rise rate to ensure  
0.05*  
0.05*  
V/ms See section on Power-on Reset for details  
V/ms See section on Power-on Reset for details  
Power-on Reset  
SVDD VDD rise rate to ensure  
Power-on Reset  
D005  
D005  
D010  
VBOR Brown-out Detect Voltage  
VBOR Brown-out Detect Voltage  
3.7  
3.7  
4.0  
4.0  
1.8  
4.3  
4.3  
3.3  
V
V
BOREN configuration bit is cleared  
BOREN configuration bit is cleared  
Supply Current(2)  
IDD  
mA  
FOSC = 4 MHz, VDD = 5.5V, WDT disabled, XT  
mode, (Note 4)*  
35  
70  
20  
µA  
FOSC = 32 kHz, VDD = 4.0V, WDT disabled, LP  
mode  
9.0  
mA  
FOSC = 20 MHz, VDD = 5.5V, WDT disabled, HS  
mode  
Supply Current(2)  
D010  
IDD  
1.4  
26  
2.5  
53  
mA  
FOSC = 2.0 MHz, VDD = 3.0V, WDT disabled, XT  
mode, (Note 4)  
µA  
FOSC = 32 kHz, VDD = 3.0V, WDT disabled, LP  
mode  
Power-down Current(3)  
D020  
D020  
IPD  
1.0  
0.7  
2.5  
15  
µA  
µA  
VDD=4.0V, WDT disabled  
(125°C)  
IPD  
Power-down Current(3)  
2
µA  
VDD=3.0V, WDT disabled  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and  
switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current  
consumption.  
The test conditions for all IDD measurements in Active Operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with  
the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the  
formula: Ir = VDD/2REXT (mA) with REXT in k.  
5: The current is the additional current consumed when this peripheral is enabled. This current should be added to the  
base IDD or IPD measurement.  
DS30235J-page 88  
2003 Microchip Technology Inc.  
PIC16C62X  
12.1 DC Characteristics: PIC16C62X-04 (Commercial, Industrial, Extended)  
PIC16C62X-20 (Commercial, Industrial, Extended)  
PIC16LC62X-04 (Commercial, Industrial, Extended) (CONT.)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
0°C TA +70°C for commercial and  
PIC16C62X  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
0°C TA +70°C for commercial and  
PIC16LC62X  
-40°C TA +125°C for extended  
Operating voltage VDD range is the PIC16C62X range.  
Param Sym  
. No.  
Characteristic  
Min Typ† Max Units  
Conditions  
D022  
IWDT WDT Current(5)  
6.0  
20  
25  
µA  
µA  
µA  
µA  
VDD=4.0V  
(125°C)  
BOD enabled, VDD = 5.0V  
D022A IBOR Brown-out Reset Current(5)  
D023  
350  
425  
100  
ICOM Comparator Current for each  
VDD = 4.0V  
P
Comparator(5)  
VREF Current(5)  
D023A  
300  
µA  
VDD = 4.0V  
IVREF  
IWDT  
D022  
WDT Current(5)  
6.0  
350  
15  
µA  
µA  
µA  
VDD=3.0V  
D022A IBOR  
D023  
Brown-out Reset Current(5)  
Comparator Current for each  
Comparator(5)  
425  
100  
BOD enabled, VDD = 5.0V  
VDD = 3.0V  
ICOM  
P
D023A  
VREF Current(5)  
300  
µA  
VDD = 3.0V  
IVREF  
FOSC  
1A  
LP Oscillator Operating Frequency  
RC Oscillator Operating Frequency  
XT Oscillator Operating Frequency  
HS Oscillator Operating Frequency  
0
0
0
0
200  
4
kHz All temperatures  
MHz All temperatures  
MHz All temperatures  
MHz All temperatures  
4
20  
1A  
FOSC  
LP Oscillator Operating Frequency  
RC Oscillator Operating Frequency  
XT Oscillator Operating Frequency  
HS Oscillator Operating Frequency  
0
0
0
0
200  
4
kHz All temperatures  
MHz All temperatures  
MHz All temperatures  
MHz All temperatures  
4
20  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and  
switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current  
consumption.  
The test conditions for all IDD measurements in Active Operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with  
the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the  
formula: Ir = VDD/2REXT (mA) with REXT in k.  
5: The current is the additional current consumed when this peripheral is enabled. This current should be added to the  
base IDD or IPD measurement.  
2003 Microchip Technology Inc.  
DS30235J-page 89  
PIC16C62X  
12.2 DC Characteristics: PIC16C62XA-04 (Commercial, Industrial, Extended)  
PIC16C62XA-20 (Commercial, Industrial, Extended)  
PIC16LC62XA-04 (Commercial, Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
PIC16C62XA  
0°C TA +70°C for commercial and  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
PIC16LC62XA  
0°C TA +70°C for commercial and  
-40°C TA +125°C for extended  
Param. Sym  
No.  
Characteristic  
Supply Voltage  
Min Typ† Max Units  
Conditions  
D001  
D001  
D002  
VDD  
VDD  
VDR  
See Figures 12-1, 12-2, 12-3, 12-4, and 12-5  
See Figures 12-1, 12-2, 12-3, 12-4, and 12-5  
Device in SLEEP mode  
3.0  
5.5  
V
Supply Voltage  
2.5  
5.5  
V
V
RAM Data Retention  
Voltage(1)  
1.5*  
RAM Data Retention Voltage(1)  
D002  
D003  
VDR  
1.5*  
V
V
Device in SLEEP mode  
VPOR VDD start voltage to  
VSS  
See section on Power-on Reset for details  
ensure Power-on Reset  
D003  
D004  
D004  
VPOR VDD start voltage to  
VSS  
V
See section on Power-on Reset for details  
ensure Power-on Reset  
SVDD VDD rise rate to ensure  
0.05*  
0.05*  
V/ms See section on Power-on Reset for details  
V/ms See section on Power-on Reset for details  
Power-on Reset  
SVDD VDD rise rate to ensure  
Power-on Reset  
D005  
D005  
VBOR Brown-out Detect Voltage  
VBOR Brown-out Detect Voltage  
3.7  
3.7  
4.0  
4.0  
4.35  
4.35  
V
V
BOREN configuration bit is cleared  
BOREN configuration bit is cleared  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and  
switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current  
consumption.  
The test conditions for all IDD measurements in Active Operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with  
the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the  
formula: Ir = VDD/2REXT (mA) with REXT in k.  
5: The current is the additional current consumed when this peripheral is enabled. This current should be added to the  
base IDD or IPD measurement.  
6: Commercial temperature range only.  
DS30235J-page 90  
2003 Microchip Technology Inc.  
PIC16C62X  
12.2 DC Characteristics: PIC16C62XA-04 (Commercial, Industrial, Extended)  
PIC16C62XA-20 (Commercial, Industrial, Extended)  
PIC16LC62XA-04 (Commercial, Industrial, Extended) (CONT.)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
0°C TA +70°C for commercial and  
PIC16C62XA  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
0°C TA +70°C for commercial and  
PIC16LC62XA  
-40°C TA +125°C for extended  
Param. Sym  
No.  
Characteristic  
Supply Current(2, 4)  
Min Typ† Max Units  
Conditions  
D010  
IDD  
1.2  
0.4  
1.0  
4.0  
4.0  
35  
2.0  
1.2  
2.0  
6.0  
7.0  
70  
mA  
mA  
mA  
mA  
mA  
µA  
FOSC = 4 MHz, VDD = 5.5V, WDT disabled,  
XT mode, (Note 4)*  
FOSC = 4 MHz, VDD = 3.0V, WDT disabled,  
XT mode, (Note 4)*  
FOSC = 10 MHz, VDD = 3.0V, WDT dis-  
abled, HS mode, (Note 6)  
FOSC = 20 MHz, VDD = 4.5V, WDT dis-  
abled, HS mode  
FOSC = 20 MHz, VDD = 5.5V, WDT dis-  
abled*, HS mode  
FOSC = 32 kHz, VDD = 3.0V, WDT dis-  
abled, LP mode  
D010  
IDD  
Supply Current(2)  
1.2  
2.0  
1.1  
70  
mA  
mA  
µA  
FOSC = 4 MHz, VDD = 5.5V, WDT disabled,  
XT mode, (Note 4)*  
FOSC = 4 MHz, VDD = 2.5V, WDT disabled,  
XT mode, (Note 4)  
35  
FOSC = 32 kHz, VDD = 2.5V, WDT dis-  
abled, LP mode  
Power-down Current(3)  
Power-down Current(3)  
D020  
D020  
IPD  
IPD  
2.2  
5.0  
9.0  
15  
µA  
µA  
µA  
µA  
VDD = 3.0V  
VDD = 4.5V*  
VDD = 5.5V  
VDD = 5.5V Extended Temp.  
2.0  
2.2  
9.0  
15  
VDD = 2.5V  
µA  
µA  
µA  
µA  
VDD = 3.0V*  
VDD = 5.5V  
VDD = 5.5V Extended Temp.  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and  
switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current  
consumption.  
The test conditions for all IDD measurements in Active Operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with  
the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the  
formula: Ir = VDD/2REXT (mA) with REXT in k.  
5: The current is the additional current consumed when this peripheral is enabled. This current should be added to the  
base IDD or IPD measurement.  
6: Commercial temperature range only.  
2003 Microchip Technology Inc.  
DS30235J-page 91  
PIC16C62X  
12.2 DC Characteristics: PIC16C62XA-04 (Commercial, Industrial, Extended)  
PIC16C62XA-20 (Commercial, Industrial, Extended)  
PIC16LC62XA-04 (Commercial, Industrial, Extended (CONT.)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
PIC16C62XA  
0°C TA +70°C for commercial and  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
PIC16LC62XA  
0°C TA +70°C for commercial and  
-40°C TA +125°C for extended  
Param. Sym  
No.  
Characteristic  
Min Typ† Max Units  
Conditions  
D022  
IWDT  
WDT Current(5)  
6.0  
10  
12  
µA  
µA  
µA  
µA  
VDD = 4.0V  
(125°C)  
D022A  
D023  
IBOR  
Brown-out Reset Current(5)  
Comparator Current for each  
Comparator(5)  
75  
30  
125  
60  
BOD enabled, VDD = 5.0V  
ICOMP  
VDD = 4.0V  
D023A  
D022  
IVREF  
IWDT  
VREF Current(5)  
80  
135  
µA  
VDD = 4.0V  
WDT Current(5)  
6.0  
10  
12  
µA  
µA  
µA  
µA  
VDD=4.0V  
(125°C)  
D022A  
D023  
IBOR  
Brown-out Reset Current(5)  
Comparator Current for each  
Comparator(5)  
75  
30  
125  
60  
BOD enabled, VDD = 5.0V  
VDD = 4.0V  
ICOMP  
D023A  
1A  
IVREF  
VREF Current(5)  
80  
135  
µA  
VDD = 4.0V  
FOSC  
LP Oscillator Operating Frequency  
RC Oscillator Operating Frequency  
XT Oscillator Operating Frequency  
HS Oscillator Operating Frequency  
0
0
0
0
200  
4
kHz  
All temperatures  
MHz All temperatures  
MHz All temperatures  
MHz All temperatures  
4
20  
1A  
FOSC  
LP Oscillator Operating Frequency  
RC Oscillator Operating Frequency  
XT Oscillator Operating Frequency  
HS Oscillator Operating Frequency  
0
0
0
0
200  
4
kHz  
All temperatures  
MHz All temperatures  
MHz All temperatures  
MHz All temperatures  
4
20  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and  
switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current  
consumption.  
The test conditions for all IDD measurements in Active Operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with  
the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the  
formula: Ir = VDD/2REXT (mA) with REXT in k.  
5: The current is the additional current consumed when this peripheral is enabled. This current should be added to the  
base IDD or IPD measurement.  
6: Commercial temperature range only.  
DS30235J-page 92  
2003 Microchip Technology Inc.  
PIC16C62X  
12.3 DC CHARACTERISTICS: PIC16CR62XA-04 (Commercial, Industrial, Extended)  
PIC16CR62XA-20 (Commercial, Industrial, Extended)  
PIC16LCR62XA-04 (Commercial, Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
0°C TA +70°C for commercial and  
PIC16CR62XA-04  
PIC16CR62XA-20  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
0°C TA +70°C for commercial and  
PIC16LCR62XA-04  
-40°C TA +125°C for extended  
Param. Sym  
No.  
Characteristic  
Supply Voltage  
Min Typ† Max Units  
Conditions  
D001  
D001  
D002  
VDD  
VDD  
VDR  
3.0  
2.5  
5.5  
5.5  
V
V
V
See Figures 12-7, 12-8, 12-9  
Supply Voltage  
See Figures 12-7, 12-8, 12-9  
Device in SLEEP mode  
RAM Data Retention  
Voltage(1)  
1.5*  
D002  
VDR  
RAM Data Retention  
Voltage(1)  
1.5*  
V
Device in SLEEP mode  
D003  
D003  
D004  
D004  
VPOR VDD start voltage to  
VSS  
VSS  
V
V
See section on Power-on Reset for details  
See section on Power-on Reset for details  
ensure Power-on Reset  
VPOR VDD start voltage to  
ensure Power-on Reset  
SVDD VDD rise rate to ensure  
0.05*  
0.05*  
V/ms See section on Power-on Reset for details  
V/ms See section on Power-on Reset for details  
Power-on Reset  
SVDD VDD rise rate to ensure  
Power-on Reset  
D005  
D005  
D010  
VBOR Brown-out Detect Voltage  
VBOR Brown-out Detect Voltage  
3.7  
3.7  
4.0  
4.0  
1.2  
4.35  
4.35  
1.7  
V
V
BOREN configuration bit is cleared  
BOREN configuration bit is cleared  
Supply Current(2)  
IDD  
mA FOSC = 4 MHz, VDD = 5.5V, WDT disabled, XT mode,  
(Note 4)*  
500  
1.0  
900  
2.0  
µA  
FOSC = 4 MHz, VDD = 3.0V, WDT disabled, XT mode,  
(Note 4)  
mA FOSC = 10 MHz, VDD = 3.0V, WDT disabled, HS mode,  
(Note 6)  
4.0  
3.0  
35  
7.0  
6.0  
70  
mA FOSC = 20 MHz, VDD = 5.5V, WDT disabled*, HS  
mA mode  
µA  
FOSC = 20 MHz, VDD = 4.5V, WDT disabled, HS mode  
FOSC = 32 kHz, VDD = 3.0V, WDT disabled, LP mode  
Supply Current(2)  
D010  
IDD  
1.2  
400  
35  
1.7  
800  
70  
mA FOSC = 4.0 MHz, VDD = 5.5V, WDT disabled, XT  
mode, (Note 4)*  
µA  
FOSC = 4.0 MHz, VDD = 2.5V, WDT disabled, XT mode  
(Note 4)  
µA  
FOSC = 32 kHz, VDD = 2.5V, WDT disabled, LP mode  
2003 Microchip Technology Inc.  
DS30235J-page 93  
PIC16C62X  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
0°C TA +70°C for commercial and  
PIC16CR62XA-04  
PIC16CR62XA-20  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
0°C TA +70°C for commercial and  
PIC16LCR62XA-04  
-40°C TA +125°C for extended  
Param. Sym  
No.  
Characteristic  
Min Typ† Max Units  
Conditions  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and  
switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current  
consumption.  
The test conditions for all IDD measurements in Active Operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with  
the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the  
formula: Ir = VDD/2REXT (mA) with REXT in k.  
5: The current is the additional current consumed when this peripheral is enabled. This current should be added to the  
base IDD or IPD measurement.  
6: Commercial temperature range only.  
DS30235J-page 94  
2003 Microchip Technology Inc.  
PIC16C62X  
12.3 DC CHARACTERISTICS: PIC16CR62XA-04 (Commercial, Industrial, Extended)  
PIC16CR62XA-20 (Commercial, Industrial, Extended)  
PIC16LCR62XA-04 (Commercial, Industrial, Extended)  
(CONT.)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
0°C TA +70°C for commercial and  
PIC16CR62XA-04  
PIC16CR62XA-20  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
0°C TA +70°C for commercial and  
PIC16LCR62XA-04  
-40°C TA +125°C for extended  
Param. Sym  
No.  
Characteristic  
Min Typ† Max Units  
Conditions  
Power-down Current(3)  
D020  
D020  
D022  
IPD  
200  
950  
nA  
µA  
µA  
µA  
VDD = 3.0V  
VDD = 4.5V*  
VDD = 5.5V  
0.400 1.8  
0.600 2.2  
5.0  
9.0  
VDD = 5.5V Extended Temp.  
Power-down Current(3)  
WDT Current(5)  
IPD  
200  
200  
850  
950  
nA  
nA  
µA  
µA  
VDD = 2.5V  
VDD = 3.0V*  
0.600 2.2  
VDD = 5.5V  
5.0  
6.0  
9.0  
VDD = 5.5V Extended  
IWDT  
10  
12  
µA  
µA  
µA  
µA  
VDD=4.0V  
(125°C)  
BOD enabled, VDD = 5.0V  
D022A  
D023  
IBOR  
ICOMP  
Brown-out Reset Current(5)  
Comparator Current for each  
Comparator(5)  
VREF Current(5)  
WDT Current(5)  
75  
30  
125  
60  
VDD = 4.0V  
D023A  
D022  
IVREF  
IWDT  
80  
135  
µA  
VDD = 4.0V  
6.0  
10  
12  
µA  
µA  
µA  
µA  
VDD=4.0V  
(125°C)  
BOD enabled, VDD = 5.0V  
D022A  
D023  
IBOR  
ICOMP  
Brown-out Reset Current(5)  
Comparator Current for each  
Comparator(5)  
75  
30  
125  
60  
VDD = 4.0V  
D023A  
1A  
IVREF  
FOSC  
VREF Current(5)  
80  
135  
µA  
VDD = 4.0V  
LP Oscillator Operating Frequency  
RC Oscillator Operating Frequency  
XT Oscillator Operating Frequency  
HS Oscillator Operating Frequency  
0
0
0
0
200  
4
kHz All temperatures  
MHz All temperatures  
MHz All temperatures  
MHz All temperatures  
4
20  
1A  
FOSC  
LP Oscillator Operating Frequency  
RC Oscillator Operating Frequency  
XT Oscillator Operating Frequency  
HS Oscillator Operating Frequency  
0
0
0
0
200  
4
kHz All temperatures  
MHz All temperatures  
MHz All temperatures  
MHz All temperatures  
4
20  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and  
switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current  
consumption.  
The test conditions for all IDD measurements in Active Operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with  
the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the  
formula: Ir = VDD/2REXT (mA) with REXT in k.  
5: The current is the additional current consumed when this peripheral is enabled. This current should be added to the  
base IDD or IPD measurement.  
6: Commercial temperature range only.  
2003 Microchip Technology Inc.  
DS30235J-page 95  
PIC16C62X  
12.4 DC Characteristics: PIC16C62X/C62XA/CR62XA (Commercial, Industrial, Extended)  
PIC16LC62X/LC62XA/LCR62XA (Commercial, Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
PIC16C62X/C62XA/CR62XA  
0°C TA +70°C for commercial and  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
PIC16LC62X/LC62XA/LCR62XA  
0°C TA +70°C for commercial and  
-40°C TA +125°C for extended  
Param. Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O ports  
with TTL buffer  
D030  
VSS  
0.8V  
0.15 VDD  
V
VDD = 4.5V to 5.5V  
otherwise  
D031  
D032  
D033  
with Schmitt Trigger input  
MCLR, RA4/T0CKI,OSC1 (in RC mode)  
OSC1 (in XT and HS)  
VSS  
Vss  
Vss  
0.2 VDD  
0.2 VDD  
V
V
V
(Note 1)  
0.3 VDD  
OSC1 (in LP)  
Vss  
V
0.6 VDD-  
1.0  
VIL  
Input Low Voltage  
I/O ports  
D030  
with TTL buffer  
VSS  
0.8V  
0.15 VDD  
V
VDD = 4.5V to 5.5V  
otherwise  
D031  
D032  
D033  
with Schmitt Trigger input  
MCLR, RA4/T0CKI,OSC1 (in RC mode)  
OSC1 (in XT and HS)  
VSS  
Vss  
Vss  
0.2 VDD  
0.2 VDD  
V
V
V
(Note 1)  
0.3 VDD  
OSC1 (in LP)  
Vss  
V
0.6 VDD-  
1.0  
VIH  
Input High Voltage  
I/O ports  
D040  
with TTL buffer  
2.0V  
0.25 VDD  
+ 0.8V  
VDD  
VDD  
V
VDD = 4.5V to 5.5V  
otherwise  
D041  
D042  
with Schmitt Trigger input  
MCLR RA4/T0CKI  
0.8 VDD  
0.8 VDD  
VDD  
VDD  
V
V
D043  
D043A  
OSC1 (XT, HS and LP)  
OSC1 (in RC mode)  
0.7 VDD  
0.9 VDD  
VDD  
(Note 1)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C62X(A) be driven  
with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal  
operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as coming out of the pin.  
DS30235J-page 96  
2003 Microchip Technology Inc.  
PIC16C62X  
12.4 DC Characteristics: PIC16C62X/C62XA/CR62XA (Commercial, Industrial, Extended)  
PIC16LC62X/LC62XA/LCR62XA (Commercial, Industrial, Extended) (CONT.)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
0°C TA +70°C for commercial and  
PIC16C62X/C62XA/CR62XA  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
0°C TA +70°C for commercial and  
PIC16LC62X/LC62XA/LCR62XA  
-40°C TA +125°C for extended  
Param. Sym  
No.  
Characteristic  
Min Typ† Max Units  
Conditions  
VIH  
Input High Voltage  
I/O ports  
D040  
with TTL buffer  
2.0V  
0.25 VDD  
+ 0.8V  
V
VDD = 4.5V to 5.5V  
otherwise  
VDD  
VDD  
D041  
D042  
with Schmitt Trigger input  
MCLR RA4/T0CKI  
0.8 VDD  
0.8 VDD  
VDD  
VDD  
V
V
D043  
D043A  
OSC1 (XT, HS and LP)  
OSC1 (in RC mode)  
0.7 VDD  
0.9 VDD  
VDD  
(Note 1)  
D070  
D070  
IPURB  
IPURB  
IIL  
PORTB weak pull-up current  
PORTB weak pull-up current  
VDD = 5.0V, VPIN = VSS  
VDD = 5.0V, VPIN = VSS  
50  
50  
200  
200  
400  
400  
µA  
µA  
Input Leakage Current(2, 3)  
I/O ports (Except PORTA)  
µA  
µA  
µA  
µA  
VSS VPIN VDD, pin at hi-impedance  
Vss VPIN VDD, pin at hi-impedance  
Vss VPIN VDD  
1.0  
0.5  
1.0  
D060  
D061  
D063  
PORTA  
RA4/T0CKI  
OSC1, MCLR  
Vss VPIN VDD, XT, HS and LP osc  
configuration  
5.0  
IIL  
Input Leakage Current(2, 3)  
I/O ports (Except PORTA)  
µA  
µA  
µA  
µA  
VSS VPIN VDD, pin at hi-impedance  
Vss VPIN VDD, pin at hi-impedance  
Vss VPIN VDD  
1.0  
0.5  
1.0  
D060  
D061  
D063  
PORTA  
RA4/T0CKI  
OSC1, MCLR  
Vss VPIN VDD, XT, HS and LP osc  
configuration  
5.0  
VOL  
Output Low Voltage  
I/O ports  
D080  
D083  
V
V
V
V
IOL = 8.5 mA, VDD = 4.5V, -40° to +85°C  
IOL = 7.0 mA, VDD = 4.5V, +125°C  
IOL = 1.6 mA, VDD = 4.5V, -40° to +85°C  
IOL = 1.2 mA, VDD = 4.5V, +125°C  
0.6  
0.6  
0.6  
0.6  
OSC2/CLKOUT (RC only)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C62X(A) be driven with  
external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal  
operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as coming out of the pin.  
2003 Microchip Technology Inc.  
DS30235J-page 97  
PIC16C62X  
12.4 DC Characteristics: PIC16C62X/C62XA/CR62XA (Commercial, Industrial, Extended)  
PIC16LC62X/LC62XA/LCR62XA (Commercial, Industrial, Extended) (CONT.)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
PIC16C62X/C62XA/CR62XA  
0°C TA +70°C for commercial and  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial and  
PIC16LC62X/LC62XA/LCR62XA  
0°C TA +70°C for commercial and  
-40°C TA +125°C for extended  
Param. Sym  
No.  
Characteristic  
Min Typ† Max Units  
Conditions  
VOL  
Output Low Voltage  
D080  
I/O ports  
V
V
V
V
IOL = 8.5 mA, VDD = 4.5V, -40° to +85°C  
IOL = 7.0 mA, VDD = 4.5V, +125°C  
IOL = 1.6 mA, VDD = 4.5V, -40° to +85°C  
IOL = 1.2 mA, VDD = 4.5V, +125°C  
0.6  
0.6  
0.6  
0.6  
D083  
OSC2/CLKOUT (RC only)  
VOH  
Output High Voltage(3)  
I/O ports (Except RA4)  
D090  
VDD-0.7  
VDD-0.7  
VDD-0.7  
VDD-0.7  
V
V
V
V
IOH = -3.0 mA, VDD = 4.5V, -40° to +85°C  
IOH = -2.5 mA, VDD = 4.5V, +125°C  
IOH = -1.3 mA, VDD = 4.5V, -40° to +85°C  
IOH = -1.0 mA, VDD = 4.5V, +125°C  
D092  
OSC2/CLKOUT (RC only)  
VOH  
Output High Voltage(3)  
I/O ports (Except RA4)  
D090  
VDD-0.7  
VDD-0.7  
VDD-0.7  
VDD-0.7  
V
V
V
V
V
IOH = -3.0 mA, VDD = 4.5V, -40° to +85°C  
IOH = -2.5 mA, VDD = 4.5V, +125°C  
IOH = -1.3 mA, VDD = 4.5V, -40° to +85°C  
IOH = -1.0 mA, VDD = 4.5V, +125°C  
D092  
OSC2/CLKOUT (RC only)  
Open-Drain High Voltage  
*D150  
*D150  
VOD  
VOD  
RA4 pin PIC16C62X, PIC16LC62X  
RA4 pin PIC16C62XA, PIC16LC62XA,  
PIC16CR62XA, PIC16LCR62XA  
10*  
8.5*  
Open-Drain High Voltage  
V
RA4 pin PIC16C62X, PIC16LC62X  
RA4 pin PIC16C62XA, PIC16LC62XA,  
PIC16CR62XA, PIC16LCR62XA  
10*  
8.5*  
Capacitive Loading Specs on  
Output Pins  
D100  
D101  
COSC OSC2 pin  
2
pF  
pF  
In XT, HS and LP modes when external  
clock used to drive OSC1.  
15  
50  
CIO  
All I/O pins/OSC2 (in RC mode)  
Capacitive Loading Specs on  
Output Pins  
D100  
D101  
COSC OSC2 pin  
2
pF  
pF  
In XT, HS and LP modes when external  
clock used to drive OSC1.  
15  
50  
CIO  
All I/O pins/OSC2 (in RC mode)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C62X(A) be driven  
with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal  
operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as coming out of the pin.  
DS30235J-page 98  
2003 Microchip Technology Inc.  
PIC16C62X  
12.5  
DC CHARACTERISTICS: PIC16C620A/C621A/C622A-40(7) (Commercial)  
PIC16CR620A-40(7) (Commercial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature 0°C TA +70°C for commercial  
DC CHARACTERISTICS  
Param  
Sym  
No.  
Characteristic  
Supply Voltage  
Min Typ† Max Units  
Conditions  
FOSC = DC to 20 MHz  
D001  
D002  
D003  
VDD  
3.0  
5.5  
V
V
V
VDR  
RAM Data Retention Voltage(1)  
1.5*  
VSS  
Device in SLEEP mode  
VPOR  
VDD start voltage to ensure  
See section on Power-on Reset for details  
Power-on Reset  
D004  
SVDD  
VDD rise rate to ensure Power-on  
0.05  
*
V/ms See section on Power-on Reset for details  
BOREN configuration bit is cleared  
Reset  
D005  
D010  
VBOR  
IDD  
Brown-out Detect Voltage  
Supply Current(2,4)  
3.65 4.0 4.35  
V
1.2  
0.4  
1.0  
4.0  
4.0  
35  
2.0  
1.2  
2.0  
6.0  
7.0  
70  
mA FOSC = 4 MHz, VDD = 5.5V, WDT disabled,  
XT OSC mode, (Note 4)*  
mA FOSC = 4 MHz, VDD = 3.0V, WDT disabled,  
XT OSC mode, (Note 4)  
mA FOSC = 10 MHz, VDD = 3.0V, WDT disabled,  
HS OSC mode, (Note 6)  
mA FOSC = 20 MHz, VDD = 4.5V, WDT disabled,  
HS OSC mode  
mA FOSC = 20 MHz, VDD = 5.5V, WDT disabled*,  
HS OSC mode  
µA FOSC = 32 kHz, VDD = 3.0V, WDT disabled,  
LP OSC mode  
D020  
D022  
IPD  
Power Down Current(3)  
WDT Current(5)  
2.2  
5.0  
9.0  
15  
µA VDD = 3.0V  
µA VDD = 4.5V*  
µA VDD = 5.5V  
µA VDD = 5.5V Extended  
IWDT  
6.0  
10  
12  
µA VDD = 4.0V  
µA (125°C)  
µA BOD enabled, VDD = 5.0V  
µA VDD = 4.0V  
D022A IBOR  
D023 ICOMP  
Brown-out Reset Current(5)  
Comparator Current for each  
Comparator(5)  
75  
30  
125  
60  
D023A IVREF  
VREF Current(5)  
80  
135  
µA VDD = 4.0V  
IEE Write Operating Current  
IEE Read Operating Current  
3
1
mA VCC = 5.5V, SCL = 400 kHz  
mA  
IEE  
IEE  
Standby Current  
30  
100  
µA VCC = 3.0V, EE VDD = VCC  
µA VCC = 3.0V, EE VDD = VCC  
Standby Current  
1A  
FOSC  
LP Oscillator Operating Frequency  
RC Oscillator Operating Frequency  
XT Oscillator Operating Frequency  
HS Oscillator Operating Frequency  
0
0
0
0
200 kHz All temperatures  
4
4
MHz All temperatures  
MHz All temperatures  
MHz All temperatures  
20  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate,  
oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.  
The test conditions for all IDD measurements in Active Operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP  
mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.  
4: For RC OSC configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/  
2REXT (mA) with REXT in k.  
5: The current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD  
measurement.  
6: Commercial temperature range only.  
7: See Section 12.1 and Section 12.3 for 16C62X and 16CR62X devices for operation between 20 MHz and 40 MHz for valid modified  
characteristics.  
2003 Microchip Technology Inc.  
DS30235J-page 99  
PIC16C62X  
12.5 DC CHARACTERISTICS: PIC16C620A/C621A/C622A-40(7) (Commercial)  
PIC16CR620A-40(7) (Commercial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature 0°C TA +70°C for commercial  
Param  
Sym  
Characteristic  
Input Low Voltage  
Min  
Typ†  
Max  
Unit  
Conditions  
No.  
VIL  
I/O ports  
D030  
with TTL buffer  
VSS  
0.8V  
V
VDD = 4.5V to 5.5V, otherwise  
0.15VDD  
0.2VDD  
0.2VDD  
D031  
D032  
with Schmitt Trigger input  
MCLR, RA4/T0CKI, OSC1  
(in RC mode)  
VSS  
VSS  
V
V
(Note 1)  
D033  
OSC1 (in XT and HS)  
OSC1 (in LP)  
VSS  
VSS  
0.3VDD  
V
V
0.6VDD - 1.0  
VIH  
Input High Voltage  
I/O ports  
D040  
with TTL buffer  
2.0V  
0.25 VDD + 0.8  
0.8 VDD  
0.8 VDD  
0.7 VDD  
0.9 VDD  
50  
VDD  
VDD  
V
VDD = 4.5V to 5.5V, otherwise  
D041  
D042  
D043  
D043A  
D070  
with Schmitt Trigger input  
MCLR RA4/T0CKI  
VDD  
VDD  
VDD  
V
V
OSC1 (XT, HS and LP)  
OSC1 (in RC mode)  
PORTB Weak Pull-up Current  
Input Leakage Current(2, 3)  
I/O ports (except PORTA)  
PORTA  
(Note 1)  
IPURB  
IIL  
200  
400  
µA VDD = 5.0V, VPIN = VSS  
1.0  
0.5  
1.0  
5.0  
µA VSS VPIN VDD, pin at hi-impedance  
µA Vss VPIN VDD, pin at hi-impedance  
µA Vss VPIN VDD  
D060  
D061  
D063  
RA4/T0CKI  
OSC1, MCLR  
µA Vss VPIN VDD, XT, HS and LP OSC con-  
figuration  
VOL  
Output Low Voltage  
D080  
D083  
I/O ports  
0.6  
0.6  
0.6  
0.6  
V
V
V
V
IOL = 8.5 mA, VDD = 4.5V, -40° to +85°C  
IOL = 7.0 mA, VDD = 4.5V, +125°C  
IOL = 1.6 mA, VDD = 4.5V, -40° to +85°C  
IOL = 1.2 mA, VDD = 4.5V, +125°C  
OSC2/CLKOUT (RC only)  
VOH  
Output High Voltage(3)  
D090  
D092  
I/O ports (except RA4)  
VDD-0.7  
VDD-0.7  
VDD-0.7  
VDD-0.7  
V
V
V
V
V
IOH = -3.0 mA, VDD = 4.5V, -40° to +85°C  
IOH = -2.5 mA, VDD = 4.5V, +125°C  
IOH = -1.3 mA, VDD = 4.5V, -40° to +85°C  
IOH = -1.0 mA, VDD = 4.5V, +125°C  
RA4 pin  
OSC2/CLKOUT (RC only)  
*D150 VOD  
Open Drain High Voltage  
Capacitive Loading Specs on  
Output Pins  
8.5  
D100 COSC2 OSC2 pin  
15  
50  
pF In XT, HS and LP modes when external  
clock used to drive OSC1.  
pF  
D101  
CIO  
All I/O pins/OSC2 (in RC mode)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate,  
oscillator type, internal code execution pattern, and temperature also have an impact on the current  
consumption.  
The test conditions for all IDD measurements in Active Operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP  
mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.  
4: For RC OSC configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/  
2REXT (mA) with REXT in k.  
5: The current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD  
measurement.  
6: Commercial temperature range only.  
7: See Section 12.1 and Section 12.3 for 16C62X and 16CR62X devices for operation between 20 MHz and 40 MHz for valid modified  
characteristics.  
DS30235J-page 100  
2003 Microchip Technology Inc.  
PIC16C62X  
12.6  
DC Characteristics:  
PIC16C620A/C621A/C622A-40(3) (Commercial)  
PIC16CR620A-40(3) (Commercial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Power Supply Pins  
Operating temperature 0°C TA +70°C for commercial  
(1)  
Characteristic  
Sym  
Min  
Typ  
Max Units  
Conditions  
Supply Voltage  
VDD  
IDD  
4.5  
5.5  
V
HS Option from 20 - 40 MHz  
(2)  
Supply Current  
5.5  
7.7  
11.5  
16  
mA FOSC = 40 MHz, VDD = 4.5V, HS mode  
mA FOSC = 40 MHz, VDD = 5.5V, HS mode  
HS Oscillator Operating  
Frequency  
FOSC  
20  
40  
MHz OSC1 pin is externally driven,  
OSC2 pin not connected  
Input Low Voltage OSC1  
Input High Voltage OSC1  
VIL  
VIH  
VSS  
0.2VDD  
VDD  
V
V
HS mode, OSC1 externally driven  
HS mode, OSC1 externally driven  
0.8VDD  
* These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design guidance only and is  
not tested.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator  
type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.  
a)  
The test conditions for all IDD measurements in Active Operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VSS,  
T0CKI = VDD, MCLR = VDD; WDT disabled, HS mode with OSC2 not connected.  
3: For device operation between DC and 20 MHz. See Table 12-1 and Table 12-2.  
12.7  
AC Characteristics:  
PIC16C620A/C621A/C622A-40(2) (Commercial)  
PIC16CR620A-40(2) (Commercial)  
Standard Operating Conditions (unless otherwise stated)  
AC CHARACTERISTICS  
All Pins Except Power Supply Pins  
Operating temperature  
0°C TA +70°C for commercial  
(1)  
Characteristic  
Sym  
Min Typ  
Max Units  
Conditions  
External CLKIN Frequency  
External CLKIN Period  
FOSC  
TOSC  
20  
25  
6
40  
50  
MHz HS mode, OSC1 externally driven  
ns HS mode (40), OSC1 externally driven  
ns HS mode, OSC1 externally driven  
ns HS mode, OSC1 externally driven  
Clock in (OSC1) Low or High Time TOSL, TOSH  
Clock in (OSC1) Rise or Fall Time TOSR, TOSF  
OSC1(Q1 cycle) to Port out valid TOSH2IOV  
50  
6.5  
100  
ns  
ns  
OSC1(Q2 cycle) to Port input  
invalid (I/O in hold time)  
TOSH2IOI  
Note 1: Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
2: For device operation between DC and 20 MHz. See Table 12-1 and Table 12-2.  
2003 Microchip Technology Inc.  
DS30235J-page 101  
PIC16C62X  
TABLE 12-1: COMPARATOR SPECIFICATIONS  
Operating Conditions: VDD range as described in Table 12-1, -40°C<TA<+125°C. Current consumption is specified in  
Table 12-1.  
Characteristics  
Input offset voltage  
Sym  
Min  
Typ  
Max  
Units  
Comments  
5.0  
10  
mV  
V
Input common mode voltage  
CMRR  
0
VDD - 1.5  
+55*  
δβ  
(1)  
Response Time  
PIC16C62X(A)  
PIC16LC62X  
400*  
600*  
ns  
ns  
150*  
Comparator mode change to  
output valid  
10*  
µs  
* These parameters are characterized but not tested.  
Note 1: Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from  
VSS to VDD.  
TABLE 12-2: VOLTAGE REFERENCE SPECIFICATIONS  
Operating Conditions:VDD range as described in Table 12-1, -40°C<TA<+125°C. Current consumption is specified in  
Table 12-1.  
Characteristics  
Resolution  
Sym  
Min  
Typ  
Max  
Units  
Comments  
Low Range (VRR=1)  
High Range (VRR=0)  
VDD/24  
VDD/32  
LSB  
LSB  
Absolute Accuracy  
Low Range (VRR=1)  
High Range (VRR=0)  
+1/4  
+1/2  
LSB  
LSB  
Unit Resistor Value (R)  
Figure 8-1  
2K*  
(1)  
Settling Time  
10*  
µs  
* These parameters are characterized but not tested.  
Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from 0000to 1111.  
DS30235J-page 102  
2003 Microchip Technology Inc.  
PIC16C62X  
12.8 Timing Parameter Symbology  
The timing parameter symbols have been created with one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase subscripts (pp) and their meanings:  
pp  
ck  
T
Time  
CLKOUT  
I/O port  
MCLR  
osc  
t0  
OSC1  
T0CKI  
io  
mc  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-Impedance  
FIGURE 12-11:  
LOAD CONDITIONS  
Load condition 1  
VDD/2  
Load condition 2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL  
CL  
=
464Ω  
50 pF for all pins except OSC2  
15 pF for OSC2 output  
=
2003 Microchip Technology Inc.  
DS30235J-page 103  
PIC16C62X  
12.9 Timing Diagrams and Specifications  
FIGURE 12-12:  
EXTERNAL CLOCK TIMING  
Q4  
Q3  
Q4  
Q1  
Q1  
Q2  
OSC1  
1
3
3
4
4
2
CLKOUT  
TABLE 12-3: EXTERNAL CLOCK TIMING REQUIREMENTS  
Parameter  
Sym  
Fosc  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
No.  
1A  
External CLKIN Frequency(1)  
DC  
DC  
DC  
DC  
0.1  
1
4
20  
MHz XT and RC Osc mode, VDD=5.0V  
MHz HS Osc mode  
200  
4
kHz LP Osc mode  
Oscillator Frequency(1)  
MHz RC Osc mode, VDD=5.0V  
MHz XT Osc mode  
4
20  
MHz HS Osc mode  
DC  
250  
50  
200  
kHz LP Osc mode  
1
Tosc  
External CLKIN Period(1)  
Oscillator Period(1)  
ns  
ns  
µs  
ns  
ns  
ns  
µs  
µs  
ns  
µs  
ns  
ns  
ns  
ns  
XT and RC Osc mode  
HS Osc mode  
5
LP Osc mode  
250  
250  
50  
RC Osc mode  
10,000  
1,000  
XT Osc mode  
HS Osc mode  
5
LP Osc mode  
2
TCY  
Instruction Cycle Time(1)  
1.0  
100*  
2*  
FOSC/4  
DC  
TCYS=FOSC/4  
3*  
TosL,  
TosH  
External Clock in (OSC1) High or  
Low Time  
XT oscillator, TOSC L/H duty cycle  
LP oscillator, TOSC L/H duty cycle  
HS oscillator, TOSC L/H duty cycle  
XT oscillator  
20*  
25*  
50*  
15*  
4*  
TosR,  
TosF  
External Clock in (OSC1) Rise or  
Fall Time  
LP oscillator  
HS oscillator  
2:  
3:  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and  
are not tested.  
Note 1:  
Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based  
on characterization data for that particular oscillator type under standard operating conditions with the device  
executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than  
expected current consumption. All devices are tested to operate at "min." values with an external clock applied to  
the OSC1 pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.  
DS30235J-page 104  
2003 Microchip Technology Inc.  
PIC16C62X  
FIGURE 12-13:  
CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
22  
23  
CLKOUT  
13  
14  
12  
16  
18  
19  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
new value  
old value  
20, 21  
Note: All tests must be done with specified capacitance loads (Figure 12-11) 50 pF on I/O pins and CLKOUT.  
2003 Microchip Technology Inc.  
DS30235J-page 105  
PIC16C62X  
TABLE 12-4: CLKOUT AND I/O TIMING REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units  
Conditions  
(1)  
10*  
TosH2ckL OSC1to CLKOUT↓  
75  
200  
400  
ns PIC16C62X(A)  
ns PIC16LC62X(A)  
PIC16CR62XA  
PIC16LCR62XA  
(1)  
11*  
12*  
13*  
TosH2ck OSC1to CLKOUT↑  
H
75  
200  
400  
ns PIC16C62X(A)  
ns PIC16LC62X(A)  
PIC16CR62XA  
PIC16LCR62XA  
(1)  
TckR  
TckF  
CLKOUT rise time  
35  
100  
200  
ns PIC16C62X(A)  
ns PIC16LC62X(A)  
PIC16CR62XA  
PIC16LCR62XA  
(1)  
CLKOUT fall time  
35  
100  
200  
ns PIC16C62X(A)  
ns PIC16LC62X(A)  
PIC16CR62XA  
PIC16LCR62XA  
(1)  
14*  
15*  
TckL2ioV CLKOUT to Port out valid  
20  
ns  
(1)  
TioV2ckH Port in valid before CLKOUT ↑  
TOSC +200  
ns  
ns PIC16C62X(A)  
ns PIC16LC62X(A)  
PIC16CR62XA  
TOSC +400  
ns  
PIC16LCR62XA  
(1)  
16*  
17*  
TckH2ioI Port in hold after CLKOUT ↑  
0
ns  
TosH2ioV OSC1(Q1 cycle) to Port out valid  
50  
150  
300  
ns PIC16C62X(A)  
ns PIC16LC62X(A)  
PIC16CR62XA  
PIC16LCR62XA  
18*  
TosH2ioI OSC1(Q2 cycle) to Port input  
invalid (I/O in hold time)  
100  
200  
ns PIC16C62X(A)  
ns PIC16LC62X(A)  
PIC16CR62XA  
PIC16LCR62XA  
19*  
20*  
TioV2osH Port input valid to OSC1(I/O in  
setup time)  
0
ns  
TioR  
TioF  
Tinp  
Trbp  
Port output rise time  
10  
40  
80  
ns PIC16C62X(A)  
ns PIC16LC62X(A)  
PIC16CR62XA  
PIC16LCR62XA  
21*  
22*  
23  
Port output fall time  
10  
40  
80  
ns PIC16C62X(A)  
ns PIC16LC62X(A)  
PIC16CR62XA  
PIC16LCR62XA  
RB0/INT pin high or low time  
25  
40  
ns PIC16C62X(A)  
ns PIC16LC62X(A)  
PIC16CR62XA  
PIC16LCR62XA  
RB<7:4> change interrupt high or  
low time  
TCY  
ns  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
DS30235J-page 106  
2003 Microchip Technology Inc.  
PIC16C62X  
FIGURE 12-14:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Timeout  
32  
OSC  
Timeout  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O Pins  
FIGURE 12-15:  
BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
TABLE 12-5: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER REQUIREMENTS  
Parameter  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
No.  
30  
31  
TmcL  
MCLR Pulse Width (low)  
2000  
7*  
ns  
-40° to +85°C  
Twdt  
Watchdog Timer Time-out Period  
(No Prescaler)  
18  
33*  
ms VDD = 5.0V, -40° to +85°C  
32  
33  
34  
35  
Tost  
Oscillation Start-up Timer Period  
Power-up Timer Period  
1024 TOSC  
132*  
2.0  
TOSC = OSC1 period  
Tpwrt  
TIOZ  
28*  
72  
ms VDD = 5.0V, -40° to +85°C  
µs  
I/O hi-impedance from MCLR low  
Brown-out Reset Pulse Width  
TBOR  
100*  
µs  
3.7V VDD 4.3V  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
2003 Microchip Technology Inc.  
DS30235J-page 107  
PIC16C62X  
FIGURE 12-16:  
RA4/T0CKI  
TIMER0 CLOCK TIMING  
41  
40  
42  
TMR0  
TABLE 12-6: TIMER0 CLOCK REQUIREMENTS  
Parameter  
Sym  
Characteristic  
Min  
Typ† Max Units  
Conditions  
No.  
40  
41  
42  
Tt0H T0CKI High Pulse Width  
Tt0L T0CKI Low Pulse Width  
No Prescaler  
0.5 TCY + 20*  
ns  
ns  
ns  
ns  
ns  
With Prescaler 10*  
No Prescaler  
0.5 TCY + 20*  
With Prescaler 10*  
Tt0P T0CKI Period  
TCY + 40*  
N = prescale value  
(1, 2, 4, ..., 256)  
N
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
DS30235J-page 108  
2003 Microchip Technology Inc.  
PIC16C62X  
13.0 DEVICE CHARACTERIZATION INFORMATION  
The graphs and tables provided in this section are for design guidance and are not tested. In some graphs or tables,  
the data presented is outside specified operating range (e.g., outside specified VDD range). This is for information only  
and devices will operate properly only within the specified range.  
The data presented in this section is a statistical summary of data collected on units from different lots over a period of  
time. “Typical” represents the mean of the distribution, while “max” or “min” represents (mean + 3σ) and (mean – 3σ)  
respectively, where σ is standard deviation.  
FIGURE 13-1:  
IDD VS. FREQUENCY (XT MODE, VDD = 5.5V)  
1.20  
1.00  
0.8  
0.6  
0.4  
0.2  
0.00  
0.20  
1.00  
2.00  
4.00  
Frequency (MHz)  
FIGURE 13-2:  
PIC16C622A IPD VS. VDD (WDT DISABLE)  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
-0.05  
3
4
5
6
VDD (V)  
2003 Microchip Technology Inc.  
DS30235J-page 109  
PIC16C62X  
FIGURE 13-3:  
IDD VS. VDD (XT OSC 4 MHZ)  
1.00  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (VOLTS)  
FIGURE 13-4:  
IOI VS. VOL, VDD = 3.0V)  
50  
45  
40  
MAX -40°C  
35  
30  
25  
20  
TYP 25°C  
MIN 85°C  
15  
10  
5
0
0
.5  
1
1.5  
2
2.5  
3
Vol (V)  
DS30235J-page 110  
2003 Microchip Technology Inc.  
PIC16C62X  
FIGURE 13-5:  
IOH VS. VOH, VDD = 3.0V)  
0
-5  
MIN 85°C  
-10  
-15  
-20  
-25  
TYP 25°C  
MAX -40°C  
0
.5  
1
1.5  
2
2.5  
3
VOH (V)  
FIGURE 13-6:  
IOI VS. VOL, VDD = 5.5V)  
100  
90  
MAX -40°C  
TYP 25°C  
80  
70  
60  
50  
40  
MIN 85°C  
30  
20  
10  
0
0
.5  
1
1.5  
2
2.5  
3
Vol (V)  
2003 Microchip Technology Inc.  
DS30235J-page 111  
PIC16C62X  
FIGURE 13-7:  
IOH VS. VOH, VDD = 5.5V)  
0
-10  
-20  
-30  
-40  
-50  
MIN 85°C  
TYP 25°C  
MAX -40°C  
3
3.5  
4
4.5  
5
5.5  
VOH (V)  
DS30235J-page 112  
2003 Microchip Technology Inc.  
PIC16C62X  
14.0 PACKAGING INFORMATION  
18-Lead Ceramic Dual In-line with Window (JW) – 300 mil (CERDIP)  
E1  
D
W2  
2
1
n
W1  
E
A2  
A
c
L
A1  
B1  
eB  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
18  
MAX  
n
p
Number of Pins  
Pitch  
18  
.100  
.183  
.160  
.023  
.313  
.290  
.900  
.138  
.010  
.055  
.019  
.385  
.140  
.200  
2.54  
Top to Seating Plane  
Ceramic Package Height  
Standoff  
A
.170  
.195  
4.32  
3.94  
4.64  
4.06  
0.57  
7.94  
7.37  
22.86  
3.49  
0.25  
1.40  
0.47  
9.78  
3.56  
5.08  
4.95  
A2  
A1  
.155  
.015  
.300  
.285  
.880  
.125  
.008  
.050  
.016  
.345  
.130  
.190  
.165  
.030  
.325  
.295  
.920  
.150  
.012  
.060  
.021  
.425  
.150  
.210  
4.19  
0.76  
8.26  
7.49  
23.37  
3.81  
0.30  
1.52  
0.53  
10.80  
3.81  
5.33  
0.38  
7.62  
7.24  
22.35  
3.18  
0.20  
1.27  
0.41  
8.76  
3.30  
4.83  
Shoulder to Shoulder Width  
Ceramic Pkg. Width  
Overall Length  
E
E1  
D
L
Tip to Seating Plane  
Lead Thickness  
c
Upper Lead Width  
Lower Lead Width  
Overall Row Spacing  
Window Width  
B1  
B
§
eB  
W1  
W2  
Window Length  
* Controlling Parameter  
§ Significant Characteristic  
JEDEC Equivalent: MO-036  
Drawing No. C04-010  
2003 Microchip Technology Inc.  
DS30235J-page 113  
PIC16C62X  
18-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
α
n
1
E
A2  
A
L
c
A1  
B1  
β
p
B
eB  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
18  
MAX  
n
p
Number of Pins  
Pitch  
18  
.100  
.155  
.130  
2.54  
Top to Seating Plane  
A
.140  
.170  
3.56  
2.92  
3.94  
3.30  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.890  
.125  
.008  
.045  
.014  
.310  
5
.145  
3.68  
0.38  
7.62  
6.10  
22.61  
3.18  
0.20  
1.14  
0.36  
7.87  
5
.313  
.250  
.898  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.905  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
22.80  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
22.99  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-007  
DS30235J-page 114  
2003 Microchip Technology Inc.  
PIC16C62X  
18-Lead Plastic Small Outline (SO) – Wide, 300 mil (SOIC)  
E
p
E1  
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
18  
18  
1.27  
2.50  
2.31  
0.20  
10.34  
7.49  
11.53  
0.50  
0.84  
4
.050  
.099  
.091  
.008  
.407  
.295  
.454  
.020  
.033  
4
Overall Height  
A
.093  
.104  
2.36  
2.64  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.088  
.004  
.394  
.291  
.446  
.010  
.016  
0
.094  
.012  
.420  
.299  
.462  
.029  
.050  
8
2.24  
0.10  
10.01  
7.39  
11.33  
0.25  
0.41  
0
2.39  
0.30  
10.67  
7.59  
11.73  
0.74  
1.27  
8
§
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.009  
.014  
0
.011  
.017  
12  
.012  
.020  
15  
0.23  
0.36  
0
0.27  
0.42  
12  
0.30  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-013  
Drawing No. C04-051  
2003 Microchip Technology Inc.  
DS30235J-page 115  
PIC16C62X  
20-Lead Plastic Shrink Small Outline (SS) – 209 mil, 5.30 mm (SSOP)  
E
E1  
p
D
B
2
n
1
α
c
A2  
A
φ
L
A1  
β
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
20  
MAX  
n
p
Number of Pins  
Pitch  
20  
.026  
.073  
.068  
.006  
.309  
.207  
.284  
.030  
.007  
4
0.65  
Overall Height  
A
.068  
.078  
1.73  
1.63  
1.85  
1.73  
0.15  
7.85  
5.25  
7.20  
0.75  
0.18  
101.60  
0.32  
5
1.98  
1.83  
0.25  
8.18  
5.38  
7.34  
0.94  
0.25  
203.20  
0.38  
10  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.064  
.002  
.299  
.201  
.278  
.022  
.004  
0
.072  
.010  
.322  
.212  
.289  
.037  
.010  
8
§
0.05  
7.59  
5.11  
7.06  
0.56  
0.10  
0.00  
0.25  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Foot Length  
L
c
Lead Thickness  
Foot Angle  
φ
Lead Width  
B
α
β
.010  
0
.013  
5
.015  
10  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-150  
Drawing No. C04-072  
DS30235J-page 116  
2003 Microchip Technology Inc.  
PIC16C62X  
14.1 Package Marking Information  
18-Lead PDIP  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
PIC16C622A  
-04I / P456  
9923CBA  
AABBCDE  
18-Lead SOIC (.300")  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
PIC16C622  
-04I / S0218  
AABBCDE  
9918CDK  
18-Lead CERDIP Windowed  
Example  
XXXXXXXX  
XXXXXXXX  
AABBCDE  
16C622  
/JW  
9901CBA  
20-Lead SSOP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
AABBCDE  
PIC16C622A  
-04I / 218  
9951CBP  
Legend: XX...X Customer specific information*  
Year code (last digit of calendar year)  
Y
YY  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
WW  
NNN  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard PICmicro device marking consists of Microchip part number, year code, week code, and  
traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check  
with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP  
price.  
2003 Microchip Technology Inc.  
DS30235J-page 117  
PIC16C62X  
NOTES:  
DS30235J-page 118  
2003 Microchip Technology Inc.  
PIC16C62X  
APPENDIX A: ENHANCEMENTS  
APPENDIX B: COMPATIBILITY  
The following are the list of enhancements over the  
PIC16C5X microcontroller family:  
To convert code written for PIC16C5X to PIC16CXX,  
the user should take the following steps:  
1. Instruction word length is increased to 14 bits.  
This allows larger page sizes both in program  
memory (4K now as opposed to 512 before) and  
register file (up to 128 bytes now versus 32  
bytes before).  
1. Remove any program memory page select  
operations (PA2, PA1, PA0 bits) for CALL, GOTO.  
2. Revisit any computed jump operations (write to  
PC or add to PC, etc.) to make sure page bits  
are set properly under the new scheme.  
2. A PC high latch register (PCLATH) is added to  
handle program memory paging. PA2, PA1, PA0  
bits are removed from STATUS register.  
3. Eliminate any data memory page switching.  
Redefine data variables to reallocate them.  
4. Verify all writes to STATUS, OPTION, and FSR  
registers since these have changed.  
3. Data memory paging is slightly redefined.  
STATUS register is modified.  
5. Change RESET vector to 0000h.  
4. Four new instructions have been added:  
RETURN, RETFIE, ADDLW, and SUBLW.  
Two instructions TRIS and OPTION are being  
phased out, although they are kept for  
compatibility with PIC16C5X.  
5. OPTION and TRIS registers are made  
addressable.  
6. Interrupt capability is added. Interrupt vector is  
at 0004h.  
7. Stack size is increased to 8 deep.  
8. RESET vector is changed to 0000h.  
9. RESET of all registers is revisited. Five different  
RESET (and wake-up) types are recognized.  
Registers are reset differently.  
10. Wake-up from SLEEP through interrupt is  
added.  
11. Two separate timers, Oscillator Start-up Timer  
(OST) and Power-up Timer (PWRT) are  
included for more reliable power-up. These  
timers are invoked selectively to avoid  
unnecessary delays on power-up and wake-up.  
12. PORTB has weak pull-ups and interrupt-on-  
change feature.  
13. Timer0 clock input, T0CKI pin is also a port pin  
(RA4/T0CKI) and has a TRIS bit.  
14. FSR is made a full 8-bit register.  
15. “In-circuit programming” is made possible. The  
user can program PIC16CXX devices using only  
five pins: VDD, VSS, VPP, RB6 (clock) and RB7  
(data in/out).  
16. PCON STATUS register is added with a Power-  
on-Reset (POR) STATUS bit and a Brown-out  
Reset STATUS bit (BOD).  
17. Code protection scheme is enhanced such that  
portions of the program memory can be  
protected, while the remainder is unprotected.  
18. PORTA inputs are now Schmitt Trigger inputs.  
19. Brown-out Reset reset has been added.  
20. Common RAM registers F0h-FFh implemented  
in bank1.  
2003 Microchip Technology Inc.  
DS30235J-page 119  
PIC16C62X  
NOTES:  
DS30235J-page 120  
2003 Microchip Technology Inc.  
PIC16C62X  
INDEX  
A
I
I/O Ports ............................................................................. 25  
I/O Programming Considerations ....................................... 30  
ID Locations........................................................................ 60  
INCF Instruction.................................................................. 67  
INCFSZ Instruction ............................................................. 68  
In-Circuit Serial Programming............................................. 60  
Indirect Addressing, INDF and FSR Registers ................... 24  
Instruction Flow/Pipelining.................................................. 12  
Instruction Set  
ADDLW Instruction ............................................................. 63  
ADDWF Instruction ............................................................. 63  
ANDLW Instruction ............................................................. 63  
ANDWF Instruction ............................................................. 63  
Architectural Overview.......................................................... 9  
Assembler  
MPASM Assembler..................................................... 75  
B
ADDLW....................................................................... 63  
ADDWF ...................................................................... 63  
ANDLW....................................................................... 63  
ANDWF ...................................................................... 63  
BCF ............................................................................ 64  
BSF............................................................................. 64  
BTFSC........................................................................ 64  
BTFSS........................................................................ 65  
CALL........................................................................... 65  
CLRF .......................................................................... 65  
CLRW......................................................................... 66  
CLRWDT .................................................................... 66  
COMF......................................................................... 66  
DECF.......................................................................... 66  
DECFSZ ..................................................................... 67  
GOTO......................................................................... 67  
INCF ........................................................................... 67  
INCFSZ....................................................................... 68  
IORLW........................................................................ 68  
IORWF........................................................................ 68  
MOVF ......................................................................... 69  
MOVLW...................................................................... 68  
MOVWF...................................................................... 69  
NOP............................................................................ 69  
OPTION...................................................................... 69  
RETFIE....................................................................... 70  
RETLW....................................................................... 70  
RETURN..................................................................... 70  
RLF............................................................................. 71  
RRF ............................................................................ 71  
SLEEP........................................................................ 71  
SUBLW....................................................................... 72  
SUBWF....................................................................... 72  
SWAPF....................................................................... 73  
TRIS ........................................................................... 73  
XORLW ...................................................................... 73  
XORWF ...................................................................... 73  
Instruction Set Summary .................................................... 61  
INT Interrupt ....................................................................... 56  
INTCON Register................................................................ 20  
Interrupts ............................................................................ 55  
IORLW Instruction .............................................................. 68  
IORWF Instruction .............................................................. 68  
BCF Instruction ................................................................... 64  
Block Diagram  
TIMER0....................................................................... 31  
TMR0/WDT PRESCALER .......................................... 34  
Brown-Out Detect (BOD) .................................................... 50  
BSF Instruction ................................................................... 64  
BTFSC Instruction............................................................... 64  
BTFSS Instruction............................................................... 65  
C
C Compilers  
MPLAB C17 ................................................................ 76  
MPLAB C18 ................................................................ 76  
MPLAB C30 ................................................................ 76  
CALL Instruction ................................................................. 65  
Clocking Scheme/Instruction Cycle .................................... 12  
CLRF Instruction................................................................. 65  
CLRW Instruction................................................................ 66  
CLRWDT Instruction........................................................... 66  
Code Protection .................................................................. 60  
COMF Instruction................................................................ 66  
Comparator Configuration................................................... 38  
Comparator Interrupts......................................................... 41  
Comparator Module ............................................................ 37  
Comparator Operation ........................................................ 39  
Comparator Reference ....................................................... 39  
Configuration Bits................................................................ 46  
Configuring the Voltage Reference..................................... 43  
Crystal Operation................................................................ 47  
D
Data Memory Organization................................................. 14  
DC Characteristics...................................................... 87, 101  
PIC16C717/770/771 ............... 88, 89, 90, 91, 96, 97, 98  
DECF Instruction................................................................. 66  
DECFSZ Instruction............................................................ 67  
Demonstration Boards  
PICDEM 1................................................................... 78  
PICDEM 17................................................................. 78  
PICDEM 18R PIC18C601/801.................................... 79  
PICDEM 2 Plus........................................................... 78  
PICDEM 3 PIC16C92X............................................... 78  
PICDEM 4................................................................... 78  
PICDEM LIN PIC16C43X ........................................... 79  
PICDEM USB PIC16C7X5.......................................... 79  
PICDEM.net Internet/Ethernet .................................... 78  
Development Support ......................................................... 75  
M
MOVF Instruction................................................................ 69  
MOVLW Instruction............................................................. 68  
MOVWF Instruction ............................................................ 69  
MPLAB ASM30 Assembler, Linker, Librarian..................... 76  
MPLAB ICD 2 In-Circuit Debugger ..................................... 77  
MPLAB ICE 2000 High Performance Universal  
E
Errata .................................................................................... 3  
Evaluation and Programming Tools.................................... 79  
External Crystal Oscillator Circuit ....................................... 48  
In-Circuit Emulator.............................................................. 77  
MPLAB ICE 4000 High Performance Universal  
G
In-Circuit Emulator.............................................................. 77  
MPLAB Integrated Development Environment Software.... 75  
MPLINK Object Linker/MPLIB Object Librarian.................. 76  
General purpose Register File............................................ 14  
GOTO Instruction................................................................ 67  
2003 Microchip Technology Inc.  
DS30235J-page 121  
PIC16C62X  
N
NOP Instruction...................................................................69  
V
Voltage Reference Module ................................................. 43  
VRCON Register ................................................................ 43  
O
W
Watchdog Timer (WDT)...................................................... 58  
WWW, On-Line Support ....................................................... 3  
One-Time-Programmable (OTP) Devices.............................7  
OPTION Instruction.............................................................69  
OPTION Register................................................................19  
Oscillator Configurations.....................................................47  
Oscillator Start-up Timer (OST) ..........................................50  
X
XORLW Instruction............................................................. 73  
XORWF Instruction............................................................. 73  
P
Package Marking Information ...........................................117  
Packaging Information ......................................................113  
PCL and PCLATH...............................................................23  
PCON Register ...................................................................22  
PICkit 1 FLASH Starter Kit..................................................79  
PICSTART Plus Development Programmer .......................77  
PIE1 Register......................................................................21  
PIR1 Register......................................................................21  
Port RB Interrupt .................................................................56  
PORTA................................................................................25  
PORTB................................................................................28  
Power Control/Status Register (PCON)..............................51  
Power-Down Mode (SLEEP)...............................................59  
Power-On Reset (POR) ......................................................50  
Power-up Timer (PWRT).....................................................50  
Prescaler.............................................................................34  
PRO MATE II Universal Device Programmer .....................77  
Program Memory Organization...........................................13  
Q
Quick-Turnaround-Production (QTP) Devices ......................7  
R
RC Oscillator.......................................................................48  
Reset...................................................................................49  
RETFIE Instruction..............................................................70  
RETLW Instruction..............................................................70  
RETURN Instruction............................................................70  
RLF Instruction....................................................................71  
RRF Instruction ...................................................................71  
S
Serialized Quick-Turnaround-Production (SQTP) Devices...7  
SLEEP Instruction...............................................................71  
Software Simulator (MPLAB SIM).......................................76  
Software Simulator (MPLAB SIM30)...................................76  
Special Features of the CPU...............................................45  
Special Function Registers .................................................17  
Stack ...................................................................................23  
Status Register....................................................................18  
SUBLW Instruction..............................................................72  
SUBWF Instruction..............................................................72  
SWAPF Instruction..............................................................73  
T
Timer0  
TIMER0.......................................................................31  
TIMER0 (TMR0) Interrupt ...........................................31  
TIMER0 (TMR0) Module.............................................31  
TMR0 with External Clock...........................................33  
Timer1  
Switching Prescaler Assignment.................................35  
Timing Diagrams and Specifications.................................104  
TMR0 Interrupt....................................................................56  
TRIS Instruction ..................................................................73  
TRISA..................................................................................25  
TRISB..................................................................................28  
DS30235J-page 122  
2003 Microchip Technology Inc.  
PIC16C62X  
ON-LINE SUPPORT  
SYSTEMS INFORMATION AND  
UPGRADE HOT LINE  
Microchip provides on-line support on the Microchip  
World Wide Web site.  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip's development systems software products.  
Plus, this line provides information on how customers  
can receive the most current upgrade kits.The Hot Line  
Numbers are:  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
®
®
and a web browser, such as Netscape or Microsoft  
Internet Explorer. Files are also available for FTP  
download from our FTP site.  
1-800-755-2345 for U.S. and most of Canada, and  
1-480-792-7302 for the rest of the world.  
Connecting to the Microchip Internet Web  
Site  
The Microchip web site is available at the following  
URL:  
092002  
www.microchip.com  
The file transfer site is available by using an FTP  
service to connect to:  
ftp://ftp.microchip.com  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User's Guides, Articles and Sample Programs. A  
variety of Microchip specific business information is  
also available, including listings of Microchip sales  
offices, distributors and factory representatives. Other  
data available for consideration is:  
• Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
• Conferences for products, Development Systems,  
technical information and more  
• Listing of seminars and events  
2003 Microchip Technology Inc.  
DS30235J-page 123  
PIC16C62X  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS30235J  
Device:  
PIC16C62X  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS30235J-page 124  
2003 Microchip Technology Inc.  
PIC16C62X  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
-XX  
X
/XX  
XXX  
Examples:  
Frequency Temperature Package  
Range Range  
Pattern  
a)  
PIC16C621A - 04/P 301 = Commercial temp.,  
PDIP package, 4 MHz, normal VDD limits, QTP  
pattern #301.  
b)  
PIC16LC622- 04I/SO = Industrial temp., SOIC  
package, 200 kHz, extended VDD limits.  
Device  
PIC16C62X: VDD range 3.0V to 6.0V  
PIC16C62XT: VDD range 3.0V to 6.0V (Tape and Reel)  
PIC16C62XA: VDD range 3.0V to 5.5V  
PIC16C62XAT: VDD range 3.0V to 5.5V (Tape and Reel)  
PIC16LC62X: VDD range 2.5V to 6.0V  
PIC16LC62XT: VDD range 2.5V to 6.0V (Tape and Reel)  
PIC16LC62XA: VDD range 2.5V to 5.5V  
PIC16LC62XAT: VDD range 2.5V to 5.5V (Tape and Reel)  
PIC16CR620A: VDD range 2.5V to 5.5V  
PIC16CR620AT: VDD range 2.5V to 5.5V (Tape and Reel)  
PIC16LCR620A: VDD range 2.0V to 5.5V  
PIC16LCR620AT: VDD range 2.0V to 5.5V (Tape and Reel)  
Frequency Range  
Temperature Range  
Package  
04 200 kHz (LP osc)  
04 4 MHz (XT and RC osc)  
20 20 MHz (HS osc)  
-
I
E
=
=
=
0°C to +70°C  
-40°C to +85°C  
-40°C to +125°C  
P
=
=
=
=
PDIP  
SO  
SS  
JW*  
SOIC (Gull Wing, 300 mil body)  
SSOP (209 mil)  
Windowed CERDIP  
Pattern  
3-Digit Pattern Code for QTP (blank otherwise)  
* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of  
each oscillator type.  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and  
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2003 Microchip Technology Inc.  
DS30235J-page 125  
WORLDWIDE SALES AND SERVICE  
Japan  
Microchip Technology Japan K.K.  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
AMERICAS  
ASIA/PACIFIC  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
Australia  
Microchip Technology Australia Pty Ltd  
Marketing Support Division  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Australia  
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755  
Korea  
Atlanta  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
China - Beijing  
3780 Mansell Road, Suite 130  
Alpharetta, GA 30022  
Tel: 770-640-0034 Fax: 770-640-0307  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Beijing Liaison Office  
Unit 915  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Boston  
Bei Hai Wan Tai Bldg.  
Singapore  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
#07-02 Prime Centre  
Singapore, 188980  
Tel: 65-6334-8870 Fax: 65-6334-8850  
Chicago  
China - Chengdu  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 630-285-0071 Fax: 630-285-0075  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Chengdu Liaison Office  
Rm. 2401-2402, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
Taiwan  
Microchip Technology (Barbados) Inc.,  
Taiwan Branch  
11F-3, No. 207  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Dallas  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
Tel: 972-818-7423 Fax: 972-818-2924  
Chengdu 610016, China  
Tel: 86-28-86766200 Fax: 86-28-86766599  
China - Fuzhou  
Detroit  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Fuzhou Liaison Office  
Unit 28F, World Trade Plaza  
No. 71 Wusi Road  
Fuzhou 350001, China  
Tel: 86-591-7503506 Fax: 86-591-7503521  
EUROPE  
Austria  
Microchip Technology Austria GmbH  
Durisolstrasse 2  
A-4600 Wels  
Kokomo  
2767 S. Albright Road  
Kokomo, Indiana 46902  
Tel: 765-864-8360 Fax: 765-864-8387  
China - Hong Kong SAR  
Austria  
Microchip Technology Hongkong Ltd.  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200 Fax: 852-2401-3431  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
Denmark  
Microchip Technology Nordic ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Los Angeles  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
China - Shanghai  
Microchip Technology Consulting (Shanghai)  
Co., Ltd.  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Phoenix  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-4338  
France  
Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
San Jose  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
China - Shenzhen  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Shenzhen Liaison Office  
Rm. 1812, 18/F, Building A, United Plaza  
No. 5022 Binhe Road, Futian District  
Shenzhen 518033, China  
Tel: 408-436-7950 Fax: 408-436-7955  
Germany  
Microchip Technology GmbH  
Steinheilstrasse 10  
D-85737 Ismaning, Germany  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Toronto  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
Tel: 86-755-82901380 Fax: 86-755-82966626  
China - Qingdao  
Rm. B505A, Fullhope Plaza,  
Italy  
No. 12 Hong Kong Central Rd.  
Qingdao 266071, China  
Tel: 86-532-5027355 Fax: 86-532-5027205  
Microchip Technology SRL  
Via Quasimodo, 12  
20025 Legnano (MI)  
Milan, Italy  
India  
Microchip Technology Inc.  
India Liaison Office  
Marketing Support Division  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
Tel: 39-0331-742611 Fax: 39-0331-466781  
United Kingdom  
Microchip Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
03/25/03  
DS30235J-page 126  
2003 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY