PIC16C73A-10E/L [MICROCHIP]

8-Bit CMOS Microcontrollers with A/D Converter; 8位CMOS微控制器与A / D转换器
PIC16C73A-10E/L
型号: PIC16C73A-10E/L
厂家: MICROCHIP    MICROCHIP
描述:

8-Bit CMOS Microcontrollers with A/D Converter
8位CMOS微控制器与A / D转换器

转换器 微控制器
文件: 总288页 (文件大小:2213K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16C7X  
8-Bit CMOS Microcontrollers with A/D Converter  
• Wide operating voltage range: 2.5V to 6.0V  
• High Sink/Source Current 25/25 mA  
Devices included in this data sheet:  
• PIC16C72  
• PIC16C73  
• PIC16C73A  
• PIC16C74  
• PIC16C74A  
• PIC16C76  
• PIC16C77  
• Commercial, Industrial and Extended temperature  
ranges  
• Low-power consumption:  
< 2 mA @ 5V, 4 MHz  
15 µA typical @ 3V, 32 kHz  
< 1 µA typical standby current  
PIC16C7X Microcontroller Core Features:  
• High-performance RISC CPU  
PIC16C7X Peripheral Features:  
• Only 35 single word instructions to learn  
• Timer0: 8-bit timer/counter with 8-bit prescaler  
• All single cycle instructions except for program  
branches which are two cycle  
• Timer1: 16-bit timer/counter with prescaler,  
can be incremented during sleep via external  
crystal/clock  
• Operating speed: DC - 20 MHz clock input  
DC - 200 ns instruction cycle  
• Timer2: 8-bit timer/counter with 8-bit period  
register, prescaler and postscaler  
• Up to 8K x 14 words of Program Memory,  
up to 368 x 8 bytes of Data Memory (RAM)  
• Capture, Compare, PWM module(s)  
• Interrupt capability  
• Capture is 16-bit, max. resolution is 12.5 ns,  
Compare is 16-bit, max. resolution is 200 ns,  
PWM max. resolution is 10-bit  
• Eight level deep hardware stack  
• Direct, indirect, and relative addressing modes  
• Power-on Reset (POR)  
• 8-bit multichannel analog-to-digital converter  
• Synchronous Serial Port (SSP) with  
• Power-up Timer (PWRT) and  
Oscillator Start-up Timer (OST)  
2
SPI and I C  
• Watchdog Timer (WDT) with its own on-chip RC  
oscillator for reliable operation  
• Universal Synchronous Asynchronous Receiver  
Transmitter (USART/SCI)  
• Programmable code-protection  
• Power saving SLEEP mode  
• Selectable oscillator options  
• Parallel Slave Port (PSP) 8-bits wide, with  
external RD, WR and CS controls  
• Brown-out detection circuitry for  
Brown-out Reset (BOR)  
• Low-power, high-speed CMOS EPROM  
technology  
• Fully static design  
PIC16C7X Features  
72  
73  
73A  
74  
74A  
76  
77  
Program Memory (EPROM) x 14  
Data Memory (Bytes) x 8  
I/O Pins  
2K  
128  
22  
1
4K  
192  
22  
2
4K  
192  
22  
2
4K  
192  
33  
Yes  
2
4K  
192  
33  
Yes  
2
8K  
368  
22  
2
8K  
368  
33  
Yes  
2
Parallel Slave Port  
Capture/Compare/PWM Modules  
Timer Modules  
3
3
3
3
3
3
3
A/D Channels  
5
5
5
8
8
5
8
2
2
2
2
2
2
2
Serial Communication  
SPI/I C SPI/I C, SPI/I C, SPI/I C, SPI/I C, SPI/I C, SPI/I C,  
USART  
USART  
USART  
USART  
USART  
USART  
In-Circuit Serial Programming  
Brown-out Reset  
Yes  
Yes  
8
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Interrupt Sources  
11  
11  
12  
12  
11  
12  
1997 Microchip Technology Inc.  
DS30390E-page 1  
PIC16C7X  
Pin Diagrams  
SDIP, SOIC, Windowed Side Brazed Ceramic  
SSOP  
MCLR/VPP  
RA0/AN0  
• 1  
2
28  
27  
26  
25  
24  
RB7  
RB6  
RB5  
RB4  
RB3  
MCLR/VPP  
RA0/AN0  
• 1  
2
28  
27  
26  
25  
24  
RB7  
RB6  
RB5  
RB4  
RB3  
RA1/AN1  
3
RA1/AN1  
3
RA2/AN2  
4
RA2/AN2  
4
RA3/AN3/VREF  
5
RA3/AN3/VREF  
5
RA4/T0CKI  
RA5/SS/AN4  
VSS  
6
7
8
23  
22  
21  
RB2  
RA4/T0CKI  
RA5/SS/AN4  
VSS  
6
7
8
23  
22  
21  
RB2  
RB1  
RB1  
RB0/INT  
RB0/INT  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI  
9
20  
19  
18  
17  
16  
15  
VDD  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI  
9
20  
19  
18  
17  
16  
15  
VDD  
10  
11  
12  
13  
14  
VSS  
10  
11  
12  
13  
14  
VSS  
RC7  
RC7  
RC6  
RC6  
RC2/CCP1  
RC5/SDO  
RC4/SDI/SDA  
RC2/CCP1  
RC5/SDO  
RC4/SDI/SDA  
RC3/SCK/SCL  
RC3/SCK/SCL  
PIC16C72  
PIC16C72  
SDIP, SOIC, Windowed Side Brazed Ceramic  
PDIP, Windowed CERDIP  
MCLR/VPP  
RA0/AN0  
• 1  
2
28  
27  
26  
25  
24  
RB7  
RB6  
RB5  
RB4  
RB3  
MCLR/VPP  
RA0/AN0  
1
2
3
4
5
6
7
8
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RA1/AN1  
3
RA1/AN1  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
RA2/AN2  
4
RA3/AN3/VREF  
5
RA4/T0CKI  
RA5/SS/AN4  
VSS  
6
7
8
23  
22  
21  
RB2  
RA5/SS/AN4  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
VDD  
RB1  
RB0/INT  
VDD  
RB1  
RB0/INT  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VSS  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
9
20  
19  
18  
17  
16  
15  
VDD  
RD7/PSP7  
RD6/PSP6  
RD5/PSP5  
RD4/PSP4  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
10  
11  
12  
13  
14  
VSS  
VSS  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
RC4/SDI/SDA  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
RC3/SCK/SCL  
RC3/SCK/SCL  
RD0/PSP0  
RC4/SDI/SDA  
RD3/PSP3  
RD2/PSP2  
PIC16C73  
PIC16C73A  
PIC16C76  
RD1/PSP1  
PIC16C74  
PIC16C74A  
PIC16C77  
DS30390E-page 2  
1997 Microchip Technology Inc.  
PIC16C7X  
Pin Diagrams (Cont.d)  
MQFP  
NC  
RC7/RX/DT  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
VSS  
VDD  
RB0/INT  
RB1  
1
2
3
4
5
6
7
8
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
RC0/T1OSO/T1CKI  
OSC2/CLKOUT  
OSC1/CLKIN  
VSS  
VDD  
PIC16C74  
RE2/CS/AN7  
RE1/WR/AN6  
RE0/RD/AN5  
RA5/SS/AN4  
RA4/T0CKI  
9
10  
11  
RB2  
RB3  
PLCC  
MQFP  
TQFP  
RA4/T0CKI  
RA5/SS/AN4  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
VDD  
RB3  
RB2  
RB1  
RB0/INT  
VDD  
7
8
9
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
NC  
RC7/RX/DT  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
VSS  
VDD  
RB0/INT  
RB1  
1
2
3
4
5
6
7
8
9
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
RC0/T1OSO/T1CKI  
OSC2/CLKOUT  
OSC1/CLKIN  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
PIC16C74  
PIC16C74A  
PIC16C77  
PIC16C74A  
PIC16C77  
VSS  
VDD  
VSS  
RD7/PSP7  
RD6/PSP6  
RD5/PSP5  
RD4/PSP4  
RC7/RX/DT  
RE2/CS/AN7  
RE1/WR/AN6  
RE0/RD/AN5  
RA5/SS/AN4  
RA4/T0CKI  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
NC  
10  
11  
RB2  
RB3  
1997 Microchip Technology Inc.  
DS30390E-page 3  
PIC16C7X  
Table of Contents  
1.0 General Description ....................................................................................................................................................................... 5  
2.0 PIC16C7X Device Varieties........................................................................................................................................................... 7  
3.0 Architectural Overview................................................................................................................................................................... 9  
4.0 Memory Organization................................................................................................................................................................... 19  
5.0 I/O Ports....................................................................................................................................................................................... 43  
6.0 Overview of Timer Modules ......................................................................................................................................................... 57  
7.0 Timer0 Module............................................................................................................................................................................. 59  
8.0 Timer1 Module............................................................................................................................................................................. 65  
9.0 Timer2 Module............................................................................................................................................................................. 69  
10.0 Capture/Compare/PWM Module(s).............................................................................................................................................. 71  
11.0 Synchronous Serial Port (SSP) Module....................................................................................................................................... 77  
12.0 Universal Synchronous Asynchronous Receiver Transmitter (USART) ...................................................................................... 99  
13.0 Analog-to-Digital Converter (A/D) Module ................................................................................................................................. 117  
14.0 Special Features of the CPU ..................................................................................................................................................... 129  
15.0 Instruction Set Summary............................................................................................................................................................ 147  
16.0 Development Support ................................................................................................................................................................ 163  
17.0 Electrical Characteristics for PIC16C72..................................................................................................................................... 167  
18.0 Electrical Characteristics for PIC16C73/74................................................................................................................................ 183  
19.0 Electrical Characteristics for PIC16C73A/74A........................................................................................................................... 201  
20.0 Electrical Characteristics for PIC16C76/77................................................................................................................................ 219  
21.0 DC and AC Characteristics Graphs and Tables ........................................................................................................................ 241  
22.0 Packaging Information ............................................................................................................................................................... 251  
Appendix A: ................................................................................................................................................................................... 263  
Appendix B:  
Appendix C:  
Appendix D:  
Appendix E:  
Compatibility ............................................................................................................................................................. 263  
What’s New............................................................................................................................................................... 264  
What’s Changed ....................................................................................................................................................... 264  
PIC16/17 Microcontrollers ....................................................................................................................................... 265  
Pin Compatibility ................................................................................................................................................................................ 271  
Index .................................................................................................................................................................................................. 273  
List of Examples................................................................................................................................................................................. 279  
List of Figures..................................................................................................................................................................................... 280  
List of Tables...................................................................................................................................................................................... 283  
Reader Response .............................................................................................................................................................................. 286  
PIC16C7X Product Identification System........................................................................................................................................... 287  
For register and module descriptions in this data sheet, device legends show which devices apply to those sections. As  
an example, the legend below would mean that the following section applies only to the PIC16C72, PIC16C73A and  
PIC16C74A devices.  
Applicable Devices  
72 73 73A 74 74A 76 77  
To Our Valued Customers  
We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional  
amount of time to ensure that these documents are correct. However, we realize that we may have missed a few  
things. If you find any information that is missing or appears in error, please use the reader response form in the  
back of this data sheet to inform us. We appreciate your assistance in making this a better document.  
DS30390E-page 4  
1997 Microchip Technology Inc.  
PIC16C7X  
8-bit A/D is provided. The 8-bit resolution is ideally  
suited for applications requiring low-cost analog inter-  
face, e.g. thermostat control, pressure sensing, etc.  
1.0  
GENERAL DESCRIPTION  
The PIC16C7X is a family of low-cost, high-perfor-  
mance, CMOS, fully-static, 8-bit microcontrollers with  
integrated analog-to-digital (A/D) converters, in the  
PIC16CXX mid-range family.  
The PIC16C7X family has special features to reduce  
external components, thus reducing cost, enhancing  
system reliability and reducing power consumption.  
There are four oscillator options, of which the single pin  
RC oscillator provides a low-cost solution, the LP oscil-  
lator minimizes power consumption, XT is a standard  
crystal, and the HS is for High Speed crystals. The  
SLEEP (power-down) feature provides a power saving  
mode. The user can wake up the chip from SLEEP  
through several external and internal interrupts and  
resets.  
All PIC16/17 microcontrollers employ an advanced  
RISC architecture.The PIC16CXX microcontroller fam-  
ily has enhanced core features, eight-level deep stack,  
and multiple internal and external interrupt sources.  
The separate instruction and data buses of the Harvard  
architecture allow a 14-bit wide instruction word with  
the separate 8-bit wide data. The two stage instruction  
pipeline allows all instructions to execute in a single  
cycle, except for program branches which require two  
cycles. A total of 35 instructions (reduced instruction  
set) are available. Additionally, a large register set gives  
some of the architectural innovations used to achieve a  
very high performance.  
A highly reliable Watchdog Timer with its own on-chip  
RC oscillator provides protection against software lock-  
up.  
A UV erasable CERDIP packaged version is ideal for  
code development while the cost-effective One-Time-  
Programmable (OTP) version is suitable for production  
in any volume.  
PIC16CXX microcontrollers typically achieve a 2:1  
code compression and a 4:1 speed improvement over  
other 8-bit microcontrollers in their class.  
The PIC16C7X family fits perfectly in applications rang-  
ing from security and remote sensors to appliance con-  
trol and automotive. The EPROM technology makes  
customization of application programs (transmitter  
codes, motor speeds, receiver frequencies, etc.)  
extremely fast and convenient. The small footprint  
packages make this microcontroller series perfect for  
all applications with space limitations. Low cost, low  
power, high performance, ease of use and I/O flexibility  
make the PIC16C7X very versatile even in areas where  
no microcontroller use has been considered before  
(e.g. timer functions, serial communication, capture  
and compare, PWM functions and coprocessor appli-  
cations).  
The PIC16C72 has 128 bytes of RAM and 22 I/O pins.  
In addition several peripheral features are available  
including: three timer/counters, one Capture/Compare/  
PWM module and one serial port. The Synchronous  
Serial Port can be configured as either a 3-wire Serial  
Peripheral Interface (SPI) or the two-wire Inter-Inte-  
2
grated Circuit (I C) bus. Also a 5-channel high-speed  
8-bit A/D is provided. The 8-bit resolution is ideally  
suited for applications requiring low-cost analog inter-  
face, e.g. thermostat control, pressure sensing, etc.  
The PIC16C73/73A devices have 192 bytes of RAM,  
while the PIC16C76 has 368 byes of RAM. Each device  
has 22 I/O pins. In addition, several peripheral features  
are available including: three timer/counters, two Cap-  
ture/Compare/PWM modules and two serial ports. The  
Synchronous Serial Port can be configured as either a  
3-wire Serial Peripheral Interface (SPI) or the two-wire  
1.1  
Family and Upward Compatibility  
Users familiar with the PIC16C5X microcontroller fam-  
ily will realize that this is an enhanced version of the  
PIC16C5X architecture. Please refer to Appendix A for  
a detailed list of enhancements. Code written for the  
PIC16C5X can be easily ported to the PIC16CXX fam-  
ily of devices (Appendix B).  
2
Inter-Integrated Circuit (I C) bus. The Universal Syn-  
chronous  
Asynchronous  
Receiver  
Transmitter  
(USART) is also known as the Serial Communications  
Interface or SCI. Also a 5-channel high-speed 8-bit A/  
D is provided.The 8-bit resolution is ideally suited for  
applications requiring low-cost analog interface, e.g.  
thermostat control, pressure sensing, etc.  
1.2  
Development Support  
PIC16C7X devices are supported by the complete line  
of Microchip Development tools.  
The PIC16C74/74A devices have 192 bytes of RAM,  
while the PIC16C77 has 368 bytes of RAM. Each  
device has 33 I/O pins. In addition several peripheral  
features are available including: three timer/counters,  
two Capture/Compare/PWM modules and two serial  
ports. The Synchronous Serial Port can be configured  
as either a 3-wire Serial Peripheral Interface (SPI) or  
Please refer to Section 16.0 for more details about  
Microchip’s development tools.  
2
the two-wire Inter-Integrated Circuit (I C) bus. The Uni-  
versal Synchronous Asynchronous Receiver Transmit-  
ter (USART) is also known as the Serial  
Communications Interface or SCI. An 8-bit Parallel  
Slave Port is provided. Also an 8-channel high-speed  
1997 Microchip Technology Inc.  
DS30390E-page 5  
PIC16C7X  
TABLE 1-1:  
PIC16C7XX FAMILY OF DEVCES  
(1)  
PIC16C710 PIC16C71 PIC16C711 PIC16C715  
PIC16C72 PIC16CR72  
Maximum Frequency  
of Operation (MHz)  
20  
20  
1K  
20  
1K  
20  
2K  
20  
20  
Clock  
EPROM Program Memory  
(x14 words)  
512  
2K  
Memory  
ROM Program Memory  
(14K words)  
2K  
128  
Data Memory (bytes)  
Timer Module(s)  
36  
36  
68  
128  
128  
TMR0  
TMR0  
TMR0  
TMR0  
TMR0,  
TMR1,  
TMR2  
TMR0,  
TMR1,  
TMR2  
Capture/Compare/  
PWM Module(s)  
1
1
Peripherals  
2
2
Serial Port(s)  
SPI/I C  
SPI/I C  
2
(SPI/I C, USART)  
Parallel Slave Port  
A/D Converter (8-bit) Channels 4  
4
4
4
5
5
Interrupt Sources  
I/O Pins  
4
4
4
4
8
8
13  
13  
13  
13  
22  
22  
Voltage Range (Volts)  
3.0-6.0  
3.0-6.0  
Yes  
3.0-6.0  
Yes  
Yes  
3.0-5.5  
Yes  
Yes  
2.5-6.0  
Yes  
Yes  
3.0-5.5  
Yes  
Yes  
In-Circuit Serial Programming Yes  
Features  
Brown-out Reset  
Packages  
Yes  
18-pin DIP, 18-pin DIP, 18-pin DIP, 18-pin DIP, 28-pin SDIP, 28-pin SDIP,  
SOIC;  
SOIC  
SOIC;  
SOIC;  
SOIC, SSOP SOIC, SSOP  
20-pin SSOP  
20-pin SSOP 20-pin SSOP  
PIC16C73A  
PIC16C74A  
PIC16C76  
PIC16C77  
Maximum Frequency of Oper- 20  
ation (MHz)  
20  
20  
20  
Clock  
EPROM Program Memory  
(x14 words)  
4K  
4K  
192  
8K  
8K  
368  
Memory  
Data Memory (bytes)  
Timer Module(s)  
192  
368  
TMR0,  
TMR1,  
TMR2  
TMR0,  
TMR1,  
TMR2  
TMR0,  
TMR1,  
TMR2  
TMR0,  
TMR1,  
TMR2  
Capture/Compare/PWM Mod-  
ule(s)  
2
2
2
2
Peripherals  
2
2
2
2
2
Serial Port(s) (SPI/I C, US- SPI/I C, USART  
ART)  
SPI/I C, USART  
SPI/I C, USART  
SPI/I C, USART  
Parallel Slave Port  
Yes  
8
Yes  
8
A/D Converter (8-bit) Channels 5  
5
Interrupt Sources  
I/O Pins  
11  
12  
11  
12  
22  
33  
22  
33  
Voltage Range (Volts)  
2.5-6.0  
2.5-6.0  
Yes  
Yes  
2.5-6.0  
Yes  
Yes  
2.5-6.0  
Yes  
Yes  
In-Circuit Serial Programming Yes  
Features  
Brown-out Reset  
Packages  
Yes  
28-pin SDIP,  
SOIC  
40-pin DIP;  
44-pin PLCC,  
MQFP, TQFP  
28-pin SDIP,  
SOIC  
40-pin DIP;  
44-pin PLCC,  
MQFP, TQFP  
All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capabil-  
ity. All PIC16C7XX Family devices use serial programming with clock pin RB6 and data pin RB7.  
Note 1: Please contact your local Microchip sales office for availability of these devices.  
DS30390E-page 6  
1997 Microchip Technology Inc.  
PIC16C7X  
2.3  
Quick-Turnaround-Production (QTP)  
Devices  
2.0  
PIC16C7X DEVICE VARIETIES  
A variety of frequency ranges and packaging options  
are available. Depending on application and production  
requirements, the proper device option can be selected  
using the information in the PIC16C7X Product Identifi-  
cation System section at the end of this data sheet.  
When placing orders, please use that page of the data  
sheet to specify the correct part number.  
Microchip offers a QTP Programming Service for fac-  
tory production orders. This service is made available  
for users who choose not to program a medium to high  
quantity of units and whose code patterns have stabi-  
lized. The devices are identical to the OTP devices but  
with all EPROM locations and configuration options  
already programmed by the factory. Certain code and  
prototype verification procedures apply before produc-  
tion shipments are available. Please contact your local  
Microchip Technology sales office for more details.  
For the PIC16C7X family, there are two device “types”  
as indicated in the device number:  
1. C, as in PIC16C74. These devices have  
EPROM type memory and operate over the  
standard voltage range.  
2.4  
Serialized Quick-Turnaround  
Production (SQTPSM) Devices  
2. LC, as in PIC16LC74. These devices have  
EPROM type memory and operate over an  
extended voltage range.  
Microchip offers a unique programming service where  
a few user-defined locations in each device are pro-  
grammed with different serial numbers.The serial num-  
bers may be random, pseudo-random, or sequential.  
2.1  
UV Erasable Devices  
The UV erasable version, offered in CERDIP package  
is optimal for prototype development and pilot  
programs. This version can be erased and  
reprogrammed to any of the oscillator modes.  
Serial programming allows each device to have a  
unique number which can serve as an entry-code,  
password, or ID number.  
Microchip's PICSTART Plus and PRO MATE II  
programmers both support programming of the  
PIC16C7X.  
2.2  
One-Time-Programmable (OTP)  
Devices  
The availability of OTP devices is especially useful for  
customers who need the flexibility for frequent code  
updates and small volume applications.  
The OTP devices, packaged in plastic packages, per-  
mit the user to program them once. In addition to the  
program memory, the configuration bits must also be  
programmed.  
1997 Microchip Technology Inc.  
DS30390E-page 7  
PIC16C7X  
NOTES:  
DS30390E-page 8  
1997 Microchip Technology Inc.  
PIC16C7X  
PIC16CXX devices contain an 8-bit ALU and working  
register. The ALU is a general purpose arithmetic unit.  
It performs arithmetic and Boolean functions between  
the data in the working register and any register file.  
3.0  
ARCHITECTURAL OVERVIEW  
The high performance of the PIC16CXX family can be  
attributed to a number of architectural features com-  
monly found in RISC microprocessors. To begin with,  
the PIC16CXX uses a Harvard architecture, in which,  
program and data are accessed from separate memo-  
ries using separate buses. This improves bandwidth  
over traditional von Neumann architecture in which pro-  
gram and data are fetched from the same memory  
using the same bus. Separating program and data  
buses further allows instructions to be sized differently  
than the 8-bit wide data word. Instruction opcodes are  
14-bits wide making it possible to have all single word  
instructions. A 14-bit wide program memory access  
bus fetches a 14-bit instruction in a single cycle. A two-  
stage pipeline overlaps fetch and execution of instruc-  
tions (Example 3-1). Consequently, all instructions (35)  
execute in a single cycle (200 ns @ 20 MHz) except for  
program branches.  
The ALU is 8-bits wide and capable of addition, sub-  
traction, shift and logical operations. Unless otherwise  
mentioned, arithmetic operations are two's comple-  
ment in nature. In two-operand instructions, typically  
one operand is the working register (W register). The  
other operand is a file register or an immediate con-  
stant. In single operand instructions, the operand is  
either the W register or a file register.  
The W register is an 8-bit working register used for ALU  
operations. It is not an addressable register.  
Depending on the instruction executed, the ALU may  
affect the values of the Carry (C), Digit Carry (DC), and  
Zero (Z) bits in the STATUS register.The C and DC bits  
operate as a borrow bit and a digit borrow out bit,  
respectively, in subtraction. See the SUBLWand SUBWF  
instructions for examples.  
The table below lists program memory (EPROM) and  
data memory (RAM) for each PIC16C7X device.  
Program  
Memory  
Device  
Data Memory  
PIC16C72  
PIC16C73  
PIC16C73A  
PIC16C74  
PIC16C74A  
PIC16C76  
PIC16C77  
2K x 14  
4K x 14  
4K x 14  
4K x 14  
4K x 14  
8K x 14  
8K x 14  
128 x 8  
192 x 8  
192 x 8  
192 x 8  
192 x 8  
368 x 8  
386 x 8  
The PIC16CXX can directly or indirectly address its  
register files or data memory. All special function regis-  
ters, including the program counter, are mapped in the  
data memory. The PIC16CXX has an orthogonal (sym-  
metrical) instruction set that makes it possible to carry  
out any operation on any register using any addressing  
mode. This symmetrical nature and lack of ‘special  
optimal situations’ make programming with the  
PIC16CXX simple yet efficient. In addition, the learning  
curve is reduced significantly.  
1997 Microchip Technology Inc.  
DS30390E-page 9  
PIC16C7X  
FIGURE 3-1: PIC16C72 BLOCK DIAGRAM  
13  
8
PORTA  
Data Bus  
Program Counter  
EPROM  
RA0/AN0  
Program  
Memory  
RA1/AN1  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
RA5/SS/AN4  
RAM  
File  
Registers  
8 Level Stack  
2K x 14  
(13-bit)  
128 x 8  
Program  
14  
RAM Addr(1)  
PORTB  
Bus  
9
Addr MUX  
Instruction reg  
RB0/INT  
RB7:RB1  
Indirect  
Addr  
7
Direct Addr  
8
FSR reg  
STATUS reg  
PORTC  
8
RC0/T1OSO/T1CKI  
RC1/T1OSI  
RC2/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
3
MUX  
Power-up  
Timer  
Oscillator  
Start-up Timer  
Instruction  
Decode &  
Control  
RC6  
RC7  
ALU  
Power-on  
Reset  
8
Timing  
Generation  
Watchdog  
Timer  
W reg  
OSC1/CLKIN  
OSC2/CLKOUT  
Brown-out  
Reset  
MCLR VDD, VSS  
Timer0  
Timer1  
Timer2  
Synchronous  
Serial Port  
A/D  
CCP1  
Note 1: Higher order bits are from the STATUS register.  
DS30390E-page 10  
1997 Microchip Technology Inc.  
PIC16C7X  
FIGURE 3-2: PIC16C73/73A/76 BLOCK DIAGRAM  
Device  
Program Memory Data Memory (RAM)  
PIC16C73  
PIC16C73A  
PIC16C76  
4K x 14  
4K x 14  
8K x 14  
192 x 8  
192 x 8  
368 x 8  
13  
8
PORTA  
Data Bus  
Program Counter  
RA0/AN0  
RA1/AN1  
EPROM  
Program  
Memory  
RA2/AN2  
RAM  
File  
Registers  
8 Level Stack  
(13-bit)  
RA3/AN3/VREF  
RA4/T0CKI  
RA5/SS/AN4  
Program  
Bus  
14  
RAM Addr(1)  
PORTB  
9
Addr MUX  
Instruction reg  
RB0/INT  
RB7:RB1  
Indirect  
Addr  
7
Direct Addr  
8
FSR reg  
STATUS reg  
PORTC  
8
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
3
MUX  
Power-up  
Timer  
Oscillator  
Start-up Timer  
Instruction  
Decode &  
Control  
RC6/TX/CK  
RC7/RX/DT  
ALU  
Power-on  
Reset  
8
Timing  
Generation  
Watchdog  
Timer  
W reg  
OSC1/CLKIN  
OSC2/CLKOUT  
Brown-out  
Reset(2)  
MCLR VDD, VSS  
Timer2  
Timer0  
CCP1  
Timer1  
CCP2  
A/D  
Synchronous  
Serial Port  
USART  
Note 1: Higher order bits are from the STATUS register.  
2: Brown-out Reset is not available on the PIC16C73.  
1997 Microchip Technology Inc.  
DS30390E-page 11  
PIC16C7X  
FIGURE 3-3: PIC16C74/74A/77 BLOCK DIAGRAM  
Device  
Program Memory Data Memory (RAM)  
PIC16C74  
PIC16C74A  
PIC16C77  
4K x 14  
4K x 14  
8K x 14  
192 x 8  
192 x 8  
368 x 8  
13  
8
PORTA  
Data Bus  
Program Counter  
RA0/AN0  
RA1/AN1  
EPROM  
RA2/AN2  
Program  
Memory  
RA3/AN3/VREF  
RA4/T0CKI  
RA5/SS/AN4  
RAM  
File  
Registers  
8 Level Stack  
(13-bit)  
Program  
Bus  
14  
RAM Addr (1)  
PORTB  
9
Addr MUX  
Instruction reg  
RB0/INT  
RB7:RB1  
Indirect  
Addr  
7
Direct Addr  
8
FSR reg  
STATUS reg  
PORTC  
8
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
3
MUX  
Power-up  
Timer  
Oscillator  
Start-up Timer  
Instruction  
Decode &  
Control  
RC6/TX/CK  
RC7/RX/DT  
ALU  
Power-on  
Reset  
PORTD  
8
Timing  
Generation  
Watchdog  
Timer  
W reg  
OSC1/CLKIN  
OSC2/CLKOUT  
Brown-out  
Reset(2)  
RD7/PSP7:RD0/PSP0  
PORTE  
Parallel Slave Port  
MCLR VDD, VSS  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
Timer0  
CCP1  
Timer1  
CCP2  
Timer2  
A/D  
Synchronous  
Serial Port  
USART  
Note 1: Higher order bits are from the STATUS register.  
2: Brown-out Reset is not available on the PIC16C74.  
DS30390E-page 12  
1997 Microchip Technology Inc.  
PIC16C7X  
TABLE 3-1:  
PIC16C72 PINOUT DESCRIPTION  
DIP SSOP SOIC  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Description  
Pin# Pin#  
Pin#  
(3)  
OSC1/CLKIN  
9
9
9
I
Oscillator crystal input/external clock source input.  
ST/CMOS  
OSC2/CLKOUT  
10  
10  
10  
O
Oscillator crystal output. Connects to crystal or resonator in  
crystal oscillator mode. In RC mode, the OSC2 pin outputs  
CLKOUT which has 1/4 the frequency of OSC1, and denotes  
the instruction cycle rate.  
1
1
1
I/P  
ST  
Master clear (reset) input or programming voltage input. This  
pin is an active low reset to the device.  
MCLR/VPP  
PORTA is a bi-directional I/O port.  
RA0 can also be analog input0  
RA0/AN0  
2
3
4
5
6
2
3
4
5
6
2
3
4
5
6
I/O  
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
TTL  
ST  
RA1/AN1  
RA1 can also be analog input1  
RA2/AN2  
RA2 can also be analog input2  
RA3/AN3/VREF  
RA4/T0CKI  
RA3 can also be analog input3 or analog reference voltage  
RA4 can also be the clock input to the Timer0 module.  
Output is open drain type.  
RA5/SS/AN4  
7
7
7
I/O  
TTL  
RA5 can also be analog input4 or the slave select for the  
synchronous serial port.  
PORTB is a bi-directional I/O port. PORTB can be software  
programmed for internal weak pull-up on all inputs.  
(1)  
RB0/INT  
RB1  
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL/ST  
TTL  
RB0 can also be the external interrupt pin.  
RB2  
TTL  
RB3  
TTL  
RB4  
TTL  
Interrupt on change pin.  
RB5  
TTL  
Interrupt on change pin.  
(2)  
RB6  
TTL/ST  
TTL/ST  
Interrupt on change pin. Serial programming clock.  
Interrupt on change pin. Serial programming data.  
PORTC is a bi-directional I/O port.  
(2)  
RB7  
RC0/T1OSO/T1CKI 11  
11  
11  
I/O  
ST  
RC0 can also be the Timer1 oscillator output or Timer1  
clock input.  
RC1/T1OSI  
RC2/CCP1  
12  
13  
12  
13  
12  
13  
I/O  
I/O  
ST  
ST  
RC1 can also be the Timer1 oscillator input.  
RC2 can also be the Capture1 input/Compare1 output/  
PWM1 output.  
RC3/SCK/SCL  
RC4/SDI/SDA  
14  
15  
14  
15  
14  
15  
I/O  
I/O  
ST  
ST  
RC3 can also be the synchronous serial clock input/output  
for both SPI and I C modes.  
2
RC4 can also be the SPI Data In (SPI mode) or  
2
data I/O (I C mode).  
RC5/SDO  
16  
17  
18  
16  
17  
18  
16  
17  
I/O  
I/O  
I/O  
P
ST  
ST  
ST  
RC5 can also be the SPI Data Out (SPI mode).  
RC6  
RC7  
18  
VSS  
8, 19 8, 19  
20 20  
8, 19  
20  
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
VDD  
P
Legend: I = input  
O = output  
— = Not used  
I/O = input/output  
TTL = TTL input  
P = power  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.  
1997 Microchip Technology Inc.  
DS30390E-page 13  
PIC16C7X  
TABLE 3-2:  
PIC16C73/73A/76 PINOUT DESCRIPTION  
DIP  
Pin#  
SOIC  
Pin#  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Description  
(3)  
OSC1/CLKIN  
9
9
I
Oscillator crystal input/external clock source input.  
ST/CMOS  
OSC2/CLKOUT  
10  
10  
O
Oscillator crystal output. Connects to crystal or resonator in  
crystal oscillator mode. In RC mode, the OSC2 pin outputs  
CLKOUT which has 1/4 the frequency of OSC1, and denotes  
the instruction cycle rate.  
1
1
I/P  
ST  
Master clear (reset) input or programming voltage input. This  
pin is an active low reset to the device.  
MCLR/VPP  
PORTA is a bi-directional I/O port.  
RA0 can also be analog input0  
RA0/AN0  
2
3
4
5
6
2
3
4
5
6
I/O  
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
TTL  
ST  
RA1/AN1  
RA1 can also be analog input1  
RA2/AN2  
RA2 can also be analog input2  
RA3/AN3/VREF  
RA4/T0CKI  
RA3 can also be analog input3 or analog reference voltage  
RA4 can also be the clock input to the Timer0 module.  
Output is open drain type.  
RA5/SS/AN4  
7
7
I/O  
TTL  
RA5 can also be analog input4 or the slave select for the  
synchronous serial port.  
PORTB is a bi-directional I/O port. PORTB can be software  
programmed for internal weak pull-up on all inputs.  
(1)  
RB0/INT  
RB1  
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL/ST  
TTL  
RB0 can also be the external interrupt pin.  
RB2  
TTL  
RB3  
TTL  
RB4  
TTL  
Interrupt on change pin.  
RB5  
TTL  
Interrupt on change pin.  
(2)  
RB6  
TTL/ST  
TTL/ST  
Interrupt on change pin. Serial programming clock.  
Interrupt on change pin. Serial programming data.  
PORTC is a bi-directional I/O port.  
(2)  
RB7  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
11  
12  
13  
14  
15  
11  
12  
13  
14  
15  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
RC0 can also be the Timer1 oscillator output or Timer1  
clock input.  
RC1 can also be the Timer1 oscillator input or Capture2  
input/Compare2 output/PWM2 output.  
RC2 can also be the Capture1 input/Compare1 output/  
PWM1 output.  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC3 can also be the synchronous serial clock input/output  
2
for both SPI and I C modes.  
RC4 can also be the SPI Data In (SPI mode) or  
2
data I/O (I C mode).  
RC5/SDO  
16  
17  
16  
17  
I/O  
I/O  
ST  
ST  
RC5 can also be the SPI Data Out (SPI mode).  
RC6/TX/CK  
RC6 can also be the USART Asynchronous Transmit or  
Synchronous Clock.  
RC7/RX/DT  
18  
18  
I/O  
ST  
RC7 can also be the USART Asynchronous Receive or  
Synchronous Data.  
VSS  
8, 19  
20  
8, 19  
20  
P
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
VDD  
Legend: I = input  
O = output  
— = Not used  
I/O = input/output  
TTL = TTL input  
P = power  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.  
DS30390E-page 14  
1997 Microchip Technology Inc.  
PIC16C7X  
TABLE 3-3:  
PIC16C74/74A/77 PINOUT DESCRIPTION  
DIP  
Pin#  
PLCC  
Pin#  
QFP I/O/P  
Pin# Type  
Buffer  
Type  
Pin Name  
Description  
(4)  
OSC1/CLKIN  
13  
14  
14  
15  
30  
31  
I
ST/CMOS  
Oscillator crystal input/external clock source input.  
OSC2/CLKOUT  
O
Oscillator crystal output. Connects to crystal or resonator in  
crystal oscillator mode. In RC mode, OSC2 pin outputs  
CLKOUT which has 1/4 the frequency of OSC1, and  
denotes the instruction cycle rate.  
MCLR/VPP  
1
2
18  
I/P  
ST  
Master clear (reset) input or programming voltage input.  
This pin is an active low reset to the device.  
PORTA is a bi-directional I/O port.  
RA0 can also be analog input0  
RA1 can also be analog input1  
RA2 can also be analog input2  
RA0/AN0  
2
3
4
5
3
4
5
6
19  
20  
21  
22  
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
TTL  
RA1/AN1  
RA2/AN2  
RA3/AN3/VREF  
RA3 can also be analog input3 or analog reference  
voltage  
RA4/T0CKI  
6
7
7
8
23  
24  
I/O  
I/O  
ST  
RA4 can also be the clock input to the Timer0 timer/  
counter. Output is open drain type.  
RA5/SS/AN4  
TTL  
RA5 can also be analog input4 or the slave select for  
the synchronous serial port.  
PORTB is a bi-directional I/O port. PORTB can be software  
programmed for internal weak pull-up on all inputs.  
(1)  
RB0/INT  
RB1  
33  
34  
35  
36  
37  
38  
39  
40  
36  
37  
38  
39  
41  
42  
43  
44  
8
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL/ST  
TTL  
RB0 can also be the external interrupt pin.  
9
RB2  
10  
11  
14  
15  
16  
17  
TTL  
RB3  
TTL  
RB4  
TTL  
Interrupt on change pin.  
RB5  
TTL  
Interrupt on change pin.  
(2)  
RB6  
TTL/ST  
TTL/ST  
Interrupt on change pin. Serial programming clock.  
Interrupt on change pin. Serial programming data.  
(2)  
RB7  
Legend: I = input  
O = output  
— = Not used  
I/O = input/output  
TTL = TTL input  
P = power  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel  
Slave Port mode (for interfacing to a microprocessor bus).  
4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.  
1997 Microchip Technology Inc.  
DS30390E-page 15  
PIC16C7X  
TABLE 3-3:  
PIC16C74/74A/77 PINOUT DESCRIPTION (Cont.d)  
DIP  
Pin#  
PLCC  
Pin#  
QFP I/O/P  
Pin# Type  
Buffer  
Type  
Pin Name  
Description  
PORTC is a bi-directional I/O port.  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
15  
16  
17  
18  
23  
24  
25  
26  
16  
18  
19  
20  
25  
26  
27  
29  
32  
35  
36  
37  
42  
43  
44  
1
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
RC0 can also be the Timer1 oscillator output or a  
Timer1 clock input.  
RC1 can also be the Timer1 oscillator input or  
Capture2 input/Compare2 output/PWM2 output.  
RC2 can also be the Capture1 input/Compare1 output/  
PWM1 output.  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
RC3 can also be the synchronous serial clock input/  
2
output for both SPI and I C modes.  
RC4 can also be the SPI Data In (SPI mode) or  
2
data I/O (I C mode).  
RC5 can also be the SPI Data Out  
(SPI mode).  
RC6/TX/CK  
RC6 can also be the USART Asynchronous Transmit or  
Synchronous Clock.  
RC7/RX/DT  
RC7 can also be the USART Asynchronous Receive or  
Synchronous Data.  
PORTD is a bi-directional I/O port or parallel slave port  
when interfacing to a microprocessor bus.  
(3)  
RD0/PSP0  
RD1/PSP1  
RD2/PSP2  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
19  
20  
21  
22  
27  
28  
29  
30  
21  
22  
23  
24  
30  
31  
32  
33  
38  
39  
40  
41  
2
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
3
4
5
PORTE is a bi-directional I/O port.  
(3)  
(3)  
(3)  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
8
9
9
25  
26  
27  
I/O  
I/O  
I/O  
ST/TTL  
ST/TTL  
ST/TTL  
RE0 can also be read control for the parallel slave port,  
or analog input5.  
10  
11  
RE1 can also be write control for the parallel slave port,  
or analog input6.  
10  
RE2 can also be select control for the parallel slave  
port, or analog input7.  
VSS  
VDD  
NC  
12,31  
11,32  
13,34  
12,35  
6,29  
7,28  
P
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
1,17,28, 12,13,  
40 33,34  
These pins are not internally connected. These pins should  
be left unconnected.  
Legend: I = input  
O = output  
— = Not used  
I/O = input/output  
TTL = TTL input  
P = power  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel  
Slave Port mode (for interfacing to a microprocessor bus).  
4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.  
DS30390E-page 16  
1997 Microchip Technology Inc.  
PIC16C7X  
3.1  
Clocking Scheme/Instruction Cycle  
3.2  
Instruction Flow/Pipelining  
The clock input (from OSC1) is internally divided by  
four to generate four non-overlapping quadrature  
clocks namely Q1, Q2, Q3 and Q4. Internally, the pro-  
gram counter (PC) is incremented every Q1, the  
instruction is fetched from the program memory and  
latched into the instruction register in Q4. The instruc-  
tion is decoded and executed during the following Q1  
through Q4. The clocks and instruction execution flow  
is shown in Figure 3-4.  
An “Instruction Cycle” consists of four Q cycles (Q1,  
Q2, Q3 and Q4). The instruction fetch and execute are  
pipelined such that fetch takes one instruction cycle  
while decode and execute takes another instruction  
cycle. However, due to the pipelining, each instruction  
effectively executes in one cycle. If an instruction  
causes the program counter to change (e.g. GOTO)  
then two cycles are required to complete the instruction  
(Example 3-1).  
A fetch cycle begins with the program counter (PC)  
incrementing in Q1.  
In the execution cycle, the fetched instruction is latched  
into the “Instruction Register" (IR) in cycle Q1. This  
instruction is then decoded and executed during the  
Q2, Q3, and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
FIGURE 3-4: CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Internal  
phase  
clock  
Q4  
PC  
PC  
PC+1  
PC+2  
OSC2/CLKOUT  
(RC mode)  
Fetch INST (PC)  
Execute INST (PC-1)  
Fetch INST (PC+1)  
Execute INST (PC)  
Fetch INST (PC+2)  
Execute INST (PC+1)  
EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW  
Tcy0  
Tcy1  
Tcy2  
Tcy3  
Tcy4  
Tcy5  
1. MOVLW 55h  
Fetch 1  
Execute 1  
Fetch 2  
2. MOVWF PORTB  
3. CALL SUB_1  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3 (Forced NOP)  
Flush  
5. Instruction @ address SUB_1  
Fetch SUB_1 Execute SUB_1  
All instructions are single cycle, except for any program branches. These take two cycles since the fetch  
instruction is “flushed” from the pipeline while the new instruction is being fetched and then executed.  
1997 Microchip Technology Inc.  
DS30390E-page 17  
 
 
PIC16C7X  
NOTES:  
DS30390E-page 18  
1997 Microchip Technology Inc.  
PIC16C7X  
FIGURE 4-2: PIC16C73/73A/74/74A  
4.0  
MEMORY ORGANIZATION  
Applicable Devices  
PROGRAM MEMORY MAP  
AND STACK  
72 73 73A 74 74A 76 77  
4.1  
Program Memory Organization  
PC<12:0>  
CALL, RETURN  
RETFIE, RETLW  
The PIC16C7X family has a 13-bit program counter  
capable of addressing an 8K x 14 program memory  
space. The amount of program memory available to  
each device is listed below:  
13  
Stack Level 1  
Program  
Memory  
Device  
Address Range  
Stack Level 8  
Reset Vector  
PIC16C72  
PIC16C73  
PIC16C73A  
PIC16C74  
PIC16C74A  
PIC16C76  
PIC16C77  
2K x 14  
4K x 14  
4K x 14  
4K x 14  
4K x 14  
8K x 14  
8K x 14  
0000h-07FFh  
0000h-0FFFh  
0000h-0FFFh  
0000h-0FFFh  
0000h-0FFFh  
0000h-1FFFh  
0000h-1FFFh  
0000h  
Interrupt Vector  
0004h  
0005h  
On-chip Program  
Memory (Page 0)  
07FFh  
0800h  
For those devices with less than 8K program memory,  
accessing a location above the physically implemented  
address will cause a wraparound.  
On-chip Program  
Memory (Page 1)  
The reset vector is at 0000h and the interrupt vector is  
at 0004h.  
0FFFh  
1000h  
FIGURE 4-1: PIC16C72 PROGRAM  
MEMORY MAP AND STACK  
1FFFh  
PC<12:0>  
CALL, RETURN  
RETFIE, RETLW  
13  
Stack Level 1  
Stack Level 8  
Reset Vector  
0000h  
Interrupt Vector  
0004h  
0005h  
On-chip Program  
Memory  
07FFh  
0800h  
1FFFh  
1997 Microchip Technology Inc.  
DS30390E-page 19  
PIC16C7X  
FIGURE 4-3: PIC16C76/77 PROGRAM  
MEMORY MAP AND STACK  
4.2  
Data Memory Organization  
Applicable Devices  
72 73 73A 74 74A 76 77  
PC<12:0>  
The data memory is partitioned into multiple banks  
which contain the General Purpose Registers and the  
Special Function Registers. Bits RP1 and RP0 are the  
bank select bits.  
CALL, RETURN  
RETFIE, RETLW  
13  
Stack Level 1  
Stack Level 2  
RP1:RP0 (STATUS<6:5>)  
= 00 Bank0  
= 01 Bank1  
= 10 Bank2  
= 11 Bank3  
Stack Level 8  
Each bank extends up to 7Fh (128 bytes). The lower  
locations of each bank are reserved for the Special  
Function Registers. Above the Special Function Regis-  
ters are General Purpose Registers, implemented as  
static RAM. All implemented banks contain special  
function registers. Some “high use” special function  
registers from one bank may be mirrored in another  
bank for code reduction and quicker access.  
Reset Vector  
0000h  
Interrupt Vector  
0004h  
0005h  
On-Chip  
On-Chip  
Page 0  
4.2.1  
GENERAL PURPOSE REGISTER FILE  
07FFh  
0800h  
The register file can be accessed either directly, or indi-  
rectly through the File Select Register FSR  
(Section 4.5).  
Page 1  
0FFFh  
1000h  
On-Chip  
On-Chip  
Page 2  
Page 3  
17FFh  
1800h  
1FFFh  
DS30390E-page 20  
1997 Microchip Technology Inc.  
PIC16C7X  
FIGURE 4-4: PIC16C72 REGISTER FILE  
MAP  
FIGURE 4-5: PIC16C73/73A/74/74A  
REGISTER FILE MAP  
File  
File  
File  
File  
Address  
Address  
Address  
Address  
(1)  
(1)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
INDF  
INDF  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
(1)  
(1)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
INDF  
INDF  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
TMR0  
PCL  
OPTION  
PCL  
TMR0  
PCL  
OPTION  
PCL  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
TRISC  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
TRISC  
(2)  
(2)  
08h PORTD  
09h PORTE  
TRISD  
(2)  
(2)  
TRISE  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
PCLATH  
PCLATH  
INTCON  
PIE1  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
INTCON  
PIR1  
PIR2  
PIE2  
TMR1L  
TMR1H  
T1CON  
TMR2  
PCON  
TMR1L  
TMR1H  
T1CON  
TMR2  
PCON  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
PR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
PR2  
SSPADD  
SSPSTAT  
SSPADD  
SSPSTAT  
17h CCP1CON  
17h CCP1CON  
18h  
19h  
1Ah  
1Bh  
1Ch  
RCSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
TXSTA  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
SPBRG  
1Dh CCP2CON  
1Eh  
1Fh  
20h  
ADRES  
1Eh  
1Fh  
20h  
ADRES  
ADCON0  
ADCON1  
ADCON0  
ADCON1  
A0h  
General  
Purpose  
Register  
General  
Purpose  
Register  
General  
Purpose  
Register  
General  
Purpose  
Register  
BFh  
C0h  
FFh  
7Fh  
Bank 0  
Bank 1  
FFh  
7Fh  
Bank 0  
Bank 1  
Unimplementeddatamemorylocations, readas  
'0'.  
Note 1: Not a physical register.  
Unimplementeddatamemorylocations, readas  
'0'.  
Note 1: Not a physical register.  
2: These registers are not physically imple-  
mented on the PIC16C73/73A, read as '0'.  
1997 Microchip Technology Inc.  
DS30390E-page 21  
 
PIC16C7X  
FIGURE 4-6: PIC16C76/77 REGISTER FILE MAP  
File  
Address  
(*)  
(*)  
(*)  
(*)  
Indirect addr.  
Indirect addr.  
OPTION  
PCL  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
Indirect addr.  
TMR0  
Indirect addr.  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
TMR0  
PCL  
OPTION  
PCL  
PCL  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
TRISC  
TRISB  
PORTB  
TRISD (1)  
TRISE (1)  
PORTD (1)  
PORTE (1)  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PCLATH  
INTCON  
PCLATH  
INTCON  
PIE1  
PIR2  
TMR1L  
PIE2  
PCON  
TMR1H  
T1CON  
TMR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
PR2  
SSPADD  
SSPSTAT  
General  
Purpose  
Register  
General  
Purpose  
Register  
RCSTA  
TXREG  
TXSTA  
16 Bytes  
16 Bytes  
SPBRG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRES  
ADCON0  
ADCON1  
1A0h  
A0h  
General  
Purpose  
Register  
General  
Purpose  
Register  
General  
Purpose  
Register  
General  
Purpose  
Register  
80 Bytes  
80 Bytes  
80 Bytes  
1EFh  
1F0h  
96 Bytes  
EFh  
F0h  
16Fh  
170h  
accesses  
70h - 7Fh  
accesses  
70h-7Fh  
accesses  
70h-7Fh  
17Fh  
1FFh  
7Fh  
FFh  
Bank 3  
Bank 2  
Bank 1  
Bank 0  
Unimplemented data memory locations, read as '0'.  
* Not a physical register.  
Note 1: PORTD, PORTE, TRISD, and TRISE are unimplemented on the PIC16C76, read as '0'.  
Note: The upper 16 bytes of data memory in banks 1, 2, and 3 are mapped in Bank 0. This may require  
relocation of data memory usage in the user application code if upgrading to the PIC16C76/77.  
DS30390E-page 22  
1997 Microchip Technology Inc.  
PIC16C7X  
4.2.2  
SPECIAL FUNCTION REGISTERS  
The special function registers can be classified into two  
sets (core and peripheral). Those registers associated  
with the “core” functions are described in this section,  
and those related to the operation of the peripheral fea-  
tures are described in the section of that peripheral fea-  
ture.  
The Special Function Registers are registers used by  
the CPU and Peripheral Modules for controlling the  
desired operation of the device. These registers are  
implemented as static RAM.  
TABLE 4-1:  
PIC16C72 SPECIAL FUNCTION REGISTER SUMMARY  
Value on: Value on all  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other resets  
(3)  
Bank 0  
00h(1)  
01h  
INDF  
TMR0  
PCL  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 module’s register  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
--0x 0000 --0u 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
02h(1)  
03h(1)  
04h(1)  
05h  
Program Counter's (PC) Least Significant Byte  
STATUS  
FSR  
IRP(4)  
Indirect data memory address pointer  
PORTA Data Latch when written: PORTA pins when read  
RP1(4)  
RP0  
TO  
PD  
Z
DC  
C
PORTA  
PORTB  
PORTC  
06h  
PORTB Data Latch when written: PORTB pins when read  
PORTC Data Latch when written: PORTC pins when read  
Unimplemented  
07h  
08h  
09h  
Unimplemented  
0Ah(1,2) PCLATH  
GIE  
T0IE  
Write Buffer for the upper 5 bits of the Program Counter  
---0 0000 ---0 0000  
0000 000x 0000 000u  
0Bh(1)  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
INTCON  
PIR1  
PEIE  
ADIF  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
SSPIF  
CCP1IF  
TMR2IF  
TMR1IF -0-- 0000 -0-- 0000  
Unimplemented  
TMR1L  
TMR1H  
T1CON  
TMR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1 register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
Timer2 module’s register  
0000 0000 0000 0000  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL SSPOV SSPEN CKP SSPM3  
xxxx xxxx uuuu uuuu  
SSPM0 0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
SSPM2  
SSPM1  
Capture/Compare/PWM Register (LSB)  
Capture/Compare/PWM Register (MSB)  
xxxx xxxx uuuu uuuu  
CCP1X  
CCP1Y  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
ADRES  
ADCON0  
A/D Result Register  
ADCS1 ADCS0  
xxxx xxxx uuuu uuuu  
0000 00-0 0000 00-0  
CHS2  
CHS1  
CHS0  
GO/DONE  
ADON  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented read as '0'.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: These registers can be addressed from either bank.  
2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose  
contents are transferred to the upper byte of the program counter.  
3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
4: The IRP and RP1 bits are reserved on the PIC16C72, always maintain these bits clear.  
1997 Microchip Technology Inc.  
DS30390E-page 23  
PIC16C7X  
TABLE 4-1:  
Address Name  
Bank 1  
PIC16C72 SPECIAL FUNCTION REGISTER SUMMARY (Cont.d)  
Value on: Value on all  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other resets  
(3)  
80h(1)  
81h  
INDF  
OPTION  
PCL  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
0000 0000 0000 0000  
1111 1111 1111 1111  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
--11 1111 --11 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
RBPU  
Program Counter's (PC) Least Significant Byte  
IRP(4) RP1(4)  
RP0 TO  
Indirect data memory address pointer  
PORTA Data Direction Register  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
82h(1)  
83h(1)  
84h(1)  
85h  
STATUS  
FSR  
PD  
Z
DC  
C
TRISA  
TRISB  
TRISC  
86h  
PORTB Data Direction Register  
PORTC Data Direction Register  
Unimplemented  
87h  
88h  
89h  
Unimplemented  
8Ah(1,2) PCLATH  
GIE  
T0IE  
Write Buffer for the upper 5 bits of the PC  
---0 0000 ---0 0000  
0000 000x 0000 000u  
8Bh(1)  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
INTCON  
PEIE  
ADIE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
PIE1  
SSPIE  
CCP1IE  
TMR2IE  
TMR1IE -0-- 0000 -0-- 0000  
Unimplemented  
PCON  
POR  
BOR  
---- --qq ---- --uu  
Unimplemented  
Unimplemented  
Unimplemented  
PR2  
Timer2 Period Register  
Synchronous Serial Port (I2C mode) Address Register  
1111 1111 1111 1111  
0000 0000 0000 0000  
--00 0000 --00 0000  
SSPADD  
SSPSTAT  
D/A  
P
S
R/W  
UA  
BF  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
ADCON1  
PCFG2  
PCFG1  
PCFG0  
---- -000 ---- -000  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented read as '0'.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: These registers can be addressed from either bank.  
2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose  
contents are transferred to the upper byte of the program counter.  
3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
4: The IRP and RP1 bits are reserved on the PIC16C72, always maintain these bits clear.  
DS30390E-page 24  
1997 Microchip Technology Inc.  
PIC16C7X  
TABLE 4-2:  
PIC16C73/73A/74/74A SPECIAL FUNCTION REGISTER SUMMARY  
Value on: Value on all  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other resets  
(2)  
Bank 0  
00h(4)  
01h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 module’s register  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
--0x 0000 --0u 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
---- -xxx ---- -uuu  
---0 0000 ---0 0000  
0000 000x 0000 000u  
TMR0  
PCL  
02h(4)  
03h(4)  
04h(4)  
05h  
Program Counter's (PC) Least Significant Byte  
STATUS  
FSR  
IRP(7)  
Indirect data memory address pointer  
PORTA Data Latch when written: PORTA pins when read  
RP1(7)  
RP0  
TO  
PD  
Z
DC  
C
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
06h  
PORTB Data Latch when written: PORTB pins when read  
PORTC Data Latch when written: PORTC pins when read  
PORTD Data Latch when written: PORTD pins when read  
07h  
08h(5)  
09h(5)  
RE2  
RE1  
RE0  
0Ah(1,4) PCLATH  
Write Buffer for the upper 5 bits of the Program Counter  
0Bh(4)  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
INTCON  
PIR1  
GIE  
PEIE  
ADIF  
T0IE  
RCIF  
INTE  
TXIF  
RBIE  
SSPIF  
T0IF  
CCP1IF  
INTF  
TMR2IF  
RBIF  
PSPIF(3)  
TMR1IF 0000 0000 0000 0000  
CCP2IF ---- ---0 ---- ---0  
xxxx xxxx uuuu uuuu  
PIR2  
TMR1L  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1 register  
TMR1H  
T1CON  
TMR2  
xxxx xxxx uuuu uuuu  
T1CKPS1  
T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
Timer2 module’s register  
0000 0000 0000 0000  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL SSPOV SSPEN CKP SSPM3  
xxxx xxxx uuuu uuuu  
SSPM0 0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
SSPM2  
SSPM1  
Capture/Compare/PWM Register1 (LSB)  
Capture/Compare/PWM Register1 (MSB)  
xxxx xxxx uuuu uuuu  
CCP1X  
SREN  
CCP1Y  
CREN  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
SPEN  
RX9  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRES  
ADCON0  
USART Transmit Data Register  
USART Receive Data Register  
Capture/Compare/PWM Register2 (LSB)  
Capture/Compare/PWM Register2 (MSB)  
CCP2X  
CCP2Y  
CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000 --00 0000  
A/D Result Register  
ADCS1 ADCS0  
xxxx xxxx uuuu uuuu  
CHS2  
CHS1  
CHS0  
GO/DONE  
ADON  
0000 00-0 0000 00-0  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented read as '0'.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose con-  
tents are transferred to the upper byte of the program counter.  
2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
3: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.  
4: These registers can be addressed from either bank.  
5: PORTD and PORTE are not physically implemented on the PIC16C73/73A, read as ‘0’.  
6: Brown-out Reset is not implemented on the PIC16C73 or the PIC16C74, read as '0'.  
7: The IRP and RP1 bits are reserved on the PIC16C73/73A/74/74A, always maintain these bits clear.  
1997 Microchip Technology Inc.  
DS30390E-page 25  
PIC16C7X  
TABLE 4-2:  
Address Name  
Bank 1  
PIC16C73/73A/74/74A SPECIAL FUNCTION REGISTER SUMMARY (Cont.d)  
Value on: Value on all  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other resets  
(2)  
80h(4)  
81h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
0000 0000 0000 0000  
1111 1111 1111 1111  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
--11 1111 --11 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
0000 -111 0000 -111  
---0 0000 ---0 0000  
0000 000x 0000 000u  
OPTION  
PCL  
RBPU  
Program Counter's (PC) Least Significant Byte  
IRP(7) RP1(7)  
RP0 TO  
Indirect data memory address pointer  
PORTA Data Direction Register  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
82h(4)  
83h(4)  
84h(4)  
85h  
STATUS  
FSR  
PD  
Z
DC  
C
TRISA  
TRISB  
TRISC  
TRISD  
TRISE  
86h  
PORTB Data Direction Register  
PORTC Data Direction Register  
PORTD Data Direction Register  
87h  
88h(5)  
89h(5)  
IBF  
OBF  
IBOV  
PSPMODE  
PORTE Data Direction Bits  
8Ah(1,4) PCLATH  
Write Buffer for the upper 5 bits of the Program Counter  
8Bh(4)  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
INTCON  
PIE1  
PIE2  
PCON  
GIE  
PEIE  
ADIE  
T0IE  
RCIE  
INTE  
TXIE  
RBIE  
SSPIE  
T0IF  
CCP1IE  
INTF  
TMR2IE  
RBIF  
PSPIE(3)  
TMR1IE 0000 0000 0000 0000  
CCP2IE ---- ---0 ---- ---0  
POR  
BOR(6)  
---- --qq ---- --uu  
Unimplemented  
Unimplemented  
Unimplemented  
PR2  
SSPADD  
SSPSTAT  
Timer2 Period Register  
1111 1111 1111 1111  
0000 0000 0000 0000  
--00 0000 --00 0000  
Synchronous Serial Port (I2C mode) Address Register  
D/A  
P
S
R/W  
UA  
BF  
Unimplemented  
Unimplemented  
Unimplemented  
CSRC  
TXSTA  
SPBRG  
TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
Baud Rate Generator Register  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
ADCON1  
PCFG2  
PCFG1  
PCFG0  
---- -000 ---- -000  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented read as '0'.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose con-  
tents are transferred to the upper byte of the program counter.  
2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
3: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.  
4: These registers can be addressed from either bank.  
5: PORTD and PORTE are not physically implemented on the PIC16C73/73A, read as ‘0’.  
6: Brown-out Reset is not implemented on the PIC16C73 or the PIC16C74, read as '0'.  
7: The IRP and RP1 bits are reserved on the PIC16C73/73A/74/74A, always maintain these bits clear.  
DS30390E-page 26  
1997 Microchip Technology Inc.  
PIC16C7X  
TABLE 4-3:  
PIC16C76/77 SPECIAL FUNCTION REGISTER SUMMARY  
Value on: Value on all  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other resets  
(2)  
Bank 0  
00h(4)  
01h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 module’s register  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
--0x 0000 --0u 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
---- -xxx ---- -uuu  
---0 0000 ---0 0000  
0000 000x 0000 000u  
TMR0  
02h(4)  
03h(4)  
04h(4)  
05h  
PCL  
Program Counter's (PC) Least Significant Byte  
STATUS  
FSR  
IRP  
Indirect data memory address pointer  
PORTA Data Latch when written: PORTA pins when read  
RP1  
RP0  
TO  
PD  
Z
DC  
C
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
PCLATH  
INTCON  
PIR1  
06h  
PORTB Data Latch when written: PORTB pins when read  
PORTC Data Latch when written: PORTC pins when read  
PORTD Data Latch when written: PORTD pins when read  
07h  
08h(5)  
09h(5)  
0Ah(1,4)  
0Bh(4)  
0Ch  
0Dh  
0Eh  
RE2  
RE1  
RE0  
Write Buffer for the upper 5 bits of the Program Counter  
GIE  
PEIE  
ADIF  
T0IE  
RCIF  
INTE  
TXIF  
RBIE  
SSPIF  
T0IF  
CCP1IF  
INTF  
TMR2IF  
RBIF  
PSPIF(3)  
TMR1IF 0000 0000 0000 0000  
CCP2IF ---- ---0 ---- ---0  
xxxx xxxx uuuu uuuu  
PIR2  
TMR1L  
TMR1H  
T1CON  
TMR2  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1 register  
0Fh  
xxxx xxxx uuuu uuuu  
10h  
T1CKPS1  
T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
11h  
Timer2 module’s register  
0000 0000 0000 0000  
12h  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRES  
ADCON0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
13h  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL SSPOV SSPEN CKP SSPM3  
xxxx xxxx uuuu uuuu  
SSPM0 0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
14h  
SSPM2  
SSPM1  
15h  
Capture/Compare/PWM Register1 (LSB)  
Capture/Compare/PWM Register1 (MSB)  
16h  
xxxx xxxx uuuu uuuu  
17h  
CCP1X  
SREN  
CCP1Y  
CREN  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
18h  
SPEN  
RX9  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
19h  
USART Transmit Data Register  
USART Receive Data Register  
1Ah  
1Bh  
Capture/Compare/PWM Register2 (LSB)  
Capture/Compare/PWM Register2 (MSB)  
1Ch  
1Dh  
1Eh  
CCP2X  
CCP2Y  
CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000 --00 0000  
A/D Result Register  
ADCS1 ADCS0  
xxxx xxxx uuuu uuuu  
1Fh  
CHS2  
CHS1  
CHS0  
GO/DONE  
ADON  
0000 00-0 0000 00-0  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented read as '0'.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose con-  
tents are transferred to the upper byte of the program counter.  
2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
3: Bits PSPIE and PSPIF are reserved on the PIC16C76, always maintain these bits clear.  
4: These registers can be addressed from any bank.  
5: PORTD and PORTE are not physically implemented on the PIC16C76, read as ‘0’.  
1997 Microchip Technology Inc.  
DS30390E-page 27  
PIC16C7X  
TABLE 4-3:  
Address Name  
Bank 1  
PIC16C76/77 SPECIAL FUNCTION REGISTER SUMMARY (Cont.d)  
Value on: Value on all  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other resets  
(2)  
80h(4)  
81h  
INDF  
OPTION  
PCL  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
0000 0000 0000 0000  
1111 1111 1111 1111  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
--11 1111 --11 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
0000 -111 0000 -111  
---0 0000 ---0 0000  
0000 000x 0000 000u  
RBPU  
Program Counter's (PC) Least Significant Byte  
IRP RP1 RP0 TO  
Indirect data memory address pointer  
PORTA Data Direction Register  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
82h(4)  
83h(4)  
84h(4)  
85h  
STATUS  
FSR  
PD  
Z
DC  
C
TRISA  
TRISB  
TRISC  
TRISD  
TRISE  
PCLATH  
INTCON  
PIE1  
PIE2  
PCON  
86h  
PORTB Data Direction Register  
PORTC Data Direction Register  
PORTD Data Direction Register  
87h  
88h(5)  
89h(5)  
8Ah(1,4)  
8Bh(4)  
8Ch  
8Dh  
8Eh  
IBF  
OBF  
IBOV  
PSPMODE  
PORTE Data Direction Bits  
Write Buffer for the upper 5 bits of the Program Counter  
GIE  
PEIE  
ADIE  
T0IE  
RCIE  
INTE  
TXIE  
RBIE  
SSPIE  
T0IF  
CCP1IE  
INTF  
TMR2IE  
RBIF  
PSPIE(3)  
TMR1IE 0000 0000 0000 0000  
CCP2IE ---- ---0 ---- ---0  
POR  
BOR  
---- --qq ---- --uu  
8Fh  
Unimplemented  
90h  
Unimplemented  
91h  
Unimplemented  
92h  
PR2  
Timer2 Period Register  
1111 1111 1111 1111  
0000 0000 0000 0000  
0000 0000 0000 0000  
93h  
SSPADD  
SSPSTAT  
Synchronous Serial Port (I2C mode) Address Register  
94h  
SMP  
CKE  
D/A  
P
S
R/W  
UA  
BF  
95h  
Unimplemented  
Unimplemented  
Unimplemented  
CSRC  
96h  
97h  
98h  
TXSTA  
SPBRG  
TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
99h  
Baud Rate Generator Register  
Unimplemented  
9Ah  
9Bh  
Unimplemented  
9Ch  
9Dh  
9Eh  
Unimplemented  
Unimplemented  
Unimplemented  
9Fh  
ADCON1  
PCFG2  
PCFG1  
PCFG0  
---- -000 ---- -000  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented read as '0'.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose con-  
tents are transferred to the upper byte of the program counter.  
2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
3: Bits PSPIE and PSPIF are reserved on the PIC16C76, always maintain these bits clear.  
4: These registers can be addressed from any bank.  
5: PORTD and PORTE are not physically implemented on the PIC16C76, read as ‘0’.  
DS30390E-page 28  
1997 Microchip Technology Inc.  
PIC16C7X  
TABLE 4-3:  
Address Name  
Bank 2  
PIC16C76/77 SPECIAL FUNCTION REGISTER SUMMARY (Cont.d)  
Value on: Value on all  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other resets  
(2)  
100h(4)  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 module’s register  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
101h  
TMR0  
PCL  
102h(4)  
103h(4)  
Program Counter's (PC) Least Significant Byte  
STATUS  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
104h(4)  
105h  
106h  
107h  
108h  
109h  
FSR  
Indirect data memory address pointer  
Unimplemented  
PORTB  
PORTB Data Latch when written: PORTB pins when read  
xxxx xxxx uuuu uuuu  
Unimplemented  
Unimplemented  
Unimplemented  
10Ah(1,4)  
10Bh(4)  
PCLATH  
Write Buffer for the upper 5 bits of the Program Counter  
INTE RBIE T0IF INTF RBIF  
---0 0000 ---0 0000  
0000 000x 0000 000u  
INTCON  
GIE  
PEIE  
T0IE  
10Ch-  
10Fh  
Unimplemented  
Bank 3  
180h(4)  
181h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
0000 0000 0000 0000  
1111 1111 1111 1111  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
OPTION  
PCL  
RBPU  
Program Counter's (PC) Least Significant Byte  
IRP RP1 RP0 TO  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
182h(4)  
183h(4)  
STATUS  
PD  
Z
DC  
C
184h(4)  
185h  
186h  
187h  
188h  
189h  
FSR  
Indirect data memory address pointer  
Unimplemented  
TRISB  
PORTB Data Direction Register  
Unimplemented  
1111 1111 1111 1111  
Unimplemented  
Unimplemented  
18Ah(1,4)  
18Bh(4)  
Write Buffer for the upper 5 bits of the Program Counter  
INTE RBIE T0IF INTF RBIF  
PCLATH  
---0 0000 ---0 0000  
0000 000x 0000 000u  
INTCON  
GIE  
PEIE  
T0IE  
18Ch-  
18Fh  
Unimplemented  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented read as '0'.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose con-  
tents are transferred to the upper byte of the program counter.  
2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
3: Bits PSPIE and PSPIF are reserved on the PIC16C76, always maintain these bits clear.  
4: These registers can be addressed from any bank.  
5: PORTD and PORTE are not physically implemented on the PIC16C76, read as ‘0’.  
1997 Microchip Technology Inc.  
DS30390E-page 29  
PIC16C7X  
4.2.2.1  
STATUS REGISTER  
For example, CLRF STATUSwill clear the upper-three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
Applicable Devices  
72 73 73A 74 74A 76 77  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register because these instructions do not  
affect the Z, C or DC bits from the STATUS register. For  
other instructions, not affecting any status bits, see the  
"Instruction Set Summary."  
The STATUS register, shown in Figure 4-7, contains the  
arithmetic status of the ALU, the RESET status and the  
bank select bits for data memory.  
The STATUS register can be the destination for any  
instruction, as with any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 1: For those devices that do not use bits IRP  
and RP1 (STATUS<7:6>), maintain these  
bits clear to ensure upward compatibility  
with future products.  
Note 2: The C and DC bits operate as a borrow  
and digit borrow bit, respectively, in sub-  
traction. See the SUBLW and SUBWF  
instructions for examples.  
FIGURE 4-7: STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
R = Readable bit  
W = Writable bit  
bit7  
bit0  
U = Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
IRP: Register Bank Select bit (used for indirect addressing)  
1 = Bank 2, 3 (100h - 1FFh)  
0 = Bank 0, 1 (00h - FFh)  
bit 6-5: RP1:RP0: Register Bank Select bits (used for direct addressing)  
11= Bank 3 (180h - 1FFh)  
10= Bank 2 (100h - 17Fh)  
01= Bank 1 (80h - FFh)  
00= Bank 0 (00h - 7Fh)  
Each bank is 128 bytes  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
TO: Time-out bit  
1 = After power-up, CLRWDTinstruction, or SLEEPinstruction  
0 = A WDT time-out occurred  
PD: Power-down bit  
1 = After power-up or by the CLRWDTinstruction  
0 = By execution of the SLEEPinstruction  
Z: Zero bit  
1 = The result of an arithmetic or logic operation is zero  
0 = The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions) (for borrow the polarity is reversed)  
1 = A carry-out from the 4th low order bit of the result occurred  
0 = No carry-out from the 4th low order bit of the result  
C: Carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions)  
1 = A carry-out from the most significant bit of the result occurred  
0 = No carry-out from the most significant bit of the result occurred  
Note: For borrow the polarity is reversed. A subtraction is executed by adding the two’s complement of the  
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of  
the source register.  
DS30390E-page 30  
1997 Microchip Technology Inc.  
 
PIC16C7X  
4.2.2.2  
OPTION REGISTER  
Applicable Devices  
72 73 73A 74 74A 76 77  
Note: To achieve a 1:1 prescaler assignment for  
the TMR0 register, assign the prescaler to  
the Watchdog Timer.  
The OPTION register is a readable and writable regis-  
ter which contains various control bits to configure the  
TMR0/WDT prescaler, the External INT Interrupt,  
TMR0, and the weak pull-ups on PORTB.  
FIGURE 4-8: OPTION REGISTER (ADDRESS 81h, 181h)  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
RBPU: PORTB Pull-up Enable bit  
1 = PORTB pull-ups are disabled  
0 = PORTB pull-ups are enabled by individual port latch values  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
INTEDG: Interrupt Edge Select bit  
1 = Interrupt on rising edge of RB0/INT pin  
0 = Interrupt on falling edge of RB0/INT pin  
T0CS: TMR0 Clock Source Select bit  
1 = Transition on RA4/T0CKI pin  
0 = Internal instruction cycle clock (CLKOUT)  
T0SE: TMR0 Source Edge Select bit  
1 = Increment on high-to-low transition on RA4/T0CKI pin  
0 = Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1 = Prescaler is assigned to the WDT  
0 = Prescaler is assigned to the Timer0 module  
bit 2-0: PS2:PS0: Prescaler Rate Select bits  
Bit Value  
TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1997 Microchip Technology Inc.  
DS30390E-page 31  
PIC16C7X  
4.2.2.3  
INTCON REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>).  
Applicable Devices  
72 73 73A 74 74A 76 77  
The INTCON Register is a readable and writable regis-  
ter which contains various enable and flag bits for the  
TMR0 register overflow, RB Port change and External  
RB0/INT pin interrupts.  
FIGURE 4-9: INTCON REGISTER  
(ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
RBIE  
R/W-0  
T0IF  
R/W-0  
INTF  
R/W-x  
RBIF  
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
(1)  
bit 7:  
GIE: Global Interrupt Enable bit  
1 = Enables all un-masked interrupts  
0 = Disables all interrupts  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
PEIE: Peripheral Interrupt Enable bit  
1 = Enables all un-masked peripheral interrupts  
0 = Disables all peripheral interrupts  
T0IE: TMR0 Overflow Interrupt Enable bit  
1 = Enables the TMR0 interrupt  
0 = Disables the TMR0 interrupt  
INTE: RB0/INT External Interrupt Enable bit  
1 = Enables the RB0/INT external interrupt  
0 = Disables the RB0/INT external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1 = Enables the RB port change interrupt  
0 = Disables the RB port change interrupt  
T0IF: TMR0 Overflow Interrupt Flag bit  
1 = TMR0 register has overflowed (must be cleared in software)  
0 = TMR0 register did not overflow  
INTF: RB0/INT External Interrupt Flag bit  
1 = The RB0/INT external interrupt occurred (must be cleared in software)  
0 = The RB0/INT external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)  
0 = None of the RB7:RB4 pins have changed state  
Note 1: For the PIC16C73 and PIC16C74, if an interrupt occurs while the GIE bit is being cleared, the GIE bit  
may be unintentionally re-enabled by the RETFIEinstruction in the user’s Interrupt Service Routine.  
Refer to Section 14.5 for a detailed description.  
Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the  
global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to  
enabling an interrupt.  
DS30390E-page 32  
1997 Microchip Technology Inc.  
PIC16C7X  
4.2.2.4  
PIE1 REGISTER  
Applicable Devices  
72 73 73A 74 74A 76 77  
Note: Bit PEIE (INTCON<6>) must be set to  
enable any peripheral interrupt.  
This register contains the individual enable bits for the  
peripheral interrupts.  
FIGURE 4-10: PIE1 REGISTER PIC16C72 (ADDRESS 8Ch)  
U-0  
R/W-0  
ADIE  
U-0  
U-0  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
TMR2IE TMR1IE  
bit0  
R/W-0  
CCP1IE  
R
= Readable bit  
W = Writable bit  
U
bit7  
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
Unimplemented: Read as '0'  
bit 6:  
ADIE: A/D Converter Interrupt Enable bit  
1 = Enables the A/D interrupt  
0 = Disables the A/D interrupt  
bit 5-4: Unimplemented: Read as '0'  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
SSPIE: Synchronous Serial Port Interrupt Enable bit  
1 = Enables the SSP interrupt  
0 = Disables the SSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1 = Enables the CCP1 interrupt  
0 = Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1 = Enables the TMR2 to PR2 match interrupt  
0 = Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1 = Enables the TMR1 overflow interrupt  
0 = Disables the TMR1 overflow interrupt  
1997 Microchip Technology Inc.  
DS30390E-page 33  
PIC16C7X  
FIGURE 4-11: PIE1 REGISTER PIC16C73/73A/74/74A/76/77 (ADDRESS 8Ch)  
R/W-0  
R/W-0  
ADIE  
R/W-0  
RCIE  
R/W-0  
TXIE  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
TMR2IE TMR1IE  
bit0  
R/W-0  
(1)  
PSPIE  
bit7  
CCP1IE  
R
= Readable bit  
W = Writable bit  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
(1)  
bit 7:  
PSPIE : Parallel Slave Port Read/Write Interrupt Enable bit  
1 = Enables the PSP read/write interrupt  
0 = Disables the PSP read/write interrupt  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
ADIE: A/D Converter Interrupt Enable bit  
1 = Enables the A/D interrupt  
0 = Disables the A/D interrupt  
RCIE: USART Receive Interrupt Enable bit  
1 = Enables the USART receive interrupt  
0 = Disables the USART receive interrupt  
TXIE: USART Transmit Interrupt Enable bit  
1 = Enables the USART transmit interrupt  
0 = Disables the USART transmit interrupt  
SSPIE: Synchronous Serial Port Interrupt Enable bit  
1 = Enables the SSP interrupt  
0 = Disables the SSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1 = Enables the CCP1 interrupt  
0 = Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1 = Enables the TMR2 to PR2 match interrupt  
0 = Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1 = Enables the TMR1 overflow interrupt  
0 = Disables the TMR1 overflow interrupt  
Note 1: PIC16C73/73A/76 devices do not have a Parallel Slave Port implemented, this bit location is reserved  
on these devices, always maintain this bit clear.  
DS30390E-page 34  
1997 Microchip Technology Inc.  
PIC16C7X  
4.2.2.5  
PIR1 REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
Applicable Devices  
72 73 73A 74 74A 76 77  
This register contains the individual flag bits for the  
Peripheral interrupts.  
FIGURE 4-12: PIR1 REGISTER PIC16C72 (ADDRESS 0Ch)  
U-0  
R/W-0  
ADIF  
U-0  
U-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
TMR2IF TMR1IF  
bit0  
R/W-0  
CCP1IF  
R
= Readable bit  
W = Writable bit  
U
bit7  
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
Unimplemented: Read as '0'  
ADIF: A/D Converter Interrupt Flag bit  
bit 6:  
1 = An A/D conversion completed (must be cleared in software)  
0 = The A/D conversion is not complete  
bit 5-4: Unimplemented: Read as '0'  
bit 3:  
SSPIF: Synchronous Serial Port Interrupt Flag bit  
1 = The transmission/reception is complete (must be cleared in software)  
0 = Waiting to transmit/receive  
bit 2:  
CCP1IF: CCP1 Interrupt Flag bit  
Capture Mode  
1 = A TMR1 register capture occurred (must be cleared in software)  
0 = No TMR1 register capture occurred  
Compare Mode  
1 = A TMR1 register compare match occurred (must be cleared in software)  
0 = No TMR1 register compare match occurred  
PWM Mode  
Unused in this mode  
bit 1:  
bit 0:  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1 = TMR2 to PR2 match occurred (must be cleared in software)  
0 = No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1 = TMR1 register overflowed (must be cleared in software)  
0 = TMR1 register did not overflow  
Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the  
global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to  
enabling an interrupt.  
1997 Microchip Technology Inc.  
DS30390E-page 35  
PIC16C7X  
FIGURE 4-13: PIR1 REGISTER PIC16C73/73A/74/74A/76/77 (ADDRESS 0Ch)  
R/W-0  
R/W-0  
ADIF  
R-0  
R-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
TMR2IF TMR1IF  
bit0  
R/W-0  
(1)  
PSPIF  
bit7  
RCIF  
TXIF  
CCP1IF  
R
= Readable bit  
W = Writable bit  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
PSPIF(1): Parallel Slave Port Read/Write Interrupt Flag bit  
1 = A read or a write operation has taken place (must be cleared in software)  
0 = No read or write has occurred  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
ADIF: A/D Converter Interrupt Flag bit  
1 = An A/D conversion completed (must be cleared in software)  
0 = The A/D conversion is not complete  
RCIF: USART Receive Interrupt Flag bit  
1 = The USART receive buffer is full (cleared by reading RCREG)  
0 = The USART receive buffer is empty  
TXIF: USART Transmit Interrupt Flag bit  
1 = The USART transmit buffer is empty (cleared by writing to TXREG)  
0 = The USART transmit buffer is full  
SSPIF: Synchronous Serial Port Interrupt Flag bit  
1 = The transmission/reception is complete (must be cleared in software)  
0 = Waiting to transmit/receive  
CCP1IF: CCP1 Interrupt Flag bit  
Capture Mode  
1 = A TMR1 register capture occurred (must be cleared in software)  
0 = No TMR1 register capture occurred  
Compare Mode  
1 = A TMR1 register compare match occurred (must be cleared in software)  
0 = No TMR1 register compare match occurred  
PWM Mode  
Unused in this mode  
bit 1:  
bit 0:  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1 = TMR2 to PR2 match occurred (must be cleared in software)  
0 = No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1 = TMR1 register overflowed (must be cleared in software)  
0 = TMR1 register did not overflow  
Note 1: PIC16C73/73A/76 devices do not have a Parallel Slave Port implemented, this bit location is reserved  
on these devices, always maintain this bit clear.  
Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the  
global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to  
enabling an interrupt.  
DS30390E-page 36  
1997 Microchip Technology Inc.  
PIC16C7X  
4.2.2.6  
PIE2 REGISTER  
Applicable Devices  
72 73 73A 74 74A 76 77  
This register contains the individual enable bit for the  
CCP2 peripheral interrupt.  
FIGURE 4-14: PIE2 REGISTER (ADDRESS 8Dh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CCP2IE  
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7-1: Unimplemented: Read as '0'  
bit 0: CCP2IE: CCP2 Interrupt Enable bit  
1 = Enables the CCP2 interrupt  
0 = Disables the CCP2 interrupt  
1997 Microchip Technology Inc.  
DS30390E-page 37  
PIC16C7X  
.
4.2.2.7  
PIR2 REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
Applicable Devices  
72 73 73A 74 74A 76 77  
This register contains the CCP2 interrupt flag bit.  
FIGURE 4-15: PIR2 REGISTER (ADDRESS 0Dh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CCP2IF  
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7-1: Unimplemented: Read as '0'  
bit 0:  
CCP2IF: CCP2 Interrupt Flag bit  
Capture Mode  
1 = A TMR1 register capture occurred (must be cleared in software)  
0 = No TMR1 register capture occurred  
Compare Mode  
1 = A TMR1 register compare match occurred (must be cleared in software)  
0 = No TMR1 register compare match occurred  
PWM Mode  
Unused  
Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the  
global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to  
enabling an interrupt.  
DS30390E-page 38  
1997 Microchip Technology Inc.  
PIC16C7X  
4.2.2.8  
PCON REGISTER  
Note: BOR is unknown on Power-on Reset. It  
must then be set by the user and checked  
on subsequent resets to see if BOR is  
clear, indicating a brown-out has occurred.  
The BOR status bit is a don't care and is  
not necessarily predictable if the brown-out  
circuit is disabled (by clearing the BODEN  
bit in the Configuration word).  
Applicable Devices  
72 73 73A 74 74A 76 77  
The Power Control (PCON) register contains a flag bit  
to allow differentiation between a Power-on Reset  
(POR) to an external MCLR Reset or WDT Reset.  
Those devices with brown-out detection circuitry con-  
tain an additional bit to differentiate a Brown-out Reset  
condition from a Power-on Reset condition.  
FIGURE 4-16: PCON REGISTER (ADDRESS 8Eh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
POR  
R/W-q  
(1)  
BOR  
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7-2: Unimplemented: Read as '0'  
bit 1:  
POR: Power-on Reset Status bit  
1 = No Power-on Reset occurred  
0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0:  
BOR(1): Brown-out Reset Status bit  
1 = No Brown-out Reset occurred  
0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Note 1: Brown-out Reset is not implemented on the PIC16C73/74.  
1997 Microchip Technology Inc.  
DS30390E-page 39  
PIC16C7X  
4.3  
PCL and PCLATH  
Applicable Devices  
72 73 73A 74 74A 76 77  
Note 1: There are no status bits to indicate stack  
overflow or stack underflow conditions.  
Note 2: There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the  
CALL, RETURN, RETLW, and RETFIE  
instructions, or the vectoring to an inter-  
rupt address.  
The program counter (PC) is 13-bits wide.The low byte  
comes from the PCL register, which is a readable and  
writable register. The upper bits (PC<12:8>) are not  
readable, but are indirectly writable through the  
PCLATH register. On any reset, the upper bits of the  
PC will be cleared. Figure 4-17 shows the two situa-  
tions for the loading of the PC. The upper example in  
the figure shows how the PC is loaded on a write to  
PCL (PCLATH<4:0> PCH). The lower example in  
the figure shows how the PC is loaded during a CALL  
or GOTOinstruction (PCLATH<4:3> PCH).  
4.4  
Program Memory Paging  
Applicable Devices  
72 73 73A 74 74A 76 77  
PIC16C7X devices are capable of addressing a contin-  
uous 8K word block of program memory.TheCALLand  
GOTO instructions provide only 11 bits of address to  
allow branching within any 2K program memory page.  
When doing a CALLor GOTOinstruction the upper 2 bits  
of the address are provided by PCLATH<4:3>. When  
doing a CALLor GOTOinstruction, the user must ensure  
that the page select bits are programmed so that the  
desired program memory page is addressed. If a return  
from a CALL instruction (or interrupt) is executed, the  
entire 13-bit PC is pushed onto the stack. Therefore,  
manipulation of the PCLATH<4:3> bits are not required  
for the return instructions (which POPs the address  
from the stack).  
FIGURE 4-17: LOADING OF PC IN  
DIFFERENT SITUATIONS  
PCH  
PCL  
12  
8
7
0
Instruction with  
PCL as  
Destination  
PC  
8
PCLATH<4:0>  
PCLATH  
5
ALU  
PCH  
12 11 10  
PCL  
Note: PIC16C7X devices with 4K or less of pro-  
gram memory ignore paging bit  
PCLATH<4>.The use of PCLATH<4> as a  
general purpose read/write bit is not rec-  
ommended since this may affect upward  
compatibility with future products.  
8
7
0
GOTO, CALL  
PC  
PCLATH<4:3>  
PCLATH  
11  
2
Opcode <10:0>  
4.3.1  
COMPUTED GOTO  
A computed GOTO is accomplished by adding an off-  
set to the program counter (ADDWF PCL). When doing  
a table read using a computed GOTO method, care  
should be exercised if the table location crosses a PCL  
memory boundary (each 256 byte block). Refer to the  
application note “Implementing a Table Read" (AN556).  
4.3.2  
STACK  
The PIC16CXX family has an 8 level deep x 13-bit wide  
hardware stack. The stack space is not part of either  
program or data space and the stack pointer is not  
readable or writable. The PC is PUSHed onto the stack  
when a CALL instruction is executed or an interrupt  
causes a branch. The stack is POPed in the event of a  
RETURN, RETLW or a RETFIE instruction execution.  
PCLATH is not affected by a PUSH or POP operation.  
The stack operates as a circular buffer.This means that  
after the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
DS30390E-page 40  
1997 Microchip Technology Inc.  
 
PIC16C7X  
Example 4-1 shows the calling of a subroutine in  
page 1 of the program memory.This example assumes  
that PCLATH is saved and restored by the interrupt ser-  
vice routine (if interrupts are used).  
4.5  
Indirect Addressing, INDF and FSR  
Registers  
Applicable Devices  
72 73 73A 74 74A 76 77  
The INDF register is not a physical register. Addressing  
the INDF register will cause indirect addressing.  
EXAMPLE 4-1: CALL OF A SUBROUTINE IN  
PAGE 1 FROM PAGE 0  
ORG 0x500  
Indirect addressing is possible by using the INDF reg-  
ister. Any instruction using the INDF register actually  
accesses the register pointed to by the File Select Reg-  
ister, FSR. Reading the INDF register itself indirectly  
(FSR = '0') will read 00h. Writing to the INDF register  
indirectly results in a no-operation (although status bits  
may be affected). An effective 9-bit address is obtained  
by concatenating the 8-bit FSR register and the IRP bit  
(STATUS<7>), as shown in Figure 4-18.  
BSF  
BCF  
PCLATH,3 ;Select page 1 (800h-FFFh)  
PCLATH,4 ;Only on >4K devices  
CALL  
SUB1_P1  
;Call subroutine in  
;page 1 (800h-FFFh)  
:
:
:
ORG 0x900  
SUB1_P1:  
;called subroutine  
;page 1 (800h-FFFh)  
:
:
A simple program to clear RAM locations 20h-2Fh  
using indirect addressing is shown in Example 4-2.  
RETURN  
;return to Call subroutine  
;in page 0 (000h-7FFh)  
EXAMPLE 4-2: INDIRECT ADDRESSING  
movlw 0x20  
movwf FSR  
;initialize pointer  
;to RAM  
NEXT  
clrf  
incf  
INDF  
;clear INDF register  
FSR,F ;inc pointer  
btfss FSR,4 ;all done?  
goto  
NEXT  
;no clear next  
CONTINUE  
:
;yes continue  
FIGURE 4-18: DIRECT/INDIRECT ADDRESSING  
Direct Addressing  
Indirect Addressing  
from opcode  
7
RP1:RP0  
6
0
0
IRP  
FSR register  
bank select  
location select  
bank select  
location select  
00  
01  
80h  
10  
100h  
11  
00h  
180h  
Data  
Memory  
7Fh  
FFh  
17Fh  
1FFh  
Bank 0  
Bank 1 Bank 2  
Bank 3  
For register file map detail see Figure 4-4, and Figure 4-5.  
1997 Microchip Technology Inc.  
DS30390E-page 41  
 
 
 
PIC16C7X  
NOTES:  
DS30390E-page 42  
1997 Microchip Technology Inc.  
PIC16C7X  
FIGURE 5-1: BLOCK DIAGRAM OF  
5.0  
I/O PORTS  
Applicable Devices  
RA3:RA0 AND RA5 PINS  
72 73 73A 74 74A 76 77  
Data  
bus  
Some pins for these I/O ports are multiplexed with an  
alternate function for the peripheral features on the  
device. In general, when a peripheral is enabled, that  
pin may not be used as a general purpose I/O pin.  
D
Q
VDD  
WR  
Port  
Q
Data Latch  
CK  
P
5.1  
PORTA and TRISA Registers  
Applicable Devices  
I/O pin(1)  
N
D
Q
72 73 73A 74 74A 76 77  
WR  
TRIS  
PORTA is a 6-bit latch.  
VSS  
Analog  
Q
CK  
The RA4/T0CKI pin is a Schmitt Trigger input and an  
open drain output. All other RA port pins have TTL input  
levels and full CMOS output drivers. All pins have data  
direction bits (TRIS registers) which can configure  
these pins as output or input.  
input  
mode  
TRIS Latch  
TTL  
RD TRIS  
input  
buffer  
Setting a TRISA register bit puts the corresponding out-  
put driver in a hi-impedance mode. Clearing a bit in the  
TRISA register puts the contents of the output latch on  
the selected pin(s).  
Q
D
EN  
Reading the PORTA register reads the status of the  
pins whereas writing to it will write to the port latch. All  
write operations are read-modify-write operations.  
Therefore a write to a port implies that the port pins are  
read, this value is modified, and then written to the port  
data latch.  
RD PORT  
To A/D Converter  
Pin RA4 is multiplexed with the Timer0 module clock  
input to become the RA4/T0CKI pin.  
Note 1: I/O pins have protection diodes to VDD and  
VSS.  
Other PORTA pins are multiplexed with analog inputs  
and analog VREF input. The operation of each pin is  
selected by clearing/setting the control bits in the  
ADCON1 register (A/D Control Register1).  
FIGURE 5-2: BLOCK DIAGRAM OF RA4/  
T0CKI PIN  
Note: On a Power-on Reset, these pins are con-  
Data  
bus  
figured as analog inputs and read as '0'.  
D
Q
Q
WR  
PORT  
The TRISA register controls the direction of the RA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
CK  
I/O pin(1)  
N
Data Latch  
D
Q
VSS  
WR  
TRIS  
EXAMPLE 5-1: INITIALIZING PORTA  
Schmitt  
Trigger  
input  
Q
CK  
BCF  
BCF  
CLRF  
STATUS, RP0  
STATUS, RP1 ; PIC16C76/77 only  
PORTA  
;
TRIS Latch  
buffer  
; Initialize PORTA by  
; clearing output  
; data latches  
RD TRIS  
BSF  
STATUS, RP0 ; Select Bank 1  
MOVLW 0xCF  
; Value used to  
Q
D
; initialize data  
; direction  
; Set RA<3:0> as inputs  
; RA<5:4> as outputs  
; TRISA<7:6> are always  
; read as '0'.  
EN  
MOVWF TRISA  
RD PORT  
TMR0 clock input  
Note 1: I/O pin has protection diodes to VSS only.  
1997 Microchip Technology Inc.  
DS30390E-page 43  
PIC16C7X  
TABLE 5-1:  
Name  
PORTA FUNCTIONS  
Bit#  
Buffer Function  
RA0/AN0  
bit0  
bit1  
bit2  
bit3  
bit4  
TTL  
TTL  
TTL  
TTL  
ST  
Input/output or analog input  
RA1/AN1  
Input/output or analog input  
Input/output or analog input  
Input/output or analog input or VREF  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
Input/output or external clock input for Timer0  
Output is open drain type  
RA5/SS/AN4  
bit5  
TTL  
Input/output or slave select input for synchronous serial port or analog input  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
TABLE 5-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address Name  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
05h  
85h  
9Fh  
PORTA  
TRISA  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
--0x 0000 --0u 0000  
--11 1111 --11 1111  
PORTA Data Direction Register  
ADCON1  
PCFG2 PCFG1 PCFG0 ---- -000 ---- -000  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'. Shaded cells are not used by PORTA.  
DS30390E-page 44  
1997 Microchip Technology Inc.  
PIC16C7X  
Four of PORTB’s pins, RB7:RB4, have an interrupt on  
change feature. Only pins configured as inputs can  
cause this interrupt to occur (i.e. any RB7:RB4 pin con-  
figured as an output is excluded from the interrupt on  
change comparison). The input pins (of RB7:RB4) are  
compared with the old value latched on the last read of  
PORTB. The “mismatch” outputs of RB7:RB4 are  
OR’ed together to generate the RB Port Change Inter-  
rupt with flag bit RBIF (INTCON<0>).  
5.2  
PORTB and TRISB Registers  
Applicable Devices  
72 73 73A 74 74A 76 77  
PORTB is an 8-bit wide bi-directional port. The corre-  
sponding data direction register is TRISB. Setting a bit  
in the TRISB register puts the corresponding output  
driver in a hi-impedance input mode. Clearing a bit in  
the TRISB register puts the contents of the output latch  
on the selected pin(s).  
This interrupt can wake the device from SLEEP. The  
user, in the interrupt service routine, can clear the inter-  
rupt in the following manner:  
EXAMPLE 5-2: INITIALIZING PORTB  
BCF  
CLRF  
STATUS, RP0  
PORTB  
;
; Initialize PORTB by  
; clearing output  
; data latches  
a) Any read or write of PORTB. This will end the  
mismatch condition.  
b) Clear flag bit RBIF.  
BSF  
STATUS, RP0 ; Select Bank 1  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition, and  
allow flag bit RBIF to be cleared.  
MOVLW 0xCF  
; Value used to  
; initialize data  
; direction  
; Set RB<3:0> as inputs  
; RB<5:4> as outputs  
; RB<7:6> as inputs  
MOVWF TRISB  
This interrupt on mismatch feature, together with soft-  
ware configurable pull-ups on these four pins allow  
easy interface to a keypad and make it possible for  
wake-up on key-depression. Refer to the Embedded  
Control Handbook, "Implementing Wake-Up on Key  
Stroke" (AN552).  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is  
performed by clearing bit RBPU (OPTION<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are dis-  
abled on a Power-on Reset.  
Note: For the PIC16C73/74, if a change on the  
I/O pin should occur when the read opera-  
tion is being executed (start of the Q2  
cycle), then interrupt flag bit RBIF may not  
get set.  
FIGURE 5-3: BLOCK DIAGRAM OF  
RB3:RB0 PINS  
VDD  
RBPU(2)  
The interrupt on change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt on change  
feature. Polling of PORTB is not recommended while  
using the interrupt on change feature.  
weak  
P
pull-up  
Data Latch  
Data bus  
D
Q
I/O  
pin(1)  
WR Port  
CK  
TRIS Latch  
D
Q
TTL  
Input  
Buffer  
WR TRIS  
CK  
RD TRIS  
RD Port  
Q
D
EN  
RB0/INT  
Schmitt Trigger  
Buffer  
RD Port  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s)  
and clear the RBPU bit (OPTION<7>).  
1997 Microchip Technology Inc.  
DS30390E-page 45  
PIC16C7X  
FIGURE 5-4: BLOCK DIAGRAM OF  
FIGURE 5-5: BLOCK DIAGRAM OF  
RB7:RB4 PINS (PIC16C72/  
73A/74A/76/77)  
RB7:RB4 PINS (PIC16C73/74)  
VDD  
RBPU(2)  
VDD  
weak  
P
RBPU(2)  
pull-up  
weak  
P
Data Latch  
pull-up  
Data bus  
WR Port  
D
Q
Data Latch  
Data bus  
I/O  
pin(1)  
D
Q
CK  
TRIS Latch  
I/O  
pin(1)  
WR Port  
CK  
TRIS Latch  
D
Q
D
Q
WR TRIS  
TTL  
Input  
Buffer  
CK  
WR TRIS  
TTL  
ST  
Buffer  
CK  
Input  
Buffer  
ST  
Buffer  
RD TRIS  
RD Port  
Latch  
RD TRIS  
RD Port  
Q
D
Latch  
Q
Q
D
EN  
Set RBIF  
EN  
Q1  
Set RBIF  
From other  
RB7:RB4 pins  
Q
D
D
From other  
RB7:RB4 pins  
EN  
RD Port  
Q3  
RD Port  
EN  
RB7:RB6 in serial programming mode  
RB7:RB6 in serial programming mode  
Note 1: I/O pins have diode protection to VDD and VSS.  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s)  
and clear the RBPU bit (OPTION<7>).  
2: To enable weak pull-ups, set the appropriate TRIS bit(s)  
and clear the RBPU bit (OPTION<7>).  
TABLE 5-3:  
PORTB FUNCTIONS  
Name  
Bit#  
Buffer  
Function  
(1)  
RB0/INT  
bit0  
TTL/ST  
Input/output pin or external interrupt input. Internal software  
programmable weak pull-up.  
RB1  
RB2  
RB3  
RB4  
bit1  
bit2  
bit3  
bit4  
TTL  
TTL  
TTL  
TTL  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up.  
RB5  
RB6  
RB7  
bit5  
bit6  
bit7  
TTL  
TTL/ST  
TTL/ST  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up.  
(2)  
(2)  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up. Serial programming clock.  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up. Serial programming data.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
DS30390E-page 46  
1997 Microchip Technology Inc.  
PIC16C7X  
TABLE 5-4:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on:  
Value on all  
POR,  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3 Bit 2 Bit 1 Bit 0  
other resets  
BOR  
06h, 106h  
86h, 186h  
81h, 181h  
PORTB  
TRISB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
PS1  
RB0  
PS0  
xxxx xxxx  
1111 1111  
1111 1111  
uuuu uuuu  
1111 1111  
1111 1111  
PORTB Data Direction Register  
RBPU INTEDG T0CS T0SE PSA  
OPTION  
PS2  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTB.  
1997 Microchip Technology Inc.  
DS30390E-page 47  
PIC16C7X  
5.3  
PORTC and TRISC Registers  
Applicable Devices  
FIGURE 5-6: PORTC BLOCK DIAGRAM  
(PERIPHERAL OUTPUT  
OVERRIDE)  
72 73 73A 74 74A 76 77  
PORTC is an 8-bit bi-directional port. Each pin is indi-  
vidually configurable as an input or output through the  
TRISC register. PORTC is multiplexed with several  
peripheral functions (Table 5-5). PORTC pins have  
Schmitt Trigger input buffers.  
PORT/PERIPHERAL Select(2)  
Peripheral Data Out  
VDD  
0
Data bus  
D
Q
Q
P
WR  
PORT  
1
CK  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an out-  
put, while other peripherals override the TRIS bit to  
make a pin an input. Since the TRIS bit override is in  
effect while the peripheral is enabled, read-modify-  
write instructions (BSF, BCF, XORWF) with TRISC as  
destination should be avoided. The user should refer to  
the corresponding peripheral section for the correct  
TRIS bit settings.  
Data Latch  
I/O  
D
Q
Q
pin(1)  
WR  
TRIS  
CK  
N
TRIS Latch  
VSS  
Schmitt  
Trigger  
RD TRIS  
Peripheral  
OE(3)  
Q
D
EXAMPLE 5-3: INITIALIZING PORTC  
EN  
RD  
PORT  
Peripheral input  
BCF  
STATUS, RP0 ; Select Bank 0  
BCF  
STATUS, RP1 ; PIC16C76/77 only  
CLRF  
PORTC  
; Initialize PORTC by  
; clearing output  
; data latches  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: Port/Peripheral select signal selects between port  
data and peripheral output.  
BSF  
MOVLW 0xCF  
STATUS, RP0 ; Select Bank 1  
3: Peripheral OE (output enable) is only activated if  
peripheral select is active.  
; Value used to  
; initialize data  
; direction  
MOVWF TRISC  
; Set RC<3:0> as inputs  
; RC<5:4> as outputs  
; RC<7:6> as inputs  
TABLE 5-5:  
PORTC FUNCTIONS  
Name  
Bit# Buffer Type  
Function  
bit0  
bit1  
RC0/T1OSO/T1CKI  
ST  
ST  
Input/output port pin or Timer1 oscillator output/Timer1 clock input  
(1)  
Input/output port pin or Timer1 oscillator input or Capture2 input/  
Compare2 output/PWM2 output  
RC1/T1OSI/CCP2  
RC2/CCP1  
bit2  
bit3  
ST  
ST  
Input/output port pin or Capture1 input/Compare1 output/PWM1  
output  
2
RC3/SCK/SCL  
RC3 can also be the synchronous serial clock for both SPI and I C  
modes.  
2
RC4/SDI/SDA  
RC5/SDO  
bit4  
ST  
RC4 can also be the SPI Data In (SPI mode) or data I/O (I C mode).  
bit5  
bit6  
ST  
ST  
Input/output port pin or Synchronous Serial Port data output  
(2)  
Input/output port pin or USART Asynchronous Transmit, or USART  
Synchronous Clock  
RC6/TX/CK  
(2)  
bit7  
ST  
Input/output port pin or USART Asynchronous Receive, or USART  
Synchronous Data  
RC7/RX/DT  
Legend: ST = Schmitt Trigger input  
Note 1: The CCP2 multiplexed function is not enabled on the PIC16C72.  
2: The TX/CK and RX/DT multiplexed functions are not enabled on the PIC16C72.  
DS30390E-page 48  
1997 Microchip Technology Inc.  
 
PIC16C7X  
TABLE 5-6:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on:  
Value on all  
POR,  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
other resets  
BOR  
07h  
87h  
PORTC  
TRISC  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
PORTC Data Direction Register  
Legend: x= unknown, u= unchanged.  
1997 Microchip Technology Inc.  
DS30390E-page 49  
PIC16C7X  
5.4  
PORTD and TRISD Registers  
Applicable Devices  
FIGURE 5-7: PORTD BLOCK DIAGRAM (IN  
I/O PORT MODE)  
72 73 73A 74 74A 76 77  
Data  
bus  
D
Q
PORTD is an 8-bit port with Schmitt Trigger input buff-  
ers. Each pin is individually configurable as an input or  
output.  
WR  
PORT  
I/O pin(1)  
CK  
PORTD can be configured as an 8-bit wide micropro-  
cessor port (parallel slave port) by setting control bit  
PSPMODE (TRISE<4>). In this mode, the input buffers  
are TTL.  
Data Latch  
D
Q
WR  
TRIS  
Schmitt  
Trigger  
input  
CK  
TRIS Latch  
buffer  
RD TRIS  
Q
D
EN  
RD PORT  
Note 1: I/O pins have protection diodes to VDD and VSS.  
TABLE 5-7:  
Name  
PORTD FUNCTIONS  
Bit#  
Buffer Type  
Function  
(1)  
RD0/PSP0  
RD1/PSP1  
RD2/PSP2  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
ST/TTL  
Input/output port pin or parallel slave port bit0  
(1)  
ST/TTL  
Input/output port pin or parallel slave port bit1  
Input/output port pin or parallel slave port bit2  
Input/output port pin or parallel slave port bit3  
Input/output port pin or parallel slave port bit4  
Input/output port pin or parallel slave port bit5  
Input/output port pin or parallel slave port bit6  
Input/output port pin or parallel slave port bit7  
(1)  
ST/TTL  
(1)  
ST/TTL  
(1)  
ST/TTL  
(1)  
ST/TTL  
(1)  
ST/TTL  
(1)  
ST/TTL  
Legend: ST = Schmitt Trigger input TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffer when in Parallel Slave Port Mode.  
TABLE 5-8:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address Name  
Bit 7 Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
08h  
88h  
89h  
PORTD RD7 RD6 RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
0000 -111 0000 -111  
TRISD PORTD Data Direction Register  
TRISE IBF OBF IBOV PSPMODE  
PORTE Data Direction Bits  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by PORTD.  
DS30390E-page 50  
1997 Microchip Technology Inc.  
PIC16C7X  
5.5  
PORTE and TRISE Register  
Applicable Devices  
Note: On a Power-on Reset these pins are con-  
figured as analog inputs.  
72 73 73A 74 74A 76 77  
FIGURE 5-8: PORTE BLOCK DIAGRAM (IN  
I/O PORT MODE)  
PORTE has three pins RE0/RD/AN5, RE1/WR/AN6  
and RE2/CS/AN7, which are individually configurable  
as inputs or outputs. These pins have Schmitt Trigger  
input buffers.  
Data  
bus  
D
Q
WR  
PORT  
I/O pin(1)  
I/O PORTE becomes control inputs for the micropro-  
cessor port when bit PSPMODE (TRISE<4>) is set. In  
this mode, the user must make sure that the  
TRISE<2:0> bits are set (pins are configured as digital  
inputs) and that register ADCON1 is configured for dig-  
ital I/O. In this mode the input buffers are TTL.  
CK  
Data Latch  
D
Q
WR  
TRIS  
Schmitt  
Trigger  
input  
CK  
Figure 5-9 shows the TRISE register, which also con-  
trols the parallel slave port operation.  
TRIS Latch  
buffer  
PORTE pins are multiplexed with analog inputs. The  
operation of these pins is selected by control bits in the  
ADCON1 register. When selected as an analog input,  
these pins will read as '0's.  
RD TRIS  
Q
D
TRISE controls the direction of the RE pins, even when  
they are being used as analog inputs. The user must  
make sure to keep the pins configured as inputs when  
using them as analog inputs.  
EN  
RD PORT  
Note 1: I/O pins have protection diodes to VDD and VSS.  
FIGURE 5-9: TRISE REGISTER (ADDRESS 89h)  
R-0  
IBF  
R-0  
R/W-0  
R/W-0  
U-0  
R/W-1  
bit2  
R/W-1  
bit1  
R/W-1  
bit0  
OBF  
IBOV PSPMODE  
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7 :  
bit 6:  
bit 5:  
bit 4:  
IBF: Input Buffer Full Status bit  
1 = A word has been received and is waiting to be read by the CPU  
0 = No word has been received  
OBF: Output Buffer Full Status bit  
1 = The output buffer still holds a previously written word  
0 = The output buffer has been read  
IBOV: Input Buffer Overflow Detect bit (in microprocessor mode)  
1 = A write occurred when a previously input word has not been read (must be cleared in software)  
0 = No overflow occurred  
PSPMODE: Parallel Slave Port Mode Select bit  
1 = Parallel slave port mode  
0 = General purpose I/O mode  
bit 3:  
bit 2:  
Unimplemented: Read as '0'  
PORTE Data Direction Bits  
Bit2: Direction Control bit for pin RE2/CS/AN7  
1 = Input  
0 = Output  
bit 1:  
bit 0:  
Bit1: Direction Control bit for pin RE1/WR/AN6  
1 = Input  
0 = Output  
Bit0: Direction Control bit for pin RE0/RD/AN5  
1 = Input  
0 = Output  
1997 Microchip Technology Inc.  
DS30390E-page 51  
 
PIC16C7X  
TABLE 5-9:  
PORTE FUNCTIONS  
Name  
Bit#  
Buffer Type  
Function  
(1)  
RE0/RD/AN5  
bit0  
ST/TTL  
Input/output port pin or read control input in parallel slave port mode or  
analog input:  
RD  
1 = Not a read operation  
0 = Read operation. Reads PORTD register (if chip selected)  
(1)  
RE1/WR/AN6  
RE2/CS/AN7  
bit1  
bit2  
ST/TTL  
Input/output port pin or write control input in parallel slave port mode or  
analog input:  
WR  
1 = Not a write operation  
0 = Write operation. Writes PORTD register (if chip selected)  
(1)  
ST/TTL  
Input/output port pin or chip select control input in parallel slave port  
mode or analog input:  
CS  
1 = Device is not selected  
0 = Device is selected  
Legend: ST = Schmitt Trigger input TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port Mode.  
TABLE 5-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address Name  
Bit 7 Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
09h  
89h  
9Fh  
PORTE  
TRISE  
RE2  
RE1  
RE0  
---- -xxx ---- -uuu  
0000 -111 0000 -111  
---- -000 ---- -000  
IBF OBF IBOV PSPMODE  
PORTE Data Direction Bits  
PCFG2 PCFG1 PCFG0  
ADCON1  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by PORTE.  
DS30390E-page 52  
1997 Microchip Technology Inc.  
PIC16C7X  
5.6  
I/O Programming Considerations  
Applicable Devices  
EXAMPLE 5-4: READ-MODIFY-WRITE  
INSTRUCTIONS ON AN I/O  
PORT  
72 73 73A 74 74A 76 77  
;Initial PORT settings: PORTB<7:4> Inputs  
;
PORTB<3:0> Outputs  
5.6.1  
BI-DIRECTIONAL I/O PORTS  
;PORTB<7:6> have external pull-ups and are  
Any instruction which writes, operates internally as a  
read followed by a write operation. The BCF and BSF  
instructions, for example, read the register into the  
CPU, execute the bit operation and write the result back  
to the register. Caution must be used when these  
instructions are applied to a port with both inputs and  
outputs defined. For example, a BSFoperation on bit5  
of PORTB will cause all eight bits of PORTB to be read  
into the CPU. Then the BSF operation takes place on  
bit5 and PORTB is written to the output latches. If  
another bit of PORTB is used as a bi-directional I/O pin  
(e.g., bit0) and it is defined as an input at this time, the  
input signal present on the pin itself would be read into  
the CPU and rewritten to the data latch of this particular  
pin, overwriting the previous content. As long as the pin  
stays in the input mode, no problem occurs. However, if  
bit0 is switched to an output, the content of the data  
latch may now be unknown.  
;not connected to other circuitry  
;
;
;
PORT latch PORT pins  
---------- ---------  
BCF PORTB, 7  
BCF PORTB, 6  
BSF STATUS, RP0  
BCF TRISB, 7  
BCF TRISB, 6  
; 01pp pppp  
; 10pp pppp  
;
; 10pp pppp  
; 10pp pppp  
11pp pppp  
11pp pppp  
11pp pppp  
10pp pppp  
;
;Note that the user may have expected the  
;pin values to be 00pp ppp. The 2nd BCF  
;caused RB7 to be latched as the pin value  
;(high).  
A pin actively outputting a Low or High should not be  
driven from external devices at the same time in order  
to change the level on this pin (“wired-or”, “wired-and”).  
The resulting high output currents may damage the  
chip.  
Reading the port register, reads the values of the port  
pins. Writing to the port register writes the value to the  
port latch. When using read-modify-write instructions  
(ex. BCF, BSF, etc.) on a port, the value of the port pins  
is read, the desired operation is done to this value, and  
this value is then written to the port latch.  
5.6.2  
SUCCESSIVE OPERATIONS ON I/O PORTS  
The actual write to an I/O port happens at the end of an  
instruction cycle, whereas for reading, the data must be  
valid at the beginning of the instruction cycle (Figure 5-  
10). Therefore, care must be exercised if a write fol-  
lowed by a read operation is carried out on the same I/  
O port. The sequence of instructions should be such to  
allow the pin voltage to stabilize (load dependent)  
before the next instruction which causes that file to be  
read into the CPU is executed. Otherwise, the previous  
state of that pin may be read into the CPU rather than  
the new state. When in doubt, it is better to separate  
these instructions with a NOPor another instruction not  
accessing this I/O port.  
Example 5-4 shows the effect of two sequential read-  
modify-write instructions on an I/O port.  
FIGURE 5-10: SUCCESSIVE I/O OPERATION  
Q4  
Q4  
Q4  
Q1 Q2  
Q4  
Q3  
Q3  
Q3  
Q3  
Q1 Q2  
PC  
Q1 Q2  
Q1 Q2  
Note:  
This example shows a write to PORTB  
followed by a read from PORTB.  
PC + 3  
NOP  
PC  
Instruction  
fetched  
PC + 1  
PC + 2  
NOP  
MOVWF PORTB MOVF PORTB,W  
write to  
PORTB  
Note that:  
data setup time = (0.25TCY - TPD)  
RB7:RB0  
where TCY = instruction cycle  
TPD = propagation delay  
Port pin  
sampled here  
TPD  
Therefore, at higher clock frequencies,  
a write followed by a read may be prob-  
lematic.  
Instruction  
executed  
NOP  
MOVWF PORTB  
write to  
MOVF PORTB,W  
PORTB  
1997 Microchip Technology Inc.  
DS30390E-page 53  
 
 
PIC16C7X  
5.7  
Parallel Slave Port  
Applicable Devices  
72 73 73A 74 74A 76 77  
FIGURE 5-11: PORTD AND PORTE BLOCK  
DIAGRAM (PARALLEL  
SLAVE PORT)  
PORTD operates as an 8-bit wide Parallel Slave Port,  
or microprocessor port when control bit PSPMODE  
(TRISE<4>) is set. In slave mode it is asynchronously  
readable and writable by the external world through RD  
control input pin RE0/RD/AN5 and WR control input pin  
RE1/WR/AN6.  
Data bus  
D
Q
WR  
PORT  
RDx  
pin  
CK  
TTL  
It can directly interface to an 8-bit microprocessor data  
bus. The external microprocessor can read or write the  
PORTD latch as an 8-bit latch. Setting bit PSPMODE  
enables port pin RE0/RD/AN5 to be the RD input, RE1/  
WR/AN6 to be the WR input and RE2/CS/AN7 to be the  
CS (chip select) input. For this functionality, the corre-  
sponding data direction bits of the TRISE register  
(TRISE<2:0>) must be configured as inputs (set) and  
the A/D port configuration bits PCFG2:PCFG0  
(ADCON1<2:0>) must be set, which will configure pins  
RE2:RE0 as digital I/O.  
Q
D
RD  
PORT  
EN  
One bit of PORTD  
Set interrupt flag  
PSPIF (PIR1<7>)  
There are actually two 8-bit latches, one for data-out  
(from the PIC16/17) and one for data input. The user  
writes 8-bit data to PORTD data latch and reads data  
from the port pin latch (note that they have the same  
address). In this mode, the TRISD register is ignored,  
since the microprocessor is controlling the direction of  
data flow.  
Read  
RD  
CS  
WR  
TTL  
Chip Select  
TTL  
TTL  
Write  
Note: I/O pin has protection diodes to VDD and VSS.  
A write to the PSP occurs when both the CS and WR  
lines are first detected low. When either the CS or WR  
lines become high (level triggered), then the Input  
Buffer Full status flag bit IBF (TRISE<7>) is set on the  
Q4 clock cycle, following the next Q2 cycle, to signal  
the write is complete (Figure 5-12).The interrupt flag bit  
PSPIF (PIR1<7>) is also set on the same Q4 clock  
cycle. IBF can only be cleared by reading the PORTD  
input latch. The input Buffer Overflow status flag bit  
IBOV (TRISE<5>) is set if a second write to the Parallel  
Slave Port is attempted when the previous byte has not  
been read out of the buffer.  
A read from the PSP occurs when both the CS and RD  
lines are first detected low. The Output Buffer Full sta-  
tus flag bit OBF (TRISE<6>) is cleared immediately  
(Figure 5-13) indicating that the PORTD latch is waiting  
to be read by the external bus. When either the CS or  
RD pin becomes high (level triggered), the interrupt flag  
bit PSPIF is set on the Q4 clock cycle, following the  
next Q2 cycle, indicating that the read is complete.  
OBF remains low until data is written to PORTD by the  
user firmware.  
When not in Parallel Slave Port mode, the IBF and OBF  
bits are held clear. However, if flag bit IBOV was previ-  
ously set, it must be cleared in firmware.  
An interrupt is generated and latched into flag bit  
PSPIF when a read or write operation is completed.  
PSPIF must be cleared by the user in firmware and the  
interrupt can be disabled by clearing the interrupt  
enable bit PSPIE (PIE1<7>).  
DS30390E-page 54  
1997 Microchip Technology Inc.  
PIC16C7X  
FIGURE 5-12: PARALLEL SLAVE PORT WRITE WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
FIGURE 5-13: PARALLEL SLAVE PORT READ WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
TABLE 5-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address Name  
Bit 7 Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
08h  
09h  
89h  
0Ch  
8Ch  
9Fh  
PORTD  
PORTE  
TRISE  
PIR1  
Port data latch when written: Port pins when read  
xxxx xxxx uuuu uuuu  
---- -xxx ---- -uuu  
0000 -111 0000 -111  
RE2  
RE1  
RE0  
IBF  
OBF IBOV PSPMODE  
PORTE Data Direction Bits  
PSPIF ADIF RCIF  
PSPIE ADIE RCIE  
TXIF  
TXIE  
SSPIF CCP1IF TMR2IF  
TMR1IF 0000 0000 0000 0000  
PIE1  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
PCFG2 PCFG1 PCFG0 ---- -000 ---- -000  
ADCON1  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the Parallel Slave Port.  
1997 Microchip Technology Inc.  
DS30390E-page 55  
PIC16C7X  
NOTES:  
DS30390E-page 56  
1997 Microchip Technology Inc.  
PIC16C7X  
CCP module, Timer1 is the time-base for 16-bit Cap-  
ture or the 16-bit Compare and must be synchronized  
to the device.  
6.0  
OVERVIEW OF TIMER  
MODULES  
Applicable Devices  
6.3  
Timer2 Overview  
Applicable Devices  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
The PIC16C72, PIC16C73/73A, PIC16C74/74A,  
PIC16C76/77 each have three timer modules.  
Timer2 is an 8-bit timer with a programmable prescaler  
and postscaler, as well as an 8-bit period register  
(PR2). Timer2 can be used with the CCP1 module (in  
PWM mode) as well as the Baud Rate Generator for  
the Synchronous Serial Port (SSP). The prescaler  
option allows Timer2 to increment at the following  
rates: 1:1, 1:4, 1:16.  
Each module can generate an interrupt to indicate that  
an event has occurred (i.e. timer overflow). Each of  
these modules is explained in full detail in the following  
sections. The timer modules are:  
• Timer0 Module (Section 7.0)  
• Timer1 Module (Section 8.0)  
• Timer2 Module (Section 9.0)  
The postscaler allows the TMR2 register to match the  
period register (PR2) a programmable number of times  
before generating an interrupt. The postscaler can be  
programmed from 1:1 to 1:16 (inclusive).  
6.1  
Timer0 Overview  
Applicable Devices  
72 73 73A 74 74A 76 77  
6.4  
CCP Overview  
Applicable Devices  
72 73 73A 74 74A 76 77  
The Timer0 module is a simple 8-bit overflow counter.  
The clock source can be either the internal system  
clock (Fosc/4) or an external clock. When the clock  
source is an external clock, the Timer0 module can be  
selected to increment on either the rising or falling  
edge.  
The CCP module(s) can operate in one of these three  
modes: 16-bit capture, 16-bit compare, or up to 10-bit  
Pulse Width Modulation (PWM).  
The Timer0 module also has a programmable pres-  
caler option. This prescaler can be assigned to either  
the Timer0 module or the Watchdog Timer. Bit PSA  
(OPTION<3>) assigns the prescaler, and bits PS2:PS0  
(OPTION<2:0>) determine the prescaler value. Timer0  
can increment at the following rates: 1:1 (when pres-  
caler assigned to Watchdog timer), 1:2, 1:4, 1:8, 1:16,  
1:32, 1:64, 1:128, and 1:256 (Timer0 only).  
Capture mode captures the 16-bit value of TMR1 into  
the CCPRxH:CCPRxL register pair. The capture event  
can be programmed for either the falling edge, rising  
edge, fourth rising edge, or the sixteenth rising edge of  
the CCPx pin.  
Compare mode compares the TMR1H:TMR1L register  
pair to the CCPRxH:CCPRxL register pair. When a  
match occurs an interrupt can be generated, and the  
output pin CCPx can be forced to given state (High or  
Low), TMR1 can be reset (CCP1), or TMR1 reset and  
start A/D conversion (CCP2).This depends on the con-  
trol bits CCPxM3:CCPxM0.  
Synchronization of the external clock occurs after the  
prescaler. When the prescaler is used, the external  
clock frequency may be higher then the device’s fre-  
quency. The maximum frequency is 50 MHz, given the  
high and low time requirements of the clock.  
PWM mode compares the TMR2 register to a 10-bit  
duty cycle register (CCPRxH:CCPRxL<5:4>) as well as  
to an 8-bit period register (PR2). When the TMR2 reg-  
ister = Duty Cycle register, the CCPx pin will be forced  
low. When TMR2 = PR2, TMR2 is cleared to 00h, an  
interrupt can be generated, and the CCPx pin (if an out-  
put) will be forced high.  
6.2  
Timer1 Overview  
Applicable Devices  
72 73 73A 74 74A 76 77  
Timer1 is a 16-bit timer/counter. The clock source can  
be either the internal system clock (Fosc/4), an external  
clock, or an external crystal. Timer1 can operate as  
either a timer or a counter. When operating as a  
counter (external clock source), the counter can either  
operate synchronized to the device or asynchronously  
to the device. Asynchronous operation allows Timer1 to  
operate during sleep, which is useful for applications  
that require a real-time clock as well as the power sav-  
ings of SLEEP mode.  
Timer1 also has a prescaler option which allows  
Timer1 to increment at the following rates: 1:1, 1:2, 1:4,  
and 1:8. Timer1 can be used in conjunction with the  
Capture/Compare/PWM module. When used with a  
1997 Microchip Technology Inc.  
DS30390E-page 57  
PIC16C7X  
NOTES:  
DS30390E-page 58  
1997 Microchip Technology Inc.  
PIC16C7X  
Source Edge Select bit T0SE (OPTION<4>). Clearing  
bit T0SE selects the rising edge. Restrictions on the  
external clock input are discussed in detail in  
Section 7.2.  
7.0  
TIMER0 MODULE  
Applicable Devices  
72 73 73A 74 74A 76 77  
The Timer0 module timer/counter has the following fea-  
tures:  
The prescaler is mutually exclusively shared between  
the Timer0 module and the Watchdog Timer. The pres-  
caler assignment is controlled in software by control bit  
PSA (OPTION<3>). Clearing bit PSA will assign the  
prescaler to the Timer0 module. The prescaler is not  
readable or writable. When the prescaler is assigned to  
the Timer0 module, prescale values of 1:2, 1:4, ...,  
1:256 are selectable. Section 7.3 details the operation  
of the prescaler.  
• 8-bit timer/counter  
• Readable and writable  
• 8-bit software programmable prescaler  
• Internal or external clock select  
• Interrupt on overflow from FFh to 00h  
• Edge select for external clock  
Figure 7-1 is a simplified block diagram of the Timer0  
module.  
7.1  
Timer0 Interrupt  
Applicable Devices  
72 73 73A 74 74A 76 77  
Timer mode is selected by clearing bit T0CS  
(OPTION<5>). In timer mode, the Timer0 module will  
increment every instruction cycle (without prescaler). If  
the TMR0 register is written, the increment is inhibited  
for the following two instruction cycles (Figure 7-2 and  
Figure 7-3). The user can work around this by writing  
an adjusted value to the TMR0 register.  
The TMR0 interrupt is generated when the TMR0 reg-  
ister overflows from FFh to 00h. This overflow sets bit  
T0IF (INTCON<2>). The interrupt can be masked by  
clearing bit T0IE (INTCON<5>). Bit T0IF must be  
cleared in software by the Timer0 module interrupt ser-  
vice routine before re-enabling this interrupt. The  
TMR0 interrupt cannot awaken the processor from  
SLEEP since the timer is shut off during SLEEP. See  
Figure 7-4 for Timer0 interrupt timing.  
Counter mode is selected by setting bit T0CS  
(OPTION<5>). In counter mode, Timer0 will increment  
either on every rising or falling edge of pin RA4/T0CKI.  
The incrementing edge is determined by the Timer0  
FIGURE 7-1: TIMER0 BLOCK DIAGRAM  
Data bus  
FOSC/4  
0
1
PSout  
8
1
0
Sync with  
Internal  
clocks  
TMR0  
Programmable  
Prescaler  
RA4/T0CKI  
pin  
PSout  
(2 cycle delay)  
T0SE  
3
Set interrupt  
flag bit T0IF  
on overflow  
PS2, PS1, PS0  
PSA  
T0CS  
Note 1: T0CS, T0SE, PSA, PS2:PS0 (OPTION<5:0>).  
2: The prescaler is shared with Watchdog Timer (refer to Figure 7-6 for detailed block diagram).  
FIGURE 7-2: TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALE  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
(Program  
Counter)  
PC-1  
PC  
PC+1  
PC+2  
PC+3  
PC+4  
PC+5  
PC+6  
Instruction  
Fetch  
MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W  
MOVWF TMR0  
T0  
T0+1  
T0+2  
NT0  
NT0  
NT0  
NT0+1  
NT0+2  
TMR0  
Instruction  
Executed  
Read TMR0  
reads NT0 + 1  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0 + 2  
Write TMR0  
executed  
1997 Microchip Technology Inc.  
DS30390E-page 59  
 
 
PIC16C7X  
FIGURE 7-3: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
(Program  
Counter)  
PC-1  
PC  
PC+1  
PC+2  
PC+3  
PC+4  
PC+5  
PC+6  
MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W  
MOVWF TMR0  
Instruction  
Fetch  
T0  
T0+1  
NT0+1  
6  
NT0  
TMR0  
Instruction  
Execute  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0 + 1  
Write TMR0  
executed  
FIGURE 7-4: TIMER0 INTERRUPT TIMING  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
OSC1  
CLKOUT(3)  
Timer0  
FEh  
FFh  
00h  
01h  
02h  
1
1
T0IF bit  
(INTCON<2>)  
GIE bit  
(INTCON<7>)  
INSTRUCTION  
FLOW  
PC  
PC  
PC +1  
PC +1  
0004h  
0005h  
Instruction  
fetched  
Inst (PC)  
Inst (PC+1)  
Inst (0004h)  
Inst (0005h)  
Instruction  
executed  
Inst (PC-1)  
Dummy cycle  
Dummy cycle  
Inst (0004h)  
Inst (PC)  
Note 1: Interrupt flag bit T0IF is sampled here (every Q1).  
2: Interrupt latency = 4Tcy where Tcy = instruction cycle time.  
3: CLKOUT is available only in RC oscillator mode.  
DS30390E-page 60  
1997 Microchip Technology Inc.  
PIC16C7X  
When a prescaler is used, the external clock input is  
divided by the asynchronous ripple-counter type pres-  
caler so that the prescaler output is symmetrical. For  
the external clock to meet the sampling requirement,  
the ripple-counter must be taken into account. There-  
fore, it is necessary for T0CKI to have a period of at  
least 4Tosc (and a small RC delay of 40 ns) divided by  
the prescaler value. The only requirement on T0CKI  
high and low time is that they do not violate the mini-  
mum pulse width requirement of 10 ns. Refer to param-  
eters 40, 41 and 42 in the electrical specification of the  
desired device.  
7.2  
Using Timer0 with an External Clock  
Applicable Devices  
72 73 73A 74 74A 76 77  
When an external clock input is used for Timer0, it must  
meet certain requirements. The requirements ensure  
the external clock can be synchronized with the internal  
phase clock (TOSC). Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
7.2.1  
EXTERNAL CLOCK SYNCHRONIZATION  
When no prescaler is used, the external clock input is  
the same as the prescaler output. The synchronization  
of T0CKI with the internal phase clocks is accom-  
plished by sampling the prescaler output on the Q2 and  
Q4 cycles of the internal phase clocks (Figure 7-5).  
Therefore, it is necessary for T0CKI to be high for at  
least 2Tosc (and a small RC delay of 20 ns) and low for  
at least 2Tosc (and a small RC delay of 20 ns). Refer to  
the electrical specification of the desired device.  
7.2.2  
TMR0 INCREMENT DELAY  
Since the prescaler output is synchronized with the  
internal clocks, there is a small delay from the time the  
external clock edge occurs to the time the Timer0 mod-  
ule is actually incremented. Figure 7-5 shows the delay  
from the external clock edge to the timer incrementing.  
FIGURE 7-5: TIMER0 TIMING WITH EXTERNAL CLOCK  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Small pulse  
misses sampling  
External Clock Input or  
(2)  
Prescaler output  
(1)  
(3)  
External Clock/Prescaler  
Output after sampling  
Increment Timer0 (Q4)  
Timer0  
T0  
T0 + 1  
T0 + 2  
Note 1: Delay from clock input change to Timer0 increment is 3Tosc to 7Tosc. (Duration of Q = Tosc).  
Therefore, the error in measuring the interval between two edges on Timer0 input = ±4Tosc max.  
2: External clock if no prescaler selected, Prescaler output otherwise.  
3: The arrows indicate the points in time where sampling occurs.  
1997 Microchip Technology Inc.  
DS30390E-page 61  
 
PIC16C7X  
The PSA and PS2:PS0 bits (OPTION<3:0>) determine  
the prescaler assignment and prescale ratio.  
7.3  
Prescaler  
Applicable Devices  
72 73 73A 74 74A 76 77  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g.CLRF 1, MOVWF 1,  
An 8-bit counter is available as a prescaler for the  
Timer0 module, or as a postscaler for the Watchdog  
Timer, respectively (Figure 7-6). For simplicity, this  
counter is being referred to as “prescaler” throughout  
this data sheet. Note that there is only one prescaler  
available which is mutually exclusively shared between  
the Timer0 module and the Watchdog Timer. Thus, a  
prescaler assignment for the Timer0 module means  
that there is no prescaler for the Watchdog Timer, and  
vice-versa.  
BSF  
1,x....etc.) will clear the prescaler. When  
assigned to WDT, a CLRWDT instruction will clear the  
prescaler along with the Watchdog Timer. The pres-  
caler is not readable or writable.  
Note: Writing to TMR0 when the prescaler is  
assigned to Timer0 will clear the prescaler  
count, but will not change the prescaler  
assignment.  
FIGURE 7-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
Data Bus  
8
CLKOUT (=Fosc/4)  
M
U
X
1
0
0
1
M
U
X
RA4/T0CKI  
pin  
SYNC  
2
Cycles  
TMR0 reg  
T0SE  
T0CS  
Set flag bit T0IF  
on Overflow  
PSA  
0
1
8-bit Prescaler  
M
U
X
Watchdog  
Timer  
8
8 - to - 1MUX  
PS2:PS0  
PSA  
1
0
WDT Enable bit  
M U X  
PSA  
WDT  
Time-out  
Note: T0CS, T0SE, PSA, PS2:PS0 are (OPTION<5:0>).  
DS30390E-page 62  
1997 Microchip Technology Inc.  
 
PIC16C7X  
7.3.1  
SWITCHING PRESCALER ASSIGNMENT  
The prescaler assignment is fully under software con-  
trol, i.e., it can be changed “on the fly” during program  
execution.  
Note: To avoid an unintended device RESET, the  
following instruction sequence (shown in  
Example 7-1) must be executed when  
changing the prescaler assignment from  
Timer0 to the WDT. This sequence must  
be followed even if the WDT is disabled.  
EXAMPLE 7-1: CHANGING PRESCALER (TIMER0WDT)  
1) BSF  
STATUS, RP0  
;Bank 1  
2) MOVLW b'xx0x0xxx'  
3) MOVWF OPTION_REG  
;Select clock source and prescale value of  
Lines 2 and 3 do NOT have to  
be included if the final desired  
prescale value is other than 1:1.  
If 1:1 is final desired value, then  
a temporary prescale value is  
set in lines 2 and 3 and the final  
prescale value will be set in lines  
10 and 11.  
;other than 1:1  
4) BCF  
5) CLRF  
6) BSF  
STATUS, RP0  
TMR0  
;Bank 0  
;Clear TMR0 and prescaler  
STATUS, RP1  
;Bank 1  
7) MOVLW b'xxxx1xxx'  
8) MOVWF OPTION_REG  
9) CLRWDT  
;Select WDT, do not change prescale value  
;
;Clears WDT and prescaler  
10) MOVLW b'xxxx1xxx'  
11) MOVWF OPTION_REG  
;Select new prescale value and WDT  
;
12) BCF  
STATUS, RP0  
;Bank 0  
To change prescaler from the WDT to the Timer0 mod-  
ule use the sequence shown in Example 7-2.  
EXAMPLE 7-2: CHANGING PRESCALER (WDTTIMER0)  
CLRWDT  
BSF  
;Clear WDT and prescaler  
STATUS, RP0 ;Bank 1  
MOVLW  
MOVWF  
BCF  
b'xxxx0xxx' ;Select TMR0, new prescale value and  
OPTION_REG ;clock source  
STATUS, RP0 ;Bank 0  
TABLE 7-1:  
REGISTERS ASSOCIATED WITH TIMER0  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
01h,101h  
TMR0  
Timer0 module’s register  
xxxx xxxx uuuu uuuu  
RBIF 0000 000x 0000 000u  
0Bh,8Bh,  
10Bh,18Bh  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
T0SE  
RBIE  
PSA  
T0IF  
PS2  
INTF  
PS1  
81h,181h  
85h  
OPTION RBPU INTEDG  
TRISA  
T0CS  
PS0  
1111 1111 1111 1111  
--11 1111 --11 1111  
PORTA Data Direction Register  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'. Shaded cells are not used by Timer0.  
1997 Microchip Technology Inc.  
DS30390E-page 63  
 
 
PIC16C7X  
NOTES:  
DS30390E-page 64  
1997 Microchip Technology Inc.  
PIC16C7X  
In timer mode, Timer1 increments every instruction  
cycle. In counter mode, it increments on every rising  
edge of the external clock input.  
8.0  
TIMER1 MODULE  
Applicable Devices  
72 73 73A 74 74A 76 77  
Timer1 can be enabled/disabled by setting/clearing  
control bit TMR1ON (T1CON<0>).  
The Timer1 module is a 16-bit timer/counter consisting  
of two 8-bit registers (TMR1H and TMR1L) which are  
readable and writable. The TMR1 Register pair  
(TMR1H:TMR1L) increments from 0000h to FFFFh  
and rolls over to 0000h.The TMR1 Interrupt, if enabled,  
is generated on overflow which is latched in interrupt  
flag bit TMR1IF (PIR1<0>). This interrupt can be  
enabled/disabled by setting/clearing TMR1 interrupt  
enable bit TMR1IE (PIE1<0>).  
Timer1 also has an internal “reset input”.This reset can  
be generated by either of the two CCP modules  
(Section 10.0). Figure 8-1 shows the Timer1 control  
register.  
For the PIC16C72/73A/74A/76/77, when the Timer1  
oscillator is enabled (T1OSCEN is set), the RC1/  
T1OSI/CCP2 and RC0/T1OSO/T1CKI pins become  
inputs. That is, the TRISC<1:0> value is ignored.  
Timer1 can operate in one of two modes:  
For the PIC16C73/74, when the Timer1 oscillator is  
enabled (T1OSCEN is set), RC1/T1OSI/CCP2 pin  
becomes an input, however the RC0/T1OSO/T1CKI  
pin will have to be configured as an input by setting the  
TRISC<0> bit.  
• As a timer  
• As a counter  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>).  
FIGURE 8-1: T1CON:TIMER1 CONTROL REGISTER (ADDRESS 10h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R
= Readable bit  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit0  
W = Writable bit  
U
bit7  
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7-6: Unimplemented: Read as '0'  
bit 5-4: T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3:  
bit 2:  
T1OSCEN: Timer1 Oscillator Enable Control bit  
1 = Oscillator is enabled  
0 = Oscillator is shut off  
Note: The oscillator inverter and feedback resistor are turned off to eliminate power drain  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS = 1  
1 = Do not synchronize external clock input  
0 = Synchronize external clock input  
TMR1CS = 0  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1:  
bit 0:  
TMR1CS: Timer1 Clock Source Select bit  
1 = External clock from pin RC0/T1OSO/T1CKI (on the rising edge)  
0 = Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1 = Enables Timer1  
0 = Stops Timer1  
1997 Microchip Technology Inc.  
DS30390E-page 65  
 
PIC16C7X  
8.2.1  
EXTERNAL CLOCK INPUT TIMING FOR  
SYNCHRONIZED COUNTER MODE  
8.1  
Timer1 Operation in Timer Mode  
Applicable Devices  
72 73 73A 74 74A 76 77  
When an external clock input is used for Timer1 in syn-  
chronized counter mode, it must meet certain require-  
ments. The external clock requirement is due to  
internal phase clock (Tosc) synchronization. Also, there  
is a delay in the actual incrementing of TMR1 after syn-  
chronization.  
Timer mode is selected by clearing the TMR1CS  
(T1CON<1>) bit. In this mode, the input clock to the  
timer is FOSC/4. The synchronize control bit T1SYNC  
(T1CON<2>) has no effect since the internal clock is  
always in sync.  
When the prescaler is 1:1, the external clock input is  
the same as the prescaler output. The synchronization  
of T1CKI with the internal phase clocks is accom-  
plished by sampling the prescaler output on the Q2 and  
Q4 cycles of the internal phase clocks. Therefore, it is  
necessary for T1CKI to be high for at least 2Tosc (and  
a small RC delay of 20 ns) and low for at least 2Tosc  
(and a small RC delay of 20 ns). Refer to the appropri-  
ate electrical specifications, parameters 45, 46, and 47.  
8.2  
Timer1 Operation in Synchronized  
Counter Mode  
Applicable Devices  
72 73 73A 74 74A 76 77  
Counter mode is selected by setting bit TMR1CS. In  
this mode the timer increments on every rising edge of  
clock input on pin RC1/T1OSI/CCP2 when bit  
T1OSCEN is set or pin RC0/T1OSO/T1CKI when bit  
T1OSCEN is cleared.  
When a prescaler other than 1:1 is used, the external  
clock input is divided by the asynchronous ripple-  
counter type prescaler so that the prescaler output is  
symmetrical. In order for the external clock to meet the  
sampling requirement, the ripple-counter must be  
taken into account.Therefore, it is necessary for T1CKI  
to have a period of at least 4Tosc (and a small RC delay  
of 40 ns) divided by the prescaler value. The only  
requirement on T1CKI high and low time is that they do  
not violate the minimum pulse width requirements of  
10 ns). Refer to the appropriate electrical specifica-  
tions, parameters 40, 42, 45, 46, and 47.  
If T1SYNC is cleared, then the external clock input is  
synchronized with internal phase clocks. The synchro-  
nization is done after the prescaler stage. The pres-  
caler stage is an asynchronous ripple-counter.  
In this configuration, during SLEEP mode, Timer1 will  
not increment even if the external clock is present,  
since the synchronization circuit is shut off. The pres-  
caler however will continue to increment.  
FIGURE 8-2: TIMER1 BLOCK DIAGRAM  
Set flag bit  
TMR1IF on  
Overflow  
Synchronized  
0
TMR1  
clock input  
TMR1L  
TMR1H  
T1OSC  
1
TMR1ON  
on/off  
T1SYNC  
(3)  
RC0/T1OSO/T1CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator  
FOSC/4  
Internal  
Clock  
0
(1)  
(2)  
RC1/T1OSI/CCP2  
2
SLEEP input  
T1CKPS1:T1CKPS0  
TMR1CS  
Note 1: When the T1OSCEN bit is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
2: The CCP2 module is not implemented in the PIC16C72.  
3: For the PIC16C73 and PIC16C74, the Schmitt Trigger is not implemented in external clock mode.  
DS30390E-page 66  
1997 Microchip Technology Inc.  
PIC16C7X  
8.3  
Timer1 Operation in Asynchronous  
Counter Mode  
EXAMPLE 8-1: READING A 16-BIT FREE-  
RUNNING TIMER  
Applicable Devices  
; All interrupts are disabled  
72 73 73A 74 74A 76 77  
MOVF  
MOVWF TMPH  
MOVF TMR1L, W ;Read low byte  
MOVWF TMPL  
MOVF TMR1H, W ;Read high byte  
SUBWF TMPH,  
TMR1H, W ;Read high byte  
;
If control bit T1SYNC (T1CON<2>) is set, the external  
clock input is not synchronized. The timer continues to  
increment asynchronous to the internal phase clocks.  
The timer will continue to run during SLEEP and can  
generate an interrupt on overflow which will wake-up  
the processor. However, special precautions in soft-  
ware are needed to read/write the timer (Section 8.3.2).  
;
W
;Sub 1st read  
; with 2nd read  
BTFSC STATUS,Z ;Is result = 0  
GOTO CONTINUE ;Good 16-bit read  
;
In asynchronous counter mode, Timer1 can not be  
used as a time-base for capture or compare operations.  
; TMR1L may have rolled over between the read  
; of the high and low bytes. Reading the high  
; and low bytes now will read a good value.  
;
8.3.1  
EXTERNAL CLOCK INPUT TIMING WITH  
UNSYNCHRONIZED CLOCK  
MOVF  
MOVWF TMPH  
MOVF TMR1L, W ;Read low byte  
MOVWF TMPL  
; Re-enable the Interrupt (if required)  
CONTINUE ;Continue with your code  
TMR1H, W ;Read high byte  
;
If control bit T1SYNC is set, the timer will increment  
completely asynchronously. The input clock must meet  
certain minimum high time and low time requirements.  
Refer to the appropriate Electrical Specifications Sec-  
tion, timing parameters 45, 46, and 47.  
;
8.4  
Timer1 Oscillator  
Applicable Devices  
72 73 73A 74 74A 76 77  
8.3.2  
READING AND WRITING TIMER1 IN  
ASYNCHRONOUS COUNTER MODE  
Reading TMR1H or TMR1L while the timer is running,  
from an external asynchronous clock, will guarantee a  
valid read (taken care of in hardware). However, the  
user should keep in mind that reading the 16-bit timer  
in two 8-bit values itself poses certain problems since  
the timer may overflow between the reads.  
A crystal oscillator circuit is built in between pins T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit T1OSCEN (T1CON<3>). The oscilla-  
tor is a low power oscillator rated up to 200 kHz. It will  
continue to run during SLEEP. It is primarily intended  
for a 32 kHz crystal. Table 8-1 shows the capacitor  
selection for the Timer1 oscillator.  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write conten-  
tion may occur by writing to the timer registers while the  
register is incrementing. This may produce an unpre-  
dictable value in the timer register.  
The Timer1 oscillator is identical to the LP oscillator.  
The user must provide a software time delay to ensure  
proper oscillator start-up.  
Reading the 16-bit value requires some care.  
Example 8-1 is an example routine to read the 16-bit  
timer value. This is useful if the timer cannot be  
stopped.  
TABLE 8-1:  
CAPACITOR SELECTION  
FOR THE TIMER1  
OSCILLATOR  
Osc Type  
Freq  
C1  
C2  
LP  
32 kHz  
100 kHz  
200 kHz  
33 pF  
15 pF  
15 pF  
33 pF  
15 pF  
15 pF  
These values are for design guidance only.  
Crystals Tested:  
32.768 kHz Epson C-001R32.768K-A ± 20 PPM  
100 kHz  
200 kHz  
Epson C-2 100.00 KC-P  
STD XTL 200.000 kHz  
± 20 PPM  
± 20 PPM  
Note 1: Higher capacitance increases the stability  
of oscillator but also increases the start-up  
time.  
2: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appropri-  
ate values of external components.  
1997 Microchip Technology Inc.  
DS30390E-page 67  
 
 
 
PIC16C7X  
8.5  
Resetting Timer1 using a CCP Trigger  
Output  
8.6  
Resetting of Timer1 Register Pair  
(TMR1H,TMR1L)  
Applicable Devices  
72 73 73A 74 74A 76 77  
Applicable Devices  
72 73 73A 74 74A 76 77  
The CCP2 module is not implemented on the  
PIC16C72 device.  
TMR1H and TMR1L registers are not reset to 00h on a  
POR or any other reset except by the CCP1 and CCP2  
special event triggers.  
If the CCP1 or CCP2 module is configured in compare  
mode to generate  
(CCP1M3:CCP1M0 = 1011), this signal will reset  
Timer1.  
a
“special event trigger"  
T1CON register is reset to 00h on a Power-on Reset or  
a Brown-out Reset, which shuts off the timer and  
leaves a 1:1 prescale. In all other resets, the register is  
unaffected.  
Note: The special event triggers from the CCP1  
and CCP2 modules will not set interrupt  
flag bit TMR1IF (PIR1<0>).  
8.7  
Timer1 Prescaler  
Applicable Devices  
72 73 73A 74 74A 76 77  
Timer1 must be configured for either timer or synchro-  
nized counter mode to take advantage of this feature.  
If Timer1 is running in asynchronous counter mode, this  
reset operation may not work.  
The prescaler counter is cleared on writes to the  
TMR1H or TMR1L registers.  
In the event that a write to Timer1 coincides with a spe-  
cial event trigger from CCP1 or CCP2, the write will  
take precedence.  
In this mode of operation, the CCPRxH:CCPRxL regis-  
ters pair effectively becomes the period register for  
Timer1.  
TABLE 8-2:  
REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on:  
POR,  
BOR  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x 0000 000u  
0Bh,8Bh,  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
10Bh,18Bh  
(1,2)  
(2)  
(2)  
(2)  
0000 0000 0000 0000  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
--00 0000 --uu uuuu  
0Ch  
8Ch  
0Eh  
0Fh  
10h  
PIR1  
PIE1  
PSPIF  
PSPIE  
ADIF RCIF  
ADIE RCIE  
TXIF  
TXIE  
SSPIF  
SSPIE  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
(1,2)  
(2)  
TMR1L Holding register for the Least Significant Byte of the 16-bit TMR1 register  
TMR1H Holding register for the Most Significant Byte of the 16-bit TMR1 register  
T1CON  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the Timer1 module.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.  
2: The PIC16C72 does not have a Parallel Slave Port or a USART, these bits are unimplemented, read as '0'.  
DS30390E-page 68  
1997 Microchip Technology Inc.  
PIC16C7X  
9.1  
Timer2 Prescaler and Postscaler  
Applicable Devices  
9.0  
TIMER2 MODULE  
Applicable Devices  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
Timer2 is an 8-bit timer with a prescaler and a  
postscaler. It can be used as the PWM time-base for  
PWM mode of the CCP module(s). The TMR2 register  
is readable and writable, and is cleared on any device  
reset.  
• a write to the TMR2 register  
• a write to the T2CON register  
• any device reset (Power-on Reset, MCLR reset,  
Watchdog Timer reset, or Brown-out Reset)  
The input clock (FOSC/4) has a prescale option of 1:1,  
1:4  
or  
1:16,  
selected  
by  
control  
bits  
TMR2 is not cleared when T2CON is written.  
T2CKPS1:T2CKPS0 (T2CON<1:0>).  
9.2  
Output of TMR2  
Applicable Devices  
72 73 73A 74 74A 76 77  
The Timer2 module has an 8-bit period register PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register.The PR2 register is ini-  
tialized to FFh upon reset.  
The output of TMR2 (before the postscaler) is fed to the  
Synchronous Serial Port module which optionally uses  
it to generate shift clock.  
The match output of TMR2 goes through a 4-bit  
postscaler (which gives a 1:1 to 1:16 scaling inclusive)  
to generate a TMR2 interrupt (latched in flag bit  
TMR2IF, (PIR1<1>)).  
FIGURE 9-1: TIMER2 BLOCK DIAGRAM  
Sets flag  
TMR2  
output (1)  
bit TMR2IF  
Timer2 can be shut off by clearing control bit TMR2ON  
(T2CON<2>) to minimize power consumption.  
Reset  
Prescaler  
1:1, 1:4, 1:16  
Figure 9-2 shows the Timer2 control register.  
TMR2 reg  
FOSC/4  
Postscaler  
1:1 to 1:16  
2
Comparator  
EQ  
4
PR2 reg  
Note 1: TMR2 register output can be software selected  
by the SSP Module as a baud clock.  
1997 Microchip Technology Inc.  
DS30390E-page 69  
PIC16C7X  
FIGURE 9-2: T2CON:TIMER2 CONTROL REGISTER (ADDRESS 12h)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit0  
R
= Readable bit  
W = Writable bit  
U
bit7  
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
Unimplemented: Read as '0'  
bit 6-3: TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
1111= 1:16 Postscale  
bit 2:  
TMR2ON: Timer2 On bit  
1 = Timer2 is on  
0 = Timer2 is off  
bit 1-0: T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
TABLE 9-1:  
REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on:  
POR,  
BOR  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x 0000 000u  
0Bh,8Bh,  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
10Bh,18Bh  
PSPIF(1,2)  
PSPIE(1,2)  
ADIF  
ADIE  
RCIF(2)  
RCIE(2)  
TXIF(2)  
TXIE(2)  
SSPIF  
SSPIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
-000 0000 -000 0000  
1111 1111 1111 1111  
0Ch  
PIR1  
8Ch  
PIE1  
11h  
TMR2  
T2CON  
PR2  
Timer2 module’s register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Timer2 Period Register  
12h  
92h  
Legend:  
x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the Timer2 module.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.  
2: The PIC16C72 does not have a Parallel Slave Port or a USART, these bits are unimplemented, read as '0'.  
DS30390E-page 70  
1997 Microchip Technology Inc.  
PIC16C7X  
CCP1 module:  
10.0 CAPTURE/COMPARE/PWM  
MODULE(s)  
Capture/Compare/PWM Register1 (CCPR1) is com-  
prised of two 8-bit registers: CCPR1L (low byte) and  
CCPR1H (high byte). The CCP1CON register controls  
the operation of CCP1. All are readable and writable.  
Applicable Devices  
72 73 73A 74 74A 76 77 CCP1  
72 73 73A 74 74A 76 77 CCP2  
CCP2 module:  
Each CCP (Capture/Compare/PWM) module contains  
a 16-bit register which can operate as a 16-bit capture  
register, as a 16-bit compare register or as a PWM  
master/slave Duty Cycle register. Both the CCP1 and  
CCP2 modules are identical in operation, with the  
exception of the operation of the special event trigger.  
Table 10-1 and Table 10-2 show the resources and  
interactions of the CCP module(s). In the following sec-  
tions, the operation of a CCP module is described with  
respect to CCP1. CCP2 operates the same as CCP1,  
except where noted.  
Capture/Compare/PWM Register2 (CCPR2) is com-  
prised of two 8-bit registers: CCPR2L (low byte) and  
CCPR2H (high byte). The CCP2CON register controls  
the operation of CCP2. All are readable and writable.  
For use of the CCP modules, refer to the Embedded  
Control Handbook, "Using the CCP Modules" (AN594).  
TABLE 10-1: CCP MODE - TIMER  
RESOURCE  
CCP Mode  
Timer Resource  
Capture  
Compare  
PWM  
Timer1  
Timer1  
Timer2  
TABLE 10-2: INTERACTION OF TWO CCP MODULES  
CCPx Mode CCPy Mode  
Interaction  
Capture  
Capture  
Compare  
PWM  
Capture  
Compare  
Compare  
PWM  
Same TMR1 time-base.  
The compare should be configured for the special event trigger, which clears TMR1.  
The compare(s) should be configured for the special event trigger, which clears TMR1.  
The PWMs will have the same frequency, and update rate (TMR2 interrupt).  
PWM  
Capture  
Compare  
None  
None  
PWM  
1997 Microchip Technology Inc.  
DS30390E-page 71  
 
 
PIC16C7X  
FIGURE 10-1: CCP1CON REGISTER (ADDRESS 17h)/CCP2CON REGISTER (ADDRESS 1Dh)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CCPxX CCPxY CCPxM3 CCPxM2 CCPxM1 CCPxM0  
bit0  
R = Readable bit  
W = Writable bit  
bit7  
U = Unimplemented bit,  
read as ‘0’  
- n =Value at POR reset  
bit 7-6: Unimplemented: Read as '0'  
bit 5-4: CCPxX:CCPxY: PWM Least Significant bits  
Capture Mode: Unused  
Compare Mode: Unused  
PWM Mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.  
bit 3-0: CCPxM3:CCPxM0: CCPx Mode Select bits  
0000= Capture/Compare/PWM off (resets CCPx module)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (CCPxIF bit is set)  
1001= Compare mode, clear output on match (CCPxIF bit is set)  
1010= Compare mode, generate software interrupt on match (CCPxIF bit is set, CCPx pin is unaffected)  
1011= Compare mode, trigger special event (CCPxIF bit is set; CCP1 resets TMR1; CCP2 resets TMR1  
and starts an A/D conversion (if A/D module is enabled))  
11xx= PWM mode  
10.1  
Capture Mode  
Applicable Devices  
72 73 73A 74 74A 76 77  
FIGURE 10-2: CAPTURE MODE  
OPERATION BLOCK  
DIAGRAM  
In Capture mode, CCPR1H:CCPR1L captures the  
16-bit value of the TMR1 register when an event occurs  
on pin RC2/CCP1. An event is defined as:  
Set flag bit CCP1IF  
(PIR1<2>)  
Prescaler  
÷ 1, 4, 16  
RC2/CCP1  
Pin  
CCPR1H  
CCPR1L  
TMR1L  
• Every falling edge  
• Every rising edge  
Capture  
Enable  
and  
edge detect  
• Every 4th rising edge  
• Every 16th rising edge  
TMR1H  
CCP1CON<3:0>  
An event is selected by control bits CCP1M3:CCP1M0  
(CCP1CON<3:0>). When a capture is made, the inter-  
rupt request flag bit CCP1IF (PIR1<2>) is set. It must  
be cleared in software. If another capture occurs before  
the value in register CCPR1 is read, the old captured  
value will be lost.  
Q’s  
10.1.2 TIMER1 MODE SELECTION  
Timer1 must be running in timer mode or synchronized  
counter mode for the CCP module to use the capture  
feature. In asynchronous counter mode, the capture  
operation may not work.  
10.1.1 CCP PIN CONFIGURATION  
In Capture mode, the RC2/CCP1 pin should be config-  
ured as an input by setting the TRISC<2> bit.  
10.1.3 SOFTWARE INTERRUPT  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit  
CCP1IE (PIE1<2>) clear to avoid false interrupts and  
should clear the flag bit CCP1IF following any such  
change in operating mode.  
Note: If the RC2/CCP1 is configured as an out-  
put, a write to the port can cause a capture  
condition.  
DS30390E-page 72  
1997 Microchip Technology Inc.  
PIC16C7X  
10.1.4 CCP PRESCALER  
10.2.1 CCP PIN CONFIGURATION  
There are four prescaler settings, specified by bits  
CCP1M3:CCP1M0. Whenever the CCP module is  
turned off, or the CCP module is not in capture mode,  
the prescaler counter is cleared. This means that any  
reset will clear the prescaler counter.  
The user must configure the RC2/CCP1 pin as an out-  
put by clearing the TRISC<2> bit.  
Note: Clearing the CCP1CON register will force  
the RC2/CCP1 compare output latch to the  
default low level. This is not the data latch.  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared, therefore the first capture may be from  
a non-zero prescaler. Example 10-1 shows the recom-  
mended method for switching between capture pres-  
calers. This example also clears the prescaler counter  
and will not generate the “false” interrupt.  
10.2.2 TIMER1 MODE SELECTION  
Timer1 must be running in Timer mode or Synchro-  
nized Counter mode if the CCP module is using the  
compare feature. In Asynchronous Counter mode, the  
compare operation may not work.  
10.2.3 SOFTWARE INTERRUPT MODE  
EXAMPLE 10-1: CHANGING BETWEEN  
CAPTURE PRESCALERS  
When generate software interrupt is chosen the CCP1  
pin is not affected. Only a CCP interrupt is generated (if  
enabled).  
CLRF  
CCP1CON  
;Turn CCP module off  
MOVLW NEW_CAPT_PS ;Load the W reg with  
; the new prescaler  
10.2.4 SPECIAL EVENT TRIGGER  
; mode value and CCP ON  
MOVWF CCP1CON  
;Load CCP1CON with this  
; value  
In this mode, an internal hardware trigger is generated  
which may be used to initiate an action.  
The special event trigger output of CCP1 resets the  
TMR1 register pair. This allows the CCPR1 register to  
effectively be a 16-bit programmable period register for  
Timer1.  
10.2  
Compare Mode  
Applicable Devices  
72 73 73A 74 74A 76 77  
In Compare mode, the 16-bit CCPR1 register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the RC2/CCP1 pin is:  
The special trigger output of CCP2 resets the TMR1  
register pair, and starts an A/D conversion (if the A/D  
module is enabled).  
• Driven High  
For the PIC16C72 only, the special event trigger output  
of CCP1 resets the TMR1 register pair, and starts an  
A/D conversion (if the A/D module is enabled).  
• Driven Low  
• Remains Unchanged  
The action on the pin is based on the value of control  
bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the  
same time, interrupt flag bit CCP1IF is set.  
Note: The special event trigger from the  
CCP1and CCP2 modules will not set inter-  
rupt flag bit TMR1IF (PIR1<0>).  
FIGURE 10-3: COMPARE MODE  
OPERATION BLOCK  
DIAGRAM  
Special event trigger will:  
reset Timer1, but not set interrupt flag bit TMR1IF (PIR1<0>),  
and set bit GO/DONE (ADCON0<2>)  
which starts an A/D conversion (CCP1 only for PIC16C72,  
CCP2 only for PIC16C73/73A/74/74A/76/77).  
Special Event Trigger  
Set flag bit CCP1IF  
(PIR1<2>)  
CCPR1H CCPR1L  
Q
S
R
Output  
Logic  
Comparator  
match  
RC2/CCP1  
Pin  
TRISC<2>  
Output Enable  
TMR1H TMR1L  
CCP1CON<3:0>  
Mode Select  
1997 Microchip Technology Inc.  
DS30390E-page 73  
 
PIC16C7X  
10.3.1 PWM PERIOD  
10.3  
PWM Mode  
Applicable Devices  
72 73 73A 74 74A 76 77  
The PWM period is specified by writing to the PR2 reg-  
ister. The PWM period can be calculated using the fol-  
lowing formula:  
In Pulse Width Modulation (PWM) mode, the CCPx pin  
produces up to a 10-bit resolution PWM output. Since  
the CCP1 pin is multiplexed with the PORTC data latch,  
the TRISC<2> bit must be cleared to make the CCP1  
pin an output.  
PWM period = [(PR2) + 1] 4 TOSC •  
(TMR2 prescale value)  
PWM frequency is defined as 1 / [PWM period].  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
Note: Clearing the CCP1CON register will force  
the CCP1 PWM output latch to the default  
low level. This is not the PORTC I/O data  
latch.  
• TMR2 is cleared  
• The CCP1 pin is set (exception: if PWM duty  
cycle = 0%, the CCP1 pin will not be set)  
Figure 10-4 shows a simplified block diagram of the  
CCP module in PWM mode.  
• The PWM duty cycle is latched from CCPR1L into  
CCPR1H  
For a step by step procedure on how to set up the CCP  
module for PWM operation, see Section 10.3.3.  
Note: The Timer2 postscaler (see Section 9.1) is  
not used in the determination of the PWM  
frequency.The postscaler could be used to  
have a servo update rate at a different fre-  
quency than the PWM output.  
FIGURE 10-4: SIMPLIFIED PWM BLOCK  
DIAGRAM  
CCP1CON<5:4>  
Duty cycle registers  
CCPR1L  
10.3.2 PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available: the CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time:  
CCPR1H (Slave)  
Q
R
S
Comparator  
TMR2  
RC2/CCP1  
(Note 1)  
PWM duty cycle = (CCPR1L:CCP1CON<5:4>) •  
Tosc (TMR2 prescale value)  
TRISC<2>  
Comparator  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPR1H until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPR1H is a read-only register.  
Clear Timer,  
CCP1 pin and  
latch D.C.  
PR2  
Note 1: 8-bit timer is concatenated with 2-bit internal Q clock  
or 2 bits of the prescaler to create 10-bit time-base.  
The CCPR1H register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
A PWM output (Figure 10-5) has a time base (period)  
and a time that the output stays high (duty cycle). The  
frequency of the PWM is the inverse of the period  
(1/period).  
When the CCPR1H and 2-bit latch match TMR2 con-  
catenated with an internal 2-bit Q clock or 2 bits of the  
TMR2 prescaler, the CCP1 pin is cleared.  
FIGURE 10-5: PWM OUTPUT  
Maximum PWM resolution (bits) for a given PWM  
frequency:  
Period  
FOSC  
log(  
)
FPWM  
=
bits  
log(2)  
Duty Cycle  
TMR2 = PR2  
Note: If the PWM duty cycle value is longer than  
the PWM period the CCP1 pin will not be  
cleared.  
TMR2 = Duty Cycle  
TMR2 = PR2  
DS30390E-page 74  
1997 Microchip Technology Inc.  
 
 
PIC16C7X  
In order to achieve higher resolution, the PWM fre-  
quency must be decreased. In order to achieve higher  
PWM frequency, the resolution must be decreased.  
EXAMPLE 10-2: PWM PERIOD AND DUTY  
CYCLE CALCULATION  
Desired PWM frequency is 78.125 kHz,  
Fosc = 20 MHz  
TMR2 prescale = 1  
Table 10-3 lists example PWM frequencies and resolu-  
tions for Fosc = 20 MHz. The TMR2 prescaler and PR2  
values are also shown.  
1/78.125 kHz= [(PR2) + 1] • 4 • 1/20 MHz • 1  
10.3.3 SET-UP FOR PWM OPERATION  
12.8 µs = [(PR2) + 1] • 4 • 50 ns • 1  
PR2  
= 63  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
Find the maximum resolution of the duty cycle that can  
be used with a 78.125 kHz frequency and 20 MHz  
oscillator:  
1. Set the PWM period by writing to the PR2 regis-  
ter.  
1/78.125 kHz= 2PWM RESOLUTION • 1/20 MHz • 1  
12.8 µs = 2PWM RESOLUTION • 50 ns • 1  
2. Set the PWM duty cycle by writing to the  
CCPR1L register and CCP1CON<5:4> bits.  
3. Make the CCP1 pin an output by clearing the  
TRISC<2> bit.  
256  
log(256) = (PWM Resolution) • log(2)  
8.0 = PWM Resolution  
= 2PWM RESOLUTION  
4. Set the TMR2 prescale value and enable Timer2  
by writing to T2CON.  
5. Configure the CCP1 module for PWM operation.  
At most, an 8-bit resolution duty cycle can be obtained  
from a 78.125 kHz frequency and a 20 MHz oscillator,  
i.e., 0 CCPR1L:CCP1CON<5:4> 255. Any value  
greater than 255 will result in a 100% duty cycle.  
TABLE 10-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz  
PWM Frequency  
Timer Prescaler (1, 4, 16)  
1.22 kHz 4.88 kHz 19.53 kHz 78.12 kHz 156.3 kHz 208.3 kHz  
16  
0xFF  
10  
4
1
1
0x3F  
8
1
0x1F  
7
1
PR2 Value  
0xFF  
10  
0xFF  
10  
0x17  
5.5  
Maximum Resolution (bits)  
TABLE 10-4: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1  
Value on:  
POR,  
BOR  
Value on  
all other  
resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Ch  
PIR1  
PSPIF(1,2) ADIF RCIF(2)  
TXIF(2)  
SSPIF  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP2IF ---- ---0 ---- ---0  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
0Dh(2)  
PIR2  
8Ch  
PIE1  
PSPIE(1,2) ADIE RCIE(2)  
TXIE(2)  
SSPIE  
8Dh(2)  
87h  
PIE2  
CCP2IE ---- ---0 ---- ---0  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
TRISC  
TMR1L  
TMR1H  
T1CON  
CCPR1L  
PORTC Data Direction Register  
0Eh  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1register  
0Fh  
10h  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
15h  
Capture/Compare/PWM register1 (LSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
16h  
CCPR1H Capture/Compare/PWM register1 (MSB)  
17h  
CCP1CON  
CCPR2L  
CCP1X  
CCP1Y  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
xxxx xxxx uuuu uuuu  
1Bh(2)  
1Ch(2)  
1Dh(2)  
Capture/Compare/PWM register2 (LSB)  
CCPR2H Capture/Compare/PWM register2 (MSB)  
CCP2CON CCP2X CCP2Y  
xxxx xxxx uuuu uuuu  
CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by Capture and Timer1.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.  
2: The PIC16C72 does not have a Parallel Slave Port, USART or CCP2 module, these bits are unimplemented, read as '0'.  
1997 Microchip Technology Inc.  
DS30390E-page 75  
 
PIC16C7X  
TABLE 10-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Value on:  
POR,  
BOR  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Ch  
PIR1  
PSPIF(1,2)  
ADIF  
RCIF(2)  
TXIF(2)  
SSPIF  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP2IF ---- ---0 ---- ---0  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
0Dh(2)  
PIR2  
8Ch  
PIE1  
PSPIE(1,2)  
ADIE  
RCIE(2)  
TXIE(2)  
SSPIE  
8Dh(2)  
87h  
PIE2  
CCP2IE ---- ---0 ---- ---0  
1111 1111 1111 1111  
0000 0000 0000 0000  
TRISC  
TMR2  
PORTC Data Direction Register  
Timer2 module’s register  
11h  
92h  
PR2  
Timer2 module’s period register  
1111 1111 1111 1111  
12h  
T2CON  
CCPR1L  
CCPR1H  
CCP1CON  
CCPR2L  
CCPR2H  
CCP2CON  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
15h  
Capture/Compare/PWM register1 (LSB)  
Capture/Compare/PWM register1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
16h  
17h  
CCP1X  
CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
1Bh(2)  
1Ch(2)  
1Dh(2)  
Capture/Compare/PWM register2 (LSB)  
Capture/Compare/PWM register2 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCP2X  
CCP2Y CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.  
2: The PIC16C72 does not have a Parallel Slave Port, USART or CCP2 module, these bits are unimplemented, read as '0'.  
DS30390E-page 76  
1997 Microchip Technology Inc.  
Applicable Devices  
PIC16C7X  
72 73 73A 74 74A 76 77  
11.0 SYNCHRONOUS SERIAL  
PORT (SSP) MODULE  
11.1  
SSP Module Overview  
The Synchronous Serial Port (SSP) module is a serial  
interface useful for communicating with other periph-  
eral or microcontroller devices. These peripheral  
devices may be Serial EEPROMs, shift registers, dis-  
play drivers, A/D converters, etc. The SSP module can  
operate in one of two modes:  
• Serial Peripheral Interface (SPI)  
• Inter-Integrated Circuit (I2C)  
2
The SSP module in I C mode works the same in all  
PIC16C7X devices that have an SSP module. However  
the SSP Module in SPI mode has differences between  
the PIC16C76/77 and the other PIC16C7X devices.  
The register definitions and operational description of  
SPI mode has been split into two sections because of  
the differences between the PIC16C76/77 and the  
other PIC16C7X devices. The default reset values of  
both the SPI modules is the same regardless of the  
device:  
11.2 SPI Mode for PIC16C72/73/73A/74/74A..........78  
11.3 SPI Mode for PIC16C76/77..............................83  
11.4 I2C™ Overview ................................................89  
11.5 SSP I2C Operation...........................................93  
Refer to Application Note AN578, “Use of the SSP  
2
Module in the I C Multi-Master Environment.”  
1997 Microchip Technology Inc.  
DS30390E-page 77  
Applicable Devices  
PIC16C7X  
72 73 73A 74 74A 76 77  
11.2  
SPI Mode for PIC16C72/73/73A/74/74A  
This section contains register definitions and opera-  
tional characteristics of the SPI module for the  
PIC16C72, PIC16C73, PIC16C73A, PIC16C74,  
PIC16C74A.  
FIGURE 11-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)  
U-0  
U-0  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
R = Readable bit  
W = Writable bit  
bit7  
bit0  
U = Unimplemented bit,  
read as ‘0’  
- n =Value at POR reset  
bit 7-6: Unimplemented: Read as '0'  
2
bit 5:  
bit 4:  
bit 3:  
bit 2:  
D/A: Data/Address bit (I C mode only)  
1 = Indicates that the last byte received or transmitted was data  
0 = Indicates that the last byte received or transmitted was address  
2
P: Stop bit (I C mode only. This bit is cleared when the SSP module is disabled, SSPEN is cleared)  
1 = Indicates that a stop bit has been detected last (this bit is '0' on RESET)  
0 = Stop bit was not detected last  
2
S: Start bit (I C mode only. This bit is cleared when the SSP module is disabled, SSPEN is cleared)  
1 = Indicates that a start bit has been detected last (this bit is '0' on RESET)  
0 = Start bit was not detected last  
2
R/W: Read/Write bit information (I C mode only)  
This bit holds the R/W bit information following the last address match. This bit is valid from the address  
match to the next start bit, stop bit, or ACK bit.  
1 = Read  
0 = Write  
2
bit 1:  
bit 0:  
UA: Update Address (10-bit I C mode only)  
1 = Indicates that the user needs to update the address in the SSPADD register  
0 = Address does not need to be updated  
BF: Buffer Full Status bit  
2
Receive (SPI and I C modes)  
1 = Receive complete, SSPBUF is full  
0 = Receive not complete, SSPBUF is empty  
2
Transmit (I C mode only)  
1 = Transmit in progress, SSPBUF is full  
0 = Transmit complete, SSPBUF is empty  
DS30390E-page 78  
1997 Microchip Technology Inc.  
Applicable Devices  
PIC16C7X  
72 73 73A 74 74A 76 77  
FIGURE 11-2: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
WCOL SSPOV SSPEN  
bit7  
SSPM3 SSPM2 SSPM1 SSPM0  
bit0  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
- n =Value at POR reset  
bit 7:  
WCOL: Write Collision Detect bit  
1 = The SSPBUF register is written while it is still transmitting the previous word  
(must be cleared in software)  
0 = No collision  
bit 6:  
SSPOV: Receive Overflow Detect bit  
In SPI mode  
1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow,  
the data in SSPSR register is lost. Overflow can only occur in slave mode. The user must read the SSP-  
BUF, even if only transmitting data, to avoid setting overflow. In master mode the overflow bit is not set  
since each new reception (and transmission) is initiated by writing to the SSPBUF register.  
0 = No overflow  
2
In I C mode  
1 = A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don’t care"  
in transmit mode. SSPOV must be cleared in software in either mode.  
0 = No overflow  
bit 5:  
SSPEN: Synchronous Serial Port Enable bit  
In SPI mode  
1 = Enables serial port and configures SCK, SDO, and SDI as serial port pins  
0 = Disables serial port and configures these pins as I/O port pins  
2
In I C mode  
1 = Enables the serial port and configures the SDA and SCL pins as serial port pins  
0 = Disables serial port and configures these pins as I/O port pins  
In both modes, when enabled, these pins must be properly configured as input or output.  
bit 4:  
CKP: Clock Polarity Select bit  
In SPI mode  
1 = Idle state for clock is a high level. Transmit happens on falling edge, receive on rising edge.  
0 = Idle state for clock is a low level. Transmit happens on rising edge, receive on falling edge.  
2
In I C mode  
SCK release control  
1 = Enable clock  
0 = Holds clock low (clock stretch) (Used to ensure data setup time)  
bit 3-0: SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
0000= SPI master mode, clock = Fosc/4  
0001= SPI master mode, clock = Fosc/16  
0010= SPI master mode, clock = Fosc/64  
0011= SPI master mode, clock = TMR2 output/2  
0100= SPI slave mode, clock = SCK pin. SS pin control enabled.  
0101= SPI slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin.  
2
0110= I C slave mode, 7-bit address  
2
0111= I C slave mode, 10-bit address  
2
1011= I C firmware controlled Master Mode (slave idle)  
2
1110= I C slave mode, 7-bit address with start and stop bit interrupts enabled  
2
1111= I C slave mode, 10-bit address with start and stop bit interrupts enabled  
1997 Microchip Technology Inc.  
DS30390E-page 79  
Applicable Devices  
PIC16C7X  
72 73 73A 74 74A 76 77  
11.2.1 OPERATION OF SSP MODULE IN SPI  
MODE  
EXAMPLE 11-1: LOADING THE SSPBUF  
(SSPSR) REGISTER  
Applicable Devices  
BSF  
STATUS, RP0  
;Specify Bank 1  
;Has data been  
;received  
;(transmit  
;complete)?  
LOOP BTFSS SSPSTAT, BF  
72 73 73A 74 74A 76 77  
The SPI mode allows 8-bits of data to be synchro-  
nously transmitted and received simultaneously. To  
accomplish communication, typically three pins are  
used:  
GOTO LOOP  
BCF  
MOVF SSPBUF, W  
;No  
STATUS, RP0  
;Specify Bank 0  
;W reg = contents  
;of SSPBUF  
;Save in user RAM  
;W reg = contents  
; of TXDATA  
• Serial Data Out (SDO)  
• Serial Data In (SDI)  
• Serial Clock (SCK)  
MOVWF RXDATA  
MOVF TXDATA, W  
Additionally a fourth pin may be used when in a slave  
mode of operation:  
MOVWF SSPBUF  
;New data to xmit  
• Slave Select (SS)  
The block diagram of the SSP module, when in SPI  
mode (Figure 11-3), shows that the SSPSR register is  
not directly readable or writable, and can only be  
accessed from addressing the SSPBUF register. Addi-  
tionally, the SSP status register (SSPSTAT) indicates  
the various status conditions.  
When initializing the SPI, several options need to be  
specified.This is done by programming the appropriate  
control bits in the SSPCON register (SSPCON<5:0>).  
These control bits allow the following to be specified:  
• Master Mode (SCK is the clock output)  
• Slave Mode (SCK is the clock input)  
FIGURE 11-3: SSP BLOCK DIAGRAM  
(SPI MODE)  
• Clock Polarity (Output/Input data on the Rising/  
Falling edge of SCK)  
• Clock Rate (Master mode only)  
• Slave Select Mode (Slave mode only)  
Internal  
data bus  
The SSP consists of a transmit/receive Shift Register  
(SSPSR) and a Buffer register (SSPBUF). The SSPSR  
shifts the data in and out of the device, MSb first. The  
SSPBUF holds the data that was written to the SSPSR,  
until the received data is ready. Once the 8-bits of data  
have been received, that byte is moved to the SSPBUF  
register. Then the Buffer Full bit, BF (SSPSTAT<0>)  
and flag bit SSPIF are set. This double buffering of the  
received data (SSPBUF) allows the next byte to start  
reception before reading the data that was just  
received. Any write to the SSPBUF register during  
transmission/reception of data will be ignored, and the  
write collision detect bit, WCOL (SSPCON<7>) will be  
set. User software must clear bit WCOL so that it can  
be determined if the following write(s) to the SSPBUF  
completed successfully. When the application software  
is expecting to receive valid data, the SSPBUF register  
should be read before the next byte of data to transfer  
is written to the SSPBUF register.The Buffer Full bit BF  
(SSPSTAT<0>) indicates when the SSPBUF register  
has been loaded with the received data (transmission  
is complete). When the SSPBUF is read, bit BF is  
cleared. This data may be irrelevant if the SPI is only a  
transmitter. Generally the SSP Interrupt is used to  
determine when the transmission/reception has com-  
pleted. The SSPBUF register must be read and/or writ-  
ten. If the interrupt method is not going to be used, then  
software polling can be done to ensure that a write col-  
lision does not occur. Example 11-1 shows the loading  
of the SSPBUF (SSPSR) register for data transmission.  
The shaded instruction is only required if the received  
data is meaningful.  
Read  
Write  
SSPBUF reg  
SSPSR reg  
shift  
clock  
RC4/SDI/SDA  
RC5/SDO  
bit0  
Control  
Enable  
SS  
RA5/SS/AN4  
Edge  
Select  
2
Clock Select  
SSPM3:SSPM0  
4
TMR2 output  
2
Edge  
Select  
TCY  
Prescaler  
4, 16, 64  
RC3/SCK/  
SCL  
TRISC<3>  
DS30390E-page 80  
1997 Microchip Technology Inc.  
 
 
Applicable Devices  
PIC16C7X  
72 73 73A 74 74A 76 77  
To enable the serial port, SSP enable bit SSPEN  
The master can initiate the data transfer at any time  
because it controls the SCK. The master determines  
when the slave (Processor 2) is to broadcast data by  
the software protocol.  
(SSPCON<5>) must be set.To reset or reconfigure SPI  
mode, clear enable bit SSPEN, re-initialize SSPCON  
register, and then set enable bit SSPEN. This config-  
ures the SDI, SDO, SCK, and SS pins as serial port  
pins. For the pins to behave as the serial port function,  
they must have their data direction bits (in the TRIS reg-  
ister) appropriately programmed. That is:  
In master mode the data is transmitted/received as  
soon as the SSPBUF register is written to. If the SPI is  
only going to receive, the SCK output could be disabled  
(programmed as an input). The SSPSR register will  
continue to shift in the signal present on the SDI pin at  
the programmed clock rate. As each byte is received, it  
will be loaded into the SSPBUF register as if a normal  
received byte (interrupts and status bits appropriately  
set). This could be useful in receiver applications as a  
“line activity monitor” mode.  
• SDI must have TRISC<4> set  
• SDO must have TRISC<5> cleared  
• SCK (Master mode) must have TRISC<3>  
cleared  
• SCK (Slave mode) must have TRISC<3> set  
• SS must have TRISA<5> set (if implemented)  
In slave mode, the data is transmitted and received as  
the external clock pulses appear on SCK. When the  
last bit is latched interrupt flag bit SSPIF (PIR1<3>) is  
set.  
Any serial port function that is not desired may be over-  
ridden by programming the corresponding data direc-  
tion (TRIS) register to the opposite value. An example  
would be in master mode where you are only sending  
data (to a display driver), then both SDI and SS could  
be used as general purpose outputs by clearing their  
corresponding TRIS register bits.  
The clock polarity is selected by appropriately program-  
ming bit CKP (SSPCON<4>). This then would give  
waveforms for SPI communication as shown in  
Figure 11-5 and Figure 11-6 where the MSB is trans-  
mitted first. In master mode, the SPI clock rate (bit rate)  
is user programmable to be one of the following:  
Figure 11-4 shows a typical connection between two  
microcontrollers. The master controller (Processor 1)  
initiates the data transfer by sending the SCK signal.  
Data is shifted out of both shift registers on their pro-  
grammed clock edge, and latched on the opposite edge  
of the clock. Both processors should be programmed to  
the same Clock Polarity (CKP), then both controllers  
would send and receive data at the same time.  
Whether the data is meaningful (or dummy data)  
depends on the application software. This leads to  
three scenarios for data transmission:  
• Fosc/4 (or TCY)  
• Fosc/16 (or 4 TCY)  
• Fosc/64 (or 16 TCY)  
• Timer2 output/2  
This allows a maximum bit clock frequency (at 20 MHz)  
of 5 MHz. When in slave mode the external clock must  
meet the minimum high and low times.  
In sleep mode, the slave can transmit and receive data  
and wake the device from sleep.  
• Master sends data — Slave sends dummy data  
• Master sends data — Slave sends data  
• Master sends dummy data — Slave sends data  
FIGURE 11-4: SPI MASTER/SLAVE CONNECTION  
SPI Master SSPM3:SSPM0 = 00xxb  
SPI Slave SSPM3:SSPM0 = 010xb  
SDO  
SDI  
Serial Input Buffer  
(SSPBUF register)  
Serial Input Buffer  
(SSPBUF register)  
SDI  
SDO  
Shift Register  
Shift Register  
(SSPSR)  
(SSPSR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCK  
SCK  
PROCESSOR 1  
PROCESSOR 2  
1997 Microchip Technology Inc.  
DS30390E-page 81  
 
Applicable Devices  
PIC16C7X  
72 73 73A 74 74A 76 77  
The SS pin allows a synchronous slave mode. The  
SPI must be in slave mode (SSPCON<3:0> = 04h)  
and the TRISA<5> bit must be set the for synchro-  
nous slave mode to be enabled. When the SS pin is  
low, transmission and reception are enabled and  
the SDO pin is driven. When the SS pin goes high,  
the SDO pin is no longer driven, even if in the mid-  
dle of a transmitted byte, and becomes a floating  
output. If the SS pin is taken low without resetting  
SPI mode, the transmission will continue from the  
point at which it was taken high. External pull-up/  
pull-down resistors may be desirable, depending on the  
application.  
To emulate two-wire communication, the SDO pin can  
be connected to the SDI pin. When the SPI needs to  
operate as a receiver the SDO pin can be configured as  
an input. This disables transmissions from the SDO.  
The SDI can always be left as an input (SDI function)  
since it cannot create a bus conflict.  
FIGURE 11-5: SPI MODE TIMING, MASTER MODE OR SLAVE MODE W/O SS CONTROL  
SCK  
(CKP = 0)  
SCK  
(CKP = 1)  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
bit0  
SDO  
SDI  
bit7  
SSPIF  
FIGURE 11-6: SPI MODE TIMING, SLAVE MODE WITH SS CONTROL  
SS  
SCK  
(CKP = 0)  
SCK  
(CKP = 1)  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
bit0  
SDO  
SDI  
bit7  
SSPIF  
TABLE 11-1: REGISTERS ASSOCIATED WITH SPI OPERATION  
Value on:  
POR,  
BOR  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh  
0Ch  
INTCON  
PIR1  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
(1,2)  
(2)  
(2)  
PSPIF  
PSPIE  
ADIF RCIF  
ADIE RCIE  
TXIF  
TXIE  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
(1,2)  
(2)  
(2)  
8Ch  
87h  
PIE1  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TRISC  
PORTC Data Direction Register  
1111 1111 1111 1111  
13h  
14h  
85h  
94h  
SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register  
xxxx xxxx uuuu uuuu  
SSPCON  
TRISA  
WCOL  
SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 0000 0000 0000 0000  
PORTA Data Direction Register  
D/A R/W  
--11 1111 --11 1111  
--00 0000 --00 0000  
SSPSTAT  
P
S
UA  
BF  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the SSP in SPI mode.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A, always maintain these bits clear.  
2: The PIC16C72 does not have a Parallel Slave Port or USART, these bits are unimplemented, read as '0'.  
DS30390E-page 82  
1997 Microchip Technology Inc.  
Applicable Devices  
PIC16C7X  
72 73 73A 74 74A 76 77  
11.3  
SPI Mode for PIC16C76/77  
This section contains register definitions and opera-  
tional characteristics of the SPI module on the  
PIC16C76 and PIC16C77 only.  
FIGURE 11-7: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)(PIC16C76/77)  
R/W-0 R/W-0  
SMP CKE  
bit7  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
bit0  
- n =Value at POR reset  
bit 7:  
bit 6:  
SMP: SPI data input sample phase  
SPI Master Mode  
1 = Input data sampled at end of data output time  
0 = Input data sampled at middle of data output time  
SPI Slave Mode  
SMP must be cleared when SPI is used in slave mode  
CKE: SPI Clock Edge Select (Figure 11-11, Figure 11-12, and Figure 11-13)  
CKP = 0  
1 = Data transmitted on rising edge of SCK  
0 = Data transmitted on falling edge of SCK  
CKP = 1  
1 = Data transmitted on falling edge of SCK  
0 = Data transmitted on rising edge of SCK  
2
bit 5:  
bit 4:  
D/A: Data/Address bit (I C mode only)  
1 = Indicates that the last byte received or transmitted was data  
0 = Indicates that the last byte received or transmitted was address  
2
P: Stop bit (I C mode only. This bit is cleared when the SSP module is disabled, or when the Start bit is  
detected last, SSPEN is cleared)  
1 = Indicates that a stop bit has been detected last (this bit is '0' on RESET)  
0 = Stop bit was not detected last  
2
bit 3:  
bit 2:  
S: Start bit (I C mode only. This bit is cleared when the SSP module is disabled, or when the Stop bit is  
detected last, SSPEN is cleared)  
1 = Indicates that a start bit has been detected last (this bit is '0' on RESET)  
0 = Start bit was not detected last  
2
R/W: Read/Write bit information (I C mode only)  
This bit holds the R/W bit information following the last address match. This bit is only valid from the  
address match to the next start bit, stop bit, or ACK bit.  
1 = Read  
0 = Write  
2
bit 1:  
bit 0:  
UA: Update Address (10-bit I C mode only)  
1 = Indicates that the user needs to update the address in the SSPADD register  
0 = Address does not need to be updated  
BF: Buffer Full Status bit  
2
Receive (SPI and I C modes)  
1 = Receive complete, SSPBUF is full  
0 = Receive not complete, SSPBUF is empty  
2
Transmit (I C mode only)  
1 = Transmit in progress, SSPBUF is full  
0 = Transmit complete, SSPBUF is empty  
1997 Microchip Technology Inc.  
DS30390E-page 83  
Applicable Devices  
PIC16C7X  
72 73 73A 74 74A 76 77  
FIGURE 11-8: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)(PIC16C76/77)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
WCOL SSPOV SSPEN  
bit7  
SSPM3 SSPM2 SSPM1 SSPM0  
bit0  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
- n =Value at POR reset  
bit 7:  
WCOL: Write Collision Detect bit  
1 = The SSPBUF register is written while it is still transmitting the previous word  
(must be cleared in software)  
0 = No collision  
bit 6:  
SSPOV: Receive Overflow Indicator bit  
In SPI mode  
1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow,  
the data in SSPSR is lost. Overflow can only occur in slave mode.The user must read the SSPBUF, even  
if only transmitting data, to avoid setting overflow. In master mode the overflow bit is not set since each  
new reception (and transmission) is initiated by writing to the SSPBUF register.  
0 = No overflow  
2
In I C mode  
1 = A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don’t care"  
in transmit mode. SSPOV must be cleared in software in either mode.  
0 = No overflow  
bit 5:  
SSPEN: Synchronous Serial Port Enable bit  
In SPI mode  
1 = Enables serial port and configures SCK, SDO, and SDI as serial port pins  
0 = Disables serial port and configures these pins as I/O port pins  
2
In I C mode  
1 = Enables the serial port and configures the SDA and SCL pins as serial port pins  
0 = Disables serial port and configures these pins as I/O port pins  
In both modes, when enabled, these pins must be properly configured as input or output.  
bit 4:  
CKP: Clock Polarity Select bit  
In SPI mode  
1 = Idle state for clock is a high level  
0 = Idle state for clock is a low level  
2
In I C mode  
SCK release control  
1 = Enable clock  
0 = Holds clock low (clock stretch) (Used to ensure data setup time)  
bit 3-0: SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
0000= SPI master mode, clock = FOSC/4  
0001= SPI master mode, clock = FOSC/16  
0010= SPI master mode, clock = FOSC/64  
0011= SPI master mode, clock = TMR2 output/2  
0100= SPI slave mode, clock = SCK pin. SS pin control enabled.  
0101= SPI slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin  
2
0110= I C slave mode, 7-bit address  
2
0111= I C slave mode, 10-bit address  
2
1011= I C firmware controlled master mode (slave idle)  
2
1110= I C slave mode, 7-bit address with start and stop bit interrupts enabled  
2
1111= I C slave mode, 10-bit address with start and stop bit interrupts enabled  
DS30390E-page 84  
1997 Microchip Technology Inc.  
Applicable Devices  
PIC16C7X  
72 73 73A 74 74A 76 77  
11.3.1 SPI MODE FOR PIC16C76/77  
EXAMPLE 11-2: LOADING THE SSPBUF  
(SSPSR) REGISTER  
The SPI mode allows 8-bits of data to be synchro-  
nously transmitted and received simultaneously. To  
accomplish communication, typically three pins are  
used:  
(PIC16C76/77)  
BCF  
BSF  
STATUS, RP1  
STATUS, RP0  
;Specify Bank 1  
;
LOOP BTFSS SSPSTAT, BF  
;Has data been  
;received  
;(transmit  
;complete)?  
;No  
;Specify Bank 0  
;W reg = contents  
; of SSPBUF  
;Save in user RAM  
• Serial Data Out (SDO) RC5/SDO  
• Serial Data In (SDI) RC4/SDI/SDA  
• Serial Clock (SCK) RC3/SCK/SCL  
GOTO LOOP  
Additionally a fourth pin may be used when in a slave  
mode of operation:  
BCF  
STATUS, RP0  
MOVF SSPBUF, W  
• Slave Select (SS) RA5/SS/AN4  
MOVWF RXDATA  
When initializing the SPI, several options need to be  
specified.This is done by programming the appropriate  
control bits in the SSPCON register (SSPCON<5:0>)  
and SSPSTAT<7:6>. These control bits allow the fol-  
lowing to be specified:  
MOVF TXDATA, W  
;W reg = contents  
; of TXDATA  
;New data to xmit  
MOVWF SSPBUF  
The block diagram of the SSP module, when in SPI  
mode (Figure 11-9), shows that the SSPSR is not  
directly readable or writable, and can only be accessed  
from addressing the SSPBUF register. Additionally, the  
SSP status register (SSPSTAT) indicates the various  
status conditions.  
• Master Mode (SCK is the clock output)  
• Slave Mode (SCK is the clock input)  
• Clock Polarity (Idle state of SCK)  
• Clock edge (output data on rising/falling edge of  
SCK)  
• Clock Rate (Master mode only)  
FIGURE 11-9: SSP BLOCK DIAGRAM  
(SPI MODE)(PIC16C76/77)  
• Slave Select Mode (Slave mode only)  
The SSP consists of a transmit/receive Shift Register  
(SSPSR) and a buffer register (SSPBUF). The SSPSR  
shifts the data in and out of the device, MSb first. The  
SSPBUF holds the data that was written to the SSPSR  
until the received data is ready. Once the 8-bits of data  
have been received, that byte is moved to the SSPBUF  
register. Then the buffer full detect bit BF  
(SSPSTAT<0>) and interrupt flag bit SSPIF (PIR1<3>)  
are set. This double buffering of the received data  
(SSPBUF) allows the next byte to start reception before  
reading the data that was just received. Any write to the  
SSPBUF register during transmission/reception of data  
will be ignored, and the write collision detect bit WCOL  
(SSPCON<7>) will be set. User software must clear the  
WCOL bit so that it can be determined if the following  
write(s) to the SSPBUF register completed success-  
fully. When the application software is expecting to  
receive valid data, the SSPBUF should be read before  
the next byte of data to transfer is written to the  
SSPBUF. Buffer full bit BF (SSPSTAT<0>) indicates  
when SSPBUF has been loaded with the received data  
(transmission is complete). When the SSPBUF is read,  
bit BF is cleared. This data may be irrelevant if the SPI  
is only a transmitter. Generally the SSP Interrupt is  
used to determine when the transmission/reception  
has completed.The SSPBUF must be read and/or writ-  
ten. If the interrupt method is not going to be used, then  
software polling can be done to ensure that a write col-  
lision does not occur. Example 11-2 shows the loading  
of the SSPBUF (SSPSR) for data transmission. The  
shaded instruction is only required if the received data  
is meaningful.  
Internal  
data bus  
Read  
Write  
SSPBUF reg  
SSPSR reg  
shift  
clock  
RC4/SDI/SDA  
RC5/SDO  
bit0  
Control  
Enable  
SS  
RA5/SS/AN4  
Edge  
Select  
2
Clock Select  
SSPM3:SSPM0  
4
TMR2 output  
2
Edge  
Select  
TCY  
Prescaler  
4, 16, 64  
RC3/SCK/  
SCL  
TRISC<3>  
1997 Microchip Technology Inc.  
DS30390E-page 85  
 
 
Applicable Devices  
PIC16C7X  
72 73 73A 74 74A 76 77  
To enable the serial port, SSP Enable bit, SSPEN  
(SSPCON<5>) must be set.To reset or reconfigure SPI  
mode, clear bit SSPEN, re-initialize the SSPCON reg-  
ister, and then set bit SSPEN. This configures the SDI,  
SDO, SCK, and SS pins as serial port pins. For the pins  
to behave as the serial port function, they must have  
their data direction bits (in the TRISC register) appro-  
priately programmed. That is:  
The master can initiate the data transfer at any time  
because it controls the SCK. The master determines  
when the slave (Processor 2) is to broadcast data by  
the firmware protocol.  
In master mode the data is transmitted/received as  
soon as the SSPBUF register is written to. If the SPI is  
only going to receive, the SCK output could be disabled  
(programmed as an input). The SSPSR register will  
continue to shift in the signal present on the SDI pin at  
the programmed clock rate. As each byte is received, it  
will be loaded into the SSPBUF register as if a normal  
received byte (interrupts and status bits appropriately  
set). This could be useful in receiver applications as a  
“line activity monitor” mode.  
• SDI must have TRISC<4> set  
• SDO must have TRISC<5> cleared  
• SCK (Master mode) must have TRISC<3>  
cleared  
• SCK (Slave mode) must have TRISC<3> set  
• SS must have TRISA<5> set  
In slave mode, the data is transmitted and received as  
the external clock pulses appear on SCK. When the  
last bit is latched the interrupt flag bit SSPIF (PIR1<3>)  
is set.  
Any serial port function that is not desired may be over-  
ridden by programming the corresponding data direc-  
tion (TRIS) register to the opposite value. An example  
would be in master mode where you are only sending  
data (to a display driver), then both SDI and SS could  
be used as general purpose outputs by clearing their  
corresponding TRIS register bits.  
The clock polarity is selected by appropriately program-  
ming bit CKP (SSPCON<4>). This then would give  
waveforms for SPI communication as shown in  
Figure 11-11, Figure 11-12, and Figure 11-13 where  
the MSB is transmitted first. In master mode, the SPI  
clock rate (bit rate) is user programmable to be one of  
the following:  
Figure 11-10 shows a typical connection between two  
microcontrollers. The master controller (Processor 1)  
initiates the data transfer by sending the SCK signal.  
Data is shifted out of both shift registers on their pro-  
grammed clock edge, and latched on the opposite edge  
of the clock. Both processors should be programmed to  
same Clock Polarity (CKP), then both controllers would  
send and receive data at the same time. Whether the  
data is meaningful (or dummy data) depends on the  
application firmware. This leads to three scenarios for  
data transmission:  
• FOSC/4 (or TCY)  
• FOSC/16 (or 4 • TCY)  
• FOSC/64 (or 16 • TCY)  
• Timer2 output/2  
This allows a maximum bit clock frequency (at 20 MHz)  
of 5 MHz. When in slave mode the external clock must  
meet the minimum high and low times.  
• Master sends data — Slave sends dummy data  
• Master sends data — Slave sends data  
In sleep mode, the slave can transmit and receive data  
and wake the device from sleep.  
• Master sends dummy data — Slave sends data  
FIGURE 11-10: SPI MASTER/SLAVE CONNECTION (PIC16C76/77)  
SPI Master SSPM3:SSPM0 = 00xxb  
SPI Slave SSPM3:SSPM0 = 010xb  
SDO  
SDI  
Serial Input Buffer  
(SSPBUF)  
Serial Input Buffer  
(SSPBUF)  
SDI  
SDO  
SCK  
Shift Register  
(SSPSR)  
Shift Register  
(SSPSR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCK  
PROCESSOR 1  
PROCESSOR 2  
DS30390E-page 86  
1997 Microchip Technology Inc.  
 
Applicable Devices  
PIC16C7X  
72 73 73A 74 74A 76 77  
The SS pin allows a synchronous slave mode. The  
.
SPI must be in slave mode (SSPCON<3:0> = 04h)  
and the TRISA<5> bit must be set for the synchro-  
nous slave mode to be enabled. When the SS pin is  
low, transmission and reception are enabled and  
the SDO pin is driven. When the SS pin goes high,  
the SDO pin is no longer driven, even if in the mid-  
dle of a transmitted byte, and becomes a floating  
output. If the SS pin is taken low without resetting  
SPI mode, the transmission will continue from the  
point at which it was taken high. External pull-up/  
pull-down resistors may be desirable, depending on the  
application.  
Note: When the SPI is in Slave Mode with SS pin  
control enabled, (SSPCON<3:0> = 0100)  
the SPI module will reset if the SSpin is set  
to VDD.  
Note: If the SPI is used in Slave Mode with  
CKE = '1', then the SS pin control must be  
enabled.  
To emulate two-wire communication, the SDO pin can  
be connected to the SDI pin. When the SPI needs to  
operate as a receiver the SDO pin can be configured as  
an input. This disables transmissions from the SDO.  
The SDI can always be left as an input (SDI function)  
since it cannot create a bus conflict.  
FIGURE 11-11: SPI MODE TIMING, MASTER MODE (PIC16C76/77)  
SCK (CKP = 0,  
CKE = 0)  
SCK (CKP = 0,  
CKE = 1)  
SCK (CKP = 1,  
CKE = 0)  
SCK (CKP = 1,  
CKE = 1)  
bit2  
bit7  
bit6  
bit5  
bit3  
bit1  
bit0  
bit4  
SDO  
SDI (SMP = 0)  
bit7  
bit0  
SDI (SMP = 1)  
SSPIF  
bit7  
bit0  
FIGURE 11-12: SPI MODE TIMING (SLAVE MODE WITH CKE = 0) (PIC16C76/77)  
SS (optional)  
SCK (CKP = 0)  
SCK (CKP = 1)  
bit2  
bit7  
bit6  
bit5  
bit3  
bit1  
bit0  
bit4  
SDO  
SDI (SMP = 0)  
bit7  
bit0  
SSPIF  
1997 Microchip Technology Inc.  
DS30390E-page 87  
Applicable Devices  
PIC16C7X  
72 73 73A 74 74A 76 77  
FIGURE 11-13: SPI MODE TIMING (SLAVE MODE WITH CKE = 1) (PIC16C76/77)  
SS  
(not optional)  
SCK (CKP = 0)  
SCK (CKP = 1)  
bit2  
SDO  
bit7  
bit6  
bit5  
bit3  
bit1  
bit0  
bit4  
SDI (SMP = 0)  
SSPIF  
bit7  
bit0  
TABLE 11-2: REGISTERS ASSOCIATED WITH SPI OPERATION (PIC16C76/77)  
Value on:  
POR,  
BOR  
Value on  
all other  
resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh.  
10Bh,18Bh  
INTCON  
PIR1  
GIE  
PEIE  
T0IE  
INTE RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
(1)  
0Ch  
PSPIF  
PSPIE  
ADIF  
ADIE  
RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
(1)  
8Ch  
87h  
PIE1  
TRISC  
PORTC Data Direction Register  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
13h  
14h  
85h  
94h  
SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register  
SSPCON WCOL  
SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 0000 0000 0000 0000  
TRISA  
PORTA Data Direction Register  
D/A R/W  
--11 1111 --11 1111  
0000 0000 0000 0000  
SSPSTAT  
SMP  
CKE  
P
S
UA  
BF  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by the SSP in SPI mode.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C76, always maintain these bits clear.  
DS30390E-page 88  
1997 Microchip Technology Inc.  
Applicable Devices  
PIC16C7X  
72 73 73A 74 74A 76 77  
2
In both cases the master generates the clock signal.  
11.4  
I C™ Overview  
The output stages of the clock (SCL) and data (SDA)  
lines must have an open-drain or open-collector in  
order to perform the wired-AND function of the bus.  
External pull-up resistors are used to ensure a high  
level when no device is pulling the line down. The num-  
ber of devices that may be attached to the I C bus is  
limited only by the maximum bus loading specification  
of 400 pF.  
This section provides an overview of the Inter-Inte-  
2
grated Circuit (I C) bus, with Section 11.5 discussing  
2
the operation of the SSP module in I C mode.  
2
The I C bus is a two-wire serial interface developed by  
2
the Philips Corporation. The original specification, or  
standard mode, was for data transfers of up to 100  
Kbps. The enhanced specification (fast mode) is also  
supported. This device will communicate with both  
standard and fast mode devices if attached to the same  
bus. The clock will determine the data rate.  
11.4.1 INITIATING AND TERMINATING DATA  
TRANSFER  
2
The I C interface employs a comprehensive protocol to  
During times of no data transfer (idle time), both the  
clock line (SCL) and the data line (SDA) are pulled high  
through the external pull-up resistors. The START and  
STOP conditions determine the start and stop of data  
transmission.The START condition is defined as a high  
to low transition of the SDA when the SCL is high. The  
STOP condition is defined as a low to high transition of  
the SDA when the SCL is high. Figure 11-14 shows the  
START and STOP conditions. The master generates  
these conditions for starting and terminating data trans-  
fer. Due to the definition of the START and STOP con-  
ditions, when data is being transmitted, the SDA line  
can only change state when the SCL line is low.  
ensure reliable transmission and reception of data.  
When transmitting data, one device is the “master”  
which initiates transfer on the bus and generates the  
clock signals to permit that transfer, while the other  
device(s) acts as the “slave.All portions of the slave  
protocol are implemented in the SSP module’s hard-  
ware, except general call support, while portions of the  
master protocol need to be addressed in the  
PIC16CXX software. Table 11-3 defines some of the  
I C bus terminology. For additional information on the  
I C interface specification, refer to the Philips docu-  
ment “The I C bus and how to use it.#939839340011,  
which can be obtained from the Philips Corporation.  
2
2
2
2
In the I C interface protocol each device has an  
FIGURE 11-14: START AND STOP  
CONDITIONS  
address. When a master wishes to initiate a data trans-  
fer, it first transmits the address of the device that it  
wishes to “talk” to. All devices “listen” to see if this is  
their address. Within this address, a bit specifies if the  
master wishes to read-from/write-to the slave device.  
The master and slave are always in opposite modes  
(transmitter/receiver) of operation during a data trans-  
fer.That is they can be thought of as operating in either  
of these two relations:  
SDA  
S
SCL  
P
Change  
of Data  
Allowed  
Change  
of Data  
Allowed  
Start  
Condition  
Stop  
Condition  
• Master-transmitter and Slave-receiver  
• Slave-transmitter and Master-receiver  
2
TABLE 11-3: I C BUS TERMINOLOGY  
Term  
Description  
Transmitter  
Receiver  
Master  
The device that sends the data to the bus.  
The device that receives the data from the bus.  
The device which initiates the transfer, generates the clock and terminates the transfer.  
The device addressed by a master.  
Slave  
Multi-master  
More than one master device in a system. These masters can attempt to control the bus at the  
same time without corrupting the message.  
Arbitration  
Procedure that ensures that only one of the master devices will control the bus. This ensure that  
the transfer data does not get corrupted.  
Synchronization  
Procedure where the clock signals of two or more devices are synchronized.  
1997 Microchip Technology Inc.  
DS30390E-page 89  
 
 
Applicable Devices  
PIC16C7X  
72 73 73A 74 74A 76 77  
2
11.4.2 ADDRESSING I C DEVICES  
FIGURE 11-17: SLAVE-RECEIVER  
ACKNOWLEDGE  
There are two address formats. The simplest is the  
7-bit address format with a R/W bit (Figure 11-15). The  
more complex is the 10-bit address with a R/W bit  
(Figure 11-16). For 10-bit address format, two bytes  
must be transmitted with the first five bits specifying this  
to be a 10-bit address.  
Data  
Output by  
Transmitter  
Data  
Output by  
Receiver  
not acknowledge  
acknowledge  
SCL from  
Master  
9
8
2
1
FIGURE 11-15: 7-BIT ADDRESS FORMAT  
S
MSb  
LSb  
Clock Pulse for  
Acknowledgment  
Start  
Condition  
R/W ACK  
S
slave address  
Sent by  
Slave  
If the master is receiving the data (master-receiver), it  
generates an acknowledge signal for each received  
byte of data, except for the last byte. To signal the end  
of data to the slave-transmitter, the master does not  
generate an acknowledge (not acknowledge). The  
slave then releases the SDA line so the master can  
generate the STOP condition. The master can also  
generate the STOP condition during the acknowledge  
pulse for valid termination of data transfer.  
S
R/W  
ACK  
Start Condition  
Read/Write pulse  
Acknowledge  
2
FIGURE 11-16: I C 10-BIT ADDRESS FORMAT  
S
1 1 1 1 0 A9 A8 R/W ACK A7 A6 A5 A4 A3 A2 A1 A0 ACK  
sent by slave  
If the slave needs to delay the transmission of the next  
byte, holding the SCL line low will force the master into  
a wait state. Data transfer continues when the slave  
releases the SCL line.This allows the slave to move the  
received data or fetch the data it needs to transfer  
before allowing the clock to start. This wait state tech-  
nique can also be implemented at the bit level,  
Figure 11-18.The slave will inherently stretch the clock,  
when it is a transmitter, but will not when it is a receiver.  
The slave will have to clear the SSPCON<4> bit to  
enable clock stretching when it is a receiver.  
= 0 for write  
S
- Start Condition  
R/W - Read/Write Pulse  
ACK - Acknowledge  
11.4.3 TRANSFER ACKNOWLEDGE  
All data must be transmitted per byte, with no limit to the  
number of bytes transmitted per data transfer. After  
each byte, the slave-receiver generates an acknowl-  
edge bit (ACK) (Figure 11-17). When a slave-receiver  
doesn’t acknowledge the slave address or received  
data, the master must abort the transfer. The slave  
must leave SDA high so that the master can generate  
the STOP condition (Figure 11-14).  
FIGURE 11-18: DATA TRANSFER WAIT STATE  
SDA  
MSB  
acknowledgment  
signal from receiver  
acknowledgment  
signal from receiver  
byte complete  
interrupt with receiver  
clock line held low while  
interrupts are serviced  
SCL  
S
1
2
7
8
9
1
2
3 8  
9
P
Start  
Condition  
Stop  
Condition  
Address  
R/W ACK Wait  
State  
Data  
ACK  
DS30390E-page 90  
1997 Microchip Technology Inc.  
 
 
 
 
Applicable Devices  
PIC16C7X  
72 73 73A 74 74A 76 77  
Figure 11-19 and Figure 11-20 show Master-transmit-  
ter and Master-receiver data transfer sequences.  
SCL is high), but occurs after a data transfer acknowl-  
edge pulse (not the bus-free state). This allows a mas-  
ter to send “commands” to the slave and then receive  
the requested information or to address a different  
slave device. This sequence is shown in Figure 11-21.  
When a master does not wish to relinquish the bus (by  
generating a STOP condition), a repeated START con-  
dition (Sr) must be generated. This condition is identi-  
cal to the start condition (SDA goes high-to-low while  
FIGURE 11-19: MASTER-TRANSMITTER SEQUENCE  
For 7-bit address:  
For 10-bit address:  
S Slave AddressR/W A1Slave Address A2  
S Slave Address R/W A Data A Data A/A P  
First 7 bits  
Second byte  
'0' (write)  
data transferred  
(n bytes - acknowledge)  
(write)  
A master transmitter addresses a slave receiver with a  
7-bit address. The transfer direction is not changed.  
Data A  
Data A/A P  
A = acknowledge (SDA low)  
A = not acknowledge (SDA high)  
From master to slave  
S = Start Condition  
A master transmitter addresses a slave receiver  
with a 10-bit address.  
From slave to master  
P = Stop Condition  
FIGURE 11-20: MASTER-RECEIVER SEQUENCE  
For 10-bit address:  
S Slave AddressR/W A1Slave Address A2  
First 7 bits Second byte  
(write)  
For 7-bit address:  
S Slave Address R/W A Data A Data A  
P
'1' (read) data transferred  
(n bytes - acknowledge)  
A master reads a slave immediately after the first byte.  
SrSlave AddressR/W A3 Data A Data A P  
First 7 bits  
A = acknowledge (SDA low)  
A = not acknowledge (SDA high)  
From master to slave  
(read)  
S = Start Condition  
A master transmitter addresses a slave receiver  
with a 10-bit address.  
From slave to master  
P = Stop Condition  
FIGURE 11-21: COMBINED FORMAT  
(read or write)  
(n bytes + acknowledge)  
S Slave Address R/W A Data A/A Sr Slave Address R/W A Data A/A P  
(write)  
Direction of transfer  
may change at this point  
(read)  
Sr = repeated  
Start Condition  
Transfer direction of data and acknowledgment bits depends on R/Wbits.  
Combined format:  
SrSlave Address R/W A Slave Address A Data A  
First 7 bits Second byte  
Data A/A Sr Slave Address R/W A Data A  
First 7 bits  
Data A P  
(read)  
(write)  
Combined format - A master addresses a slave with a 10-bit address, then transmits  
data to this slave and reads data from this slave.  
A = acknowledge (SDA low)  
A = not acknowledge (SDA high)  
From master to slave  
S = Start Condition  
From slave to master  
P = Stop Condition  
1997 Microchip Technology Inc.  
DS30390E-page 91  
 
 
 
Applicable Devices  
PIC16C7X  
72 73 73A 74 74A 76 77  
11.4.4 MULTI-MASTER  
11.2.4.2 Clock Synchronization  
Clock synchronization occurs after the devices have  
started arbitration. This is performed using  
2
The I C protocol allows a system to have more than  
a
one master. This is called multi-master. When two or  
more masters try to transfer data at the same time, arbi-  
tration and synchronization occur.  
wired-AND connection to the SCL line. A high to low  
transition on the SCL line causes the concerned  
devices to start counting off their low period. Once a  
device clock has gone low, it will hold the SCL line low  
until its SCL high state is reached.The low to high tran-  
sition of this clock may not change the state of the SCL  
line, if another device clock is still within its low period.  
The SCL line is held low by the device with the longest  
low period. Devices with shorter low periods enter a  
high wait-state, until the SCL line comes high. When  
the SCL line comes high, all devices start counting off  
their high periods. The first device to complete its high  
period will pull the SCL line low.The SCL line high time  
is determined by the device with the shortest high  
period, Figure 11-23.  
11.4.4.1 ARBITRATION  
Arbitration takes place on the SDA line, while the SCL  
line is high. The master which transmits a high when  
the other master transmits a low loses arbitration  
(Figure 11-22), and turns off its data output stage. A  
master which lost arbitration can generate clock pulses  
until the end of the data byte where it lost arbitration.  
When the master devices are addressing the same  
device, arbitration continues into the data.  
FIGURE 11-22: MULTI-MASTER  
ARBITRATION  
(TWO MASTERS)  
FIGURE 11-23: CLOCK SYNCHRONIZATION  
transmitter 1 loses arbitration  
DATA 1 SDA  
start counting  
HIGH period  
wait  
state  
DATA 1  
DATA 2  
SDA  
CLK  
1
counter  
reset  
CLK  
2
SCL  
SCL  
Masters that also incorporate the slave function, and  
have lost arbitration must immediately switch over to  
slave-receiver mode. This is because the winning mas-  
ter-transmitter may be addressing it.  
Arbitration is not allowed between:  
• A repeated START condition  
• A STOP condition and a data bit  
• A repeated START condition and a STOP condi-  
tion  
Care needs to be taken to ensure that these conditions  
do not occur.  
DS30390E-page 92  
1997 Microchip Technology Inc.  
 
 
Applicable Devices  
PIC16C7X  
72 73 73A 74 74A 76 77  
2
2
The SSPCON register allows control of the I C opera-  
tion. Four mode selection bits (SSPCON<3:0>) allow  
11.5  
SSP I C Operation  
2
2
The SSP module in I C mode fully implements all slave  
functions, except general call support, and provides  
interrupts on start and stop bits in hardware to facilitate  
firmware implementations of the master functions. The  
SSP module implements the standard mode specifica-  
tions as well as 7-bit and 10-bit addressing. Two pins  
are used for data transfer. These are the  
RC3/SCK/SCL pin, which is the clock (SCL), and the  
RC4/SDI/SDA pin, which is the data (SDA). The user  
must configure these pins as inputs or outputs through  
the TRISC<4:3> bits. The SSP module functions are  
enabled by setting SSP Enable bit SSPEN (SSP-  
CON<5>).  
one of the following I C modes to be selected:  
2
• I C Slave mode (7-bit address)  
2
• I C Slave mode (10-bit address)  
2
• I C Slave mode (7-bit address), with start and  
stop bit interrupts enabled  
2
• I C Slave mode (10-bit address), with start and  
stop bit interrupts enabled  
2
• I C Firmware controlled Master Mode, slave is  
idle  
2
Selection of any I C mode, with the SSPEN bit set,  
forces the SCL and SDA pins to be open drain, pro-  
vided these pins are programmed to inputs by setting  
the appropriate TRISC bits.  
FIGURE 11-24: SSP BLOCK DIAGRAM  
2
The SSPSTAT register gives the status of the data  
transfer. This information includes detection of a  
START or STOP bit, specifies if the received byte was  
data or address if the next byte is the completion of  
10-bit address, and if this will be a read or write data  
transfer. The SSPSTAT register is read only.  
(I C MODE)  
Internal  
data bus  
Read  
Write  
The SSPBUF is the register to which transfer data is  
written to or read from. The SSPSR register shifts the  
data in or out of the device. In receive operations, the  
SSPBUF and SSPSR create a doubled buffered  
receiver. This allows reception of the next byte to begin  
before reading the last byte of received data. When the  
complete byte is received, it is transferred to the  
SSPBUF register and flag bit SSPIF is set. If another  
complete byte is received before the SSPBUF register  
is read, a receiver overflow has occurred and bit  
SSPOV (SSPCON<6>) is set and the byte in the  
SSPSR is lost.  
SSPBUF reg  
SSPSR reg  
RC3/SCK/SCL  
shift  
clock  
RC4/  
SDI/  
SDA  
MSb  
LSb  
Addr Match  
Match detect  
SSPADD reg  
The SSPADD register holds the slave address. In 10-bit  
mode, the user first needs to write the high byte of the  
address (1111 0 A9 A8 0). Following the high byte  
address match, the low byte of the address needs to be  
loaded (A7:A0).  
Set, Reset  
S, P bits  
Start and  
Stop bit detect  
(SSPSTAT reg)  
2
The SSP module has five registers for I C operation.  
These are the:  
• SSP Control Register (SSPCON)  
• SSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer (SSPBUF)  
• SSP Shift Register (SSPSR) - Not directly acces-  
sible  
• SSP Address Register (SSPADD)  
1997 Microchip Technology Inc.  
DS30390E-page 93  
Applicable Devices  
PIC16C7X  
72 73 73A 74 74A 76 77  
11.5.1 SLAVE MODE  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match, and the BF  
and SSPOV bits are clear, the following events occur:  
In slave mode, the SCL and SDA pins must be config-  
ured as inputs (TRISC<4:3> set). The SSP module will  
override the input state with the output data when  
required (slave-transmitter).  
a) The SSPSR register value is loaded into the  
SSPBUF register.  
b) The buffer full bit, BF is set.  
c) An ACK pulse is generated.  
When an address is matched or the data transfer after  
an address match is received, the hardware automati-  
cally will generate the acknowledge (ACK) pulse, and  
then load the SSPBUF register with the received value  
currently in the SSPSR register.  
d) SSP interrupt flag bit, SSPIF (PIR1<3>) is set  
(interrupt is generated if enabled) - on the falling  
edge of the ninth SCL pulse.  
In 10-bit address mode, two address bytes need to be  
received by the slave (Figure 11-16).The five Most Sig-  
nificant bits (MSbs) of the first address byte specify if  
this is a 10-bit address. Bit R/W (SSPSTAT<2>) must  
specify a write so the slave device will receive the sec-  
ond address byte. For a 10-bit address the first byte  
would equal ‘1111 0 A9 A8 0’, where A9 and A8 are  
the two MSbs of the address. The sequence of events  
for 10-bit address is as follows, with steps 7- 9 for  
slave-transmitter:  
There are certain conditions that will cause the SSP  
module not to give this ACK pulse. These are if either  
(or both):  
a) The buffer full bit BF (SSPSTAT<0>) was set  
before the transfer was received.  
b) The overflow bit SSPOV (SSPCON<6>) was set  
before the transfer was received.  
In this case, the SSPSR register value is not loaded  
into the SSPBUF, but bit SSPIF (PIR1<3>) is set.  
Table 11-4 shows what happens when a data transfer  
byte is received, given the status of bits BF and SSPOV.  
The shaded cells show the condition where user soft-  
ware did not properly clear the overflow condition. Flag  
bit BF is cleared by reading the SSPBUF register while  
bit SSPOV is cleared through software.  
1. Receive first (high) byte of Address (bits SSPIF,  
BF, and bit UA (SSPSTAT<1>) are set).  
2. Update the SSPADD register with second (low)  
byte of Address (clears bit UA and releases the  
SCL line).  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
The SCL clock input must have a minimum high and  
low for proper operation. The high and low times of the  
4. Receive second (low) byte of Address (bits  
SSPIF, BF, and UA are set).  
2
I C specification as well as the requirement of the SSP  
module is shown in timing parameter #100 and param-  
eter #101.  
5. Update the SSPADD register with the first (high)  
byte of Address, if match releases SCL line, this  
will clear bit UA.  
11.5.1.1 ADDRESSING  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
Once the SSP module has been enabled, it waits for a  
START condition to occur. Following the START condi-  
tion, the 8-bits are shifted into the SSPSR register. All  
incoming bits are sampled with the rising edge of the  
clock (SCL) line. The value of register SSPSR<7:1> is  
compared to the value of the SSPADD register. The  
7. Receive repeated START condition.  
8. Receive first (high) byte of Address (bits SSPIF  
and BF are set).  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
TABLE 11-4: DATA TRANSFER RECEIVED BYTE ACTIONS  
Status Bits as Data  
Transfer is Received  
Set bit SSPIF  
(SSP Interrupt occurs  
if enabled)  
Generate ACK  
Pulse  
BF  
SSPOV  
SSPSR SSPBUF  
0
1
1
0
0
0
1
1
Yes  
No  
No  
No  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
DS30390E-page 94  
1997 Microchip Technology Inc.  
 
Applicable Devices  
PIC16C7X  
72 73 73A 74 74A 76 77  
11.5.1.2 RECEPTION  
An SSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF (PIR1<3>) must be cleared in soft-  
ware. The SSPSTAT register is used to determine the  
status of the byte.  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/Wbit of the SSPSTAT reg-  
ister is cleared.The received address is loaded into the  
SSPBUF register.  
When the address byte overflow condition exists, then  
no acknowledge (ACK) pulse is given. An overflow con-  
dition is defined as either bit BF (SSPSTAT<0>) is set  
or bit SSPOV (SSPCON<6>) is set.  
2
FIGURE 11-25: I C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)  
Receiving Address  
A7 A6 A5 A4  
R/W=0  
Receiving Data  
Receiving Data  
ACK  
9
ACK  
9
ACK  
9
SDA  
SCL  
A3 A2 A1  
D5  
D2  
D0  
8
D5  
D2  
D0  
8
D7 D6  
D4 D3  
D7 D6  
D4 D3  
D1  
7
D1  
7
3
7
1
2
4
5
4
3
6
5
6
1
2
3
6
1
2
4
8
5
P
S
SSPIF (PIR1<3>)  
Cleared in software  
Bus Master  
terminates  
transfer  
BF (SSPSTAT<0>)  
SSPBUF register is read  
SSPOV (SSPCON<6>)  
Bit SSPOV is set because the SSPBUF register is still full.  
ACK is not sent.  
1997 Microchip Technology Inc.  
DS30390E-page 95  
Applicable Devices  
PIC16C7X  
72 73 73A 74 74A 76 77  
11.5.1.3 TRANSMISSION  
An SSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF must be cleared in software, and  
the SSPSTAT register is used to determine the status  
of the byte. Flag bit SSPIF is set on the falling edge of  
the ninth clock pulse.  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register. The ACK pulse will  
be sent on the ninth bit, and pin RC3/SCK/SCL is held  
low. The transmit data must be loaded into the SSP-  
BUF register, which also loads the SSPSR register.  
Then pin RC3/SCK/SCL should be enabled by setting  
bit CKP (SSPCON<4>). The master must monitor the  
SCL pin prior to asserting another clock pulse. The  
slave devices may be holding off the master by stretch-  
ing the clock. The eight data bits are shifted out on the  
falling edge of the SCL input.This ensures that the SDA  
signal is valid during the SCL high time (Figure 11-26).  
As a slave-transmitter, the ACK pulse from the mas-  
ter-receiver is latched on the rising edge of the ninth  
SCL input pulse. If the SDA line was high (not ACK),  
then the data transfer is complete. When the ACK is  
latched by the slave, the slave logic is reset (resets  
SSPSTAT register) and the slave then monitors for  
another occurrence of the START bit. If the SDA line  
was low (ACK), the transmit data must be loaded into  
the SSPBUF register, which also loads the SSPSR reg-  
ister. Then pin RC3/SCK/SCL should be enabled by  
setting bit CKP.  
2
FIGURE 11-26: I C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)  
Receiving Address  
R/W = 1  
ACK  
Transmitting Data  
ACK  
9
SDA  
SCL  
A7 A6 A5 A4 A3 A2 A1  
D7 D6 D5 D4 D3 D2 D1 D0  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
S
P
SCL held low  
while CPU  
responds to SSPIF  
Data in  
sampled  
cleared in software  
SSPIF (PIR1<3>)  
BF (SSPSTAT<0>)  
From SSP interrupt  
service routine  
SSPBUF is written in software  
CKP (SSPCON<4>)  
Set bit after writing to SSPBUF  
(the SSPBUF must be written-to  
before the CKP bit can be set)  
DS30390E-page 96  
1997 Microchip Technology Inc.  
 
Applicable Devices  
PIC16C7X  
72 73 73A 74 74A 76 77  
11.5.2 MASTER MODE  
11.5.3 MULTI-MASTER MODE  
Master mode of operation is supported in firmware  
using interrupt generation on the detection of the  
START and STOP conditions. The STOP (P) and  
START (S) bits are cleared from a reset or when the  
SSP module is disabled.The STOP (P) and START (S)  
bits will toggle based on the START and STOP condi-  
In multi-master mode, the interrupt generation on the  
detection of the START and STOP conditions allows  
the determination of when the bus is free. The STOP  
(P) and START (S) bits are cleared from a reset or  
when the SSP module is disabled. The STOP (P) and  
START (S) bits will toggle based on the START and  
2
2
tions. Control of the I C bus may be taken when the P  
STOP conditions. Control of the I C bus may be taken  
bit is set, or the bus is idle and both the S and P bits are  
clear.  
when bit P (SSPSTAT<4>) is set, or the bus is idle and  
both the S and P bits clear. When the bus is busy,  
enabling the SSP Interrupt will generate the interrupt  
when the STOP condition occurs.  
In master mode the SCL and SDA lines are manipu-  
lated by clearing the corresponding TRISC<4:3> bit(s).  
The output level is always low, irrespective of the  
value(s) in PORTC<4:3>. So when transmitting data, a  
'1' data bit must have the TRISC<4> bit set (input) and  
a '0' data bit must have the TRISC<4> bit cleared (out-  
put).The same scenario is true for the SCL line with the  
TRISC<3> bit.  
In multi-master operation, the SDA line must be moni-  
tored to see if the signal level is the expected output  
level. This check only needs to be done when a high  
level is output. If a high level is expected and a low level  
is present, the device needs to release the SDA and  
SCL lines (set TRISC<4:3>). There are two stages  
where this arbitration can be lost, these are:  
The following events will cause SSP Interrupt Flag bit,  
SSPIF, to be set (SSP Interrupt if enabled):  
• Address Transfer  
• Data Transfer  
• START condition  
• STOP condition  
When the slave logic is enabled, the slave continues to  
receive. If arbitration was lost during the address trans-  
fer stage, communication to the device may be in  
progress. If addressed an ACK pulse will be generated.  
If arbitration was lost during the data transfer stage, the  
device will need to re-transfer the data at a later time.  
• Data transfer byte transmitted/received  
Master mode of operation can be done with either the  
slave mode idle (SSPM3:SSPM0 = 1011) or with the  
slave active. When both master and slave modes are  
enabled, the software needs to differentiate the  
source(s) of the interrupt.  
2
TABLE 11-5: REGISTERS ASSOCIATED WITH I C OPERATION  
Value on  
POR,  
BOR  
Value on all  
other resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x  
0000 000u  
0Bh, 8Bh,  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
10Bh,18Bh  
(1)  
PIR1  
PIE1  
PSPIF  
PSPIE  
ADIF  
ADIE  
RCIF  
RCIE  
TXIF  
TXIE  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
0Ch  
8Ch  
13h  
93h  
14h  
94h  
87h  
(1)  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register  
2
SSPADD Synchronous Serial Port (I C mode) Address Register  
SSPCON  
WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0  
(2)  
(2)  
SSPSTAT SMP  
CKE  
D/A  
P
S
R/W  
UA  
BF  
PORTC Data Direction register  
TRISC  
1111 1111  
1111 1111  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'.  
Shaded cells are not used by SSP module in SPI mode.  
Note 1: PSPIF and PSPIE are reserved on the PIC16C73/73A/76, always maintain these bits clear.  
2: The SMP and CKE bits are implemented on the PIC16C76/77 only. All other PIC16C7X devices have these two bits unim-  
plemented, read as '0'.  
1997 Microchip Technology Inc.  
DS30390E-page 97  
Applicable Devices  
PIC16C7X  
72 73 73A 74 74A 76 77  
2
FIGURE 11-27: OPERATION OF THE I C MODULE IN IDLE_MODE, RCV_MODE OR XMIT_MODE  
IDLE_MODE (7-bit):  
if (Addr_match)  
{
Set interrupt;  
if (R/W = 1)  
{
}
Send ACK = 0;  
set XMIT_MODE;  
else if (R/W = 0) set RCV_MODE;  
}
RCV_MODE:  
if ((SSPBUF=Full) OR (SSPOV = 1))  
{
Set SSPOV;  
Do not acknowledge;  
}
{
else  
transfer SSPSR SSPBUF;  
send ACK = 0;  
}
Receive 8-bits in SSPSR;  
Set interrupt;  
XMIT_MODE:  
While ((SSPBUF = Empty) AND (CKP=0)) Hold SCL Low;  
Send byte;  
Set interrupt;  
if ( ACK Received = 1)  
{
}
End of transmission;  
Go back to IDLE_MODE;  
else if ( ACK Received = 0) Go back to XMIT_MODE;  
IDLE_MODE (10-Bit):  
If (High_byte_addr_match AND (R/W = 0))  
{
PRIOR_ADDR_MATCH = FALSE;  
Set interrupt;  
if ((SSPBUF = Full) OR ((SSPOV = 1))  
{
Set SSPOV;  
Do not acknowledge;  
}
{
else  
Set UA = 1;  
Send ACK = 0;  
While (SSPADD not updated) Hold SCL low;  
Clear UA = 0;  
Receive Low_addr_byte;  
Set interrupt;  
Set UA = 1;  
If (Low_byte_addr_match)  
{
PRIOR_ADDR_MATCH = TRUE;  
Send ACK = 0;  
while (SSPADD not updated) Hold SCL low;  
Clear UA = 0;  
Set RCV_MODE;  
}
}
}
else if (High_byte_addr_match AND (R/W = 1)  
if (PRIOR_ADDR_MATCH)  
{
{
send ACK = 0;  
set XMIT_MODE;  
}
else PRIOR_ADDR_MATCH = FALSE;  
}
DS30390E-page 98  
1997 Microchip Technology Inc.  
PIC16C7X  
as a half duplex synchronous system that can commu-  
nicate with peripheral devices such as A/D or D/A inte-  
grated circuits, Serial EEPROMs etc.  
12.0 UNIVERSAL SYNCHRONOUS  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (USART)  
Applicable Devices  
The USART can be configured in the following modes:  
• Asynchronous (full duplex)  
72 73 73A 74 74A 76 77  
• Synchronous - Master (half duplex)  
• Synchronous - Slave (half duplex)  
The Universal Synchronous Asynchronous Receiver  
Transmitter (USART) module is one of the two serial  
I/O modules. (USART is also known as a Serial Com-  
munications Interface or SCI). The USART can be con-  
figured as a full duplex asynchronous system that can  
communicate with peripheral devices such as CRT ter-  
minals and personal computers, or it can be configured  
Bit SPEN (RCSTA<7>), and bits TRISC<7:6>, have to  
be set in order to configure pins RC6/TX/CK and RC7/  
RX/DT as the Universal Synchronous Asynchronous  
Receiver Transmitter.  
FIGURE 12-1: TXSTA:TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN  
R/W-0  
SYNC  
U-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
TRMT  
R = Readable bit  
W = Writable bit  
bit7  
bit0  
U = Unimplemented bit,  
read as ‘0’  
- n =Value at POR reset  
bit 7:  
CSRC: Clock Source Select bit  
Asynchronous mode  
Don’t care  
Synchronous mode  
1 = Master mode (Clock generated internally from BRG)  
0 = Slave mode (Clock from external source)  
bit 6:  
TX9: 9-bit Transmit Enable bit  
1 = Selects 9-bit transmission  
0 = Selects 8-bit transmission  
bit 5:  
TXEN: Transmit Enable bit  
1 = Transmit enabled  
0 = Transmit disabled  
Note: SREN/CREN overrides TXEN in SYNC mode.  
bit 4:  
SYNC: USART Mode Select bit  
1 = Synchronous mode  
0 = Asynchronous mode  
bit 3:  
bit 2:  
Unimplemented: Read as '0'  
BRGH: High Baud Rate Select bit  
Asynchronous mode  
1 = High speed  
Note: For the PIC16C73/73A/74/74A, the asynchronous high speed mode (BRGH = 1) may expe-  
rience a high rate of receive errors. It is recommended that BRGH = 0. If you desire a higher  
baud rate than BRGH = 0 can support, refer to the device errata for additional information,  
or use the PIC16C76/77.  
0 = Low speed  
Synchronous mode  
Unused in this mode  
bit 1:  
bit 0:  
TRMT: Transmit Shift Register Status bit  
1 = TSR empty  
0 = TSR full  
TX9D: 9th bit of transmit data. Can be parity bit.  
1997 Microchip Technology Inc.  
DS30390E-page 99  
PIC16C7X  
FIGURE 12-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
U-0  
R-0  
R-0  
R-x  
FERR  
OERR  
RX9D  
R = Readable bit  
W = Writable bit  
bit7  
bit0  
U = Unimplemented bit,  
read as ‘0’  
- n =Value at POR reset  
bit 7:  
bit 6:  
bit 5:  
SPEN: Serial Port Enable bit  
1 = Serial port enabled (Configures RC7/RX/DT and RC6/TX/CK pins as serial port pins)  
0 = Serial port disabled  
RX9: 9-bit Receive Enable bit  
1 = Selects 9-bit reception  
0 = Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode  
Don’t care  
Synchronous mode - master  
1 = Enables single receive  
0 = Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode - slave  
Unused in this mode  
bit 4:  
CREN: Continuous Receive Enable bit  
Asynchronous mode  
1 = Enables continuous receive  
0 = Disables continuous receive  
Synchronous mode  
1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0 = Disables continuous receive  
bit 3:  
bit 2:  
Unimplemented: Read as '0'  
FERR: Framing Error bit  
1 = Framing error (Can be updated by reading RCREG register and receive next valid byte)  
0 = No framing error  
bit 1:  
bit 0:  
OERR: Overrun Error bit  
1 = Overrun error (Can be cleared by clearing bit CREN)  
0 = No overrun error  
RX9D: 9th bit of received data (Can be parity bit)  
DS30390E-page 100  
1997 Microchip Technology Inc.  
PIC16C7X  
12.1  
USART Baud Rate Generator (BRG)  
Applicable Devices  
EXAMPLE 12-1: CALCULATING BAUD  
RATE ERROR  
72 73 73A 74 74A 76 77  
Desired Baud rate = Fosc / (64 (X + 1))  
9600  
X
=
=
16000000 /(64 (X + 1))  
25.042 = 25  
The BRG supports both the Asynchronous and Syn-  
chronous modes of the USART. It is a dedicated 8-bit  
baud rate generator. The SPBRG register controls the  
period of a free running 8-bit timer. In asynchronous  
mode bit BRGH (TXSTA<2>) also controls the baud  
rate. In synchronous mode bit BRGH is ignored.  
Table 12-1 shows the formula for computation of the  
baud rate for different USART modes which only apply  
in master mode (internal clock).  
Calculated Baud Rate=16000000 / (64 (25 + 1))  
=
=
9615  
Error  
(Calculated Baud Rate - Desired Baud Rate)  
Desired Baud Rate  
=
=
(9615 - 9600) / 9600  
0.16%  
Given the desired baud rate and Fosc, the nearest inte-  
ger value for the SPBRG register can be calculated  
using the formula in Table 12-1. From this, the error in  
baud rate can be determined.  
It may be advantageous to use the high baud rate  
(BRGH = 1) even for slower baud clocks. This is  
because the FOSC/(16(X + 1)) equation can reduce the  
baud rate error in some cases.  
Example 12-1 shows the calculation of the baud rate  
error for the following conditions:  
Note: For the PIC16C73/73A/74/74A, the asyn-  
chronous high speed mode (BRGH = 1)  
may experience a high rate of receive  
errors. It is recommended that BRGH = 0.  
If you desire a higher baud rate than  
BRGH = 0 can support, refer to the device  
errata for additional information, or use the  
PIC16C76/77.  
FOSC = 16 MHz  
Desired Baud Rate = 9600  
BRGH = 0  
SYNC = 0  
Writing a new value to the SPBRG register, causes the  
BRG timer to be reset (or cleared), this ensures the  
BRG does not wait for a timer overflow before output-  
ting the new baud rate.  
TABLE 12-1: BAUD RATE FORMULA  
SYNC  
BRGH = 0 (Low Speed)  
BRGH = 1 (High Speed)  
0
1
(Asynchronous) Baud Rate = FOSC/(64(X+1))  
(Synchronous) Baud Rate = FOSC/(4(X+1))  
Baud Rate= FOSC/(16(X+1))  
NA  
X = value in SPBRG (0 to 255)  
TABLE 12-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4 Bit 3 Bit 2  
Bit 1  
Bit 0  
0000 -010 0000 -010  
98h  
TXSTA  
CSRC TX9 TXEN SYNC  
BRGH TRMT TX9D  
FERR OERR RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
18h  
99h  
RCSTA SPEN RX9 SREN CREN  
SPBRG Baud Rate Generator Register  
Legend: x = unknown, -= unimplemented read as '0'. Shaded cells are not used by the BRG.  
1997 Microchip Technology Inc.  
DS30390E-page 101  
 
 
PIC16C7X  
TABLE 12-3: BAUD RATES FOR SYNCHRONOUS MODE  
FOSC = 20 MHz  
16 MHz  
KBAUD  
10 MHz  
KBAUD  
7.15909 MHz  
KBAUD  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
ERROR (decimal)  
SPBRG  
value  
ERROR (decimal)  
SPBRG  
value  
ERROR (decimal)  
%
%
%
%
KBAUD  
ERROR (decimal)  
0.3  
1.2  
2.4  
NA  
NA  
NA  
-
-
-
-
-
-
NA  
NA  
NA  
-
-
-
-
-
-
NA  
NA  
NA  
-
-
-
-
-
-
NA  
NA  
NA  
-
-
-
-
-
-
9.6  
NA  
-
+1.73  
+0.16  
+0.16  
-1.96  
0
-
NA  
-
+0.16  
+0.16  
-0.79  
+2.56  
0
-
9.766  
19.23  
75.76  
96.15  
312.5  
500  
+1.73  
+0.16  
-1.36  
+0.16  
+4.17  
0
255  
129  
32  
25  
7
4
0
255  
9.622  
19.24  
77.82  
94.20  
298.3  
NA  
+0.23  
+0.23  
+1.32  
-1.88  
-0.57  
-
185  
92  
22  
18  
5
-
0
255  
19.2  
76.8  
96  
300  
500  
HIGH  
LOW  
19.53  
76.92  
96.15  
294.1  
500  
255  
64  
51  
16  
9
19.23  
76.92  
95.24  
307.69  
500  
207  
51  
41  
12  
7
5000  
19.53  
-
-
0
255  
4000  
15.625  
-
-
0
255  
2500  
9.766  
-
-
1789.8  
6.991  
-
-
FOSC = 5.0688 MHz  
SPBRG  
4 MHz  
3.579545 MHz  
1 MHz  
32.768 kHz  
BAUD  
SPBRG  
value  
ERROR (decimal)  
SPBRG  
value KBAUD  
ERROR (decimal)  
SPBRG  
SPBRG  
value  
RATE KBAUD  
(K)  
%
value KBAUD  
%
KBAUD  
%
%
value KBAUD  
%
ERROR (decimal)  
ERROR (decimal)  
ERROR (decimal)  
0.3  
1.2  
2.4  
NA  
NA  
NA  
-
-
-
0
-
-
-
NA  
NA  
NA  
-
-
-
-
-
-
NA  
NA  
NA  
9.622  
19.04  
74.57  
99.43  
298.3  
NA  
-
-
-
-
-
-
92  
46  
11  
8
2
-
0
255  
NA  
1.202  
2.404  
9.615  
19.24  
83.34  
NA  
NA  
NA  
250  
0.9766  
-
-
207  
103  
25  
12  
2
-
-
-
0
0.303  
1.170  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
+1.14  
-2.48  
26  
6
-
-
-
-
-
-
-
+0.16  
+0.16  
+0.16  
+0.16  
-
-
-
-
-
-
-
-
-
9.6  
9.6  
131  
65  
15  
12  
3
-
0
255  
9.615  
19.231 +0.16  
76.923 +0.16  
1000  
NA  
NA  
+0.16  
103  
51  
12  
9
-
-
+0.23  
-0.83  
-2.90  
+3.57  
-0.57  
-
19.2  
76.8  
96  
300  
500  
HIGH  
LOW  
19.2  
79.2  
97.48  
316.8  
NA  
0
+3.13  
+1.54  
+5.60  
-
-
-
+8.51  
+4.17  
-
-
-
-
-
-
-
-
-
1267  
4.950  
100  
3.906  
0
255  
894.9  
3.496  
-
-
8.192  
0.032  
0
255  
255  
TABLE 12-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)  
FOSC = 20 MHz  
%
16 MHz  
10 MHz  
7.15909 MHz  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
%
%
%
KBAUD ERROR (decimal) KBAUD ERROR (decimal) KBAUD ERROR (decimal) KBAUD ERROR (decimal)  
0.3  
1.2  
2.4  
NA  
-
-
255  
129  
32  
15  
3
2
0
-
0
NA  
1.202  
2.404  
9.615  
19.23  
83.33  
NA  
NA  
NA  
250  
0.977  
-
-
207  
103  
25  
12  
2
-
-
-
0
NA  
1.202  
2.404  
9.766  
19.53  
78.13  
NA  
NA  
NA  
156.3  
0.6104  
-
-
129  
64  
15  
7
1
-
-
-
NA  
1.203  
2.380  
9.322  
18.64  
NA  
NA  
NA  
NA  
111.9  
0.437  
-
-
92  
46  
11  
5
-
-
-
-
1.221  
2.404  
9.469  
19.53  
78.13  
104.2  
312.5  
NA  
+1.73  
+0.16  
-1.36  
+1.73  
+1.73  
+8.51  
+4.17  
-
+0.16  
+0.16  
+0.16  
+0.16  
+0.16  
+0.16  
+1.73  
+1.73  
+0.23  
-0.83  
-2.90  
-2.90  
-
-
-
-
-
-
9.6  
19.2  
76.8  
96  
300  
500  
HIGH  
LOW  
+8.51  
+1.73  
-
-
-
-
-
-
-
-
-
-
312.5  
1.221  
-
-
0
255  
0
255  
255  
255  
FOSC = 5.0688 MHz  
4 MHz  
3.579545 MHz  
%
1 MHz  
32.768 kHz  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
%
%
%
%
KBAUD ERROR (decimal) KBAUD ERROR (decimal) KBAUD ERROR (decimal) KBAUD ERROR (decimal) KBAUD ERROR (decimal)  
0.3  
1.2  
2.4  
0.31  
1.2  
2.4  
+3.13  
0
0
+3.13  
+3.13  
+3.13  
-
-
-
-
-
255  
65  
32  
7
3
0
-
-
-
0
0.3005 -0.17  
207  
51  
25  
-
-
-
-
-
-
0.301  
1.190  
2.432  
9.322  
18.64  
NA  
NA  
NA  
NA  
55.93  
0.2185  
+0.23  
-0.83  
+1.32  
-2.90  
185  
46  
22  
5
2
-
-
-
-
0
0.300  
1.202  
2.232  
NA  
NA  
NA  
NA  
NA  
NA  
15.63  
0.0610  
+0.16  
+0.16  
-6.99  
51  
12  
6
-
-
-
-
-
-
0.256 -14.67  
1
-
-
-
-
-
-
-
-
1.202  
2.404  
NA  
+1.67  
+1.67  
NA  
NA  
-
-
-
-
-
-
-
-
-
-
9.6  
9.9  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
NA  
19.2  
76.8  
96  
300  
500  
HIGH  
LOW  
19.8  
79.2  
NA  
NA  
NA  
NA  
NA  
-2.90  
NA  
-
-
-
-
-
-
NA  
NA  
NA  
NA  
NA  
NA  
NA  
79.2  
0.3094  
62.500  
3.906  
0
255  
0
255  
0.512  
0.0020  
0
255  
255  
255  
DS30390E-page 102  
1997 Microchip Technology Inc.  
PIC16C7X  
TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)  
FOSC = 20 MHz  
%
16 MHz  
10 MHz  
7.16 MHz  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
%
%
%
KBAUD ERROR (decimal) KBAUD ERROR (decimal) KBAUD ERROR (decimal) KBAUD ERROR (decimal)  
9.6  
9.615  
19.230  
37.878  
56.818  
+0.16  
+0.16  
-1.36  
-1.36  
-1.36  
0
129  
64  
32  
21  
10  
4
9.615  
19.230  
38.461  
58.823  
111.111  
250  
+0.16  
+0.16  
+0.16  
+2.12  
-3.55  
0
103  
51  
25  
16  
8
9.615  
18.939  
39.062  
56.818  
125  
+0.16  
-1.36  
+1.7  
-1.36  
+8.51  
-
64  
32  
15  
10  
4
9.520  
19.454  
37.286  
55.930  
111.860  
NA  
-0.83  
+1.32  
-2.90  
-2.90  
-2.90  
-
46  
22  
11  
7
3
-
19.2  
38.4  
57.6  
115.2 113.636  
250  
625  
250  
625  
3
-
NA  
625  
-
0
0
1
NA  
-
0
NA  
-
-
1250  
1250  
0
0
NA  
-
-
NA  
-
-
NA  
-
-
FOSC = 5.068 MHz  
%
4 MHz  
3.579 MHz  
1 MHz  
32.768 kHz  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
%
%
%
%
KBAUD ERROR (decimal) KBAUD ERROR (decimal) KBAUD ERROR (decimal) KBAUD ERROR (decimal) KBAUD ERROR (decimal)  
9.6  
19.2  
9.6  
18.645  
0
32  
16  
NA  
1.202  
-
-
9.727  
18.643 -2.90  
+1.32  
22  
11  
8.928  
20.833 +8.51  
-6.99  
6
2
NA  
NA  
-
-
-
-
-2.94  
207  
+0.17  
+0.13  
+0.16  
38.4  
57.6  
115.2  
250  
625  
1250  
39.6  
52.8  
105.6  
NA  
NA  
NA  
+3.12  
-8.33  
-8.33  
-
-
-
7
5
2
-
-
-
2.403  
9.615  
19.231 +0.16  
NA  
NA  
NA  
103  
25  
12  
-
-
-
37.286 -2.90  
55.930 -2.90  
111.860 -2.90  
223.721 -10.51  
NA  
NA  
5
3
1
0
-
31.25 -18.61  
1
0
-
-
-
NA  
NA  
NA  
NA  
NA  
NA  
-
-
-
-
-
-
-
-
-
-
-
-
62.5  
NA  
NA  
NA  
NA  
+8.51  
-
-
-
-
-
-
-
-
-
-
-
Note: For the PIC16C73/73A/74/74A, the asynchronous high speed mode (BRGH = 1) may experience a high  
rate of receive errors. It is recommended that BRGH = 0. If you desire a higher baud rate than BRGH = 0  
can support, refer to the device errata for additional information, or use the PIC16C76/77.  
1997 Microchip Technology Inc.  
DS30390E-page 103  
PIC16C7X  
12.1.1 SAMPLING  
set (i.e., at the high baud rates), the sampling is done  
on the 3 clock edges preceding the second rising edge  
after the first falling edge of a x4 clock (Figure 12-4 and  
Figure 12-5).  
The data on the RC7/RX/DT pin is sampled three times  
by a majority detect circuit to determine if a high or a  
low level is present at the RX pin. If bit BRGH  
(TXSTA<2>) is clear (i.e., at the low baud rates), the  
sampling is done on the seventh, eighth and ninth fall-  
ing edges of a x16 clock (Figure 12-3). If bit BRGH is  
FIGURE 12-3: RX PIN SAMPLING SCHEME. BRGH = 0 (PIC16C73/73A/74/74A)  
Start bit  
Bit0  
RX  
(RC7/RX/DT pin)  
Baud CLK for all but start bit  
baud CLK  
x16 CLK  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
1
2
3
Samples  
FIGURE 12-4: RX PIN SAMPLING SCHEME, BRGH = 1 (PIC16C73/73A/74/74A)  
RX pin  
bit0  
bit1  
Start Bit  
baud clk  
First falling edge after RX pin goes low  
Second rising edge  
x4 clk  
1
2
3
4
1
2
3
4
1
2
Q2, Q4 clk  
Samples  
Samples  
Samples  
FIGURE 12-5: RX PIN SAMPLING SCHEME, BRGH = 1 (PIC16C73/73A/74/74A)  
RX pin  
Start Bit  
bit0  
Baud clk for all but start bit  
baud clk  
First falling edge after RX pin goes low  
Second rising edge  
x4 clk  
1
2
3
4
Q2, Q4 clk  
Samples  
DS30390E-page 104  
1997 Microchip Technology Inc.  
 
 
 
PIC16C7X  
FIGURE 12-6: RX PIN SAMPLING SCHEME, BRGH = 0 OR BRGH = 1 (PIC16C76/77)  
Start bit  
Bit0  
RX  
(RC7/RX/DT pin)  
Baud CLK for all but start bit  
baud CLK  
x16 CLK  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
1
2
3
Samples  
1997 Microchip Technology Inc.  
DS30390E-page 105  
PIC16C7X  
flag bit TXIF (PIR1<4>) is set. This interrupt can be  
enabled/disabled by setting/clearing enable bit TXIE  
( PIE1<4>). Flag bit TXIF will be set regardless of the  
state of enable bit TXIE and cannot be cleared in soft-  
ware. It will reset only when new data is loaded into the  
TXREG register. While flag bit TXIF indicated the sta-  
tus of the TXREG register, another bit TRMT  
(TXSTA<1>) shows the status of the TSR register. Sta-  
tus bit TRMT is a read only bit which is set when the  
TSR register is empty. No interrupt logic is tied to this  
bit, so the user has to poll this bit in order to determine  
if the TSR register is empty.  
12.2  
USART Asynchronous Mode  
Applicable Devices  
72 73 73A 74 74A 76 77  
In this mode, the USART uses standard nonreturn-to-  
zero (NRZ) format (one start bit, eight or nine data bits  
and one stop bit). The most common data format is  
8-bits. An on-chip dedicated 8-bit baud rate generator  
can be used to derive standard baud rate frequencies  
from the oscillator. The USART transmits and receives  
the LSb first.The USART’s transmitter and receiver are  
functionally independent but use the same data format  
and baud rate. The baud rate generator produces a  
clock either x16 or x64 of the bit shift rate, depending  
on bit BRGH (TXSTA<2>). Parity is not supported by  
the hardware, but can be implemented in software (and  
stored as the ninth data bit). Asynchronous mode is  
stopped during SLEEP.  
Note 1: The TSR register is not mapped in data  
memory so it is not available to the user.  
Note 2: Flag bit TXIF is set when enable bit TXEN  
is set.  
Transmission is enabled by setting enable bit TXEN  
(TXSTA<5>). The actual transmission will not occur  
until the TXREG register has been loaded with data  
and the baud rate generator (BRG) has produced a  
shift clock (Figure 12-7). The transmission can also be  
started by first loading the TXREG register and then  
setting enable bit TXEN. Normally when transmission  
is first started, the TSR register is empty, so a transfer  
to the TXREG register will result in an immediate trans-  
fer to TSR resulting in an empty TXREG. A back-to-  
back transfer is thus possible (Figure 12-9). Clearing  
enable bit TXEN during a transmission will cause the  
transmission to be aborted and will reset the transmit-  
ter. As a result the RC6/TX/CK pin will revert to hi-  
impedance.  
Asynchronous mode is selected by clearing bit SYNC  
(TXSTA<4>).  
The USART Asynchronous module consists of the fol-  
lowing important elements:  
• Baud Rate Generator  
• Sampling Circuit  
• Asynchronous Transmitter  
• Asynchronous Receiver  
12.2.1 USART ASYNCHRONOUS TRANSMITTER  
The USART transmitter block diagram is shown in  
Figure 12-7. The heart of the transmitter is the transmit  
(serial) shift register (TSR).The shift register obtains its  
data from the read/write transmit buffer, TXREG. The  
TXREG register is loaded with data in software. The  
TSR register is not loaded until the STOP bit has been  
transmitted from the previous load. As soon as the  
STOP bit is transmitted, the TSR is loaded with new  
data from the TXREG register (if available). Once the  
TXREG register transfers the data to the TSR register  
(occurs in one TCY), the TXREG register is empty and  
In order to select 9-bit transmission, transmit bit TX9  
(TXSTA<6>) should be set and the ninth bit should be  
written to TX9D (TXSTA<0>). The ninth bit must be  
written before writing the 8-bit data to the TXREG reg-  
ister. This is because a data write to the TXREG regis-  
ter can result in an immediate transfer of the data to the  
TSR register (if the TSR is empty). In such a case, an  
incorrect ninth data bit maybe loaded in the TSR regis-  
ter.  
FIGURE 12-7: USART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXIF  
TXREG register  
TXIE  
8
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
TSR register  
RC6/TX/CK pin  
Interrupt  
TXEN  
Baud Rate CLK  
TRMT  
SPEN  
SPBRG  
Baud Rate Generator  
TX9  
TX9D  
DS30390E-page 106  
1997 Microchip Technology Inc.  
 
PIC16C7X  
Steps to follow when setting up an Asynchronous  
Transmission:  
4. If 9-bit transmission is desired, then set transmit  
bit TX9.  
5. Enable the transmission by setting bit TXEN,  
which will also set bit TXIF.  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH. (Section 12.1)  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
7. Load data to the TXREG register (starts trans-  
mission).  
3. If interrupts are desired, then set enable bit  
TXIE.  
FIGURE 12-8: ASYNCHRONOUS MASTER TRANSMISSION  
Write to TXREG  
Word 1  
BRG output  
(shift clock)  
RC6/TX/CK (pin)  
Start Bit  
Bit 0  
Bit 1  
WORD 1  
Bit 7/8  
Stop Bit  
TXIF bit  
(Transmit buffer  
reg. empty flag)  
WORD 1  
Transmit Shift Reg  
TRMT bit  
(Transmit shift  
reg. empty flag)  
FIGURE 12-9: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)  
Write to TXREG  
Word 2  
Word 1  
BRG output  
(shift clock)  
RC6/TX/CK (pin)  
Start Bit  
Start Bit  
WORD 2  
Bit 0  
Bit 1  
Bit 7/8  
Bit 0  
Stop Bit  
TXIF bit  
(interrupt reg. flag)  
WORD 1  
TRMT bit  
(Transmit shift  
reg. empty flag)  
WORD 1  
Transmit Shift Reg.  
WORD 2  
Transmit Shift Reg.  
Note: This timing diagram shows two consecutive transmissions.  
TABLE 12-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Value on:  
POR,  
BOR  
Value on  
all other  
Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0000 0000 0000 0000  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 -010 0000 -010  
0000 0000 0000 0000  
0Ch  
18h  
19h  
8Ch  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF SSPIF CCP1IF TMR2IF TMR1IF  
FERR OERR RX9D  
RCSTA  
SREN CREN  
TXREG USART Transmit Register  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE SSPIE CCP1IE TMR2IE TMR1IE  
SYNC BRGH TRMT TX9D  
98h  
99h  
TXSTA  
TXEN  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Transmission.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.  
1997 Microchip Technology Inc.  
DS30390E-page 107  
PIC16C7X  
12.2.2 USART ASYNCHRONOUS RECEIVER  
double buffered register, i.e. it is a two deep FIFO. It is  
possible for two bytes of data to be received and trans-  
ferred to the RCREG FIFO and a third byte begin shift-  
ing to the RSR register. On the detection of the STOP  
bit of the third byte, if the RCREG register is still full  
then overrun error bit OERR (RCSTA<1>) will be set.  
The word in the RSR will be lost. The RCREG register  
can be read twice to retrieve the two bytes in the FIFO.  
Overrun bit OERR has to be cleared in software. This  
is done by resetting the receive logic (CREN is cleared  
and then set). If bit OERR is set, transfers from the  
RSR register to the RCREG register are inhibited, so it  
is essential to clear error bit OERR if it is set. Framing  
error bit FERR (RCSTA<2>) is set if a stop bit is  
detected as clear. Bit FERR and the 9th receive bit are  
buffered the same way as the receive data. Reading  
the RCREG, will load bits RX9D and FERR with new  
values, therefore it is essential for the user to read the  
RCSTA register before reading RCREG register in  
order not to lose the old FERR and RX9D information.  
The receiver block diagram is shown in Figure 12-10.  
The data is received on the RC7/RX/DT pin and drives  
the data recovery block. The data recovery block is  
actually a high speed shifter operating at x16 times the  
baud rate, whereas the main receive serial shifter oper-  
ates at the bit rate or at FOSC.  
Once Asynchronous mode is selected, reception is  
enabled by setting bit CREN (RCSTA<4>).  
The heart of the receiver is the receive (serial) shift reg-  
ister (RSR). After sampling the STOP bit, the received  
data in the RSR is transferred to the RCREG register (if  
it is empty). If the transfer is complete, flag bit RCIF  
(PIR1<5>) is set. The actual interrupt can be enabled/  
disabled by setting/clearing enable bit RCIE  
(PIE1<5>). Flag bit RCIF is a read only bit which is  
cleared by the hardware. It is cleared when the RCREG  
register has been read and is empty. The RCREG is a  
FIGURE 12-10: USART RECEIVE BLOCK DIAGRAM  
x64 Baud Rate CLK  
FERR  
OERR  
CREN  
SPBRG  
÷ 64  
RSR register  
LSb  
MSb  
or  
÷ 16  
0
Baud Rate Generator  
1
7
Stop (8)  
Start  
• • •  
RC7/RX/DT  
Pin Buffer  
and Control  
Data  
Recovery  
RX9  
RX9D  
SPEN  
RCREG register  
FIFO  
8
RCIF  
RCIE  
Interrupt  
Data Bus  
FIGURE 12-11: ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RX (pin)  
bit0  
bit1  
Stop  
bit  
Stop  
bit  
bit7/8 Stop  
bit  
bit0  
bit7/8  
bit7/8  
Rcv shift  
reg  
Rcv buffer reg  
WORD 2  
RCREG  
WORD 1  
RCREG  
Read Rcv  
buffer reg  
RCREG  
RCIF  
(interrupt flag)  
OERR bit  
CREN  
Note: This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word,  
causing the OERR (overrun) bit to be set.  
DS30390E-page 108  
1997 Microchip Technology Inc.  
 
PIC16C7X  
Steps to follow when setting up an Asynchronous  
Reception:  
6. Flag bit RCIF will be set when reception is com-  
plete and an interrupt will be generated if enable  
bit RCIE was set.  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH. (Section 12.1).  
7. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
2. Enable the asynchronous serial port by clearing  
bit SYNC, and setting bit SPEN.  
8. Read the 8-bit received data by reading the  
RCREG register.  
3. If interrupts are desired, then set enable bit  
RCIE.  
9. If any error occurred, clear the error by clearing  
enable bit CREN.  
4. If 9-bit reception is desired, then set bit RX9.  
5. Enable the reception by setting bit CREN.  
TABLE 12-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on:  
POR,  
BOR  
Value on  
all other  
Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0Ch  
18h  
1Ah  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
RCSTA  
SREN CREN  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
RCREG USART Receive Register  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXSTA  
TXEN SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.  
1997 Microchip Technology Inc.  
DS30390E-page 109  
PIC16C7X  
Clearing enable bit TXEN, during a transmission, will  
cause the transmission to be aborted and will reset the  
transmitter. The DT and CK pins will revert to hi-imped-  
ance. If either bit CREN or bit SREN is set, during a  
transmission, the transmission is aborted and the DT  
pin reverts to a hi-impedance state (for a reception).  
The CK pin will remain an output if bit CSRC is set  
(internal clock). The transmitter logic however is not  
reset although it is disconnected from the pins. In order  
to reset the transmitter, the user has to clear bit TXEN.  
If bit SREN is set (to interrupt an on-going transmission  
and receive a single word), then after the single word is  
received, bit SREN will be cleared and the serial port  
will revert back to transmitting since bit TXEN is still set.  
The DT line will immediately switch from hi-impedance  
receive mode to transmit and start driving. To avoid  
this, bit TXEN should be cleared.  
12.3  
USART Synchronous Master Mode  
Applicable Devices  
72 73 73A 74 74A 76 77  
In Synchronous Master mode, the data is transmitted in  
a half-duplex manner i.e. transmission and reception  
do not occur at the same time. When transmitting data,  
the reception is inhibited and vice versa. Synchronous  
mode is entered by setting bit SYNC (TXSTA<4>). In  
addition enable bit SPEN (RCSTA<7>) is set in order to  
configure the RC6/TX/CK and RC7/RX/DT I/O pins to  
CK (clock) and DT (data) lines respectively.The Master  
mode indicates that the processor transmits the master  
clock on the CK line. The Master mode is entered by  
setting bit CSRC (TXSTA<7>).  
12.3.1 USART SYNCHRONOUS MASTER  
TRANSMISSION  
In order to select 9-bit transmission, the TX9  
(TXSTA<6>) bit should be set and the ninth bit should  
be written to bit TX9D (TXSTA<0>). The ninth bit must  
be written before writing the 8-bit data to the TXREG  
register.This is because a data write to the TXREG can  
result in an immediate transfer of the data to the TSR  
register (if the TSR is empty). If the TSR was empty and  
the TXREG was written before writing the “new” TX9D,  
the “present” value of bit TX9D is loaded.  
The USART transmitter block diagram is shown in  
Figure 12-7. The heart of the transmitter is the transmit  
(serial) shift register (TSR).The shift register obtains its  
data from the read/write transmit buffer register  
TXREG. The TXREG register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREG (if available). Once the  
TXREG register transfers the data to the TSR register  
(occurs in one Tcycle), the TXREG is empty and inter-  
rupt bit, TXIF (PIR1<4>) is set. The interrupt can be  
enabled/disabled by setting/clearing enable bit TXIE  
(PIE1<4>). Flag bit TXIF will be set regardless of the  
state of enable bit TXIE and cannot be cleared in soft-  
ware. It will reset only when new data is loaded into the  
TXREG register.While flag bit TXIF indicates the status  
of the TXREG register, another bit TRMT (TXSTA<1>)  
shows the status of the TSR register. TRMT is a read  
only bit which is set when the TSR is empty. No inter-  
rupt logic is tied to this bit, so the user has to poll this  
bit in order to determine if the TSR register is empty.  
The TSR is not mapped in data memory so it is not  
available to the user.  
Steps to follow when setting up a Synchronous Master  
Transmission:  
1. Initialize the SPBRG register for the appropriate  
baud rate (Section 12.1).  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN, and CSRC.  
3. If interrupts are desired, then set enable bit  
TXIE.  
4. If 9-bit transmission is desired, then set bit TX9.  
5. Enable the transmission by setting bit TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the  
TXREG register.  
Transmission is enabled by setting enable bit TXEN  
(TXSTA<5>). The actual transmission will not occur  
until the TXREG register has been loaded with data.  
The first data bit will be shifted out on the next available  
rising edge of the clock on the CK line. Data out is sta-  
ble around the falling edge of the synchronous clock  
(Figure 12-12).The transmission can also be started by  
first loading the TXREG register and then setting bit  
TXEN (Figure 12-13). This is advantageous when slow  
baud rates are selected, since the BRG is kept in reset  
when bits TXEN, CREN, and SREN are clear. Setting  
enable bit TXEN will start the BRG, creating a shift  
clock immediately. Normally when transmission is first  
started, the TSR register is empty, so a transfer to the  
TXREG register will result in an immediate transfer to  
TSR resulting in an empty TXREG. Back-to-back trans-  
fers are possible.  
DS30390E-page 110  
1997 Microchip Technology Inc.  
PIC16C7X  
TABLE 12-8:  
REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTERTRANSMISSION  
Value on:  
POR,  
BOR  
Value on all  
other Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0000 0000  
0000 -00x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0000 0000  
0000 -00x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0Ch  
18h  
19h  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF SSPIF CCP1IF TMR2IF TMR1IF  
FERR OERR RX9D  
RCSTA  
SREN CREN  
TXREG USART Transmit Register  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE SSPIE CCP1IE TMR2IE TMR1IE  
BRGH TRMT TX9D  
TXSTA  
TXEN SYNC  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented, read as '0'. Shaded cells are not used for Synchronous Master Transmission.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.  
FIGURE 12-12: SYNCHRONOUS TRANSMISSION  
Q1Q2 Q3Q4 Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2 Q3Q4  
Q3Q4 Q1Q2 Q3Q4 Q1Q2 Q3Q4 Q1Q2 Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4  
RC7/RX/DT pin  
RC6/TX/CK pin  
Bit 0  
Bit 1  
Bit 2  
Bit 7  
Bit 0  
Bit 1  
WORD 2  
Bit 7  
WORD 1  
Write to  
TXREG reg  
Write word1  
Write word2  
TXIF bit  
(Interrupt flag)  
TRMT bit  
'1'  
Note: Sync master mode; SPBRG = '0'. Continuous transmission of two 8-bit words  
'1'  
TXEN bit  
FIGURE 12-13: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RC7/RX/DT pin  
RC6/TX/CK pin  
bit0  
bit2  
bit1  
bit6  
bit7  
Write to  
TXREG reg  
TXIF bit  
TRMT bit  
TXEN bit  
1997 Microchip Technology Inc.  
DS30390E-page 111  
PIC16C7X  
12.3.2 USART SYNCHRONOUS MASTER  
RECEPTION  
Steps to follow when setting up a Synchronous Master  
Reception:  
1. Initialize the SPBRG register for the appropriate  
baud rate. (Section 12.1)  
Once Synchronous mode is selected, reception is  
enabled by setting either enable bit SREN  
(RCSTA<5>) or enable bit CREN (RCSTA<4>). Data is  
sampled on the RC7/RX/DT pin on the falling edge of  
the clock. If enable bit SREN is set, then only a single  
word is received. If enable bit CREN is set, the recep-  
tion is continuous until CREN is cleared. If both bits are  
set then CREN takes precedence. After clocking the  
last bit, the received data in the Receive Shift Register  
(RSR) is transferred to the RCREG register (if it is  
empty). When the transfer is complete, interrupt flag bit  
RCIF (PIR1<5>) is set. The actual interrupt can be  
enabled/disabled by setting/clearing enable bit RCIE  
(PIE1<5>). Flag bit RCIF is a read only bit which is  
reset by the hardware. In this case it is reset when the  
RCREG register has been read and is empty. The  
RCREG is a double buffered register, i.e. it is a two  
deep FIFO. It is possible for two bytes of data to be  
received and transferred to the RCREG FIFO and a  
third byte to begin shifting into the RSR register. On the  
clocking of the last bit of the third byte, if the RCREG  
register is still full then overrun error bit OERR  
(RCSTA<1>) is set. The word in the RSR will be lost.  
The RCREG register can be read twice to retrieve the  
two bytes in the FIFO. Bit OERR has to be cleared in  
software (by clearing bit CREN). If bit OERR is set,  
transfers from the RSR to the RCREG are inhibited, so  
it is essential to clear bit OERR if it is set. The 9th  
receive bit is buffered the same way as the receive  
data. Reading the RCREG register, will load bit RX9D  
with a new value, therefore it is essential for the user to  
read the RCSTA register before reading RCREG in  
order not to lose the old RX9D information.  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN, and CSRC.  
3. Ensure bits CREN and SREN are clear.  
4. If interrupts are desired, then set enable bit  
RCIE.  
5. If 9-bit reception is desired, then set bit RX9.  
6. If a single reception is required, set bit SREN.  
For continuous reception set bit CREN.  
7. Interrupt flag bit RCIF will be set when reception  
is complete and an interrupt will be generated if  
enable bit RCIE was set.  
8. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read the 8-bit received data by reading the  
RCREG register.  
10. If any error occurred, clear the error by clearing  
bit CREN.  
TABLE 12-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Value on:  
POR,  
BOR  
Value on all  
other Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0000 0000  
0000 -00x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0000 0000  
0000 -00x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0Ch  
18h  
1Ah  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF  
RCIF  
TXIF SSPIF CCP1IF TMR2IF TMR1IF  
FERR OERR RX9D  
RCSTA  
RX9 SREN CREN  
RCREG USART Receive Register  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE RCIE  
TXIE SSPIE CCP1IE TMR2IE TMR1IE  
BRGH TRMT TX9D  
TXSTA  
TX9 TXEN SYNC  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented read as '0'. Shaded cells are not used for Synchronous Master Reception.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.  
DS30390E-page 112  
1997 Microchip Technology Inc.  
PIC16C7X  
FIGURE 12-14: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
RC7/RX/DT pin  
RC6/TX/CK pin  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
Write to  
bit SREN  
SREN bit  
CREN bit  
'0'  
'0'  
RCIF bit  
(interrupt)  
Read  
RXREG  
Note: Timing diagram demonstrates SYNC master mode with bit SREN = '1' and bit BRG = '0'.  
1997 Microchip Technology Inc.  
DS30390E-page 113  
PIC16C7X  
12.4.2 USART SYNCHRONOUS SLAVE  
RECEPTION  
12.4  
USART Synchronous Slave Mode  
Applicable Devices  
72 73 73A 74 74A 76 77  
The operation of the synchronous master and slave  
modes is identical except in the case of the SLEEP  
mode. Also, bit SREN is a don't care in slave mode.  
Synchronous slave mode differs from the Master mode  
in the fact that the shift clock is supplied externally at  
the RC6/TX/CK pin (instead of being supplied internally  
in master mode). This allows the device to transfer or  
receive data while in SLEEP mode. Slave mode is  
entered by clearing bit CSRC (TXSTA<7>).  
If receive is enabled, by setting bit CREN, prior to the  
SLEEPinstruction, then a word may be received during  
SLEEP. On completely receiving the word, the RSR  
register will transfer the data to the RCREG register  
and if enable bit RCIE bit is set, the interrupt generated  
will wake the chip from SLEEP. If the global interrupt is  
enabled, the program will branch to the interrupt vector  
(0004h).  
12.4.1 USART SYNCHRONOUS SLAVE  
TRANSMIT  
The operation of the synchronous master and slave  
modes are identical except in the case of the SLEEP  
mode.  
Steps to follow when setting up a Synchronous Slave  
Reception:  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
1. Enable the synchronous master serial port by  
setting bits SYNC and SPEN and clearing bit  
CSRC.  
a) The first word will immediately transfer to the  
TSR register and transmit.  
2. If interrupts are desired, then set enable bit  
RCIE.  
b) The second word will remain in TXREG register.  
c) Flag bit TXIF will not be set.  
3. If 9-bit reception is desired, then set bit RX9.  
4. To enable reception, set enable bit CREN.  
d) When the first word has been shifted out of TSR,  
the TXREG register will transfer the second  
word to the TSR and flag bit TXIF will now be  
set.  
5. Flag bit RCIF will be set when reception is com-  
plete and an interrupt will be generated, if  
enable bit RCIE was set.  
e) If enable bit TXIE is set, the interrupt will wake  
the chip from SLEEP and if the global interrupt  
is enabled, the program will branch to the inter-  
rupt vector (0004h).  
6. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
7. Read the 8-bit received data by reading the  
RCREG register.  
Steps to follow when setting up a Synchronous Slave  
Transmission:  
8. If any error occurred, clear the error by clearing  
bit CREN.  
1. Enable the synchronous slave serial port by set-  
ting bits SYNC and SPEN and clearing bit  
CSRC.  
2. Clear bits CREN and SREN.  
3. If interrupts are desired, then set enable bit  
TXIE.  
4. If 9-bit transmission is desired, then set bit TX9.  
5. Enable the transmission by setting enable bit  
TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the  
TXREG register.  
DS30390E-page 114  
1997 Microchip Technology Inc.  
PIC16C7X  
TABLE 12-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Value on:  
POR,  
BOR  
Value on all  
other Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0000 0000  
0000 -00x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0000 0000  
0000 -00x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0Ch  
18h  
19h  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF SSPIF CCP1IF TMR2IF TMR1IF  
FERR OERR RX9D  
RCSTA  
SREN CREN  
TXREG USART Transmit Register  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE SSPIE CCP1IE TMR2IE TMR1IE  
BRGH TRMT TX9D  
TXSTA  
TXEN SYNC  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Transmission.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.  
TABLE 12-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Value on:  
POR,  
BOR  
Value on all  
other Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
0000 0000  
0000 -00x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0000 0000  
0000 -00x  
0000 0000  
0000 0000  
0000 -010  
0000 0000  
0Ch  
18h  
1Ah  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF  
RCIF  
TXIF SSPIF CCP1IF TMR2IF TMR1IF  
FERR OERR RX9D  
RCSTA  
RX9 SREN CREN  
RCREG USART Receive Register  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE RCIE  
TXIE SSPIE CCP1IE TMR2IE TMR1IE  
BRGH TRMT TX9D  
TXSTA  
TX9 TXEN SYNC  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Reception.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16C73/73A/76, always maintain these bits clear.  
1997 Microchip Technology Inc.  
DS30390E-page 115  
PIC16C7X  
NOTES:  
DS30390E-page 116  
1997 Microchip Technology Inc.  
PIC16C7X  
The A/D converter has a unique feature of being able to  
operate while the device is in SLEEP mode. To operate  
in sleep, the A/D conversion clock must be derived from  
the A/D’s internal RC oscillator.  
13.0 ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
Applicable Devices  
72 73 73A 74 74A 76 77  
The A/D module has three registers. These registers  
are:  
The analog-to-digital (A/D) converter module has five  
inputs for the PIC16C72/73/73A/76, and eight for the  
PIC16C74/74A/77.  
• A/D Result Register (ADRES)  
• A/D Control Register 0 (ADCON0)  
• A/D Control Register 1 (ADCON1)  
The A/D allows conversion of an analog input signal to  
a corresponding 8-bit digital number (refer to Applica-  
tion Note AN546 for use of A/D Converter). The output  
of the sample and hold is the input into the converter,  
which generates the result via successive approxima-  
tion. The analog reference voltage is software select-  
able to either the device’s positive supply voltage (VDD)  
or the voltage level on the RA3/AN3/VREF pin.  
The ADCON0 register, shown in Figure 13-1, controls  
the operation of the A/D module. The ADCON1 regis-  
ter, shown in Figure 13-2, configures the functions of  
the port pins. The port pins can be configured as ana-  
log inputs (RA3 can also be a voltage reference) or as  
digital I/O.  
FIGURE 13-1: ADCON0 REGISTER (ADDRESS 1Fh)  
R/W-0 R/W-0  
R/W-0  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
U-0  
R/W-0  
ADON  
ADCS1 ADCS0 CHS2  
bit7  
GO/DONE  
R =Readable bit  
W = Writable bit  
U =Unimplemented bit,  
read as ‘0’  
bit0  
- n = Value at POR reset  
bit 7-6: ADCS1:ADCS0: A/D Conversion Clock Select bits  
00= FOSC/2  
01= FOSC/8  
10= FOSC/32  
11= FRC (clock derived from an internal RC oscillator)  
bit 5-3: CHS2:CHS0: Analog Channel Select bits  
000= channel 0, (RA0/AN0)  
001= channel 1, (RA1/AN1)  
010= channel 2, (RA2/AN2)  
011= channel 3, (RA3/AN3)  
100= channel 4, (RA5/AN4)  
(1)  
101= channel 5, (RE0/AN5)  
(1)  
110= channel 6, (RE1/AN6)  
(1)  
111= channel 7, (RE2/AN7)  
bit 2:  
GO/DONE: A/D Conversion Status bit  
If ADON = 1  
1 = A/D conversion in progress (setting this bit starts the A/D conversion)  
0 = A/D conversion not in progress (This bit is automatically cleared by hardware when the A/D conversion  
is complete)  
bit 1:  
bit 0:  
Unimplemented: Read as '0'  
ADON: A/D On bit  
1 = A/D converter module is operating  
0 = A/D converter module is shutoff and consumes no operating current  
Note 1: A/D channels 5, 6, and 7 are implemented on the PIC16C74/74A/77 only.  
1997 Microchip Technology Inc.  
DS30390E-page 117  
 
PIC16C7X  
FIGURE 13-2: ADCON1 REGISTER (ADDRESS 9Fh)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
PCFG2  
PCFG1  
PCFG0  
R =Readable bit  
W = Writable bit  
bit7  
bit0  
U =Unimplemented  
bit, read as ‘0’  
- n = Value at POR reset  
bit 7-3: Unimplemented: Read as '0'  
bit 2-0: PCFG2:PCFG0: A/D Port Configuration Control bits  
(1)  
(1)  
(1)  
PCFG2:PCFG0  
RA0  
RA1  
RA2  
RA5  
RA3  
VREF  
VDD  
RE0  
RE1  
RE2  
000  
001  
010  
011  
100  
101  
11x  
A
A
A
A
A
A
A
D
D
D
D
D
A
A
D
D
D
D
D
A
A
D
D
D
D
D
A
A
A
A
A
D
A
A
A
A
A
D
A
A
A
D
D
D
A
A
A
D
D
D
VREF  
A
RA3  
VDD  
RA3  
VDD  
RA3  
VREF  
A
VREF  
D
A = Analog input  
D = Digital I/O  
Note 1: RE0, RE1, and RE2 are implemented on the PIC16C74/74A/77 only.  
DS30390E-page 118  
1997 Microchip Technology Inc.  
PIC16C7X  
The ADRES register contains the result of the A/D con-  
version. When the A/D conversion is complete, the  
result is loaded into the ADRES register, the GO/DONE  
bit (ADCON0<2>) is cleared, and A/D interrupt flag bit  
ADIF is set. The block diagrams of the A/D module are  
shown in Figure 13-3.  
3. Wait the required acquisition time.  
4. Start conversion:  
• Set GO/DONE bit (ADCON0)  
5. Wait for A/D conversion to complete, by either:  
• Polling for the GO/DONE bit to be cleared  
OR  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the con-  
version is started. The analog input channels must  
have their corresponding TRIS bits selected as an  
input. To determine acquisition time, see Section 13.1.  
After this acquisition time has elapsed the A/D conver-  
sion can be started. The following steps should be fol-  
lowed for doing an A/D conversion:  
• Waiting for the A/D interrupt  
6. Read A/D Result register (ADRES), clear bit  
ADIF if required.  
7. For next conversion, go to step 1 or step 2 as  
required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2TAD is  
required before next acquisition starts.  
1. Configure the A/D module:  
• Configure analog pins / voltage reference /  
and digital I/O (ADCON1)  
• Select A/D input channel (ADCON0)  
• Select A/D conversion clock (ADCON0)  
Turn on A/D module (ADCON0)  
2. Configure A/D interrupt (if desired):  
• Clear ADIF bit  
• Set ADIE bit  
• Set GIE bit  
FIGURE 13-3: A/D BLOCK DIAGRAM  
CHS2:CHS0  
111  
(1)  
RE2/AN7  
110  
(1)  
RE1/AN6  
101  
(1)  
RE0/AN5  
100  
RA5/AN4  
VIN  
011  
(Input voltage)  
RA3/AN3/VREF  
010  
RA2/AN2  
A/D  
Converter  
001  
RA1/AN1  
000  
VDD  
RA0/AN0  
000or  
010or  
100  
VREF  
(Reference  
voltage)  
001or  
011or  
101  
PCFG2:PCFG0  
Note 1: Not available on PIC16C72/73/73A/76.  
1997 Microchip Technology Inc.  
DS30390E-page 119  
 
PIC16C7X  
VDD = 5V Rss = 7 kΩ  
13.1  
A/D Acquisition Requirements  
Applicable Devices  
Temp (application system max.) = 50°C  
VHOLD = 0 @ t = 0  
72 73 73A 74 74A 76 77  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 13-4.The source  
impedance (RS) and the internal sampling switch (RSS)  
impedance directly affect the time required to charge  
the capacitor CHOLD.The sampling switch (RSS) imped-  
ance varies over the device voltage (VDD), Figure 13-4.  
The source impedance affects the offset voltage at the  
analog input (due to pin leakage current). The maxi-  
mum recommended impedance for analog sources  
is 10 k. After the analog input channel is selected  
(changed) this acquisition must be done before the con-  
version can be started.  
Note 1: The reference voltage (VREF) has no  
effect on the equation, since it cancels  
itself out.  
Note 2: The charge holding capacitor (CHOLD) is  
not discharged after each conversion.  
Note 3: The maximum recommended impedance  
for analog sources is 10 k. This is  
required to meet the pin leakage specifi-  
cation.  
Note 4: After a conversion has completed, a  
2.0TAD delay must complete before acqui-  
sition can begin again. During this time  
the holding capacitor is not connected to  
the selected A/D input channel.  
To calculate the minimum acquisition time,  
Equation 13-1 may be used. This equation calculates  
the acquisition time to within 1/2 LSb error is used (512  
steps for the A/D). The 1/2 LSb error is the maximum  
error allowed for the A/D to meet its specified accuracy.  
EXAMPLE 13-1: CALCULATING THE  
MINIMUM REQUIRED  
ACQUISITION TIME  
EQUATION 13-1: A/D MINIMUM CHARGING  
TACQ = Amplifier Settling Time +  
Holding Capacitor Charging Time +  
Temperature Coefficient  
TIME  
(-TCAP/CHOLD(RIC + RSS + RS))  
VHOLD = (VREF - (VREF/512)) • (1 - e  
)
Given: VHOLD = (VREF/512), for 1/2 LSb resolution  
The above equation reduces to:  
TACQ = 5 µs + TCAP + [(Temp - 25°C)(0.05 µs/°C)]  
TCAP = -CHOLD (RIC + RSS + RS) ln(1/511)  
-51.2 pF (1 k+ 7 k+ 10 k) ln(0.0020)  
-51.2 pF (18 k) ln(0.0020)  
TCAP = -(51.2 pF)(1 k+ RSS + RS) ln(1/511)  
Example 13-1 shows the calculation of the minimum  
required acquisition time TACQ. This calculation is  
based on the following system assumptions.  
-0.921 µs (-6.2364)  
5.747 µs  
CHOLD = 51.2 pF  
Rs = 10 kΩ  
TACQ = 5 µs + 5.747 µs + [(50°C - 25°C)(0.05 µs/°C)]  
10.747 µs + 1.25 µs  
1/2 LSb error  
11.997 µs  
FIGURE 13-4: ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1k  
RSS  
Rs  
CHOLD  
= DAC capacitance  
= 51.2 pF  
CPIN  
5 pF  
VA  
I leakage  
± 500 nA  
VT = 0.6V  
VSS  
Legend CPIN  
VT  
= input capacitance  
= threshold voltage  
6V  
5V  
I leakage = leakage current at the pin due to  
various junctions  
VDD 4V  
3V  
2V  
RIC  
SS  
= interconnect resistance  
= sampling switch  
CHOLD  
= sample/hold capacitance (from DAC)  
5 6 7 8 9 10 11  
Sampling Switch  
( k)  
DS30390E-page 120  
1997 Microchip Technology Inc.  
 
 
 
PIC16C7X  
13.2  
Selecting the A/D Conversion Clock  
Applicable Devices  
13.3  
Configuring Analog Port Pins  
Applicable Devices  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires 9.5TAD per 8-bit conversion.  
The source of the A/D conversion clock is software  
selectable. The four possible options for TAD are:  
The ADCON1, TRISA, and TRISE registers control the  
operation of the A/D port pins. The port pins that are  
desired as analog inputs must have their correspond-  
ing TRIS bits set (input). If the TRIS bit is cleared (out-  
put), the digital output level (VOH or VOL) will be  
converted.  
• 2TOSC  
• 8TOSC  
The A/D operation is independent of the state of the  
CHS2:CHS0 bits and the TRIS bits.  
• 32TOSC  
• Internal RC oscillator  
Note 1: When reading the port register, all pins  
configured as analog input channels will  
read as cleared (a low level). Pins config-  
ured as digital inputs, will convert an ana-  
log input. Analog levels on a digitally  
configured input will not affect the conver-  
sion accuracy.  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be selected to ensure a minimum TAD time  
of 1.6 µs.  
Table 13-1 shows the resultant TAD times derived from  
the device operating frequencies and the A/D clock  
source selected.  
Note 2: Analog levels on any pin that is defined as  
a digital input (including the AN7:AN0  
pins), may cause the input buffer to con-  
sume current that is out of the devices  
specification.  
TABLE 13-1: TAD vs. DEVICE OPERATING FREQUENCIES  
Device Frequency  
AD Clock Source (TAD)  
Operation ADCS1:ADCS0  
20 MHz  
5 MHz  
1.25 MHz  
1.6 µs  
333.33 kHz  
(2)  
(2)  
2TOSC  
8TOSC  
32TOSC  
00  
01  
10  
11  
6 µs  
100 ns  
400 ns  
(2)  
(3)  
1.6 µs  
6.4 µs  
400 ns  
24 µs  
(3)  
(3)  
1.6 µs  
6.4 µs  
25.6 µs  
96 µs  
(5)  
(1,4)  
(1,4)  
(1,4)  
(1)  
RC  
2 - 6 µs  
2 - 6 µs  
2 - 6 µs  
2 - 6 µs  
Legend: Shaded cells are outside of recommended range.  
Note 1: The RC source has a typical TAD time of 4 µs.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for  
sleep operation only.  
5: For extended voltage devices (LC), please refer to Electrical Specifications section.  
1997 Microchip Technology Inc.  
DS30390E-page 121  
 
PIC16C7X  
13.4  
A/D Conversions  
Applicable Devices  
72 73 73A 74 74A 76 77  
Note: The GO/DONE bit should NOT be set in  
the same instruction that turns on the A/D.  
Example 13-2 shows how to perform an A/D conver-  
sion. The RA pins are configured as analog inputs. The  
analog reference (VREF) is the device VDD. The A/D  
interrupt is enabled, and the A/D conversion clock is  
FRC. The conversion is performed on the RA0 pin  
(channel 0).  
Clearing the GO/DONE bit during a conversion will  
abort the current conversion. The ADRES register will  
NOT be updated with the partially completed A/D con-  
version sample. That is, the ADRES register will con-  
tinue to contain the value of the last completed  
conversion (or the last value written to the ADRES reg-  
ister). After the A/D conversion is aborted, a 2TAD wait  
is required before the next acquisition is started. After  
this 2TAD wait, an acquisition is automatically started on  
the selected channel.  
EXAMPLE 13-2: A/D CONVERSION  
BSF  
BCF  
CLRF  
BSF  
BCF  
MOVLW  
MOVWF  
BCF  
BSF  
BSF  
STATUS, RP0  
STATUS, RP1  
ADCON1  
; Select Bank 1  
; PIC16C76/77 only  
; Configure A/D inputs  
; Enable A/D interrupts  
; Select Bank 0  
; RC Clock, A/D is on, Channel 0 is selected  
;
; Clear A/D interrupt flag bit  
; Enable peripheral interrupts  
; Enable all interrupts  
PIE1,  
ADIE  
STATUS, RP0  
0xC1  
ADCON0  
PIR1,  
ADIF  
INTCON, PEIE  
INTCON, GIE  
;
;
;
;
Ensure that the required sampling time for the selected input channel has elapsed.  
Then the conversion may be started.  
BSF  
:
ADCON0, GO  
; Start A/D Conversion  
; The ADIF bit will be set and the GO/DONE bit  
:
;
is cleared upon completion of the A/D Conversion.  
DS30390E-page 122  
1997 Microchip Technology Inc.  
 
PIC16C7X  
13.4.1 FASTER CONVERSION - LOWER  
RESOLUTION TRADE-OFF  
Since the TAD is based from the device oscillator, the  
user must use some method (a timer, software loop,  
etc.) to determine when the A/D oscillator may be  
changed. Example 13-3 shows a comparison of time  
required for a conversion with 4-bits of resolution, ver-  
sus the 8-bit resolution conversion. The example is for  
devices operating at 20 MHz and 16 MHz (The A/D  
clock is programmed for 32TOSC), and assumes that  
immediately after 6TAD, the A/D clock is programmed  
for 2TOSC.  
Not all applications require a result with 8-bits of reso-  
lution, but may instead require a faster conversion time.  
The A/D module allows users to make the trade-off of  
conversion speed to resolution. Regardless of the res-  
olution required, the acquisition time is the same. To  
speed up the conversion, the clock source of the A/D  
module may be switched so that the TAD time violates  
the minimum specified time (see the applicable electri-  
cal specification). Once the TAD time violates the mini-  
mum specified time, all the following A/D result bits are  
not valid (see A/D Conversion Timing in the Electrical  
Specifications section.) The clock sources may only be  
switched between the three oscillator versions (cannot  
be switched from/to RC). The equation to determine  
the time before the oscillator can be switched is as fol-  
lows:  
The 2TOSC violates the minimum TAD time since the last  
4-bits will not be converted to correct values.  
Conversion time = 2TAD + N • TAD + (8 - N)(2TOSC)  
Where: N = number of bits of resolution required.  
EXAMPLE 13-3: 4-BIT vs. 8-BIT CONVERSION TIMES  
Resolution  
(1)  
Freq. (MHz)  
4-bit  
8-bit  
TAD  
20  
16  
20  
16  
20  
16  
1.6 µs  
2.0 µs  
50 ns  
1.6 µs  
2.0 µs  
50 ns  
TOSC  
62.5 ns  
10 µs  
62.5 ns  
16 µs  
2TAD + N • TAD + (8 - N)(2TOSC)  
12.5 µs  
20 µs  
Note 1: PIC16C7X devices have a minimum TAD time of 1.6 µs.  
1997 Microchip Technology Inc.  
DS30390E-page 123  
 
PIC16C7X  
Gain error measures the maximum deviation of the last  
actual transition and the last ideal transition adjusted  
for offset error.This error appears as a change in slope  
of the transfer function. The difference in gain error to  
full scale error is that full scale does not take offset error  
into account. Gain error can be calibrated out in soft-  
ware.  
13.5  
A/D Operation During Sleep  
Applicable Devices  
72 73 73A 74 74A 76 77  
The A/D module can operate during SLEEP mode.This  
requires that the A/D clock source be set to RC  
(ADCS1:ADCS0 = 11). When the RC clock source is  
selected, the A/D module waits one instruction cycle  
before starting the conversion. This allows the SLEEP  
instruction to be executed, which eliminates all digital  
switching noise from the conversion. When the conver-  
sion is completed the GO/DONEbit will be cleared, and  
the result loaded into the ADRES register. If the A/D  
interrupt is enabled, the device will wake-up from  
SLEEP. If the A/D interrupt is not enabled, the A/D mod-  
ule will then be turned off, although the ADON bit will  
remain set.  
Linearity error refers to the uniformity of the code  
changes. Linearity errors cannot be calibrated out of  
the system. Integral non-linearity error measures the  
actual code transition versus the ideal code transition  
adjusted by the gain error for each code.  
Differential non-linearity measures the maximum actual  
code width versus the ideal code width. This measure  
is unadjusted.  
The maximum pin leakage current is ± 1 µA.  
When the A/D clock source is another clock option (not  
RC), a SLEEPinstruction will cause the present conver-  
sion to be aborted and the A/D module to be turned off,  
though the ADON bit will remain set.  
In systems where the device frequency is low, use of  
the A/D RC clock is preferred. At moderate to high fre-  
quencies, TAD should be derived from the device oscil-  
lator. TAD must not violate the minimum and should be  
8 µs for preferred operation. This is because TAD,  
when derived from TOSC, is kept away from on-chip  
phase clock transitions. This reduces, to a large extent,  
the effects of digital switching noise. This is not possi-  
ble with the RC derived clock.The loss of accuracy due  
to digital switching noise can be significant if many I/O  
pins are active.  
Turning off the A/D places the A/D module in its lowest  
current consumption state.  
Note: For the A/D module to operate in SLEEP,  
the A/D clock source must be set to RC  
(ADCS1:ADCS0 = 11). To perform an A/D  
conversion in SLEEP, ensure the SLEEP  
instruction immediately follows the instruc-  
tion that sets the GO/DONE bit.  
In systems where the device will enter SLEEP mode  
after the start of the A/D conversion, the RC clock  
source selection is required. In this mode, the digital  
noise from the modules in SLEEP are stopped. This  
method gives high accuracy.  
13.6  
A/D Accuracy/Error  
Applicable Devices  
72 73 73A 74 74A 76 77  
13.7  
Effects of a RESET  
Applicable Devices  
72 73 73A 74 74A 76 77  
The absolute accuracy specified for the A/D converter  
includes the sum of all contributions for quantization  
error, integral error, differential error, full scale error, off-  
set error, and monotonicity. It is defined as the maxi-  
mum deviation from an actual transition versus an ideal  
transition for any code. The absolute error of the A/D  
converter is specified at < ±1 LSb for VDD = VREF (over  
the device’s specified operating range). However, the  
accuracy of the A/D converter will degrade as VDD  
diverges from VREF.  
A device reset forces all registers to their reset state.  
This forces the A/D module to be turned off, and any  
conversion is aborted.  
The value that is in the ADRES register is not modified  
for a Power-on Reset. The ADRES register will contain  
unknown data after a Power-on Reset.  
For a given range of analog inputs, the output digital  
code will be the same.This is due to the quantization of  
the analog input to a digital code. Quantization error is  
typically ± 1/2 LSb and is inherent in the analog to dig-  
ital conversion process. The only way to reduce quan-  
tization error is to increase the resolution of the A/D  
converter.  
Offset error measures the first actual transition of a  
code versus the first ideal transition of a code. Offset  
error shifts the entire transfer function. Offset error can  
be calibrated out of a system or introduced into a sys-  
tem through the interaction of the total leakage current  
and source impedance at the analog input.  
DS30390E-page 124  
1997 Microchip Technology Inc.  
PIC16C7X  
13.8  
Use of the CCP Trigger  
Applicable Devices  
FIGURE 13-5: A/D TRANSFER FUNCTION  
72 73 73A 74 74A 76 77  
FFh  
FEh  
Note: In the PIC16C72, the "special event trig-  
ger" is implemented in the CCP1 module.  
An A/D conversion can be started by the “special event  
trigger” of the CCP2 module (CCP1 on the PIC16C72  
only). This requires that the CCP2M3:CCP2M0 bits  
(CCP2CON<3:0>) be programmed as 1011 and that  
the A/D module is enabled (ADON bit is set). When the  
trigger occurs, the GO/DONE bit will be set, starting the  
A/D conversion, and the Timer1 counter will be reset to  
zero. Timer1 is reset to automatically repeat the A/D  
acquisition period with minimal software overhead  
(moving the ADRES to the desired location). The  
appropriate analog input channel must be selected and  
the minimum acquisition done before the “special event  
trigger” sets the GO/DONE bit (starts a conversion).  
04h  
03h  
02h  
01h  
00h  
Analog input voltage  
If the A/D module is not enabled (ADON is cleared),  
then the “special event trigger” will be ignored by the  
A/D module, but will still reset the Timer1 counter.  
13.11 References  
13.9  
Connection Considerations  
Applicable Devices  
A very good reference for understanding A/D convert-  
ers is the "Analog-Digital Conversion Handbook" third  
edition, published by Prentice Hall (ISBN  
0-13-03-2848-0).  
72 73 73A 74 74A 76 77  
If the input voltage exceeds the rail values (VSS or VDD)  
by greater than 0.2V, then the accuracy of the conver-  
sion is out of specification.  
An external RC filter is sometimes added for anti-alias-  
ing of the input signal. The R component should be  
selected to ensure that the total source impedance is  
kept under the 10 krecommended specification. Any  
external components connected (via hi-impedance) to  
an analog input pin (capacitor, zener diode, etc.) should  
have very little leakage current at the pin.  
13.10 Transfer Function  
Applicable Devices  
72 73 73A 74 74A 76 77  
The ideal transfer function of the A/D converter is as  
follows: the first transition occurs when the analog input  
voltage (VAIN) is Analog VREF/256 (Figure 13-5).  
1997 Microchip Technology Inc.  
DS30390E-page 125  
 
PIC16C7X  
FIGURE 13-6: FLOWCHART OF A/D OPERATION  
ADON = 0  
Yes  
ADON = 0?  
No  
Acquire  
Selected Channel  
Yes  
GO = 0?  
No  
Yes  
Yes  
Start of A/D  
Conversion Delayed  
1 Instruction Cycle  
Finish Conversion  
SLEEP  
Instruction?  
A/D Clock  
= RC?  
GO = 0  
ADIF = 1  
No  
No  
Yes  
Yes  
Abort Conversion  
GO = 0  
Wake-up  
From Sleep?  
Finish Conversion  
Device in  
SLEEP?  
Wait 2 TAD  
GO = 0  
ADIF = 1  
ADIF = 0  
No  
No  
SLEEP  
Power-down A/D  
Finish Conversion  
Stay in Sleep  
Power-down A/D  
Wait 2 TAD  
GO = 0  
ADIF = 1  
Wait 2 TAD  
TABLE 13-2: REGISTERS/BITS ASSOCIATED WITH A/D, PIC16C72  
Value on:  
POR,  
BOR  
Value on all  
other Resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5 Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE  
PEIE  
ADIF  
ADIE  
T0IE INTE RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Bh,8Bh  
0Ch  
8Ch  
1Eh  
SSPIF CCP1IF  
TMR2IF TMR1IF -0-- 0000 -0-- 0000  
PIE1  
SSPIE CCP1IE TMR2IE TMR1IE -0-- 0000 -0-- 0000  
ADRES  
A/D Result Register  
xxxx xxxx uuuu uuuu  
ADCON0 ADCS1 ADCS0 CHS2 CHS1 CHS0 GO/DONE  
ADON 0000 00-0 0000 00-0  
1Fh  
ADCON1  
PCFG2  
RA2  
PCFG1 PCFG0 ---- -000 ---- -000  
9Fh  
--0x 0000 --0u 0000  
--11 1111 --11 1111  
05h  
PORTA  
TRISA  
RA5  
RA4  
RA3  
RA1  
RA0  
85h  
PORTA Data Direction Register  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used for A/D conversion.  
DS30390E-page 126  
1997 Microchip Technology Inc.  
PIC16C7X  
TABLE 13-3: SUMMARY OF A/D REGISTERS, PIC16C73/73A/74/74A/76/77  
Value on:  
POR,  
BOR  
Value on all  
other Resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
T0IF  
Bit 1  
Bit 0  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
INTF  
RBIF  
0000 000x 0000 000u  
0Bh,8Bh,  
10Bh,18Bh  
(1)  
PIR1  
PSPIF  
PSPIE  
ADIF  
ADIE  
RCIF  
RCIE  
TXIF  
TXIE  
SSPIF  
SSPIE  
CCP1IF  
TMR2IF TMR1IF 0000 0000 0000 0000  
0Ch  
8Ch  
0Dh  
8Dh  
1Eh  
1Fh  
9Fh  
05h  
85h  
09h  
89h  
(1)  
PIE1  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
PIR2  
CCP2IF ---- ---0 ---- ---0  
CCP2IE ---- ---0 ---- ---0  
xxxx xxxx uuuu uuuu  
PIE2  
ADRES  
A/D Result Register  
ADCON0 ADCS1 ADCS0 CHS2  
CHS1  
CHS0 GO/DONE  
ADON 0000 00-0 0000 00-0  
ADCON1  
PCFG2  
RA2  
PCFG1 PCFG0 ---- -000 ---- -000  
--0x 0000 --0u 0000  
--11 1111 --11 1111  
---- -xxx ---- -uuu  
0000 -111 0000 -111  
PORTA  
TRISA  
PORTE  
TRISE  
RA5  
RA4  
RA3  
RA1  
RA0  
PORTA Data Direction Register  
RE2  
RE1  
RE0  
IBF  
OBF  
IBOV PSPMODE  
PORTE Data Direction Bits  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used for A/D conversion.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC6C73/73A/76, always maintain these bits clear.  
1997 Microchip Technology Inc.  
DS30390E-page 127  
PIC16C7X  
NOTES:  
DS30390E-page 128  
1997 Microchip Technology Inc.  
PIC16C7X  
the chip in reset until the crystal oscillator is stable.The  
other is the Power-up Timer (PWRT), which provides a  
fixed delay of 72 ms (nominal) on power-up only,  
designed to keep the part in reset while the power sup-  
ply stabilizes. With these two timers on-chip, most  
applications need no external reset circuitry.  
14.0 SPECIAL FEATURES OF THE  
CPU  
Applicable Devices  
72 73 73A 74 74A 76 77  
What sets a microcontroller apart from other proces-  
sors are special circuits to deal with the needs of real-  
time applications. The PIC16CXX family has a host of  
such features intended to maximize system reliability,  
minimize cost through elimination of external compo-  
nents, provide power saving operating modes and offer  
code protection. These are:  
SLEEP mode is designed to offer a very low current  
power-down mode.The user can wake-up from SLEEP  
through external reset, Watchdog Timer Wake-up, or  
through an interrupt. Several oscillator options are also  
made available to allow the part to fit the application.  
The RC oscillator option saves system cost while the  
LP crystal option saves power. A set of configuration  
bits are used to select various options.  
• Oscillator selection  
• Reset  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
14.1  
Configuration Bits  
Applicable Devices  
72 73 73A 74 74A 76 77  
The configuration bits can be programmed (read as '0')  
or left unprogrammed (read as '1') to select various  
device configurations. These bits are mapped in pro-  
gram memory location 2007h.  
• Watchdog Timer (WDT)  
• SLEEP  
• Code protection  
The user will note that address 2007h is beyond the  
user program memory space. In fact, it belongs to the  
special test/configuration memory space (2000h -  
3FFFh), which can be accessed only during program-  
ming.  
• ID locations  
• In-circuit serial programming  
The PIC16CXX has a Watchdog Timer which can be  
shut off only through configuration bits. It runs off its  
own RC oscillator for added reliability. There are two  
timers that offer necessary delays on power-up. One is  
the Oscillator Start-up Timer (OST), intended to keep  
FIGURE 14-1: CONFIGURATION WORD FOR PIC16C73/74  
CP1  
CP0 PWRTE WDTE FOSC1 FOSC0  
bit0  
Register: CONFIG  
Address 2007h  
bit13  
bit 13-5: Unimplemented: Read as '1'  
bit 4:  
CP1:CP0: Code protection bits  
11= Code protection off  
10= Upper half of program memory code protected  
01= Upper 3/4th of program memory code protected  
00= All memory is code protected  
bit 3:  
bit 2:  
PWRTE: Power-up Timer Enable bit  
1 = Power-up Timer enabled  
0 = Power-up Timer disabled  
WDTE: Watchdog Timer Enable bit  
1 = WDT enabled  
0 = WDT disabled  
bit 1-0: FOSC1:FOSC0: Oscillator Selection bits  
11= RC oscillator  
10= HS oscillator  
01= XT oscillator  
00= LP oscillator  
1997 Microchip Technology Inc.  
DS30390E-page 129  
 
PIC16C7X  
FIGURE 14-2: CONFIGURATION WORD FOR PIC16C72/73A/74A/76/77  
CP1  
CP0  
CP1  
CP0  
CP1  
CP0  
BODEN CP1  
CP0 PWRTE WDTE FOSC1 FOSC0  
bit0  
Register: CONFIG  
Address 2007h  
bit13  
(2)  
bit 13-8 CP1:CP0: Code Protection bits  
5-4: 11= Code protection off  
10= Upper half of program memory code protected  
01= Upper 3/4th of program memory code protected  
00= All memory is code protected  
bit 7:  
bit 6:  
Unimplemented: Read as '1'  
(1)  
BODEN: Brown-out Reset Enable bit  
1 = BOR enabled  
0 = BOR disabled  
(1)  
bit 3:  
bit 2:  
PWRTE: Power-up Timer Enable bit  
1 = PWRT disabled  
0 = PWRT enabled  
WDTE: Watchdog Timer Enable bit  
1 = WDT enabled  
0 = WDT disabled  
bit 1-0: FOSC1:FOSC0: Oscillator Selection bits  
11= RC oscillator  
10= HS oscillator  
01= XT oscillator  
00= LP oscillator  
Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT) regardless of the value of bit PWRTE.  
Ensure the Power-up Timer is enabled anytime Brown-out Reset is enabled.  
2: All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed.  
DS30390E-page 130  
1997 Microchip Technology Inc.  
 
PIC16C7X  
14.2  
Oscillator Configurations  
Applicable Devices  
TABLE 14-1: CERAMIC RESONATORS  
Ranges Tested:  
72 73 73A 74 74A 76 77  
Mode  
XT  
Freq  
OSC1  
OSC2  
14.2.1  
OSCILLATOR TYPES  
455 kHz  
2.0 MHz  
4.0 MHz  
68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
The PIC16CXX can be operated in four different oscil-  
lator modes. The user can program two configuration  
bits (FOSC1 and FOSC0) to select one of these four  
modes:  
HS  
8.0 MHz  
16.0 MHz  
10 - 68 pF  
10 - 22 pF  
10 - 68 pF  
10 - 22 pF  
These values are for design guidance only. See  
notes at bottom of page.  
• LP  
• XT  
• HS  
• RC  
Low Power Crystal  
Crystal/Resonator  
Resonators Used:  
High Speed Crystal/Resonator  
Resistor/Capacitor  
455 kHz Panasonic EFO-A455K04B ± 0.3%  
2.0 MHz Murata Erie CSA2.00MG  
4.0 MHz Murata Erie CSA4.00MG  
8.0 MHz Murata Erie CSA8.00MT  
16.0 MHz Murata Erie CSA16.00MX  
± 0.5%  
± 0.5%  
± 0.5%  
± 0.5%  
14.2.2 CRYSTAL OSCILLATOR/CERAMIC  
RESONATORS  
In XT, LP or HS modes a crystal or ceramic resonator  
is connected to the OSC1/CLKIN and OSC2/CLKOUT  
pins to establish oscillation (Figure 14-3). The  
PIC16CXX Oscillator design requires the use of a par-  
allel cut crystal. Use of a series cut crystal may give a  
frequency out of the crystal manufacturers specifica-  
tions. When in XT, LP or HS modes, the device can  
have an external clock source to drive the OSC1/  
CLKIN pin (Figure 14-4).  
All resonators used did not have built-in capacitors.  
TABLE 14-2: CAPACITOR SELECTION  
FOR CRYSTAL OSCILLATOR  
Crystal  
Freq  
Cap. Range  
C1  
Cap. Range  
C2  
Osc Type  
LP  
32 kHz  
200 kHz  
200 kHz  
1 MHz  
33 pF  
15 pF  
33 pF  
15 pF  
FIGURE 14-3: CRYSTAL/CERAMIC  
RESONATOR OPERATION  
(HS, XT OR LP  
XT  
HS  
47-68 pF  
15 pF  
47-68 pF  
15 pF  
OSC CONFIGURATION)  
4 MHz  
15 pF  
15 pF  
OSC1  
4 MHz  
15 pF  
15 pF  
To internal  
logic  
8 MHz  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
C1  
20 MHz  
XTAL  
OSC2  
SLEEP  
PIC16CXX  
RF  
These values are for design guidance only. See  
notes at bottom of page.  
RS  
Crystals Used  
C2  
Note1  
32 kHz  
200 kHz  
1 MHz  
Epson C-001R32.768K-A  
STD XTL 200.000KHz  
ECS ECS-10-13-1  
± 20 PPM  
± 20 PPM  
± 50 PPM  
± 50 PPM  
± 30 PPM  
± 30 PPM  
See Table 14-1 and Table 14-2 for recommended values  
of C1 and C2.  
Note 1: A series resistor may be required for AT strip  
cut crystals.  
4 MHz  
ECS ECS-40-20-1  
8 MHz  
EPSON CA-301 8.000M-C  
EPSON CA-301 20.000M-C  
20 MHz  
FIGURE 14-4: EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR LP  
Note 1: Recommended values of C1 and C2 are  
identical to the ranges tested (Table 14-1).  
2: Higher capacitance increases the stability  
of oscillator but also increases the start-up  
time.  
OSC CONFIGURATION)  
OSC1  
OSC2  
Clock from  
ext. system  
PIC16CXX  
3: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appropri-  
ate values of external components.  
Open  
4: Rs may be required in HS mode as well as  
XT mode to avoid overdriving crystals with  
low drive level specification.  
1997 Microchip Technology Inc.  
DS30390E-page 131  
 
 
 
 
PIC16C7X  
14.2.3 EXTERNAL CRYSTAL OSCILLATOR  
CIRCUIT  
14.2.4 RC OSCILLATOR  
For timing insensitive applications the “RC” device  
option offers additional cost savings. The RC oscillator  
frequency is a function of the supply voltage, the resis-  
tor (Rext) and capacitor (Cext) values, and the operat-  
ing temperature. In addition to this, the oscillator  
frequency will vary from unit to unit due to normal pro-  
cess parameter variation. Furthermore, the difference  
in lead frame capacitance between package types will  
also affect the oscillation frequency, especially for low  
Cext values. The user also needs to take into account  
variation due to tolerance of external R and C compo-  
nents used. Figure 14-7 shows how the R/C combina-  
tion is connected to the PIC16CXX. For Rext values  
below 2.2 k, the oscillator operation may become  
unstable, or stop completely. For very high Rext values  
(e.g. 1 M), the oscillator becomes sensitive to noise,  
humidity and leakage. Thus, we recommend to keep  
Rext between 3 kand 100 k.  
Either a prepackaged oscillator can be used or a simple  
oscillator circuit with TTL gates can be built. Prepack-  
aged oscillators provide a wide operating range and  
better stability. A well-designed crystal oscillator will  
provide good performance with TTL gates. Two types  
of crystal oscillator circuits can be used; one with series  
resonance, or one with parallel resonance.  
Figure 14-5 shows implementation of a parallel reso-  
nant oscillator circuit. The circuit is designed to use the  
fundamental frequency of the crystal. The 74AS04  
inverter performs the 180-degree phase shift that a par-  
allel oscillator requires. The 4.7 kresistor provides  
the negative feedback for stability. The 10 kpotenti-  
ometer biases the 74AS04 in the linear region. This  
could be used for external oscillator designs.  
FIGURE 14-5: EXTERNAL PARALLEL  
RESONANT CRYSTAL  
Although the oscillator will operate with no external  
capacitor (Cext = 0 pF), we recommend using values  
above 20 pF for noise and stability reasons. With no or  
small external capacitance, the oscillation frequency  
can vary dramatically due to changes in external  
capacitances, such as PCB trace capacitance or pack-  
age lead frame capacitance.  
OSCILLATOR CIRCUIT  
+5V  
To Other  
Devices  
10k  
74AS04  
PIC16CXX  
4.7k  
CLKIN  
74AS04  
See characterization data for desired device for RC fre-  
quency variation from part to part due to normal pro-  
cess variation.The variation is larger for larger R (since  
leakage current variation will affect RC frequency more  
for large R) and for smaller C (since variation of input  
capacitance will affect RC frequency more).  
10k  
XTAL  
10k  
See characterization data for desired device for varia-  
tion of oscillator frequency due to VDD for given Rext/  
Cext values as well as frequency variation due to oper-  
ating temperature for given R, C, and VDD values.  
20 pF  
20 pF  
Figure 14-6 shows a series resonant oscillator circuit.  
This circuit is also designed to use the fundamental fre-  
quency of the crystal. The inverter performs a 180-  
degree phase shift in a series resonant oscillator cir-  
cuit. The 330 kresistors provide the negative feed-  
back to bias the inverters in their linear region.  
The oscillator frequency, divided by 4, is available on  
the OSC2/CLKOUT pin, and can be used for test pur-  
poses or to synchronize other logic (see Figure 3-4 for  
waveform).  
FIGURE 14-7: RC OSCILLATOR MODE  
FIGURE 14-6: EXTERNAL SERIES  
RESONANT CRYSTAL  
VDD  
OSCILLATOR CIRCUIT  
Rext  
Internal  
OSC1  
To Other  
clock  
Devices  
330 kΩ  
330 kΩ  
Cext  
74AS04  
74AS04  
74AS04  
PIC16CXX  
PIC16CXX  
VSS  
CLKIN  
0.1 µF  
OSC2/CLKOUT  
Fosc/4  
XTAL  
DS30390E-page 132  
1997 Microchip Technology Inc.  
 
 
 
PIC16C7X  
A simplified block diagram of the on-chip reset circuit is  
shown in Figure 14-8.  
14.3  
Reset  
Applicable Devices  
72 73 73A 74 74A 76 77  
The PIC16C72/73A/74A/76/77 have a MCLR noise fil-  
ter in the MCLR reset path. The filter will detect and  
ignore small pulses.  
The PIC16CXX differentiates between various kinds of  
reset:  
It should be noted that a WDT Reset does not drive  
MCLR pin low.  
• Power-on Reset (POR)  
• MCLR reset during normal operation  
• MCLR reset during SLEEP  
• WDT Reset (normal operation)  
• Brown-out Reset (BOR) (PIC16C72/73A/74A/76/  
77)  
Some registers are not affected in any reset condition;  
their status is unknown on POR and unchanged in any  
other reset. Most other registers are reset to a “reset  
state” on Power-on Reset (POR), on the MCLR and  
WDT Reset, on MCLR reset during SLEEP, and Brown-  
out Reset (BOR). They are not affected by a WDT  
Wake-up, which is viewed as the resumption of normal  
operation.The TO and PD bits are set or cleared differ-  
ently in different reset situations as indicated in  
Table 14-5 and Table 14-6. These bits are used in soft-  
ware to determine the nature of the reset. See  
Table 14-8 for a full description of reset states of all reg-  
isters.  
FIGURE 14-8: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
Reset  
MCLR  
SLEEP  
WDT  
WDT  
Module  
Time-out  
Reset  
VDD rise  
detect  
Power-on Reset  
VDD  
(2)  
Brown-out  
Reset  
S
R
BODEN  
OST/PWRT  
OST  
10-bit Ripple counter  
Chip_Reset  
Q
OSC1  
(1)  
On-chip  
RC OSC  
PWRT  
10-bit Ripple counter  
Enable PWRT  
(3)  
Enable OST  
Note 1: This is a separate oscillator from the RC oscillator of the CLKIN pin.  
2: Brown-out Reset is implemented on the PIC16C72/73A/74A/76/77.  
3: See Table 14-3 and Table 14-4 for time-out situations.  
1997 Microchip Technology Inc.  
DS30390E-page 133  
 
PIC16C7X  
The power-up time delay will vary from chip to chip due  
to VDD, temperature, and process variation. See DC  
parameters for details.  
14.4  
Power-on Reset (POR), Power-up  
Timer (PWRT) and Oscillator Start-up  
Timer (OST), and Brown-out Reset  
(BOR)  
14.4.3 OSCILLATOR START-UP TIMER (OST)  
Applicable Devices  
The Oscillator Start-up Timer (OST) provides 1024  
oscillator cycle (from OSC1 input) delay after the  
PWRT delay is over.This ensures that the crystal oscil-  
lator or resonator has started and stabilized.  
72 73 73A 74 74A 76 77  
14.4.1 POWER-ON RESET (POR)  
A Power-on Reset pulse is generated on-chip when  
VDD rise is detected (in the range of 1.5V - 2.1V). To  
take advantage of the POR, just tie the MCLR pin  
directly (or through a resistor) to VDD. This will elimi-  
nate external RC components usually needed to create  
a Power-on Reset. A maximum rise time for VDD is  
specified. See Electrical Specifications for details.  
The OST time-out is invoked only for XT, LP and HS  
modes and only on Power-on Reset or wake-up from  
SLEEP.  
14.4.4 BROWN-OUT RESET (BOR)  
Applicable Devices  
72 73 73A 74 74A 76 77  
When the device starts normal operation (exits the  
reset condition), device operating parameters (voltage,  
frequency, temperature, ...) must be met to ensure  
operation. If these conditions are not met, the device  
must be held in reset until the operating conditions are  
met. Brown-out Reset may be used to meet the startup  
conditions.  
A configuration bit, BODEN, can disable (if clear/pro-  
grammed) or enable (if set) the Brown-out Reset cir-  
cuitry. If VDD falls below 4.0V (3.8V - 4.2V range) for  
greater than parameter #35, the brown-out situation will  
reset the chip. A reset may not occur if VDD falls below  
4.0V for less than parameter #35. The chip will remain  
in Brown-out Reset until VDD rises above BVDD. The  
Power-up Timer will now be invoked and will keep the  
chip in RESET an additional 72 ms. If VDD drops below  
BVDD while the Power-up Timer is running, the chip will  
go back into a Brown-out Reset and the Power-up  
Timer will be initialized. Once VDD rises above BVDD,  
the Power-up Timer will execute a 72 ms time delay.  
The Power-up Timer should always be enabled when  
Brown-out Reset is enabled. Figure 14-9 shows typi-  
cal brown-out situations.  
For additional information, refer to Application Note  
AN607, "Power-up Trouble Shooting."  
14.4.2 POWER-UP TIMER (PWRT)  
The Power-up Timer provides a fixed 72 ms nominal  
time-out on power-up only, from the POR. The Power-  
up Timer operates on an internal RC oscillator. The  
chip is kept in reset as long as the PWRT is active. The  
PWRT’s time delay allows VDD to rise to an acceptable  
level. A configuration bit is provided to enable/disable  
the PWRT.  
FIGURE 14-9: BROWN-OUT SITUATIONS  
VDD  
BVDD Max.  
BVDD Min.  
Internal  
Reset  
72 ms  
VDD  
BVDD Max.  
BVDD Min.  
Internal  
Reset  
<72 ms  
72 ms  
VDD  
BVDD Max.  
BVDD Min.  
Internal  
Reset  
72 ms  
DS30390E-page 134  
1997 Microchip Technology Inc.  
 
PIC16C7X  
14.4.5 TIME-OUT SEQUENCE  
14.4.6 POWER CONTROL/STATUS REGISTER  
(PCON)  
On power-up the time-out sequence is as follows: First  
PWRT time-out is invoked after the POR time delay has  
expired. Then OST is activated. The total time-out will  
vary based on oscillator configuration and the status of  
the PWRT. For example, in RC mode with the PWRT  
disabled, there will be no time-out at all. Figure 14-10,  
Figure 14-11, and Figure 14-12 depict time-out  
sequences on power-up.  
Applicable Devices  
72 73 73A 74 74A 76 77  
The Power Control/Status Register, PCON has up to  
two bits, depending upon the device. Bit0 is not imple-  
mented on the PIC16C73 or PIC16C74.  
Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is  
unknown on a Power-on Reset. It must then be set by  
the user and checked on subsequent resets to see if bit  
BOR cleared, indicating a BOR occurred. The BOR bit  
is a "Don’t Care" bit and is not necessarily predictable  
if the Brown-out Reset circuitry is disabled (by clearing  
bit BODEN in the Configuration Word).  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire. Then  
bringing MCLR high will begin execution immediately  
(Figure 14-11). This is useful for testing purposes or to  
synchronize more than one PIC16CXX device operat-  
ing in parallel.  
Bit1 is POR (Power-on Reset Status bit). It is cleared  
on a Power-on Reset and unaffected otherwise. The  
user must set this bit following a Power-on Reset.  
Table 14-7 shows the reset conditions for some special  
function registers, while Table 14-8 shows the reset  
conditions for all the registers.  
TABLE 14-3: TIME-OUT IN VARIOUS SITUATIONS, PIC16C73/74  
Oscillator Configuration  
Power-up  
Wake-up from SLEEP  
PWRTE = 1  
PWRTE = 0  
1024TOSC  
XT, HS, LP  
RC  
72 ms + 1024TOSC  
72 ms  
1024 TOSC  
TABLE 14-4: TIME-OUT IN VARIOUS SITUATIONS, PIC16C72/73A/74A/76/77  
Oscillator Configuration  
Power-up  
PWRTE = 0  
Wake-up from SLEEP  
Brown-out  
PWRTE = 1  
1024TOSC  
XT, HS, LP  
RC  
72 ms + 1024TOSC  
72 ms  
72 ms + 1024TOSC  
72 ms  
1024TOSC  
TABLE 14-5: STATUS BITS AND THEIR SIGNIFICANCE, PIC16C73/74  
POR  
TO  
PD  
0
0
0
1
1
1
1
1
0
x
0
0
u
1
1
x
0
1
0
u
0
Power-on Reset  
Illegal, TO is set on POR  
Illegal, PD is set on POR  
WDT Reset  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during SLEEP or interrupt wake-up from SLEEP  
Legend: u= unchanged, x= unknown  
1997 Microchip Technology Inc.  
DS30390E-page 135  
PIC16C7X  
TABLE 14-6: STATUS BITS AND THEIR SIGNIFICANCE, PIC16C72/73A/74A/76/77  
POR  
BOR  
TO  
PD  
0
0
0
1
1
1
1
1
x
x
x
0
1
1
1
1
1
0
x
x
0
0
u
1
1
x
0
x
1
0
u
0
Power-on Reset  
Illegal, TO is set on POR  
Illegal, PD is set on POR  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during SLEEP or interrupt wake-up from SLEEP  
TABLE 14-7: RESET CONDITION FOR SPECIAL REGISTERS  
Program  
Counter  
STATUS  
Register  
PCON  
Register  
PCON  
Register  
Condition  
PIC16C73/74  
PIC16C72/73A/74A/76/77  
Power-on Reset  
000h  
000h  
000h  
000h  
PC + 1  
000h  
0001 1xxx  
000u uuuu  
0001 0uuu  
0000 1uuu  
uuu0 0uuu  
0001 1uuu  
uuu1 0uuu  
---- --0-  
---- --u-  
---- --u-  
---- --u-  
---- --u-  
N/A  
---- --0x  
---- --uu  
---- --uu  
---- --uu  
---- --uu  
---- --u0  
---- --uu  
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
WDT Reset  
WDT Wake-up  
Brown-out Reset  
(1)  
Interrupt wake-up from SLEEP  
PC + 1  
---- --u-  
Legend: u= unchanged, x= unknown, -= unimplemented bit read as '0'.  
Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded  
with the interrupt vector (0004h).  
TABLE 14-8: INITIALIZATION CONDITIONS FOR ALL REGISTERS  
Register  
Applicable Devices  
Power-on Reset,  
Brown-out Reset  
MCLR Resets  
WDT Reset  
Wake-up via WDT  
or  
Interrupt  
W
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
xxxx xxxx  
N/A  
uuuu uuuu  
N/A  
uuuu uuuu  
N/A  
INDF  
TMR0  
PCL  
xxxx xxxx  
0000h  
uuuu uuuu  
0000h  
uuuu uuuu  
(2)  
PC + 1  
(3)  
(3)  
STATUS  
72 73 73A 74 74A 76 77  
0001 1xxx  
000q quuu  
uuuq quuu  
FSR  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
xxxx xxxx  
--0x 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
---- -xxx  
---0 0000  
uuuu uuuu  
--0u 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- -uuu  
---0 0000  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- -uuu  
---u uuuu  
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
PCLATH  
Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', q= value depends on condition  
Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
3: See Table 14-7 for reset value for specific condition.  
DS30390E-page 136  
1997 Microchip Technology Inc.  
 
PIC16C7X  
TABLE 14-8: INITIALIZATION CONDITIONS FOR ALL REGISTERS (Cont.d)  
Register  
Applicable Devices  
Power-on Reset,  
Brown-out Reset  
MCLR Resets  
WDT Reset  
Wake-up via WDT  
or  
Interrupt  
(1)  
INTCON  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
0000 000x  
-0-- 0000  
-000 0000  
0000 0000  
---- ---0  
0000 000u  
-0-- 0000  
-000 0000  
0000 0000  
---- ---0  
uuuu uuuu  
(1)  
-u-- uuuu  
(1)  
PIR1  
PIR2  
-uuu uuuu  
(1)  
uuuu uuuu  
(1)  
---- ---u  
TMR1L  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
-000 0000  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 -00x  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
0000 00-0  
1111 1111  
--11 1111  
1111 1111  
1111 1111  
1111 1111  
0000 -111  
-0-- 0000  
-000 0000  
0000 0000  
---- ---0  
---- --0-  
---- --0u  
1111 1111  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
0000 0000  
-000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
0000 -00x  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
0000 00-0  
1111 1111  
--11 1111  
1111 1111  
1111 1111  
1111 1111  
0000 -111  
-0-- 0000  
-000 0000  
0000 0000  
---- ---0  
---- --u-  
---- --uu  
1111 1111  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uu-u  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu -uuu  
-u-- uuuu  
-uuu uuuu  
uuuu uuuu  
---- ---u  
---- --u-  
---- --uu  
1111 1111  
TMR1H  
T1CON  
TMR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON 72 73 73A 74 74A 76 77  
RCSTA  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON 72 73 73A 74 74A 76 77  
ADRES  
ADCON0  
OPTION  
TRISA  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
TRISB  
TRISC  
TRISD  
TRISE  
PIE1  
PIE2  
PCON  
PR2  
Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', q= value depends on condition  
Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
3: See Table 14-7 for reset value for specific condition.  
1997 Microchip Technology Inc.  
DS30390E-page 137  
PIC16C7X  
TABLE 14-8: INITIALIZATION CONDITIONS FOR ALL REGISTERS (Cont.d)  
Register  
Applicable Devices  
Power-on Reset,  
Brown-out Reset  
MCLR Resets  
WDT Reset  
Wake-up via WDT  
or  
Interrupt  
SSPADD  
SSPSTAT  
TXSTA  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
72 73 73A 74 74A 76 77  
0000 0000  
--00 0000  
0000 -010  
0000 0000  
---- -000  
0000 0000  
--00 0000  
0000 -010  
0000 0000  
---- -000  
uuuu uuuu  
--uu uuuu  
uuuu -uuu  
uuuu uuuu  
---- -uuu  
SPBRG  
ADCON1  
Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', q= value depends on condition  
Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
3: See Table 14-7 for reset value for specific condition.  
DS30390E-page 138  
1997 Microchip Technology Inc.  
PIC16C7X  
FIGURE 14-10: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 14-11: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
FIGURE 14-12: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
1997 Microchip Technology Inc.  
DS30390E-page 139  
PIC16C7X  
FIGURE 14-13: EXTERNAL POWER-ON  
RESET CIRCUIT (FOR SLOW  
VDD POWER-UP)  
FIGURE 14-14: EXTERNAL BROWN-OUT  
PROTECTION CIRCUIT 1  
VDD  
VDD  
33k  
VDD  
10k  
MCLR  
D
R
R1  
40k  
PIC16CXX  
MCLR  
PIC16CXX  
C
Note 1: This circuit will activate reset when VDD  
goes below (Vz + 0.7V) where Vz = Zener  
voltage.  
Note 1: External Power-on Reset circuit is required  
only if VDD power-up slope is too slow.The  
diode D helps discharge the capacitor  
quickly when VDD powers down.  
2: Internal brown-out detection on the  
PIC16C72/73A/74A/76/77 should be dis-  
abled when using this circuit.  
2: R < 40 kis recommended to make sure  
that voltage drop across R does not violate  
the device’s electrical specification.  
3: Resistors should be adjusted for the char-  
acteristics of the transistor.  
3: R1 = 100to 1 kwill limit any current  
flowing into MCLR from external capacitor  
C in the event of MCLR/VPP pin break-  
down due to Electrostatic Discharge  
(ESD) or Electrical Overstress (EOS).  
FIGURE 14-15: EXTERNAL BROWN-OUT  
PROTECTION CIRCUIT 2  
VDD  
VDD  
R1  
R2  
Q1  
MCLR  
40k  
PIC16CXX  
Note 1: This brown-out circuit is less expensive,  
albeit less accurate. Transistor Q1 turns  
off when VDD is below a certain level  
such that:  
R1  
= 0.7V  
VDD •  
R1 + R2  
2: Internal brown-out detection on the  
PIC16C72/73A/74A/76/77 should be  
disabled when using this circuit.  
3: Resistors should be adjusted for the  
characteristics of the transistor.  
DS30390E-page 140  
1997 Microchip Technology Inc.  
PIC16C7X  
instructions. Individual interrupt flag bits are set regard-  
less of the status of their corresponding mask bit or the  
GIE bit.  
14.5  
Interrupts  
Applicable Devices  
72 73 73A 74 74A 76 77  
Note: For the PIC16C73/74, if an interrupt occurs  
while the Global Interrupt Enable (GIE) bit  
is being cleared, the GIE bit may uninten-  
tionally be re-enabled by the user’s Inter-  
rupt Service Routine (the RETFIE  
instruction). The events that would cause  
this to occur are:  
The PIC16C7X family has up to 12 sources of interrupt.  
The interrupt control register (INTCON) records individ-  
ual interrupt requests in flag bits. It also has individual  
and global interrupt enable bits.  
Note: Individual interrupt flag bits are set regard-  
less of the status of their corresponding  
mask bit or the GIE bit.  
1. An instruction clears the GIE bit while  
an interrupt is acknowledged.  
A global interrupt enable bit, GIE (INTCON<7>)  
enables (if set) all un-masked interrupts or disables (if  
cleared) all interrupts. When bit GIE is enabled, and an  
interrupt’s flag bit and mask bit are set, the interrupt will  
vector immediately. Individual interrupts can be dis-  
abled through their corresponding enable bits in vari-  
ous registers. Individual interrupt bits are set  
regardless of the status of the GIE bit. The GIE bit is  
cleared on reset.  
2. The program branches to the Interrupt  
vector and executes the Interrupt Ser-  
vice Routine.  
3. The Interrupt Service Routine com-  
pletes with the execution of the RET-  
FIE instruction. This causes the GIE  
bit to be set (enables interrupts), and  
the program returns to the instruction  
after the one which was meant to dis-  
able interrupts.  
The “return from interrupt” instruction, RETFIE, exits  
the interrupt routine as well as sets the GIE bit, which  
re-enables interrupts.  
Perform the following to ensure that inter-  
rupts are globally disabled:  
The RB0/INT pin interrupt, the RB port change interrupt  
and the TMR0 overflow interrupt flags are contained in  
the INTCON register.  
LOOP BCF  
INTCON, GIE ; Disable global  
interrupt bit  
BTFSC INTCON, GIE ; Global interrupt  
disabled?  
; NO, try again  
;
The peripheral interrupt flags are contained in the spe-  
cial function registers PIR1 and PIR2. The correspond-  
ing interrupt enable bits are contained in special  
function registers PIE1 and PIE2, and the peripheral  
interrupt enable bit is contained in special function reg-  
ister INTCON.  
;
GOTO LOOP  
:
;
;
;
Yes, continue  
with program  
flow  
When an interrupt is responded to, the GIE bit is  
cleared to disable any further interrupt, the return  
address is pushed onto the stack and the PC is loaded  
with 0004h. Once in the interrupt service routine the  
source(s) of the interrupt can be determined by polling  
the interrupt flag bits. The interrupt flag bit(s) must be  
cleared in software before re-enabling interrupts to  
avoid recursive interrupts.  
For external interrupt events, such as the INT pin or  
PORTB change interrupt, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends when the interrupt event occurs (Figure 14-  
17). The latency is the same for one or two cycle  
1997 Microchip Technology Inc.  
DS30390E-page 141  
PIC16C7X  
FIGURE 14-16: INTERRUPT LOGIC  
PSPIF  
PSPIE  
Wake-up (If in SLEEP mode)  
Interrupt to CPU  
ADIF  
ADIE  
T0IF  
T0IE  
RCIF  
RCIE  
INTF  
INTE  
TXIF  
TXIE  
RBIF  
RBIE  
SSPIF  
SSPIE  
PEIE  
GIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
CCP2IF  
CCP2IE  
The following table shows which devices have which interrupts.  
Device  
T0IF INTF RBIF PSPIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF CCP2IF  
PIC16C72  
PIC16C73  
PIC16C73A  
PIC16C74  
PIC16C74A  
PIC16C76  
PIC16C77  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
-
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
-
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
Yes  
Yes  
Yes  
Yes  
FIGURE 14-17: INT PIN INTERRUPT TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT  
3
4
INT pin  
1
1
Interrupt Latency  
INTF flag  
(INTCON<1>)  
5
2
GIE bit  
(INTCON<7>)  
INSTRUCTION FLOW  
PC  
0004h  
PC+1  
PC+1  
0005h  
PC  
Instruction  
fetched  
Inst (PC)  
Inst (PC+1)  
Inst (0004h)  
Inst (0005h)  
Inst (0004h)  
Instruction  
executed  
Dummy Cycle  
Dummy Cycle  
Inst (PC)  
Inst (PC-1)  
Note  
1: INTF flag is sampled here (every Q1).  
2: Interrupt latency = 3-4 Tcy where Tcy = instruction cycle time.  
Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.  
3: CLKOUT is available only in RC oscillator mode.  
4: For minimum width of INT pulse, refer to AC specs.  
5: INTF is enabled to be set anytime during the Q4-Q1 cycles.  
DS30390E-page 142  
1997 Microchip Technology Inc.  
PIC16C7X  
14.5.1 INT INTERRUPT  
14.6  
Context Saving During Interrupts  
Applicable Devices  
External interrupt on RB0/INT pin is edge triggered:  
either rising if bit INTEDG (OPTION<6>) is set, or fall-  
ing, if the INTEDG bit is clear. When a valid edge  
appears on the RB0/INT pin, flag bit INTF  
(INTCON<1>) is set. This interrupt can be disabled by  
clearing enable bit INTE (INTCON<4>). Flag bit INTF  
must be cleared in software in the interrupt service rou-  
tine before re-enabling this interrupt. The INT interrupt  
can wake-up the processor from SLEEP, if bit INTE was  
set prior to going into SLEEP.The status of global inter-  
rupt enable bit GIE decides whether or not the proces-  
sor branches to the interrupt vector following wake-up.  
See Section 14.8 for details on SLEEP mode.  
72 73 73A 74 74A 76 77  
During an interrupt, only the return PC value is saved  
on the stack. Typically, users may wish to save key reg-  
isters during an interrupt i.e., W register and STATUS  
register. This will have to be implemented in software.  
Example 14-1 stores and restores the STATUS, W, and  
PCLATH registers. The register, W_TEMP, must be  
defined in each bank and must be defined at the same  
offset from the bank base address (i.e., if W_TEMP is  
defined at 0x20 in bank 0, it must also be defined at  
0xA0 in bank 1).  
The example:  
14.5.2 TMR0 INTERRUPT  
a) Stores the W register.  
b) Stores the STATUS register in bank 0.  
c) Stores the PCLATH register.  
d) Executes the ISR code.  
An overflow (FFh 00h) in the TMR0 register will set  
flag bit T0IF (INTCON<2>). The interrupt can be  
enabled/disabled by setting/clearing enable bit T0IE  
(INTCON<5>). (Section 7.0)  
e) Restores the STATUS register (and bank select  
bit).  
14.5.3 PORTB INTCON CHANGE  
f) Restores the W and PCLATH registers.  
An input change on PORTB<7:4> sets flag bit RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit RBIE (INTCON<4>).  
(Section 5.2)  
Note: For the PIC16C73/74, if a change on the  
I/O pin should occur when the read opera-  
tion is being executed (start of the Q2  
cycle), then the RBIF interrupt flag may not  
get set.  
EXAMPLE 14-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM  
MOVWF  
SWAPF  
CLRF  
MOVWF  
MOVF  
MOVWF  
CLRF  
BCF  
W_TEMP  
STATUS,W  
STATUS  
STATUS_TEMP  
PCLATH, W  
PCLATH_TEMP  
PCLATH  
STATUS, IRP  
FSR, W  
;Copy W to TEMP register, could be bank one or zero  
;Swap status to be saved into W  
;bank 0, regardless of current bank, Clears IRP,RP1,RP0  
;Save status to bank zero STATUS_TEMP register  
;Only required if using pages 1, 2 and/or 3  
;Save PCLATH into W  
;Page zero, regardless of current page  
;Return to Bank 0  
;Copy FSR to W  
MOVF  
MOVWF  
:
FSR_TEMP  
;Copy FSR from W to FSR_TEMP  
:(ISR)  
:
MOVF  
MOVWF  
SWAPF  
PCLATH_TEMP, W  
PCLATH  
STATUS_TEMP,W  
;Restore PCLATH  
;Move W into PCLATH  
;Swap STATUS_TEMP register into W  
;(sets bank to original state)  
;Move W into STATUS register  
;Swap W_TEMP  
MOVWF  
SWAPF  
SWAPF  
STATUS  
W_TEMP,F  
W_TEMP,W  
;Swap W_TEMP into W  
1997 Microchip Technology Inc.  
DS30390E-page 143  
 
PIC16C7X  
prescaler with a division ratio of up to 1:128 can be  
assigned to the WDT under software control by writing  
to the OPTION register. Thus, time-out periods up to  
2.3 seconds can be realized.  
14.7  
Watchdog Timer (WDT)  
Applicable Devices  
72 73 73A 74 74A 76 77  
The Watchdog Timer is as a free running on-chip RC  
oscillator which does not require any external compo-  
nents. This RC oscillator is separate from the RC oscil-  
lator of the OSC1/CLKIN pin.That means that the WDT  
will run, even if the clock on the OSC1/CLKIN and  
OSC2/CLKOUT pins of the device has been stopped,  
for example, by execution of a SLEEPinstruction. Dur-  
ing normal operation, a WDT time-out generates a  
device RESET (Watchdog Timer Reset). If the device is  
in SLEEP mode, a WDT time-out causes the device to  
wake-up and continue with normal operation (Watch-  
dog Timer Wake-up). The WDT can be permanently  
disabled by clearing configuration bit WDTE  
(Section 14.1).  
The CLRWDT and SLEEP instructions clear the WDT  
and the postscaler, if assigned to the WDT, and prevent  
it from timing out and generating a device RESET con-  
dition.  
The TO bit in the STATUS register will be cleared upon  
a Watchdog Timer time-out.  
14.7.2 WDT PROGRAMMING CONSIDERATIONS  
It should also be taken into account that under worst  
case conditions (VDD = Min., Temperature = Max., and  
max. WDT prescaler) it may take several seconds  
before a WDT time-out occurs.  
Note: When a CLRWDT instruction is executed  
and the prescaler is assigned to the WDT,  
the prescaler count will be cleared, but the  
prescaler assignment is not changed.  
14.7.1 WDT PERIOD  
The WDT has a nominal time-out period of 18 ms, (with  
no prescaler). The time-out periods vary with tempera-  
DD  
ture, V and process variations from part to part (see  
DC specs). If longer time-out periods are desired, a  
FIGURE 14-18: WATCHDOG TIMER BLOCK DIAGRAM  
From TMR0 Clock Source  
(Figure 7-6)  
0
Postscaler  
8
M
1
U
WDT Timer  
X
8 - to - 1 MUX  
PS2:PS0  
PSA  
WDT  
Enable Bit  
To TMR0 (Figure 7-6)  
0
1
MUX  
PSA  
WDT  
Time-out  
Note: PSA and PS2:PS0 are bits in the OPTION register.  
FIGURE 14-19: SUMMARY OF WATCHDOG TIMER REGISTERS  
Address  
2007h  
Name  
Bit 7  
(1)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
WDTE  
PS2  
Bit 1  
FOSC1  
PS1  
Bit 0  
FOSC0  
PS0  
(1)  
(1)  
Config. bits  
OPTION  
CP1  
CP0  
BODEN  
PWRTE  
PSA  
81h,181h  
RBPU  
INTEDG  
T0CS T0SE  
Legend: Shaded cells are not used by the Watchdog Timer.  
Note 1: See Figure 14-1, and Figure 14-2 for operation of these bits.  
DS30390E-page 144  
1997 Microchip Technology Inc.  
PIC16C7X  
Other peripherals cannot generate interrupts since dur-  
ing SLEEP, no on-chip Q clocks are present.  
14.8  
Power-down Mode (SLEEP)  
Applicable Devices  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is pre-fetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction and then branches to the inter-  
rupt address (0004h). In cases where the execution of  
the instruction following SLEEP is not desirable, the  
user should have a NOPafter the SLEEPinstruction.  
72 73 73A 74 74A 76 77  
Power-down mode is entered by executing a SLEEP  
instruction.  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the PD bit (STATUS<3>) is cleared, the  
TO (STATUS<4>) bit is set, and the oscillator driver is  
turned off. The I/O ports maintain the status they had,  
before the SLEEP instruction was executed (driving  
high, low, or hi-impedance).  
For lowest current consumption in this mode, place all  
I/O pins at either VDD, or VSS, ensure no external cir-  
cuitry is drawing current from the I/O pin, power-down  
the A/D, disable external clocks. Pull all I/O pins, that  
are hi-impedance inputs, high or low externally to avoid  
switching currents caused by floating inputs. The  
T0CKI input should also be at VDD or VSS for lowest  
current consumption. The contribution from on-chip  
pull-ups on PORTB should be considered.  
14.8.2 WAKE-UP USING INTERRUPTS  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
• If the interrupt occurs before the execution of a  
SLEEPinstruction, the SLEEPinstruction will com-  
plete as a NOP. Therefore, the WDT and WDT  
postscaler will not be cleared, the TO bit will not  
be set and PD bits will not be cleared.  
The MCLR pin must be at a logic high level (VIHMC).  
14.8.1 WAKE-UP FROM SLEEP  
The device can wake up from SLEEP through one of  
the following events:  
• If the interrupt occurs during or after the execu-  
tion of a SLEEPinstruction, the device will imme-  
diately wake up from sleep.The SLEEPinstruction  
will be completely executed before the wake-up.  
Therefore, the WDT and WDT postscaler will be  
cleared, the TO bit will be set and the PD bit will  
be cleared.  
1. External reset input on MCLR pin.  
2. Watchdog Timer Wake-up (if WDT was  
enabled).  
3. Interrupt from INT pin, RB port change, or some  
Peripheral Interrupts.  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes.To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
External MCLR Reset will cause a device reset. All  
other events are considered a continuation of program  
execution and cause a "wake-up". The TO and PD bits  
in the STATUS register can be used to determine the  
cause of device reset. The PD bit, which is set on  
power-up, is cleared when SLEEP is invoked. The TO  
bit is cleared if a WDT time-out occurred (and caused  
wake-up).  
To ensure that the WDT is cleared, a CLRWDTinstruc-  
tion should be executed before a SLEEPinstruction.  
The following peripheral interrupts can wake the device  
from SLEEP:  
1. TMR1 interrupt. Timer1 must be operating as  
an asynchronous counter.  
2. SSP (Start/Stop) bit detect interrupt.  
2
3. SSP transmit or receive in slave mode (SPI/I C).  
4. CCP capture mode interrupt.  
5. Parallel Slave Port read or write.  
6. A/D conversion (when A/D clock source is RC).  
7. Special event trigger (Timer1 in asynchronous  
mode using an external clock).  
8. USART TX or RX (synchronous slave mode).  
1997 Microchip Technology Inc.  
DS30390E-page 145  
PIC16C7X  
FIGURE 14-20: WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT(4)  
INT pin  
TOST(2)  
INTF flag  
(INTCON<1>)  
Interrupt Latency  
(Note 2)  
GIE bit  
(INTCON<7>)  
Processor in  
SLEEP  
INSTRUCTION FLOW  
PC  
PC  
PC+1  
PC+2  
PC+2  
PC + 2  
0004h  
0005h  
Instruction  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = SLEEP  
Inst(PC - 1)  
fetched  
Instruction  
executed  
Dummy cycle  
Dummy cycle  
SLEEP  
Inst(PC + 1)  
Inst(0004h)  
Note 1: XT, HS or LP oscillator mode assumed.  
2: TOST = 1024TOSC (drawing not to scale) This delay will not be there for RC osc mode.  
3: GIE = '1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.  
4: CLKOUT is not available in these osc modes, but shown here for timing reference.  
The device is placed into a program/verify mode by  
holding the RB6 and RB7 pins low while raising the  
MCLR (VPP) pin from VIL to VIHH (see programming  
specification). RB6 becomes the programming clock  
and RB7 becomes the programming data. Both RB6  
and RB7 are Schmitt Trigger inputs in this mode.  
14.9  
Program Verification/Code Protection  
Applicable Devices  
72 73 73A 74 74A 76 77  
If the code protection bit(s) have not been pro-  
grammed, the on-chip program memory can be read  
out for verification purposes.  
After reset, to place the device into programming/verify  
mode, the program counter (PC) is at location 00h. A 6-  
bit command is then supplied to the device. Depending  
on the command, 14-bits of program data are then sup-  
plied to or from the device, depending if the command  
was a load or a read. For complete details of serial pro-  
gramming, please refer to the PIC16C6X/7X Program-  
ming Specifications (Literature #DS30228).  
Note: Microchip does not recommend code pro-  
tecting windowed devices.  
14.10 ID Locations  
Applicable Devices  
72 73 73A 74 74A 76 77  
Four memory locations (2000h - 2003h) are designated  
as ID locations where the user can store checksum or  
other code-identification numbers. These locations are  
not accessible during normal execution but are read-  
able and writable during program/verify. It is recom-  
mended that only the 4 least significant bits of the ID  
location are used.  
FIGURE 14-21: TYPICAL IN-CIRCUIT SERIAL  
PROGRAMMING  
CONNECTION  
To Normal  
Connections  
External  
Connector  
Signals  
PIC16CXX  
14.11 In-Circuit Serial Programming  
Applicable Devices  
+5V  
0V  
VDD  
72 73 73A 74 74A 76 77  
VSS  
PIC16CXX microcontrollers can be serially pro-  
grammed while in the end application circuit. This is  
simply done with two lines for clock and data, and three  
other lines for power, ground, and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices, and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom firm-  
ware to be programmed.  
VPP  
MCLR/VPP  
RB6  
RB7  
CLK  
Data I/O  
VDD  
To Normal  
Connections  
DS30390E-page 146  
1997 Microchip Technology Inc.  
PIC16C7X  
The instruction set is highly orthogonal and is grouped  
into three basic categories:  
15.0 INSTRUCTION SET SUMMARY  
Each PIC16CXX instruction is a 14-bit word divided  
into an OPCODE which specifies the instruction type  
and one or more operands which further specify the  
operation of the instruction. The PIC16CXX instruction  
set summary in Table 15-2 lists byte-oriented, bit-ori-  
ented, and literal and control operations. Table 15-1  
shows the opcode field descriptions.  
Byte-oriented operations  
Bit-oriented operations  
Literal and control operations  
All instructions are executed within one single instruc-  
tion cycle, unless a conditional test is true or the pro-  
gram counter is changed as a result of an instruction.  
In this case, the execution takes two instruction cycles  
with the second cycle executed as a NOP. One instruc-  
tion cycle consists of four oscillator periods. Thus, for  
an oscillator frequency of 4 MHz, the normal instruction  
execution time is 1 µs. If a conditional test is true or the  
program counter is changed as a result of an instruc-  
tion, the instruction execution time is 2 µs.  
For byte-oriented instructions, 'f' represents a file reg-  
ister designator and 'd' represents a destination desig-  
nator. The file register designator specifies which file  
register is to be used by the instruction.  
The destination designator specifies where the result of  
the operation is to be placed. If 'd' is zero, the result is  
placed in the W register. If 'd' is one, the result is placed  
in the file register specified in the instruction.  
Table 15-2 lists the instructions recognized by the  
MPASM assembler.  
For bit-oriented instructions, 'b' represents a bit field  
designator which selects the number of the bit affected  
by the operation, while 'f' represents the number of the  
file in which the bit is located.  
Figure 15-1 shows the general formats that the instruc-  
tions can have.  
Note: To maintain upward compatibility with  
future PIC16CXX products, do not use the  
OPTIONand TRISinstructions.  
For literal and control operations, 'k' represents an  
eight or eleven bit constant or literal value.  
TABLE 15-1: OPCODE FIELD  
DESCRIPTIONS  
All examples use the following format to represent a  
hexadecimal number:  
0xhh  
Field  
Description  
where h signifies a hexadecimal digit.  
f
W
b
k
x
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
FIGURE 15-1: GENERAL FORMAT FOR  
INSTRUCTIONS  
Bit address within an 8-bit file register  
Literal field, constant data or label  
Byte-oriented file register operations  
13  
8
7
6
0
0
Don't care location (= 0 or 1)  
The assembler will generate code with x = 0. It is the  
recommended form of use for compatibility with all  
Microchip software tools.  
OPCODE  
d
f (FILE #)  
d = 0 for destination W  
d = 1 for destination f  
f = 7-bit file register address  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
label Label name  
TOS Top of Stack  
PC Program Counter  
7
6
OPCODE  
f (FILE #)  
PCLATH  
Program Counter High Latch  
b = 3-bit bit address  
f = 7-bit file register address  
GIE Global Interrupt Enable bit  
WDT Watchdog Timer/Counter  
TO Time-out bit  
Literal and control operations  
PD Power-down bit  
General  
dest Destination either the W register or the specified  
13  
8
7
0
0
register file location  
OPCODE  
k (literal)  
[ ] Options  
Contents  
( )  
k = 8-bit immediate value  
Assigned to  
Register bit field  
In the set of  
< >  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
User defined term (font is courier)  
italics  
k (literal)  
1997 Microchip Technology Inc.  
DS30390E-page 147  
 
PIC16C7X  
TABLE 15-2: PIC16CXX INSTRUCTION SET  
Mnemonic,  
Operands  
Description  
Cycles  
14-Bit Opcode  
Status  
Affected  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
f, d  
f, d  
f
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
0111 dfff ffff C,DC,Z  
1,2  
1,2  
2
0101 dfff ffff  
0001 lfff ffff  
0001 0xxx xxxx  
1001 dfff ffff  
0011 dfff ffff  
1011 dfff ffff  
1010 dfff ffff  
1111 dfff ffff  
0100 dfff ffff  
1000 dfff ffff  
0000 lfff ffff  
0000 0xx0 0000  
1101 dfff ffff  
1100 dfff ffff  
Z
Z
Z
Z
Z
-
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
1,2  
1,2  
1,2,3  
1,2  
1,2,3  
1,2  
DECFSZ  
INCF  
Z
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
Z
Z
1,2  
Move W to f  
No Operation  
-
f, d  
f, d  
f, d  
f, d  
f, d  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Swap nibbles in f  
Exclusive OR W with f  
C
C
1,2  
1,2  
1,2  
1,2  
1,2  
0010 dfff ffff C,DC,Z  
1110 dfff ffff  
0110 dfff ffff Z  
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1
1
01  
01  
00bb bfff ffff  
01bb bfff ffff  
10bb bfff ffff  
11bb bfff ffff  
1,2  
1,2  
3
1 (2) 01  
1 (2) 01  
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
-
k
k
k
-
k
-
-
k
k
Add literal and W  
AND literal with W  
Call subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11  
11  
10  
00  
10  
11  
11  
00  
11  
00  
00  
11  
11  
111x kkkk kkkk C,DC,Z  
1001 kkkk kkkk  
0kkk kkkk kkkk  
Z
0000 0110 0100 TO,PD  
1kkk kkkk kkkk  
Inclusive OR literal with W  
Move literal to W  
1000 kkkk kkkk  
00xx kkkk kkkk  
0000 0000 1001  
01xx kkkk kkkk  
0000 0000 1000  
Z
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into standby mode  
Subtract W from literal  
Exclusive OR literal with W  
0000 0110 0011 TO,PD  
110x kkkk kkkk C,DC,Z  
1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself ( e.g., MOVF PORTB, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external  
device, the data will be written back with a '0'.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned  
to the Timer0 Module.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
DS30390E-page 148  
1997 Microchip Technology Inc.  
PIC16C7X  
15.1  
Instruction Descriptions  
Add Literal and W  
ANDLW  
AND Literal with W  
ADDLW  
Syntax:  
[label] ANDLW  
k
Syntax:  
[label] ADDLW  
0 k 255  
k
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
(W) .AND. (k) (W)  
(W) + k (W)  
C, DC, Z  
Z
11  
1001  
kkkk  
kkkk  
11  
111x  
kkkk  
kkkk  
The contents of W register are  
AND’ed with the eight bit literal 'k'.The  
result is placed in the W register.  
The contents of the W register are  
added to the eight bit literal 'k' and the  
result is placed in the W register.  
Words:  
1
1
Words:  
1
1
Cycles:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal "k"  
Process  
data  
Write to  
W
Decode  
Read  
literal 'k'  
Process  
data  
Write to  
W
ANDLW  
0x5F  
ADDLW  
0x15  
Example  
Example:  
Before Instruction  
Before Instruction  
W
=
0xA3  
0x03  
W
=
0x10  
0x25  
After Instruction  
After Instruction  
W
=
W
=
ADDWF  
Syntax:  
Add W and f  
ANDWF  
Syntax:  
AND W with f  
[label] ADDWF f,d  
[label] ANDWF f,d  
Operands:  
0 f 127  
Operands:  
0 f 127  
d
[0,1]  
d
[0,1]  
Operation:  
(W) + (f) (destination)  
Operation:  
(W) .AND. (f) (destination)  
Status Affected:  
Encoding:  
C, DC, Z  
Status Affected:  
Encoding:  
Z
00  
0111  
dfff  
ffff  
00  
0101  
dfff  
ffff  
Add the contents of the W register with  
register 'f'. If 'd' is 0 the result is stored  
in the W register. If 'd' is 1 the result is  
stored back in register 'f'.  
AND the W register with register 'f'. If 'd'  
is 0 the result is stored in the W regis-  
ter. If 'd' is 1 the result is stored back in  
register 'f'.  
Description:  
Description:  
Words:  
1
1
Words:  
1
1
Cycles:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
destination  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
destination  
ADDWF  
FSR,  
0
ANDWF  
FSR, 1  
Example  
Example  
Before Instruction  
Before Instruction  
W
FSR =  
=
0x17  
0xC2  
W
FSR =  
=
0x17  
0xC2  
After Instruction  
After Instruction  
W
FSR =  
=
0xD9  
0xC2  
W
FSR =  
=
0x17  
0x02  
1997 Microchip Technology Inc.  
DS30390E-page 149  
PIC16C7X  
BCF  
Bit Clear f  
BTFSC  
Bit Test, Skip if Clear  
Syntax:  
Operands:  
[label] BCF f,b  
Syntax:  
[label] BTFSC f,b  
0 f 127  
0 b 7  
Operands:  
0 f 127  
0 b 7  
Operation:  
Status Affected:  
Encoding:  
0 (f<b>)  
Operation:  
skip if (f<b>) = 0  
None  
None  
Status Affected:  
Encoding:  
01  
00bb  
bfff  
ffff  
01  
10bb  
bfff  
ffff  
If bit 'b' in register 'f' is '1' then the next  
instruction is executed.  
If bit 'b', in register 'f', is '0' then the next  
instruction is discarded, and a NOP is  
executed instead, making this a 2TCY  
instruction.  
Description:  
Words:  
Bit 'b' in register 'f' is cleared.  
Description:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write  
register 'f'  
Words:  
1
Cycles:  
1(2)  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
BCF  
FLAG_REG, 7  
Example  
Decode  
Read  
register 'f'  
Process  
data  
No-  
Operation  
Before Instruction  
FLAG_REG = 0xC7  
If Skip:  
(2nd Cycle)  
After Instruction  
FLAG_REG = 0x47  
Q1  
Q2  
Q3  
Q4  
No-  
No-  
No-  
No-  
Operation Operation Operation Operation  
HERE  
FALSE  
TRUE  
BTFSC FLAG,1  
Example  
GOTO  
PROCESS_CODE  
Before Instruction  
PC  
=
address HERE  
After Instruction  
if FLAG<1> = 0,  
BSF  
Bit Set f  
PC =  
address TRUE  
if FLAG<1>=1,  
Syntax:  
Operands:  
[label] BSF f,b  
PC =  
address FALSE  
0 f 127  
0 b 7  
Operation:  
Status Affected:  
Encoding:  
1 (f<b>)  
None  
01  
01bb  
bfff  
ffff  
Bit 'b' in register 'f' is set.  
Description:  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write  
register 'f'  
BSF  
FLAG_REG,  
7
Example  
Before Instruction  
FLAG_REG = 0x0A  
After Instruction  
FLAG_REG = 0x8A  
DS30390E-page 150  
1997 Microchip Technology Inc.  
PIC16C7X  
BTFSS  
Bit Test f, Skip if Set  
CALL  
Call Subroutine  
Syntax:  
[label] BTFSS f,b  
Syntax:  
[ label ] CALL k  
Operands:  
0 f 127  
0 b < 7  
Operands:  
Operation:  
0 k 2047  
(PC)+ 1TOS,  
Operation:  
skip if (f<b>) = 1  
None  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
None  
01  
11bb  
bfff  
ffff  
10  
0kkk  
kkkk  
kkkk  
If bit 'b' in register 'f' is '0' then the next  
instruction is executed.  
If bit 'b' is '1', then the next instruction is  
discarded and a NOP is executed  
instead, making this a 2TCY instruction.  
Description:  
Call Subroutine. First, return address  
(PC+1) is pushed onto the stack. The  
eleven bit immediate address is loaded  
into PC bits <10:0>. The upper bits of  
the PC are loaded from PCLATH. CALL  
is a two cycle instruction.  
Description:  
Words:  
1
Cycles:  
1(2)  
Words:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Cycles:  
Decode  
Read  
register 'f'  
Process  
data  
No-  
Operation  
Q Cycle Activity:  
1st Cycle  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
Process  
data  
Write to  
PC  
If Skip:  
(2nd Cycle)  
literal 'k',  
Push PC  
to Stack  
Q1  
Q2  
Q3  
Q4  
No-  
No-  
No-  
No-  
No-  
No-  
No-  
No-  
2nd Cycle  
Example  
Operation Operation Operation Operation  
Operation Operation Operation Operation  
HERE  
FALSE  
TRUE  
BTFSC FLAG,1  
GOTO  
Example  
HERE  
CALL  
THERE  
PROCESS_CODE  
Before Instruction  
PC  
=
Address HERE  
After Instruction  
PC  
= Address THERE  
Before Instruction  
TOS = Address HERE+1  
PC  
=
address HERE  
After Instruction  
if FLAG<1> = 0,  
PC =  
address FALSE  
if FLAG<1> = 1,  
PC =  
address TRUE  
1997 Microchip Technology Inc.  
DS30390E-page 151  
PIC16C7X  
CLRF  
Clear f  
CLRW  
Clear W  
Syntax:  
[label] CLRF  
0 f 127  
f
Syntax:  
[ label ] CLRW  
None  
Operands:  
Operation:  
Operands:  
Operation:  
00h (f)  
1 Z  
00h (W)  
1 Z  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
Z
00  
0001  
1fff  
ffff  
00  
0001  
0xxx  
xxxx  
The contents of register 'f' are cleared  
and the Z bit is set.  
Description:  
W register is cleared. Zero bit (Z) is  
set.  
Description:  
Words:  
1
1
Words:  
1
1
Cycles:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write  
register 'f'  
Decode  
No-  
Operation  
Process  
data  
Write to  
W
CLRW  
Example  
CLRF  
FLAG_REG  
Example  
Before Instruction  
Before Instruction  
FLAG_REG  
After Instruction  
W
=
0x5A  
=
0x5A  
After Instruction  
W
=
0x00  
1
FLAG_REG  
Z
=
=
0x00  
1
Z
=
CLRWDT  
Syntax:  
Clear Watchdog Timer  
[ label ] CLRWDT  
None  
Operands:  
Operation:  
00h WDT  
0 WDT prescaler,  
1 TO  
1 PD  
Status Affected:  
Encoding:  
TO, PD  
00  
0000  
0110  
0100  
CLRWDTinstruction resets the Watch-  
dog Timer. It also resets the prescaler  
of the WDT. Status bits TO and PD are  
set.  
Description:  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No-  
Operation  
Process  
data  
Clear  
WDT  
Counter  
CLRWDT  
Example  
Before Instruction  
After Instruction  
WDT counter  
=
=
?
WDT counter  
0x00  
WDT prescaler=  
0
1
1
TO  
PD  
=
=
DS30390E-page 152  
1997 Microchip Technology Inc.  
PIC16C7X  
COMF  
Complement f  
[ label ] COMF f,d  
0 f 127  
DECFSZ  
Syntax:  
Decrement f, Skip if 0  
Syntax:  
Operands:  
[ label ] DECFSZ f,d  
Operands:  
0 f 127  
d
[0,1]  
d
[0,1]  
Operation:  
(f) (destination)  
Operation:  
(f) - 1 (destination);  
skip if result = 0  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
None  
00  
1001  
dfff  
ffff  
00  
1011  
dfff  
ffff  
The contents of register 'f' are comple-  
mented. If 'd' is 0 the result is stored in  
W. If 'd' is 1 the result is stored back in  
register 'f'.  
Description:  
The contents of register 'f' are decre-  
mented. If 'd' is 0 the result is placed in the  
W register. If 'd' is 1 the result is placed  
back in register 'f'.  
If the result is 1, the next instruction, is  
executed. If the result is 0, then a NOP is  
executed instead making it a 2TCY instruc-  
tion.  
Description:  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
destination  
Words:  
1
Cycles:  
1(2)  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
COMF  
REG1,0  
Example  
Decode  
Read  
register 'f'  
Process  
data  
Write to  
destination  
Before Instruction  
REG1  
After Instruction  
REG1  
=
0x13  
If Skip:  
(2nd Cycle)  
Q1  
Q2  
Q3  
Q4  
=
=
0x13  
0xEC  
No-  
No-  
No-  
No-  
W
Operation Operation Operation Operation  
DECF  
Decrement f  
[label] DECF f,d  
0 f 127  
HERE  
DECFSZ  
GOTO  
CNT, 1  
LOOP  
Example  
Syntax:  
Operands:  
CONTINUE •  
d
[0,1]  
Operation:  
(f) - 1 (destination)  
Before Instruction  
PC  
=
address HERE  
Status Affected:  
Encoding:  
Z
After Instruction  
00  
0011  
dfff  
ffff  
CNT  
if CNT =  
PC  
if CNT ≠  
PC  
=
CNT - 1  
0,  
address CONTINUE  
0,  
address HERE+1  
Decrement register 'f'. If 'd' is 0 the  
result is stored in the W register. If 'd' is  
1 the result is stored back in register 'f'.  
Description:  
=
Words:  
1
1
=
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
destination  
DECF  
CNT, 1  
Example  
Before Instruction  
CNT  
=
0x01  
Z
=
0
After Instruction  
CNT  
Z
=
=
0x00  
1
1997 Microchip Technology Inc.  
DS30390E-page 153  
PIC16C7X  
GOTO  
Unconditional Branch  
INCF  
Increment f  
Syntax:  
[ label ] GOTO k  
Syntax:  
Operands:  
[ label ] INCF f,d  
Operands:  
Operation:  
0 k 2047  
0 f 127  
d
[0,1]  
k PC<10:0>  
PCLATH<4:3> PC<12:11>  
Operation:  
(f) + 1 (destination)  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
Z
10  
1kkk  
kkkk  
kkkk  
00  
1010  
dfff  
ffff  
GOTOis an unconditional branch. The  
eleven bit immediate value is loaded  
into PC bits <10:0>. The upper bits of  
PC are loaded from PCLATH<4:3>.  
GOTOis a two cycle instruction.  
The contents of register 'f' are incre-  
mented. If 'd' is 0 the result is placed in  
the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
Description:  
Description:  
Words:  
1
1
Words:  
1
2
Cycles:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
1st Cycle  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
destination  
Decode  
Read  
literal 'k'  
Process  
data  
Write to  
PC  
No-  
No-  
No-  
No-  
2nd Cycle  
Operation Operation Operation Operation  
INCF  
CNT, 1  
Example  
GOTO THERE  
Example  
Before Instruction  
CNT  
Z
After Instruction  
=
=
0xFF  
0
After Instruction  
PC  
=
Address THERE  
CNT  
Z
=
=
0x00  
1
DS30390E-page 154  
1997 Microchip Technology Inc.  
PIC16C7X  
INCFSZ  
Syntax:  
Increment f, Skip if 0  
[ label ] INCFSZ f,d  
0 f 127  
IORLW  
Inclusive OR Literal with W  
[ label ] IORLW k  
0 k 255  
Syntax:  
Operands:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
d
[0,1]  
(W) .OR. k (W)  
Z
Operation:  
(f) + 1 (destination),  
skip if result = 0  
11  
1000  
kkkk  
kkkk  
Status Affected:  
Encoding:  
None  
The contents of the W register is  
OR’ed with the eight bit literal 'k'. The  
result is placed in the W register.  
00  
1111  
dfff  
ffff  
The contents of register 'f' are incre-  
mented. If 'd' is 0 the result is placed in  
the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
If the result is 1, the next instruction is  
executed. If the result is 0, a NOP is  
executed instead making it a 2TCY  
instruction.  
Description:  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal 'k'  
Process  
data  
Write to  
W
Words:  
1
Cycles:  
1(2)  
IORLW  
0x35  
Example  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Before Instruction  
Decode  
Read  
register 'f'  
Process  
data  
Write to  
destination  
W
=
0x9A  
After Instruction  
W
Z
=
=
0xBF  
1
If Skip:  
(2nd Cycle)  
Q1  
Q2  
Q3  
Q4  
No-  
No-  
No-  
No-  
Operation Operation Operation Operation  
HERE  
INCFSZ  
GOTO  
CNT, 1  
LOOP  
Example  
CONTINUE •  
Before Instruction  
PC  
=
address HERE  
After Instruction  
CNT  
=
CNT + 1  
if CNT=  
0,  
PC  
if CNT≠  
=
address CONTINUE  
0,  
PC  
=
address HERE +1  
1997 Microchip Technology Inc.  
DS30390E-page 155  
PIC16C7X  
IORWF  
Inclusive OR W with f  
MOVLW  
Move Literal to W  
[ label ] MOVLW k  
0 k 255  
Syntax:  
[ label ] IORWF f,d  
Syntax:  
Operands:  
0 f 127  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
d
[0,1]  
k (W)  
Operation:  
(W) .OR. (f) (destination)  
None  
Status Affected:  
Encoding:  
Z
11  
00xx  
kkkk  
kkkk  
00  
0100  
dfff  
ffff  
The eight bit literal 'k' is loaded into W  
register. The don’t cares will assemble  
as 0’s.  
Inclusive OR the W register with regis-  
ter 'f'. If 'd' is 0 the result is placed in the  
W register. If 'd' is 1 the result is placed  
back in register 'f'.  
Description:  
Words:  
1
1
Words:  
1
1
Cycles:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal 'k'  
Process  
data  
Write to  
W
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
destination  
MOVLW  
0x5A  
Example  
After Instruction  
IORWF  
RESULT, 0  
Example  
W
=
0x5A  
Before Instruction  
RESULT =  
0x13  
0x91  
W
=
After Instruction  
RESULT =  
0x13  
0x93  
1
W
Z
=
=
MOVF  
Move f  
MOVWF  
Move W to f  
Syntax:  
Operands:  
[ label ] MOVF f,d  
Syntax:  
[ label ] MOVWF  
0 f 127  
(W) (f)  
f
0 f 127  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
d
[0,1]  
Operation:  
(f) (destination)  
None  
Status Affected:  
Encoding:  
Z
00  
0000  
1fff  
ffff  
00  
1000  
dfff  
ffff  
Move data from W register to register  
'f'.  
The contents of register f is moved to a  
destination dependant upon the status  
of d. If d = 0, destination is W register. If  
d = 1, the destination is file register f  
itself. d = 1 is useful to test a file regis-  
ter since status flag Z is affected.  
Description:  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write  
register 'f'  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
MOVWF  
OPTION_REG  
Example  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
destination  
Before Instruction  
OPTION =  
0xFF  
0x4F  
W
=
After Instruction  
MOVF  
FSR, 0  
Example  
OPTION =  
0x4F  
0x4F  
After Instruction  
W
=
W = value in FSR register  
Z
= 1  
DS30390E-page 156  
1997 Microchip Technology Inc.  
PIC16C7X  
NOP  
No Operation  
[ label ] NOP  
None  
RETFIE  
Return from Interrupt  
Syntax:  
Syntax:  
[ label ] RETFIE  
None  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
Operands:  
Operation:  
No operation  
None  
TOS PC,  
1 GIE  
Status Affected:  
Encoding:  
None  
00  
0000  
0xx0  
0000  
00  
0000  
0000  
1001  
No operation.  
Return from Interrupt. Stack is POPed  
and Top of Stack (TOS) is loaded in the  
PC. Interrupts are enabled by setting  
Global Interrupt Enable bit, GIE  
(INTCON<7>). This is a two cycle  
instruction.  
Description:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No-  
No-  
No-  
Operation Operation Operation  
Words:  
1
2
Cycles:  
NOP  
Example  
Q Cycle Activity:  
1st Cycle  
Q1  
Q2  
Q3  
Q4  
Decode  
No-  
Set the  
Pop from  
the Stack  
Operation GIE bit  
No-  
No- No-  
No-  
2nd Cycle  
Operation Operation Operation Operation  
RETFIE  
Example  
After Interrupt  
PC  
GIE =  
=
TOS  
1
OPTION  
Syntax:  
Load Option Register  
[ label ] OPTION  
None  
Operands:  
Operation:  
(W) OPTION  
Status Affected: None  
00  
0000  
0110  
0010  
Encoding:  
The contents of the W register are  
loaded in the OPTION register. This  
instruction is supported for code com-  
patibility with PIC16C5X products.  
Since OPTION is a readable/writable  
register, the user can directly address  
it.  
Description:  
Words:  
Cycles:  
Example  
1
1
To maintain upward compatibility  
with future PIC16CXX products, do  
not use this instruction.  
1997 Microchip Technology Inc.  
DS30390E-page 157  
PIC16C7X  
RETLW  
Return with Literal in W  
RETURN  
Return from Subroutine  
[ label ] RETURN  
None  
Syntax:  
[ label ] RETLW k  
Syntax:  
Operands:  
Operation:  
0 k 255  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
k (W);  
TOS PC  
TOS PC  
None  
Status Affected:  
Encoding:  
None  
00  
0000  
0000  
1000  
11  
01xx  
kkkk  
kkkk  
Return from subroutine. The stack is  
POPed and the top of the stack (TOS)  
is loaded into the program counter.This  
is a two cycle instruction.  
The W register is loaded with the eight  
bit literal 'k'. The program counter is  
loaded from the top of the stack (the  
return address). This is a two cycle  
instruction.  
Description:  
Words:  
1
2
Cycles:  
Words:  
1
2
Q Cycle Activity:  
1st Cycle  
Q1  
Q2  
Q3  
Q4  
Cycles:  
Decode  
No-  
No-  
Pop from  
Q Cycle Activity:  
1st Cycle  
Q1  
Q2  
Q3  
Q4  
Operation Operation the Stack  
Decode  
Read  
No-  
WritetoW,  
No-  
No- No- No-  
2nd Cycle  
literal 'k' Operation Pop from  
the Stack  
Operation Operation Operation Operation  
No-  
No-  
No-  
No-  
2nd Cycle  
Example  
RETURN  
Example  
Operation Operation Operation Operation  
After Interrupt  
PC  
=
TOS  
CALL TABLE ;W contains table  
;offset value  
;W now has table value  
TABLE  
ADDWF PC  
RETLW k1  
RETLW k2  
;W = offset  
;Begin table  
;
RETLW kn  
; End of table  
Before Instruction  
W
=
0x07  
After Instruction  
W
=
value of k8  
DS30390E-page 158  
1997 Microchip Technology Inc.  
PIC16C7X  
RLF  
Rotate Left f through Carry  
RRF  
Rotate Right f through Carry  
[ label ] RRF f,d  
0 f 127  
Syntax:  
Operands:  
[ label ]  
RLF f,d  
Syntax:  
Operands:  
0 f 127  
d
[0,1]  
d
[0,1]  
Operation:  
See description below  
C
Operation:  
See description below  
C
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
00  
1101  
dfff  
ffff  
00  
1100  
dfff  
ffff  
The contents of register 'f' are rotated  
one bit to the left through the Carry  
Flag. If 'd' is 0 the result is placed in the  
W register. If 'd' is 1 the result is stored  
back in register 'f'.  
The contents of register 'f' are rotated  
one bit to the right through the Carry  
Flag. If 'd' is 0 the result is placed in the  
W register. If 'd' is 1 the result is placed  
back in register 'f'.  
Description:  
Description:  
C
Register f  
C
Register f  
Words:  
1
1
Words:  
1
1
Cycles:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
destination  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
destination  
RLF  
REG1,0  
Example  
RRF  
REG1,0  
Example  
Before Instruction  
Before Instruction  
REG1  
C
=
=
1110 0110  
0
REG1  
C
=
=
1110 0110  
0
After Instruction  
After Instruction  
REG1  
W
C
=
=
=
1110 0110  
1100 1100  
1
REG1  
W
C
=
=
=
1110 0110  
0111 0011  
0
1997 Microchip Technology Inc.  
DS30390E-page 159  
PIC16C7X  
SLEEP  
SUBLW  
Subtract W from Literal  
Syntax:  
[ label ]  
SUBLW k  
Syntax:  
[ label ] SLEEP  
Operands:  
Operation:  
0 k 255  
Operands:  
Operation:  
None  
k - (W) → (W)  
00h WDT,  
0 WDT prescaler,  
1 TO,  
Status Affected: C, DC, Z  
Encoding:  
11  
110x  
kkkk  
kkkk  
0 PD  
The W register is subtracted (2’s comple-  
ment method) from the eight bit literal 'k'.  
The result is placed in the W register.  
Description:  
Status Affected:  
Encoding:  
TO, PD  
00  
0000  
0110  
0011  
Words:  
1
1
The power-down status bit, PD is  
cleared. Time-out status bit, TO is  
set. Watchdog Timer and its pres-  
caler are cleared.  
Description:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
The processor is put into SLEEP  
mode with the oscillator stopped. See  
Section 14.8 for more details.  
Decode  
Read  
literal 'k'  
Process Write to W  
data  
Words:  
1
1
Example 1:  
SUBLW  
0x02  
Cycles:  
Before Instruction  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
W
C
Z
=
=
=
1
?
?
Decode  
No-  
No-  
Go to  
Operation Operation Sleep  
After Instruction  
Example:  
SLEEP  
W
C
Z
=
=
=
1
1; result is positive  
0
Example 2:  
Before Instruction  
W
C
Z
=
=
=
2
?
?
After Instruction  
W
C
Z
=
=
=
0
1; result is zero  
1
Example 3:  
Before Instruction  
W
C
Z
=
=
=
3
?
?
After Instruction  
W
C
Z
=
=
=
0xFF  
0; result is negative  
0
DS30390E-page 160  
1997 Microchip Technology Inc.  
PIC16C7X  
SUBWF  
Syntax:  
Subtract W from f  
SWAPF  
Syntax:  
Swap Nibbles in f  
[ label ] SWAPF f,d  
[ label ]  
SUBWF f,d  
Operands:  
0 f 127  
Operands:  
0 f 127  
d
[0,1]  
d
[0,1]  
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
Operation:  
(f) - (W) → (destination)  
Status Affected: C, DC, Z  
Status Affected:  
Encoding:  
None  
Encoding:  
00  
0010  
dfff  
ffff  
00  
1110  
dfff  
ffff  
Subtract (2’s complement method) W reg-  
ister from register 'f'. If 'd' is 0 the result is  
stored in the W register. If 'd' is 1 the  
result is stored back in register 'f'.  
Description:  
The upper and lower nibbles of register  
'f' are exchanged. If 'd' is 0 the result is  
placed in W register. If 'd' is 1 the result  
is placed in register 'f'.  
Description:  
Words:  
1
1
Words:  
1
1
Cycles:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register 'f'  
Process  
data  
Write to  
destination  
Decode  
Read  
register 'f'  
Process  
data  
Write to  
destination  
Example 1:  
SUBWF  
REG1,1  
SWAPF REG,  
0
Example  
Before Instruction  
Before Instruction  
REG1  
REG1  
=
=
=
=
3
2
?
?
W
C
Z
=
0xA5  
After Instruction  
REG1  
W
=
=
0xA5  
0x5A  
After Instruction  
REG1  
=
1
2
W
C
Z
=
=
=
1; result is positive  
0
Example 2:  
Before Instruction  
TRIS  
Load TRIS Register  
REG1  
=
=
=
=
2
2
?
?
Syntax:  
[label] TRIS  
f
W
C
Z
Operands:  
Operation:  
5 f 7  
(W) TRIS register f;  
Status Affected: None  
After Instruction  
00  
Encoding:  
0000 0110  
0fff  
REG1  
=
0
W
C
Z
=
=
=
2
The instruction is supported for code  
compatibility with the PIC16C5X prod-  
ucts. Since TRIS registers are read-  
able and writable, the user can directly  
address them.  
Description:  
1; result is zero  
1
Example 3:  
Before Instruction  
REG1  
=
=
=
=
1
2
?
?
Words:  
Cycles:  
Example  
1
1
W
C
Z
After Instruction  
To maintain upward compatibility  
with future PIC16CXX products, do  
not use this instruction.  
REG1  
=
0xFF  
2
0; result is negative  
0
W
C
Z
=
=
=
1997 Microchip Technology Inc.  
DS30390E-page 161  
PIC16C7X  
XORLW  
Exclusive OR Literal with W  
[label] XORLW k  
XORWF  
Syntax:  
Exclusive OR W with f  
[label] XORWF f,d  
0 f 127  
Syntax:  
Operands:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
0 k 255  
d
[0,1]  
(W) .XOR. k → (W)  
Operation:  
(W) .XOR. (f) → (destination)  
Z
Status Affected:  
Encoding:  
Z
11  
1010 kkkk kkkk  
00  
0110  
dfff  
ffff  
The contents of the W register are  
XOR’ed with the eight bit literal 'k'.  
The result is placed in the W regis-  
ter.  
Description:  
Exclusive OR the contents of the W  
register with register 'f'. If 'd' is 0 the  
result is stored in the W register. If 'd' is  
1 the result is stored back in register 'f'.  
Description:  
Words:  
1
1
Words:  
1
1
Cycles:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
Process Write to  
literal 'k'  
data  
W
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
destination  
Example:  
XORLW 0xAF  
Before Instruction  
REG  
1
Example  
XORWF  
W
=
0xB5  
0x1A  
Before Instruction  
After Instruction  
REG  
W
=
=
0xAF  
0xB5  
W
=
After Instruction  
REG  
W
=
=
0x1A  
0xB5  
DS30390E-page 162  
1997 Microchip Technology Inc.  
PIC16C7X  
16.3  
ICEPIC: Low-cost PIC16CXXX  
In-Circuit Emulator  
16.0 DEVELOPMENT SUPPORT  
16.1  
Development Tools  
ICEPIC is a low-cost in-circuit emulator solution for the  
Microchip PIC16C5X and PIC16CXXX families of 8-bit  
OTP microcontrollers.  
The PIC16/17 microcontrollers are supported with a full  
range of hardware and software development tools:  
• PICMASTER/PICMASTER CE Real-Time  
In-Circuit Emulator  
ICEPIC is designed to operate on PC-compatible  
machines ranging from 286-AT through Pentium  
based machines under Windows 3.x environment.  
ICEPIC features real time, non-intrusive emulation.  
• ICEPIC Low-Cost PIC16C5X and PIC16CXXX  
In-Circuit Emulator  
• PRO MATE II Universal Programmer  
16.4  
PRO MATE II: Universal Programmer  
• PICSTART Plus Entry-Level Prototype  
Programmer  
The PRO MATE II Universal Programmer is a full-fea-  
tured programmer capable of operating in stand-alone  
mode as well as PC-hosted mode.  
• PICDEM-1 Low-Cost Demonstration Board  
• PICDEM-2 Low-Cost Demonstration Board  
• PICDEM-3 Low-Cost Demonstration Board  
• MPASM Assembler  
The PRO MATE II has programmable VDD and VPP  
supplies which allows it to verify programmed memory  
at VDD min and VDD max for maximum reliability. It has  
an LCD display for displaying error messages, keys to  
enter commands and a modular detachable socket  
assembly to support various package types. In stand-  
alone mode the PRO MATE II can read, verify or pro-  
gram PIC16C5X, PIC16CXXX, PIC17CXX and  
PIC14000 devices. It can also set configuration and  
code-protect bits in this mode.  
• MPLAB-SIM Software Simulator  
• MPLAB-C (C Compiler)  
• Fuzzy logic development system (fuzzyTECH MP)  
16.2  
PICMASTER: High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
The PICMASTER Universal In-Circuit Emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for all  
microcontrollers in the PIC12C5XX, PIC14C000,  
PIC16C5X, PIC16CXXX and PIC17CXX families.  
PICMASTER is supplied with the MPLAB Integrated  
Development Environment (IDE), which allows editing,  
“make” and download, and source debugging from a  
single environment.  
16.5  
PICSTART Plus Entry Level  
Development System  
The PICSTART programmer is an easy-to-use, low-  
cost prototype programmer. It connects to the PC via  
one of the COM (RS-232) ports. MPLAB Integrated  
Development Environment software makes using the  
programmer simple and efficient. PICSTART Plus is  
not recommended for production programming.  
Interchangeable target probes allow the system to be  
easily reconfigured for emulation of different proces-  
sors. The universal architecture of the PICMASTER  
allows expansion to support all new Microchip micro-  
controllers.  
PICSTART Plus supports all PIC12C5XX, PIC14000,  
PIC16C5X, PIC16CXXX and PIC17CXX devices with  
up to 40 pins. Larger pin count devices such as the  
PIC16C923 and PIC16C924 may be supported with an  
adapter socket.  
The PICMASTER Emulator System has been  
designed as  
a real-time emulation system with  
advanced features that are generally found on more  
expensive development tools. The PC compatible 386  
(and higher) machine platform and Microsoft Windows  
3.x environment were chosen to best make these fea-  
tures available to you, the end user.  
A CE compliant version of PICMASTER is available for  
European Union (EU) countries.  
1997 Microchip Technology Inc.  
DS30390E-page 163  
PIC16C7X  
an RS-232 interface, push-button switches, a potenti-  
ometer for simulated analog input, a thermistor and  
separate headers for connection to an external LCD  
module and a keypad. Also provided on the PICDEM-3  
board is an LCD panel, with 4 commons and 12 seg-  
ments, that is capable of displaying time, temperature  
and day of the week. The PICDEM-3 provides an addi-  
tional RS-232 interface and Windows 3.1 software for  
showing the demultiplexed LCD signals on a PC. A sim-  
ple serial interface allows the user to construct a hard-  
ware demultiplexer for the LCD signals.  
16.6  
PICDEM-1 Low-Cost PIC16/17  
Demonstration Board  
The PICDEM-1 is a simple board which demonstrates  
the capabilities of several of Microchip’s microcontrol-  
lers. The microcontrollers supported are: PIC16C5X  
(PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X,  
PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and  
PIC17C44. All necessary hardware and software is  
included to run basic demo programs. The users can  
program the sample microcontrollers provided with  
the PICDEM-1 board, on  
a PRO MATE II or  
16.9  
MPLAB Integrated Development  
Environment Software  
PICSTART-16B programmer, and easily test firm-  
ware. The user can also connect the PICDEM-1  
board to the PICMASTER emulator and download  
the firmware to the emulator for testing. Additional pro-  
totype area is available for the user to build some addi-  
tional hardware and connect it to the microcontroller  
socket(s). Some of the features include an RS-232  
interface, a potentiometer for simulated analog input,  
push-button switches and eight LEDs connected to  
PORTB.  
The MPLAB IDE Software brings an ease of software  
development previously unseen in the 8-bit microcon-  
troller market. MPLAB is a windows based application  
which contains:  
• A full featured editor  
• Three operating modes  
- editor  
- emulator  
- simulator  
• A project manager  
• Customizable tool bar and key mapping  
• A status bar with project information  
• Extensive on-line help  
16.7  
PICDEM-2 Low-Cost PIC16CXX  
Demonstration Board  
The PICDEM-2 is a simple demonstration board that  
supports the PIC16C62, PIC16C64, PIC16C65,  
PIC16C73 and PIC16C74 microcontrollers. All the  
necessary hardware and software is included to  
run the basic demonstration programs. The user  
can program the sample microcontrollers provided  
with the PICDEM-2 board, on a PRO MATE II pro-  
grammer or PICSTART-16C, and easily test firmware.  
The PICMASTER emulator may also be used with the  
PICDEM-2 board to test firmware. Additional prototype  
area has been provided to the user for adding addi-  
tional hardware and connecting it to the microcontroller  
socket(s). Some of the features include a RS-232 inter-  
face, push-button switches, a potentiometer for simu-  
lated analog input, a Serial EEPROM to demonstrate  
MPLAB allows you to:  
• Edit your source files (either assembly or ‘C’)  
• One touch assemble (or compile) and download  
to PIC16/17 tools (automatically updates all  
project information)  
• Debug using:  
- source files  
- absolute listing file  
Transfer data dynamically via DDE (soon to be  
replaced by OLE)  
• Run up to four emulators on the same PC  
The ability to use MPLAB with Microchip’s simulator  
allows a consistent platform and the ability to easily  
switch from the low cost simulator to the full featured  
emulator with minimal retraining due to development  
tools.  
2
usage of the I C bus and separate headers for connec-  
tion to an LCD module and a keypad.  
16.8  
PICDEM-3 Low-Cost PIC16CXXX  
Demonstration Board  
16.10 Assembler (MPASM)  
The PICDEM-3 is a simple demonstration board that  
supports the PIC16C923 and PIC16C924 in the PLCC  
package. It will also support future 44-pin PLCC  
microcontrollers with a LCD Module. All the neces-  
sary hardware and software is included to run the  
basic demonstration programs. The user can pro-  
gram the sample microcontrollers provided with  
the PICDEM-3 board, on a PRO MATE II program-  
mer or PICSTART Plus with an adapter socket, and  
easily test firmware. The PICMASTER emulator may  
also be used with the PICDEM-3 board to test firm-  
ware. Additional prototype area has been provided to  
the user for adding hardware and connecting it to the  
microcontroller socket(s). Some of the features include  
The MPASM Universal Macro Assembler is a PC-  
hosted symbolic assembler. It supports all microcon-  
troller series including the PIC12C5XX, PIC14000,  
PIC16C5X, PIC16CXXX, and PIC17CXX families.  
MPASM offers full featured Macro capabilities, condi-  
tional assembly, and several source and listing formats.  
It generates various object code formats to support  
Microchip's development tools as well as third party  
programmers.  
MPASM allows full symbolic debugging from  
PICMASTER, Microchip’s Universal Emulator  
System.  
DS30390E-page 164  
1997 Microchip Technology Inc.  
PIC16C7X  
MPASM has the following features to assist in develop-  
ing software for specific use applications.  
16.14 MP-DriveWay – Application Code  
Generator  
• Provides translation of Assembler source code to  
object code for all Microchip microcontrollers.  
MP-DriveWay is an easy-to-use Windows-based Appli-  
cation Code Generator. With MP-DriveWay you can  
visually configure all the peripherals in a PIC16/17  
device and, with a click of the mouse, generate all the  
initialization and many functional code modules in C  
language. The output is fully compatible with Micro-  
chip’s MPLAB-C C compiler. The code produced is  
highly modular and allows easy integration of your own  
code. MP-DriveWay is intelligent enough to maintain  
your code through subsequent code generation.  
• Macro assembly capability.  
• Produces all the files (Object, Listing, Symbol,  
and special) required for symbolic debug with  
Microchip’s emulator systems.  
• Supports Hex (default), Decimal and Octal source  
and listing formats.  
MPASM provides a rich directive language to support  
programming of the PIC16/17. Directives are helpful in  
making the development of your assemble source code  
shorter and more maintainable.  
16.15 SEEVAL Evaluation and  
Programming System  
16.11 Software Simulator (MPLAB-SIM)  
The SEEVAL SEEPROM Designer’s Kit supports all  
Microchip 2-wire and 3-wire Serial EEPROMs. The kit  
includes everything necessary to read, write, erase or  
program special features of any Microchip SEEPROM  
product including Smart Serials and secure serials.  
The Total Endurance Disk is included to aid in trade-  
off analysis and reliability calculations. The total kit can  
significantly reduce time-to-market and result in an  
optimized system.  
The MPLAB-SIM Software Simulator allows code  
development in a PC host environment. It allows the  
user to simulate the PIC16/17 series microcontrollers  
on an instruction level. On any given instruction, the  
user may examine or modify any of the data areas or  
provide external stimulus to any of the pins. The input/  
output radix can be set by the user and the execution  
can be performed in; single step, execute until break, or  
in a trace mode.  
16.16 TrueGauge Intelligent Battery  
Management  
MPLAB-SIM fully supports symbolic debugging using  
MPLAB-C and MPASM. The Software Simulator offers  
the low cost flexibility to develop and debug code out-  
side of the laboratory environment making it an excel-  
lent multi-project software development tool.  
The TrueGauge development tool supports system  
development with the MTA11200B TrueGauge Intelli-  
gent Battery Management IC. System design verifica-  
tion can be accomplished before hardware prototypes  
are built. User interface is graphically-oriented and  
measured data can be saved in a file for exporting to  
Microsoft Excel.  
16.12 C Compiler (MPLAB-C)  
The MPLAB-C Code Development System is a  
complete ‘C’ compiler and integrated development  
environment for Microchip’s PIC16/17 family of micro-  
controllers. The compiler provides powerful integration  
capabilities and ease of use not found with other  
compilers.  
16.17 KEELOQ Evaluation and  
Programming Tools  
KEELOQ evaluation and programming tools support  
Microchips HCS Secure Data Products. The HCS eval-  
uation kit includes an LCD display to show changing  
codes, a decoder to decode transmissions, and a pro-  
gramming interface to program test transmitters.  
For easier source level debugging, the compiler pro-  
vides symbol information that is compatible with the  
MPLAB IDE memory display (PICMASTER emulator  
software versions 1.13 and later).  
16.13 Fuzzy Logic Development System  
(fuzzyTECH-MP)  
fuzzyTECH-MP fuzzy logic development tool is avail-  
able in two versions - a low cost introductory version,  
MP Explorer, for designers to gain a comprehensive  
working knowledge of fuzzy logic system design; and a  
full-featured version, fuzzyTECH-MP, edition for imple-  
menting more complex systems.  
Both versions include Microchip’s fuzzyLAB demon-  
stration board for hands-on experience with fuzzy logic  
systems implementation.  
1997 Microchip Technology Inc.  
DS30390E-page 165  
PIC16C7X  
TABLE 16-1: DEVELOPMENT TOOLS FROM MICROCHIP  
ufzy  
D e m o B o a r d s  
E m u l a t o r P r o d u c t s  
S o f t w a r e T o o l s  
P r o g r a m m e r s  
DS30390E-page 166  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
17.0 ELECTRICAL CHARACTERISTICS FOR PIC16C72  
Absolute Maximum Ratings †  
Ambient temperature under bias..................................................................................................................-55 to +125˚C  
Storage temperature............................................................................................................................... -65˚C to +150˚C  
Voltage on any pin with respect to VSS (except VDD, MCLR, and RA4) ..........................................-0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ............................................................................................................ -0.3 to +7.5V  
Voltage on MCLR with respect to VSS (Note 2) ................................................................................................. 0 to +14V  
Voltage on RA4 with respect to Vss................................................................................................................... 0 to +14V  
Total power dissipation (Note 1).................................................................................................................................1.0W  
Maximum current out of VSS pin ............................................................................................................................300 mA  
Maximum current into VDD pin...............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD) .....................................................................................................................±20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD)..............................................................................................................±20 mA  
Maximum output current sunk by any I/O pin...........................................................................................................25 mA  
Maximum output current sourced by any I/O pin .....................................................................................................25 mA  
Maximum current sunk by PORTA and PORTB (combined)..................................................................................200 mA  
Maximum current sourced by PORTA and PORTB (combined).............................................................................200 mA  
Maximum current sunk by PORTC ........................................................................................................................200 mA  
Maximum current sourced by PORTC ...................................................................................................................200 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD - VOH) x IOH} + (VOl x IOL)  
Note 2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up.Thus,  
a series resistor of 50-100should be used when applying a “low” level to the MCLRpin rather than pulling  
this pin directly to VSS.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
TABLE 17-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS  
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)  
OSC  
PIC16C72-04  
PIC16C72-10  
PIC16C72-20  
PIC16LC72-04  
JW Devices  
VDD: 4.0V to 6.0V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 2.5V to 6.0V  
VDD: 4.0V to 6.0V  
IDD: 5 mA max. at 5.5V  
IPD: 16 µA max. at 4V  
Freq: 4 MHz max.  
IDD: 2.7 mA typ. at 5.5V  
IPD: 1.5 µA typ. at 4V  
Freq: 4 MHz max.  
IDD: 2.7 mA typ. at 5.5V  
IPD: 1.5 µA typ. at 4V  
Freq: 4 MHz max.  
IDD: 3.8 mA max. at 3.0V IDD: 5 mA max. at 5.5V  
RC  
IPD: 5.0 µA max. at 3V  
IPD: 16 µA max. at 4V  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
VDD: 4.0V to 6.0V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 2.5V to 6.0V  
VDD: 4.0V to 6.0V  
IDD: 5 mA max. at 5.5V  
IPD: 16 µA max. at 4V  
Freq: 4 MHz max.  
IDD: 2.7 mA typ. at 5.5V  
IPD: 1.5 µA typ. at 4V  
Freq: 4 MHz max.  
IDD: 2.7 mA typ. at 5.5V  
IPD: 1.5 µA typ. at 4V  
Freq: 4 MHz max.  
IDD: 3.8 mA max. at 3.0V IDD: 5 mA max. at 5.5V  
XT  
HS  
IPD: 5.0 µA max. at 3V  
IPD: 16 µA max. at 4V  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
IDD: 13.5 mA typ. at 5.5V IDD: 10 mA max. at 5.5V IDD: 20 mA max. at 5.5V  
IDD: 20 mA max. at 5.5V  
IPD: 1.5 µA typ. at 4.5V  
Freq: 20 MHz max.  
Not recommended for use  
in HS mode  
IPD: 1.5 µA typ. at 4.5V  
IPD: 1.5 µA typ. at 4.5V  
IPD: 1.5 µA typ. at 4.5V  
Freq: 4 MHz max.  
Freq: 10 MHz max.  
Freq: 20 MHz max.  
VDD: 4.0V to 6.0V  
IDD: 52.5 µA typ. at  
32 kHz, 4.0V  
IPD: 0.9 µA typ. at 4.0V  
Freq: 200 kHz max.  
VDD: 2.5V to 6.0V  
IDD: 48 µA max. at  
32 kHz, 3.0V  
IPD: 5.0 µA max. at 3.0V IPD: 5.0 µA max. at 3.0V  
Freq: 200 kHz max.  
VDD: 2.5V to 6.0V  
IDD: 48 µA max. at  
32 kHz, 3.0V  
Not recommended for use Not recommended for use  
in LP mode in LP mode  
LP  
Freq: 200 kHz max.  
The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications.  
It is recommended that the user select the device type that ensures the specifications required.  
1997 Microchip Technology Inc.  
DS30390E-page 167  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
17.1  
DC Characteristics:  
PIC16C72-04 (Commercial, Industrial, Extended)  
PIC16C72-10 (Commercial, Industrial, Extended)  
PIC16C72-20 (Commercial, Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40˚C TA +125˚C for extended,  
DC CHARACTERISTICS  
-40˚C  
0˚C  
TA +85˚C for industrial and  
TA +70˚C for commercial  
Param  
No.  
Characteristic  
Sym  
VDD  
Min Typ† Max Units  
Conditions  
D001  
D001A  
Supply Voltage  
4.0  
4.5  
-
-
6.0  
5.5  
V
V
XT, RC and LP osc configuration  
HS osc configuration  
D002*  
D003  
RAM Data Retention  
Voltage (Note 1)  
VDR  
-
1.5  
-
V
VDD start voltage to  
ensure internal Power-  
on Reset Signal  
VPOR  
-
VSS  
-
V
See section on Power-on Reset for details  
D004*  
VDD rise rate to ensure  
internal Power-on Reset  
Signal  
SVDD  
0.05  
-
-
V/ms See section on Power-on Reset for details  
D005  
D010  
Brown-out Reset Voltage BVDD  
3.7  
3.7  
-
4.0 4.3  
4.0 4.4  
V
V
BODEN bit in configuration word enabled  
Extended Only  
Supply Current  
(Note 2,5)  
IDD  
2.7 5.0 mA XT, RC osc configuration  
FOSC = 4 MHz, VDD = 5.5V (Note 4)  
D013  
D015  
-
-
10  
20  
mA HS osc configuration  
FOSC = 20 MHz, VDD = 5.5V  
Brown-out Reset Current IBOR  
350 425 µA BOR enabled VDD = 5.0V  
(Note 6)  
D020  
D021  
D021A  
D021B  
Power-down Current  
(Note 3,5)  
IPD  
-
-
-
-
10.5 42 µA VDD = 4.0V, WDT enabled, -40°C to +85°C  
1.5  
1.5  
2.5  
16  
19  
19  
µA VDD = 4.0V, WDT disabled, -0°C to +70°C  
µA VDD = 4.0V, WDT disabled, -40°C to +85°C  
µA VDD = 4.0V, WDT disabled, -40°C to +125°C  
D023  
Brown-out Reset Current IBOR  
-
350 425 µA BOR enabled VDD = 5.0V  
(Note 6)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from charac-  
terization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
DS30390E-page 168  
1997 Microchip Technology Inc.  
 
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
17.2  
DC Characteristics: PIC16LC72-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40˚C  
0˚C  
TA +85˚C for industrial and  
TA +70˚C for commercial  
DC CHARACTERISTICS  
Param  
No.  
Characteristic  
Sym Min Typ† Max Units  
Conditions  
D001  
Supply Voltage  
VDD  
2.5  
-
-
6.0  
-
V
V
LP, XT, RC osc configuration (DC - 4 MHz)  
See section on Power-on Reset for details  
D002* RAM Data Retention Volt- VDR  
age (Note 1)  
1.5  
D003  
VDD start voltage to  
ensure internal Power-on  
Reset signal  
VPOR  
-
VSS  
-
-
-
V
D004* VDD rise rate to ensure  
internal Power-on Reset  
signal  
SVDD  
0.05  
V/ms See section on Power-on Reset for details  
D005  
D010  
Brown-out Reset Voltage BVDD  
3.7  
-
4.0  
2.0  
4.3  
3.8  
V
BODEN bit in configuration word enabled  
Supply Current  
(Note 2,5)  
IDD  
mA XT, RC osc configuration  
FOSC = 4 MHz, VDD = 3.0V (Note 4)  
D010A  
-
-
22.5 48  
350 425  
µA LP osc configuration  
FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
D015* Brown-out Reset Current IBOR  
µA BOR enabled VDD = 5.0V  
(Note 6)  
D020  
D021  
D021A  
Power-down Current  
(Note 3,5)  
IPD  
-
-
-
7.5  
0.9  
0.9  
30  
5
5
µA VDD = 3.0V, WDT enabled, -40°C to +85°C  
µA VDD = 3.0V, WDT disabled, 0°C to +70°C  
µA VDD = 3.0V, WDT disabled, -40°C to +85°C  
D023* Brown-out Reset Current IBOR  
-
350 425  
µA BOR enabled VDD = 5.0V  
(Note 6)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from charac-  
terization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
1997 Microchip Technology Inc.  
DS30390E-page 169  
 
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
17.3  
DC Characteristics:  
PIC16C72-04 (Commercial, Industrial, Extended)  
PIC16C72-10 (Commercial, Industrial, Extended)  
PIC16C72-20 (Commercial, Industrial, Extended)  
PIC16LC72-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40˚C TA +125˚C for extended,  
-40˚C TA +85˚C for industrial and  
DC CHARACTERISTICS  
0˚C  
TA +70˚C for commercial  
Operating voltage VDD range as described in DC spec Section 17.1  
and Section 17.2.  
Param  
No.  
Characteristic  
Sym  
Min Typ Max Units  
Conditions  
Input Low Voltage  
I/O ports  
VIL  
D030  
with TTL buffer  
VSS  
VSS  
VSS  
VSS  
VSS  
-
-
-
-
-
0.15VDD  
0.8V  
0.2VDD  
0.2VDD  
0.3VDD  
V
V
V
V
V
For entire VDD range  
4.5 VDD 5.5V  
D030A  
D031  
D032  
D033  
with Schmitt Trigger buffer  
MCLR, OSC1 (in RC mode)  
OSC1 (in XT, HS and LP)  
Input High Voltage  
I/O ports  
Note1  
VIH  
-
-
-
D040  
D040A  
with TTL buffer  
2.0  
0.25VDD  
+ 0.8V  
VDD  
VDD  
V
V
4.5 VDD 5.5V  
For entire VDD range  
D041  
D042  
D042A  
D043  
D070  
with Schmitt Trigger buffer  
MCLR  
0.8VDD  
0.8VDD  
0.7VDD  
0.9VDD  
50  
-
-
-
-
VDD  
VDD  
VDD  
VDD  
V
V
V
V
For entire VDD range  
Note1  
OSC1 (XT, HS and LP)  
OSC1 (in RC mode)  
PORTB weak pull-up current  
Input Leakage Current (Notes 2, 3)  
I/O ports  
IPURB  
IIL  
250 †400  
µA VDD = 5V, VPIN = VSS  
D060  
-
-
±1  
µA Vss VPIN VDD, Pin at hi-  
impedance  
D061  
D063  
MCLR, RA4/T0CKI  
OSC1  
-
-
-
-
±5  
±5  
µA Vss VPIN VDD  
µA Vss VPIN VDD, XT, HS and  
LP osc configuration  
Output Low Voltage  
D080  
I/O ports  
VOL  
-
-
-
-
-
-
-
-
0.6  
0.6  
0.6  
0.6  
V
V
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 7.0 mA, VDD = 4.5V,  
-40°C to +125°C  
IOL = 1.6 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 1.2 mA, VDD = 4.5V,  
-40°C to +125°C  
D080A  
D083  
OSC2/CLKOUT (RC osc config)  
D083A  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt trigger input. It is not recommended that the  
PIC16C7X be driven with external clock in RC mode.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input volt-  
ages.  
3: Negative current is defined as current sourced by the pin.  
DS30390E-page 170  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40˚C TA +125˚C for extended,  
-40˚C TA +85˚C for industrial and  
DC CHARACTERISTICS  
0˚C  
TA +70˚C for commercial  
Operating voltage VDD range as described in DC spec Section 17.1  
and Section 17.2.  
Param  
No.  
Characteristic  
Sym  
Min Typ Max Units  
Conditions  
Output High Voltage  
D090  
I/O ports (Note 3)  
VOH VDD - 0.7 -  
VDD - 0.7 -  
-
-
V
V
V
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -2.5 mA, VDD = 4.5V,  
-40°C to +125°C  
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -1.0 mA, VDD = 4.5V,  
-40°C to +125°C  
D090A  
D092  
OSC2/CLKOUT (RC osc config)  
VDD - 0.7 -  
-
D092A  
D150*  
VDD - 0.7 -  
-
Open-Drain High Voltage  
Capacitive Loading Specs on Out-  
put Pins  
VOD  
-
-
-
-
14  
RA4 pin  
D100  
OSC2 pin  
COSC2  
15  
pF In XT, HS and LP modes  
when external clock is used to  
drive OSC1.  
D101  
D102  
All I/O pins and OSC2 (in RC mode) CIO  
-
-
-
-
50  
400  
pF  
pF  
2
CB  
SCL, SDA in I C mode  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt trigger input. It is not recommended that the  
PIC16C7X be driven with external clock in RC mode.  
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input volt-  
ages.  
3: Negative current is defined as current sourced by the pin.  
1997 Microchip Technology Inc.  
DS30390E-page 171  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
17.4  
Timing Parameter Symbology  
The timing parameter symbols have been created following one of the following formats:  
2
1. TppS2ppS  
2. TppS  
3. TCC:ST  
4. Ts  
(I C specifications only)  
2
(I C specifications only)  
T
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
2
I C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
2
TCC:ST (I C specifications only)  
CC  
HD  
ST  
DAT  
STA  
Hold  
SU  
Setup  
DATA input hold  
START condition  
STO  
STOP condition  
FIGURE 17-1: LOAD CONDITIONS  
Load condition 1  
Load condition 2  
VDD/2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL = 464Ω  
CL = 50 pF for all pins except OSC2  
15 pF for OSC2 output  
DS30390E-page 172  
1997 Microchip Technology Inc.  
 
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
17.5  
Timing Diagrams and Specifications  
FIGURE 17-2: EXTERNAL CLOCK TIMING  
Q4  
Q1  
1
Q2  
Q3  
Q4  
4
Q1  
OSC1  
3
3
4
2
CLKOUT  
TABLE 17-2: EXTERNAL CLOCK TIMING REQUIREMENTS  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units Conditions  
Fosc External CLKIN Frequency  
DC  
DC  
DC  
DC  
DC  
DC  
0.1  
4
4
MHz XT and RC osc mode  
MHz HS osc mode (-04)  
MHz HS osc mode (-10)  
MHz HS osc mode (-20)  
kHz LP osc mode  
(Note 1)  
10  
20  
200  
4
Oscillator Frequency  
(Note 1)  
MHz RC osc mode  
4
MHz XT osc mode  
4
5
20  
200  
MHz HS osc mode  
kHz LP osc mode  
1
Tosc External CLKIN Period  
250  
250  
100  
50  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
XT and RC osc mode  
HS osc mode (-04)  
HS osc mode (-10)  
HS osc mode (-20)  
LP osc mode  
(Note 1)  
5
Oscillator Period  
(Note 1)  
250  
250  
250  
RC osc mode  
10,000  
250  
XT osc mode  
HS osc mode (-04)  
100  
50  
250  
250  
ns  
ns  
HS osc mode (-10)  
HS osc mode (-20)  
5
DC  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
LP osc mode  
TCY = 4/FOSC  
XT oscillator  
LP oscillator  
HS oscillator  
XT oscillator  
LP oscillator  
HS oscillator  
2
3
TCY  
Instruction Cycle Time (Note 1)  
200  
100  
2.5  
15  
TosL, External Clock in (OSC1) High or  
TosH Low Time  
4
TosR, External Clock in (OSC1) Rise or  
TosF Fall Time  
25  
50  
15  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing code.  
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current con-  
sumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.  
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.  
1997 Microchip Technology Inc.  
DS30390E-page 173  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 17-3: CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKOUT  
13  
14  
12  
18  
19  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
new value  
old value  
(output)  
20, 21  
Note: Refer to Figure 17-1 for load conditions.  
TABLE 17-3: CLKOUT AND I/O TIMING REQUIREMENTS  
Parameter Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
10*  
11*  
12*  
13*  
14*  
15*  
16*  
17*  
TosH2ckL OSC1to CLKOUT↓  
TosH2ckH OSC1to CLKOUT↑  
75  
75  
35  
35  
50  
200  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
TckR  
TckF  
CLKOUT rise time  
CLKOUT fall time  
100  
100  
TckL2ioV CLKOUT to Port out valid  
TioV2ckH Port in valid before CLKOUT ↑  
0.5TCY + 20  
TOSC + 200  
TckH2ioI  
Port in hold after CLKOUT ↑  
0
TosH2ioV OSC1(Q1 cycle) to  
150  
Port out valid  
18*  
TosH2ioI  
OSC1(Q2 cycle) to  
Port input invalid (I/O in  
hold time)  
PIC16C72  
100  
200  
ns  
ns  
PIC16LC72  
19*  
20*  
TioV2osH Port input valid to OSC1(I/O in setup time)  
0
10  
10  
40  
80  
40  
80  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TioR  
Port output rise time  
Port output fall time  
INT pin high or low time  
PIC16C72  
PIC16LC72  
PIC16C72  
PIC16LC72  
21*  
TioF  
22††*  
23††*  
Tinp  
Trbp  
TCY  
TCY  
RB7:RB4 change INT high or low time  
* These parameters are characterized but not tested.  
†Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
†† These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
DS30390E-page 174  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 17-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O Pins  
Note: Refer to Figure 17-1 for load conditions.  
FIGURE 17-5: BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
TABLE 17-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,  
AND BROWN-OUT RESET REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
TmcL MCLR Pulse Width (low)  
2
7
µs VDD = 5V, -40˚C to +125˚C  
31*  
Twdt  
Watchdog Timer Time-out Period  
18  
33  
ms VDD = 5V, -40˚C to +125˚C  
(No Prescaler)  
32  
33*  
34  
Tost  
Oscillation Start-up Timer Period  
28  
1024TOSC  
TOSC = OSC1 period  
Tpwrt Power-up Timer Period  
72  
132  
2.1  
ms VDD = 5V, -40˚C to +125˚C  
TIOZ  
I/O Hi-impedance from MCLR Low  
µs  
or Watchdog Timer Reset  
35  
TBOR  
Brown-out Reset pulse width  
100  
µs  
VDD BVDD (D005)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1997 Microchip Technology Inc.  
DS30390E-page 175  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 17-6: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
RA4/T0CKI  
41  
40  
42  
RC0/T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note: Refer to Figure 17-1 for load conditions.  
TABLE 17-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units Conditions  
40*  
Tt0H  
T0CKI High Pulse Width  
No Prescaler  
0.5TCY + 20  
ns Must also meet  
parameter 42  
With Prescaler  
No Prescaler  
10  
0.5TCY + 20  
10  
ns  
41*  
42*  
Tt0L  
Tt0P  
T0CKI Low Pulse Width  
T0CKI Period  
ns Must also meet  
parameter 42  
With Prescaler  
No Prescaler  
With Prescaler  
ns  
ns  
TCY + 40  
Greater of:  
20 or TCY + 40  
ns N = prescale value  
(2, 4, ..., 256)  
N
0.5TCY + 20  
15  
45*  
46*  
47*  
Tt1H  
Tt1L  
Tt1P  
T1CKI High Time Synchronous, Prescaler = 1  
ns Must also meet  
parameter 47  
Synchronous, PIC16C7X  
ns  
ns  
Prescaler =  
2,4,8  
PIC16LC7X  
25  
Asynchronous PIC16C7X  
PIC16LC7X  
30  
ns  
ns  
50  
T1CKI Low Time  
Synchronous, Prescaler = 1  
Synchronous, PIC16C7X  
0.5TCY + 20  
ns Must also meet  
parameter 47  
15  
25  
ns  
ns  
Prescaler =  
2,4,8  
PIC16LC7X  
Asynchronous PIC16C7X  
PIC16LC7X  
30  
ns  
ns  
50  
T1CKI input period Synchronous PIC16C7X  
Greater of:  
30 OR TCY + 40  
ns N = prescale value  
(1, 2, 4, 8)  
N
Greater of:  
50 OR TCY + 40  
N = prescale value  
(1, 2, 4, 8)  
PIC16LC7X  
N
60  
Asynchronous PIC16C7X  
PIC16LC7X  
ns  
ns  
100  
DC  
Ft1  
Timer1 oscillator input frequency range  
(oscillator enabled by setting bit T1OSCEN)  
200  
kHz  
48  
*
TCKEZtmr1 Delay from external clock edge to timer increment  
2Tosc  
7Tosc  
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30390E-page 176  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 17-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1)  
RC2/CCP1  
(Capture Mode)  
50  
51  
52  
RC2/CCP1  
(Compare or PWM Mode)  
53  
54  
Note: Refer to Figure 17-1 for load conditions.  
TABLE 17-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1)  
Param Sym Characteristic  
No.  
Min  
Typ† Max Units Conditions  
50*  
TccL CCP1 input low time  
No Prescaler  
0.5TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
With Prescaler PIC16C72  
PIC16LC72  
10  
20  
51*  
TccH  
TccP  
No Prescaler  
0.5TCY + 20  
CCP1 input high time  
CCP1 input period  
With Prescaler PIC16C72  
PIC16LC72  
10  
20  
52*  
53*  
3TCY + 40  
N
ns N = prescale  
value (1,4 or 16)  
TccR CCP1 output rise time  
TccF CCP1 output fall time  
PIC16C72  
PIC16LC72  
PIC16C72  
PIC16LC72  
10  
25  
10  
25  
25  
45  
25  
45  
ns  
ns  
ns  
ns  
54*  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1997 Microchip Technology Inc.  
DS30390E-page 177  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 17-8: SPI MODE TIMING  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
78  
SCK  
(CKP = 1)  
80  
SDO  
SDI  
77  
75, 76  
74  
73  
Note: Refer to Figure 17-1 for load conditions  
TABLE 17-7: SPI MODE REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
70  
TssL2scH,  
TssL2scL  
SSto SCKor SCKinput  
TCY  
ns  
71  
72  
73  
TscH  
TscL  
SCK input high time (slave mode)  
SCK input low time (slave mode)  
TCY + 20  
TCY + 20  
50  
ns  
ns  
ns  
TdiV2scH,  
TdiV2scL  
Setup time of SDI data input to SCK  
edge  
74  
TscH2diL,  
TscL2diL  
Hold time of SDI data input to SCK  
edge  
50  
ns  
75  
76  
77  
78  
79  
80  
TdoR  
SDO data output rise time  
10  
10  
10  
10  
10  
25  
25  
50  
25  
25  
50  
ns  
ns  
ns  
ns  
ns  
ns  
TdoF  
SDO data output fall time  
TssH2doZ  
TscR  
SSto SDO output hi-impedance  
SCK output rise time (master mode)  
SCK output fall time (master mode)  
TscF  
TscH2doV,  
TscL2doV  
SDO data output valid after SCK  
edge  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30390E-page 178  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
2
FIGURE 17-9: I C BUS START/STOP BITS TIMING  
SCL  
93  
91  
90  
92  
SDA  
STOP  
Condition  
START  
Condition  
Note: Refer to Figure 17-1 for load conditions  
2
TABLE 17-8: I C BUS START/STOP BITS REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min Typ Max Units  
Conditions  
90  
91  
92  
93  
TSU:STA START condition  
Setup time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
Only relevant for repeated START  
condition  
ns  
ns  
ns  
ns  
THD:STA START condition  
Hold time  
4000  
600  
After this period the first clock  
pulse is generated  
TSU:STO STOP condition  
Setup time  
4700  
600  
THD:STO STOP condition  
Hold time  
4000  
600  
1997 Microchip Technology Inc.  
DS30390E-page 179  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
2
FIGURE 17-10: I C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 17-1 for load conditions  
2
TABLE 17-9: I C BUS DATA REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Max  
Units  
Conditions  
100  
THIGH  
Clock high time  
100 kHz mode  
400 kHz mode  
4.0  
0.6  
µs  
µs  
Device must operate at a mini-  
mum of 1.5 MHz  
Device must operate at a mini-  
mum of 10 MHz  
SSP Module  
1.5TCY  
4.7  
101  
TLOW  
Clock low time  
100 kHz mode  
µs  
µs  
Device must operate at a mini-  
mum of 1.5 MHz  
400 kHz mode  
1.3  
Device must operate at a mini-  
mum of 10 MHz  
SSP Module  
1.5TCY  
102  
103  
TR  
TF  
SDA and SCL rise  
time  
100 kHz mode  
400 kHz mode  
1000  
300  
ns  
ns  
20 + 0.1Cb  
Cb is specified to be from  
10 to 400 pF  
SDA and SCL fall time 100 kHz mode  
400 kHz mode  
300  
300  
ns  
ns  
20 + 0.1Cb  
Cb is specified to be from  
10 to 400 pF  
90  
91  
TSU:STA START condition  
setup time  
100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
µs  
µs  
µs  
µs  
ns  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
µs  
µs  
Only relevant for repeated  
START condition  
THD:STA START condition hold 100 kHz mode  
After this period the first clock  
pulse is generated  
time  
400 kHz mode  
100 kHz mode  
400 kHz mode  
106  
107  
92  
THD:DAT Data input hold time  
0
0.9  
TSU:DAT Data input setup time 100 kHz mode  
400 kHz mode  
250  
100  
4.7  
0.6  
Note 2  
TSU:STO STOP condition setup 100 kHz mode  
time  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
109  
110  
TAA  
Output valid from  
clock  
3500  
Note 1  
TBUF  
Bus free time  
4.7  
1.3  
Time the bus must be free  
before a new transmission can  
start  
Cb  
Bus capacitive loading  
400  
pF  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of  
the falling edge of SCL to avoid unintended generation of START or STOP conditions.  
2
2
2: A fast-mode (400 kHz) I C-bus device can be used in a standard-mode (100 kHz)S I C-bus system, but the requirement  
tsu;DAT 250 ns must then be met.This will automatically be the case if the device does not stretch the LOW period of the  
SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line  
2
TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I C bus specification) before the SCL line is  
released.  
DS30390E-page 180  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
TABLE 17-10: A/D CONVERTER CHARACTERISTICS:  
PIC16C72-04 (Commercial, Industrial, Extended)  
PIC16C72-10 (Commercial, Industrial, Extended)  
PIC16C72-20 (Commercial, Industrial, Extended)  
PIC16LC72-04 (Commercial, Industrial)  
Param Sym Characteristic  
No.  
Min  
Typ†  
Max  
Units  
Conditions  
A01  
NR Resolution  
8-bits  
bit VREF = VDD = 5.12V,  
VSS VAIN VREF  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
A02 EABS Total Absolute error  
< ± 1  
< ± 1  
< ± 1  
< ± 1  
< ± 1  
LSb  
LSb  
LSb  
LSb  
LSb  
A03  
A04  
A05  
EIL Integral linearity error  
EDL Differential linearity error  
EFS Full scale error  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
A06 EOFF Offset error  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
A10  
Monotonicity  
3.0V  
guaranteed  
V
VSS VAIN VREF  
A20 VREF Reference voltage  
VDD + 0.3  
VREF + 0.3  
10.0  
A25  
A30  
VAIN Analog input voltage  
VSS - 0.3  
V
ZAIN Recommended impedance of  
analog voltage source  
kΩ  
A40  
A50  
IAD A/D conversion current (VDD) PIC16C72  
PIC16LC72  
180  
90  
µA Average current consump-  
tion when A/D is on.  
(Note 1)  
µA  
IREF VREF input current (Note 2)  
10  
1000  
µA During VAIN acquisition.  
Based on differential of  
VHOLD to VAIN to charge  
CHOLD, see Section 13.1.  
10  
µA During A/D Conversion  
cycle  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current.  
The power-down current spec includes any such leakage from the A/D module.  
2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.  
1997 Microchip Technology Inc.  
DS30390E-page 181  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 17-11: A/D CONVERSION TIMING  
BSF ADCON0, GO  
1 TCY  
(TOSC/2) (1)  
134  
131  
130  
Q4  
132  
A/D CLK  
7
6
5
4
3
2
1
0
A/D DATA  
NEW_DATA  
DONE  
OLD_DATA  
ADRES  
ADIF  
GO  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
TABLE 17-11: A/D CONVERSION REQUIREMENTS  
Param Sym Characteristic  
No.  
Min  
Typ†  
Max  
Units  
Conditions  
130  
TAD A/D clock period  
PIC16C72  
PIC16LC72  
PIC16C72  
PIC16LC72  
1.6  
2.0  
2.0  
3.0  
µs  
TOSC based, VREF 3.0V  
µs TOSC based, VREF full range  
µs A/D RC Mode  
µs A/D RC Mode  
TAD  
4.0  
6.0  
9.5  
6.0  
9.0  
131  
132  
TCNV Conversion time (not including S/H  
time) (Note 1)  
TACQ Acquisition time  
Note 2  
5*  
20  
µs  
µs The minimum time is the amplifier  
settling time. This may be used if  
the "new" input voltage has not  
changed by more than 1 LSb (i.e.,  
20.0 mV @ 5.12V) from the last  
sampled voltage (as stated on  
CHOLD).  
134  
135  
TGO Q4 to A/D clock start  
TOSC/2 §  
If the A/D clock source is selected  
as RC, a time of TCY is added  
before the A/D clock starts. This  
allows the SLEEPinstruction to be  
executed.  
TSWC Switching from convert sample time  
1.5 §  
TAD  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
§
This specification ensured by design.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 13.1 for min conditions.  
DS30390E-page 182  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
18.0 ELECTRICAL CHARACTERISTICS FOR PIC16C73/74  
Absolute Maximum Ratings †  
Ambient temperature under bias..................................................................................................................-55 to +125˚C  
Storage temperature............................................................................................................................... -65˚C to +150˚C  
Voltage on any pin with respect to VSS (except VDD, MCLR. and RA4)...........................................-0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ............................................................................................................ -0.3 to +7.5V  
Voltage on MCLR with respect to VSS (Note 2) ................................................................................................. 0 to +14V  
Voltage on RA4 with respect to Vss................................................................................................................... 0 to +14V  
Total power dissipation (Note 1).................................................................................................................................1.0W  
Maximum current out of VSS pin ............................................................................................................................300 mA  
Maximum current into VDD pin...............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD) .....................................................................................................................±20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD)..............................................................................................................±20 mA  
Maximum output current sunk by any I/O pin...........................................................................................................25 mA  
Maximum output current sourced by any I/O pin .....................................................................................................25 mA  
Maximum current sunk by PORTA, PORTB, and PORTE (combined) (Note 3).....................................................200 mA  
Maximum current sourced by PORTA, PORTB, and PORTE (combined) (Note 3) ...............................................200 mA  
Maximum current sunk by PORTC and PORTD (combined) (Note 3)...................................................................200 mA  
Maximum current sourced by PORTC and PORTD (combined) (Note 3)..............................................................200 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD - VOH) x IOH} + (VOl x IOL)  
Note 2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up.Thus,  
a series resistor of 50-100should be used when applying a “low” level to the MCLRpin rather than pulling  
this pin directly to VSS.  
Note 3: PORTD and PORTE are not implemented on the PIC16C73.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
TABLE 18-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS  
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)  
PIC16C73-04  
PIC16C74-04  
PIC16C73-10  
PIC16C74-10  
PIC16C73-20  
PIC16C74-20  
PIC16LC73-04  
PIC16LC74-04  
OSC  
JW Devices  
VDD: 4.0V to 6.0V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 3.0V to 6.0V  
VDD: 4.0V to 6.0V  
IDD: 5 mA max. at 5.5V  
IPD: 21 µA max. at 4V  
Freq: 4 MHz max.  
IDD: 2.7 mA typ. at 5.5V IDD: 2.7 mA typ. at 5.5V IDD: 3.8 mA max. at 3.0V IDD: 5 mA max. at 5.5V  
RC  
IPD: 1.5 µA typ. at 4V  
IPD: 1.5 µA typ. at 4V  
IPD: 13.5 µA max. at 3V  
IPD: 21 µA max. at 4V  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
VDD: 4.0V to 6.0V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 3.0V to 6.0V  
VDD: 4.0V to 6.0V  
IDD: 5 mA max. at 5.5V  
IPD: 21 µA max. at 4V  
Freq: 4 MHz max.  
IDD: 2.7 mA typ. at 5.5V IDD: 2.7 mA typ. at 5.5V IDD: 3.8 mA max. at 3.0V IDD: 5 mA max. at 5.5V  
XT  
HS  
IPD: 1.5 µA typ. at 4V  
IPD: 1.5 µA typ. at 4V  
IPD: 13.5 µA max. at 3V  
IPD: 21 µA max. at 4V  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
IDD: 13.5 mA typ. at 5.5V IDD: 15 mA max. at 5.5V IDD: 30 mA max. at 5.5V  
IDD: 30 mA max. at 5.5V  
IPD: 1.5 µA typ. at 4.5V  
Freq: 20 MHz max.  
Not recommended for  
use in HS mode  
IPD: 1.5 µA typ. at 4.5V  
IPD: 1.5 µA typ. at 4.5V  
IPD: 1.5 µA typ. at 4.5V  
Freq: 4 MHz max.  
Freq: 10 MHz max.  
Freq: 20 MHz max.  
VDD: 4.0V to 6.0V  
IDD: 52.5 µA typ. at  
32 kHz, 4.0V  
IPD: 0.9 µA typ. at 4.0V  
Freq: 200 kHz max.  
VDD: 3.0V to 6.0V  
IDD: 48 µA max. at  
32 kHz, 3.0V  
IPD: 13.5 µA max. at 3.0V IPD: 13.5 µA max. at 3.0V  
Freq: 200 kHz max.  
VDD: 3.0V to 6.0V  
IDD: 48 µA max. at  
32 kHz, 3.0V  
Not recommended for  
use in LP mode  
Not recommended for  
use in LP mode  
LP  
Freq: 200 kHz max.  
The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications.  
It is recommended that the user select the device type that ensures the specifications required.  
1997 Microchip Technology Inc.  
DS30390E-page 183  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
18.1  
DC Characteristics:  
PIC16C73/74-04 (Commercial, Industrial)  
PIC16C73/74-10 (Commercial, Industrial)  
PIC16C73/74-20 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40˚C TA +85˚C for industrial and  
0˚C  
TA +70˚C for commercial  
Param  
No.  
Characteristic  
Sym  
VDD  
Min Typ† Max Units  
Conditions  
D001 Supply Voltage  
D001A  
4.0  
4.5  
-
-
6.0  
5.5  
V
V
XT, RC and LP osc configuration  
HS osc configuration  
D002* RAM Data Retention  
Voltage (Note 1)  
VDR  
-
1.5  
-
V
D003  
VDD start voltage to  
ensure internal Power-on  
Reset signal  
VPOR  
-
VSS  
-
V
See section on Power-on Reset for details  
D004* VDD rise rate to ensure  
internal Power-on Reset  
signal  
SVDD  
0.05  
-
-
V/ms See section on Power-on Reset for details  
D010 Supply Current (Note 2,5) IDD  
-
-
2.7  
5
mA XT, RC osc configuration  
FOSC = 4 MHz, VDD = 5.5V (Note 4)  
D013  
13.5 30  
10.5 42  
1.5  
1.5  
mA HS osc configuration  
FOSC = 20 MHz, VDD = 5.5V  
D020 Power-down Current  
D021 (Note 3,5)  
D021A  
IPD  
-
-
-
µA VDD = 4.0V, WDT enabled, -40°C to +85°C  
µA VDD = 4.0V, WDT disabled, -0°C to +70°C  
µA VDD = 4.0V, WDT disabled, -40°C to +85°C  
21  
24  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from charac-  
terization and is for design guidance only. This is not tested.  
DS30390E-page 184  
1997 Microchip Technology Inc.  
 
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
18.2  
DC Characteristics: PIC16LC73/74-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40˚C  
0˚C  
TA +85˚C for industrial and  
TA +70˚C for commercial  
Param  
No.  
Characteristic  
Sym Min Typ† Max Units  
Conditions  
D001  
Supply Voltage  
VDD  
VDR  
3.0  
-
-
6.0  
-
V
V
LP, XT, RC osc configuration (DC - 4 MHz)  
See section on Power-on Reset for details  
D002* RAM Data Retention  
Voltage (Note 1)  
1.5  
D003  
VDD start voltage to  
ensure internal Power-on  
Reset signal  
VPOR  
SVDD  
-
VSS  
-
-
-
V
D004* VDD rise rate to ensure  
internal Power-on Reset  
signal  
0.05  
V/ms See section on Power-on Reset for details  
D010  
Supply Current (Note 2,5) IDD  
-
-
2.0  
3.8  
mA XT, RC osc configuration  
FOSC = 4 MHz, VDD = 3.0V (Note 4)  
D010A  
22.5 48  
7.5 30  
µA LP osc configuration  
FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
D020  
D021  
D021A  
Power-down Current  
(Note 3,5)  
IPD  
-
-
-
µA VDD = 3.0V, WDT enabled, -40°C to +85°C  
0.9 13.5 µA VDD = 3.0V, WDT disabled, 0°C to +70°C  
0.9 18 µA VDD = 3.0V, WDT disabled, -40°C to +85°C  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated.These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from charac-  
terization and is for design guidance only. This is not tested.  
1997 Microchip Technology Inc.  
DS30390E-page 185  
 
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
18.3  
DC Characteristics:  
PIC16C73/74-04 (Commercial, Industrial)  
PIC16C73/74-10 (Commercial, Industrial)  
PIC16C73/74-20 (Commercial, Industrial)  
PIC16LC73/74-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40˚C TA +85˚C for industrial and  
0˚C TA +70˚C for commercial  
DC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 18.1 and  
Section 18.2.  
Param  
No.  
Characteristic  
Sym  
Min Typ Max Units  
Conditions  
Input Low Voltage  
I/O ports  
VIL  
D030  
D030A  
D031  
D032  
D033  
with TTL buffer  
VSS  
VSS  
VSS  
VSS  
VSS  
-
-
-
-
-
0.15VDD  
0.8V  
0.2VDD  
0.2VDD  
0.3VDD  
V
V
V
V
V
For entire VDD range  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
MCLR, OSC1 (in RC mode)  
OSC1 (in XT, HS and LP)  
Input High Voltage  
I/O ports  
Note1  
VIH  
-
-
-
D040  
D040A  
with TTL buffer  
2.0  
0.25VDD  
+ 0.8V  
VDD  
VDD  
V
V
4.5V VDD 5.5V  
For entire VDD range  
D041  
D042  
with Schmitt Trigger buffer  
MCLR  
0.8VDD  
0.8VDD  
0.7VDD  
0.9VDD  
50  
-
-
-
-
VDD  
VDD  
VDD  
VDD  
V
V
V
V
For entire VDD range  
Note1  
D042A OSC1 (XT, HS and LP)  
D043  
D070  
OSC1 (in RC mode)  
PORTB weak pull-up current  
Input Leakage Current  
(Notes 2, 3)  
IPURB  
IIL  
250 400  
µA VDD = 5V, VPIN = VSS  
D060  
I/O ports  
-
-
±1  
µA Vss VPIN VDD, Pin at hi-imped-  
ance  
D061  
D063  
MCLR, RA4/T0CKI  
OSC1  
-
-
-
-
±5  
±5  
µA Vss VPIN VDD  
µA Vss VPIN VDD, XT, HS and LP osc  
configuration  
Output Low Voltage  
D080  
D083  
I/O ports  
VOL  
-
-
-
-
0.6  
0.6  
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 1.6 mA, VDD = 4.5V,  
-40°C to +85°C  
OSC2/CLKOUT (RC osc config)  
Output High Voltage  
D090  
D092  
I/O ports (Note 3)  
VOH VDD - 0.7 -  
VDD - 0.7 -  
-
-
V
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +85°C  
OSC2/CLKOUT (RC osc config)  
D150* Open-Drain High Voltage  
VOD  
-
-
14  
RA4 pin  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C7X be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
DS30390E-page 186  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40˚C TA +85˚C for industrial and  
0˚C TA +70˚C for commercial  
DC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 18.1 and  
Section 18.2.  
Param  
No.  
Characteristic  
Sym  
Min Typ Max Units  
Conditions  
Capacitive Loading Specs on  
Output Pins  
D100  
OSC2 pin  
COSC2  
-
-
15  
pF In XT, HS and LP modes when exter-  
nal clock is used to drive OSC1.  
D101  
D102  
All I/O pins and OSC2 (in RC  
CIO  
CB  
-
-
-
-
50  
400  
pF  
pF  
2
mode) SCL, SDA in I C mode  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C7X be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
1997 Microchip Technology Inc.  
DS30390E-page 187  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
18.4  
Timing Parameter Symbology  
The timing parameter symbols have been created following one of the following formats:  
2
1. TppS2ppS  
2. TppS  
3. TCC:ST  
4. Ts  
(I C specifications only)  
2
(I C specifications only)  
T
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
2
I C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
2
TCC:ST (I C specifications only)  
CC  
HD  
ST  
DAT  
STA  
Hold  
SU  
Setup  
DATA input hold  
START condition  
STO  
STOP condition  
FIGURE 18-1: LOAD CONDITIONS  
Load condition 1  
Load condition 2  
VDD/2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL = 464Ω  
CL = 50 pF for all pins except OSC2, but including PORTD and PORTE outputs as  
ports  
15 pF for OSC2 output  
Note: PORTD and PORTE are not implemented on the PIC16C73.  
DS30390E-page 188  
1997 Microchip Technology Inc.  
 
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
18.5  
Timing Diagrams and Specifications  
FIGURE 18-2: EXTERNAL CLOCK TIMING  
Q4  
Q1  
1
Q2  
Q3  
Q4  
4
Q1  
OSC1  
3
3
4
2
CLKOUT  
TABLE 18-2: EXTERNAL CLOCK TIMING REQUIREMENTS  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units Conditions  
Fosc External CLKIN Frequency  
DC  
DC  
DC  
DC  
DC  
DC  
0.1  
4
4
MHz XT and RC osc mode  
MHz HS osc mode (-04)  
MHz HS osc mode (-10)  
MHz HS osc mode (-20)  
kHz LP osc mode  
(Note 1)  
10  
20  
200  
4
Oscillator Frequency  
(Note 1)  
MHz RC osc mode  
4
MHz XT osc mode  
4
5
20  
200  
MHz HS osc mode  
kHz LP osc mode  
1
Tosc External CLKIN Period  
250  
250  
100  
50  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
XT and RC osc mode  
HS osc mode (-04)  
HS osc mode (-10)  
HS osc mode (-20)  
LP osc mode  
(Note 1)  
5
Oscillator Period  
(Note 1)  
250  
250  
250  
RC osc mode  
10,000  
250  
XT osc mode  
HS osc mode (-04)  
100  
50  
250  
250  
ns  
ns  
HS osc mode (-10)  
HS osc mode (-20)  
5
200  
50  
2.5  
15  
DC  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
LP osc mode  
TCY = 4/FOSC  
XT oscillator  
LP oscillator  
HS oscillator  
XT oscillator  
LP oscillator  
HS oscillator  
2
3
TCY  
Instruction Cycle Time (Note 1)  
TosL, External Clock in (OSC1) High or  
TosH Low Time  
4
TosR, External Clock in (OSC1) Rise or  
TosF Fall Time  
25  
50  
15  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing code.  
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current con-  
sumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.  
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.  
1997 Microchip Technology Inc.  
DS30390E-page 189  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 18-3: CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKOUT  
13  
14  
12  
18  
19  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
new value  
old value  
(output)  
20, 21  
Note: Refer to Figure 18-1 for load conditions.  
TABLE 18-3: CLKOUT AND I/O TIMING REQUIREMENTS  
Parameter Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
10*  
11*  
12*  
13*  
14*  
15*  
16*  
17*  
TosH2ckL OSC1to CLKOUT↓  
TosH2ckH OSC1to CLKOUT↑  
75  
75  
35  
35  
50  
200  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
TckR  
TckF  
CLKOUT rise time  
CLKOUT fall time  
100  
100  
TckL2ioV CLKOUT to Port out valid  
TioV2ckH Port in valid before CLKOUT ↑  
0.5TCY + 20  
0.25TCY + 25  
TckH2ioI  
Port in hold after CLKOUT ↑  
0
TosH2ioV OSC1(Q1 cycle) to  
150  
Port out valid  
18*  
TosH2ioI  
OSC1(Q2 cycle) to  
Port input invalid (I/O in  
hold time)  
PIC16C73/74  
100  
200  
ns  
ns  
PIC16LC73/74  
19*  
20*  
TioV2osH Port input valid to OSC1(I/O in setup time)  
0
10  
10  
25  
60  
25  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TioR  
Port output rise time  
Port output fall time  
INT pin high or low time  
PIC16C73/74  
PIC16LC73/74  
PIC16C73/74  
PIC16LC73/74  
21*  
TioF  
22††*  
23††*  
Tinp  
Trbp  
TCY  
TCY  
RB7:RB4 change INT high or low time  
* These parameters are characterized but not tested.  
†Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
†† These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
DS30390E-page 190  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 18-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O Pins  
Note: Refer to Figure 18-1 for load conditions.  
TABLE 18-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
TmcL MCLR Pulse Width (low)  
100  
7
ns VDD = 5V, -40˚C to +85˚C  
ms VDD = 5V, -40˚C to +85˚C  
31*  
Twdt  
Watchdog Timer Time-out Period  
18  
33  
(No Prescaler)  
32  
33*  
34  
Tost  
Oscillation Start-up Timer Period  
28  
1024TOSC  
TOSC = OSC1 period  
Tpwrt Power up Timer Period  
I/O Hi-impedance from MCLR Low  
or Watchdog Timer Reset  
These parameters are characterized but not tested.  
72  
132  
100  
ms VDD = 5V, -40˚C to +85˚C  
ns  
TIOZ  
*
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1997 Microchip Technology Inc.  
DS30390E-page 191  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 18-5: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
RA4/T0CKI  
41  
40  
42  
RC0/T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note: Refer to Figure 18-1 for load conditions.  
TABLE 18-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units Conditions  
40*  
Tt0H  
T0CKI High Pulse Width  
No Prescaler  
0.5TCY + 20  
ns Must also meet  
parameter 42  
With Prescaler  
No Prescaler  
10  
0.5TCY + 20  
10  
ns  
41*  
42*  
Tt0L  
Tt0P  
T0CKI Low Pulse Width  
T0CKI Period  
ns Must also meet  
parameter 42  
With Prescaler  
No Prescaler  
With Prescaler  
ns  
ns  
TCY + 40  
Greater of:  
20 or TCY + 40  
ns N = prescale value  
(2, 4, ..., 256)  
N
0.5TCY + 20  
15  
45*  
46*  
47*  
Tt1H  
Tt1L  
Tt1P  
T1CKI High Time Synchronous, Prescaler = 1  
ns Must also meet  
parameter 47  
Synchronous, PIC16C7X  
ns  
ns  
Prescaler =  
2,4,8  
PIC16LC7X  
25  
Asynchronous PIC16C7X  
PIC16LC7X  
30  
ns  
ns  
50  
T1CKI Low Time  
Synchronous, Prescaler = 1  
Synchronous, PIC16C7X  
0.5TCY + 20  
ns Must also meet  
parameter 47  
15  
25  
ns  
ns  
Prescaler =  
2,4,8  
PIC16LC7X  
Asynchronous PIC16C7X  
PIC16LC7X  
30  
ns  
ns  
50  
T1CKI input period Synchronous PIC16C7X  
Greater of:  
30 OR TCY + 40  
ns N = prescale value  
(1, 2, 4, 8)  
N
Greater of:  
50 OR TCY + 40  
N = prescale value  
(1, 2, 4, 8)  
PIC16LC7X  
N
60  
Asynchronous PIC16C7X  
PIC16LC7X  
ns  
ns  
100  
DC  
Ft1  
Timer1 oscillator input frequency range  
(oscillator enabled by setting bit T1OSCEN)  
200  
kHz  
48  
*
TCKEZtmr1 Delay from external clock edge to timer increment  
2Tosc  
7Tosc  
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30390E-page 192  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 18-6: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)  
RC1/T1OSI/CCP2  
and RC2/CCP1  
(Capture Mode)  
50  
51  
52  
RC1/T1OSI/CCP2  
and RC2/CCP1  
(Compare or PWM Mode)  
53  
Note: Refer to Figure 18-1 for load conditions.  
54  
TABLE 18-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)  
Parameter Sym Characteristic  
No.  
Min  
Typ† Max Units Conditions  
50*  
TccL CCP1 and CCP2 No Prescaler  
input low time  
0.5TCY + 20  
ns  
PIC16C73/74  
10  
ns  
ns  
ns  
ns  
With Prescaler  
PIC16LC73/74  
20  
0.5TCY + 20  
10  
51*  
TccH  
No Prescaler  
CCP1 and CCP2  
input high time  
PIC16C73/74  
With Prescaler  
PIC16LC73/74  
20  
ns  
52*  
53*  
TccP  
3TCY + 40  
N
ns N = prescale value  
(1,4 or 16)  
CCP1 and CCP2 input period  
TccR CCP1 and CCP2 output fall time  
TccF CCP1 and CCP2 output fall time  
PIC16C73/74  
PIC16LC73/74  
PIC16C73/74  
PIC16LC73/74  
10  
25  
10  
25  
25  
45  
25  
45  
ns  
ns  
ns  
ns  
54*  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1997 Microchip Technology Inc.  
DS30390E-page 193  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 18-7: PARALLEL SLAVE PORT TIMING (PIC16C74)  
RE2/CS  
RE0/RD  
RE1/WR  
65  
RD7:RD0  
62  
64  
63  
Note: Refer to Figure 18-1 for load conditions  
TABLE 18-7: PARALLEL SLAVE PORT REQUIREMENTS (PIC16C74)  
Parameter  
No.  
Sym  
Characteristic  
Min Typ† Max Units Conditions  
62  
TdtV2wrH Data in valid before WRor CS(setup time)  
TwrH2dtI WRor CSto data–in invalid (hold time)  
20  
20  
35  
10  
80  
30  
ns  
ns  
ns  
ns  
ns  
63*  
PIC16C74  
PIC16LC74  
64  
65  
TrdL2dtV RDand CSto data–out valid  
TrdH2dtI RDor CSto data–out invalid  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30390E-page 194  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 18-8: SPI MODE TIMING  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
78  
SCK  
(CKP = 1)  
80  
SDO  
77  
75, 76  
SDI  
74  
73  
Note: Refer to Figure 18-1 for load conditions  
TABLE 18-8: SPI MODE REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
70  
TssL2scH,  
TssL2scL  
SSto SCKor SCKinput  
TCY  
ns  
71  
72  
73  
TscH  
TscL  
SCK input high time (slave mode)  
SCK input low time (slave mode)  
TCY + 20  
TCY + 20  
50  
ns  
ns  
ns  
TdiV2scH,  
TdiV2scL  
Setup time of SDI data input to SCK  
edge  
74  
TscH2diL,  
TscL2diL  
Hold time of SDI data input to SCK  
edge  
50  
ns  
75  
76  
77  
78  
79  
80  
TdoR  
SDO data output rise time  
10  
10  
10  
10  
10  
25  
25  
50  
25  
25  
50  
ns  
ns  
ns  
ns  
ns  
ns  
TdoF  
SDO data output fall time  
TssH2doZ  
TscR  
SSto SDO output hi-impedance  
SCK output rise time (master mode)  
SCK output fall time (master mode)  
TscF  
TscH2doV,  
TscL2doV  
SDO data output valid after SCK  
edge  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1997 Microchip Technology Inc.  
DS30390E-page 195  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
2
FIGURE 18-9: I C BUS START/STOP BITS TIMING  
SCL  
93  
91  
90  
92  
SDA  
STOP  
Condition  
START  
Condition  
Note: Refer to Figure 18-1 for load conditions  
2
TABLE 18-9: I C BUS START/STOP BITS REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min Typ Max Units  
Conditions  
90  
91  
92  
93  
TSU:STA START condition  
Setup time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
Only relevant for repeated START  
condition  
ns  
ns  
ns  
ns  
THD:STA START condition  
Hold time  
4000  
600  
After this period the first clock  
pulse is generated  
TSU:STO STOP condition  
Setup time  
4700  
600  
THD:STO STOP condition  
Hold time  
4000  
600  
DS30390E-page 196  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
2
FIGURE 18-10: I C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 18-1 for load conditions  
2
TABLE 18-10: I C BUS DATA REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Max  
Units  
Conditions  
100  
THIGH  
Clock high time  
100 kHz mode  
400 kHz mode  
4.0  
0.6  
µs  
µs  
Device must operate at a mini-  
mum of 1.5 MHz  
Device must operate at a mini-  
mum of 10 MHz  
SSP Module  
1.5TCY  
4.7  
101  
TLOW  
Clock low time  
100 kHz mode  
µs  
µs  
Device must operate at a mini-  
mum of 1.5 MHz  
400 kHz mode  
1.3  
Device must operate at a mini-  
mum of 10 MHz  
SSP Module  
1.5TCY  
102  
103  
TR  
TF  
SDA and SCL rise  
time  
100 kHz mode  
400 kHz mode  
1000  
300  
ns  
ns  
20 + 0.1Cb  
Cb is specified to be from  
10 to 400 pF  
SDA and SCL fall time 100 kHz mode  
400 kHz mode  
300  
300  
ns  
ns  
20 + 0.1Cb  
Cb is specified to be from  
10 to 400 pF  
90  
91  
TSU:STA START condition  
setup time  
100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
µs  
µs  
µs  
µs  
ns  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
µs  
µs  
Only relevant for repeated  
START condition  
THD:STA START condition hold 100 kHz mode  
After this period the first clock  
pulse is generated  
time  
400 kHz mode  
100 kHz mode  
400 kHz mode  
106  
107  
92  
THD:DAT Data input hold time  
0
0.9  
TSU:DAT Data input setup time 100 kHz mode  
400 kHz mode  
250  
100  
4.7  
0.6  
Note 2  
TSU:STO STOP condition setup 100 kHz mode  
time  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
109  
110  
TAA  
Output valid from  
clock  
3500  
Note 1  
TBUF  
Bus free time  
4.7  
1.3  
Time the bus must be free  
before a new transmission can  
start  
Cb  
Bus capacitive loading  
400  
pF  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of  
the falling edge of SCL to avoid unintended generation of START or STOP conditions.  
2
2
2: A fast-mode (400 kHz) I C-bus device can be used in a standard-mode (100 kHz) I C-bus system, but the requirement  
tsu;DAT 250 ns must then be met.This will automatically be the case if the device does not stretch the LOW period of the  
SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line  
2
TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I C bus specification) before the SCL line is  
released.  
1997 Microchip Technology Inc.  
DS30390E-page 197  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 18-11: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
RC6/TX/CK  
121  
pin  
121  
RC7/RX/DT  
pin  
120  
122  
Note: Refer to Figure 18-1 for load conditions  
TABLE 18-11: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units Conditions  
120  
TckH2dtV  
SYNC XMIT (MASTER &  
SLAVE)  
Clock high to data out valid  
PIC16C73/74  
80  
100  
45  
ns  
ns  
ns  
ns  
ns  
ns  
PIC16LC73/74  
121  
122  
Tckrf  
Tdtrf  
Clock out rise time and fall time PIC16C73/74  
(Master Mode)  
PIC16LC73/74  
50  
Data out rise time and fall time  
PIC16C73/74  
45  
PIC16LC73/74  
50  
†:  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
FIGURE 18-12: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
RC6/TX/CK  
125  
pin  
RC7/RX/DT  
pin  
126  
Note: Refer to Figure 18-1 for load conditions  
TABLE 18-12: USART SYNCHRONOUS RECEIVE REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
125  
TdtV2ckL  
SYNC RCV (MASTER & SLAVE)  
Data setup before CK (DT setup time)  
15  
15  
ns  
ns  
126  
TckL2dtl  
Data hold after CK (DT hold time)  
†:  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30390E-page 198  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
TABLE 18-13: A/D CONVERTER CHARACTERISTICS:  
PIC16C73/74-04 (Commercial, Industrial)  
PIC16C73/74-10 (Commercial, Industrial)  
PIC16C73/74-20 (Commercial, Industrial)  
PIC16LC73/74-04 (Commercial, Industrial)  
Param Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
No.  
A01  
NR Resolution  
8-bits  
bit VREF = VDD = 5.12V,  
VSS VAIN VREF  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
A02 EABS Total Absolute error  
< ± 1  
< ± 1  
< ± 1  
< ± 1  
< ± 1  
LSb  
LSb  
LSb  
LSb  
LSb  
A03  
A04  
A05  
EIL Integral linearity error  
EDL Differential linearity error  
EFS Full scale error  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
A06 EOFF Offset error  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
A10  
Monotonicity  
3.0V  
guaranteed  
V
VSS VAIN VREF  
A20 VREF Reference voltage  
VDD + 0.3  
VREF + 0.3  
10.0  
A25  
A30  
VAIN Analog input voltage  
VSS - 0.3  
V
ZAIN Recommended impedance of  
analog voltage source  
kΩ  
A40  
A50  
IAD A/D conversion current PIC16C73/74  
180  
90  
µA Average current consump-  
(VDD)  
tion when A/D is on.  
(Note 1)  
PIC16LC73/74  
µA  
IREF VREF input current (Note 2)  
10  
1000  
µA During VAIN acquisition.  
Based on differential of  
VHOLD to VAIN to charge  
CHOLD, see Section 13.1.  
10  
µA During A/D Conversion  
cycle  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current.  
The power-down current spec includes any such leakage from the A/D module.  
2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.  
1997 Microchip Technology Inc.  
DS30390E-page 199  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 18-13: A/D CONVERSION TIMING  
BSF ADCON0, GO  
1 TCY  
134  
(TOSC/2) (1)  
131  
130  
Q4  
132  
A/D CLK  
7
6
5
4
3
2
1
0
A/D DATA  
NEW_DATA  
DONE  
OLD_DATA  
ADRES  
ADIF  
GO  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
TABLE 18-14: A/D CONVERSION REQUIREMENTS  
Param Sym Characteristic  
No.  
Min  
Typ†  
Max  
Units  
Conditions  
130  
TAD A/D clock period  
PIC16C73/74  
PIC16LC73/74  
PIC16C73/74  
PIC16LC73/74  
1.6  
2.0  
2.0  
3.0  
µs  
TOSC based, VREF 3.0V  
µs TOSC based, VREF full range  
µs A/D RC Mode  
µs A/D RC Mode  
TAD  
4.0  
6.0  
9.5  
6.0  
9.0  
131  
132  
TCNV Conversion time (not including S/H time)  
(Note 1)  
TACQ Acquisition time  
Note 2  
5*  
20  
µs  
µs The minimum time is the amplifier  
settling time. This may be used if  
the "new" input voltage has not  
changed by more than 1 LSb (i.e.,  
20 mV @ 5.12V) from the last  
sampled voltage (as stated on  
CHOLD).  
134  
135  
TGO Q4 to A/D clock start  
TOSC/2 §  
If the A/D clock source is selected  
as RC, a time of TCY is added  
before the A/D clock starts. This  
allows the SLEEPinstruction to be  
executed.  
TSWC Switching from convert sample time  
1.5 §  
TAD  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
§
This specification ensured by design.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 13.1 for min conditions.  
DS30390E-page 200  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
19.0 ELECTRICAL CHARACTERISTICS FOR PIC16C73A/74A  
Absolute Maximum Ratings †  
Ambient temperature under bias..................................................................................................................-55 to +125˚C  
Storage temperature............................................................................................................................... -65˚C to +150˚C  
Voltage on any pin with respect to VSS (except VDD, MCLR. and RA4)...........................................-0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ............................................................................................................ -0.3 to +7.5V  
Voltage on MCLR with respect to VSS (Note 2) ................................................................................................. 0 to +14V  
Voltage on RA4 with respect to Vss................................................................................................................... 0 to +14V  
Total power dissipation (Note 1).................................................................................................................................1.0W  
Maximum current out of VSS pin ............................................................................................................................300 mA  
Maximum current into VDD pin...............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD) .....................................................................................................................±20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD)..............................................................................................................±20 mA  
Maximum output current sunk by any I/O pin...........................................................................................................25 mA  
Maximum output current sourced by any I/O pin .....................................................................................................25 mA  
Maximum current sunk by PORTA, PORTB, and PORTE (combined) (Note 3).....................................................200 mA  
Maximum current sourced by PORTA, PORTB, and PORTE (combined) (Note 3) ...............................................200 mA  
Maximum current sunk by PORTC and PORTD (combined) (Note 3)...................................................................200 mA  
Maximum current sourced by PORTC and PORTD (combined) (Note 3)..............................................................200 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD - VOH) x IOH} + (VOl x IOL)  
Note 2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up.Thus,  
a series resistor of 50-100should be used when applying a “low” level to the MCLRpin rather than pulling  
this pin directly to VSS.  
Note 3: PORTD and PORTE are not implemented on the PIC16C73A.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
TABLE 19-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS  
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)  
PIC16C73A-04  
PIC16C74A-04  
PIC16C73A-10  
PIC16C74A-10  
PIC16C73A-20  
PIC16C74A-20  
PIC16LC73A-04  
PIC16LC74A-04  
OSC  
JW Devices  
VDD: 4.0V to 6.0V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 2.5V to 6.0V  
VDD: 4.0V to 6.0V  
IDD: 5 mA max. at 5.5V  
IPD: 16 µA max. at 4V  
Freq: 4 MHz max.  
IDD: 2.7 mA typ. at 5.5V  
IPD: 1.5 µA typ. at 4V  
Freq: 4 MHz max.  
IDD: 2.7 mA typ. at 5.5V  
IPD: 1.5 µA typ. at 4V  
Freq: 4 MHz max.  
IDD: 3.8 mA max. at 3.0V IDD: 5 mA max. at 5.5V  
RC  
IPD: 5 µA max. at 3V  
IPD: 16 µA max. at 4V  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
VDD: 4.0V to 6.0V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 2.5V to 6.0V  
VDD: 4.0V to 6.0V  
IDD: 5 mA max. at 5.5V  
IPD: 16 µA max. at 4V  
Freq: 4 MHz max.  
IDD: 2.7 mA typ. at 5.5V  
IPD: 1.5 µA typ. at 4V  
Freq: 4 MHz max.  
IDD: 2.7 mA typ. at 5.5V  
IPD: 1.5 µA typ. at 4V  
Freq: 4 MHz max.  
IDD: 3.8 mA max. at 3.0V IDD: 5 mA max. at 5.5V  
XT  
HS  
IPD: 5 µA max. at 3V  
IPD: 16 µA max. at 4V  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
IDD: 13.5 mA typ. at 5.5V IDD: 10 mA max. at 5.5V IDD: 20 mA max. at 5.5V  
IDD: 20 mA max. at 5.5V  
IPD: 1.5 µA typ. at 4.5V  
Freq: 20 MHz max.  
Not recommended for  
use in HS mode  
IPD: 1.5 µA typ. at 4.5V  
IPD: 1.5 µA typ. at 4.5V  
IPD: 1.5 µA typ. at 4.5V  
Freq: 4 MHz max.  
Freq: 10 MHz max.  
Freq: 20 MHz max.  
VDD: 4.0V to 6.0V  
IDD: 52.5 µA typ. at  
32 kHz, 4.0V  
IPD: 0.9 µA typ. at 4.0V  
Freq: 200 kHz max.  
VDD: 2.5V to 6.0V  
IDD: 48 µA max. at  
32 kHz, 3.0V  
IPD: 5.0 µA max. at 3.0V  
Freq: 200 kHz max.  
VDD: 2.5V to 6.0V  
IDD: 48 µA max. at  
32 kHz, 3.0V  
IPD: 5.0 µA max. at 3.0V  
Freq: 200 kHz max.  
Not recommended for  
use in LP mode  
Not recommended for  
use in LP mode  
LP  
The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications.  
It is recommended that the user select the device type that ensures the specifications required.  
1997 Microchip Technology Inc.  
DS30390E-page 201  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
19.1  
DC Characteristics:  
PIC16C73A/74A-04 (Commercial, Industrial, Extended)  
PIC16C73A/74A-10 (Commercial, Industrial, Extended)  
PIC16C73A/74A-20 (Commercial, Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40˚C TA +125˚C for extended,  
DC CHARACTERISTICS  
-40˚C  
0˚C  
TA +85˚C for industrial and  
TA +70˚C for commercial  
Param  
No.  
Characteristic  
Sym  
VDD  
Min Typ† Max Units  
Conditions  
D001 Supply Voltage  
D001A  
4.0  
4.5  
-
-
6.0  
5.5  
V
V
XT, RC and LP osc configuration  
HS osc configuration  
D002* RAM Data Retention  
Voltage (Note 1)  
VDR  
-
1.5  
-
V
D003  
VDD start voltage to  
ensure internal Power-on  
Reset signal  
VPOR  
-
VSS  
-
V
See section on Power-on Reset for details  
D004* VDD rise rate to ensure  
internal Power-on Reset  
signal  
SVDD  
0.05  
-
-
V/ms See section on Power-on Reset for details  
D005 Brown-out Reset Voltage BVDD  
3.7  
3.7  
-
4.0 4.3  
4.0 4.4  
V
V
BODEN bit in configuration word enabled  
Extended Range Only  
D010 Supply Current (Note 2,5) IDD  
2.7  
5
mA XT, RC osc configuration  
FOSC = 4 MHz, VDD = 5.5V (Note 4)  
D013  
-
-
10  
20  
mA HS osc configuration  
FOSC = 20 MHz, VDD = 5.5V  
D015* Brown-out Reset Current IBOR  
350 425 µA BOR enabled VDD = 5.0V  
(Note 6)  
D020 Power-down Current  
D021 (Note 3,5)  
D021A  
IPD  
-
-
-
-
10.5 42 µA VDD = 4.0V, WDT enabled, -40°C to +85°C  
1.5  
1.5  
2.5  
16  
19  
19  
µA VDD = 4.0V, WDT disabled, -0°C to +70°C  
µA VDD = 4.0V, WDT disabled, -40°C to +85°C  
µA VDD = 4.0V, WDT disabled, -40°C to +125°C  
D021B  
D023* Brown-out Reset Current IBOR  
-
350 425 µA BOR enabled VDD = 5.0V  
(Note 6)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from charac-  
terization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
DS30390E-page 202  
1997 Microchip Technology Inc.  
 
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
19.2  
DC Characteristics: PIC16LC73A/74A-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40˚C  
0˚C  
TA +85˚C for industrial and  
TA +70˚C for commercial  
Param  
No.  
Characteristic  
Sym Min Typ† Max Units  
Conditions  
D001  
Supply Voltage  
VDD  
VDR  
2.5  
-
-
6.0  
-
V
V
LP, XT, RC osc configuration (DC - 4 MHz)  
See section on Power-on Reset for details  
D002* RAM Data Retention  
Voltage (Note 1)  
1.5  
D003  
VDD start voltage to  
ensure internal Power-on  
Reset signal  
VPOR  
SVDD  
-
VSS  
-
-
-
V
D004* VDD rise rate to ensure  
internal Power-on Reset  
signal  
0.05  
V/ms See section on Power-on Reset for details  
D005  
D010  
Brown-out Reset Voltage BVDD  
Supply Current (Note 2,5) IDD  
3.7  
-
4.0  
2.0  
4.3  
3.8  
V
BODEN bit in configuration word enabled  
mA XT, RC osc configuration  
FOSC = 4 MHz, VDD = 3.0V (Note 4)  
D010A  
-
-
22.5 48  
350 425  
µA LP osc configuration  
FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
D015* Brown-out Reset Current IBOR  
µA BOR enabled VDD = 5.0V  
(Note 6)  
D020  
D021  
D021A  
Power-down Current  
(Note 3,5)  
IPD  
-
-
-
7.5  
0.9  
0.9  
30  
5
5
µA VDD = 3.0V, WDT enabled, -40°C to +85°C  
µA VDD = 3.0V, WDT disabled, 0°C to +70°C  
µA VDD = 3.0V, WDT disabled, -40°C to +85°C  
D023* Brown-out Reset Current IBOR  
-
350 425  
µA BOR enabled VDD = 5.0V  
(Note 6)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated.These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from charac-  
terization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
1997 Microchip Technology Inc.  
DS30390E-page 203  
 
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
19.3  
DC Characteristics:  
PIC16C73A/74A-04 (Commercial, Industrial, Extended)  
PIC16C73A/74A-10 (Commercial, Industrial, Extended)  
PIC16C73A/74A-20 (Commercial, Industrial, Extended)  
PIC16LC73A/74A-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40˚C TA +125˚C for extended,  
-40˚C TA +85˚C for industrial and  
DC CHARACTERISTICS  
0˚C  
TA +70˚C for commercial  
Operating voltage VDD range as described in DC spec Section 19.1 and  
Section 19.2.  
Param  
No.  
Characteristic  
Sym  
Min Typ Max Units  
Conditions  
Input Low Voltage  
I/O ports  
VIL  
D030  
D030A  
D031  
D032  
D033  
with TTL buffer  
VSS  
VSS  
VSS  
VSS  
VSS  
-
-
-
-
-
0.15VDD  
0.8V  
0.2VDD  
0.2VDD  
0.3VDD  
V
For entire VDD range  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
MCLR, OSC1 (in RC mode)  
OSC1 (in XT, HS and LP)  
Input High Voltage  
I/O ports  
V
V
V
Note1  
VIH  
-
-
-
D040  
D040A  
with TTL buffer  
2.0  
0.25VDD  
+ 0.8V  
VDD  
VDD  
V
V
4.5V VDD 5.5V  
For entire VDD range  
D041  
D042  
with Schmitt Trigger buffer  
MCLR  
0.8VDD  
0.8VDD  
0.7VDD  
0.9VDD  
50  
-
-
-
-
VDD  
VDD  
VDD  
VDD  
V
V
V
V
For entire VDD range  
Note1  
D042A OSC1 (XT, HS and LP)  
D043  
D070  
OSC1 (in RC mode)  
PORTB weak pull-up current  
Input Leakage Current  
(Notes 2, 3)  
IPURB  
IIL  
250 400  
µA VDD = 5V, VPIN = VSS  
D060  
I/O ports  
-
-
±1  
µA Vss VPIN VDD, Pin at hi-imped-  
ance  
D061  
D063  
MCLR, RA4/T0CKI  
OSC1  
-
-
-
-
±5  
±5  
µA Vss VPIN VDD  
µA Vss VPIN VDD, XT, HS and LP osc  
configuration  
Output Low Voltage  
D080  
I/O ports  
VOL  
-
-
-
-
-
-
-
-
0.6  
0.6  
0.6  
0.6  
V
V
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 7.0 mA, VDD = 4.5V,  
-40°C to +125°C  
IOL = 1.6 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 1.2 mA, VDD = 4.5V,  
-40°C to +125°C  
D080A  
D083  
OSC2/CLKOUT (RC osc config)  
D083A  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C7X be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
DS30390E-page 204  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40˚C TA +125˚C for extended,  
-40˚C TA +85˚C for industrial and  
DC CHARACTERISTICS  
0˚C  
TA +70˚C for commercial  
Operating voltage VDD range as described in DC spec Section 19.1 and  
Section 19.2.  
Param  
No.  
Characteristic  
Sym  
Min Typ Max Units  
Conditions  
Output High Voltage  
D090  
I/O ports (Note 3)  
VOH VDD - 0.7 -  
VDD - 0.7 -  
-
-
V
V
V
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -2.5 mA, VDD = 4.5V,  
-40°C to +125°C  
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -1.0 mA, VDD = 4.5V,  
-40°C to +125°C  
D090A  
D092  
OSC2/CLKOUT (RC osc config)  
VDD - 0.7 -  
-
D092A  
VDD - 0.7 -  
-
D150* Open-Drain High Voltage  
Capacitive Loading Specs on  
Output Pins  
VOD  
-
-
-
-
14  
RA4 pin  
D100  
OSC2 pin  
COSC2  
15  
pF In XT, HS and LP modes when exter-  
nal clock is used to drive OSC1.  
D101  
D102  
All I/O pins and OSC2 (in RC  
CIO  
CB  
-
-
-
-
50  
400  
pF  
pF  
2
mode) SCL, SDA in I C mode  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C7X be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
1997 Microchip Technology Inc.  
DS30390E-page 205  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
19.4  
Timing Parameter Symbology  
The timing parameter symbols have been created following one of the following formats:  
2
1. TppS2ppS  
2. TppS  
3. TCC:ST  
4. Ts  
(I C specifications only)  
2
(I C specifications only)  
T
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
2
I C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
2
TCC:ST (I C specifications only)  
CC  
HD  
ST  
DAT  
STA  
Hold  
SU  
Setup  
DATA input hold  
START condition  
STO  
STOP condition  
FIGURE 19-1: LOAD CONDITIONS  
Load condition 1  
Load condition 2  
VDD/2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL = 464Ω  
CL = 50 pF for all pins except OSC2, but including PORTD and PORTE outputs as  
ports  
15 pF for OSC2 output  
Note: PORTD and PORTE are not implemented on the PIC16C73A.  
DS30390E-page 206  
1997 Microchip Technology Inc.  
 
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
19.5  
Timing Diagrams and Specifications  
FIGURE 19-2: EXTERNAL CLOCK TIMING  
Q4  
Q1  
1
Q2  
Q3  
Q4  
4
Q1  
OSC1  
3
3
4
2
CLKOUT  
TABLE 19-2: EXTERNAL CLOCK TIMING REQUIREMENTS  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units Conditions  
Fosc External CLKIN Frequency  
DC  
DC  
DC  
DC  
DC  
DC  
0.1  
4
4
MHz XT and RC osc mode  
MHz HS osc mode (-04)  
MHz HS osc mode (-10)  
MHz HS osc mode (-20)  
kHz LP osc mode  
(Note 1)  
10  
20  
200  
4
Oscillator Frequency  
(Note 1)  
MHz RC osc mode  
4
MHz XT osc mode  
4
5
20  
200  
MHz HS osc mode  
kHz LP osc mode  
1
Tosc External CLKIN Period  
250  
250  
100  
50  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
XT and RC osc mode  
HS osc mode (-04)  
HS osc mode (-10)  
HS osc mode (-20)  
LP osc mode  
(Note 1)  
5
Oscillator Period  
(Note 1)  
250  
250  
250  
RC osc mode  
10,000  
250  
XT osc mode  
HS osc mode (-04)  
100  
50  
250  
250  
ns  
ns  
HS osc mode (-10)  
HS osc mode (-20)  
5
TCY  
DC  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
LP osc mode  
TCY = 4/FOSC  
XT oscillator  
LP oscillator  
HS oscillator  
XT oscillator  
LP oscillator  
HS oscillator  
2
3
TCY  
Instruction Cycle Time (Note 1)  
200  
100  
2.5  
15  
TosL, External Clock in (OSC1) High or  
TosH Low Time  
4
TosR, External Clock in (OSC1) Rise or  
TosF Fall Time  
25  
50  
15  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing code.  
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current con-  
sumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.  
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.  
1997 Microchip Technology Inc.  
DS30390E-page 207  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 19-3: CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKOUT  
13  
14  
12  
18  
19  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
new value  
old value  
(output)  
20, 21  
Note: Refer to Figure 19-1 for load conditions.  
TABLE 19-3: CLKOUT AND I/O TIMING REQUIREMENTS  
Param Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
10*  
11*  
12*  
13*  
14*  
15*  
16*  
17*  
TosH2ckL OSC1to CLKOUT↓  
TosH2ckH OSC1to CLKOUT↑  
75  
75  
35  
35  
50  
200  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
TckR  
TckF  
CLKOUT rise time  
CLKOUT fall time  
100  
100  
TckL2ioV CLKOUT to Port out valid  
TioV2ckH Port in valid before CLKOUT ↑  
TckH2ioI Port in hold after CLKOUT ↑  
0.5TCY + 20  
TOSC + 200  
0
TosH2ioV OSC1(Q1 cycle) to  
150  
Port out valid  
18*  
TosH2ioI OSC1(Q2 cycle) to  
Port input invalid (I/O in  
hold time)  
PIC16C73A/74A  
PIC16LC73A/74A  
100  
200  
ns  
ns  
19*  
20*  
TioV2osH Port input valid to OSC1(I/O in setup time)  
0
10  
10  
40  
80  
40  
80  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TioR  
Port output rise time  
Port output fall time  
INT pin high or low time  
PIC16C73A/74A  
PIC16LC73A/74A  
PIC16C73A/74A  
PIC16LC73A/74A  
21*  
TioF  
22††* Tinp  
23††* Trbp  
TCY  
TCY  
RB7:RB4 change INT high or low time  
* These parameters are characterized but not tested.  
†Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
†† These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
DS30390E-page 208  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 19-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O Pins  
Note: Refer to Figure 19-1 for load conditions.  
FIGURE 19-5: BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
TABLE 19-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,  
AND BROWN-OUT RESET REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
TmcL MCLR Pulse Width (low)  
2
7
µs VDD = 5V, -40˚C to +125˚C  
31*  
Twdt  
Watchdog Timer Time-out Period  
18  
33  
ms VDD = 5V, -40˚C to +125˚C  
(No Prescaler)  
32  
33*  
34  
Tost  
Oscillation Start-up Timer Period  
28  
1024TOSC  
TOSC = OSC1 period  
Tpwrt Power up Timer Period  
72  
132  
2.1  
ms VDD = 5V, -40˚C to +125˚C  
TIOZ  
I/O Hi-impedance from MCLR Low  
µs  
or Watchdog Timer Reset  
35  
TBOR  
Brown-out Reset pulse width  
100  
µs  
VDD BVDD (D005)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1997 Microchip Technology Inc.  
DS30390E-page 209  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 19-6: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
RA4/T0CKI  
41  
40  
42  
RC0/T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note: Refer to Figure 19-1 for load conditions.  
TABLE 19-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units Conditions  
40*  
Tt0H  
T0CKI High Pulse Width  
No Prescaler  
0.5TCY + 20  
ns Must also meet  
parameter 42  
With Prescaler  
No Prescaler  
10  
0.5TCY + 20  
10  
ns  
41*  
42*  
Tt0L  
Tt0P  
T0CKI Low Pulse Width  
T0CKI Period  
ns Must also meet  
parameter 42  
With Prescaler  
No Prescaler  
With Prescaler  
ns  
ns  
TCY + 40  
Greater of:  
20 or TCY + 40  
ns N = prescale value  
(2, 4, ..., 256)  
N
0.5TCY + 20  
15  
45*  
46*  
47*  
Tt1H  
Tt1L  
Tt1P  
T1CKI High Time Synchronous, Prescaler = 1  
ns Must also meet  
parameter 47  
Synchronous, PIC16C7X  
ns  
ns  
Prescaler =  
2,4,8  
PIC16LC7X  
25  
Asynchronous PIC16C7X  
PIC16LC7X  
30  
ns  
ns  
50  
T1CKI Low Time  
Synchronous, Prescaler = 1  
Synchronous, PIC16C7X  
0.5TCY + 20  
ns Must also meet  
parameter 47  
15  
25  
ns  
ns  
Prescaler =  
2,4,8  
PIC16LC7X  
Asynchronous PIC16C7X  
PIC16LC7X  
30  
ns  
ns  
50  
T1CKI input period Synchronous PIC16C7X  
Greater of:  
30 OR TCY + 40  
ns N = prescale value  
(1, 2, 4, 8)  
N
Greater of:  
50 OR TCY + 40  
N = prescale value  
(1, 2, 4, 8)  
PIC16LC7X  
N
60  
Asynchronous PIC16C7X  
PIC16LC7X  
ns  
ns  
100  
DC  
Ft1  
Timer1 oscillator input frequency range  
(oscillator enabled by setting bit T1OSCEN)  
200  
kHz  
48  
*
TCKEZtmr1 Delay from external clock edge to timer increment  
2Tosc  
7Tosc  
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30390E-page 210  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 19-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)  
RC1/T1OSI/CCP2  
and RC2/CCP1  
(Capture Mode)  
50  
51  
52  
RC1/T1OSI/CCP2  
and RC2/CCP1  
(Compare or PWM Mode)  
53  
Note: Refer to Figure 19-1 for load conditions.  
54  
TABLE 19-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)  
Param Sym Characteristic  
No.  
Min  
Typ† Max Units Conditions  
50*  
TccL CCP1 and CCP2 No Prescaler  
input low time  
0.5TCY + 20  
ns  
PIC16C73A/74A  
PIC16LC73A/74A  
10  
ns  
ns  
ns  
ns  
With Prescaler  
20  
0.5TCY + 20  
10  
51*  
TccH  
No Prescaler  
CCP1 and CCP2  
input high time  
PIC16C73A/74A  
PIC16LC73A/74A  
With Prescaler  
20  
ns  
52*  
53*  
TccP  
3TCY + 40  
N
ns N = prescale  
value (1,4 or 16)  
CCP1 and CCP2 input period  
TccR CCP1 and CCP2 output rise time  
TccF CCP1 and CCP2 output fall time  
10  
25  
ns  
PIC16C73A/74A  
PIC16LC73A/74A  
25  
10  
45  
25  
ns  
ns  
54*  
PIC16C73A/74A  
PIC16LC73A/74A  
25  
45  
ns  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated.  
These parameters are for design guidance only and are not tested.  
1997 Microchip Technology Inc.  
DS30390E-page 211  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 19-8: PARALLEL SLAVE PORT TIMING (PIC16C74A)  
RE2/CS  
RE0/RD  
RE1/WR  
65  
RD7:RD0  
62  
64  
63  
Note: Refer to Figure 19-1 for load conditions  
TABLE 19-7: PARALLEL SLAVE PORT REQUIREMENTS (PIC16C74A)  
Parameter  
No.  
Sym  
Characteristic  
Min Typ† Max Units Conditions  
62  
TdtV2wrH Data in valid before WRor CS(setup time)  
20  
25  
ns  
ns Extended  
Range Only  
63*  
64  
TwrH2dtI WRor CSto data–in invalid (hold time) PIC16C74A  
PIC16LC74A  
20  
35  
ns  
ns  
TrdL2dtV RDand CSto data–out valid  
80  
90  
ns  
ns Extended  
Range Only  
65  
TrdH2dtI RDor CSto data–out invalid  
10  
30  
ns  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30390E-page 212  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 19-9: SPI MODE TIMING  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
78  
SCK  
(CKP = 1)  
80  
SDO  
77  
75, 76  
SDI  
74  
73  
Note: Refer to Figure 19-1 for load conditions  
TABLE 19-8: SPI MODE REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
70  
TssL2scH,  
TssL2scL  
SSto SCKor SCKinput  
TCY  
ns  
71  
72  
73  
TscH  
TscL  
SCK input high time (slave mode)  
SCK input low time (slave mode)  
TCY + 20  
TCY + 20  
100  
ns  
ns  
ns  
TdiV2scH,  
TdiV2scL  
Setup time of SDI data input to SCK  
edge  
74  
TscH2diL,  
TscL2diL  
Hold time of SDI data input to SCK  
edge  
100  
ns  
75  
76  
77  
78  
79  
80  
TdoR  
SDO data output rise time  
10  
10  
10  
10  
10  
25  
25  
50  
25  
25  
50  
ns  
ns  
ns  
ns  
ns  
ns  
TdoF  
SDO data output fall time  
TssH2doZ  
TscR  
SSto SDO output hi-impedance  
SCK output rise time (master mode)  
SCK output fall time (master mode)  
TscF  
TscH2doV,  
TscL2doV  
SDO data output valid after SCK  
edge  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1997 Microchip Technology Inc.  
DS30390E-page 213  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
2
FIGURE 19-10: I C BUS START/STOP BITS TIMING  
SCL  
93  
91  
90  
92  
SDA  
STOP  
Condition  
START  
Condition  
Note: Refer to Figure 19-1 for load conditions  
2
TABLE 19-9: I C BUS START/STOP BITS REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min Typ Max Units  
Conditions  
90  
91  
92  
93  
TSU:STA START condition  
Setup time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
Only relevant for repeated START  
condition  
ns  
ns  
ns  
ns  
THD:STA START condition  
Hold time  
4000  
600  
After this period the first clock  
pulse is generated  
TSU:STO STOP condition  
Setup time  
4700  
600  
THD:STO STOP condition  
Hold time  
4000  
600  
DS30390E-page 214  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
2
FIGURE 19-11: I C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 19-1 for load conditions  
2
TABLE 19-10: I C BUS DATA REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Max  
Units  
Conditions  
100  
THIGH  
Clock high time  
100 kHz mode  
400 kHz mode  
4.0  
0.6  
µs  
µs  
Device must operate at a mini-  
mum of 1.5 MHz  
Device must operate at a mini-  
mum of 10 MHz  
SSP Module  
1.5TCY  
4.7  
101  
TLOW  
Clock low time  
100 kHz mode  
µs  
µs  
Device must operate at a mini-  
mum of 1.5 MHz  
400 kHz mode  
1.3  
Device must operate at a mini-  
mum of 10 MHz  
SSP Module  
1.5TCY  
102  
103  
TR  
TF  
SDA and SCL rise  
time  
100 kHz mode  
400 kHz mode  
1000  
300  
ns  
ns  
20 + 0.1Cb  
Cb is specified to be from  
10 to 400 pF  
SDA and SCL fall time 100 kHz mode  
400 kHz mode  
300  
300  
ns  
ns  
20 + 0.1Cb  
Cb is specified to be from  
10 to 400 pF  
90  
91  
TSU:STA START condition  
setup time  
100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
µs  
µs  
µs  
µs  
ns  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
µs  
µs  
Only relevant for repeated  
START condition  
THD:STA START condition hold 100 kHz mode  
After this period the first clock  
pulse is generated  
time  
400 kHz mode  
100 kHz mode  
400 kHz mode  
106  
107  
92  
THD:DAT Data input hold time  
0
0.9  
TSU:DAT Data input setup time 100 kHz mode  
400 kHz mode  
250  
100  
4.7  
0.6  
Note 2  
TSU:STO STOP condition setup 100 kHz mode  
time  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
109  
110  
TAA  
Output valid from  
clock  
3500  
Note 1  
TBUF  
Bus free time  
4.7  
1.3  
Time the bus must be free  
before a new transmission can  
start  
Cb  
Bus capacitive loading  
400  
pF  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of  
the falling edge of SCL to avoid unintended generation of START or STOP conditions.  
2
2
2: A fast-mode (400 kHz) I C-bus device can be used in a standard-mode (100 kHz) I C-bus system, but the requirement  
tsu;DAT 250 ns must then be met.This will automatically be the case if the device does not stretch the LOW period of the  
SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line  
2
TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I C bus specification) before the SCL line is  
released.  
1997 Microchip Technology Inc.  
DS30390E-page 215  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 19-12: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
RC6/TX/CK  
121  
pin  
121  
RC7/RX/DT  
pin  
120  
122  
Note: Refer to Figure 19-1 for load conditions  
TABLE 19-11: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Param Sym  
No.  
Characteristic  
Min  
Typ† Max Units Conditions  
120  
TckH2dtV  
SYNC XMIT (MASTER &  
SLAVE)  
Clock high to data out valid  
PIC16C73A/74A  
PIC16LC73A/74A  
80  
100  
45  
ns  
ns  
ns  
ns  
ns  
ns  
121  
122  
Tckrf  
Tdtrf  
Clock out rise time and fall time PIC16C73A/74A  
(Master Mode)  
PIC16LC73A/74A  
50  
Data out rise time and fall time PIC16C73A/74A  
PIC16LC73A/74A  
45  
50  
†:  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
FIGURE 19-13: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
RC6/TX/CK  
125  
pin  
RC7/RX/DT  
pin  
126  
Note: Refer to Figure 19-1 for load conditions  
TABLE 19-12: USART SYNCHRONOUS RECEIVE REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
125  
TdtV2ckL  
SYNC RCV (MASTER & SLAVE)  
Data setup before CK (DT setup time)  
15  
15  
ns  
ns  
126  
TckL2dtl  
Data hold after CK (DT hold time)  
†:  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30390E-page 216  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
TABLE 19-13: A/D CONVERTER CHARACTERISTICS:  
PIC16C73A/74A-04 (Commercial, Industrial, Extended)  
PIC16C73A/74A-10 (Commercial, Industrial, Extended)  
PIC16C73A/74A-20 (Commercial, Industrial, Extended)  
PIC16LC73A/74A-04 (Commercial, Industrial)  
Param Sym Characteristic  
No.  
Min  
Typ†  
Max  
Units  
Conditions  
A01  
NR Resolution  
8-bits  
bit VREF = VDD = 5.12V,  
VSS VAIN VREF  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
A02 EABS Total Absolute error  
< ± 1  
< ± 1  
< ± 1  
< ± 1  
< ± 1  
LSb  
LSb  
LSb  
LSb  
LSb  
A03  
A04  
A05  
EIL Integral linearity error  
EDL Differential linearity error  
EFS Full scale error  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
A06 EOFF Offset error  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
A10  
Monotonicity  
3.0V  
guaranteed  
V
VSS VAIN VREF  
A20 VREF Reference voltage  
VDD + 0.3  
VREF + 0.3  
10.0  
A25  
A30  
VAIN Analog input voltage  
VSS - 0.3  
V
ZAIN Recommended impedance of  
analog voltage source  
kΩ  
A40  
A50  
IAD A/D conversion current PIC16C73A/74A  
180  
90  
µA Average current consump-  
(VDD)  
tion when A/D is on.  
(Note 1)  
PIC16LC73A/74A  
µA  
IREF VREF input current (Note 2)  
10  
1000  
µA During VAIN acquisition.  
Based on differential of  
VHOLD to VAIN to charge  
CHOLD, see Section 13.1.  
10  
µA During A/D Conversion  
cycle  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current.  
The power-down current spec includes any such leakage from the A/D module.  
2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.  
1997 Microchip Technology Inc.  
DS30390E-page 217  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 19-14: A/D CONVERSION TIMING  
BSF ADCON0, GO  
1 TCY  
134  
(TOSC/2) (1)  
131  
130  
Q4  
132  
A/D CLK  
7
6
5
4
3
2
1
0
A/D DATA  
NEW_DATA  
DONE  
OLD_DATA  
ADRES  
ADIF  
GO  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
TABLE 19-14: A/D CONVERSION REQUIREMENTS  
Param Sym Characteristic  
No.  
Min  
Typ†  
Max  
Units  
Conditions  
130  
TAD A/D clock period  
PIC16C73A/74A  
PIC16LC73A/74A  
PIC16C73A/74A  
PIC16LC73A/74A  
1.6  
2.0  
2.0  
3.0  
µs  
TOSC based, VREF 3.0V  
µs TOSC based, VREF full range  
µs A/D RC Mode  
µs A/D RC Mode  
TAD  
4.0  
6.0  
9.5  
6.0  
9.0  
131  
132  
TCNV Conversion time (not including S/H time)  
(Note 1)  
TACQ Acquisition time  
Note 2  
5*  
20  
µs  
µs The minimum time is the amplifier  
settling time. This may be used if  
the "new" input voltage has not  
changed by more than 1 LSb (i.e.,  
20.0 mV @ 5.12V) from the last  
sampled voltage (as stated on  
CHOLD).  
134  
135  
TGO Q4 to A/D clock start  
TOSC/2 §  
If the A/D clock source is selected  
as RC, a time of TCY is added  
before the A/D clock starts. This  
allows the SLEEPinstruction to be  
executed.  
TSWC Switching from convert sample time  
1.5 §  
TAD  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
§
This specification ensured by design.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 13.1 for min conditions.  
DS30390E-page 218  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
20.0 ELECTRICAL CHARACTERISTICS FOR PIC16C76/77  
Absolute Maximum Ratings †  
Ambient temperature under bias..................................................................................................................-55 to +125˚C  
Storage temperature............................................................................................................................... -65˚C to +150˚C  
Voltage on any pin with respect to VSS (except VDD, MCLR. and RA4)...........................................-0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ............................................................................................................ -0.3 to +7.5V  
Voltage on MCLR with respect to VSS (Note 2) ................................................................................................. 0 to +14V  
Voltage on RA4 with respect to Vss................................................................................................................... 0 to +14V  
Total power dissipation (Note 1).................................................................................................................................1.0W  
Maximum current out of VSS pin ............................................................................................................................300 mA  
Maximum current into VDD pin...............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD) .....................................................................................................................±20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD)..............................................................................................................±20 mA  
Maximum output current sunk by any I/O pin...........................................................................................................25 mA  
Maximum output current sourced by any I/O pin .....................................................................................................25 mA  
Maximum current sunk by PORTA, PORTB, and PORTE (combined) (Note 3).....................................................200 mA  
Maximum current sourced by PORTA, PORTB, and PORTE (combined) (Note 3) ...............................................200 mA  
Maximum current sunk by PORTC and PORTD (combined) (Note 3)...................................................................200 mA  
Maximum current sourced by PORTC and PORTD (combined) (Note 3)..............................................................200 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD - VOH) x IOH} + (VOl x IOL)  
Note 2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up.Thus,  
a series resistor of 50-100should be used when applying a “low” level to the MCLRpin rather than pulling  
this pin directly to VSS.  
Note 3: PORTD and PORTE are not implemented on the PIC16C76.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
1997 Microchip Technology Inc.  
DS30390E-page 219  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
TABLE 20-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS  
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)  
PIC16C76-04  
PIC16C77-04  
PIC16C76-10  
PIC16C77-10  
PIC16C76-20  
PIC16C77-20  
PIC16LC76-04  
PIC16LC77-04  
OSC  
JW Devices  
VDD: 4.0V to 6.0V  
IDD: 5 mA max.  
at 5.5V  
IPD: 16 µA max.  
at 4V  
VDD: 4.5V to 5.5V  
IDD: 2.7 mA typ.  
at 5.5V  
IPD: 1.5 µA typ.  
at 4V  
VDD: 4.5V to 5.5V  
IDD: 2.7 mA typ.  
at 5.5V  
IPD: 1.5 µA typ.  
at 4V  
VDD: 4.0V to 6.0V  
IDD: 5 mA max.  
at 5.5V  
IPD: 16 µA max.  
at 4V  
VDD: 2.5V to 6.0V  
IDD: 3.8 mA max.  
at 3.0V  
IPD: 5 µA max. at 3V  
Freq: 4 MHz max.  
RC  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
VDD: 4.0V to 6.0V  
IDD: 5 mA max.  
at 5.5V  
IPD: 16 µA max.  
at 4V  
VDD: 4.5V to 5.5V  
IDD: 2.7 mA typ.  
at 5.5V  
IPD: 1.5 µA typ.  
at 4V  
VDD: 4.5V to 5.5V  
IDD: 2.7 mA typ.  
at 5.5V  
IPD: 1.5 µA typ.  
at 4V  
VDD: 4.0V to 6.0V  
IDD: 5 mA max.  
at 5.5V  
IPD: 16 µA max.  
at 4V  
VDD: 2.5V to 6.0V  
IDD: 3.8 mA max.  
at 3.0V  
IPD: 5 µA max. at 3V  
Freq: 4 MHz max.  
XT  
HS  
LP  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
IDD: 13.5 mA typ.  
at 5.5V  
IDD: 10 mA max.  
at 5.5V  
IDD: 20 mA max.  
at 5.5V  
IDD: 20 mA max.  
at 5.5V  
Not recommended for  
use in HS mode  
IPD: 1.5 µA typ.  
IPD: 1.5 µA typ.  
IPD: 1.5 µA typ.  
IPD: 1.5 µA typ.  
at 4.5V  
at 4.5V  
at 4.5V  
at 4.5V  
Freq: 4 MHz max.  
Freq: 10 MHz max.  
Freq: 20 MHz max.  
Freq: 20 MHz max.  
VDD: 4.0V to 6.0V  
IDD: 52.5 µA typ.  
at 32 kHz, 4.0V Not recommended for Not recommended for  
IPD: 0.9 µA typ.  
at 4.0V  
VDD: 2.5V to 6.0V  
IDD: 48 µA max.  
at 32 kHz, 3.0V  
IPD: 5.0 µA max.  
at 3.0V  
VDD: 2.5V to 6.0V  
IDD: 48 µA max.  
at 32 kHz, 3.0V  
IPD: 5.0 µA max.  
at 3.0V  
use in LP mode  
use in LP mode  
Freq: 200 kHz max.  
Freq: 200 kHz max.  
Freq: 200 kHz max.  
The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications.  
It is recommended that the user select the device type that ensures the specifications required.  
DS30390E-page 220  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
20.1  
DC Characteristics:  
PIC16C76/77-04 (Commercial, Industrial, Extended)  
PIC16C76/77-10 (Commercial, Industrial, Extended)  
PIC16C76/77-20 (Commercial, Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40˚C TA +125˚C for extended,  
DC CHARACTERISTICS  
-40˚C  
0˚C  
TA +85˚C for industrial and  
TA +70˚C for commercial  
Param  
No.  
Characteristic  
Sym  
VDD  
Min Typ† Max Units  
Conditions  
D001 Supply Voltage  
D001A  
4.0  
4.5  
-
-
6.0  
5.5  
V
V
XT, RC and LP osc configuration  
HS osc configuration  
D002* RAM Data Retention  
Voltage (Note 1)  
VDR  
-
1.5  
-
V
D003  
VDD start voltage to  
ensure internal Power-on  
Reset signal  
VPOR  
-
VSS  
-
V
See section on Power-on Reset for details  
D004* VDD rise rate to ensure  
internal Power-on Reset  
signal  
SVDD  
0.05  
-
-
V/ms See section on Power-on Reset for details  
D005 Brown-out Reset Voltage BVDD  
3.7  
3.7  
-
4.0 4.3  
4.0 4.4  
V
V
BODEN bit in configuration word enabled  
Extended Range Only  
D010 Supply Current (Note 2,5) IDD  
2.7  
5
mA XT, RC osc configuration  
FOSC = 4 MHz, VDD = 5.5V (Note 4)  
D013  
-
-
10  
20  
mA HS osc configuration  
FOSC = 20 MHz, VDD = 5.5V  
D015* Brown-out Reset Current IBOR  
350 425 µA BOR enabled VDD = 5.0V  
(Note 6)  
D020 Power-down Current  
D021 (Note 3,5)  
D021A  
IPD  
-
-
-
-
10.5 42 µA VDD = 4.0V, WDT enabled, -40°C to +85°C  
1.5  
1.5  
2.5  
16  
19  
19  
µA VDD = 4.0V, WDT disabled, -0°C to +70°C  
µA VDD = 4.0V, WDT disabled, -40°C to +85°C  
µA VDD = 4.0V, WDT disabled, -40°C to +125°C  
D021B  
D023* Brown-out Reset Current IBOR  
-
350 425 µA BOR enabled VDD = 5.0V  
(Note 6)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from charac-  
terization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
1997 Microchip Technology Inc.  
DS30390E-page 221  
 
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
20.2  
DC Characteristics: PIC16LC76/77-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40˚C  
0˚C  
Sym Min Typ† Max Units  
TA +85˚C for industrial and  
TA +70˚C for commercial  
Param  
No.  
Characteristic  
Conditions  
D001  
Supply Voltage  
VDD  
VDR  
2.5  
-
-
6.0  
-
V
V
LP, XT, RC osc configuration (DC - 4 MHz)  
D002* RAM Data Retention  
Voltage (Note 1)  
1.5  
D003  
VDD start voltage to  
ensure internal Power-on  
Reset signal  
VPOR  
SVDD  
-
VSS  
-
-
-
V
See section on Power-on Reset for details  
D004* VDD rise rate to ensure  
internal Power-on Reset  
signal  
0.05  
V/ms See section on Power-on Reset for details  
D005  
D010  
Brown-out Reset Voltage BVDD  
Supply Current (Note 2,5) IDD  
3.7  
-
4.0  
2.0  
4.3  
3.8  
V
BODEN bit in configuration word enabled  
mA XT, RC osc configuration  
FOSC = 4 MHz, VDD = 3.0V (Note 4)  
D010A  
-
-
22.5 48  
350 425  
µA LP osc configuration  
FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
D015* Brown-out Reset Current IBOR  
µA BOR enabled VDD = 5.0V  
(Note 6)  
D020  
D021  
D021A  
Power-down Current  
(Note 3,5)  
IPD  
-
-
-
7.5  
0.9  
0.9  
30  
5
5
µA VDD = 3.0V, WDT enabled, -40°C to +85°C  
µA VDD = 3.0V, WDT disabled, 0°C to +70°C  
µA VDD = 3.0V, WDT disabled, -40°C to +85°C  
D023* Brown-out Reset Current IBOR  
-
350 425  
µA BOR enabled VDD = 5.0V  
(Note 6)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated.These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from charac-  
terization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
DS30390E-page 222  
1997 Microchip Technology Inc.  
 
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
20.3  
DC Characteristics:  
PIC16C76/77-04 (Commercial, Industrial, Extended)  
PIC16C76/77-10 (Commercial, Industrial, Extended)  
PIC16C76/77-20 (Commercial, Industrial, Extended)  
PIC16LC76/77-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40˚C TA +125˚C for extended,  
-40˚C TA +85˚C for industrial and  
DC CHARACTERISTICS  
0˚C  
TA +70˚C for commercial  
Operating voltage VDD range as described in DC spec Section 20.1 and  
Section 20.2.  
Param  
No.  
Characteristic  
Sym  
Min Typ Max Units  
Conditions  
Input Low Voltage  
I/O ports  
VIL  
D030  
D030A  
D031  
D032  
D033  
with TTL buffer  
VSS  
VSS  
VSS  
VSS  
VSS  
-
-
-
-
-
0.15VDD  
0.8V  
0.2VDD  
0.2VDD  
0.3VDD  
V
V
V
V
V
For entire VDD range  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
MCLR, OSC1 (in RC mode)  
OSC1 (in XT, HS and LP)  
Input High Voltage  
I/O ports  
Note1  
VIH  
-
-
-
D040  
D040A  
with TTL buffer  
2.0  
0.25VDD  
+ 0.8V  
VDD  
VDD  
V
V
4.5V VDD 5.5V  
For entire VDD range  
D041  
D042  
with Schmitt Trigger buffer  
MCLR  
0.8VDD  
0.8VDD  
0.7VDD  
0.9VDD  
50  
-
-
-
-
VDD  
VDD  
VDD  
VDD  
V
V
V
V
For entire VDD range  
Note1  
D042A OSC1 (XT, HS and LP)  
D043  
D070  
OSC1 (in RC mode)  
PORTB weak pull-up current  
Input Leakage Current  
(Notes 2, 3)  
IPURB  
IIL  
250 400  
µA VDD = 5V, VPIN = VSS  
D060  
I/O ports  
-
-
±1  
µA Vss VPIN VDD, Pin at hi-imped-  
ance  
D061  
D063  
MCLR, RA4/T0CKI  
OSC1  
-
-
-
-
±5  
±5  
µA Vss VPIN VDD  
µA Vss VPIN VDD, XT, HS and LP osc  
configuration  
Output Low Voltage  
D080  
I/O ports  
VOL  
-
-
-
-
-
-
-
-
0.6  
0.6  
0.6  
0.6  
V
V
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 7.0 mA, VDD = 4.5V,  
-40°C to +125°C  
IOL = 1.6 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 1.2 mA, VDD = 4.5V,  
-40°C to +125°C  
D080A  
D083  
OSC2/CLKOUT (RC osc config)  
D083A  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C7X be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
1997 Microchip Technology Inc.  
DS30390E-page 223  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40˚C TA +125˚C for extended,  
-40˚C TA +85˚C for industrial and  
DC CHARACTERISTICS  
0˚C  
TA +70˚C for commercial  
Operating voltage VDD range as described in DC spec Section 20.1 and  
Section 20.2.  
Param  
No.  
Characteristic  
Sym  
Min Typ Max Units  
Conditions  
Output High Voltage  
D090  
I/O ports (Note 3)  
VOH VDD - 0.7 -  
VDD - 0.7 -  
-
-
V
V
V
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -2.5 mA, VDD = 4.5V,  
-40°C to +125°C  
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -1.0 mA, VDD = 4.5V,  
-40°C to +125°C  
D090A  
D092  
OSC2/CLKOUT (RC osc config)  
VDD - 0.7 -  
-
D092A  
VDD - 0.7 -  
-
D150* Open-Drain High Voltage  
Capacitive Loading Specs on  
Output Pins  
VOD  
-
-
-
-
14  
RA4 pin  
D100  
OSC2 pin  
COSC2  
15  
pF In XT, HS and LP modes when exter-  
nal clock is used to drive OSC1.  
D101  
D102  
All I/O pins and OSC2 (in RC  
CIO  
CB  
-
-
-
-
50  
400  
pF  
pF  
2
mode) SCL, SDA in I C mode  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C7X be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
DS30390E-page 224  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
20.4  
Timing Parameter Symbology  
The timing parameter symbols have been created following one of the following formats:  
2
1. TppS2ppS  
2. TppS  
3. TCC:ST  
4. Ts  
(I C specifications only)  
2
(I C specifications only)  
T
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
2
I C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
2
TCC:ST (I C specifications only)  
CC  
HD  
ST  
DAT  
STA  
Hold  
SU  
Setup  
DATA input hold  
START condition  
STO  
STOP condition  
FIGURE 20-1: LOAD CONDITIONS  
Load condition 1  
Load condition 2  
VDD/2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL = 464Ω  
CL = 50 pF for all pins except OSC2, but including PORTD and PORTE outputs as  
ports  
15 pF for OSC2 output  
Note: PORTD and PORTE are not implemented on the PIC16C76.  
1997 Microchip Technology Inc.  
DS30390E-page 225  
 
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
20.5  
Timing Diagrams and Specifications  
FIGURE 20-2: EXTERNAL CLOCK TIMING  
Q4  
Q1  
1
Q2  
Q3  
Q4  
4
Q1  
OSC1  
3
3
4
2
CLKOUT  
TABLE 20-2: EXTERNAL CLOCK TIMING REQUIREMENTS  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units Conditions  
Fosc External CLKIN Frequency  
DC  
DC  
DC  
DC  
DC  
DC  
0.1  
4
4
MHz XT and RC osc mode  
MHz HS osc mode (-04)  
MHz HS osc mode (-10)  
MHz HS osc mode (-20)  
kHz LP osc mode  
(Note 1)  
10  
20  
200  
4
Oscillator Frequency  
(Note 1)  
MHz RC osc mode  
4
MHz XT osc mode  
4
5
20  
200  
MHz HS osc mode  
kHz LP osc mode  
1
Tosc External CLKIN Period  
250  
250  
100  
50  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
XT and RC osc mode  
HS osc mode (-04)  
HS osc mode (-10)  
HS osc mode (-20)  
LP osc mode  
(Note 1)  
5
Oscillator Period  
(Note 1)  
250  
250  
250  
100  
RC osc mode  
10,000  
250  
250  
XT osc mode  
HS osc mode (-04)  
HS osc mode (-10)  
HS osc mode (-20)  
50  
5
250  
ns  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
LP osc mode  
TCY = 4/FOSC  
XT oscillator  
LP oscillator  
HS oscillator  
XT oscillator  
LP oscillator  
HS oscillator  
2
3
TCY  
Instruction Cycle Time (Note 1)  
200  
100  
2.5  
15  
TCY  
DC  
TosL, External Clock in (OSC1) High or  
TosH Low Time  
4
TosR, External Clock in (OSC1) Rise or  
TosF Fall Time  
25  
50  
15  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing code.  
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current con-  
sumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.  
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.  
DS30390E-page 226  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 20-3: CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKOUT  
13  
14  
12  
18  
19  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
new value  
old value  
(output)  
20, 21  
Note: Refer to Figure 20-1 for load conditions.  
TABLE 20-3: CLKOUT AND I/O TIMING REQUIREMENTS  
Param Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
10*  
11*  
12*  
13*  
14*  
15*  
16*  
17*  
TosH2ckL OSC1to CLKOUT↓  
TosH2ckH OSC1to CLKOUT↑  
75  
75  
35  
35  
50  
200  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
TckR  
TckF  
CLKOUT rise time  
CLKOUT fall time  
100  
100  
TckL2ioV CLKOUT to Port out valid  
TioV2ckH Port in valid before CLKOUT ↑  
TckH2ioI Port in hold after CLKOUT ↑  
0.5TCY + 20  
TOSC + 200  
0
TosH2ioV OSC1(Q1 cycle) to  
150  
Port out valid  
18*  
TosH2ioI OSC1(Q2 cycle) to  
Port input invalid (I/O in  
hold time)  
PIC16C76/77  
PIC16LC76/77  
100  
200  
ns  
ns  
19*  
20*  
TioV2osH Port input valid to OSC1(I/O in setup time)  
0
10  
10  
40  
80  
40  
80  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TioR  
Port output rise time  
Port output fall time  
INT pin high or low time  
PIC16C76/77  
PIC16LC76/77  
PIC16C76/77  
PIC16LC76/77  
21*  
TioF  
22††* Tinp  
23††* Trbp  
TCY  
TCY  
RB7:RB4 change INT high or low time  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
†† These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
1997 Microchip Technology Inc.  
DS30390E-page 227  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 20-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O Pins  
Note: Refer to Figure 20-1 for load conditions.  
FIGURE 20-5: BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
TABLE 20-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,  
AND BROWN-OUT RESET REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
TmcL MCLR Pulse Width (low)  
2
7
µs VDD = 5V, -40˚C to +125˚C  
31*  
Twdt  
Watchdog Timer Time-out Period  
18  
33  
ms VDD = 5V, -40˚C to +125˚C  
(No Prescaler)  
32  
33*  
34  
Tost  
Oscillation Start-up Timer Period  
28  
1024TOSC  
TOSC = OSC1 period  
Tpwrt Power up Timer Period  
72  
132  
2.1  
ms VDD = 5V, -40˚C to +125˚C  
TIOZ  
I/O Hi-impedance from MCLR Low  
µs  
or Watchdog Timer Reset  
35  
TBOR  
Brown-out Reset pulse width  
100  
µs  
VDD BVDD (D005)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30390E-page 228  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 20-6: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
RA4/T0CKI  
41  
40  
42  
RC0/T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note: Refer to Figure 20-1 for load conditions.  
TABLE 20-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units Conditions  
40*  
Tt0H  
T0CKI High Pulse Width  
No Prescaler  
0.5TCY + 20  
ns Must also meet  
parameter 42  
With Prescaler  
No Prescaler  
10  
0.5TCY + 20  
10  
ns  
41*  
42*  
Tt0L  
Tt0P  
T0CKI Low Pulse Width  
T0CKI Period  
ns Must also meet  
parameter 42  
With Prescaler  
No Prescaler  
With Prescaler  
ns  
ns  
TCY + 40  
Greater of:  
20 or TCY + 40  
ns N = prescale value  
(2, 4, ..., 256)  
N
0.5TCY + 20  
15  
45*  
46*  
47*  
Tt1H  
Tt1L  
Tt1P  
T1CKI High Time Synchronous, Prescaler = 1  
ns Must also meet  
parameter 47  
Synchronous, PIC16C7X  
ns  
ns  
Prescaler =  
2,4,8  
PIC16LC7X  
25  
Asynchronous PIC16C7X  
PIC16LC7X  
30  
ns  
ns  
50  
T1CKI Low Time  
Synchronous, Prescaler = 1  
Synchronous, PIC16C7X  
0.5TCY + 20  
ns Must also meet  
parameter 47  
15  
25  
ns  
ns  
Prescaler =  
2,4,8  
PIC16LC7X  
Asynchronous PIC16C7X  
PIC16LC7X  
30  
ns  
ns  
50  
T1CKI input period Synchronous PIC16C7X  
Greater of:  
30 OR TCY + 40  
ns N = prescale value  
(1, 2, 4, 8)  
N
Greater of:  
50 OR TCY + 40  
N = prescale value  
(1, 2, 4, 8)  
PIC16LC7X  
N
60  
Asynchronous PIC16C7X  
PIC16LC7X  
ns  
ns  
100  
DC  
Ft1  
Timer1 oscillator input frequency range  
(oscillator enabled by setting bit T1OSCEN)  
200  
kHz  
48  
*
TCKEZtmr1 Delay from external clock edge to timer increment  
2Tosc  
7Tosc  
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1997 Microchip Technology Inc.  
DS30390E-page 229  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 20-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)  
RC1/T1OSI/CCP2  
and RC2/CCP1  
(Capture Mode)  
50  
51  
52  
RC1/T1OSI/CCP2  
and RC2/CCP1  
(Compare or PWM Mode)  
53  
Note: Refer to Figure 20-1 for load conditions.  
54  
TABLE 20-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)  
Param Sym Characteristic  
No.  
Min  
Typ† Max Units Conditions  
50*  
TccL CCP1 and CCP2 No Prescaler  
input low time  
0.5TCY + 20  
ns  
PIC16C76/77  
10  
ns  
ns  
ns  
ns  
With Prescaler  
PIC16LC76/77  
20  
0.5TCY + 20  
10  
51*  
TccH  
No Prescaler  
CCP1 and CCP2  
input high time  
PIC16C76/77  
With Prescaler  
PIC16LC76/77  
20  
ns  
52*  
53*  
TccP  
3TCY + 40  
N
ns N = prescale  
value (1,4 or 16)  
CCP1 and CCP2 input period  
TccR CCP1 and CCP2 output rise time  
TccF CCP1 and CCP2 output fall time  
10  
25  
ns  
PIC16C76/77  
PIC16LC76/77  
25  
10  
45  
25  
ns  
ns  
54*  
PIC16C76/77  
PIC16LC76/77  
25  
45  
ns  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated.  
These parameters are for design guidance only and are not tested.  
DS30390E-page 230  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 20-8: PARALLEL SLAVE PORT TIMING (PIC16C77)  
RE2/CS  
RE0/RD  
RE1/WR  
65  
RD7:RD0  
62  
64  
63  
Note: Refer to Figure 20-1 for load conditions  
TABLE 20-7: PARALLEL SLAVE PORT REQUIREMENTS (PIC16C77)  
Parameter  
No.  
Sym  
Characteristic  
Min Typ† Max Units Conditions  
62  
TdtV2wrH Data in valid before WRor CS(setup time)  
20  
25  
ns  
ns  
Extended  
Range Only  
63*  
64  
TwrH2dtI WRor CSto data–in invalid (hold time) PIC16C77  
PIC16LC77  
20  
35  
ns  
ns  
TrdL2dtV RDand CSto data–out valid  
80  
90  
ns  
ns  
Extended  
Range Only  
65  
TrdH2dtI RDor CSto data–out invalid  
10  
30  
ns  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1997 Microchip Technology Inc.  
DS30390E-page 231  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 20-9: SPI MASTER MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
BIT6 - - - - - -1  
MSB  
LSB  
SDO  
SDI  
75, 76  
MSB IN  
74  
BIT6 - - - -1  
LSB IN  
73  
Refer to Figure 20-1 for load conditions.  
FIGURE 20-10: SPI MASTER MODE TIMING (CKE = 1)  
SS  
81  
SCK  
(CKP = 0)  
71  
72  
79  
78  
73  
SCK  
(CKP = 1)  
80  
LSB  
MSB  
BIT6 - - - - - -1  
BIT6 - - - -1  
SDO  
SDI  
75, 76  
MSB IN  
74  
LSB IN  
Refer to Figure 20-1 for load conditions.  
DS30390E-page 232  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 20-11: SPI SLAVE MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
83  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSB  
LSB  
SDO  
SDI  
BIT6 - - - - - -1  
77  
75, 76  
MSB IN  
74  
BIT6 - - - -1  
LSB IN  
73  
Refer to Figure 20-1 for load conditions.  
FIGURE 20-12: SPI SLAVE MODE TIMING (CKE = 1)  
82  
SS  
70  
SCK  
83  
(CKP = 0)  
71  
72  
SCK  
(CKP = 1)  
80  
MSB  
BIT6 - - - - - -1  
BIT6 - - - -1  
LSB  
SDO  
SDI  
75, 76  
77  
MSB IN  
74  
LSB IN  
Refer to Figure 20-1 for load conditions.  
1997 Microchip Technology Inc.  
DS30390E-page 233  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
TABLE 20-8: SPI MODE REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
70*  
TssL2scH,  
TssL2scL  
SSto SCKor SCKinput  
TCY  
ns  
71*  
72*  
73*  
TscH  
TscL  
SCK input high time (slave mode)  
SCK input low time (slave mode)  
TCY + 20  
TCY + 20  
100  
ns  
ns  
ns  
TdiV2scH,  
TdiV2scL  
Setup time of SDI data input to SCK  
edge  
74*  
TscH2diL,  
TscL2diL  
Hold time of SDI data input to SCK  
edge  
100  
ns  
75*  
76*  
77*  
78*  
79*  
80*  
TdoR  
SDO data output rise time  
10  
10  
10  
10  
10  
25  
25  
50  
25  
25  
50  
ns  
ns  
ns  
ns  
ns  
ns  
TdoF  
SDO data output fall time  
TssH2doZ  
TscR  
SSto SDO output hi-impedance  
SCK output rise time (master mode)  
SCK output fall time (master mode)  
TscF  
TscH2doV,  
TscL2doV  
SDO data output valid after SCK  
edge  
81*  
82*  
83*  
TdoV2scH,  
TdoV2scL  
SDO data output setup to SCK  
edge  
TCY  
50  
ns  
ns  
ns  
TssL2doV  
SDO data output valid after SS↓  
edge  
TscH2ssH,  
TscL2ssH  
SS after SCK edge  
1.5TCY + 40  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30390E-page 234  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
2
FIGURE 20-13: I C BUS START/STOP BITS TIMING  
SCL  
93  
91  
90  
92  
SDA  
STOP  
Condition  
START  
Condition  
Note: Refer to Figure 20-1 for load conditions  
2
TABLE 20-9: I C BUS START/STOP BITS REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min Typ Max Units  
Conditions  
90  
91  
92  
93  
TSU:STA START condition  
Setup time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
Only relevant for repeated START  
condition  
ns  
ns  
ns  
ns  
THD:STA START condition  
Hold time  
4000  
600  
After this period the first clock  
pulse is generated  
TSU:STO STOP condition  
Setup time  
4700  
600  
THD:STO STOP condition  
Hold time  
4000  
600  
1997 Microchip Technology Inc.  
DS30390E-page 235  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
2
FIGURE 20-14: I C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 20-1 for load conditions  
2
TABLE 20-10: I C BUS DATA REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Max  
Units  
Conditions  
100  
THIGH  
Clock high time  
100 kHz mode  
400 kHz mode  
4.0  
0.6  
µs  
µs  
Device must operate at a mini-  
mum of 1.5 MHz  
Device must operate at a mini-  
mum of 10 MHz  
SSP Module  
1.5TCY  
4.7  
101  
TLOW  
Clock low time  
100 kHz mode  
µs  
µs  
Device must operate at a mini-  
mum of 1.5 MHz  
400 kHz mode  
1.3  
Device must operate at a mini-  
mum of 10 MHz  
SSP Module  
1.5TCY  
102  
103  
TR  
TF  
SDA and SCL rise  
time  
100 kHz mode  
400 kHz mode  
1000  
300  
ns  
ns  
20 + 0.1Cb  
Cb is specified to be from  
10 to 400 pF  
SDA and SCL fall time 100 kHz mode  
400 kHz mode  
300  
300  
ns  
ns  
20 + 0.1Cb  
Cb is specified to be from  
10 to 400 pF  
90  
91  
TSU:STA START condition  
setup time  
100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
µs  
µs  
µs  
µs  
ns  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
µs  
µs  
Only relevant for repeated  
START condition  
THD:STA START condition hold 100 kHz mode  
After this period the first clock  
pulse is generated  
time  
400 kHz mode  
100 kHz mode  
400 kHz mode  
106  
107  
92  
THD:DAT Data input hold time  
0
0.9  
TSU:DAT Data input setup time 100 kHz mode  
400 kHz mode  
250  
100  
4.7  
0.6  
Note 2  
TSU:STO STOP condition setup 100 kHz mode  
time  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
109  
110  
TAA  
Output valid from  
clock  
3500  
Note 1  
TBUF  
Bus free time  
4.7  
1.3  
Time the bus must be free  
before a new transmission can  
start  
Cb  
Bus capacitive loading  
400  
pF  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of  
the falling edge of SCL to avoid unintended generation of START or STOP conditions.  
2
2
2: A fast-mode (400 kHz) I C-bus device can be used in a standard-mode (100 kHz) I C-bus system, but the requirement  
tsu;DAT 250 ns must then be met.This will automatically be the case if the device does not stretch the LOW period of the  
SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line  
2
TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I C bus specification) before the SCL line is  
released.  
DS30390E-page 236  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 20-15: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
RC6/TX/CK  
pin  
121  
121  
RC7/RX/DT  
pin  
120  
122  
Note: Refer to Figure 20-1 for load conditions  
TABLE 20-11: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Param Sym  
No.  
Characteristic  
Min  
Typ† Max Units Conditions  
120  
TckH2dtV  
SYNC XMIT (MASTER &  
SLAVE)  
Clock high to data out valid  
PIC16C76/77  
80  
100  
45  
ns  
ns  
ns  
ns  
ns  
ns  
PIC16LC76/77  
121  
122  
Tckrf  
Tdtrf  
Clock out rise time and fall time PIC16C76/77  
(Master Mode)  
PIC16LC76/77  
50  
Data out rise time and fall time PIC16C76/77  
PIC16LC76/77  
45  
50  
†:  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
FIGURE 20-16: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
RC6/TX/CK  
125  
pin  
RC7/RX/DT  
pin  
126  
Note: Refer to Figure 20-1 for load conditions  
TABLE 20-12: USART SYNCHRONOUS RECEIVE REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
125  
TdtV2ckL  
TckL2dtl  
SYNC RCV (MASTER & SLAVE)  
Data setup before CK (DT setup time)  
15  
15  
ns  
ns  
126  
Data hold after CK (DT hold time)  
†:  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1997 Microchip Technology Inc.  
DS30390E-page 237  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
TABLE 20-13: A/D CONVERTER CHARACTERISTICS:  
PIC16C76/77-04 (Commercial, Industrial, Extended)  
PIC16C76/77-10 (Commercial, Industrial, Extended)  
PIC16C76/77-20 (Commercial, Industrial, Extended)  
PIC16LC76/77-04 (Commercial, Industrial)  
Param Sym Characteristic  
No.  
Min  
Typ†  
Max  
Units  
Conditions  
A01  
NR Resolution  
8-bits  
bit VREF = VDD = 5.12V,  
VSS VAIN VREF  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
A02 EABS Total Absolute error  
< ± 1  
< ± 1  
< ± 1  
< ± 1  
< ± 1  
LSb  
LSb  
LSb  
LSb  
LSb  
A03  
A04  
A05  
EIL Integral linearity error  
EDL Differential linearity error  
EFS Full scale error  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
A06 EOFF Offset error  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
A10  
Monotonicity  
3.0V  
guaranteed  
V
VSS VAIN VREF  
A20 VREF Reference voltage  
VDD + 0.3  
VREF + 0.3  
10.0  
A25  
A30  
VAIN Analog input voltage  
VSS - 0.3  
V
ZAIN Recommended impedance of  
analog voltage source  
kΩ  
A40  
A50  
IAD A/D conversion current PIC16C76/77  
180  
90  
µA Average current consump-  
(VDD)  
tion when A/D is on.  
(Note 1)  
PIC16LC76/77  
µA  
IREF VREF input current (Note 2)  
10  
1000  
µA During VAIN acquisition.  
Based on differential of  
VHOLD to VAIN to charge  
CHOLD, see Section 13.1.  
10  
µA During A/D Conversion  
cycle  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current.  
The power-down current spec includes any such leakage from the A/D module.  
2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.  
DS30390E-page 238  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 20-17: A/D CONVERSION TIMING  
BSF ADCON0, GO  
1 Tcy  
(TOSC/2) (1)  
134  
131  
Q4  
130  
132  
A/D CLK  
7
6
5
4
3
2
1
0
A/D DATA  
NEW_DATA  
DONE  
OLD_DATA  
ADRES  
ADIF  
GO  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
TABLE 20-14: A/D CONVERSION REQUIREMENTS  
Param Sym Characteristic  
No.  
Min  
Typ†  
Max  
Units  
Conditions  
130  
TAD A/D clock period  
PIC16C76/77  
PIC16LC76/77  
PIC16C76/77  
PIC16LC76/77  
1.6  
2.0  
2.0  
3.0  
µs  
TOSC based, VREF 3.0V  
µs TOSC based, VREF full range  
µs A/D RC Mode  
µs A/D RC Mode  
TAD  
4.0  
6.0  
9.5  
6.0  
9.0  
131  
132  
TCNV Conversion time (not including S/H time)  
(Note 1)  
TACQ Acquisition time  
Note 2  
5*  
20  
µs  
µs The minimum time is the amplifier  
settling time. This may be used if  
the "new" input voltage has not  
changed by more than 1 LSb (i.e.,  
20.0 mV @ 5.12V) from the last  
sampled voltage (as stated on  
CHOLD).  
134  
135  
TGO Q4 to A/D clock start  
TOSC/2 §  
If the A/D clock source is selected  
as RC, a time of TCY is added  
before the A/D clock starts. This  
allows the SLEEPinstruction to be  
executed.  
TSWC Switching from convert sample time  
1.5 §  
TAD  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
§
This specification ensured by design.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 13.1 for min conditions.  
1997 Microchip Technology Inc.  
DS30390E-page 239  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
NOTES:  
DS30390E-page 240  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
21.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES  
The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.  
In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD  
range). This is for information only and devices are guaranteed to operate properly only within the specified  
range.  
Note: The data presented in this section is a statistical summary of data collected on units from different lots over  
a period of time and matrix samples. 'Typical' represents the mean of the distribution at, 25°C, while 'max'  
or 'min' represents (mean +3σ) and (mean -3σ) respectively where σ is standard deviation.  
FIGURE 21-1: TYPICAL IPD vs. VDD (WDT DISABLED, RC MODE)  
35  
30  
25  
20  
15  
10  
5
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD(Volts)  
FIGURE 21-2: MAXIMUM IPD vs. VDD (WDT DISABLED, RC MODE)  
10.000  
85°C  
70°C  
1.000  
0.100  
25°C  
0°C  
-40°C  
0.010  
0.001  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD(Volts)  
1997 Microchip Technology Inc.  
DS30390E-page 241  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 21-3: TYPICAL IPD vs. VDD @ 25°C  
FIGURE 21-5: TYPICAL RC OSCILLATOR  
FREQUENCY vs. VDD  
(WDT ENABLED, RC MODE)  
Cext = 22 pF,T = 25°C  
6.0  
25  
20  
15  
10  
5
5.5  
5.0  
4.5  
R = 5k  
4.0  
3.5  
3.0  
R = 10k  
2.5  
2.0  
1.5  
1.0  
R = 100k  
0
2.5  
0.5  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD(Volts)  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD(Volts)  
Shaded area is beyond recommended range.  
FIGURE 21-4: MAXIMUM IPD vs. VDD (WDT  
ENABLED, RC MODE)  
FIGURE 21-6: TYPICAL RC OSCILLATOR  
FREQUENCY vs. VDD  
35  
-40°C  
Cext = 100 pF,T = 25°C  
30  
0°C  
2.4  
2.2  
25  
20  
R = 3.3k  
2.0  
1.8  
1.6  
70°C  
15  
R = 5k  
1.4  
85°C  
1.2  
10  
1.0  
R = 10k  
5
0
0.8  
0.6  
0.4  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
R = 100k  
0.2  
VDD(Volts)  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD(Volts)  
FIGURE 21-7: TYPICAL RC OSCILLATOR  
FREQUENCY vs. VDD  
Cext = 300 pF,T = 25°C  
1000  
900  
800  
R = 3.3k  
700  
600  
R = 5k  
500  
400  
R = 10k  
300  
200  
R = 100k  
5.5 6.0  
100  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
VDD(Volts)  
DS30390E-page 242  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 21-8: TYPICAL IPD vs. VDD BROWN-  
OUT DETECT ENABLED (RC  
MODE)  
FIGURE 21-10: TYPICAL IPD vs.TIMER1  
ENABLED (32 kHz, RC0/RC1 =  
33 pF/33 pF, RC MODE)  
1400  
1200  
1000  
30  
25  
20  
15  
10  
5
Device NOT in  
Brown-out Reset  
800  
600  
400  
200  
0
Device in  
Brown-out  
Reset  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD(Volts)  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
The shaded region represents the built-in hysteresis of the  
brown-out reset circuitry.  
VDD(Volts)  
FIGURE 21-9: MAXIMUM IPD vs. VDD  
BROWN-OUT DETECT  
ENABLED  
FIGURE 21-11: MAXIMUM IPD vs.TIMER1  
ENABLED  
(32 kHz, RC0/RC1 = 33 pF/33  
(85°C TO -40°C, RC MODE)  
pF, 85°C TO -40°C, RC MODE)  
1600  
1400  
1200  
45  
40  
35  
30  
1000  
Device NOT in  
Brown-out Reset  
800  
600  
400  
200  
0
Device in  
Brown-out  
Reset  
25  
20  
15  
10  
5
4.3  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD(Volts)  
0
The shaded region represents the built-in hysteresis of the  
brown-out reset circuitry.  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD(Volts)  
1997 Microchip Technology Inc.  
DS30390E-page 243  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 21-12: TYPICAL IDD vs. FREQUENCY (RC MODE @ 22 pF, 25°C)  
2000  
1800  
1600  
1400  
1200  
1000  
800  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
600  
400  
200  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
Frequency(MHz)  
Shaded area is  
beyond recommended range  
FIGURE 21-13: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 22 pF, -40°C TO 85°C)  
2000  
6.0V  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
Frequency(MHz)  
Shaded area is  
beyond recommended range  
DS30390E-page 244  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 21-14: TYPICAL IDD vs. FREQUENCY (RC MODE @ 100 pF, 25°C)  
1600  
1400  
1200  
1000  
800  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
600  
400  
200  
0
0
200  
Shaded area is  
beyond recommended range  
400  
600  
800  
1000  
1200  
1400  
1600  
1800  
Frequency(kHz)  
FIGURE 21-15: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 100 pF, -40°C TO 85°C)  
1600  
6.0V  
5.5V  
1400  
1200  
1000  
800  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
600  
400  
200  
0
0
200  
Shaded area is  
beyond recommended range  
400  
600  
800  
1000  
1200  
1400  
1600  
1800  
Frequency(kHz)  
1997 Microchip Technology Inc.  
DS30390E-page 245  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 21-16: TYPICAL IDD vs. FREQUENCY (RC MODE @ 300 pF, 25°C)  
1200  
1000  
800  
600  
400  
200  
0
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
0
100  
200  
300  
400  
500  
600  
700  
Frequency(kHz)  
FIGURE 21-17: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 300 pF, -40°C TO 85°C)  
1200  
6.0V  
5.5V  
1000  
800  
600  
400  
200  
0
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
0
100  
200  
300  
400  
500  
600  
700  
Frequency(kHz)  
DS30390E-page 246  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 21-18: TYPICAL IDD vs.  
CAPACITANCE @ 500 kHz  
FIGURE 21-19: TRANSCONDUCTANCE(gm)  
OF HS OSCILLATOR vs. VDD  
(RC MODE)  
600  
500  
400  
300  
200  
100  
4.0  
Max -40°C  
5.0V  
3.5  
3.0  
4.0V  
3.0V  
2.5  
Typ 25°C  
2.0  
Min 85°C  
1.5  
1.0  
0.5  
0.0  
0
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
20 pF  
100 pF  
300 pF  
VDD(Volts)  
Capacitance(pF)  
Shaded area is  
beyond recommended range  
TABLE 21-1: RC OSCILLATOR  
FREQUENCIES  
FIGURE 21-20: TRANSCONDUCTANCE(gm)  
OF LP OSCILLATOR vs. VDD  
Average  
110  
Cext  
Rext  
100  
Max -40°C  
Fosc @ 5V, 25°C  
90  
80  
70  
22 pF  
5k  
10k  
100k  
3.3k  
5k  
4.12 MHz  
2.35 MHz  
268 kHz  
1.80 MHz  
1.27 MHz  
688 kHz  
77.2 kHz  
707 kHz  
501 kHz  
269 kHz  
28.3 kHz  
± 1.4%  
± 1.4%  
60  
50  
40  
30  
20  
10  
0
Typ 25°C  
± 1.1%  
± 1.0%  
± 1.0%  
± 1.2%  
± 1.0%  
± 1.4%  
± 1.2%  
± 1.6%  
± 1.1%  
100 pF  
300 pF  
10k  
100k  
3.3k  
5k  
Min 85°C  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
VDD(Volts)  
Shaded areas are  
beyond recommended range  
10k  
100k  
FIGURE 21-21: TRANSCONDUCTANCE(gm)  
OF XT OSCILLATOR vs. VDD  
The percentage variation indicated here is part to  
part variation due to normal process distribution.The  
variation indicated is ±3 standard deviation from  
average value for VDD = 5V.  
1000  
900  
Max -40°C  
800  
700  
600  
500  
400  
300  
200  
100  
0
Typ 25°C  
Min 85°C  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
VDD(Volts)  
Shaded areas are  
beyond recommended range  
1997 Microchip Technology Inc.  
DS30390E-page 247  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 21-22: TYPICAL XTAL STARTUP  
FIGURE 21-24: TYPICAL XTAL STARTUP  
TIME vs. VDD (LP MODE, 25°C)  
TIME vs. VDD (XT MODE, 25°C)  
3.5  
3.0  
2.5  
70  
60  
50  
2.0  
40  
200 kHz, 68 pF/68 pF  
32 kHz, 33 pF/33 pF  
1.5  
30  
200 kHz, 47 pF/47 pF  
20  
1.0  
1 MHz, 15 pF/15 pF  
10  
4 MHz, 15 pF/15 pF  
0.5  
0.0  
200 kHz, 15 pF/15 pF  
0
2.5  
3.0  
3.5  
4.0  
VDD(Volts)  
4.5  
5.0  
5.5  
6.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD(Volts)  
FIGURE 21-23: TYPICAL XTAL STARTUP  
TABLE 21-2: CAPACITOR SELECTION  
FOR CRYSTAL  
TIMEvs.VDD (HSMODE,25°C)  
OSCILLATORS  
Crystal  
Freq  
Cap. Range  
C1  
Cap. Range  
C2  
7
6
5
4
3
2
1
Osc Type  
LP  
32 kHz  
200 kHz  
200 kHz  
1 MHz  
33 pF  
15 pF  
33 pF  
15 pF  
20 MHz, 33 pF/33 pF  
XT  
HS  
47-68 pF  
15 pF  
47-68 pF  
15 pF  
8 MHz, 33 pF/33 pF  
4 MHz  
15 pF  
15 pF  
20 MHz, 15 pF/15 pF  
8 MHz, 15 pF/15 pF  
4 MHz  
15 pF  
15 pF  
8 MHz  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
20 MHz  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD(Volts)  
Crystals  
Used  
32 kHz  
200 kHz  
1 MHz  
Epson C-001R32.768K-A  
STD XTL 200.000KHz  
ECS ECS-10-13-1  
± 20 PPM  
± 20 PPM  
± 50 PPM  
± 50 PPM  
± 30 PPM  
± 30 PPM  
4 MHz  
ECS ECS-40-20-1  
8 MHz  
EPSON CA-301 8.000M-C  
EPSON CA-301 20.000M-C  
20 MHz  
DS30390E-page 248  
1997 Microchip Technology Inc.  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 21-25: TYPICAL IDD vs. FREQUENCY  
FIGURE 21-27: TYPICAL IDD vs. FREQUENCY  
(LP MODE, 25°C)  
(XT MODE, 25°C)  
1800  
1600  
6.0V  
120  
100  
80  
5.5V  
1400  
5.0V  
1200  
4.5V  
1000  
800  
600  
4.0V  
3.5V  
60  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
40  
20  
0
3.0V  
2.5V  
3.0V  
2.5V  
400  
200  
0
50  
100  
150  
200  
Frequency(kHz)  
0
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
Frequency(MHz)  
FIGURE 21-26: MAXIMUM IDD vs.  
FREQUENCY  
FIGURE 21-28: MAXIMUM IDD vs.  
FREQUENCY  
(LP MODE, 85°C TO -40°C)  
(XT MODE, -40°C TO 85°C)  
1800  
1600  
1400  
1200  
6.0V  
5.5V  
5.0V  
4.5V  
140  
120  
100  
80  
4.0V  
1000  
3.5V  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
60  
800  
600  
3.0V  
40  
2.5V  
20  
400  
200  
3.0V  
2.5V  
0
0
50  
100  
150  
200  
0
Frequency(kHz)  
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
Frequency(MHz)  
1997 Microchip Technology Inc.  
DS30390E-page 249  
PIC16C7X  
Applicable Devices 72 73 73A 74 74A 76 77  
FIGURE 21-29: TYPICAL IDD vs. FREQUENCY  
FIGURE 21-30: MAXIMUM IDD vs.  
FREQUENCY  
(HS MODE, 25°C)  
(HS MODE, -40°C TO 85°C)  
7.0  
6.0  
5.0  
4.0  
3.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
6.0V  
2.0  
5.5V  
5.0V  
4.5V  
4.0V  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
1.0  
0.0  
1
2
4
6
8
10  
12  
14  
16  
18  
20  
1
2
4
6
8
10  
12  
14  
16  
18  
20  
Frequency(MHz)  
Frequency(MHz)  
DS30390E-page 250  
1997 Microchip Technology Inc.  
PIC16C7X  
22.0 PACKAGING INFORMATION  
22.1  
28-Lead Ceramic Side Brazed Dual In-Line with Window (300 mil)(JW)  
N
C
E1 E  
eA  
eB  
α
Pin #1  
Indicator Area  
D
S1  
S
Base  
Plane  
Seating  
Plane  
A3  
A2  
A
L
A1  
B1  
e1  
B
D1  
Package Group: Ceramic Side Brazed Dual In-Line (CER)  
Millimeters  
Max  
Inches  
Max  
Symbol  
Min  
Notes  
Min  
Notes  
α
0°  
10°  
5.030  
1.524  
3.506  
2.388  
0.508  
1.321  
0.305  
35.916  
33.147  
8.128  
7.620  
2.667  
7.874  
8.179  
4.064  
28  
0°  
10°  
A
3.937  
1.016  
2.921  
1.930  
0.406  
1.219  
0.228  
35.204  
32.893  
7.620  
7.366  
2.413  
7.366  
7.594  
3.302  
28  
0.155  
0.040  
0.115  
0.076  
0.016  
0.048  
0.009  
1.386  
1.295  
0.300  
0.290  
0.095  
0.290  
0.299  
0.130  
28  
0.198  
0.060  
0.138  
0.094  
0.020  
0.052  
0.012  
1.414  
1.305  
0.320  
0.300  
0.105  
0.310  
0.322  
0.160  
28  
A1  
A2  
A3  
B
B1  
C
Typical  
Typical  
D
D1  
E
Reference  
E1  
e1  
eA  
eB  
L
Typical  
Reference  
N
S
1.143  
0.533  
1.397  
0.737  
0.045  
0.021  
0.055  
0.029  
S1  
1997 Microchip Technology Inc.  
DS30390E-page 251  
PIC16C7X  
22.2  
40-Lead Ceramic CERDIP Dual In-line with Window (600 mil) (JW)  
N
E1  
E
α
C
Pin No. 1  
Indicator  
Area  
eA  
eB  
D
S
S1  
e1  
Base  
Plane  
Seating  
Plane  
L
B1  
B
A
A3  
A2  
A1  
D1  
Package Group: Ceramic CERDIP Dual In-Line (CDP)  
Millimeters  
Inches  
Max  
Symbol  
Min  
Max  
Notes  
Min  
Notes  
α
0°  
10°  
0°  
10°  
A
4.318  
0.381  
3.810  
3.810  
0.355  
1.270  
0.203  
5.715  
1.778  
4.699  
4.445  
0.585  
1.651  
0.381  
52.705  
48.260  
15.875  
15.240  
2.540  
16.002  
18.034  
3.810  
40  
0.170  
0.015  
0.150  
0.150  
0.014  
0.050  
0.008  
2.025  
1.900  
0.600  
0.510  
0.100  
0.590  
0.600  
0.125  
40  
0.225  
0.070  
0.185  
0.175  
0.023  
0.065  
0.015  
2.075  
1.900  
0.625  
0.600  
0.100  
0.630  
0.710  
0.150  
40  
A1  
A2  
A3  
B
B1  
C
Typical  
Typical  
Typical  
Typical  
D
51.435  
48.260  
15.240  
12.954  
2.540  
14.986  
15.240  
3.175  
40  
D1  
E
Reference  
Reference  
E1  
e1  
eA  
eB  
L
Reference  
Typical  
Reference  
Typical  
N
S
1.016  
0.381  
2.286  
1.778  
0.040  
0.015  
0.090  
0.070  
S1  
DS30390E-page 252  
1997 Microchip Technology Inc.  
PIC16C7X  
22.3  
28-Lead Plastic Dual In-line (300 mil) (SP)  
N
α
E1  
E
C
eA  
eB  
Pin No. 1  
Indicator  
Area  
B2  
B1  
D
S
Base  
Plane  
Seating  
Plane  
L
Detail A  
B
Detail A  
B3  
A
A2  
A1  
e1  
D1  
Package Group: Plastic Dual In-Line (PLA)  
Millimeters  
Inches  
Max  
Symbol  
Min  
Max  
Notes  
Min  
Notes  
α
0°  
10°  
4.572  
0°  
10°  
A
3.632  
0.381  
3.175  
0.406  
1.016  
0.762  
0.203  
0.203  
0.143  
0.015  
0.125  
0.016  
0.040  
0.030  
0.008  
0.008  
1.385  
1.300  
0.310  
0.280  
0.100  
0.310  
0.320  
0.125  
28  
0.180  
A1  
A2  
B
3.556  
0.559  
1.651  
1.016  
0.508  
0.331  
35.179  
33.020  
8.382  
7.493  
2.540  
7.874  
9.652  
3.683  
-
0.140  
0.022  
0.065  
0.040  
0.020  
0.013  
1.395  
1.300  
0.330  
0.295  
0.100  
0.310  
0.380  
0.145  
-
B1  
B2  
B3  
C
Typical  
4 places  
4 places  
Typical  
Typical  
4 places  
4 places  
Typical  
D
34.163  
33.020  
7.874  
7.112  
2.540  
7.874  
8.128  
3.175  
28  
D1  
E
Reference  
Reference  
E1  
e1  
eA  
eB  
L
Typical  
Typical  
Reference  
Reference  
N
S
0.584  
1.220  
0.023  
0.048  
1997 Microchip Technology Inc.  
DS30390E-page 253  
PIC16C7X  
22.4  
40-Lead Plastic Dual In-line (600 mil) (P)  
N
α
E1  
E
C
eA  
eB  
Pin No. 1  
Indicator  
Area  
D
S
S1  
e1  
Base  
Plane  
Seating  
Plane  
L
B1  
B
A
A2  
A1  
D1  
Package Group: Plastic Dual In-Line (PLA)  
Millimeters  
Inches  
Symbol  
Min  
Max  
Notes  
Min  
Max  
Notes  
α
0°  
10°  
5.080  
0°  
10°  
0.200  
A
A1  
A2  
B
0.381  
3.175  
0.355  
1.270  
0.203  
0.015  
0.125  
0.014  
0.050  
0.008  
2.015  
1.900  
0.600  
0.530  
0.098  
0.600  
0.600  
0.115  
40  
4.064  
0.559  
1.778  
0.381  
52.197  
48.260  
15.875  
13.970  
2.591  
15.240  
17.272  
3.683  
40  
0.160  
0.022  
0.070  
0.015  
2.055  
1.900  
0.625  
0.550  
0.102  
0.600  
0.680  
0.145  
40  
B1  
C
Typical  
Typical  
Typical  
Typical  
D
51.181  
48.260  
15.240  
13.462  
2.489  
15.240  
15.240  
2.921  
40  
D1  
E
Reference  
Reference  
E1  
e1  
eA  
eB  
L
Typical  
Typical  
Reference  
Reference  
N
S
1.270  
0.508  
0.050  
0.020  
S1  
DS30390E-page 254  
1997 Microchip Technology Inc.  
PIC16C7X  
22.5  
28-Lead Plastic Surface Mount (SOIC - Wide, 300 mil Body) (SO)  
e
B
h x 45°  
N
Index  
Area  
E
H
α
C
Chamfer  
h x 45°  
L
1
2
3
D
Base  
Plane  
CP  
Seating  
Plane  
A1  
A
Package Group: Plastic SOIC (SO)  
Millimeters  
Max  
Inches  
Symbol  
Min  
0°  
Notes  
Min  
Max  
Notes  
α
A
8°  
0°  
8°  
2.362  
0.101  
0.355  
0.241  
17.703  
7.416  
1.270  
10.007  
0.381  
0.406  
28  
2.642  
0.300  
0.483  
0.318  
18.085  
7.595  
1.270  
10.643  
0.762  
1.143  
28  
0.093  
0.004  
0.014  
0.009  
0.697  
0.292  
0.050  
0.394  
0.015  
0.016  
28  
0.104  
0.012  
0.019  
0.013  
0.712  
0.299  
0.050  
0.419  
0.030  
0.045  
28  
A1  
B
C
D
E
e
Typical  
Typical  
H
h
L
N
CP  
0.102  
0.004  
1997 Microchip Technology Inc.  
DS30390E-page 255  
PIC16C7X  
22.6  
28-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm) (SS)  
N
Index  
area  
E
H
α
C
L
1 2 3  
e
B
A
Base plane  
CP  
Seating plane  
D
A1  
Package Group: Plastic SSOP  
Millimeters  
Max  
Inches  
Max  
Symbol  
Min  
Notes  
Min  
Notes  
α
A
0°  
8°  
0°  
8°  
1.730  
0.050  
0.250  
0.130  
10.070  
5.200  
0.650  
7.650  
0.550  
28  
1.990  
0.210  
0.380  
0.220  
10.330  
5.380  
0.650  
7.900  
0.950  
28  
0.068  
0.002  
0.010  
0.005  
0.396  
0.205  
0.026  
0.301  
0.022  
28  
0.078  
0.008  
0.015  
0.009  
0.407  
0.212  
0.026  
0.311  
0.037  
28  
A1  
B
C
D
E
e
Reference  
Reference  
H
L
N
CP  
-
0.102  
-
0.004  
DS30390E-page 256  
1997 Microchip Technology Inc.  
PIC16C7X  
22.7  
44-Lead Plastic Leaded Chip Carrier (Square)(PLCC)  
D
0.812/0.661  
N Pics  
.032/.026  
1.27  
.050  
2 Sides  
0.177  
.007  
S
B D-E S  
-A-  
0.177  
.007  
2 Sides  
-H-  
B A S  
9
S
A
D1  
A1  
-D-  
3
D3/E3  
D2  
0.101  
.004  
Seating  
Plane  
D
0.38  
.015  
-C-  
F-G  
E2  
S
S
3
-G-  
4
4
3
-F-  
8
E1  
E
0.38  
.015  
F-G  
-B-  
-E-  
3
0.177  
.007  
A F-G S  
S
10  
0.812/0.661  
.032/.026  
3
0.254  
.010  
0.254  
.010  
11  
Max  
Max  
11  
1.524  
.060  
0.508  
.020  
0.508  
.020  
Min  
-H-  
2
-H-  
2
6
6
-C-  
5
1.651  
.065  
1.651  
.065  
0.64  
.025  
0.533/0.331  
.021/.013  
Min  
R
R
1.14/0.64  
.045/.025  
1.14/0.64  
.045/.025  
0.177  
.007  
D-E S  
F-G S ,  
A
M
Package Group: Plastic Leaded Chip Carrier (PLCC)  
Millimeters  
Inches  
Max  
Symbol  
Min  
Max  
Notes  
Min  
Notes  
A
A1  
D
4.191  
2.413  
17.399  
16.510  
15.494  
12.700  
17.399  
16.510  
15.494  
12.700  
44  
4.572  
2.921  
0.165  
0.095  
0.685  
0.650  
0.610  
0.500  
0.685  
0.650  
0.610  
0.500  
44  
0.180  
0.115  
0.695  
0.656  
0.630  
0.500  
0.695  
0.656  
0.630  
0.500  
44  
17.653  
16.663  
16.002  
12.700  
17.653  
16.663  
16.002  
12.700  
44  
D1  
D2  
D3  
E
Reference  
Reference  
Reference  
Reference  
E1  
E2  
E3  
N
CP  
LT  
0.102  
0.004  
0.015  
0.203  
0.381  
0.008  
1997 Microchip Technology Inc.  
DS30390E-page 257  
PIC16C7X  
22.8  
44-Lead Plastic Surface Mount (MQFP 10x10 mm Body 1.6/0.15 mm Lead Form) (PQ)  
0.20 M C A-B S D S  
D
4
5
0.20 M H A-B S D S  
0.05 mm/mm A-B  
D1  
7
0.20 min.  
D3  
0.13 R min.  
Index  
area  
6
PARTING  
LINE  
0.13/0.30 R  
b
α
9
L
C
E3  
E1  
E
1.60 Ref.  
0.20 M C A-B S D S  
4
TYP 4x  
10  
0.20 M H A-B S D S  
5
7
e
B
0.05 mm/mm D  
A2  
A
Base  
Plane  
Seating  
Plane  
A1  
Package Group: Plastic MQFP  
Millimeters  
Max  
Inches  
Max  
Symbol  
Min  
Notes  
Min  
Notes  
α
A
0°  
7°  
0°  
7°  
2.000  
0.050  
1.950  
0.300  
0.150  
12.950  
9.900  
8.000  
12.950  
9.900  
8.000  
0.800  
0.730  
44  
2.350  
0.250  
2.100  
0.450  
0.180  
13.450  
10.100  
8.000  
13.450  
10.100  
8.000  
0.800  
1.030  
44  
0.078  
0.002  
0.768  
0.011  
0.006  
0.510  
0.390  
0.315  
0.510  
0.390  
0.315  
0.031  
0.028  
44  
0.093  
0.010  
0.083  
0.018  
0.007  
0.530  
0.398  
0.315  
0.530  
0.398  
0.315  
0.032  
0.041  
44  
A1  
A2  
b
Typical  
Typical  
C
D
D1  
D3  
E
Reference  
Reference  
Reference  
Reference  
E1  
E3  
e
L
N
CP  
0.102  
0.004  
DS30390E-page 258  
1997 Microchip Technology Inc.  
PIC16C7X  
22.9  
44-Lead Plastic Surface Mount (TQFP 10x10 mm Body 1.0/0.10 mm Lead Form) (TQ)  
D
D1  
1.0ø (0.039ø) Ref.  
11°/13°(4x)  
0° Min  
Pin#1  
2
Pin#1  
2
E
E1  
Θ
11°/13°(4x)  
Detail B  
e
3.0ø (0.118ø) Ref.  
R1 0.08 Min  
R 0.08/0.20  
Option 1 (TOP side)  
Option 2 (TOP side)  
Gage Plane  
0.250  
A1  
Base Metal  
Lead Finish  
b
A2  
A
S
0.20  
Min  
L
L
c
c1  
L1  
Detail A  
Detail B  
1.00 Ref  
1.00 Ref.  
b1  
Detail A  
Detail B  
Package Group: Plastic TQFP  
Millimeters  
Max  
Inches  
Max  
Symbol  
Min  
Notes  
Min  
Notes  
A
A1  
A2  
D
1.00  
0.05  
0.95  
11.75  
9.90  
11.75  
9.90  
0.45  
1.20  
0.15  
0.039  
0.002  
0.037  
0.463  
0.390  
0.463  
0.390  
0.018  
0.047  
0.006  
0.041  
0.482  
0.398  
0.482  
0.398  
0.030  
1.05  
12.25  
10.10  
12.25  
10.10  
0.75  
D1  
E
E1  
L
e
0.80 BSC  
0.031 BSC  
b
0.30  
0.30  
0.09  
0.09  
44  
0.45  
0.40  
0.20  
0.16  
44  
0.012  
0.012  
0.004  
0.004  
44  
0.018  
0.016  
0.008  
0.006  
44  
b1  
c
c1  
N
Θ
0°  
7°  
0°  
7°  
Note 1: Dimensions D1 and E1 do not include mold protrusion. Allowable mold protrusion is 0.25m/m (0.010”) per  
side. D1 and E1 dimensions including mold mismatch.  
2: Dimension “b” does not include Dambar protrusion, allowable Dambar protrusion shall be 0.08m/m  
(0.003”)max.  
3: This outline conforms to JEDEC MS-026.  
1997 Microchip Technology Inc.  
DS30390E-page 259  
PIC16C7X  
22.10 Package Marking Information  
28-Lead SSOP  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
PIC16C72  
20I/SS025  
AABBCAE  
9517SBP  
28-Lead PDIP (Skinny DIP)  
Example  
PIC16C73-10/SP  
MMMMMMMMMMMM  
XXXXXXXXXXXXXXX  
AABBCDE  
AABBCDE  
28-Lead Side Brazed Skinny Windowed  
Example  
XXXXXXXXXXX  
XXXXXXXXXXX  
AABBCDE  
PIC16C73/JW  
9517CAT  
28-Lead SOIC  
Example  
MMMMMMMMMMMMMMMM  
XXXXXXXXXXXXXXXXXXXX  
PIC16C73-10/SO  
AABBCDE  
945/CAA  
Legend:  
MM...M  
XX...X  
AA  
Microchip part number information  
Customer specific information*  
Year code (last 2 digits of calender year)  
BB  
Week code (week of January 1 is week '01’)  
C
Facility code of the plant at which wafer is manufactured.  
C = Chandler, Arizona, U.S.A.  
S = Tempe, Arizona, U.S.A.  
D
1
E
Mask revision number for microcontroller  
Assembly code of the plant or country of origin in which  
part was assembled.  
In the event the full Microchip part number cannot be marked on one  
line, it will be carried over to the next line thus limiting the number of  
available characters for customer specific information.  
Note:  
*
Standard OTP marking consists of Microchip part number, year code, week code,  
facility code, mask revision number, and assembly code. For OTP marking beyond  
this, certain price adders apply. Please check with your Microchip Sales Office.  
For QTP devices, any special marking adders are included in QTP price.  
DS30390E-page 260  
1997 Microchip Technology Inc.  
PIC16C7X  
Package Marking Information (Cont’d)  
40-Lead PDIP  
Example  
PIC16C74-04/P  
MMMMMMMMMMMMMM  
XXXXXXXXXXXXXXXXXX  
AABBCDE  
9512CAA  
40-Lead CERDIP Windowed  
Example  
MMMMMMMMM  
XXXXXXXXXXX  
XXXXXXXXXXX  
PIC16C74/JW  
AABBCDE  
AABBCDE  
44-Lead PLCC  
Example  
MMMMMMMM  
XXXXXXXXXX  
XXXXXXXXXX  
AABBCDE  
PIC16C74  
-10/L  
AABBCDE  
44-Lead MQFP  
Example  
MMMMMMMM  
XXXXXXXXXX  
XXXXXXXXXX  
PIC16C74  
-10/PQ  
AABBCDE  
AABBCDE  
Legend:  
MM...M  
XX...X  
AA  
Microchip part number information  
Customer specific information*  
Year code (last 2 digits of calender year)  
Week code (week of January 1 is week '01’)  
BB  
C
Facility code of the plant at which wafer is manufactured.  
C = Chandler, Arizona, U.S.A.  
S = Tempe, Arizona, U.S.A.  
D
1
E
Mask revision number for microcontroller  
Assembly code of the plant or country of origin in which  
part was assembled.  
In the event the full Microchip part number cannot be marked on one  
line, it will be carried over to the next line thus limiting the number of  
available characters for customer specific information.  
Note:  
*
Standard OTP marking consists of Microchip part number, year code, week code,  
facility code, mask revision number, and assembly code. For OTP marking beyond  
this, certain price adders apply. Please check with your Microchip Sales Office.  
For QTP devices, any special marking adders are included in QTP price.  
1997 Microchip Technology Inc.  
DS30390E-page 261  
PIC16C7X  
Package Marking Information (Cont’d)  
44-Lead TQFP  
Example  
MMMMMMMM  
XXXXXXXXXX  
XXXXXXXXXX  
PIC16C74A  
-10/TQ  
AABBCDE  
AABBCDE  
Legend:  
MM...M  
XX...X  
AA  
Microchip part number information  
Customer specific information*  
Year code (last 2 digits of calender year)  
Week code (week of January 1 is week '01’)  
BB  
C
Facility code of the plant at which wafer is manufactured.  
C = Chandler, Arizona, U.S.A.  
S = Tempe, Arizona, U.S.A.  
D
1
E
Mask revision number for microcontroller  
Assembly code of the plant or country of origin in which  
part was assembled.  
In the event the full Microchip part number cannot be marked on one  
line, it will be carried over to the next line thus limiting the number of  
available characters for customer specific information.  
Note:  
*
Standard OTP marking consists of Microchip part number, year code, week code,  
facility code, mask revision number, and assembly code. For OTP marking beyond  
this, certain price adders apply. Please check with your Microchip Sales Office.  
For QTP devices, any special marking adders are included in QTP price.  
DS30390E-page 262  
1997 Microchip Technology Inc.  
PIC16C7X  
APPENDIX A:  
APPENDIX B: COMPATIBILITY  
The following are the list of modifications over the  
PIC16C5X microcontroller family:  
To convert code written for PIC16C5X to PIC16CXX,  
the user should take the following steps:  
1. Instruction word length is increased to 14-bits.  
This allows larger page sizes both in program  
memory (2K now as opposed to 512 before) and  
register file (128 bytes now versus 32 bytes  
before).  
1. Remove any program memory page select  
operations (PA2, PA1, PA0 bits) for CALL, GOTO.  
2. Revisit any computed jump operations (write to  
PC or add to PC, etc.) to make sure page bits  
are set properly under the new scheme.  
2. A PC high latch register (PCLATH) is added to  
handle program memory paging. Bits PA2, PA1,  
PA0 are removed from STATUS register.  
3. Eliminate any data memory page switching.  
Redefine data variables to reallocate them.  
4. Verify all writes to STATUS, OPTION, and FSR  
registers since these have changed.  
3. Data memory paging is redefined slightly.  
STATUS register is modified.  
5. Change reset vector to 0000h.  
4. Four new instructions have been added:  
RETURN, RETFIE, ADDLW, and SUBLW.  
Two instructions TRIS and OPTION are being  
phased out although they are kept for compati-  
bility with PIC16C5X.  
5. OPTION and TRIS registers are made address-  
able.  
6. Interrupt capability is added. Interrupt vector is  
at 0004h.  
7. Stack size is increased to 8 deep.  
8. Reset vector is changed to 0000h.  
9. Reset of all registers is revisited. Five different  
reset (and wake-up) types are recognized. Reg-  
isters are reset differently.  
10. Wake up from SLEEP through interrupt is  
added.  
11. Two separate timers, Oscillator Start-up Timer  
(OST) and Power-up Timer (PWRT) are  
included for more reliable power-up. These tim-  
ers are invoked selectively to avoid unnecessary  
delays on power-up and wake-up.  
12. PORTB has weak pull-ups and interrupt on  
change feature.  
13. T0CKI pin is also a port pin (RA4) now.  
14. FSR is made a full eight bit register.  
15. “In-circuit serial programming” is made possible.  
The user can program PIC16CXX devices using  
only five pins: VDD, VSS, MCLR/VPP, RB6 (clock)  
and RB7 (data in/out).  
16. PCON status register is added with a Power-on  
Reset status bit (POR).  
17. Code protection scheme is enhanced such that  
portions of the program memory can be pro-  
tected, while the remainder is unprotected.  
18. Brown-out protection circuitry has been added.  
Controlled by configuration word bit BODEN.  
Brown-out reset ensures the device is placed in  
a reset condition if VDD dips below a fixed set-  
point.  
1997 Microchip Technology Inc.  
DS30390E-page 263  
PIC16C7X  
APPENDIX C: WHAT’S NEW  
APPENDIX D: WHAT’S CHANGED  
Added the following devices:  
Minor changes, spelling and grammatical changes.  
• PIC16C76  
• PIC16C77  
Added the following note to the USART section. This  
note applies to all devices except the PIC16C76 and  
PIC16C77.  
Removed the PIC16C710, PIC16C71, PIC16C711  
from this datasheet.  
For the PIC16C73/73A/74/74A the asynchronous high  
speed mode (BRGH = 1) may experience a high rate of  
receive errors. It is recommended that BRGH = 0. If you  
desire a higher baud rate than BRGH = 0 can support,  
refer to the device errata for additional information or  
use the PIC16C76/77.  
Added PIC16C76 and PIC16C77 devices. The  
PIC16C76/77 devices have 368 bytes of data memory  
distributed in 4 banks and 8K of program memory in 4  
pages. These two devices have an enhanced SPI that  
supports both clock phase and polarity. The USART  
has been enhanced.  
When upgrading to the PIC16C76/77 please note that  
the upper 16 bytes of data memory in banks 1,2, and 3  
are mapped into bank 0. This may require relocation of  
data memory usage in the user application code.  
Divided SPI section into SPI for the PIC16C76/77 and  
SPI for all other devices.  
Added Q-cycle definitions to the Instruction Set Sum-  
mary section.  
DS30390E-page 264  
1997 Microchip Technology Inc.  
PIC16C7X  
APPENDIX E: PIC16/17 MICROCONTROLLERS  
E.1  
PIC12CXXX Family of Devices  
PIC12C508  
PIC12C509  
PIC12C671  
PIC12C672  
Maximum Frequency  
of Operation (MHz)  
4
4
4
4
Clock  
EPROM Program Memory  
Data Memory (bytes)  
Timer Module(s)  
512 x 12  
25  
1024 x 12  
41  
1024 x 14  
128  
2048 x 14  
128  
Memory  
TMR0  
TMR0  
TMR0  
4
TMR0  
4
Peripherals  
A/D Converter (8-bit) Channels  
Wake-up from SLEEP on  
pin change  
Yes  
Yes  
Yes  
Yes  
I/O Pins  
5
5
5
5
Input Pins  
1
1
1
1
Internal Pull-ups  
Voltage Range (Volts)  
In-Circuit Serial Programming  
Number of Instructions  
Packages  
Yes  
Yes  
Yes  
Yes  
Features  
2.5-5.5  
2.5-5.5  
2.5-5.5  
2.5-5.5  
Yes  
Yes  
Yes  
Yes  
33  
33  
35  
35  
8-pin DIP, SOIC  
8-pin DIP, SOIC  
8-pin DIP, SOIC  
8-pin DIP, SOIC  
All PIC12C5XX devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability.  
All PIC12C5XX devices use serial programming with data pin GP1 and clock pin GP0.  
E.2  
PIC14C000 Family of Devices  
PIC14C000  
Clock  
Maximum Frequency of Operation (MHz) 20  
EPROM Program Memory (x14 words)  
Data Memory (bytes)  
4K  
192  
Memory  
Timer Module(s)  
TMR0  
ADTMR  
2
Serial Port(s)  
(SPI/I C, USART)  
I C with SMBus  
Peripherals  
2
Support  
Slope A/D Converter Channels  
Interrupt Sources  
8 External; 6 Internal  
11  
I/O Pins  
22  
Voltage Range (Volts)  
In-Circuit Serial Programming  
Additional On-chip Features  
2.7-6.0  
Yes  
Features  
Internal 4MHz Oscillator, Bandgap Reference,Temperature Sensor,  
Calibration Factors, Low Voltage Detector, SLEEP, HIBERNATE,  
Comparators with Programmable References (2)  
Packages  
28-pin DIP (.300 mil), SOIC, SSOP  
1997 Microchip Technology Inc.  
DS30390E-page 265  
PIC16C7X  
E.3  
PIC16C15X Family of Devices  
PIC16C154 PIC16CR154 PIC16C156 PIC16CR156 PIC16C158 PIC16CR158  
Maximum Frequency  
of Operation (MHz)  
20  
20  
20  
1K  
20  
20  
2K  
20  
Clock  
EPROM Program Memory 512  
(x12 words)  
Memory  
ROM Program Memory  
(x12 words)  
512  
1K  
2K  
RAM Data Memory (bytes) 25  
25  
25  
25  
73  
73  
Peripherals Timer Module(s)  
TMR0  
12  
TMR0  
12  
TMR0  
12  
TMR0  
12  
TMR0  
12  
TMR0  
12  
I/O Pins  
Voltage Range (Volts)  
3.0-5.5  
33  
2.5-5.5  
33  
3.0-5.5  
33  
2.5-5.5  
33  
3.0-5.5  
33  
2.5-5.5  
33  
Number of Instructions  
Packages  
Features  
18-pin DIP, 18-pin DIP,  
SOIC; SOIC;  
18-pin DIP, 18-pin DIP,  
SOIC; SOIC;  
18-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
20-pin SSOP 20-pin SSOP 20-pin SSOP 20-pin SSOP 20-pin SSOP 20-pin SSOP  
All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high  
I/O current capability.  
E.4  
PIC16C5X Family of Devices  
PIC16C52  
PIC16C54  
20  
PIC16C54A PIC16CR54A PIC16C55  
PIC16C56  
20  
Maximum Frequency  
of Operation (MHz)  
4
20  
20  
20  
Clock  
EPROM Program Memory  
(x12 words)  
384  
512  
512  
512  
1K  
Memory  
ROM Program Memory  
(x12 words)  
512  
RAM Data Memory (bytes) 25  
25  
25  
25  
24  
25  
Peripherals Timer Module(s)  
TMR0  
12  
TMR0  
12  
TMR0  
12  
TMR0  
12  
TMR0  
20  
TMR0  
12  
I/O Pins  
Voltage Range (Volts)  
2.5-6.25  
33  
2.5-6.25  
33  
2.0-6.25  
33  
2.0-6.25  
33  
2.5-6.25  
33  
2.5-6.25  
33  
Number of Instructions  
Packages  
Features  
18-pin DIP, 18-pin DIP,  
SOIC SOIC;  
18-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
28-pin DIP, 18-pin DIP,  
SOIC,  
SOIC;  
20-pin SSOP 20-pin SSOP 20-pin SSOP SSOP  
20-pin SSOP  
PIC16C57  
PIC16CR57B  
PIC16C58A  
PIC16CR58A  
Maximum Frequency  
of Operation (MHz)  
20  
2K  
20  
20  
2K  
20  
Clock  
EPROM Program Memory  
(x12 words)  
Memory  
ROM Program Memory  
(x12 words)  
2K  
72  
2K  
73  
RAM Data Memory (bytes)  
72  
73  
Peripherals Timer Module(s)  
TMR0  
20  
TMR0  
20  
TMR0  
12  
TMR0  
12  
I/O Pins  
Voltage Range (Volts)  
2.5-6.25  
33  
2.5-6.25  
33  
2.0-6.25  
33  
2.5-6.25  
33  
Number of Instructions  
Packages  
Features  
28-pin DIP,  
SOIC,  
28-pin DIP, SOIC, 18-pin DIP, SOIC; 18-pin DIP, SOIC;  
SSOP 20-pin SSOP 20-pin SSOP  
SSOP  
All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer (except PIC16C52), selectable code protect and  
high I/O current capability.  
DS30390E-page 266  
1997 Microchip Technology Inc.  
PIC16C7X  
E.5  
PIC16C55X Family of Devices  
(1)  
PIC16C554  
PIC16C556  
PIC16C558  
Clock  
Maximum Frequency of Operation (MHz)  
EPROM Program Memory (x14 words)  
Data Memory (bytes)  
20  
20  
1K  
80  
20  
512  
80  
2K  
128  
Memory  
Timer Module(s)  
TMR0  
TMR0  
TMR0  
Peripherals Comparators(s)  
Internal Reference Voltage  
Interrupt Sources  
I/O Pins  
3
3
3
13  
13  
13  
Voltage Range (Volts)  
Brown-out Reset  
Packages  
2.5-6.0  
2.5-6.0  
2.5-6.0  
Features  
18-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
20-pin SSOP  
20-pin SSOP  
20-pin SSOP  
All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high  
I/O current capability. All PIC16C5XX Family devices use serial programming with clock pin RB6 and data pin RB7.  
Note 1: Please contact your local Microchip sales office for availability of these devices.  
E.6  
PIC16C62X and PIC16C64X Family of Devices  
PIC16C620  
PIC16C621  
20  
PIC16C622  
20  
PIC16C642  
20  
PIC16C662  
20  
Maximum Frequency  
of Operation (MHz)  
20  
Clock  
EPROM Program Memory  
(x14 words)  
512  
1K  
2K  
4K  
4K  
Memory  
Data Memory (bytes)  
Timer Module(s)  
80  
80  
128  
TMR0  
2
176  
TMR0  
2
176  
TMR0  
2
TMR0  
2
TMR0  
2
Peripherals Comparators(s)  
Internal Reference Voltage  
Yes  
4
Yes  
4
Yes  
4
Yes  
4
Yes  
5
Interrupt Sources  
I/O Pins  
13  
13  
13  
22  
33  
Voltage Range (Volts)  
Brown-out Reset  
Packages  
2.5-6.0  
Yes  
2.5-6.0  
Yes  
2.5-6.0  
Yes  
3.0-6.0  
Yes  
3.0-6.0  
Yes  
Features  
18-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
28-pin PDIP, 40-pin PDIP,  
SOIC,  
Windowed  
CDIP;  
44-pin PLCC,  
MQFP  
20-pin SSOP 20-pin SSOP 20-pin SSOP Windowed  
CDIP  
All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high  
I/O current capability. All PIC16C62X and PIC16C64X Family devices use serial programming with clock pin RB6 and data pin RB7.  
1997 Microchip Technology Inc.  
DS30390E-page 267  
PIC16C7X  
E.7  
PIC16C6X Family of Devices  
PIC16C61  
20  
PIC16C62A  
20  
PIC16CR62  
20  
PIC16C63  
20  
PIC16CR63  
20  
Maximum Frequency  
of Operation (MHz)  
Clock  
EPROM Program Memory  
(x14 words)  
1K  
2K  
4K  
Memory  
ROM Program Memory  
(x14 words)  
2K  
128  
4K  
192  
Data Memory (bytes)  
Timer Module(s)  
36  
128  
192  
TMR0  
TMR0,  
TMR1,  
TMR2  
TMR0,  
TMR1,  
TMR2  
TMR0,  
TMR1,  
TMR2  
TMR0,  
TMR1,  
TMR2  
Capture/Compare/  
PWM Module(s)  
1
1
2
2
Peripherals  
2
2
2
2
Serial Port(s)  
SPI/I C  
SPI/I C  
SPI/I C,  
USART  
SPI/I C  
USART  
2
(SPI/I C, USART)  
Parallel Slave Port  
Interrupt Sources  
I/O Pins  
3
7
7
10  
10  
13  
22  
22  
22  
22  
Voltage Range (Volts)  
In-Circuit Serial Programming  
Brown-out Reset  
Packages  
3.0-6.0  
Yes  
2.5-6.0  
Yes  
Yes  
2.5-6.0  
Yes  
Yes  
2.5-6.0  
Yes  
Yes  
2.5-6.0  
Yes  
Yes  
Features  
18-pin DIP, SO 28-pin SDIP,  
SOIC, SSOP  
28-pin SDIP,  
SOIC, SSOP  
28-pin SDIP, 28-pin SDIP,  
SOIC SOIC  
PIC16C64A PIC16CR64 PIC16C65A PIC16CR65 PIC16C66 PIC16C67  
Maximum Frequency  
of Operation (MHz)  
20  
20  
20  
20  
20  
20  
Clock  
EPROM Program Memory  
(x14 words)  
2K  
4K  
8K  
8K  
Memory  
ROM Program Memory (x14  
words)  
2K  
128  
4K  
192  
Data Memory (bytes)  
Timer Module(s)  
128  
192  
368  
368  
TMR0,  
TMR1,  
TMR2  
TMR0,  
TMR1,  
TMR2  
TMR0,  
TMR1,  
TMR2  
TMR0,  
TMR1,  
TMR2  
TMR0,  
TMR1,  
TMR2  
TMR0,  
TMR1,  
TMR2  
Capture/Compare/PWM Mod-  
ule(s)  
1
1
2
2
2
2
Peripherals  
2
2
2
2
2
2
2
Serial Port(s) (SPI/I C, USART) SPI/I C  
SPI/I C  
SPI/I C,  
SPI/I C,  
SPI/I C,  
SPI/I C,  
USART  
USART  
USART  
USART  
Parallel Slave Port  
Interrupt Sources  
I/O Pins  
Yes  
8
Yes  
8
Yes  
Yes  
Yes  
11  
11  
10  
11  
33  
33  
33  
33  
22  
33  
Voltage Range (Volts)  
In-Circuit Serial Programming  
Brown-out Reset  
Packages  
2.5-6.0  
Yes  
Yes  
2.5-6.0  
Yes  
Yes  
2.5-6.0  
Yes  
2.5-6.0  
Yes  
2.5-6.0  
Yes  
Yes  
2.5-6.0  
Yes  
Yes  
Yes  
Yes  
Features  
40-pin DIP; 40-pin DIP;  
40-pin DIP;  
40-pin DIP; 28-pin SDIP, 40-pin DIP;  
44-pin PLCC, 44-pin PLCC, 44-pin PLCC, 44-pin  
MQFP, TQFP MQFP, TQFP MQFP, TQFP PLCC,  
SOIC  
44-pin  
PLCC,  
MQFP,  
TQFP  
MQFP,  
TQFP  
All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current  
capability. All PIC16C6X Family devices use serial programming with clock pin RB6 and data pin RB7.  
DS30390E-page 268  
1997 Microchip Technology Inc.  
PIC16C7X  
E.8  
PIC16C8X Family of Devices  
PIC16F83  
PIC16CR83  
PIC16F84  
PIC16CR84  
Maximum Frequency  
of Operation (MHz)  
10  
10  
10  
10  
Clock  
Flash Program Memory  
EEPROM Program Memory  
ROM Program Memory  
Data Memory (bytes)  
512  
1K  
1K  
68  
64  
Memory  
512  
36  
36  
64  
68  
Data EEPROM (bytes)  
64  
64  
Peripher-  
als  
Timer Module(s)  
TMR0  
TMR0  
TMR0  
TMR0  
Interrupt Sources  
I/O Pins  
4
4
4
4
13  
13  
13  
13  
Features  
Voltage Range (Volts)  
Packages  
2.0-6.0  
2.0-6.0  
2.0-6.0  
2.0-6.0  
18-pin DIP,  
SOIC  
18-pin DIP,  
SOIC  
18-pin DIP,  
SOIC  
18-pin DIP,  
SOIC  
All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capabil-  
ity. All PIC16C8X Family devices use serial programming with clock pin RB6 and data pin RB7.  
E.9  
PIC16C9XX Family Of Devices  
PIC16C923  
PIC16C924  
Clock  
Maximum Frequency of Operation (MHz)  
EPROM Program Memory  
Data Memory (bytes)  
8
8
4K  
176  
4K  
176  
Memory  
Timer Module(s)  
TMR0,  
TMR1,  
TMR2  
TMR0,  
TMR1,  
TMR2  
Capture/Compare/PWM Module(s)  
Serial Port(s)  
(SPI/I C, USART)  
1
1
2
2
SPI/I C  
SPI/I C  
Peripherals  
2
Parallel Slave Port  
5
A/D Converter (8-bit) Channels  
LCD Module  
4 Com,  
32 Seg  
4 Com,  
32 Seg  
Interrupt Sources  
I/O Pins  
8
9
25  
25  
Input Pins  
27  
27  
Voltage Range (Volts)  
In-Circuit Serial Programming  
Brown-out Reset  
Packages  
3.0-6.0  
Yes  
3.0-6.0  
Yes  
Features  
(1)  
(1)  
64-pin SDIP  
TQFP;  
,
64-pin SDIP  
TQFP;  
,
68-pin PLCC,  
Die  
68-pin PLCC,  
Die  
All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capa-  
bility. All PIC16C9XX Family devices use serial programming with clock pin RB6 and data pin RB7.  
1997 Microchip Technology Inc.  
DS30390E-page 269  
PIC16C7X  
E.10  
PIC17CXXX Family of Devices  
PIC17C42A  
33  
PIC17CR42  
33  
PIC17C43  
PIC17CR43  
33  
PIC17C44  
Maximum Frequency  
of Operation (MHz)  
33  
4K  
33  
8K  
Clock  
EPROM Program Memory  
(words)  
2K  
Memory  
ROM Program Memory  
(words)  
2K  
232  
4K  
454  
RAM Data Memory (bytes)  
Timer Module(s)  
232  
454  
454  
TMR0,  
TMR1,  
TMR2,  
TMR3  
TMR0,  
TMR1,  
TMR2,  
TMR3  
TMR0,  
TMR1,  
TMR2,  
TMR3  
TMR0,  
TMR1,  
TMR2,  
TMR3  
TMR0,  
TMR1,  
TMR2,  
TMR3  
Peripherals  
Captures/PWM Module(s)  
Serial Port(s) (USART)  
Hardware Multiply  
External Interrupts  
Interrupt Sources  
I/O Pins  
2
2
2
2
2
Yes  
Yes  
Yes  
11  
Yes  
Yes  
Yes  
11  
Yes  
Yes  
Yes  
11  
Yes  
Yes  
Yes  
11  
Yes  
Yes  
Yes  
11  
33  
33  
33  
33  
33  
Features  
Voltage Range (Volts)  
Number of Instructions  
Packages  
2.5-6.0  
58  
2.5-6.0  
58  
2.5-6.0  
58  
2.5-6.0  
58  
2.5-6.0  
58  
40-pin DIP;  
40-pin DIP;  
40-pin DIP;  
40-pin DIP;  
40-pin DIP;  
44-pin PLCC,  
44-pin PLCC,  
44-pin PLCC,  
44-pin PLCC,  
44-pin PLCC,  
MQFP, TQFP MQFP, TQFP MQFP, TQFP MQFP, TQFP MQFP, TQFP  
PIC17C752  
33  
PIC17C756  
33  
Maximum Frequency  
of Operation (MHz)  
Clock  
EPROM Program Memory  
(words)  
8K  
16K  
Memory  
ROM Program Memory  
(words)  
RAM Data Memory (bytes)  
Timer Module(s)  
454  
902  
TMR0,  
TMR1,  
TMR2,  
TMR3  
TMR0,  
TMR1,  
TMR2,  
TMR3  
Peripherals  
Captures/PWM Module(s)  
Serial Port(s) (USART)  
Hardware Multiply  
External Interrupts  
Interrupt Sources  
I/O Pins  
4/3  
2
4/3  
2
Yes  
Yes  
18  
Yes  
Yes  
18  
50  
50  
Features  
Voltage Range (Volts)  
Number of Instructions  
Packages  
3.0-6.0  
58  
3.0-6.0  
58  
64-pin DIP;  
68-pin LCC,  
68-pin TQFP  
64-pin DIP;  
68-pin LCC,  
68-pin TQFP  
All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high  
I/O current capability.  
DS30390E-page 270  
1997 Microchip Technology Inc.  
PIC16C7X  
PIN COMPATIBILITY  
Devices that have the same package type and VDD,  
VSS and MCLR pin locations are said to be pin  
compatible. This allows these different devices to  
operate in the same socket. Compatible devices may  
only requires minor software modification to allow  
proper operation in the application socket  
(ex., PIC16C56 and PIC16C61 devices). Not all  
devices in the same package size are pin compatible;  
for example, the PIC16C62 is compatible with the  
PIC16C63, but not the PIC16C55.  
Pin compatibility does not mean that the devices offer  
the same features. As an example, the PIC16C54 is  
pin compatible with the PIC16C71, but does not have  
an A/D converter, weak pull-ups on PORTB, or  
interrupts.  
TABLE E-1:  
PIN COMPATIBLE DEVICES  
Pin Compatible Devices  
Package  
PIC12C508, PIC12C509, PIC12C671, PIC12C672  
8-pin  
PIC16C154, PIC16CR154, PIC16C156,  
PIC16CR156, PIC16C158, PIC16CR158,  
PIC16C52, PIC16C54, PIC16C54A,  
PIC16CR54A,  
18-pin,  
20-pin  
PIC16C56,  
PIC16C58A, PIC16CR58A,  
PIC16C61,  
PIC16C554, PIC16C556, PIC16C558  
PIC16C620, PIC16C621, PIC16C622  
PIC16C641, PIC16C642, PIC16C661, PIC16C662  
PIC16C710, PIC16C71, PIC16C711, PIC16C715  
PIC16F83, PIC16CR83,  
PIC16F84A, PIC16CR84  
PIC16C55, PIC16C57, PIC16CR57B  
28-pin  
28-pin  
PIC16CR62, PIC16C62A, PIC16C63, PIC16CR63,  
PIC16C66, PIC16C72, PIC16C73A, PIC16C76  
PIC16CR64, PIC16C64A, PIC16C65A,  
PIC16CR65, PIC16C67, PIC16C74A, PIC16C77  
40-pin  
40-pin  
PIC17CR42, PIC17C42A,  
PIC17C43, PIC17CR43, PIC17C44  
PIC16C923, PIC16C924  
PIC17C756, PIC17C752  
64/68-pin  
64/68-pin  
1997 Microchip Technology Inc.  
DS30390E-page 271  
PIC16C7X  
NOTES:  
DS30390E-page 272  
1997 Microchip Technology Inc.  
PIC16C7X  
Compare .....................................................................73  
I C Mode ....................................................................93  
INDEX  
2
On-Chip Reset Circuit ...............................................133  
PIC16C72 ...................................................................10  
PIC16C73 ...................................................................11  
PIC16C73A .................................................................11  
PIC16C74 ...................................................................12  
PIC16C74A .................................................................12  
PIC16C76 ...................................................................11  
PIC16C77 ...................................................................12  
PORTC .......................................................................48  
PORTD (In I/O Port Mode) .........................................50  
PORTD and PORTE as a Parallel Slave Port ............54  
PORTE (In I/O Port Mode) .........................................51  
PWM ...........................................................................74  
RA3:RA0 and RA5 Port Pins ......................................43  
RA4/T0CKI Pin ...........................................................43  
RB3:RB0 Port Pins .....................................................45  
RB7:RB4 Port Pins .....................................................46  
SPI Master/Slave Connection .....................................81  
A
A/D  
Accuracy/Error ......................................................... 124  
ADCON0 Register .................................................... 117  
ADCON1 Register .................................................... 118  
ADIF bit .................................................................... 119  
Analog Input Model Block Diagram .......................... 120  
Analog-to-Digital Converter ...................................... 117  
Block Diagram .......................................................... 119  
Configuring Analog Port Pins ................................... 121  
Configuring the Interrupt .......................................... 119  
Configuring the Module ............................................ 119  
Connection Considerations ...................................... 125  
Conversion Clock ..................................................... 121  
Conversion Time ...................................................... 123  
Conversions ............................................................. 122  
Converter Characteristics ................ 181, 199, 217, 238  
Delays ...................................................................... 120  
Effects of a Reset ..................................................... 124  
Equations ................................................................. 120  
Faster Conversion - Lower Resolution Tradeoff ...... 123  
Flowchart of A/D Operation ...................................... 126  
GO/DONE bit ........................................................... 119  
Internal Sampling Switch (Rss) Impedance ............. 120  
Operation During Sleep ........................................... 124  
Sampling Requirements ........................................... 120  
Sampling Time ......................................................... 120  
Source Impedance ................................................... 120  
Time Delays ............................................................. 120  
Transfer Function ..................................................... 125  
Using the CCP Trigger ............................................. 125  
Absolute Maximum Ratings ..................... 167, 183, 201, 219  
ACK ........................................................................ 90, 94, 95  
ADIE bit .............................................................................. 33  
ADIF bit .............................................................................. 35  
ADRES Register .................................... 23, 25, 27, 117, 119  
ALU ...................................................................................... 9  
Application Notes  
2
SSP in I C Mode ........................................................93  
SSP in SPI Mode ..................................................80, 85  
Timer0 ........................................................................59  
Timer0/WDT Prescaler ...............................................62  
Timer1 ........................................................................66  
Timer2 ........................................................................69  
USART Receive .......................................................108  
USART Transmit ......................................................106  
Watchdog Timer .......................................................144  
BOR bit .......................................................................39, 135  
BRGH bit ..........................................................................101  
Buffer Full Status bit, BF ...............................................78, 83  
C
C bit ....................................................................................30  
C Compiler ........................................................................165  
Capture/Compare/PWM  
Capture  
Block Diagram ....................................................72  
CCP1CON Register ...........................................72  
CCP1IF ...............................................................72  
CCPR1 ...............................................................72  
CCPR1H:CCPR1L .............................................72  
Mode ..................................................................72  
Prescaler ............................................................73  
CCP Timer Resources ................................................71  
Compare  
AN546 (Using the Analog-to-Digital Converter) ....... 117  
AN552 (Implementing Wake-up on Key Strokes Using  
PIC16CXXX) .............................................................. 45  
AN556 (Table Reading Using PIC16CXX .................. 40  
2
AN578 (Use of the SSP Module in the I C Multi-Master  
Environment) .............................................................. 77  
AN594 (Using the CCP Modules) .............................. 71  
AN607, Power-up Trouble Shooting ........................ 134  
Architecture  
Harvard ........................................................................ 9  
Overview ...................................................................... 9  
von Neumann ............................................................... 9  
Assembler  
Block Diagram ....................................................73  
Mode ..................................................................73  
Software Interrupt Mode .....................................73  
Special Event Trigger .........................................73  
Special Trigger Output of CCP1 .........................73  
Special Trigger Output of CCP2 .........................73  
Interaction of Two CCP Modules ................................71  
Section ........................................................................71  
Special Event Trigger and A/D Conversions ..............73  
Capture/Compare/PWM (CCP)  
PWM Block Diagram ..................................................74  
PWM Mode .................................................................74  
PWM, Example Frequencies/Resolutions ..................75  
Carry bit ................................................................................9  
CCP1CON ..........................................................................29  
CCP1IE bit ..........................................................................33  
CCP1IF bit ....................................................................35, 36  
CCP2CON ..........................................................................29  
CCP2IE bit ..........................................................................37  
MPASM Assembler .................................................. 164  
B
Baud Rate Error ............................................................... 101  
Baud Rate Formula .......................................................... 101  
Baud Rates  
Asynchronous Mode ................................................ 102  
Synchronous Mode .................................................. 102  
BF .......................................................................... 78, 83, 94  
Block Diagrams  
A/D ........................................................................... 119  
Analog Input Model .................................................. 120  
Capture ...................................................................... 72  
1997 Microchip Technology Inc.  
DS30390E-page 273  
PIC16C7X  
CCP2IF bit .......................................................................... 38  
CCPR1H Register ............................................ 25, 27, 29, 71  
CCPR1L Register ......................................................... 29, 71  
CCPR2H Register ............................................ 25, 27, 29, 71  
CCPR2L Register ............................................. 25, 27, 29, 71  
CCPxM0 bit ........................................................................ 72  
CCPxM1 bit ........................................................................ 72  
CCPxM2 bit ........................................................................ 72  
CCPxM3 bit ........................................................................ 72  
CCPxX bit ........................................................................... 72  
CCPxY bit ........................................................................... 72  
CKE .................................................................................... 83  
CKP .............................................................................. 79, 84  
Clock Polarity Select bit, CKP ...................................... 79, 84  
Clock Polarity, SPI Mode ................................................... 81  
Clocking Scheme ............................................................... 17  
Code Examples  
F
Family of Devices  
PIC12CXXX ............................................................. 265  
PIC14C000 .............................................................. 265  
PIC16C15X .............................................................. 266  
PIC16C55X .............................................................. 267  
PIC16C5X ................................................................ 266  
PIC16C62X and PIC16C64X ................................... 267  
PIC16C6X ................................................................ 268  
PIC16C7XX ................................................................. 6  
PIC16C8X ................................................................ 269  
PIC16C9XX ............................................................. 269  
PIC17CXX ............................................................... 270  
FERR bit .......................................................................... 100  
FSR Register ........................... 23, 24, 25, 26, 27, 28, 29, 41  
Fuzzy Logic Dev. System (fuzzyTECH -MP) ......... 163, 165  
Call of a Subroutine in Page 1 from Page 0 ............... 41  
Changing Between Capture Prescalers ..................... 73  
Changing Prescaler (Timer0 to WDT) ........................ 63  
Changing Prescaler (WDT to Timer0) ........................ 63  
I/O Programming ........................................................ 53  
Indirect Addressing .................................................... 41  
Initializing PORTA ...................................................... 43  
Initializing PORTB ...................................................... 45  
Initializing PORTC ...................................................... 48  
Loading the SSPBUF Register ............................ 80, 85  
Code Protection ....................................................... 129, 146  
Computed GOTO ............................................................... 40  
Configuration Bits ............................................................. 129  
Configuration Word .......................................................... 129  
Connecting Two Microcontrollers ....................................... 81  
CREN bit .......................................................................... 100  
CS pin ................................................................................ 54  
G
General Description ............................................................. 5  
GIE bit .............................................................................. 141  
I
I/O Ports  
PORTA ...................................................................... 43  
PORTB ...................................................................... 45  
PORTC ...................................................................... 48  
PORTD ................................................................ 50, 54  
PORTE ...................................................................... 51  
Section ....................................................................... 43  
I/O Programming Considerations ...................................... 53  
2
I C  
Addressing ................................................................. 94  
Addressing I C Devices ............................................. 90  
2
Arbitration .................................................................. 92  
Block Diagram ........................................................... 93  
Clock Synchronization ............................................... 92  
Combined Format ...................................................... 91  
D
D/A ............................................................................... 78, 83  
Data/Address bit, D/A ................................................... 78, 83  
DC bit ................................................................................. 30  
DC Characteristics  
2
I C Operation ............................................................. 93  
2
I C Overview ............................................................. 89  
Initiating and Terminating Data Transfer ................... 89  
Master Mode .............................................................. 97  
Master-Receiver Sequence ....................................... 91  
Master-Transmitter Sequence ................................... 91  
Mode .......................................................................... 93  
Mode Selection .......................................................... 93  
Multi-master ............................................................... 92  
Multi-Master Mode ..................................................... 97  
Reception .................................................................. 95  
Reception Timing Diagram ........................................ 95  
SCL and SDA pins ..................................................... 94  
Slave Mode ................................................................ 94  
START ....................................................................... 89  
STOP ................................................................... 89, 90  
Transfer Acknowledge ............................................... 90  
Transmission ............................................................. 96  
IDLE_MODE ...................................................................... 98  
In-Circuit Serial Programming .................................. 129, 146  
INDF .................................................................................. 29  
INDF Register ...................................... 24, 25, 26, 27, 28, 41  
Indirect Addressing ............................................................ 41  
Initialization Condition for all Register .............................. 136  
Instruction Cycle ................................................................ 17  
Instruction Flow/Pipelining ................................................. 17  
Instruction Format ............................................................ 147  
PIC16C72 ................................................................ 168  
PIC16C73 ................................................................ 184  
PIC16C73A .............................................................. 202  
PIC16C74 ................................................................ 184  
PIC16C74A .............................................................. 202  
PIC16C76 ................................................................ 221  
PIC16C77 ................................................................ 221  
Development Support .................................................. 5, 163  
Development Tools .......................................................... 163  
Digit Carry bit ....................................................................... 9  
Direct Addressing ............................................................... 41  
E
Electrical Characteristics  
PIC16C72 ................................................................ 167  
PIC16C73 ................................................................ 183  
PIC16C73A .............................................................. 201  
PIC16C74 ................................................................ 183  
PIC16C74A .............................................................. 201  
PIC16C76 ................................................................ 219  
PIC16C77 ................................................................ 219  
External Brown-out Protection Circuit .............................. 140  
External Power-on Reset Circuit ...................................... 140  
DS30390E-page 274  
1997 Microchip Technology Inc.  
PIC16C7X  
Instruction Set  
ADDLW .................................................................... 149  
M
MCLR .......................................................................133, 136  
Memory  
ADDWF .................................................................... 149  
ANDLW .................................................................... 149  
ANDWF .................................................................... 149  
BCF .......................................................................... 150  
BSF .......................................................................... 150  
BTFSC ..................................................................... 150  
BTFSS ..................................................................... 151  
CALL ........................................................................ 151  
CLRF ........................................................................ 152  
CLRW ...................................................................... 152  
CLRWDT .................................................................. 152  
COMF ...................................................................... 153  
DECF ....................................................................... 153  
DECFSZ ................................................................... 153  
GOTO ...................................................................... 154  
INCF ......................................................................... 154  
INCFSZ .................................................................... 155  
IORLW ..................................................................... 155  
IORWF ..................................................................... 156  
MOVF ....................................................................... 156  
MOVLW ................................................................... 156  
MOVWF ................................................................... 156  
NOP ......................................................................... 157  
OPTION ................................................................... 157  
RETFIE .................................................................... 157  
RETLW .................................................................... 158  
RETURN .................................................................. 158  
RLF .......................................................................... 159  
RRF .......................................................................... 159  
SLEEP ..................................................................... 160  
SUBLW .................................................................... 160  
SUBWF .................................................................... 161  
SWAPF .................................................................... 161  
TRIS ......................................................................... 161  
XORLW .................................................................... 162  
XORWF .................................................................... 162  
Section ..................................................................... 147  
Summary Table ........................................................ 148  
INT Interrupt ..................................................................... 143  
INTCON ............................................................................. 29  
INTCON Register ............................................................... 32  
INTEDG bit ................................................................. 31, 143  
Internal Sampling Switch (Rss) Impedance ..................... 120  
Interrupts .......................................................................... 129  
PortB Change .......................................................... 143  
RB7:RB4 Port Change ............................................... 45  
Section ..................................................................... 141  
TMR0 ....................................................................... 143  
IRP bit ................................................................................ 30  
Data Memory ..............................................................20  
Program Memory ........................................................19  
Program Memory Maps  
PIC16C72 ...........................................................19  
PIC16C73 ...........................................................19  
PIC16C73A ........................................................19  
PIC16C74 ...........................................................19  
PIC16C74A ........................................................19  
PIC16C76 ...........................................................20  
PIC16C77 ...........................................................20  
Register File Maps  
PIC16C72 ...........................................................21  
PIC16C73 ...........................................................21  
PIC16C73A ........................................................21  
PIC16C74 ...........................................................21  
PIC16C74A ........................................................21  
PIC16C76 ...........................................................21  
PIC16C77 ...........................................................21  
MPASM Assembler ..........................................................163  
MPLAB-C ..........................................................................165  
MPSIM Software Simulator ......................................163, 165  
O
OERR bit ..........................................................................100  
OPCODE ..........................................................................147  
OPTION ..............................................................................29  
OPTION Register ...............................................................31  
Orthogonal ............................................................................9  
OSC selection ...................................................................129  
Oscillator  
HS .....................................................................131, 135  
LP .....................................................................131, 135  
RC ............................................................................131  
XT .....................................................................131, 135  
Oscillator Configurations ..................................................131  
Output of TMR2 ..................................................................69  
P
P ...................................................................................78, 83  
Packaging  
28-Lead Ceramic w/Window .....................................251  
28-Lead PDIP ...........................................................253  
28-Lead SOIC ...........................................................255  
28-Lead SSOP .........................................................256  
40-Lead CERDIP w/Window ....................................252  
40-Lead PDIP ...........................................................254  
44-Lead MQFP .........................................................258  
44-Lead PLCC ..........................................................257  
44-Lead TQFP ..........................................................259  
Paging, Program Memory ...................................................40  
Parallel Slave Port ........................................................50, 54  
PCFG0 bit .........................................................................118  
PCFG1 bit .........................................................................118  
PCFG2 bit .........................................................................118  
PCL Register ............................23, 24, 25, 26, 27, 28, 29, 40  
PCLATH ...........................................................................136  
PCLATH Register .....................23, 24, 25, 26, 27, 28, 29, 40  
PCON Register .....................................................29, 39, 135  
PD bit ..................................................................30, 133, 135  
PICDEM-1 Low-Cost PIC16/17 Demo Board ...........163, 164  
PICDEM-2 Low-Cost PIC16CXX Demo Board .........163, 164  
PICDEM-3 Low-Cost PIC16C9XXX Demo Board ............164  
PICMASTER In-Circuit Emulator ......................................163  
L
Loading of PC .................................................................... 40  
1997 Microchip Technology Inc.  
DS30390E-page 275  
PIC16C7X  
PICSTART Low-Cost Development System .................... 163  
PIE1 Register ............................................................... 29, 33  
PIE2 Register ............................................................... 29, 37  
Pin Compatible Devices ................................................... 271  
Pin Functions  
POR ......................................................................... 134, 135  
Oscillator Start-up Timer (OST) ....................... 129, 134  
Power Control Register (PCON) .............................. 135  
Power-on Reset (POR) ............................ 129, 134, 136  
Power-up Timer (PWRT) ................................. 129, 134  
Power-Up-Timer (PWRT) ........................................ 134  
Time-out Sequence ................................................. 135  
Time-out Sequence on Power-up ............................ 139  
TO .................................................................... 133, 135  
POR bit ...................................................................... 39, 135  
Port RB Interrupt .............................................................. 143  
PORTA ...................................................................... 29, 136  
PORTA Register .............................................. 23, 25, 27, 43  
PORTB ...................................................................... 29, 136  
PORTB Register .............................................. 23, 25, 27, 45  
PORTC ...................................................................... 29, 136  
PORTC Register .............................................. 23, 25, 27, 48  
PORTD ...................................................................... 29, 136  
PORTD Register .................................................... 25, 27, 50  
PORTE ...................................................................... 29, 136  
PORTE Register .................................................... 25, 27, 51  
Power-down Mode (SLEEP) ............................................ 145  
PR2 .................................................................................... 29  
PR2 Register ......................................................... 26, 28, 69  
Prescaler, Switching Between Timer0 and WDT ............... 63  
PRO MATE Universal Programmer ................................. 163  
Program Branches ............................................................... 9  
Program Memory  
MCLR/VPP ...................................................... 13, 14, 15  
OSC1/CLKIN .................................................. 13, 14, 15  
OSC2/CLKOUT .............................................. 13, 14, 15  
RA0/AN0 ........................................................ 13, 14, 15  
RA1/AN1 ........................................................ 13, 14, 15  
RA2/AN2 ........................................................ 13, 14, 15  
RA3/AN3/VREF ............................................... 13, 14, 15  
RA4/T0CKI ..................................................... 13, 14, 15  
RA5/AN4/SS .................................................. 13, 14, 15  
RB0/INT ......................................................... 13, 14, 15  
RB1 ................................................................ 13, 14, 15  
RB2 ................................................................ 13, 14, 15  
RB3 ................................................................ 13, 14, 15  
RB4 ................................................................ 13, 14, 15  
RB5 ................................................................ 13, 14, 15  
RB6 ................................................................ 13, 14, 15  
RB7 ................................................................ 13, 14, 15  
RC0/T1OSO/T1CKI ....................................... 13, 14, 16  
RC1/T1OSI ................................................................ 13  
RC1/T1OSI/CCP2 ................................................ 14, 16  
RC2/CCP1 ..................................................... 13, 14, 16  
RC3/SCK/SCL ............................................... 13, 14, 16  
RC4/SDI/SDA ................................................ 13, 14, 16  
RC5/SDO ....................................................... 13, 14, 16  
RC6 ............................................................................ 13  
RC6/TX/CK ............................................14, 16, 99–114  
RC7 ............................................................................ 13  
RC7/RX/DT ............................................14, 16, 99–114  
RD0/PSP0 .................................................................. 16  
RD1/PSP1 .................................................................. 16  
RD2/PSP2 .................................................................. 16  
RD3/PSP3 .................................................................. 16  
RD4/PSP4 .................................................................. 16  
RD5/PSP5 .................................................................. 16  
RD6/PSP6 .................................................................. 16  
RD7/PSP7 .................................................................. 16  
RE0/RD/AN5 .............................................................. 16  
RE1/WR/AN6 ............................................................. 16  
RE2/CS/AN7 .............................................................. 16  
SCK ...................................................................... 80–82  
SDI ....................................................................... 80–82  
SDO ..................................................................... 80–82  
SS ........................................................................ 80–82  
VDD ................................................................ 13, 14, 16  
VSS ................................................................. 13, 14, 16  
Pinout Descriptions  
Paging ....................................................................... 40  
Program Memory Maps  
PIC16C72 .................................................................. 19  
PIC16C73 .................................................................. 19  
PIC16C73A ................................................................ 19  
PIC16C74 .................................................................. 19  
PIC16C74A ................................................................ 19  
Program Verification ........................................................ 146  
PS0 bit ............................................................................... 31  
PS1 bit ............................................................................... 31  
PS2 bit ............................................................................... 31  
PSA bit ............................................................................... 31  
PSPIE bit ........................................................................... 34  
PSPIF bit ............................................................................ 36  
PSPMODE bit ........................................................ 50, 51, 54  
PUSH ................................................................................. 40  
R
R/W .............................................................................. 78, 83  
R/W bit ............................................................. 90, 94, 95, 96  
RBIF bit ...................................................................... 45, 143  
RBPU bit ............................................................................ 31  
RC Oscillator ............................................................ 132, 135  
RCIE bit ............................................................................. 34  
RCIF bit .............................................................................. 36  
RCREG .............................................................................. 29  
RCSTA Register ........................................................ 29, 100  
RCV_MODE ...................................................................... 98  
RD pin ................................................................................ 54  
Read/Write bit Information, R/W .................................. 78, 83  
Read-Modify-Write ............................................................. 53  
Receive Overflow Detect bit, SSPOV ................................ 79  
Receive Overflow Indicator bit, SSPOV ............................. 84  
Register File ....................................................................... 20  
PIC16C72 .................................................................. 13  
PIC16C73 .................................................................. 14  
PIC16C73A ................................................................ 14  
PIC16C74 .................................................................. 15  
PIC16C74A ................................................................ 15  
PIC16C76 .................................................................. 14  
PIC16C77 .................................................................. 15  
PIR1 Register ..................................................................... 35  
PIR2 Register ..................................................................... 38  
POP .................................................................................... 40  
DS30390E-page 276  
1997 Microchip Technology Inc.  
PIC16C7X  
Registers  
FSR  
SPBRG Register ...........................................................26, 28  
Special Event Trigger .......................................................125  
Special Features of the CPU ............................................129  
Special Function Registers  
Summary ........................................................... 29  
Summary ........................................................... 29  
INDF  
PIC16C72 ...................................................................23  
PIC16C73 .............................................................25, 27  
PIC16C73A ...........................................................25, 27  
PIC16C74 .............................................................25, 27  
PIC16C74A ...........................................................25, 27  
PIC16C76 ...................................................................27  
PIC16C77 ...................................................................27  
Special Function Registers, Section ...................................23  
SPEN bit ...........................................................................100  
SPI  
Block Diagram ......................................................80, 85  
Master Mode ...............................................................86  
Master Mode Timing ...................................................87  
Mode ...........................................................................80  
Serial Clock ................................................................85  
Serial Data In ..............................................................85  
Serial Data Out ...........................................................85  
Slave Mode Timing .....................................................88  
Slave Mode Timing Diagram ......................................87  
Slave Select ................................................................85  
SPI clock .....................................................................86  
SPI Mode ....................................................................85  
SSPCON ....................................................................84  
SSPSTAT ...................................................................83  
SPI Clock Edge Select bit, CKE .........................................83  
SPI Data Input Sample Phase Select bit, SMP ..................83  
SPI Mode ............................................................................80  
SREN bit ...........................................................................100  
SS .......................................................................................80  
SSP  
Initialization Conditions ............................................ 136  
INTCON  
Summary ........................................................... 29  
Maps  
PIC16C72 .......................................................... 21  
PIC16C73 .......................................................... 21  
PIC16C73A ........................................................ 21  
PIC16C74 .......................................................... 21  
PIC16C74A ........................................................ 21  
PIC16C76 .......................................................... 22  
PIC16C77 .......................................................... 22  
OPTION  
Summary ........................................................... 29  
PCL  
Summary ........................................................... 29  
PCLATH  
Summary ........................................................... 29  
PORTB  
Summary ........................................................... 29  
Reset Conditions ...................................................... 136  
SSPBUF  
Section ............................................................... 80  
SSPCON  
Diagram ............................................................. 79  
SSPSR  
Section ............................................................... 80  
SSPSTAT ................................................................... 83  
Diagram ............................................................. 78  
Section ............................................................... 78  
STATUS  
Summary ........................................................... 29  
Summary .............................................................. 25, 27  
TMR0  
Module Overview ........................................................77  
Section ........................................................................77  
SSPBUF .....................................................................86  
SSPCON ....................................................................84  
SSPSR .......................................................................86  
SSPSTAT ...................................................................83  
Summary ........................................................... 29  
TRISB  
2
2
Summary ........................................................... 29  
Reset ........................................................................ 129, 133  
Reset Conditions for Special Registers ........................... 136  
RP0 bit ......................................................................... 20, 30  
RP1 bit ............................................................................... 30  
RX9 bit ............................................................................. 100  
RX9D bit ........................................................................... 100  
SSP in I C Mode - See I C  
SSPADD .............................................................................93  
SSPADD Register ............................................24, 26, 28, 29  
SSPBUF .......................................................................29, 93  
SSPBUF Register .........................................................25, 27  
SSPCON ......................................................................79, 84  
SSPCON Register ........................................................25, 27  
SSPEN .........................................................................79, 84  
SSPIE bit ............................................................................33  
SSPIF bit ......................................................................35, 36  
SSPM3:SSPM0 ............................................................79, 84  
SSPOV ...................................................................79, 84, 94  
SSPSTAT .....................................................................78, 93  
SSPSTAT Register .....................................24, 26, 28, 29, 83  
Stack ...................................................................................40  
Overflows ....................................................................40  
Underflow ...................................................................40  
Start bit, S .....................................................................78, 83  
STATUS Register .........................................................29, 30  
Stop bit, P .....................................................................78, 83  
Synchronous Serial Port (SSP)  
S
S ................................................................................... 78, 83  
SCK .................................................................................... 80  
SCL .................................................................................... 94  
SDI ..................................................................................... 80  
SDO ................................................................................... 80  
Serial Communication Interface (SCI) Module, See USART  
Services  
One-Time-Programmable (OTP) ................................. 7  
Quick-Turnaround-Production (QTP) ........................... 7  
Serialized Quick-Turnaround Production (SQTP) ........ 7  
Slave Mode  
SCL ............................................................................ 94  
SDA ............................................................................ 94  
SLEEP ..................................................................... 129, 133  
SMP ................................................................................... 83  
Software Simulator (MPSIM) ........................................... 165  
SPBRG .............................................................................. 29  
Block Diagram, SPI Mode ..........................................80  
SPI Master/Slave Diagram .........................................81  
SPI Mode ....................................................................80  
Synchronous Serial Port Enable bit, SSPEN ................79, 84  
1997 Microchip Technology Inc.  
DS30390E-page 277  
PIC16C7X  
Synchronous Serial Port Mode Select bits,  
External Clock Timing ...................... 173, 189, 207, 226  
2
SSPM3:SSPM0 ............................................................ 79, 84  
Synchronous Serial Port Module ........................................ 77  
Synchronous Serial Port Status Register ........................... 83  
I C Bus Data .................................... 180, 197, 215, 236  
2
I C Bus Start/Stop bits ..................... 179, 196, 214, 235  
2
I C Clock Synchronization ......................................... 92  
2
I C Data Transfer Wait State ..................................... 90  
T
2
I C Multi-Master Arbitration ....................................... 92  
2
T0CS bit ............................................................................. 31  
T1CKPS0 bit ...................................................................... 65  
T1CKPS1 bit ...................................................................... 65  
T1CON ............................................................................... 29  
T1CON Register ........................................................... 29, 65  
T1OSCEN bit ..................................................................... 65  
T1SYNC bit ........................................................................ 65  
T2CKPS0 bit ...................................................................... 70  
T2CKPS1 bit ...................................................................... 70  
T2CON Register ........................................................... 29, 70  
TAD ................................................................................... 121  
Timer Modules, Overview .................................................. 57  
Timer0  
I C Reception (7-bit Address) .................................... 95  
Parallel Slave Port ................................................... 194  
Power-up Timer ............................... 175, 191, 209, 228  
Reset ............................................... 175, 191, 209, 228  
SPI Master Mode ....................................................... 87  
SPI Mode ................................................. 178, 195, 213  
SPI Mode, Master/Slave Mode, No SS Control ......... 82  
SPI Mode, Slave Mode With SS Control ................... 82  
SPI Slave Mode (CKE = 1) ........................................ 88  
SPI Slave Mode Timing (CKE = 0) ............................ 87  
Start-up Timer .................................. 175, 191, 209, 228  
Time-out Sequence ................................................. 139  
Timer0 ....................................... 59, 176, 192, 210, 229  
Timer0 Interrupt Timing ............................................. 60  
Timer0 with External Clock ........................................ 61  
Timer1 ............................................. 176, 192, 210, 229  
USART Asynchronous Master Transmission .......... 107  
USART Asynchronous Reception ........................... 108  
USART RX Pin Sampling ................................ 104, 105  
USART Synchronous Receive ................ 198, 216, 237  
USART Synchronous Reception ............................. 113  
USART Synchronous Transmission 111, 198, 216, 237  
Wake-up from Sleep via Interrupt ............................ 146  
Watchdog Timer .............................. 175, 191, 209, 228  
TMR0 ................................................................................. 29  
TMR0 Register ............................................................. 25, 27  
TMR1CS bit ....................................................................... 65  
TMR1H .............................................................................. 29  
TMR1H Register .................................................... 23, 25, 27  
TMR1IE bit ......................................................................... 33  
TMR1IF bit ................................................................... 35, 36  
TMR1L ............................................................................... 29  
TMR1L Register ..................................................... 23, 25, 27  
TMR1ON bit ....................................................................... 65  
TMR2 ................................................................................. 29  
TMR2 Register ....................................................... 23, 25, 27  
TMR2IE bit ......................................................................... 33  
TMR2IF bit ................................................................... 35, 36  
TMR2ON bit ....................................................................... 70  
TO bit ................................................................................. 30  
TOUTPS0 bit ..................................................................... 70  
TOUTPS1 bit ..................................................................... 70  
TOUTPS2 bit ..................................................................... 70  
TOUTPS3 bit ..................................................................... 70  
TRISA ................................................................................ 29  
TRISA Register ................................................ 24, 26, 28, 43  
TRISB ................................................................................ 29  
TRISB Register ................................................ 24, 26, 28, 45  
TRISC ................................................................................ 29  
TRISC Register ................................................ 24, 26, 28, 48  
TRISD ................................................................................ 29  
TRISD Register ...................................................... 26, 28, 50  
TRISE ................................................................................ 29  
TRISE Register ...................................................... 26, 28, 51  
Two’s Complement .............................................................. 9  
TXIE bit .............................................................................. 34  
TXIF bit .............................................................................. 36  
TXREG .............................................................................. 29  
TXSTA ............................................................................... 29  
TXSTA Register ................................................................. 99  
RTCC ....................................................................... 136  
Timers  
Timer0  
Block Diagram .................................................... 59  
External Clock .................................................... 61  
External Clock Timing ........................................ 61  
Increment Delay ................................................. 61  
Interrupt .............................................................. 59  
Interrupt Timing .................................................. 60  
Overview ............................................................ 57  
Prescaler ............................................................ 62  
Prescaler Block Diagram ................................... 62  
Section ............................................................... 59  
Switching Prescaler Assignment ........................ 63  
Synchronization ................................................. 61  
T0CKI ................................................................. 61  
T0IF .................................................................. 143  
Timing ................................................................ 59  
TMR0 Interrupt ................................................. 143  
Timer1  
Asynchronous Counter Mode ............................ 67  
Block Diagram .................................................... 66  
Capacitor Selection ............................................ 67  
External Clock Input ........................................... 66  
External Clock Input Timing ............................... 67  
Operation in Timer Mode ................................... 66  
Oscillator ............................................................ 67  
Overview ............................................................ 57  
Prescaler ...................................................... 66, 68  
Resetting of Timer1 Registers ........................... 68  
Resetting Timer1 using a CCP Trigger Output .. 68  
Synchronized Counter Mode ............................. 66  
T1CON ............................................................... 65  
TMR1H ............................................................... 67  
TMR1L ............................................................... 67  
Timer2  
Block Diagram .................................................... 69  
Module ............................................................... 69  
Overview ............................................................ 57  
Postscaler .......................................................... 69  
Prescaler ............................................................ 69  
T2CON ............................................................... 70  
Timing Diagrams  
A/D Conversion ................................182, 200, 218, 239  
Brown-out Reset ..............................134, 175, 209, 228  
Capture/Compare/PWM ...................177, 193, 211, 230  
CLKOUT and I/O ..............................174, 190, 208, 227  
DS30390E-page 278  
1997 Microchip Technology Inc.  
PIC16C7X  
U
LIST OF EXAMPLES  
UA ................................................................................ 78, 83  
Universal Synchronous Asynchronous Receiver Transmitter  
(USART) ............................................................................ 99  
Update Address bit, UA ............................................... 78, 83  
USART  
Example 3-1: Instruction Pipeline Flow............................17  
Example 4-1: Call of a Subroutine in Page 1  
from Page 0 ..............................................41  
Example 4-2: Indirect Addressing....................................41  
Example 5-1: Initializing PORTA......................................43  
Example 5-2: Initializing PORTB......................................45  
Example 5-3: Initializing PORTC .....................................48  
Example 5-4: Read-Modify-Write Instructions  
Asynchronous Mode ................................................ 106  
Asynchronous Receiver ........................................... 108  
Asynchronous Reception ......................................... 109  
Asynchronous Transmission .................................... 107  
Asynchronous Transmitter ....................................... 106  
Baud Rate Generator (BRG) .................................... 101  
Receive Block Diagram ............................................ 108  
Sampling .................................................................. 104  
Synchronous Master Mode ...................................... 110  
Synchronous Master Reception ............................... 112  
Synchronous Master Transmission .......................... 110  
Synchronous Slave Mode ........................................ 114  
Synchronous Slave Reception ................................. 114  
Synchronous Slave Transmit ................................... 114  
Transmit Block Diagram ........................................... 106  
UV Erasable Devices ........................................................... 7  
on an I/O Port ............................................53  
Example 7-1: Changing Prescaler (Timer0WDT).........63  
Example 7-2: Changing Prescaler (WDTTimer0).........63  
Example 8-1: Reading a 16-bit Free-Running Timer .......67  
Example 10-1: Changing Between Capture  
Prescalers.................................................73  
Example 10-2: PWM Period and Duty Cycle  
Calculation.................................................75  
Example 11-1: Loading the SSPBUF (SSPSR)  
Register ....................................................80  
Example 11-2: Loading the SSPBUF (SSPSR)  
Register (PIC16C76/77) ...........................85  
Example 12-1: Calculating Baud Rate Error....................101  
Equation 13-1: A/D Minimum Charging Time...................120  
Example 13-1: Calculating the Minimum Required  
Acquisition Time .....................................120  
Example 13-2: A/D Conversion........................................122  
Example 13-3: 4-bit vs. 8-bit Conversion Times ..............123  
Example 14-1: Saving STATUS, W, and PCLATH  
Registers in RAM.....................................143  
W
W Register  
ALU .............................................................................. 9  
Wake-up from SLEEP ...................................................... 145  
Watchdog Timer (WDT) ........................... 129, 133, 136, 144  
WCOL .......................................................................... 79, 84  
WDT ................................................................................. 136  
Block Diagram .......................................................... 144  
Period ....................................................................... 144  
Programming Considerations .................................. 144  
Timeout .................................................................... 136  
Word ................................................................................ 129  
WR pin ............................................................................... 54  
Write Collision Detect bit, WCOL ................................. 79, 84  
X
XMIT_MODE ...................................................................... 98  
Z
Z bit .................................................................................... 30  
Zero bit ................................................................................. 9  
1997 Microchip Technology Inc.  
DS30390E-page 279  
PIC16C7X  
Figure 8-1:  
T1CON: Timer1 Control Register  
LIST OF FIGURES  
(Address 10h) .......................................... 65  
Timer1 Block Diagram .............................. 66  
Timer2 Block Diagram .............................. 69  
T2CON: Timer2 Control Register  
(Address 12h) .......................................... 70  
CCP1CON Register (Address 17h)/  
CCP2CON Register (Address 1Dh).......... 72  
Capture Mode Operation  
Block Diagram .......................................... 72  
Compare Mode Operation  
Figure 8-2:  
Figure 9-1:  
Figure 9-2:  
Figure 3-1:  
Figure 3-2:  
Figure 3-3:  
Figure 3-4:  
Figure 4-1:  
PIC16C72 Block Diagram ......................... 10  
PIC16C73/73A/76 Block Diagram............. 11  
PIC16C74/74A/77 Block Diagram............. 12  
Clock/Instruction Cycle.............................. 17  
PIC16C72 Program Memory Map  
Figure 10-1:  
Figure 10-2:  
Figure 10-3:  
and Stack .................................................. 19  
PIC16C73/73A/74/74A Program  
Memory Map and Stack ............................ 19  
PIC16C76/77 Program Memory  
Figure 4-2:  
Figure 4-3:  
Block Diagram .......................................... 73  
Simplified PWM Block Diagram................ 74  
PWM Output ............................................. 74  
SSPSTAT: Sync Serial Port Status  
Register (Address 94h)............................. 78  
SSPCON: Sync Serial Port Control  
Map and Stack .......................................... 20  
PIC16C72 Register File Map .................... 21  
PIC16C73/73A/74/74A Register  
File Map .................................................... 21  
PIC16C76/77 Register File Map ............... 22  
Status Register (Address 03h,  
Figure 10-4:  
Figure 10-5:  
Figure 11-1:  
Figure 4-4:  
Figure 4-5:  
Figure 4-6:  
Figure 4-7:  
Figure 11-2:  
Register (Address 14h)............................. 79  
SSP Block Diagram (SPI Mode)............... 80  
SPI Master/Slave Connection................... 81  
SPI Mode Timing, Master Mode  
or Slave Mode w/o SS Control.................. 82  
SPI Mode Timing, Slave Mode with  
SS Control ................................................ 82  
SSPSTAT: Sync Serial Port Status  
Register (Address 94h)(PIC16C76/77)..... 83  
SSPCON: Sync Serial Port Control  
83h, 103h, 183h)...................................... 30  
OPTION Register (Address 81h,  
181h)......................................................... 31  
INTCON Register  
(Address 0Bh, 8Bh, 10bh, 18bh)............... 32  
PIE1 Register PIC16C72  
(Address 8Ch)........................................... 33  
PIE1 Register PIC16C73/73A/  
74/74A/76/77 (Address 8Ch)..................... 34  
PIR1 Register PIC16C72  
(Address 0Ch)........................................... 35  
PIR1 Register PIC16C73/73A/  
Figure 11-3:  
Figure 11-4:  
Figure 11-5:  
Figure 4-8:  
Figure 4-9:  
Figure 4-10:  
Figure 4-11:  
Figure 4-12:  
Figure 4-13:  
Figure 11-6:  
Figure 11-7:  
Figure 11-8:  
Figure 11-9:  
Register (Address 14h)(PIC16C76/77)..... 84  
SSP Block Diagram (SPI Mode)  
(PIC16C76/77).......................................... 85  
74/74A/76/77 (Address 0Ch)..................... 36  
PIE2 Register (Address 8Dh).................... 37  
PIR2 Register (Address 0Dh).................... 38  
PCON Register (Address 8Eh) ................. 39  
Loading of PC In Different  
Situations .................................................. 40  
Direct/Indirect Addressing......................... 41  
Block Diagram of RA3:RA0  
and RA5 Pins ............................................ 43  
Block Diagram of RA4/T0CKI Pin ............. 43  
Block Diagram of RB3:RB0 Pins............... 45  
Block Diagram of RB7:RB4 Pins  
Figure 11-10: SPI Master/Slave Connection  
PIC16C76/77)........................................... 86  
Figure 11-11: SPI Mode Timing, Master Mode  
(PIC16C76/77)......................................... 87  
Figure 11-12: SPI Mode Timing (Slave Mode  
With CKE = 0) (PIC16C76/77)................. 87  
Figure 11-13: SPI Mode Timing (Slave Mode  
With CKE = 1) (PIC16C76/77).................. 88  
Figure 4-14:  
Figure 4-15:  
Figure 4-16:  
Figure 4-17:  
Figure 4-18:  
Figure 5-1:  
Figure 11-14: Start and Stop Conditions......................... 89  
Figure 11-15: 7-bit Address Format ................................ 90  
Figure 5-2:  
Figure 5-3:  
Figure 5-4:  
2
Figure 11-16: I C 10-bit Address Format........................ 90  
Figure 11-17: Slave-receiver Acknowledge .................... 90  
Figure 11-18: Data Transfer Wait State .......................... 90  
Figure 11-19: Master-transmitter Sequence ................... 91  
Figure 11-20: Master-receiver Sequence........................ 91  
Figure 11-21: Combined Format..................................... 91  
Figure 11-22: Multi-master Arbitration  
(PIC16C73/74) .......................................... 46  
Block Diagram of  
RB7:RB4 Pins (PIC16C72/73A/  
74A/76/77)................................................. 46  
PORTC Block Diagram  
(Peripheral Output Override).................... 48  
PORTD Block Diagram  
Figure 5-5:  
Figure 5-6:  
Figure 5-7:  
Figure 5-8:  
(Two Masters)........................................... 92  
Figure 11-23: Clock Synchronization .............................. 92  
Figure 11-24: SSP Block Diagram  
(in I/O Port Mode)..................................... 50  
PORTE Block Diagram  
2
(I C Mode) ................................................ 93  
(in I/O Port Mode)..................................... 51  
TRISE Register (Address 89h).................. 51  
Successive I/O Operation ......................... 53  
PORTD and PORTE Block Diagram  
(Parallel Slave Port) .................................. 54  
Parallel Slave Port Write Waveforms........ 55  
Parallel Slave Port Read Waveforms........ 55  
Timer0 Block Diagram............................... 59  
Timer0 Timing: Internal Clock/No  
Prescale .................................................... 59  
Timer0 Timing: Internal  
Clock/Prescale 1:2 .................................... 60  
Timer0 Interrupt Timing............................. 60  
Timer0 Timing with External Clock............ 61  
Block Diagram of the Timer0/WDT  
2
Figure 11-25:  
I C Waveforms for Reception  
Figure 5-9:  
Figure 5-10:  
Figure 5-11:  
(7-bit Address) .......................................... 95  
2
Figure 11-26: I C Waveforms for Transmission  
(7-bit Address) .......................................... 96  
2
Figure 11-27: Operation of the I C Module in  
Figure 5-12:  
Figure 5-13:  
Figure 7-1:  
Figure 7-2:  
IDLE_MODE, RCV_MODE or  
XMIT_MODE ............................................ 98  
TXSTA: Transmit Status and  
Control Register (Address 98h) ................ 99  
RCSTA: Receive Status and  
Control Register (Address 18h) .............. 100  
RX Pin Sampling Scheme. BRGH = 0  
(PIC16C73/73A/74/74A)......................... 104  
RX Pin Sampling Scheme, BRGH = 1  
(PIC16C73/73A/74/74A)......................... 104  
Figure 12-1:  
Figure 12-2:  
Figure 12-3:  
Figure 12-4:  
Figure 7-3:  
Figure 7-4:  
Figure 7-5:  
Figure 7-6:  
Prescaler................................................... 62  
DS30390E-page 280  
1997 Microchip Technology Inc.  
PIC16C7X  
Figure 12-5:  
Figure 12-6:  
RX Pin Sampling Scheme, BRGH = 1  
(PIC16C73/73A/74/74A) ......................... 104  
RX Pin Sampling Scheme,  
Figure 17-4:  
Reset, Watchdog Timer, Oscillator  
Start-up Timer and Power-up Timer  
Timing......................................................175  
Brown-out Reset Timing ..........................175  
Timer0 and Timer1 External  
Clock Timings .........................................176  
Capture/Compare/PWM  
BRGH = 0 OR BRGH = 1 (  
Figure 17-5:  
Figure 17-6:  
PIC16C76/77) ......................................... 105  
USART Transmit Block Diagram............. 106  
Asynchronous Master Transmission....... 107  
Asynchronous Master Transmission  
(Back to Back)......................................... 107  
Figure 12-7:  
Figure 12-8:  
Figure 12-9:  
Figure 17-7:  
Timings (CCP1) .......................................177  
SPI Mode Timing .....................................178  
Figure 17-8:  
Figure 17-9:  
2
Figure 12-10: USART Receive Block Diagram.............. 108  
Figure 12-11: Asynchronous Reception ........................ 108  
Figure 12-12: Synchronous Transmission..................... 111  
Figure 12-13: Synchronous Transmission  
I C Bus Start/Stop Bits Timing.................179  
2
Figure 17-10: I C Bus Data Timing................................180  
Figure 17-11: A/D Conversion Timing............................182  
Figure 18-1:  
Figure 18-2:  
Figure 18-3:  
Figure 18-4:  
Load Conditions.......................................188  
External Clock Timing..............................189  
CLKOUT and I/O Timing..........................190  
Reset, Watchdog Timer,  
(Through TXEN)...................................... 111  
Figure 12-14: Synchronous Reception  
(Master Mode, SREN)............................. 113  
Figure 13-1:  
Figure 13-2:  
Figure 13-3:  
Figure 13-4:  
Figure 13-5:  
Figure 13-6:  
Figure 14-1:  
ADCON0 Register (Address 1Fh)........... 117  
ADCON1 Register (Address 9Fh)........... 118  
A/D Block Diagram.................................. 119  
Analog Input Model ................................. 120  
A/D Transfer Function............................. 125  
Flowchart of A/D Operation..................... 126  
Configuration Word for  
Oscillator Start-up Timer and Power-up Tim-  
er Timing..................................................191  
Timer0 and Timer1 External  
Clock Timings .........................................192  
Capture/Compare/PWM Timings  
Figure 18-5:  
Figure 18-6:  
Figure 18-7:  
(CCP1 and CCP2) ...................................193  
Parallel Slave Port Timing  
PIC16C73/74........................................... 129  
Configuration Word for  
PIC16C72/73A/74A/76/77....................... 130  
Crystal/Ceramic Resonator  
Operation (HS, XT or LP  
OSC Configuration)................................. 131  
External Clock Input Operation  
(HS, XT or LP OSC Configuration) ......... 131  
External Parallel Resonant Crystal  
Oscillator Circuit...................................... 132  
External Series Resonant Crystal  
Oscillator Circuit..................................... 132  
RC Oscillator Mode................................. 132  
Simplified Block Diagram of On-chip  
Reset Circuit............................................ 133  
Brown-out Situations............................... 134  
(PIC16C74)..............................................194  
SPI Mode Timing .....................................195  
Figure 14-2:  
Figure 14-3:  
Figure 18-8:  
Figure 18-9:  
2
I C Bus Start/Stop Bits Timing.................196  
2
Figure 18-10: I C Bus Data Timing................................197  
Figure 18-11: USART Synchronous Transmission  
(Master/Slave) Timing..............................198  
Figure 14-4:  
Figure 14-5:  
Figure 14-6:  
Figure 18-12: USART Synchronous Receive  
(Master/Slave) Timing..............................198  
Figure 18-13: A/D Conversion Timing............................200  
Figure 19-1:  
Figure 19-2:  
Figure 19-3:  
Figure 19-4:  
Load Conditions.......................................206  
External Clock Timing..............................207  
CLKOUT and I/O Timing..........................208  
Reset, Watchdog Timer,  
Figure 14-7:  
Figure 14-8:  
Oscillator Start-up Timer and  
Power-up Timer Timing ...........................209  
Brown-out Reset Timing ..........................209  
Timer0 and Timer1 External  
Clock Timings .........................................210  
Capture/Compare/PWM Timings  
(CCP1 and CCP2) ...................................211  
Parallel Slave Port Timing  
(PIC16C74A) ...........................................212  
Figure 14-9:  
Figure 19-5:  
Figure 19-6:  
Figure 14-10: Time-out Sequence on Power-up  
(MCLR not Tied to VDD): Case 1............. 139  
Figure 14-11: Time-out Sequence on Power-up  
(MCLR Not Tied To VDD): Case 2.......... 139  
Figure 14-12: Time-out Sequence on Power-up  
(MCLR Tied to VDD)................................ 139  
Figure 14-13: External Power-on Reset Circuit  
(for Slow VDD Power-up)......................... 140  
Figure 14-14: External Brown-out Protection  
Circuit 1................................................... 140  
Figure 14-15: External Brown-out Protection  
Circuit 2................................................... 140  
Figure 14-16: Interrupt Logic ......................................... 142  
Figure 14-17: INT Pin Interrupt Timing.......................... 142  
Figure 14-18: Watchdog Timer Block Diagram ............. 144  
Figure 14-19: Summary of Watchdog  
Timer Registers....................................... 144  
Figure 14-20: Wake-up from Sleep Through  
Interrupt................................................... 146  
Figure 14-21: Typical In-Circuit Serial  
Figure 19-7:  
Figure 19-8:  
Figure 19-9:  
SPI Mode Timing .....................................213  
2
Figure 19-10: I C Bus Start/Stop Bits Timing.................214  
2
Figure 19-11: I C Bus Data Timing................................215  
Figure 19-12: USART Synchronous Transmission  
(Master/Slave) Timing..............................216  
Figure 19-13: USART Synchronous Receive  
(Master/Slave) Timing..............................216  
Figure 19-14: A/D Conversion Timing............................218  
Figure 20-1:  
Figure 20-2:  
Figure 20-3:  
Figure 20-4:  
Load Conditions.......................................225  
External Clock Timing..............................226  
CLKOUT and I/O Timing..........................227  
Reset, Watchdog Timer,  
Oscillator Start-up Timer and  
Power-up Timer Timing ...........................228  
Brown-out Reset Timing ..........................228  
Timer0 and Timer1 External  
Clock Timings ..........................................229  
Capture/Compare/PWM Timings  
Programming Connection ....................... 146  
Figure 20-5:  
Figure 20-6:  
Figure 15-1:  
Figure 17-1:  
Figure 17-2:  
Figure 17-3:  
General Format for Instructions .............. 147  
Load Conditions ...................................... 172  
External Clock Timing ............................. 173  
CLKOUT and I/O Timing......................... 174  
Figure 20-7:  
Figure 20-8:  
(CCP1 and CCP2) ...................................230  
Parallel Slave Port Timing  
(PIC16C77).............................................231  
1997 Microchip Technology Inc.  
DS30390E-page 281  
PIC16C7X  
Figure 20-9:  
SPI Master Mode Timing (CKE = 0)........ 232  
Figure 21-27: Typical IDD vs. Frequency  
(XT Mode, 25°C)..................................... 249  
Figure 21-28: Maximum IDD vs. Frequency  
(XT Mode, -40°C to 85°C)....................... 249  
Figure 21-29: Typical IDD vs. Frequency  
(HS Mode, 25°C) .................................... 250  
Figure 21-30: Maximum IDD vs. Frequency  
(HS Mode, -40°C to 85°C) ...................... 250  
Figure 20-10: SPI Master Mode Timing (CKE = 1)........ 232  
Figure 20-11: SPI Slave Mode Timing (CKE = 0).......... 233  
Figure 20-12: SPI Slave Mode Timing (CKE = 1).......... 233  
Figure 20-13: I C Bus Start/Stop Bits Timing................ 235  
Figure 20-14: I C Bus Data Timing ............................... 236  
2
2
Figure 20-15: USART Synchronous Transmission  
(Master/Slave) Timing............................. 237  
Figure 20-16: USART Synchronous Receive  
(Master/Slave) Timing............................. 237  
Figure 20-17: A/D Conversion Timing ........................... 239  
Figure 21-1:  
Figure 21-2:  
Figure 21-3:  
Figure 21-4:  
Figure 21-5:  
Figure 21-6:  
Figure 21-7:  
Figure 21-8:  
Figure 21-9:  
Typical IPD vs. VDD (WDT Disabled,  
RC Mode)................................................ 241  
Maximum IPD vs. VDD (WDT  
Disabled, RC Mode)................................ 241  
Typical IPD vs. VDD @ 25°C (WDT  
Enabled, RC Mode)................................. 242  
Maximum IPD vs. VDD (WDT  
Enabled, RC Mode)................................. 242  
Typical RC Oscillator  
Frequency vs. VDD .................................. 242  
Typical RC Oscillator  
Frequency vs. VDD .................................. 242  
Typical RC Oscillator  
Frequency vs. VDD .................................. 242  
Typical IPD vs. VDD Brown-out  
Detect Enabled (RC Mode)..................... 243  
Maximum IPD vs. VDD Brown-out  
Detect Enabled  
(85°C to -40°C, RC Mode) ...................... 243  
Figure 21-10: Typical IPD vs. Timer1 Enabled  
(32 kHz, RC0/RC1= 33 pF/33 pF,  
RC Mode)................................................ 243  
Figure 21-11: Maximum IPD vs. Timer1 Enabled  
(32 kHz, RC0/RC1 = 33  
pF/33 pF, 85°C to -40°C, RC Mode) ....... 243  
Figure 21-12: Typical IDD vs. Frequency  
(RC Mode @ 22 pF, 25°C)...................... 244  
Figure 21-13: Maximum IDD vs. Frequency  
(RC Mode @ 22 pF, -40°C to 85°C)........ 244  
Figure 21-14: Typical IDD vs. Frequency  
(RC Mode @ 100 pF, 25°C).................... 245  
Figure 21-15: Maximum IDD vs. Frequency (  
RC Mode @ 100 pF, -40°C to 85°C)....... 245  
Figure 21-16: Typical IDD vs. Frequency  
(RC Mode @ 300 pF, 25°C).................... 246  
Figure 21-17: Maximum IDD vs. Frequency  
(RC Mode @ 300 pF, -40°C to 85°C)...... 246  
Figure 21-18: Typical IDD vs. Capacitance @  
500 kHz (RC Mode) ................................ 247  
Figure 21-19: Transconductance(gm) of  
HS Oscillator vs. VDD .............................. 247  
Figure 21-20: Transconductance(gm) of LP  
Oscillator vs. VDD .................................... 247  
Figure 21-21: Transconductance(gm) of XT  
Oscillator vs. VDD .................................... 247  
Figure 21-22: Typical XTAL Startup Time vs. VDD  
(LP Mode, 25°C) ..................................... 248  
Figure 21-23: Typical XTAL Startup Time vs. VDD  
(HS Mode, 25°C)..................................... 248  
Figure 21-24: Typical XTAL Startup Time vs. VDD  
(XT Mode, 25°C) ..................................... 248  
Figure 21-25: Typical Idd vs. Frequency  
(LP Mode, 25°C) ..................................... 249  
Figure 21-26: Maximum IDD vs. Frequency  
(LP Mode, 85°C to -40°C) ....................... 249  
DS30390E-page 282  
1997 Microchip Technology Inc.  
PIC16C7X  
Table 12-8:  
Table 12-9:  
Table 12-10:  
Table 12-11:  
Table 13-1:  
Table 13-2:  
Table 13-3:  
Registers Associated with Synchronous Mas-  
ter Transmission ......................................111  
Registers Associated with Synchronous Mas-  
ter Reception ...........................................112  
Registers Associated with  
Synchronous Slave Transmission ...........115  
Registers Associated with  
Synchronous Slave Reception.................115  
TAD vs. Device Operating  
Frequencies.............................................121  
Registers/Bits Associated with A/D,  
PIC16C72 ................................................126  
Summary of A/D Registers,  
PIC16C73/73A/74/74A/76/77 ..................127  
Ceramic Resonators................................131  
Capacitor Selection for Crystal  
Oscillator..................................................131  
Time-out in Various Situations,  
PIC16C73/74 ...........................................135  
Time-out in Various Situations,  
LIST OF TABLES  
Table 1-1:  
Table 3-1:  
Table 3-2:  
Table 3-3:  
Table 4-1:  
PIC16C7XX Family of Devces .................... 6  
PIC16C72 Pinout Description ................... 13  
PIC16C73/73A/76 Pinout Description....... 14  
PIC16C74/74A/77 Pinout Description....... 15  
PIC16C72 Special Function Register  
Summary................................................... 23  
PIC16C73/73A/74/74A Special  
Table 4-2:  
Table 4-3:  
Function Register Summary...................... 25  
PIC16C76/77 Special Function  
Register Summary .................................... 27  
PORTA Functions ..................................... 44  
Summary of Registers Associated  
Table 5-1:  
Table 5-2:  
Table 14-1:  
Table 14-2:  
with PORTA .............................................. 44  
PORTB Functions ..................................... 46  
Summary of Registers Associated  
Table 5-3:  
Table 5-4:  
Table 14-3:  
Table 14-4:  
Table 14-5:  
Table 14-6:  
Table 14-7:  
Table 14-8:  
with PORTB .............................................. 47  
PORTC Functions..................................... 48  
Summary of Registers Associated  
Table 5-5:  
Table 5-6:  
PIC16C72/73A/74A/76/77 .......................135  
Status Bits and Their Significance,  
PIC16C73/74 ...........................................135  
Status Bits and Their Significance,  
PIC16C72/73A/74A/76/77 .......................136  
Reset Condition for Special  
with PORTC .............................................. 49  
PORTD Functions..................................... 50  
Summary of Registers Associated  
Table 5-7:  
Table 5-8:  
with PORTD .............................................. 50  
PORTE Functions ..................................... 52  
Summary of Registers Associated  
Table 5-9:  
Table 5-10:  
Registers..................................................136  
Initialization Conditions for all  
with PORTE .............................................. 52  
Registers Associated with  
Table 5-11:  
Registers..................................................136  
Opcode Field Descriptions.......................147  
PIC16CXX Instruction Set .......................148  
Development Tools from Microchip .........166  
Cross Reference of Device Specs  
Parallel Slave Port..................................... 55  
Registers Associated with Timer0............. 63  
Capacitor Selection for the  
Timer1 Oscillator....................................... 67  
Registers Associated with Timer1  
Table 15-1:  
Table 15-2:  
Table 16-1:  
Table 17-1:  
Table 7-1:  
Table 8-1:  
Table 8-2:  
Table 9-1:  
for Oscillator Configurations and  
Frequencies of Operation  
as a Timer/Counter ................................... 68  
Registers Associated with  
(Commercial Devices) .............................167  
External Clock Timing  
Requirements ..........................................173  
CLKOUT and I/O Timing  
Requirements ..........................................174  
Reset, Watchdog Timer,  
Oscillator Start-up Timer, Power-up  
Timer, and brown-out Reset  
Requirements ..........................................175  
Timer0 and Timer1 External  
Clock Requirements ................................176  
Capture/Compare/PWM  
Timer2 as a Timer/Counter ....................... 70  
CCP Mode - Timer Resource.................... 71  
Interaction of Two CCP Modules .............. 71  
Example PWM Frequencies and  
Resolutions at 20 MHz.............................. 75  
Registers Associated with Capture,  
Compare, and Timer1 ............................... 75  
Registers Associated with PWM  
and Timer2................................................ 76  
Registers Associated with SPI  
Table 17-2:  
Table 17-3:  
Table 17-4:  
Table 10-1:  
Table 10-2:  
Table 10-3:  
Table 10-4:  
Table 10-5:  
Table 11-1:  
Table 11-2:  
Table 17-5:  
Table 17-6:  
Operation .................................................. 82  
Registers Associated with SPI  
Requirements (CCP1) .............................177  
SPI Mode Requirements..........................178  
I C Bus Start/Stop Bits  
Operation (PIC16C76/77) ......................... 88  
I C Bus Terminology................................. 89  
Data Transfer Received Byte  
2
Table 17-7:  
Table 17-8:  
Table 11-3:  
Table 11-4:  
2
Requirements ..........................................179  
I C Bus Data Requirements ....................180  
Actions ...................................................... 94  
Registers Associated with I C  
2
2
Table 17-9:  
Table 11-5:  
Table 17-10:  
A/D Converter Characteristics:  
PIC16C72-04  
(Commercial, Industrial, Extended)  
PIC16C72-10  
(Commercial, Industrial, Extended)  
PIC16C72-20  
(Commercial, Industrial, Extended)  
PIC16LC72-04  
(Commercial, Industrial)...........................181  
A/D Conversion Requirements ................182  
Cross Reference of Device  
Specs for Oscillator Configurations  
and Frequencies of Operation  
(Commercial Devices) .............................183  
Operation .................................................. 97  
Baud Rate Formula................................. 101  
Registers Associated with Baud  
Rate Generator ....................................... 101  
Baud Rates for Synchronous Mode ........ 102  
Baud Rates for Asynchronous Mode  
(BRGH = 0) ............................................. 102  
Baud Rates for Asynchronous Mode  
(BRGH = 1) ............................................. 103  
Registers Associated with  
Table 12-1:  
Table 12-2:  
Table 12-3:  
Table 12-4:  
Table 12-5:  
Table 12-6:  
Table 12-7:  
Table 17-11:  
Table 18-1:  
Asynchronous Transmission................... 107  
Registers Associated with  
Asynchronous Reception ........................ 109  
1997 Microchip Technology Inc.  
DS30390E-page 283  
PIC16C7X  
Table 18-2:  
Table 18-3:  
Table 18-4:  
external Clock Timing  
Requirements.......................................... 189  
CLKOUT and I/O Timing  
Requirements.......................................... 190  
Reset, Watchdog Timer, Oscillator  
Start-up Timer and Power-up Timer  
Requirements......................................... 191  
Timer0 and Timer1 External Clock  
Requirements.......................................... 192  
Capture/Compare/PWM  
Requirements (CCP1 and CCP2) ........... 193  
Parallel Slave Port Requirements  
Table 20-1:  
Cross Reference of Device Specs  
for Oscillator Configurations and  
Frequencies of Operation  
(Commercial Devices) ............................ 220  
External Clock Timing  
Requirements ......................................... 226  
CLKOUT and I/O Timing  
Requirements ......................................... 227  
Reset, Watchdog Timer,  
Oscillator Start-up Timer, Power-up  
Timer, and brown-out reset  
Requirements ......................................... 228  
Timer0 and Timer1 External Clock  
Requirements ......................................... 229  
Capture/Compare/PWM  
Table 20-2:  
Table 20-3:  
Table 20-4:  
Table 18-5:  
Table 18-6:  
Table 18-7:  
(PIC16C74) ............................................. 194  
SPI Mode Requirements......................... 195  
Table 20-5:  
Table 20-6:  
Table 20-7:  
Table 18-8:  
Table 18-9:  
2
I C Bus Start/Stop Bits  
Requirements.......................................... 196  
Requirements (CCP1 and CCP2)........... 230  
Parallel Slave Port Requirements  
(PIC16C77)............................................. 231  
SPI Mode requirements.......................... 234  
2
Table 18-10:  
Table 18-11:  
I C Bus Data Requirements.................... 197  
USART Synchronous Transmission  
Requirements.......................................... 198  
usart Synchronous Receive  
Requirements.......................................... 198  
A/D Converter Characteristics:................ 199  
PIC16C73/74-04  
(Commercial, Industrial)  
PIC16C73/74-10  
(Commercial, Industrial)  
PIC16C73/74-20  
Table 20-8:  
Table 20-9:  
Table 20-10:  
Table 20-11:  
2
Table 18-12:  
Table 18-13:  
I C Bus Start/Stop Bits Requirements.... 235  
2
I C Bus Data Requirements ................... 236  
USART Synchronous Transmission  
Requirements ......................................... 237  
USART Synchronous Receive  
Requirements ......................................... 237  
A/D Converter Characteristics: ............... 238  
PIC16C76/77-04  
Table 20-12:  
Table 20-13:  
(Commercial, Industrial)  
PIC16LC73/74-04  
(Commercial, Industrial, Extended)  
PIC16C76/77-10  
(Commercial, Industrial).......................... 199  
A/D Conversion Requirements................ 200  
Cross Reference of Device Specs  
for Oscillator Configurations and  
Frequencies of Operation  
(Commercial Devices)............................. 201  
External Clock Timing  
Requirements.......................................... 207  
CLKOUT and I/O Timing  
Requirements.......................................... 208  
Reset, Watchdog Timer, Oscillator  
Start-up Timer, Power-up Timer,  
and brown-out reset Requirements......... 209  
Timer0 and Timer1 External Clock  
Requirements.......................................... 210  
Capture/Compare/PWM  
(Commercial, Industrial, Extended)  
PIC16C76/77-20  
(Commercial, Industrial, Extended)  
PIC16LC76/77-04  
(Commercial, Industrial).......................... 238  
A/D Conversion Requirements ............... 239  
RC Oscillator Frequencies...................... 247  
Capacitor Selection for Crystal  
Oscillators............................................... 248  
Pin Compatible Devices.......................... 271  
Table 18-14:  
Table 19-1:  
Table 20-14:  
Table 21-1:  
Table 21-2:  
Table 19-2:  
Table 19-3:  
Table 19-4:  
Table E-1:  
Table 19-5:  
Table 19-6:  
Table 19-7:  
Requirements (CCP1 and CCP2) ........... 211  
Parallel Slave Port Requirements  
(PIC16C74A)........................................... 212  
SPI Mode Requirements......................... 213  
Table 19-8:  
Table 19-9:  
Table 19-10:  
Table 19-11:  
2
I C Bus Start/Stop Bits Requirements .... 214  
2
I C Bus Data Requirements.................... 215  
USART Synchronous Transmission  
Requirements.......................................... 216  
USART Synchronous Receive  
Requirements.......................................... 216  
A/D Converter Characteristics:................ 217  
PIC16C73A/74A-04  
Table 19-12:  
Table 19-13:  
(Commercial, Industrial, Extended)  
PIC16C73A/74A-10  
(Commercial, Industrial, Extended)  
PIC16C73A/74A-20  
(Commercial, Industrial, Extended)  
PIC16LC73A/74A-04  
(Commercial, Industrial).......................... 217  
A/D Conversion Requirements................ 218  
Table 19-14:  
DS30390E-page 284  
1997 Microchip Technology Inc.  
PIC16C6X  
The procedure to connect will vary slightly from country  
to country. Please check with your local CompuServe  
agent for details if you have a problem. CompuServe  
service allow multiple users various baud rates  
depending on the local point of access.  
ON-LINE SUPPORT  
Microchip provides two methods of on-line support.  
These are the Microchip BBS and the Microchip World  
Wide Web (WWW) site.  
Use Microchip's Bulletin Board Service (BBS) to get  
current information and help about Microchip products.  
Microchip provides the BBS communication channel  
for you to use in extending your technical staff with  
microcontroller and memory experts.  
The following connect procedure applies in most loca-  
tions.  
1. Set your modem to 8-bit, No parity, and One stop  
(8N1). This is not the normal CompuServe setting  
which is 7E1.  
To provide you with the most responsive service possible,  
the Microchip systems team monitors the BBS, posts  
the latest component data and software tool updates,  
provides technical help and embedded systems  
insights, and discusses how Microchip products pro-  
vide project solutions.  
2. Dial your local CompuServe access number.  
3. Depress the <Enter> key and a garbage string will  
appear because CompuServe is expecting a 7E1  
setting.  
4. Type +, depress the <Enter> key and “Host Name:”  
will appear.  
The web site, like the BBS, is used by Microchip as a  
means to make files and information easily available to  
customers. To view the site, the user must have access  
to the Internet and a web browser, such as Netscape or  
Microsoft Explorer. Files are also available for FTP  
download from our FTP site.  
5. Type MCHIPBBS, depress the <Enter> key and you  
will be connected to the Microchip BBS.  
In the United States, to find the CompuServe phone  
number closest to you, set your modem to 7E1 and dial  
(800) 848-4480 for 300-2400 baud or (800) 331-7166  
for 9600-14400 baud connection. After the system  
responds with “Host Name:”, type NETWORK, depress  
the <Enter> key and follow CompuServe's directions.  
ConnectingtotheMicrochipInternetWebSite  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
For voice information (or calling from overseas), you  
may call (614) 723-1550 for your local CompuServe  
number.  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
Microchip regularly uses the Microchip BBS to distribute  
technical information, application notes, source code,  
errata sheets, bug reports, and interim patches for  
Microchip systems software products. For each SIG, a  
moderator monitors, scans, and approves or disap-  
proves files submitted to the SIG. No executable files  
are accepted from the user community in general to  
limit the spread of computer viruses.  
ftp://ftp.futureone.com/pub/microchip  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User's Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
Systems Information and Upgrade Hot Line  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip's development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
• Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
1-800-755-2345 for U.S. and most of Canada, and  
1-602-786-7302 for the rest of the world.  
970301  
Trademarks: The Microchip name, logo, PIC, PICSTART,  
PICMASTER and PRO MATE are registered trademarks  
of Microchip Technology Incorporated in the U.S.A. and  
other countries. FlexROM, MPLAB and fuzzyLAB, are  
trademarks and SQTP is a service mark of Microchip in  
the U.S.A.  
Connecting to the Microchip BBS  
Connect worldwide to the Microchip BBS using either  
the Internet or the CompuServe communications net-  
work.  
Internet:  
fuzzyTECH is a registered trademark of Inform Software  
Corporation. IBM, IBM PC-AT are registered trademarks  
of International Business Machines Corp. Pentium is a  
trademark of Intel Corporation. Windows is a trademark  
and MS-DOS, Microsoft Windows are registered trade-  
marks of Microsoft Corporation. CompuServe is a regis-  
tered trademark of CompuServe Incorporated.  
You can telnet or ftp to the Microchip BBS at the  
address: mchipbbs.microchip.com  
CompuServe Communications Network:  
When using the BBS via the Compuserve Network,  
in most cases, a local call is your only expense. The  
Microchip BBS connection does not use CompuServe  
membership services, therefore you do not need  
CompuServe membership to join Microchip's BBS.  
There is no charge for connecting to the Microchip BBS.  
All other trademarks mentioned herein are the property of  
their respective companies.  
1996 Microchip Technology Inc.  
DS30390E-page 285  
PIC16C6X  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS30390E  
Device:  
PIC16C6X  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS30390E-page 286  
1996 Microchip Technology Inc.  
PIC16C7X  
PIC16C7X PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery refer to the factory or the listed sales office.  
Examples  
PART NO. -XX X /XX XXX  
Pattern:  
QTP, SQTP, Code or Special Requirements  
a)  
PIC16C72 - 04/P 301  
Commercial Temp.,  
PDIP Package, 4 MHz,  
normal VDD limits, QTP  
pattern #301  
Package:  
JW  
PQ  
TQ  
SO  
SP  
P
= Windowed CERDIP  
= MQFP (Metric PQFP)  
= TQFP (Thin Quad Flatpack)  
= SOIC  
= Skinny plastic dip  
= PDIP  
b)  
c)  
PIC16LC76 - 041/SO  
Industrial Temp., SOIC  
package, 4 MHz,  
L
= PLCC  
= SSOP  
SS  
extended VDD limits  
Temperature  
Range:  
-
= 0°C to +70°C  
= -40°C to +85°C  
= -40°C to +125°C  
I
PIC16C74A - 10E/P  
Automotive Temp.,  
PDIP package, 10 MHz,  
normal VDD limits  
E
Frequency  
Range:  
04  
04  
10  
20  
= 200 kHz (PIC16C7X-04)  
= 4 MHz  
= 10 MHz  
= 20 MHz  
Device  
PIC16C7X  
:VDD range 4.0V to 6.0V  
PIC16C7XT :VDD range 4.0V to 6.0V (Tape/Reel)  
PIC16LC7X :VDD range 2.5V to 6.0V  
PIC16LC7XT :VDD range 2.5V to 6.0V (Tape/Reel)  
* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of  
each oscillator type (including LC devices).  
Sales and Support  
Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and  
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. The Microchip Website at www.microchip.com  
2. Your local Microchip sales office (see following page)  
3. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277  
4. The Microchip’s Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.  
DS30390E-page 287  
1997 Microchip Technology Inc.  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
AMERICAS (continued)  
ASIA/PACIFIC (continued)  
Corporate Office  
Toronto  
Singapore  
Microchip Technology Inc.  
Microchip Technology Inc.  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-786-7200 Fax: 480-786-7277  
Technical Support: 480-786-7627  
Web Address: http://www.microchip.com  
5925 Airport Road, Suite 200  
Mississauga, Ontario L4V 1W1, Canada  
Tel: 905-405-6279 Fax: 905-405-6253  
#07-02 Prime Centre  
Singapore 188980  
Tel: 65-334-8870 Fax: 65-334-8850  
Taiwan, R.O.C  
Microchip Technology Taiwan  
10F-1C 207  
Tung Hua North Road  
Taipei, Taiwan, ROC  
ASIA/PACIFIC  
Hong Kong  
Microchip Asia Pacific  
Unit 2101, Tower 2  
Atlanta  
Microchip Technology Inc.  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2-401-1200 Fax: 852-2-401-3431  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Tel: 770-640-0034 Fax: 770-640-0307  
Boston  
EUROPE  
Microchip Technology Inc.  
5 Mount Royal Avenue  
Marlborough, MA 01752  
Tel: 508-480-9990 Fax: 508-480-8575  
Beijing  
United Kingdom  
Microchip Technology, Beijing  
Unit 915, 6 Chaoyangmen Bei Dajie  
Dong Erhuan Road, Dongcheng District  
New China Hong Kong Manhattan Building  
Beijing 100027 PRC  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5858 Fax: 44-118 921-5835  
Denmark  
Microchip Technology Denmark ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Chicago  
Microchip Technology Inc.  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 86-10-85282100 Fax: 86-10-85282104  
India  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
Microchip Technology Inc.  
4570 Westgrove Drive, Suite 160  
Addison, TX 75248  
Microchip Technology Inc.  
India Liaison Office  
No. 6, Legacy, Convent Road  
Bangalore 560 025, India  
Tel: 91-80-229-0061 Fax: 91-80-229-0062  
Tel: 972-818-7423 Fax: 972-818-2924  
Dayton  
Microchip Technology Inc.  
Two Prestige Place, Suite 150  
Miamisburg, OH 45342  
Tel: 937-291-1654 Fax: 937-291-9175  
Detroit  
Microchip Technology Inc.  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Japan  
France  
Microchip Technology Intl. Inc.  
Benex S-1 6F  
Arizona Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa 222-0033 Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Germany  
Arizona Microchip Technology GmbH  
Gustav-Heinemann-Ring 125  
D-81739 München, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Korea  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Shanghai  
Microchip Technology  
RM 406 Shanghai Golden Bridge Bldg.  
2077 Yan’an Road West, Hong Qiao District  
Shanghai, PRC 200335  
Italy  
Los Angeles  
Arizona Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Microchip Technology Inc.  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
New York  
Microchip Technology Inc.  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 631-273-5305 Fax: 631-273-5335  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
Tel: 86-21-6275-5700 Fax: 86 21-6275-5060  
11/15/99  
San Jose  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999. The  
Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs and microperipheral  
products. In addition, Microchips quality  
system for the design and manufacture of  
development systems is ISO 9001 certified.  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950 Fax: 408-436-7955  
All rights reserved. © 1999 Microchip Technology Incorporated. Printed in the USA. 11/99  
Printed on recycled paper.  
Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed  
by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchips products  
as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip  
logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.  
1999 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY