PIC16CE625-4I/P [MICROCHIP]

8-BIT, OTPROM, 4 MHz, RISC MICROCONTROLLER, PDIP18, 0.300 INCH, PLASTIC, MS-001, DIP-18;
PIC16CE625-4I/P
型号: PIC16CE625-4I/P
厂家: MICROCHIP    MICROCHIP
描述:

8-BIT, OTPROM, 4 MHz, RISC MICROCONTROLLER, PDIP18, 0.300 INCH, PLASTIC, MS-001, DIP-18

可编程只读存储器 光电二极管
文件: 总113页 (文件大小:1143K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16CE62X  
OTP 8-Bit CMOS MCU with EEPROM Data Memory  
Devices included in this data sheet:  
Pin Diagrams  
• PIC16CE623  
• PIC16CE624  
• PIC16CE625  
PDIP, SOIC, Windowed CERDIP  
RA1/AN1  
RA2/AN2/VREF  
RA3/AN3  
•1  
18  
RA0/AN0  
17  
2
3
4
5
6
7
8
9
High Performance RISC CPU:  
OSC1/CLKIN  
OSC2/CLKOUT  
VDD  
RB7  
RB6  
RB5  
RA4/T0CKI  
16  
MCLR/VPP  
15  
14  
13  
12  
11  
10  
• Only 35 instructions to learn  
• All single-cycle instructions (200 ns), except for  
program branches which are two-cycle  
• Operating speed:  
VSS  
RB0/INT  
RB1  
RB2  
RB3  
RB4  
- DC - 20 MHz clock input  
- DC - 200 ns instruction cycle  
Device  
Program  
Memory  
RAM  
Data  
EEPROM  
Data  
SSOP  
Memory Memory  
RA1/AN1  
RA2/AN2/VREF  
RA3/AN3  
•1  
2
20  
RA0/AN0  
19  
18  
17  
16  
15  
14  
13  
PIC16CE623  
PIC16CE624  
PIC16CE625  
512x14  
1Kx14  
2Kx14  
96x8  
96x8  
128x8  
128x8  
128x8  
OSC1/CLKIN  
OSC2/CLKOUT  
RA4/T0CKI  
3
MCLR/VPP  
4
VDD  
VDD  
RB7  
RB6  
RB5  
RB4  
VSS  
5
VSS  
6
RB0/INT  
RB1  
7
128x8  
8
RB2  
RB3  
9
12  
11  
• Interrupt capability  
• 16 special function hardware registers  
• 8-level deep hardware stack  
10  
• Direct, Indirect and Relative addressing modes  
Special Microcontroller Features (cont’d)  
Peripheral Features:  
• 13 I/O pins with individual direction control  
• High current sink/source for direct LED drive  
• Analog comparator module with:  
- Two analog comparators  
- Programmable on-chip voltage reference  
(VREF) module  
- Programmable input multiplexing from device  
inputs and internal voltage reference  
- Comparator outputs can be output signals  
• Timer0: 8-bit timer/counter with 8-bit  
programmable prescaler  
• 1,000,000 erase/write cycle EEPROM data  
memory  
• EEPROM data retention > 40 years  
• Programmable code protection  
• Power saving SLEEP mode  
• Selectable oscillator options  
• Four user programmable ID locations  
CMOS Technology:  
• Low-power, high-speed CMOS EPROM/EEPROM  
technology  
• Fully static design  
• Wide operating voltage range  
- 2.5V to 5.5V  
• Commercial, industrial and extended temperature  
range  
Special Microcontroller Features:  
• In-Circuit Serial Programming (ICSP™) (via two  
pins)  
• Power-on Reset (POR)  
• Power-up Timer (PWRT) and Oscillator Start-up  
Timer (OST)  
• Brown-out Reset  
• Watchdog Timer (WDT) with its own on-chip RC  
oscillator for reliable operation  
• Low power consumption  
- < 2.0 mA @ 5.0V, 4.0 MHz  
- 15 µA typical @ 3.0V, 32 kHz  
- < 1.0 µA typical standby current @ 3.0V  
1999 Microchip Technology Inc.  
DS40182C-page 1  
PIC16CE62X  
Table of Contents  
1.0 General Description...............................................................................................................................................3  
2.0 PIC16CE62X Device Varieties ..............................................................................................................................5  
3.0 Architectural Overview...........................................................................................................................................7  
4.0 Memory Organization ..........................................................................................................................................11  
5.0 I/O Ports...............................................................................................................................................................23  
6.0 EEPROM Peripheral Operation...........................................................................................................................29  
7.0 Timer0 Module.....................................................................................................................................................35  
8.0 Comparator Module.............................................................................................................................................41  
9.0 Voltage Reference Module ..................................................................................................................................47  
10.0 Special Features of the CPU ...............................................................................................................................49  
11.0 Instruction Set Summary .....................................................................................................................................65  
12.0 Development Support..........................................................................................................................................77  
13.0 Electrical Specifications.......................................................................................................................................83  
14.0 Packaging Information.........................................................................................................................................97  
Appendix A: Code for Accessing EEPROM Data Memory ........................................................................................103  
Index ..........................................................................................................................................................................105  
On Line Support ..........................................................................................................................................................107  
Reader Response .......................................................................................................................................................108  
PIC16CE62X Product Identification System ..............................................................................................................109  
To Our Valued Customers  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
Errata  
An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended  
workarounds. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revi-  
sion of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (480) 786-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include liter-  
ature number) you are using.  
Corrections to this Data Sheet  
We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure  
that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing  
or appears in error, please:  
Fill out and mail in the reader response form in the back of this data sheet.  
E-mail us at webmaster@microchip.com.  
We appreciate your assistance in making this a better document.  
DS40182C-page 2  
1999 Microchip Technology Inc.  
PIC16CE62X  
A highly reliable Watchdog Timer with its own on-chip  
RC oscillator provides protection against software  
lock- up.  
1.0  
GENERAL DESCRIPTION  
The PIC16CE62X are 18 and 20-Pin EPROM-based  
members of the versatile PICmicro® family of low-cost,  
A UV-erasable CERDIP-packaged version is ideal for  
code development, while the cost-effective One-Time  
Programmable (OTP) version is suitable for production  
in any volume.  
high-performance,  
microcontrollers with EEPROM data memory.  
CMOS,  
fully-static,  
8-bit  
All PICmicro® microcontrollers employ an advanced  
RISC architecture. The PIC16CE62X family has  
enhanced core features, eight-level deep stack, and  
multiple internal and external interrupt sources. The  
separate instruction and data buses of the Harvard  
architecture allow a 14-bit wide instruction word with  
separate 8-bit wide data. The two-stage instruction  
pipeline allows all instructions to execute in a sin-  
gle-cycle, except for program branches (which require  
two cycles). A total of 35 instructions (reduced instruc-  
tion set) are available. Additionally, a large register set  
gives some of the architectural innovations used to  
achieve a very high performance.  
Table 1-1 shows the features of the PIC16CE62X  
mid-range microcontroller families.  
A simplified block diagram of the PIC16CE62X is  
shown in Figure 3-1.  
The PIC16CE62X series fits perfectly in applications  
ranging from multi-pocket battery chargers to  
low-power remote sensors. The EPROM technology  
makes customization of application programs (detec-  
tion levels, pulse generation, timers, etc.) extremely  
fast and convenient. The small footprint packages  
make this microcontroller series perfect for all applica-  
tions with space limitations. Low-cost, low-power,  
high-performance, ease of use and I/O flexibility make  
the PIC16CE62X very versatile.  
PIC16CE62X microcontrollers typically achieve a 2:1  
code compression and a 4:1 speed improvement over  
other 8-bit microcontrollers in their class.  
The PIC16CE623 and PIC16CE624 have 96 bytes of  
RAM. The PIC16CE625 has 128 bytes of RAM. Each  
microcontroller contains a 128x8 EEPROM memory  
array for storing non-volatile information, such as cali-  
bration data or security codes. This memory has an  
endurance of 1,000,000 erase/write cycles and a reten-  
tion of 40 plus years.  
1.1  
Development Support  
The PIC16CE62X family is supported by a full-featured  
macro assembler, a software simulator, an in-circuit  
emulator, a low-cost development programmer and a  
full-featured programmer. A “C” compiler is also  
available.  
Each device has 13 I/O pins and an 8-bit timer/counter  
with an 8-bit programmable prescaler. In addition, the  
PIC16CE62X adds two analog comparators with a  
programmable on-chip voltage reference module. The  
comparator module is ideally suited for applications  
requiring a low-cost analog interface (e.g., battery  
chargers,  
threshold  
detectors,  
white  
goods  
controllers, etc).  
PIC16CE62X devices have special features to reduce  
external components, thus reducing system cost,  
enhancing system reliability and reducing power con-  
sumption. There are four oscillator options, of which the  
single pin RC oscillator provides a low-cost solution,  
the LP oscillator minimizes power consumption, XT is a  
standard crystal, and the HS is for High Speed crystals.  
The SLEEP (power-down) mode offers power savings.  
The user can wake-up the chip from SLEEP through  
several external and internal interrupts and reset.  
1999 Microchip Technology Inc.  
DS40182C-page 3  
PIC16CE62X  
TABLE 1-1:  
PIC16CE62X FAMILY OF DEVICES  
PIC16CE623  
PIC16CE624  
PIC16CE625  
Clock  
Maximum Frequency of Operation (MHz)  
EPROM Program Memory (x14 words)  
Data Memory (bytes)  
EEPROM Data Memory (bytes)  
Timer Module(s)  
20  
20  
20  
512  
96  
1K  
96  
2K  
Memory  
128  
128  
128  
128  
TMR0  
2
TMR0  
2
TMR0  
2
Peripherals  
Comparators(s)  
Internal Reference Voltage  
Interrupt Sources  
Yes  
4
Yes  
4
Yes  
4
I/O Pins  
13  
13  
13  
Voltage Range (Volts)  
Brown-out Reset  
2.5-5.5  
Yes  
2.5-5.5  
Yes  
2.5-5.5  
Yes  
Features  
Packages  
18-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
18-pin DIP,  
SOIC;  
20-pin SSOP  
20-pin SSOP  
20-pin SSOP  
®
All PICmicro Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capa-  
bility. All PIC16CE62X Family devices use serial programming with clock pin RB6 and data pin RB7.  
DS40182C-page 4  
1999 Microchip Technology Inc.  
PIC16CE62X  
2.3  
Quick-Turn-Programming (QTP)  
Devices  
2.0  
PIC16CE62X DEVICE  
VARIETIES  
A variety of frequency ranges and packaging options are  
available. Depending on application and production  
requirements the proper device option can be selected  
using the information in the PIC16CE62X Product  
Identification System section at the end of this data  
sheet. When placing orders, please use this page of the  
data sheet to specify the correct part number.  
Microchip offers a QTP Programming Service for  
factory production orders. This service is made  
available for users who chose not to program a medium  
to high quantity of units and whose code patterns have  
stabilized. The devices are identical to the OTP devices  
but with all EPROM locations and configuration options  
already programmed by the factory. Certain code and  
prototype verification procedures apply before  
production shipments are available. Please contact  
your Microchip Technology sales office for more details.  
2.1  
UV Erasable Devices  
The UV erasable version, offered in the CERDIP pack-  
age is optimal for prototype development and pilot  
programs. This version can be erased and  
reprogrammed to any of the oscillator modes.  
2.4  
Serialized Quick-Turn-Programming  
(SQTPSM) Devices  
Microchip offers a unique programming service where  
a few user-defined locations in each device are  
programmed with different serial numbers. The serial  
numbers may be random, pseudo-random or  
sequential.  
Microchip’s  
PICSTART  
and  
PRO MATE  
programmers both support programming of the  
PIC16CE62X.  
2.2  
One-Time-Programmable (OTP)  
Devices  
Serial programming allows each device to have a  
unique number which can serve as an entry-code,  
password or ID number.  
The availability of OTP devices is especially useful for  
customers who need the flexibility for frequent code  
updates and small volume applications. In addition to  
the program memory, the configuration bits must also  
be programmed.  
1999 Microchip Technology Inc.  
DS40182C-page 5  
PIC16CE62X  
NOTES:  
DS40182C-page 6  
1999 Microchip Technology Inc.  
PIC16CE62X  
The PIC16CE62X devices contain an 8-bit ALU and  
working register. The ALU is a general purpose  
arithmetic unit. It performs arithmetic and Boolean  
functions between data in the working register and any  
register file.  
3.0  
ARCHITECTURAL OVERVIEW  
The high performance of the PIC16CE62X family can  
be attributed to a number of architectural features  
commonly found in RISC microprocessors. To begin  
with, the PIC16CE62X uses a Harvard architecture in  
which program and data are accessed from separate  
memories using separate buses. This improves  
bandwidth over traditional von Neumann architecture  
where program and data are fetched from the same  
memory. Separating program and data memory further  
allows instructions to be sized differently than 8-bit wide  
data word. Instruction opcodes are 14-bits wide making  
it possible to have all single word instructions. A 14-bit  
wide program memory access bus fetches a 14-bit  
instruction in a single cycle. A two-stage pipeline over-  
laps fetch and execution of instructions. Consequently,  
all instructions (35) execute in a single-cycle (200 ns @  
20 MHz) except for program branches.  
The ALU is 8 bits wide and capable of addition,  
subtraction, shift and logical operations. Unless  
otherwise mentioned, arithmetic operations are two's  
complement in nature. In two-operand instructions,  
typically one operand is the working register  
(W register). The other operand is a file register or an  
immediate constant. In single operand instructions, the  
operand is either the W register or a file register.  
The W register is an 8-bit working register used for ALU  
operations. It is not an addressable register.  
Depending on the instruction executed, the ALU may  
affect the values of the Carry (C), Digit Carry (DC), and  
Zero (Z) bits in the STATUS register. The C and DC bits  
operate as a Borrow and Digit Borrow out bit  
respectively, bit in subtraction. See the SUBLW and  
SUBWFinstructions for examples.  
The table below lists program memory (EPROM), data  
memory (RAM) and non-volatile memory (EEPROM)  
for each PIC16CE62X device.  
A simplified block diagram is shown in Figure 3-1, with  
a description of the device pins in Table 3-1.  
Device  
Program  
Memory  
RAM  
Data  
EEPROM  
Data  
Memory Memory  
PIC16CE623  
PIC16CE624  
PIC16CE625  
512x14  
1Kx14  
2Kx14  
96x8  
96x8  
128x8  
128x8  
128x8  
128x8  
The PIC16CE62X can directly or indirectly address its  
register files or data memory. All special function  
registers including the program counter are mapped in  
the data memory. The PIC16CE62X family has an  
orthogonal (symmetrical) instruction set that makes it  
possible to carry out any operation on any register  
using any addressing mode. This symmetrical nature  
and lack of ‘special optimal situations’ make program-  
ming with the PIC16CE62X simple yet efficient. In addi-  
tion, the learning curve is reduced significantly.  
1999 Microchip Technology Inc.  
DS40182C-page 7  
PIC16CE62X  
FIGURE 3-1:  
BLOCK DIAGRAM  
Data Memory  
(RAM)  
EEPROM DATA  
MEMORY  
Device  
Program Memory  
PIC16CE623  
PIC16CE624  
PIC16CE625  
512 x 14  
1K x 14  
2K x 14  
96 x 8  
96 x 8  
128 x 8  
128 x 8  
128 x 8  
128 x 8  
Voltage  
Reference  
13  
8
Data Bus  
RAM  
Program Counter  
EPROM  
Program  
Memory  
8 Level Stack  
(13-bit)  
File  
Registers  
Program  
Bus  
14  
RAM Addr (1)  
9
Comparator  
RA0/AN0  
Addr MUX  
Instruction reg  
RA1/AN1  
-
+
Indirect  
Addr  
7
Direct Addr  
RA2/AN2/VREF  
RA3/AN3  
8
-
+
FSR reg  
STATUS reg  
TMR0  
3
MUX  
Power-up  
Timer  
RA4/T0CKI  
Instruction  
Decode &  
Control  
Oscillator  
Start-up Timer  
ALU  
Power-on  
Reset  
Timing  
Generation  
W reg  
I/O Ports  
Watchdog  
Timer  
OSC1/CLKIN  
OSC2/CLKOUT  
Brown-out  
Reset  
PORTB  
MCLR/VPP VDD, VSS  
EESCL  
EESDA  
EEVDD  
EEPROM  
Data  
Memory  
128 x 8  
EEINTF  
Note 1: Higher order bits are from the STATUS register.  
DS40182C-page 8  
1999 Microchip Technology Inc.  
PIC16CE62X  
TABLE 3-1:  
Name  
PIC16CE62X PINOUT DESCRIPTION  
DIP/  
SSOP  
Pin #  
I/O/P  
Type  
Buffer  
Type  
SOIC  
Pin #  
Description  
OSC1/CLKIN  
16  
15  
18  
17  
I
ST/CMOS Oscillator crystal input/external clock source input.  
OSC2/CLKOUT  
O
Oscillator crystal output. Connects to crystal or resonator  
in crystal oscillator mode. In RC mode, OSC2 pin outputs  
CLKOUT which has 1/4 the frequency of OSC1, and  
denotes the instruction cycle rate.  
4
4
I/P  
ST  
Master clear (reset) input/programming voltage input.  
This pin is an active low reset to the device.  
MCLR/VPP  
PORTA is a bi-directional I/O port.  
Analog comparator input  
RA0/AN0  
17  
18  
1
19  
20  
1
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
RA1/AN1  
Analog comparator input  
RA2/AN2/VREF  
RA3/AN3  
Analog comparator input or VREF output  
Analog comparator input /output  
2
2
RA4/T0CKI  
3
3
Can be selected to be the clock input to the Timer0  
timer/counter or a comparator output. Output is open  
drain type.  
PORTB is a bi-directional I/O port. PORTB can be  
software programmed for internal weak pull-up on all  
inputs.  
TTL/ST(1)  
RB0/INT  
6
7
I/O  
RB0/INT can also be selected as an external  
interrupt pin.  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
VSS  
7
8
8
9
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P
TTL  
TTL  
TTL  
TTL  
TTL  
9
10  
10  
11  
12  
13  
5
11  
Interrupt on change pin.  
12  
Interrupt on change pin.  
(2)  
13  
TTL/ST  
Interrupt on change pin. Serial programming clock.  
Interrupt on change pin. Serial programming data.  
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
(2)  
14  
TTL/ST  
5,6  
15,16  
VDD  
14  
P
Legend:  
O = output  
I/O = input/output  
P = power  
— = Not used  
TTL = TTL input  
I = Input  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
Note 2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
1999 Microchip Technology Inc.  
DS40182C-page 9  
PIC16CE62X  
3.1  
Clocking Scheme/Instruction Cycle  
3.2  
Instruction Flow/Pipelining  
The clock input (OSC1/CLKIN pin) is internally divided  
by four to generate four non-overlapping quadrature  
clocks namely Q1, Q2, Q3 and Q4. Internally, the  
program counter (PC) is incremented every Q1, the  
instruction is fetched from the program memory and  
latched into the instruction register in Q4. The  
instruction is decoded and executed during the  
following Q1 through Q4. The clocks and instruction  
execution flow is shown in Figure 3-2.  
An “Instruction Cycle” consists of four Q cycles (Q1,  
Q2, Q3 and Q4). The instruction fetch and execute are  
pipelined such that fetch takes one instruction cycle,  
while decode and execute takes another instruction  
cycle. However, due to the pipelining, each instruction  
effectively executes in one cycle. If an instruction  
causes the program counter to change (i.e., GOTO) then  
two cycles are required to complete the instruction  
(Example 3-1).  
A fetch cycle begins with the program counter (PC)  
incrementing in Q1.  
In the execution cycle, the fetched instruction is latched  
into the “Instruction Register (IR)” in cycle Q1. This  
instruction is then decoded and executed during the  
Q2, Q3, and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
FIGURE 3-2: CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Internal  
phase  
clock  
Q4  
PC  
PC  
PC+1  
PC+2  
OSC2/CLKOUT  
(RC mode)  
Fetch INST (PC)  
Execute INST (PC-1)  
Fetch INST (PC+1)  
Execute INST (PC)  
Fetch INST (PC+2)  
Execute INST (PC+1)  
EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW  
1. MOVLW 55h  
Fetch 1  
Execute 1  
Fetch 2  
2. MOVWF PORTB  
3. CALL SUB_1  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3  
Flush  
5. Instruction @  
address SUB_1  
Fetch SUB_1  
Execute SUB_1  
All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is “flushed”  
from the pipeline, while the new instruction is being fetched and then executed.  
DS40182C-page 10  
1999 Microchip Technology Inc.  
PIC16CE62X  
FIGURE 4-2: PROGRAM MEMORY MAP  
AND STACK FOR THE  
4.0  
MEMORY ORGANIZATION  
4.1  
Program Memory Organization  
PIC16CE624  
The PIC16CE62X has a 13-bit program counter capa-  
ble of addressing an 8K x 14 program memory space.  
Only the first 512 x 14 (0000h - 01FFh) for the  
PIC16CE623, 1K x 14 (0000h - 03FFh) for the  
PIC16CE624 and 2K x 14 (0000h - 07FFh) for the  
PIC16CE625 are physically implemented. Accessing a  
PC<12:0>  
CALL, RETURN  
RETFIE, RETLW  
13  
Stack Level 1  
Stack Level 2  
location above these boundaries will cause  
a
wrap-around within the first 512 14 space  
x
(PIC16CE623) or 1K x 14 space (PIC16CE624) or 2K  
x 14 space (PIC16CE625). The reset vector is at 0000h  
and the interrupt vector is at 0004h (Figure 4-1,  
Figure 4-2, Figure 4-3).  
Stack Level 8  
Reset Vector  
000h  
FIGURE 4-1: PROGRAM MEMORY MAP  
AND STACK FOR THE  
Interrupt Vector  
0004  
0005  
PIC16CE623  
PC<12:0>  
On-chip Program  
Memory  
CALL, RETURN  
RETFIE, RETLW  
13  
03FFh  
0400h  
Stack Level 1  
Stack Level 2  
1FFFh  
Stack Level 8  
FIGURE 4-3: PROGRAM MEMORY MAP  
AND STACK FOR THE  
Reset Vector  
PIC16CE625  
000h  
PC<12:0>  
CALL, RETURN  
RETFIE, RETLW  
13  
Interrupt Vector  
0004  
0005  
Stack Level 1  
Stack Level 2  
On-chip Program  
Memory  
Stack Level 8  
01FFh  
0200h  
Reset Vector  
000h  
1FFFh  
Interrupt Vector  
0004  
0005  
On-chip Program  
Memory  
07FFh  
0800h  
1FFFh  
1999 Microchip Technology Inc.  
DS40182C-page 11  
PIC16CE62X  
4.2.1  
GENERAL PURPOSE REGISTER FILE  
4.2  
Data Memory Organization  
The register file is organized as 96 x 8 in the  
PIC16CE623/624 and 128 x 8 in the PIC16CE625.  
Each is accessed either directly or indirectly through  
the File Select Register FSR (Section 4.4).  
The data memory (Figure 4-4 and Figure 4-5) is  
partitioned into two Banks which contain the General  
Purpose Registers and the Special Function Registers.  
Bank 0 is selected when the RP0 bit is cleared. Bank 1  
is selected when the RP0 bit (STATUS <5>) is set. The  
Special Function Registers are located in the first 32  
locations of each Bank. Register locations 20-7Fh  
(Bank0) on the PIC16CE623/624 and 20-7Fh (Bank0)  
and A0-BFh (Bank1) on the PIC16CE625 are General  
Purpose Registers implemented as static RAM. Some  
special purpose registers are mapped in Bank 1. In all  
three microcontrollers, address space F0h-FFh  
(Bank1) is mapped to 70-7Fh (Bank0) as common  
RAM.  
DS40182C-page 12  
1999 Microchip Technology Inc.  
PIC16CE62X  
FIGURE 4-4: DATA MEMORY MAP FOR  
THE PIC16CE623/624  
FIGURE 4-5: DATA MEMORY MAP FOR  
THE PIC16CE625  
File  
Address  
File  
Address  
File  
Address  
File  
Address  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
INDF(1)  
TMR0  
PCL  
INDF(1)  
OPTION  
PCL  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
INDF(1)  
TMR0  
PCL  
INDF(1)  
OPTION  
PCL  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
TRISA  
TRISB  
PORTA  
PORTB  
TRISA  
TRISB  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
PCON  
PCON  
EEINTF  
EEINTF  
CMCON  
VRCON  
CMCON  
VRCON  
A0h  
A0h  
General  
Purpose  
Register  
General  
Purpose  
Register  
General  
Purpose  
Register  
BFh  
C0h  
EFh  
F0h  
F0h  
FFh  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
FFh  
7Fh  
7Fh  
Bank 0  
Bank 1  
Bank 0  
Bank 1  
Unimplemented data memory locations, read as ’0’.  
Unimplemented data memory locations, read as ’0’.  
Note 1: Not a physical register.  
Note 1: Not a physical register.  
1999 Microchip Technology Inc.  
DS40182C-page 13  
PIC16CE62X  
4.2.2  
SPECIAL FUNCTION REGISTERS  
The special registers can be classified into two sets  
(core and peripheral). The Special Function Registers  
associated with the “core” functions are described in  
this section. Those related to the operation of the  
peripheral features are described in the section of that  
peripheral feature.  
The Special Function Registers are registers used by  
the CPU and peripheral functions for controlling the  
desired operation of the device (Table 4-1). These  
registers are static RAM.  
TABLE 4-1:  
SPECIAL REGISTERS FOR THE PIC16CE62X  
Value on all  
Value on  
other  
Address Name  
Bank 0  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR Reset  
resets(1)  
Addressing this location uses contents of FSR to address data memory (not a physical  
register)  
00h  
INDF  
xxxx xxxx  
xxxx xxxx  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
TMR0  
Timer0 Module’s Register  
xxxx xxxx  
0000 0000  
0001 1xxx  
uuuu uuuu  
0000 0000  
000q quuu  
PCL  
Program Counter's (PC) Least Significant Byte  
IRP(2)  
RP1(2)  
STATUS  
FSR  
RP0  
TO  
PD  
Z
DC  
C
Indirect data memory address pointer  
xxxx xxxx  
---x 0000  
xxxx xxxx  
uuuu uuuu  
---u 0000  
uuuu uuuu  
PORTA  
RA4  
RB4  
RA3  
RB3  
RA2  
RB2  
RA1  
RB1  
RA0  
RB0  
PORTB  
RB7  
RB6  
RB5  
Unimplemented  
Unimplemented  
Unimplemented  
PCLATH  
INTCON  
PIR1  
GIE  
T0IE  
Write buffer for upper 5 bits of program counter  
---0 0000  
0000 000x  
-0-- ----  
---0 0000  
0000 000u  
-0-- ----  
PEIE  
CMIF  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0Dh-1Eh Unimplemented  
1Fh  
CMCON  
C2OUT  
C1OUT  
CIS  
CM2  
CM1  
CM0  
00-- 0000  
00-- 0000  
Bank 1  
Addressing this location uses contents of FSR to address data memory (not a physical  
register)  
xxxx xxxx  
xxxx xxxx  
80h  
INDF  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
OPTION  
PCL  
RBPU  
Program Counter's (PC) Least Significant Byte  
IRP RP1 RP0 TO  
Indirect data memory address pointer  
TRISA4 TRISA3 TRISA2 TRISA1 TRISA0  
TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
1111 1111  
0000 0000  
0001 1xxx  
xxxx xxxx  
---1 1111  
1111 1111  
1111 1111  
0000 0000  
000q quuu  
uuuu uuuu  
---1 1111  
1111 1111  
STATUS  
PD  
Z
DC  
C
FSR  
TRISA  
TRISB  
Unimplemented  
Unimplemented  
Unimplemented  
PCLATH  
INTCON  
PIE1  
GIE  
T0IE  
Write buffer for upper 5 bits of program counter  
---0 0000  
0000 000x  
-0-- ----  
---0 0000  
0000 000u  
-0-- ----  
PEIE  
CMIE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
Unimplemented  
PCON  
POR  
BOD  
---- --0x  
---- --uq  
8Fh-9Eh Unimplemented  
90h  
EEINTF  
EESCL  
VR2  
EESDA  
VR1  
EEVDD  
---- -111  
000- 0000  
---- -111  
000- 0000  
9Fh  
VRCON  
VREN  
VROE  
VRR  
VR3  
VR0  
Legend: = Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition,  
shaded = unimplemented  
Note 1: Other (non power-up) resets include MCLR reset, Brown-out Reset and Watchdog Timer Reset during normal  
operation.  
Note 2: IRP & RPI bits are reserved; always maintain these bits clear.  
DS40182C-page 14  
1999 Microchip Technology Inc.  
PIC16CE62X  
4.2.2.1  
STATUS REGISTER  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register, because these instructions do not  
affect any status bit. For other instructions, not affecting  
any status bits, see the “Instruction Set Summary”.  
The STATUS register, shown in Register 4-1, contains  
the arithmetic status of the ALU, the RESET status and  
the bank select bits for data memory.  
The STATUS register can be the destination for any  
instruction, like any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 1: The IRP and RP1 bits (STATUS<7:6>)  
are not used by the PIC16CE62X and  
should be programmed as ’0'. Use of  
these bits as general purpose R/W bits  
is NOT recommended, since this may  
affect upward compatibility with future  
products.  
Note 2: The C and DC bits operate as a Borrow  
and Digit Borrow out bit, respectively, in  
subtraction. See the SUBLWand SUBWF  
instructions for examples.  
For example, CLRF STATUSwill clear the upper-three  
bits and set the Z bit. This leaves the status register as  
000uu1uu(where u= unchanged).  
REGISTER 4-1: STATUS REGISTER (ADDRESS 03H OR 83H)  
Reserved Reserved R/W-0  
IRP RP1  
bit7  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
RP0  
R
=
Readable bit  
W = Writable bit  
U
bit0  
=
Unimplemented bit,  
read as ‘0’  
-n  
-x  
=
=
Value at POR reset  
Unknown at POR reset  
bit 7:  
IRP: The IRP bit is reserved on the PIC16CE62X, always maintain this bit clear.  
bit 6:5 RP<1:O>: Register Bank Select bits (used for direct addressing)  
11= Bank 3 (180h - 1FFh)  
10= Bank 2 (100h - 17Fh)  
01= Bank 1 (80h - FFh)  
00= Bank 0 (00h - 7Fh)  
Each bank is 128 bytes. The RP1 bit is reserved, always maintain this bit clear.  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction, or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions) (for borrow the polarity is reversed)  
1= A carry-out from the 4th low order bit of the result occurred  
0= No carry-out from the 4th low order bit of the result  
C: Carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions)  
1= A carry-out from the most significant bit of the result occurred  
0= No carry-out from the most significant bit of the result occurred  
Note: For borrow the polarity is reversed. A subtraction is executed by adding the two’s complement of the  
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of  
the source register.  
1999 Microchip Technology Inc.  
DS40182C-page 15  
PIC16CE62X  
4.2.2.2  
OPTION REGISTER  
Note: To achieve a 1:1 prescaler assignment for  
TMR0, assign the prescaler to the WDT  
(PSA = 1).  
The OPTION register is a readable and writable  
register which contains various control bits to configure  
the TMR0/WDT prescaler, the external RB0/INT  
interrupt, TMR0 and the weak pull-ups on PORTB.  
REGISTER 4-2: OPTION REGISTER (ADDRESS 81H)  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
R
=
Readable bit  
W = Writable bit  
bit7  
bit0  
U
=
Unimplemented bit,  
read as ‘0’  
-n  
-x  
=
=
Value at POR reset  
Unknown at POR reset  
bit 7:  
RBPU: PORTB Pull-up Enable bit  
1= PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of RB0/INT pin  
0= Interrupt on falling edge of RB0/INT pin  
T0CS: TMR0 Clock Source Select bit  
1= Transition on RA4/T0CKI pin  
0= Internal instruction cycle clock (CLKOUT)  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on RA4/T0CKI pin  
0= Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
bit 2-0: PS<2:0>: Prescaler Rate Select bits  
Bit Value  
TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
DS40182C-page 16  
1999 Microchip Technology Inc.  
PIC16CE62X  
4.2.2.3  
INTCON REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>).  
The INTCON register is a readable and writable  
register which contains the various enable and flag bits  
for all interrupt sources except the comparator module.  
See Section 4.2.2.4 and Section 4.2.2.5 for  
description of the comparator enable and flag bits.  
a
REGISTER 4-3: INTCON REGISTER (ADDRESS 0BH OR 8BH)  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
RBIE  
R/W-0  
T0IF  
R/W-0  
INTF  
R/W-x  
RBIF  
R
=
Readable bit  
W = Writable bit  
bit7  
bit0  
U
=
Unimplemented bit,  
read as ‘0’  
-n  
-x  
=
=
Value at POR reset  
Unknown at POR reset  
bit 7:  
GIE: Global Interrupt Enable bit  
1= Enables all un-masked interrupts  
0= Disables all interrupts  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all un-masked peripheral interrupts  
0= Disables all peripheral interrupts  
T0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 interrupt  
0= Disables the TMR0 interrupt  
INTE: RB0/INT External Interrupt Enable bit  
1= Enables the RB0/INT external interrupt  
0= Disables the RB0/INT external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
T0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INTF: RB0/INT External Interrupt Flag bit  
1= The RB0/INT external interrupt occurred (must be cleared in software)  
0= The RB0/INT external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1= When at least one of the RB<7:4> pins changed state (must be cleared in software)  
0= None of the RB<7:4> pins have changed state  
1999 Microchip Technology Inc.  
DS40182C-page 17  
PIC16CE62X  
4.2.2.4  
PIE1 REGISTER  
This register contains the individual enable bit for the  
comparator interrupt.  
REGISTER 4-4: PIE1 REGISTER (ADDRESS 8CH)  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
CMIE  
R
=
Readable bit  
W = Writable bit  
bit7  
bit0  
U
=
Unimplemented bit,  
read as ‘0’  
-n  
-x  
=
=
Value at POR reset  
Unknown at POR reset  
bit 7:  
Unimplemented: Read as ’0’  
bit 6:  
CMIE: Comparator Interrupt Enable bit  
1= Enables the Comparator interrupt  
0= Disables the Comparator interrupt  
bit 5-0: Unimplemented: Read as ’0’  
4.2.2.5  
PIR1 REGISTER  
This register contains the individual flag bit for the com-  
parator interrupt.  
Note: Interrupt flag bits get set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User  
software should ensure the appropriate  
interrupt flag bits are clear prior to enabling  
an interrupt.  
REGISTER 4-5: PIR1 REGISTER (ADDRESS 0CH)  
U-0  
R/W-0  
CMIF  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R
=
Readable bit  
W = Writable bit  
bit7  
bit0  
U
=
Unimplemented bit,  
read as ‘0’  
-n  
-x  
=
=
Value at POR reset  
Unknown at POR reset  
bit 7:  
Unimplemented: Read as ’0’  
bit 6:  
CMIF: Comparator Interrupt Flag bit  
1= Comparator input has changed  
0= Comparator input has not changed  
bit 5-0: Unimplemented: Read as ’0’  
DS40182C-page 18  
1999 Microchip Technology Inc.  
PIC16CE62X  
4.2.2.6  
PCON REGISTER  
The PCON register contains flag bits to differentiate  
between a Power-on Reset, an external MCLR reset,  
WDT reset or a Brown-out Reset.  
Note: BOD is unknown on Power-on Reset. It  
must then be set by the user and checked  
on subsequent resets to see if BOD is  
cleared, indicating  
a
brown-out has  
occurred. The BOD status bit is a "don’t  
care" and is not necessarily predictable if  
the brown-out circuit is disabled (by  
programming  
BODEN  
bit  
in  
the  
configuration word).  
REGISTER 4-6: PCON REGISTER (ADDRESS 8Eh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
POR  
BOD  
R
=
Readable bit  
W = Writable bit  
bit7  
bit0  
U
=
Unimplemented bit,  
read as ‘0’  
-n  
-x  
=
=
Value at POR reset  
Unknown at POR reset  
bit 7-2: Unimplemented: Read as ’0’  
bit 1:  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0:  
BOD: Brown-out Reset Status bit  
1= No Brown-out Reset occurred  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
1999 Microchip Technology Inc.  
DS40182C-page 19  
PIC16CE62X  
4.3.2  
STACK  
4.3  
PCL and PCLATH  
The PIC16CE62X family has an 8 level deep x 13-bit  
wide hardware stack (Figure 4-2 and Figure 4-3). The  
stack space is not part of either program or data  
space and the stack pointer is not readable or writ-  
able. The PC is PUSHed onto the stack when a CALL  
instruction is executed or an interrupt causes a  
branch. The stack is POPed in the event of a  
RETURN, RETLWor a RETFIEinstruction execution.  
PCLATH is not affected by a PUSH or POP operation.  
The program counter (PC) is 13 bits wide. The low byte  
comes from the PCL register, which is a readable and  
writable register. The high byte (PC<12:8>) is not directly  
readable or writable and comes from PCLATH. On any  
reset, the PC is cleared. Figure 4-6 shows the two  
situations for the loading of the PC. The upper example in  
the figure shows how the PC is loaded on a write to PCL  
(PCLATH<4:0> PCH). The lower example in the figure  
shows how the PC is loaded during a CALL or GOTO  
instruction (PCLATH<4:3> PCH).  
The stack operates as a circular buffer. This means that  
after the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
FIGURE 4-6: LOADING OF PC IN  
DIFFERENT SITUATIONS  
PCH  
PCL  
Note 1: There are no STATUS bits to indicate  
stack overflow or stack underflow  
conditions.  
12  
8
7
0
Instruction with  
PCL as  
Destination  
PC  
8
PCLATH<4:0>  
PCLATH  
5
Note 2: There are no instruction/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the  
CALL, RETURN, RETLWand RETFIE  
instructions or the vectoring to an  
interrupt address.  
ALU result  
PCH  
12 11 10  
PCL  
8
7
0
GOTO, CALL  
PC  
PCLATH<4:3>  
PCLATH  
11  
2
Opcode <10:0>  
4.3.1  
COMPUTED GOTO  
A computed GOTO is accomplished by adding an offset  
to the program counter (ADDWF PCL). When doing a  
table read using a computed GOTO method, care  
should be exercised if the table location crosses a PCL  
memory boundary (each 256 byte block). Refer to the  
application note, “Implementing  
a
Table Read"  
(AN556).  
DS40182C-page 20  
1999 Microchip Technology Inc.  
PIC16CE62X  
A simple program to clear RAM location 20h-2Fh using  
indirect addressing is shown in Example 4-1.  
4.4  
Indirect Addressing, INDF and FSR  
Registers  
The INDF register is not a physical register. Addressing  
the INDF register will cause indirect addressing.  
EXAMPLE 4-1: INDIRECT ADDRESSING  
movlw 0x20  
movwf FSR  
;initialize pointer  
;to RAM  
Indirect addressing is possible by using the INDF reg-  
ister. Any instruction using the INDF register actually  
accesses data pointed to by the File Select Register  
(FSR). Reading INDF itself indirectly will produce 00h.  
Writing to the INDF register indirectly results in a  
no-operation (although status bits may be affected). An  
effective 9-bit address is obtained by concatenating the  
8-bit FSR register and the IRP bit (STATUS<7>), as  
shown in Figure 4-7. However, IRP is not used in the  
PIC16CE62X.  
NEXT  
clrf  
incf  
INDF  
FSR  
;clear INDF register  
;inc pointer  
btfss FSR,4 ;all done?  
goto  
NEXT  
;no clear next  
;yes continue  
CONTINUE:  
FIGURE 4-7: DIRECT/INDIRECT ADDRESSING PIC16CE62X  
Direct Addressing  
Indirect Addressing  
(1)  
(1)  
RP1 RP0  
bank select  
from opcode  
7
6
0
0
IRP  
FSR Register  
bank select  
180h  
location select  
location select  
00  
01  
10  
11  
00h  
not used  
Data  
Memory  
7Fh  
1FFh  
Bank 0  
Bank 1 Bank 2  
Bank 3  
For memory map detail see Figure 4-4 and Figure 4-5.  
Note 1: The RP1 and IRP bits are reserved; always maintain these bits clear.  
1999 Microchip Technology Inc.  
DS40182C-page 21  
PIC16CE62X  
NOTES:  
DS40182C-page 22  
1999 Microchip Technology Inc.  
PIC16CE62X  
Note: On reset, the TRISA register is set to all  
inputs. The digital inputs are disabled and  
the comparator inputs are forced to ground  
to reduce excess current consumption.  
5.0  
I/O PORTS  
The PIC16CE62X parts have two ports, PORTA and  
PORTB. Some pins for these I/O ports are multiplexed  
with an alternate function for the peripheral features on  
the device. In general, when a peripheral is enabled,  
that pin may not be used as a general purpose I/O pin.  
TRISA controls the direction of the RA pins, even when  
they are being used as comparator inputs. The user  
must make sure to keep the pins configured as inputs  
when using them as comparator inputs.  
5.1  
PORTA and TRISA Registers  
The RA2 pin will also function as the output for the  
voltage reference. When in this mode, the VREF pin is a  
very high impedance output. The user must configure  
TRISA<2> bit as an input and use high impedance  
loads.  
PORTA is a 5-bit wide latch. RA4 is a Schmitt Trigger input  
and an open drain output. Port RA4 is multiplexed with the  
T0CKI clock input. All other RA port pins have Schmitt  
Trigger input levels and full CMOS output drivers. All pins  
have data direction bits (TRIS registers), which can con-  
figure these pins as input or output.  
In one of the comparator modes defined by the  
CMCON register, pins RA3 and RA4 become outputs  
of the comparators. The TRISA<4:3> bits must be  
cleared to enable outputs to use this function.  
A ’1’ in the TRISA register puts the corresponding output  
driver in a hi- impedance mode. A ’0’ in the TRISA register  
puts the contents of the output latch on the selected pin(s).  
Reading the PORTA register reads the status of the pins,  
whereas writing to it will write to the port latch. All write  
operations are read-modify-write operations. So a write  
to a port implies that the port pins are first read, then this  
value is modified and written to the port data latch.  
EXAMPLE 5-1: INITIALIZING PORTA  
CLRF PORTA  
;Initialize PORTA by setting  
;output data latches  
;Turn comparators off and  
;enable pins for I/O  
;functions  
MOVLW 0X07  
MOVWF CMCON  
The PORTA pins are multiplexed with comparator and  
voltage reference functions. The operation of these  
pins are selected by control bits in the CMCON  
(Comparator Control Register) register and the  
VRCON (Voltage Reference Control Register) register.  
When selected as a comparator input, these pins will  
read as ’0’s.  
BSF  
STATUS, RP0 ;Select Bank1  
MOVLW 0x1F  
;Value used to initialize  
;data direction  
MOVWF TRISA  
;Set RA<4:0> as inputs  
;TRISA<7:5> are always  
;read as ’0’.  
FIGURE 5-2: BLOCK DIAGRAM OF RA2 PIN  
FIGURE 5-1: BLOCK DIAGRAM OF  
RA<1:0> PINS  
Data  
Bus  
D
Q
Q
Data  
Bus  
VDD VDD  
P
WR  
PortA  
D
Q
Q
CK  
VDD VDD  
P
WR  
PortA  
Data Latch  
CK  
D
Q
RA2 Pin  
Data Latch  
N
WR  
TRISA  
D
Q
Q
CK  
I/O Pin  
N
WR  
TRISA  
VSS  
TRIS Latch  
Analog  
Input Mode  
CK  
Q
VSS  
TRIS Latch  
Schmitt Trigger  
Input Buffer  
Analog  
Input Mode  
RD TRISA  
Schmitt Trigger  
Input Buffer  
Q
D
RD TRISA  
Q
D
EN  
RD PORTA  
EN  
RD PORTA  
To Comparator  
VROE  
To Comparator  
VREF  
1999 Microchip Technology Inc.  
DS40182C-page 23  
PIC16CE62X  
FIGURE 5-3: BLOCK DIAGRAM OF RA3 PIN  
Data  
Comparator Mode = 110  
Comparator Output  
Bus  
D
Q
Q
VDD  
P
VDD  
WR  
PORTA  
CK  
Data Latch  
D
Q
RA3 Pin  
N
WR  
TRISA  
CK  
Q
VSS  
TRIS Latch  
Analog  
Input Mode  
Schmitt Trigger  
Input Buffer  
RD TRISA  
Q
D
EN  
RD PORTA  
To Comparator  
FIGURE 5-4: BLOCK DIAGRAM OF RA4 PIN  
Data  
Comparator Mode = 110  
Comparator Output  
Bus  
D
Q
Q
WR  
PORTA  
CK  
Data Latch  
D
Q
RA4 Pin  
N
WR  
TRISA  
CK  
Q
VSS  
TRIS Latch  
Schmitt Trigger  
Input Buffer  
RD TRISA  
Q
D
EN  
RD PORTA  
TMR0 Clock Input  
DS40182C-page 24  
1999 Microchip Technology Inc.  
PIC16CE62X  
TABLE 5-1:  
Name  
PORTA FUNCTIONS  
Buffer  
Bit #  
Type  
Function  
RA0/AN0  
bit0  
bit1  
bit2  
bit3  
bit4  
ST  
ST  
ST  
ST  
ST  
Input/output or comparator input  
Input/output or comparator input  
RA1/AN1  
RA2/AN2/VREF  
RA3/AN3  
Input/output or comparator input or VREF output  
Input/output or comparator input/output  
RA4/T0CKI  
Input/output or external clock input for TMR0 or comparator output.  
Output is open drain type.  
Legend: ST = Schmitt Trigger input  
TABLE 5-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on  
All Other  
Resets  
Value on:  
POR  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
05h  
85h  
1Fh  
9Fh  
PORTA  
TRISA  
RA4  
RA3  
RA2  
RA1  
RA0  
---x 0000 ---u 0000  
TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 ---1 1111 ---1 1111  
CMCON  
VRCON  
C2OUT C1OUT  
VREN VROE  
CIS  
CM2  
VR2  
CM1  
VR1  
CM0  
VR0  
00-- 0000 00-- 0000  
000- 0000 000- 0000  
VRR  
VR3  
Legend: — = Unimplemented locations, read as ‘0’, x = unknown, u = unchanged  
Note: Shaded bits are not used by PORTA.  
1999 Microchip Technology Inc.  
DS40182C-page 25  
PIC16CE62X  
This interrupt can wake the device from SLEEP. The  
user, in the interrupt service routine, can clear the  
interrupt in the following manner:  
5.2  
PORTB and TRISB Registers  
PORTB is an 8-bit wide, bi-directional port. The  
corresponding data direction register is TRISB. A ’1’ in  
the TRISB register puts the corresponding output driver  
in a high impedance mode. A ’0’ in the TRISB register  
puts the contents of the output latch on the selected  
pin(s).  
a) Any read or write of PORTB. This will end the  
mismatch condition.  
b) Clear flag bit RBIF.  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition and  
allow flag bit RBIF to be cleared.  
Reading PORTB register reads the status of the pins,  
whereas writing to it will write to the port latch. All write  
operations are read-modify-write operations. So a write  
to a port implies that the port pins are first read, then  
this value is modified and written to the port data latch.  
This interrupt on mismatch feature, together with  
software configurable pull-ups on these four pins allow  
easy interface to a key pad and make it possible for  
wake-up on key-depression. (See AN552, “Implement-  
ing Wake-Up on Key Strokes”.)  
Each of the PORTB pins has a weak internal pull-up  
(200 µA typical). A single control bit can turn on all the  
pull-ups. This is done by clearing the RBPU  
(OPTION<7>) bit. The weak pull-up is automatically  
turned off when the port pin is configured as an output.  
The pull-ups are disabled on Power-on Reset.  
Note: If a change on the I/O pin should occur  
when the read operation is being executed  
(start of the Q2 cycle), then the RBIF inter-  
rupt flag may not get set.  
Four of PORTB’s pins, RB<7:4>, have an interrupt on  
change feature. Only pins configured as inputs can  
cause this interrupt to occur (i.e., any RB<7:4> pin con-  
figured as an output is excluded from the interrupt on  
change comparison). The input pins of RB<7:4> are  
compared with the old value latched on the last read of  
PORTB. The “mismatch” outputs of RB<7:4> are  
OR’ed together to generate the RBIF interrupt (flag  
latched in INTCON<0>).  
The interrupt on change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt on change  
feature. Polling of PORTB is not recommended while  
using the interrupt on change feature.  
FIGURE 5-6: BLOCK DIAGRAM OF  
RB<3:0> PINS  
VDD  
RBPU(1)  
FIGURE 5-5: BLOCK DIAGRAM OF  
P
weak  
RB<7:4> PINS  
I/O pin  
Data Latch  
pull-up  
Data Bus  
VDD  
D
Q
RBPU(1)  
P
WR PORTB  
CK  
CK  
weak  
I/O pin  
pull-up  
Data Latch  
Data Bus  
D
Q
D
Q
TTL  
WR PORTB  
Input  
Buffer  
WR TRISB(1)  
CK  
TRIS Latch  
D
Q
WR TRISB(1)  
TTL  
CK  
RD TRISB  
RD PORTB  
Input  
Buffer  
ST  
Buffer  
Q
D
EN  
RD TRISB  
Latch  
Q
Q
D
RB0/INT  
EN  
RD PORTB  
ST  
Buffer  
RD Port  
Set RBIF  
From other  
RB<7:4> pins  
D
Note 1: TRISB = 1 enables weak pull-up if RBPU = ’0’  
(OPTION<7>).  
EN  
RD Port  
RB<7:6> in serial programming mode  
Note 1: TRISB = 1 enables weak pull-up if RBPU = ’0’  
(OPTION<7>).  
DS40182C-page 26  
1999 Microchip Technology Inc.  
PIC16CE62X  
TABLE 5-3:  
Name  
PORTB FUNCTIONS  
Bit #  
Buffer Type  
Function  
TTL/ST(1)  
RB0/INT  
bit0  
Input/output or external interrupt input. Internal software programmable  
weak pull-up.  
RB1  
RB2  
RB3  
RB4  
bit1  
bit2  
bit3  
bit4  
TTL  
TTL  
TTL  
TTL  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up.  
RB5  
RB6  
RB7  
bit5  
bit6  
bit7  
TTL  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up.  
TTL/ST(2)  
TTL/ST(2)  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up. Serial programming clock pin.  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up. Serial programming data pin.  
Legend: ST = Schmitt Trigger, TTL = TTL input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
Note 2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
TABLE 5-4:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on  
All Other  
Resets  
Value on:  
POR  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
06h  
86h  
81h  
PORTB  
TRISB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
xxxx xxxx uuuu uuuu  
TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 1111 1111 1111 1111  
OPTION  
RBPU INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
1111 1111 1111 1111  
Legend: u= unchanged, x= unknown  
Note: Shaded bits are not used by PORTB.  
1999 Microchip Technology Inc.  
DS40182C-page 27  
PIC16CE62X  
5.3  
I/O Programming Considerations  
BI-DIRECTIONAL I/O PORTS  
EXAMPLE 5-2: READ-MODIFY-WRITE  
INSTRUCTIONS ON AN  
5.3.1  
I/O PORT  
;Initial PORT settings: PORTB<7:4> Inputs  
;
Any instruction which writes, operates internally as a  
read followed by a write operation. The BCFand BSF  
instructions, for example, read the register into the  
CPU, execute the bit operation and write the result back  
to the register. Caution must be used when these  
instructions are applied to a port with both inputs and  
outputs defined. For example, a BSFoperation on bit5  
of PORTB will cause all eight bits of PORTB to be read  
into the CPU. Then the BSFoperation takes place on  
bit5 and PORTB is written to the output latches. If  
another bit of PORTB is used as a bidirectional I/O pin  
(i.e., bit0) and it is defined as an input at this time, the  
input signal present on the pin itself would be read into  
the CPU and re-written to the data latch of this  
particular pin, overwriting the previous content. As long  
as the pin stays in the input mode, no problem occurs.  
However, if bit0 is switched into output mode later on,  
the content of the data latch may now be unknown.  
;
PORTB<3:0> Outputs  
;PORTB<7:6> have external pull-up and are not  
;connected to other circuitry  
;
;
;
PORT latch PORT pins  
---------- ----------  
BCF PORTB, 7  
BCF PORTB, 6  
BSF STATUS,RP0  
BCF TRISB, 7  
BCF TRISB, 6  
;01pp pppp 11pp pppp  
;10pp pppp 11pp pppp  
;
;10pp pppp 11pp pppp  
;10pp pppp 10pp pppp  
;
;Note that the user may have expected the pin  
;values to be 00pp pppp. The 2nd BCF caused  
;RB7 to be latched as the pin value (High).  
5.3.2  
SUCCESSIVE OPERATIONS ON I/O PORTS  
Reading the port register, reads the values of the port  
pins. Writing to the port register writes the value to the  
port latch. When using read modify write instructions  
(i.e., BCF, BSF, etc.) on a port, the value of the port pins  
is read, the desired operation is done to this value, and  
this value is then written to the port latch.  
The actual write to an I/O port happens at the end of an  
instruction cycle, whereas for reading, the data must be  
valid at the beginning of the instruction cycle  
(Figure 5-7). Therefore, care must be exercised if a  
write followed by a read operation is carried out on the  
same I/O port. The sequence of instructions should  
allow the pin voltage to stabilize (load dependent)  
before the next instruction causes that file to be read  
into the CPU. Otherwise, the previous state of that pin  
may be read into the CPU rather than the new state.  
When in doubt, it is better to separate these instruc-  
tions with an NOP or another instruction not accessing  
this I/O port.  
Example 5-2 shows the effect of two sequential  
read-modify-write instructions (i.e., BCF, BSF, etc.) on  
an I/O port.  
A pin actively outputting a Low or High should not be  
driven from external devices at the same time in order  
to change the level on this pin (“wired-or”, “wired-and”).  
The resulting high output currents may damage  
the chip.  
FIGURE 5-7: SUCCESSIVE I/O OPERATION  
Note:  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
This example shows write to PORTB  
followed by a read from PORTB.  
PC  
PC + 1  
PC + 2  
NOP  
PC + 3  
NOP  
PC  
Instruction  
MOVWF PORTB  
Write to  
PORTB  
MOVF PORTB, W  
Read PORTB  
Note that:  
Fetched  
data setup time = (0.25 TCY - TPD)  
where TCY = instruction cycle and  
TPD = propagation delay of Q1 cycle  
to output valid.  
RB<7:0>  
Port pin  
sampled here  
Therefore, at higher clock frequencies,  
a write followed by a read may be  
problematic.  
TPD  
Execute  
MOVWF  
PORTB  
Execute  
MOVF  
PORTB, W  
Execute  
NOP  
DS40182C-page 28  
1999 Microchip Technology Inc.  
PIC16CE62X  
The code for these functions is available on our web  
site (www.microchip.com). The code will be accessed  
by either including the source code FL62XINC.ASM or  
by linking FLASH62X.ASM. FLASH62.IMC provides  
external definition to the calling program.  
6.0  
EEPROM PERIPHERAL  
OPERATION  
The PIC16CE623/624/625 each have 128 bytes of  
EEPROM data memory. The EEPROM data memory  
supports a bi-directional, 2-wire bus and data transmis-  
sion protocol. These two-wires are serial data (SDA)  
and serial clock (SCL), and are mapped to bit1 and bit2,  
respectively, of the EEINTF register (SFR 90h). In addi-  
tion, the power to the EEPROM can be controlled using  
bit0 (EEVDD) of the EEINTF register. For most appli-  
cations, all that is required is calls to the following func-  
tions:  
6.0.1  
SERIAL DATA  
SDA is a bi-directional pin used to transfer addresses  
and data into and data out of the memory.  
For normal data transfer, SDA is allowed to change only  
during SCL low. Changes during SCL high are  
reserved for indicating the START and STOP condi-  
tions.  
; Byte_Write: Byte write routine  
;
;
;
;
;
Inputs:EEPROM Address  
EEPROM Data  
EEADDR  
EEDATA  
6.0.2  
SERIAL CLOCK  
Outputs:  
Return 01 in W if OK, else  
return 00 in W  
This SCL input is used to synchronize the data transfer  
to and from the memory.  
; Read_Current: Read EEPROM at address  
currently held by EE device.  
6.0.3  
EEINTF REGISTER  
;
;
;
;
;
Inputs:NONE  
Outputs:  
The EEINTF register (SFR 90h) controls the access to  
the EEPROM. Register 6-1 details the function of each  
bit. User code must generate the clock and data sig-  
nals.  
EEPROM Data  
EEDATA  
Return 01 in W if OK, else  
return 00 in W  
; Read_Random: Read EEPROM byte at supplied  
; address  
;
;
;
;
Inputs:EEPROM Address  
Outputs: EEPROM Data  
EEADDR  
EEDATA  
Return 01 in W if OK,  
else return 00 in W  
REGISTER 6-1: EEINTF REGISTER (ADDRESS 90h)  
U-0  
bit7  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
EESCL  
EESDA  
EEVDD  
R
= Readable bit  
W = Writable bit  
U
bit0  
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7-3: Unimplemented: Read as ’0’  
bit 2:  
EESCL: Clock line to the EEPROM  
1= Clock high  
0= Clock low  
bit 1:  
EESDA: Data line to EEPROM  
1= Data line is high (pin is tri-stated, line is pulled high by a pull-up resistor)  
0= Data line is low  
bit 0:  
EEVDD: VDD control bit for EEPROM  
1= VDD is turned on to EEPROM  
0= VDD is turned off to EEPROM (all pins are tri-stated and the EEPROM is powered down)  
Note: EESDA, EESCL and EEVDD will read ‘0’ if EEVDD is turned off.  
1999 Microchip Technology Inc.  
DS40182C-page 29  
PIC16CE62X  
6.1.5  
ACKNOWLEDGE  
6.1  
Bus Characteristics  
The EEPROM will generate an acknowledge after the  
reception of each byte. The processor must generate  
an extra clock pulse which is associated with this  
acknowledge bit.  
In this section, the term “processor” refers to the portion  
of the PIC16CE62X that interfaces to the EEPROM  
through software manipulating the EEINTF register.  
The following bus protocol is to be used with the  
EEPROM data memory.  
Note: Acknowledge bits are not generated if an  
• Data transfer may be initiated only when the bus  
is not busy.  
internal programming cycle is in progress.  
When the EEPROM acknowledges, it pulls down the  
SDA line during the acknowledge clock pulse in such a  
way that the SDA line is stable LOW during the HIGH  
period of the acknowledge related clock pulse. Of  
course, setup and hold times must be taken into  
account. The processor must signal an end of data to  
the EEPROM by not generating an acknowledge bit on  
the last byte that has been clocked out of the EEPROM.  
In this case, the EEPROM must leave the data line  
HIGH to enable the processor to generate the STOP  
condition (Figure 6-2).  
• During data transfer, the data line must remain  
stable whenever the clock line is HIGH. Changes  
in the data line while the clock line is HIGH will be  
interpreted by the EEPROM as a START or STOP  
condition.  
Accordingly, the following bus conditions have been  
defined (Figure 6-1).  
6.1.1  
BUS NOT BUSY (A)  
Both data and clock lines remain HIGH.  
6.1.2  
START DATA TRANSFER (B)  
A HIGH to LOW transition of the SDA line while the  
clock (SCL) is HIGH determines a START condition. All  
commands must be preceded by a START condition.  
6.1.3  
STOP DATA TRANSFER (C)  
A LOW to HIGH transition of the SDA line while the  
clock (SCL) is HIGH determines a STOP condition. All  
operations must be ended with a STOP condition.  
6.1.4  
DATA VALID (D)  
The state of the data line represents valid data when,  
after a START condition, the data line is stable for the  
duration of the HIGH period of the clock signal.  
The data on the line must be changed during the LOW  
period of the clock signal. There is one bit of data per  
clock pulse.  
Each data transfer is initiated with a START condition  
and terminated with a STOP condition. The number of  
the data bytes transferred between the START and  
STOP conditions is determined by the processor and  
is theoretically unlimited, although only the last sixteen  
will be stored when doing a write operation. When an  
overwrite does occur, it will replace data in a first-in,  
first-out fashion.  
DS40182C-page 30  
1999 Microchip Technology Inc.  
PIC16CE62X  
FIGURE 6-1: DATA TRANSFER SEQUENCE ON THE SERIAL BUS  
(A)  
(B)  
(C)  
(D)  
(C) (A)  
SCL  
SDA  
START  
CONDITION  
STOP  
CONDITION  
ADDRESS OR  
DATA  
ACKNOWLEDGE ALLOWED  
VALID  
TO CHANGE  
FIGURE 6-2: ACKNOWLEDGE TIMING  
Acknowledge  
Bit  
1
2
3
4
5
6
7
8
9
1
2
3
SCL  
SDA  
Data from transmitter  
Data from transmitter  
Receiver must release the SDA line at this  
point so the Transmitter can continue  
sending data.  
Transmitter must release the SDA line at this point  
allowing the Receiver to pull the SDA line low to  
acknowledge the previous eight bits of data.  
6.2  
Device Addressing  
FIGURE 6-3: CONTROL BYTE FORMAT  
Read/Write Bit  
After generating a START condition, the processor  
transmits a control byte consisting of a EEPROM  
address and a Read/Write bit that indicates what type  
of operation is to be performed. The EEPROM address  
consists of a 4-bit device code (1010) followed by three  
don’t care bits.  
Device Select  
Don’t Care  
Bits  
Bits  
S
1
0
1
0
X
X
X
R/W ACK  
The last bit of the control byte determines the operation  
to be performed. When set to a one, a read operation  
is selected, and when set to a zero, a write operation is  
selected. (Figure 6-3). The bus is monitored for its cor-  
responding EEPROM address all the time. It generates  
an acknowledge bit if the EEPROM address was true  
and it is not in a programming mode.  
EEPROM Address  
Acknowledge Bit  
Start Bit  
1999 Microchip Technology Inc.  
DS40182C-page 31  
PIC16CE62X  
6.3  
Write Operations  
6.4  
Acknowledge Polling  
6.3.1  
BYTE WRITE  
Since the EEPROM will not acknowledge during a write  
cycle, this can be used to determine when the cycle is  
complete (this feature can be used to maximize bus  
throughput). Once the stop condition for a write com-  
mand has been issued from the processor, the  
EEPROM initiates the internally timed write cycle. ACK  
polling can be initiated immediately. This involves the  
processor sending a start condition followed by the  
control byte for a write command (R/W = 0). If the  
device is still busy with the write cycle, then no ACK will  
be returned. If no ACK is returned, then the start bit and  
control byte must be re-sent. If the cycle is complete,  
then the device will return the ACK and the processor  
can then proceed with the next read or write command.  
See Figure 6-4 for flow diagram.  
Following the start signal from the processor, the  
device code (4 bits), the don’t care bits (3 bits), and the  
R/W bit, which is a logic low, is placed onto the bus by  
the processor. This indicates to the EEPROM that a  
byte with a word address will follow after it has gener-  
ated an acknowledge bit during the ninth clock cycle.  
Therefore, the next byte transmitted by the processor is  
the word address and will be written into the address  
pointer of the EEPROM. After receiving another  
acknowledge signal from the EEPROM, the processor  
will transmit the data word to be written into the  
addressed memory location. The EEPROM acknowl-  
edges again and the processor generates a stop con-  
dition. This initiates the internal write cycle, and during  
this time, the EEPROM will not generate acknowledge  
signals (Figure 6-5).  
FIGURE 6-4: ACKNOWLEDGE POLLING  
FLOW  
6.3.2  
PAGE WRITE  
Send  
Write Command  
The write control byte, word address and the first data  
byte are transmitted to the EEPROM in the same way  
as in a byte write. But instead of generating a stop con-  
dition, the processor transmits up to eight data bytes to  
the EEPROM, which are temporarily stored in the on-  
chip page buffer and will be written into the memory  
after the processor has transmitted a stop condition.  
After the receipt of each word, the three lower order  
address pointer bits are internally incremented by one.  
The higher order five bits of the word address remains  
constant. If the processor should transmit more than  
eight words prior to generating the stop condition, the  
address counter will roll over and the previously  
received data will be overwritten. As with the byte write  
operation, once the stop condition is received, an inter-  
nal write cycle will begin (Figure 6-6).  
Send Stop  
Condition to  
Initiate Write Cycle  
Send Start  
Send Control Byte  
with R/W = 0  
Did EEPROM  
NO  
Acknowledge  
(ACK = 0)?  
YES  
Next  
Operation  
FIGURE 6-5: BYTE WRITE  
S
T
A
R
T
S
BUS ACTIVITY  
PROCESSOR  
CONTROL  
BYTE  
WORD  
ADDRESS  
T
DATA  
O
P
SDA LINE  
P
S
1
0
1
0
X
X
X
0
X
A
C
K
A
C
K
A
C
K
BUS ACTIVITY  
X = Don’t Care Bit  
DS40182C-page 32  
1999 Microchip Technology Inc.  
PIC16CE62X  
FIGURE 6-6: PAGE WRITE  
S
BUS ACTIVITY  
PROCESSOR  
T
S
T
O
P
CONTROL  
BYTE  
WORD  
ADDRESS (n)  
A
R
T
DATAn  
DATAn + 1  
DATAn + 7  
SDA LINE  
S
P
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
BUS ACTIVITY  
6.5  
Read Operation  
6.8  
Sequential Read  
Read operations are initiated in the same way as write  
operations with the exception that the R/W bit of the  
EEPROM address is set to one. There are three basic  
types of read operations: current address read, random  
read, and sequential read.  
Sequential reads are initiated in the same way as a ran-  
dom read except that after the EEPROM transmits the  
first data byte, the processor issues an acknowledge as  
opposed to a stop condition in a random read. This  
directs the EEPROM to transmit the next sequentially  
addressed 8-bit word (Figure 6-9).  
6.6  
Current Address Read  
To provide sequential reads, the EEPROM contains an  
internal address pointer which is incremented by one at  
the completion of each operation. This address pointer  
allows the entire memory contents to be serially read  
during one operation.  
The EEPROM contains an address counter that main-  
tains the address of the last word accessed, internally  
incremented by one. Therefore, if the previous access  
(either a read or write operation) was to address n, the  
next current address read operation would access data  
from address n + 1. Upon receipt of the EEPROM  
address with R/W bit set to one, the EEPROM issues  
an acknowledge and transmits the eight bit data word.  
The processor will not acknowledge the transfer, but  
does generate a stop condition and the EEPROM dis-  
continues transmission (Figure 6-7).  
6.9  
Noise Protection  
The EEPROM employs a VCC threshold detector cir-  
cuit, which disables the internal erase/write logic if the  
VCC is below 1.5 volts at nominal conditions.  
The SCL and SDA inputs have Schmitt trigger and filter  
circuits, which suppress noise spikes to assure proper  
device operation even on a noisy bus.  
6.7  
Random Read  
Random read operations allow the processor to access  
any memory location in a random manner. To perform  
this type of read operation, first the word address must  
be set. This is done by sending the word address to the  
EEPROM as part of a write operation. After the word  
address is sent, the processor generates a start condi-  
tion following the acknowledge. This terminates the  
write operation, but not before the internal address  
pointer is set. Then the processor issues the control  
byte again, but with the R/W bit set to a one. The  
EEPROM will then issue an acknowledge and trans-  
mits the eight bit data word. The processor will not  
acknowledge the transfer, but does generate a stop  
condition and the EEPROM discontinues transmission  
(Figure 6-8).  
1999 Microchip Technology Inc.  
DS40182C-page 33  
PIC16CE62X  
FIGURE 6-7: CURRENT ADDRESS READ  
S
T
BUS ACTIVITY  
CONTROL  
S
T
O
P
A
R
T
PROCESSOR  
BYTE  
DATAn  
SDA LINE  
S
P
A
C
K
N
O
BUS ACTIVITY  
A
C
K
FIGURE 6-8: RANDOM READ  
S
T
A
R
T
S
T
A
R
T
S
T
O
P
CONTROL  
BYTE  
WORD  
ADDRESS (n)  
CONTROL  
BYTE  
BUS ACTIVITY  
PROCESSOR  
DATAn  
S
P
S
SDA LINE  
A
C
K
A
C
K
A
C
K
N
O
BUS ACTIVITY  
A
C
K
FIGURE 6-9: SEQUENTIAL READ  
S
T
O
P
A
C
K
A
C
K
A
C
K
CONTROL  
BYTE  
BUS ACTIVITY  
PROCESSOR  
SDA LINE  
P
A
C
K
N
O
BUS ACTIVITY  
DATAn  
DATAn + 1  
DATAn + 2  
DATAn + X  
A
C
K
DS40182C-page 34  
1999 Microchip Technology Inc.  
PIC16CE62X  
bit (OPTION<4>). Clearing the T0SE bit selects the  
rising edge. Restrictions on the external clock input are  
discussed in detail in Section 7.2.  
7.0  
TIMER0 MODULE  
The Timer0 module timer/counter has the following  
features:  
The prescaler is shared between the Timer0 module  
and the Watchdog Timer. The prescaler assignment is  
controlled in software by the control bit PSA  
(OPTION<3>). Clearing the PSA bit will assign the  
prescaler to Timer0. The prescaler is not readable or  
writable. When the prescaler is assigned to the Timer0  
module, prescale value of 1:2, 1:4, ..., 1:256 are  
selectable. Section 7.3 details the operation of the  
prescaler.  
• 8-bit timer/counter  
• Readable and writable  
• 8-bit software programmable prescaler  
• Internal or external clock select  
• Interrupt on overflow from FFh to 00h  
• Edge select for external clock  
Figure 7-1 is a simplified block diagram of the Timer0  
module.  
7.1  
Timer0 Interrupt  
Timer mode is selected by clearing the T0CS bit  
(OPTION<5>). In timer mode, the TMR0 will increment  
every instruction cycle (without prescaler). If Timer0 is  
written, the increment is inhibited for the following two  
cycles (Figure 7-2 and Figure 7-3). The user can work  
around this by writing an adjusted value to TMR0.  
Timer0 interrupt is generated when the TMR0 register  
timer/counter overflows from FFh to 00h. This overflow  
sets the T0IF bit. The interrupt can be masked by  
clearing the T0IE bit (INTCON<5>). The T0IF bit  
(INTCON<2>) must be cleared in software by the  
Timer0 module interrupt service routine before  
re-enabling this interrupt. The Timer0 interrupt cannot  
wake the processor from SLEEP since the timer is shut  
off during SLEEP. See Figure 7-4 for Timer0 interrupt  
timing.  
Counter mode is selected by setting the T0CS bit. In  
this mode Timer0 will increment either on every rising  
or falling edge of pin RA4/T0CKI. The incrementing  
edge is determined by the source edge (T0SE) control  
FIGURE 7-1: TIMER0 BLOCK DIAGRAM  
Data Bus  
RA4/T0CKI  
pin  
FOSC/4  
0
1
PSout  
8
1
0
Sync with  
Internal  
clocks  
TMR0  
Programmable  
Prescaler  
PSout  
(2 TCY delay)  
T0SE  
Set Flag bit T0IF  
on Overflow  
PS<2:0>  
PSA  
T0CS  
Note 1: Bits T0SE, T0CS, PS2, PS1, PS0 and PSA are located in the OPTION register.  
2: The prescaler is shared with Watchdog Timer (Figure 7-6)  
FIGURE 7-2: TIMER0 (TMR0) TIMING: INTERNAL CLOCK/NO PRESCALER  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
(Program  
Counter)  
PC-1  
PC  
PC+1  
PC+2  
PC+3  
PC+4  
PC+5  
PC+6  
Instruction  
Fetch  
MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W  
MOVWF TMR0  
T0  
T0+1  
T0+2  
NT0  
NT0+1  
NT0+2  
TMR0  
Instruction  
Executed  
Write TMR0  
executed  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0 Read TMR0  
Read TMR0  
reads NT0  
reads NT0 + 1 reads NT0 + 2  
1999 Microchip Technology Inc.  
DS40182C-page 35  
PIC16CE62X  
FIGURE 7-3: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
(Program  
Counter)  
PC-1  
PC  
PC+1  
PC+2  
PC+3  
PC+4  
PC+5  
PC+6  
MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W  
MOVWF TMR0  
Instruction  
Fetch  
T0  
T0+1  
NT0+1  
NT0  
TMR0  
Instruction  
Execute  
Write TMR0 Read TMR0 Read TMR0 Read TMR0 Read TMR0 Read TMR0  
executed reads NT0 reads NT0 reads NT0 reads NT0 reads NT0 + 1  
FIGURE 7-4: TIMER0 INTERRUPT TIMING  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
OSC1  
(3)  
CLKOUT  
TMR0 timer  
FEh  
1
FFh  
1
00h  
01h  
02h  
T0IF bit  
(INTCON<2>)  
GIE bit  
(INTCON<7>)  
Interrupt Latency Time  
PC +1  
INSTRUCTION FLOW  
PC  
PC  
PC +1  
0004h  
0005h  
Instruction  
Inst (PC)  
Inst (PC+1)  
Inst (0004h)  
Inst (0005h)  
Inst (0004h)  
fetched  
Instruction  
executed  
Inst (PC-1)  
Dummy cycle  
Dummy cycle  
Inst (PC)  
Note 1: T0IF interrupt flag is sampled here (every Q1).  
2: Interrupt latency = 3TCY, where TCY = instruction cycle time.  
3: CLKOUT is available only in RC oscillator mode.  
DS40182C-page 36  
1999 Microchip Technology Inc.  
PIC16CE62X  
When a prescaler is used, the external clock input is  
divided by the asynchronous ripple-counter type  
prescaler so that the prescaler output is symmetrical.  
For the external clock to meet the sampling  
requirement, the ripple-counter must be taken into  
account. Therefore, it is necessary for T0CKI to have a  
period of at least 4TOSC (and a small RC delay of 40 ns)  
divided by the prescaler value. The only requirement on  
T0CKI high and low time is that they do not violate the  
minimum pulse width requirement of 10 ns. Refer to  
parameters 40, 41 and 42 in the electrical specification  
of the desired device.  
7.2  
Using Timer0 with External Clock  
When an external clock input is used for Timer0, it must  
meet certain requirements. The external clock  
requirement is due to internal phase clock (TOSC)  
synchronization. Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
7.2.1  
EXTERNAL CLOCK SYNCHRONIZATION  
When no prescaler is used, the external clock input is  
the same as the prescaler output. The synchronization  
of T0CKI with the internal phase clocks is  
accomplished by sampling the prescaler output on the  
Q2 and Q4 cycles of the internal phase clocks  
(Figure 7-5). Therefore, it is necessary for T0CKI to be  
high for at least 2TOSC (and a small RC delay of 20 ns)  
and low for at least 2TOSC (and a small RC delay of  
20 ns). Refer to the electrical specification of the  
desired device.  
7.2.2  
TIMER0 INCREMENT DELAY  
Since the prescaler output is synchronized with the  
internal clocks, there is a small delay from the time the  
external clock edge occurs to the time the TMR0 is  
actually incremented. Figure 7-5 shows the delay from  
the external clock edge to the timer incrementing.  
FIGURE 7-5: TIMER0 TIMING WITH EXTERNAL CLOCK  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Small pulse  
misses sampling  
External Clock Input or  
(2)  
Prescaler output  
(1)  
(3)  
External Clock/Prescaler  
Output after sampling  
Increment Timer0 (Q4)  
Timer0  
T0  
T0 + 1  
T0 + 2  
Note 1: Delay from clock input change to Timer0 increment is 3TOSC to 7TOSC. (Duration of Q = TOSC).  
Therefore, the error in measuring the interval between two edges on Timer0 input = ±4TOSC max.  
2: External clock if no prescaler selected; prescaler output otherwise.  
3: The arrows indicate the points in time where sampling occurs.  
1999 Microchip Technology Inc.  
DS40182C-page 37  
PIC16CE62X  
The PSA and PS<2:0> bits (OPTION<3:0>) determine  
the prescaler assignment and prescale ratio.  
7.3  
Prescaler  
An 8-bit counter is available as a prescaler for the  
Timer0 module, or as a postscaler for the Watchdog  
Timer, respectively (Figure 7-6). For simplicity, this  
counter is being referred to as “prescaler” throughout  
this data sheet. Note that there is only one prescaler  
available which is mutually exclusive between the  
Timer0 module and the Watchdog Timer. Thus, a  
prescaler assignment for the Timer0 module means  
that there is no prescaler for the Watchdog Timer and  
vice-versa.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (i.e., CLRF 1, MOVWF 1,  
BSF 1,x....etc.) will clear the prescaler. When  
assigned to WDT, a CLRWDT instruction will clear the  
prescaler along with the Watchdog Timer. The  
prescaler is not readable or writable.  
FIGURE 7-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
Data Bus  
8
CLKOUT (= FOSC/4)  
M
U
X
1
0
0
1
M
U
X
T0CKI  
pin  
SYNC  
2
Cycles  
TMR0 reg  
T0SE  
T0CS  
Set flag bit T0IF  
on Overflow  
PSA  
0
1
8-bit Prescaler  
M
U
X
Watchdog  
Timer  
8
8-to-1MUX  
PS<2:0>  
PSA  
1
0
WDT Enable bit  
M U X  
PSA  
WDT  
Time-out  
Note: T0SE, T0CS, PSA, PS<2:0> are bits in the OPTION register.  
DS40182C-page 38  
1999 Microchip Technology Inc.  
PIC16CE62X  
7.3.1  
SWITCHING PRESCALER ASSIGNMENT  
To change prescaler from the WDT to the TMR0  
module, use the sequence shown in Example 7-2. This  
precaution must be taken even if the WDT is disabled.  
The prescaler assignment is fully under software  
control (i.e., it can be changed “on-the-fly” during  
program execution). To avoid an unintended device  
EXAMPLE 7-2: CHANGING PRESCALER  
RESET,  
the  
following  
instruction  
sequence  
(WDTTIMER0)  
(Example 7-1) must be executed when changing the  
prescaler assignment from Timer0 to WDT.  
CLRWDT  
;Clear WDT and  
;prescaler  
EXAMPLE 7-1: CHANGING PRESCALER  
BSF  
STATUS, RP0  
(TIMER0WDT)  
STATUS, RP0 ;Skip if already in  
MOVLW  
b'xxxx0xxx' ;Select TMR0, new  
;prescale value and  
;clock source  
1.BCF  
; Bank 0  
2.CLRWDT  
3.CLRF  
4.BSF  
;Clear WDT  
;Clear TMR0 & Prescaler  
STATUS, RP0 ;Bank 1  
MOVWF  
BCF  
OPTION_REG  
STATUS, RP0  
TMR0  
5.MOVLW '00101111’b ;These 3 lines (5, 6, 7)  
6.MOVWF OPTION  
; are required only if  
; desired PS<2:0> are  
; 000 or 001  
7.CLRWDT  
8.MOVLW '00101xxx’b ;Set Postscaler to  
9.MOVWF OPTION ; desired WDT rate  
10.BCF STATUS, RP0 ;Return to Bank 0  
TABLE 7-1:  
REGISTERS ASSOCIATED WITH TIMER0  
Value on  
Value on:  
POR  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
All Other  
Resets  
01h  
TMR0  
Timer0 module register  
GIE PEIE T0IE  
xxxx xxxx uuuu uuuu  
0000 000x 0000 000u  
1111 1111 1111 1111  
0Bh/8Bh  
81h  
INTCON  
INTE  
RBIE  
PSA  
T0IF  
PS2  
INTF  
PS1  
RBIF  
PS0  
OPTION RBPU INTEDG T0CS  
TRISA  
T0SE  
85h  
TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 ---1 1111 ---1 1111  
Legend: — = Unimplemented locations, read as ‘0’, x= unknown, u= unchanged.  
Note: Shaded bits are not used by TMR0 module.  
1999 Microchip Technology Inc.  
DS40182C-page 39  
PIC16CE62X  
NOTES:  
DS40182C-page 40  
1999 Microchip Technology Inc.  
PIC16CE62X  
The CMCON register, shown in Register 8-1, controls  
the comparator input and output multiplexers. A block  
diagram of the comparator is shown in Figure 8-1.  
8.0  
COMPARATOR MODULE  
The comparator module contains two analog  
comparators. The inputs to the comparators are  
multiplexed with the RA0 through RA3 pins. The  
on-chip voltage reference (Section 9.0) can also be an  
input to the comparators.  
REGISTER 8-1: CMCON REGISTER (ADDRESS 1Fh)  
R-0  
R-0  
U-0  
U-0  
R/W-0  
CIS  
R/W-0  
CM2  
R/W-0  
CM1  
R/W-0  
CM0  
R
= Readable bit  
C2OUT C1OUT  
bit7  
W = Writable bit  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
C2OUT: Comparator 2 output  
1= C2 VIN+ > C2 VIN–  
0= C2 VIN+ < C2 VIN–  
bit 6:  
C1OUT: Comparator 1 output  
1= C1 VIN+ > C1 VIN–  
0= C1 VIN+ < C1 VIN–  
bit 5-4: Unimplemented: Read as '0'  
bit 3:  
CIS: Comparator Input Switch  
When CM<2:0>: = 001:  
1= C1 VIN– connects to RA3  
0= C1 VIN– connects to RA0  
When CM<2:0> = 010:  
1= C1 VIN– connects to RA3  
C2 VIN– connects to RA2  
0= C1 VIN– connects to RA0  
C2 VIN– connects to RA1  
bit 2-0: CM<2:0>: Comparator mode  
Figure 8-1.  
1999 Microchip Technology Inc.  
DS40182C-page 41  
PIC16CE62X  
mode is changed, the comparator output level may not  
be valid for the specified mode change delay shown  
in Table 13-1.  
8.1  
Comparator Configuration  
There are eight modes of operation for the  
comparators. The CMCON register is used to select  
the mode. Figure 8-1 shows the eight possible modes.  
The TRISA register controls the data direction of the  
comparator pins for each mode. If the comparator  
Note: Comparator interrupts should be disabled  
during a comparator mode change, other-  
wise a false interrupt may occur.  
FIGURE 8-1: COMPARATOR I/O OPERATING MODES  
VIN-  
VIN-  
A
A
D
D
-
-
Off  
Off  
RA0/AN0  
RA3/AN3  
RA0/AN0  
RA3/AN3  
C1  
C2  
C1  
C2  
VIN+  
VIN+  
(Read as ’0’)  
(Read as ’0’)  
+
+
VIN-  
VIN-  
A
A
D
D
-
-
Off  
Off  
RA1/AN1  
RA2/AN2  
RA1/AN1  
RA2/AN2  
VIN+  
VIN+  
(Read as ’0’)  
(Read as ’0’)  
+
+
CM<2:0> = 000  
C1OUT  
CM<2:0> = 111  
Comparators Reset  
Comparators Off  
VIN-  
A
A
A
-
RA0/AN0  
CIS=0  
CIS=1  
VIN-  
RA0/AN0  
RA3/AN3  
-
C1  
C2  
VIN+  
A
C1OUT  
RA3/AN3  
+
C1  
VIN+  
+
VIN-  
A
A
A
-
RA1/AN1  
CIS=0  
CIS=1  
VIN-  
RA1/AN1  
RA2/AN2  
-
C2OUT  
VIN+  
A
C2OUT  
RA2/AN2  
+
C2  
VIN+  
+
CM<2:0> = 100  
From VREF Module  
CM<2:0> = 010  
Two Independent Comparators  
Four Inputs Multiplexed to  
Two Comparators  
VIN-  
VIN-  
A
A
-
-
RA0/AN0  
RA0/AN0  
C1OUT  
C1OUT  
C1  
C2  
C1  
VIN+  
VIN+  
D
D
+
+
RA3/AN3  
RA3/AN3  
VIN-  
VIN-  
A
A
-
-
RA1/AN1  
RA1/AN1  
C2OUT  
C2OUT  
C2  
VIN+  
VIN+  
A
A
+
+
RA2/AN2  
RA2/AN2  
RA4 Open Drain  
CM<2:0> = 011  
CM<2:0> = 110  
Two Common Reference Comparators  
Two Common Reference Comparators with Outputs  
VIN-  
A
A
CIS=0  
VIN-  
CIS=1  
VIN+  
D
D
-
RA0/AN0  
RA3/AN3  
Off  
RA0/AN0  
RA3/AN3  
-
C1  
C2  
VIN+  
(Read as ’0’)  
C1OUT  
+
C1  
C2  
+
VIN-  
A
A
-
VIN-  
RA1/AN1  
RA2/AN2  
A
A
-
C2OUT  
RA1/AN1  
RA2/AN2  
VIN+  
C2OUT  
+
VIN+  
+
CM<2:0> = 101  
CM<2:0> = 001  
Three Inputs Multiplexed to  
Two Comparators  
One Independent Comparator  
A = Analog Input, Port Reads Zeros Always  
D = Digital Input  
CIS = CMCON<3>, Comparator Input Switch  
DS40182C-page 42  
1999 Microchip Technology Inc.  
PIC16CE62X  
The code example in Example 8-1 depicts the steps  
required to configure the comparator module. RA3 and  
RA4 are configured as digital output. RA0 and RA1 are  
configured as the V- inputs and RA2 as the V+ input to  
both comparators.  
8.3  
Comparator Reference  
An external or internal reference signal may be used  
depending on the comparator operating mode. The  
analog signal that is present at VIN– is compared to the  
signal at VIN+, and the digital output of the comparator  
is adjusted accordingly (Figure 8-2).  
EXAMPLE 8-1: INITIALIZING  
COMPARATOR MODULE  
FIGURE 8-2: SINGLE COMPARATOR  
FLAG_REGEQU  
0X20  
CLRF  
CLRF  
MOVF  
ANDLW  
IORWF  
MOVLW  
MOVWF  
BSF  
FLAG_REG  
;Init flag register  
;Init PORTA  
;Move comparator contents to W  
;Mask comparator bits  
PORTA  
CMCON,W  
0xC0  
VIN+  
+
Output  
FLAG_REG,F ;Store bits in flag register  
0x03  
CMCON  
VIN–  
;Init comparator mode  
;CM<2:0> = 011  
STATUS,RP0 ;Select Bank1  
MOVLW  
MOVWF  
0x07  
TRISA  
;Initialize data direction  
;Set RA<2:0> as inputs  
;RA<4:3> as outputs  
;TRISA<7:5> always read ‘0’  
STATUS,RP0 ;Select Bank 0  
V
VIN–  
BCF  
CALL  
MOVF  
BCF  
BSF  
BSF  
BCF  
BSF  
BSF  
VIN+  
DELAY 10  
CMCON,F  
PIR1,CMIF  
STATUS,RP0 ;Select Bank 1  
PIE1,CMIE  
STATUS,RP0 ;Select Bank 0  
INTCON,PEIE ;Enable peripheral interrupts  
INTCON,GIE ;Global interrupt enable  
;10µs delay  
;Read CMCONtoendchangecondition  
;Clear pending interrupts  
;Enable comparator interrupts  
Output  
8.2  
Comparator Operation  
8.3.1  
EXTERNAL REFERENCE SIGNAL  
A single comparator is shown in Figure 8-2 along with  
the relationship between the analog input levels and  
the digital output. When the analog input at VIN+ is less  
than the analog input VIN–, the output of the  
comparator is a digital low level. When the analog input  
at VIN+ is greater than the analog input VIN–, the output  
of the comparator is a digital high level. The shaded  
areas of the output of the comparator in Figure 8-2  
represent the uncertainty due to input offsets and  
response time.  
When external voltage references are used, the  
comparator module can be configured to have the com-  
parators operate from the same or different reference  
sources. However, threshold detector applications may  
require the same reference. The reference signal must  
be between VSS and VDD and can be applied to either  
pin of the comparator(s).  
8.3.2  
INTERNAL REFERENCE SIGNAL  
The comparator module also allows the selection of an  
internally generated voltage reference for the  
comparators. Section 13, Instruction Sets, contains a  
detailed description of the Voltage Reference Module  
that provides this signal. The internal reference signal  
is used when the comparators are in mode  
CM<2:0>=010 (Figure 8-1). In this mode, the internal  
voltage reference is applied to the VIN+ pin of both  
comparators.  
1999 Microchip Technology Inc.  
DS40182C-page 43  
PIC16CE62X  
8.4  
Comparator Response Time  
8.5  
Comparator Outputs  
Response time is the minimum time, after selecting a  
new reference voltage or input source, before the  
comparator output has a valid level. If the internal refer-  
ence is changed, the maximum delay of the internal  
voltage reference must be considered when using the  
comparator outputs, otherwise the maximum delay of  
the comparators should be used (Table 13-1 ).  
The comparator outputs are read through the CMCON  
register. These bits are read only. The comparator  
outputs may also be directly output to the RA3 and RA4  
I/O pins. When the CM<2:0> = 110, multiplexors in the  
output path of the RA3 and RA4 pins will switch and the  
output of each pin will be the unsynchronized output of  
the comparator. The uncertainty of each of the  
comparators is related to the input offset voltage and  
the response time given in the specifications.  
Figure 8-3 shows the comparator output block diagram.  
The TRISA bits will still function as an output  
enable/disable for the RA3 and RA4 pins while in this  
mode.  
Note 1: When reading the PORT register, all pins  
configured as analog inputs will read as  
a ‘0’. Pins configured as digital inputs will  
convert an analog input according to the  
Schmitt Trigger input specification.  
2: Analog levels on any pin that is defined  
as a digital input may cause the input  
buffer to consume more current than is  
specified.  
FIGURE 8-3: COMPARATOR OUTPUT BLOCK DIAGRAM  
Port Pins  
MULTIPLEX  
+
-
To RA3 or  
RA4 Pin  
Data  
Bus  
Q
D
RD CMCON  
EN  
Set  
CMIF  
Bit  
D
Q
From  
Other  
Comparator  
EN  
CL  
RD CMCON  
NRESET  
DS40182C-page 44  
1999 Microchip Technology Inc.  
PIC16CE62X  
wake-up the device from SLEEP mode when enabled.  
While the comparator is powered-up, higher sleep  
currents than shown in the power down current  
specification will occur. Each comparator that is  
operational will consume additional current as shown in  
the comparator specifications. To minimize power  
consumption while in SLEEP mode, turn off the  
comparators, CM<2:0> = 111, before entering sleep. If  
the device wakes-up from sleep, the contents of the  
CMCON register are not affected.  
8.6  
Comparator Interrupts  
The comparator interrupt flag is set whenever there is  
a change in the output value of either comparator.  
Software will need to maintain information about the  
status of the output bits, as read from CMCON<7:6>, to  
determine the actual change that has occurred. The  
CMIF bit, PIR1<6>, is the comparator interrupt flag.  
The CMIF bit must be reset by clearing ‘0’. Since it is  
also possible to write a '1' to this register, a simulated  
interrupt may be initiated.  
8.8  
Effects of a RESET  
The CMIE bit (PIE1<6>) and the PEIE bit  
(INTCON<6>) must be set to enable the interrupt. In  
addition, the GIE bit must also be set. If any of these  
bits are clear, the interrupt is not enabled, though the  
CMIF bit will still be set if an interrupt condition occurs.  
A device reset forces the CMCON register to its reset  
state. This forces the comparator module to be in the  
comparator reset mode, CM<2:0> = 000. This ensures  
that all potential inputs are analog inputs. Device cur-  
rent is minimized when analog inputs are present at  
reset time. The comparators will be powered-down  
during the reset interval.  
Note: If a change in the CMCON register  
(C1OUT or C2OUT) should occur when a  
read operation is being executed (start of  
the Q2 cycle), then the CMIF (PIR1<6>)  
interrupt flag may not get set.  
8.9  
Analog Input Connection  
Considerations  
The user, in the interrupt service routine, can clear the  
interrupt in the following manner:  
A simplified circuit for an analog input is shown in  
Figure 8-4. Since the analog pins are connected to a  
digital output, they have reverse biased diodes to VDD  
and VSS. The analog input therefore, must be between  
VSS and VDD. If the input voltage deviates from this  
range by more than 0.6V in either direction, one of the  
diodes is forward biased and a latch-up may occur. A  
a) Any read or write of CMCON. This will end the  
mismatch condition.  
b) Clear flag bit CMIF.  
A mismatch condition will continue to set flag bit CMIF.  
Reading CMCON will end the mismatch condition, and  
allow flag bit CMIF to be cleared.  
maximum  
source  
impedance  
of  
10 kΩ  
is  
recommended for the analog sources. Any external  
component connected to an analog input pin, such as  
a capacitor or a Zener diode, should have very little  
leakage current.  
8.7  
Comparator Operation During SLEEP  
When a comparator is active and the device is placed  
in SLEEP mode, the comparator remains active and  
the interrupt is functional if enabled. This interrupt will  
FIGURE 8-4: ANALOG INPUT MODEL  
VDD  
VT = 0.6V  
RS < 10K  
RIC  
AIN  
ILEAKAGE  
±500 nA  
CPIN  
5 pF  
VA  
VT = 0.6V  
VSS  
Legend  
CPIN  
VT  
= Input capacitance  
= Threshold voltage  
ILEAKAGE  
RIC  
= Leakage current at the pin due to various junctions  
= Interconnect resistance  
RS  
= Source impedance  
VA  
= Analog voltage  
1999 Microchip Technology Inc.  
DS40182C-page 45  
PIC16CE62X  
TABLE 8-1:  
REGISTERS ASSOCIATED WITH COMPARATOR MODULE  
Value on  
All Other  
Resets  
Value on:  
POR  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1Fh  
9Fh  
0Bh  
0Ch  
8Ch  
85h  
CMCON C2OUT C1OUT  
VRR  
T0IE  
CIS  
VR3  
RBIE  
CM2  
VR2  
T0IF  
CM1  
VR1  
INTF  
CM0  
VR0  
RBIF  
00-- 0000 00-- 0000  
000- 0000 000- 0000  
0000 000x 0000 000u  
-0-- ---- -0-- ----  
-0-- ---- -0-- ----  
VRCON  
INTCON  
PIR1  
VREN  
GIE  
VROE  
PEIE  
CMIF  
CMIE  
INTE  
PIE1  
TRISA  
TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 ---1 1111 ---1 1111  
Legend: - = Unimplemented, read as "0", x= Unknown, u= unchanged  
DS40182C-page 46  
1999 Microchip Technology Inc.  
PIC16CE62X  
9.1  
Configuring the Voltage Reference  
9.0  
VOLTAGE REFERENCE  
MODULE  
The Voltage Reference can output 16 distinct voltage  
levels for each range.  
The Voltage Reference is a 16-tap resistor ladder  
network that provides a selectable voltage reference.  
The resistor ladder is segmented to provide two ranges  
of VREF values and has a power-down function to  
conserve power when the reference is not being used.  
The VRCON register controls the operation of the  
reference as shown in Register 9-1. The block diagram  
is given in Figure 9-1.  
The equations used to calculate the output of the  
Voltage Reference are as follows:  
if VRR = 1: VREF = (VR<3:0>/24) x VDD  
if VRR = 0: VREF = (VDD x 1/4) + (VR<3:0>/32) x VDD  
The setting time of the Voltage Reference must be  
considered when changing the VREF output  
(Table 13-1). Example 9-1 shows an example of how to  
configure the Voltage Reference for an output voltage  
of 1.25V with VDD = 5.0V.  
REGISTER 9-1: VRCON REGISTER (ADDRESS 9Fh)  
R/W-0  
R/W-0  
R/W-0  
VRR  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R
= Readable bit  
VREN  
VROE  
VR3  
VR2  
VR1  
VR0  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
bit 6:  
bit 5:  
bit 4:  
VREN: VREF Enable  
1= VREF circuit powered on  
0= VREF circuit powered down, no IDD drain  
VROE: VREF Output Enable  
1= VREF is output on RA2 pin  
0= VREF is disconnected from RA2 pin  
VRR: VREF Range selection  
1= Low Range  
0= High Range  
Unimplemented: Read as ’0’  
bit 3-0: VR<3:0>: VREF value selection 0 VR [3:0] 15  
when VRR = 1: VREF = (VR<3:0>/ 24) * VDD  
when VRR = 0: VREF = 1/4 * VDD + (VR<3:0>/ 32) * VDD  
FIGURE 9-1: VOLTAGE REFERENCE BLOCK DIAGRAM  
16 Stages  
VREN  
R
R
R
R
8R  
8R  
VRR  
VR3  
VR0  
VREF  
(From VRCON<3:0>)  
16-1 Analog Mux  
Note: R is defined in Table 13-2.  
1999 Microchip Technology Inc.  
DS40182C-page 47  
PIC16CE62X  
EXAMPLE 9-1: VOLTAGE REFERENCE  
CONFIGURATION  
9.4  
Effects of a Reset  
A device reset disables the Voltage Reference by clear-  
ing bit VREN (VRCON<7>). This reset also disconnects  
the reference from the RA2 pin by clearing bit VROE  
(VRCON<6>) and selects the high voltage range by  
clearing bit VRR (VRCON<5>). The VREF value select  
bits, VRCON<3:0>, are also cleared.  
MOVLW  
MOVWF  
BSF  
0x02  
; 4 Inputs Muxed  
; to 2 comps.  
; go to Bank 1  
; RA3-RA0 are  
; outputs  
CMCON  
STATUS,RP0  
0x07  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
TRISA  
0xA6  
; enable VREF  
; low range  
9.5  
Connection Considerations  
Voltage Reference Module  
VRCON  
; set VR<3:0>=6  
; go to Bank 0  
; 10µs delay  
The  
operates  
independently of the comparator module. The output of  
the reference generator may be connected to the RA2  
pin if the TRISA<2> bit is set and the VROE bit,  
VRCON<6>, is set. Enabling the Voltage Reference  
output onto the RA2 pin with an input signal present will  
increase current consumption. Connecting RA2 as a  
digital output with VREF enabled will also increase  
current consumption.  
BCF  
STATUS,RP0  
DELAY10  
CALL  
9.2  
Voltage Reference Accuracy/Error  
The full range of VSS to VDD cannot be realized due to  
the construction of the module. The transistors on the  
top and bottom of the resistor ladder network  
(Figure 9-1) keep VREF from approaching VSS or VDD.  
The Voltage Reference is VDD derived and therefore,  
the VREF output changes with fluctuations in VDD. The  
absolute accuracy of the Voltage Reference can be  
found in Table 13-2.  
The RA2 pin can be used as a simple D/A output with  
limited drive capability. Due to the limited drive  
capability, a buffer must be used in conjunction with the  
Voltage Reference output for external connections to  
VREF. Figure 9-2 shows an example buffering  
technique.  
9.3  
Operation During Sleep  
When the device wakes up from sleep through an  
interrupt or a Watchdog Timer time-out, the contents of  
the VRCON register are not affected. To minimize  
current consumption in SLEEP mode, the Voltage  
Reference should be disabled.  
FIGURE 9-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE  
(1)  
RA2  
R
VREF  
+
Module  
VREF Output  
Voltage  
Reference  
Output  
Impedance  
Note 1: R is dependent upon the Voltage Reference Configuration VRCON<3:0> and VRCON<5>.  
TABLE 9-1:  
REGISTERS ASSOCIATED WITH VOLTAGE REFERENCE  
Value On  
All Other  
Resets  
Value On  
POR / BOD  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
9Fh  
1Fh  
85h  
VRCON  
CMCON  
TRISA  
VREN  
VROE VRR  
VR3  
CIS  
VR2  
CM2  
VR1  
CM1  
VR0  
CM0  
000- 0000 000- 0000  
00-- 0000 00-- 0000  
C2OUT C1OUT  
TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 ---1 1111 ---1 1111  
Legend: - = Unimplemented, read as "0"  
DS40182C-page 48  
1999 Microchip Technology Inc.  
PIC16CE62X  
The PIC16CE62X has a Watchdog Timer which is  
controlled by configuration bits. It runs off its own RC  
oscillator for added reliability. There are two timers that  
offer necessary delays on power-up. One is the  
Oscillator Start-up Timer (OST), intended to keep the  
chip in reset until the crystal oscillator is stable. The  
other is the Power-up Timer (PWRT), which provides a  
fixed delay of 72 ms (nominal) on power-up only, and is  
designed to keep the part in reset while the power  
supply stabilizes. There is also circuitry to reset the  
device if a brown-out occurs, which provides at least a  
72 ms reset. With these three functions on-chip, most  
applications need no external reset circuitry.  
10.0 SPECIAL FEATURES OF THE  
CPU  
Special circuits to deal with the needs of real time appli-  
cations are what sets a microcontroller apart from other  
processors. The PIC16CE62X family has a host of  
such features intended to maximize system reliability,  
minimize cost through elimination of external compo-  
nents, provide power saving operating modes and offer  
code protection.  
These are:  
1. OSC selection  
2. Reset  
The SLEEP mode is designed to offer a very low  
current power-down mode. The user can wake-up from  
SLEEP through external reset, Watchdog Timer  
wake-up or through an interrupt. Several oscillator  
options are also made available to allow the part to fit  
the application. The RC oscillator option saves system  
cost, while the LP crystal option saves power. A set of  
configuration bits are used to select various options.  
Power-on Reset (POR)  
Power-up Timer (PWRT)  
Oscillator Start-Up Timer (OST)  
Brown-out Reset (BOD)  
3. Interrupts  
4. Watchdog Timer (WDT)  
5. SLEEP  
6. Code protection  
7. ID Locations  
8. In-circuit serial programming  
1999 Microchip Technology Inc.  
DS40182C-page 49  
PIC16CE62X  
The user will note that address 2007h is beyond  
the user program memory space. In fact, it belongs  
to the special test/configuration memory space  
(2000h – 3FFFh), which can be accessed only during  
programming.  
10.1  
Configuration Bits  
The configuration bits can be programmed (read as ’0’)  
or left unprogrammed (read as ’1’) to select various  
device configurations. These bits are mapped in  
program memory location 2007h.  
REGISTER 10-1: CONFIGURATION WORD  
(2)  
(2)  
(2)  
CP1 CP0  
(1)  
(2)  
(1)  
PWRTE  
CP1 CP0  
bit13  
CP1 CP0  
BODEN  
CP1 CP0  
WDTE F0SC1 F0SC0  
CONFIG  
REGISTER: 2007h  
Address  
bit0  
(2)  
bit 13-8, CP1:CP0 Pairs: Code protection bit pairs  
5-4: Code protection for 2K program memory  
11= Program memory code protection off  
10= 0400h-07FFh code protected  
01= 0200h-07FFh code protected  
00= 0000h-07FFh code protected  
Code protection for 1K program memory  
11= Program memory code protection off  
10=Program memory code protection on  
01= 0200h-03FFh code protected  
00= 0000h-03FFh code protected  
Code protection for 0.5K program memory  
11= Program memory code protection off  
10= Program memory code protection off  
01= Program memory code protection off  
00= 0000h-01FFh code protected  
bit 7:  
bit 6:  
Unimplemented: Read as ’1’  
(1)  
BODEN: Brown-out Reset Enable bit  
1= BOD enabled  
0= BOD disabled  
(1)  
bit 3:  
bit 2:  
PWRTE: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
WDTE: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled  
bit 1-0: FOSC1:FOSC0: Oscillator Selection bits  
11= RC oscillator  
10= HS oscillator  
01= XT oscillator  
00= LP oscillator  
Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT), regardless of the value of bit PWRTE.  
Ensure the Power-up Timer is enabled anytime Brown-out Reset is enabled.  
2: All of the CP<1:0> pairs have to be given the same value to enable the code protection scheme listed.  
DS40182C-page 50  
1999 Microchip Technology Inc.  
PIC16CE62X  
10.2  
Oscillator Configurations  
TABLE 10-1: CERAMIC RESONATORS,  
PIC16CE62X  
10.2.1  
OSCILLATOR TYPES  
Ranges Tested:  
The PIC16CE62X can be operated in four different  
oscillator options. The user can program two  
configuration bits (FOSC1 and FOSC0) to select one of  
these four modes:  
Mode  
XT  
Freq  
OSC1  
OSC2  
455 kHz  
2.0 MHz  
4.0 MHz  
68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
• LP  
• XT  
• HS  
• RC  
Low Power Crystal  
HS  
8.0 MHz  
16.0 MHz  
10 - 68 pF  
10 - 22 pF  
10 - 68 pF  
10 - 22 pF  
Crystal/Resonator  
These values are for design guidance only. See notes at  
bottom of page.  
High Speed Crystal/Resonator  
Resistor/Capacitor  
TABLE 10-2: CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR,  
10.2.2 CRYSTAL OSCILLATOR / CERAMIC  
RESONATORS  
PIC16CE62X  
In XT, LP or HS modes, a crystal or ceramic resonator  
is connected to the OSC1 and OSC2 pins to establish  
oscillation (Figure 10-1). The PIC16CE62X oscillator  
design requires the use of a parallel cut crystal. Use of  
a series cut crystal may give a frequency out of the  
crystal manufacturers specifications. When in XT, LP or  
HS modes, the device can have an external clock  
source to drive the OSC1 pin (Figure 10-2).  
Crystal  
Freq  
Cap. Range  
C1  
Cap. Range  
C2  
Osc Type  
LP  
32 kHz  
200 kHz  
200 kHz  
1 MHz  
33 pF  
15 pF  
33 pF  
15 pF  
XT  
HS  
47-68 pF  
15 pF  
47-68 pF  
15 pF  
4 MHz  
15 pF  
15 pF  
FIGURE 10-1: CRYSTAL OPERATION  
(OR CERAMIC RESONATOR)  
(HS, XT OR LP OSC  
4 MHz  
15 pF  
15 pF  
8 MHz  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
20 MHz  
CONFIGURATION)  
These values are for design guidance only. See notes at  
bottom of page.  
OSC1  
1. Recommended values of C1 and C2 are identical to  
C1  
C2  
To Internal Logic  
SLEEP  
the ranges tested table.  
XTAL  
OSC2  
RF  
2. Higher capacitance increases the stability of oscillator,  
but also increases the start-up time.  
RS  
see Note  
3. Since each resonator/crystal has its own characteris-  
tics, the user should consult the resonator/crystal  
manufacturer for appropriate values of external com-  
ponents.  
PIC16CE62X  
See Table 10-1 and Table 10-2 for recommended values  
of C1 and C2.  
4. Rs may be required in HS mode, as well as XT mode,  
to avoid overdriving crystals with low drive level spec-  
ification.  
Note:  
A series resistor may be required for AT  
strip cut crystals.  
FIGURE 10-2: EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR LP  
OSC CONFIGURATION)  
Clock From  
ext. system  
OSC1  
PIC16CE62X  
OSC2  
Open  
1999 Microchip Technology Inc.  
DS40182C-page 51  
PIC16CE62X  
10.2.3 EXTERNAL CRYSTAL OSCILLATOR  
CIRCUIT  
10.2.4 RC OSCILLATOR  
For timing insensitive applications the “RC” device  
option offers additional cost savings. The RC oscillator  
frequency is a function of the supply voltage, the  
resistor (Rext) and capacitor (Cext) values, and the  
operating temperature. In addition to this, the oscillator  
frequency will vary from unit to unit due to normal  
process parameter variation. Furthermore, the  
difference in lead frame capacitance between package  
types will also affect the oscillation frequency,  
especially for low Cext values. The user also needs to  
take into account variation due to tolerance of external  
R and C components used. Figure 10-5 shows how the  
R/C combination is connected to the PIC16CE62X. For  
Rext values below 2.2 k, the oscillator operation may  
become unstable, or stop completely. For very high  
Rext values (i.e., 1 M), the oscillator becomes  
sensitive to noise, humidity and leakage. Thus, we  
recommend to keep Rext between 3 kand 100 k.  
Either a prepackaged oscillator can be used or a simple  
oscillator circuit with TTL gates can be built. Prepack-  
aged oscillators provide a wide operating range and  
better stability. A well-designed crystal oscillator will  
provide good performance with TTL gates. Two types of  
crystal oscillator circuits can be used; one with series  
resonance or one with parallel resonance.  
Figure 10-3 shows implementation of a parallel reso-  
nant oscillator circuit. The circuit is designed to use the  
fundamental frequency of the crystal. The 74AS04  
inverter performs the 180° phase shift that a parallel  
oscillator requires. The 4.7 kresistor provides the  
negative feedback for stability. The 10 kΩ  
potentiometers bias the 74AS04 in the linear region.  
This could be used for external oscillator designs.  
FIGURE 10-3: EXTERNAL PARALLEL  
RESONANT CRYSTAL  
Although the oscillator will operate with no external  
capacitor (Cext = 0 pF), we recommend using values  
above 20 pF for noise and stability reasons. With no or  
small external capacitance, the oscillation frequency  
can vary dramatically due to changes in external  
capacitances, such as PCB trace capacitance or  
package lead frame capacitance.  
OSCILLATOR CIRCUIT  
+5V  
To Other  
Devices  
10k  
74AS04  
4.7k  
PIC16CE62X  
CLKIN  
74AS04  
See Section 14.0 for RC frequency variation from part  
to part due to normal process variation. The variation is  
larger for larger R (since leakage current variation will  
affect RC frequency more for large R) and for smaller C  
(since variation of input capacitance will affect RC fre-  
quency more).  
10k  
XTAL  
10k  
See Section 14.0 for variation of oscillator frequency  
due to VDD for given Rext/Cext values, as well as  
frequency variation due to operating temperature for  
given R, C, and VDD values.  
20 pF  
20 pF  
Figure 10-4 shows a series resonant oscillator circuit.  
This circuit is also designed to use the fundamental  
frequency of the crystal. The inverter performs a 180°  
phase shift in a series resonant oscillator circuit. The  
330 kresistors provide the negative feedback to bias  
the inverters in their linear region.  
The oscillator frequency, divided by 4, is available on  
the OSC2/CLKOUT pin and can be used for test pur-  
poses or to synchronize other logic (Figure 3-2 for  
waveform).  
FIGURE 10-5: RC OSCILLATOR MODE  
FIGURE 10-4: EXTERNAL SERIES  
RESONANT CRYSTAL  
VDD  
PIC16CE62X  
Rext  
OSCILLATOR CIRCUIT  
To other  
Devices  
OSC1  
330  
330  
Internal Clock  
74AS04  
74AS04  
74AS04  
PIC16CE62X  
Cext  
CLKIN  
VDD  
0.1 µF  
OSC2/CLKOUT  
FOSC/4  
XTAL  
DS40182C-page 52  
1999 Microchip Technology Inc.  
PIC16CE62X  
state” on Power-on reset, MCLR reset, WDT reset and  
MCLR reset during SLEEP. They are not affected by a  
WDT wake-up, since this is viewed as the resumption  
of normal operation. TO and PD bits are set or cleared  
differently in different reset situations as indicated in  
Table 10-4. These bits are used in software to deter-  
mine the nature of the reset. See Table 10-6 for a full  
description of reset states of all registers.  
10.3  
Reset  
The PIC16CE62X differentiates between various kinds  
of reset:  
a) Power-on reset (POR)  
b) MCLR reset during normal operation  
c) MCLR reset during SLEEP  
d) WDT reset (normal operation)  
e) WDT wake-up (SLEEP)  
A simplified block diagram of the on-chip reset circuit is  
shown in Figure 10-6.  
f) Brown-out Reset (BOD)  
The MCLR reset path has a noise filter to detect and  
ignore small pulses. See Table 13-5 for pulse width  
specification.  
Some registers are not affected in any reset condition.  
Their status is unknown on POR and unchanged in any  
other reset. Most other registers are reset to a “reset  
FIGURE 10-6: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
Reset  
MCLR/  
VPP Pin  
SLEEP  
WDT  
WDT  
Module  
Time-out  
Reset  
VDD rise  
detect  
Power-on Reset  
VDD  
Brown-out  
Reset  
S
R
BODEN  
OST/PWRT  
OST  
10-bit Ripple-counter  
Chip_Reset  
Q
OSC1/  
CLKIN  
Pin  
PWRT  
10-bit Ripple-counter  
(1)  
On-chip  
RC OSC  
Enable PWRT  
Enable OST  
See Table 10-3 for time-out situations.  
Note 1: This is a separate oscillator from the RC oscillator of the CLKIN pin.  
1999 Microchip Technology Inc.  
DS40182C-page 53  
PIC16CE62X  
The Power-Up Time delay will vary from chip-to-chip  
and due to VDD, temperature and process variation.  
See DC parameters for details.  
10.4  
Power-on Reset (POR), Power-up  
Timer (PWRT), Oscillator Start-up  
Timer (OST) and Brown-out Reset  
(BOD)  
10.4.3 OSCILLATOR START-UP TIMER (OST)  
10.4.1 POWER-ON RESET (POR)  
The Oscillator Start-Up Timer (OST) provides a 1024  
oscillator cycle (from OSC1 input) delay after the  
PWRT delay is over. This ensures that the crystal  
oscillator or resonator has started and stabilized.  
The on-chip POR circuit holds the chip in reset until  
VDD has reached a high enough level for proper opera-  
tion. To take advantage of the POR, just tie the MCLR  
pin through a resistor to VDD. This will eliminate exter-  
nal RC components usually needed to create Power-on  
Reset. A maximum rise time for VDD is required. See  
electrical specifications for details.  
The OST time-out is invoked only for XT, LP and HS  
modes and only on power-on reset or wake-up from  
SLEEP.  
10.4.4 BROWN-OUT RESET (BOD)  
The POR circuit does not produce an internal reset  
when VDD declines.  
The PIC16CE62X members have on-chip Brown-out  
Reset circuitry. A configuration bit, BOREN, can disable  
(if clear/programmed) or enable (if set) the Brown-out  
Reset circuitry. If VDD falls below 4.0V (refer to BVDD  
parameter D005) for greater than parameter (TBOR) in  
Table 13-5, the brown-out situation will reset the chip. A  
reset won’t occur if VDD falls below 4.0V for less than  
parameter (TBOR).  
When the device starts normal operation (exits the  
reset condition), device operating parameters (voltage,  
frequency, temperature, etc.) must be met to ensure  
operation. If these conditions are not met, the device  
must be held in reset until the operating conditions are  
met.  
For additional information, refer to Application Note  
On any reset (Power-on, Brown-out, Watch-dog, etc.)  
the chip will remain in reset until VDD rises above BVDD.  
The Power-up Timer will then be invoked and will keep  
the chip in reset an additional 72 ms.  
AN607, “Power-up Trouble Shooting”.  
10.4.2 POWER-UP TIMER (PWRT)  
The Power-up Timer provides a fixed 72 ms (nominal)  
time-out on power-up only, from POR or Brown-out  
Reset. The Power-up Timer operates on an internal RC  
oscillator. The chip is kept in reset as long as PWRT is  
active. The PWRT delay allows the VDD to rise to an  
acceptable level. A configuration bit, PWRTE, can  
disable (if set) or enable (if cleared or programmed) the  
Power-up Timer. The Power-up Timer should always be  
enabled when Brown-out Reset is enabled.  
If VDD drops below BVDD while the Power-up Timer is  
running, the chip will go back into a Brown-out Reset  
and the Power-up Timer will be re-initialized. Once VDD  
rises above BVDD, the Power-Up Timer will execute a  
72 ms reset. The Power-up Timer should always be  
enabled when Brown-out Reset is enabled. Figure 10-7  
shows typical Brown-out situations.  
FIGURE 10-7: BROWN-OUT SITUATIONS  
VDD  
BVDD  
Internal  
Reset  
72 ms  
VDD  
BVDD  
Internal  
Reset  
<72 ms  
72 ms  
VDD  
BVDD  
Internal  
Reset  
72 ms  
DS40182C-page 54  
1999 Microchip Technology Inc.  
PIC16CE62X  
10.4.5 TIME-OUT SEQUENCE  
10.4.6 POWER CONTROL (PCON)/STATUS  
REGISTER  
On power-up, the time-out sequence is as follows: First  
PWRT time-out is invoked after POR has expired, then  
OST is activated. The total time-out will vary based on  
oscillator configuration and PWRTE bit status. For  
example, in RC mode with PWRTE bit erased (PWRT  
disabled), there will be no time-out at all. Figure 10-8,  
Figure 10-9 and Figure 10-10 depict time-out  
sequences.  
The power control/status register, PCON (address  
8Eh) has two bits.  
Bit0 is BOR (Brown-out). BOR is unknown on  
power-on-reset. It must then be set by the user and  
checked on subsequent resets to see if BOR = 0  
indicating that a brown-out has occurred. The BOR  
status bit is a don’t care and is not necessarily  
predictable if the brown-out circuit is disabled (by  
setting BODEN bit = 0 in the Configuration word).  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire. Then  
bringing MCLR high will begin execution immediately  
(see Figure 10-9). This is useful for testing purposes or  
to synchronize more than one PICmicro® device oper-  
ating in parallel.  
Bit1 is POR (Power-on-reset). It is  
a ‘0’ on  
power-on-reset and unaffected otherwise. The user  
must write a ‘1’ to this bit following a power-on-reset.  
On a subsequent reset, if POR is ‘0’, it will indicate that  
a power-on-reset must have occurred (VDD may have  
gone too low).  
Table 10-5 shows the reset conditions for some special  
registers, while Table 10-6 shows the reset conditions  
for all the registers.  
TABLE 10-3: TIME-OUT IN VARIOUS SITUATIONS  
Power-up  
Wake-up  
Brown-out Reset  
Oscillator Configuration  
from SLEEP  
PWRTE = 0  
PWRTE = 1  
XT, HS, LP  
RC  
72 ms + 1024 TOSC  
1024 TOSC  
72 ms + 1024 TOSC  
1024 TOSC  
72 ms  
72 ms  
TABLE 10-4: STATUS/PCON BITS AND THEIR SIGNIFICANCE  
POR  
BOR  
TO  
PD  
0
0
0
1
1
1
1
1
X
X
X
0
1
1
1
1
1
0
X
X
0
0
u
1
1
X
0
X
u
0
u
0
Power-on-reset  
Illegal, TO is set on POR  
Illegal, PD is set on POR  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
MCLR reset during normal operation  
MCLR reset during SLEEP  
Legend: x= unknown, u= unchanged  
1999 Microchip Technology Inc.  
DS40182C-page 55  
PIC16CE62X  
TABLE 10-5: INITIALIZATION CONDITION FOR SPECIAL REGISTERS  
Program  
Counter  
STATUS  
Register  
PCON  
Register  
Condition  
Power-on Reset  
000h  
000h  
0001 1xxx  
000u uuuu  
0001 0uuu  
0000 uuuu  
uuu0 0uuu  
000x xuuu  
uuu1 0uuu  
---- --0x  
---- --uu  
---- --uu  
---- --uu  
---- --uu  
---- --u0  
---- --uu  
MCLR reset during normal operation  
MCLR reset during SLEEP  
WDT reset  
000h  
000h  
WDT Wake-up  
PC + 1  
000h  
Brown-out Reset  
Interrupt Wake-up from SLEEP  
PC + 1(1)  
Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as ‘0’.  
Note 1: When the wake-up is due to an interrupt and global enable bit, GIE is set and the PC is loaded with the interrupt vector  
(0004h) after execution of PC+1.  
TABLE 10-6: INITIALIZATION CONDITION FOR REGISTERS  
MCLR Reset during  
normal operation  
MCLR Reset during  
SLEEP  
WDT Reset  
Brown-out Reset (1)  
Wake-up from SLEEP  
through interrupt  
Wake-up from SLEEP  
through WDT time-out  
Register  
Address  
Power-on Reset  
W
-
xxxx xxxx  
-
uuuu uuuu  
-
uuuu uuuu  
-
INDF  
TMR0  
00h  
01h  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
PCL  
02h  
0000 0000  
0000 0000  
PC + 1(3)  
STATUS  
FSR  
03h  
04h  
05h  
06h  
1Fh  
0Ah  
0001 1xxx  
xxxx xxxx  
---x xxxx  
xxxx xxxx  
00-- 0000  
---0 0000  
000q quuu(4)  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
00-- 0000  
---0 0000  
uuuq quuu(4)  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uu-- uuuu  
---u uuuu  
PORTA  
PORTB  
CMCON  
PCLATH  
INTCON  
0Bh  
0000 000x  
0000 000u  
uuuu uqqq(2)  
PIR1  
0Ch  
81h  
85h  
86h  
8Ch  
-0-- ----  
1111 1111  
---1 1111  
1111 1111  
-0-- ----  
-0-- ----  
1111 1111  
---1 1111  
1111 1111  
-0-- ----  
-q-- ----(2,5)  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
-u-- ----  
OPTION  
TRISA  
TRISB  
PIE1  
PCON  
8Eh  
90h  
9Fh  
---- --0x  
---- -111  
000- 0000  
---- --uq(1,6)  
---- -111  
---- --uu  
---- -111  
uuu- uuuu  
EEINTF  
VRCON  
000- 0000  
Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as ‘0’,q = value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).  
4: See Table 10-5 for reset value for specific condition.  
5: If wake-up was due to comparator input changing , then bit 6 = 1. All other interrupts generating a wake-up will cause  
bit 6 = u.  
6: If reset was due to brown-out, then PCON bit 0 = 0. All other resets will cause bit 0 = u.  
DS40182C-page 56  
1999 Microchip Technology Inc.  
PIC16CE62X  
FIGURE 10-8: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 10-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
FIGURE 10-10: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
1999 Microchip Technology Inc.  
DS40182C-page 57  
PIC16CE62X  
FIGURE 10-11: EXTERNAL POWER-ON  
RESET CIRCUIT (FOR SLOW  
VDD POWER-UP)  
FIGURE 10-13: EXTERNAL BROWN-OUT  
PROTECTION CIRCUIT 2  
VDD  
VDD  
VDD  
VDD  
R1  
R2  
Q1  
MCLR  
D
R
40k  
R1  
PIC16CE62X  
MCLR  
PIC16CE62X  
C
Note 1: External power-on reset circuit is required only  
if VDD power-up slope is too slow. The diode D  
helps discharge the capacitor quickly when  
VDD powers down.  
Note 1: This brown-out circuit is less expensive,  
albeit less accurate. Transistor Q1 turns off  
when VDD is below a certain level such that:  
R1  
2: < 40 kis recommended to make sure that  
voltage drop across R does not violate the  
device’s electrical specification.  
3: R1 = 100to 1 kwill limit any current flowing  
into MCLR from external capacitor C in the  
event of MCLR/VPP pin breakdown due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS).  
= 0.7 V  
VDD x  
R1 + R2  
2: Internal brown-out detection should be dis-  
abled when using this circuit.  
3: Resistors should be adjusted for the charac-  
teristics of the transistor.  
FIGURE 10-14: EXTERNAL BROWN-OUT  
PROTECTION CIRCUIT 3  
FIGURE 10-12: EXTERNAL BROWN-OUT  
PROTECTION CIRCUIT 1  
VDD  
MCP809  
VDD  
bypass  
VDD  
VDD  
VSS  
capacitor  
33k  
VDD  
RST  
MCLR  
10k  
MCLR  
PIC16CE62X  
40k  
PIC16CE62X  
This brown-out protection circuit employs Microchip  
Technology’s MCP809 microcontroller supervisor. The  
MCP8XX and MCP1XX families of supervisors provide  
push-pull and open collector outputs with both high and  
low active reset pins. There are 7 different trip point  
selections to accommodate 5V and 3V systems.  
Note 1: This circuit will activate reset when VDD  
goes below (Vz + 0.7V) where Vz = Zener  
voltage.  
2: Internal Brown-out Reset circuitry should be  
disabled when using this circuit.  
DS40182C-page 58  
1999 Microchip Technology Inc.  
PIC16CE62X  
the interrupt can be determined by polling the interrupt  
flag bits. The interrupt flag bit(s) must be cleared in soft-  
ware before re-enabling interrupts to avoid RB0/INT  
recursive interrupts.  
10.5  
Interrupts  
The PIC16CE62X has 4 sources of interrupt:  
• External interrupt RB0/INT  
• TMR0 overflow interrupt  
For external interrupt events, such as the INT pin or  
PORTB change interrupt, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends on when the interrupt event occurs  
(Figure 10-16). The latency is the same for one or two  
cycle instructions. Once in the interrupt service routine  
the source(s) of the interrupt can be determined by poll-  
ing the interrupt flag bits. The interrupt flag bit(s) must  
be cleared in software before re-enabling interrupts to  
avoid multiple interrupt requests.  
• PortB change interrupts (pins RB<7:4>)  
• Comparator interrupt  
The interrupt control register (INTCON) records  
individual interrupt requests in flag bits. It also has  
individual and global interrupt enable bits.  
A global interrupt enable bit, GIE (INTCON<7>)  
enables (if set) all un-masked interrupts or disables (if  
cleared) all interrupts. Individual interrupts can be  
disabled through their corresponding enable bits in  
INTCON register. GIE is cleared on reset.  
Note 1: Individual interrupt flag bits are set,  
regardless of the status of their  
corresponding mask bit or the GIE bit.  
The “return from interrupt” instruction, RETFIE, exits  
interrupt routine, as well as sets the GIE bit, which  
re-enable RB0/INT interrupts.  
2: When an instruction that clears the GIE  
bit is executed, any interrupts that were  
pending for execution in the next cycle  
are ignored. The CPU will execute a NOP  
in the cycle immediately following the  
instruction which clears the GIE bit. The  
interrupts which were ignored are still  
pending to be serviced when the GIE bit  
is set again.  
The INT pin interrupt, the RB port change interrupt and  
the TMR0 overflow interrupt flags are contained in the  
INTCON register.  
The peripheral interrupt flag is contained in the special  
register PIR1. The corresponding interrupt enable bit is  
contained in special registers PIE1.  
When an interrupt is responded to, the GIE is cleared  
to disable any further interrupt, the return address is  
pushed into the stack and the PC is loaded with 0004h.  
Once in the interrupt service routine, the source(s) of  
FIGURE 10-15: INTERRUPT LOGIC  
Wake-up  
(If in SLEEP mode)  
T0IF  
T0IE  
INTF  
INTE  
Interrupt  
to CPU  
RBIF  
RBIE  
CMIF  
CMIE  
PEIE  
GIE  
1999 Microchip Technology Inc.  
DS40182C-page 59  
PIC16CE62X  
10.5.1 RB0/INT INTERRUPT  
10.5.3 PORTB INTERRUPT  
External interrupt on RB0/INT pin is edge triggered;  
either rising if INTEDG bit (OPTION<6>) is set, or fall-  
ing, if INTEDG bit is clear. When a valid edge appears  
on the RB0/INT pin, the INTF bit (INTCON<1>) is set.  
This interrupt can be disabled by clearing the INTE  
control bit (INTCON<4>). The INTF bit must be cleared  
in software in the interrupt service routine before  
re-enabling this interrupt. The RB0/INT interrupt can  
wake-up the processor from SLEEP, if the INTE bit was  
set prior to going into SLEEP. The status of the GIE bit  
decides whether or not the processor branches to the  
interrupt vector following wake-up. See Section 10.8 for  
details on SLEEP and Figure 10-19 for timing of  
wake-up from SLEEP through RB0/INT interrupt.  
An input change on PORTB <7:4> sets the RBIF  
(INTCON<0>) bit. The interrupt can be enabled/dis-  
abled by setting/clearing the RBIE (INTCON<4>) bit.  
For operation of PORTB (Section 5.2).  
Note: If a change on the I/O pin should occur  
when the read operation is being executed  
(start of the Q2 cycle), then the RBIF inter-  
rupt flag may not get set.  
10.5.4 COMPARATOR INTERRUPT  
See Section 8.6 for complete description of comparator  
interrupts.  
10.5.2 TMR0 INTERRUPT  
An overflow (FFh 00h) in the TMR0 register will  
set the T0IF (INTCON<2>) bit. The interrupt can  
be enabled/disabled by setting/clearing T0IE  
(INTCON<5>) bit. For operation of the Timer0 module,  
see Section 7.0.  
FIGURE 10-16: INT PIN INTERRUPT TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT  
3
4
INT pin  
1
1
Interrupt Latency  
INTF flag  
(INTCON<1>)  
5
2
GIE bit  
(INTCON<7>)  
INSTRUCTION FLOW  
PC  
0004h  
PC  
PC+1  
PC+1  
0005h  
Instruction  
Inst (PC+1)  
Inst (0004h)  
Inst (PC)  
Inst (0005h)  
Inst (0004h)  
fetched  
Instruction  
executed  
Dummy Cycle  
Dummy Cycle  
Inst (PC)  
Inst (PC-1)  
Note  
1: INTF flag is sampled here (every Q1).  
2: Interrupt latency = 3-4 Tcy where TCY = instruction cycle time.  
Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.  
3: CLKOUT is available only in RC oscillator mode.  
4: For minimum width of INT pulse, refer to AC specs.  
5: INTF is enabled to be set anytime during the Q4-Q1 cycles.  
DS40182C-page 60  
1999 Microchip Technology Inc.  
PIC16CE62X  
10.6  
Context Saving During Interrupts  
10.7  
Watchdog Timer (WDT)  
During an interrupt, only the return PC value is saved  
on the stack. Typically, users may wish to save key reg-  
isters during an interrupt (i.e. W register and STATUS  
register). This will have to be implemented in software.  
The Watchdog Timer is a free running on-chip RC oscil-  
lator which does not require any external components.  
This RC oscillator is separate from the RC oscillator of  
the CLKIN pin. That means that the WDT will run, even  
if the clock on the OSC1 and OSC2 pins of the device  
have been stopped, for example, by execution of a  
SLEEP instruction. During normal operation, a WDT  
time-out generates a device RESET. If the device is in  
SLEEP mode, a WDT time-out causes the device to  
wake-up and continue with normal operation. The WDT  
can be permanently disabled by programming the con-  
figuration bit WDTE as clear (Section 10.1).  
Example 10-1 stores and restores the STATUS and W  
registers. The user register, W_TEMP, must be defined  
in both banks and must be defined at the same offset  
from the bank base address (i.e., W_TEMP is defined  
at 0x70 in Bank 0 and it must also be defined at 0xF0  
in Bank 1). The user register, STATUS_TEMP, must be  
defined in Bank 0. The Example 10-1:  
• Stores the W register  
10.7.1 WDT PERIOD  
• Stores the STATUS register in Bank 0  
• Executes the ISR code  
The WDT has a nominal time-out period of 18 ms, (with  
no prescaler). The time-out periods vary with tempera-  
• Restores the STATUS (and bank select bit  
register)  
DD  
ture, V and process variations from part to part (see  
• Restores the W register  
DC specs). If longer time-out periods are desired, a  
prescaler with a division ratio of up to 1:128 can be  
assigned to the WDT under software control by writing  
to the OPTION register. Thus, time-out periods up to  
2.3 seconds can be realized.  
EXAMPLE 10-1: SAVING THE STATUS AND  
W REGISTERS IN RAM  
MOVWF  
W_TEMP  
;copy W to temp register,  
;could be in either bank  
The CLRWDTand SLEEPinstructions clear the WDT  
and the postscaler, if assigned to the WDT, and prevent  
it from timing out and generating a device RESET.  
SWAPF  
BCF  
STATUS,W  
;swap status to be saved into W  
STATUS,RP0  
;change to bank 0 regardless  
;of current bank  
The TO bit in the STATUS register will be cleared upon  
a Watchdog Timer time-out.  
MOVWF  
STATUS_TEMP  
(ISR)  
;save status to bank 0  
;register  
:
10.7.2 WDT PROGRAMMING CONSIDERATIONS  
:
:
It should also be taken in account that under worst case  
conditions (VDD = Min., Temperature = Max., max.  
WDT prescaler), it may take several seconds before a  
WDT time-out occurs.  
SWAPF  
STATUS_TEMP,W ;swap STATUS_TEMP register  
;into W, sets bank to original  
;state  
MOVWF  
SWAPF  
SWAPF  
STATUS  
;move W into STATUS register  
;swap W_TEMP  
W_TEMP,F  
W_TEMP,W  
;swap W_TEMP into W  
1999 Microchip Technology Inc.  
DS40182C-page 61  
PIC16CE62X  
FIGURE 10-17: WATCHDOG TIMER BLOCK DIAGRAM  
From TMR0 Clock Source  
(Figure 7-6)  
0
M
U
X
Postscaler  
8
1
Watchdog  
Timer  
PS<2:0>  
To TMR0 (Figure 7-6)  
PSA  
8 - to -1 MUX  
PSA  
WDT  
Enable Bit  
1
0
MUX  
WDT  
Time-out  
Note: T0SE, T0CS, PSA, PS<2:0> are bits in the OPTION register.  
FIGURE 10-18: SUMMARY OF WATCHDOG TIMER REGISTERS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
2007h  
81h  
Config. bits  
OPTION  
BOREN  
INTEDG  
CP1  
CP0  
PWRTE  
PSA  
WDTE  
PS2  
FOSC1  
PS1  
FOSC0  
PS0  
RBPU  
T0CS  
T0SE  
Legend: _ = Unimplemented location, read as “0”, + = Reserved for future use  
Note: Shaded cells are not used by the Watchdog Timer.  
DS40182C-page 62  
1999 Microchip Technology Inc.  
PIC16CE62X  
The first event will cause a device reset. The two latter  
events are considered a continuation of program exe-  
cution. The TO and PD bits in the STATUS register can  
be used to determine the cause of device reset. PD  
bit, which is set on power-up is cleared when SLEEP is  
invoked. TO bit is cleared if WDT wake-up occurred.  
10.8  
Power-Down Mode (SLEEP)  
The Power-down mode is entered by executing a  
SLEEPinstruction.  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the PD bit in the STATUS register is  
cleared, the TO bit is set and the oscillator driver is  
turned off. The I/O ports maintain the status they had  
before SLEEP was executed (driving high, low, or  
hi-impedance).  
When the SLEEP instruction is being executed, the  
next instruction (PC + 1) is pre-fetched. For the device  
to wake-up through an interrupt event, the correspond-  
ing interrupt enable bit must be set (enabled). Wake-up  
is regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEPinstruction and then branches to the inter-  
rupt address (0004h). In cases where the execution of  
the instruction following SLEEP is not desirable, the  
user should have an NOPafter the SLEEPinstruction.  
For lowest current consumption in this mode, all I/O  
pins should be either at VDD or VSS, with no external  
circuitry drawing current from the I/O pin, and the com-  
parators and VREF should be disabled. I/O pins that are  
hi-impedance inputs should be pulled high or low exter-  
nally to avoid switching currents caused by floating  
inputs. The T0CKI input should also be at VDD or VSS  
for lowest current consumption. The contribution from  
on chip pull-ups on PORTB should be considered.  
Note: If the global interrupts are disabled (GIE is  
cleared), but any interrupt source has both  
its interrupt enable bit and the correspond-  
ing interrupt flag bits set, the device will  
immediately wake-up from sleep. The  
sleep instruction is completely executed.  
The MCLR pin must be at a logic high level (VIHMC).  
Note: It should be noted that a RESET generated  
by a WDT time-out does not drive MCLR  
pin low.  
10.8.1 WAKE-UP FROM SLEEP  
The WDT is cleared when the device wakes-up from  
sleep, regardless of the source of wake-up.  
The device can wake-up from SLEEP through one of  
the following events:  
1. External reset input on MCLR pin  
2. Watchdog Timer Wake-up (if WDT was enabled)  
3. Interrupt from RB0/INT pin, RB Port change, or  
the Peripheral Interrupt (Comparator).  
FIGURE 10-19: WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT(4)  
INT pin  
TOST(2)  
INTF flag  
(INTCON<1>)  
Interrupt Latency  
GIE bit  
(INTCON<7>)  
Processor in  
SLEEP  
INSTRUCTION FLOW  
PC  
PC  
PC+1  
PC+2  
PC+2  
PC + 2  
0004h  
0005h  
Instruction  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = SLEEP  
Inst(PC - 1)  
fetched  
Instruction  
executed  
Dummy cycle  
Dummy cycle  
SLEEP  
Inst(PC + 1)  
Inst(0004h)  
Note 1: XT, HS or LP oscillator mode assumed.  
2: TOST = 1024TOSC (drawing not to scale) This delay does not occur for RC osc mode.  
3: GIE = ’1’ assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = ’0’, execution will continue in-line.  
4: CLKOUT is not available in these osc modes, but shown here for timing reference.  
1999 Microchip Technology Inc.  
DS40182C-page 63  
PIC16CE62X  
10.9  
Code Protection  
10.11 In-Circuit Serial Programming  
If the code protection bit(s) have not been  
programmed, the on-chip program memory can be  
read out for verification purposes.  
The PIC16CE62X microcontrollers can be serially  
programmed while in the end application circuit. This is  
simply done with two lines for clock and data, and three  
other lines for power, ground, and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices, and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom  
firmware to be programmed.  
Note: Microchip does not recommend code  
protecting windowed devices.  
10.10 ID Locations  
Four memory locations (2000h-2003h) are designated  
as ID locations where the user can store checksum or  
other code-identification numbers. These locations are  
not accessible during normal execution but are  
readable and writable during program/verify. Only the  
least significant 4 bits of the ID locations are used.  
The device is placed into a program/verify mode by  
holding the RB6 and RB7 pins low, while raising the  
MCLR (VPP) pin from VIL to VIHH (see programming  
specification). RB6 becomes the programming clock  
and RB7 becomes the programming data. Both RB6  
and RB7 are Schmitt Trigger inputs in this mode.  
After reset, to place the device into programming/verify  
mode, the program counter (PC) is at location 00h. A  
6-bit command is then supplied to the device.  
Depending on the command, 14-bits of program data  
are then supplied to or from the device, depending if the  
command was a load or a read. For complete details of  
serial  
programming,  
please  
refer  
to  
the  
PIC16C6X/7X/9XX Programming Specifications (Liter-  
ature #DS30228).  
A typical in-circuit serial programming connection is  
shown in Figure 10-20.  
FIGURE 10-20: TYPICAL IN-CIRCUIT SERIAL  
PROGRAMMING  
CONNECTION  
To Normal  
Connections  
External  
Connector  
Signals  
PIC16CE62X  
+5V  
0V  
VDD  
VSS  
VPP  
MCLR/VPP  
RB6  
RB7  
CLK  
Data I/O  
VDD  
To Normal  
Connections  
DS40182C-page 64  
1999 Microchip Technology Inc.  
PIC16CE62X  
The instruction set is highly orthogonal and is grouped  
into three basic categories:  
11.0 INSTRUCTION SET SUMMARY  
Each PIC16CE62X instruction is a 14-bit word divided  
into an OPCODE which specifies the instruction type  
and one or more operands which further specify the  
operation of the instruction. The PIC16CE62X instruc-  
tion set summary in Table 11-2 lists byte-oriented,  
bit-oriented, and literal and control operations.  
Table 11-1 shows the opcode field descriptions.  
Byte-oriented operations  
Bit-oriented operations  
Literal and control operations  
All instructions are executed within one single  
instruction cycle, unless a conditional test is true or the  
program counter is changed as a result of an  
instruction. In this case, the execution takes two  
instruction cycles with the second cycle executed as a  
NOP. One instruction cycle consists of four oscillator  
periods. Thus, for an oscillator frequency of 4 MHz, the  
For byte-oriented instructions, ’f’ represents a file  
register designator and ’d’ represents a destination  
designator. The file register designator specifies which  
file register is to be used by the instruction.  
normal instruction execution time is 1 µs. If  
a
The destination designator specifies where the result of  
the operation is to be placed. If ’d’ is zero, the result is  
placed in the W register. If ’d’ is one, the result is placed  
in the file register specified in the instruction.  
conditional test is true or the program counter is  
changed as a result of an instruction, the instruction  
execution time is 2 µs.  
Table 11-1 lists the instructions recognized by the  
MPASM assembler.  
For bit-oriented instructions, ’b’ represents a bit field  
designator which selects the number of the bit affected  
by the operation, while ’f’ represents the number of the  
file in which the bit is located.  
Figure 11-1 shows the three general formats that the  
instructions can have.  
For literal and control operations, ’k’ represents an  
eight or eleven bit constant or literal value.  
Note: To maintain upward compatibility with  
future PICmicro® products, do not use the  
OPTIONand TRISinstructions.  
TABLE 11-1: OPCODE FIELD  
DESCRIPTIONS  
All examples use the following format to represent a  
hexadecimal number:  
Field  
Description  
0xhh  
f
W
b
k
x
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
where h signifies a hexadecimal digit.  
FIGURE 11-1: GENERAL FORMAT FOR  
INSTRUCTIONS  
Bit address within an 8-bit file register  
Literal field, constant data or label  
Don’t care location (= 0 or 1)  
Byte-oriented file register operations  
The assembler will generate code with x = 0. It is the  
recommended form of use for compatibility with all  
Microchip software tools.  
13  
8
7
6
0
0
OPCODE  
d
f (FILE #)  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1  
d = 0 for destination W  
d = 1 for destination f  
f = 7-bit file register address  
label Label name  
TOS Top of Stack  
PC Program Counter  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7
6
OPCODE  
f (FILE #)  
PCLATH  
Program Counter High Latch  
GIE Global Interrupt Enable bit  
WDT Watchdog Timer/Counter  
TO Time-out bit  
b = 3-bit bit address  
f = 7-bit file register address  
PD Power-down bit  
Literal and control operations  
dest Destination either the W register or the specified  
register file location  
General  
[ ] Options  
13  
8
7
0
0
Contents  
( )  
OPCODE  
k (literal)  
Assigned to  
k = 8-bit immediate value  
Register bit field  
In the set of  
< >  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
User defined term (font is courier)  
italics  
k (literal)  
1999 Microchip Technology Inc.  
DS40182C-page 65  
PIC16CE62X  
TABLE 11-2: PIC16CE62X INSTRUCTION SET  
Mnemonic,  
Operands  
Description  
Cycles  
14-Bit Opcode  
Status  
Affected  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
f, d Add W and f  
f, d AND W with f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
0111 dfff ffff C,DC,Z  
1,2  
1,2  
2
0101 dfff ffff  
0001 lfff ffff  
0001 0000 0011  
1001 dfff ffff  
0011 dfff ffff  
1011 dfff ffff  
1010 dfff ffff  
1111 dfff ffff  
0100 dfff ffff  
1000 dfff ffff  
0000 lfff ffff  
0000 0xx0 0000  
1101 dfff ffff  
1100 dfff ffff  
Z
Z
Z
Z
Z
f
-
Clear f  
Clear W  
f, d Complement f  
f, d Decrement f  
f, d Decrement f, Skip if 0  
f, d Increment f  
f, d Increment f, Skip if 0  
f, d Inclusive OR W with f  
f, d Move f  
1,2  
1,2  
1,2,3  
1,2  
1,2,3  
1,2  
DECFSZ  
INCF  
Z
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
Z
Z
1,2  
f
-
Move W to f  
No Operation  
f, d Rotate Left f through Carry  
f, d Rotate Right f through Carry  
f, d Subtract W from f  
f, d Swap nibbles in f  
f, d Exclusive OR W with f  
C
C
1,2  
1,2  
1,2  
1,2  
1,2  
0010 dfff ffff C,DC,Z  
1110 dfff ffff  
0110 dfff ffff Z  
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b Bit Clear f  
f, b Bit Set f  
f, b Bit Test f, Skip if Clear  
f, b Bit Test f, Skip if Set  
1
1
01  
01  
00bb bfff ffff  
01bb bfff ffff  
10bb bfff ffff  
11bb bfff ffff  
1,2  
1,2  
3
1 (2) 01  
1 (2) 01  
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
-
k
k
k
-
k
-
-
k
k
Add literal and W  
AND literal with W  
Call subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11  
11  
10  
00  
10  
11  
11  
00  
11  
00  
00  
11  
11  
111x kkkk kkkk C,DC,Z  
1001 kkkk kkkk  
0kkk kkkk kkkk  
Z
0000 0110 0100 TO,PD  
1kkk kkkk kkkk  
Inclusive OR literal with W  
Move literal to W  
1000 kkkk kkkk  
00xx kkkk kkkk  
0000 0000 1001  
01xx kkkk kkkk  
0000 0000 1000  
Z
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into standby mode  
Subtract W from literal  
Exclusive OR literal with W  
0000 0110 0011 TO,PD  
110x kkkk kkkk C,DC,Z  
1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself ( e.g., MOVF PORTB, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is ’1’ for a pin configured as input and is driven low by an external  
device, the data will be written back with a ’0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned  
to the Timer0 Module.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
DS40182C-page 66  
1999 Microchip Technology Inc.  
PIC16CE62X  
11.1  
Instruction Descriptions  
ANDLW  
AND Literal with W  
ADDLW  
Add Literal and W  
Syntax:  
[ label ] ANDLW  
k
Syntax:  
[ label ] ADDLW  
k
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
Operands:  
0 k 255  
(W) + k (W)  
C, DC, Z  
(W) .AND. (k) (W)  
Operation:  
Z
Status Affected:  
Encoding:  
11  
1001  
kkkk  
kkkk  
11  
111x  
kkkk  
kkkk  
The contents of W register are  
AND’ed with the eight bit literal 'k'. The  
result is placed in the W register.  
The contents of the W register are  
added to the eight bit literal ’k’ and the  
result is placed in the W register.  
Description:  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
1
ANDLW  
0x5F  
ADDLW  
0x15  
Before Instruction  
Before Instruction  
W
=
0xA3  
0x03  
W
=
0x10  
0x25  
After Instruction  
After Instruction  
W
=
W
=
ADDWF  
Syntax:  
Add W and f  
ANDWF  
Syntax:  
AND W with f  
[ label ] ADDWF f,d  
[ label ] ANDWF f,d  
Operands:  
0 f 127  
Operands:  
0 f 127  
d
[0,1]  
d
[0,1]  
Operation:  
(W) + (f) (dest)  
Operation:  
(W) .AND. (f) (dest)  
Status Affected:  
Encoding:  
C, DC, Z  
Status Affected:  
Encoding:  
Z
00  
0111  
dfff  
ffff  
00  
0101  
dfff  
ffff  
Add the contents of the W register  
with register ’f’. If ’d’ is 0, the result is  
stored in the W register. If ’d’ is 1, the  
result is stored back in register ’f’.  
AND the W register with register 'f'. If  
'd' is 0, the result is stored in the W  
register. If 'd' is 1, the result is stored  
back in register 'f'.  
Description:  
Description:  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
1
ADDWF  
FSR,  
0
ANDWF  
FSR, 1  
Before Instruction  
Before Instruction  
W
FSR =  
=
0x17  
0xC2  
W
FSR =  
=
0x17  
0xC2  
After Instruction  
After Instruction  
W
FSR =  
=
0xD9  
0xC2  
W
FSR =  
=
0x17  
0x02  
1999 Microchip Technology Inc.  
DS40182C-page 67  
PIC16CE62X  
BCF  
Bit Clear f  
BTFSC  
Bit Test, Skip if Clear  
Syntax:  
Operands:  
[ label ] BCF f,b  
Syntax:  
[ label ] BTFSC f,b  
0 f 127  
0 b 7  
Operands:  
0 f 127  
0 b 7  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
0 (f<b>)  
Operation:  
skip if (f<b>) = 0  
None  
None  
Status Affected:  
Encoding:  
01  
00bb  
bfff  
ffff  
01  
10bb  
bfff  
ffff  
If bit ’b’ in register ’f’ is ’0’, then the next  
instruction is skipped.  
Bit ’b’ in register ’f’ is cleared.  
Description:  
1
1
If bit ’b’ is ’0’, then the next instruction  
fetched during the current instruction  
execution is discarded, and a NOPis  
executed instead, making this a  
two-cycle instruction.  
Cycles:  
BCF  
FLAG_REG, 7  
Example  
Before Instruction  
FLAG_REG = 0xC7  
After Instruction  
Words:  
Cycles:  
Example  
1
1(2)  
FLAG_REG = 0x47  
HERE  
FALSE  
TRUE  
BTFSC FLAG,1  
GOTO  
PROCESS_CODE  
Before Instruction  
PC  
=
address HERE  
After Instruction  
if FLAG<1> = 0,  
PC =  
address TRUE  
if FLAG<1>=1,  
PC =  
address FALSE  
BSF  
Bit Set f  
Syntax:  
Operands:  
[ label ] BSF f,b  
0 f 127  
0 b 7  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
1 (f<b>)  
None  
01  
01bb  
bfff  
ffff  
Bit ’b’ in register ’f’ is set.  
1
1
Cycles:  
BSF  
FLAG_REG,  
7
Example  
Before Instruction  
FLAG_REG = 0x0A  
After Instruction  
FLAG_REG = 0x8A  
DS40182C-page 68  
1999 Microchip Technology Inc.  
PIC16CE62X  
BTFSS  
Bit Test f, Skip if Set  
CLRF  
Clear f  
[ label ] CLRF  
Syntax:  
[ label ] BTFSS f,b  
Syntax:  
f
Operands:  
0 f 127  
0 b < 7  
Operands:  
Operation:  
0 f 127  
00h (f)  
1 Z  
Operation:  
skip if (f<b>) = 1  
None  
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
Z
01  
11bb  
bfff  
ffff  
00  
0001  
1fff  
ffff  
If bit ’b’ in register ’f’ is ’1’ then the next  
instruction is skipped.  
The contents of register ’f’ are cleared  
and the Z bit is set.  
Description:  
Description:  
If bit ’b’ is ’1’, then the next instruction  
fetched during the current instruction  
execution, is discarded and a NOPis  
executed instead, making this a  
two-cycle instruction.  
Words:  
Cycles:  
Example  
1
1
CLRF  
FLAG_REG  
Before Instruction  
FLAG_REG  
After Instruction  
FLAG_REG  
Z
Words:  
Cycles:  
Example  
1
=
0x5A  
1(2)  
=
=
0x00  
1
HERE  
FALSE  
TRUE  
BTFSS FLAG,1  
GOTO  
PROCESS_CODE  
Before Instruction  
PC  
=
address HERE  
After Instruction  
if FLAG<1> = 0,  
PC =  
address FALSE  
if FLAG<1> = 1,  
PC =  
address TRUE  
CLRW  
Clear W  
Syntax:  
[ label ] CLRW  
None  
CALL  
Call Subroutine  
[ label ] CALL k  
0 k 2047  
Operands:  
Operation:  
Syntax:  
00h (W)  
1 Z  
Operands:  
Operation:  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
Status Affected:  
Encoding:  
Z
00  
0001  
0000  
0011  
Status Affected:  
Encoding:  
None  
W register is cleared. Zero bit (Z) is  
set.  
Description:  
10  
0kkk  
kkkk  
kkkk  
Words:  
Cycles:  
Example  
1
Call Subroutine. First, return address  
(PC+1) is pushed onto the stack. The  
eleven bit immediate address is  
loaded into PC bits <10:0>. The upper  
bits of the PC are loaded from  
PCLATH. CALLis a two-cycle instruc-  
tion.  
Description:  
1
CLRW  
Before Instruction  
W
=
0x5A  
After Instruction  
W
Z
=
=
0x00  
1
Words:  
Cycles:  
Example  
1
2
HERE  
CALL THERE  
Before Instruction  
PC  
=
Address HERE  
After Instruction  
PC  
= Address THERE  
TOS = Address HERE+1  
1999 Microchip Technology Inc.  
DS40182C-page 69  
PIC16CE62X  
CLRWDT  
Syntax:  
Clear Watchdog Timer  
DECF  
Decrement f  
[ label ] DECF f,d  
0 f 127  
[ label ] CLRWDT  
None  
Syntax:  
Operands:  
Operands:  
Operation:  
d
[0,1]  
00h WDT  
0 WDT prescaler,  
1 TO  
Operation:  
(f) - 1 (dest)  
Status Affected:  
Encoding:  
Z
1 PD  
00  
0011  
dfff  
ffff  
Status Affected:  
Encoding:  
TO, PD  
Decrement register ’f’. If ’d’ is 0, the  
result is stored in the W register. If ’d’  
is 1, the result is stored back in regis-  
ter ’f’.  
Description:  
00  
0000  
0110  
0100  
CLRWDTinstruction resets the  
Description:  
Watchdog Timer. It also resets the  
prescaler of the WDT. Status bits TO  
and PD are set.  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
DECF  
CNT, 1  
1
Before Instruction  
CLRWDT  
CNT  
Z
=
=
0x01  
0
Before Instruction  
After Instruction  
WDT counter  
After Instruction  
=
=
?
CNT  
Z
=
=
0x00  
1
WDT counter  
0x00  
WDT prescaler=  
0
1
1
TO  
PD  
=
=
COMF  
Complement f  
[ label ] COMF f,d  
0 f 127  
DECFSZ  
Syntax:  
Decrement f, Skip if 0  
[ label ] DECFSZ f,d  
0 f 127  
Syntax:  
Operands:  
Operands:  
d
[0,1]  
d
[0,1]  
Operation:  
(f) (dest)  
Operation:  
(f) - 1 (dest); skip if result = 0  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
None  
00  
1001  
dfff  
ffff  
00  
1011  
dfff  
ffff  
The contents of register ’f’ are  
Description:  
The contents of register ’f’ are  
Description:  
complemented. If ’d’ is 0, the result is  
stored in W. If ’d’ is 1, the result is  
stored back in register ’f’.  
decremented. If ’d’ is 0, the result is  
placed in the W register. If ’d’ is 1, the  
result is placed back in register ’f’.  
If the result is 0, the next instruction,  
which is already fetched, is discarded.  
A NOPis executed instead making it a  
two-cycle instruction.  
Words:  
Cycles:  
Example  
1
1
COMF  
REG1,0  
Before Instruction  
Words:  
Cycles:  
Example  
1
REG1  
After Instruction  
REG1  
=
0x13  
1(2)  
HERE  
DECFSZ  
GOTO  
CNT, 1  
LOOP  
=
=
0x13  
0xEC  
W
CONTINUE •  
Before Instruction  
PC  
=
address HERE  
After Instruction  
CNT  
if CNT =  
PC  
if CNT ≠  
PC  
=
CNT - 1  
0,  
address CONTINUE  
0,  
address HERE+1  
=
=
DS40182C-page 70  
1999 Microchip Technology Inc.  
PIC16CE62X  
GOTO  
Unconditional Branch  
[ label ] GOTO k  
0 k 2047  
INCFSZ  
Syntax:  
Increment f, Skip if 0  
[ label ] INCFSZ f,d  
0 f 127  
Syntax:  
Operands:  
Operation:  
Operands:  
d
[0,1]  
k PC<10:0>  
PCLATH<4:3> PC<12:11>  
Operation:  
(f) + 1 (dest), skip if result = 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
10  
1kkk  
kkkk  
kkkk  
00  
1111  
dfff  
ffff  
GOTOis an unconditional branch. The  
eleven bit immediate value is loaded  
into PC bits <10:0>. The upper bits of  
PC are loaded from PCLATH<4:3>.  
GOTOis a two-cycle instruction.  
The contents of register ’f’ are  
Description:  
Description:  
incremented. If ’d’ is 0, the result is  
placed in the W register. If ’d’ is 1, the  
result is placed back in register ’f’.  
If the result is 0, the next instruction,  
which is already fetched, is discarded.  
A NOPis executed instead making it a  
two-cycle instruction.  
Words:  
Cycles:  
Example  
1
2
GOTO THERE  
Words:  
Cycles:  
Example  
1
After Instruction  
1(2)  
PC  
=
Address THERE  
HERE  
INCFSZ  
GOTO  
CNT,  
LOOP  
1
CONTINUE •  
Before Instruction  
PC  
=
address HERE  
After Instruction  
CNT  
=
CNT + 1  
if CNT=  
0,  
PC  
if CNT≠  
=
address CONTINUE  
0,  
PC  
=
address HERE +1  
INCF  
Increment f  
IORLW  
Inclusive OR Literal with W  
[ label ] IORLW k  
0 k 255  
Syntax:  
Operands:  
[ label ] INCF f,d  
Syntax:  
0 f 127  
d
[0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operation:  
(f) + 1 (dest)  
(W) .OR. k (W)  
Z
Status Affected:  
Encoding:  
Z
00  
1010  
dfff  
ffff  
11  
1000  
kkkk  
kkkk  
The contents of register ’f’ are  
Description:  
The contents of the W register are  
incremented. If ’d’ is 0, the result is  
placed in the W register. If ’d’ is 1, the  
result is placed back in register ’f’.  
OR’ed with the eight bit literal 'k'. The  
result is placed in the W register.  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
1
IORLW  
0x35  
INCF  
CNT, 1  
Before Instruction  
Before Instruction  
W
=
0x9A  
CNT  
Z
=
=
0xFF  
0
After Instruction  
W
Z
=
=
0xBF  
1
After Instruction  
CNT  
Z
=
=
0x00  
1
1999 Microchip Technology Inc.  
DS40182C-page 71  
PIC16CE62X  
IORWF  
Inclusive OR W with f  
MOVF  
Move f  
Syntax:  
[ label ] IORWF f,d  
Syntax:  
Operands:  
[ label ] MOVF f,d  
Operands:  
0 f 127  
0 f 127  
d
[0,1]  
d
[0,1]  
Operation:  
(W) .OR. (f) (dest)  
Operation:  
(f) (dest)  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
Z
00  
0100  
dfff  
ffff  
00  
1000  
dfff  
ffff  
Inclusive OR the W register with  
register ’f’. If ’d’ is 0, the result is  
placed in the W register. If ’d’ is 1, the  
result is placed back in register ’f’.  
The contents of register f are moved  
to a destination dependant upon the  
status of d. If d = 0, destination is W  
register. If d = 1, the destination is file  
register f itself. d = 1 is useful to test a  
file register since status flag Z is  
affected.  
Description:  
Description:  
Words:  
Cycles:  
Example  
1
1
IORWF  
RESULT, 0  
Words:  
Cycles:  
Example  
1
1
Before Instruction  
RESULT =  
0x13  
0x91  
MOVF  
FSR, 0  
W
=
After Instruction  
After Instruction  
RESULT =  
W
Z
0x13  
0x93  
1
W = value in FSR register  
=
=
Z
= 1  
MOVLW  
Move Literal to W  
[ label ] MOVLW k  
0 k 255  
MOVWF  
Move W to f  
[ label ] MOVWF  
0 f 127  
(W) (f)  
Syntax:  
Syntax:  
f
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
k (W)  
None  
None  
11  
00xx  
kkkk  
kkkk  
00  
0000  
1fff  
ffff  
The eight bit literal ’k’ is loaded into W  
register. The don’t cares will assemble  
as 0’s.  
Move data from W register to register  
'f'.  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
1
MOVWF  
OPTION  
MOVLW  
0x5A  
Before Instruction  
After Instruction  
OPTION =  
0xFF  
0x4F  
W
=
0x5A  
W
=
After Instruction  
OPTION =  
0x4F  
0x4F  
W
=
DS40182C-page 72  
1999 Microchip Technology Inc.  
PIC16CE62X  
NOP  
No Operation  
[ label ] NOP  
None  
RETFIE  
Return from Interrupt  
[ label ] RETFIE  
None  
Syntax:  
Syntax:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
Operands:  
Operation:  
No operation  
None  
TOS PC,  
1 GIE  
Status Affected:  
Encoding:  
None  
00  
0000  
0xx0  
0000  
00  
0000  
0000  
1001  
No operation.  
Return from Interrupt. Stack is POPed  
and Top of Stack (TOS) is loaded in  
the PC. Interrupts are enabled by  
setting Global Interrupt Enable bit,  
GIE (INTCON<7>). This is a two-cycle  
instruction.  
Description:  
1
Cycles:  
1
NOP  
Example  
Words:  
Cycles:  
Example  
1
2
RETFIE  
After Interrupt  
PC  
GIE =  
=
TOS  
1
OPTION  
Syntax:  
Load Option Register  
[ label ] OPTION  
None  
RETLW  
Return with Literal in W  
[ label ] RETLW k  
0 k 255  
Syntax:  
Operands:  
Operation:  
Operands:  
Operation:  
(W) OPTION  
k (W);  
TOS PC  
Status Affected: None  
00  
0000  
0110  
0010  
Encoding:  
Status Affected:  
Encoding:  
None  
The contents of the W register are  
loaded in the OPTION register. This  
instruction is supported for code  
compatibility with PIC16C5X products.  
Since OPTION is a readable/writable  
register, the user can directly  
address it.  
Description:  
11  
01xx  
kkkk  
kkkk  
The W register is loaded with the eight  
bit literal ’k’. The program counter is  
loaded from the top of the stack (the  
return address). This is a two-cycle  
instruction.  
Description:  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
2
CALL TABLE  
;W contains table  
;offset value  
;W now has table  
To maintain upward compatibility  
®
value  
with future PICmicro products, do  
not use this instruction.  
TABLE  
ADDWF PC  
;W = offset  
;Begin table  
;
RETLW k1  
RETLW k2  
RETLW kn  
; End of table  
Before Instruction  
W
=
0x07  
After Instruction  
W
=
value of k8  
1999 Microchip Technology Inc.  
DS40182C-page 73  
PIC16CE62X  
RETURN  
Return from Subroutine  
RRF  
Rotate Right f through Carry  
[ label ] RRF f,d  
0 f 127  
Syntax:  
[ label ] RETURN  
None  
Syntax:  
Operands:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
d
[0,1]  
TOS PC  
None  
Operation:  
See description below  
C
Status Affected:  
Encoding:  
00  
0000  
0000  
1000  
00  
1100  
dfff  
ffff  
Return from subroutine. The stack is  
POPed and the top of the stack (TOS)  
is loaded into the program counter.  
This is a two cycle instruction.  
The contents of register ’f’ are rotated  
one bit to the right through the Carry  
Flag. If ’d’ is 0, the result is placed in  
the W register. If ’d’ is 1, the result is  
placed back in register ’f’.  
Description:  
Words:  
Cycles:  
Example  
1
2
C
Register f  
RETURN  
Words:  
Cycles:  
Example  
1
1
After Interrupt  
PC  
=
TOS  
RRF  
REG1,0  
Before Instruction  
REG1  
C
=
=
1110 0110  
0
After Instruction  
REG1  
W
C
=
=
=
1110 0110  
0111 0011  
0
RLF  
Rotate Left f through Carry  
SLEEP  
Syntax:  
Operands:  
[ label ]  
RLF f,d  
Syntax:  
[ label ] SLEEP  
None  
0 f 127  
Operands:  
Operation:  
d
[0,1]  
00h WDT,  
0 WDT prescaler,  
1 TO,  
Operation:  
See description below  
C
Status Affected:  
Encoding:  
00  
1101  
dfff  
ffff  
0 PD  
The contents of register ’f’ are rotated  
one bit to the left through the Carry  
Flag. If ’d’ is 0, the result is placed in  
the W register. If ’d’ is 1, the result is  
stored back in register ’f’.  
Status Affected:  
Encoding:  
TO, PD  
Description:  
00  
0000  
0110  
0011  
The power-down status bit, PD is  
cleared. Time-out status bit, TO is  
set. Watchdog Timer and its  
Description:  
C
Register f  
prescaler are cleared.  
The processor is put into SLEEP  
mode with the oscillator stopped.  
See Section 10.8 for more details.  
Words:  
Cycles:  
Example  
1
1
RLF  
REG1,0  
Words:  
1
Before Instruction  
Cycles:  
Example:  
1
REG1  
C
=
=
1110 0110  
0
SLEEP  
After Instruction  
REG1  
W
C
=
=
=
1110 0110  
1100 1100  
1
DS40182C-page 74  
1999 Microchip Technology Inc.  
PIC16CE62X  
SUBLW  
Subtract W from Literal  
SUBWF  
Syntax:  
Subtract W from f  
Syntax:  
[ label ]  
SUBLW k  
[ label ]  
SUBWF f,d  
Operands:  
Operation:  
0 k 255  
Operands:  
0 f 127  
d
[0,1]  
k - (W) → (W)  
Operation:  
(f) - (W) → (dest)  
Status  
C, DC, Z  
Affected:  
Status  
C, DC, Z  
Affected:  
Encoding:  
11  
110x  
kkkk  
kkkk  
Encoding:  
00  
0010  
dfff  
ffff  
The W register is subtracted (2’s com-  
plement method) from the eight bit literal  
'k'. The result is placed in the W register.  
Description:  
Subtract (2’s complement method)  
Description:  
W register from register 'f'. If 'd' is 0, the  
result is stored in the W register. If 'd' is 1,  
the result is stored back in register 'f'.  
Words:  
1
1
Cycles:  
Words:  
1
1
Example 1:  
SUBLW  
0x02  
Cycles:  
Before Instruction  
Example 1:  
SUBWF  
REG1,1  
W
C
=
=
1
?
Before Instruction  
REG1  
W
C
=
=
=
3
2
?
After Instruction  
W
C
=
=
1
1; result is positive  
After Instruction  
Example 2:  
Example 3:  
Before Instruction  
REG1  
W
C
=
=
=
1
2
W
C
=
=
2
?
1; result is positive  
After Instruction  
Example 2:  
Before Instruction  
W
C
=
=
0
REG1  
W
=
=
=
2
2
?
1; result is zero  
C
Before Instruction  
After Instruction  
W
C
=
=
3
?
REG1  
W
=
=
=
0
2
After Instruction  
C
1; result is zero  
W
=
0xFF  
Example 3:  
Before Instruction  
C
=
0; result is nega-  
tive  
REG1  
W
C
=
=
=
1
2
?
After Instruction  
REG1  
W
C
=
=
=
0xFF  
2
0; result is negative  
1999 Microchip Technology Inc.  
DS40182C-page 75  
PIC16CE62X  
SWAPF  
Syntax:  
Swap Nibbles in f  
XORLW  
Exclusive OR Literal with W  
[ label ] SWAPF f,d  
Syntax:  
[ label ] XORLW k  
0 k 255  
Operands:  
0 f 127  
Operands:  
Operation:  
Status Affected:  
Encoding:  
d
[0,1]  
(W) .XOR. k → (W)  
Z
Operation:  
(f<3:0>) (dest<7:4>),  
(f<7:4>) (dest<3:0>)  
11  
1010 kkkk kkkk  
Status Affected:  
Encoding:  
None  
The contents of the W register are  
XOR’ed with the eight bit literal 'k'.  
The result is placed in the  
W register.  
Description:  
00  
1110  
dfff  
ffff  
The upper and lower nibbles of  
Description:  
register ’f’ are exchanged. If ’d’ is 0,  
the result is placed in W register. If ’d’  
is 1, the result is placed in register ’f’.  
Words:  
1
Cycles:  
Example:  
1
Words:  
Cycles:  
Example  
1
1
XORLW 0xAF  
Before Instruction  
SWAPF REG,  
0
W
=
0xB5  
0x1A  
Before Instruction  
REG1  
After Instruction  
=
0xA5  
W
=
After Instruction  
REG1  
W
=
=
0xA5  
0x5A  
TRIS  
Load TRIS Register  
XORWF  
Syntax:  
Exclusive OR W with f  
[ label ] XORWF f,d  
0 f 127  
Syntax:  
[ label ] TRIS  
f
Operands:  
Operation:  
5 f 7  
Operands:  
d
[0,1]  
(W) TRIS register f;  
Status Affected: None  
Operation:  
(W) .XOR. (f) → (dest)  
00  
Encoding:  
0000 0110  
0fff  
Status Affected:  
Encoding:  
Z
The instruction is supported for code  
compatibility with the PIC16C5X  
products. Since TRIS registers are  
readable and writable, the user can  
directly address them.  
Description:  
00  
0110  
dfff  
ffff  
Exclusive OR the contents of the  
W register with register 'f'. If 'd' is 0,  
the result is stored in the W register. If  
'd' is 1, the result is stored back in reg-  
ister 'f'.  
Description:  
Words:  
Cycles:  
Example  
1
1
Words:  
Cycles:  
Example  
1
1
To maintain upward compatibility  
REG  
1
XORWF  
®
with future PICmicro products, do  
Before Instruction  
not use this instruction.  
REG  
W
=
=
0xAF  
0xB5  
After Instruction  
REG  
W
=
=
0x1A  
0xB5  
DS40182C-page 76  
1999 Microchip Technology Inc.  
PIC16CE62X  
MPLAB allows you to:  
12.0 DEVELOPMENT SUPPORT  
The PICmicro® microcontrollers are supported with a  
full range of hardware and software development tools:  
• Edit your source files (either assembly or ‘C’)  
• One touch assemble (or compile) and download  
to PICmicro tools (automatically updates all  
project information)  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Debug using:  
- source files  
• Assemblers/Compilers/Linkers  
- MPASM Assembler  
- absolute listing file  
- object code  
- MPLAB-C17 and MPLAB-C18 C Compilers  
- MPLINK/MPLIB Linker/Librarian  
• Simulators  
The ability to use MPLAB with Microchip’s simulator,  
MPLAB-SIM, allows a consistent platform and the abil-  
ity to easily switch from the cost-effective simulator to  
the full featured emulator with minimal retraining.  
- MPLAB-SIM Software Simulator  
• Emulators  
- MPLAB-ICE Real-Time In-Circuit Emulator  
- PICMASTER®/PICMASTER-CE In-Circuit  
12.2  
MPASM Assembler  
Emulator  
MPASM is a full featured universal macro assembler for  
all PICmicro MCU’s. It can produce absolute code  
directly in the form of HEX files for device program-  
mers, or it can generate relocatable objects for  
MPLINK.  
- ICEPIC™  
• In-Circuit Debugger  
- MPLAB-ICD for PIC16F877  
• Device Programmers  
MPASM has a command line interface and a Windows  
shell and can be used as a standalone application on a  
Windows 3.x or greater system. MPASM generates  
relocatable object files, Intel standard HEX files, MAP  
files to detail memory usage and symbol reference, an  
absolute LST file which contains source lines and gen-  
erated machine code, and a COD file for MPLAB  
debugging.  
- PRO MATE II Universal Programmer  
- PICSTART Plus Entry-Level Prototype  
Programmer  
• Low-Cost Demonstration Boards  
- SIMICE  
- PICDEM-1  
- PICDEM-2  
- PICDEM-3  
MPASM features include:  
- PICDEM-17  
- SEEVAL  
• MPASM and MPLINK are integrated into MPLAB  
projects.  
- KEELOQ  
• MPASM allows user defined macros to be created  
for streamlined assembly.  
12.1  
MPLAB Integrated Development  
Environment Software  
• MPASM allows conditional assembly for multi pur-  
pose source files.  
• MPASM directives allow complete control over the  
assembly process.  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8-bit microcon-  
troller market. MPLAB is a Windows -based applica-  
tion which contains:  
12.3  
MPLAB-C17 and MPLAB-C18  
C Compilers  
• Multiple functionality  
- editor  
The MPLAB-C17 and MPLAB-C18 Code Development  
Systems are complete ANSI ‘C’ compilers and inte-  
grated development environments for Microchip’s  
PIC17CXXX and PIC18CXXX family of microcontrol-  
lers, respectively. These compilers provide powerful  
integration capabilities and ease of use not found with  
other compilers.  
- simulator  
- programmer (sold separately)  
- emulator (sold separately)  
• A full featured editor  
• A project manager  
• Customizable tool bar and key mapping  
• A status bar  
For easier source level debugging, the compilers pro-  
vide symbol information that is compatible with the  
MPLAB IDE memory display.  
• On-line help  
1999 Microchip Technology Inc.  
DS40182C-page 77  
PIC16CE62X  
Interchangeable processor modules allow the system  
to be easily reconfigured for emulation of different pro-  
cessors. The universal architecture of the MPLAB-ICE  
allows expansion to support new PICmicro microcon-  
trollers.  
12.4  
MPLINK/MPLIB Linker/Librarian  
MPLINK is a relocatable linker for MPASM and  
MPLAB-C17 and MPLAB-C18. It can link relocatable  
objects from assembly or C source files along with pre-  
compiled libraries using directives from a linker script.  
The MPLAB-ICE Emulator System has been designed  
as a real-time emulation system with advanced fea-  
tures that are generally found on more expensive devel-  
opment tools. The PC platform and Microsoft® Windows  
3.x/95/98 environment were chosen to best make these  
features available to you, the end user.  
MPLIB is a librarian for pre-compiled code to be used  
with MPLINK. When a routine from a library is called  
from another source file, only the modules that contains  
that routine will be linked in with the application. This  
allows large libraries to be used efficiently in many dif-  
ferent applications. MPLIB manages the creation and  
modification of library files.  
MPLAB-ICE 2000 is a full-featured emulator system  
with enhanced trace, trigger, and data monitoring fea-  
tures. Both systems use the same processor modules  
and will operate across the full operating speed range  
of the PICmicro MCU.  
MPLINK features include:  
• MPLINK works with MPASM and MPLAB-C17  
and MPLAB-C18.  
• MPLINK allows all memory areas to be defined as  
sections to provide link-time flexibility.  
12.7  
PICMASTER/PICMASTER CE  
The PICMASTER system from Microchip Technology is  
a full-featured, professional quality emulator system.  
This flexible in-circuit emulator provides a high-quality,  
universal platform for emulating Microchip 8-bit  
PICmicro microcontrollers (MCUs). PICMASTER sys-  
tems are sold worldwide, with a CE compliant model  
available for European Union (EU) countries.  
MPLIB features include:  
• MPLIB makes linking easier because single librar-  
ies can be included instead of many smaller files.  
• MPLIB helps keep code maintainable by grouping  
related modules together.  
• MPLIB commands allow libraries to be created  
and modules to be added, listed, replaced,  
deleted, or extracted.  
12.8  
ICEPIC  
ICEPIC is a low-cost in-circuit emulation solution for the  
Microchip Technology PIC16C5X, PIC16C6X,  
PIC16C7X, and PIC16CXXX families of 8-bit one-time-  
programmable (OTP) microcontrollers. The modular  
system can support different subsets of PIC16C5X or  
PIC16CXXX products through the use of  
interchangeable personality modules or daughter  
boards. The emulator is capable of emulating without  
target application circuitry being present.  
12.5  
MPLAB-SIM Software Simulator  
The MPLAB-SIM Software Simulator allows code  
development in a PC host environment by simulating  
the PICmicro series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file or user-defined key press to any of the pins. The  
execution can be performed in single step, execute until  
break, or trace mode.  
12.9  
MPLAB-ICD In-Circuit Debugger  
MPLAB-SIM fully supports symbolic debugging using  
MPLAB-C17 and MPLAB-C18 and MPASM. The Soft-  
ware Simulator offers the flexibility to develop and  
debug code outside of the laboratory environment mak-  
ing it an excellent multi-project software development  
tool.  
Microchip’s In-Circuit Debugger, MPLAB-ICD, is a pow-  
erful, low-cost run-time development tool. This tool is  
based on the flash PIC16F877 and can be used to  
develop for this and other PICmicro microcontrollers  
from the PIC16CXXX family. MPLAB-ICD utilizes the  
In-Circuit Debugging capability built into the  
PIC16F87X. This feature, along with Microchip’s In-Cir-  
cuit Serial Programming protocol, offers cost-effective  
in-circuit flash programming and debugging from the  
graphical user interface of the MPLAB Integrated  
Development Environment. This enables a designer to  
develop and debug source code by watching variables,  
single-stepping and setting break points. Running at  
full speed enables testing hardware in real-time. The  
MPLAB-ICD is also a programmer for the flash  
PIC16F87X family.  
12.6  
MPLAB-ICE High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
The MPLAB-ICE Universal In-Circuit Emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for  
PICmicro microcontrollers (MCUs). Software control of  
MPLAB-ICE is provided by the MPLAB Integrated  
Development Environment (IDE), which allows editing,  
“make” and download, and source debugging from a  
single environment.  
DS40182C-page 78  
1999 Microchip Technology Inc.  
PIC16CE62X  
the PICDEM-1 board, on a PRO MATE II or  
PICSTART-Plus programmer, and easily test firm-  
ware. The user can also connect the PICDEM-1  
board to the MPLAB-ICE emulator and download the  
firmware to the emulator for testing. Additional proto-  
type area is available for the user to build some addi-  
tional hardware and connect it to the microcontroller  
socket(s). Some of the features include an RS-232  
interface, a potentiometer for simulated analog input,  
push-button switches and eight LEDs connected to  
PORTB.  
12.10 PRO MATE II Universal Programmer  
The PRO MATE II Universal Programmer is a full-fea-  
tured programmer capable of operating in stand-alone  
mode as well as PC-hosted mode. PRO MATE II is CE  
compliant.  
The PRO MATE II has programmable VDD and VPP  
supplies which allows it to verify programmed memory  
at VDD min and VDD max for maximum reliability. It has  
an LCD display for instructions and error messages,  
keys to enter commands and a modular detachable  
socket assembly to support various package types. In  
stand-alone mode the PRO MATE II can read, verify or  
program PICmicro devices. It can also set code-protect  
bits in this mode.  
12.14 PICDEM-2 Low-Cost PIC16CXX  
Demonstration Board  
The PICDEM-2 is a simple demonstration board that  
supports the PIC16C62, PIC16C64, PIC16C65,  
PIC16C73 and PIC16C74 microcontrollers. All the  
necessary hardware and software is included to  
run the basic demonstration programs. The user  
can program the sample microcontrollers provided  
with the PICDEM-2 board, on a PRO MATE II pro-  
grammer or PICSTART-Plus, and easily test firmware.  
The MPLAB-ICE emulator may also be used with the  
PICDEM-2 board to test firmware. Additional prototype  
area has been provided to the user for adding addi-  
tional hardware and connecting it to the microcontroller  
socket(s). Some of the features include a RS-232 inter-  
face, push-button switches, a potentiometer for simu-  
lated analog input, a Serial EEPROM to demonstrate  
usage of the I2C bus and separate headers for connec-  
tion to an LCD module and a keypad.  
12.11 PICSTART Plus Entry Level  
Development System  
The PICSTART programmer is an easy-to-use, low-  
cost prototype programmer. It connects to the PC via  
one of the COM (RS-232) ports. MPLAB Integrated  
Development Environment software makes using the  
programmer simple and efficient.  
PICSTART Plus supports all PICmicro devices with up  
to 40 pins. Larger pin count devices such as the  
PIC16C92X, and PIC17C76X may be supported with  
an adapter socket. PICSTART Plus is CE compliant.  
12.12 SIMICE Entry-Level  
Hardware Simulator  
SIMICE is an entry-level hardware development sys-  
tem designed to operate in a PC-based environment  
with Microchip’s simulator MPLAB-SIM. Both SIMICE  
and MPLAB-SIM run under Microchip Technology’s  
MPLAB Integrated Development Environment (IDE)  
software. Specifically, SIMICE provides hardware sim-  
ulation for Microchip’s PIC12C5XX, PIC12CE5XX, and  
PIC16C5X families of PICmicro 8-bit microcontrollers.  
SIMICE works in conjunction with MPLAB-SIM to pro-  
vide non-real-time I/O port emulation. SIMICE enables  
a developer to run simulator code for driving the target  
system. In addition, the target system can provide input  
to the simulator code. This capability allows for simple  
and interactive debugging without having to manually  
generate MPLAB-SIM stimulus files. SIMICE is a valu-  
able debugging tool for entry-level system develop-  
ment.  
12.15 PICDEM-3 Low-Cost PIC16CXXX  
Demonstration Board  
The PICDEM-3 is a simple demonstration board that  
supports the PIC16C923 and PIC16C924 in the PLCC  
package. It will also support future 44-pin PLCC  
microcontrollers with a LCD Module. All the neces-  
sary hardware and software is included to run the  
basic demonstration programs. The user can pro-  
gram the sample microcontrollers provided with  
the PICDEM-3 board, on a PRO MATE II program-  
mer or PICSTART Plus with an adapter socket, and  
easily test firmware. The MPLAB-ICE emulator may  
also be used with the PICDEM-3 board to test firm-  
ware. Additional prototype area has been provided to  
the user for adding hardware and connecting it to the  
microcontroller socket(s). Some of the features include  
an RS-232 interface, push-button switches, a potenti-  
ometer for simulated analog input, a thermistor and  
separate headers for connection to an external LCD  
module and a keypad. Also provided on the PICDEM-3  
board is an LCD panel, with 4 commons and 12 seg-  
ments, that is capable of displaying time, temperature  
and day of the week. The PICDEM-3 provides an addi-  
tional RS-232 interface and Windows 3.1 software for  
showing the demultiplexed LCD signals on a PC. A sim-  
ple serial interface allows the user to construct a hard-  
ware demultiplexer for the LCD signals.  
12.13 PICDEM-1 Low-Cost PICmicro  
Demonstration Board  
The PICDEM-1 is a simple board which demonstrates  
the capabilities of several of Microchip’s microcontrol-  
lers. The microcontrollers supported are: PIC16C5X  
(PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X,  
PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and  
PIC17C44. All necessary hardware and software is  
included to run basic demo programs. The users can  
program the sample microcontrollers provided with  
1999 Microchip Technology Inc.  
DS40182C-page 79  
PIC16CE62X  
12.16 PICDEM-17  
The PICDEM-17 is an evaluation board that demon-  
strates the capabilities of several Microchip microcon-  
trollers,  
including  
PIC17C752,  
PIC17C756,  
PIC17C762, and PIC17C766. All necessary hardware  
is included to run basic demo programs, which are sup-  
plied on a 3.5-inch disk. A programmed sample is  
included, and the user may erase it and program it with  
the other sample programs using the PRO MATE II or  
PICSTART Plus device programmers and easily debug  
and test the sample code. In addition, PICDEM-17 sup-  
ports down-loading of programs to and executing out of  
external FLASH memory on board. The PICDEM-17 is  
also usable with the MPLAB-ICE or PICMASTER emu-  
lator, and all of the sample programs can be run and  
modified using either emulator. Additionally, a gener-  
ous prototype area is available for user hardware.  
12.17 SEEVAL Evaluation and Programming  
System  
The SEEVAL SEEPROM Designer’s Kit supports all  
Microchip 2-wire and 3-wire Serial EEPROMs. The kit  
includes everything necessary to read, write, erase or  
program special features of any Microchip SEEPROM  
product including Smart Serials and secure serials.  
The Total Endurance Disk is included to aid in trade-  
off analysis and reliability calculations. The total kit can  
significantly reduce time-to-market and result in an  
optimized system.  
12.18 KEELOQ Evaluation and  
Programming Tools  
KEELOQ evaluation and programming tools support  
Microchips HCS Secure Data Products. The HCS eval-  
uation kit includes an LCD display to show changing  
codes, a decoder to decode transmissions, and a pro-  
gramming interface to program test transmitters.  
DS40182C-page 80  
1999 Microchip Technology Inc.  
PIC16CE62X  
TABLE 12-1: DEVELOPMENT TOOLS FROM MICROCHIP  
0
2 5 P 1 C M  
X X X C R M F  
X
H C S X X  
X X C 9 3  
C 5 X 2 X /  
C 4 X 2 X /  
2 X X 1 8 C I C P  
X X 7 1 7 C I C P  
X 4 C 7 C 1 P I  
X X 9 1 6 C I C P  
X 8 X 6 1 F C I P  
X 8 C 6 C 1 P I  
X X 7 1 6 C I C P  
X 7 C 6 C 1 P I  
X 2 6 F 6 C 1 P I  
X X C 6 X C 1 P I  
X 6 C 6 C 1 P I  
X 5 C 6 C 1 P I  
0
4 0 1 0 C I P  
X X C 2 X C 1 P I  
l s o o T e w f a t o r S s o t r a l  
E m r u g g b e e u D s r e m m r a g o P r  
s
K l a i t E d v n a s d r a B o o m D e  
1999 Microchip Technology Inc.  
DS40182C-page 81  
PIC16CE62X  
NOTES:  
DS40182C-page 82  
1999 Microchip Technology Inc.  
PIC16CE62X  
13.0 ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings †  
Ambient Temperature under bias.............................................................................................................. -40° to +125°C  
Storage Temperature ................................................................................................................................ -65° to +150°C  
Voltage on any pin with respect to VSS (except VDD and MCLR)........................................................-0.6V to VDD +0.6V  
Voltage on VDD with respect to VSS ................................................................................................................ 0 to +7.0V  
Voltage on RA4 with respect to VSS...........................................................................................................................8.5V  
Voltage on MCLR with respect to VSS (Note 2)..................................................................................................0 to +14V  
Voltage on RA4 with respect to VSS...........................................................................................................................8.5V  
Total power Dissipation (Note 1) ...............................................................................................................................1.0W  
Maximum Current out of VSS pin...........................................................................................................................300 mA  
Maximum Current into VDD pin .............................................................................................................................250 mA  
Input Clamp Current, IIK (VI <0 or VI> VDD)...................................................................................................................... ±20 mA  
Output Clamp Current, IOK (VO <0 or VO>VDD)................................................................................................................ ±20 mA  
Maximum Output Current sunk by any I/O pin........................................................................................................25 mA  
Maximum Output Current sourced by any I/O pin...................................................................................................25 mA  
Maximum Current sunk by PORTA and PORTB ...................................................................................................200 mA  
Maximum Current sourced by PORTA and PORTB..............................................................................................200 mA  
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOl x IOL)  
2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus,  
a series resistor of 50-100¾ should be used when applying a "low" level to the MCLR pin rather than pulling  
this pin directly to VSS.  
NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above  
those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions  
for extended periods may affect device reliability.  
1999 Microchip Technology Inc.  
DS40182C-page 83  
PIC16CE62X  
FIGURE 13-1: PIC16CE62X VOLTAGE-FREQUENCY GRAPH, 0°C TA +70°C  
6.0  
5.5  
5.0  
4.5  
VDD  
(Volts)  
4.0  
3.5  
3.0  
2.5  
0
4
10  
20  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency.  
Please reference the Product Identification System section for the maximum rated speed of the parts.  
FIGURE 13-2: PIC16CE62X VOLTAGE-FREQUENCY GRAPH, -40°C TA < 0°C, +70°C < TA +125°C  
6.0  
5.5  
5.0  
4.5  
VDD  
(Volts)  
4.0  
3.5  
3.0  
2.5  
2.0  
0
4
10  
20  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency.  
Please reference the Product Identification System section for the maximum rated speed of the parts.  
DS40182C-page 84  
1999 Microchip Technology Inc.  
PIC16CE62X  
FIGURE 13-3: PIC16LCE62X VOLTAGE-FREQUENCY GRAPH, -40°C TA < +125°C  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
VDD  
(Volts)  
3.0  
2.5  
2.0  
0
4
10  
20  
25  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency.  
Please reference the Product Identification System section for the maximum rated speed of the parts.  
1999 Microchip Technology Inc.  
DS40182C-page 85  
PIC16CE62X  
13.1  
DC CHARACTERISTICS:  
PIC16CE62X-04 (Commercial, Industrial, Extended)  
PIC16CE62X-20 (Commercial, Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
–40°C TA +85°C for industrial and  
0°C TA +70°C for commercial and  
–40°C TA +125°C for extended  
DC CHARACTERISTICS  
Param  
No.  
Sym  
Characteristic  
Supply Voltage  
Min Typ† Max Units  
Conditions  
D001  
VDD  
3.0  
5.5  
V
V
See Figure 13-1 through Figure 13-3  
Device in SLEEP mode  
D002  
VDR  
RAM Data Retention  
Voltage (Note 1)  
1.5*  
D003  
D004  
VPOR  
SVDD  
VDD start voltage to  
ensure Power-on Reset  
VSS  
V
See section on power-on reset for details  
VDD rise rate to ensure  
0.05*  
V/ms See section on power-on reset for details  
Power-on Reset  
D005  
D010  
VBOR  
IDD  
Brown-out Detect Voltage  
Supply Current (Note 2, 4)  
3.7  
4.0 4.35  
V
BOREN configuration bit is cleared  
1.2  
0.4  
1.0  
4.0  
4.0  
35  
2.0  
1.2  
2.0  
6.0  
7.0  
70  
mA FOSC = 4 MHz, VDD = 5.5V, WDT disabled,  
XT osc mode, (Note 4)*  
mA FOSC = 4 MHz, VDD = 3.0V, WDT disabled,  
XT osc mode, (Note 4)  
mA FOSC = 10 MHz, VDD = 3.0V, WDT disabled,  
HS osc mode, (Note 6)  
mA FOSC = 20 MHz, VDD = 4.5V, WDT disabled,  
HS osc mode  
mA FOSC = 20 MHz, VDD = 5.5V, WDT disabled*,  
HS osc mode  
µA FOSC = 32 kHz, VDD = 3.0V, WDT disabled,  
LP osc mode  
D020  
D022  
IPD  
Power Down Current (Note 3)  
WDT Current (Note 5)  
2.2  
5.0  
9.0  
15  
µA VDD = 3.0V  
µA VDD = 4.5V*  
µA VDD = 5.5V  
µA VDD = 5.5V Extended  
IWDT  
6.0  
10  
12  
µA VDD = 4.0V  
µA (125°C)  
D022A IBOR  
D023 ICOMP  
Brown-out Reset Current (Note 5)  
Comparator Current for each  
Comparator (Note 5)  
75  
30  
125  
60  
µA BOD enabled, VDD = 5.0V  
µA VDD = 4.0V  
D023A IVREF  
VREF Current (Note 5)  
80  
135  
µA VDD = 4.0V  
IEE Write Operating Current  
IEE Read Operating Current  
3
1
30  
100  
mA VCC = 5.5V, SCL = 400 kHz  
mA  
µA VCC = 3.0V, EE VDD = VCC  
µA VCC = 3.0V, EE VDD = VCC  
IEE  
IEE  
Standby Current  
Standby Current  
1A  
FOSC  
LP Oscillator Operating Frequency  
RC Oscillator Operating Frequency  
XT Oscillator Operating Frequency  
HS Oscillator Operating Frequency  
0
0
0
0
200 kHz All temperatures  
4
4
MHz All temperatures  
MHz All temperatures  
MHz All temperatures  
20  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and  
switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current con-  
sumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is measured with the  
part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the for-  
mula Ir = VDD/2Rext (mA) with Rext in k.  
5: The current is the additional current consumed when this peripheral is enabled. This current should be added to the base  
IDD or IPD measurement.  
6: Commercial temperature range only.  
DS40182C-page 86  
1999 Microchip Technology Inc.  
PIC16CE62X  
13.2  
DC CHARACTERISTICS:  
PIC16LCE62X-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
–40°C TA +85°C for industrial and  
0°C TA +70°C for commercial and  
–40°C TA +125°C for extended  
DC CHARACTERISTICS  
Param  
No.  
Sym  
Characteristic  
Supply Voltage  
Min  
Typ† Max Units  
Conditions  
D001  
VDD  
2.5  
5.5  
V
V
See Figure 13-1 through Figure 13-3  
Device in SLEEP mode  
D002  
VDR  
RAM Data Retention  
Voltage (Note 1)  
1.5*  
D003  
D004  
VPOR  
SVDD  
VDD start voltage to  
ensure Power-on Reset  
VSS  
V
See section on power-on reset for details  
VDD rise rate to ensure  
Power-on Reset  
.05*  
V/ms See section on power-on reset for details  
BOREN configuration bit is cleared  
D005  
D010  
VBOR  
IDD  
Brown-out Detect Voltage  
Supply Current (Note 2)  
3.7  
4.0  
1.2  
4.35  
2.0  
V
mA FOSC = 4 MHz, VDD = 5.5V, WDT disabled,  
XT osc mode, (Note 4)*  
1.1  
70  
mA FOSC = 4 MHz, VDD = 2.5V, WDT disabled,  
XT osc mode, (Note 4)  
35  
µA  
FOSC = 32 kHz, VDD = 2.5V, WDT disabled,  
LP osc mode  
D020  
D022  
IPD  
Power Down Current (Note 3)  
WDT Current (Note 5)  
2.0  
2.2  
9.0  
15  
µA  
µA  
µA  
µA  
VDD = 2.5V  
VDD = 3.0V*  
VDD = 5.5V  
VDD = 5.5V Extended  
IWDT  
6.0  
75  
30  
80  
10  
12  
125  
µA  
µA  
µA  
VDD=4.0V  
(125°C)  
BOD enabled, VDD = 5.0V  
D022A IBOR  
D023 ICOMP  
D023A IVREF  
Brown-out Reset Current  
(Note 5)  
Comparator Current for each  
Comparator (Note 5)  
VREF Current (Note 5)  
60  
µA  
VDD = 4.0V  
135  
µA  
VDD = 4.0V  
IEE Write Operating Current  
IEE Read Operating Current  
3
1
30  
100  
mA VCC = 5.5V, SCL = 400 kHz  
mA  
IEE  
IEE  
Standby Current  
Standby Current  
µA  
µA  
VCC = 3.0V, EE VDD = VCC  
VCC = 3.0V, EE VDD = VCC  
1A  
FOSC  
LP Oscillator Operating Frequency  
RC Oscillator Operating Frequency  
XT Oscillator Operating Frequency  
HS Oscillator Operating Frequency  
0
0
0
0
200  
4
4
kHz All temperatures  
MHz All temperatures  
MHz All temperatures  
MHz All temperatures  
20  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and  
switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current con-  
sumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD,  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power down current in SLEEP mode does not depend on the oscillator type. Power down current is measured with the  
part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the for-  
mula Ir = VDD/2Rext (mA) with Rext in k.  
5: The current is the additional current consumed when this peripheral is enabled. This current should be added to the base  
IDD or IPD measurement.  
6: Commercial temperature range only.  
1999 Microchip Technology Inc.  
DS40182C-page 87  
PIC16CE62X  
13.3  
DC CHARACTERISTICS:  
PIC16CE62X-04 (Commercial, Industrial, Extended)  
PIC16CE62X-20 (Commercial, Industrial, Extended)  
PIC16LCE62X (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature –40°C TA +85°C for industrial and  
0°C TA +70°C for commercial and  
DC CHARACTERISTICS  
–40°C TA +125°C for extended  
Operating voltage VDD range as described in DC spec Table 13-1  
Parm Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Unit  
Conditions  
VIL  
Input Low Voltage  
I/O ports  
D030  
with TTL buffer  
VSS  
0.8V  
V
VDD = 4.5V to 5.5V, Otherwise  
0.15VDD  
0.2VDD  
0.2VDD  
D031  
D032  
with Schmitt Trigger input  
MCLR, RA4/T0CKI,OSC1 (in RC  
mode)  
VSS  
VSS  
V
V
Note1  
D033  
OSC1 (in XT and HS)  
OSC1 (in LP)  
VSS  
VSS  
0.3VDD  
0.6VDD - 1.0  
V
V
VIH Input High Voltage  
I/O ports  
D040  
with TTL buffer  
2.0V  
.25VDD + 0.8V  
0.8VDD  
0.8VDD  
0.7VDD  
0.9VDD  
50  
VDD  
VDD  
V
VDD = 4.5V to 5.5V, Otherwise  
D041  
D042  
D043  
D043A  
D070  
with Schmitt Trigger input  
VDD  
VDD  
VDD  
MCLR RA4/T0CKI  
OSC1 (XT, HS and LP)  
OSC1 (in RC mode)  
V
V
Note1  
IPURB PORTB weak pull-up current  
Input Leakage Current  
200  
400  
µA VDD = 5.0V, VPIN = VSS  
IIL  
(Notes 2, 3)  
I/O ports (Except PORTA)  
PORTA  
±1.0  
±0.5  
±1.0  
±5.0  
µA VSS VPIN VDD, pin at hi-impedance  
µA Vss VPIN VDD, pin at hi-impedance  
µA Vss VPIN VDD  
D060  
D061  
D063  
RA4/T0CKI  
OSC1, MCLR  
µA Vss VPIN VDD, XT, HS and LP osc  
configuration  
VOL Output Low Voltage  
D080  
D083  
I/O ports  
0.6  
0.6  
0.6  
0.6  
V
V
V
V
IOL=8.5 mA, VDD=4.5V, -40° to +85°C  
IOL=7.0 mA, VDD=4.5V, +125°C  
IOL=1.6 mA, VDD=4.5V, -40° to +85°C  
IOL=1.2 mA, VDD=4.5V, +125°C  
OSC2/CLKOUT (RC only)  
VOH Output High Voltage (Note 3)  
D090  
D092  
*D150  
I/O ports (Except RA4)  
VDD-0.7  
VDD-0.7  
VDD-0.7  
VDD-0.7  
V
V
V
V
V
IOH=-3.0 mA, VDD=4.5V, -40° to +85°C  
IOH=-2.5 mA, VDD=4.5V, +125°C  
IOH=-1.3 mA, VDD=4.5V, -40° to +85°C  
IOH=-1.0 mA, VDD=4.5V, +125°C  
RA4 pin  
OSC2/CLKOUT (RC only)  
VOD Open-Drain High Voltage  
Capacitive Loading Specs on  
Output Pins  
8.5  
D100 COSC OSC2 pin  
2
15  
50  
pF In XT, HS and LP modes when external  
clock used to drive OSC1.  
pF  
D101  
Cio All I/O pins/OSC2 (in RC mode)  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16CE62X be  
driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent  
normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as coming out of the pin.  
DS40182C-page 88  
1999 Microchip Technology Inc.  
PIC16CE62X  
TABLE 13-1: COMPARATOR SPECIFICATIONS  
Operating Conditions: VDD range as described in Table 12-1, -40°C<TA<+125°C. .  
Param No.  
Characteristics  
Input offset voltage  
Sym  
Min  
Typ  
Max  
Units  
Comments  
D300  
D301  
D302  
300  
VIOFF  
± 5.0  
± 10  
mV  
V
Input common mode voltage  
CMRR  
VICM  
0
VDD - 1.5  
CMRR  
TRESP  
+55*  
db  
ns  
Response Time(1)  
150*  
400*  
10*  
PIC16CE62X  
301  
Comparator Mode Change to  
Output Valid  
TMC2OV  
µs  
* These parameters are characterized but not tested.  
Note 1: Response time measured with one comparator input at (VDD - 1.5)/2 while the other input transitions from VSS to VDD.  
TABLE 13-2: VOLTAGE REFERENCE SPECIFICATIONS  
Operating Conditions: VDD range as described in Table 12-1, -40°C<TA<+125°C.  
Param  
No.  
Characteristics  
Resolution  
Sym  
Min  
Typ  
Max  
Units  
Comments  
D310  
VRES  
VRAA  
VDD/24  
VDD/32  
LSB  
D311  
Absolute Accuracy  
+1/4  
+1/2  
LSB  
LSB  
Low Range (VRR=1)  
High Range (VRR=0)  
D312  
310  
Unit Resistor Value (R)  
Settling Time(1)  
VRUR  
TSET  
2K*  
Figure 9-1  
10*  
µs  
* These parameters are characterized but not tested.  
Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from 0000to 1111.  
1999 Microchip Technology Inc.  
DS40182C-page 89  
PIC16CE62X  
13.4  
Timing Parameter Symbology  
The timing parameter symbols have been created with one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase subscripts (pp) and their meanings:  
pp  
ck  
T
Time  
CLKOUT  
I/O port  
MCLR  
osc  
t0  
OSC1  
T0CKI  
io  
mc  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-Impedance  
FIGURE 13-4: LOAD CONDITIONS  
Load condition 1  
Load condition 2  
VDD/2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL = 464Ω  
CL = 50 pF for all pins except OSC2  
15 pF for OSC2 output  
DS40182C-page 90  
1999 Microchip Technology Inc.  
PIC16CE62X  
13.5  
Timing Diagrams and Specifications  
FIGURE 13-5: EXTERNAL CLOCK TIMING  
Q4  
Q3  
Q4  
4
Q1  
Q1  
Q2  
OSC1  
1
3
3
4
2
CLKOUT  
TABLE 13-3: EXTERNAL CLOCK TIMING REQUIREMENTS  
Parameter Sym Characteristic  
No.  
Min  
Typ†  
Max  
Units Conditions  
1A  
Fosc External CLKIN Frequency  
DC  
DC  
DC  
DC  
0.1  
1
4
20  
MHz XT and RC osc mode, VDD=5.0V  
MHz HS osc mode  
(Note 1)  
200  
4
kHz LP osc mode  
Oscillator Frequency  
(Note 1)  
MHz RC osc mode, VDD=5.0V  
MHz XT osc mode  
4
20  
MHz HS osc mode  
DC  
250  
50  
200  
kHz LP osc mode  
1
Tosc External CLKIN Period  
ns  
ns  
µs  
ns  
ns  
ns  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
XT and RC osc mode  
HS osc mode  
(Note 1)  
5
LP osc mode  
Oscillator Period  
(Note 1)  
250  
250  
50  
RC osc mode  
10,000  
1,000  
XT osc mode  
HS osc mode  
5
LP osc mode  
2
TCY  
Instruction Cycle Time (Note 1)  
200  
100*  
2*  
DC  
TCY=FOSC/4  
3*  
TosL, External Clock in (OSC1) High or  
TosH Low Time  
XT oscillator, TOSC L/H duty cycle  
LP oscillator, TOSC L/H duty cycle  
HS oscillator, TOSC L/H duty cycle  
XT oscillator  
20*  
25*  
50*  
15*  
4*  
TosR, External Clock in (OSC1) Rise or  
TosF Fall Time  
LP oscillator  
HS oscillator  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing code.  
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current con-  
sumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1 pin.  
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.  
1999 Microchip Technology Inc.  
DS40182C-page 91  
PIC16CE62X  
FIGURE 13-6: CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
22  
23  
CLKOUT  
13  
14  
12  
18  
19  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
new value  
old value  
(output)  
20, 21  
Note: All tests must be do with specified capacitance loads (Figure 13-4) 50 pF on I/O pins and CLKOUT  
TABLE 13-4: CLKOUT AND I/O TIMING REQUIREMENTS  
Parameter # Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
ns  
(1)  
10*  
11*  
12*  
13*  
14*  
15*  
16*  
TosH2ckL  
75  
75  
35  
35  
200  
OSC1to CLKOUT↓  
OSC1to CLKOUT↑  
(1)  
TosH2ckH  
TckR  
ns  
200  
100  
(1)  
ns  
CLKOUT rise time  
CLKOUT fall time  
(1)  
TckF  
100  
20  
ns  
(1)  
TckL2ioV  
TioV2ckH  
TckH2ioI  
ns  
CLKOUT to Port out valid  
Port in valid before CLKOUT ↑  
(1)  
(1)  
Tosc +200 ns  
0
ns  
ns  
Port in hold after CLKOUT ↑  
17*  
18*  
TosH2ioV  
TosH2ioI  
OSC1(Q1 cycle) to Port out valid  
50  
150  
ns  
ns  
OSC1(Q2 cycle) to Port input invalid (I/O in hold  
100  
time)  
19*  
20*  
21*  
22*  
23  
TioV2osH  
TioR  
Port input valid to OSC1(I/O in setup time)  
Port output rise time  
0
10  
10  
40  
40  
ns  
ns  
ns  
ns  
ns  
TioF  
Port output fall time  
Tinp  
RB0/INT pin high or low time  
RB<7:4> change interrupt high or low time  
25  
TCY  
Trbp  
*
These parameters are characterized but not tested  
Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
DS40182C-page 92  
1999 Microchip Technology Inc.  
PIC16CE62X  
FIGURE 13-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Timeout  
32  
OSC  
Timeout  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O Pins  
FIGURE 13-8: BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
TABLE 13-5: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
TmcL MCLR Pulse Width (low)  
2000  
ns  
-40° to +85°C  
31  
Twdt  
Watchdog Timer Time-out Period  
(No Prescaler)  
7*  
18  
33*  
ms  
VDD = 5.0V, -40° to +85°C  
32  
33  
34  
35  
Tost  
Oscillation Start-up Timer Period  
1024 TOSC  
132*  
2.0  
ms  
µs  
TOSC = OSC1 period  
Tpwrt Power-up Timer Period  
28*  
72  
VDD = 5.0V, -40° to +85°C  
TIOZ  
I/O hi-impedance from MCLR low  
Brown-out Reset Pulse Width  
TBOR  
100*  
µs 3.7V VDD 4.3V  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
1999 Microchip Technology Inc.  
DS40182C-page 93  
PIC16CE62X  
FIGURE 13-9: TIMER0 CLOCK TIMING  
RA4/T0CKI  
41  
40  
42  
TMR0  
TABLE 13-6: TIMER0 CLOCK REQUIREMENTS  
Parameter Sym Characteristic  
No.  
Min  
Typ† Max Units Conditions  
40  
41  
42  
Tt0H T0CKI High Pulse Width  
Tt0L T0CKI Low Pulse Width  
Tt0P T0CKI Period  
No Prescaler  
0.5 TCY + 20*  
10*  
ns  
ns  
ns  
ns  
ns  
With Prescaler  
No Prescaler  
With Prescaler  
0.5 TCY + 20*  
10*  
TCY + 40*  
N = prescale value  
(1, 2, 4, ..., 256)  
N
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
DS40182C-page 94  
1999 Microchip Technology Inc.  
PIC16CE62X  
13.6  
EEPROM Timing  
FIGURE 13-10: BUS TIMING DATA  
TR  
TF  
THIGH  
TLOW  
SCL  
TSU:STA  
THD:DAT  
TSU:DAT  
TSU:STO  
THD:STA  
SDA  
IN  
TSP  
TAA  
THD:STA  
TAA  
TBUF  
SDA  
OUT  
TABLE 13-7: AC CHARACTERISTICS  
STANDARD  
MODE  
Vcc = 4.5 - 5.5V  
FAST MODE  
Parameter  
Symbol  
Units  
Remarks  
Min.  
Max.  
Min.  
Max.  
Clock frequency  
FCLK  
THIGH  
TLOW  
TR  
4000  
4700  
100  
600  
1300  
400  
kHz  
ns  
Clock high time  
Clock low time  
ns  
SDA and SCL rise time  
SDA and SCL fall time  
START condition hold time  
1000  
300  
300  
300  
ns  
(Note 1)  
(Note 1)  
TF  
ns  
THD:STA  
4000  
600  
ns  
After this period the first  
clock pulse is generated  
START condition setup time  
TSU:STA  
4700  
600  
ns  
Only relevant for repeated  
START condition  
Data input hold time  
Data input setup time  
STOP condition setup time  
Output valid from clock  
Bus free time  
THD:DAT  
TSU:DAT  
TSU:STO  
TAA  
0
0
ns  
ns  
ns  
ns  
ns  
(Note 2)  
250  
4000  
100  
600  
3500  
900  
(Note 2)  
TBUF  
4700  
1300  
Time the bus must be free  
before a new transmission  
can start  
Output fall time from VIH  
minimum to VIL maximum  
TOF  
TSP  
250  
50  
20 + 0.1  
CB  
250  
50  
ns  
ns  
(Note 1), CB 100 pF  
Input filter spike suppression  
(SDA and SCL pins)  
(Note 3)  
Write cycle time  
Endurance  
TWR  
10  
10  
ms  
Byte or Page mode  
10M  
1M  
10M  
1M  
25°C, VCC = 5.0V, Block  
Mode (Note 4)  
cycles  
Note 1: Not 100% tested. CB = total capacitance of one bus line in pF.  
2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 300 ns)  
of the falling edge of SCL to avoid unintended generation of START or STOP conditions.  
3: The combined TSP and VHYS specifications are due to new Schmitt trigger inputs which provide improved noise spike sup-  
pression. This eliminates the need for a TI specification for standard operation.  
4: This parameter is not tested but guaranteed by characterization. For endurance estimates in a specific application, please  
consult the Total Endurance Model which can be obtained on our website.  
1999 Microchip Technology Inc.  
DS40182C-page 95  
PIC16CE62X  
NOTES:  
DS40182C-page 96  
1999 Microchip Technology Inc.  
PIC16CE62X  
14.0 PACKAGING INFORMATION  
18-Lead Ceramic Dual In-line with Window (JW) – 300 mil (CERDIP)  
E1  
D
W2  
2
1
n
W1  
E
A2  
A
c
L
A1  
B1  
eB  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
18  
MAX  
n
p
Number of Pins  
Pitch  
18  
.100  
.183  
.160  
.023  
.313  
.290  
.900  
.138  
.010  
.055  
.019  
.385  
.140  
.200  
2.54  
Top to Seating Plane  
Ceramic Package Height  
Standoff  
A
.170  
.195  
4.32  
3.94  
4.64  
4.06  
0.57  
7.94  
7.37  
22.86  
3.49  
0.25  
1.40  
0.47  
9.78  
3.56  
5.08  
4.95  
A2  
A1  
.155  
.015  
.300  
.285  
.880  
.125  
.008  
.050  
.016  
.345  
.130  
.190  
.165  
.030  
.325  
.295  
.920  
.150  
.012  
.060  
.021  
.425  
.150  
.210  
4.19  
0.76  
8.26  
7.49  
23.37  
3.81  
0.30  
1.52  
0.53  
10.80  
3.81  
5.33  
0.38  
7.62  
7.24  
22.35  
3.18  
0.20  
1.27  
0.41  
8.76  
3.30  
4.83  
Shoulder to Shoulder Width  
Ceramic Pkg. Width  
Overall Length  
E
E1  
D
L
Tip to Seating Plane  
Lead Thickness  
c
Upper Lead Width  
Lower Lead Width  
Overall Row Spacing  
Window Width  
B1  
B
eB  
W1  
W2  
Window Length  
*Controlling Parameter  
JEDEC Equivalent: MO-036  
Drawing No. C04-010  
1999 Microchip Technology Inc.  
DS40182C-page 97  
PIC16CE62X  
18-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
α
n
1
E
A2  
L
A
c
A1  
B1  
β
p
B
eB  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
18  
MAX  
n
p
Number of Pins  
Pitch  
18  
.100  
.155  
.130  
2.54  
Top to Seating Plane  
A
.140  
.170  
3.56  
2.92  
3.94  
3.30  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.890  
.125  
.008  
.045  
.014  
.310  
5
.145  
3.68  
0.38  
7.62  
6.10  
22.61  
3.18  
0.20  
1.14  
0.36  
7.87  
5
.313  
.250  
.898  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.905  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
22.80  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
22.99  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
eB  
α
β
5
10  
15  
5
10  
15  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-007  
DS40182C-page 98  
1999 Microchip Technology Inc.  
PIC16CE62X  
20-Lead Plastic Shrink Small Outline (SS) – 209 mil, 5.30 mm (SSOP)  
E
E1  
p
D
B
2
1
n
α
c
A2  
A
φ
L
A1  
β
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
20  
20  
.026  
.073  
.068  
.006  
.309  
.207  
.284  
.030  
.007  
4
0.66  
1.85  
1.73  
0.15  
7.85  
5.25  
7.20  
0.75  
0.18  
101.60  
0.32  
5
Overall Height  
A
.068  
.078  
1.73  
1.98  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.064  
.002  
.299  
.201  
.278  
.022  
.004  
0
.072  
.010  
.322  
.212  
.289  
.037  
.010  
8
1.63  
0.05  
7.59  
5.11  
7.06  
0.56  
0.10  
0.00  
0.25  
0
1.83  
0.25  
8.18  
5.38  
7.34  
0.94  
0.25  
203.20  
0.38  
10  
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Foot Length  
L
c
Lead Thickness  
Foot Angle  
φ
Lead Width  
B
α
.010  
0
.013  
5
.015  
10  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
0
5
10  
0
5
10  
*Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-150  
Drawing No. C04-072  
1999 Microchip Technology Inc.  
DS40182C-page 99  
PIC16CE62X  
18-Lead Plastic Small Outline (SO) – Wide, 300 mil (SOIC)  
E
p
E1  
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
18  
MAX  
n
p
Number of Pins  
Pitch  
18  
.050  
.099  
.091  
.008  
.407  
.295  
.454  
.020  
.033  
4
1.27  
Overall Height  
A
.093  
.104  
2.36  
2.24  
2.50  
2.31  
0.20  
10.34  
7.49  
11.53  
0.50  
0.84  
4
2.64  
2.39  
0.30  
10.67  
7.59  
11.73  
0.74  
1.27  
8
Molded Package Thickness  
Standoff  
A2  
A1  
E
.088  
.004  
.394  
.291  
.446  
.010  
.016  
0
.094  
.012  
.420  
.299  
.462  
.029  
.050  
8
0.10  
10.01  
7.39  
11.33  
0.25  
0.41  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.009  
.014  
0
.011  
.017  
12  
.012  
.020  
15  
0.23  
0.36  
0
0.27  
0.42  
12  
0.30  
0.51  
15  
B
α
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
β
0
12  
15  
0
12  
15  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-013  
Drawing No. C04-051  
DS40182C-page 100  
1999 Microchip Technology Inc.  
PIC16CE62X  
14.1  
Package Marking Information  
18-Lead PDIP  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
PIC16CE625  
-04I/P423  
9907CDK  
AABBCDE  
18-Lead SOIC (.300")  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
PIC16CE625  
-04I/SO218  
AABBCDE  
9907CDK  
18-Lead CERDIP Windowed  
Example  
XXXXXXXX  
XXXXXXXX  
AABBCDE  
16CE625  
/JW  
9907CBA  
20-Lead SSOP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
AABBCDE  
PIC16CE625  
-04I/218  
9907CBP  
Legend: MM...M Microchip part number information  
XX...X Customer specific information*  
AA  
BB  
C
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Facility code of the plant at which wafer is manufactured  
O = Outside Vendor  
C = 5” Line  
S = 6” Line  
H = 8” Line  
D
E
Mask revision number  
Assembly code of the plant or country of origin in which  
part was assembled  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask  
rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with  
your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.  
1999 Microchip Technology Inc.  
DS40182C-page 101  
PIC16CE62X  
NOTES:  
DS40182C-page 102  
1999 Microchip Technology Inc.  
PIC16CE62X  
APPENDIX A: CODE FOR  
ACCESSING EEPROM  
DATA MEMORY  
Please check our web site at www.microchip.com for  
code availability.  
1999 Microchip Technology Inc.  
DS40182C-page 103  
PIC16CE62X  
NOTES:  
DS40182C-page 104  
1999 Microchip Technology Inc.  
PIC16CE62X  
BTFSC........................................................................ 68  
BTFSS........................................................................ 69  
CALL........................................................................... 69  
CLRF .......................................................................... 69  
CLRW......................................................................... 69  
CLRWDT .................................................................... 70  
COMF......................................................................... 70  
DECF.......................................................................... 70  
DECFSZ ..................................................................... 70  
GOTO......................................................................... 71  
INCF ........................................................................... 71  
INCFSZ....................................................................... 71  
IORLW........................................................................ 71  
IORWF........................................................................ 72  
MOVF ......................................................................... 72  
MOVLW...................................................................... 72  
MOVWF...................................................................... 72  
NOP............................................................................ 73  
OPTION...................................................................... 73  
RETFIE....................................................................... 73  
RETLW....................................................................... 73  
RETURN..................................................................... 74  
RLF............................................................................. 74  
RRF ............................................................................ 74  
SLEEP........................................................................ 74  
SUBLW....................................................................... 75  
SUBWF....................................................................... 75  
SWAPF....................................................................... 76  
TRIS ........................................................................... 76  
XORLW ...................................................................... 76  
XORWF ...................................................................... 76  
Instruction Set Summary .................................................... 65  
INT Interrupt ....................................................................... 60  
INTCON Register................................................................ 17  
Interrupts ............................................................................ 59  
IORLW Instruction .............................................................. 71  
IORWF Instruction .............................................................. 72  
INDEX  
A
ADDLW Instruction ............................................................. 67  
ADDWF Instruction ............................................................. 67  
ANDLW Instruction ............................................................. 67  
ANDWF Instruction ............................................................. 67  
Architectural Overview .......................................................... 7  
Assembler  
MPASM Assembler..................................................... 77  
B
BCF Instruction ................................................................... 68  
Block Diagram  
TIMER0....................................................................... 35  
TMR0/WDT PRESCALER .......................................... 38  
Brown-Out Detect (BOD) .................................................... 54  
BSF Instruction ................................................................... 68  
BTFSC Instruction............................................................... 68  
BTFSS Instruction............................................................... 69  
C
CALL Instruction ................................................................. 69  
Clocking Scheme/Instruction Cycle .................................... 10  
CLRF Instruction................................................................. 69  
CLRW Instruction................................................................ 69  
CLRWDT Instruction ........................................................... 70  
CMCON Register................................................................ 41  
Code Protection .................................................................. 64  
COMF Instruction................................................................ 70  
Comparator Configuration................................................... 42  
Comparator Interrupts......................................................... 45  
Comparator Module ............................................................ 41  
Comparator Operation ........................................................ 43  
Comparator Reference ....................................................... 43  
Configuration Bits................................................................ 50  
Configuring the Voltage Reference..................................... 47  
Crystal Operation ................................................................ 51  
D
K
Data Memory Organization ................................................. 12  
DECF Instruction................................................................. 70  
DECFSZ Instruction ............................................................ 70  
Development Support ......................................................... 77  
KeeLoq Evaluation and Programming Tools ................... 80  
M
MOVF Instruction................................................................ 72  
MOVLW Instruction............................................................. 72  
MOVWF Instruction ............................................................ 72  
MPLAB Integrated Development Environment Software.... 77  
E
EEPROM Peripheral Operation .......................................... 29  
Errata .................................................................................... 2  
External Crystal Oscillator Circuit ....................................... 52  
N
NOP Instruction .................................................................. 73  
G
O
General purpose Register File ............................................ 12  
One-Time-Programmable (OTP) Devices ............................ 5  
OPTION Instruction ............................................................ 73  
OPTION Register................................................................ 16  
Oscillator Configurations..................................................... 51  
Oscillator Start-up Timer (OST).......................................... 54  
GOTO Instruction................................................................ 71  
I
I/O Ports.............................................................................. 23  
I/O Programming Considerations........................................ 28  
ID Locations........................................................................ 64  
INCF Instruction .................................................................. 71  
INCFSZ Instruction ............................................................. 71  
In-Circuit Serial Programming............................................. 64  
Indirect Addressing, INDF and FSR Registers ................... 21  
Instruction Flow/Pipelining .................................................. 10  
Instruction Set  
P
Package Marking Information........................................... 101  
Packaging Information........................................................ 97  
PCL and PCLATH............................................................... 20  
PCON Register................................................................... 19  
PICDEM-1 Low-Cost PICmicro Demo Board ..................... 79  
PICDEM-2 Low-Cost PIC16CXX Demo Board................... 79  
PICDEM-3 Low-Cost PIC16CXXX Demo Board ................ 79  
PICSTART Plus Entry Level Development System......... 79  
PIE1 Register ..................................................................... 18  
Pinout Description................................................................. 9  
PIR1 Register ..................................................................... 18  
ADDLW....................................................................... 67  
ADDWF....................................................................... 67  
ANDLW....................................................................... 67  
ANDWF....................................................................... 67  
BCF............................................................................. 68  
BSF............................................................................. 68  
1999 Microchip Technology Inc.  
DS40182C-page 105  
PIC16CE62X  
Port RB Interrupt .................................................................60  
PORTA................................................................................23  
PORTB................................................................................26  
Power Control/Status Register (PCON)..............................55  
Power-Down Mode (SLEEP)...............................................63  
Power-On Reset (POR) ......................................................54  
Power-up Timer (PWRT).....................................................54  
Prescaler.............................................................................38  
PRO MATE II Universal Programmer...............................79  
Program Memory Organization...........................................11  
Q
Quick-Turnaround-Production (QTP) Devices ......................5  
R
RC Oscillator.......................................................................52  
Reset...................................................................................53  
RETFIE Instruction..............................................................73  
RETLW Instruction..............................................................73  
RETURN Instruction............................................................74  
RLF Instruction....................................................................74  
RRF Instruction ...................................................................74  
S
SEEVAL Evaluation and Programming System...............80  
Serialized Quick-Turnaround-Production (SQTP) Devices...5  
SLEEP Instruction...............................................................74  
Software Simulator (MPLAB-SIM).......................................78  
Special Features of the CPU...............................................49  
Special Function Registers .................................................14  
Stack ...................................................................................20  
Status Register....................................................................15  
SUBLW Instruction..............................................................75  
SUBWF Instruction..............................................................75  
SWAPF Instruction..............................................................76  
T
Timer0  
TIMER0.......................................................................35  
TIMER0 (TMR0) Interrupt ...........................................35  
TIMER0 (TMR0) Module.............................................35  
TMR0 with External Clock...........................................37  
Timer1  
Switching Prescaler Assignment.................................39  
Timing Diagrams and Specifications...................................91  
TMR0 Interrupt....................................................................60  
TRIS Instruction ..................................................................76  
TRISA..................................................................................23  
TRISB..................................................................................26  
V
Voltage Reference Module..................................................47  
VRCON Register.................................................................47  
W
Watchdog Timer (WDT) ......................................................61  
WWW, On-Line Support........................................................2  
X
XORLW Instruction .............................................................76  
XORWF Instruction .............................................................76  
DS40182C-page 106  
1999 Microchip Technology Inc.  
PIC16CE62X  
Systems Information and Upgrade Hot Line  
ON-LINE SUPPORT  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip’s development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
Microchip provides on-line support on the Microchip  
World Wide Web (WWW) site.  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape or Microsoft  
Explorer. Files are also available for FTP download  
from our FTP site.  
1-800-755-2345 for U.S. and most of Canada, and  
1-480-786-7302 for the rest of the world.  
981103  
ConnectingtotheMicrochipInternetWebSite  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
ftp://ftp.microchip.com  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User’s Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
Trademarks: The Microchip name, logo, PIC, PICmicro,  
PICSTART, PICMASTER, PRO MATE and MPLAB are  
registered trademarks of Microchip Technology Incorpo-  
rated in the U.S.A. and other countries. FlexROM and  
fuzzyLAB are trademarks and SQTP is a service mark of  
Microchip in the U.S.A.  
• Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
All other trademarks mentioned herein are the property of  
their respective companies.  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
• Conferences for products, Development Sys-  
tems, technical information and more  
• Listing of seminars and events  
1999 Microchip Technology Inc.  
DS40182C-page 107  
PIC16CE62X  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 786-7578.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS40182C  
Device:  
PIC16CE62X  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS40182C-page 108  
1998 Microchip Technology Inc.  
PIC16CE62X  
PIC16CE62X PRODUCT IDENTIFICATION SYSTEM  
To order or to obtain information, e.g., on pricing or delivery, please use the listed part numbers, and refer to the factory or the listed  
sales offices.  
PART NO. -XX X /XX XXX  
Pattern:  
3-Digit Pattern Code for QTP (blank otherwise)  
Package:  
P
=
=
=
=
PDIP  
SO  
SS  
JW*  
SOIC (Gull Wing, 300 mil body)  
SSOP (209 mil)  
Examples:  
Windowed CERDIP  
a) PIC16CE623-04/P301 =  
Commercial temp., PDIP pack-  
age, 4 MHz, normal VDD limits,  
QTP pattern #301.  
b) PIC16CE623-04I/SO =  
Industrial temp., SOIC pack-  
age, 4MHz, industrial VDD lim-  
its.  
Temperature  
Range:  
-
=
=
=
0°C to +70°C  
–40°C to +85°C  
–40°C to +125°C  
I
E
Frequency  
Range:  
04  
04  
20  
=
=
=
200kHz (LP osc)  
4 MHz (XT and RC osc)  
20 MHz (HS osc)  
Device:  
PIC16CE62X :VDD range 3.0V to 5.5V  
PIC16CE62XT:VDD range 3.0V to 5.5V (Tape and Reel)  
* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of  
each oscillator type.  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 786-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
1999 Microchip Technology Inc.  
DS40182C-page 109  
PIC16CE62X  
NOTES:  
DS40182C-page 110  
1999 Microchip Technology Inc.  
PIC16CE62X  
NOTES:  
1999 Microchip Technology Inc.  
DS40182C-page 111  
®
Note the following details of the code protection feature on PICmicro MCUs.  
The PICmicro family meets the specifications contained in the Microchip Data Sheet.  
Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,  
when used in the intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-  
edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.  
The person doing so may be engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as unbreakable.  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of  
our product.  
If you have any further questions about this matter, please contact the local sales office nearest to you.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical com-  
ponents in life support systems is not authorized except with  
express written approval by Microchip. No licenses are con-  
veyed, implicitly or otherwise, under any intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, FilterLab,  
KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER,  
PICSTART, PRO MATE, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip Tech-  
nology Incorporated in the U.S.A. and other countries.  
dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,  
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,  
MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode  
and Total Endurance are trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2002, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999. The  
Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs and microperipheral  
products. In addition, Microchips quality  
system for the design and manufacture of  
development systems is ISO 9001 certified.  
2002 Microchip Technology Inc.  
M
WORLDWIDE SALES AND SERVICE  
Japan  
AMERICAS  
ASIA/PACIFIC  
Microchip Technology Japan K.K.  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Microchip Technology Australia Pty Ltd  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
Australia  
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755  
Korea  
Rocky Mountain  
China - Beijing  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-7456  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Beijing Liaison Office  
Unit 915  
Bei Hai Wan Tai Bldg.  
Atlanta  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
Singapore  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
#07-02 Prime Centre  
Singapore, 188980  
Tel: 65-334-8870 Fax: 65-334-8850  
Taiwan  
Microchip Technology Taiwan  
11F-3, No. 207  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 770-640-0034 Fax: 770-640-0307  
China - Chengdu  
Boston  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Chengdu Liaison Office  
Rm. 2401, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
Chengdu 610016, China  
Tel: 86-28-6766200 Fax: 86-28-6766599  
China - Fuzhou  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Fuzhou Liaison Office  
Unit 28F, World Trade Plaza  
No. 71 Wusi Road  
Fuzhou 350001, China  
Tel: 86-591-7503506 Fax: 86-591-7503521  
China - Shanghai  
Microchip Technology Consulting (Shanghai)  
Co., Ltd.  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
China - Shenzhen  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Shenzhen Liaison Office  
Rm. 1315, 13/F, Shenzhen Kerry Centre,  
Renminnan Lu  
Shenzhen 518001, China  
Tel: 86-755-2350361 Fax: 86-755-2366086  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
Chicago  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
Tel: 972-818-7423 Fax: 972-818-2924  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
EUROPE  
Denmark  
Microchip Technology Nordic ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Detroit  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Kokomo  
France  
2767 S. Albright Road  
Kokomo, Indiana 46902  
Tel: 765-864-8360 Fax: 765-864-8387  
Los Angeles  
Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
Germany  
New York  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Microchip Technology GmbH  
Gustav-Heinemann Ring 125  
D-81739 Munich, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Tel: 631-273-5305 Fax: 631-273-5335  
San Jose  
Hong Kong  
Italy  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Microchip Technology Hongkong Ltd.  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200 Fax: 852-2401-3431  
Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Tel: 408-436-7950 Fax: 408-436-7955  
Toronto  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
India  
Microchip Technology Inc.  
India Liaison Office  
United Kingdom  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
01/18/02  
2002 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY