PIC16F1939T-I/SP [MICROCHIP]

28/40/44-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt Technology; 28 /40/ 44引脚基于闪存的8位CMOS微控制器与LCD驱动器和纳瓦技术
PIC16F1939T-I/SP
型号: PIC16F1939T-I/SP
厂家: MICROCHIP    MICROCHIP
描述:

28/40/44-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt Technology
28 /40/ 44引脚基于闪存的8位CMOS微控制器与LCD驱动器和纳瓦技术

驱动器 闪存 微控制器 CD
文件: 总418页 (文件大小:6693K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16F193X/LF193X  
Data Sheet  
28/40/44-Pin Flash-Based, 8-Bit  
CMOS Microcontrollers with  
LCD Driver and nanoWatt Technology  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, rfPIC, SmartShunt and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
FilterLab, Linear Active Thermistor, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, In-Circuit Serial  
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,  
32  
PICDEM.net, PICtail, PIC logo, PowerCal, PowerInfo,  
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total  
Endurance, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2008, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
DS41364A-page ii  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
28/40/44-Pin Flash-Based, 8-Bit CMOS Microcontrollers  
Devices Included In This Data Sheet:  
Low-Power Features:  
• Standby Current:  
PIC16F193X Devices:  
- 100 nA @ 2.0V, typical (PIC16LF193X)  
• Operating Current:  
- 6.0 μA @ 32 kHz, 2.0V, typical (PIC16LF193X)  
- 54 μA @ 1 MHz, 2.0V, typical (PIC16LF193X)  
• Low-Power Watchdog Timer Current:  
- 1.0 μA @ 2.0V, typical (PIC16LF193X)  
• PIC16F1933  
• PIC16F1936  
• PIC16F1938  
• PIC16F1934  
• PIC16F1937  
• PIC16F1939  
PIC16LF193X Devices:  
• PIC16LF1933  
• PIC16LF1936  
• PIC16LF1938  
• PIC16LF1934  
• PIC16LF1937  
• PIC16LF1939  
Peripheral Features:  
• Up to 35 I/O Pins and 1 Input-only pin:  
- High-current source/sink for direct LED drive  
- Individually programmable Interrupt-on-pin  
change pins  
High-Performance RISC CPU:  
- Individually programmable weak pull-ups  
• A/D Converter:  
- 10-bit resolution and up to 14 channels  
- Can operate during Sleep  
- Selectable 1.024/2.048/4.096V voltage  
reference  
• Timer0: 8-Bit Timer/Counter with 8-Bit  
Programmable Prescaler  
• Only 49 Instructions to Learn:  
- All single-cycle instructions except branches  
• Operating Speed:  
- DC – 32 MHz oscillator/clock input  
- DC – 125 ns instruction cycle  
• Up to 16K x 14 Words of Flash Program Memory  
• Up to 1024 Bytes of Data Memory (RAM)  
• Interrupt Capability  
• Enhanced Timer1  
• 16-Level Deep Hardware Stack  
- Dedicated low-power 32 kHz oscillator  
- 16-bit timer/counter with prescaler  
- External Gate Input mode with toggle and  
single shot modes  
• Direct, Indirect and Relative Addressing modes  
• Processor Read Access to Program Memory  
• Pinout Compatible to other 28/40-pin PIC16CXXX  
and PIC16FXXX Microcontrollers  
- Interrupt-on-gate completion  
• Timer2, 4, 6: 8-Bit Timer/Counter with 8-Bit Period  
Register, Prescaler and Postscaler  
• Two Capture, Compare, PWM Modules (CCP)  
- 16-bit Capture, max. resolution 12.5 ns  
- 16-bit Compare, max. resolution 200 ns  
- 10-bit PWM, max. frequency 20 kHz  
• Three Enhanced Capture, Compare, PWM  
modules (ECCP)  
Special Microcontroller Features:  
• Precision Internal Oscillator:  
- Factory calibrated to ±1%, typical  
- Software selectable frequency range from  
32 MHz to 31 kHz  
• Power-Saving Sleep mode  
• Industrial and Extended Temperature Range  
• Power-on Reset (POR)  
• Power-up Timer (PWRT) and Oscillator Start-up  
Timer (OST)  
• Brown-out Reset (BOR)  
- Selectable between two trip points  
- Disable in Sleep option  
- Software selectable time-bases  
- Auto-shutdown and auto-restart  
- PWM steering  
• Master Synchronous Serial Port (SSP) with SPI  
and I2CTM with:  
- 7-bit address masking  
• Multiplexed Master Clear with Pull-up/Input Pin  
• Programmable Code Protection  
• High Endurance Flash/EEPROM cell:  
- 100,000 write Flash endurance  
- 1,000,000 write EEPROM endurance  
- Flash/Data EEPROM retention: > 40 years  
• Wide Operating Voltage Range:  
- 1.8V-5.5V (PIC16F193X)  
- SMBUS/PMBUSTM compatibility  
• Enhanced Universal Synchronous Asynchronous  
Receiver Transmitter (EUSART)  
- RS-232, RS 485 and LIN compatible  
- Auto-Baud Detect  
- Auto-wake-up on start  
- 1.8V-3.6V (PIC16LF193X)  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 1  
PIC16F193X/LF193X  
Peripheral Features (Continued):  
• SR Latch (555 Timer):  
- Multiple Set/Reset input options  
• Integrated LCD Controller:  
- Up to 96 segments  
- Variable clock input  
- Contrast control  
- Internal voltage reference selections  
• 2 Comparators:  
- Rail-to-rail inputs/outputs  
- Power mode control  
- Software enable hysteresis  
• Voltage Reference module:  
- Fixed Voltage Reference (FVR) with 1.024V,  
2.048V and 4.096V output levels  
- 5-bit rail-to-rail resistive DAC with positive  
and negative reference selection  
PIC16F193X/LF193X Family Types  
Program  
Memory  
Flash  
Data  
EEPROM  
(bytes)  
10-bit  
A/D Comparators  
(ch)  
ECCP  
Full  
Bridge Bridge  
ECCP  
Half  
2
SRAM  
(bytes)  
Timers  
8/16-bit  
MI C/  
Device  
I/Os  
EUSART  
CCP LCD  
(1)  
SPI  
(words)  
PIC16F1933  
PIC16LF1933  
4096  
4096  
256  
256  
256  
256  
256  
256  
256  
256  
25  
36  
25  
36  
25  
36  
11  
14  
11  
14  
14  
14  
2
2
2
2
2
2
4/1  
4/1  
4/1  
4/1  
4/1  
4/1  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
1
2
1
2
1
2
2
1
2
1
2
1
2
2
2
2
2
2
16 /4  
PIC16F1934  
PIC16LF1934  
24/4  
PIC16F1936  
PIC16LF1936  
(1)  
8192  
512  
16 /4  
PIC16F1937  
PIC16LF1937  
8192  
512  
24/4  
PIC16F1938  
PIC16LF1938  
(1)  
16384  
16384  
1024  
1024  
16 /4  
PIC16F1939  
PIC16LF1939  
24/4  
Note 1:  
COM3 and SEG15 share the same physical pin on PIC16F1933/1936/1938/PIC16LF1933/1936/1938, therefore, SEG15 is not  
available when using 1/4 multiplex displays.  
DS41364A-page 2  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
Pin Diagram – 28-Pin SPDIP/SOIC/SSOP (PIC16F1933/1936/1938, PIC16LF1933/1936/1938)  
28-pin SPDIP, SOIC, SSOP  
RB7/ICSPDAT/ICDDAT/SEG13  
28  
27  
26  
25  
24  
23  
1
2
3
4
5
VPP/MCLR/RE3  
SEG12/VCAP(2)/SS(1)/SRNQ(1)/C2OUT(1)/C12IN0-/AN0/RA0  
SEG7/C12IN1-/AN1/RA1  
RB6/ICSPCLK/ICDCLK/SEG14  
RB5/AN13/CPS5/P2B(1)/CCP3(1)/P3A(1)/T1G(1)/COM1  
RB4/AN11/CPS4/P1D/COM0  
RB3/AN9/C12IN2-/CPS3/CCP2(1)/P2A(1)/VLCD3  
COM2/CVREF/VREF-/C2IN+/AN2/RA2  
SEG15/COM3/VREF+/C1IN+/AN3/RA3  
RB2/AN8/CPS2/P1B/VLCD2  
6
7
8
9
SEG4/CCP5/SRQ/T0CKI/CPS6/C1OUT/RA4  
SEG5/VCAP(2)/SS(1)/SRNQ(1)/CPS7/C2OUT(1)/AN4/RA5  
RB1/AN10/C12IN3-/CPS1/P1C/VLCD1  
RB0/AN12/CPS0/CCP4/SRI/INT/SEG0  
22  
21  
VSS  
VDD  
20  
19  
18  
17  
16  
15  
SEG2/CLKIN/OSC1/RA7  
VSS  
SEG1/VCAP(2)/CLKOUT/OSC2/RA6  
P2B(1)/T1CKI/T1OSO/RC0  
10  
11  
RC7/RX/DT/P3B/SEG8  
RC6/TX/CK/CCP3(1)/P3A(1)/SEG9  
RC5/SDO/SEG10  
RC4/SDI/SDA/T1G(1)/SEG11  
P2A(1)/CCP2(1)/T1OSI/RC1  
SEG3/P1A/CCP1/RC2  
SEG6/SCL/SCK/RC3  
12  
13  
14  
Note 1: Pin function is selectable via the APFCON register.  
2: PIC16F193X devices only.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 3  
PIC16F193X/LF193X  
Pin Diagram – 28-Pin QFN (PIC16F1933/1936/1938, PIC16LF1933/1936/1938)  
28-pin QFN  
RB3/AN9/C12IN2-/CPS3/CCP2(1)/P2A(1)/VLCD3  
RB2/AN8/CPS2/P1B/VLCD2  
1
2
3
4
5
6
7
21  
20  
19  
18  
17  
16  
15  
COM2/CVREF/VREF-/C2IN+/AN2/RA2  
SEG15/COM3/VREF+/C1IN+/AN3/RA3  
SEG4/CCP5/SRQ/T0CKI/CPS6/C1OUT/RA4  
SEG5(1)/VCAP(2)/SS(1)/SRNQ/CPS7/C2OUT(1)/AN4/RA5  
VSS  
RB1/AN10/C12IN3-/CPS1/P1C/VLCD1  
RB0/AN12/CPS0/CCP4/SRI/INT/SEG0  
PIC16F1933/1936/1938  
PIC16LF1933/1936/1938  
VDD  
SEG2/CLKIN/OSC1/RA7  
SEG1/VCAP(2)/CLKOUT/OSC2/RA6  
VSS  
RC7/RX/DT/P3B/SEG8  
Note 1: Pin function is selectable via the APFCON register.  
2: PIC16F193X devices only.  
DS41364A-page 4  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
TABLE 1:  
28-PIN SUMMARY (PIC16F1933/1936/1938, PIC16LF1933/1936/1938)  
(2)  
RA0  
2
27 AN0  
28 AN1  
C12IN0-/  
C2OUT(1)  
SEG12  
VCAP  
SRNQ(1)  
SS(1)  
RA1  
RA2  
3
4
C12IN1-  
SEG7  
COM2  
1
AN2/  
C2IN+/  
CVREF  
VREF-  
RA3  
5
2
AN3/  
VREF+  
C1IN+  
SEG15/  
COM3  
RA4  
RA5  
RA6  
6
7
3
4
7
AN4  
CPS6  
C1OUT  
SRQ  
T0CKI  
CCP5  
SS(1)  
SEG4  
SEG5  
SEG1  
CPS7 C2OUT(1) SRNQ(1)  
VCAP  
(2)  
10  
OSC2/  
CLKOUT  
(2)  
VCAP  
RA7  
RB0  
9
6
SEG2  
SEG0  
Y
OSC1/  
CLKIN  
21 18 AN12 CPS0  
SRI  
CCP4  
INT/  
IOC  
RB1  
RB2  
RB3  
22 19 AN10 CPS1  
C12IN3-  
P1C  
P1B  
VLCD1  
VLCD2  
VLCD3  
IOC  
IOC  
IOC  
Y
Y
Y
23 20 AN8  
24 21 AN9  
CPS2  
CPS3  
C12IN2-  
CCP2(1)  
/
/
P2A(1)  
RB4  
RB5  
25 22 AN11 CPS4  
26 23 AN13 CPS5  
T1G(1)  
P1D  
COM0  
COM1  
IOC  
IOC  
Y
Y
P2B(1)  
CCP3(1)  
P3A(1)  
RB6  
RB7  
RC0  
27 24  
28 25  
SEG14  
SEG13  
IOC  
IOC  
Y
Y
ICSPCLK/  
ICDCLK  
ICSPDAT/  
ICDDAT  
11  
8
9
T1OSO/  
T1CKI  
P2B(1)  
RC1 12  
T1OSI  
CCP2(1)  
P2A(1)  
/
RC2 13 10  
CCP1/  
SEG3  
P1A  
RC3 14 11  
RC4 15 12  
RC5 16 13  
RC6 17 14  
T1G(1)  
SCK/SCL  
SDI/SDA  
SDO  
SEG6  
SEG11  
SEG10  
SEG9  
CCP3(1)  
TX/CK  
P3A(1)  
RC7 18 15  
P3B  
RX/DT  
SEG8  
RE3  
VDD  
Vss  
1
26  
Y
MCLR/VPP  
VDD  
20 17  
8, 5,  
19 16  
VSS  
Note 1:  
2:  
Pin functions can be moved using the APFCON register.  
PIC16F193X devices only.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 5  
PIC16F193X/LF193X  
Pin Diagram – 40-Pin PDIP (PIC16F1934/1937/1939, PIC16LF1934/1937/1939)  
40-Pin PDIP  
RB7/ICSPDAT/ICDDAT/SEG13  
1
2
3
4
5
6
40  
39  
38  
37  
36  
35  
VPP/MCLR/RE3  
SEG12/VCAP(2)/SS(1)/SRNQ(1)/C2OUT(1)/C12IN0-/AN0/RA0  
SEG7/C12IN1-/AN1/RA1  
RB6/ICSPCLK/ICDCLK/SEG14  
RB5/AN13/CPS5/CCP3(1)/P3A(1)/T1G(1)/COM1  
RB4/AN11/CPS4/COM0  
COM2/CVREF/VREF-/C2IN+/AN2/RA2  
RB3/AN9/C12IN2-/CPS3/CCP2(1)/P2A(1)/VLCD3  
SEG15/VREF+/C1IN+/AN3/RA3  
RB2/AN8/CPS2/VLCD2  
SEG4/SRQ/T0CKI/CPS6/C1OUT/RA4  
SEG5/VCAP(2)/SS(1)/SRNQ(1)/CPS7/C2OUT(1)/AN4/RA5  
SEG21/CCP3(1)/P3A(1)/AN5/RE0  
34  
33  
32  
RB1/AN10/C12IN3-/CPS1/VLCD1  
RB0/AN12/CPS0/SRI/INT/SEG0  
7
8
9
VDD  
SEG22/P3B/AN6/RE1  
VSS  
SEG23/CCP5/AN7/RE2  
31  
30  
10  
11  
RD7/CPS15/P1D/SEG20  
RD6/CPS14/P1C/SEG19  
VDD  
VSS  
29  
12  
RD5/CPS13/P1B/SEG18  
RD4/CPS12/P2D/SEG17  
RC7/RX/DT/SEG8  
SEG2/CLKIN/OSC1/RA7  
28  
27  
26  
25  
13  
14  
15  
16  
SEG1/VCAP(2)/CLKOUT/OSC2/RA6  
P2B(1)/T1CKI/T1OSO/RC0  
P2A(1)/CCP2(1)/T1OSI/RC1  
RC6/TX/CK/SEG9  
RC5/SDO/SEG10  
24  
23  
SEG3/P1A/CCP1/RC2  
SEG6/SCK/SCL/RC3  
17  
18  
RC4/SDI/SDA/T1G(1)/SEG11  
RD3/CPS11/P2C/SEG16  
RD2/CPS10/P2B(1)  
COM3/CPS8/RD0  
CCP4/CPS9/RD1  
22  
21  
19  
20  
Note 1: Pin function is selectable via the APFCON register.  
2: PIC16F193X devices only.  
DS41364A-page 6  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
Pin Diagram – 44-Pin QFN (PIC16F1934/1937/1939, PIC16LF1934/1937/1939)  
44-pin QFN  
RA6/OSC2/CLKOUT/VCAP(2)/SEG1  
RA7/OSC1/CLKIN/SEG2  
VSS  
VSS  
NC  
VDD  
SEG8/DT/RX/RC7  
SEG17/P2D/CPS12/RD4  
SEG18/P1B/CPS13/RD5  
SEG19/P1C/CPS14/RD6  
SEG20/P1D/CPS15/RD7  
VSS  
1
2
3
4
5
6
7
8
9
33  
32  
31  
30  
29  
28  
27  
26  
PIC16F1934/1937/1939  
PIC16LF1934/1937/1939  
VDD  
VDD  
RE2/AN7/CCP5/SEG23  
RE1/AN6/P3B/SEG22  
RE0/AN5/CCP3(1)/P3A(1)/SEG21  
RA5/AN4/C2OUT(1)/CPS7/SRNQ(1)/SS(1)/VCAP(2)/SEG5  
RA4/C1OUT/CPS6/T0CKI/SRQ/SEG4  
SEG0/INT/SRI/CPS0/AN12/RB0  
VLCD1/CPS1/C12IN3-/AN10/RB1  
VLCD2/CPS2/AN8/RB2  
25  
24  
23  
10  
11  
Note 1: Pin function is selectable via the APFCON register.  
2: PIC16F193X devices only.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 7  
PIC16F193X/LF193X  
Pin Diagram – 44-Pin TQFP (PIC16F1934/1937/1939, PIC16LF1934/1937/1939)  
44-pin TQFP  
SEG8/DT/RX/RC7  
SEG17/P2D/CPS12/RD4  
SEG18/P1B/CPS13/RD5  
SEG19/P1C/CPS14/RD6  
SEG20/P1D/CPS15/RD7  
NC  
1
2
3
4
5
6
7
8
9
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
RC0/T1OSO/T1CKI/P2B(1)  
RA6/OSC2/CLKOUT/VCAP(2)/SEG1  
RA7/OSC1/CLKIN/SEG2  
VSS  
VDD  
PIC16F1934/1937/1939  
PIC16LF1934/1937/1939  
VSS  
VDD  
RE2/AN7/CCP5/SEG23  
RE1/AN6/P3B/SEG22  
SEG0/INT/SRI/CPS0/AN12/RB0  
VLCD1/CPS1/C12IN3-/AN10/RB1  
RE0/AN5/CCP3(1)/P3A(1)/SEG21  
RA5/AN4/C2OUT(1)/CPS7/SRNQ(1)/SS(1)/VCAP(2)/SEG5  
RA4/C1OUT/CPS6/T0CKI/SRQ/SEG4  
10  
11  
VLCD2/CPS2/AN8/RB2  
VLCD3/P2A(1)/CCP2(1)/CPS3/C12IN2-/AN9/RB3  
Note 1: Pin function is selectable via the APFCON register.  
2: PIC16F193X devices only.  
DS41364A-page 8  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
TABLE 2:  
40/44-PIN SUMMARY(PIC16F1934/1937/1939, PIC16LF1934/1937/1939)  
RA0  
2
19  
19  
AN0  
AN1  
C12IN0-/  
C2OUT(1)  
SEG12  
VCAP  
SRNQ(1)  
SS(1)  
RA1  
RA2  
3
4
20  
21  
20  
21  
C12IN1-  
SEG7  
COM2  
AN2/  
VREF-  
C2IN+/  
CVREF  
RA3  
5
22  
22  
AN3/  
C1IN+  
SEG15  
VREF+  
RA4  
RA5  
6
7
23  
24  
23  
24  
33  
AN4  
CPS6  
C1OUT  
SRQ  
T0CKI  
SS(1)  
SEG4  
SEG5  
SEG1  
CPS7 C2OUT(1) SRNQ(1)  
VCAP  
RA6 14 31  
OSC2/  
CLKOUT  
VCAP  
RA7 13 30  
32  
9
SEG2  
SEG0  
Y
OSC1/  
CLKIN  
RB0 33  
RB1 34  
8
9
AN12 CPS0  
AN10 CPS1  
SRI  
INT/  
IOC  
10  
11  
12  
C12IN3-  
VLCD1  
VLCD2  
VLCD3  
IOC  
IOC  
IOC  
Y
Y
Y
RB2 35 10  
RB3 36 11  
AN8  
AN9  
CPS2  
CPS3  
C12IN2-  
CCP2(1)  
/
/
P2A(1)  
RB4 37 14  
RB5 38 15  
14  
15  
AN11 CPS4  
AN13 CPS5  
T1G(1)  
COM0  
COM1  
IOC  
IOC  
Y
Y
CCP3(1)  
P3A(1)  
RB6 39 16  
RB7 40 17  
RC0 15 32  
RC1 16 35  
RC2 17 36  
16  
17  
34  
35  
36  
SEG14  
SEG13  
IOC  
IOC  
Y
Y
ICSPCLK/  
ICDCLK  
ICSPDAT/  
ICDDAT  
T1OSO/  
T1CKI  
P2B(1)  
T1OSI  
CCP2(1)  
P2A(1)  
/
CCP1/  
SEG3  
P1A  
RC3 18 37  
RC4 23 42  
RC5 24 43  
RC6 25 44  
37  
42  
43  
44  
1
T1G(1)  
SCK/SCL  
SEG6  
SEG11  
SEG10  
SEG9  
SEG8  
COM3  
SDI/SDA  
SDO  
TX/CK  
RX/DT  
RC7 26  
1
RD0 19 38  
RD1 20 39  
RD2 21 40  
RD3 22 41  
38  
39  
40  
41  
2
CPS8  
CPS9  
CPS10  
CPS11  
CPS12  
CPS13  
CPS14  
CPS15  
CCP4  
P2B(1)  
P2C  
P2D  
P1B  
P1C  
P1D  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
RD4 27  
RD5 28  
RD6 29  
RD7 30  
2
3
3
4
4
5
5
RE0  
8
25  
25  
AN5  
CCP3(1)  
P3A(1)  
RE1  
9
26  
26  
27  
AN6  
AN7  
P3B  
SEG22  
SEG23  
RE2 10 27  
RE3 18  
CCP5  
1
18  
Y
MCLR/VPP  
VDD  
VDD 11, 7, 7,8,  
32 28 28  
Vss 12, 6, 6,30,  
31 29 31  
VSS  
Note 1: Pin functions can be moved using the APFCON register.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 9  
PIC16F193X/LF193X  
Table of Contents  
1.0 Device Overview ........................................................................................................................................................................ 13  
2.0 Memory Organization................................................................................................................................................................. 19  
3.0 Resets ........................................................................................................................................................................................ 55  
4.0 Interrupts .................................................................................................................................................................................... 67  
5.0 Low Dropout (LDO) Voltage Regulator ...................................................................................................................................... 79  
6.0 I/O Ports ..................................................................................................................................................................................... 81  
7.0 Interrupt-on-Change................................................................................................................................................................. 101  
8.0 Oscillator Module (With Fail-Safe Clock Monitor)..................................................................................................................... 105  
9.0 SR Latch................................................................................................................................................................................... 119  
10.0 Device Configuration ................................................................................................................................................................ 123  
11.0 Analog-to-Digital Converter (ADC) Module .............................................................................................................................. 129  
12.0 Comparator Module.................................................................................................................................................................. 141  
13.0 Digital-to-Analog Converter (DAC) Module .............................................................................................................................. 149  
14.0 Fixed Voltage Reference (FVR) ............................................................................................................................................... 153  
15.0 Timer0 Module ......................................................................................................................................................................... 155  
16.0 Timer1 Module ......................................................................................................................................................................... 159  
17.0 Timer2/4/6 Modules.................................................................................................................................................................. 171  
18.0 Capacitive Sensing Module...................................................................................................................................................... 175  
19.0 Capture/Compare/PWM (ECCP1, ECCP2, ECCP3, CCP4, CCP5) Modules.......................................................................... 181  
20.0 Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)............................................................... 211  
21.0 Liquid Crystal Display (LCD) Driver Module............................................................................................................................. 239  
22.0 Master Synchronous Serial Port (MSSP) Module .................................................................................................................... 273  
23.0 Data EEPROM and Flash Program Memory Control............................................................................................................... 321  
24.0 Power-Down Mode (Sleep) ...................................................................................................................................................... 333  
25.0 In-Circuit Serial Programming(ICSP) ................................................................................................................................ 335  
26.0 Instruction Set Summary.......................................................................................................................................................... 337  
27.0 Development Support............................................................................................................................................................... 351  
28.0 Electrical Specifications............................................................................................................................................................ 355  
29.0 DC and AC Characteristics Graphs and Tables....................................................................................................................... 389  
30.0 Packaging Information.............................................................................................................................................................. 391  
Appendix A: Revision History............................................................................................................................................................. 403  
Appendix B: Device Differences......................................................................................................................................................... 403  
Index .................................................................................................................................................................................................. 405  
The Microchip Web Site..................................................................................................................................................................... 413  
Customer Change Notification Service .............................................................................................................................................. 413  
Customer Support.............................................................................................................................................................................. 413  
Reader Response .............................................................................................................................................................................. 414  
Product Identification System............................................................................................................................................................. 415  
DS41364A-page 10  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@mail.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150.  
We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
• Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
• The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include  
literature number) you are using.  
Customer Notification System  
Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 11  
PIC16F193X/LF193X  
NOTES:  
DS41364A-page 12  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
1.0  
DEVICE OVERVIEW  
The PIC16F193X/LF193X devices are described within  
this data sheet. They are available in 28/40/44-pin  
packages. Figure 1-1 shows a block diagram of the  
PIC16F193X/LF193X devices. Table 1-1 shows the  
pinout descriptions.  
FIGURE 1-1:  
PIC16F193X/LF193X BLOCK DIAGRAM  
15  
Configuration  
PORTA  
8
15  
Data Bus  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RA6  
RA7  
Program Counter  
Flash  
Program  
Memory  
16-LevelStack  
(15-bit)  
RAM  
Program  
Bus  
14  
RAM Addr  
Program Memory  
Read (PMR)  
9
PORTB  
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
Addr MUX  
InstructionReg  
Indirect  
Addr  
7
Direct Addr  
12  
15  
FSR0 Reg  
FSR1 Reg  
15  
STATUSReg  
MUX  
PORTC  
8
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
3
Power-up  
Timer  
Oscillator  
Start-up Timer  
Instruction  
Decodeand  
Control  
ALU  
Power-on  
Reset  
PORTD  
OSC1/CLKIN  
8
RD0  
RDC1  
RD2  
Timing  
Generation  
Watchdog  
Timer  
WReg  
OSC2/CLKOUT  
Brown-out  
Reset  
RD3  
RD4  
RD5  
RD6  
RD7  
Internal  
Oscillator  
Block  
PORTE  
RE0  
RE1  
VDD  
VSS  
RE2  
RE3/MCLR  
Data EEPROM  
256 bytes  
Timer0  
Timer1  
Timer2/4/6  
Timer1  
Addressable  
EUSART  
LCD  
Comparators  
CCP4/5  
ECCP1/2/3  
MSSP  
SR Latch  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 13  
PIC16F193X/LF193X  
1.1  
Enhanced Mid-range CPU  
PIC16F193X/LF193X devices contain an enhanced  
mid-range 8-bit CPU core. The CPU has 49  
instructions. Interrupt capability includes automatic  
context saving. The hardware stack is 16 levels deep  
and has Overflow and Underflow Reset capability.  
Direct, indirect, and relative addressing modes are  
available. Two File Select Registers (FSRs) provide the  
ability to read program and data memory.  
During interrupts, certain registers are automatically  
saved in shadow registers and restored when returning  
from the interrupt. This saves stack space and user  
code. See Section 4.5 “Context Saving”, for more  
information.  
1.1.1  
16-LEVEL STACK WITH OVERFLOW  
AND UNDERFLOW RESET  
The PIC16F193X/LF193X devices have an external  
stack memory 15 bits wide and 16 deep. During normal  
operation, the stack is assumed to be 16 words deep.  
If enabled, a Stack Overflow or Underflow will set the  
appropriate bit (STKOVF or STKUNF) in the PCON  
register, and cause a software Reset. See section  
Section 2.4 “Stack” for more details.  
1.1.2  
FILE SELECT REGISTERS  
There are two 16-bit File Select Registers (FSR). FSRs  
can access all file registers and program memory,  
which allows one data pointer for all memory. When an  
FSR points to program memory, there is 1 additional  
instruction cycle in instructions using INDF to allow the  
data to be fetched. There are also new instructions to  
support the FSRs. See Section 2.5 “Indirect  
Addressing, INDF and FSR Registers” for more  
details.  
1.1.3  
INSTRUCTION SET  
There are 48 instructions for the enhanced mid-range  
CPU to support the features of the CPU. See  
Section 26.0 “Instruction Set Summary” for more  
details.  
DS41364A-page 14  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
TABLE 1-1:  
PIC16F193X/LF193X PINOUT DESCRIPTION  
Input Output  
Name  
Function  
Description  
Type  
Type  
(1)  
RA0/AN0/C12IN0-/C2OUT  
/
RA0  
AN0  
TTL  
AN  
AN  
CMOS General purpose I/O.  
(1)  
(1)  
(2)  
SRNQ /SS /VCAP /SEG12  
A/D Channel 0 input.  
Comparator C1 or C2 negative input.  
C12IN0-  
C2OUT  
SRNQ  
SS  
CMOS Comparator C2 output.  
CMOS SR Latch inverting output.  
ST  
Slave Select input.  
VCAP  
Power Power Filter capacitor for Voltage Regulator (PIC16F193X only).  
SEG12  
RA1  
TTL  
AN  
AN  
AN  
LCD Analog output.  
RA1/AN1/C12IN1-/SEG7  
CMOS General purpose I/O.  
AN1  
A/D Channel 1 input.  
C12IN1-  
SEG7  
RA2  
Comparator C1 or C2 negative input.  
LCD Analog output.  
AN  
RA2/AN2/C2IN+/VREF-/CVREF/  
COM2  
TTL  
AN  
AN  
AN  
CMOS General purpose I/O.  
AN2  
A/D Channel 2 input.  
Comparator C2 positive input.  
A/D Negative Voltage Reference input.  
Comparator Voltage Reference output.  
LCD Analog output.  
C2IN+  
VREF-  
CVREF  
COM2  
RA3  
AN  
AN  
RA3/AN3/C1IN+/VREF+/  
TTL  
AN  
AN  
AN  
CMOS General purpose I/O.  
(3)  
COM3 /SEG15  
AN3  
A/D Channel 3 input.  
Comparator C1 positive input.  
A/D Voltage Reference input.  
LCD Analog output.  
C1IN+  
VREF+  
(3)  
COM3  
AN  
AN  
SEG15  
RA4  
LCD Analog output.  
RA4/C1OUT/CPS6/T0CKI/SRQ/  
CCP5/SEG4  
TTL  
CMOS General purpose I/O.  
C1OUT  
CPS6  
T0CKI  
SRQ  
CMOS Comparator C1 output.  
AN  
ST  
Capacitive sensing input 6.  
Timer0 clock input.  
CMOS SR Latch non-inverting output.  
CMOS Capture/Compare/PWM5.  
CCP5  
SEG4  
RA5  
ST  
AN  
CMOS General purpose I/O.  
A/D Channel 4 input.  
CMOS Comparator C2 output.  
Capacitive sensing input 7.  
CMOS SR Latch inverting output.  
Slave Select input.  
LCD Analog output.  
(1)  
RA5/AN4/C2OUT /CPS7/  
TTL  
AN  
(1)  
(1)  
(2)  
SRNQ /SS /VCAP /SEG5  
AN4  
C2OUT  
CPS7  
SRNQ  
SS  
AN  
ST  
VCAP  
Power Power Filter capacitor for Voltage Regulator (PIC16F193X only).  
AN LCD Analog output.  
SEG5  
Legend: AN = Analog input or output CMOS= CMOS compatible input or output  
OD = Open Drain  
2
2
TTL = TTL compatible input ST  
HV = High Voltage  
= Schmitt Trigger input with CMOS levels I C™ = Schmitt Trigger input with I C  
levels  
XTAL = Crystal  
Note 1: Pin function is selectable via the APFCON register.  
2: PIC16F193X devices only.  
3: PIC16F1933/1936/1938/PIC16LF1933/1936/1938 devices only.  
4: PORTD is available on PIC16F1934/1937/1939/PIC16LF1934/1937/1939 devices only.  
5: RE<2:0> are available on PIC16F1934/1937/1939/PIC16LF1934/1937/1939 devices only  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 15  
PIC16F193X/LF193X  
TABLE 1-1:  
PIC16F193X/LF193X PINOUT DESCRIPTION (CONTINUED)  
Input Output  
Name  
Function  
Description  
Type  
Type  
(2)  
RA6/OSC2/CLKOUT/VCAP  
SEG1  
/
RA6  
OSC2  
CLKOUT  
VCAP  
TTL  
CMOS General purpose I/O.  
XTAL Crystal/Resonator (LP, XT, HS modes).  
CMOS FOSC/4 output.  
Power Power Filter capacitor for Voltage Regulator (PIC16F193X only).  
SEG1  
RA7  
TTL  
AN  
LCD Analog output.  
RA7/OSC1/CLKIN/SEG2  
CMOS General purpose I/O.  
OSC1  
CLKIN  
SEG2  
RB0  
XTAL  
CMOS  
Crystal/Resonator (LP, XT, HS modes).  
External clock input (EC mode).  
LCD Analog output.  
AN  
RB0/AN12/CPS0/CCP4/SRI/INT/  
SEG0  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN12  
CPS0  
CCP4  
SRI  
AN  
AN  
ST  
A/D Channel 12 input.  
Capacitive sensing input 0.  
CMOS Capture/Compare/PWM4.  
ST  
SR Latch input.  
INT  
ST  
External interrupt.  
LCD analog output.  
SEG0  
RB1  
AN  
RB1/AN10/C12IN3-/CPS1/P1C/  
VLCD1  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN10  
C12IN3-  
CPS1  
P1C  
AN  
AN  
AN  
A/D Channel 10 input.  
Comparator C1 or C2 negative input.  
Capacitive sensing input 1.  
CMOS PWM output.  
VLCD1  
RB2  
AN  
TTL  
LCD analog input.  
RB2/AN8/CPS2/P1B/VLCD2  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN8  
CPS2  
P1B  
AN  
AN  
A/D Channel 8 input.  
Capacitive sensing input 2.  
CMOS PWM output.  
VLCD2  
RB3  
AN  
TTL  
LCD analog input.  
RB3/AN9/C12IN2-/CPS3/  
CCP2 /P2A /VLCD3  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
(1)  
(1)  
AN9  
C12IN2-  
CPS3  
CCP2  
P2A  
AN  
AN  
AN  
ST  
A/D Channel 9 input.  
Comparator C1 or C2 negative input.  
Capacitive sensing input 3.  
CMOS Capture/Compare/PWM2.  
CMOS PWM output.  
VLCD3  
AN  
LCD analog input.  
Legend: AN = Analog input or output CMOS= CMOS compatible input or output  
OD = Open Drain  
2
2
TTL = TTL compatible input ST  
HV = High Voltage  
= Schmitt Trigger input with CMOS levels I C™ = Schmitt Trigger input with I C  
levels  
XTAL = Crystal  
Note 1: Pin function is selectable via the APFCON register.  
2: PIC16F193X devices only.  
3: PIC16F1933/1936/1938/PIC16LF1933/1936/1938 devices only.  
4: PORTD is available on PIC16F1934/1937/1939/PIC16LF1934/1937/1939 devices only.  
5: RE<2:0> are available on PIC16F1934/1937/1939/PIC16LF1934/1937/1939 devices only  
DS41364A-page 16  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
TABLE 1-1:  
PIC16F193X/LF193X PINOUT DESCRIPTION (CONTINUED)  
Input Output  
Name  
RB4/AN11/CPS4/P1D/COM0  
Function  
Description  
Type  
Type  
RB4  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN11  
CPS4  
P1D  
AN  
AN  
A/D Channel 11 input.  
Capacitive sensing input 4.  
CMOS PWM output.  
COM0  
RB5  
AN  
LCD Analog output.  
(1)  
RB5/AN13/CPS5/P2B/CCP3  
P3A /T1G /COM1  
/
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
(1)  
(1)  
AN13  
CPS5  
P2B  
AN  
AN  
A/D Channel 13 input.  
Capacitive sensing input 5.  
CMOS PWM output.  
CCP3  
P3A  
ST  
CMOS Capture/Compare/PWM3.  
CMOS PWM output.  
T1G  
ST  
Timer1 Gate input.  
LCD Analog output.  
COM1  
RB6  
AN  
RB6/ICSPCLK/ICDCLK/SEG14  
RB7/ICSPDAT/ICDDAT/SEG13  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
ICSPCLK  
ICDCLK  
SEG14  
RB7  
ST  
ST  
Serial Programming Clock.  
In-Circuit Debug Clock.  
LCD Analog output.  
AN  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
ICSPDAT  
ICDDAT  
SEG13  
RC0  
ST  
ST  
CMOS ICSP™ Data I/O.  
CMOS In-Circuit Data I/O.  
AN  
LCD Analog output.  
(1)  
RC0/T1OSO/T1CKI/P2B  
ST  
XTAL  
ST  
CMOS General purpose I/O.  
T1OSO  
T1CKI  
P2B  
XTAL Timer1 oscillator connection.  
Timer1 clock input.  
CMOS PWM output.  
(1)  
(1)  
RC1/T1OSI/CCP2 /P2A  
RC1  
ST  
XTAL  
ST  
CMOS General purpose I/O.  
XTAL Timer1 oscillator connection.  
CMOS Capture/Compare/PWM2.  
CMOS PWM output.  
T1OSI  
CCP2  
P2A  
RC2/CCP1/P1A/SEG3  
RC3/SCK/SCL/SEG6  
RC2  
ST  
ST  
CMOS General purpose I/O.  
CMOS Capture/Compare/PWM1.  
CMOS PWM output.  
CCP1  
P1A  
SEG3  
RC3  
AN  
LCD Analog output.  
ST  
ST  
CMOS General purpose I/O.  
SCK  
CMOS SPI clock.  
2
2
SCL  
I C  
OD  
AN  
I C™ clock.  
SEG6  
LCD Analog output.  
Legend: AN = Analog input or output CMOS= CMOS compatible input or output  
OD = Open Drain  
2
2
TTL = TTL compatible input ST  
HV = High Voltage  
= Schmitt Trigger input with CMOS levels I C™ = Schmitt Trigger input with I C  
levels  
XTAL = Crystal  
Note 1: Pin function is selectable via the APFCON register.  
2: PIC16F193X devices only.  
3: PIC16F1933/1936/1938/PIC16LF1933/1936/1938 devices only.  
4: PORTD is available on PIC16F1934/1937/1939/PIC16LF1934/1937/1939 devices only.  
5: RE<2:0> are available on PIC16F1934/1937/1939/PIC16LF1934/1937/1939 devices only  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 17  
PIC16F193X/LF193X  
TABLE 1-1:  
PIC16F193X/LF193X PINOUT DESCRIPTION (CONTINUED)  
Input Output  
Name  
Function  
Description  
Type  
Type  
(1)  
RC4/SDI/SDA/T1G /SEG11  
RC4  
SDI  
ST  
ST  
CMOS General purpose I/O.  
OD  
SPI data input.  
2
2
SDA  
I C  
I C™ data input/output.  
T1G  
ST  
Timer1 Gate input.  
LCD Analog output.  
SEG11  
RC5  
AN  
RC5/SDO/SEG10  
ST  
CMOS General purpose I/O.  
CMOS SPI data output.  
SDO  
SEG10  
RC6  
AN  
LCD Analog output.  
RC6/TX/CK/CCP3/P3A/SEG9  
ST  
CMOS General purpose I/O.  
TX  
CMOS USART asynchronous transmit.  
CMOS USART synchronous clock.  
CMOS Capture/Compare/PWM3.  
CMOS PWM output.  
CK  
ST  
ST  
CCP3  
P3A  
SEG9  
RC7  
AN  
LCD Analog output.  
RC7/RX/DT/P3B/SEG8  
ST  
ST  
ST  
CMOS General purpose I/O.  
RX  
USART asynchronous input.  
DT  
CMOS USART synchronous data.  
CMOS PWM output.  
P3B  
SEG8  
RD0  
AN  
LCD Analog output.  
(4)  
RD0 /CPS8/COM3  
ST  
AN  
CMOS General purpose I/O.  
CPS8  
COM3  
RD1  
Capacitive sensing input 8.  
LCD analog output.  
AN  
(4)  
RD1 /CPS9/CCP4  
ST  
AN  
ST  
ST  
AN  
CMOS General purpose I/O.  
Capacitive sensing input 9.  
CPS9  
CCP4  
RD2  
CMOS Capture/Compare/PWM4.  
CMOS General purpose I/O.  
(4)  
RD2 /CPS10/P2B  
CPS10  
P2B  
Capacitive sensing input 10.  
CMOS PWM output.  
(4)  
RD3 /CPS11/P2C/SEG16  
RD3  
ST  
AN  
CMOS General purpose I/O.  
CPS11  
P2C  
Capacitive sensing input 11.  
CMOS PWM output.  
SEG16  
RD4  
AN  
LCD analog output.  
(4)  
RD4 /CPS12/P2D/SEG17  
ST  
AN  
CMOS General purpose I/O.  
CPS12  
P2D  
Capacitive sensing input 12.  
CMOS PWM output.  
SEG17  
RD5  
AN  
LCD analog output.  
(4)  
RD5 /CPS13/P1B/SEG18  
ST  
AN  
CMOS General purpose I/O.  
CPS13  
P1D  
Capacitive sensing input 13.  
CMOS PWM output.  
SEG18  
AN  
LCD analog output.  
Legend: AN = Analog input or output CMOS= CMOS compatible input or output  
OD = Open Drain  
2
2
TTL = TTL compatible input ST  
HV = High Voltage  
= Schmitt Trigger input with CMOS levels I C™ = Schmitt Trigger input with I C  
levels  
XTAL = Crystal  
Note 1: Pin function is selectable via the APFCON register.  
2: PIC16F193X devices only.  
3: PIC16F1933/1936/1938/PIC16LF1933/1936/1938 devices only.  
4: PORTD is available on PIC16F1934/1937/1939/PIC16LF1934/1937/1939 devices only.  
5: RE<2:0> are available on PIC16F1934/1937/1939/PIC16LF1934/1937/1939 devices only  
DS41364A-page 18  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
TABLE 1-1:  
PIC16F193X/LF193X PINOUT DESCRIPTION (CONTINUED)  
Input Output  
Name  
Function  
Description  
Type  
Type  
(4)  
RD6 /CPS14/P1C/SEG19  
RD6  
CPS14  
P1C  
ST  
AN  
CMOS General purpose I/O.  
Capacitive sensing input 14.  
CMOS PWM output.  
SEG19  
RD7  
AN  
LCD analog output.  
(4)  
RD7 /CPS15/P1D/SEG20  
ST  
AN  
CMOS General purpose I/O.  
CPS15  
P1D  
Capacitive sensing input 15.  
CMOS PWM output.  
SEG20  
RE0  
AN  
LCD analog output.  
(5)  
(1)  
(1)  
RE0 /AN5/P3A /CCP3  
SEG21  
/
ST  
AN  
CMOS General purpose I/O.  
AN5  
A/D Channel 5 input.  
P3A  
CMOS PWM output.  
CCP3  
SEG21  
RE1  
ST  
CMOS Capture/Compare/PWM3.  
AN  
CMOS General purpose I/O.  
A/D Channel 6 input.  
CMOS PWM output.  
LCD analog output.  
(5)  
RE1 /AN6/P3B/SEG22  
ST  
AN  
AN6  
P3B  
SEG22  
RE2  
AN  
LCD analog output.  
(5)  
RE2 /AN7/CCP5/SEG23  
RE3/MCLR/VPP  
ST  
AN  
ST  
CMOS General purpose I/O.  
AN7  
A/D Channel 7 input.  
CCP5  
SEG23  
RE3  
CMOS Capture/Compare/PWM5.  
AN  
LCD analog output.  
TTL  
ST  
HV  
Power  
Power  
General purpose input.  
MCLR  
VPP  
Master Clear with internal pull-up.  
Programming voltage.  
Positive supply.  
VDD  
VSS  
VDD  
VSS  
Ground reference.  
Legend: AN = Analog input or output CMOS= CMOS compatible input or output  
OD = Open Drain  
2
2
TTL = TTL compatible input ST  
HV = High Voltage  
= Schmitt Trigger input with CMOS levels I C™ = Schmitt Trigger input with I C  
levels  
XTAL = Crystal  
Note 1: Pin function is selectable via the APFCON register.  
2: PIC16F193X devices only.  
3: PIC16F1933/1936/1938/PIC16LF1933/1936/1938 devices only.  
4: PORTD is available on PIC16F1934/1937/1939/PIC16LF1934/1937/1939 devices only.  
5: RE<2:0> are available on PIC16F1934/1937/1939/PIC16LF1934/1937/1939 devices only  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 19  
PIC16F193X/LF193X  
NOTES:  
DS41364A-page 20  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
2.0  
2.1  
MEMORY ORGANIZATION  
Program Memory Organization  
The enhanced mid-range core has a 15-bit program  
counter capable of addressing 32K x 14 program  
memory space. Table 2-1 shows the memory sizes  
implemented for the PIC16F193X/LF193X device family.  
Accessing a location above these boundaries will cause  
a wrap-around within the implemented memory space.  
The Reset vector is at 0000h and the interrupt vector is  
at 0004h (see Figures 2-1, 2-2 and 2-3).  
TABLE 2-1:  
DEVICE SIZES AND ADDRESSES  
Device Program Memory Space (Words)  
PIC16F1933/PIC16LF1933  
Last Program Memory Address  
4,096  
4,096  
8,192  
8,192  
16,384  
16,384  
0FFFh  
0FFFh  
1FFFh  
1FFFh  
3FFFh  
3FFFh  
PIC16F1934/PIC16LF1934  
PIC16F1936/PIC16LF1936  
PIC16F1937/PIC16LF1937  
PIC16F1938/PIC16LF1938  
PIC16F1939/PIC16LF1939  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 21  
PIC16F193X/LF193X  
FIGURE 2-1:  
PROGRAM MEMORY MAP  
AND STACK FOR THE  
FIGURE 2-2:  
PROGRAM MEMORY MAP  
AND STACK FOR THE  
PIC16F1933/PIC16LF1933/  
PIC16F1934/PIC16LF1934  
PIC16F1936/PIC16LF1936/  
PIC16F1937/PIC16LF1937  
PC<14:0>  
PC<14:0>  
CALL, CALLW  
RETURN, RETLW  
INTERRUPT, RETFIE  
15  
CALL, CALLW  
RETURN, RETLW  
INTERRUPT, RETFIE  
15  
Stack Level 0  
Stack Level 1  
Stack Level 0  
Stack Level 1  
Stack Level 15  
Reset Vector  
Stack Level 15  
Reset Vector  
0000h  
0000h  
Interrupt Vector  
Page 0  
0004h  
0005h  
Interrupt Vector  
Page 0  
0004h  
0005h  
On-chip  
Program  
Memory  
07FFh  
0800h  
07FFh  
0800h  
Page 1  
Page 1  
Page 2  
On-chip  
Program  
Memory  
0FFFh  
1000h  
0FFFh  
1000h  
Rollover to Page 0  
17FFh  
1800h  
Page 3  
1FFFh  
2000h  
Rollover to Page 0  
Rollover to Page 3  
Rollover to Page 1  
7FFFh  
7FFFh  
DS41364A-page 22  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 2-3:  
PROGRAM MEMORY MAP  
AND STACK FOR THE  
2.1.1  
READING PROGRAM MEMORY AS  
DATA  
PIC16F1938/PIC16LF1938/  
PIC16F1939/PIC16LF1939  
There are two methods of accessing constants in pro-  
gram memory. The first method is to use tables of  
RETLW instructions. The second method is to set an  
FSR to point to the program memory.  
PC<14:0>  
2.1.1.1  
RETLWInstruction  
CALL, CALLW  
RETURN, RETLW  
INTERRUPT, RETFIE  
15  
The RETLWinstruction can be used to provide access  
to tables of constants. The recommended way to create  
such a table is shown in Example 2-1.  
Stack Level 0  
Stack Level 1  
EXAMPLE 2-1:  
RETLW INSTRUCTION  
constants  
brw  
Stack Level 15  
Reset Vector  
retlw DATA1  
retlw DATA2  
retlw DATA3  
retlw DATA4  
0000h  
Interrupt Vector  
Page 0  
0004h  
0005h  
my_function  
On-chip  
Program  
Memory  
;… LOTS OF CODE…  
movlw DATA_INDEX  
call constants  
07FFh  
0800h  
Page 1  
Page 2  
;… THE CONSTANT IS IN W  
0FFFh  
1000h  
The BRWinstruction makes this type of table very sim-  
ple to implement. If your code must remain portable  
with previous generations of microcontrollers, then the  
BRW instruction is not available so the older table read  
method must be used.  
17FFh  
1800h  
Page 3  
Page 4  
1FFFh  
2000h  
2.1.1.2  
Indirect Read with FSR  
The program memory can be accessed as data by set-  
ting bit 7 of the FSRxH register and reading the match-  
ing INDFx register. The MOVIWinstruction will place the  
lower 8 bits of the addressed word in the W register.  
Writes to the program memory cannot be performed via  
the INDF registers. Instructions that access the pro-  
gram memory via the FSR require one extra instruction  
cycle to complete. Example 2-2 demonstrates access-  
ing the program memory via an FSR.  
Page 7  
3FFFh  
4000h  
Rollover to Page 0  
Rollover to Page 7  
7FFFh  
EXAMPLE 2-2:  
ACCESSING PROGRAM  
MEMORY VIA FSR  
bsf FSR1H,7  
moviw 0[INDF1]  
;THE PROGRAM MEMORY IS IN W  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 23  
PIC16F193X/LF193X  
2.2  
Data Memory Organization  
The data memory is partitioned in up to 32 memory  
banks with up to 128 bytes in a bank. Each bank  
consists of 12 core registers, 20 Special Function  
Registers (SFR), 16 common registers, and up to 80  
bytes of General Purpose Registers (GPR). The active  
bank is selected by writing the bank number into the  
Bank Select Register (BSR). Unimplemented memory  
will read as ‘0’. All banks contain the core SFRs and  
common registers. Unimplemented SFRs or GPRs will  
read as ‘0’. All data memory can be accessed either  
directly (via instructions that use the file registers) or  
indirectly via the two File Select Registers (FSR). See  
Section 2.5 “Indirect Addressing, INDF and FSR  
Registers” for more information.  
2.2.1  
GENERAL PURPOSE REGISTER  
FILE  
The general purpose register file is an 8-bit RAM  
memory for use by your application. There are up to  
80 bytes of GPR in each data memory bank.  
2.2.2  
SPECIAL FUNCTION REGISTER  
The Special Function Registers are registers used by  
the application to control the desired operation of  
peripheral functions in the device. The Special Function  
Registers can be classified into two sets: core and  
peripheral. The Special Function Registers associated  
with the “core” are described in the following sections.  
The registers associated with the operation of the  
peripherals are described in the appropriate peripheral  
chapter of this data sheet.  
DS41364A-page 24  
Preliminary  
© 2008 Microchip Technology Inc.  
TABLE 2-2:  
PIC16F1933/1934 MEMORY MAP, BANKS 0-7  
BANK 0  
BANK 1  
BANK 2  
BANK 3  
BANK 4  
BANK 5  
BANK 6  
BANK 7  
000h  
001h  
002h  
003h  
004h  
005h  
006h  
007h  
008h  
009h  
00Ah  
00Bh  
00Ch  
00Dh  
00Eh  
INDF0  
INDF1  
080h  
081h  
082h  
083h  
084h  
085h  
086h  
087h  
088h  
089h  
08Ah  
08Bh  
08Ch  
08Dh  
08Eh  
INDF0  
INDF1  
PCL  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
INDF0  
INDF1  
PCL  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
INDF0  
INDF1  
PCL  
200h  
201h  
202h  
203h  
204h  
205h  
206h  
207h  
208h  
209h  
20Ah  
20Bh  
20Ch  
20Dh  
20Eh  
INDF0  
INDF1  
PCL  
280h  
281h  
282h  
283h  
284h  
285h  
286h  
287h  
288h  
289h  
28Ah  
28Bh  
28Ch  
28Dh  
28Eh  
INDF0  
INDF1  
PCL  
300h  
301h  
302h  
303h  
304h  
305h  
306h  
307h  
308h  
309h  
30Ah  
30Bh  
30Ch  
30Dh  
30Eh  
INDF0  
INDF1  
PCL  
380h  
381h  
382h  
383h  
384h  
385h  
386h  
387h  
388h  
389h  
38Ah  
38Bh  
38Ch  
38Dh  
38Eh  
INDF0  
INDF1  
PCL  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
PORTA  
PORTB  
PORTC  
WREG  
PCLATH  
INTCON  
TRISA  
TRISB  
TRISC  
WREG  
PCLATH  
INTCON  
LATA  
WREG  
PCLATH  
INTCON  
ANSELA  
ANSELB  
WREG  
PCLATH  
INTCON  
WREG  
PCLATH  
INTCON  
WREG  
PCLATH  
INTCON  
WREG  
PCLATH  
INTCON  
LATB  
WPUB  
LATC  
00Fh  
PORTD(1)  
08Fh  
TRISD(1)  
10Fh  
LATD(1)  
18Fh  
ANSELD(1)  
20Fh  
28Fh  
30Fh  
38Fh  
010h  
011h  
012h  
013h  
014h  
015h  
016h  
017h  
018h  
019h  
01Ah  
01Bh  
01Ch  
01Dh  
01Eh  
PORTE  
PIR1  
090h  
091h  
092h  
093h  
094h  
095h  
096h  
097h  
098h  
099h  
09Ah  
09Bh  
09Ch  
09Dh  
09Eh  
TRISE  
PIE1  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
LATE(1)  
CM1CON0  
CM1CON1  
CM2CON0  
CM2CON1  
CMOUT  
BORCON  
FVRCON  
DACCON0  
DACCON1  
SRCON0  
SRCON1  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
ANSELE(1)  
EEADRL  
EEADRH  
EEDATL  
EEDATH  
EECON1  
EECON2  
210h  
211h  
212h  
213h  
214h  
215h  
216h  
217h  
218h  
219h  
21Ah  
21Bh  
21Ch  
21Dh  
21Eh  
WPUE  
SSPBUF  
SSPADD  
SSPMSK  
SSPSTAT  
SSPCON1  
SSPCON2  
SSPCON3  
290h  
291h  
292h  
293h  
294h  
295h  
296h  
297h  
298h  
299h  
29Ah  
29Bh  
29Ch  
29Dh  
29Eh  
310h  
311h  
312h  
313h  
314h  
315h  
316h  
317h  
318h  
319h  
31Ah  
31Bh  
31Ch  
31Dh  
31Eh  
390h  
391h  
392h  
393h  
394h  
395h  
396h  
397h  
398h  
399h  
39Ah  
39Bh  
39Ch  
39Dh  
39Eh  
CCPR1L  
CCPR1H  
CCP1CON  
PWM1CON  
CCP1AS  
PSTR1CON  
CCPR3L  
CCPR3H  
CCP3CON  
PWM3CON  
CCP3AS  
PSTR3CON  
PIR2  
PIE2  
PIR3  
PIE3  
IOCBP  
IOCBN  
IOCBF  
TMR0  
TMR1L  
TMR1H  
T1CON  
T1GCON  
TMR2  
PR2  
OPTION  
PCON  
WDTCON  
OSCTUNE  
OSCCON  
OSCSTAT  
ADRESL  
ADRESH  
ADCON0  
ADCON1  
CCPR2L  
CCPR2H  
CCP2CON  
PWM2CON  
CCP2AS  
PSTR2CON  
CCPTMRS0  
CCPR4L  
CCPR4H  
CCP4CON  
RCREG  
TXREG  
SPBRGL  
SPBRGH  
RCSTA  
TXSTA  
T2CON  
CCPR5L  
CCPR5H  
CCP5CON  
APFCON  
CPSCON0  
01Fh  
020h  
CPSCON1  
09Fh  
0A0h  
11Fh  
120h  
19Fh  
1A0h  
BAUDCTR  
21Fh  
220h  
29Fh  
2A0h  
CCPTMRS1  
31Fh  
320h  
39Fh  
3A0h  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
80 Bytes  
Unimplemented  
Read as ‘0’  
Unimplemented  
Read as ‘0’  
Unimplemented  
Read as ‘0’  
Unimplemented  
Read as ‘0’  
Unimplemented  
Read as ‘0’  
General  
Purpose  
Register  
96 Bytes  
36Fh  
370h  
3EFh  
3F0h  
06Fh  
070h  
0EFh  
0F0h  
16Fh  
170h  
1EFh  
1F0h  
26Fh  
270h  
2EFh  
2F0h  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
07Fh  
0FFh  
17Fh  
1FFh  
27Fh  
2FFh  
37Fh  
3FFh  
Legend:  
Note 1:  
= Unimplemented data memory locations, read as ‘0’.  
Not available on PIC16F1933/1936/1938/PIC16LF1933/1936/1938.  
TABLE 2-3:  
PIC16F1933/1934 MEMORY MAP, BANKS 8-15  
BANK 8  
BANK 9  
BANK 10  
BANK 11  
BANK 12  
BANK 13  
BANK 14  
BANK 15  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
INDF0  
INDF1  
PCL  
400h  
401h  
402h  
403h  
404h  
405h  
406h  
407h  
408h  
409h  
40Ah  
40Bh  
40Ch  
40Dh  
40Eh  
40Fh  
410h  
411h  
412h  
413h  
414h  
415h  
416h  
417h  
418h  
419h  
41Ah  
41Bh  
41Ch  
41Dh  
41Eh  
480h  
481h  
482h  
483h  
484h  
485h  
486h  
487h  
488h  
489h  
48Ah  
48Bh  
48Ch  
48Dh  
48Eh  
48Fh  
490h  
491h  
492h  
493h  
494h  
495h  
496h  
497h  
498h  
499h  
49Ah  
49Bh  
49Ch  
49Dh  
49Eh  
500h  
501h  
502h  
503h  
504h  
505h  
506h  
507h  
508h  
509h  
50Ah  
50Bh  
50Ch  
50Dh  
50Eh  
50Fh  
510h  
511h  
512h  
513h  
514h  
515h  
516h  
517h  
518h  
519h  
51Ah  
51Bh  
51Ch  
51Dh  
51Eh  
580h  
581h  
582h  
583h  
584h  
585h  
586h  
587h  
588h  
589h  
58Ah  
58Bh  
58Ch  
58Dh  
58Eh  
58Fh  
590h  
591h  
592h  
593h  
594h  
595h  
596h  
597h  
598h  
599h  
59Ah  
59Bh  
59Ch  
59Dh  
59Eh  
600h  
601h  
602h  
603h  
604h  
605h  
606h  
607h  
608h  
609h  
60Ah  
60Bh  
60Ch  
60Dh  
60Eh  
60Fh  
610h  
611h  
612h  
613h  
614h  
615h  
616h  
617h  
618h  
619h  
61Ah  
61Bh  
61Ch  
61Dh  
61Eh  
680h  
681h  
682h  
683h  
684h  
685h  
686h  
687h  
688h  
689h  
68Ah  
68Bh  
68Ch  
68Dh  
68Eh  
68Fh  
690h  
691h  
692h  
693h  
694h  
695h  
696h  
697h  
698h  
699h  
69Ah  
69Bh  
69Ch  
69Dh  
69Eh  
700h  
701h  
702h  
703h  
704h  
705h  
706h  
707h  
708h  
709h  
70Ah  
70Bh  
70Ch  
70Dh  
70Eh  
70Fh  
710h  
711h  
712h  
713h  
714h  
715h  
716h  
717h  
718h  
719h  
71Ah  
71Bh  
71Ch  
71Dh  
71Eh  
780h  
781h  
782h  
783h  
784h  
785h  
786h  
787h  
788h  
789h  
78Ah  
78Bh  
78Ch  
78Dh  
78Eh  
78Fh  
790h  
791h  
792h  
793h  
794h  
795h  
796h  
797h  
798h  
799h  
79Ah  
79Bh  
79Ch  
79Dh  
79Eh  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
TMR4  
PR4  
T4CON  
See Table 2-10 or  
Table 2-11  
TMR6  
PR6  
T6CON  
41Fh  
420h  
49Fh  
4A0h  
51Fh  
520h  
59Fh  
5A0h  
61Fh  
620h  
69Fh  
6A0h  
71Fh  
720h  
79Fh  
7A0h  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
46Fh  
470h  
4EFh  
4F0h  
56Fh  
570h  
5EFh  
5F0h  
66Fh  
670h  
6EFh  
6F0h  
76Fh  
770h  
7EFh  
7F0h  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
4FFh  
57Fh  
47Fh  
5FFh  
67Fh  
6FFh  
77Fh  
7FFh  
Legend:  
= Unimplemented data memory locations, read as ‘0’.  
TABLE 2-4:  
PIC16F1936/1937 MEMORY MAP, BANKS 0-7  
BANK 0  
BANK 1  
BANK 2  
BANK 3  
BANK 4  
BANK 5  
BANK 6  
BANK 7  
000h  
001h  
002h  
003h  
004h  
005h  
006h  
007h  
008h  
009h  
00Ah  
00Bh  
00Ch  
00Dh  
00Eh  
INDF0  
INDF1  
080h  
081h  
082h  
083h  
084h  
085h  
086h  
087h  
088h  
089h  
08Ah  
08Bh  
08Ch  
08Dh  
08Eh  
INDF0  
INDF1  
PCL  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
INDF0  
INDF1  
PCL  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
INDF0  
INDF1  
PCL  
200h  
201h  
202h  
203h  
204h  
205h  
206h  
207h  
208h  
209h  
20Ah  
20Bh  
20Ch  
20Dh  
20Eh  
INDF0  
INDF1  
PCL  
280h  
281h  
282h  
283h  
284h  
285h  
286h  
287h  
288h  
289h  
28Ah  
28Bh  
28Ch  
28Dh  
28Eh  
INDF0  
INDF1  
PCL  
300h  
301h  
302h  
303h  
304h  
305h  
306h  
307h  
308h  
309h  
30Ah  
30Bh  
30Ch  
30Dh  
30Eh  
INDF0  
INDF1  
PCL  
380h  
381h  
382h  
383h  
384h  
385h  
386h  
387h  
388h  
389h  
38Ah  
38Bh  
38Ch  
38Dh  
38Eh  
INDF0  
INDF1  
PCL  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
PORTA  
PORTB  
PORTC  
WREG  
PCLATH  
INTCON  
TRISA  
TRISB  
TRISC  
WREG  
PCLATH  
INTCON  
LATA  
WREG  
PCLATH  
INTCON  
ANSELA  
ANSELB  
WREG  
PCLATH  
INTCON  
WREG  
PCLATH  
INTCON  
WREG  
PCLATH  
INTCON  
WREG  
PCLATH  
INTCON  
LATB  
WPUB  
LATC  
00Fh  
PORTD(1)  
08Fh  
TRISD(1)  
10Fh  
LATD(1)  
18Fh  
ANSELD(1)  
20Fh  
28Fh  
30Fh  
38Fh  
010h  
011h  
012h  
013h  
014h  
015h  
016h  
017h  
018h  
019h  
01Ah  
01Bh  
01Ch  
01Dh  
01Eh  
PORTE  
PIR1  
090h  
091h  
092h  
093h  
094h  
095h  
096h  
097h  
098h  
099h  
09Ah  
09Bh  
09Ch  
09Dh  
09Eh  
TRISE  
PIE1  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
LATE(1)  
CM1CON0  
CM1CON1  
CM2CON0  
CM2CON1  
CMOUT  
BORCON  
FVRCON  
DACCON0  
DACCON1  
SRCON0  
SRCON1  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
ANSELE(1)  
EEADRL  
EEADRH  
EEDATL  
EEDATH  
EECON1  
EECON2  
210h  
211h  
212h  
213h  
214h  
215h  
216h  
217h  
218h  
219h  
21Ah  
21Bh  
21Ch  
21Dh  
21Eh  
WPUE  
SSPBUF  
SSPADD  
SSPMSK  
SSPSTAT  
SSPCON1  
SSPCON2  
SSPCON3  
290h  
291h  
292h  
293h  
294h  
295h  
296h  
297h  
298h  
299h  
29Ah  
29Bh  
29Ch  
29Dh  
29Eh  
310h  
311h  
312h  
313h  
314h  
315h  
316h  
317h  
318h  
319h  
31Ah  
31Bh  
31Ch  
31Dh  
31Eh  
390h  
391h  
392h  
393h  
394h  
395h  
396h  
397h  
398h  
399h  
39Ah  
39Bh  
39Ch  
39Dh  
39Eh  
CCPR1L  
CCPR1H  
CCP1CON  
PWM1CON  
CCP1AS  
PSTR1CON  
CCPR3L  
CCPR3H  
CCP3CON  
PWM3CON  
CCP3AS  
PSTR3CON  
PIR2  
PIE2  
PIR3  
PIE3  
IOCBP  
IOCBN  
IOCBF  
TMR0  
TMR1L  
TMR1H  
T1CON  
T1GCON  
TMR2  
PR2  
OPTION  
PCON  
WDTCON  
OSCTUNE  
OSCCON  
OSCSTAT  
ADRESL  
ADRESH  
ADCON0  
ADCON1  
CCPR2L  
CCPR2H  
CCP2CON  
PWM2CON  
CCP2AS  
PSTR2CON  
CCPTMRS0  
CCPR4L  
CCPR4H  
CCP4CON  
RCREG  
TXREG  
SPBRGL  
SPBRGH  
RCSTA  
TXSTA  
TxCON  
CCPR5L  
CCPR5H  
CCP5CON  
APFCON  
CPSCON0  
01Fh  
020h  
CPSCON1  
09Fh  
0A0h  
11Fh  
120h  
19Fh  
1A0h  
BAUDCON  
21Fh  
220h  
29Fh  
2A0h  
CCPTMRS1  
31Fh  
320h  
39Fh  
3A0h  
General Purpose  
Register  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
80 Bytes  
16 Bytes  
32Fh  
330h  
Unimplemented  
Read as ‘0’  
General  
Purpose  
Register  
96 Bytes  
Unimplemented  
Read as ‘0’  
36Fh  
370h  
3EFh  
3F0h  
06Fh  
070h  
0EFh  
0F0h  
16Fh  
170h  
1EFh  
1F0h  
26Fh  
270h  
2EFh  
2F0h  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
07Fh  
0FFh  
17Fh  
1FFh  
27Fh  
2FFh  
37Fh  
3FFh  
Legend:  
Note 1:  
= Unimplemented data memory locations, read as ‘0’.  
Not available on PIC16F1933/1936/1938/PIC16LF1933/1936/1938.  
TABLE 2-5:  
PIC16F1936/1937 MEMORY MAP, BANKS 8-15  
BANK 8  
BANK 9  
BANK 10  
BANK 11  
BANK 12  
BANK 13  
BANK 14  
BANK 15  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
INDF0  
INDF1  
PCL  
400h  
401h  
402h  
403h  
404h  
405h  
406h  
407h  
408h  
409h  
40Ah  
40Bh  
40Ch  
40Dh  
40Eh  
40Fh  
410h  
411h  
412h  
413h  
414h  
415h  
416h  
417h  
418h  
419h  
41Ah  
41Bh  
41Ch  
41Dh  
41Eh  
480h  
481h  
482h  
483h  
484h  
485h  
486h  
487h  
488h  
489h  
48Ah  
48Bh  
48Ch  
48Dh  
48Eh  
48Fh  
490h  
491h  
492h  
493h  
494h  
495h  
496h  
497h  
498h  
499h  
49Ah  
49Bh  
49Ch  
49Dh  
49Eh  
500h  
501h  
502h  
503h  
504h  
505h  
506h  
507h  
508h  
509h  
50Ah  
50Bh  
50Ch  
50Dh  
50Eh  
50Fh  
510h  
511h  
512h  
513h  
514h  
515h  
516h  
517h  
518h  
519h  
51Ah  
51Bh  
51Ch  
51Dh  
51Eh  
580h  
581h  
582h  
583h  
584h  
585h  
586h  
587h  
588h  
589h  
58Ah  
58Bh  
58Ch  
58Dh  
58Eh  
58Fh  
590h  
591h  
592h  
593h  
594h  
595h  
596h  
597h  
598h  
599h  
59Ah  
59Bh  
59Ch  
59Dh  
59Eh  
600h  
601h  
602h  
603h  
604h  
605h  
606h  
607h  
608h  
609h  
60Ah  
60Bh  
60Ch  
60Dh  
60Eh  
60Fh  
610h  
611h  
612h  
613h  
614h  
615h  
616h  
617h  
618h  
619h  
61Ah  
61Bh  
61Ch  
61Dh  
61Eh  
680h  
681h  
682h  
683h  
684h  
685h  
686h  
687h  
688h  
689h  
68Ah  
68Bh  
68Ch  
68Dh  
68Eh  
68Fh  
690h  
691h  
692h  
693h  
694h  
695h  
696h  
697h  
698h  
699h  
69Ah  
69Bh  
69Ch  
69Dh  
69Eh  
700h  
701h  
702h  
703h  
704h  
705h  
706h  
707h  
708h  
709h  
70Ah  
70Bh  
70Ch  
70Dh  
70Eh  
70Fh  
710h  
711h  
712h  
713h  
714h  
715h  
716h  
717h  
718h  
719h  
71Ah  
71Bh  
71Ch  
71Dh  
71Eh  
780h  
781h  
782h  
783h  
784h  
785h  
786h  
787h  
788h  
789h  
78Ah  
78Bh  
78Ch  
78Dh  
78Eh  
78Fh  
790h  
791h  
792h  
793h  
794h  
795h  
796h  
797h  
798h  
799h  
79Ah  
79Bh  
79Ch  
79Dh  
79Eh  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
TMR4  
PR4  
T4CON  
See Table 2-10 or  
Table 2-11  
TMR6  
PR6  
T6CON  
41Fh  
420h  
49Fh  
4A0h  
51Fh  
520h  
59Fh  
5A0h  
61Fh  
620h  
69Fh  
6A0h  
71Fh  
720h  
79Fh  
7A0h  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
46Fh  
470h  
4EFh  
4F0h  
56Fh  
570h  
5EFh  
5F0h  
66Fh  
670h  
6EFh  
6F0h  
76Fh  
770h  
7EFh  
7F0h  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
4FFh  
57Fh  
47Fh  
5FFh  
67Fh  
6FFh  
77Fh  
7FFh  
Legend:  
= Unimplemented data memory locations, read as ‘0’.  
TABLE 2-6:  
PIC16F1938/1939 MEMORY MAP, BANKS 0-7  
BANK 0  
BANK 1  
BANK 2  
BANK 3  
BANK 4  
BANK 5  
BANK 6  
BANK 7  
000h  
001h  
002h  
003h  
004h  
005h  
006h  
007h  
008h  
009h  
00Ah  
00Bh  
00Ch  
00Dh  
00Eh  
INDF0  
INDF1  
080h  
081h  
082h  
083h  
084h  
085h  
086h  
087h  
088h  
089h  
08Ah  
08Bh  
08Ch  
08Dh  
08Eh  
INDF0  
INDF1  
PCL  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
INDF0  
INDF1  
PCL  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
INDF0  
INDF1  
PCL  
200h  
201h  
202h  
203h  
204h  
205h  
206h  
207h  
208h  
209h  
20Ah  
20Bh  
20Ch  
20Dh  
20Eh  
INDF0  
INDF1  
PCL  
280h  
281h  
282h  
283h  
284h  
285h  
286h  
287h  
288h  
289h  
28Ah  
28Bh  
28Ch  
28Dh  
28Eh  
INDF0  
INDF1  
PCL  
300h  
301h  
302h  
303h  
304h  
305h  
306h  
307h  
308h  
309h  
30Ah  
30Bh  
30Ch  
30Dh  
30Eh  
INDF0  
INDF1  
PCL  
380h  
381h  
382h  
383h  
384h  
385h  
386h  
387h  
388h  
389h  
38Ah  
38Bh  
38Ch  
38Dh  
38Eh  
INDF0  
INDF1  
PCL  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
PORTA  
PORTB  
PORTC  
WREG  
PCLATH  
INTCON  
TRISA  
TRISB  
TRISC  
WREG  
PCLATH  
INTCON  
LATA  
WREG  
PCLATH  
INTCON  
ANSELA  
ANSELB  
WREG  
PCLATH  
INTCON  
WREG  
PCLATH  
INTCON  
WREG  
PCLATH  
INTCON  
WREG  
PCLATH  
INTCON  
LATB  
WPUB  
LATC  
00Fh  
PORTD(1)  
08Fh  
TRISD(1)  
10Fh  
LATD(1)  
18Fh  
ANSELD(1)  
20Fh  
28Fh  
30Fh  
38Fh  
010h  
011h  
012h  
013h  
014h  
015h  
016h  
017h  
018h  
019h  
01Ah  
01Bh  
01Ch  
01Dh  
01Eh  
PORTE  
PIR1  
090h  
091h  
092h  
093h  
094h  
095h  
096h  
097h  
098h  
099h  
09Ah  
09Bh  
09Ch  
09Dh  
09Eh  
TRISE  
PIE1  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
LATE(1)  
CM1CON0  
CM1CON1  
CM2CON0  
CM2CON1  
CMOUT  
BORCON  
FVRCON  
DACCON0  
DACCON1  
SRCON0  
SRCON1  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
ANSELE(1)  
EEADRL  
EEADRH  
EEDATL  
EEDATH  
EECON1  
EECON2  
210h  
211h  
212h  
213h  
214h  
215h  
216h  
217h  
218h  
219h  
21Ah  
21Bh  
21Ch  
21Dh  
21Eh  
WPUE  
SSPBUF  
SSPADD  
SSPMSK  
SSPSTAT  
SSPCON1  
SSPCON2  
SSPCON3  
290h  
291h  
292h  
293h  
294h  
295h  
296h  
297h  
298h  
299h  
29Ah  
29Bh  
29Ch  
29Dh  
29Eh  
310h  
311h  
312h  
313h  
314h  
315h  
316h  
317h  
318h  
319h  
31Ah  
31Bh  
31Ch  
31Dh  
31Eh  
390h  
391h  
392h  
393h  
394h  
395h  
396h  
397h  
398h  
399h  
39Ah  
39Bh  
39Ch  
39Dh  
39Eh  
CCPR1L  
CCPR1H  
CCP1CON  
PWM1CON  
CCP1AS  
PSTR1CON  
CCPR3L  
CCPR3H  
CCP3CON  
PWM3CON  
CCP3AS  
PSTR3CON  
PIR2  
PIE2  
PIR3  
PIE3  
IOCBP  
IOCBN  
IOCBF  
TMR0  
TMR1L  
TMR1H  
T1CON  
T1GCON  
TMR2  
PR2  
OPTION  
PCON  
WDTCON  
OSCTUNE  
OSCCON  
OSCSTAT  
ADRESL  
ADRESH  
ADCON0  
ADCON1  
CCPR2L  
CCPR2H  
CCP2CON  
PWM2CON  
CCP2AS  
PSTR2CON  
CCPTMRS0  
CCPR4L  
CCPR4H  
CCP4CON  
RC1REG  
TX1REG  
SPBRGL1  
SPBRGH1  
RCSTA1  
TXSTA1  
T2CON  
CCPR5L  
CCPR5H  
CCP5CON  
APFCON  
CPSCON0  
01Fh  
020h  
CPSCON1  
09Fh  
0A0h  
11Fh  
120h  
19Fh  
1A0h  
BAUDCTL1  
21Fh  
220h  
29Fh  
2A0h  
CCPTMRS1  
31Fh  
320h  
39Fh  
3A0h  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
80 Bytes  
32Fh  
330h  
General  
Purpose  
Register  
96 Bytes  
36Fh  
370h  
3EFh  
3F0h  
06Fh  
070h  
0EFh  
0F0h  
16Fh  
170h  
1EFh  
1F0h  
26Fh  
270h  
2EFh  
2F0h  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
07Fh  
0FFh  
17Fh  
1FFh  
27Fh  
2FFh  
37Fh  
3FFh  
Legend:  
Note 1:  
= Unimplemented data memory locations, read as ‘0’.  
Not available on PIC16F1933/1936/1938/PIC16LF1933/1936/1938.  
TABLE 2-7:  
PIC16F1938/1939 MEMORY MAP, BANKS 8-15  
BANK 8  
BANK 9  
BANK 10  
BANK 11  
BANK 12  
BANK 13  
BANK 14  
BANK 15  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
INDF0  
INDF1  
PCL  
400h  
401h  
402h  
403h  
404h  
405h  
406h  
407h  
408h  
409h  
40Ah  
40Bh  
40Ch  
40Dh  
40Eh  
40Fh  
410h  
411h  
412h  
413h  
414h  
415h  
416h  
417h  
418h  
419h  
41Ah  
41Bh  
41Ch  
41Dh  
41Eh  
480h  
481h  
482h  
483h  
484h  
485h  
486h  
487h  
488h  
489h  
48Ah  
48Bh  
48Ch  
48Dh  
48Eh  
48Fh  
490h  
491h  
492h  
493h  
494h  
495h  
496h  
497h  
498h  
499h  
49Ah  
49Bh  
49Ch  
49Dh  
49Eh  
500h  
501h  
502h  
503h  
504h  
505h  
506h  
507h  
508h  
509h  
50Ah  
50Bh  
50Ch  
50Dh  
50Eh  
50Fh  
510h  
511h  
512h  
513h  
514h  
515h  
516h  
517h  
518h  
519h  
51Ah  
51Bh  
51Ch  
51Dh  
51Eh  
580h  
581h  
582h  
583h  
584h  
585h  
586h  
587h  
588h  
589h  
58Ah  
58Bh  
58Ch  
58Dh  
58Eh  
58Fh  
590h  
591h  
592h  
593h  
594h  
595h  
596h  
597h  
598h  
599h  
59Ah  
59Bh  
59Ch  
59Dh  
59Eh  
600h  
601h  
602h  
603h  
604h  
605h  
606h  
607h  
608h  
609h  
60Ah  
60Bh  
60Ch  
60Dh  
60Eh  
60Fh  
610h  
611h  
612h  
613h  
614h  
615h  
616h  
617h  
618h  
619h  
61Ah  
61Bh  
61Ch  
61Dh  
61Eh  
680h  
681h  
682h  
683h  
684h  
685h  
686h  
687h  
688h  
689h  
68Ah  
68Bh  
68Ch  
68Dh  
68Eh  
68Fh  
690h  
691h  
692h  
693h  
694h  
695h  
696h  
697h  
698h  
699h  
69Ah  
69Bh  
69Ch  
69Dh  
69Eh  
700h  
701h  
702h  
703h  
704h  
705h  
706h  
707h  
708h  
709h  
70Ah  
70Bh  
70Ch  
70Dh  
70Eh  
70Fh  
710h  
711h  
712h  
713h  
714h  
715h  
716h  
717h  
718h  
719h  
71Ah  
71Bh  
71Ch  
71Dh  
71Eh  
780h  
781h  
782h  
783h  
784h  
785h  
786h  
787h  
788h  
789h  
78Ah  
78Bh  
78Ch  
78Dh  
78Eh  
78Fh  
790h  
791h  
792h  
793h  
794h  
795h  
796h  
797h  
798h  
799h  
79Ah  
79Bh  
79Ch  
79Dh  
79Eh  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
TMR4  
PR4  
T4CON  
See Table 2-10 or  
Table 2-11  
TMR6  
PR6  
T6CON  
41Fh  
420h  
49Fh  
4A0h  
51Fh  
520h  
59Fh  
5A0h  
61Fh  
620h  
69Fh  
6A0h  
71Fh  
720h  
79Fh  
7A0h  
General Purpose  
Register  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
80 Bytes  
48 Bytes  
Unimplemented  
Read as ‘0’  
Unimplemented  
Read as ‘0’  
Unimplemented  
Read as ‘0’  
46Fh  
470h  
4EFh  
4F0h  
56Fh  
570h  
5EFh  
5F0h  
66Fh  
670h  
6EFh  
6F0h  
76Fh  
770h  
7EFh  
7F0h  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
4FFh  
57Fh  
47Fh  
5FFh  
67Fh  
6FFh  
77Fh  
7FFh  
Legend:  
= Unimplemented data memory locations, read as ‘0’.  
TABLE 2-8:  
PIC16F193X/LF193X MEMORY MAP, BANKS 16-23  
BANK 16  
BANK 17  
BANK 18  
BANK 19  
BANK 20  
BANK 21  
BANK 22  
BANK 23  
800h  
801h  
802h  
803h  
804h  
805h  
806h  
807h  
808h  
809h  
80Ah  
80Bh  
80Ch  
80Dh  
80Eh  
80Fh  
810h  
811h  
812h  
813h  
814h  
815h  
816h  
817h  
818h  
819h  
81Ah  
81Bh  
81Ch  
81Dh  
81Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
880h  
881h  
882h  
883h  
884h  
885h  
886h  
887h  
888h  
889h  
88Ah  
88Bh  
88Ch  
88Dh  
88Eh  
88Fh  
890h  
891h  
892h  
893h  
894h  
895h  
896h  
897h  
898h  
899h  
89Ah  
89Bh  
89Ch  
89Dh  
89Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
900h  
901h  
902h  
903h  
904h  
905h  
906h  
907h  
908h  
909h  
90Ah  
90Bh  
90Ch  
90Dh  
90Eh  
90Fh  
910h  
911h  
912h  
913h  
914h  
915h  
916h  
917h  
918h  
919h  
91Ah  
91Bh  
91Ch  
91Dh  
91Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
980h  
981h  
982h  
983h  
984h  
985h  
986h  
987h  
988h  
989h  
98Ah  
98Bh  
98Ch  
98Dh  
98Eh  
98Fh  
990h  
991h  
992h  
993h  
994h  
995h  
996h  
997h  
998h  
999h  
99Ah  
99Bh  
99Ch  
99Dh  
99Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
A00h  
A01h  
A02h  
A03h  
A04h  
A05h  
A06h  
A07h  
A08h  
A09h  
A0Ah  
A0Bh  
A0Ch  
A0Dh  
A0Eh  
A0Fh  
A10h  
A11h  
A12h  
A13h  
A14h  
A15h  
A16h  
A17h  
A18h  
A19h  
A1Ah  
A1Bh  
A1Ch  
A1Dh  
A1Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
A80h  
A81h  
A82h  
A83h  
A84h  
A85h  
A86h  
A87h  
A88h  
A89h  
A8Ah  
A8Bh  
A8Ch  
A8Dh  
A8Eh  
A8Fh  
A90h  
A91h  
A92h  
A93h  
A94h  
A95h  
A96h  
A97h  
A98h  
A99h  
A9Ah  
A9Bh  
A9Ch  
A9Dh  
A9Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
B00h  
B01h  
B02h  
B03h  
B04h  
B05h  
B06h  
B07h  
B08h  
B09h  
B0Ah  
B0Bh  
B0Ch  
B0Dh  
B0Eh  
B0Fh  
B10h  
B11h  
B12h  
B13h  
B14h  
B15h  
B16h  
B17h  
B18h  
B19h  
B1Ah  
B1Bh  
B1Ch  
B1Dh  
B1Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
B80h  
B81h  
B82h  
B83h  
B84h  
B85h  
B86h  
B87h  
B88h  
B89h  
B8Ah  
B8Bh  
B8Ch  
B8Dh  
B8Eh  
B8Fh  
B90h  
B91h  
B92h  
B93h  
B94h  
B95h  
B96h  
B97h  
B98h  
B99h  
B9Ah  
B9Bh  
B9Ch  
B9Dh  
B9Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
81Fh  
820h  
89Fh  
8A0h  
91Fh  
920h  
99Fh  
9A0h  
A1Fh  
A20h  
A9Fh  
AA0h  
B1Fh  
B20h  
B9Fh  
BA0h  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
9EFh  
9F0h  
AEFh  
AF0h  
BEFh  
BF0h  
86Fh  
870h  
8EFh  
8F0h  
96Fh  
970h  
A6Fh  
A70h  
B6Fh  
B70h  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
87Fh  
8FFh  
97Fh  
9FFh  
A7Fh  
AFFh  
B7Fh  
BFFh  
Legend:  
= Unimplemented data memory locations, read as ‘0’.  
TABLE 2-9:  
PIC16F193X/LF193X MEMORY MAP, BANKS 24-31  
BANK 24  
BANK 25  
BANK 26  
BANK 27  
BANK 28  
BANK 29  
BANK 30  
BANK 31  
C00h  
C01h  
C02h  
C03h  
C04h  
C05h  
C06h  
C07h  
C08h  
C09h  
C0Ah  
C0Bh  
C0Ch  
C0Dh  
C0Eh  
C0Fh  
C10h  
C11h  
C12h  
C13h  
C14h  
C15h  
C16h  
C17h  
C18h  
C19h  
C1Ah  
C1Bh  
C1Ch  
C1Dh  
C1Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
C80h  
C81h  
C82h  
C83h  
C84h  
C85h  
C86h  
C87h  
C88h  
C89h  
C8Ah  
C8Bh  
C8Ch  
C8Dh  
C8Eh  
C8Fh  
C90h  
C91h  
C92h  
C93h  
C94h  
C95h  
C96h  
C97h  
C98h  
C99h  
C9Ah  
C9Bh  
C9Ch  
C9Dh  
C9Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
D00h  
D01h  
D02h  
D03h  
D04h  
D05h  
D06h  
D07h  
D08h  
D09h  
D0Ah  
D0Bh  
D0Ch  
D0Dh  
D0Eh  
D0Fh  
D10h  
D11h  
D12h  
D13h  
D14h  
D15h  
D16h  
D17h  
D18h  
D19h  
D1Ah  
D1Bh  
D1Ch  
D1Dh  
D1Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
D80h  
D81h  
D82h  
D83h  
D84h  
D85h  
D86h  
D87h  
D88h  
D89h  
D8Ah  
D8Bh  
D8Ch  
D8Dh  
D8Eh  
D8Fh  
D90h  
D91h  
D92h  
D93h  
D94h  
D95h  
D96h  
D97h  
D98h  
D99h  
D9Ah  
D9Bh  
D9Ch  
D9Dh  
D9Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
E00h  
E01h  
E02h  
E03h  
E04h  
E05h  
E06h  
E07h  
E08h  
E09h  
E0Ah  
E0Bh  
E0Ch  
E0Dh  
E0Eh  
E0Fh  
E10h  
E11h  
E12h  
E13h  
E14h  
E15h  
E16h  
E17h  
E18h  
E19h  
E1Ah  
E1Bh  
E1Ch  
E1Dh  
E1Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
E80h  
E81h  
E82h  
E83h  
E84h  
E85h  
E86h  
E87h  
E88h  
E89h  
E8Ah  
E8Bh  
E8Ch  
E8Dh  
E8Eh  
E8Fh  
E90h  
E91h  
E92h  
E93h  
E94h  
E95h  
E96h  
E97h  
E98h  
E99h  
E9Ah  
E9Bh  
E9Ch  
E9Dh  
E9Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
F00h  
F01h  
F02h  
F03h  
F04h  
F05h  
F06h  
F07h  
F08h  
F09h  
F0Ah  
F0Bh  
F0Ch  
F0Dh  
F0Eh  
F0Fh  
F10h  
F11h  
F12h  
F13h  
F14h  
F15h  
F16h  
F17h  
F18h  
F19h  
F1Ah  
F1Bh  
F1Ch  
F1Dh  
F1Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
F80h  
F81h  
F82h  
F83h  
F84h  
F85h  
F86h  
F87h  
F88h  
F89h  
F8Ah  
F8Bh  
F8Ch  
F8Dh  
F8Eh  
F8Fh  
F90h  
F91h  
F92h  
F93h  
F94h  
F95h  
F96h  
F97h  
F98h  
F99h  
F9Ah  
F9Bh  
F9Ch  
F9Dh  
F9Eh  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
WREG  
PCLATH  
INTCON  
See Table 2-12  
C1Fh  
C20h  
C9Fh  
CA0h  
D1Fh  
D20h  
D9Fh  
DA0h  
E1Fh  
E20h  
E9Fh  
EA0h  
F1Fh  
F20h  
F9Fh  
FA0h  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
C6Fh  
C70h  
CEFh  
CF0h  
D6Fh  
D70h  
DEFh  
DF0h  
E6Fh  
E70h  
EEFh  
EF0h  
F6Fh  
F70h  
FEFh  
FF0h  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
CFFh  
D7Fh  
DFFh  
E7Fh  
EFFh  
F7Fh  
FFFh  
CFFh  
Legend:  
= Unimplemented data memory locations, read as ‘0’.  
PIC16F193X/LF193X  
TABLE 2-10: PIC16F1933/1936/1938  
MEMORY MAP, BANK 15  
TABLE 2-11: PIC16F1934/1937/1939  
MEMORY MAP, BANK 15  
Bank 15  
Bank 15  
LCDCON  
LCDPS  
LCDREF  
LCDCST  
LCDRL  
LCDCON  
LCDPS  
LCDREF  
LCDCST  
LCDRL  
791h  
792h  
793h  
794h  
795h  
796h  
797h  
798h  
799h  
79Ah  
79Bh  
79Ch  
79Dh  
79Eh  
791h  
792h  
793h  
794h  
795h  
796h  
797h  
798h  
799h  
79Ah  
79Bh  
79Ch  
79Dh  
79Eh  
LCDSE0  
LCDSE1  
LCDSE0  
LCDSE1  
LCDSE2  
79Fh  
7A0h  
7A1h  
79Fh  
7A0h  
7A1h  
7A2h  
7A3h  
7A4h  
7A5h  
7A6h  
7A7h  
7A8h  
7A9h  
7AAh  
7ABh  
LCDDATA0  
LCDDATA1  
LCDDATA0  
LCDDATA1  
LCDDATA2  
LCDDATA3  
LCDDATA4  
LCDDATA5  
LCDDATA6  
LCDDATA7  
LCDDATA8  
LCDDATA9  
LCDDATA10  
LCDDATA11  
7A2h  
7A3h  
7A4h  
LCDDATA3  
LCDDATA4  
7A5h  
7A6h  
7A7h  
LCDDATA6  
LCDDATA7  
LCDDATA9  
LCDDATA10  
7A8h  
7A9h  
7AAh  
7ABh  
7ACh  
7ADh  
7AEh  
7AFh  
7B0h  
7B1h  
7B2h  
7B3h  
7B4h  
7B5h  
7B6h  
7B7h  
7B8h  
7ACh  
7ADh  
7AEh  
7AFh  
7B0h  
7B1h  
7B2h  
7B3h  
7B4h  
7B5h  
7B6h  
7B7h  
7B8h  
Unimplemented  
Unimplemented  
Read as ‘0’  
Read as ‘0’  
7EFh  
7EFh  
Legend:  
= Unimplemented data memory locations,  
Legend:  
= Unimplemented data memory locations,  
read as ‘0’.  
read as ‘0’.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 33  
PIC16F193X/LF193X  
TABLE 2-12: PIC16F193X/LF193X MEMORY  
MAP, BANK 31  
Bank 31  
F8Ch  
Unimplemented  
Read as ‘0’  
FE3h  
STATUS_SHAD  
WREG_SHAD  
BSR_SHAD  
PCLATH_SHAD  
FSR0L_SHAD  
FSR0H_SHAD  
FSR1L_SHAD  
FSR1H_SHAD  
FE4h  
FE5h  
FE6h  
FE7h  
FE8h  
FE9h  
FEAh  
FEBh  
FECh  
FEDh  
FEEh  
FEFh  
STKPTR  
TOSL  
TOSH  
Legend:  
= Unimplemented data memory locations,  
read as ‘0’.  
DS41364A-page 34  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
TABLE 2-13: SPECIAL FUNCTION REGISTER SUMMARY  
Value on all  
other  
Resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 0  
000h(2)  
INDF0  
Addressing this location uses contents of FSR0H/FSR0L to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
xxxx xxxx xxxx xxxx  
001h(2)  
INDF1  
Addressing this location uses contents of FSR1H/FSR1L to address data memory  
(not a physical register)  
002h(2)  
003h(2)  
004h(2)  
005h(2)  
006h(2)  
007h(2)  
008h(2)  
009h(2)  
PCL  
Program Counter (PC) Least Significant Byte  
0000 0000 0000 0000  
---1 1000 ---q quuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
---0 0000 ---0 0000  
0000 0000 uuuu uuuu  
-000 0000 -000 0000  
0000 000x 0000 000u  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address 0 Low Pointer  
Indirect Data Memory Address 0 High Pointer  
Indirect Data Memory Address 1 Low Pointer  
Indirect Data Memory Address 1 High Pointer  
BSR4  
BSR3  
BSR2  
BSR1  
INTF  
BSR0  
IOCIF  
WREG  
Working Register  
00Ah(1, 2) PCLATH  
Write Buffer for the upper 7 bits of the Program Counter  
00Bh(2)  
00Ch  
00Dh  
00Eh  
00Fh(3)  
010h  
011h  
INTCON  
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
PIR1  
GIE  
PEIE  
TMR0IE  
INTE  
IOCIE  
TMR0IF  
PORTA Data Latch when written: PORTA pins when read  
PORTB Data Latch when written: PORTB pins when read  
PORTC Data Latch when written: PORTC pins when read  
PORTD Data Latch when written: PORTD pins when read  
TMR1GIF  
OSFIF  
RE3  
SSPIF  
BCLIF  
TMR6IF  
RE2(3)  
CCP1IF  
LCDIF  
RE1(3)  
TMR2IF  
RE0(3) ---- xxxx ---- uuuu  
TMR1IF 0000 0000 0000 0000  
CCP2IF 0000 00-0 0000 00-0  
ADIF  
RCIF  
TXIF  
012h  
013h  
014h  
015h  
016h  
017h  
018h  
019h  
PIR2  
C2IF  
C1IF  
EEIF  
PIR3  
CCP5IF  
CCP4IF  
CCP3IF  
TMR4IF  
-000 0-0- -000 0-0-  
PIR4  
Unimplemented  
TMR0  
Timer0 Module Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
TMR1L  
TMR1H  
T1CON  
T1GCON  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
TMR1CS1 TMR1CS0 T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
TMR1ON 0000 00-0 uuuu uu-u  
TMR1GE  
T1GPOL  
T1GTM  
T1GSPM  
T1GGO/  
DONE  
T1GVAL  
T1GSS1 T1GSS0 0000 0x00 uuuu uxuu  
01Ah  
01Bh  
01Ch  
01Dh  
01Eh  
01Fh  
TMR2  
Timer 2 Module Register  
Timer 2 Period Register  
0000 0000 0000 0000  
1111 1111 1111 1111  
PR2  
T2CON  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Unimplemented  
CPSON  
CPSCON0  
CPSCON1  
CPSRNG1 CPSRNG0 CPSOUT T0XCS 0--- 0000 0--- 0000  
CPSCH3 CPSCH2 CPSCH1 CPSCH0 ---- 0000 ---- 0000  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred  
to the upper byte of the program counter.  
2: These registers can be addressed from any bank.  
3: These registers/bits are not implemented on PIC16F1933/1936/1938/PIC16LF1933/1936/1938 devices, read as ‘0’.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 35  
PIC16F193X/LF193X  
TABLE 2-13: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 1  
080h(2)  
INDF0  
Addressing this location uses contents of FSR0H/FSR0L to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
xxxx xxxx xxxx xxxx  
081h(2)  
INDF1  
Addressing this location uses contents of FSR1H/FSR1L to address data memory  
(not a physical register)  
082h(2)  
083h(2)  
084h(2)  
085h(2)  
086h(2)  
087h(2)  
088h(2)  
089h(2)  
PCL  
Program Counter (PC) Least Significant Byte  
0000 0000 0000 0000  
---1 1000 ---q quuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
---0 0000 ---0 0000  
0000 0000 uuuu uuuu  
-000 0000 -000 0000  
0000 000x 0000 000u  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address 0 Low Pointer  
Indirect Data Memory Address 0 High Pointer  
Indirect Data Memory Address 1 Low Pointer  
Indirect Data Memory Address 1 High Pointer  
BSR4  
BSR3  
BSR2  
BSR1  
INTF  
BSR0  
IOCIF  
WREG  
Working Register  
08Ah(1, 2) PCLATH  
Write Buffer for the upper 7 bits of the Program Counter  
08Bh(2)  
08Ch  
08Dh  
08Eh  
08Fh(3)  
090h  
091h  
092h  
093h  
094h  
095h  
096h  
097h  
098h  
099h  
09Ah  
09Bh  
09Ch  
09Dh  
09Eh  
09Fh  
Legend:  
INTCON  
TRISA  
TRISB  
TRISC  
TRISD  
TRISE  
PIE1  
GIE  
PEIE  
TMR0IE  
INTE  
IOCIE  
TMR0IF  
PORTA Data Direction Register  
PORTB Data Direction Register  
PORTC Data Direction Register  
PORTD Data Direction Register  
TMR1GIE  
OSFIE  
TRISE3  
SSPIE  
TRISE2(3) TRISE1(3) TRISE0(3) ---- 1111 ---- 1111  
ADIE  
RCIE  
TXIE  
CCP1IE  
LCDIE  
TMR2IE  
TMR1IE 0000 0000 0000 0000  
CCP2IE 0000 00-0 0000 00-0  
PIE2  
C2IE  
C1IE  
EEIE  
BCLIE  
PIE3  
CCP5IE  
CCP4IE  
CCP3IE  
TMR6IE  
TMR4IE  
-000 0-0- -000 0-0-  
Unimplemented  
OPTION_REG WPUEN  
INTEDG  
STKUNF  
T0CS  
T0SE  
PSA  
RMCLR  
WDTPS2  
TUN3  
PS2  
RI  
PS1  
PS0  
1111 1111 1111 1111  
00-- 11qq qq-- qquu  
PCON  
STKOVF  
POR  
BOR  
WDTCON  
OSCTUNE  
OSCCON  
OSCSTAT  
ADRESL  
ADRESH  
ADCON0  
ADCON1  
WDTPS4  
TUN5  
IRCF2  
OSTS  
WDTPS3  
TUN4  
WDTPS1 WDTPS0 SWDTEN --01 0110 --01 0110  
TUN2  
TUN1  
SCS1  
TUN0  
SCS0  
--00 0000 --00 0000  
0011 1-00 0011 1-00  
SPLLEN  
T1OSCR  
IRCF3  
PLLR  
IRCF1  
HFIOFR  
IRCF0  
HFIOFL  
MFIOFR  
LFIOFR  
HFIOFR 00q0 0q0- qqqq qq0-  
xxxx xxxx uuuu uuuu  
A/D Result Register Low  
A/D Result Register High  
xxxx xxxx uuuu uuuu  
CHS4  
CHS3  
CHS2  
CHS1  
CHS0  
GO/DONE  
ADON  
-000 0000 -000 0000  
ADFM  
ADCS2  
ADCS1  
ADCS0  
ADNREF ADPREF1 ADPREF0 0000 -000 0000 -000  
Unimplemented  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred  
to the upper byte of the program counter.  
2: These registers can be addressed from any bank.  
3: These registers/bits are not implemented on PIC16F1933/1936/1938/PIC16LF1933/1936/1938 devices, read as ‘0’.  
DS41364A-page 36  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
TABLE 2-13: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 2  
100h(2)  
INDF0  
Addressing this location uses contents of FSR0H/FSR0L to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
xxxx xxxx xxxx xxxx  
101h(2)  
INDF1  
Addressing this location uses contents of FSR1H/FSR1L to address data memory  
(not a physical register)  
102h(2)  
103h(2)  
104h(2)  
105h(2)  
106h(2)  
107h(2)  
108h(2)  
109h(2)  
PCL  
Program Counter (PC) Least Significant Byte  
0000 0000 0000 0000  
---1 1000 ---q quuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
---0 0000 ---0 0000  
0000 0000 uuuu uuuu  
-000 0000 -000 0000  
0000 000x 0000 000u  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address 0 Low Pointer  
Indirect Data Memory Address 0 High Pointer  
Indirect Data Memory Address 1 Low Pointer  
Indirect Data Memory Address 1 High Pointer  
BSR4  
BSR3  
BSR2  
BSR1  
INTF  
BSR0  
IOCIF  
WREG  
Working Register  
10Ah(1, 2) PCLATH  
Write Buffer for the upper 7 bits of the Program Counter  
10Bh(2)  
10Ch  
10Dh  
10Eh  
10Fh(3)  
110h  
INTCON  
LATA  
GIE  
PEIE  
TMR0IE  
INTE  
IOCIE  
TMR0IF  
PORTA Data Latch  
PORTB Data Latch  
PORTC Data Latch  
PORTD Data Latch  
LATB  
LATC  
LATD  
LATE  
C1OE  
C1PCH1  
C2OE  
C2PCH1  
LATE3  
LATE2(3) LATE1(3) LATE0(3) ---- -xxx ---- -uuu  
111h  
CM1CON0  
CM1CON1  
CM2CON0  
CM2CON1  
CMOUT  
BORCON  
FVRCON  
DACCON0  
DACCON1  
SRCON0  
SRCON1  
C1ON  
C1INTP  
C2ON  
C2INTP  
C1OUT  
C1INTN  
C2OUT  
C2INTN  
C1POL  
C1PCH0  
C2POL  
C2PCH0  
C1SP  
C1HYS C1SYNC 0000 -100 0000 -100  
C1NCH1 C1NCH0 0000 --00 0000 --00  
C2HYS C2SYNC 0000 -100 0000 -100  
C2NCH1 C2NCH0 0000 --00 0000 --00  
MC2OUT MC1OUT ---- --00 ---- --00  
112h  
113h  
C2SP  
114h  
115h  
116h  
SBOREN  
FVREN  
DACEN  
---  
BORRDY 1--- ---q u--- ---u  
117h  
FVRRDY  
DACLPS  
---  
TSEN  
DACOE  
---  
TSRNG  
---  
CDAFVR1 CDAFVR0 ADFVR1 ADFVR0 0q00 0000 0q00 0000  
118h  
DACPSS1 DACPSS0  
---  
DACNSS 000- 00-0 000- 00-0  
DACR0 ---0 0000 ---0 0000  
119h  
DACR4  
SRCLK0  
SRSC1E  
DACR3  
SRQEN  
SRRPE  
DACR2  
DACR1  
SRPS  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
Legend:  
SRLEN  
SRSPE  
SRCLK2  
SRSCKE  
SRCLK1  
SRSC2E  
SRNQEN  
SRPR  
0000 0000 0000 0000  
SRRCKE SRRC2E SRRC1E 0000 0000 0000 0000  
Unimplemented  
APFCON  
CCP3SEL  
T1GSEL  
P2BSEL  
SRNQSEL C2OUTSEL SSSEL CCP2SEL -000 0000 -000 0000  
Unimplemented  
Unimplemented  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred  
to the upper byte of the program counter.  
2: These registers can be addressed from any bank.  
3: These registers/bits are not implemented on PIC16F1933/1936/1938/PIC16LF1933/1936/1938 devices, read as ‘0’.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 37  
PIC16F193X/LF193X  
TABLE 2-13: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 3  
180h(2)  
INDF0  
Addressing this location uses contents of FSR0H/FSR0L to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
xxxx xxxx xxxx xxxx  
181h(2)  
INDF1  
Addressing this location uses contents of FSR1H/FSR1L to address data memory  
(not a physical register)  
182h(2)  
183h(2)  
184h(2)  
185h(2)  
186h(2)  
187h(2)  
188h(2)  
189h(2)  
PCL  
Program Counter (PC) Least Significant Byte  
0000 0000 0000 0000  
---1 1000 ---q quuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
---0 0000 ---0 0000  
0000 0000 uuuu uuuu  
-000 0000 -000 0000  
0000 000x 0000 000u  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address 0 Low Pointer  
Indirect Data Memory Address 0 High Pointer  
Indirect Data Memory Address 1 Low Pointer  
Indirect Data Memory Address 1 High Pointer  
BSR4  
BSR3  
BSR2  
BSR1  
BSR0  
IOCIF  
WREG  
Working Register  
18Ah(1, 2) PCLATH  
GIE  
Write Buffer for the upper 7 bits of the Program Counter  
18Bh(2)  
18Ch  
18Dh  
18Eh  
18Fh(3)  
190h(3)  
191h  
INTCON  
ANSELA  
ANSELB  
PEIE  
TMR0IE  
ANSA5  
ANSB5  
INTE  
IOCIE  
ANSA3  
ANSB3  
TMR0IF  
ANSA2  
ANSB2  
INTF  
ANSA4  
ANSB4  
ANSA1  
ANSB1  
ANSA0 --11 1111 --11 1111  
ANSB0 --11 1111 --11 1111  
Unimplemented  
ANSELD  
ANSELE  
EEADRL  
EEADRH  
EEDATL  
EEDATH  
EECON1  
EECON2  
ANSD7  
ANSD6  
ANSD5  
ANSD4  
ANSD3  
ANSD2  
ANSE2  
ANSD1  
ANSE1  
ANSD0 1111 1111 1111 1111  
ANSE0 ---- -111 ---- -111  
0000 0000 0000 0000  
EEPROM / Program Memory Address Register Low Byte  
EEPROM / Program Memory Address Register High Byte  
EEPROM / Program Memory Read Data Register Low Byte  
192h  
-000 0000 -000 0000  
193h  
xxxx xxxx uuuu uuuu  
194h  
EEPROM / Program Memory Read Data Register High Byte  
--xx xxxx --uu uuuu  
195h  
EEPGD  
CFGS  
LWLO  
FREE  
WRERR  
WREN  
WR  
RD  
0000 x000 0000 q000  
0000 0000 0000 0000  
196h  
EEPROM control register 2  
Unimplemented  
197h  
198h  
Unimplemented  
199h  
RCREG  
TXREG  
SPBRGL  
SPBRGH  
RCSTA  
TXSTA  
USART Receive Data Register  
USART Transmit Data Register  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 000x 0000 000x  
0000 0010 0000 0010  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
Legend:  
BRG7  
BRG15  
SPEN  
BRG6  
BRG14  
RX9  
BRG5  
BRG13  
SREN  
TXEN  
BRG4  
BRG12  
CREN  
SYNC  
SCKP  
BRG3  
BRG11  
ADDEN  
SENDB  
BRG16  
BRG2  
BRG10  
FERR  
BRGH  
BRG1  
BRG9  
OERR  
TRMT  
WUE  
BRG0  
BRG8  
RX9D  
TX9D  
CSRC  
TX9  
BAUDCON  
ABDOVF  
RCIDL  
ABDEN 01-0 0-00 01-0 0-00  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred  
to the upper byte of the program counter.  
2: These registers can be addressed from any bank.  
3: These registers/bits are not implemented on PIC16F1933/1936/1938/PIC16LF1933/1936/1938 devices, read as ‘0’.  
DS41364A-page 38  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
TABLE 2-13: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 4  
200h(2)  
INDF0  
Addressing this location uses contents of FSR0H/FSR0L to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
xxxx xxxx xxxx xxxx  
201h(2)  
INDF1  
Addressing this location uses contents of FSR1H/FSR1L to address data memory  
(not a physical register)  
202h(2)  
203h(2)  
204h(2)  
205h(2)  
206h(2)  
207h(2)  
208h(2)  
209h(2)  
PCL  
Program Counter (PC) Least Significant Byte  
0000 0000 0000 0000  
---1 1000 ---q quuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
---0 0000 ---0 0000  
0000 0000 uuuu uuuu  
-000 0000 -000 0000  
0000 000x 0000 000u  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address 0 Low Pointer  
Indirect Data Memory Address 0 High Pointer  
Indirect Data Memory Address 1 Low Pointer  
Indirect Data Memory Address 1 High Pointer  
BSR4  
BSR3  
BSR2  
BSR1  
BSR0  
IOCIF  
WREG  
Working Register  
20Ah(1, 2) PCLATH  
Write Buffer for the upper 7 bits of the Program Counter  
20Bh(2)  
20Ch  
20Dh  
20Eh  
20Fh  
210h  
211h  
INTCON  
GIE  
PEIE  
TMR0IE  
INTE  
IOCIE  
TMR0IF  
INTF  
Unimplemented  
WPUB  
WPUB7  
WPUB6  
WPUB5  
WPUB4  
WPUB3  
WPUB2  
WPUB1  
WPUB0 1111 1111 1111 1111  
Unimplemented  
Unimplemented  
WPUE  
SSPBUF  
SSPADD  
SSPMSK  
WPUE3  
---- 1--- ---- 1---  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
1111 1111 1111 1111  
Synchronous Serial Port Receive Buffer/Transmit Register  
212h  
213h  
ADD7  
ADD6  
ADD5  
ADD4  
ADD3  
ADD2  
ADD1  
ADD0  
MSK7  
SMP  
MSK6  
CKE  
MSK5  
D/A  
MSK4  
P
MSK3  
S
MSK2  
R/W  
MSK1  
UA  
MSK0  
BF  
214h  
215h  
216h  
217h  
218h  
219h  
21Ah  
21Bh  
21Ch  
21Dh  
21Eh  
21Fh  
Legend:  
SSPSTAT  
0000 0000 0000 0000  
SSPCON1  
WCOL  
GCEN  
ACKTIM  
SSPOV  
ACKSTAT  
PCIE  
SSPEN  
ACKDT  
SCIE  
CKP  
SSPM3  
RCEN  
SDAHT  
SSPM2  
PEN  
SSPM1  
RSEN  
AHEN  
SSPM0 0000 0000 0000 0000  
SSPCON2  
ACKEN  
BOEN  
SEN  
0000 0000 0000 0000  
0000 0000 0000 0000  
SSPCON3  
SBCDE  
DHEN  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred  
to the upper byte of the program counter.  
2: These registers can be addressed from any bank.  
3: These registers/bits are not implemented on PIC16F1933/1936/1938/PIC16LF1933/1936/1938 devices, read as ‘0’.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 39  
PIC16F193X/LF193X  
TABLE 2-13: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 5  
280h(2)  
INDF0  
Addressing this location uses contents of FSR0H/FSR0L to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
xxxx xxxx xxxx xxxx  
281h(2)  
INDF1  
Addressing this location uses contents of FSR1H/FSR1L to address data memory  
(not a physical register)  
282h(2)  
283h(2)  
284h(2)  
285h(2)  
286h(2)  
287h(2)  
288h(2)  
289h(2)  
PCL  
Program Counter (PC) Least Significant Byte  
0000 0000 0000 0000  
---1 1000 ---q quuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
---0 0000 ---0 0000  
0000 0000 uuuu uuuu  
-000 0000 -000 0000  
0000 000x 0000 000u  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address 0 Low Pointer  
Indirect Data Memory Address 0 High Pointer  
Indirect Data Memory Address 1 Low Pointer  
Indirect Data Memory Address 1 High Pointer  
BSR4  
BSR3  
BSR2  
BSR1  
INTF  
BSR0  
IOCIF  
WREG  
Working Register  
28Ah(1, 2) PCLATH  
Write Buffer for the upper 7 bits of the Program Counter  
28Bh(2)  
28Ch  
28Dh  
28Eh  
28Fh  
290h  
291h  
292h  
293h  
294h  
295h  
296h  
297h  
298h  
299h  
29Ah  
29Bh  
29Ch  
29Dh  
29Eh  
29Fh  
Legend:  
INTCON  
GIE  
PEIE  
TMR0IE  
INTE  
IOCIE  
TMR0IF  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
CCPR1L  
CCPR1H  
CCP1CON  
PWM1CON  
CCP1AS  
PSTR1CON  
Capture/Compare/PWM Register 1 (LSB)  
Capture/Compare/PWM Register 1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
P1M1  
P1M0  
DC1B1  
P1DC5  
DC1B0  
P1DC4  
CCP1M3  
P1DC3  
CCP1M2 CCP1M1 CCP1M0 0000 0000 0000 0000  
P1DC2 P1DC1 P1DC0 0000 0000 0000 0000  
P1RSEN  
P1DC6  
CCP1ASE CCP1AS2 CCP1AS1 CCP1AS0 PSS1AC1 PSS1AC0 PSS1BD1 PSS1BD0 0000 0000 0000 0000  
STR1SYNC  
STR1D  
STR1C  
STR1B  
STR1A ---0 0001 ---0 0001  
Unimplemented  
CCPR2L  
CCPR2H  
CCP2CON  
PWM2CON  
CCP2AS  
PSTR2CON  
CCPTMRS0  
CCPTMRS1  
Capture/Compare/PWM Register 2 (LSB)  
Capture/Compare/PWM Register 2 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
P2M1  
P2M0  
DC2B1  
P2DC5  
DC2B0  
P2DC4  
CCP2M3  
P2DC3  
CCP2M2 CCP2M1 CCP2M0 0000 0000 0000 0000  
P2DC2 P2DC1 P2DC0 0000 0000 0000 0000  
P2RSEN  
P2DC6  
CCP2ASE CCP2AS2 CCP2AS1 CCP2AS0 PSS2AC1 PSS2AC0 PSS2BD1 PSS2BD0 0000 0000 0000 0000  
C3TSEL1  
STR2SYNC  
C3TSEL0  
STR2D  
C2TSEL1 C2TSEL0 C1TSEL1 C1TSEL0 0000 0000 0000 0000  
C5TSEL1 C5TSEL0 ---- --00 ---- --00  
STR2C  
STR2B  
STR2A ---0 0001 ---0 0001  
C4TSEL1 C4TSEL0  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred  
to the upper byte of the program counter.  
2: These registers can be addressed from any bank.  
3: These registers/bits are not implemented on PIC16F1933/1936/1938/PIC16LF1933/1936/1938 devices, read as ‘0’.  
DS41364A-page 40  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
TABLE 2-13: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 6  
300h(2)  
INDF0  
Addressing this location uses contents of FSR0H/FSR0L to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
xxxx xxxx xxxx xxxx  
301h(2)  
INDF1  
Addressing this location uses contents of FSR1H/FSR1L to address data memory  
(not a physical register)  
302h(2)  
303h(2)  
304h(2)  
305h(2)  
306h(2)  
307h(2)  
308h(2)  
309h(2)  
PCL  
Program Counter (PC) Least Significant Byte  
0000 0000 0000 0000  
---1 1000 ---q quuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
---0 0000 ---0 0000  
0000 0000 uuuu uuuu  
-000 0000 -000 0000  
0000 000x 0000 000u  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address 0 Low Pointer  
Indirect Data Memory Address 0 High Pointer  
Indirect Data Memory Address 1 Low Pointer  
Indirect Data Memory Address 1 High Pointer  
BSR4  
BSR3  
BSR2  
BSR1  
INTF  
BSR0  
IOCIF  
WREG  
Working Register  
30Ah(1, 2) PCLATH  
Write Buffer for the upper 7 bits of the Program Counter  
30Bh(2)  
30Ch  
30Dh  
30Eh  
30Fh  
310h  
311h  
INTCON  
GIE  
PEIE  
TMR0IE  
INTE  
IOCIE  
TMR0IF  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
CCPR3L  
CCPR3H  
CCP3CON  
PWM3CON  
CCP3AS  
PSTR3CON  
Capture/Compare/PWM Register 3 (LSB)  
Capture/Compare/PWM Register 3 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
312h  
313h  
314h  
315h  
316h  
317h  
318h  
319h  
31Ah  
31Bh  
31Ch  
31Dh  
31Eh  
31Fh  
Legend:  
P3M1  
P3M0  
DC3B1  
P3DC5  
DC3B0  
P3DC4  
CCP3M3  
P3DC3  
CCP3M2 CCP3M1 CCP3M0 0000 0000 0000 0000  
P3DC2 P3DC1 P3DC0 0000 0000 0000 0000  
P3RSEN  
P3DC6  
CCP3ASE CCP3AS2 CCP3AS1 CCP3AS0 PSS3AC1 PSS3AC0 PSS3BD1 PSS3BD0 0000 0000 0000 0000  
STR3SYNC  
STR3D  
CCP4M3  
CCP5M3  
STR3C  
STR3B  
STR3A ---0 0001 ---0 0001  
Unimplemented  
CCPR4L  
CCPR4H  
CCP4CON  
Capture/Compare/PWM Register 4 (LSB)  
Capture/Compare/PWM Register 4 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
DC4B1  
DC4B0  
CCP4M2 CCP4M1 CCP4M0 --00 0000 --00 0000  
Unimplemented  
CCPR5L  
CCPR5H  
CCP5CON  
Capture/Compare/PWM Register 5 (LSB)  
Capture/Compare/PWM Register 5 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
DC5B1  
DC5B0  
CCP5M2 CCP5M1 CCP5M0 --00 0000 --00 0000  
Unimplemented  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred  
to the upper byte of the program counter.  
2: These registers can be addressed from any bank.  
3: These registers/bits are not implemented on PIC16F1933/1936/1938/PIC16LF1933/1936/1938 devices, read as ‘0’.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 41  
PIC16F193X/LF193X  
TABLE 2-13: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 7  
380h(2)  
INDF0  
Addressing this location uses contents of FSR0H/FSR0L to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
xxxx xxxx xxxx xxxx  
381h(2)  
INDF1  
Addressing this location uses contents of FSR1H/FSR1L to address data memory  
(not a physical register)  
382h(2)  
383h(2)  
384h(2)  
385h(2)  
386h(2)  
387h(2)  
388h(2)  
389h(2)  
PCL  
Program Counter (PC) Least Significant Byte  
0000 0000 0000 0000  
---1 1000 ---q quuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
---0 0000 ---0 0000  
0000 0000 uuuu uuuu  
-000 0000 -000 0000  
0000 000x 0000 000u  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address 0 Low Pointer  
Indirect Data Memory Address 0 High Pointer  
Indirect Data Memory Address 1 Low Pointer  
Indirect Data Memory Address 1 High Pointer  
BSR4  
BSR3  
BSR2  
BSR1  
INTF  
BSR0  
IOCIF  
WREG  
Working Register  
38Ah(1, 2) PCLATH  
Write Buffer for the upper 7 bits of the Program Counter  
38Bh(2)  
38Ch  
38Dh  
38Eh  
38Fh  
390h  
391h  
392h  
393h  
394h  
395h  
396h  
397h  
398h  
399h  
39Ah  
39Bh  
39Ch  
39Dh  
39Eh  
39Fh  
Legend:  
INTCON  
GIE  
PEIE  
TMR0IE  
INTE  
IOCIE  
TMR0IF  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
IOCBP  
IOCBN  
IOCBF  
IOCBP7  
IOCBN7  
IOCBF7  
IOCBP6  
IOCBP5  
IOCBN5  
IOCBF5  
IOCBP4  
IOCBN4  
IOCBF4  
IOCBP3  
IOCBN3  
IOCBF3  
IOCBP2  
IOCBN2  
IOCBF2  
IOCBP1  
IOCBP0 0000 0000 0000 0000  
IOCBN6  
IOCBF6  
IOCBN1 IOCBN0 0000 0000 0000 0000  
IOCBF1 IOCBF0 0000 0000 0000 0000  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred  
to the upper byte of the program counter.  
2: These registers can be addressed from any bank.  
3: These registers/bits are not implemented on PIC16F1933/1936/1938/PIC16LF1933/1936/1938 devices, read as ‘0’.  
DS41364A-page 42  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
TABLE 2-13: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 8  
400h(2)  
INDF0  
Addressing this location uses contents of FSR0H/FSR0L to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
xxxx xxxx xxxx xxxx  
401h(2)  
INDF1  
Addressing this location uses contents of FSR1H/FSR1L to address data memory  
(not a physical register)  
402h(2)  
403h(2)  
404h(2)  
405h(2)  
406h(2)  
407h(2)  
408h(2)  
409h(2)  
PCL  
Program Counter (PC) Least Significant Byte  
0000 0000 0000 0000  
---1 1000 ---q quuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
---0 0000 ---0 0000  
0000 0000 uuuu uuuu  
-000 0000 -000 0000  
0000 000x 0000 000u  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address 0 Low Pointer  
Indirect Data Memory Address 0 High Pointer  
Indirect Data Memory Address 1 Low Pointer  
Indirect Data Memory Address 1 High Pointer  
BSR4  
BSR3  
BSR2  
BSR1  
INTF  
BSR0  
IOCIF  
WREG  
Working Register  
40Ah(1, 2) PCLATH  
Write Buffer for the upper 7 bits of the Program Counter  
PEIE TMR0IE INTE IOCIE TMR0IF  
40Bh(2)  
40Ch  
40Dh  
40Eh  
40Fh  
410h  
411h  
INTCON  
GIE  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Timer 4 Module Register  
Timer 4 Period Register  
412h  
413h  
414h  
415h  
416h  
417h  
418h  
419h  
41Ah  
41Bh  
41Ch  
41Dh  
41Eh  
41Fh  
Legend:  
TMR4  
PR4  
T4CON  
0000 0000 0000 0000  
1111 1111 1111 1111  
T4OUTPS3 T4OUTPS2 T4OUTPS1 T4OUTPS0  
TMR4ON T4CKPS1 T4CKPS0 -000 0000 -000 0000  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
TMR6  
PR6  
T6CON  
Timer 6 Module Register  
Timer 6 Period Register  
0000 0000 0000 0000  
1111 1111 1111 1111  
T6OUTPS3 T6OUTPS2 T6OUTPS1 T6OUTPS0  
TMR6ON T6CKPS1 T6CKPS0 -000 0000 -000 0000  
Unimplemented  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred  
to the upper byte of the program counter.  
2: These registers can be addressed from any bank.  
3: These registers/bits are not implemented on PIC16F1933/1936/1938/PIC16LF1933/1936/1938 devices, read as ‘0’.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 43  
PIC16F193X/LF193X  
TABLE 2-13: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Banks 9-14  
x00h/  
INDF0  
Addressing this location uses contents of FSR0H/FSR0L to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
xxxx xxxx xxxx xxxx  
0000 0000 0000 0000  
---1 1000 ---q quuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
---0 0000 ---0 0000  
0000 0000 uuuu uuuu  
-000 0000 -000 0000  
0000 000x 0000 000u  
x80h(2)  
x00h/  
INDF1  
Addressing this location uses contents of FSR1H/FSR1L to address data memory  
(not a physical register)  
x81h(2)  
x02h/  
PCL  
Program Counter (PC) Least Significant Byte  
x82h(2)  
x03h/  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
TO  
PD  
Z
DC  
C
x83h(2)  
x04h/  
Indirect Data Memory Address 0 Low Pointer  
Indirect Data Memory Address 0 High Pointer  
Indirect Data Memory Address 1 Low Pointer  
Indirect Data Memory Address 1 High Pointer  
x84h(2)  
x05h/  
x85h(2)  
x06h/  
x86h(2)  
x07h/  
x87h(2)  
x08h/  
BSR4  
BSR3  
BSR2  
BSR1  
INTF  
BSR0  
IOCIF  
x88h(2)  
x09h/  
WREG  
PCLATH  
INTCON  
Working Register  
x89h(2)  
x0Ah/  
Write Buffer for the upper 7 bits of the Program Counter  
PEIE TMR0IE INTE IOCIE TMR0IF  
x8Ah(1),(2)  
x0Bh/  
GIE  
x8Bh(2)  
x0Ch/  
x8Ch  
Unimplemented  
x1Fh/  
x9Fh  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred  
to the upper byte of the program counter.  
2: These registers can be addressed from any bank.  
3: These registers/bits are not implemented on PIC16F1933/1936/1938/PIC16LF1933/1936/1938 devices, read as ‘0’.  
DS41364A-page 44  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
TABLE 2-13: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 15  
780h(2)  
INDF0  
Addressing this location uses contents of FSR0H/FSR0L to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
xxxx xxxx xxxx xxxx  
781h(2)  
INDF1  
Addressing this location uses contents of FSR1H/FSR1L to address data memory  
(not a physical register)  
782h(2)  
783h(2)  
784h(2)  
785h(2)  
786h(2)  
787h(2)  
788h(2)  
789h(2)  
PCL  
Program Counter (PC) Least Significant Byte  
0000 0000 0000 0000  
---1 1000 ---q quuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
---0 0000 ---0 0000  
0000 0000 uuuu uuuu  
-000 0000 -000 0000  
0000 000x 0000 000u  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address 0 Low Pointer  
Indirect Data Memory Address 0 High Pointer  
Indirect Data Memory Address 1 Low Pointer  
Indirect Data Memory Address 1 High Pointer  
BSR4  
BSR3  
BSR2  
BSR1  
INTF  
BSR0  
IOCIF  
WREG  
Working Register  
78Ah(1, 2) PCLATH  
Write Buffer for the upper 7 bits of the Program Counter  
78Bh(2)  
78Ch  
78Dh  
78Eh  
78Fh  
790h  
791h  
792h  
793h  
794h  
795h  
796h  
797h  
798h  
799h  
79Ah  
79Bh  
79Ch  
79Dh  
79Eh  
79Fh  
7A0h  
INTCON  
GIE  
PEIE  
TMR0IE  
INTE  
IOCIE  
TMR0IF  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
LCDCON  
LCDPS  
LCDREF  
LCDCST  
LCDRL  
LCDEN  
WFT  
SLPEN  
WERR  
LCDA  
LCDIRI  
WA  
CS1  
LP3  
CS0  
LP2  
LMUX1  
LP1  
LMUX0 000- 0011 000- 0011  
BIASMD  
LCDIRS  
LP0  
0000 0000 0000 0000  
000- 000- 000- 000-  
LCDIRE  
VLCD3PE VLCD2PE VLCD1PE  
LCDCST2 LCDCST1 LCDCST0 ---- -000 ---- -000  
LRLAP1  
LRLAP0  
LRLBP1  
LRLBP0  
LRLAT2  
LRLAT1  
LRLAT0 0000 -000 0000 -000  
Unimplemented  
Unimplemented  
SE7  
LCDSE0  
LCDSE1  
LCDSE2(3)  
SE6  
SE5  
SE13  
SE21  
SE4  
SE12  
SE20  
SE3  
SE11  
SE19  
SE2  
SE10  
SE18  
SE1  
SE9  
SE0  
SE8  
0000 0000 uuuu uuuu  
0000 0000 uuuu uuuu  
0000 0000 uuuu uuuu  
SE15  
SE23  
SE14  
SE22  
SE17  
SE16  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
LCDDATA0  
SEG7  
COM0  
SEG6  
COM0  
SEG5  
COM0  
SEG4  
COM0  
SEG3  
COM0  
SEG2  
COM0  
SEG1  
COM0  
SEG0  
COM0  
xxxx xxxx uuuu uuuu  
7A1h  
7A2h  
7A3h  
7A4h  
7A5h  
Legend:  
LCDDATA1  
LCDDATA2(3)  
LCDDATA3  
LCDDATA4  
LCDDATA5(3)  
SEG15  
COM0  
SEG14  
COM0  
SEG13  
COM0  
SEG12  
COM0  
SEG11  
COM0  
SEG10  
COM0  
SEG9  
COM0  
SEG8  
COM0  
xxxx xxxx uuuu uuuu  
SEG23  
COM0  
SEG22  
COM0  
SEG21  
COM0  
SEG20  
COM0  
SEG19  
COM0  
SEG18  
COM0  
SEG17  
COM0  
SEG16 xxxx xxxx uuuu uuuu  
COM0  
SEG7  
COM1  
SEG6  
COM1  
SEG5  
COM1  
SEG4  
COM1  
SEG3  
COM1  
SEG2  
COM1  
SEG1  
COM1  
SEG0  
COM1  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
SEG15  
COM1  
SEG14  
COM1  
SEG13  
COM1  
SEG12  
COM1  
SEG11  
COM1  
SEG10  
COM1  
SEG9  
COM1  
SEG8  
COM1  
SEG23  
COM1  
SEG22  
COM1  
SEG21  
COM1  
SEG20  
COM1  
SEG19  
COM1  
SEG18  
COM1  
SEG17  
COM1  
SEG16 xxxx xxxx uuuu uuuu  
COM1  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred  
to the upper byte of the program counter.  
2: These registers can be addressed from any bank.  
3: These registers/bits are not implemented on PIC16F1933/1936/1938/PIC16LF1933/1936/1938 devices, read as ‘0’.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 45  
PIC16F193X/LF193X  
TABLE 2-13: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 15 (Continued)  
7A6h  
LCDDATA6  
LCDDATA7  
LCDDATA8(3)  
LCDDATA9  
LCDDATA10  
LCDDATA11(3)  
SEG7  
COM2  
SEG6  
COM2  
SEG5  
COM2  
SEG4  
COM2  
SEG3  
COM2  
SEG2  
COM2  
SEG1  
COM2  
SEG0  
COM2  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
7A7h  
7A8h  
7A9h  
7AAh  
7ABh  
SEG15  
COM2  
SEG14  
COM2  
SEG13  
COM2  
SEG12  
COM2  
SEG11  
COM2  
SEG10  
COM2  
SEG9  
COM2  
SEG8  
COM2  
SEG23  
COM2  
SEG22  
COM2  
SEG21  
COM2  
SEG20  
COM2  
SEG19  
COM2  
SEG18  
COM2  
SEG17  
COM2  
SEG16 xxxx xxxx uuuu uuuu  
COM2  
SEG7  
COM3  
SEG6  
COM3  
SEG5  
COM3  
SEG4  
COM3  
SEG3  
COM3  
SEG2  
COM3  
SEG1  
COM3  
SEG0  
COM3  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
SEG15  
COM3  
SEG14  
COM3  
SEG13  
COM3  
SEG12  
COM3  
SEG11  
COM3  
SEG10  
COM3  
SEG9  
COM3  
SEG8  
COM3  
SEG23  
COM3  
SEG22  
COM3  
SEG21  
COM3  
SEG20  
COM3  
SEG19  
COM3  
SEG18  
COM3  
SEG17  
COM3  
SEG16 xxxx xxxx uuuu uuuu  
COM3  
7ACh  
Unimplemented  
7EFh  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred  
to the upper byte of the program counter.  
2: These registers can be addressed from any bank.  
3: These registers/bits are not implemented on PIC16F1933/1936/1938/PIC16LF1933/1936/1938 devices, read as ‘0’.  
DS41364A-page 46  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
TABLE 2-13: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Banks 16-30  
x00h/  
INDF0  
Addressing this location uses contents of FSR0H/FSR0L to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
xxxx xxxx xxxx xxxx  
0000 0000 0000 0000  
---1 1000 ---q quuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
---0 0000 ---0 0000  
0000 0000 uuuu uuuu  
-000 0000 -000 0000  
0000 000x 0000 000u  
x80h(2)  
x00h/  
INDF1  
Addressing this location uses contents of FSR1H/FSR1L to address data memory  
(not a physical register)  
x81h(2)  
x02h/  
PCL  
Program Counter (PC) Least Significant Byte  
x82h(2)  
x03h/  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
TO  
PD  
Z
DC  
C
x83h(2)  
x04h/  
Indirect Data Memory Address 0 Low Pointer  
Indirect Data Memory Address 0 High Pointer  
Indirect Data Memory Address 1 Low Pointer  
Indirect Data Memory Address 1 High Pointer  
x84h(2)  
x05h/  
x85h(2)  
x06h/  
x86h(2)  
x07h/  
x87h(2)  
x08h/  
BSR4  
BSR3  
BSR2  
BSR1  
INTF  
BSR0  
IOCIF  
x88h(2)  
x09h/  
WREG  
PCLATH  
INTCON  
Working Register  
x89h(2)  
x0Ah/  
Write Buffer for the upper 7 bits of the Program Counter  
PEIE TMR0IE INTE IOCIE TMR0IF  
x8Ah(1),(2)  
x0Bh/  
GIE  
x8Bh(2)  
x0Ch/  
x8Ch  
Unimplemented  
x1Fh/  
x9Fh  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred  
to the upper byte of the program counter.  
2: These registers can be addressed from any bank.  
3: These registers/bits are not implemented on PIC16F1933/1936/1938/PIC16LF1933/1936/1938 devices, read as ‘0’.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 47  
PIC16F193X/LF193X  
TABLE 2-13: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 31  
F80h(2)  
INDF0  
Addressing this location uses contents of FSR0H/FSR0L to address data memory  
(not a physical register)  
xxxx xxxx xxxx xxxx  
xxxx xxxx xxxx xxxx  
F81h(2)  
INDF1  
Addressing this location uses contents of FSR1H/FSR1L to address data memory  
(not a physical register)  
F82h(2)  
F83h(2)  
F84h(2)  
F85h(2)  
F86h(2)  
F87h(2)  
F88h(2)  
F89h(2)  
PCL  
Program Counter (PC) Least Significant Byte  
0000 0000 0000 0000  
---1 1000 ---q quuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
---0 0000 ---0 0000  
0000 0000 uuuu uuuu  
-000 0000 -000 0000  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address 0 Low Pointer  
Indirect Data Memory Address 0 High Pointer  
Indirect Data Memory Address 1 Low Pointer  
Indirect Data Memory Address 1 High Pointer  
BSR4  
BSR3  
BSR2  
BSR1  
BSR0  
WREG  
Working Register  
F8Ah(1),(2 PCLATH  
Write Buffer for the upper 7 bits of the Program Counter  
)
F8Bh(2)  
INTCON  
GIE  
PEIE TMR0IE INTE IOCIE TMR0IF  
INTF  
DC  
IOCIF  
C
0000 000x 0000 000u  
F8Ch  
FE3h  
Unimplemented  
FE4h  
FE5h  
FE6h  
FE7h  
FE8h  
FE9h  
FEAh  
FEBh  
STATUS_  
Z
---- -xxx ---- -uuu  
xxxx xxxx uuuu uuuu  
---x xxxx ---u uuuu  
-xxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
SHAD  
WREG_  
SHAD  
BSR_  
Working Register Normal (Non-ICD) Shadow  
Bank Select Register Normal (Non-ICD) Shadow  
Program Counter Latch High Register Normal (Non-ICD) Shadow  
Indirect Data Memory Address 0 Low Pointer Normal (Non-ICD) Shadow  
Indirect Data Memory Address 0 High Pointer Normal (Non-ICD) Shadow  
Indirect Data Memory Address 1 Low Pointer Normal (Non-ICD) Shadow  
Indirect Data Memory Address 1 High Pointer Normal (Non-ICD) Shadow  
Unimplemented  
SHAD  
PCLATH_  
SHAD  
FSR0L_  
SHAD  
FSR0H_  
SHAD  
FSR1L_  
SHAD  
FSR1H_  
SHAD  
FECh  
FEDh  
FEEh  
FEFh  
Current Stack pointer  
---1 1111 ---1 1111  
xxxx xxxx uuuu uuuu  
-xxx xxxx -uuu uuuu  
STKPTR  
TOSL  
Top of Stack Low byte  
Top of Stack High byte  
TOSH  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred  
to the upper byte of the program counter.  
2: These registers can be addressed from any bank.  
3: These registers/bits are not implemented on PIC16F1933/1936/1938/PIC16LF1933/1936/1938 devices, read as ‘0’.  
DS41364A-page 48  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
2.2.3  
CORE REGISTERS  
The core registers contain the registers that directly  
affect the basic operation of the PIC16F193X/LF193X.  
These registers are listed below:  
• INDF0  
• INDF1  
• PCL  
• STATUS  
• FSR0 Low  
• FSR0 High  
• FSR1 Low  
• FSR1 High  
• BSR  
• WREG  
• PCLATH  
• INTCON  
Note:  
The core registers are the first 12  
addresses of every data memory bank.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 49  
PIC16F193X/LF193X  
For example, CLRF STATUSwill clear the upper three  
bits and set the Z bit. This leaves the STATUS register  
as ‘000u u1uu’ (where u= unchanged).  
2.2.3.1  
STATUS Register  
The STATUS register, shown in Register 2-1, contains:  
• the arithmetic status of the ALU  
• the Reset status  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register, because these instructions do not  
affect any Status bits. For other instructions not  
affecting any Status bits (Refer to Section 26.0  
“Instruction Set Summary”).  
• the bank select bits for data memory (SRAM)  
The STATUS register can be the destination for any  
instruction, like any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 1: The C and DC bits operate as Borrow and  
Digit Borrow out bits, respectively, in  
subtraction.  
REGISTER 2-1:  
STATUS: STATUS REGISTER  
U-0  
U-0  
U-0  
R-1/q  
TO  
R-1/q  
PD  
R/W-x/x  
Z
R/W-x/x  
DC(1)  
R/W-x/x  
C(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
q = Value depends on condition  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction or SLEEPinstruction  
0= A WDT time-out occurred  
bit 3  
bit 2  
bit 1  
bit 0  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit Carry/Digit Borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions)(1)  
1= A carry-out from the 4th low-order bit of the result occurred  
0= No carry-out from the 4th low-order bit of the result  
C: Carry/Borrow bit(1) (ADDWF, ADDLW, SUBLW, SUBWF instructions)(1)  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two’s complement of the  
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order  
bit of the source register.  
DS41364A-page 50  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
2.2.3.2  
OPTION register  
The OPTION register, shown in Register 2-2, is a  
readable and writable register, which contains various  
control bits to configure:  
• External INT interrupt  
• Timer0  
• Weak pull-ups  
REGISTER 2-2:  
OPTION_REG: OPTION REGISTER  
R/W-1/1  
WPUEN  
bit 7  
R/W-1/1  
INTEDG  
R/W-1/1  
T0CS  
R/W-1/1  
T0SE  
R/W-1/1  
PSA  
R/W-1/1  
PS2  
R/W-1/1  
PS1  
R/W-1/1  
PS0  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
WPUEN: Weak Pull-up Enable bit  
1= All weak pull-ups are disabled (except MCLR, if it is enabled)  
0= Weak pull-ups are enabled by individual WPUx latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of RB0/INT pin  
0= Interrupt on falling edge of RB0/INT pin  
T0CS: Timer0 Clock Source Select bit  
1= Transition on RA4/T0CKI pin  
0= Internal instruction cycle clock (FOSC/4)  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on RA4/T0CKI pin  
0= Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is inactive and has no effect on the Timer0 interrupt rate  
0= Prescaler is active and affects the Timer0 interrupt rate  
PS<2:0>: Prescaler Rate Select bits  
Bit Value  
Timer0 Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 51  
PIC16F193X/LF193X  
2.3.3  
COMPUTED FUNCTION CALLS  
2.3  
PCL and PCLATH  
A computed function CALLallows programs to maintain  
tables of functions and provide another way to execute  
state machines or look-up tables. When performing a  
table read using a computed function CALL, care  
should be exercised if the table location crosses a PCL  
memory boundary (each 256-byte block).  
The Program Counter (PC) is 15 bits wide. The low byte  
comes from the PCL register, which is a readable and  
writable register. The high byte (PC<14:8>) is not directly  
readable or writable and comes from PCLATH. On any  
Reset, the PC is cleared. Figure 2-4 shows the five  
situations for the loading of the PC.  
If using the CALLinstruction, the PCH<2:0> and PCL  
registers are loaded with the operand of the CALL  
instruction. PCH<6:3> is loaded with PCLATH<6:3>.  
FIGURE 2-4:  
LOADING OF PC IN  
DIFFERENT SITUATIONS  
The CALLWinstruction enables computed calls by com-  
bining PCLATH and W to form the destination address.  
A computed CALLWis accomplished by loading the W  
register with the desired address and executing CALLW.  
The PCL register is loaded with the value of W and  
PCH is loaded with PCLATH.  
14  
0
Instruction with  
PCL as  
Destination  
PCH  
PCL  
PC  
8
7
6
0
ALU Result  
PCLATH  
14  
0
PCH  
PCL  
2.3.4  
BRANCHING  
GOTO, CALL  
PC  
The branching instructions add an offset to the PC.  
This allows relocatable code and code that crosses  
page boundaries. There are two forms of branching,  
BRW and BRA. The PC will have incremented to fetch  
the next instruction in both cases. When using either  
branching instruction, a PCL memory boundary may be  
crossed.  
4
11  
6
0
0
PCLATH  
OPCODE <10:0>  
14  
0
PCH  
PCL  
CALLW  
PC  
7
8
6
W
PCLATH  
If using BRW, load the W register with the desired  
unsigned address and execute BRW. The entire PC will  
be loaded with the address PC + 1 + W.  
14  
0
0
PCH  
PCH  
PCL  
BRW  
PC  
If using BRA, the entire PC will be loaded with PC + 1 +,  
the signed value of the operand of the BRAinstruction.  
15  
PC + W  
14  
PCL  
2.4  
Stack  
BRA  
PC  
All devices have a 16-level x 15-bit wide hardware  
stack (refer to Figures 2-1 and 2-3). The stack space is  
not part of either program or data space. The PC is  
PUSHed onto the stack when CALLor CALLWinstruc-  
tions are executed or an interrupt causes a branch. The  
stack is POPed in the event of a RETURN, RETLWor a  
RETFIEinstruction execution. PCLATH is not affected  
by a PUSH or POP operation.  
15  
PC + OPCODE <8:0>  
2.3.1  
MODIFYING PCL  
Executing any instruction with the PCL register as the  
destination simultaneously causes the Program Coun-  
ter PC<14:8> bits (PCH) to be replaced by the contents  
of the PCLATH register. This allows the entire contents  
of the program counter to be changed by writing the  
desired upper 7 bits to the PCLATH register. When the  
lower 8 bits are written to the PCL register, all 15 bits of  
the program counter will change to the values con-  
tained in the PCLATH register and those being written  
to the PCL register.  
The stack operates as a circular buffer, if the STVREN  
bit = 0 (Configuration Word 2). This means that after  
the stack has been PUSHed sixteen times, the seven-  
teenth PUSH overwrites the value that was stored from  
the first PUSH. The eighteenth PUSH overwrites the  
second PUSH (and so on).  
Note 1: There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the  
CALL, CALLW, RETURN, RETLW and  
RETFIE instructions or the vectoring to  
an interrupt address.  
2.3.2  
COMPUTED GOTO  
A computed GOTOis accomplished by adding an offset to  
the program counter (ADDWF PCL). When performing a  
table read using a computed GOTOmethod, care should  
be exercised if the table location crosses a PCL memory  
boundary (each 256-byte block). Refer to the Application  
Note AN556, “Implementing a Table Read” (DS00556).  
DS41364A-page 52  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
2.4.1  
ACCESSING THE STACK  
2.5  
Indirect Addressing, INDF and  
FSR Registers  
The stack is available through the TOSH, TOSL and  
STKPTR registers. STKPTR is the current value of the  
Stack Pointer. TOSH:TOSL register pair points to the  
TOP of the stack. Both registers are read/writable. TOS  
is split into TOSH and TOSL due to the 15-bit size of the  
PC. To access the stack, adjust the value of STKPTR,  
which will position TOSH:TOSL, then read/write to  
TOSH:TOSL. STKPTR is 5 bits to allow detection of  
overflow and underflow.  
The INDFn registers are not physical registers. Any  
instruction that accesses an INDFn register actually  
accesses the register at the address specified by the  
File Select Registers (FSR). If the FSRn address  
specifies one of the two INDFn registers, the read will  
return ‘0’ and the write will not occur (though Status bits  
may be affected). The FSRn register value is created  
by the pair FSRnH and FSRnL.  
During normal program operation, CALL, CALLWand  
Interrupts will increment STKPTR while RETURN and  
RETFIEwill decrement STKPTR. At any time STKPTR  
can be inspected to see how much stack is left. The  
STKPTR always points at the currently used place on  
the stack. Therefore, a CALL or CALLW will write the  
PC and then increment the STKPTR, and a return will  
decrement the PC and then unload the PC.  
The FSR registers form a 16-bit address that allows an  
addressing space with 65536 locations. These locations  
are divided into three memory regions:  
• Traditional Data Memory  
• Linear Data Memory  
• Program Flash Memory  
2.4.2  
OVERFLOW/UNDERFLOW RESET  
If the STVREN bit in Configuration Word 2 is  
programmed, the device will be reset if the stack is  
PUSHed beyond the sixteenth level or POPed beyond  
the first level, setting the appropriate bits (STKOVF or  
STKUNF, respectively) in the PCON register.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 53  
PIC16F193X/LF193X  
FIGURE 2-5:  
INDIRECT ADDRESSING  
0x0000  
0x0000  
Traditional  
Data Memory  
0x0FFF  
0x0FFF  
0x1000  
0x1FFF  
0x2000  
Reserved  
Linear  
Data Memory  
0x29AF  
0x29B0  
Reserved  
0x0000  
FSR  
Address  
Range  
0x7FFF  
0x8000  
Program  
Flash Memory  
0x7FFF  
0xFFFF  
Note:  
Not all memory regions are completely implemented. Consult device memory tables for  
memory limits.  
DS41364A-page 54  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
2.5.1  
TRADITIONAL DATA MEMORY  
The traditional data memory is a region from FSR  
address 0x000 to FSR address 0xFFF. The addresses  
correspond to the absolute addresses of all SFR, GPR  
and common registers.  
FIGURE 2-6:  
TRADITIONAL DATA MEMORY MAP  
Direct Addressing  
From Opcode  
Indirect Addressing  
4
BSR  
6
7
FSRxH  
0
7
FSRxL  
0
0
0
0
0
0
0
Location Select  
Bank Select  
Bank Select  
Location Select  
0000 0001 0010  
1111  
0x00  
0x7F  
Bank 0 Bank 1 Bank 2  
Bank 31  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 55  
PIC16F193X/LF193X  
2.5.2  
LINEAR DATA MEMORY  
2.5.3  
PROGRAM FLASH MEMORY  
The linear data memory is the region from FSR  
address 0x2000 to FSR address 0x29AF. This region is  
a virtual region that points back to the 80-byte blocks of  
GPR memory in all the banks.  
To make constant data access easier, the entire  
program Flash memory is mapped to the upper half of  
the FSR address space. When the MSB of FSRnH is  
set, the lower 15 bits are the address in program  
memory which will be accessed through INDF. Only the  
lower 8 bits of each memory location is accessible via  
INDF. Writing to the program Flash memory cannot be  
accomplished via the FSR/INDF interface. All  
instructions that access program Flash memory via the  
FSR/INDF interface will require one additional  
instruction cycle to complete.  
Unimplemented memory reads as 0x00. Use of the  
linear data memory region allows buffers to be larger  
than 80 bytes because incrementing the FSR beyond  
one bank will go directly to the GPR memory of the next  
bank.  
The 16 bytes of common memory are not included in  
the linear data memory region.  
FIGURE 2-8:  
PROGRAM FLASH  
MEMORY MAP  
FIGURE 2-7:  
LINEAR DATA MEMORY  
MAP  
7
7
0
0
FSRnH  
FSRnL  
7
1
7
0
0
FSRnH  
FSRnL  
0
0 1  
Location Select  
0x8000  
0x0000  
Location Select  
0x2000  
0x020  
Bank 0  
0x06F  
0x0A0  
Bank 1  
0x0EF  
0x120  
Program  
Flash  
Memory  
(low 8  
bits)  
Bank 2  
0x16F  
0xF20  
Bank 30  
0x7FFF  
0xFFFF  
0xF6F  
0x29AF  
DS41364A-page 56  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
Most registers are not affected by a WDT wake-up  
since this is viewed as the resumption of normal  
operation. TO and PD bits are set or cleared differently  
in different Reset situations, as indicated in Table 3-6.  
These bits are used in software to determine the nature  
of the Reset.  
3.0  
RESETS  
The PIC16F193X/LF193X differentiates between  
various kinds of Reset:  
a) Power-on Reset (POR)  
b) WDT Reset during normal operation  
c) MCLR Reset  
A simplified block diagram of the On-Chip Reset Circuit  
is shown in Figure 3-1.  
d) Brown-out Reset (BOR)  
e) RESETinstruction  
The MCLR Reset path has a noise filter to detect and  
ignore small pulses. See Section 28.0 “Electrical  
Specifications” for pulse width specifications.  
f) Stack Overflow  
g) Stack Underflow  
Some registers are not affected in any Reset condition;  
their status is unknown on POR and unchanged in any  
other Reset. Most other registers are reset to a “Reset  
state” on:  
• Power-on Reset (POR)  
• MCLR Reset  
• WDT Reset  
• Brown-out Reset (BOR)  
FIGURE 3-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
RESET  
Instruction  
Stack Full/Underflow Reset  
Stack  
Pointer  
External Reset  
MCLRE  
MCLR  
Sleep  
WDT  
Time-out  
VDD Rise  
Detect  
POR Pulse  
VDD  
Brown-out  
Reset  
S
BOR  
Enable  
OST/PWRT  
OST  
(2)  
1024 Cycles  
Chip_Reset  
10-bit Ripple Counter  
R
Q
OSC1  
(2)  
64 ms  
PWRT  
LFINTOSC  
11-bit Ripple Counter  
Enable PWRT  
(1)  
Enable OST  
Note 1: See Table 3-5 for time-out situations.  
2: PWRT and OST counters are reset by POR and BOR.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 57  
PIC16F193X/LF193X  
TABLE 3-1:  
STATUS BITS AND THEIR SIGNIFICANCE  
STKOVF STKUNF RMCLR  
RI  
POR  
BOR  
TO  
PD  
Condition  
0
0
0
0
u
u
u
u
u
u
1
u
0
0
0
0
u
u
u
u
u
u
u
1
1
1
1
1
u
u
u
0
0
u
u
u
1
1
1
1
u
u
u
u
u
0
u
u
0
0
0
u
u
u
u
u
u
u
u
u
x
x
x
0
u
u
u
u
u
u
u
u
1
0
x
1
0
0
1
u
1
u
u
u
1
x
0
1
u
0
0
u
0
u
u
u
Power-on Reset or LDO Reset  
Illegal, TO is set on POR  
Illegal, PD is set on POR  
Brown-out Reset  
WDT Reset  
WDT Wake-up from Sleep  
Interrupt Wake-up from Sleep  
MCLR Reset during normal operation  
MCLR Reset during Sleep  
RESETInstruction Executed  
Stack Overflow Reset (STVREN = 1)  
Stack Underflow Reset (STVREN = 1)  
TABLE 3-2:  
RESET CONDITION FOR SPECIAL REGISTERS(2)  
Program  
STATUS  
Register  
PCON  
Register  
Condition  
Counter  
Power-on Reset  
0000h  
---1 1000  
---u uuuu  
00-- 110x  
uu-- 0uuu  
MCLR Reset during normal operation  
0000h  
MCLR Reset during Sleep  
WDT Reset  
0000h  
0000h  
---1 0uuu  
---0 uuuu  
---0 0uuu  
---1 1uuu  
---1 0uuu  
---u uuuu  
---u uuuu  
---u uuuu  
uu-- 0uuu  
uu-- uuuu  
uu-- uuuu  
00-- 11u0  
uu-- uuuu  
uu-- u0uu  
1u-- uuuu  
u1-- uuuu  
WDT Wake-up from Sleep  
Brown-out Reset  
PC + 1  
0000h  
Interrupt Wake-up from Sleep  
RESETInstruction Executed  
Stack Overflow Reset (STVREN = 1)  
Stack Underflow Reset (STVREN = 1)  
PC + 1(1)  
0000h  
0000h  
0000h  
Legend: u= unchanged, x= unknown, -= unimplemented bit, reads as ‘0’.  
Note 1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on  
the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.  
2: If a Status bit is not implemented, that bit will be read as ‘0’.  
DS41364A-page 58  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
For additional information, refer to Application Note  
AN607, “Power-up Trouble Shooting” (DS00607).  
3.1  
MCLR  
The PIC16F193X/LF193X has a noise filter in the  
MCLR Reset path. The filter will detect and ignore  
small pulses.  
3.3  
Power-up Timer (PWRT)  
The Power-up Timer provides a fixed 64 ms (nominal)  
time-out on power-up only, from POR or Brown-out  
Reset. The Power-up Timer operates from the WDT  
oscillator. For more information, see Section 8.5  
“Internal Clock Modes”. The chip is kept in Reset as  
long as PWRT is active. The PWRT delay allows the  
VDD to rise to an acceptable level. A Configuration bit,  
PWRTE, can disable (if set) or enable (if cleared or pro-  
grammed) the Power-up Timer. The Power-up Timer  
should be enabled when Brown-out Reset is enabled,  
although it is not required.  
It should be noted that a Reset does not drive the  
MCLR pin low.  
Voltages applied to the pin that exceed its specification  
can result in both MCLR Resets and excessive current  
beyond the device specification during the ESD event.  
For this reason, Microchip recommends that the MCLR  
pin no longer be tied directly to VDD. The use of an RC  
network, as shown in Figure 3-2, is suggested.  
An internal MCLR option is enabled by clearing the  
MCLRE bit in the Configuration Word register. When  
MCLRE = 0, the Reset signal to the chip is generated  
internally. When the MCLRE = 1, the RE3/MCLR pin  
becomes an external Reset input. In this mode, the  
RE3/MCLR pin has a weak pull-up to VDD. In-Circuit  
Serial Programming is not affected by selecting the  
internal MCLR option.  
The Power-up Timer delay will vary from chip-to-chip  
and vary due to:  
• VDD variation  
Temperature variation  
• Process variation  
Low-voltage programming (LVP) mode will override  
MCLRE.  
See DC parameters for details (Section 28.0  
“Electrical Specifications”).  
Note:  
The Power-up Timer is enabled by the  
PWRTE bit in the Configuration Word.  
FIGURE 3-2:  
RECOMMENDED MCLR  
CIRCUIT  
3.4  
Watchdog Timer (WDT)  
VDD  
R1  
The WDT has the following features:  
• Independent prescaler from Timer0  
PIC® MCU  
10 kΩ  
• Time-out period is from 1.024 ms to 268 seconds,  
typical  
MCLR  
• Enabled by Configuration bits WDTE<1:0>  
• Can be disabled during Sleep  
C1  
0.1 μF  
• Controlled by WDTCON register  
WDT is cleared under certain conditions described in  
Table 3-3.  
3.4.1  
WDT OSCILLATOR  
The WDT derives its time base from the 31 kHz internal  
oscillator.  
3.2  
Power-on Reset (POR)  
The on-chip POR circuit holds the chip in Reset until VDD  
has reached a high enough level for proper operation. A  
maximum rise time for VDD is required. See  
Section 28.0 “Electrical Specifications” for details. If  
the BOR is enabled, the maximum rise time specification  
does not apply. The BOR circuitry will keep the device in  
Reset until VDD reaches VBOR (see Section 3.5  
“Brown-Out Reset (BOR)”).  
Note:  
When the Oscillator Start-up Timer (OST)  
is invoked, the WDT is held in Reset.  
When the OST count has expired, the  
WDT will begin counting (if enabled).  
When the device starts normal operation (exits the  
Reset condition), device operating parameters (i.e.,  
voltage, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in Reset until the operating  
conditions are met.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 59  
PIC16F193X/LF193X  
3.4.2  
WDT CONTROL  
The WDTE<1:0> bits are located in the Configuration  
Word Register 1. When set to ‘11’, the WDT runs  
continuously. When entering Sleep the WDT is always  
cleared. When set to ‘10’, the WDT is enabled while  
running, and disabled during Sleep. When ‘01’ the  
WDT is under control of the SWDTEN bit, and when  
00’ the WDT is always disabled.  
The WDTCON register contains the SWDTEN bit and  
WDTPS<4:0> bits. When the WDTE<1:0> bits in the  
Configuration Word 1 register are anything but ‘01’, the  
SWDTEN bit has no effect. When WDTE = 01, the  
SWDTEN bit can be used to enable and disable the  
WDT. Setting the bit will enable the WDT and clearing  
the bit will disable the WDT.  
The WDTPS<4:0> bits control the prescaler. See  
Register 3-1. The Reset value of WDTCON gives a  
nominal WDT interval of ~2s. Upon Reset, the  
SWDTEN value will leave the WDT disabled if  
WDTE<1:0> is ‘01’ in the Configuration Word. The  
prescaler will always be cleared on a Reset.  
FIGURE 3-3:  
WATCHDOG TIMER BLOCK DIAGRAM  
WDTE<1:0> = 00  
23-bit Programmable  
Prescaler WDT  
LFINTOSC  
WDT Time-out  
WDTE<1:0> = 01  
SWDTEN  
WDTPS<4:0>  
WDTE<1:0> = 11  
WDTE<1:0> = 10  
Sleep  
TABLE 3-3:  
WDT STATUS  
Conditions  
WDT  
Cleared  
WDTE<1:0> = 00  
WDTE<1:0> = 01 and SWDTEN = 0  
WDTE<1:0> = 10 and enter Sleep  
CLRWDTCommand  
Oscillator Fail Detected  
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK  
Exit Sleep + System Clock = XT, HS, LP  
Cleared until the end of OST  
Unaffected  
Change INTOSC divider (IRCF bits)  
DS41364A-page 60  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
REGISTER 3-1:  
WDTCON: WATCHDOG TIMER CONTROL REGISTER  
U-0  
U-0  
R/W-0/0  
R/W-1/1  
R/W-0/0  
R/W-1/1  
R/W-1/1  
R/W-0/0  
WDTPS4  
WDTPS3  
WDTPS2  
WDTPS1  
WDTPS0  
SWDTEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-6  
bit 5-1  
Unimplemented: Read as ‘0’  
WDTPS<4:0>: Watchdog Timer Period Select bits  
Bit Value = Prescale Rate  
00000 = 1:32 (Interval 1 ms typ)  
00001 = 1:64 (Interval 2 ms typ)  
00010 = 1:128 (Interval 4 ms typ)  
00011 = 1:256 (Interval 8 ms typ)  
00100 = 1:512 (Interval 16 ms typ)  
00101 = 1:1024 (Interval 32 ms typ)  
00110 = 1:2048 (Interval 64 ms typ)  
00111 = 1:4096 (Interval 128 ms typ)  
01000 = 1:8192 (Interval 256 ms typ)  
01001 = 1:16384 (Interval 512 ms typ)  
01010 = 1:32768 (Interval 1s typ)  
01011 = 1:65536 (Interval 2s typ) (Reset value)  
01100 = 1:131072 (217) (Interval 4s typ)  
01101 = 1:262144 (218) (Interval 8s typ)  
01110 = 1:524288 (219) (Interval 16s typ)  
01111 = 1:1048576 (220) (Interval 32s typ)  
10000 = 1:2097152 (221) (Interval 64s typ)  
10001 = 1:4194304 (222) (Interval 128s typ)  
10010 = 1:8388608 (223) (Interval 256s typ)  
10011 = Reserved. Results in minimum interval (1:32)  
11111 = Reserved. Results in minimum interval (1:32)  
bit 0  
SWDTEN: Software Enable/Disable for Watchdog Timer bit  
If WDTE<1:0> = 00:  
This bit is ignored.  
If WDTE<1:0> = 01:  
1= WDT is turned on  
0= WDT is turned off  
If WDTE<1:0> = 1x:  
This bit is ignored.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 61  
PIC16F193X/LF193X  
Sleep. When BOREN = 01, the BOR is controlled by  
the SBOREN bit of the BORCON register. When  
BOREN = 00, the BOR is disabled.  
3.5  
Brown-Out Reset (BOR)  
Brown-out Reset is enabled by programming the  
BOREN<1:0> bits in the Configuration register. The  
brown-out trip point is selectable from two trip points  
via the BORV bit in the Configuration register.  
If VDD falls below VBOR for greater than parameter  
(TBOR) (see Section 28.0 “Electrical Specifica-  
tions”), the Brown-out situation will reset the device.  
This will occur regardless of VDD slew rate. A Reset is  
not ensured to occur if VDD falls below VBOR for more  
than parameter (TBOR).  
Between the POR and BOR, complete voltage range  
coverage for execution protection can be imple-  
mented.  
Two bits are used to enable the BOR. When  
BOREN = 11, the BOR is always enabled. When  
BOREN = 10, the BOR is enabled, but disabled during  
If VDD drops below VBOR while the Power-up Timer is  
running, the chip will go back into a Brown-out Reset  
and the Power-up Timer will be re-initialized. Once VDD  
rises above VBOR, the Power-up Timer will execute a  
64 ms Reset.  
TABLE 3-4:  
BOREN  
BOR OPERATING MODES  
Device  
Device  
Operation upon  
SBOREN  
Device Mode  
BOR Mode  
Operation upon  
release of POR  
Config bits  
wake- up from  
Sleep  
BOR_ON (11)  
BOR_NSLEEP (10)  
BOR_NSLEEP (10)  
BOR_SBOREN (01)  
BOR_SBOREN (01)  
BOR_OFF (00)  
X
X
X
1
0
X
X
Awake  
Sleep  
X
Active  
Active  
Waits for BOR ready(1)  
Waits for BOR ready  
Disabled  
Active  
Begins immediately  
Begins immediately  
Begins immediately  
X
Disabled  
Disabled  
X
Note 1: Even though this case specifically waits for the BOR, the BOR is already operating, so there is no delay in  
startup.  
FIGURE 3-4:  
BROWN-OUT SITUATIONS  
VDD  
VBOR  
Internal  
Reset  
(1)  
64 ms  
VDD  
VBOR  
Internal  
Reset  
< 64 ms  
(1)  
64 ms  
VDD  
VBOR  
Internal  
Reset  
(1)  
64 ms  
Note 1: 64 ms delay only if PWRTE bit is programmed to ‘0’.  
DS41364A-page 62  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
REGISTER 3-2:  
BORCON: BROWN-OUT RESET CONTROL REGISTER  
R/W-1/u  
SBOREN  
bit 7  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-q/u  
BORRDY  
bit 0  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
q = Value depends on condition  
bit 7  
SBOREN: Software Brown-out Reset Enable bit  
If BOREN 01:  
SBOREN is read/write, but has no effect on the BOR.  
If BOREN = 01:  
1= BOR Enabled  
0= BOR Disabled  
bit 6-1  
bit 0  
Unimplemented: Read as ‘0’  
BORRDY: Brown-out Reset Circuit Ready Status bit  
1= The Brown-out Reset circuit is active and armed  
0= The Brown-out Reset circuit is disabled or is warming up  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 63  
PIC16F193X/LF193X  
3.5.1  
BOR HIBERNATE/REARM  
The BOR circuit has an output that feeds into the POR  
circuit and rearms the POR within the operating range  
of the BOR. This early rearming of the POR ensures  
that the device will remain in Reset in the event that  
VDD falls below the operating range of the BOR  
circuitry.  
3.6  
Reset Instruction  
A RESETinstruction will cause a device Reset. The RI  
bit in the PCON register will be set to ‘0’. See Table 3-6  
for default conditions after a RESET instruction has  
occurred.  
3.7  
Stack Overflow/Underflow  
Device Resets on Stack Overflow and Stack Underflow  
conditions are enabled by setting the STVREN bit in  
Configuration Word 2. When STVREN is set, an overflow  
or underflow condition will set the appropriate STKOVF  
or STKUNF bit in the PCON register and then cause a  
device Reset. When STVREN is cleared, an overflow or  
underflow condition will set the appropriate STKOVF or  
STKUNF bit, but not cause a device Reset. The STKOVF  
or STKUNF bit is cleared by user software or a Power-on  
Reset.  
3.8  
Power-Up Time-out Sequence  
On power-up, the time-out sequence is as follows: first,  
PWRT time-out is invoked after POR or BOR has  
expired, then OST is activated after the PWRT time-out  
has expired. The total time-out will vary based on oscil-  
lator configuration and PWRTE bit status. For example,  
in EC mode with PWRTE bit = 1 (PWRT disabled),  
there will be no time out at all. Figure 3-5, Figure 3-6  
and Figure 3-7 depict time-out sequences.  
Since the time outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire. Then,  
bringing MCLR high will begin execution immediately  
(see Figure 3-6). This is useful for testing purposes or  
to synchronize more than one PIC16F193X/LF193X  
device operating in parallel.  
Table 3-7 shows the Reset conditions for some special  
registers.  
DS41364A-page 64  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
The PCON register also controls the software enable of  
the BOR.  
3.9  
Power Control (PCON) Register  
The Power Control (PCON) register has six Status bits  
to indicate what type of Reset that last occurred.  
The PCON register bits are shown in Register 3-3.  
3.9.1  
PCON REGISTER  
The Power Control (PCON) register contains flag bits  
(refer to Table 3-6) to differentiate between a:  
• Power-on Reset (POR)  
• Brown-out Reset (BOR)  
• Reset Instruction Reset (RI)  
• Stack Overflow Reset (STKOVF)  
• Stack Underflow Reset (STKUVF)  
REGISTER 3-3:  
PCON: POWER CONTROL REGISTER  
R/W-0/q  
STKOVF  
R/W-0/q  
STKUNF  
U-0  
U-0  
R/W-1/q  
RMCLR  
R/W-1/q  
RI  
R/W-q/u  
POR  
R/W-q/u  
BOR  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
u = bit is unchanged  
‘1’ = Bit is set  
-n/n = Value at POR and BOR/Value at all other Resets  
q = Value depends on condition  
bit 7  
bit 6  
STKOVF: Stack Overflow Flag bit  
1= A Stack Overflow occurred (more CALLs than fit on the stack)  
0= A Stack Overflow has not occurred or set to ‘0’ by firmware  
STKUNF: Stack Underflow Flag bit  
1= A Stack Underflow occurred (more RETURNs than CALLs)  
0= A Stack Underflow has not occurred or set to ‘0’ by firmware  
bit 5-4  
bit 3  
Unimplemented: Read as ‘0’  
RMCLR: MCLR Reset Flag bit  
1= A MCLR Reset has not occurred or set to ‘1’ by firmware  
0= A MCLR Reset has occurred (set to ‘0’ in hardware when a MCLR Reset occurs)  
bit 2  
bit 1  
bit 0  
RI: RESETInstruction Flag bit  
1= A RESETinstruction has not been executed or set to ‘1’ by firmware  
0= A RESETinstruction has been executed (set to ‘0’ in hardware upon executing a RESETinstruction)  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
BOR: Brown-out Reset Status bit  
1= No Brown-out Reset occurred  
0= A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset  
occurs)  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 65  
PIC16F193X/LF193X  
TABLE 3-5:  
TIME-OUT IN VARIOUS SITUATIONS  
Power-up and Brown-out Reset  
Wake-up from Sleep  
or Oscillator Switch  
Oscillator Configuration  
PWRTE = 0  
PWRTE = 1  
64 ms + 1024 • TOSC  
1024 • TOSC  
1024 • TOSC  
XT, HS, LP  
External RC  
EC  
64 ms  
64 ms  
64 ms  
INTOSC  
1 μs  
1 μs  
Note 1: LP mode with T1OSC disabled.  
TABLE 3-6:  
RESET BITS AND THEIR SIGNIFICANCE  
STKOVF STKUNF RMCLR  
RI  
POR  
BOR  
TO  
PD  
Condition  
0
0
0
0
0
u
u
u
u
u
u
u
1
1
1
1
1
u
u
u
0
0
u
u
u
1
1
1
u
u
u
u
u
u
0
u
u
0
0
0
u
u
u
u
u
u
u
u
u
x
x
x
0
u
u
u
u
u
u
u
u
1
0
x
1
0
0
1
u
1
u
u
u
1
x
0
1
u
0
0
u
0
u
u
u
Power-on Reset  
Illegal, TO is set on POR  
0
0
Illegal, PD is set on POR  
0
Brown-out Reset  
u
WDT Reset  
u
WDT Wake-up from Sleep  
Interrupt Wake-up from Sleep  
MCLR Reset during normal operation  
MCLR Reset during Sleep  
RESETinstruction executed  
Stack Overflow Reset (STVREN = 1)  
Stack Underflow Reset (STVREN = 1)  
u
u
u
u
1
u
Legend:  
u= unchanged, x= unknown  
FIGURE 3-5:  
TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 1  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
DS41364A-page 66  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 3-6:  
TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 2  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
FIGURE 3-7:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR WITH VDD): CASE 3  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 67  
PIC16F193X/LF193X  
TABLE 3-7:  
RESET CONDITION FOR SPECIAL REGISTERS(2)  
Program  
Counter  
STATUS  
Register  
PCON  
Register  
Condition  
Power-on Reset  
0000h  
0000h  
---1 1000  
---u uuuu  
00-- 110x  
uu-- 0uuu  
MCLR Reset during normal operation  
MCLR Reset during Sleep  
WDT Reset  
0000h  
0000h  
---1 0uuu  
---0 uuuu  
---0 0uuu  
---1 1uuu  
---1 0uuu  
uu-- 0uuu  
uu-- uuuu  
uu-- uuuu  
00-- 11u0  
uu-- uuuu  
uu-- u0uu  
WDT Wake-up from Sleep  
Brown-out Reset  
PC + 1  
0000h  
PC + 1(1)  
Interrupt Wake-up from Sleep  
RESETInstruction Executed  
0000h  
0000h  
0000h  
---u uuuu  
---u uuuu  
---u uuuu  
1u-- uuuu  
u1-- uuuu  
Stack Overflow Reset (STVREN = 1)  
Stack Underflow Reset (STVREN = 1)  
Legend: u= unchanged, x= unknown, -= unimplemented bit, reads as ‘0’.  
Note 1: When the wake-up is due to an interrupt and Global Interrupt Enable bit, GIE, is set, the PC is loaded with  
the interrupt vector (0004h) after execution of PC + 1.  
2: If a Status bit is not implemented, that bit will be read as ‘0’.  
TABLE 3-8:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH RESETS  
Register  
on Page  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BORCON SBOREN  
RMCLR  
PD  
RI  
Z
POR  
DC  
BORRDY  
BOR  
63  
65  
50  
61  
PCON  
STKOVF STKUNF  
STATUS  
WDTCON  
TO  
C
WDTPS4 WDTPS3 WDTPS2 WDTPS1 WDTPS0 SWDTEN  
Legend: u= unchanged, x= unknown, -= unimplemented bit, reads as ‘0’, q= value depends on condition.  
Shaded cells are not used by Resets.  
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
DS41364A-page 68  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
• Timer0 Overflow Interrupt  
• Timer1 Gate Interrupt  
4.0  
INTERRUPTS  
The PIC16F193X/LF193X device family features an  
interruptible core, allowing certain events to preempt  
normal program flow. An Interrupt Service Routine  
(ISR) is used to determine the source of the interrupt  
and act accordingly. Some interrupts can be configured  
to wake the MCU from Sleep mode.  
• Timer1 Overflow Interrupt  
• Timer2 Match with PR2 Interrupt  
• Timer4 Match with PR4 Interrupt  
• Timer6 Match with PR6 Interrupt  
• Comparator C1 Interrupt  
• Comparator C2 Interrupt  
• CCP1 Event Interrupt  
The PIC16F193X/LF193X device family has 23 inter-  
rupt sources, differentiated by corresponding interrupt  
enable and flag bits:  
• CCP2 Event Interrupt  
• External Edge Detect on INT Pin Interrupt  
• Interrupt-on-Change Interrupt  
• A/D Conversion Complete Interrupt  
• EEPROM Write Complete Interrupt  
• EUSART Receive Interrupt  
• CCP3 Event Interrupt  
• CCP4 Event Interrupt  
• CCP5 Event Interrupt  
• MSSP Event Interrupt  
• MSSP Bus Collision Interrupt  
• EUSART Transmit Interrupt  
• LCD Module Interrupt  
A block diagram of the interrupt logic is shown in  
Figure 4-1.  
• Oscillator Fail Interrupt  
FIGURE 4-1:  
INTERRUPT LOGIC  
Wake-up (If in Sleep mode)  
TMR0IF  
TMR0IE  
INTF  
INTE  
Interrupt to CPU  
IOCIF  
IOCIE  
From Peripheral Interrupt  
Logic (Figure 4-2)  
PEIE  
GIE  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 69  
PIC16F193X/LF193X  
FIGURE 4-2:  
PERIPHERAL INTERRUPT LOGIC  
TMR1GIF  
TMR1GIE  
ADIF  
ADIE  
RCIF  
RCIE  
TXIF  
TXIE  
SSPIF  
SSPIE  
CCP1IF  
CCP1IE  
CCP5IF  
CCP5IE  
OSFIF  
OSFIE  
TMR1IF  
TMR1IE  
To Interrupt Logic  
(Figure 4-1)  
TMR6IF  
TMR6IE  
C2IF  
C2IE  
C1IF  
C1IE  
EEIF  
EEIE  
BCLIF  
BCLIE  
LCDIF  
LCDIE  
DS41364A-page 70  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
that occurs while executing the ISR will be recorded  
through its interrupt flag, but will not cause the  
processor to redirect to the interrupt vector.  
4.1  
Operation  
Interrupts are disabled upon any device Reset. They  
are enabled by setting the following bits:  
The RETFIE instruction exits the ISR by popping the  
previous address from the stack, restoring the saved  
context from the shadow registers and setting the GIE  
bit.  
• GIE bit of the INTCON register  
• Interrupt Enable bit(s) for the specific interrupt  
event(s)  
• PEIE bit of the INTCON register (if the Interrupt  
Enable bit of the interrupt event is contained in the  
PIE1, PIE2 and PIE3 registers)  
For additional information on a specific interrupt’s  
operation, refer to its peripheral chapter.  
Note 1: Individual interrupt flag bits are set,  
regardless of the state of any other  
enable bits.  
The INTCON, PIR1, PIR2 and PIR3 registers record  
individual interrupts via interrupt flag bits. Interrupt flag  
bits will be set, regardless of the status of the GIE, PEIE  
and individual interrupt enable bits.  
2: All interrupts will be ignored while the GIE  
bit is cleared. Any interrupt occurring  
while the GIE bit is clear will be serviced  
when the GIE bit is set again.  
The following events happen when an interrupt event  
occurs while the GIE bit is set:  
• Current prefetched instruction is flushed  
• GIE bit is cleared  
4.2  
Interrupt Latency  
• Current Program Counter (PC) is pushed onto the  
stack  
Interrupt latency is defined as the time from when the  
interrupt event occurs to the time code execution at the  
interrupt vector begins. The latency for synchronous  
interrupts is 3 or 4 instruction cycles. For asynchronous  
interrupts, the latency is 3 to 5 instruction cycles,  
depending on when the interrupt occurs. See Figure 4-3  
for timing details.  
• PC is loaded with the interrupt vector 0004h  
The ISR determines the source of the interrupt by  
polling the interrupt flag bits. The interrupt flag bits must  
be cleared before exiting the ISR to avoid repeated  
interrupts. Because the GIE bit is cleared, any interrupt  
FIGURE 4-3:  
INT PIN INTERRUPT TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
(3)  
CLKOUT  
(4)  
INT pin  
(1)  
(1)  
(2)  
(5)  
Interrupt Latency  
INTF flag  
(INTCON<1>)  
GIE bit  
(INTCON<7>)  
INSTRUCTION FLOW  
PC  
PC + 1  
0004h  
0005h  
PC  
Inst (PC)  
PC + 1  
Instruction  
Fetched  
Inst (PC + 1)  
Inst (0004h)  
Inst (0005h)  
Inst (0004h)  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Inst (PC)  
Inst (PC – 1)  
Note 1: INTF flag is sampled here (every Q1).  
2: Asynchronous interrupt latency = 3-5 TCY. Synchronous latency = 3-4 TCY, where TCY = instruction cycle time.  
Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.  
3: CLKOUT is available only in INTOSC and RC Oscillator modes.  
4: For minimum width of INT pulse, refer to AC specifications in Section 28.0 “Electrical Specifications”.  
5: INTF is enabled to be set any time during the Q4-Q1 cycles.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 71  
PIC16F193X/LF193X  
4.3  
Interrupts During Sleep  
4.5  
Context Saving  
Some interrupts can be used to wake from Sleep. To  
wake from Sleep, the peripheral must be able to  
operate without the system clock. The interrupt source  
must have the appropriate Interrupt Enable bit(s) set  
prior to entering Sleep.  
Upon entering an interrupt, the return PC address is  
saved on the stack. Additionally, the following registers  
are automatically saved in the shadow registers:  
• W register  
• STATUS register (except for TO and PD)  
• BSR register  
On waking from Sleep, if the GIE bit is also set, the  
processor will branch to the interrupt vector. Otherwise,  
the processor will continue executing instructions after  
the SLEEPinstruction. The instruction directly after the  
SLEEP instruction will always be executed before  
branching to the ISR. Refer to the Section 24.0  
“Power-Down Mode (Sleep)” for more details.  
• FSR registers  
• PCLATH register  
Upon exit from the Interrupt Service Routine, these reg-  
isters are automatically restored. Any modifications to  
these registers during the ISR will be lost. Depending  
on the user’s application, other registers may also need  
to be saved.  
4.4  
INT Pin  
The external interrupt, INT pin, causes an  
asynchronous, edge-triggered interrupt. The INTEDG bit  
of the OPTION register determines on which edge the  
interrupt will occur. When the INTEDG bit is set, the  
rising edge will cause the interrupt. When the INTEDG  
bit is clear, the falling edge will cause the interrupt. The  
INTF bit of the INTCON register will be set when a valid  
edge appears on the INT pin. If the GIE and INTE bits  
are also set, the processor will redirect program  
execution to the interrupt vector. This interrupt is  
disabled by clearing the INTE bit of the INTCON register.  
DS41364A-page 72  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
4.5.1  
INTCON REGISTER  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the Global  
Enable bit, GIE of the INTCON register.  
User software should ensure the appropri-  
ate interrupt flag bits are clear prior to  
enabling an interrupt.  
The INTCON register is a readable and writable  
register, which contains the various enable and flag bits  
for TMR0 register overflow, interrupt-on-change and  
external INT pin interrupts.  
REGISTER 4-1:  
INTCON: INTERRUPT CONTROL REGISTER  
R/W-0/0  
GIE  
R/W-0/0  
PEIE  
R/W-0/0  
TMR0IE  
R/W-0/0  
INTE  
R/W-0/0  
IOCIE  
R/W-0/0  
TMR0IF(1)  
R/W-0/0  
INTF  
R-0/0  
IOCIF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
GIE: Global Interrupt Enable bit  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
TMR0IE: Timer0 Overflow Interrupt Enable bit  
1= Enables the Timer0 interrupt  
0= Disables the Timer0 interrupt  
INTE: RB0/INT External Interrupt Enable bit  
1= Enables the RB0/INT external interrupt  
0= Disables the RB0/INT external interrupt  
IOCIE: Interrupt-on-Change Enable bit(1)  
1= Enables the interrupt-on-change  
0= Disables the interrupt-on-change  
TMR0IF: Timer0 Overflow Interrupt Flag bit(2)  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INTF: INT External Interrupt Flag bit  
1= The INT external interrupt occurred (must be cleared in software)  
0= The INT external interrupt did not occur  
IOCIF: Interrupt-on-Change Interrupt Flag bit  
1= When at least one of the interrupt-on-change pins changed state (must be cleared in software)  
0= None of the interrupt-on-change pins have changed state  
Note 1: TMR0IF bit is set when Timer0 rolls over. Timer0 is unchanged on Reset and should be initialized before  
clearing TMR0IF bit.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 73  
PIC16F193X/LF193X  
4.5.2  
PIE1 REGISTER  
The PIE1 register contains the interrupt enable bits, as  
shown in Register 4-2.  
Note:  
Bit PEIE of the INTCON register must be  
set to enable any peripheral interrupt.  
REGISTER 4-2:  
PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1  
R/W-0/0  
TMR1GIE  
bit 7  
R/W-0/0  
ADIE  
R/W-0/0  
RCIE  
R/W-0/0  
TXIE  
R/W-0/0  
SSPIE  
R/W-0/0  
CCP1IE  
R/W-0/0  
TMR2IE  
R/W-0/0  
TMR1IE  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TMR1GIE: Timer1 Gate Interrupt Enable bit  
1= Enable the Timer1 Gate Acquisition complete interrupt  
0= Disable the Timer1 Gate Acquisition complete interrupt  
ADIE: A/D Converter (ADC) Interrupt Enable bit  
1= Enables the ADC interrupt  
0= Disables the ADC interrupt  
RCIE: USART Receive Interrupt Enable bit  
1= Enables the USART receive interrupt  
0= Disables the USART receive interrupt  
TXIE: USART Transmit Interrupt Enable bit  
1= Enables the USART transmit interrupt  
0= Disables the USART transmit interrupt  
SSPIE: Synchronous Serial Port (SSP) Interrupt Enable bit  
1= Enables the SSP interrupt  
0= Disables the SSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the Timer2 to PR2 match interrupt  
0= Disables the Timer2 to PR2 match interrupt  
TMR1IE: Timer1 Overflow Interrupt Enable bit  
1= Enables the Timer1 overflow interrupt  
0= Disables the Timer1 overflow interrupt  
DS41364A-page 74  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
4.5.3  
PIE2 REGISTER  
The PIE2 register contains the interrupt enable bits, as  
shown in Register 4-3.  
Note:  
Bit PEIE of the INTCON register must be  
set to enable any peripheral interrupt.  
REGISTER 4-3:  
PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2  
R/W-0/0  
OSFIE  
bit 7  
R/W-0/0  
C2IE  
R/W-0/0  
C1IE  
R/W-0/0  
EEIE  
R/W-0/0  
BCLIE  
R/W-0/0  
LCDIE  
U-0  
R/W-0/0  
CCP2IE  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
OSFIE: Oscillator Fail Interrupt Enable bit  
1= Enables the Oscillator Fail interrupt  
0= Disables the Oscillator Fail interrupt  
C2IE: Comparator C2 Interrupt Enable bit  
1= Enables the Comparator C2 interrupt  
0= Disables the Comparator C2 interrupt  
C1IE: Comparator C1 Interrupt Enable bit  
1= Enables the Comparator C1 interrupt  
0= Disables the Comparator C1 interrupt  
EEIE: EEPROM Write Completion Interrupt Enable bit  
1= Enables the EEPROM Write Completion interrupt  
0= Disables the EEPROM Write Completion interrupt  
BCLIE: MSSP Bus Collision Interrupt Enable bit  
1= Enables the MSSP Bus Collision Interrupt  
0= Disables the MSSP Bus Collision Interrupt  
LCDIE: LCD Module Interrupt Enable bit  
1= Enables the LCD module interrupt  
0= Disables the LCD module interrupt  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
CCP2IE: CCP2 Interrupt Enable bit  
1= Enables the CCP2 interrupt  
0= Disables the CCP2 interrupt  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 75  
PIC16F193X/LF193X  
4.5.4  
PIE3 REGISTER  
The PIE3 register contains the interrupt enable bits, as  
shown in Register 4-4.  
Note:  
Bit PEIE of the INTCON register must be  
set to enable any peripheral interrupt.  
REGISTER 4-4:  
PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3  
U-0  
R/W-0/0  
CCP5IE  
R/W-0/0  
CCP4IE  
R/W-0/0  
CCP3IE  
R/W-0/0  
TMR6IE  
U-0  
R/W-0/0  
TMR4IE  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
CCP5IE: CCP5 Interrupt Enable bit  
1= Enables the CCP5 interrupt  
0= Disables the CCP5 interrupt  
bit 5  
bit 4  
bit 3  
CCP4IE: CCP4 Interrupt Enable bit  
1= Enables the CCP4 interrupt  
0= Disables the CCP4 interrupt  
CCP3IE: CCP3 Interrupt Enable bit  
1= Enables the CCP3 interrupt  
0= Disables the CCP3 interrupt  
TMR6IE: TMR6 to PR6 Match Interrupt Enable bit  
1= Enables the TMR6 to PR6 Match interrupt  
0= Disables the TMR6 to PR6 Match interrupt  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TMR4IE: TMR4 to PR4 Match Interrupt Enable bit  
1= Enables the TMR4 to PR4 Match interrupt  
0= Disables the TMR4 to PR4 Match interrupt  
bit 0  
Unimplemented: Read as ‘0’  
DS41364A-page 76  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
4.5.5  
PIR1 REGISTER  
The PIR1 register contains the interrupt flag bits, as  
shown in Register 4-5.  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the Global  
Enable bit, GIE, of the INTCON register.  
User software should ensure the  
appropriate interrupt flag bits are clear prior  
to enabling an interrupt.  
REGISTER 4-5:  
PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1  
R/W-0/0  
TMR1GIF  
bit 7  
R/W-0/0  
ADIF  
R-0/0  
RCIF  
R-0/0  
TXIF  
R/W-0/0  
SSPIF  
R/W-0/0  
CCP1IF  
R/W-0/0  
TMR2IF  
R/W-0/0  
TMR1IF  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
TMR1GIF: Timer1 Gate Interrupt Flag bit  
1= Timer1 Gate is inactive  
0= Timer1 Gate is active  
ADIF: A/D Converter Interrupt Flag bit  
1= A/D conversion complete (must be cleared in software)  
0= A/D conversion has not completed or has not been started  
RCIF: USART Receive Interrupt Flag bit  
1= The USART receive buffer is full (cleared by reading RCREG)  
0= The USART receive buffer is not full  
TXIF: USART Transmit Interrupt Flag bit  
1= The USART transmit buffer is empty (cleared by writing to TXREG)  
0= The USART transmit buffer is full  
SSPIF: Synchronous Serial Port (SSP) Interrupt Flag bit  
1= The Transmission/Reception is complete (must be cleared in software)  
0= Waiting to Transmit/Receive  
CCP1IF: CCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode  
bit 1  
bit 0  
TMR2IF: Timer2 to PR2 Interrupt Flag bit  
1= A Timer2 to PR2 match occurred (must be cleared in software)  
0= No Timer2 to PR2 match occurred  
TMR1IF: Timer1 Overflow Interrupt Flag bit  
1= The TMR1 register overflowed (must be cleared in software)  
0= The TMR1 register did not overflow  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 77  
PIC16F193X/LF193X  
4.5.6  
PIR2 REGISTER  
The PIR2 register contains the interrupt flag bits, as  
shown in Register 4-6.  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the Global  
Enable bit, GIE of the INTCON register.  
User software should ensure the  
appropriate interrupt flag bits are clear prior  
to enabling an interrupt.  
REGISTER 4-6:  
PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2  
R/W-0/0  
OSFIF  
R/W-0/0  
C2IF  
R/W-0/0  
C1IF  
R/W-0/0  
EEIF  
R/W-0/0  
BCLIF  
R/W-0/0  
LCDIF  
U-0  
R/W-0/0  
CCP2IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
OSFIF: Oscillator Fail Interrupt Flag  
1= System oscillator failed, clock input has changed to INTOSC (must be cleared in software)  
0= No oscillator failure has been detected  
C2IF: Comparator C2 Interrupt Flag  
1= An enabled edge was detected on Comparator C2 (must be cleared in software)  
0= No enabled edge was detected on Comparator C2  
C1IF: Comparator C1 Interrupt Flag  
1= An enabled edge was detected on Comparator C1 (must be cleared in software)  
0= No enabled edge was detected on Comparator C1  
EEIF: EEPROM Write Completion Interrupt Flag bit  
1= The EEPROM Write operation has completed (must be cleared in software)  
0= The EEPROM Write operation has not completed or has not been started  
BCLIF: MSSP Bus Collision Interrupt Flag bit  
1= A Bus Collision was detected (must be cleared in software)  
0= No Bus collision was detected  
LCDIF: LCD Module Interrupt Flag bit  
1= The LCD module has completed displaying a frame (must be cleared in software).  
0= The LCD module has not completed displaying a frame  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
CCP2IF: CCP2 Interrupt Flag bit  
Capture Mode  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare Mode  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM Mode  
Unused in this mode  
DS41364A-page 78  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
4.5.7  
PIR3 REGISTER  
The PIR3 register contains the interrupt enable bits, as  
shown in Register 4-7.  
REGISTER 4-7:  
PIR3: PERIPHERAL INTERRUPT REQUEST REGISTER 3  
R/W-0/0  
R/W-0/0  
CCP5IF  
R/W-0/0  
CCP4IF  
R/W-0/0  
CCP3IF  
R/W-0/0  
TMR6IF  
R/W-0/0  
R/W-0/0  
TMR4IF  
R/W-0/0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
CCP5IF: CCP5 Interrupt Flag bit  
Capture Mode  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare Mode  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM Mode  
Unused in this mode  
bit 5  
bit 4  
bit 3  
CCP4IF: CCP4 Interrupt Flag bit  
Capture Mode  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare Mode  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM Mode  
Unused in this mode  
CCP3IF: CCP3 Interrupt Flag bit  
Capture Mode  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare Mode  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM Mode  
Unused in this mode  
TMR6IF: TMR6 to PR6 Match Interrupt Flag bit  
1= TMR6 to PR6 post-scaled match occurred (must be cleared in software)  
0= No TMR6 to PR6 match occurred  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TMR4IF: TMR4 to PR4 Match Interrupt Flag bit  
1= TMR4 to PR4 post-scaled match occurred (must be cleared in software)  
0= No TMR4 to PR4 match occurred  
bit 0  
Unimplemented: Read as ‘0’  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 79  
PIC16F193X/LF193X  
TABLE 4-1:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS  
Register  
on Page  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE  
PEIE  
TMR0IE  
T0CS  
RCIE  
INTE  
T0SE  
TXIE  
EEIE  
IOCIE  
PSA  
TMR0IF  
PS2  
INTF  
PS1  
IOCIF  
PS0  
73  
51  
74  
75  
76  
77  
78  
79  
OPTION_REG WPUEN INTEDG  
PIE1  
PIE2  
PIE3  
PIR1  
PIR2  
PIR3  
TMR1GIE  
OSFIE  
ADIE  
C2IE  
SSPIE  
BCLIE  
CCP1IE TMR2IE TMR1IE  
C1IE  
LCDIE  
CCP2IE  
CCP5IE CCP4IE CCP3IE TMR6IE  
TMR4IE  
TMR1GIF  
OSFIF  
ADIF  
C2IF  
RCIF  
C1IF  
TXIF  
EEIF  
SSPIF  
BCLIF  
CCP1IF TMR2IF TMR1IF  
LCDIF  
CCP2IF  
CCP5IF CCP4IF CCP3IF TMR6IF  
TMR4IF  
Legend: x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by  
Interrupts.  
DS41364A-page 80  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
5.0  
LOW DROPOUT (LDO)  
VOLTAGE REGULATOR  
The PIC16F193X devices differ from the PIC16LF193X  
devices due to an internal Low Dropout (LDO) voltage  
regulator. The PIC16F193X contain an internal LDO,  
while the PIC16LF193X do not.  
The lithography of the die allows a maximum operating  
voltage of 3.6V on the internal digital logic. In order to  
continue to support 5.0V designs, a LDO voltage  
regulator is integrated on the die. The LDO voltage  
regulator allows for the internal digital logic to operate  
at 3.2V, while I/O’s operate at 5.0V (VDD).  
The LDO voltage regulator requires an external bypass  
capacitor for stability. One of three pins, denoted as  
VCAP, can be configured for the external bypass  
capacitor. It is recommended that the capacitor be a  
ceramic cap between 0.1 to 1.0 µF.  
On power-up, the external capacitor will look like a  
large load on the LDO voltage regulator. To prevent  
erroneous operation, the device is held in Reset while  
a constant current source charges the external  
capacitor. After the cap is fully charged, the device is  
released from Reset. For more information, refer to  
Section 28.0 “Electrical Specifications”.  
See Configuration Word 2 register (Register 10-2) for  
VCAP enable bits.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 81  
PIC16F193X/LF193X  
NOTES:  
DS41364A-page 82  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
6.0  
I/O PORTS  
Depending on the device selected and peripherals  
enabled, there are up to five ports available. In general,  
when a peripheral is enabled, that pin may not be used  
as a general purpose I/O pin.  
Each port has three registers for its operation. These  
registers are:  
• TRISx registers (data direction register)  
• PORTx registers (reads the levels on the pins of  
the device)  
• LATx registers (output latch)  
The Data Latch (LATx registers) is useful for  
read-modify-write operations on the value that the I/O  
pins are driving.  
Ports with analog functions also have an ANSELx  
register which can disable the digital input and save  
power. A simplified model of a generic I/O port, without  
the interfaces to other peripherals, is shown in  
Figure 6-1.  
FIGURE 6-1:  
GENERIC I/O PORT  
OPERATION  
Read LATx  
TRISx  
D
Q
Write LATx  
Write PORTx  
CK  
Data Register  
VDD  
Data Bus  
I/O pin  
Read PORTx  
To peripherals  
VSS  
ANSELx  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 83  
PIC16F193X/LF193X  
These bits have no effect on the values of any TRIS  
register. PORT and TRIS overrides will be routed to the  
correct pin. The unselected pin will be unaffected.  
6.1  
Alternate Pin Function  
The Alternate Pin Function Control (APFCON) register  
is used to steer specific peripheral input and output  
functions between different pins. The APFCON register  
is shown in Register 6-1. For this device family, the  
following functions can be moved between different  
pins.  
• SS (Slave Select)  
• CCP2  
• CCP3  
• Timer1 Gate  
• SR Latch SRNQ output  
• Comparator C2 output  
REGISTER 6-1:  
APFCON: ALTERNATE PIN FUNCTION CONTROL REGISTER  
U-0  
R/W-0/0  
R/W-0/0  
T1GSEL  
R/W-0/0  
P2BSEL  
R/W-0/0  
R/W-0/0  
R/W-0/0  
SSSEL  
R/W-0/0  
CCP3SEL  
SRNQSEL  
C2OUTSEL  
CCP2SEL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
bit 6  
Unimplemented: Read as ‘0’.  
CCP3SEL: CCP3 Input/Output Pin Selection bit  
For 28-Pin Devices (PIC16F1933/1936/1938):  
0= CCP3/P3A function is on RC6/TX/CK/CCP3/P3A/SEG9  
1= CCP3/P3A function is on RB5/AN13/CPS5/CCP3/P3A/T1G/COM1  
For 40-Pin Devices (PIC16F1934/1937/1939):  
0= CCP3/P3A function is on RE0/AN5/CCP3/P3A/SEG21  
1= CCP3/P3A function is on RB5/AN13/CPS5/CCP3/P3A/T1G/COM1  
bit 5  
bit 4  
T1GSEL: Timer1 Gate Input Pin Selection bit  
0= T1G function is on RB5/AN13/CPS5/CCP3/P3A/T1G/COM1  
1= T1G function is on RC4/SDI/SDA/T1G/SEG11  
P2BSEL: CCP2 PWM B Output Pin Selection bit  
For 28-Pin Devices (PIC16F1933/1936/1938):  
0= P2B function is on RC0/T1OSO/T1CKI/P2B  
1= P2B function is on RB5/AN13/P2B/CPS5/T1G/COM1  
For 40-Pin Devices (PIC16F1934/1937/1939):  
0= P2B function is on RC0/T1OSO/T1CKI/P2B  
1= P2B function is on RD2/CPS10/P2B  
bit 3  
bit 2  
bit 1  
bit 0  
SRNQSEL: SR Latch nQ Output Pin Selection bit  
0= SRnQ function is on RA5/AN4/C2OUT/SRnQ/SS/CPS7/SEG5/VCAP  
1= SRnQ function is on RA0/AN0/C12IN0-/C2OUT/SRnQ/SS/SEG12/VCAP  
C2OUTSEL: Comparator C2 Output Pin Selection bit  
0= C2OUT function is on RA5/AN4/C2OUT/SRnQ/SS/CPS7/SEG5/VCAP  
1= C2OUT function is on RA0/AN0/C12IN0-/C2OUT/SRnQ/SS/SEG12/VCAP  
SSSEL: SS Input Pin Selection bit  
0= SS function is on RA5/AN4/C2OUT/SRNQ/SS/CPS7/SEG5/VCAP  
1= SS function is on RA0/AN0/C12IN0-/C2OUT/SRNQ/SS/SEG12/VCAP  
CCP2SEL: CCP2 Input/Output Pin Selection bit  
0= CCP2/P2A function is on RC1/T1OSI/CCP2/P2A  
1= CCP2/P2A function is on RB3/AN9/C12IN2-/CPS3/CCP2/P2A/VLCD3  
DS41364A-page 84  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
TRISA register are maintained set when using them as  
analog inputs. I/O pins configured as analog input  
always read ‘0’.  
6.2  
PORTA Registers  
PORTA is a 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISA  
(Register 6-4). Setting a TRISA bit (= 1) will make the  
corresponding PORTA pin an input (i.e., disable the  
output driver). Clearing a TRISA bit (= 0) will make the  
corresponding PORTA pin an output (i.e., enables  
output driver and puts the contents of the output latch  
on the selected pin). Example 6-1 shows how to  
initialize PORTA.  
Note:  
The ANSELA register must be initialized to  
configure an analog channel as a digital  
input. Pins configured as analog inputs will  
read ‘0’.  
EXAMPLE 6-1:  
INITIALIZING PORTA  
BANKSELPORTA  
;
CLRF  
BANKSELLATA  
CLRF LATA  
BANKSELANSELA  
CLRF ANSELA  
BANKSELTRISA  
PORTA  
;Init PORTA  
;Data Latch  
;
;
;digital I/O  
;
Reading the PORTA register (Register 6-2) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then  
written to the PORT data latch (LATA).  
MOVLW  
MOVWF  
0Ch  
TRISA  
;Set RA<3:2> as inputs  
;and set RA<7:4,1:0>  
;as outputs  
The TRISA register (Register 6-4) controls the PORTA  
pin output drivers, even when they are being used as  
analog inputs. The user should ensure the bits in the  
REGISTER 6-2:  
PORTA: PORTA REGISTER  
R/W-x/u  
RA7  
R/W-x/u  
RA6  
R/W-x/u  
RA5  
R/W-x/u  
RA4  
R/W-x/u  
RA3  
R/W-x/u  
RA2  
R/W-x/u  
RA1  
R/W-x/u  
RA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
RA<7:0>: PORTA I/O Value bits(1)  
Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return  
of actual I/O pin values.  
REGISTER 6-3:  
LATA: PORTA DATA LATCH REGISTER  
R/W-x/u  
LATA7  
R/W-x/u  
LATA6  
R/W-x/u  
LATA5  
R/W-x/u  
LATA4  
R/W-x/u  
LATA3  
R/W-x/u  
LATA2  
R/W-x/u  
LATA1  
R/W-x/u  
LATA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
LATA<7:0>: PORTA Output Latch Value bits(1)  
Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return  
of actual I/O pin values.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 85  
PIC16F193X/LF193X  
6.2.1  
ANSELA REGISTER  
The ANSELA register (Register 6-5) is used to  
configure the Input mode of an I/O pin to analog.  
Setting the appropriate ANSELA bit high will cause all  
digital reads on the pin to be read as ‘0’ and allow  
analog functions on the pin to operate correctly.  
The state of the ANSELA bits has no affect on digital  
output functions. A pin with TRIS clear and ANSEL set  
will still operate as a digital output, but the Input mode  
will be analog. This can cause unexpected behavior  
when executing read-modify-write instructions on the  
affected port.  
REGISTER 6-4:  
TRISA: PORTA TRI-STATE REGISTER  
R/W-1/1  
TRISA7  
bit 7  
R/W-1/1  
TRISA6  
R/W-1/1  
TRISA5  
R/W-1/1  
TRISA4  
R/W-1/1  
TRISA3  
R/W-1/1  
TRISA2  
R/W-1/1  
TRISA1  
R/W-1/1  
TRISA0  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
TRISA<7:0>: PORTA Tri-State Control bit  
1= PORTA pin configured as an input (tri-stated)  
0= PORTA pin configured as an output  
REGISTER 6-5:  
ANSELA: PORTA ANALOG SELECT REGISTER  
U-0  
U-0  
R/W-1/1  
ANSA5  
R/W-1/1  
ANSA4  
R/W-1/1  
ANSA3  
R/W-1/1  
ANSA2  
R/W-1/1  
ANSA1  
R/W-1/1  
ANSA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
ANSA<5:0>: Analog Select between Analog or Digital Function on pins RA<5:0>, respectively  
0= Digital I/O. Pin is assigned to port or digital special function.  
1= Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.  
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to  
allow external control of the voltage on the pin.  
DS41364A-page 86  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
RA4  
6.2.2  
PORTA FUNCTIONS AND OUTPUT  
PRIORITIES  
1. SEG4 (LCD)  
Each PORTA pin is multiplexed with other functions. The  
pins, their combined functions and their output priorities  
are briefly described here. For additional information,  
refer to the appropriate section in this data sheet.  
2. SRQ (SR Latch)  
3. C1OUT (Comparator)  
4. CCP5 (CCP), 28-pin only  
5. RA4  
When multiple outputs are enabled, the actual pin  
control goes to the peripheral with the lowest number in  
the following lists.  
RA5  
1. VCAP (enabled by Configuration Word)  
2. SEG5 (LCD)  
RA0  
3. SRNQ (SR Latch)  
4. C2OUT (Comparator)  
5. RA5  
1. VCAP (enabled by Configuration Word)  
2. SEG12 (LCD)  
3. SRNQ (SR Latch)  
4. C2OUT (Comparator)  
5. RA0  
RA6  
1. VCAP (enabled by Configuration Word)  
2. OSC2 (enabled by Configuration Word)  
3. CLKOUT (enabled by Configuration Word)  
4. SEG1 (LCD)  
RA1  
1. SEG7 (LCD)  
2. RA1  
5. RA6  
RA2  
RA7  
1. COM2 (LCD)  
2. DACOUT (DAC)  
3. RA2  
1. OSC1/CLKIN (enabled by Configuration Word)  
2. SEG2 (LCD)  
3. RA7  
RA3  
1. COM3 (LCD), 28-pin only  
2. SEG15 (LCD)  
3. RA3  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 87  
PIC16F193X/LF193X  
TABLE 6-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON0  
ADCON1  
ANSELA  
ADFM  
CHS4  
ADCS2  
CHS3  
ADCS1  
ANSA5  
CHS2  
ADCS0  
ANSA4  
CHS1  
CHS0  
ADREF  
ANSA2  
ADON  
ADREF0  
ANSA0  
GO/DONE  
ADREF1  
ANSA1  
137  
138  
86  
ANSA3  
APFCON  
CM1CON0  
CM2CON0  
CPSCON0  
CPSCON1  
CCP3SEL T1GSEL  
P2BSEL SRNQSEL C2OUTSEL  
SSSEL  
C1HYS  
C2HYS  
CCP2SEL  
C1SYNC  
C2SYNC  
T0XCS  
84  
C1ON  
C2ON  
CPSON  
C1OUT  
C2OUT  
C1OE  
C2OE  
C1POL  
C2POL  
C1SP  
C2SP  
148  
148  
180  
181  
128  
153  
85  
CPSRNG1 CPSRNG0 CPSOUT  
CPSCH3  
CPSCH2  
CPSCH1  
CPSCH0  
(1)  
CONFIG2  
VCAPEN1 VCAPEN0  
---  
DACNSS  
LATA0  
LMUX0  
SE0  
DACCON0  
LATA  
DACEN  
LATA7  
LCDEN  
SE7  
DACLPS  
LATA6  
SLPEN  
SE6  
DACOE  
LATA5  
WERR  
SE5  
---  
LATA4  
DACPSS1 DACPSS0  
LATA3  
CS1  
LATA2  
CS0  
LATA1  
LMUX1  
SE1  
LCDCON  
LCDSE0  
LCDSE1  
OPTION_REG  
PORTA  
243  
247  
247  
51  
SE4  
SE3  
SE2  
SE15  
SE14  
SE13  
SE12  
TMR0SE  
RA4  
SE11  
SE10  
SE9  
SE8  
WPUEN  
RA7  
INTEDG  
RA6  
TMR0CS  
RA5  
PSA  
PS2  
PS1  
PS0  
RA3  
RA2  
RA1  
RA0  
85  
SRCON0  
SSPCON1  
TRISA  
SRLEN  
WCOL  
TRISA7  
SRCLK2  
SSPOV  
TRISA6  
SRCLK1  
SSPEN  
TRISA5  
SRCLK0  
CKP  
SRQEN  
SSPM3  
TRISA3  
SRNQEN  
SSPM2  
TRISA2  
SRPS  
SSPM1  
TRISA1  
SRPR  
SSPM0  
TRISA0  
122  
277  
86  
TRISA4  
Legend:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTA.  
Note 1: PIC16F193X only.  
DS41364A-page 88  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
6.3.1  
WEAK PULL-UPS  
6.3  
PORTB and TRISB Registers  
Each of the PORTB pins has an individually configurable  
internal weak pull-up. Control bits WPUB<7:0> enable or  
disable each pull-up (see Register 6-8). Each weak  
pull-up is automatically turned off when the port pin is  
configured as an output. All pull-ups are disabled on a  
Power-on Reset by the WPUEN bit of the OPTION  
register.  
PORTB is an 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISB  
(Register 6-9). Setting a TRISB bit (= 1) will make the  
corresponding PORTB pin an input (i.e., put the  
corresponding output driver in a High-Impedance mode).  
Clearing a TRISB bit (= 0) will make the corresponding  
PORTB pin an output (i.e., enable the output driver and  
put the contents of the output latch on the selected pin).  
Example 6-2 shows how to initialize PORTB.  
6.3.2  
INTERRUPT-ON-CHANGE  
All of the PORTB pins are individually configurable as an  
interrupt-on-change pin. Control bits IOCB<7:0> enable  
or disable the interrupt function for each pin. The  
interrupt-on-change feature is disabled on a Power-on  
Reset. Reference Section 7.0 “Interrupt-On-Change”  
for more information.  
Reading the PORTB register (Register 6-6) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then written  
to the PORT data latch.  
The TRISB register (Register 6-9) controls the PORTB  
pin output drivers, even when they are being used as  
analog inputs. The user should ensure the bits in the  
TRISB register are maintained set when using them as  
analog inputs. I/O pins configured as analog input always  
read ‘0’. Example 6-2 shows how to initialize PORTB.  
EXAMPLE 6-2:  
INITIALIZING PORTB  
BANKSEL PORTB  
;
CLRF  
BANKSEL ANSELB  
CLRF ANSELB  
BANKSEL TRISB  
PORTB  
;Init PORTB  
;Make RB<7:0> digital  
;
MOVLW  
B11110000;Set RB<7:4> as inputs  
;and RB<3:0> as outputs  
MOVWF  
TRISB  
;
Note:  
The ANSELB register must be initialized to  
configure an analog channel as a digital  
input. Pins configured as analog inputs will  
read ‘0’.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 89  
PIC16F193X/LF193X  
REGISTER 6-6:  
PORTB: PORTB REGISTER  
R/W-x/u  
RB7  
R/W-x/u  
RB6  
R/W-x/u  
RB5  
R/W-x/u  
RB4  
R/W-x/u  
RB3  
R/W-x/u  
RB2  
R/W-x/u  
RB1  
R/W-x/u  
RB0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
RB<7:0>: PORTB I/O Pin bit  
1= Port pin is > VIH  
0= Port pin is < VIL  
REGISTER 6-7:  
LATB: PORTB DATA LATCH REGISTER  
R/W-x/u  
LATB7  
bit 7  
R/W-x/u  
LATB6  
R/W-x/u  
LATB5  
R/W-x/u  
LATB4  
R/W-x/u  
LATB3  
R/W-x/u  
LATB2  
R/W-x/u  
LATB1  
R/W-x/u  
LATB0  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
LATB<7:0>: PORTB Output Latch Value bits(1)  
Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is  
return of actual I/O pin values.  
REGISTER 6-8:  
WPUB: WEAK PULL-UP PORTB REGISTER  
R/W-1/1  
WPUB7  
bit 7  
R/W-1/1  
WPUB6  
R/W-1/1  
WPUB5  
R/W-1/1  
WPUB4  
R/W-1/1  
WPUB3  
R/W-1/1  
WPUB2  
R/W-1/1  
WPUB1  
R/W-1/1  
WPUB0  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
WPUB<7:0>: Weak Pull-up Register bits  
1= Pull-up enabled  
0= Pull-up disabled  
Note 1: Global WPUEN bit of the OPTION register must be cleared for individual pull-ups to be enabled.  
2: The weak pull-up device is automatically disabled if the pin is in configured as an output.  
DS41364A-page 90  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
6.3.3  
ANSELB REGISTER  
The ANSELB register (Register 6-10) is used to  
configure the Input mode of an I/O pin to analog.  
Setting the appropriate ANSELB bit high will cause all  
digital reads on the pin to be read as ‘0’ and allow  
analog functions on the pin to operate correctly.  
The state of the ANSELB bits has no affect on digital  
output functions. A pin with TRIS clear and ANSELB set  
will still operate as a digital output, but the Input mode  
will be analog. This can cause unexpected behavior  
when executing read-modify-write instructions on the  
affected port.  
REGISTER 6-9:  
TRISB: PORTB TRI-STATE REGISTER  
R/W-1/1  
TRISB7  
bit 7  
R/W-1/1  
TRISB6  
R/W-1/1  
TRISB5  
R/W-1/1  
TRISB4  
R/W-1/1  
TRISB3  
R/W-1/1  
TRISB2  
R/W-1/1  
TRISB1  
R/W-1/1  
TRISB0  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
TRISB<7:0>: PORTB Tri-State Control bit  
1= PORTB pin configured as an input (tri-stated)  
0= PORTB pin configured as an output  
REGISTER 6-10: ANSELB: PORTB ANALOG SELECT REGISTER  
U-0  
U-0  
R/W-1/1  
ANSB5  
R/W-1/1  
ANSB4  
R/W-1/1  
ANSB3  
R/W-1/1  
ANSB2  
R/W-1/1  
ANSB1  
R/W-1/1  
ANSB0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
ANSB<5:0>: Analog Select between Analog or Digital Function on Pins RB<5:0>, respectively  
0= Digital I/O. Pin is assigned to port or digital special function.  
1= Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.  
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to  
allow external control of the voltage on the pin.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 91  
PIC16F193X/LF193X  
RB3  
6.3.4  
PORTB FUNCTIONS AND OUTPUT  
PRIORITIES  
1. CCP2/P2A  
2. RB3  
Each PORTB pin is multiplexed with other functions. The  
pins, their combined functions and their output priorities  
are briefly described here. For additional information,  
refer to the appropriate section in this data sheet.  
RB4  
1. COM0  
2. P1D, 28-pin only  
3. RB4  
When multiple outputs are enabled, the actual pin  
control goes to the peripheral with the lowest number in  
the following lists.  
RB5  
RB0  
1. COM1  
2. P2B, 28-pin only  
3. P3A  
1. SEG0 (LCD)  
2. CCP4, 28-pin only  
3. RB0  
4. RB5  
RB6  
RB1  
1. ICSPCLK (Programming)  
2. ICDCLK (enabled by Configuration Word)  
3. SEG14 (LCD)  
1. P1C (ECCP1), 28-pin only  
2. RB1  
RB2  
4. RB6  
1. P1B (ECCP1), 28-pin only  
2. RB2  
RB7  
1. ICSPDAT (Programming)  
2. ICDDAT (enabled by Configuration Word)  
3. SEG13 (LCD)  
4. RB7  
TABLE 6-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON0  
ANSELB  
APFCON  
CCPxCON  
CPSCON0  
CPSCON1  
INTCON  
IOCBP  
CHS4  
CHS3  
CHS2  
ANSB4  
P2BSEL  
DCxB0  
CHS1  
ANSB3  
SRNQSEL  
CCPxM3  
CPSRNG1  
CPSCH3  
IOCIE  
CHS0  
ANSB2  
GO/DONE  
ANSB1  
ADON  
ANSB0  
CCP2SEL  
CCPxM0  
T0XCS  
CPSCH0  
IOCIF  
137  
91  
ANSB5  
CCP3SEL T1GSEL  
C2OUTSEL  
CCPxM2  
SSSEL  
84  
PxM1  
CPSON  
PxM0  
DCxB1  
CCPxM1  
184  
180  
181  
73  
CPSRNG0 CPSOUT  
CPSCH2  
TMR0IF  
IOCBP2  
IOCBN2  
IOCBF2  
LATB2  
CS0  
CPSCH1  
INTF  
GIE  
PEIE  
TMR0IE  
IOCBP5  
IOCBN5  
IOCBF5  
LATB5  
WERR  
SE5  
INTE  
IOCBP7  
IOCBN7  
IOCBF7  
LATB7  
LCDEN  
SE7  
IOCBP6  
IOCBN6  
IOCBF6  
LATB6  
SLPEN  
SE6  
IOCBP4  
IOCBN4  
IOCBF4  
LATB4  
IOCBP3  
IOCBN3  
IOCBF3  
LATB3  
IOCBP1  
IOCBN1  
IOCBF1  
LATB1  
LMUX1  
SE1  
IOCBP0  
IOCBN0  
IOCBF0  
LATB0  
104  
104  
104  
90  
IOCBN  
IOCBF  
LATB  
LCDCON  
LCDSE0  
LCDSE1  
CS1  
LMUX0  
SE0  
243  
247  
247  
51  
SE4  
SE3  
SE2  
SE15  
SE14  
SE13  
SE12  
SE11  
SE10  
SE9  
SE8  
OPTION_REG WPUEN  
INTEDG  
RB6  
TMR0CS TMR0SE  
PSA  
RB3  
PS2  
RB2  
PS1  
RB1  
PS0  
RB0  
PORTB  
T1GCON  
TRISB  
RB7  
RB5  
RB4  
90  
TMR1GE T1GPOL  
T1GTM  
TRISB5  
WPUB5  
T1GSPM T1GGO/DONE T1GVAL  
T1GSS1  
TRISB1  
WPUB1  
T1GSS0  
TRISB0  
WPUB0  
170  
91  
TRISB7  
WPUB7  
TRISB6  
WPUB6  
TRISB4  
WPUB4  
TRISB3  
WPUB3  
TRISB2  
WPUB2  
WPUB  
90  
Legend:  
x= unknown, u= unchanged, -= unimplemented locations read as ‘0’. Shaded cells are not used by PORTB.  
DS41364A-page 92  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
The TRISC register (Register 6-13) controls the PORTC  
pin output drivers, even when they are being used as  
analog inputs. The user should ensure the bits in the  
TRISC register are maintained set when using them as  
analog inputs. I/O pins configured as analog input always  
read ‘0’.  
6.4  
PORTC and TRISC Registers  
PORTC is  
a 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISC  
(Register 6-13). Setting a TRISC bit (= 1) will make the  
corresponding PORTC pin an input (i.e., put the  
corresponding output driver in a High-Impedance mode).  
Clearing a TRISC bit (= 0) will make the corresponding  
PORTC pin an output (i.e., enable the output driver and  
put the contents of the output latch on the selected pin).  
Example 6-3 shows how to initialize PORTC.  
EXAMPLE 6-3:  
INITIALIZING PORTC  
BANKSELPORTC  
;
CLRF  
BANKSELTRISC  
PORTC  
;Init PORTC  
;
Reading the PORTC register (Register 6-11) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then written  
to the PORT data latch.  
MOVLW  
MOVWF  
B‘00001100’ ;Set RC<3:2> as inputs  
TRISC  
;and set RC<7:4,1:0>  
;as outputs  
The location of the CCP2 function is controlled by the  
CCP2SEL bit in the APFCON register (refer to  
Register 6-1).  
REGISTER 6-11: PORTC: PORTC REGISTER  
R/W-x/u  
RC7  
R/W-x/u  
RC6  
R/W-x/u  
RC5  
R/W-x/u  
RC4  
R/W-x/u  
RC3  
R/W-x/u  
RC2  
R/W-x/u  
RC1  
R/W-x/u  
RC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
RC<7:0>: PORTC General Purpose I/O Pin bits  
1= Port pin is > VIH  
0= Port pin is < VIL  
REGISTER 6-12: LATC: PORTC DATA LATCH REGISTER  
R/W-x/u  
LATC7  
R/W-x/u  
LATC6  
R/W-x/u  
LATC5  
R/W-x/u  
LATC4  
R/W-x/u  
LATC3  
R/W-x/u  
LATC2  
R/W-x/u  
LATC1  
R/W-x/u  
LATC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
LATC<7:0>: PORTC Output Latch Value bits(1)  
Note 1: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is  
return of actual I/O pin values.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 93  
PIC16F193X/LF193X  
REGISTER 6-13: TRISC: PORTC TRI-STATE REGISTER  
R/W-1/1  
TRISC7  
R/W-1/1  
TRISC6  
R/W-1/1  
TRISC5  
R/W-1/1  
TRISC4  
R/W-1/1  
TRISC3  
R/W-1/1  
TRISC2  
R/W-1/1  
TRISC1  
R/W-1/1  
TRISC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
TRISC<7:0>: PORTC Tri-State Control bits  
1= PORTC pin configured as an input (tri-stated)  
0= PORTC pin configured as an output  
DS41364A-page 94  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
RC5  
6.4.1  
PORTC FUNCTIONS AND OUTPUT  
PRIORITIES  
1. SEG10 (LCD)  
2. SDL (MSSP)  
3. RC5  
Each PORTC pin is multiplexed with other functions. The  
pins, their combined functions and their output priorities  
are briefly described here. For additional information,  
refer to the appropriate section in this data sheet.  
RC6  
1. SEG9 (LCD)  
2. TX (EUSART)  
3. CK (EUSART)  
4. P3A (CCP), 28-pin only  
5. RC6  
When multiple outputs are enabled, the actual pin  
control goes to the peripheral with the lowest number in  
the following lists.  
RC0  
1. T1OSO (Timer1 Oscillator)  
2. P2B (CCP)  
RC7  
1. SEG8 (LCD)  
2. DT (EUSART)  
3. P3B (CCP), 28 pin only  
4. RC7  
3. RC0  
RC1  
1. T1OSI (Timer1 Oscillator)  
2. P2A (CCP)  
3. RC1  
RC1  
1. SEG3 (LCD)  
2. P1A (CCP)  
3. RC2  
RC3  
1. SEG6 (LCD)  
2. SCL (MSSP)  
3. SCK (MSSP)  
4. RC3  
RC4  
1. SEG11 (LCD)  
2. SDA (MSSP)  
3. RC4  
TABLE 6-3:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
APFCON  
CCPxCON  
LATC  
CCP3SEL  
PxM0  
T1GSEL  
DCxB1  
LATC5  
WERR  
SE5  
P2BSEL SRNQSEL C2OUTSEL  
SSSEL  
CCPxM1  
LATC1  
LMUX1  
SE1  
CCP2SEL  
CCPxM0  
LATC0  
LMUX0  
SE0  
84  
184  
93  
PxM1  
LATC7  
LCDEN  
SE7  
DCxB0  
LATC4  
CCPxM3  
LATC3  
CS1  
CCPxM2  
LATC2  
CS0  
LATC6  
SLPEN  
SE6  
LCDCON  
LCDSE0  
LCDSE1  
243  
247  
247  
93  
SE4  
SE3  
SE2  
SE15  
SE14  
SE13  
SE12  
SE11  
SE10  
SE9  
SE8  
PORTC  
RCSTA  
RC7  
SPEN  
WCOL  
SMP  
RC6  
RX9  
RC5  
SREN  
SSPEN  
D/A  
RC4  
CREN  
CKP  
P
RC3  
ADDEN  
SSPM3  
S
RC2  
FERR  
SSPM2  
R/W  
RC1  
OERR  
SSPM1  
UA  
RC0  
RX9D  
223  
277  
276  
169  
222  
94  
SSPCON1  
SSPSTAT  
T1CON  
TXSTA  
SSPOV  
CKE  
SSPM0  
BF  
TMR1CS1 TMR1CS0 T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
TMR1ON  
TX9D  
CSRC  
TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TRISC1  
TRISC  
TRISC7  
TRISC6  
TRISC5  
TRISC4  
TRISC3  
TRISC2  
TRISC0  
Legend:  
x = unknown, u = unchanged, - = unimplemented locations read as ‘0’. Shaded cells are not used by PORTC.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 95  
PIC16F193X/LF193X  
The TRISD register (Register 6-16) controls the  
PORTD pin output drivers, even when they are being  
used as analog inputs. The user should ensure the bits  
in the TRISD register are maintained set when using  
them as analog inputs. I/O pins configured as analog  
input always read ‘0’.  
6.5  
PORTD and TRISD Registers  
PORTD(1) is a 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISD  
(Register 6-16). Setting a TRISD bit (= 1) will make the  
corresponding PORTD pin an input (i.e., put the  
corresponding output driver in a High-Impedance mode).  
Clearing a TRISD bit (= 0) will make the corresponding  
PORTD pin an output (i.e., enable the output driver and  
put the contents of the output latch on the selected pin).  
Example 6-4 shows how to initialize PORTD.  
EXAMPLE 6-4:  
INITIALIZING PORTD  
BANKSELPORTD  
;
CLRF  
BANKSELANSELD  
CLRF ANSELD  
BANKSELTRISD  
PORTD  
;Init PORTD  
Reading the PORTD register (Register 6-14) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then written  
to the PORT data latch.  
;Make PORTD digital  
;
MOVLW  
MOVWF  
B‘00001100’ ;Set RD<3:2> as inputs  
TRISD  
;and set RD<7:4,1:0>  
;as outputs  
Note 1: PORTD is available on PIC16F1936 and  
PIC16F1938 only.  
REGISTER 6-14: PORTD: PORTD REGISTER(1)  
R/W-x/u  
RD7  
R/W-x/u  
RD6  
R/W-x/u  
RD5  
R/W-x/u  
RD4  
R/W-x/u  
RD3  
R/W-x/u  
RD2  
R/W-x/u  
RD1  
R/W-x/u  
RD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
RD<7:0>: PORTD General Purpose I/O Pin bits  
1= Port pin is > VIH  
0= Port pin is < VIL  
Note 1: PORTD is not implemented on PIC16F1933/1936/1938 devices, read as ‘0’.  
REGISTER 6-15: LATD: PORTD DATA LATCH REGISTER  
R/W-x/u  
LATD7  
R/W-x/u  
LATD6  
R/W-x/u  
LATD5  
R/W-x/u  
LATD4  
R/W-x/u  
LATD3  
R/W-x/u  
LATD2  
R/W-x/u  
LATD1  
R/W-x/u  
LATD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
LATD<7:0>: PORTD Output Latch Value bits(1,2)  
Note 1: Writes to PORTD are actually written to corresponding LATD register. Reads from PORTD register is  
return of actual I/O pin values.  
2: PORTD implemented on PIC16F1934/1937/1939/PIC16LF1934/1937/1939 devices only.  
DS41364A-page 96  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
will be analog. This can cause unexpected behavior  
when executing read-modify-write instructions on the  
affected port.  
6.5.1  
ANSELD REGISTER  
The ANSELD register (Register 6-17) is used to  
configure the Input mode of an I/O pin to analog.  
Setting the appropriate ANSELD bit high will cause all  
digital reads on the pin to be read as ‘0’ and allow  
analog functions on the pin to operate correctly.  
Note:  
The ANSELD register must be initialized  
to configure an analog channel as a digital  
input. Pins configured as analog inputs will  
read ‘0’.  
The state of the ANSELD bits has no affect on digital  
output functions. A pin with TRIS clear and ANSEL set  
will still operate as a digital output, but the Input mode  
REGISTER 6-16: TRISD: PORTD TRI-STATE REGISTER(1)  
R/W-1/1  
TRISD7  
R/W-1/1  
TRISD6  
R/W-1/1  
TRISD5  
R/W-1/1  
TRISD4  
R/W-1/1  
TRISD3  
R/W-1/1  
TRISD2  
R/W-1/1  
TRISD1  
R/W-1/1  
TRISD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
TRISD<7:0>: PORTD Tri-State Control bits  
1= PORTD pin configured as an input (tri-stated)  
0= PORTD pin configured as an output  
Note 1: TRISD is not implemented on PIC16F1933/1936/1938 devices, read as ‘0’.  
2: PORTD implemented on PIC16F1934/1937/1939/PIC16LF1934/1937/1939 devices only.  
REGISTER 6-17: ANSELD: PORTD ANALOG SELECT REGISTER(2)  
R/W-1/1  
ANSD7  
R/W-1/1  
ANSD6  
R/W-1/1  
ANSD5  
R/W-1/1  
ANSD4  
R/W-1/1  
ANSD3  
R/W-1/1  
ANSD2  
R/W-1/1  
ANSD1  
R/W-1/1  
ANSD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
ANSD<7:0>: Analog Select between Analog or Digital Function on Pins RD<7:0>, respectively  
0= Digital I/O. Pin is assigned to port or digital special function.  
1= Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.  
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to  
allow external control of the voltage on the pin.  
2: ANSELD register is not implemented on the PIC16F1933/1936/1938. Read as ‘0’.  
3: PORTD implemented on PIC16F1934/1937/1939/PIC16LF1934/1937/1939 devices only.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 97  
PIC16F193X/LF193X  
RD4  
6.5.2  
PORTD FUNCTIONS AND OUTPUT  
PRIORITIES  
1. SEG17 (LCD)  
2. P2D (CCP)  
3. RD4  
Each PORTD pin is multiplexed with other functions. The  
pins, their combined functions and their output priorities  
are briefly described here. For additional information,  
refer to the appropriate section in this data sheet.  
RD5  
1. SEG18 (LCD)  
2. P1B (CCP)  
3. RD5  
When multiple outputs are enabled, the actual pin  
control goes to the peripheral with the lowest number in  
the following lists.  
RD6  
RD0  
1. SEG19 (LCD)  
2. P1C (CCP)  
3. RD6  
1. COM3 (LCD)  
2. RD0  
RD1  
RD7  
1. CCP4 (CCP)  
2. RD1  
1. SEG20 (LCD)  
2. P1D (CCP)  
3. RD7  
RD2  
1. P2B (CCP)  
2. RD2  
RD3  
1. SEG16 (LCD)  
2. P2C (CCP)  
3. RD3  
TABLE 6-4:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTD(1)  
Registeron  
Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELD  
CCPxCON  
CPSCON0  
CPSCON1  
LATD  
ANSD7  
PxM1  
CPSON  
ANSD6  
PxM0  
ANSD5  
DCxB1  
ANSD4  
DCxB0  
ANSD3  
ANSD2  
ANSD1  
ANSD0  
CCPxM0  
T0XCS  
CPSCH0  
LATD0  
LMUX0  
SE16  
97  
184  
180  
181  
96  
CCPxM3  
CCPxM2  
CCPxM1  
CPSRNG1 CPSRNG0 CPSOUT  
CPSCH3  
LATD3  
CS1  
CPSCH2  
LATD2  
CS0  
CPSCH1  
LATD1  
LMUX1  
SE17  
LATD7  
LCDEN  
SE23  
LATD6  
SLPEN  
SE22  
RD6  
LATD5  
WERR  
SE21  
RD5  
LATD4  
LCDCON  
LCDSE2  
PORTD  
243  
247  
96  
SE20  
RD4  
SE19  
SE18  
RD7  
RD3  
RD2  
RD1  
RD0  
TRISD  
TRISD7  
TRISD6  
TRISD5  
TRISD4  
TRISD3  
TRISD2  
TRISD1  
TRISD0  
97  
Legend:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTD.  
Note 1: These registers are not implemented on the PIC16F1933/1936/1938 devices, read as ‘0’.  
DS41364A-page 98  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
port pins are read, this value is modified and then  
written to the PORT data latch. RE3 reads ‘0’ when  
MCLRE = 1.  
6.6  
PORTE and TRISE Registers  
PORTE(1) is a 4-bit wide, bidirectional port. The  
corresponding data direction register is TRISE. Setting a  
TRISE bit (= 1) will make the corresponding PORTE pin  
an input (i.e., put the corresponding output driver in a  
High-Impedance mode). Clearing a TRISE bit (= 0) will  
make the corresponding PORTE pin an output (i.e.,  
enable the output driver and put the contents of the  
output latch on the selected pin). The exception is RE3,  
which is input only and its TRIS bit will always read as  
1’. Example 6-5 shows how to initialize PORTE.  
Note 1: RE<2:0> and TRISE<2:0> pins are  
available  
on  
PIC16F1936  
and  
PIC16F1938 only.  
EXAMPLE 6-5:  
INITIALIZING PORTE  
BANKSELPORTE  
;
CLRF  
BANKSELANSELE  
CLRF ANSELE  
BANKSELTRISE  
PORTE  
;Init PORTE  
;
;digital I/O  
;
Reading the PORTE register (Register 6-18) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
MOVLW  
MOVWF  
B‘00001100’ ;Set RE<3:2> as inputs  
TRISE  
;and set RE<1:0>  
;as outputs  
REGISTER 6-18: PORTE: PORTE REGISTER  
U-0  
U-0  
U-0  
U-0  
R-x/u  
RE3  
R/W-x/u  
RE2(1)  
R/W-x/u  
RE1(1)  
R/W-x/u  
RE0(1)  
bit 0  
bit 7  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-4  
bit 3-0  
Unimplemented: Read as ‘0’  
RE<3:0>: PORTE I/O Pin bits(1)  
1= Port pin is > VIH  
0= Port pin is < VIL  
Note 1: RE<2:0> are not implemented on the PIC16F1933/1936/1938. Read as ‘0’.  
REGISTER 6-19: LATE: PORTE DATA LATCH REGISTER  
U-0  
U-0  
U-0  
U-0  
R/W-x/u  
LATE3  
R/W-x/u  
LATE2  
R/W-x/u  
LATE1  
R/W-x/u  
LATE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-4  
bit 3-0  
Unimplemented: Read as ‘0’  
LATE<3:0>: PORTE Output Latch Value bits(1)  
Note 1: Writes to PORTE are actually written to corresponding LATE register. Reads from PORTE register is  
return of actual I/O pin values.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 99  
PIC16F193X/LF193X  
REGISTER 6-20: WPUE: WEAK PULL-UP PORTE REGISTER  
U-0  
U-0  
U-0  
U-0  
R/W-1/1  
WPUE3  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
WPUE: Weak Pull-up Register bit  
1= Pull-up enabled  
0= Pull-up disabled  
bit 2-0  
Unimplemented: Read as ‘0’  
Note 1: Global WPUEN bit of the OPTION register must be cleared for individual pull-ups to be enabled.  
2: The weak pull-up device is automatically disabled if the pin is in configured as an output.  
DS41364A-page 100  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
The TRISE register (Register 6-21) controls the PORTE  
pin output drivers, even when they are being used as  
analog inputs. The user should ensure the bits in the  
TRISE register are maintained set when using them as  
analog inputs. I/O pins configured as analog input always  
read ‘0’.  
6.6.1  
ANSELE REGISTER  
The ANSELE register (Register 6-22) is used to  
configure the Input mode of an I/O pin to analog.  
Setting the appropriate ANSELE bit high will cause all  
digital reads on the pin to be read as ‘0’ and allow  
analog functions on the pin to operate correctly.  
Note:  
The ANSELE register must be initialized to  
configure an analog channel as a digital  
input. Pins configured as analog inputs will  
read ‘0’.  
The state of the ANSELE bits has no affect on digital  
output functions. A pin with TRIS clear and ANSEL set  
will still operate as a digital output, but the Input mode  
will be analog. This can cause unexpected behavior  
when executing read-modify-write instructions on the  
affected port.  
REGISTER 6-21: TRISE: PORTE TRI-STATE REGISTER  
U-0  
U-0  
U-0  
U-0  
R-1  
R/W-1  
R/W-1  
R/W-1  
(1)  
(1)  
(1)  
TRISE3  
TRISE2  
TRISE1  
TRISE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
TRISE3: RE3 Port Tri-state Control bit  
This bit is always ‘1’ as RE3 is an input only  
(1)  
bit 2-0  
TRISE<2:0>: RE<2:0> Tri-State Control bits  
1= PORTE pin configured as an input (tri-stated)  
0= PORTE pin configured as an output  
Note 1: TRISE<2:0> are not implemented on the PIC16F1933/1936/1938/PIC16LF1933/1936/1938. Read as ‘0’.  
REGISTER 6-22: ANSELE: PORTE ANALOG SELECT REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
(2)  
(2)  
(2)  
ANSE2  
ANSE1  
ANSE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-3  
bit 2-0  
Unimplemented: Read as ‘0’  
ANSE<2:0>: Analog Select between Analog or Digital Function on Pins RE<2:0>, respectively  
0= Digital I/O. Pin is assigned to port or digital special function.  
1= Analog input. Pin is assigned as analog input . Digital input buffer disabled.  
(1)  
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external  
control of the voltage on the pin.  
2: ANSELE register is not implemented on the PIC16F1933/1936/1938/PIC16LF1933/1936/1938. Read as ‘0’  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 101  
PIC16F193X/LF193X  
6.6.2  
PORTE FUNCTIONS AND OUTPUT  
PRIORITIES  
Each PORTE pin is multiplexed with other functions. The  
pins, their combined functions and their output priorities  
are briefly described here. For additional information,  
refer to the appropriate section in this data sheet.  
When multiple outputs are enabled, the actual pin  
control goes to the peripheral with the lowest number in  
the following lists.  
RE0  
1. SEG21 (LCD)  
2. CCP3/P3A (CCP)  
3. RE0  
RE1  
1. SEG22 (LCD)  
2. P3B (CCP)  
3. RE1  
RE2  
1. SEG23 (LCD)  
2. CCP5 (CCP)  
3. RE2  
TABLE 6-5:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTE(1)  
Register  
on Page  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
137  
ADCON0  
ANSELE  
CCPxCON  
LATE  
CHS4  
CHS3  
CHS2  
CHS1  
CHS0 GO/DONE ADON  
ANSE2 ANSE1 ANSE0  
101  
184  
99  
PxM1  
PxM0  
DCxB1  
DCxB0 CCPxM3 CCPxM2 CCPxM1 CCPxM0  
LATE3  
CS1  
LATE2  
CS0  
LATE1  
LMUX1  
SE17  
LATE0  
LMUX0  
SE16  
LCDCON  
LCDSE2  
PORTE  
LCDEN  
SE23  
SLPEN  
SE22  
WERR  
SE21  
243  
247  
SE20  
SE19  
RE3  
SE18  
RE2  
RE1  
RE0  
99  
TRISE  
WPUE  
TRISE3 TRISE2  
WPUE3  
TRISE1  
TRISE0  
101  
100  
Legend: x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by  
PORTE.  
Note 1: These registers are not implemented on the PIC16F1933/1936/1938 devices, read as ‘0’.  
DS41364A-page 102  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
7.4  
Clearing Interrupt Flags  
7.0  
INTERRUPT-ON-CHANGE  
The individual status flags, (IOCBFx bits), can be  
cleared by resetting them to zero. If another edge is  
detected during this clearing operation, the associated  
status flag will be set at the end of the sequence,  
regardless of the value actually being written.  
The PORTB pins can be configured to operate as  
Interrupt-On-Change (IOC) pins. An interrupt can be  
generated by detecting a signal that has either a rising  
edge or a falling edge. Any individual PORTB pin, or  
combination of PORTB pins, can be configured to  
generate an interrupt. The interrupt-on-change module  
has the following features:  
In order to ensure that no detected edge is lost while  
clearing flags, only AND operations masking out known  
changed bits should be performed. The following  
sequence is an example of what should be performed.  
• Interrupt-on-Change enable (Master Switch)  
• Individual pin configuration  
• Rising and falling edge detection  
• Individual pin interrupt flags  
EXAMPLE 7-1:  
MOVLW 0xff  
XORWF IOCBF, W  
ANDWF IOCBF, F  
Figure 7-1 is a block diagram of the IOC module.  
7.1  
Enabling the Module  
To allow individual PORTB pins to generate an interrupt,  
the IOCIE bit of the INTCON register must be set. If the  
IOCIE bit is disabled, the edge detection on the pin will  
still occur, but an interrupt will not be generated.  
7.5  
Operation in Sleep  
The Interrupt-on-change interrupt sequence will wake  
the device from Sleep mode, if the IOCIE bit is set.  
If an edge is detected while in Sleep mode, the IOCBF  
register will be updated prior to the first instruction  
executed out of Sleep.  
7.2  
Individual Pin Configuration  
For each PORTB pin, a rising edge detector and a falling  
edge detector are present. To enable a pin to detect a  
rising edge, the associated IOCBPx bit of the IOCBP  
register is set. To enable a pin to detect a falling edge,  
the associated IOCBNx bit of the IOCBN register is set.  
A pin can be configured to detect rising and falling  
edges simultaneously by setting both the IOCBPx bit  
and the IOCBNx bit of the IOCBP and IOCBN registers,  
respectively.  
7.3  
Interrupt Flags  
The IOCBFx bits located in the IOCBF register are  
status flags that correspond to the Interrupt-on-change  
pins of PORTB. If an expected edge is detected on an  
appropriately enabled pin, then the status flag for that pin  
will be set, and an interrupt will be generated if the IOCIE  
bit is set. The IOCIF bit of the INTCON register reflects  
the status of all IOCBFx bits.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 103  
PIC16F193X/LF193X  
REGISTER 7-1:  
IOCBP: INTERRUPT-ON-CHANGE POSITIVE EDGE REGISTER  
R/W-0/0  
IOCBP7  
bit 7  
R/W-0/0  
IOCBP6  
R/W-0/0  
IOCBP5  
R/W-0/0  
IOCBP4  
R/W-0/0  
IOCBP3  
R/W-0/0  
IOCBP2  
R/W-0/0  
IOCBP1  
R/W-0/0  
IOCBP0  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
IOCBP<7:0>: Interrupt-on-Change Positive Edge Enable bits  
1= Interrupt-on-Change enabled on the pin for a positive going edge. Associated Status bit and  
interrupt flag will be set upon detecting an edge.  
0= Interrupt-on-Change disabled for the associated pin.  
REGISTER 7-2:  
IOCBN: INTERRUPT-ON-CHANGE NEGATIVE EDGE REGISTER  
R/W-0/0  
IOCBN7  
bit 7  
R/W-0/0  
IOCBN6  
R/W-0/0  
IOCBN5  
R/W-0/0  
IOCBN4  
R/W-0/0  
IOCBN3  
R/W-0/0  
IOCBN2  
R/W-0/0  
IOCBN1  
R/W-0/0  
IOCBN0  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
IOCBN<7:0>: Interrupt-on-Change Negative Edge Enable bits  
1= Interrupt-on-Change enabled on the pin for a negative going edge. Associated Status bit and  
interrupt flag will be set upon detecting an edge.  
0= Interrupt-on-Change disabled for the associated pin.  
REGISTER 7-3:  
IOCBF: INTERRUPT-ON-CHANGE FLAG REGISTER  
R/W-0/0  
IOCBF7  
bit 7  
R/W-0/0  
IOCBF6  
R/W-0/0  
IOCBF5  
R/W-0/0  
IOCBF4  
R/W-0/0  
IOCBF3  
R/W-0/0  
IOCBF2  
R/W-0/0  
IOCBF1  
R/W-0/0  
IOCBF0  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
IOCBF<7:0>: Interrupt-on-Change Flag bits  
1= An enabled change was detected on the associated pin.  
Set when IOCBPx = 1and a rising edge was detected on RBx, or when IOCBNx = 1and a falling  
edge was detected on RBx.  
0= No change was detected, or the user cleared the detected change.  
DS41364A-page 104  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 7-1:  
INTERRUPT-ON-CHANGE BLOCK DIAGRAM  
IOCIE  
IOCBFx  
IOCBNx  
D
Q
From all other IOCBFx  
individual pin detectors  
CK  
R
IOC Interrupt to  
CPU Core  
RBx  
IOCBPx  
D
Q
CK  
R
Q2 Clock Cycle  
TABLE 7-1:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE  
Register  
on Page  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELB  
INTCON  
IOCBF  
ANSB5  
ANSB4  
INTE  
ANSB3  
IOCIE  
ANSB2  
ANSB1  
INTF  
ANSB0  
IOCIF  
91  
73  
GIE  
PEIE  
TMR0IE  
TMR0IF  
IOCBF7 IOCBF6 IOCBF5 IOCBF4 IOCBF3 IOCBF2 IOCBF1 IOCBF0  
IOCBN7 IOCBN6 IOCBN5 IOCBN4 IOCBN3 IOCBN2 IOCBN1 IOCBN0  
IOCBP7 IOCBP6 IOCBP5 IOCBP4 IOCBP3 IOCBP2 IOCBP1 IOCBP0  
TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0  
104  
104  
104  
91  
IOCBN  
IOCBP  
TRISB  
Legend: x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by  
Interrupt-on-Change.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 105  
PIC16F193X/LF193X  
NOTES:  
DS41364A-page 106  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
The oscillator module can be configured in one of six  
clock modes.  
8.0  
8.1  
OSCILLATOR MODULE (WITH  
FAIL-SAFE CLOCK MONITOR)  
1. EC – External clock.  
2. LP – 32 kHz Low-Power Crystal mode.  
Overview  
3. XT – Medium Gain Crystal or Ceramic Resonator  
Oscillator mode.  
The oscillator module has a wide variety of clock  
sources and selection features that allow it to be used  
in a wide range of applications while maximizing perfor-  
mance and minimizing power consumption. Figure 8-1  
illustrates a block diagram of the oscillator module.  
4. HS – High Gain Crystal or Ceramic Resonator  
mode.  
5. RC – External Resistor-Capacitor (RC).  
6. INTOSC – Internal oscillator.  
Clock sources can be configured from external  
oscillators, quartz crystal resonators, ceramic resonators  
and Resistor-Capacitor (RC) circuits. In addition, the  
system clock source can be configured from one of three  
internal oscillators, with a choice of speeds selectable via  
software. Additional clock features include:  
Clock Source modes are configured by the FOSC<2:0>  
bits in the Configuration Word Register 1 (CONFIG1).  
The internal clock can be generated from two internal  
oscillators. The HFINTOSC is  
high-frequency oscillator. The MFINTOSC is  
calibrated medium-frequency oscillator. The  
a
calibrated  
a
• Selectable system clock source between external  
or internal via software.  
LFINTOSC is an uncalibrated low-frequency oscillator.  
• Two-Speed Start-up mode, which minimizes  
latency between external oscillator start-up and  
code execution.  
• Fail-Safe Clock Monitor (FSCM) designed to  
detect a failure of the external clock source (LP,  
XT, HS, EC or RC modes) and switch  
automatically to the internal oscillator.  
FIGURE 8-1:  
SIMPLIFIED PIC® MCU CLOCK SOURCE BLOCK DIAGRAM  
External  
Oscillator  
LP, XT, HS, RC, EC  
OSC2  
Sleep  
4 x PLL  
Sleep  
OSC1  
Timer1  
CPU and  
Oscillator  
T1OSC  
FOSC<2:0> = 100  
T1OSO  
Peripherals  
T1OSCEN  
Enable  
Oscillator  
IRCF<3:0>  
T1OSI  
Internal Oscillator  
16 MHz  
8 MHz  
4 MHz  
Internal  
Oscillator  
Block  
16 MHz  
Source  
2 MHz  
1 MHz  
Clock  
Control  
500 kHz  
250 kHz  
125 kHz  
62.5 kHz  
31.25 kHz  
16 MHz  
(HFINTOSC)  
31 kHz  
Source  
FOSC<2:0> SCS<1:0>  
Clock Source Option  
for other modules  
500 kHz  
Source  
500 kHz  
(MFINTOSC)  
31 kHz  
31 kHz (LFINTOSC)  
WDT, PWRT, Fail-Safe Clock Monitor  
Two-Speed Start-up and other modules  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 107  
PIC16F193X/LF193X  
8.2  
Oscillator Control  
The Oscillator Control (OSCCON) register (Figure 8-1)  
controls the system clock and frequency selection  
options. The OSCCON register contains the following  
bits:  
• Frequency selection bits (IRCF)  
• System clock select bits (SCS)  
• Software PLL enable bit (SPLLEN)  
REGISTER 8-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
R/W-0/0  
SPLLEN  
bit 7  
R/W-0/0  
IRCF3  
R/W-1/1  
IRCF2  
R/W-1/1  
IRCF1  
R/W-1/1  
IRCF0  
U-0  
R/W-0/0  
SCS1  
R/W-0/0  
SCS0  
bit 0  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
SPLLEN: Software PLL Enable bit  
If PLLEN = 1:  
SPLLEN bit is ignored. 4x PLL is always enabled (subject to oscillator requirements)  
If PLLEN = 0:  
1= 4x PLL Is enabled  
0 = 4x PLL is disabled  
bit 6-3  
IRCF<3:0>: Internal Oscillator Frequency Select bits  
000x= 31 kHz LF  
0010= 31.25 kHz MF  
(2)  
0011= 31.25 kHz HF  
0100= 62.5 kHz MF  
0101= 125 kHz MF  
0110= 250 kHz MF  
0111= 500 kHz MF (default upon Reset)  
(2)  
1000= 125 kHz HF  
1001= 250 kHz HF  
1010= 500 kHz HF  
(2)  
(2)  
1011= 1 MHz HF  
1100= 2 MHz HF  
1101= 4 MHz HF  
1110= 8 MHz HF  
1111= 16 MHz HF  
bit 2  
Unimplemented: Read as ‘0’  
bit 1-0  
SCS<1:0>: System Clock Select bits  
1x= Internal oscillator block  
01= Timer1 oscillator  
00= Clock determined by CONFIG1[FOSC<2:0>].  
Note 1: Reset state depends on state of the IESO Configuration bit.  
2: Duplicate frequency derived from HFINTOSC.  
DS41364A-page 108  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
8.3  
Clock Source Modes  
8.4  
External Clock Modes  
Clock Source modes can be classified as external or  
internal.  
8.4.1 OSCILLATOR START-UP TIMER (OST)  
If the oscillator module is configured for LP, XT or HS  
modes, the Oscillator Start-up Timer (OST) counts  
1024 oscillations from OSC1. This occurs following a  
Power-on Reset (POR) and when the Power-up Timer  
(PWRT) has expired (if configured), or a wake-up from  
Sleep. During this time, the program counter does not  
increment and program execution is suspended. The  
OST ensures that the oscillator circuit, using a quartz  
crystal resonator or ceramic resonator, has started and  
is providing a stable system clock to the oscillator  
module.  
• External Clock modes rely on external circuitry for  
the clock source. Examples are: oscillator mod-  
ules (EC mode), quartz crystal resonators or  
ceramic resonators (LP, XT and HS modes) and  
Resistor-Capacitor (RC) mode circuits.  
• Internal clock sources are contained internally  
within the oscillator module. The oscillator module  
has two internal oscillators: the 16 MHz  
High-Frequency Internal Oscillator (HFINTOSC),  
500 kHZ (MFINTOSC) and the 31 kHz  
Low-Frequency Internal Oscillator (LFINTOSC).  
In order to minimize latency between external oscillator  
start-up and code execution, the Two-Speed Clock  
Start-up mode can be selected (see Section 8.6.3  
“Timer1 Oscillator Ready (T1OSCR) Bit”).  
The system clock can be selected between external or  
internal clock sources via the System Clock Select  
(SCS) bit of the OSCCON register. See Section 8.6  
“Clock Switching” for additional information. When  
switching between clock sources, a delay is required to  
allow the new clock to stabilize. These oscillator delays  
are shown in Table 8-1.  
TABLE 8-1:  
Switch From  
OSCILLATOR SWITCHING DELAYS  
Switch To  
Frequency  
Oscillator Delay  
LFINTOSC(1)  
MFINTOSC(1)  
HFINTOSC(1)  
31 kHz  
31.25 kHz-500 kHz  
31.25 kHz-16 MHz  
Sleep/POR  
Oscillator Warm-up Delay (TWARM)  
Sleep/POR  
LFINTOSC  
EC, RC(1)  
EC, RC(1)  
DC – 32 MHz  
DC – 32 MHz  
2 cycles  
1 cycle of each  
Timer1 Oscillator  
LP, XT, HS(1)  
Sleep/POR  
32 kHz-20 MHz  
1024 Clock Cycles (OST)  
MFINTOSC(1)  
31.25 kHz-500 kHz  
31.25 kHz-16 MHz  
Any clock source  
2 μs (approx.)  
HFINTOSC(1)  
Any clock source  
Any clock source  
PLL inactive  
LFINTOSC(1)  
Timer1 Oscillator  
PLL active  
31 kHz  
1 cycle of each  
32 kHz  
1024 Clock Cycles (OST)  
2 ms (approx.)  
16-32 MHz  
Note 1: PLL inactive.  
8.4.2  
EC MODE  
FIGURE 8-2:  
EXTERNAL CLOCK (EC)  
MODE OPERATION  
The External Clock (EC) mode allows an externally  
generated logic level as the system clock source. When  
operating in this mode, an external clock source is  
connected to the OSC1 input. OSC2/CLKOUT is  
available for general purpose I/O or CLKOUT.  
Figure 8-2 shows the pin connections for EC mode.  
OSC1/CLKIN  
Clock from  
Ext. System  
PIC® MCU  
FOSC/4 or  
(1)  
(1)  
OSC2/CLKOUT  
I/O  
The Oscillator Start-up Timer (OST) is disabled when  
EC mode is selected. Therefore, there is no delay in  
operation after a Power-on Reset (POR) or wake-up  
from Sleep. Because the PIC® MCU design is fully  
static, stopping the external clock input will have the  
effect of halting the device while leaving all data intact.  
Upon restarting the external clock, the device will  
resume operation as if no time had elapsed.  
Note 1: Output depends upon CLKOUTEN bit of the  
Configuration Word 1.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 109  
PIC16F193X/LF193X  
8.4.3  
LP, XT, HS MODES  
Note 1: Quartz crystal characteristics vary according  
to type, package and manufacturer. The  
user should consult the manufacturer data  
sheets for specifications and recommended  
application.  
The LP, XT and HS modes support the use of quartz  
crystal resonators or ceramic resonators connected to  
OSC1 and OSC2 (Figure 8-3). The mode selects a low,  
medium or high gain setting of the internal  
inverter-amplifier to support various resonator types  
and speed.  
2: Always verify oscillator performance over  
the VDD and temperature range that is  
expected for the application.  
LP Oscillator mode selects the lowest gain setting of the  
internal inverter-amplifier. LP mode current consumption  
is the least of the three modes. This mode is designed to  
drive only 32.768 kHz tuning-fork type crystals (watch  
crystals).  
3: For oscillator design assistance, reference  
the following Microchip Applications Notes:  
• AN826, “Crystal Oscillator Basics and  
Crystal Selection for rfPIC® and PIC®  
Devices” (DS00826)  
• AN849, “Basic PIC® Oscillator Design”  
(DS00849)  
• AN943, “Practical PIC® Oscillator  
XT Oscillator mode selects the intermediate gain  
setting of the internal inverter-amplifier. XT mode  
current consumption is the medium of the three modes.  
This mode is best suited to drive resonators with a  
medium drive level specification.  
Analysis and Design” (DS00943)  
HS Oscillator mode selects the highest gain setting of the  
internal inverter-amplifier. HS mode current consumption  
is the highest of the three modes. This mode is best  
suited for resonators that require a high drive setting.  
• AN949, “Making Your Oscillator Work”  
(DS00949)  
FIGURE 8-4:  
CERAMIC RESONATOR  
OPERATION  
Figure 8-3 and Figure 8-4 show typical circuits for  
quartz crystal and ceramic resonators, respectively.  
(XT OR HS MODE)  
FIGURE 8-3:  
QUARTZ CRYSTAL  
OPERATION (LP, XT OR  
HS MODE)  
PIC® MCU  
OSC1/CLKIN  
C1  
PIC® MCU  
To Internal  
Logic  
OSC1/CLKIN  
(3)  
(2)  
RP  
RF  
Sleep  
C1  
To Internal  
Logic  
Quartz  
Crystal  
(2)  
OSC2/CLKOUT  
(1)  
C2  
RF  
Sleep  
RS  
Ceramic  
Resonator  
Note 1: A series resistor (RS) may be required for  
OSC2/CLKOUT  
(1)  
C2  
RS  
ceramic resonators with low drive level.  
2: The value of RF varies with the Oscillator mode  
selected (typically between 2 MΩ to 10 MΩ).  
Note 1: A series resistor (RS) may be required for  
quartz crystals with low drive level.  
3: An additional parallel feedback resistor (RP)  
may be required for proper ceramic resonator  
operation.  
2: The value of RF varies with the Oscillator mode  
selected (typically between 2 MΩ to 10 MΩ).  
DS41364A-page 110  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
8.4.4  
EXTERNAL RC MODE  
8.5  
Internal Clock Modes  
The external Resistor-Capacitor (RC) modes support  
the use of an external RC circuit. This allows the  
designer maximum flexibility in frequency choice while  
keeping costs to a minimum when clock accuracy is not  
required.  
The oscillator module has three independent, internal  
oscillators that can be configured or selected as the  
system clock source.  
1. The HFINTOSC (High-Frequency Internal  
Oscillator) is factory calibrated and operates at  
16 MHz. The frequency of the HFINTOSC can  
be user-adjusted via software using the  
OSCTUNE register (Register 8-3).  
The RC circuit connects to OSC1. OSC2/CLKOUT is  
available for general purpose I/O or CLKOUT.  
Figure 8-5 shows the external RC mode connections.  
2. The MFINTOSC (Medium-Frequency Internal  
Oscillator) is factory calibrated and operates at  
500 kHz. The frequency of the MFINTOSC can  
be user-adjusted via software using the  
OSCTUNE register (Register 8-3).  
FIGURE 8-5:  
EXTERNAL RC MODES  
VDD  
PIC® MCU  
REXT  
3. The LFINTOSC (Low-Frequency Internal  
Oscillator) is uncalibrated and operates at  
31 kHz.  
OSC1/CLKIN  
Internal  
Clock  
CEXT  
VSS  
The system clock speed can be selected via software  
using the Internal Oscillator Frequency Select bits  
IRCF<2:0> of the OSCCON register.  
FOSC/4 or  
OSC2/CLKOUT  
(1)  
The system clock can be selected between external or  
internal clock sources via the System Clock Selection  
(SCS) bits of the OSCCON register. See Section 8.6  
“Clock Switching” for more information.  
I/O  
Recommended values: 10 kΩ ≤ REXT 100 kΩ, <3V  
3 kΩ ≤ REXT 100 kΩ, 3-5V  
CEXT > 20 pF, 2-5V  
8.5.1 INTOSC MODE  
Note 1: Output depends upon CLKOUTEN bit of the  
The INTOSC mode configures the internal oscillators  
as the system clock source when the device is  
programmed using the oscillator selection or the  
FOSC<2:0> bits in the Configuration Word Register 1  
(CONFIG1).  
Configuration Word 1.  
The RC oscillator frequency is a function of the supply  
voltage, the resistor (REXT) and capacitor (CEXT) values  
and the operating temperature. Other factors affecting  
the oscillator frequency are:  
In INTOSC mode, OSC1/CLKIN is available for general  
purpose I/O. OSC2/CLKOUT is available for general  
purpose I/O or CLKOUT.  
• threshold voltage variation  
• component tolerances  
• packaging variations in capacitance  
The user also needs to take into account variation due  
to tolerance of external RC components used.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 111  
PIC16F193X/LF193X  
8.5.2  
HFINTOSC  
8.5.4  
LFINTOSC  
The High-Frequency Internal Oscillator (HFINTOSC) is  
a factory calibrated 16 MHz internal clock source. The  
frequency of the HFINTOSC can be altered via  
software using the OSCTUNE register (Register 8-3).  
The Low-Frequency Internal Oscillator (LFINTOSC) is  
an uncalibrated 31 kHz internal clock source.  
The output of the LFINTOSC connects to a postscaler  
and multiplexer (see Figure 8-1). Select 31 kHz, via  
software, using the IRCF<2:0> bits of the OSCCON  
register. See Section 8.5.7 “Frequency Select Bits  
(IRCF)” for more information. The LFINTOSC is also the  
frequency for the Power-up Timer (PWRT), Watchdog  
Timer (WDT) and Fail-Safe Clock Monitor (FSCM).  
The output of the HFINTOSC connects to a postscaler  
and multiplexer (see Figure 8-1). One of nine  
frequencies derived from the HFINTOSC can be  
selected via software using the IRCF<3:0> bits of the  
OSCCON register. See Section 8.5.7 “Frequency  
Select Bits (IRCF)” for more information.  
The LFINTOSC is enabled by selecting 31 kHz  
(IRCF<3:0> bits of the OSCCON register = 000)as the  
system clock source (SCS bits of the OSCCON  
register = 1x), or when any of the following are  
enabled:  
The HFINTOSC is enabled by:  
• Configure the IRCF<3:0> bits for the desired HF  
frequency (see Register 8-1), and  
• FOSC<2:0> = 100, or  
• Configure the IRCF<3:0> bits for the desired LF  
frequency (see Register 8-1), and  
• Set the System Clock Source (SCS) bits of the  
OSCCON register to ‘1x’  
• FOSC<2:0> = 100, or  
The High Frequency Internal Oscillator Ready bit  
(HFIOFR) of the OSCSTAT register indicates when the  
HFINTOSC is running and can be utilized.  
• Set the System Clock Source (SCS) bits of the  
OSCCON register to ‘1x’  
Peripherals that use the LFINTOSC are:  
The High Frequency Internal Oscillator Status Locked  
bit (HFIOFL) of the OSCSTAT register indicates when  
the HFINTOSC is running within 2% of its final value.  
• LCD  
• Power-up Timer (PWRT)  
• Watchdog Timer (WDT)  
• Fail-Safe Clock Monitor (FSCM)  
The High Frequency Internal Oscillator Status Stable  
bit (HFIOFS) of the OSCSTAT register indicates when  
the HFINTOSC is running within 0.5% of its final value.  
The Low Frequency Internal Oscillator Ready bit  
(LFIOFR) of the OSCSTAT register indicates when the  
LFINTOSC is running and can be utilized.  
8.5.3  
The  
MFINTOSC  
Medium-Frequency  
Internal  
Oscillator  
(MFINTOSC) is a factory calibrated 500 kHz internal  
clock source. The frequency of the MFINTOSC can be  
altered via software using the OSCTUNE register  
(Register 8-3).  
The output of the MFINTOSC connects to a postscaler  
and multiplexer (see Figure 8-1). One of nine  
frequencies derived from the MFINTOSC can be  
selected via software using the IRCF<3:0> bits of the  
OSCCON register. See Section 8.5.7 “Frequency  
Select Bits (IRCF)” for more information.  
The MFINTOSC is enabled by:  
• Configure the IRCF<3:0> bits for the desired HF  
frequency (see Register 8-1), and  
• FOSC<2:0> = 100, or  
• Set the System Clock Source (SCS) bits of the  
OSCCON register to ‘1x’  
The Medium Frequency Internal Oscillator Ready bit  
(MFIOFR) of the OSCSTAT register indicates when the  
MFINTOSC is running and can be utilized.  
DS41364A-page 112  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
8.5.5  
OSCSTAT REGISTER  
The OSCSTAT register contains flags that represent  
the current status of the oscillators module.  
REGISTER 8-2:  
OSCSTAT: OSCILLATOR STATUS REGISTER  
R-0/q  
T1OSCR  
bit 7  
R-0/q  
PLLR  
R-q/q  
R-0/q  
R-0/q  
R-q/q  
R-0/0  
R-0/q  
OSTS  
HFIOFR  
HFIOFL  
MFIOFR  
LFIOFR  
HFIOFS  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
T1OSCR: Timer1 Oscillator Ready bit  
If the Timer1 oscillator is enabled (T1OSCEN = 1)  
1= Timer1 oscillator is ready and can be switched to  
0= Timer1 oscillator is not ready  
else Timer1 oscillator is disabled - clock source is T1CKI  
1= Timer1 oscillator is always ready  
bit 6  
bit 5  
PLLR 4x PLL Ready bit  
1= 4x PLL is ready and can be switched to  
0= 4x PLL oscillator is not ready  
OSTS: Oscillator Start-up Time-out Status bit  
1= Device running from the clock defined by FOSC<3:0> of the CONFIG1 register  
0= Device running from the internal oscillator (HFINTOSC, MFINTOSC or LFINTOSC)  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
HFIOFR: High Frequency Internal Oscillator Ready bit  
1= 16 MHz Internal Oscillator (HFINTOSC) is ready and can be switched to  
0= 16 MHz Internal Oscillator (HFINTOSC) is not ready  
HFIOFL: High Frequency Internal Oscillator Status Locked bit (2% Stable)  
1= 16 MHz Internal Oscillator (HFINTOSC) is in lock  
0= 16 MHz Internal Oscillator (HFINTOSC) has not yet locked  
MFIOFR: Medium Frequency Internal Oscillator (500 kHz HFINTOSC Output) Ready bit  
1= 500 kHz Internal Oscillator (MFINTOSC) is ready and can be switched to  
0= 500 kHz Internal Oscillator (MFINTOSC) is not ready  
LFIOFR: Low Frequency Internal Oscillator Ready bit  
1= 31 kHz Internal Oscillator (LFINTOSC) is ready and can be switched to  
0= 31 kHz Internal Oscillator (LFINTOSC) is not ready  
HFIOFS: High Frequency Internal Oscillator Stable bit (0.5% Stable)  
1= 16 MHz Internal Oscillator (HFINTOSC) is in communications stable  
0= 16 MHz Internal Oscillator (HFINTOSC) is not yet communications stable  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 113  
PIC16F193X/LF193X  
OSCTUNE does not affect the LFINTOSC frequency.  
Operation of features that depend on the LFINTOSC  
clock source frequency, such as the Power-up Timer  
(PWRT), Watchdog Timer (WDT), Fail-Safe Clock  
Monitor (FSCM) and peripherals, are not affected by the  
change in frequency.  
8.5.6  
OSCTUNE REGISTER  
The HFINTOSC and MFINTOSC are factory calibrated  
but can be adjusted in software by writing to the  
OSCTUNE register (Register 8-3).  
The default value of the OSCTUNE register is ‘0’. The  
value is a 5-bit two’s complement number.  
When the OSCTUNE register is modified, the oscillator  
frequency will begin shifting to the new frequency. Code  
execution continues during this shift. There is no  
indication that the shift has occurred.  
The OSCTUNE register applies the same adjustment to  
both  
the  
HFINTOSC  
and  
the  
MFINTOSC  
simultaneously.  
REGISTER 8-3:  
OSCTUNE: OSCILLATOR TUNING REGISTER  
U-0  
U-0  
R/W-0/0  
TUN5  
R/W-0/0  
TUN4  
R/W-0/0  
TUN3  
R/W-0/0  
TUN2  
R/W-0/0  
TUN1  
R/W-0/0  
TUN0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TUN<4:0>: Frequency Tuning bits  
011111= Maximum frequency  
011110=  
000001=  
000000= Oscillator module is running at the factory-calibrated frequency.  
111111=  
100000= Minimum frequency  
DS41364A-page 114  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
8.5.7  
FREQUENCY SELECT BITS (IRCF)  
8.5.8  
INTERNAL OSCILLATOR CLOCK  
SWITCH TIMING  
The output of the 16 MHz HFINTOSC and 31 kHz  
LFINTOSC connects to a postscaler and multiplexer  
(see Figure 8-1). The Internal Oscillator Frequency  
Select bits IRCF<2:0> of the OSCCON register select  
the frequency output of the internal oscillators. One of  
eight frequencies can be selected via software:  
When switching between the HFINTOSC, MFINTOSC  
and the LFINTOSC, the new oscillator may already be  
shut down to save power (see Figure 8-6). If this is the  
case, there is a delay after the IRCF<3:0> bits of the  
OSCCON register are modified before the frequency  
selection takes place. The OSCSTAT register will  
reflect the current active status of the HFINTOSC,  
MFINTOSC and LFINTOSC oscillators. The sequence  
of a frequency selection is as follows:  
• 16 MHz  
• 8 MHz  
• 4 MHz  
• 2 MHz  
1. IRCF<3:0> bits of the OSCCON register are  
modified.  
• 1 MHz  
• 500 kHz (Default after Reset)  
• 250 kHz  
2. If the new clock is shut down, a clock start-up  
delay is started.  
• 125 kHz  
3. Clock switch circuitry waits for a falling edge of  
the current clock.  
• 31 kHz (LFINTOSC)  
4. The current clock is held low and the clock  
switch circuitry waits for a rising edge in the new  
clock.  
Note:  
Following any Reset, the IRCF<2:0> bits of  
the OSCCON register are set to ‘110’ and  
the frequency selection is set to 4 MHz.  
The user can modify the IRCF bits to  
select a different frequency.  
5. The new clock is now active.  
6. The OSCSTAT register is updated as required.  
7. Clock switch is complete.  
See Figure 8-6 for more details.  
If the internal oscillator speed is switched between two  
clocks of the same source, there is no start-up delay  
before the new frequency is selected. Clock switching  
time delays are shown in Table 8-1.  
Start-up delay specifications are located in the  
oscillator tables of Section 28.0 “Electrical  
Specifications”.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 115  
PIC16F193X/LF193X  
FIGURE 8-6:  
INTERNAL OSCILLATOR SWITCH TIMING  
HFINTOSC/  
MFINTOSC  
LFINTOSC (FSCM and WDT disabled)  
HFINTOSC/  
MFINTOSC  
Start-up Time  
2-cycle Sync  
Running  
LFINTOSC  
0  
= 0  
IRCF <3:0>  
System Clock  
HFINTOSC/  
MFINTOSC  
LFINTOSC (Either FSCM or WDT enabled)  
HFINTOSC/  
MFINTOSC  
2-cycle Sync  
Running  
LFINTOSC  
IRCF <3:0>  
0  
= 0  
System Clock  
LFINTOSC  
HFINTOSC/MFINTOSC  
LFINTOSC turns off unless WDT or FSCM is enabled  
Running  
LFINTOSC  
Start-up Time 2-cycle Sync  
HFINTOSC/  
MFINTOSC  
= 0  
0  
IRCF <3:0>  
System Clock  
DS41364A-page 116  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
8.6  
Clock Switching  
8.7  
Two-Speed Clock Start-up Mode  
The system clock source can be switched between  
external and internal clock sources via software using  
the System Clock Select (SCS) bits of the OSCCON  
register.  
Two-Speed Start-up mode provides additional power  
savings by minimizing the latency between external  
oscillator start-up and code execution. In applications  
that make heavy use of the Sleep mode, Two-Speed  
Start-up will remove the external oscillator start-up  
time from the time spent awake and can reduce the  
overall power consumption of the device.  
8.6.1  
SYSTEM CLOCK SELECT (SCS) BIT  
The System Clock Select (SCS) bits of the OSCCON  
register selects the system clock source that is used for  
the CPU and peripherals.  
This mode allows the application to wake-up from  
Sleep, perform a few instructions using the INTOSC  
as the clock source and go back to Sleep without  
waiting for the external oscillator to become stable.  
• When the SCS bits of the OSCCON register = 00,  
the system clock source is determined by  
configuration of the FOSC<2:0> bits in the  
Configuration Word Register 1 (CONFIG1).  
Note:  
Executing a SLEEP instruction will abort  
the oscillator start-up time and will cause  
the OSTS bit of the OSCSTAT register to  
remain clear.  
• When the SCS bits of the OSCCON register = 01,  
the system clock source is the Timer1 oscillator.  
• When the SCS bits of the OSCCON register = 1x,  
the system clock source is chosen by the internal  
oscillator frequency selected by the IRCF<3:0>  
bits of the OSCCON register. After a Reset, the  
SCS bit of the OSCCON register is always  
cleared.  
When the oscillator module is configured for LP, XT or  
HS modes, the Oscillator Start-up Timer (OST) is  
enabled (see Section 8.4.1 “Oscillator Start-up  
Timer (OST)”). The OST will suspend program execu-  
tion until 1024 oscillations are counted. Two-Speed  
Start-up mode minimizes the delay in code execution  
by operating from the internal oscillator as the OST is  
counting. When the OST count reaches 1024 and the  
OSTS bit of the OSCSTAT register is set, program exe-  
cution switches to the external oscillator.  
Note:  
Any automatic clock switch, which may  
occur from Two-Speed Start-up or Fail-Safe  
Clock Monitor, does not update the SCS  
bits of the OSCCON register. The user can  
monitor the OSTS bit of the OSCSTAT  
register to determine the current system  
clock source.  
8.7.1  
TWO-SPEED START-UP MODE  
CONFIGURATION  
Two-Speed Start-up mode is configured by the  
following settings:  
8.6.2  
OSCILLATOR START-UP TIME-OUT  
STATUS (OSTS) BIT  
• IESO (of the Configuration Word Register 1) = 1;  
Internal/External Switchover bit (Two-Speed  
Start-up mode enabled).  
The Oscillator Start-up Time-out Status (OSTS) bit of  
the OSCSTAT register indicates whether the system  
clock is running from the external clock source, as  
defined by the FOSC<2:0> bits in the Configuration  
Word Register 1 (CONFIG1), or from the internal clock  
source. In particular, OSTS indicates that the Oscillator  
Start-up Timer (OST) has timed out for LP, XT or HS  
modes.  
• SCS (of the OSCCON register) = 00.  
• FOSC<2:0> bits in the Configuration Word  
Register 1 (CONFIG1) configured for LP, XT or  
HS mode.  
Two-Speed Start-up mode is entered after:  
• Power-on Reset (POR) and, if enabled, after  
Power-up Timer (PWRT) has expired, or  
8.6.3  
TIMER1 OSCILLATOR READY  
(T1OSCR) BIT  
• Wake-up from Sleep.  
The Timer1 Oscillator Ready (T1OSCR) bit of the  
OSCSTAT register indicates whether the Timer1  
oscillator is ready to be used. After the T1OSCR bit is  
set, the SCS bits can be configured to select the Timer1  
oscillator.  
If the external clock oscillator is configured to be  
anything other than LP, XT or HS mode, then  
Two-speed Start-up is disabled. This is because the  
external clock oscillator does not require any  
stabilization time after POR or an exit from Sleep.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 117  
PIC16F193X/LF193X  
8.7.2  
TWO-SPEED START-UP  
SEQUENCE  
8.7.3  
CHECKING TWO-SPEED CLOCK  
STATUS  
1. Wake-up from Power-on Reset or Sleep.  
Checking the state of the OSTS bit of the OSCSTAT  
register will confirm if the microcontroller is running  
from the external clock source, as defined by the  
FOSC<2:0> bits in the Configuration Word Register 1  
(CONFIG1), or the internal oscillator.  
2. Instructions begin execution by the internal  
oscillator at the frequency set in the IRCF<3:0>  
bits of the OSCCON register.  
3. OST enabled to count 1024 clock cycles.  
4. OST timed out, wait for falling edge of the  
internal oscillator.  
5. OSTS is set.  
6. System clock held low until the next falling edge  
of new clock (LP, XT or HS mode).  
7. System clock is switched to external clock  
source.  
FIGURE 8-7:  
TWO-SPEED START-UP  
INTOSC  
TOST  
OSC1  
0
1
1022 1023  
OSC2  
Program Counter  
PC - N  
PC + 1  
PC  
System Clock  
DS41364A-page 118  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
8.8.3  
FAIL-SAFE CONDITION CLEARING  
8.8  
Fail-Safe Clock Monitor  
The Fail-Safe condition is cleared after a Reset,  
executing a SLEEPinstruction or changing the SCS bits  
of the OSCCON register. When the SCS bits are  
changed, the OST is restarted. While the OST is  
running, the device continues to operate from the  
INTOSC selected in OSCCON. When the OST times  
out, the Fail-Safe condition is cleared and the device  
will be operating from the external clock source. The  
Fail-Safe condition must be cleared before the OSFIF  
flag can be cleared.  
The Fail-Safe Clock Monitor (FSCM) allows the device  
to continue operating should the external oscillator fail.  
The FSCM can detect oscillator failure any time after  
the Oscillator Start-up Timer (OST) has expired. The  
FSCM is enabled by setting the FCMEN bit in the  
Configuration Word Register 1 (CONFIG1). The FSCM  
is applicable to all external Oscillator modes (LP, XT,  
HS, EC, Timer1 Oscillator and RC).  
FIGURE 8-8:  
FSCM BLOCK DIAGRAM  
8.8.4  
RESET OR WAKE-UP FROM SLEEP  
Clock Monitor  
Latch  
The FSCM is designed to detect an oscillator failure  
after the Oscillator Start-up Timer (OST) has expired.  
The OST is used after waking up from Sleep and after  
any type of Reset. The OST is not used with the EC or  
RC Clock modes so that the FSCM will be active as  
soon as the Reset or wake-up has completed. When  
the FSCM is enabled, the Two-Speed Start-up is also  
enabled. Therefore, the device will always be executing  
code while the OST is operating.  
External  
Clock  
S
Q
LFINTOSC  
Oscillator  
÷ 64  
R
Q
31 kHz  
(~32 μs)  
488 Hz  
(~2 ms)  
Sample Clock  
Note:  
Due to the wide range of oscillator start-up  
times, the Fail-Safe circuit is not active  
during oscillator start-up (i.e., after exiting  
Reset or Sleep). After an appropriate  
amount of time, the user should check the  
Status bits in the OSCSTAT register to  
verify the oscillator start-up and that the  
system clock switchover has successfully  
completed.  
Clock  
Failure  
Detected  
8.8.1  
FAIL-SAFE DETECTION  
The FSCM module detects a failed oscillator by  
comparing the external oscillator to the FSCM sample  
clock. The sample clock is generated by dividing the  
LFINTOSC by 64. See Figure 8-8. Inside the fail  
detector block is a latch. The external clock sets the  
latch on each falling edge of the external clock. The  
sample clock clears the latch on each rising edge of the  
sample clock. A failure is detected when an entire  
half-cycle of the sample clock elapses before the  
external clock goes low.  
8.8.2  
FAIL-SAFE OPERATION  
When the external clock fails, the FSCM switches the  
device clock to an internal clock source and sets the bit  
flag OSFIF of the PIR2 register. Setting this flag will  
generate an interrupt if the OSFIE bit of the PIE2  
register is also set. The device firmware can then take  
steps to mitigate the problems that may arise from a  
failed clock. The system clock will continue to be  
sourced from the internal clock source until the device  
firmware successfully restarts the external oscillator  
and switches back to external operation.  
The internal clock source chosen by the FSCM is  
determined by the IRCF<3:0> bits of the OSCCON  
register. This allows the internal oscillator to be  
configured before a failure occurs.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 119  
PIC16F193X/LF193X  
FIGURE 8-9:  
FSCM TIMING DIAGRAM  
Sample Clock  
Oscillator  
Failure  
System  
Clock  
Output  
Clock Monitor Output  
(Q)  
Failure  
Detected  
OSCFIF  
Test  
Test  
Test  
Note:  
The system clock is normally at a much higher frequency than the sample clock. The relative frequencies in  
this example have been chosen for clarity.  
TABLE 8-2:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES  
Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
on Page  
CONFIG1(2)  
OSCCON  
CPD  
SPLLEN  
T1OSCR  
CP  
IRCF3  
PLLR  
MCLRE PWRTE  
WDTE  
IRCF0  
HFIOFL  
TUN3  
FOSC2  
FOSC1  
SCS1  
FOSC0  
SCS0  
126  
108  
113  
114  
75  
IRCF2  
OSTS  
TUN5  
C1IE  
IRCF1  
HFIOFR  
TUN4  
EEIE  
OSCSTAT  
OSCTUNE  
PIE2  
MFIOFR  
TUN2  
LFIOFR  
TUN1  
HFIOFS  
TUN0  
OSFIE  
OSFIF  
C2IE  
C2IF  
BCLIE  
BCLIF  
LCDIE  
CCP2IE  
CCP2IF  
TMR1ON  
PIR2  
C1IF  
EEIF  
LCDIF  
78  
T1CON  
TMR1CS1 TMR1CS0 T1CKPS1 T1CKPS0 T1OSCEN  
T1SYNC  
169  
Legend: x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by  
oscillators.  
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
2: See Configuration Word Register 1 (Register 10-1) for operation of all register bits.  
DS41364A-page 120  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
9.2  
Latch Output  
9.0  
SR LATCH  
The SRQEN and SRNQEN bits of the SRCON0 regis-  
ter control the Q and Q latch outputs. Both of the SR  
latch outputs may be directly output to an I/O pin at the  
same time.  
The module consists of a single SR Latch with multiple  
Set and Reset inputs as well as separate latch outputs.  
The SR Latch module includes the following features:  
• Programmable input selection  
• SR Latch output is available internally/externally  
• Separate Q and Q outputs  
The applicable TRIS bit of the corresponding port must  
be cleared to enable the port pin output driver.  
• Firmware Set and Reset  
9.3  
Effects of a Reset  
Upon any device Reset, the SR latch is not initialized.  
The user’s firmware is responsible to initialize the latch  
output before enabling it to the output pins.  
9.1  
Latch Operation  
The latch is a Set-Reset latch that does not depend on a  
clock source. Each of the Set and Reset inputs are  
active-high. The latch can be Set or Reset by CxOUT,  
SRI pin, or variable clock. Additionally the SRPS and the  
SRPR bits of the SRCON0 register may be used to Set  
or Reset the SR Latch, respectively. The latch is  
Reset-dominant, therefore, if both Set and Reset inputs  
are high the latch will go to the Reset state. Both the  
SRPS and SRPR bits are self resetting which means  
that a single write to either of the bits is all that is  
necessary to complete a latch Set or Reset operation.  
FIGURE 9-1:  
SR LATCH SIMPLIFIED BLOCK DIAGRAM  
SRLEN  
SRQEN  
SRPS  
Pulse  
(2)  
Gen  
SRI  
S
Q
SRSPE  
SRCLK  
SRQ  
SRSCKE  
(3)  
SYNCC2OUT  
SRSC2E  
(3)  
SYNCC1OUT  
SRSC1E  
SR  
(1)  
Latch  
SRPR  
Pulse  
(2)  
Gen  
SRI  
R
Q
SRRPE  
SRCLK  
SRNQ  
SRRCKE  
SRLEN  
(3)  
SYNCC2OUT  
SRNQEN  
SRRC2E  
(3)  
SYNCC1OUT  
SRRC1E  
Note 1: If R = 1and S = 1simultaneously, Q = 0, Q = 1  
2: Pulse generator causes a 1 Q-state pulse width.  
3: Name denotes the connection point at the comparator output.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 121  
PIC16F193X/LF193X  
TABLE 9-1:  
SRCLK  
SRCLK FREQUENCY TABLE  
Divider  
FOSC = 32 MHz FOSC = 20 MHz FOSC = 16 MHz FOSC = 4 MHz  
FOSC = 1 MHz  
111  
110  
101  
100  
011  
010  
001  
000  
512  
256  
128  
64  
32  
16  
8
62.5 kHz  
125 kHz  
250 kHz  
500 kHz  
1 MHz  
39.0 kHz  
78.1 kHz  
156 kHz  
313 kHz  
625 kHz  
1.25 MHz  
2.5 MHz  
5 MHz  
31.3 kHz  
62.5 kHz  
125 kHz  
250 kHz  
500 kHz  
1 MHz  
7.81 kHz  
15.6 kHz  
31.25 kHz  
62.5 kHz  
125 kHz  
250 kHz  
500 kHz  
1 MHz  
1.95 kHz  
3.90 kHz  
7.81 kHz  
15.6 kHz  
31.3 kHz  
62.5 kHz  
125 kHz  
250 kHz  
2 MHz  
4 MHz  
2 MHz  
4
8 MHz  
4 MHz  
REGISTER 9-1:  
SRCON0: SR LATCH CONTROL 0 REGISTER  
R/W-0/0  
SRLEN  
bit 7  
R/W-0/0  
SRCLK2  
R/W-0/0  
SRCLK1  
R/W-0/0  
SRCLK0  
R/W-0/0  
SRQEN  
R/W-0/0  
R/S-0/0  
SRPS  
R/S-0/0  
SRPR  
bit 0  
SRNQEN  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
u = bit is unchanged  
‘1’ = Bit is set  
-n/n = Value at POR and BOR/Value at all other Resets  
S = Bit is set only -  
bit 7  
SRLEN: SR Latch Enable bit  
1= SR latch is enabled  
0= SR latch is disabled  
SRCLK<2:0>: SR Latch Clock Divider bits  
bit 6-4  
000= Generates a 1 FOSC wide pulse every 4th FOSC cycle clock  
001= Generates a 1 FOSC wide pulse every 8th FOSC cycle clock  
010= Generates a 1 FOSC wide pulse every 16th FOSC cycle clock  
011= Generates a 1 FOSC wide pulse every 32th FOSC cycle clock  
100= Generates a 1 FOSC wide pulse every 64th FOSC cycle clock  
101= Generates a 1 FOSC wide pulse every 128th FOSC cycle clock  
110= Generates a 1 FOSC wide pulse every 256th FOSC cycle clock  
111= Generates a 1 FOSC wide pulse every 512th FOSC cycle clock  
bit 3  
bit 2  
SRQEN: SR Latch Q Output Enable bit  
If SRLEN = 1:  
1= Q is present on the SRQ pin  
0= Q is internal only  
If SRLEN = 0:  
SR latch is disabled  
SRNQEN: SR Latch Q Output Enable bit  
If SRLEN = 1:  
1= Q is present on the SRnQ pin  
0= Q is internal only  
If SRLEN = 0:  
SR latch is disabled  
bit 1  
bit 0  
SRPS: Pulse Set Input of the SR Latch bit  
1= Pulse input for 1 Q-clock period  
0= Do not generate pulse. Always reads back ‘0’.  
SRPR: Pulse Reset Input of the SR Latch bit  
1= Pulse input for 1 Q-clock period  
0= Do not generate pulse. Always reads back ‘0’.  
DS41364A-page 122  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
REGISTER 9-2:  
SRCON1: SR LATCH CONTROL 1 REGISTER  
R/W-0/0  
SRSPE  
bit 7  
R/W-0/0  
R/W-0/0  
SRSC2E  
R/W-0/0  
SRSC1E  
R/W-0/0  
SRRPE  
R/W-0/0  
R/W-0/0  
R/W-0/0  
SRSCKE  
SRRCKE  
SRRC2E  
SRRC1E  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
SRSPE: SR Latch Peripheral Set Enable bit  
1= SRI pin status sets SR Latch  
0= SRI pin status has no effect on SR Latch  
SRSCKE: SR Latch Set Clock Enable bit  
1= Set input of SR latch is pulsed with SRCLK  
0= Set input of SR latch is not pulsed with SRCLK  
SRSC2E: SR Latch C2 Set Enable bit  
1= C2 Comparator output sets SR Latch  
0= C2 Comparator output has no effect on SR Latch  
SRSC1E: SR Latch C1 Set Enable bit  
1= C1 Comparator output sets SR Latch  
0= C1 Comparator output has no effect on SR Latch  
SRRPE: SR Latch Peripheral Reset Enable bit  
1= SRI pin resets SR Latch  
0= SRI pin has no effect on SR Latch  
SRRCKE: SR Latch Reset Clock Enable bit  
1= Reset input of SR latch is pulsed with SRCLK  
0= Reset input of SR latch is not pulsed with SRCLK  
SRRC2E: SR Latch C2 Reset Enable bit  
1= C2 Comparator output resets SR Latch  
0= C2 Comparator output has no effect on SR Latch  
SRRC1E: SR Latch C1 Reset Enable bit  
1= C1 Comparator output resets SR Latch  
0= C1 Comparator output has no effect on SR Latch  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 123  
PIC16F193X/LF193X  
NOTES:  
DS41364A-page 124  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
10.0 DEVICE CONFIGURATION  
Device Configuration consists of Configuration Word 1  
and Configuration Word 2 registers, Code Protection  
and Device ID.  
10.1 Configuration Words  
There are several Configuration Word bits that allow  
different oscillator and memory protection options.  
These are implemented as Configuration Word 1  
register at 8007h and Configuration Word 2 register at  
8008h.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 125  
PIC16F193X/LF193X  
REGISTER 10-1: CONFIGURATION WORD 1  
R/P-1/1  
FCMEN  
R/P-1/1  
IESO  
R/P-1/1  
R/P-1/1  
R/P-1/1  
R/P-1/1  
CPD  
R/P-1/1  
CP  
CLKOUTEN  
BOREN1  
BOREN0  
bit 13  
bit 7  
bit 0  
R/P-1/1  
MCLRE  
R/P-1/1  
PWRTE  
R/P-1/1  
WDTE1  
R/P-1/1  
WDTE0  
R/P-1/1  
FOSC2  
R/P-1/1  
FOSC1  
R/P-1/1  
FOSC0  
bit 6  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 13  
bit 12  
bit 11  
FCMEN: Fail-Safe Clock Monitor Enable bit  
1= Fail-Safe Clock Monitor is enabled  
0= Fail-Safe Clock Monitor is disabled  
IESO: Internal External Switchover bit  
1= Internal/External Switchover mode is enabled  
0= Internal/External Switchover mode is disabled  
CLKOUTEN: Clock Out Enable bit  
1= CLKOUT function is disabled. I/O or oscillator function on RA6/CLKOUT  
0= CLKOUT function is enabled on RA6/CLKOUT  
(1)  
bit 10-9  
BOREN<1:0>: Brown-out Reset Enable bits  
11= BOR enabled  
10= BOR enabled during operation and disabled in Sleep  
01= BOR controlled by SBOREN bit of the PCON register  
00= BOR disabled  
(2)  
bit 8  
bit 7  
bit 6  
CPD: Data Code Protection bit  
1= Data memory code protection is disabled  
0= Data memory code protection is enabled  
(3)  
CP: Code Protection bit  
1= Program memory code protection is disabled  
0= Program memory code protection is enabled  
MCLRE: RE3/MCLR/VPP Pin Function Select bit  
If LVP bit = 1:  
This bit is ignored.  
If LVP bit = 0:  
1= RE3/MCLR/VPP pin function is MCLR; Weak pull-up enabled.  
0= RE3/MCLR/VPP pin function is digital input; MCLR internally disabled; Weak pull-up under control of WPUE3  
bit..  
(1)  
bit 5  
PWRTE: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
bit 4-3  
WDTE<1:0>: Watchdog Timer Enable bit  
11= WDT enabled  
10= WDT enabled while running and disabled in Sleep  
01= WDT controlled by the SWDTEN bit in the WDTCON register  
00= WDT disabled  
Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer.  
2: The entire data EEPROM will be erased when the code protection is turned off during an erase.  
3: The entire program memory will be erased when the code protection is turned off.  
DS41364A-page 126  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
REGISTER 10-1: CONFIGURATION WORD 1 (CONTINUED)  
bit 2-0  
FOSC<2:0>: Oscillator Selection bits  
111= ECH: External Clock, High-Power mode: CLKIN on RA7/OSC1/CLKIN  
110= ECM: External Clock, Medium-Power mode: CLKIN on RA7/OSC1/CLKIN  
101= ECL: External Clock, Low-Power mode: CLKIN on RA7/OSC1/CLKIN  
100= INTOSC oscillator: I/O function on RA7/OSC1/CLKIN  
011= EXTRC oscillator: RC function on RA7/OSC1/CLKIN  
010= HS oscillator: High-speed crystal/resonator on RA6/OSC2/CLKOUT pin and RA7/OSC1/CLKIN  
001= XT oscillator: Crystal/resonator on RA6/OSC2/CLKOUT pin and RA7/OSC1/CLKIN  
000= LP oscillator: Low-power crystal on RA6/OSC2/CLKOUT pin and RA7/OSC1/CLKIN  
Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer.  
2: The entire data EEPROM will be erased when the code protection is turned off during an erase.  
3: The entire program memory will be erased when the code protection is turned off.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 127  
PIC16F193X/LF193X  
REGISTER 10-2: CONFIGURATION WORD 2  
R/P-1/1  
LVP  
R/P-1/1  
DEBUG  
U-1  
R/P-1/1  
BORV  
R/P-1/1  
R/P-1/1  
PLLEN  
U-1  
STVREN  
bit 13  
bit 7  
bit 0  
U-1  
R/P-1/1  
R/P-1/1  
U-1  
U-1  
R/P-1/1  
WRT1  
R/P-1/1  
WRT0  
VCAPEN1  
VCAPEN0  
bit 6  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
(1)  
bit 13  
bit 12  
LVP: Low-Voltage Programming Enable bit  
1= Low-voltage programming enabled  
0= High-voltage on MCLR/VPP must be used for programming  
DEBUG: In-Circuit Debugger Mode bit  
1= In-Circuit Debugger disabled, RB6/ICSPCLK and RB7/ICSPDAT are general purpose I/O pins  
0= In-Circuit Debugger enabled, RB6/ICSPCLK and RB7/ICSPDAT are dedicated to the debugger  
bit 11  
bit 10  
Unimplemented: Read as ‘1’  
BORV: Brown-out Reset Voltage Selection bit  
1= Brown-out Reset voltage set to 1.9V  
0= Brown-out Reset voltage set to 2.7V  
bit 9  
bit 8  
STVREN: Stack Overflow/Underflow Reset Enable bit  
1= Stack Overflow or Underflow will cause a Reset  
0= Stack Overflow or Underflow will not cause a Reset  
PLLEN: PLL Enable bit  
1= 4xPLL enabled  
0= 4xPLL disabled  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘1’  
(2)  
VCAPEN<1:0>: Voltage Regulator Capacitor Enable bits  
00= VCAP functionality is enabled on RA0  
01= VCAP functionality is enabled on RA5  
10= VCAP functionality is enabled on RA6  
11= No capacitor on VCAP pin  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘1’  
WRT<1:0>: Flash Memory Self-Write Protection bits  
4 kW FLASH memory (PIC16F1933/PIC16LF1933 and PIC16F1934/PIC16LF1934 only):  
11= Write protection off  
10= 000h to 1FFh write-protected, 200h to FFFh may be modified by EECON control  
01= 000h to 7FFh write-protected, 800h to FFFh may be modified by EECON control  
00= 000h to FFFh write-protected, no addresses may be modified by EECON control  
8 kW FLASH memory (PIC16F1936/PIC16LF1936 and PIC16F1937/PIC16LF1937 only):  
11= Write protection off  
10= 000h to 1FFh write-protected, 200h to 1FFFh may be modified by EECON control  
01= 000h to FFFh write-protected, 1000h to 1FFFh may be modified by EECON control  
00= 000h to 1FFFh write-protected, no addresses may be modified by EECON control  
16 kW FLASH memory (PIC16F1938/PIC16LF1938 and PIC16F1939/PIC16LF1939 only):  
11= Write protection off  
10= 000h to 1FFh write-protected, 200h to 3FFFh may be modified by EECON control  
01= 000h to 1FFFh write-protected, 2000h to 3FFFh may be modified by EECON control  
00= 000h to 3FFFh write-protected, no addresses may be modified by EECON control  
Note 1: The LVP bit cannot be programmed to ‘0’ when Programming mode is entered via LVP.  
2: Reads as ‘11’ on PIC16LF193X only.  
DS41364A-page 128  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
10.2 Code Protection  
Code protection is controlled using the CP bit in  
Configuration Word 1. When code protection is  
enabled, all program memory locations (0000h-7FFFh)  
read as all ‘0’. Further programming is disabled for the  
program memory (0000h-7FFFh).  
Data memory is protected with its own Code-Protect bit  
(CPD). When data code protection is enabled (CPD = 0),  
all data memory locations read as ‘0’. Further  
programming is disabled for the data memory. Data  
memory can still be programmed and read during  
program execution.  
The user ID locations and Configuration Words can be  
programmed and read out regardless of the code  
protection settings.  
10.3 User ID  
Four memory locations (8000h-8003h) are designated  
as ID locations where the user can store checksum or  
other code identification numbers. These locations are  
not accessible during normal execution, but are read-  
able and writable during Program/Verify mode. Only  
the Least Significant 7 bits of the ID locations are  
reported when using MPLAB® IDE. See the  
PIC16193X/PIC16LF193X Memory Programming  
Specification” (DS41360A) for more information.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 129  
PIC16F193X/LF193X  
NOTES:  
DS41364A-page 130  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
The ADC can generate an interrupt upon completion of  
a conversion. This interrupt can be used to wake-up the  
device from Sleep.  
11.0 ANALOG-TO-DIGITAL  
CONVERTER (ADC) MODULE  
The Analog-to-Digital Converter (ADC) allows  
conversion of an analog input signal to a 10-bit binary  
representation of that signal. This device uses analog  
inputs, which are multiplexed into a single sample and  
hold circuit. The output of the sample and hold is  
connected to the input of the converter. The converter  
generates a 10-bit binary result via successive  
approximation and stores the conversion result into the  
ADC result register (ADRES). Figure 11-1 shows the  
block diagram of the ADC.  
The ADC voltage reference is software selectable to be  
either internally generated or externally supplied.  
FIGURE 11-1:  
ADC BLOCK DIAGRAM  
ADNREF = 1  
VREF-  
ADNREF = 0  
AVSS  
AVDD  
ADPREF = 0X  
ADPREF = 11  
ADPREF = 10  
VREF+  
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
AN8  
AN9  
AN10  
AN11  
AN12  
AN13  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
11101  
11110  
11111  
ADC  
10  
GO/DONE  
0= Left Justify  
ADFM  
1= Right Justify  
ADON  
16  
ADRESH ADRESL  
Temp Sens  
VSS  
(2)  
DAC  
FVR Buffer1  
CHS<4:0>  
Note 1: When ADON = 0, all multiplexer inputs are disconnected.  
2: See Section 10.0 “Fixed Voltage Reference” for more information.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 131  
PIC16F193X/LF193X  
11.1.4  
CONVERSION CLOCK  
11.1 ADC Configuration  
The source of the conversion clock is software select-  
able via the ADCS bits of the ADCON1 register. There  
are seven possible clock options:  
When configuring and using the ADC the following  
functions must be considered:  
• Port configuration  
• FOSC/2  
• Channel selection  
• FOSC/4  
• ADC voltage reference selection  
• ADC conversion clock source  
• Interrupt control  
• FOSC/8  
• FOSC/16  
• FOSC/32  
• Results formatting  
• FOSC/64  
11.1.1  
PORT CONFIGURATION  
• FRC (dedicated internal oscillator)  
The ADC can be used to convert both analog and  
digital signals. When converting analog signals, the I/O  
pin should be configured for analog by setting the  
associated TRIS and ANSEL bits. Refer to Section 6.0  
“I/O Ports” for more information.  
The time to complete one bit conversion is defined as  
TAD. One full 10-bit conversion requires 11.5 TAD peri-  
ods as shown in Figure 11-2.  
For correct conversion, the appropriate TAD specifica-  
tion must be met. Refer to the A/D conversion require-  
ments in Section 28.0 “Electrical Specifications” for  
more information. Table 11-1 gives examples of appro-  
priate ADC clock selections.  
Note:  
Analog voltages on any pin that is defined  
as a digital input may cause the input buf-  
fer to conduct excess current.  
Note:  
Unless using the FRC, any changes in the  
system clock frequency will change the  
ADC clock frequency, which may  
adversely affect the ADC result.  
11.1.2  
CHANNEL SELECTION  
The CHS bits of the ADCON0 register determine which  
channel is connected to the sample and hold circuit.  
When changing channels, a delay is required before  
starting the next conversion. Refer to Section 11.2  
“ADC Operation” for more information.  
11.1.3  
ADC VOLTAGE REFERENCE  
The ADPREF bits of the ADCON1 register provides  
control of the positive voltage reference. The positive  
voltage reference can be:  
• VREF+  
• AVDD  
• FVR (Fixed Voltage Reference)  
The ADNREF bits of the ADCON1 register provides  
control of the negative voltage reference. The negative  
voltage reference can be:  
• VREF-  
• AVSS  
See Section 14.0 “Fixed Voltage Reference” for  
more details on the fixed voltage reference.  
DS41364A-page 132  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
TABLE 11-1: ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES  
Device Frequency (FOSC)  
Device Frequency (FOSC)  
ADC Clock Period (TAD)  
ADC  
ADCS<2:0>  
Clock Source  
32 MHz  
20 MHz  
16 MHz  
8 MHz  
4 MHz  
1 MHz  
(2)  
(2)  
(2)  
(2)  
(2)  
Fosc/2  
Fosc/4  
Fosc/8  
Fosc/16  
Fosc/32  
Fosc/64  
FRC  
000  
100  
001  
101  
010  
110  
x11  
62.5ns  
125 ns  
0.5 μs  
100 ns  
200 ns  
400 ns  
125 ns  
250 ns  
250 ns  
500 ns  
500 ns  
1.0 μs  
2.0 μs  
4.0 μs  
2.0 μs  
4.0 μs  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(3)  
0.5 μs  
1.0 μs  
2.0 μs  
4.0 μs  
8.0 μs  
16.0 μs  
32.0 μs  
64.0 μs  
(3)  
(3)  
(3)  
800 ns  
1.0 μs  
800 ns  
1.6 μs  
1.0 μs  
2.0 μs  
(3)  
8.0 μs  
(3)  
(3)  
2.0 μs  
3.2 μs  
4.0 μs  
8.0 μs  
16.0 μs  
(1,4)  
(1,4)  
(1,4)  
(1,4)  
(1,4)  
(1,4)  
1.0-6.0 μs  
1.0-6.0 μs  
1.0-6.0 μs  
1.0-6.0 μs  
1.0-6.0 μs  
1.0-6.0 μs  
Legend:  
Shaded cells are outside of recommended range.  
Note 1: The FRC source has a typical TAD time of 1.6 μs for VDD.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: When the device frequency is greater than 1 MHz, the FRC clock source is only recommended if the conversion will be  
performed during Sleep.  
FIGURE 11-2:  
ANALOG-TO-DIGITAL CONVERSION TAD CYCLES  
TCY - TAD  
TAD8 TAD9 TAD10 TAD11  
TAD1 TAD2 TAD3 TAD4 TAD5 TAD6 TAD7  
b4  
b1  
b0  
b9  
b8  
b7  
b6  
b5  
b3  
b2  
Conversion starts  
Holding capacitor is disconnected from analog input (typically 100 ns)  
Set GO bit  
On the following cycle:  
ADRESH:ADRESL is loaded, GO bit is cleared,  
ADIF bit is set, holding capacitor is connected to analog input.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 133  
PIC16F193X/LF193X  
11.1.5  
INTERRUPTS  
11.1.6  
RESULT FORMATTING  
The ADC module allows for the ability to generate an  
interrupt upon completion of an Analog-to-Digital  
conversion. The ADC Interrupt Flag is the ADIF bit in  
the PIR1 register. The ADC Interrupt Enable is the  
ADIE bit in the PIE1 register. The ADIF bit must be  
cleared in software.  
The 10-bit A/D conversion result can be supplied in two  
formats, left justified or right justified. The ADFM bit of  
the ADCON1 register controls the output format.  
Figure 11-3 shows the two output formats.  
Note 1: The ADIF bit is set at the completion of  
every conversion, regardless of whether  
or not the ADC interrupt is enabled.  
2: The ADC operates during Sleep only  
when the FRC oscillator is selected.  
This interrupt can be generated while the device is  
operating or while in Sleep. If the device is in Sleep, the  
interrupt will wake-up the device. Upon waking from  
Sleep, the next instruction following the SLEEPinstruc-  
tion is always executed. If the user is attempting to  
wake-up from Sleep and resume in-line code execu-  
tion, the GIE and PEIE bits of the INTCON register  
must be disabled. If the GIE and PEIE bits of the  
INTCON register are enabled, execution will switch to  
the Interrupt Service Routine.  
Please refer to Section 11.1.5 “Interrupts” for more  
information.  
FIGURE 11-3:  
10-BIT A/D CONVERSION RESULT FORMAT  
ADRESH  
ADRESL  
LSB  
(ADFM = 0)  
MSB  
bit 7  
bit 0  
bit 0  
bit 7  
bit 7  
bit 0  
10-bit A/D Result  
Unimplemented: Read as ‘0’  
(ADFM = 1)  
MSB  
LSB  
bit 0  
bit 7  
Unimplemented: Read as ‘0’  
10-bit A/D Result  
DS41364A-page 134  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
11.2.4  
ADC OPERATION DURING SLEEP  
11.2 ADC Operation  
The ADC module can operate during Sleep. This  
requires the ADC clock source to be set to the FRC  
option. When the FRC clock source is selected, the  
ADC waits one additional instruction before starting the  
conversion. This allows the SLEEP instruction to be  
executed, which can reduce system noise during the  
conversion. If the ADC interrupt is enabled, the device  
will wake-up from Sleep when the conversion  
completes. If the ADC interrupt is disabled, the ADC  
module is turned off after the conversion completes,  
although the ADON bit remains set.  
11.2.1  
STARTING A CONVERSION  
To enable the ADC module, the ADON bit of the  
ADCON0 register must be set to a ‘1’. Setting the GO/  
DONE bit of the ADCON0 register to a ‘1’ will start the  
Analog-to-Digital conversion.  
Note:  
The GO/DONE bit should not be set in the  
same instruction that turns on the ADC.  
Refer to Section 11.2.6 “A/D Conversion  
Procedure”.  
When the ADC clock source is something other than  
FRC, a SLEEP instruction causes the present conver-  
sion to be aborted and the ADC module is turned off,  
although the ADON bit remains set.  
11.2.2  
COMPLETION OF A CONVERSION  
When the conversion is complete, the ADC module will:  
• Clear the GO/DONE bit  
• Set the ADIF Interrupt Flag bit  
11.2.5  
SPECIAL EVENT TRIGGER  
• Update the ADRESH and ADRESL registers with  
new conversion result  
The Special Event Trigger of the CCP5 module allows  
periodic ADC measurements without software inter-  
vention. When this trigger occurs, the GO/DONE bit is  
set by hardware and the Timer1 counter resets to zero.  
11.2.3  
TERMINATING A CONVERSION  
If a conversion must be terminated before completion,  
the GO/DONE bit can be cleared in software. The  
ADRESH and ADRESL registers will be updated with  
the partially complete Analog-to-Digital conversion  
sample. Incomplete bits will match the last bit  
converted.  
Using the Special Event Trigger does not assure proper  
ADC timing. It is the user’s responsibility to ensure that  
the ADC timing requirements are met.  
Refer to Section 19.0 “Capture/Compare/PWM Mod-  
ules (ECCP1, ECCP2, ECCP3, CCP4, CCP5)” for  
more information.  
Note:  
A device Reset forces all registers to their  
Reset state. Thus, the ADC module is  
turned off and any pending conversion is  
terminated.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 135  
PIC16F193X/LF193X  
11.2.6  
A/D CONVERSION PROCEDURE  
EXAMPLE 11-1:  
A/D CONVERSION  
This is an example procedure for using the ADC to  
perform an Analog-to-Digital conversion:  
;This code block configures the ADC  
;for polling, Vdd reference, Frc clock  
;and AN0 input.  
;
1. Configure Port:  
• Disable pin output driver (Refer to the TRIS  
register)  
;Conversion start & polling for completion  
; are included.  
;
• Configure pin as analog (Refer to the ANSEL  
register)  
BANKSEL  
MOVLW  
MOVWF  
BANKSEL  
BSF  
BANKSEL  
BSF  
BANKSEL  
MOVLW  
MOVWF  
CALL  
BSF  
BTFSC  
GOTO  
BANKSEL  
MOVF  
MOVWF  
BANKSEL  
MOVF  
ADCON1  
;
B’01110000’ ;ADC Frc clock  
ADCON1  
TRISA  
TRISA,0  
ANSEL  
ANSEL,0  
ADCON0  
B’10000001’ ;Right justify,  
ADCON0  
SampleTime  
ADCON0,GO  
ADCON0,GO  
$-1  
2. Configure the ADC module:  
• Select ADC conversion clock  
• Configure voltage reference  
• Select ADC input channel  
• Turn on ADC module  
;
;
;Set RA0 to input  
;
;Set RA0 to analog  
;
3. Configure ADC interrupt (optional):  
• Clear ADC interrupt flag  
;Vdd Vref, AN0, On  
;Acquisiton delay  
;Start conversion  
;Is conversion done?  
;No, test again  
;
;Read upper 2 bits  
;store in GPR space  
;
• Enable ADC interrupt  
• Enable peripheral interrupt  
• Enable global interrupt(1)  
ADRESH  
4. Wait the required acquisition time(2)  
.
ADRESH,W  
RESULTHI  
ADRESL  
ADRESL,W  
RESULTLO  
5. Start conversion by setting the GO/DONE bit.  
6. Wait for ADC conversion to complete by one of  
the following:  
;Read lower 8 bits  
;Store in GPR space  
MOVWF  
• Polling the GO/DONE bit  
• Waiting for the ADC interrupt (interrupts  
enabled)  
7. Read ADC Result.  
8. Clear the ADC interrupt flag (required if interrupt  
is enabled).  
Note 1: The global interrupt can be disabled if the  
user is attempting to wake-up from Sleep  
and resume in-line code execution.  
2: Refer to Section 11.3 “A/D Acquisition  
Requirements”.  
DS41364A-page 136  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
11.2.7  
ADC REGISTER DEFINITIONS  
The following registers are used to control the  
operation of the ADC.  
REGISTER 11-1: ADCON0: A/D CONTROL REGISTER 0  
U-0  
R/W-0/0  
CHS4  
R/W-0/0  
CHS3  
R/W-0/0  
CHS2  
R/W-0/0  
CHS1  
R/W-0/0  
CHS0  
R/W-0/0  
R/W-0/0  
ADON  
GO/DONE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-2  
CHS<4:0>: Analog Channel Select bits  
00000= AN0  
00001= AN1  
00010= AN2  
00011= AN3  
00100= AN4  
00101= AN5  
00110= AN6  
00111= AN7  
01000= AN8  
01001= AN9  
01010= AN10  
01011= AN11  
01100= AN12  
01101= AN13  
01110= Reserved. No channel connected.  
.
.
.
11100= Reserved. No channel connected.  
11101= Temperature Reference from band gap  
11110= DAC output (aka CVREF output)  
11111=Fixed Voltage Reference (FVR) Buffer 1 Output  
bit 1  
bit 0  
GO/DONE: A/D Conversion Status bit  
1= A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle.  
This bit is automatically cleared by hardware when the A/D conversion has completed.  
0= A/D conversion completed/not in progress  
ADON: ADC Enable bit  
1= ADC is enabled  
0= ADC is disabled and consumes no operating current  
Note 1: See Section 10.0 “Fixed Voltage Reference” for more information.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 137  
PIC16F193X/LF193X  
REGISTER 11-2: ADCON1: A/D CONTROL REGISTER 1  
R/W-0/0  
ADFM  
R/W-0/0  
ADCS2  
R/W-0/0  
ADCS1  
R/W-0/0  
ADCS0  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
ADNREF  
ADPREF1  
ADPREF0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
ADFM: A/D Result Format Select bit  
1= Right justified. Six Most Significant bits of ADRESH are set to ‘0’ when the conversion result is  
loaded.  
0= Left justified. Six Least Significant bits of ADRESL are set to ‘0’ when the conversion result is  
loaded.  
bit 6-4  
ADCS<2:0>: A/D Conversion Clock Select bits  
000=FOSC/2  
001=FOSC/8  
010=FOSC/32  
011=FRC (clock supplied from a dedicated RC oscillator)  
100=FOSC/4  
101=FOSC/16  
110=FOSC/64  
111=FRC (clock supplied from a dedicated RC oscillator)  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
ADNREF: A/D Negative Voltage Reference Configuration bit  
0= VREF- is connected to AVSS  
1= VREF- is connected to external VREF-  
bit 1-0  
ADPREF<1:0>: A/D Positive Voltage Reference Configuration bits  
00= VREF+ is connected to AVDD  
01= Reserved  
10= VREF+ is connected to external VREF+  
11= VREF+ is connected to internal fixed voltage reference  
REGISTER 11-3: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
ADRES9  
ADRES8  
ADRES7  
ADRES6  
ADRES5  
ADRES4  
ADRES3  
ADRES2  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
ADRES<9:2>: ADC Result Register bits  
Upper 8 bits of 10-bit conversion result  
DS41364A-page 138  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
REGISTER 11-4: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
ADRES1  
ADRES0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-6  
bit 5-0  
ADRES<1:0>: ADC Result Register bits  
Lower 2 bits of 10-bit conversion result  
Reserved: Do not use.  
REGISTER 11-5: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
ADRES9  
ADRES8  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-2  
bit 1-0  
Reserved: Do not use.  
ADRES<9:8>: ADC Result Register bits  
Upper 2 bits of 10-bit conversion result  
REGISTER 11-6: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
ADRES7  
ADRES6  
ADRES5  
ADRES4  
ADRES3  
ADRES2  
ADRES1  
ADRES0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
ADRES<7:0>: ADC Result Register bits  
Lower 8 bits of 10-bit conversion result  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 139  
PIC16F193X/LF193X  
source impedance is decreased, the acquisition time  
may be decreased. After the analog input channel is  
selected (or changed), an A/D acquisition must be  
done before the conversion can be started. To calculate  
the minimum acquisition time, Equation 11-1 may be  
used. This equation assumes that 1/2 LSb error is used  
(256 steps for the ADC). The 1/2 LSb error is the  
maximum error allowed for the ADC to meet its  
specified resolution.  
11.3 A/D Acquisition Requirements  
For the ADC to meet its specified accuracy, the charge  
holding capacitor (CHOLD) must be allowed to fully  
charge to the input channel voltage level. The Analog  
Input model is shown in Figure 11-4. The source  
impedance (RS) and the internal sampling switch (RSS)  
impedance directly affect the time required to charge  
the capacitor CHOLD. The sampling switch (RSS)  
impedance varies over the device voltage (VDD), refer  
to Figure 11-4. The maximum recommended  
impedance for analog sources is 10 kΩ. As the  
EQUATION 11-1: ACQUISITION TIME EXAMPLE  
Temperature = 50°C and external impedance of 10kΩ 5.0V VDD  
Assumptions:  
TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient  
= TAMP + TC + TCOFF  
= 2µs + TC + [(Temperature - 25°C)(0.05µs/°C)]  
The value for TC can be approximated with the following equations:  
1
;[1] VCHOLD charged to within 1/2 lsb  
VAPPLIED 1 -------------------------- = VCHOLD  
(2n + 1) 1  
TC  
---------  
VAPPLIED 1 e RC = VCHOLD  
;[2] VCHOLD charge response to VAPPLIED  
;combining [1] and [2]  
Tc  
--------  
1
VAPPLIED 1 eRC = VAPPLIED 1 --------------------------  
(2n + 1) 1  
Note: Where n = number of bits of the ADC.  
Solving for TC:  
TC = CHOLD(RIC + RSS + RS) ln(1/511)  
= 10pF(1kΩ + 7kΩ + 10kΩ) ln(0.001957)  
= 1.12µs  
Therefore:  
TACQ = 2ΜS + 1.12ΜS + [(50°C- 25°C)(0.05ΜS/°C)]  
= 4.42ΜS  
Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.  
2: The charge holding capacitor (CHOLD) is not discharged after each conversion.  
3: The maximum recommended impedance for analog sources is 10 kΩ. This is required to meet the pin  
leakage specification.  
DS41364A-page 140  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 11-4:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT 0.6V  
ANx  
SS  
RIC 1k  
Rss  
Rs  
(1)  
CPIN  
5 pF  
VA  
I LEAKAGE  
CHOLD = 10 pF  
VSS/VREF-  
VT 0.6V  
6V  
5V  
RSS  
VDD 4V  
3V  
Legend:  
CHOLD  
CPIN  
= Sample/Hold Capacitance  
= Input Capacitance  
2V  
I LEAKAGE = Leakage current at the pin due to  
various junctions  
5 6 7 8 9 1011  
Sampling Switch  
RIC  
RSS  
SS  
VT  
= Interconnect Resistance  
= Resistance of Sampling Switch  
= Sampling Switch  
(kΩ)  
= Threshold Voltage  
Note 1: Refer to Section 28.0 “Electrical Specifications”.  
FIGURE 11-5:  
ADC TRANSFER FUNCTION  
Full-Scale Range  
FFh  
FEh  
FDh  
FCh  
FBh  
1 LSB ideal  
Full-Scale  
Transition  
04h  
03h  
02h  
01h  
00h  
Analog Input Voltage  
1 LSB ideal  
Zero-Scale  
Transition  
VREF  
VSS  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 141  
PIC16F193X/LF193X  
TABLE 11-2: SUMMARY OF ASSOCIATED ADC REGISTERS  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
137  
138  
138  
139  
86  
ADCON0  
ADCON1  
ADRESH  
CHS4  
CHS3  
CHS2  
CHS1  
CHS0  
GO/DONE  
ADON  
ADFM  
ADCS2  
ADCS1  
ADCS0  
ADNREF ADPREF1 ADPREF0  
A/D Result Register High  
A/D Result Register Low  
ADRESL  
ANSELA  
ANSELB  
ANSELE  
CCP2CON  
ANSA5  
ANSB5  
ANSA4  
ANSB4  
ANSA3  
ANSB3  
ANSA2  
ANSB2  
ANSE2  
CCP1M2  
TMR0IF  
CCP1IE  
CCP1IF  
TRISA2  
TRISB2  
TRISE2  
ANSA1  
ANSB1  
ANSE1  
CCP1M1  
INTF  
ANSA0  
ANSB0  
ANSE0  
CCP1M0  
91  
101  
P1M1  
P1M0  
DC1B1  
DC1B0  
CCP1M3  
RBIE  
184  
73  
INTCON  
PIE1  
GIE  
TMR1GIE  
TMR1GIF  
TRISA7  
TRISB7  
PEIE  
ADIE  
TMR0IE  
RCIE  
RCIF  
INTE  
TXIE  
RBIF  
SSPIE  
SSPIF  
TRISA3  
TRISB3  
TRISE3  
TMR2IE  
TMR2IF  
TRISA1  
TRISB1  
TRISE1  
TMR1IE  
TMR1IF  
TRISA0  
TRISB0  
TRISE0  
ADFVR0  
DACNSS  
DACR0  
74  
PIR1  
ADIF  
TXIF  
77  
TRISA  
TRISA6  
TRISB6  
TRISA5  
TRISB5  
TRISA4  
TRISB4  
86  
TRISB  
91  
TRISE  
101  
156  
153  
153  
FVRCON  
DACCON0  
DACCON1  
Legend:  
FVREN  
DACEN  
---  
FVRRDY  
DACLPS  
---  
TSEN  
DACOE  
---  
TSRNG  
---  
CDAFVR1 CDAFVR0 ADFVR1  
DACPSS1 DACPSS0  
DACR3 DACR2  
---  
DACR4  
DACR1  
x= unknown, u= unchanged, = unimplemented read as ‘0’, q= value depends on condition. Shaded cells are not  
used for ADC module.  
DS41364A-page 142  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 12-1:  
SINGLE COMPARATOR  
12.0 COMPARATOR MODULE  
Comparators are used to interface analog circuits to a  
digital circuit by comparing two analog voltages and  
providing a digital indication of their relative magnitudes.  
Comparators are very useful mixed signal building  
blocks because they provide analog functionality  
independent of program execution. The analog  
comparator module includes the following features:  
VIN+  
VIN-  
+
Output  
VIN-  
VIN+  
• Independent comparator control  
• Programmable input selection  
• Comparator output is available internally/externally  
• Programmable output polarity  
• Interrupt-on-change  
Output  
• Wake-up from Sleep  
• Programmable Speed/Power optimization  
• PWM shutdown  
Note:  
The black areas of the output of the  
comparator represents the uncertainty  
due to input offsets and response time.  
• Programmable and fixed voltage reference  
12.1  
Comparator Overview  
A single comparator is shown in Figure 12-1 along with  
the relationship between the analog input levels and  
the digital output. When the analog voltage at VIN+ is  
less than the analog voltage at VIN-, the output of the  
comparator is a digital low level. When the analog  
voltage at VIN+ is greater than the analog voltage at  
VIN-, the output of the comparator is a digital high level.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 143  
PIC16F193X/LF193X  
FIGURE 12-2:  
COMPARATOR MODULE SIMPLIFIED BLOCK DIAGRAM  
CxNCH<1:0>  
CxON(1)  
2
CxINTP  
Interrupt  
det  
0
CXIN0-  
CXIN1-  
CXIN2-  
CXIN3-  
Set CxIF  
1
CxINTN  
Interrupt  
det  
MUX  
2
(2)  
CXPOL  
3
CxVN  
CxVP  
-
CXOUT  
To Data Bus  
D
Q
Cx(3)  
MCXOUT  
+
Q1  
EN  
0
CXIN+  
CxHYS  
MUX  
DAC  
1
(2)  
CxSP  
To ECCP PWM Logic  
CXOE  
2
3
FVR Buffer2  
CXSYNC  
CxON  
VSS  
TRIS bit  
CXOUT  
CXPCH<1:0>  
0
1
2
D
Q
(from Timer1)  
T1CLK  
To Timer1  
SYNCCXOUT  
Note 1:  
When CxON = 0, the Comparator will produce a ‘0’ at the output  
When CxON = 0, all multiplexer inputs are disconnected.  
Output of comparator can be frozen during debugging.  
2:  
3:  
DS41364A-page 144  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
12.2.3  
COMPARATOR OUTPUT POLARITY  
12.2 Comparator Control  
Inverting the output of the comparator is functionally  
equivalent to swapping the comparator inputs. The  
polarity of the comparator output can be inverted by  
setting the CxPOL bit of the CMxCON0 register.  
Clearing the CxPOL bit results in a non-inverted output.  
Each comparator has 2 control registers: CMxCON0 and  
CMxCON1.  
The CMxCON0 registers (see Register 12-1) contain  
Control and Status bits for the following:  
• Enable  
Table 12-1 shows the output state versus input  
conditions, including polarity control.  
• Output selection  
• Output polarity  
TABLE 12-1: COMPARATOR OUTPUT  
STATE VS. INPUT  
• Speed/Power selection  
• Hysteresis enable  
• Output synchronization  
CONDITIONS  
Input Condition  
CxPOL  
CxOUT  
The CMxCON1 registers (see Register 12-2) contain  
Control bits for the following:  
CxVN > CxVP  
CxVN < CxVP  
CxVN > CxVP  
CxVN < CxVP  
0
0
1
1
0
1
0
1
• Interrupt enable  
• Interrupt edge polarity  
• Positive input channel selection  
• Negative input channel selection  
12.2.4  
COMPARATOR SPEED/POWER  
SELECTION  
12.2.1  
COMPARATOR ENABLE  
The trade-off between speed or power can be opti-  
mized during program execution with the CxSP control  
bit. The default state for this bit is ‘1’ which selects the  
normal speed mode. Device power consumption can  
be optimized at the cost of slower comparator propaga-  
tion delay by clearing the CxSP bit to ‘0’.  
Setting the CxON bit of the CMxCON0 register enables  
the comparator for operation. Clearing the CxON bit  
disables the comparator resulting in minimum current  
consumption.  
12.2.2  
COMPARATOR OUTPUT  
SELECTION  
The output of the comparator can be monitored by  
reading either the CxOUT bit of the CMxCON0 register  
or the MCxOUT bit of the CMOUT register. In order to  
make the output available for an external connection,  
the following conditions must be true:  
• CxOE bit of the CMxCON0 register must be set  
• Corresponding TRIS bit must be cleared  
• CxON bit of the CMxCON0 register must be set  
Note 1: The CxOE bit overrides the PORT data  
latch. Setting the CxON has no impact on  
the port override.  
2: The internal output of the comparator is  
latched with each instruction cycle.  
Unless otherwise specified, external  
outputs are not latched.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 145  
PIC16F193X/LF193X  
To enable the interrupt, you must set the following bits:  
12.3 Comparator Hysteresis  
• CxON, CxPOL and CxSP bits of the CMxCON0  
register  
A selectable amount of separation voltage can be  
added to the input pins of each comparator to provide  
a hysteresis function to the overall operation.  
• CxIE bit of the PIE2 register  
• CxINTP bit of the CMxCON1 register (for a rising  
edge detection)  
These hysteresis levels change as a function of the  
comparator’s Speed/Power mode selection.  
• CxINTN bit of the CMxCON1 register (for a falling  
edge detection)  
Table 12-2 shows the hysteresis levels.  
• PEIE and GIE bits of the INTCON register  
TABLE 12-2: HYSTERESIS LEVELS  
The associated interrupt flag bit, CxIF bit of the PIR2  
register, must be cleared in software. If another edge is  
detected while this flag is being cleared, the flag will still  
be set at the end of the sequence.  
CxSP  
CxHYS Enabled CxHYS Disabled  
0
1
± 3mV  
<< ± 1mV  
± 3mV  
± 20mV  
Note:  
Although a comparator is disabled, an  
interrupt can be generated by changing  
the output polarity with the CxPOL bit of  
the CMxCON0 register, or by switching the  
comparator on or off with the CxON bit of  
the CMxCON0 register.  
These levels are approximate.  
See Section 28.0 “Electrical Specifications” for  
more information.  
12.4 Timer1 Gate Operation  
The output resulting from a comparator operation can  
be used as a source for gate control of Timer1. See  
Section 16.6 “Timer1 Gate” for more information.  
This feature is useful for timing the duration or interval  
of an analog event.  
12.6 Comparator Positive Input  
Selection  
Configuring the CxPCH<1:0> bits of the CMxCON1  
register directs an internal voltage reference or an  
analog pin to the non-inverting input of the comparator:  
It is recommended that the comparator output be syn-  
chronized to Timer1. This ensures that Timer1 does not  
increment while a change in the comparator is occur-  
ring.  
• CxIN+ analog pin  
• DAC  
• FVR (Fixed Voltage Reference)  
• AVSS (Analog Ground)  
12.4.1  
COMPARATOR OUTPUT  
SYNCHRONIZATION  
See Section 14.0 “Fixed Voltage Reference” for  
more information on the fixed voltage reference  
module.  
The output from either comparator, C1 or C2, can be  
synchronized with Timer1 by setting the CxSYNC bit of  
the CMxCON0 register.  
See Section 11.0 “Analog-to-Digital Converter  
(ADC) Module” for more information on the CVDAC  
input signal.  
Once enabled, the comparator output is latched on the  
falling edge of the Timer1 source clock. If a prescaler is  
used with Timer1, the comparator output is latched after  
the prescaling function. To prevent a race condition, the  
comparator output is latched on the falling edge of the  
Timer1 clock source and Timer1 increments on the  
rising edge of its clock source. See the Comparator  
Block Diagram (Figure 12-2) and the Timer1 Block  
Diagram (Figure 16-1) for more information.  
Any time the comparator is disabled (CxON = 0), all  
comparator inputs are disabled.  
12.7 Comparator Negative Input  
Selection  
The CxNCH<1:0> bits of the CMxCON0 register direct  
one of four analog pins to the comparator inverting  
input.  
12.5 Comparator Interrupt  
Note:  
To use CxIN+ and CxINx- pins as analog  
input, the appropriate bits must be set in  
the ANSEL register and the corresponding  
TRIS bits must also be set to disable the  
output drivers.  
An interrupt can be generated upon a change in the  
output value of the comparator for each comparator, a  
rising edge detector and a Falling edge detector are  
present.  
When either edge detector is triggered and its associ-  
ated enable bit is set (CxINTP and/or CxINTN bits of  
the CMxCON1 register), the Corresponding Interrupt  
Flag bit (CxIF bit of the PIR2 register) will be set.  
DS41364A-page 146  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
12.8 Comparator Response Time  
12.10 Analog Input Connection  
Considerations  
The comparator output is indeterminate for a period of  
time after the change of an input source or the selection  
of a new reference voltage. This period is referred to as  
the response time. The response time of the comparator  
differs from the settling time of the voltage reference.  
Therefore, both of these times must be considered when  
determining the total response time to a comparator  
input change. See the Comparator and Voltage Refer-  
ence Specifications in Section 28.0 “Electrical Specifi-  
cations” for more details.  
A simplified circuit for an analog input is shown in  
Figure 12-3. Since the analog input pins share their  
connection with a digital input, they have reverse  
biased ESD protection diodes to VDD and VSS. The  
analog input, therefore, must be between VSS and VDD.  
If the input voltage deviates from this range by more  
than 0.6V in either direction, one of the diodes is for-  
ward biased and a latch-up may occur.  
A maximum source impedance of 10 kΩ is recommended  
for the analog sources. Also, any external component  
connected to an analog input pin, such as a capacitor or  
a Zener diode, should have very little leakage current to  
minimize inaccuracies introduced.  
12.9 Interaction with ECCP Logic  
The C1 and C2 comparators can be used as general  
purpose comparators. Their outputs can be brought  
out to the C1OUT and C2OUT pins. However, when  
the ECCP Auto-Shutdown is active it can use one or  
both comparators. If auto-restart is also enabled the  
comparators can be configured as a closed loop  
analog feedback to the ECCP thereby, creating an  
analog controlled PWM.  
Note 1: When reading a PORT register, all pins  
configured as analog inputs will read as a  
0’. Pins configured as digital inputs will  
convert as an analog input, according to  
the input specification.  
2: Analog levels on any pin defined as a  
digital input, may cause the input buffer to  
consume more current than is specified.  
FIGURE 12-3:  
ANALOG INPUT MODEL  
VDD  
VT 0.6V  
RIC  
Rs < 10K  
To Comparator  
AIN  
(1)  
ILEAKAGE  
CPIN  
5 pF  
VA  
VT 0.6V  
Vss  
Legend: CPIN  
= Input Capacitance  
ILEAKAGE = Leakage Current at the pin due to various junctions  
RIC  
RS  
VA  
= Interconnect Resistance  
= Source Impedance  
= Analog Voltage  
VT  
= Threshold Voltage  
Note 1: See Section 28.0 “Electrical Specifications”  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 147  
PIC16F193X/LF193X  
REGISTER 12-1: CMxCON0: COMPARATOR X CONTROL REGISTER 0  
R/W-0/0  
CxON  
R-0/0  
R/W-0/0  
CxOE  
R/W-0/0  
CxPOL  
U-0  
R/W-1/1  
CxSP  
R/W-0/0  
CxHYS  
R/W-0/0  
CxSYNC  
CxOUT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
bit 6  
CxON: Comparator Enable bit  
1= Comparator is enabled and consumes no active power  
0= Comparator is disabled  
CxOUT: Comparator Output bit  
If CxPOL = 1 (inverted polarity):  
1= CxVP < CxVN  
0= CxVP > CxVN  
If CxPOL = 0 (non-inverted polarity):  
1= CxVP > CxVN  
0= CxVP < CxVN  
bit 5  
bit 4  
CxOE: Comparator Output Enable bit  
1= CxOUT is present on the CxOUT pin. Requires that the associated TRIS bit be cleared to actually  
drive the pin. Not affected by CxON.  
0= CxOUT is internal only  
CxPOL: Comparator Output Polarity Select bit  
1= Comparator output is inverted  
0= Comparator output is not inverted  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
CxSP: Comparator Speed/Power Select bit  
1= Comparator operates in normal power, higher speed mode  
0= Comparator operates in low-power, low-speed mode  
bit 1  
bit 0  
CxHYS: Comparator Hysteresis Enable bit  
1= Comparator hysteresis enabled  
0= Comparator hysteresis disabled  
CxSYNC: Comparator Output Synchronous Mode bit  
1= Comparator output to Timer1 and I/O pin is synchronous to changes on tmr1_clk. Output updated  
on the falling edge of tmr1_clk.  
0= Comparator output to Timer1 and I/O pin is asynchronous.  
Refer to Figure 12-2.  
DS41364A-page 148  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
REGISTER 12-2: CMxCON1: COMPARATOR CX CONTROL REGISTER 1  
R/W-0/0  
CxINTP  
R/W-0/0  
CxINTN  
R/W-0/0  
CxPCH1  
R/W-0/0  
CxPCH0  
U-0  
U-0  
R/W-0/0  
CxNCH1  
R/W-0/0  
CxNCH0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
CxINTP: Comparator Interrupt on Positive Going Edge Enable bits  
1= The CxIF interrupt flag will be set upon a positive going edge of the CxOUT bit  
0= No interrupt flag will be set on a positive going edge of the CxOUT bit  
bit 6  
CxINTN: Comparator Interrupt on Negative Going Edge Enable bits  
1= The CxIF interrupt flag will be set upon a negative going edge of the CxOUT bit  
0= No interrupt flag will be set on a negative going edge of the CxOUT bit  
bit 5-4  
CxPCH<1:0>: Comparator Positive Input Channel Select bits  
00= CxVP connects to CxIN+ pin  
01= CxVP connects to CVDAC  
10= CxVP connects to FVR Voltage Reference  
11= CxVP connects to AVSS  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘0’  
CxNCH<1:0>: Comparator Negative Input Channel Select bits  
00= CxVN connects to CxIN0- pin  
01= CxVN connects to CxIN1- pin  
10= CxVN connects to CxIN2- pin  
11= CxVN connects to CxIN3- pin  
Note 1: Comparator output requires the following three conditions: C2OE = 1, C2ON = 1and corresponding port  
TRIS bit = 0.  
REGISTER 12-3: CMOUT: COMPARATOR OUTPUT REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
MC2OUT  
MC1OUT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-2  
bit 1  
Unimplemented: Read as ‘0’  
MC2OUT: Mirror Copy of C2OUT bit  
MC1OUT: Mirror Copy of C1OUT bit  
bit 0  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 149  
PIC16F193X/LF193X  
TABLE 12-3: REGISTERS ASSOCIATED WITH COMPARATOR MODULE  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CM1CON0  
CM2CON0  
CM1CON1  
CM2CON1  
CMOUT  
FVRCON  
DACCON0  
DACCON1  
INTCON  
PIR2  
C1ON  
C2ON  
C1NTP  
C2NTP  
C1OUT  
C2OUT  
C1INTN  
C2INTN  
C1OE  
C2OE  
C1PCH1  
C2PCH1  
C1POL  
C2POL  
C1PCH0  
C2PCH0  
---  
C1SP  
C2SP  
C1HYS  
C2HYS  
C1SYNC  
C2SYNC  
C1NCH0  
C2NCH0  
148  
148  
149  
149  
149  
156  
153  
153  
73  
C1NCH1  
C2NCH1  
MC2OUT MC1OUT  
FVREN  
DACEN  
FVRRDY  
DACLPS  
TSEN  
DACOE  
TSRNG  
CDAFVR1 CDAFVR0 ADFVR1  
ADFVR0  
DACNSS  
DACR0  
IOCIF  
DACPSS1 DACPSS0  
DACR1  
INTF  
DACR4  
INTE  
DACR3  
IOCIE  
DACR2  
TMR0IF  
LCDIF  
LCDIE  
RC2  
GIE  
PEIE  
TMR0IE  
C1IF  
OSFIF  
OSFIE  
RC7  
C2IF  
EEIF  
BCLIF  
BCLIE  
RC3  
CCP2IF  
CCP2IE  
RC0  
78  
PIE2  
C2IE  
C1IE  
EEIE  
75  
PORTC  
RC6  
RC5  
RC4  
RC1  
93  
LATC  
LATC7  
TRISC7  
LATC6  
TRISC6  
LATC5  
TRISC5  
ANSA5  
ANSB5  
LATC4  
TRISC4  
ANSA4  
ANSB4  
LATC3  
TRISC3  
ANSA3  
ANSB3  
LATC2  
TRISC2  
ANSA2  
ANSB2  
LATC1  
TRISC1  
ANSA1  
ANSB1  
LATC0  
TRISC0  
ANSA0  
ANSB0  
93  
TRISC  
94  
ANSELA  
ANSELB  
Legend:  
86  
91  
— = unimplemented, read as ‘0’. Shaded cells are unused by the comparator module.  
DS41364A-page 150  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
Due to the limited current drive capability, a buffer must  
be used on the voltage reference output for external  
connections to DACOUT. Figure 13-1 shows an exam-  
ple buffering technique.  
13.0 DIGITAL-TO-ANALOG  
CONVERTER (DAC) MODULE  
The Digital-to-Analog Converter supplies a variable  
voltage reference, ratiometric with VDD, with 32 select-  
able output levels. The output of the DAC can be con-  
figured to supply a reference voltage to the following:  
13.5 Operation During Sleep  
When the device wakes up from Sleep through an  
interrupt or a Watchdog Timer time-out, the contents of  
the DACCON0 register are not affected. To minimize  
current consumption in Sleep mode, the voltage  
reference should be disabled.  
• Comparator positive input  
• ADC input channel  
• DACOUT device pin  
The Digital-to-Analog Converter (DAC) can be enabled  
by setting the DACEN bit of the DACCON0 register.  
13.6 Effects of a Reset  
13.1 Output Voltage Selection  
A device Reset affects the following:  
The DAC has 32 voltage level ranges. The 32 levels  
are set with the DACR<4:0> bits of the DACCON1  
register.  
• Voltage reference is disabled  
• Fixed voltage reference is disabled  
• DAC is removed from the DACOUT pin  
• The DACR<4:0> range select bits are cleared  
The DAC output voltage is determined by the following  
equations:  
EQUATION 13-1:  
DACR<4:0>  
VOUT = (VSOURCE+ – VSOURCE-) × ------------------------------  
2 5  
+ VSOURCE-  
VSOURCE+ = VDD, VREF+ or FVR1  
VSOURCE+ = VSS or VREF-  
13.2 Output Clamped to VSS  
The DAC output voltage can be set to Vss with no  
power consumption by setting the DACEN bit of the  
DACCON0 register to ‘0’: This allows the comparator to  
detect a zero-crossing while not consuming additional  
current from the DAC.  
13.3 Output Ratiometric to VDD  
The DAC is VDD derived and therefore, the DAC output  
changes with fluctuations in VDD. The tested absolute  
accuracy of the DAC can be found in Section 28.0  
“Electrical Specifications”.  
13.4 Voltage Reference Output  
The DAC can be output to the device DACOUT pin by  
setting the DACOE bit of the DACCON0 register to ‘1’.  
Selecting the reference voltage for output on the  
DACOUT pin automatically overrides the digital output  
buffer and digital input threshold detector functions of  
that pin. Reading the DACOUT pin when it has been  
configured for reference voltage output will always  
return a ‘0’.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 151  
PIC16F193X/LF193X  
FIGURE 13-1:  
DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM  
FVR_BUFFER2  
Digital-to-Analog Converter (DAC)  
VDD  
VREF+  
DACR<4:0>  
4
R
DACPSS<1:0>  
DACEN  
2
R
R
R
32  
Steps  
DAC  
(To Comparator and  
ADC Modules)  
R
R
R
CVREF  
DACOE  
DACNSS<1:0>  
2
VREF-  
DS41364A-page 152  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
REGISTER 13-1: DACCON0: VOLTAGE REFERENCE CONTROL REGISTER 0  
R/W-0/0  
DACEN  
R/W-0/0  
DACLPS  
R/W-0/0  
DACOE  
U-0  
---  
R/W-0/0  
R/W-0/0  
U-0  
---  
R/W-0/0  
DACPSS1  
DACPSS0  
DACNSS  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
bit 7  
bit 6  
bit 5  
DACEN: DAC Enable bit  
0= DAC is disabled  
1= DAC is enabled  
DACLPS: DAC Low-Power Voltage State Select bit  
0= VDAC = DAC Negative reference source selected  
1= VDAC = DAC Positive reference source selected  
DACOE: DAC Voltage Output Enable bit  
1= DAC voltage level is also an output on the DACOUT pin  
0= DAC voltage level is disconnected from the DACOUT pin  
bit 4  
Unimplemented: Read as ‘0’  
bit 3-2  
DACPSS<1:0>: DAC Positive Source Select bits  
00= VDD  
01= VREF+  
10= FVR1 output  
11= Reserved, do not use  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
DACNSS: DAC Negative Source Select bits  
0= VSS  
1= VREF-  
REGISTER 13-2: DACCON1: VOLTAGE REFERENCE CONTROL REGISTER 1  
U-0  
---  
U-0  
---  
U-0  
---  
R/W-0/0  
DACR4  
R/W-0/0  
DACR3  
R/W-0/0  
DACR2  
R/W-0/0  
DACR1  
R/W-0/0  
DACR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
DACR<4:0>: DAC Voltage Output Select bits  
VOUT = ((VSOURCE+) - (VSOURCE-))*(DACR<4:0>/(2^5)) + VSOURCE-  
Note 1: The output select bits are always right justified to ensure that any number of bits can be used without  
affecting the register layout.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 153  
PIC16F193X/LF193X  
TABLE 13-1: REGISTERS ASSOCIATED WITH THE DIGITAL-TO-ANALOG CONVERTER  
Register  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FVRCON  
DACCON0  
DACCON1  
Legend:  
FVREN  
DACEN  
---  
FVRRDY  
DACLPS  
---  
TSEN  
DACOE  
---  
TSRNG  
---  
CDAFVR1 CDAFVR0  
DACPSS1 DACPSS0  
ADFVR1  
---  
ADFVR0  
DACNSS  
DACR0  
156  
153  
153  
DACR4  
DACR3  
DACR2  
DACR1  
Shaded cells are not used with the DAC.  
DS41364A-page 154  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
The ADFVR<1:0> bits of the FVRCON register are  
used to enable and configure the gain amplifier settings  
for the reference supplied to the ADC module. Refer-  
ence Section 11.0 “Analog-to-Digital Converter  
(ADC) Module” for additional information on selecting  
the appropriate input channel.  
14.0 FIXED VOLTAGE REFERENCE  
The Fixed Voltage Reference, or FVR, is a stable  
voltage reference, independent of VDD, with 1.024V,  
2.048V or 4.096V selectable output levels. The output  
of the FVR can be configured to supply a reference  
voltage to the following:  
The CDAFVR<1:0> bits of the FVRCON register are  
used to enable and configure the gain amplifier settings  
for the reference supplied to the comparator module.  
Reference Section 12.0 “Comparator Module” for  
additional information on selecting the appropriate  
input channel.  
• ADC input channel  
• ADC positive reference  
• Comparator positive input  
• Programmable voltage reference  
• LCD bias generator  
The FVR can be enabled by setting the FVREN bit of  
the FVRCON register.  
14.2 FVR Stabilization Period  
When the fixed voltage reference module is enabled, it  
requires time for the reference and amplifier circuits to  
stabilize. Once the circuits stabilize and are ready for use,  
the FVRRDY bit of the FVRCON register will be set. See  
Section 28.0 “Electrical Specifications” for the  
minimum delay requirement.  
14.1 Independent Gain Amplifiers  
The output of the FVR supplied to the ADC and  
comparator modules is routed through two  
independent programmable gain amplifiers. Each  
amplifier can be configured to amplify the reference  
voltage by 1x, 2x or 4x.  
FIGURE 14-1:  
VOLTAGE REFERENCE BLOCK DIAGRAM  
ADFVR<1:0>  
2
X1  
X2  
X4  
FVR_BUFFER1  
(To ADC Module)  
CDAFVR<1:0>  
2
X1  
X2  
X4  
FVR_BUFFER2  
(To Comparators, DAC)  
FVR_VREF  
(To LCD Bias Generator)  
+
_
FVREN  
FVRRDY  
1.024V Fixed  
Reference  
FIGURE 14-2:  
VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE  
PIC16F193X/  
PIC16LF193X  
CVREF  
Module  
R
+
Buffered CVREF Output  
CVREF  
Voltage  
Reference  
Output  
Impedance  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 155  
PIC16F193X/LF193X  
REGISTER 14-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER  
R/W-0/0  
FVREN  
R-q/q  
FVRRDY(1)  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
ADFVR1  
R/W-0/0  
ADFVR0  
CDAFVR1  
CDAFVR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
-n/n = Value at POR and BOR/Value at all other Resets  
q = Value depends on condition  
bit 7  
bit 6  
FVREN: Fixed Voltage Reference Enable bit  
0= Fixed Voltage Reference is disabled  
1= Fixed Voltage Reference is enabled  
FVRRDY: Fixed Voltage Reference Ready Flag bit(1)  
0= Fixed Voltage Reference output is not active or stable  
1= Fixed Voltage Reference output is ready for use  
bit 5-4  
bit 3-2  
Reserved: Read as ‘0’. Maintain these bits clear.  
CDAFVR<1:0>: Comparator and D/A Converter Fixed Voltage Reference Selection bit  
00= Comparator and D/A Converter Fixed Voltage Reference Peripheral output is off.  
01= Comparator and D/A Converter Fixed Voltage Reference Peripheral output is 1x (1.024V)  
10= Comparator and D/A Converter Fixed Voltage Reference Peripheral output is 2x (2.048V)(2)  
11= Comparator and D/A Converter Fixed Voltage Reference Peripheral output is 4x (4.096V)(2)  
bit 1-0  
ADFVR<1:0>: A/D Converter Fixed Voltage Reference Selection bit  
00= A/D Converter Fixed Voltage Reference Peripheral output is off.  
01= A/D Converter Fixed Voltage Reference Peripheral output is 1x (1.024V)  
10= A/D Converter Fixed Voltage Reference Peripheral output is 2x (2.048V)(2)  
11= A/D Converter Fixed Voltage Reference Peripheral output is 4x (4.096V)(2)  
Note 1: FVRRDY is always ‘1’ on regulated parts (PIC16F193X).  
2: Fixed Voltage Reference output cannot exceed VDD.  
TABLE 14-1: REGISTERS ASSOCIATED WITH VOLTAGE REFERENCE  
Register  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FVRCON  
FVREN  
FVRRDY  
TSEN  
TSRNG  
CDAFVR1 CDAFVR0  
ADFVR1  
ADFVR0  
156  
Legend:  
Shaded cells are not used with the voltage reference.  
DS41364A-page 156  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
When TMR0 is written, the increment is inhibited for  
two instruction cycles immediately following the write.  
15.0 TIMER0 MODULE  
The Timer0 module is an 8-bit timer/counter with the  
following features:  
Note:  
The value written to the TMR0 register can  
be adjusted, in order to account for the two  
instruction cycle delay when TMR0 is  
written.  
• 8-bit timer/counter register (TMR0)  
• 8-bit prescaler (independent of Watchdog Timer)  
• Programmable internal or external clock source  
• Programmable external clock edge selection  
• Interrupt on overflow  
15.1.2  
8-BIT COUNTER MODE  
In 8-Bit Counter mode, the Timer0 module will increment  
on every rising or falling edge of the T0CKI pin or the  
Capacitive Sensing Oscillator (CPSCLK) signal.  
• TMR0 can be used to gate Timer1  
Figure 15-1 is a block diagram of the Timer0 module.  
8-Bit Counter mode using the T0CKI pin is selected by  
setting the TMR0CS bit in the OPTION register to ‘1’  
and resetting the T0XCS bit in the CPSCON0 register to  
0’.  
15.1 Timer0 Operation  
The Timer0 module can be used as either an 8-bit timer  
or an 8-bit counter.  
8-Bit Counter Mode using the Capacitive Sensing  
Oscillator (CPSCLK) signal is selected by setting the  
TMR0CS bit in the OPTION register to ‘1’ and setting  
the T0XCS bit in the CPSCON0 register to ‘1’.  
15.1.1  
8-BIT TIMER MODE  
The Timer0 module will increment every instruction  
cycle, if used without a prescaler. 8-Bit Timer mode is  
selected by clearing the TMR0CS bit of the OPTION  
register.  
The rising or falling transition of the incrementing edge  
for either input source is determined by the TMR0SE bit  
in the OPTION register.  
FIGURE 15-1:  
BLOCK DIAGRAM OF THE TIMER0  
FOSC/4  
Data Bus  
0
1
8
T0CKI  
1
Sync  
0
1
TMR0  
2 TCY  
0
Set Flag bit TMR0IF  
From CPSCLK  
on Overflow  
TMR0CS  
TMR0SE  
8-bit  
Prescaler  
PSA  
Overflow to Timer1  
T0XCS  
8
PS<2:0>  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 157  
PIC16F193X/LF193X  
15.1.3  
SOFTWARE PROGRAMMABLE  
PRESCALER  
A software programmable prescaler is available for  
exclusive use with Timer0. The prescaler is enabled by  
clearing the PSA bit of the OPTION register.  
Note:  
The Watchdog Timer (WDT) uses its own  
independent prescaler.  
There are 8 prescaler options for the Timer0 module  
ranging from 1:2 to 1:256. The prescale values are  
selectable via the PS<2:0> bits of the OPTION register.  
In order to have a 1:1 prescaler value for the Timer0  
module, the prescaler must be disabled by setting the  
PSA bit of the OPTION register.  
The prescaler is not readable or writable. All instructions  
writing to the TMR0 register will clear the prescaler.  
15.1.4  
TIMER0 INTERRUPT  
Timer0 will generate an interrupt when the TMR0  
register overflows from FFh to 00h. The TMR0IF  
interrupt flag bit of the INTCON register is set every  
time the TMR0 register overflows, regardless of  
whether or not the Timer0 interrupt is enabled. The  
TMR0IF bit can only be cleared in software. The Timer0  
interrupt enable is the TMR0IE bit of the INTCON  
register.  
Note:  
The Timer0 interrupt cannot wake the  
processor from Sleep since the timer is  
frozen during Sleep.  
15.1.5  
8-BIT COUNTER MODE  
SYNCHRONIZATION  
When in 8-Bit Counter mode, the incrementing edge on  
the T0CKI pin must be synchronized to the instruction  
clock. Synchronization can be accomplished by  
sampling the prescaler output on the Q2 and Q4 cycles  
of the instruction clock. The high and low periods of the  
external clocking source must meet the timing  
requirements as shown in Section 28.0 “Electrical  
Specifications”.  
15.1.6  
OPERATION DURING SLEEP  
Timer0 cannot operate while the processor is in Sleep  
mode. The contents of the TMR0 register will remain  
unchanged while the processor is in Sleep mode.  
DS41364A-page 158  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
REGISTER 15-1: OPTION_REG: OPTION REGISTER  
R/W-1/1  
WPUEN  
R/W-1/1  
INTEDG  
R/W-1/1  
R/W-1/1  
R/W-1/1  
PSA  
R/W-1/1  
PS2  
R/W-1/1  
PS1  
R/W-1/1  
PS0  
TMR0CS  
TMR0SE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
WPUEN: Weak Pull-up Enable bit  
1= All weak pull-ups are disabled (except MCLR, if it is enabled)  
0= Weak pull-ups are enabled by individual WPUx latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of RB0/INT pin  
0= Interrupt on falling edge of RB0/INT pin  
TMR0CS: Timer0 Clock Source Select bit  
1= Transition on RA4/T0CKI pin  
0= Internal instruction cycle clock (FOSC/4)  
TMR0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on RA4/T0CKI pin  
0= Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS<2:0>: Prescaler Rate Select bits  
Bit Value  
Timer0 Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
TABLE 15-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CPSCON0  
INTCON  
CPSON  
GIE  
CPSRNG1 CPSRNG0 CPSOUT T0XCS  
180  
73  
PEIE  
TMR0IE  
INTE  
RBIE  
PSA  
TMR0IF  
PS2  
INTF  
PS1  
RBIF  
PS0  
OPTION_REG WPUEN INTEDG TMR0CS TMR0SE  
51  
TMR0  
TRISA  
Timer0 Module Register  
157*  
86  
TRISA7 TRISA6 TRISA5 TRISA4  
TRISA3  
TRISA2  
TRISA1 TRISA0  
Legend: – = Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the  
Timer0 module.  
*
Page provides register information.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 159  
PIC16F193X/LF193X  
NOTES:  
DS41364A-page 160  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
• Gate Toggle Mode  
• Gate Single-pulse Mode  
• Gate Value Status  
16.0 TIMER1 MODULE WITH GATE  
CONTROL  
The Timer1 module is a 16-bit timer/counter with the  
following features:  
• Gate Event Interrupt  
Figure 16-1 is a block diagram of the Timer1 module.  
• 16-bit timer/counter register pair (TMR1H:TMR1L)  
• Programmable internal or external clock source  
• 3-bit prescaler  
• Dedicated LP oscillator circuit  
• Optionally synchronized comparator out  
• Multiple Timer1 gate (count enable) sources  
• Interrupt on overflow  
• Wake-up on overflow (external clock,  
Asynchronous mode only)  
• Time base for the Capture/Compare function  
• Special Event Trigger (with CCP)  
• Selectable Gate Source Polarity  
FIGURE 16-1:  
TIMER1 BLOCK DIAGRAM  
T1GSS<1:0>  
T1G  
T1GSPM  
00  
From Timer0  
Overflow  
0
01  
10  
11  
T1G_IN  
D
Data Bus  
T1GVAL  
0
1
D
Q
Comparator 1  
SYNCC1OUT  
Single Pulse  
Acq. Control  
RD  
1
T1GCON  
Q1 EN  
Q
Q
Comparator 2  
SYNCC2OUT  
Interrupt  
Set  
T1GGO/DONE  
CK  
R
TMR1ON  
T1GTM  
TMR1GIF  
det  
T1GPOL  
TMR1GE  
Set flag bit  
TMR1IF on  
Overflow  
TMR1ON  
To Comparator Module  
TMR1(2)  
EN  
D
Synchronized  
clock input  
0
T1CLK  
TMR1H  
TMR1L  
Q
1
TMR1CS<1:0>  
T1SYNC  
T1OSO  
OUT  
Cap. Sensing  
Oscillator  
11  
10  
Synchronize(3)  
det  
T1OSC  
EN  
Prescaler  
1, 2, 4, 8  
1
0
T1OSI  
2
T1CKPS<1:0>  
FOSC  
Internal  
Clock  
01  
00  
FOSC/2  
Internal  
Clock  
T1OSCEN  
T1CKI  
Sleep input  
FOSC/4  
Internal  
Clock  
(1)  
To LCD and Clock Switching Modules  
Note 1: ST Buffer is high speed type when using T1CKI.  
2: Timer1 register increments on rising edge.  
3: Synchronize does not operate while in Sleep.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 161  
PIC16F193X/LF193X  
16.1 Timer1 Operation  
16.2 Clock Source Selection  
The Timer1 module is a 16-bit incrementing counter  
which is accessed through the TMR1H:TMR1L register  
pair. Writes to TMR1H or TMR1L directly update the  
counter.  
The TMR1CS<1:0> and T1OSCEN bits of the T1CON  
register are used to select the clock source for Timer1.  
Table 16-2 displays the clock source selections.  
16.2.1  
INTERNAL CLOCK SOURCE  
When used with an internal clock source, the module is  
a timer and increments on every instruction cycle.  
When used with an external clock source, the module  
can be used as either a timer or counter and incre-  
ments on every selected edge of the external source.  
When the internal clock source is selected the  
TMR1H:TMR1L register pair will increment on multiples  
of FOSC as determined by the Timer1 prescaler.  
16.2.2  
EXTERNAL CLOCK SOURCE  
Timer1 is enabled by configuring the TMR1ON and  
TMR1GE bits in the T1CON and T1GCON registers,  
respectively. Table 16-1 displays the Timer1 enable  
selections.  
When the external clock source is selected, the Timer1  
module may work as a timer or a counter.  
When enabled to count, Timer1 is incremented on the  
rising edge of the external clock input T1CKI or the  
capacitive sensing oscillator signal. Either of these  
external clock sources can be synchronized to the  
microcontroller system clock or they can run  
asynchronously.  
TABLE 16-1: TIMER1 ENABLE  
SELECTIONS  
Timer1  
Operation  
TMR1ON  
TMR1GE  
When used as a timer with a clock oscillator, an  
external 32.768 kHz crystal can be used in conjunction  
with the dedicated internal oscillator circuit.  
0
0
1
1
0
1
0
1
Off  
Off  
Note:  
In Counter mode, a falling edge must be  
registered by the counter prior to the first  
incrementing rising edge after any one or  
more of the following conditions:  
Always On  
Count Enabled  
• Timer1 enabled after POR  
• Write to TMR1H or TMR1L  
• Timer1 is disabled  
• Timer1 is disabled (TMR1ON = 0)  
when T1CKI is high then Timer1 is  
enabled (TMR1ON=1) when T1CKI is  
low.  
TABLE 16-2: CLOCK SOURCE SELECTIONS  
TMR1CS1  
TMR1CS0  
T1OSCEN  
Clock Source  
0
0
1
1
1
1
0
1
0
0
x
x
x
0
1
System Clock (FOSC)  
Instruction Clock (FOSC/4)  
Capacitive Sensing Oscillator  
External Clocking on T1CKI Pin  
Osc.Circuit On T1OSI/T1OSO Pins  
DS41364A-page 162  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
16.3 Timer1 Prescaler  
16.6 Timer1 Gate  
Timer1 has four prescaler options allowing 1, 2, 4 or 8  
divisions of the clock input. The T1CKPS bits of the  
T1CON register control the prescale counter. The  
prescale counter is not directly readable or writable;  
however, the prescaler counter is cleared upon a write to  
TMR1H or TMR1L.  
Timer1 can be configured to count freely or the count  
can be enabled and disabled using Timer1 Gate  
circuitry. This is also referred to as Timer1 Gate Enable.  
Timer1 Gate can also be driven by multiple selectable  
sources.  
16.6.1  
TIMER1 GATE ENABLE  
16.4 Timer1 Oscillator  
The Timer1 Gate Enable mode is enabled by setting  
the TMR1GE bit of the T1GCON register. The polarity  
of the Timer1 Gate Enable mode is configured using  
the T1GPOL bit of the T1GCON register.  
A dedicated low-power 32.768 kHz oscillator circuit is  
built-in between pins T1OSI (input) and T1OSO  
(amplifier output). This internal circuit is to be used in  
conjunction with an external 32.768 kHz crystal.  
When Timer1 Gate Enable mode is enabled, Timer1  
will increment on the rising edge of the Timer1 clock  
source. When Timer1 Gate Enable mode is disabled,  
no incrementing will occur and Timer1 will hold the  
current count. See Figure 16-3 for timing details.  
The oscillator circuit is enabled by setting the  
T1OSCEN bit of the T1CON register. The oscillator will  
continue to run during Sleep.  
Note:  
The oscillator requires a start-up and  
stabilization time before use. Thus,  
T1OSCEN should be set and a suitable  
delay observed prior to enabling Timer1.  
TABLE 16-3: TIMER1 GATE ENABLE  
SELECTIONS  
T1CLK T1GPOL  
T1G  
Timer1 Operation  
16.5 Timer1 Operation in  
Asynchronous Counter Mode  
0
0
1
1
0
1
0
1
Counts  
Holds Count  
Holds Count  
Counts  
If control bit T1SYNC of the T1CON register is set, the  
external clock input is not synchronized. The timer  
increments asynchronously to the internal phase  
clocks. If external clock source is selected then the  
timer will continue to run during Sleep and can  
generate an interrupt on overflow, which will wake-up  
the processor. However, special precautions in  
software are needed to read/write the timer (see  
Section 16.5.1 “Reading and Writing Timer1 in  
Asynchronous Counter Mode”).  
16.6.2  
TIMER1 GATE SOURCE  
SELECTION  
The Timer1 Gate source can be selected from one of  
four different sources. Source selection is controlled by  
the T1GSS bits of the T1GCON register. The polarity  
for each available source is also selectable. Polarity  
selection is controlled by the T1GPOL bit of the  
T1GCON register.  
Note:  
When switching from synchronous to  
asynchronous operation, it is possible to  
skip an increment. When switching from  
asynchronous to synchronous operation,  
it is possible to produce an additional  
increment.  
TABLE 16-4: TIMER1 GATE SOURCES  
T1GSS  
Timer1 Gate Source  
Timer1 Gate Pin  
00  
01  
Overflow of Timer0  
16.5.1  
READING AND WRITING TIMER1 IN  
ASYNCHRONOUS COUNTER  
MODE  
(TMR0 increments from FFh to 00h)  
10  
11  
Comparator 1 Output SYNCC1OUT  
(optionally synchronized out)  
Reading TMR1H or TMR1L while the timer is running  
from an external asynchronous clock will ensure a valid  
read (taken care of in hardware). However, the user  
should keep in mind that reading the 16-bit timer in two  
8-bit values itself, poses certain problems, since the  
timer may overflow between the reads.  
Comparator 2 Output SYNCC2OUT  
(optionally synchronized out)  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write  
contention may occur by writing to the timer registers,  
while the register is incrementing. This may produce an  
unpredictable value in the TMR1H:TMR1L register pair.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 163  
PIC16F193X/LF193X  
16.6.2.1  
T1G Pin Gate Operation  
16.6.4  
TIMER1 GATE SINGLE-PULSE  
MODE  
The T1G pin is one source for Timer1 Gate Control. It  
can be used to supply an external source to the Timer1  
Gate circuitry.  
When Timer1 Gate Single-Pulse mode is enabled, it is  
possible to capture a single pulse gate event. Timer1  
Gate Single-Pulse mode is first enabled by setting the  
T1GSPM bit in the T1GCON register. Next, the  
T1GGO/DONE bit in the T1GCON register must be set.  
The Timer1 will be fully enabled on the next  
incrementing edge. On the next trailing edge of the  
pulse, the T1GGO/DONE bit will automatically be  
cleared. No other gate events will be allowed to  
increment Timer1 until the T1GGO/DONE bit is once  
again set in software.  
16.6.2.2  
Timer0 Overflow Gate Operation  
When Timer0 increments from FFh to 00h,  
low-to-high pulse will automatically be generated and  
internally supplied to the Timer1 Gate circuitry.  
a
16.6.2.3  
Comparator C1 Gate Operation  
The output resulting from a Comparator 1 operation can  
be selected as a source for Timer1 Gate Control. The  
Clearing the T1GSPM bit of the T1GCON register will  
also clear the T1GGO/DONE bit. See Figure 16-5 for  
timing details.  
Comparator  
1
output (SYNCC1OUT) can be  
synchronized to the Timer1 clock or left asynchronous.  
For more information see Section 12.4.1 “Comparator  
Output Synchronization”.  
Enabling the Toggle mode and the Single-Pulse mode  
simultaneously will permit both sections to work  
together. This allows the cycle times on the Timer1  
Gate source to be measured. See Figure 16-6 for  
timing details.  
16.6.2.4  
Comparator C2 Gate Operation  
The output resulting from a Comparator 2 operation  
can be selected as a source for Timer1 Gate Control.  
The Comparator 2 output (SYNCC2OUT) can be  
synchronized to the Timer1 clock or left asynchronous.  
For more information see Section 12.4.1 “Comparator  
Output Synchronization”.  
16.6.5  
TIMER1 GATE VALUE STATUS  
When Timer1 Gate Value Status is utilized, it is possible  
to read the most current level of the gate control value.  
The value is stored in the T1GVAL bit in the T1GCON  
register. The T1GCON bit is valid even when the  
Timer1 Gate is not enabled (TMR1GE bit is cleared).  
16.6.3  
TIMER1 GATE TOGGLE MODE  
When Timer1 Gate Toggle mode is enabled, it is possi-  
ble to measure the full-cycle length of a Timer1 gate  
signal, as opposed to the duration of a single level  
pulse.  
16.6.6  
TIMER1 GATE EVENT INTERRUPT  
When Timer1 Gate Event Interrupt is enabled, it is pos-  
sible to generate an interrupt upon the completion of a  
gate event. When the falling edge of T1GVAL occurs,  
the TMR1GIF flag bit in the PIR1 register will be set. If  
the TMR1GIE bit in the PIE1 register is set, then an  
interrupt will be recognized.  
The Timer1 Gate source is routed through a flip-flop  
that changes state on every incrementing edge of the  
signal. See Figure 16-4 for timing details.  
Timer1 Gate Toggle mode is enabled by setting the  
T1GTM bit of the T1GCON register. When the T1GTM  
bit is cleared, the flip-flop is cleared and held clear. This  
is necessary in order to control which edge is  
measured.  
The TMR1GIF flag bit operates even when the Timer1  
Gate is not enabled (TMR1GE bit is cleared).  
Note:  
Enabling Toggle mode at the same time as  
changing the gate polarity may result in  
indeterminate operation.  
DS41364A-page 164  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
16.7 Timer1 Interrupt  
16.9 ECCP/CCP Capture/Compare Time  
Base  
The Timer1 register pair (TMR1H:TMR1L) increments  
to FFFFh and rolls over to 0000h. When Timer1 rolls  
over, the Timer1 interrupt flag bit of the PIR1 register is  
set. To enable the interrupt on rollover, you must set  
these bits:  
The CCP modules uses the TMR1H:TMR1L register  
pair as the time base when operating in Capture or  
Compare mode.  
In Capture mode, the value in the TMR1H:TMR1L  
register pair is copied into the CCPR1H:CCPR1L  
register pair on a configured event.  
• TMR1ON bit of the T1CON register  
• TMR1IE bit of the PIE1 register  
• PEIE bit of the INTCON register  
• GIE bit of the INTCON register  
In Compare mode, an event is triggered when the value  
CCPR1H:CCPR1L register pair matches the value in  
the TMR1H:TMR1L register pair. This event can be a  
Special Event Trigger.  
The interrupt is cleared by clearing the TMR1IF bit in  
the Interrupt Service Routine.  
For  
more  
information,  
see  
Section 19.0  
Note:  
The TMR1H:TMR1L register pair and the  
TMR1IF bit should be cleared before  
enabling interrupts.  
“Capture/Compare/PWM Modules (ECCP1, ECCP2,  
ECCP3, CCP4, CCP5)”.  
16.10 ECCP/CCP Special Event Trigger  
16.8 Timer1 Operation During Sleep  
When any of the CCP’s are configured to trigger a spe-  
cial event, the trigger will clear the TMR1H:TMR1L reg-  
ister pair. This special event does not cause a Timer1  
interrupt. The CCP module may still be configured to  
generate a CCP interrupt.  
Timer1 can only operate during Sleep when setup in  
Asynchronous Counter mode. In this mode, an external  
crystal or clock source can be used to increment the  
counter. To set up the timer to wake the device:  
• TMR1ON bit of the T1CON register must be set  
• TMR1IE bit of the PIE1 register must be set  
• PEIE bit of the INTCON register must be set  
• T1SYNC bit of the T1CON register must be set  
In this mode of operation, the CCPR1H:CCPR1L  
register pair becomes the period register for Timer1.  
Timer1 should be synchronized to the FOSC/4 to utilize  
the Special Event Trigger. Asynchronous operation of  
Timer1 can cause a Special Event Trigger to be  
missed.  
• TMR1CS bits of the T1CON register must be  
configured  
• T1OSCEN bit of the T1CON register must be  
configured  
In the event that a write to TMR1H or TMR1L coincides  
with a Special Event Trigger from the CCP, the write will  
take precedence.  
The device will wake-up on an overflow and execute  
the next instructions. If the GIE bit of the INTCON  
register is set, the device will call the Interrupt Service  
Routine (0004h).  
For more information, see Section 11.2.5 “Special  
Event Trigger”.  
Timer1 oscillator will continue to operate in Sleep  
regardless of the T1SYNC bit setting.  
FIGURE 16-2:  
TIMER1 INCREMENTING EDGE  
T1CKI = 1  
when TMR1  
Enabled  
T1CKI = 0  
when TMR1  
Enabled  
Note 1: Arrows indicate counter increments.  
2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 165  
PIC16F193X/LF193X  
FIGURE 16-3:  
TIMER1 GATE ENABLE MODE  
TMR1GE  
T1GPOL  
T1G_IN  
T1CKI  
T1GVAL  
TIMER1  
N
N + 1  
N + 2  
N + 3  
N + 4  
FIGURE 16-4:  
TIMER1 GATE TOGGLE MODE  
TMR1GE  
T1GPOL  
T1GTM  
T1G_IN  
T1CKI  
T1GVAL  
TIMER1  
N
N + 1 N + 2 N + 3 N + 4  
N + 5 N + 6 N + 7 N + 8  
DS41364A-page 166  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 16-5:  
TIMER1 GATE SINGLE-PULSE MODE  
TMR1GE  
T1GPOL  
T1GSPM  
Cleared by hardware on  
falling edge of T1GVAL  
T1GGO/  
DONE  
Set by software  
Counting enabled on  
rising edge of T1G  
T1G_IN  
T1CKI  
T1GVAL  
TIMER1  
N
N + 1  
N + 2  
Cleared by  
software  
Set by hardware on  
falling edge of T1GVAL  
Cleared by software  
TMR1GIF  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 167  
PIC16F193X/LF193X  
FIGURE 16-6:  
TMR1GE  
T1GPOL  
TIMER1 GATE SINGLE-PULSE AND TOGGLE COMBINED MODE  
T1GSPM  
T1GTM  
Cleared by hardware on  
falling edge of T1GVAL  
T1GGO/  
DONE  
Set by software  
Counting enabled on  
rising edge of T1G  
T1G_IN  
T1CKI  
T1GVAL  
TIMER1  
N + 4  
N + 2 N + 3  
N
N + 1  
Set by hardware on  
falling edge of T1GVAL  
Cleared by  
software  
Cleared by software  
TMR1GIF  
DS41364A-page 168  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
16.11 Timer1 Control Register  
The Timer1 Control register (T1CON), shown in  
Register 16-1, is used to control Timer1 and select the  
various features of the Timer1 module.  
REGISTER 16-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0/u  
R/W-0/u  
R/W-0/u  
R/W-0/u  
R/W-0/u  
R/W-0/u  
T1SYNC  
U-0  
R/W-0/u  
TMR1CS1  
TMR1CS0  
T1CKPS1  
T1CKPS0  
T1OSCEN  
TMR1ON  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-6  
TMR1CS<1:0>: Timer1 Clock Source Select bits  
11=Timer1 clock source is Capacitive Sensing Oscillator (CAPOSC)  
10=Timer1 clock source is pin or oscillator:  
If T1OSCEN = 0:  
External clock from T1CKI pin (on the rising edge)  
If T1OSCEN = 1:  
Crystal oscillator on T1OSI/T1OSO pins  
01=Timer1 clock source is system clock (FOSC)  
00=Timer1 clock source is instruction clock (FOSC/4)  
bit 5-4  
T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3  
bit 2  
T1OSCEN: LP Oscillator Enable Control bit  
1= Dedicated Timer1 oscillator circuit enabled  
0= Dedicated Timer1 oscillator circuit disabled  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS<1:0> = 1X  
1= Do not synchronize external clock input  
0= Synchronize external clock input with system clock (FOSC)  
TMR1CS<1:0> = 0X  
This bit is ignored. Timer1 uses the internal clock when TMR1CS<1:0> = 1X.  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Clears Timer1 Gate flip-flop  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 169  
PIC16F193X/LF193X  
16.12 Timer1 Gate Control Register  
The Timer1 Gate Control register (T1GCON), shown in  
Register 16-2, is used to control Timer1 Gate.  
REGISTER 16-2: T1GCON: TIMER1 GATE CONTROL REGISTER  
R/W-0/u  
R/W-0/u  
T1GPOL  
R/W-0/u  
T1GTM  
R/W-0/u  
R/W-0/u  
R-x/x  
R/W-0/u  
T1GSS1  
R/W-0/u  
T1GSS0  
TMR1GE  
T1GSPM  
T1GGO/  
DONE  
T1GVAL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
TMR1GE: Timer1 Gate Enable bit  
If TMR1ON = 0:  
This bit is ignored  
If TMR1ON = 1:  
1= Timer1 counting is controlled by the Timer1 gate function  
0= Timer1 counts regardless of Timer1 gate function  
bit 6  
bit 5  
T1GPOL: Timer1 Gate Polarity bit  
1= Timer1 gate is active-high (Timer1 counts when gate is high)  
0= Timer1 gate is active-low (Timer1 counts when gate is low)  
T1GTM: Timer1 Gate Toggle Mode bit  
1= Timer1 Gate Toggle mode is enabled  
0= Timer1 Gate Toggle mode is disabled and toggle flip flop is cleared  
Timer1 gate flip-flop toggles on every rising edge.  
bit 4  
bit 3  
T1GSPM: Timer1 Gate Single-Pulse Mode bit  
1= Timer1 gate Single-Pulse mode is enabled and is controlling Timer1 gate  
0= Timer1 gate Single-Pulse mode is disabled  
T1GGO/DONE: Timer1 Gate Single-Pulse Acquisition Status bit  
1= Timer1 gate single-pulse acquisition is ready, waiting for an edge  
0= Timer1 gate single-pulse acquisition has completed or has not been started  
This bit is automatically cleared when T1GSPM is cleared.  
bit 2  
T1GVAL: Timer1 Gate Current State bit  
Indicates the current state of the Timer1 gate that could be provided to TMR1H:TMR1L.  
Unaffected by Timer1 Gate Enable (TMR1GE).  
bit 1-0  
T1GSS<1:0>: Timer1 Gate Source Select bits  
00= Timer1 Gate pin  
01= Timer0 overflow output  
10= Comparator 1 optionally synchronized output (SYNCC1OUT)  
11= Comparator 2 optionally synchronized output (SYNCC2OUT)  
DS41364A-page 170  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
TABLE 16-5: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELB  
CCP1CON  
CCP2CON  
INTCON  
PIE1  
ANSB5  
DC1B1  
DC2B1  
TMR0IE  
RCIE  
ANSB4  
DC1B0  
DC2B0  
INTE  
ANSB3  
ANSB2  
ANSB1  
ANSB0  
91  
184  
184  
73  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
CCP2M3 CCP2M2 CCP2M1 CCP2M0  
GIE  
PEIE  
ADIE  
ADIF  
RB6  
RBIE  
SSPIE  
SSPIF  
RB3  
TMR0IF  
INTF  
RBIF  
TMR1GIE  
TMR1GIF  
RB7  
TXIE  
CCP1IE TMR2IE TMR1IE  
CCP1IF TMR2IF TMR1IF  
74  
PIR1  
RCIF  
TXIF  
77  
PORTB  
TMR1H  
TMR1L  
TRISB  
RB5  
RB4  
RB2  
RB1  
RB0  
90  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
165*  
165*  
91  
TRISB7  
TRISC7  
TRISB6  
TRISC6  
TRISB5  
TRISC5  
TRISB4  
TRISC4  
TRISB3  
TRISC3  
TRISB2 TRISB1 TRISB0  
TRISC2 TRISC1 TRISC0  
TRISC  
94  
TMR1CS1 TMR1CS0 T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
TMR1ON  
T1CON  
169  
170  
TMR1GE T1GPOL  
T1GTM T1GSPM T1GGO/ T1GVAL T1GSS1 T1GSS0  
DONE  
T1GCON  
Legend: x= unknown, u= unchanged, = unimplemented, read as ‘0’. Shaded cells are not used by the Timer1  
module.  
*
Page provides register information.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 171  
PIC16F193X/LF193X  
NOTES:  
DS41364A-page 172  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
17.0 TIMER2/4/6 MODULES  
There are three identical Timer2-type modules  
available. To maintain pre-existing naming conventions,  
the Timers are called Timer2, Timer4 and Timer6 (also  
Timer2/4/6).  
The Timer2/4/6 modules incorporate the following  
features:  
• 8-bit Timer and Period registers (TMRx and PRx,  
respectively)  
• Readable and writable (both registers)  
• Software programmable prescaler (1:1, 1:4, 1:16,  
and 1:64)  
• Software programmable postscaler (1:1 to 1:16)  
• Interrupt on TMRx match with PRx, respectively  
• Optional use as the shift clock for the MSSPx  
modules (Timer2 only)  
See Figure 17-1 for a block diagram of Timer2/4/6.  
FIGURE 17-1:  
TIMER2/4/6 BLOCK DIAGRAM  
Sets Flag  
bit TMRxIF  
Output  
TMRx  
Prescaler  
TMRx  
Reset  
FOSC/4  
1:1, 1:4, 1:16, 1:64  
Postscaler  
1:1 to 1:16  
2
Comparator  
EQ  
TxCKPS<1:0>  
PRx  
4
TxOUTPS<3:0>  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 173  
PIC16F193X/LF193X  
17.1 Timer2/4/6 Operation  
17.3 Timer2/4/6 Output  
The clock input to the Timer2/4/6 modules is the  
system instruction clock (FOSC/4).  
The unscaled output of TMRx is available primarily to  
the CCP modules, where it is used as a time base for  
operations in PWM mode.  
TMRx increments from 00h on each clock edge.  
Timer2 can be optionally used as the shift clock source  
for the MSSPx modules operating in SPI mode.  
Additional information is provided in Section 17.0  
“SSP Module Overview”  
A 4-bit counter/prescaler on the clock input allows direct  
input, divide-by-4 and divide-by-16 prescale options.  
These options are selected by the prescaler control bits,  
TxCKPS<1:0> of the TxCON register. The value of  
TMRx is compared to that of the Period register, PRx, on  
each clock cycle. When the two values match, the  
comparator generates a match signal as the timer  
output. This signal also resets the value of TMRx to 00h  
on the next cycle and drives the output  
counter/postscaler (see Section 17.2 “Timer2/4/6  
Interrupt”).  
17.4 Timer2/4/6 Operation During Sleep  
The Timerx timers cannot be operated while the  
processor is in Sleep mode. The contents of the TMRx  
and PRx registers will remain unchanged while the  
processor is in Sleep mode.  
The TMRx and PRx registers are both directly readable  
and writable. The TMRx register is cleared on any  
device Reset, whereas the PRx register initializes to  
FFh. Both the prescaler and postscaler counters are  
cleared on the following events:  
• a write to the TMRx register  
• a write to the TxCON register  
• Power-on Reset (POR)  
• Brown-out Reset (BOR)  
• MCLR Reset  
• Watchdog Timer (WDT) Reset  
• Stack Overflow Reset  
• Stack Underflow Reset  
RESETInstruction  
Note:  
TMRx is not cleared when TxCON is written.  
17.2 Timer2/4/6 Interrupt  
Timer2/4/6 can also generate an optional device  
interrupt. The Timer2/4/6 output signal (TMRx-to-PRx  
match)  
provides  
the  
input  
for  
the  
4-bit  
counter/postscaler. This counter generates the TMRx  
match interrupt flag which is latched in TMRxIF of the  
PIRx register. The interrupt is enabled by setting the  
TMRx Match Interrupt Enable bit, TMRxIE of the PIEx  
register.  
A range of 16 postscale options (from 1:1 through 1:16  
inclusive) can be selected with the postscaler control  
bits, TxOUTPS<3:0>, of the TxCON register.  
DS41364A-page 174  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
REGISTER 17-1: TXCON: TIMER2-TYPE TIMER CONTROL REGISTER  
U-0  
R/W-0/u  
R/W-0/u  
R/W-0/u  
R/W-0/u  
R/W-0/u  
R/W-0/u  
R/W-0/u  
TOUTPS3  
TOUTPS2  
TOUTPS1  
TOUTPS0  
TMRxON  
TxCKPS1  
TxCKPS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3  
TOUTPS<3:0>: Timer Output Postscaler Select bits  
0000= 1:1 Postscaler  
0001= 1:2 Postscaler  
0010= 1:3 Postscaler  
0011= 1:4 Postscaler  
0100= 1:5 Postscaler  
0101= 1:6 Postscaler  
0110= 1:7 Postscaler  
0111= 1:8 Postscaler  
1000= 1:9 Postscaler  
1001= 1:10 Postscaler  
1010= 1:11 Postscaler  
1011= 1:12 Postscaler  
1100= 1:13 Postscaler  
1101= 1:14 Postscaler  
1110= 1:15 Postscaler  
1111= 1:16 Postscaler  
bit 2  
TMRxON: Timerx On bit  
1= Timerx is on  
0= Timerx is off  
bit 1-0  
TxCKPS<1:0>: Timer2-type Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
10= Prescaler is 16  
11= Prescaler is 64  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 175  
PIC16F193X/LF193X  
TABLE 17-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2/4/6  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CCP1CON  
CCP2CON  
INTCON  
PIE1  
DC1B1  
DC2B1  
TMR0IE  
DC1B0  
DC2B0  
INTE  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
CCP2M3 CCP2M2 CCP2M1 CCP2M0  
184  
184  
73  
GIE  
PEIE  
RBIE  
TMR0IF  
INTF  
RBIF  
TMR1GIE  
TMR1GIF  
ADIE  
ADIF  
RCIE  
RCIF  
TXIE  
TXIF  
SSPIE  
SSPIF  
CCP1IE TMR2IE  
TMR1IE  
TMR1IF  
74  
PIR1  
CCP1IF  
TMR2IF  
TMR4IE  
TMR4IF  
77  
PIE3  
CCP5IE  
CCP5IF  
CCP4IE  
CCP4IF  
CCP3IE  
CCP3IF  
TMR6IE  
TMR6IF  
76  
PIR3  
79  
PR2  
Timer2 Module Period Register  
Holding Register for the 8-bit TMR2 Register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
173*  
173*  
175  
TMR2  
T2CON  
Legend: x= unknown, u= unchanged, -= unimplemented read as ‘0’. Shaded cells are not used for Timer2 module.  
Page provides register information.  
*
DS41364A-page 176  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
18.0 CAPACITIVE SENSING  
MODULE  
The capacitive sensing module allows for an interaction  
with an end user without a mechanical interface. In a  
typical application, the capacitive sensing module is  
attached to a pad on a Printed Circuit Board (PCB),  
which is electrically isolated from the end user. When the  
end user places their finger over the PCB pad, a  
capacitive load is added, causing a frequency shift in the  
capacitive sensing module. The capacitive sensing  
module requires software and at least one timer  
resource to determine the change in frequency. Key  
features of this module include:  
• Analog MUX for monitoring multiple inputs  
• Capacitive sensing oscillator  
• Multiple timer resources  
• Software control  
• Operation during Sleep  
FIGURE 18-1:  
CAPACITIVE SENSING BLOCK DIAGRAM  
Timer0 Module  
Set  
TMR0IF  
TMR0CS  
T0XCS  
T0CKI  
FOSC/4  
0
1
Overflow  
0
1
TMR0  
CPSCH<3:0>(2)  
CPSON(3)  
CPS0  
CPS1  
CPS2  
CPS3  
Timer1 Module  
CPS4  
CPSON  
T1CS<1:0>  
CPS5  
FOSC  
CPS6  
Capacitive  
Sensing  
Oscillator  
FOSC/4  
CPS7  
CPSCLK  
CPS8(1)  
CPS9(1)  
CPS10(1)  
CPS11(1)  
CPS12(1)  
CPS13(1)  
CPS14(1)  
CPS15(1)  
CPS16(1)  
TMR1H:TMR1L  
EN  
T1OSC/  
T1CKI  
CPSOSC  
CPSOUT  
T1GSEL<1:0>  
T1G  
CPSRNG<1:0>  
Timer1 Gate  
Control Logic  
SYNCC1OUT  
SYNCC2OUT  
Note 1: Reference Register 18-2 for channels implemented on each device  
2: CPSCH3 is not implemented on PIC16F1933/1936/1938/PIC16LF1933/1936/1938.  
3: If CPSON = 0, disabling capacitive sensing, no channel is selected.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 177  
PIC16F193X/LF193X  
18.4.1  
TIMER0  
18.1 Analog MUX  
To select Timer0 as the timer resource for the capacitive  
sensing module:  
The capacitive sensing module can monitor up to 16  
inputs. The capacitive sensing inputs are defined as  
CPS<15:0>. To determine if a frequency change has  
occurred the user must:  
• Set the T0XCS bit of the CPSCON0 register  
• Clear the TMR0CS bit of the OPTION register  
• Select the appropriate CPS pin by setting the  
CPSCH<3:0> bits of the CPSCON1 register  
When Timer0 is chosen as the timer resource, the  
capacitive sensing oscillator will be the clock source for  
Timer0. Refer to Section 15.0 “Timer0 Module” for  
additional information.  
• Set the corresponding ANSEL bit  
• Set the corresponding TRIS bit  
• Run the software algorithm  
18.4.2  
TIMER1  
Selection of the CPSx pin while the module is enabled  
will cause the capacitive sensing oscillator to be on the  
CPSx pin. Failure to set the corresponding ANSEL and  
TRIS bits can cause the capacitive sensing oscillator to  
stop, leading to false frequency readings.  
To select Timer1 as the timer resource for the  
capacitive sensing module, set the TMR1CS<1:0> of  
the T1CON register to ‘11’. When Timer1 is chosen as  
the timer resource, the capacitive sensing oscillator will  
be the clock source for Timer1. Because the Timer1  
module has a gate control, developing a time base for  
the frequency measurement can be simplified by using  
the Timer0 overflow flag.  
18.2 Capacitive Sensing Oscillator  
The capacitive sensing oscillator consists of a constant  
current source and a constant current sink, to produce  
It is recommend that the Timer0 overflow flag, in con-  
junction with the Toggle mode of the Timer1 Gate, be  
used to develop the fixed time base required by the  
software portion of the capacitive sensing module.  
Refer to Section 16.12 “Timer1 Gate Control Regis-  
ter” for additional information.  
a
triangle waveform. The CPSOUT bit of the  
CPSCON0 register shows the status of the capacitive  
sensing oscillator, whether it is a sinking or sourcing  
current. The oscillator is designed to drive a capacitive  
load (single PCB pad) and at the same time, be a clock  
source to either Timer0 or Timer1. The oscillator has  
three different current settings as defined by  
CPSRNG<1:0> of the CPSCON0 register. The different  
current settings for the oscillator serve two purposes:  
TABLE 18-1: TIMER1 ENABLE FUNCTION  
TMR1ON  
TMR1GE  
Timer1 Operation  
0
0
1
0
1
0
Off  
Off  
On  
• Maximize the number of counts in a timer for a  
fixed time base  
• Maximize the count differential in the timer during  
a change in frequency  
1
1
Count Enabled by input  
18.3 Timer resources  
To measure the change in frequency of the capacitive  
sensing oscillator, a fixed time base is required. For the  
period of the fixed time base, the capacitive sensing  
oscillator is used to clock either Timer0 or Timer1. The  
frequency of the capacitive sensing oscillator is equal  
to the number of counts in the timer divided by the  
period of the fixed time base.  
18.4 Fixed Time Base  
To measure the frequency of the capacitive sensing  
oscillator, a fixed time base is required. Any timer  
resource or software loop can be used to establish the  
fixed time base. It is up to the end user to determine the  
method in which the fixed time base is generated.  
Note:  
The fixed time base can not be generated  
by the timer resource that the capacitive  
sensing oscillator is clocking.  
DS41364A-page 178  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
18.5.3  
FREQUENCY THRESHOLD  
18.5 Software Control  
The frequency threshold should be placed midway  
between the value of nominal frequency and the  
reduced frequency of the capacitive sensing oscillator.  
Refer to Application Note AN1103, “Software Handling  
for Capacitive Sensing” (DS01103) for more detailed  
information on the software required for capacitive  
sensing module.  
The software portion of the capacitive sensing module  
is required to determine the change in frequency of the  
capacitive sensing oscillator. This is accomplished by  
the following:  
• Setting a fixed time base to acquire counts on  
Timer0 or Timer1  
• Establishing the nominal frequency for the  
capacitive sensing oscillator  
Note:  
For more information on general capacitive  
sensing refer to Application Notes:  
• Establishing the reduced frequency for the  
capacitive sensing oscillator due to an additional  
capacitive load  
• AN1101, Introduction to Capacitive  
Sensing” (DS01101)  
• AN1102, Layout and Physical Design  
Guidelines for Capacitive Sensing”  
(DS01102)  
• Set the frequency threshold  
18.5.1  
NOMINAL FREQUENCY  
(NO CAPACITIVE LOAD)  
18.6 Operation during Sleep  
To determine the nominal frequency of the capacitive  
sensing oscillator:  
The capacitive sensing oscillator will continue to run as  
long as the module is enabled, independent of the part  
being in Sleep. In order for the software to determine if  
a frequency change has occurred, the part must be  
awake. However, the part does not have to be awake  
when the timer resource is acquiring counts.  
• Remove any extra capacitive load on the selected  
CPSx pin  
• At the start of the fixed time base, clear the timer  
resource  
• At the end of the fixed time base save the value in  
the timer resource  
Note:  
Timer0 does not operate when in Sleep,  
and therefore cannot be used for  
capacitive sense measurements in Sleep.  
The value of the timer resource is the number of  
oscillations of the capacitive sensing oscillator for the  
given time base. The frequency of the capacitive  
sensing oscillator is equal to the number of counts on  
in the timer divided by the period of the fixed time base.  
18.5.2  
REDUCED FREQUENCY  
(ADDITIONAL CAPACITIVE LOAD)  
The extra capacitive load will cause the frequency of the  
capacitive sensing oscillator to decrease. To determine  
the reduced frequency of the capacitive sensing  
oscillator:  
• Add a typical capacitive load on the selected  
CPSx pin  
• Use the same fixed time base as the nominal  
frequency measurement  
• At the start of the fixed time base, clear the timer  
resource  
• At the end of the fixed time base save the value in  
the timer resource  
The value of the timer resource is the number of oscil-  
lations of the capacitive sensing oscillator with an addi-  
tional capacitive load. The frequency of the capacitive  
sensing oscillator is equal to the number of counts on  
in the timer divided by the period of the fixed time base.  
This frequency should be less than the value obtained  
during the nominal frequency measurement.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 179  
PIC16F193X/LF193X  
REGISTER 18-1: CPSCON0: CAPACITIVE SENSING CONTROL REGISTER 0  
R/W-0/0  
CPSON  
U-0  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
R-0/0  
R/W-0/0  
T0XCS  
CPSRNG1  
CPSRNG0  
CPSOUT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
CPSON: Capacitive Sensing Module Enable bit  
1= Capacitive sensing module is operating  
0= Capacitive sensing module is shut off and consumes no operating current  
bit 6-4  
bit 3-2  
Unimplemented: Read as ‘0’  
CPSRNG<1:0>: Capacitive Sensing Oscillator Range bits  
00= Oscillator is off  
01= Oscillator is in low range. Charge/discharge current is nominally 0.1 µA.  
10= Oscillator is in medium range. Charge/discharge current is nominally 1.2 µA.  
11= Oscillator is in high range. Charge/discharge current is nominally 18 µA.  
bit 1  
bit 0  
CPSOUT: Capacitive Sensing Oscillator Status bit  
1= Oscillator is sourcing current (Current flowing out the pin)  
0= Oscillator is sinking current (Current flowing into the pin)  
T0XCS: Timer0 External Clock Source Select bit  
If TMR0CS = 1  
The T0XCS bit controls which clock external to the core/Timer0 module supplies Timer0:  
1= Timer0 clock source is the capacitive sensing oscillator  
0= Timer0 clock source is the T0CKI pin  
If TMR0CS = 0  
Timer0 clock source is controlled by the core/Timer0 module and is FOSC/4  
DS41364A-page 180  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
REGISTER 18-2: CPSCON1: CAPACITIVE SENSING CONTROL REGISTER 1  
(1, 2)  
(1)  
U-0  
U-0  
U-0  
R/W-0/0  
CPSCH4  
R/W-0/0  
CPSCH3  
R/W-0/0  
R/W-0/0  
R/W-0/0  
CPSCH2  
CPSCH1  
CPSCH0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-4  
bit 3-0  
Unimplemented: Read as ‘0’  
CPSCH<3:0>: Capacitive Sensing Channel Select bits  
If CPSON = 0:  
These bits are ignored. No channel is selected.  
If CPSON = 1:  
0000= channel 0, (CPS0)  
0001= channel 1, (CPS1)  
0010= channel 2, (CPS2)  
0011= channel 3, (CPS3)  
0100= channel 4, (CPS4)  
0101= channel 5, (CPS5)  
0110= channel 6, (CPS6)  
0111= channel 7, (CPS7)  
(1)  
1000= channel 8, (CPS8  
1001= channel 9, (CPS9  
)
)
(1)  
(1)  
1010= channel 10, (CPS10  
)
(1)  
1011= channel 11, (CPS11  
1100= channel 12, (CPS12  
1101= channel 13, (CPS13  
1110= channel 14, (CPS14  
1111= channel 15, (CPS15  
)
(1)  
(1)  
(1)  
(1)  
)
)
)
)
Note 1: These channels are not implemented on the PIC16F1933/1936/1938/PIC16LF1933/1936/1938.  
2: This bit is not implemented on PIC16F1933/1936/1938/PIC16LF1933/1936/1938, read as ‘0’  
TABLE 18-2: SUMMARY OF REGISTERS ASSOCIATED WITH CAPACITIVE SENSING  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELA  
ANSA5  
ANSB5  
ANSD5  
TMR0IE  
ANSA4  
ANSB4  
ANSD4  
INTE  
ANSA3  
ANSB3  
ANSD3  
IOCIE  
ANSA2  
ANSB2  
ANSD2  
TMR0IF  
ANSA1  
ANSB1  
ANSD1  
INTF  
ANSA0  
ANSB0  
ANSD0  
IOCIF  
86  
91  
ANSELB  
ANSELD  
INTCON  
ANSD7  
GIE  
ANSD6  
PEIE  
97  
73  
OPTION_REG WPUEN  
INTEDG  
ADIE  
TMR0CS  
RCIE  
TMR0SE  
TXIE  
PSA  
PS2  
PS1  
PS0  
51  
PIE1  
TMR1GIE  
TMR1GIF  
SSPIE  
SSPIF  
CCP1IE  
CCP1IF  
TMR2IE  
TMR2IF  
TMR1IE  
TMR1IF  
74  
PIR1  
ADIF  
RCIF  
TXIF  
77  
T1CON  
TxCON  
TRISA  
TRISB  
TRISD  
TMR1CS1 TMR1CS0 T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
TMR1ON  
169  
175  
86  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMRXON TXCKPS1 TXCKPS0  
TRISA7  
TRISB7  
TRISD7  
TRISA6  
TRISB6  
TRISD6  
TRISA5  
TRISB5  
TRISD5  
TRISA4  
TRISB4  
TRISD4  
TRISA3  
TRISB3  
TRISD3  
TRISA2  
TRISB2  
TRISD2  
TRISA1  
TRISB1  
TRISD1  
TRISA0  
TRISB0  
TRISD0  
91  
97  
Legend: -= Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the capacitive  
sensing module.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 181  
PIC16F193X/LF193X  
NOTES:  
DS41364A-page 182  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
19.0 CAPTURE/COMPARE/PWM  
MODULES (ECCP1, ECCP2,  
ECCP3, CCP4, CCP5)  
This  
device  
contains  
three  
Enhanced  
Capture/Compare/PWM (ECCP1, ECCP2, ECCP3)  
and two standard Capture/Compare/PWM module  
(CCP4 and CCP5). The CCP4 and CCP5 modules are  
identical in operation. The ECCP1, ECCP2 and ECCP3  
modules may also be referred to as CCP1, CCP2,  
CCP3, as required.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 183  
PIC16F193X/LF193X  
TABLE 19-1: REQUIRED TIMER  
RESOURCES  
19.1 Capture/Compare/PWM  
The Capture/Compare/PWM module is a peripheral  
which allows the user to time and control different  
events. In Capture mode, the peripheral allows the  
timing of the duration of an event. The Compare mode  
allows the user to trigger an external event when a  
predetermined amount of time has expired. The PWM  
mode can generate a Pulse-Width Modulated signal of  
varying frequency and duty cycle.  
CCP Mode  
Timer Resource  
Capture  
Compare  
PWM  
Timer1  
Timer1  
Timer2 or 4 or 6  
Table 19-1 shows the timer resources required by the  
CCP module.  
REGISTER 19-1: CCPXCON: CCPX CONTROL REGISTER  
R/W-00  
R/W-0/0  
R/W-0/0  
DCxB1  
R/W-0/0  
DCxB0  
R/W-0/0  
CCPxM3  
R/W-0/0  
CCPxM2  
R/W-0/0  
CCPxM1  
R/W-0/0  
CCPxM0  
(1)  
(1)  
PxM1  
PxM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Reset  
(1)  
bit 7-6  
PxM<1:0>: Enhanced PWM Output Configuration bits  
If CCPxM<3:2> = 00, 01, 10:  
xx= PxA assigned as Capture/Compare input; PxB, PxC, PxD assigned as port pins  
If CCPxM<3:2> = 11:  
00= Single output; PxA modulated; PxB, PxC, PxD assigned as port pins  
01= Full-Bridge output forward; P1D modulated; P1A active; P1B, P1C inactive  
10= Half-Bridge output; P1A, P1B modulated with dead-band control; P1C, P1D assigned as port pins  
11= Full-Bridge output reverse; P1B modulated; P1C active; P1A, P1D inactive  
bit 5-4  
DCxB<1:0>: PWM Duty Cycle Least Significant bits  
Capture mode:  
Unused  
Compare mode:  
Unused  
PWM mode:  
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.  
bit 3-0  
CCPxM<3:0>: ECCPx Mode Select bits  
0000= Capture/Compare/PWM off (resets ECCPx module)  
0001= Reserved  
0010= Compare mode: toggle output on match  
0011= Capture mode  
0100= Capture mode: every falling edge  
0101= Capture mode: every rising edge  
0110= Capture mode: every 4th rising edge  
0111= Capture mode: every 16th rising edge  
1000= Compare mode: initialize ECCPx pin low; set output on compare match (set CCPxIF)  
1001= Compare mode: initialize ECCPx pin high; clear output on compare match (set CCPxIF)  
1010= Compare mode: generate software interrupt only; ECCPx pin reverts to I/O state  
1011= Compare mode: trigger special event (ECCPx resets TMR1 or TMR3, sets CCPxIF bit, ECCP2  
(1)  
trigger also starts A/D conversion if A/D module is enabled)  
CCP<5:4> only:  
11xx= PWM mode  
ECCP<3:1> only:  
1100= PWM mode: PxA, PxC active-high; PxB, PxD active-high  
1101= PWM mode: PxA, PxC active-high; PxB, PxD active-low  
1110= PWM mode: PxA, PxC active-low; PxB, PxD active-high  
1111= PWM mode: PxA, PxC active-low; PxB, PxD active-low  
Note 1: These bits are not implemented on CCP<5:4>.  
DS41364A-page 184  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
timers with auto-reload (Timer2, Timer4 and Timer6),  
PWM mode on the CCP modules can use any of these  
timers.  
19.2 CCP Clock Selection  
The PIC16F193X/LF193X allows each individual CCP  
module to select the timer source that controls the CCP  
module. Each module has an independent selection.  
The following registers are used to select which timer is  
used:  
As the PIC16F193X/LF193X has only one 16-bit timer  
(Timer1), the Capture and Compare modes of the CCP  
modules always uses Timer1. As there are three 8-bit  
• CCP Timers Control Register 0 (CCPTMRS0)  
• CCP Timers Control Register 1 (CCPTMRS1)  
REGISTER 19-2: CCPTMRS0: CCP TIMERS CONTROL REGISTER 0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
C4TSEL1  
C4TSEL0  
C3TSEL1  
C3TSEL0  
C2TSEL1  
C2TSEL0  
C1TSEL1  
C1TSEL0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-6  
bit 5-4  
bit 3-2  
bit 1-0  
C4TSEL<1:0>: CCP4 Timer Selection  
00= CCP4 is based off Timer 2 in PWM Mode  
01= CCP4 is based off Timer 4 in PWM Mode  
10= CCP4 is based off Timer 6 in PWM Mode  
11= Reserved  
C3TSEL<1:0>: CCP3 Timer Selection  
00= CCP3 is based off Timer 2 in PWM Mode  
01= CCP3 is based off Timer 4 in PWM Mode  
10= CCP3 is based off Timer 6 in PWM Mode  
11= Reserved  
C2TSEL<1:0>: CCP2 Timer Selection  
00= CCP2 is based off Timer 2 in PWM Mode  
01= CCP2 is based off Timer 4 in PWM Mode  
10= CCP2 is based off Timer 6 in PWM Mode  
11= Reserved  
C1TSEL<1:0>: CCP1 Timer Selection  
00= CCP1 is based off Timer 2 in PWM Mode  
01= CCP1 is based off Timer 4 in PWM Mode  
10= CCP1 is based off Timer 6 in PWM Mode  
11= Reserved  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 185  
PIC16F193X/LF193X  
REGISTER 19-3: CCPTMRS1: CCP TIMERS CONTROL REGISTER 1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
C5TSEL1  
C5TSEL0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-2  
bit 1-0  
Unimplemented: Read as ‘0’  
C5TSEL<1:0>: CCP5 Timer Selection  
00= CCP5 is based off Timer 2 in PWM Mode  
01= CCP5 is based off Timer 4 in PWM Mode  
10= CCP5 is based off Timer 6 in PWM Mode  
11= Reserved  
DS41364A-page 186  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
19.3.2  
TIMER1 MODE SELECTION  
19.3 Capture Mode  
Timer1 must be running in Timer mode or Synchronized  
Counter mode for the CCP module to use the capture  
feature. In Asynchronous Counter mode, the capture  
operation may not work.  
In Capture mode, the CCPRxH, CCPRxL register pair  
captures the 16-bit value of the TMR1 register when an  
event occurs on pin CCPx. An event is defined as one  
of the following and is configured by the CCPxM<3:0>  
bits of the CCPxCON register:  
19.3.3  
SOFTWARE INTERRUPT MODE  
• Every falling edge  
• Every rising edge  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep the  
CCPxIE interrupt enable bit of the PIEx register clear to  
avoid false interrupts. Additionally, the user should  
clear the CCPxIF interrupt flag bit of the PIRx register  
following any change in Operating mode.  
• Every 4th rising edge  
• Every 16th rising edge  
When a capture is made, the Interrupt Request Flag bit  
CCPxIF of the PIRx register is set. The interrupt flag  
must be cleared in software. If another capture occurs  
before the value in the CCPRxH, CCPRxL register pair  
is read, the old captured value is overwritten by the new  
captured value (see Figure 19-1).  
Note:  
Clocking Timer1 from the system clock  
(FOSC) should not be used in Capture  
mode. In order for Capture mode to  
recognize the trigger event on the CCPx  
pin, TImer1 must be clocked from the  
instruction clock (FOSC/4) or from an  
external clock source.  
19.3.1  
CCPX PIN CONFIGURATION  
In Capture mode, the CCPx pin should be configured  
as an input by setting the associated TRIS control bit.  
19.3.4  
CCP PRESCALER  
Also, the CCPx pin function can be moved to  
alternative pins using the APFCON register. Refer to  
Section 6.1 “Alternate Pin Function” for more  
details.  
There are four prescaler settings specified by the  
CCPxM<3:0> bits of the CCPxCON register. Whenever  
the CCP module is turned off, or the CCP module is not  
in Capture mode, the prescaler counter is cleared. Any  
Reset will clear the prescaler counter.  
Note:  
If the CCPx pin is configured as an output,  
a write to the port can cause a capture  
condition.  
Switching from one capture prescaler to another does not  
clear the prescaler and may generate a false interrupt. To  
avoid this unexpected operation, turn the module off by  
clearing the CCPxCON register before changing the  
prescaler (see Example 19-1).  
FIGURE 19-1:  
CAPTURE MODE  
OPERATION BLOCK  
DIAGRAM  
Set Flag bit CCPxIF  
(PIRx register)  
EXAMPLE 19-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
Prescaler  
÷ 1, 4, 16  
BANKSELCCP1CON  
;Set Bank bits to point  
;to CCP1CON  
CCPx  
pin  
CCPRxH  
CCPRxL  
CLRF  
MOVLW  
CCP1CON  
;Turn CCP module off  
Capture  
Enable  
and  
Edge Detect  
NEW_CAPT_PS;Load the W reg with  
;the new prescaler  
TMR1H  
TMR1L  
;move value and CCP ON  
CCPxCON<3:0>  
System Clock (FOSC)  
MOVWF  
CCP1CON  
;Load CCP1CON with this  
;value  
19.3.5  
CAPTURE DURING SLEEP  
Capture mode depends upon the Timer1 module for  
proper operation. There are two options for driving the  
Timer1 module in Capture mode. It can be driven by the  
instruction clock (FOSC/4), or by an external clock source.  
If Timer1 is clocked by FOSC/4, then Timer1 will not  
increment during Sleep. When the device wakes from  
Sleep, Timer1 will continue from its previous state.  
If Timer1 is clocked by an external clock source, then  
Capture mode will operate as defined in Section 19.1  
“Capture/Compare/PWM”.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 187  
PIC16F193X/LF193X  
TABLE 19-2: REGISTERS ASSOCIATED WITH CAPTURE  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
(1)  
CCPxCON  
CCPRxL  
CCPRxH  
CM1CON0  
CM1CON1  
CM2CON0  
CM2CON1  
INTCON  
PIE1  
PxM1  
PxM0  
DCxB1  
DCxB0  
CCPxM3  
CCPxM2 CCPxM1 CCPxM0  
184  
187  
187  
148  
149  
148  
149  
73  
Capture/Compare/PWM Register x Low Byte (LSB)  
Capture/Compare/PWM Register x High Byte (MSB)  
C1ON  
C1INTP  
C2ON  
C2INTP  
GIE  
C1OUT  
C1INTN  
C2OUT  
C2INTN  
PEIE  
C1OE  
C1PCH1 C1PCH0  
C2OE C2POL  
C2PCH1 C2PCH0  
C1POL  
C1SP  
C1HYS  
C1NCH1 C1NCH0  
C2HYS C2SYNC  
C2NCH1 C2NCH0  
C1SYNC  
C2SP  
TMR0IE  
RCIE  
INTE  
TXIE  
IOCIE  
SSPIE  
BCLIE  
TMR6IE  
SSPIF  
BCLIF  
TMR6IF  
T1OSCEN  
TMR0IF  
CCP1IE  
LCDIE  
INTF  
TMR2IE  
IOCIF  
TMR1IE  
CCP2IE  
TMR1GIE  
OSFIE  
ADIE  
74  
PIE2  
C2IE  
C1IE  
EEIE  
75  
PIE3  
CCP5IE  
ADIF  
CCP4IE  
RCIF  
CCP3IE  
TXIF  
TMR4IE  
TMR2IF  
76  
PIR1  
TMR1GIF  
OSFIF  
CCP1IF  
LCDIF  
TMR1IF  
CCP2IF  
77  
PIR2  
C2IF  
C1IF  
EEIF  
78  
PIR3  
CCP5IF  
CCP4IF  
CCP3IF  
TMR4IF  
79  
T1CON  
T1GCON  
TMR1L  
TMR1H  
TRISA  
TMR1CS1 TMR1CS0 T1CKPS1 T1CKPS0  
TMR1GE T1GPOL T1GTM  
T1SYNC  
TMR1ON  
T1GSS0  
169  
170  
165  
165  
86  
T1GSPM T1GGO/DONE T1GVAL  
T1GSS1  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
TRISA7  
TRISB7  
TRISC7  
TRISD7  
TRISA6  
TRISB6  
TRISC6  
TRISD6  
TRISA5  
TRISB5  
TRISC5  
TRISD5  
TRISA4  
TRISB4  
TRISC4  
TRISD4  
TRISA3  
TRISB3  
TRISC3  
TRISD3  
TRISE3  
TRISA2  
TRISB2  
TRISC2  
TRISD2  
TRISA1  
TRISB1  
TRISC1  
TRISD1  
TRISA0  
TRISB0  
TRISC0  
TRISD0  
TRISB  
91  
TRISC  
94  
TRISD  
97  
(2)  
(2)  
(2)  
TRISE  
TRISE2  
TRISE1  
TRISE0  
101  
Legend: – = Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the Capture  
and Compare.  
Note 1: Applies to ECCP modules only.  
DS41364A-page 188  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
19.4.2  
TIMER1 MODE SELECTION  
19.4 Compare Mode  
In Compare mode, Timer1 must be running in either  
Timer mode or Synchronized Counter mode. The  
compare operation may not work in Asynchronous  
Counter mode.  
In Compare mode, the 16-bit CCPRx register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the CCPx module may:  
Toggle the CCPx output  
• Set the CCPx output  
Note:  
Clocking Timer1 from the system clock  
(FOSC) should not be used in Capture  
mode. In order for Capture mode to  
recognize the trigger event on the CCPx  
pin, TImer1 must be clocked from the  
instruction clock (FOSC/4) or from an  
external clock source.  
• Clear the CCPx output  
• Generate a Special Event Trigger  
• Generate a Software Interrupt  
The action on the pin is based on the value of the  
CCPxM<3:0> control bits of the CCPxCON register. At  
the same time, the interrupt flag CCPxIF bit is set.  
19.4.3  
SOFTWARE INTERRUPT MODE  
All Compare modes can generate an interrupt.  
When Generate Software Interrupt mode is chosen  
(CCPxM<3:0> = 1010), the CCPx module does not  
assert control of the CCPx pin (see the CCP1CON  
register).  
FIGURE 19-2:  
COMPARE MODE  
OPERATION BLOCK  
DIAGRAM  
19.4.4  
SPECIAL EVENT TRIGGER  
CCPxCON<3:0>  
Mode Select  
When Special Event Trigger mode is chosen  
(CCPxM<3:0> = 1011), the CCPx module does the  
following:  
Set CCPxIF Interrupt Flag  
(PIRx)  
4
CCPx  
Pin  
CCPRxH CCPRxL  
Comparator  
• Resets Timer1  
• Starts an ADC conversion if ADC is enabled  
(CCP5 only)  
Q
S
R
Output  
Logic  
Match  
The CCPx module does not assert control of the CCPx  
pin in this mode (see the CCPxCON register).  
TMR1H TMR1L  
TRIS  
Output Enable  
The Special Event Trigger output of the CCP occurs  
immediately upon a match between the TMR1H,  
TMR1L register pair and the CCPRxH, CCPRxL  
register pair. The TMR1H, TMR1L register pair is not  
reset until the next rising edge of the Timer1 clock. The  
Special Event Trigger output starts an A/D conversion  
(if the A/D module is enabled). This feature is only  
available on CCP5). This allows the CCPRxH,  
CCPRxL register pair to effectively provide a 16-bit  
programmable period register for Timer1.  
Special Event Trigger  
Special Event Trigger will:  
CCP<4:1>: Reset Timer1, but not set interrupt flag bit  
TMR1IF.  
CCP5: Reset Timer1, but not set interrupt flag bit and set bit  
GO/DONE (ADCON0<1>).  
19.4.1  
CCPX PIN CONFIGURATION  
The user must configure the CCPx pin as an output by  
clearing the associated TRIS bit.  
Note 1: The Special Event Trigger from the CCP  
module does not set interrupt flag bit  
TMR1IF of the PIR1 register.  
Also, the CCPx pin function can be moved to  
alternative pins using the APFCON register. Refer to  
Section 6.1 “Alternate Pin Function” for more  
details.  
2: Removing the match condition by  
changing the contents of the CCPRxH  
and CCPRxL register pair, between the  
clock edge that generates the Special  
Event Trigger and the clock edge that  
generates the Timer1 Reset, will preclude  
the Reset from occurring.  
Note:  
Clearing the CCPxCON register will force  
the CCPx compare output latch to the  
default low level. This is not the PORT I/O  
data latch.  
19.4.5  
COMPARE DURING SLEEP  
The Compare mode is dependent upon the system  
clock (FOSC) for proper operation. Since FOSC is shut  
down during Sleep mode, the Compare mode will not  
function properly during Sleep.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 189  
PIC16F193X/LF193X  
TABLE 19-3: REGISTERS ASSOCIATED WITH COMPARE  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
(1)  
CCPxCON  
CCPRxL  
CCPRxH  
CM1CON0  
CM1CON1  
CM2CON0  
CM2CON1  
INTCON  
PIE1  
PxM1  
PxM0  
DCxB1  
DCxB0  
CCPxM3  
CCPxM2 CCPxM1 CCPxM0  
184  
187  
187  
148  
149  
148  
149  
73  
Capture/Compare/PWM Register x Low Byte (LSB)  
Capture/Compare/PWM Register x High Byte (MSB)  
C1ON  
C1INTP  
C2ON  
C2INTP  
GIE  
C1OUT  
C1INTN  
C2OUT  
C2INTN  
PEIE  
C1OE  
C1PCH1 C1PCH0  
C2OE C2POL  
C2PCH1 C2PCH0  
C1POL  
C1SP  
C1HYS  
C1NCH1 C1NCH0  
C2HYS C2SYNC  
C2NCH1 C2NCH0  
C1SYNC  
C2SP  
TMR0IE  
RCIE  
INTE  
TXIE  
IOCIE  
SSPIE  
BCLIE  
TMR6IE  
SSPIF  
BCLIF  
TMR6IF  
T1OSCEN  
TMR0IF  
CCP1IE  
LCDIE  
INTF  
TMR2IE  
IOCIF  
TMR1IE  
CCP2IE  
TMR1GIE  
OSFIE  
ADIE  
74  
PIE2  
C2IE  
C1IE  
EEIE  
75  
PIE3  
CCP5IE  
ADIF  
CCP4IE  
RCIF  
CCP3IE  
TXIF  
TMR4IE  
TMR2IF  
76  
PIR1  
TMR1GIF  
OSFIF  
CCP1IF  
LCDIF  
TMR1IF  
CCP2IF  
77  
PIR2  
C2IF  
C1IF  
EEIF  
78  
PIR3  
CCP5IF  
CCP4IF  
CCP3IF  
TMR4IF  
79  
T1CON  
T1GCON  
TMR1L  
TMR1H  
TRISA  
TMR1CS1 TMR1CS0 T1CKPS1 T1CKPS0  
TMR1GE T1GPOL T1GTM  
T1SYNC  
TMR1ON  
T1GSS0  
169  
170  
165  
165  
86  
T1GSPM T1GGO/DONE T1GVAL  
T1GSS1  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
TRISA7  
TRISB7  
TRISC7  
TRISD7  
TRISA6  
TRISB6  
TRISC6  
TRISD6  
TRISA5  
TRISB5  
TRISC5  
TRISD5  
TRISA4  
TRISB4  
TRISC4  
TRISD4  
TRISA3  
TRISB3  
TRISC3  
TRISD3  
TRISE3  
TRISA2  
TRISB2  
TRISC2  
TRISD2  
TRISA1  
TRISB1  
TRISC1  
TRISD1  
TRISA0  
TRISB0  
TRISC0  
TRISD0  
TRISB  
91  
TRISC  
94  
TRISD  
97  
(2)  
(2)  
(2)  
TRISE  
TRISE2  
TRISE1  
TRISE0  
101  
Legend: – = Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the Capture  
and Compare.  
Note 1: Applies to ECCP modules only.  
2: These bits are not implemented on PIC16F1933/1936/1938/PIC16LF1933/1936/1938 devices, read as ‘0’.  
DS41364A-page 190  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 19-3:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
19.5 PWM Mode  
The PWM mode generates a Pulse-Width Modulated  
signal on the CCPx pin. The duty cycle, period and  
resolution are determined by the following registers:  
CCPxCON<5:4>  
Duty Cycle Registers  
CCPRxL  
• PRx  
• TxCON  
• CCPRxL  
• CCPxCON  
CCPRxH(2) (Slave)  
Comparator  
CCPx  
The ECCP modules have the following additional  
registers:  
R
S
Q
• ECCPxAS  
• PSTRxCON  
• PWMxCON  
(1)  
TMRx  
TRIS  
In Pulse-Width Modulation (PWM) mode, the CCPx  
module produces up to a 10-bit resolution PWM output  
on the CCPx pin. Since the CCPx pin is multiplexed  
with the PORT data latch, the TRIS for that pin must be  
cleared to enable the CCPx pin output driver.  
Comparator  
PRx  
Clear Timerx,  
toggle CCPx pin and  
latch duty cycle  
Note 1: The 8-bit timer TMR2 register is concatenated  
with the 2-bit internal system clock (FOSC), or  
2 bits of the prescaler, to create the 10-bit time  
base.  
Note:  
Clearing the CCPxCON register will  
relinquish CCPx control of the CCPx pin.  
The CCPx module in PWM mode can have the PWM  
based off of either Timer2, Timer4 or TImer6. This is  
controlled by the CCPTMRS0 and CCPTMRS1  
registers. Reference Section 19.2 “CCP Clock  
Selection” for more information.  
2: In PWM mode, CCPRxH is a read-only register.  
The PWM output (Figure 19-4) has a time base  
(period) and a time that the output stays high (duty  
cycle).  
Figure 19-3 shows a simplified block diagram of PWM  
operation.  
FIGURE 19-4:  
CCP PWM OUTPUT  
Figure 19-4 shows a typical waveform of the PWM  
signal.  
Period  
For a step-by-step procedure on how to set up the CCP  
module for PWM operation, see Section 19.5.7  
“Setup for PWM Operation”.  
Pulse Width  
TMRx = PRx  
TMRx\2 = CCPRxH:CCPxCON<5:4>  
TMRX = 0  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 191  
PIC16F193X/LF193X  
19.5.1  
PWM PERIOD  
19.5.2  
PWM DUTY CYCLE  
The PWM period is specified by the PRx register of  
Timerx. The PWM period can be calculated using the  
formula of Equation 19-1.  
The PWM duty cycle is specified by writing a 10-bit  
value to multiple registers: CCPRxL register and  
DCxB<1:0> bits of the CCPxCON register. The  
CCPRxL contains the eight MSbs and the DCxB<1:0>  
bits of the CCPxCON register contain the two LSbs.  
CCPRxL and DCxB<1:0> bits of the CCPxCON  
register can be written to at any time. The duty cycle  
value is not latched into CCPRxH until after the period  
completes (i.e., a match between PRx and TMRx  
registers occurs). While using the PWM, the CCPRxH  
register is read-only.  
EQUATION 19-1: PWM PERIOD  
PWM Period = [(PR2x) + 1] • 4 TOSC •  
(TMRx Prescale Value)  
Note 1: TOSC = 1/FOSC  
Equation 19-2 is used to calculate the PWM pulse  
width.  
When TMRx is equal to PRx, the following three events  
occur on the next increment cycle:  
Equation 19-3 is used to calculate the PWM duty cycle  
ratio.  
• TMRx is cleared  
• The CCPx pin is set. (Exception: If the PWM duty  
cycle = 0%, the pin will not be set.)  
EQUATION 19-2: PULSE WIDTH  
• The PWM duty cycle is latched from CCPRxL into  
CCPRxH.  
Pulse Width = (CCPRxL:CCPxCON<5:4>) •  
TOSC (TMRx Prescale Value)  
Note:  
The Timerx postscaler (see Section 17.1  
“Timer2/4/6 Operation”) is not used in the  
determination of the PWM frequency.  
EQUATION 19-3: DUTY CYCLE RATIO  
(CCPRxL:CCPxCON<5:4>)  
Duty Cycle Ratio = ----------------------------------------------------------------------  
4(PRx + 1)  
The CCPRxH register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
The 8-bit timer TMRx register is concatenated with either  
the 2-bit internal system clock (FOSC), or 2 bits of the  
prescaler, to create the 10-bit time base. The system  
clock is used if the Timerx prescaler is set to 1:1.  
When the 10-bit time base matches the CCPRxH and  
2-bit latch, then the CCPx pin is cleared (see  
Figure 19-3).  
DS41364A-page 192  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
19.5.3  
PWM RESOLUTION  
EQUATION 19-4: PWM RESOLUTION  
The resolution determines the number of available duty  
cycles for a given period. For example, a 10-bit resolution  
will result in 1024 discrete duty cycles, whereas an 8-bit  
resolution will result in 256 discrete duty cycles.  
log[4(PRx + 1)]  
Resolution = ----------------------------------------- bits  
log(2)  
The maximum PWM resolution is 10 bits when PRx is  
255. The resolution is a function of the PRx register  
value as shown by Equation 19-4.  
Note:  
If the pulse width value is greater than the  
period the assigned PWM pin(s) will  
remain unchanged.  
TABLE 19-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 32 MHz)  
PWM Frequency  
1.95 kHz  
7.81 kHz  
31.25 kHz  
125 kHz  
250 kHz  
333.3 kHz  
Timer Prescale (1, 4, 16)  
PRx Value  
16  
0xFF  
10  
4
1
1
0x3F  
8
1
0x1F  
7
1
0xFF  
10  
0xFF  
10  
0x17  
6.6  
Maximum Resolution (bits)  
TABLE 19-5: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 20 MHz)  
PWM Frequency  
1.22 kHz  
4.88 kHz  
19.53 kHz  
78.12 kHz  
156.3 kHz  
208.3 kHz  
Timer Prescale (1, 4, 16)  
PRx Value  
16  
0xFF  
10  
4
1
1
0x3F  
8
1
0x1F  
7
1
0xFF  
10  
0xFF  
10  
0x17  
6.6  
Maximum Resolution (bits)  
TABLE 19-6: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 8 MHz)  
PWM Frequency  
1.22 kHz  
4.90 kHz  
19.61 kHz  
76.92 kHz  
153.85 kHz 200.0 kHz  
Timer Prescale (1, 4, 16)  
PRx Value  
16  
0x65  
8
4
0x65  
8
1
0x65  
8
1
0x19  
6
1
0x0C  
5
1
0x09  
5
Maximum Resolution (bits)  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 193  
PIC16F193X/LF193X  
19.5.4  
OPERATION IN SLEEP MODE  
19.5.7  
SETUP FOR PWM OPERATION  
In Sleep mode, the TMRx register will not increment  
and the state of the module will not change. If the CCPx  
pin is driving a value, it will continue to drive that value.  
When the device wakes up, TMRx will continue from its  
previous state.  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
1. Disable the PWM pin (CCPx) output driver(s) by  
setting the associated TRIS bit(s).  
2. Load the PRx register with the PWM period value.  
3. Configure the CCP module for the PWM mode  
by loading the CCPxCON register with the  
appropriate values.  
19.5.5  
CHANGES IN SYSTEM CLOCK  
FREQUENCY  
The PWM frequency is derived from the system clock  
frequency. Any changes in the system clock frequency  
will result in changes to the PWM frequency. See  
Section 8.0 “Oscillator Module (With Fail-Safe  
Clock Monitor)” for additional details.  
4. Load the CCPRxL register and the DCxBx bits of  
the CCPxCON register, with the PWM duty cycle  
value.  
5. Configure and start Timerx:  
• Clear the TMRxIF interrupt flag bit of the PIRx  
register. See Note below.  
19.5.6  
EFFECTS OF RESET  
• Configure the TxCKPS bits of the TxCON  
register with the Timerx prescale value.  
Any Reset will force all ports to Input mode and the  
CCP registers to their Reset states.  
• Enable Timerx by setting the TMRxON bit of  
the T2CON register.  
6. Enable PWM output pin:  
• Wait until Timerx overflows, TMRxIF bit of the  
PIR1 register is set. See Note below.  
• Enable the PWM pin (CCPx) output driver(s) by  
clearing the associated TRIS bit(s).  
Note:  
In order to send a complete duty cycle and  
period on the first PWM output, the above  
steps must be included in the setup  
sequence. If it is not critical to start with a  
complete PWM signal on the first output,  
then step 6 may be ignored.  
DS41364A-page 194  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
The PWM outputs are multiplexed with I/O pins and are  
designated P1A, P1B, P1C and P1D. The polarity of the  
PWM pins is configurable and is selected by setting the  
CCP1M bits in the CCP1CON register appropriately.  
19.6 PWM (Enhanced Mode)  
The Enhanced PWM mode can generate a PWM signal  
on up to four different output pins with up to 10-bits of  
resolution. It can do this through four different PWM  
output modes:  
Table 19-7 shows the pin assignments for each  
Enhanced PWM mode.  
• Single PWM  
Figure 19-5 shows an example of a simplified block  
diagram of the Enhanced PWM module.  
• Half-Bridge PWM  
• Full-Bridge PWM, Forward mode  
• Full-Bridge PWM, Reverse mode  
Note:  
To prevent the generation of an  
incomplete waveform when the PWM is  
first enabled, the ECCP module waits until  
the start of a new PWM period before  
generating a PWM signal.  
To select an Enhanced PWM mode, the P1M bits of the  
CCP1CON register must be set appropriately.  
Note:  
The PWM Enhanced mode is available on  
the Enhanced Capture/Compare/PWM  
module (CCP1) only.  
FIGURE 19-5:  
EXAMPLE SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODE  
DCxB<1:0>  
PxM<1:0>  
CCPxM<3:0>  
4
Duty Cycle Registers  
2
CCPRxL  
CCPx/P1A  
CCPx/P1A  
P1B  
TRISx  
TRISx  
TRISx  
TRISx  
CCPRxH (Slave)  
Comparator  
P1B  
Output  
Controller  
R
S
Q
P1C  
P1C  
(1)  
TMRx  
P1D  
P1D  
Comparator  
PRx  
Clear Timerx,  
toggle PWM pin and  
latch duty cycle  
PWMxCON  
Note 1: The 8-bit timer TMRx register is concatenated with the 2-bit internal Q clock, or 2 bits of the prescaler to create the 10-bit  
time base.  
Note 1: The TRIS register value for each PWM output must be configured appropriately.  
2: Clearing the CCPxCON register will relinquish ECCP control of all PWM output pins.  
3: Any pin not used by an Enhanced PWM mode is available for alternate pin functions.  
TABLE 19-7: EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES  
ECCP Mode  
PxM<1:0>  
CCPx/P1A  
P1B  
P1C  
P1D  
Single  
00  
10  
01  
11  
Yes(1)  
Yes  
Yes(1)  
Yes  
Yes(1)  
No  
Yes(1)  
No  
Half-Bridge  
Full-Bridge, Forward  
Full-Bridge, Reverse  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Note 1: Pulse Steering enables outputs in Single mode.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 195  
PIC16F193X/LF193X  
FIGURE 19-6:  
EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH  
STATE)  
PRX+1  
Pulse  
Width  
0
Signal  
PxM<1:0>  
Period  
P1A Modulated  
(Single Output)  
00  
10  
Delay(1)  
Delay(1)  
P1A Modulated  
P1B Modulated  
P1A Active  
(Half-Bridge)  
P1B Inactive  
(Full-Bridge,  
Forward)  
01  
P1C Inactive  
P1D Modulated  
P1A Inactive  
P1B Modulated  
P1C Active  
(Full-Bridge,  
Reverse)  
11  
P1D Inactive  
Relationships:  
Period = 4 * TOSC * (PRx + 1) * (TMRx Prescale Value)  
Pulse Width = TOSC * (CCPRxL<7:0>:CCPxCON<5:4>) * (TMRx Prescale Value)  
Delay = 4 * TOSC * (PWMxCON<6:0>)  
Note 1: Dead-band delay is programmed using the PWMxCON register (Section 19.6.6 “Programmable Dead-Band Delay  
Mode”).  
DS41364A-page 196  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 19-7:  
EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)  
PRx+1  
Pulse  
Width  
0
Signal  
PxM<1:0>  
Period  
P1A Modulated  
P1A Modulated  
P1B Modulated  
P1A Active  
(Single Output)  
00  
10  
Delay(1)  
Delay(1)  
(Half-Bridge)  
(Full-Bridge,  
Forward)  
P1B Inactive  
P1C Inactive  
P1D Modulated  
P1A Inactive  
P1B Modulated  
P1C Active  
01  
(Full-Bridge,  
Reverse)  
11  
P1D Inactive  
Relationships:  
Period = 4 * TOSC * (PRx + 1) * (TMRx Prescale Value)  
Pulse Width = TOSC * (CCPRxL<7:0>:CCPxCON<5:4>) * (TMRx Prescale Value)  
Delay = 4 * TOSC * (PWMxCON<6:0>)  
Note 1: Dead-band delay is programmed using the PWMxCON register (Section 19.6.6 “Programmable Dead-Band Delay  
Mode”).  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 197  
PIC16F193X/LF193X  
Since the P1A and P1B outputs are multiplexed with  
the PORT data latches, the associated TRIS bits must  
be cleared to configure P1A and P1B as outputs.  
19.6.1  
HALF-BRIDGE MODE  
In Half-Bridge mode, two pins are used as outputs to  
drive push-pull loads. The PWM output signal is output  
on the CCPx/P1A pin, while the complementary PWM  
output signal is output on the P1B pin (see  
Figure 19-9). This mode can be used for Half-Bridge  
applications, as shown in Figure 19-9, or for Full-Bridge  
applications, where four power switches are being  
modulated with two PWM signals.  
FIGURE 19-8:  
EXAMPLE OF  
HALF-BRIDGE PWM  
OUTPUT  
Period  
Period  
Pulse Width  
In Half-Bridge mode, the programmable dead-band delay  
can be used to prevent shoot-through current in  
Half-Bridge power devices. The value of the PDC<6:0>  
bits of the PWMxCON register sets the number of  
instruction cycles before the output is driven active. If the  
value is greater than the duty cycle, the corresponding  
output remains inactive during the entire cycle. See  
Section 19.6.6 “Programmable Dead-Band Delay  
Mode” for more details of the dead-band delay  
operations.  
(2)  
(2)  
P1A  
td  
td  
P1B  
(1)  
(1)  
(1)  
td = Dead-Band Delay  
Note 1: At this time, the TMRx register is equal to the  
PRx register.  
2: Output signals are shown as active-high.  
FIGURE 19-9:  
EXAMPLE OF HALF-BRIDGE APPLICATIONS  
Standard Half-Bridge Circuit (“Push-Pull”)  
FET  
Driver  
+
-
P1A  
Load  
FET  
Driver  
+
-
P1B  
Half-Bridge Output Driving a Full-Bridge Circuit  
V+  
FET  
Driver  
FET  
Driver  
P1A  
Load  
FET  
FET  
Driver  
Driver  
P1B  
DS41364A-page 198  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
19.6.2  
FULL-BRIDGE MODE  
In Full-Bridge mode, all four pins are used as outputs.  
An example of Full-Bridge application is shown in  
Figure 19-10.  
In the Forward mode, pin CCPx/P1A is driven to its active  
state, pin P1D is modulated, while P1B and P1C will be  
driven to their inactive state as shown in Figure 19-11.  
In the Reverse mode, P1C is driven to its active state,  
pin P1B is modulated, while P1A and P1D will be driven  
to their inactive state as shown Figure 19-11.  
P1A, P1B, P1C and P1D outputs are multiplexed with  
the PORT data latches. The associated TRIS bits must  
be cleared to configure the P1A, P1B, P1C and P1D  
pins as outputs.  
FIGURE 19-10:  
EXAMPLE OF FULL-BRIDGE APPLICATION  
V+  
QC  
QA  
FET  
Driver  
FET  
Driver  
P1A  
P1B  
Load  
FET  
Driver  
FET  
Driver  
P1C  
P1D  
QD  
QB  
V-  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 199  
PIC16F193X/LF193X  
FIGURE 19-11:  
EXAMPLE OF FULL-BRIDGE PWM OUTPUT  
Forward Mode  
Period  
(2)  
P1A  
Pulse Width  
(2)  
P1B  
(2)  
P1C  
(2)  
P1D  
(1)  
(1)  
Reverse Mode  
Period  
Pulse Width  
(2)  
P1A  
(2)  
P1B  
(2)  
P1C  
(2)  
P1D  
(1)  
(1)  
Note 1: At this time, the TMRx register is equal to the PRx register.  
2: Output signal is shown as active-high.  
DS41364A-page 200  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
The Full-Bridge mode does not provide dead-band  
delay. As one output is modulated at a time, dead-band  
delay is generally not required. There is a situation  
where dead-band delay is required. This situation  
occurs when both of the following conditions are true:  
19.6.2.1  
Direction Change in Full-Bridge  
Mode  
In the Full-Bridge mode, the PxM1 bit in the CCPxCON  
register allows users to control the forward/reverse  
direction. When the application firmware changes this  
direction control bit, the module will change to the new  
direction on the next PWM cycle.  
1. The direction of the PWM output changes when  
the duty cycle of the output is at or near 100%.  
2. The turn off time of the power switch, including  
the power device and driver circuit, is greater  
than the turn on time.  
A direction change is initiated in software by changing  
the PxM1 bit of the CCPxCON register. The following  
sequence occurs four Timerx cycles prior to the end of  
the current PWM period:  
Figure 19-13 shows an example of the PWM direction  
changing from forward to reverse, at a near 100% duty  
cycle. In this example, at time t1, the output P1A and  
P1D become inactive, while output P1C becomes  
active. Since the turn off time of the power devices is  
longer than the turn on time, a shoot-through current  
will flow through power devices QC and QD (see  
Figure 19-10) for the duration of ‘t’. The same  
phenomenon will occur to power devices QA and QB  
for PWM direction change from reverse to forward.  
• The modulated outputs (P1B and P1D) are placed  
in their inactive state.  
• The associated unmodulated outputs (P1A and  
P1C) are switched to drive in the opposite  
direction.  
• PWM modulation resumes at the beginning of the  
next period.  
See Figure 19-12 for an illustration of this sequence.  
If changing PWM direction at high duty cycle is required  
for an application, two possible solutions for eliminating  
the shoot-through current are:  
1. Reduce PWM duty cycle for one PWM period  
before changing directions.  
2. Use switch drivers that can drive the switches off  
faster than they can drive them on.  
Other options to prevent shoot-through current may  
exist.  
FIGURE 19-12:  
EXAMPLE OF PWM DIRECTION CHANGE  
(1)  
Period  
Period  
Signal  
P1A (Active-High)  
P1B (Active-High)  
Pulse Width  
P1C (Active-High)  
P1D (Active-High)  
(2)  
Pulse Width  
Note 1: The direction bit PxM1 of the CCPxCON register is written any time during the PWM cycle.  
2: When changing directions, the P1A and P1C signals switch before the end of the current PWM cycle. The  
modulated P1B and P1D signals are inactive at this time. The length of this time is four Timerx counts.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 201  
PIC16F193X/LF193X  
FIGURE 19-13:  
EXAMPLE OF PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE  
Forward Period  
Reverse Period  
t1  
P1A  
P1B  
PW  
P1C  
P1D  
PW  
TON  
External Switch C  
External Switch D  
TOFF  
Potential  
T = TOFF TON  
Shoot-Through Current  
Note 1: All signals are shown as active-high.  
2: TON is the turn on delay of power switch QC and its driver.  
3: TOFF is the turn off delay of power switch QD and its driver.  
DS41364A-page 202  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
The enabled PWM pins are asynchronously placed in  
their shutdown states. The PWM output pins are  
grouped into pairs [P1A/P1C] and [P1B/P1D]. The state  
of each pin pair is determined by the PSSxAC and  
PSSxBD bits of the CCPxAS register. Each pin pair may  
be placed into one of three states:  
19.6.3  
START-UP CONSIDERATIONS  
When any PWM mode is used, the application  
hardware must use the proper external pull-up and/or  
pull-down resistors on the PWM output pins.  
Note:  
When the microcontroller is released from  
Reset, all of the I/O pins are in the  
high-impedance state. The external cir-  
cuits must keep the power switch devices  
in the Off state until the microcontroller  
drives the I/O pins with the proper signal  
levels or activates the PWM output(s).  
• Drive logic ‘1’  
• Drive logic ‘0’  
• Tri-state (high-impedance)  
The CCPxM<1:0> bits of the CCPxCON register allow  
the user to choose whether the PWM output signals are  
active-high or active-low for each pair of PWM output pins  
(P1A/P1C and P1B/P1D). The PWM output polarities  
must be selected before the PWM pin output drivers are  
enabled. Changing the polarity configuration while the  
PWM pin output drivers are enable is not recommended  
since it may result in damage to the application circuits.  
The P1A, P1B, P1C and P1D output latches may not be  
in the proper states when the PWM module is  
initialized. Enabling the PWM pin output drivers at the  
same time as the Enhanced PWM modes may cause  
damage to the application circuit. The Enhanced PWM  
modes must be enabled in the proper Output mode and  
complete a full PWM cycle before enabling the PWM  
pin output drivers. The completion of a full PWM cycle  
is indicated by the TMRxIF bit of the PIRx register  
being set as the second PWM period begins.  
19.6.4  
ENHANCED PWM  
AUTO-SHUTDOWN MODE  
The PWM mode supports an Auto-Shutdown mode that  
will disable the PWM outputs when an external  
shutdown event occurs. Auto-Shutdown mode places  
the PWM output pins into a predetermined state. This  
mode is used to help prevent the PWM from damaging  
the application.  
The auto-shutdown sources are selected using the  
CCPxAS<2:0> bits of the CCPxAS register. A shutdown  
event may be generated by:  
• A logic ‘0’ on the INT pin  
• Comparator Cx  
• Setting the CCPxASE bit in firmware  
A shutdown condition is indicated by the CCPxASE  
(Auto-Shutdown Event Status) bit of the CCPxAS  
register. If the bit is a ‘0’, the PWM pins are operating  
normally. If the bit is a ‘1’, the PWM outputs are in the  
shutdown state.  
When a shutdown event occurs, two things happen:  
The CCPxASE bit is set to ‘1’. The CCPxASE will  
remain set until cleared in firmware or an auto-restart  
occurs (see Section 19.6.5 “Auto-Restart Mode”).  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 203  
PIC16F193X/LF193X  
REGISTER 19-4: CCPXAS: CCPX AUTO-SHUTDOWN CONTROL REGISTER  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
CCPxASE  
CCPxAS2  
CCPxAS1  
CCPxAS0  
PSSxAC1  
PSSxAC0  
PSSxBD1  
PSSxBD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
CCPxASE: CCPx Auto-Shutdown Event Status bit  
1= A shutdown event has occurred; CCPx outputs are in shutdown state  
0= CCPx outputs are operating  
bit 6-4  
CCxPAS<2:0>: CCPx Auto-Shutdown Source Select bits  
000= Auto-shutdown is disabled  
001= Comparator C1 output low(1)  
010= Comparator C2 output low(1)  
011= Either Comparator C1 or C2 low(1)  
100= VIL on INT pin  
101= VIL on INT pin or Comparator C1 low(1)  
110= VIL on INT pin or Comparator C2 low(1)  
111= VIL on INT pin or Comparator C1 or Comparator C2 low(1)  
bit 3-2  
bit 1-0  
PSSxACx: Pins P1A and P1C Shutdown State Control bits  
00= Drive pins P1A and P1C to ‘0’  
01= Drive pins P1A and P1C to ‘1’  
1x= Pins P1A and P1C tri-state  
PSSxBDx: Pins P1B and P1D Shutdown State Control bits  
00= Drive pins P1B and P1D to ‘0’  
01= Drive pins P1B and P1D to ‘1’  
1x= Pins P1B and P1D tri-state  
Note 1: If CxSYNC is enabled, the shutdown will be delayed by Timer1.  
Note 1: The auto-shutdown condition is  
a
level-based signal, not an edge-based  
signal. As long as the level is present, the  
auto-shutdown will persist.  
2: Writing to the CCPxASE bit is disabled  
while an auto-shutdown condition  
persists.  
3: Once the auto-shutdown condition has  
been removed and the PWM restarted  
(either through firmware or auto-restart)  
the PWM signal will always restart at the  
beginning of the next PWM period.  
DS41364A-page 204  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 19-14:  
PWM AUTO-SHUTDOWN WITH FIRMWARE RESTART (PXRSEN = 0)  
Missing Pulse  
(Auto-Shutdown)  
Missing Pulse  
(CCPxASE not clear)  
Timer  
Overflow  
Timer  
Overflow  
Timer  
Overflow  
Timer  
Overflow  
Timer  
Overflow  
PWM Period  
PWM Activity  
Start of  
PWM Period  
Shutdown Event  
CCPxASE bit  
PWM  
Resumes  
Shutdown  
Event Occurs  
Shutdown  
Event Clears  
CCPxASE  
Cleared by  
Firmware  
If auto-restart is enabled, the CCPxASE bit will remain  
set as long as the auto-shutdown condition is active.  
When the auto-shutdown condition is removed, the  
CCPxASE bit will be cleared via hardware and normal  
operation will resume.  
19.6.5  
AUTO-RESTART MODE  
The Enhanced PWM can be configured to automati-  
cally restart the PWM signal once the auto-shutdown  
condition has been removed. Auto-restart is enabled by  
setting the PxRSEN bit in the PWMxCON register.  
FIGURE 19-15:  
PWM AUTO-SHUTDOWN WITH AUTO-RESTART (PXRSEN = 1)  
Missing Pulse  
(Auto-Shutdown)  
Missing Pulse  
(CCPxASE not clear)  
Timer  
Overflow  
Timer  
Overflow  
Timer  
Overflow  
Timer  
Overflow  
Timer  
Overflow  
PWM Period  
PWM Activity  
Start of  
PWM Period  
Shutdown Event  
CCPxASE bit  
PWM  
Resumes  
Shutdown  
Event Occurs  
Shutdown  
Event Clears  
CCPxASE  
Cleared by  
Hardware  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 205  
PIC16F193X/LF193X  
19.6.6  
PROGRAMMABLE DEAD-BAND  
DELAY MODE  
FIGURE 19-16:  
EXAMPLE OF  
HALF-BRIDGE PWM  
OUTPUT  
In Half-Bridge applications where all power switches  
are modulated at the PWM frequency, the power  
switches normally require more time to turn off than to  
turn on. If both the upper and lower power switches are  
switched at the same time (one turned on, and the  
other turned off), both switches may be on for a short  
period of time until one switch completely turns off.  
Period  
Period  
Pulse Width  
(2)  
(2)  
P1A  
td  
td  
During this brief interval,  
a very high current  
P1B  
(shoot-through current) will flow through both power  
switches, shorting the bridge supply. To avoid this  
potentially destructive shoot-through current from  
flowing during switching, turning on either of the power  
switches is normally delayed to allow the other switch  
to completely turn off.  
(1)  
(1)  
(1)  
td = Dead-Band Delay  
Note 1: At this time, the TMRx register is equal to the  
PRx register.  
In Half-Bridge mode,  
a
digitally programmable  
2: Output signals are shown as active-high.  
dead-band delay is available to avoid shoot-through  
current from destroying the bridge power switches. The  
delay occurs at the signal transition from the non-active  
state to the active state. See Figure 19-16 for  
illustration. The lower seven bits of the associated  
PWMxCON register (Register 19-5) sets the delay  
period in terms of microcontroller instruction cycles  
(TCY or 4 TOSC).  
FIGURE 19-17:  
EXAMPLE OF HALF-BRIDGE APPLICATIONS  
V+  
Standard Half-Bridge Circuit (“Push-Pull”)  
FET  
Driver  
+
V
-
P1A  
Load  
FET  
Driver  
+
V
-
P1B  
V-  
DS41364A-page 206  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
REGISTER 19-5: PWMxCON: ENHANCED PWM CONTROL REGISTER  
R/W-0/0  
PxRSEN  
R/W-0/0  
PxDC6  
R/W-0/0  
PxDC5  
R/W-0/0  
PxDC4  
R/W-0/0  
PxDC3  
R/W-0/0  
PxDC2  
R/W-0/0  
PxDC1  
R/W-0/0  
PxDC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
PxRSEN: PWM Restart Enable bit  
1= Upon auto-shutdown, the CCPxASE bit clears automatically once the shutdown event goes away;  
the PWM restarts automatically  
0= Upon auto-shutdown, CCPxASE must be cleared in software to restart the PWM  
bit 6-0  
PxDC<6:0>: PWM Delay Count bits  
PxDCx = Number of FOSC/4 (4 * TOSC) cycles between the scheduled time when a PWM signal  
should transition active and the actual time it transitions active  
Note 1: Bit resets to ‘0’ with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe  
mode is enabled.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 207  
PIC16F193X/LF193X  
19.6.7  
PULSE STEERING MODE  
In Single Output mode, pulse steering allows any of the  
PWM pins to be the modulated signal. Additionally, the  
same PWM signal can be simultaneously available on  
multiple pins.  
Note:  
The associated TRIS bits must be set to  
output (‘0’) to enable the pin output driver  
in order to see the PWM signal on the pin.  
While the PWM Steering mode is active, CCPxM<1:0>  
bits of the CCPxCON register select the PWM output  
polarity for the P1<D:A> pins.  
Once the Single Output mode is selected  
(CCPxM<3:2> = 11 and PxM<1:0> = 00 of the  
CCPxCON register), the user firmware can bring out  
the same PWM signal to one, two, three or four output  
pins by setting the appropriate STRx<D:A> bits of the  
PSTRxCON register, as shown in Table 19-7.  
The PWM auto-shutdown operation also applies to  
PWM Steering mode as described in Section 19.6.4  
“Enhanced PWM Auto-shutdown mode”. An  
auto-shutdown event will only affect pins that have  
PWM outputs enabled.  
REGISTER 19-6: PSTRXCON: PULSE STEERING CONTROL REGISTER(1)  
U-0  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
STRxD  
R/W-0/0  
STRxC  
R/W-0/0  
STRxB  
R/W-1/1  
STRxA  
STRxSYNC  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
STRxSYNC: Steering Sync bit  
1= Output steering update occurs on next PWM period  
0= Output steering update occurs at the beginning of the instruction cycle boundary  
bit 3  
bit 2  
bit 1  
bit 0  
STRxD: Steering Enable bit D  
1= P1D pin has the PWM waveform with polarity control from CCPxM<1:0>  
0= P1D pin is assigned to port pin  
STRxC: Steering Enable bit C  
1= P1C pin has the PWM waveform with polarity control from CCPxM<1:0>  
0= P1C pin is assigned to port pin  
STRxB: Steering Enable bit B  
1= P1B pin has the PWM waveform with polarity control from CCPxM<1:0>  
0 = P1B pin is assigned to port pin  
STRxA: Steering Enable bit A  
1= P1A pin has the PWM waveform with polarity control from CCPxM<1:0>  
0= P1A pin is assigned to port pin  
Note 1: The PWM Steering mode is available only when the CCPxCON register bits CCPxM<3:2> = 11and  
PxM<1:0> = 00.  
DS41364A-page 208  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 19-18:  
SIMPLIFIED STEERING  
BLOCK DIAGRAM  
STRxA  
P1A Signal  
CCPxM1  
P1A pin  
1
PORT Data  
STRxB  
0
TRIS  
P1B pin  
CCPxM0  
1
PORT Data  
STRxC  
0
TRIS  
P1C pin  
1
CCPxM1  
PORT Data  
0
TRIS  
STRxD  
P1D pin  
1
CCPxM0  
PORT Data  
0
TRIS  
Note 1: Port outputs are configured as shown when  
the CCPxCON register bits PxM<1:0> = 00  
and CCPxM<3:2> = 11.  
2: Single PWM output requires setting at least  
one of the STRx bits.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 209  
PIC16F193X/LF193X  
Figures 19-19 and 19-20 illustrate the timing diagrams  
of the PWM steering depending on the STRXSYNC  
setting.  
19.6.7.1  
Steering Synchronization  
The STRxSYNC bit of the PSTRxCON register gives  
the user two selections of when the steering event will  
happen. When the STRxSYNC bit is ‘0’, the steering  
event will happen at the end of the instruction that  
writes to the PSTRxCON register. In this case, the  
output signal at the P1<D:A> pins may be an  
incomplete PWM waveform. This operation is useful  
when the user firmware needs to immediately remove  
a PWM signal from the pin.  
When the STRxSYNC bit is ‘1’, the effective steering  
update will happen at the beginning of the next PWM  
period. In this case, steering on/off the PWM output will  
always produce a complete PWM waveform.  
FIGURE 19-19:  
EXAMPLE OF STEERING EVENT AT END OF INSTRUCTION (STRXSYNC = 0)  
PWM Period  
PWM  
STRx  
P1<D:A>  
PORT Data  
PORT Data  
P1n = PWM  
FIGURE 19-20:  
EXAMPLE OF STEERING EVENT AT BEGINNING OF INSTRUCTION  
(STRXSYNC = 1)  
PWM  
STRx  
P1<D:A>  
PORT Data  
PORT Data  
P1n = PWM  
DS41364A-page 210  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
TABLE 19-8: REGISTERS ASSOCIATED WITH PWM  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
(1)  
CCPxCON  
CCPxAS  
PxM1  
PxM0  
DCxB1  
DCxB0  
CCPxM3  
CCPxM2  
CCPxM1  
CCPxM0  
184  
204  
185  
186  
73  
CCPxASE CCPxAS2 CCPxAS1 CCPxAS0 PSSxAC1 PSSxAC0 PSSxBD1 PSSxBD0  
CCPTMRS0 C4TSEL1  
C4TSEL0  
C3TSEL1  
C3TSEL0  
C2TSEL1  
C2TSEL0  
C1TSEL1  
C5TSEL1  
INTF  
C1TSEL0  
C5TSEL0  
IOCIF  
CCPTMRS1  
INTCON  
PRx  
GIE  
PEIE  
TMR0IE  
INTE  
IOCIE  
TMR0IF  
Timerx Period Register  
173*  
208  
207  
175  
173  
91  
PSTRxCON  
PWMxCON  
TxCON  
PxRSEN  
STRxSYNC  
PxDC4  
STRxD  
PxDC3  
STRxC  
PxDC2  
STRxB  
PxDC1  
STRxA  
PxDC0  
PxDC6  
PxDC5  
TxOUTPS3 TxOUTPS2 TxOUTPS1 TxOUTPS0 TMRxON  
TxCKPS1 TxCKPS0  
TMRx  
Timerx Module Register  
TRISB  
TRISB7  
TRISC7  
TRISD7  
TRISB6  
TRISC6  
TRISD6  
TRISB5  
TRISC5  
TRISD5  
TRISB4  
TRISC4  
TRISD4  
TRISB3  
TRISC3  
TRISD3  
TRISB2  
TRISC2  
TRISD2  
TRISB1  
TRISC1  
TRISD1  
TRISB0  
TRISC0  
TRISD0  
TRISC  
94  
TRISD  
97  
Legend: – = Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the PWM.  
Note 1: Applies to ECCP modules only.  
*
Page provides register information.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 211  
PIC16F193X/LF193X  
NOTES:  
DS41364A-page 212  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
The EUSART module includes the following capabilities:  
20.0 ENHANCED UNIVERSAL  
SYNCHRONOUS  
• Full-duplex asynchronous transmit and receive  
• Two-character input buffer  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (EUSART)  
• One-character output buffer  
• Programmable 8-bit or 9-bit character length  
• Address detection in 9-bit mode  
The Enhanced Universal Synchronous Asynchronous  
Receiver Transmitter (EUSART) module is a serial I/O  
communications peripheral. It contains all the clock  
generators, shift registers and data buffers necessary  
to perform an input or output serial data transfer  
independent of device program execution. The  
EUSART, also known as a Serial Communications  
Interface (SCI), can be configured as a full-duplex  
asynchronous system or half-duplex synchronous  
• Input buffer overrun error detection  
• Received character framing error detection  
• Half-duplex synchronous master  
• Half-duplex synchronous slave  
• Programmable clock polarity in synchronous  
modes  
• Sleep operation  
system.  
Full-Duplex  
mode  
is  
useful  
for  
The EUSART module implements the following  
additional features, making it ideally suited for use in  
Local Interconnect Network (LIN) bus systems:  
communications with peripheral systems, such as CRT  
terminals and personal computers. Half-Duplex  
Synchronous mode is intended for communications  
with peripheral devices, such as A/D or D/A integrated  
circuits, serial EEPROMs or other microcontrollers.  
These devices typically do not have internal clocks for  
baud rate generation and require the external clock  
signal provided by a master synchronous device.  
• Automatic detection and calibration of the baud rate  
• Wake-up on Break reception  
• 13-bit Break character transmit  
Block diagrams of the EUSART transmitter and  
receiver are shown in Figure 20-1 and Figure 20-2.  
FIGURE 20-1:  
EUSART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXIE  
Interrupt  
TXIF  
TXREG Register  
8
TX/CK pin  
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
• • •  
Transmit Shift Register (TSR)  
TXEN  
TRMT  
SPEN  
Baud Rate Generator  
BRG16  
FOSC  
÷ n  
TX9  
n
+ 1  
Multiplier x4  
x16 x64  
TX9D  
SYNC  
BRGH  
BRG16  
1
X
X
X
1
1
0
1
0
0
0
1
0
0
0
SPBRGH  
SPBRG  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 213  
PIC16F193X/LF193X  
FIGURE 20-2:  
EUSART RECEIVE BLOCK DIAGRAM  
SPEN  
CREN  
OERR  
RCIDL  
RX/DT pin  
RSR Register  
MSb  
Stop (8)  
LSb  
0
START  
Pin Buffer  
and Control  
Data  
Recovery  
7
1
• • •  
Baud Rate Generator  
FOSC  
RX9  
÷ n  
BRG16  
n
+ 1  
Multiplier  
x4  
x16 x64  
SYNC  
BRGH  
BRG16  
1
X
1
1
0
1
0
0
0
1
0
0
0
FIFO  
SPBRGH  
SPBRG  
X
X
RX9D  
FERR  
RCREG Register  
8
Data Bus  
RCIF  
RCIE  
Interrupt  
The operation of the EUSART module is controlled  
through three registers:  
• Transmit Status and Control (TXSTA)  
• Receive Status and Control (RCSTA)  
• Baud Rate Control (BAUDCON)  
These registers are detailed in Register 20-1,  
Register 20-2 and Register 20-3, respectively.  
When the receiver or transmitter section is not enabled  
then the corresponding RX or TX pin may be used for  
general purpose input and output.  
DS41364A-page 214  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
20.1.1.2  
Transmitting Data  
20.1 EUSART Asynchronous Mode  
A transmission is initiated by writing a character to the  
TXREG register. If this is the first character, or the  
previous character has been completely flushed from  
the TSR, the data in the TXREG is immediately  
transferred to the TSR register. If the TSR still contains  
all or part of a previous character, the new character  
data is held in the TXREG until the Stop bit of the  
previous character has been transmitted. The pending  
character in the TXREG is then transferred to the TSR  
in one TCY immediately following the Stop bit  
transmission. The transmission of the Start bit, data bits  
and Stop bit sequence commences immediately  
following the transfer of the data to the TSR from the  
TXREG.  
The EUSART transmits and receives data using the  
standard non-return-to-zero (NRZ) format. NRZ is  
implemented with two levels: a VOH mark state which  
represents a ‘1’ data bit, and a VOL space state which  
represents a ‘0’ data bit. NRZ refers to the fact that  
consecutively transmitted data bits of the same value  
stay at the output level of that bit without returning to a  
neutral level between each bit transmission. An NRZ  
transmission port idles in the mark state. Each character  
transmission consists of one Start bit followed by eight  
or nine data bits and is always terminated by one or  
more Stop bits. The Start bit is always a space and the  
Stop bits are always marks. The most common data  
format is 8 bits. Each transmitted bit persists for a period  
of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud  
Rate Generator is used to derive standard baud rate  
frequencies from the system oscillator. See Table 20-5  
for examples of baud rate configurations.  
20.1.1.3  
Transmit Interrupt Flag  
The TXIF interrupt flag bit of the PIR1 register is set  
whenever the EUSART transmitter is enabled and no  
character is being held for transmission in the TXREG.  
In other words, the TXIF bit is only clear when the TSR  
is busy with a character and a new character has been  
queued for transmission in the TXREG. The TXIF flag bit  
is not cleared immediately upon writing TXREG. TXIF  
becomes valid in the second instruction cycle following  
the write execution. Polling TXIF immediately following  
the TXREG write will return invalid results. The TXIF bit  
is read-only, it cannot be set or cleared by software.  
The EUSART transmits and receives the LSb first. The  
EUSART’s transmitter and receiver are functionally  
independent, but share the same data format and baud  
rate. Parity is not supported by the hardware, but can  
be implemented in software and stored as the ninth  
data bit.  
20.1.1  
EUSART ASYNCHRONOUS  
TRANSMITTER  
The TXIF interrupt can be enabled by setting the TXIE  
interrupt enable bit of the PIE1 register. However, the  
TXIF flag bit will be set whenever the TXREG is empty,  
regardless of the state of TXIE enable bit.  
The EUSART transmitter block diagram is shown in  
Figure 20-1. The heart of the transmitter is the serial  
Transmit Shift Register (TSR), which is not directly  
accessible by software. The TSR obtains its data from  
the transmit buffer, which is the TXREG register.  
To use interrupts when transmitting data, set the TXIE  
bit only when there is more data to send. Clear the  
TXIE interrupt enable bit upon writing the last character  
of the transmission to the TXREG.  
20.1.1.1  
Enabling the Transmitter  
The EUSART transmitter is enabled for asynchronous  
operations by configuring the following three control  
bits:  
• TXEN = 1  
• SYNC = 0  
• SPEN = 1  
All other EUSART control bits are assumed to be in  
their default state.  
Setting the TXEN bit of the TXSTA register enables the  
transmitter circuitry of the EUSART. Clearing the SYNC  
bit of the TXSTA register configures the EUSART for  
asynchronous operation. Setting the SPEN bit of the  
RCSTA register enables the EUSART and automatically  
configures the TX/CK I/O pin as an output.  
Note 1: The TXIF Transmitter Interrupt flag is set  
when the TXEN enable bit is set.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 215  
PIC16F193X/LF193X  
20.1.1.4  
TSR Status  
20.1.1.6  
Asynchronous Transmission Set-up:  
The TRMT bit of the TXSTA register indicates the  
status of the TSR register. This is a read-only bit. The  
TRMT bit is set when the TSR register is empty and is  
cleared when a character is transferred to the TSR  
register from the TXREG. The TRMT bit remains clear  
until all bits have been shifted out of the TSR register.  
No interrupt logic is tied to this bit, so the user has to  
poll this bit to determine the TSR status.  
1. Initialize the SPBRGH, SPBRG register pair and  
the BRGH and BRG16 bits to achieve the desired  
baud rate (see Section 20.3 “EUSART Baud  
Rate Generator (BRG)”).  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
3. If 9-bit transmission is desired, set the TX9 con-  
trol bit. A set ninth data bit will indicate that the 8  
Least Significant data bits are an address when  
the receiver is set for address detection.  
Note:  
The TSR register is not mapped in data  
memory, so it is not available to the user.  
4. Enable the transmission by setting the TXEN  
control bit. This will cause the TXIF interrupt bit  
to be set.  
20.1.1.5  
Transmitting 9-Bit Characters  
The EUSART supports 9-bit character transmissions.  
When the TX9 bit of the TXSTA register is set the  
EUSART will shift 9 bits out for each character transmit-  
ted. The TX9D bit of the TXSTA register is the ninth,  
and Most Significant, data bit. When transmitting 9-bit  
data, the TX9D data bit must be written before writing  
the 8 Least Significant bits into the TXREG. All nine bits  
of data will be transferred to the TSR shift register  
immediately after the TXREG is written.  
5. If interrupts are desired, set the TXIE interrupt  
enable bit of the PIE1 register. An interrupt will  
occur immediately provided that the GIE and  
PEIE bits of the INTCON register are also set.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded into the TX9D data bit.  
7. Load 8-bit data into the TXREG register. This  
will start the transmission.  
A special 9-bit Address mode is available for use with  
multiple receivers. See Section 20.1.2.7 “Address  
Detection” for more information on the address mode.  
FIGURE 20-3:  
ASYNCHRONOUS TRANSMISSION  
Write to TXREG  
Word 1  
BRG Output  
(Shift Clock)  
TX/CK  
pin  
Start bit  
bit 0  
bit 1  
Word 1  
bit 7/8  
Stop bit  
TXIF bit  
(Transmit Buffer  
Reg. Empty Flag)  
1 TCY  
Word 1  
Transmit Shift Reg.  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
FIGURE 20-4:  
ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK)  
Write to TXREG  
Word 2  
Start bit  
Word 1  
BRG Output  
(Shift Clock)  
TX/CK  
pin  
Start bit  
Word 2  
bit 0  
bit 1  
bit 7/8  
bit 0  
Stop bit  
1 TCY  
Word 1  
TXIF bit  
(Transmit Buffer  
Reg. Empty Flag)  
1 TCY  
Word 1  
Transmit Shift Reg.  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
Word 2  
Transmit Shift Reg.  
Note:  
This timing diagram shows two consecutive transmissions.  
DS41364A-page 216  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
TABLE 20-1: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCON  
INTCON  
PIE1  
ABDOVF  
GIE  
RCIDL  
PEIE  
SCKP  
INTE  
BRG16  
IOCIE  
WUE  
INTF  
ABDEN  
IOCIF  
224  
73  
TMR0IE  
RCIE  
TMR0IF  
TMR1GIE  
TMR1GIF  
SPEN  
ADIE  
ADIF  
TXIE  
SSPIE  
SSPIF  
ADDEN  
BRG3  
CCP1IE TMR2IE TMR1IE  
CCP1IF TMR2IF TMR1IF  
74  
PIR1  
RCIF  
TXIF  
77  
RCSTA  
SPBRG  
SPBRGH  
TRISC  
RX9  
SREN  
BRG5  
BRG13  
CREN  
BRG4  
BRG12  
FERR  
BRG2  
OERR  
BRG1  
BRG9  
RX9D  
BRG0  
BRG8  
223  
225*  
225*  
94  
BRG7  
BRG6  
BRG14  
BRG15  
TRISC7  
BRG11  
BRG10  
TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0  
TXREG  
TXSTA  
EUSART Transmit Data Register  
CSRC TX9 TXEN  
215*  
222  
SYNC  
SENDB  
BRGH  
TRMT  
TX9D  
Legend: x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for Asynchronous Transmission.  
Page provides register information.  
*
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 217  
PIC16F193X/LF193X  
20.1.2  
EUSART ASYNCHRONOUS  
RECEIVER  
20.1.2.2  
Receiving Data  
The receiver data recovery circuit initiates character  
reception on the falling edge of the first bit. The first bit,  
also known as the Start bit, is always a zero. The data  
recovery circuit counts one-half bit time to the center of  
the Start bit and verifies that the bit is still a zero. If it is  
not a zero then the data recovery circuit aborts  
character reception, without generating an error, and  
resumes looking for the falling edge of the Start bit. If  
the Start bit zero verification succeeds then the data  
recovery circuit counts a full bit time to the center of the  
next bit. The bit is then sampled by a majority detect  
circuit and the resulting ‘0’ or ‘1’ is shifted into the RSR.  
This repeats until all data bits have been sampled and  
shifted into the RSR. One final bit time is measured and  
the level sampled. This is the Stop bit, which is always  
a ‘1’. If the data recovery circuit samples a ‘0’ in the  
Stop bit position then a framing error is set for this  
character, otherwise the framing error is cleared for this  
character. See Section 20.1.2.4 “Receive Framing  
Error” for more information on framing errors.  
The Asynchronous mode is typically used in RS-232  
systems. The receiver block diagram is shown in  
Figure 20-2. The data is received on the RX/DT pin and  
drives the data recovery block. The data recovery block  
is actually a high-speed shifter operating at 16 times  
the baud rate, whereas the serial Receive Shift  
Register (RSR) operates at the bit rate. When all 8 or 9  
bits of the character have been shifted in, they are  
immediately transferred to  
a
two character  
First-In-First-Out (FIFO) memory. The FIFO buffering  
allows reception of two complete characters and the  
start of a third character before software must start  
servicing the EUSART receiver. The FIFO and RSR  
registers are not directly accessible by software.  
Access to the received data is via the RCREG register.  
20.1.2.1  
Enabling the Receiver  
The EUSART receiver is enabled for asynchronous  
operation by configuring the following three control bits:  
Immediately after all data bits and the Stop bit have  
been received, the character in the RSR is transferred  
to the EUSART receive FIFO and the RCIF interrupt  
flag bit of the PIR1 register is set. The top character in  
the FIFO is transferred out of the FIFO by reading the  
RCREG register.  
• CREN = 1  
• SYNC = 0  
• SPEN = 1  
All other EUSART control bits are assumed to be in  
their default state.  
Setting the CREN bit of the RCSTA register enables the  
receiver circuitry of the EUSART. Clearing the SYNC bit  
of the TXSTA register configures the EUSART for  
asynchronous operation. Setting the SPEN bit of the  
RCSTA register enables the EUSART and automatically  
configures the RX/DT I/O pin as an input.  
Note:  
If the receive FIFO is overrun, no additional  
characters will be received until the overrun  
condition is cleared. See Section 20.1.2.5  
“Receive Overrun Error” for more  
information on overrun errors.  
20.1.2.3  
Receive Interrupts  
Note:  
When the SPEN bit is set the TX/CK I/O  
pin is automatically configured as an  
output, regardless of the state of the  
corresponding TRIS bit and whether or not  
the EUSART transmitter is enabled. The  
PORT latch is disconnected from the  
output driver so it is not possible to use the  
TX/CK pin as a general purpose output.  
The RCIF interrupt flag bit of the PIR1 register is set  
whenever the EUSART receiver is enabled and there is  
an unread character in the receive FIFO. The RCIF  
interrupt flag bit is read-only, it cannot be set or cleared  
by software.  
RCIF interrupts are enabled by setting all of the  
following bits:  
• RCIE interrupt enable bit of the PIE1 register  
• PEIE peripheral interrupt enable bit of the  
INTCON register  
• GIE global interrupt enable bit of the INTCON  
register  
The RCIF interrupt flag bit will be set when there is an  
unread character in the FIFO, regardless of the state of  
interrupt enable bits.  
DS41364A-page 218  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
20.1.2.4  
Receive Framing Error  
20.1.2.7  
Address Detection  
Each character in the receive FIFO buffer has a  
corresponding framing error Status bit. A framing error  
indicates that a Stop bit was not seen at the expected  
time. The framing error status is accessed via the  
FERR bit of the RCSTA register. The FERR bit  
represents the status of the top unread character in the  
receive FIFO. Therefore, the FERR bit must be read  
before reading the RCREG.  
A special Address Detection mode is available for use  
when multiple receivers share the same transmission  
line, such as in RS-485 systems. Address detection is  
enabled by setting the ADDEN bit of the RCSTA  
register.  
Address detection requires 9-bit character reception.  
When address detection is enabled, only characters  
with the ninth data bit set will be transferred to the  
receive FIFO buffer, thereby setting the RCIF interrupt  
bit. All other characters will be ignored.  
The FERR bit is read-only and only applies to the top  
unread character in the receive FIFO. A framing error  
(FERR = 1) does not preclude reception of additional  
characters. It is not necessary to clear the FERR bit.  
Reading the next character from the FIFO buffer will  
advance the FIFO to the next character and the next  
corresponding framing error.  
Upon receiving an address character, user software  
determines if the address matches its own. Upon  
address match, user software must disable address  
detection by clearing the ADDEN bit before the next  
Stop bit occurs. When user software detects the end of  
the message, determined by the message protocol  
used, software places the receiver back into the  
Address Detection mode by setting the ADDEN bit.  
The FERR bit can be forced clear by clearing the SPEN  
bit of the RCSTA register which resets the EUSART.  
Clearing the CREN bit of the RCSTA register does not  
affect the FERR bit. A framing error by itself does not  
generate an interrupt.  
Note:  
If all receive characters in the receive  
FIFO have framing errors, repeated reads  
of the RCREG will not clear the FERR bit.  
20.1.2.5  
Receive Overrun Error  
The receive FIFO buffer can hold two characters. An  
overrun error will be generated if a third character, in its  
entirety, is received before the FIFO is accessed. When  
this happens the OERR bit of the RCSTA register is set.  
The characters already in the FIFO buffer can be read  
but no additional characters will be received until the  
error is cleared. The error must be cleared by either  
clearing the CREN bit of the RCSTA register or by  
resetting the EUSART by clearing the SPEN bit of the  
RCSTA register.  
20.1.2.6  
Receiving 9-bit Characters  
The EUSART supports 9-bit character reception. When  
the RX9 bit of the RCSTA register is set the EUSART  
will shift 9 bits into the RSR for each character  
received. The RX9D bit of the RCSTA register is the  
ninth and Most Significant data bit of the top unread  
character in the receive FIFO. When reading 9-bit data  
from the receive FIFO buffer, the RX9D data bit must  
be read before reading the 8 Least Significant bits from  
the RCREG.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 219  
PIC16F193X/LF193X  
20.1.2.8  
Asynchronous Reception Set-up:  
20.1.2.9  
9-bit Address Detection Mode Set-up  
1. Initialize the SPBRGH, SPBRG register pair and  
the BRGH and BRG16 bits to achieve the  
desired baud rate (see Section 20.3 “EUSART  
Baud Rate Generator (BRG)”).  
This mode would typically be used in RS-485 systems.  
To set up an Asynchronous Reception with Address  
Detect Enable:  
1. Initialize the SPBRGH, SPBRG register pair and  
the BRGH and BRG16 bits to achieve the  
desired baud rate (see Section 20.3 “EUSART  
Baud Rate Generator (BRG)”).  
2. Enable the serial port by setting the SPEN bit.  
The SYNC bit must be clear for asynchronous  
operation.  
3. If interrupts are desired, set the RCIE bit of the  
PIE1 register and the GIE and PEIE bits of the  
INTCON register.  
2. Enable the serial port by setting the SPEN bit.  
The SYNC bit must be clear for asynchronous  
operation.  
4. If 9-bit reception is desired, set the RX9 bit.  
5. Enable reception by setting the CREN bit.  
3. If interrupts are desired, set the RCIE bit of the  
PIE1 register and the GIE and PEIE bits of the  
INTCON register.  
6. The RCIF interrupt flag bit will be set when a  
character is transferred from the RSR to the  
receive buffer. An interrupt will be generated if  
the RCIE interrupt enable bit was also set.  
4. Enable 9-bit reception by setting the RX9 bit.  
5. Enable address detection by setting the ADDEN  
bit.  
7. Read the RCSTA register to get the error flags  
and, if 9-bit data reception is enabled, the ninth  
data bit.  
6. Enable reception by setting the CREN bit.  
7. The RCIF interrupt flag bit will be set when a  
character with the ninth bit set is transferred  
from the RSR to the receive buffer. An interrupt  
will be generated if the RCIE interrupt enable bit  
was also set.  
8. Get the received 8 Least Significant data bits  
from the receive buffer by reading the RCREG  
register.  
9. If an overrun occurred, clear the OERR flag by  
clearing the CREN receiver enable bit.  
8. Read the RCSTA register to get the error flags.  
The ninth data bit will always be set.  
9. Get the received 8 Least Significant data bits  
from the receive buffer by reading the RCREG  
register. Software determines if this is the  
device’s address.  
10. If an overrun occurred, clear the OERR flag by  
clearing the CREN receiver enable bit.  
11. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and generate interrupts.  
FIGURE 20-5:  
ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RX/DT pin  
bit 7/8  
bit 7/8  
bit 0 bit 1  
Stop  
bit  
Stop  
bit  
Stop  
bit  
bit 0  
bit 7/8  
Rcv Shift  
Reg  
Rcv Buffer Reg.  
Word 2  
RCREG  
Word 1  
RCREG  
RCIDL  
Read Rcv  
Buffer Reg.  
RCREG  
RCIF  
(Interrupt Flag)  
OERR bit  
CREN  
Note:  
This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word,  
causing the OERR (overrun) bit to be set.  
DS41364A-page 220  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
TABLE 20-2: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCON  
INTCON  
PIE1  
ABDOVF  
GIE  
RCIDL  
PEIE  
ADIE  
ADIF  
SCKP  
INTE  
TXIE  
TXIF  
BRG16  
IOCIE  
SSPIE  
SSPIF  
WUE  
INTF  
ABDEN  
IOCIF  
224  
73  
TMR0IE  
RCIE  
TMR0IF  
TMR1GIE  
TMR1GIF  
CCP1IE TMR2IE TMR1IE  
CCP1IF TMR2IF TMR1IF  
74  
PIR1  
RCIF  
77  
RCREG  
RCSTA  
SPBRG  
SPBRGH  
TRISC  
EUSART Receive Data Register  
218*  
223  
225*  
225*  
94  
SPEN  
BRG7  
RX9  
BRG6  
BRG14  
SREN  
BRG5  
CREN  
BRG4  
ADDEN  
BRG3  
FERR  
BRG2  
OERR  
BRG1  
BRG9  
RX9D  
BRG0  
BRG8  
BRG15  
TRISC7  
CSRC  
BRG13  
BRG12  
BRG11  
BRG10  
TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0  
TX9 TXEN SYNC SENDB BRGH TRMT TX9D  
TXSTA  
222  
Legend: x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for Asynchronous Reception.  
Page provides register information.  
*
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 221  
PIC16F193X/LF193X  
The first (preferred) method uses the OSCTUNE  
register to adjust the INTOSC output. Adjusting the  
value in the OSCTUNE register allows for fine resolution  
changes to the system clock source. See Section 8.5  
“Internal Clock Modes” for more information.  
20.2 Clock Accuracy with  
Asynchronous Operation  
The factory calibrates the internal oscillator block out-  
put (INTOSC). However, the INTOSC frequency may  
drift as VDD or temperature changes, and this directly  
affects the asynchronous baud rate. Two methods may  
be used to adjust the baud rate clock, but both require  
a reference clock source of some kind.  
The other method adjusts the value in the Baud Rate  
Generator. This can be done automatically with the  
Auto-Baud Detect feature (see Section 20.3.1  
“Auto-Baud Detect”). There may not be fine enough  
resolution when adjusting the Baud Rate Generator to  
compensate for a gradual change in the peripheral  
clock frequency.  
REGISTER 20-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER  
R/W-/0  
CSRC  
R/W-0/0  
TX9  
R/W-0/0  
R/W-0/0  
SYNC  
R/W-0/0  
SENDB  
R/W-0/0  
BRGH  
R-1/1  
R/W-0/0  
TX9D  
(1)  
TXEN  
TRMT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
bit 4  
bit 3  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
(1)  
TXEN: Transmit Enable bit  
1= Transmit enabled  
0= Transmit disabled  
SYNC: EUSART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
SENDB: Send Break Character bit  
Asynchronous mode:  
1= Send Sync Break on next transmission (cleared by hardware upon completion)  
0= Sync Break transmission completed  
Synchronous mode:  
Don’t care  
bit 2  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: Ninth bit of Transmit Data  
Can be address/data bit or a parity bit.  
Note 1: SREN/CREN overrides TXEN in Sync mode.  
DS41364A-page 222  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
REGISTER 20-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER(1)  
R/W-0/0  
SPEN  
R/W-0/0  
RX9  
R/W-0/0  
SREN  
R/W-0/0  
CREN  
R/W-0/0  
ADDEN  
R-0/0  
R-0/0  
R-x/x  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (configures RX/DT and TX/CK pins as serial port pins)  
0= Serial port disabled (held in Reset)  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care  
Synchronous mode – Master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode – Slave  
Don’t care  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables receiver  
0= Disables receiver  
Synchronous mode:  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enables address detection, enable interrupt and load the receive buffer when RSR<8> is set  
0= Disables address detection, all bytes are received and ninth bit can be used as parity bit  
Asynchronous mode 8-bit (RX9 = 0):  
Don’t care  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be updated by reading RCREG register and receive next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: Ninth bit of Received Data  
This can be address/data bit or a parity bit and must be calculated by user firmware.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 223  
PIC16F193X/LF193X  
REGISTER 20-3: BAUDCON: BAUD RATE CONTROL REGISTER  
R-0/0  
R-1/1  
U-0  
R/W-0/0  
SCKP  
R/W-0/0  
BRG16  
U-0  
R/W-0/0  
WUE  
R/W-0/0  
ABDEN  
ABDOVF  
RCIDL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
bit 6  
ABDOVF: Auto-Baud Detect Overflow bit  
Asynchronous mode:  
1= Auto-baud timer overflowed  
0= Auto-baud timer did not overflow  
Synchronous mode:  
Don’t care  
RCIDL: Receive Idle Flag bit  
Asynchronous mode:  
1= Receiver is Idle  
0= Start bit has been received and the receiver is receiving  
Synchronous mode:  
Don’t care  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
SCKP: Synchronous Clock Polarity Select bit  
Asynchronous mode:  
1= Transmit inverted data to the RB7/TX/CK pin  
0= Transmit non-inverted data to the RB7/TX/CK pin  
Synchronous mode:  
1= Data is clocked on rising edge of the clock  
0= Data is clocked on falling edge of the clock  
bit 3  
BRG16: 16-bit Baud Rate Generator bit  
1= 16-bit Baud Rate Generator is used  
0= 8-bit Baud Rate Generator is used  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
WUE: Wake-up Enable bit  
Asynchronous mode:  
1= Receiver is waiting for a falling edge. No character will be received, byte RCIF will be set. WUE  
will automatically clear after RCIF is set.  
0= Receiver is operating normally  
Synchronous mode:  
Don’t care  
bit 0  
ABDEN: Auto-Baud Detect Enable bit  
Asynchronous mode:  
1= Auto-Baud Detect mode is enabled (clears when auto-baud is complete)  
0= Auto-Baud Detect mode is disabled  
Synchronous mode:  
Don’t care  
DS41364A-page 224  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
EXAMPLE 20-1:  
CALCULATING BAUD  
RATE ERROR  
20.3 EUSART Baud Rate Generator  
(BRG)  
For a device with FOSC of 16 MHz, desired baud rate  
of 9600, Asynchronous mode, 8-bit BRG:  
The Baud Rate Generator (BRG) is an 8-bit or 16-bit  
timer that is dedicated to the support of both the  
asynchronous and synchronous EUSART operation.  
By default, the BRG operates in 8-bit mode. Setting the  
BRG16 bit of the BAUDCON register selects 16-bit  
mode.  
FOSC  
Desired Baud Rate = --------------------------------------------------------------------  
64([SPBRGH:SPBRG] + 1)  
Solving for SPBRGH:SPBRG:  
FOSC  
---------------------------------------------  
Desired Baud Rate  
X = --------------------------------------------- 1  
64  
The SPBRGH, SPBRG register pair determines the  
period of the free running baud rate timer. In  
Asynchronous mode the multiplier of the baud rate  
period is determined by both the BRGH bit of the TXSTA  
register and the BRG16 bit of the BAUDCON register. In  
Synchronous mode, the BRGH bit is ignored.  
16000000  
-----------------------  
9600  
= ----------------------- 1  
64  
= [25.042] = 25  
Table 20-3 contains the formulas for determining the  
baud rate. Example 20-1 provides a sample calculation  
for determining the baud rate and baud rate error.  
16000000  
Calculated Baud Rate = --------------------------  
64(25 + 1)  
Typical baud rates and error values for various  
asynchronous modes have been computed for your  
convenience and are shown in Table 20-3. It may be  
advantageous to use the high baud rate (BRGH = 1),  
or the 16-bit BRG (BRG16 = 1) to reduce the baud rate  
error. The 16-bit BRG mode is used to achieve slow  
baud rates for fast oscillator frequencies.  
= 9615  
Calc. Baud Rate Desired Baud Rate  
Error = --------------------------------------------------------------------------------------------  
Desired Baud Rate  
(9615 9600)  
= ---------------------------------- = 0 . 1 6 %  
9600  
Writing a new value to the SPBRGH, SPBRG register  
pair causes the BRG timer to be reset (or cleared). This  
ensures that the BRG does not wait for a timer overflow  
before outputting the new baud rate.  
If the system clock is changed during an active receive  
operation, a receive error or data loss may result. To  
avoid this problem, check the status of the RCIDL bit to  
make sure that the receive operation is Idle before  
changing the system clock.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 225  
PIC16F193X/LF193X  
TABLE 20-3: BAUD RATE FORMULAS  
Configuration Bits  
Baud Rate Formula  
BRG/EUSART Mode  
SYNC  
BRG16  
BRGH  
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
x
x
8-bit/Asynchronous  
8-bit/Asynchronous  
16-bit/Asynchronous  
16-bit/Asynchronous  
8-bit/Synchronous  
16-bit/Synchronous  
FOSC/[64 (n+1)]  
FOSC/[16 (n+1)]  
FOSC/[4 (n+1)]  
Legend:  
x= Don’t care, n = value of SPBRGH, SPBRG register pair  
TABLE 20-4: REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCON  
RCSTA  
ABDOVF RCIDL  
SCKP  
CREN  
BRG4  
BRG12  
SYNC  
BRG16  
ADDEN  
BRG3  
WUE  
OERR  
BRG1  
BRG9  
TRMT  
ABDEN  
RX9D  
BRG0  
BRG8  
TX9D  
224  
223  
SPEN  
BRG7  
BRG15  
CSRC  
RX9  
BRG6  
BRG14  
TX9  
SREN  
BRG5  
BRG13  
TXEN  
FERR  
BRG2  
BRG10  
BRGH  
SPBRG  
SPBRGH  
TXSTA  
225*  
225*  
222  
BRG11  
SENDB  
Legend: x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for the Baud Rate Generator.  
Page provides register information.  
*
DS41364A-page 226  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
TABLE 20-5: BAUD RATES FOR ASYNCHRONOUS MODES  
SYNC = 0, BRGH = 0, BRG16 = 0  
FOSC = 20.000 MHz FOSC = 18.432 MHz  
FOSC = 32.000 MHz  
FOSC = 11.0592 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
Error  
Error  
(decimal)  
(decimal)  
300  
1200  
255  
129  
32  
239  
119  
29  
143  
71  
17  
16  
8
1221  
2404  
9470  
10417  
19.53k  
1.73  
0.16  
-1.36  
0.00  
1.73  
1200  
2400  
9600  
10286  
19.20k  
0.00  
0.00  
0.00  
-1.26  
0.00  
0.00  
1200  
2400  
9600  
10165  
19.20k  
0.00  
0.00  
0.00  
-2.42  
0.00  
0.00  
2400  
2404  
9615  
10417  
19.23k  
0.16  
0.16  
0.00  
0.16  
207  
51  
47  
25  
9600  
10417  
19.2k  
57.6k  
115.2k  
29  
27  
15  
14  
2
55.55k  
-3.55  
3
57.60k  
7
57.60k  
SYNC = 0, BRGH = 0, BRG16 = 0  
FOSC = 4.000 MHz FOSC = 3.6864 MHz  
FOSC = 8.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
Error  
Error  
(decimal)  
(decimal)  
0.00  
0.00  
0.00  
0.00  
300  
1200  
1202  
2404  
9615  
10417  
0.16  
0.16  
0.16  
0.00  
103  
51  
12  
11  
300  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
300  
1200  
2400  
9600  
191  
47  
23  
5
300  
1202  
0.16  
0.16  
51  
12  
2400  
9600  
10417  
19.2k  
57.6k  
115.2k  
10417  
0.00  
2
19.20k  
0.00  
0.00  
0
57.60k  
SYNC = 0, BRGH = 1, BRG16 = 0  
FOSC = 20.000 MHz FOSC = 18.432 MHz  
FOSC = 32.000 MHz  
FOSC = 11.0592 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
Error  
Error  
(decimal)  
(decimal)  
300  
1200  
2400  
9600  
10417  
19.2k  
57.6k  
71  
65  
35  
11  
5
9615  
10417  
19.23k  
57.14k  
0.16  
0.00  
0.16  
-0.79  
2.12  
207  
191  
103  
34  
9615  
10417  
19.23k  
56.82k  
0.16  
0.00  
0.16  
-1.36  
129  
119  
64  
9600  
10378  
19.20k  
57.60k  
115.2k  
0.00  
-0.37  
0.00  
0.00  
0.00  
119  
110  
59  
19  
9
9600  
0.00  
0.53  
0.00  
0.00  
0.00  
10473  
19.20k  
57.60k  
115.2k  
21  
115.2k 117.64k  
16  
113.64k -1.36  
10  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 227  
PIC16F193X/LF193X  
TABLE 20-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)  
SYNC = 0, BRGH = 1, BRG16 = 0  
FOSC = 8.000 MHz  
FOSC = 4.000 MHz  
FOSC = 3.6864 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
Error  
Error  
Error  
Error  
300  
1200  
1202  
2404  
9615  
10417  
19.23k  
207  
103  
25  
191  
95  
23  
21  
11  
3
300  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
0.16  
0.16  
0.16  
0.00  
0.16  
1200  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
2400  
2404  
9615  
10417  
19231  
55556  
0.16  
0.16  
0.00  
0.16  
-3.55  
207  
51  
47  
25  
8
2400  
9600  
9600  
10417  
19.2k  
57.6k  
115.2k  
23  
10473  
19.2k  
57.60k  
115.2k  
10417  
0.00  
12  
1
SYNC = 0, BRGH = 0, BRG16 = 1  
FOSC = 20.000 MHz FOSC = 18.432 MHz  
FOSC = 32.000 MHz  
FOSC = 11.0592 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
Error  
Error  
(decimal)  
(decimal)  
300  
1200  
300.0  
1200  
0.00  
-0.02  
-0.04  
0.16  
0.00  
0.16  
-0.79  
2.12  
6666  
3332  
832  
207  
191  
103  
34  
300.0  
1200  
-0.01  
-0.03  
-0.03  
0.16  
0.00  
0.16  
-1.36  
4166  
1041  
520  
129  
119  
64  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
-0.37  
0.00  
0.00  
0.00  
3839  
959  
479  
119  
110  
59  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
2303  
575  
287  
71  
2400  
2401  
2399  
2400  
2400  
9600  
9615  
9615  
9600  
9600  
10417  
19.2k  
57.6k  
115.2k  
10417  
19.23k  
57.14k  
117.6k  
10417  
19.23k  
56.818  
10378  
19.20k  
57.60k  
115.2k  
10473  
19.20k  
57.60k  
115.2k  
65  
35  
21  
19  
11  
16  
113.636 -1.36  
10  
9
5
SYNC = 0, BRGH = 0, BRG16 = 1  
FOSC = 4.000 MHz FOSC = 3.6864 MHz  
FOSC = 8.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
Error  
Error  
(decimal)  
(decimal)  
300  
1200  
299.9  
1199  
-0.02  
-0.08  
0.16  
0.16  
0.00  
0.16  
-3.55  
1666  
416  
207  
51  
300.1  
1202  
2404  
9615  
10417  
19.23k  
0.04  
0.16  
0.16  
0.16  
0.00  
0.16  
832  
207  
103  
25  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
767  
191  
95  
23  
21  
11  
3
300.5  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
2400  
2404  
9615  
10417  
19.23k  
55556  
2400  
9600  
9600  
10417  
19.2k  
57.6k  
115.2k  
47  
23  
10473  
19.20k  
57.60k  
115.2k  
10417  
0.00  
25  
12  
8
1
DS41364A-page 228  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
TABLE 20-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)  
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1  
FOSC = 20.000 MHz FOSC = 18.432 MHz  
FOSC = 32.000 MHz  
FOSC = 11.0592 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
Error  
Error  
Error  
Error  
300  
1200  
300.0  
1200  
0.00  
0.00  
0.01  
0.04  
0.00  
-0.08  
-0.08  
0.64  
26666  
6666  
3332  
832  
300.0  
1200  
0.00  
-0.01  
0.02  
-0.03  
0.00  
0.16  
-0.22  
0.94  
16665  
4166  
2082  
520  
479  
259  
86  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.08  
0.00  
0.00  
0.00  
15359  
3839  
1919  
479  
441  
239  
79  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.16  
0.00  
0.00  
0.00  
9215  
2303  
1151  
287  
264  
143  
47  
2400  
2400  
2400  
2400  
2400  
9600  
9604  
9597  
9600  
9600  
10417  
19.2k  
57.6k  
115.2k  
10417  
19.18k  
57.55k  
115.9k  
767  
10417  
19.23k  
57.47k  
116.3k  
10425  
19.20k  
57.60k  
115.2k  
10433  
19.20k  
57.60k  
115.2k  
416  
138  
68  
42  
39  
23  
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1  
FOSC = 4.000 MHz FOSC = 3.6864 MHz  
FOSC = 8.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
Error  
Error  
Error  
Error  
300  
1200  
300.0  
1200  
0.00  
-0.02  
0.04  
0.16  
0
6666  
1666  
832  
207  
191  
103  
34  
300.0  
1200  
0.01  
0.04  
0.08  
0.16  
0.00  
0.16  
2.12  
-3.55  
3332  
832  
416  
103  
95  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
3071  
767  
383  
95  
300.1  
1202  
2404  
9615  
10417  
19.23k  
0.04  
0.16  
0.16  
0.16  
0.00  
0.16  
832  
207  
103  
25  
2400  
2401  
2398  
2400  
9600  
9615  
9615  
9600  
10417  
19.2k  
57.6k  
115.2k  
10417  
19.23k  
57.14k  
117.6k  
10417  
19.23k  
58.82k  
111.1k  
10473  
19.20k  
57.60k  
115.2k  
87  
23  
0.16  
-0.79  
2.12  
51  
47  
12  
16  
15  
16  
8
7
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 229  
PIC16F193X/LF193X  
and SPBRG registers are clocked at 1/8th the BRG  
base clock rate. The resulting byte measurement is the  
average bit time when clocked at full speed.  
20.3.1  
AUTO-BAUD DETECT  
The EUSART module supports automatic detection  
and calibration of the baud rate.  
Note 1: If the WUE bit is set with the ABDEN bit,  
auto-baud detection will occur on the byte  
following the Break character (see  
In the Auto-Baud Detect (ABD) mode, the clock to the  
BRG is reversed. Rather than the BRG clocking the  
incoming RX signal, the RX signal is timing the BRG.  
The Baud Rate Generator is used to time the period of  
a received 55h (ASCII “U”) which is the Sync character  
for the LIN bus. The unique feature of this character is  
that it has five rising edges including the Stop bit edge.  
Section 20.3.3  
“Auto-Wake-up  
on  
Break”).  
2: It is up to the user to determine that the  
incoming character baud rate is within the  
range of the selected BRG clock source.  
Some combinations of oscillator frequency  
and EUSART baud rates are not possible.  
Setting the ABDEN bit of the BAUDCON register starts  
the auto-baud calibration sequence (Figure 20-6).  
While the ABD sequence takes place, the EUSART  
state machine is held in Idle. On the first rising edge of  
the receive line, after the Start bit, the SPBRG begins  
counting up using the BRG counter clock as shown in  
Table 20-6. The fifth rising edge will occur on the RX pin  
at the end of the eighth bit period. At that time, an  
accumulated value totaling the proper BRG period is  
left in the SPBRGH, SPBRG register pair, the ABDEN  
bit is automatically cleared and the RCIF interrupt flag  
is set. The value in the RCREG needs to be read to  
clear the RCIF interrupt. RCREG content should be  
discarded. When calibrating for modes that do not use  
the SPBRGH register the user can verify that the  
SPBRG register did not overflow by checking for 00h in  
the SPBRGH register.  
3: During the auto-baud process, the  
auto-baud counter starts counting at 1.  
Upon completion of the auto-baud  
sequence, to achieve maximum accuracy,  
subtract 1 from the SPBRGH:SPBRG  
register pair.  
TABLE 20-6:  
BRG16 BRGH  
BRG COUNTER CLOCK RATES  
BRG Base  
Clock  
BRG ABD  
Clock  
0
0
0
1
FOSC/64  
FOSC/16  
FOSC/512  
FOSC/128  
1
1
0
1
FOSC/16  
FOSC/4  
FOSC/128  
FOSC/32  
The BRG auto-baud clock is determined by the BRG16  
and BRGH bits as shown in Table 20-6. During ABD,  
both the SPBRGH and SPBRG registers are used as a  
16-bit counter, independent of the BRG16 bit setting.  
While calibrating the baud rate period, the SPBRGH  
Note:  
During the ABD sequence, SPBRG and  
SPBRGH registers are both used as a 16-bit  
counter, independent of BRG16 setting.  
FIGURE 20-6:  
AUTOMATIC BAUD RATE CALIBRATION  
XXXXh  
0000h  
001Ch  
BRG Value  
Edge #1  
bit 1  
Edge #2  
bit 3  
Edge #3  
bit 5  
Edge #4  
bit 7  
bit 6  
Edge #5  
Stop bit  
RX pin  
Start  
bit 0  
bit 2  
bit 4  
BRG Clock  
Auto Cleared  
Set by User  
ABDEN bit  
RCIDL  
RCIF bit  
(Interrupt)  
Read  
RCREG  
XXh  
XXh  
1Ch  
00h  
SPBRG  
SPBRGH  
Note 1: The ABD sequence requires the EUSART module to be configured in Asynchronous mode.  
DS41364A-page 230  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
20.3.2  
AUTO-BAUD OVERFLOW  
20.3.3.1  
Special Considerations  
During the course of automatic baud detection, the  
ABDOVF bit of the BAUDCON register will be set if the  
baud rate counter overflows before the fifth rising edge  
is detected on the RX pin. The ABDOVF bit indicates  
that the counter has exceeded the maximum count that  
can fit in the 16 bits of the SPBRGH:SPBRG register  
pair. After the ABDOVF has been set, the counter con-  
tinues to count until the fifth rising edge is detected on  
the RX pin. Upon detecting the fifth RX edge, the hard-  
ware will set the RCIF interrupt flag and clear the  
ABDEN bit of the BAUDCON register. The RCIF flag  
can be subsequently cleared by reading the RCREG  
register. The ABDOVF flag of the BAUDCON register  
can be cleared by software directly.  
Break Character  
To avoid character errors or character fragments during  
a wake-up event, the wake-up character must be all  
zeros.  
When the wake-up is enabled the function works  
independent of the low time on the data stream. If the  
WUE bit is set and a valid non-zero character is  
received, the low time from the Start bit to the first rising  
edge will be interpreted as the wake-up event. The  
remaining bits in the character will be received as a  
fragmented character and subsequent characters can  
result in framing or overrun errors.  
Therefore, the initial character in the transmission must  
be all ‘0’s. This must be 10 or more bit times, 13-bit  
times recommended for LIN bus, or any number of bit  
times for standard RS-232 devices.  
To terminate the auto-baud process before the RCIF  
flag is set, clear the ABDEN bit then clear the ABDOVF  
bit of the BAUDCON register. The ABDOVF bit will  
remain set if the ABDEN bit is not cleared first.  
Oscillator Startup Time  
Oscillator start-up time must be considered, especially  
in applications using oscillators with longer start-up  
intervals (i.e., LP, XT or HS/PLL mode). The Sync  
Break (or wake-up signal) character must be of  
sufficient length, and be followed by a sufficient  
interval, to allow enough time for the selected oscillator  
to start and provide proper initialization of the EUSART.  
20.3.3  
AUTO-WAKE-UP ON BREAK  
During Sleep mode, all clocks to the EUSART are  
suspended. Because of this, the Baud Rate Generator  
is inactive and a proper character reception cannot be  
performed. The Auto-Wake-up feature allows the  
controller to wake-up due to activity on the RX/DT line.  
This feature is available only in Asynchronous mode.  
WUE Bit  
The Auto-Wake-up feature is enabled by setting the  
WUE bit of the BAUDCON register. Once set, the normal  
receive sequence on RX/DT is disabled, and the  
EUSART remains in an Idle state, monitoring for a  
wake-up event independent of the CPU mode. A  
wake-up event consists of a high-to-low transition on the  
RX/DT line. (This coincides with the start of a Sync Break  
or a wake-up signal character for the LIN protocol.)  
The wake-up event causes a receive interrupt by  
setting the RCIF bit. The WUE bit is cleared in  
hardware by a rising edge on RX/DT. The interrupt  
condition is then cleared in software by reading the  
RCREG register and discarding its contents.  
To ensure that no actual data is lost, check the RCIDL  
bit to verify that a receive operation is not in process  
before setting the WUE bit. If a receive operation is not  
occurring, the WUE bit may then be set just prior to  
entering the Sleep mode.  
The EUSART module generates an RCIF interrupt  
coincident with the wake-up event. The interrupt is  
generated synchronously to the Q clocks in normal CPU  
operating modes (Figure 20-7), and asynchronously if  
the device is in Sleep mode (Figure 20-8). The interrupt  
condition is cleared by reading the RCREG register.  
The WUE bit is automatically cleared by the low-to-high  
transition on the RX line at the end of the Break. This  
signals to the user that the Break event is over. At this  
point, the EUSART module is in Idle mode waiting to  
receive the next character.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 231  
PIC16F193X/LF193X  
FIGURE 20-7:  
AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3Q4  
OSC1  
Auto Cleared  
Bit set by user  
WUE bit  
RX/DT Line  
RCIF  
Cleared due to User Read of RCREG  
Note 1: The EUSART remains in Idle while the WUE bit is set.  
FIGURE 20-8:  
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP  
Q4  
Q1Q2Q3 Q4 Q1Q2 Q3Q4 Q1Q2Q3  
Q1  
Q2 Q3Q4 Q1Q2Q3 Q4 Q1Q2Q3Q4 Q1Q2Q3 Q4 Q1Q2 Q3Q4  
Auto Cleared  
OSC1  
Bit Set by User  
WUE bit  
RX/DT Line  
Note 1  
RCIF  
Cleared due to User Read of RCREG  
Sleep Command Executed  
Sleep Ends  
Note 1: If the wake-up event requires long oscillator warm-up time, the automatic clearing of the WUE bit can occur while the stposcsignal is  
still active. This sequence should not depend on the presence of Q clocks.  
2: The EUSART remains in Idle while the WUE bit is set.  
DS41364A-page 232  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
5. After the Break has been sent, the SENDB bit is  
reset by hardware and the Sync character is  
then transmitted.  
20.3.4  
BREAK CHARACTER SEQUENCE  
The EUSART module has the capability of sending the  
special Break character sequences that are required by  
the LIN bus standard. A Break character consists of a  
Start bit, followed by 12 ‘0’ bits and a Stop bit.  
When the TXREG becomes empty, as indicated by the  
TXIF, the next data byte can be written to TXREG.  
To send a Break character, set the SENDB and TXEN  
bits of the TXSTA register. The Break character trans-  
mission is then initiated by a write to the TXREG. The  
value of data written to TXREG will be ignored and all  
0’s will be transmitted.  
20.3.5  
RECEIVING A BREAK CHARACTER  
The Enhanced EUSART module can receive a Break  
character in two ways.  
The SENDB bit is automatically reset by hardware after  
the corresponding Stop bit is sent. This allows the user  
to preload the transmit FIFO with the next transmit byte  
following the Break character (typically, the Sync  
character in the LIN specification).  
The first method to detect a Break character uses the  
FERR bit of the RCSTA register and the Received data  
as indicated by RCREG. The Baud Rate Generator is  
assumed to have been initialized to the expected baud  
rate.  
The TRMT bit of the TXSTA register indicates when the  
transmit operation is active or Idle, just as it does during  
normal transmission. See Figure 20-9 for the timing of  
the Break character sequence.  
A Break character has been received when;  
• RCIF bit is set  
• FERR bit is set  
• RCREG = 00h  
20.3.4.1  
Break and Sync Transmit Sequence  
The second method uses the Auto-Wake-up feature  
described in Section 20.3.3 “Auto-Wake-up on  
Break”. By enabling this feature, the EUSART will  
sample the next two transitions on RX/DT, cause an  
RCIF interrupt, and receive the next data byte followed  
by another interrupt.  
The following sequence will start a message frame  
header made up of a Break, followed by an auto-baud  
Sync byte. This sequence is typical of a LIN bus  
master.  
1. Configure the EUSART for the desired mode.  
Note that following a Break character, the user will  
typically want to enable the Auto-Baud Detect feature.  
For both methods, the user can set the ABDEN bit of  
the BAUDCON register before placing the EUSART in  
Sleep mode.  
2. Set the TXEN and SENDB bits to enable the  
Break sequence.  
3. Load the TXREG with a dummy character to  
initiate transmission (the value is ignored).  
4. Write ‘55h’ to TXREG to load the Sync character  
into the transmit FIFO buffer.  
FIGURE 20-9:  
SEND BREAK CHARACTER SEQUENCE  
Write to TXREG  
Dummy Write  
BRG Output  
(Shift Clock)  
TX (pin)  
Start bit  
bit 0  
bit 1  
Break  
bit 11  
Stop bit  
TXIF bit  
(Transmit  
Interrupt Flag)  
TRMT bit  
(Transmit Shift  
Empty Flag)  
SENDB Sampled Here  
Auto Cleared  
SENDB  
(send Break  
control bit)  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 233  
PIC16F193X/LF193X  
Clearing the SCKP bit sets the Idle state as low. When  
the SCKP bit is cleared, the data changes on the rising  
edge of each clock.  
20.4 EUSART Synchronous Mode  
Synchronous serial communications are typically used  
in systems with a single master and one or more  
slaves. The master device contains the necessary cir-  
cuitry for baud rate generation and supplies the clock  
for all devices in the system. Slave devices can take  
advantage of the master clock by eliminating the inter-  
nal clock generation circuitry.  
20.4.1.3  
Synchronous Master Transmission  
Data is transferred out of the device on the RX/DT pin.  
The RX/DT and TX/CK pin output drivers are automat-  
ically enabled when the EUSART is configured for syn-  
chronous master transmit operation.  
There are two signal lines in Synchronous mode: a bidi-  
rectional data line and a clock line. Slaves use the  
external clock supplied by the master to shift the serial  
data into and out of their respective receive and trans-  
mit shift registers. Since the data line is bidirectional,  
synchronous operation is half-duplex only. Half-duplex  
refers to the fact that master and slave devices can  
receive and transmit data but not both simultaneously.  
The EUSART can operate as either a master or slave  
device.  
A transmission is initiated by writing a character to the  
TXREG register. If the TSR still contains all or part of a  
previous character the new character data is held in the  
TXREG until the last bit of the previous character has  
been transmitted. If this is the first character, or the pre-  
vious character has been completely flushed from the  
TSR, the data in the TXREG is immediately transferred  
to the TSR. The transmission of the character com-  
mences immediately following the transfer of the data  
to the TSR from the TXREG.  
Start and Stop bits are not used in synchronous trans-  
missions.  
Each data bit changes on the leading edge of the mas-  
ter clock and remains valid until the subsequent leading  
clock edge.  
20.4.1  
SYNCHRONOUS MASTER MODE  
Note:  
The TSR register is not mapped in data  
memory, so it is not available to the user.  
The following bits are used to configure the EUSART  
for Synchronous Master operation:  
• SYNC = 1  
20.4.1.4  
Synchronous Master Transmission  
Set-up:  
• CSRC = 1  
• SREN = 0(for transmit); SREN = 1(for receive)  
• CREN = 0(for transmit); CREN = 1(for receive)  
• SPEN = 1  
1. Initialize the SPBRGH, SPBRG register pair and  
the BRGH and BRG16 bits to achieve the  
desired baud rate (see Section 20.3 “EUSART  
Baud Rate Generator (BRG)”).  
Setting the SYNC bit of the TXSTA register configures  
the device for synchronous operation. Setting the CSRC  
bit of the TXSTA register configures the device as a  
master. Clearing the SREN and CREN bits of the RCSTA  
register ensures that the device is in the Transmit mode,  
otherwise the device will be configured to receive. Setting  
the SPEN bit of the RCSTA register enables the  
EUSART.  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
3. Disable Receive mode by clearing bits SREN  
and CREN.  
4. Enable Transmit mode by setting the TXEN bit.  
5. If 9-bit transmission is desired, set the TX9 bit.  
6. If interrupts are desired, set the TXIE bit of the  
PIE1 register and the GIE and PEIE bits of the  
INTCON register.  
20.4.1.1  
Master Clock  
Synchronous data transfers use a separate clock line,  
which is synchronous with the data. A device config-  
ured as a master transmits the clock on the TX/CK line.  
The TX/CK pin output driver is automatically enabled  
when the EUSART is configured for synchronous  
transmit or receive operation. Serial data bits change  
on the leading edge to ensure they are valid at the trail-  
ing edge of each clock. One clock cycle is generated  
for each data bit. Only as many clock cycles are gener-  
ated as there are data bits.  
7. If 9-bit transmission is selected, the ninth bit  
should be loaded in the TX9D bit.  
8. Start transmission by loading data to the TXREG  
register.  
20.4.1.2  
Clock Polarity  
A clock polarity option is provided for Microwire  
compatibility. Clock polarity is selected with the SCKP  
bit of the BAUDCON register. Setting the SCKP bit sets  
the clock Idle state as high. When the SCKP bit is set,  
the data changes on the falling edge of each clock.  
DS41364A-page 234  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 20-10:  
SYNCHRONOUS TRANSMISSION  
RX/DT  
pin  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
Word 2  
bit 7  
Word 1  
TX/CK pin  
(SCKP = 0)  
TX/CK pin  
(SCKP = 1)  
Write to  
TXREG Reg  
Write Word 1  
Write Word 2  
TXIF bit  
(Interrupt Flag)  
TRMT bit  
1’  
1’  
TXEN bit  
Note:  
Sync Master mode, SPBRG = 0, continuous transmission of two 8-bit words.  
FIGURE 20-11:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RX/DT pin  
bit 0  
bit 2  
bit 1  
bit 6  
bit 7  
TX/CK pin  
Write to  
TXREG reg  
TXIF bit  
TRMT bit  
TXEN bit  
TABLE 20-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCON  
INTCON  
PIE1  
ABDOVF  
GIE  
RCIDL  
PEIE  
SCKP  
INTE  
BRG16  
IOCIE  
WUE  
INTF  
ABDEN  
IOCIF  
224  
73  
TMR0IE  
RCIE  
TMR0IF  
CCP1IE  
CCP1IF  
FERR  
TMR1GIE  
TMR1GIF  
SPEN  
ADIE  
TXIE  
SSPIE  
SSPIF  
ADDEN  
BRG3  
TMR2IE  
TMR2IF  
OERR  
BRG1  
TMR1IE  
TMR1IF  
RX9D  
74  
PIR1  
ADIF  
RCIF  
TXIF  
77  
RCSTA  
SPBRG  
SPBRGH  
TRISC  
RX9  
SREN  
BRG5  
BRG13  
TRISC5  
CREN  
BRG4  
BRG12  
TRISC4  
223  
225*  
225*  
94  
BRG7  
BRG6  
BRG14  
TRISC6  
BRG2  
BRG0  
BRG15  
TRISC7  
BRG11  
TRISC3  
BRG10  
TRISC2  
BRG9  
BRG8  
TRISC1  
TRISC0  
TXREG  
TXSTA  
EUSART Transmit Data Register  
CSRC TX9 TXEN  
215*  
222  
SYNC  
SENDB  
BRGH  
TRMT  
TX9D  
Legend:  
x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for Synchronous Master Transmission.  
*
Page provides register information.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 235  
PIC16F193X/LF193X  
set then the error condition is cleared by either clearing  
the CREN bit of the RCSTA register or by clearing the  
SPEN bit which resets the EUSART.  
20.4.1.5  
Synchronous Master Reception  
Data is received at the RX/DT pin. The RX/DT pin  
output driver is automatically disabled when the  
EUSART is configured for synchronous master receive  
operation.  
20.4.1.8  
Receiving 9-bit Characters  
The EUSART supports 9-bit character reception. When  
the RX9 bit of the RCSTA register is set the EUSART  
will shift 9-bits into the RSR for each character  
received. The RX9D bit of the RCSTA register is the  
ninth, and Most Significant, data bit of the top unread  
character in the receive FIFO. When reading 9-bit data  
from the receive FIFO buffer, the RX9D data bit must  
be read before reading the 8 Least Significant bits from  
the RCREG.  
In Synchronous mode, reception is enabled by setting  
either the Single Receive Enable bit (SREN of the  
RCSTA register) or the Continuous Receive Enable bit  
(CREN of the RCSTA register).  
When SREN is set and CREN is clear, only as many  
clock cycles are generated as there are data bits in a  
single character. The SREN bit is automatically cleared  
at the completion of one character. When CREN is set,  
clocks are continuously generated until CREN is  
cleared. If CREN is cleared in the middle of a character  
the CK clock stops immediately and the partial charac-  
ter is discarded. If SREN and CREN are both set, then  
SREN is cleared at the completion of the first character  
and CREN takes precedence.  
20.4.1.9  
Synchronous Master Reception  
Set-up:  
1. Initialize the SPBRGH, SPBRG register pair for  
the appropriate baud rate. Set or clear the  
BRGH and BRG16 bits, as required, to achieve  
the desired baud rate.  
To initiate reception, set either SREN or CREN. Data is  
sampled at the RX/DT pin on the trailing edge of the  
TX/CK clock pin and is shifted into the Receive Shift  
Register (RSR). When a complete character is  
received into the RSR, the RCIF bit is set and the char-  
acter is automatically transferred to the two character  
receive FIFO. The Least Significant eight bits of the top  
character in the receive FIFO are available in RCREG.  
The RCIF bit remains set as long as there are unread  
characters in the receive FIFO.  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
3. Ensure bits CREN and SREN are clear.  
4. If interrupts are desired, set the RCIE bit of the  
PIE1 register and the GIE and PEIE bits of the  
INTCON register.  
5. If 9-bit reception is desired, set bit RX9.  
6. Start reception by setting the SREN bit or for  
continuous reception, set the CREN bit.  
20.4.1.6  
Slave Clock  
7. Interrupt flag bit RCIF will be set when reception  
of a character is complete. An interrupt will be  
generated if the enable bit RCIE was set.  
Synchronous data transfers use a separate clock line,  
which is synchronous with the data. A device configured  
as a slave receives the clock on the TX/CK line. The  
TX/CK pin output driver is automatically disabled when  
the device is configured for synchronous slave transmit  
or receive operation. Serial data bits change on the  
leading edge to ensure they are valid at the trailing edge  
of each clock. One data bit is transferred for each clock  
cycle. Only as many clock cycles should be received as  
there are data bits.  
8. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read the 8-bit received data by reading the  
RCREG register.  
10. If an overrun error occurs, clear the error by  
either clearing the CREN bit of the RCSTA  
register or by clearing the SPEN bit which resets  
the EUSART.  
20.4.1.7  
Receive Overrun Error  
The receive FIFO buffer can hold two characters. An  
overrun error will be generated if a third character, in its  
entirety, is received before RCREG is read to access  
the FIFO. When this happens the OERR bit of the  
RCSTA register is set. Previous data in the FIFO will  
not be overwritten. The two characters in the FIFO  
buffer can be read, however, no additional characters  
will be received until the error is cleared. The OERR bit  
can only be cleared by clearing the overrun condition.  
If the overrun error occurred when the SREN bit is set  
and CREN is clear then the error is cleared by reading  
RCREG. If the overrun occurred when the CREN bit is  
DS41364A-page 236  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 20-12:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
RX/DT  
pin  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
TX/CK pin  
(SCKP = 0)  
TX/CK pin  
(SCKP = 1)  
Write to  
bit SREN  
SREN bit  
0’  
0’  
CREN bit  
RCIF bit  
(Interrupt)  
Read  
RXREG  
Note:  
Timing diagram demonstrates Sync Master mode with bit SREN = 1and bit BRGH = 0.  
TABLE 20-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCON  
INTCON  
PIE1  
ABDOVF  
GIE  
RCIDL  
PEIE  
ADIE  
ADIF  
SCKP  
INTE  
TXIE  
TXIF  
BRG16  
IOCIE  
SSPIE  
SSPIF  
WUE  
INTF  
ABDEN  
IOCIF  
224  
73  
TMR0IE  
RCIE  
TMR0IF  
TMR1GIE  
TMR1GIF  
CCP1IE TMR2IE TMR1IE  
CCP1IF TMR2IF TMR1IF  
74  
PIR1  
RCIF  
77  
RCREG  
RCSTA  
SPBRG  
EUSART Receive Data Register  
218*  
223  
225*  
225*  
94  
RX9  
BRG6  
BRG14  
SREN  
BRG5  
CREN  
BRG4  
ADDEN  
BRG3  
FERR  
BRG2  
OERR  
BRG1  
BRG9  
RX9D  
BRG0  
BRG8  
SPEN  
BRG7  
SPBRGH  
TRISC  
BRG15  
TRISC7  
CSRC  
BRG13  
BRG12  
BRG11  
BRG10  
TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0  
TX9 TXEN SYNC SENDB BRGH TRMT TX9D  
TXSTA  
222  
Legend: x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for Synchronous Master  
Reception.  
*
Page provides register information.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 237  
PIC16F193X/LF193X  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
20.4.2  
SYNCHRONOUS SLAVE MODE  
The following bits are used to configure the EUSART  
for Synchronous slave operation:  
1. The first character will immediately transfer to  
the TSR register and transmit.  
• SYNC = 1  
2. The second word will remain in TXREG register.  
3. The TXIF bit will not be set.  
• CSRC = 0  
• SREN = 0(for transmit); SREN = 1(for receive)  
• CREN = 0(for transmit); CREN = 1(for receive)  
• SPEN = 1  
4. After the first character has been shifted out of  
TSR, the TXREG register will transfer the second  
character to the TSR and the TXIF bit will now be  
set.  
Setting the SYNC bit of the TXSTA register configures the  
device for synchronous operation. Clearing the CSRC bit  
of the TXSTA register configures the device as a slave.  
Clearing the SREN and CREN bits of the RCSTA register  
ensures that the device is in the Transmit mode,  
otherwise the device will be configured to receive. Setting  
the SPEN bit of the RCSTA register enables the  
EUSART.  
5. If the PEIE and TXIE bits are set, the interrupt  
will wake the device from Sleep and execute the  
next instruction. If the GIE bit is also set, the  
program will call the Interrupt Service Routine.  
20.4.2.2  
Synchronous Slave Transmission  
Set-up:  
1. Set the SYNC and SPEN bits and clear the  
CSRC bit.  
20.4.2.1  
EUSART Synchronous Slave  
Transmit  
2. Clear the CREN and SREN bits.  
The operation of the Synchronous Master and Slave  
modes are identical (see Section 20.4.1.3  
“Synchronous Master Transmission”), except in the  
3. If interrupts are desired, set the TXIE bit of the  
PIE1 register and the GIE and PEIE bits of the  
INTCON register.  
case of the Sleep mode.  
4. If 9-bit transmission is desired, set the TX9 bit.  
5. Enable transmission by setting the TXEN bit.  
6. If 9-bit transmission is selected, insert the Most  
Significant bit into the TX9D bit.  
7. Start transmission by writing the Least  
Significant 8 bits to the TXREG register.  
TABLE 20-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCON  
INTCON  
PIE1  
ABDOVF  
GIE  
RCIDL  
PEIE  
ADIE  
ADIF  
RX9  
SCKP  
INTE  
TXIE  
BRG16  
IOCIE  
WUE  
INTF  
ABDEN  
IOCIF  
224  
73  
TMR0IE  
RCIE  
TMR0IF  
TMR1GIE  
TMR1GIF  
SSPIE  
SSPIF  
ADDEN  
CCP1IE TMR2IE TMR1IE  
CCP1IF TMR2IF TMR1IF  
74  
PIR1  
RCIF  
TXIF  
77  
SREN  
CREN  
FERR  
OERR  
RX9D  
RCSTA  
TRISC  
TXREG  
SPEN  
223  
94  
TRISC7  
TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0  
EUSART Transmit Data Register  
CSRC TX9 TXEN  
215*  
222  
TXSTA  
SYNC  
SENDB  
BRGH  
TRMT  
TX9D  
Legend: x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for Synchronous Slave  
Transmission.  
*
Page provides register information.  
DS41364A-page 238  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
20.4.2.3  
EUSART Synchronous Slave  
Reception  
20.4.2.4  
Synchronous Slave Reception  
Set-up:  
The operation of the Synchronous Master and Slave  
modes is identical (Section 20.4.1.5 “Synchronous  
Master Reception”), with the following exceptions:  
1. Set the SYNC and SPEN bits and clear the  
CSRC bit.  
2. If interrupts are desired, set the RCIE bit of the  
PIE1 register and the GIE and PEIE bits of the  
INTCON register.  
• Sleep  
• CREN bit is always set, therefore the receiver is  
never Idle  
3. If 9-bit reception is desired, set the RX9 bit.  
4. Set the CREN bit to enable reception.  
• SREN bit, which is a “don’t care” in Slave mode  
5. The RCIF bit will be set when reception is  
complete. An interrupt will be generated if the  
RCIE bit was set.  
A character may be received while in Sleep mode by  
setting the CREN bit prior to entering Sleep. Once the  
word is received, the RSR register will transfer the data  
to the RCREG register. If the RCIE enable bit is set, the  
interrupt generated will wake the device from Sleep  
and execute the next instruction. If the GIE bit is also  
set, the program will branch to the interrupt vector.  
6. If 9-bit mode is enabled, retrieve the Most  
Significant bit from the RX9D bit of the RCSTA  
register.  
7. Retrieve the 8 Least Significant bits from the  
receive FIFO by reading the RCREG register.  
8. If an overrun error occurs, clear the error by  
either clearing the CREN bit of the RCSTA  
register or by clearing the SPEN bit which resets  
the EUSART.  
TABLE 20-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCON  
INTCON  
PIE1  
ABDOVF  
GIE  
RCIDL  
PEIE  
ADIE  
ADIF  
SCKP  
INTE  
TXIE  
TXIF  
BRG16  
IOCIE  
SSPIE  
SSPIF  
WUE  
INTF  
ABDEN  
IOCIF  
224  
73  
TMR0IE  
RCIE  
TMR0IF  
TMR1GIE  
TMR1GIF  
CCP1IE TMR2IE TMR1IE  
CCP1IF TMR2IF TMR1IF  
74  
PIR1  
RCIF  
77  
RCREG  
RCSTA  
TRISC  
TXSTA  
EUSART Receive Data Register  
218*  
223  
94  
RX9  
SREN  
CREN  
ADDEN  
FERR  
OERR  
RX9D  
SPEN  
TRISC7  
CSRC  
TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0  
TX9 TXEN SYNC SENDB BRGH TRMT TX9D  
222  
Legend: x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for Synchronous Slave  
Reception.  
*
Page provides register information.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 239  
PIC16F193X/LF193X  
20.5.2  
SYNCHRONOUS TRANSMIT  
DURING SLEEP  
20.5 EUSART Operation During Sleep  
The EUSART will remain active during Sleep only in the  
Synchronous Slave mode. All other modes require the  
system clock and therefore cannot generate the neces-  
sary signals to run the Transmit or Receive Shift regis-  
ters during Sleep.  
To transmit during Sleep, all the following conditions  
must be met before entering Sleep mode:  
• RCSTA and TXSTA Control registers must be  
configured for Synchronous Slave Transmission  
(see Section 20.4.2.2 “Synchronous Slave  
Transmission Set-up:”).  
Synchronous Slave mode uses an externally generated  
clock to run the Transmit and Receive Shift registers.  
The TXIF interrupt flag must be cleared by writing  
the output data to the TXREG, thereby filling the  
TSR and transmit buffer.  
20.5.1  
SYNCHRONOUS RECEIVE DURING  
SLEEP  
• If interrupts are desired, set the TXIE bit of the  
PIE1 register and the PEIE bit of the INTCON reg-  
ister.  
To receive during Sleep, all the following conditions  
must be met before entering Sleep mode:  
• RCSTA and TXSTA Control registers must be  
configured for Synchronous Slave Reception (see  
Section 20.4.2.4 “Synchronous Slave  
Reception Set-up:”).  
• Interrupt enable bits TXIE of the PIE1 register and  
PEIE of the INTCON register must set.  
Upon entering Sleep mode, the device will be ready to  
accept clocks on TX/CK pin and transmit data on the  
RX/DT pin. When the data word in the TSR has been  
completely clocked out by the external device, the  
pending byte in the TXREG will transfer to the TSR and  
the TXIF flag will be set. Thereby, waking the processor  
from Sleep. At this point, the TXREG is available to  
accept another character for transmission, which will  
clear the TXIF flag.  
• If interrupts are desired, set the RCIE bit of the  
PIE1 register and the GIE and PEIE bits of the  
INTCON register.  
• The RCIF interrupt flag must be cleared by read-  
ing RCREG to unload any pending characters in  
the receive buffer.  
Upon entering Sleep mode, the device will be ready to  
accept data and clocks on the RX/DT and TX/CK pins,  
respectively. When the data word has been completely  
clocked in by the external device, the RCIF interrupt  
flag bit of the PIR1 register will be set. Thereby, waking  
the processor from Sleep.  
Upon waking from Sleep, the instruction following the  
SLEEP instruction will be executed. If the GIE global  
interrupt enable bit is also set then the Interrupt Service  
Routine at address 0004h will be called.  
Upon waking from Sleep, the instruction following the  
SLEEP instruction will be executed. If the GIE global  
interrupt enable bit of the INTCON register is also set,  
then the Interrupt Service Routine at address 004h will  
be called.  
DS41364A-page 240  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
• Segment pins up to:  
21.0 LIQUID CRYSTAL DISPLAY  
(LCD) DRIVER MODULE  
- 16 (PIC16F1933/1936/1938/  
PIC16LF1933/1936/1938)  
The Liquid Crystal Display (LCD) driver module  
generates the timing control to drive a static or  
multiplexed LCD panel. In the PIC16F193X/LF193X  
device, the module drives the panels of up to four  
commons and up to 24 segments. The LCD module  
also provides control of the LCD pixel data.  
- 24 (PIC16F1934/1937/1939/  
PIC16LF1934/1937/1939)  
• Static, 1/2 or 1/3 LCD Bias  
Note:  
COM3 and SEG15 share the same physical  
pin on the PIC16F1933/1936/1938/  
PIC16LF1933/1936/1938, therefore SEG15  
is not available when using 1/4 multiplex  
displays.  
The LCD driver module supports:  
• Direct driving of LCD panel  
• Three LCD clock sources with selectable prescaler  
• Up to four common pins:  
21.1 LCD Registers  
- Static (1 common)  
The module contains the following registers:  
- 1/2 multiplex (2 commons)  
- 1/3 multiplex (3 commons)  
- 1/4 multiplex (4 commons)  
• LCD Control register (LCDCON)  
• LCD Phase register (LCDPS)  
• LCD Reference Ladder register (LCDRL)  
• LCD Contrast Control register (LCDCST)  
• LCD Reference Voltage Control register  
(LCDREF)  
• Up to 3 LCD Segment Enable registers (LCDSEn)  
• Up to 12 LCD data registers (LCDDATAn)  
FIGURE 21-1:  
LCD DRIVER MODULE BLOCK DIAGRAM  
(1, 3)  
SEG<23:0>  
LCDDATAx  
Registers  
Data Bus  
(1)  
MUX  
To I/O Pads  
Timing Control  
LCDCON  
LCDPS  
(3)  
COM<3:0>  
(1)  
To I/O Pads  
LCDSEn  
FOSC/256  
Clock Source  
Select and  
Prescaler  
T1OSC  
LFINTOSC  
Note 1: These are not directly connected to the I/O pads, but may be tri-stated, depending on the configuration of  
the LCD module.  
2: SEG<23:0> on PIC16F1934/1937/1939, SEG<15:0> on PIC16F1933/1936/1938/  
PIC16LF1933/1936/1938.  
3: COM3 and SEG15 share the same physical pin on the PIC16F1933/1936/1938/PIC16LF1933/1936/1938,  
therefore SEG15 is not available when using 1/4 multiplex displays.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 241  
PIC16F193X/LF193X  
TABLE 21-1: LCD SEGMENT AND DATA  
REGISTERS  
# of LCD Registers  
Device  
Segment  
Enable  
Data  
PIC16F1933/1936/1938/  
PIC16LF1933/1936/1938  
2
3
8
PIC16F1934/1937/1939/  
PIC16LF1934/1937/1939  
12  
The LCDCON register (Register 21-1) controls the  
operation of the LCD driver module. The LCDPS regis-  
ter (Register 21-2) configures the LCD clock source  
prescaler and the type of waveform; Type-A or Type-B.  
The LCDSE registers (Register 21-5) configure the  
functions of the port pins.  
The following LCDSE registers are available:  
• LCDSE0 SE<7:0>  
• LCDSE1 SE<15:8>  
• LCDSE2 SE<23:16>(1)  
Note 1: PIC16F1934/1937/1939/  
PIC16LF1934/1937/1939 only.  
Once the module is initialized for the LCD panel, the  
individual bits of the LCDDATA<11:0> registers are  
cleared/set to represent a clear/dark pixel, respectively:  
• LCDDATA0 SEG<7:0>COM0  
• LCDDATA1 SEG<15:8>COM0  
• LCDDATA2 SEG<23:16>COM0(1)  
• LCDDATA3 SEG<7:0>COM1  
• LCDDATA4 SEG<15:8>COM1  
• LCDDATA5 SEG<23:16>COM1(1)  
• LCDDATA6 SEG<7:0>COM2  
• LCDDATA7 SEG<15:8>COM2  
• LCDDATA8 SEG<23:16>COM2(1)  
• LCDDATA9 SEG<7:0>COM3  
• LCDDATA10 SEG<15:8>COM3  
• LCDDATA11 SEG<23:16>COM3(1)  
Note 1: PIC16F1934/1937/1939/  
PIC16LF1934/1937/1939 only.  
As an example, LCDDATAx is detailed in  
Register 21-6.  
Once the module is configured, the LCDEN bit of the  
LCDCON register is used to enable or disable the LCD  
module. The LCD panel can also operate during Sleep  
by clearing the SLPEN bit of the LCDCON register.  
DS41364A-page 242  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
REGISTER 21-1: LCDCON: LIQUID CRYSTAL DISPLAY (LCD) CONTROL REGISTER  
R/W-0/0  
LCDEN  
R/W-0/0  
SLPEN  
R/C-0/0  
WERR  
U-0  
R/W-0/0  
CS1  
R/W-0/0  
CS0  
R/W-1/1  
LMUX1  
R/W-1/1  
LMUX0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
u = bit is unchanged  
‘1’ = Bit is set  
-n/n = Value at POR and BOR/Value at all other Resets  
C = Only clearable bit  
bit 7  
bit 6  
bit 5  
LCDEN: LCD Driver Enable bit  
1= LCD driver module is enabled  
0= LCD driver module is disabled  
SLPEN: LCD Driver Enable in Sleep Mode bit  
1= LCD driver module is disabled in Sleep mode  
0= LCD driver module is enabled in Sleep mode  
WERR: LCD Write Failed Error bit  
1 = LCDDATAx register written while the WA bit of the LCDPS register = 0 (must be cleared in  
software)  
0= No LCD write error  
bit 4  
Unimplemented: Read as ‘0’  
bit 3-2  
CS<1:0>: Clock Source Select bits  
00= FOSC/256  
01= T1OSC (Timer1)  
1x= LFINTOSC (31 kHz)  
bit 1-0  
LMUX<1:0>: Commons Select bits  
Maximum Number of Pixels  
LMUX<1:0>  
Multiplex  
Bias  
PIC16F1933/1936/1938/  
PIC16F1934/1937/1939/  
PIC16LF1933/1936/1938 PIC16LF1934/1937/1939  
00  
01  
10  
11  
Static (COM0)  
1/2 (COM<1:0>)  
1/3 (COM<2:0>)  
1/4 (COM<3:0>)  
16  
32  
24  
48  
72  
96  
Static  
1/2 or 1/3  
1/2 or 1/3  
1/3  
48  
60(1)  
Note 1: On these devices, COM3 and SEG15 are shared on one pin, limiting the device from driving 64 pixels.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 243  
PIC16F193X/LF193X  
REGISTER 21-2: LCDPS: LCD PHASE REGISTER  
R/W-0/0  
WFT  
R/W-0/0  
BIASMD  
R-0/0  
LCDA  
R-0/0  
WA  
R/W-0/0  
LP3  
R/W-0/0  
LP2  
R/W-1/1  
LP1  
R/W-1/1  
LP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
u = bit is unchanged  
‘1’ = Bit is set  
-n/n = Value at POR and BOR/Value at all other Resets  
C = Only clearable bit  
bit 7  
bit 6  
WFT: Waveform Type bit  
1= Type-B phase changes on each frame boundary  
0= Type-A phase changes within each common type  
BIASMD: Bias Mode Select bit  
When LMUX<1:0> = 00:  
0= Static Bias mode (do not set this bit to ‘1’)  
When LMUX<1:0> = 01:  
1= 1/2 Bias mode  
0= 1/3 Bias mode  
When LMUX<1:0> = 10:  
1= 1/2 Bias mode  
0= 1/3 Bias mode  
When LMUX<1:0> = 11:  
0= 1/3 Bias mode (do not set this bit to ‘1’)  
LCDA: LCD Active Status bit  
bit 5  
1= LCD driver module is active  
0= LCD driver module is inactive  
bit 4  
WA: LCD Write Allow Status bit  
1= Write into the LCDDATAx registers is allowed  
0= Write into the LCDDATAx registers is not allowed  
bit 3-0  
LP<3:0>: LCD Prescaler Selection bits  
1111= 1:16  
1110= 1:15  
1101= 1:14  
1100= 1:13  
1011= 1:12  
1010= 1:11  
1001= 1:10  
1000= 1:9  
0111= 1:8  
0110= 1:7  
0101= 1:6  
0100= 1:5  
0011= 1:4  
0010= 1:3  
0001= 1:2  
0000= 1:1  
DS41364A-page 244  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
REGISTER 21-3: LCDREF: LCD REFERENCE VOLTAGE CONTROL REGISTER  
R/W-0/0  
LCDIRE  
R/W-0/0  
LCDIRS  
R/W-0/0  
LCDIRI  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
U-0  
VLCD3PE  
VLCD2PE  
VLCD1PE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
u = bit is unchanged  
‘1’ = Bit is set  
-n/n = Value at POR and BOR/Value at all other Resets  
C = Only clearable bit  
bit 7  
bit 6  
LCDIRE: LCD Internal Reference Enable bit  
1= Internal LCD Reference is enabled and connected to the Internal Contrast Control circuit  
0= Internal LCD Reference is disabled  
LCDIRS: LCD Internal Reference Source bit  
If LCDIRE = 1:  
0= Internal LCD Contrast Control is powered by VDD  
1= Internal LCD Contrast Control is powered by a 3.072V output of the FVR.  
If LCDIRE = 0:  
Internal LCD Contrast Control is unconnected. LCD bandgap buffer is disabled.  
bit 5  
LCDIRI: LCD Internal Reference Ladder Idle Enable bit  
Allows the Internal FVR buffer to shut down when the LCD Reference Ladder is in power mode ‘B’  
1= When the LCD Reference Ladder is in power mode ‘B’, the LCD Internal FVR buffer is disabled.  
0= The LCD Internal FVR Buffer ignores the LCD Reference Ladder Power mode.  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
VLCD3PE: VLCD3 Pin Enable bit  
1= The VLCD3 pin is connected to the internal bias voltage LCDBIAS3(1)  
0= The VLCD3 pin is not connected  
bit 2  
bit 1  
bit 0  
VLCD2PE: VLCD2 Pin Enable bit  
1= The VLCD2 pin is connected to the internal bias voltage LCDBIAS2(1)  
0= The VLCD2 pin is not connected  
VLCD1PE: VLCD1 Pin Enable bit  
1= The VLCD1 pin is connected to the internal bias voltage LCDBIAS1(1)  
0= The VLCD1 pin is not connected  
Unimplemented: Read as ‘0’  
Note 1: Normal pin controls of TRISx and ANSELx are unaffected.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 245  
PIC16F193X/LF193X  
REGISTER 21-4: LCDCST: LCD CONTRAST CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
LCDCST2  
LCDCST1  
LCDCST0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
C = Only clearable bit  
bit 7-3  
bit 2-0  
Unimplemented: Read as ‘0’  
LCDCST<2:0>: LCD Contrast Control bits  
Selects the resistance of the LCD contrast control resistor ladder  
Bit Value = Resistor ladder  
000= Minimum Resistance (Maximum contrast). Resistor ladder is shorted.  
001= Resistor ladder is at 1/7th of maximum resistance  
010= Resistor ladder is at 2/7th of maximum resistance  
011= Resistor ladder is at 3/7th of maximum resistance  
100= Resistor ladder is at 4/7th of maximum resistance  
101= Resistor ladder is at 5/7th of maximum resistance  
110= Resistor ladder is at 6/7th of maximum resistance  
111= Resistor ladder is at maximum resistance (Minimum contrast).  
DS41364A-page 246  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
REGISTER 21-5: LCDSEn: LCD SEGMENT ENABLE REGISTERS  
R/W-0/0  
SEn  
R/W-0/0  
SEn  
R/W-0/0  
SEn  
R/W-0/0  
SEn  
R/W-0/0  
SEn  
R/W-0/0  
SEn  
R/W-0/0  
SEn  
R/W-0/0  
SEn  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
SEn: Segment Enable bits  
1= Segment function of the pin is enabled  
0= I/O function of the pin is enabled  
REGISTER 21-6: LCDDATAx: LCD DATA REGISTERS  
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u  
SEGx-COMy SEGx-COMy SEGx-COMy SEGx-COMy SEGx-COMy SEGx-COMy SEGx-COMy SEGx-COMy  
R/W-x/u  
R/W-x/u  
R/W-x/u  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-0  
SEGx-COMy: Pixel On bits  
1= Pixel on (dark)  
0= Pixel off (clear)  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 247  
PIC16F193X/LF193X  
Using bits CS<1:0> of the LCDCON register can select  
any of these clock sources.  
21.2 LCD Clock Source Selection  
The LCD module has 3 possible clock sources:  
21.2.1  
LCD PRESCALER  
• FOSC/256  
• T1OSC  
A 4-bit counter is available as a prescaler for the LCD  
clock. The prescaler is not directly readable or writable;  
its value is set by the LP<3:0> bits of the LCDPS register,  
which determine the prescaler assignment and prescale  
ratio.  
• LFINTOSC  
The first clock source is the system clock divided by  
256 (FOSC/256). This divider ratio is chosen to provide  
about 1 kHz output when the system clock is 8 MHz.  
The divider is not programmable. Instead, the LCD  
prescaler bits LP<3:0> of the LCDPS register are used  
to set the LCD frame clock rate.  
The prescale values are selectable from 1:1 through  
1:16.  
The second clock source is the T1OSC. This also gives  
about 1 kHz when a 32.768 kHz crystal is used with the  
Timer1 oscillator. To use the Timer1 oscillator as a  
clock source, the T1OSCEN bit of the T1CON register  
should be set.  
The third clock source is the 31 kHz LFINTOSC, which  
provides approximately 1 kHz output.  
The second and third clock sources may be used to  
continue running the LCD while the processor is in  
Sleep.  
FIGURE 21-2:  
LCD CLOCK GENERATION  
To Reference  
Ladder Control  
FOSC  
÷256  
Static  
÷4  
÷2  
5
T1OSC 32 kHz  
Crystal Osc.  
÷1, 2, 3, 4  
Ring Counter  
4-bit Prog  
Prescaler  
÷32  
1/2  
1/3,  
1/4  
LFINTOSC  
Nominal = 31 kHz  
LP<3:0>  
LMUX<1:0>  
(LCDPS<3:0>)  
(LCDCON<1:0>)  
CS<1:0>  
LMUX<1:0>  
(LCDCON<3:2>)  
(LCDCON<1:0>)  
DS41364A-page 248  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
TABLE 21-2: LCD BIAS VOLTAGES  
21.3 LCD Bias Voltage Generation  
Static Bias  
1/2 Bias  
1/3 Bias  
The LCD module can be configured for one of three  
bias types:  
LCD Bias 0  
LCD Bias 1  
LCD Bias 2  
LCD Bias 3  
VSS  
VSS  
VSS  
1/2 VDD  
1/2 VDD  
VLCD3  
1/3 VDD  
2/3 VDD  
VLCD3  
• Static Bias (2 voltage levels: VSS and VLCD)  
• 1/2 Bias (3 voltage levels: VSS, 1/2 VLCD and  
VLCD)  
VLCD3  
• 1/3 Bias (4 voltage levels: VSS, 1/3 VLCD,  
2/3 VLCD and VLCD)  
So that the user is not forced to place external compo-  
nents and use up to three pins for bias voltage generation,  
internal contrast control and an internal reference ladder  
are provided internally to the PIC16F193X/LF193X. Both  
of these features may be used in conjunction with the  
external VLCD<3:1> pins, to provide maximum flexibility.  
Refer to Figure 21-3.  
FIGURE 21-3:  
LCD BIAS VOLTAGE GENERATION BLOCK DIAGRAM  
LCDIRE  
LCDIRS  
LCDA  
VDD  
1.024V from  
FVR  
3.072V  
x 3  
LCDRLP1  
LCDRLP0  
LCDIRE  
LCDIRS  
LCDA  
LCDCST<2:0>  
VLCD3PE  
LCDA  
VLCD3  
lcdbias3  
VLCD2PE  
VLCD2  
lcdbias2  
BIASMD  
VLCD1PE  
VLCD1  
lcdbias1  
lcdbias0  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 249  
PIC16F193X/LF193X  
21.4.2  
POWER MODES  
21.4 LCD Bias Internal Reference  
Ladder  
The internal reference ladder may be operated in one of  
three power modes. This allows the user to trade off LCD  
contrast for power in the specific application. The larger  
the LCD glass, the more capacitance is present on a  
physical LCD segment, requiring more current to  
maintain the same contrast level.  
The internal reference ladder can be used to divide the  
LCD bias voltage two or three equally spaced voltages  
that will be supplied to the LCD segment pins. To create  
this, the reference ladder consists of three matched  
resistors. Refer to Figure 21-3.  
Three different power modes are available, LP, MP and  
HP. The internal reference ladder can also be turned off  
for applications that wish to provide an external ladder  
or to minimize power consumption. Disabling the  
internal reference ladder results in all of the ladders  
being disconnected, allowing external voltages to be  
supplied.  
21.4.1  
BIAS MODE INTERACTION  
When in 1/2 Bias mode (BIASMD = 1), then the middle  
resistor of the ladder is shorted out so that only two  
voltages are generated. The current consumption of the  
ladder is higher in this mode, with the one resistor  
removed.  
Whenever the LCD module is inactive (LCDA = 0), the  
internal reference ladder will be turned off.  
TABLE 21-3:  
LCD INTERNAL LADDER  
POWER MODES (1/3 BIAS)  
Power  
Mode  
Nominal Resistance of  
Entire Ladder  
Nominal  
IDD  
Low  
3 Mohm  
300 kohm  
30 kohm  
1 µA  
10 µA  
100 µA  
Medium  
High  
DS41364A-page 250  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
The LCDLAD register allows switching between two  
power modes, designated ‘A’ and ‘B’. ‘A’ Power mode  
is active for a programmable time, beginning at the  
time win the LCD segments transition. ‘B’ Power mode  
is the remaining time before the segments or com-  
mons change again. The LRLAT<2:0> bits select how  
long, if any, that the ‘A’ Power mode is active. Refer  
to Figure 21-4.  
21.4.3  
AUTOMATIC POWER MODE  
SWITCHING  
As an LCD segment is electrically only a capacitor, cur-  
rent is drawn only during the interval where the voltage  
is switching. To minimize total device current, the LCD  
internal reference ladder can be operated in a different  
power mode for the transition portion of the duration.  
This is controlled by the LCDRL Register  
(Register 21-7).  
To implement this, the 5-bit prescaler used to divide  
the 32 kHz clock down to the LCD controller’s 1 kHz  
base rate is used to select the power mode.  
FIGURE 21-4:  
LCD INTERNAL REFERENCE LADDER POWER MODE SWITCHING DIAGRAM –  
TYPE A  
Single Segment Time  
32kHz_clk  
cnt[4:0]  
lcd_clk  
‘H00 ‘H01 ‘H02 ‘H03 ‘H04 ‘H05 ‘H06 ‘H07  
‘H0E ‘H0F ‘H00 ‘H01  
LRLAT[2:0]  
Segment Data  
‘H3  
LRLAT<2:0>  
Power Mode  
Power Mode A  
Power Mode B  
Mode A  
FIGURE 21-5:  
LCD INTERNAL REFERENCE LADDER POWER MODE SWITCHING DIAGRAM –  
TYPE B  
Single Segment Time  
32kHz_clk  
cnt[4:0]  
lcd_clk  
‘H00 ‘H01 ‘H02 ‘H03 ‘H04 ‘H05 ‘H06 ‘H07  
‘H1E ‘H1F ‘H00 ‘H01  
LRLAT[2:0]  
Segment Data  
‘H3  
LRLAT<2:0>  
Power Mode  
Power Mode A  
Power Mode B  
Mode A  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 251  
PIC16F193X/LF193X  
REGISTER 21-7: LCDRL: LCD REFERENCE LADDER CONTROL REGISTERS  
R/W-0/0  
LRLAP1  
R/W-0/0  
LRLAP0  
R/W-0/0  
LRLBP1  
R/W-0/0  
LRLBP0  
U-0  
R/W-0/0  
LRLAT2  
R/W-0/0  
LRLAT1  
R/W-0/0  
LRLAT0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-6  
bit 5-4  
LRLAP<1:0>: LCD Reference Ladder A Time Power Control bits  
During Time interval A (Refer to Figure 21-4):  
00= Internal LCD Reference Ladder is powered down and unconnected  
01= Internal LCD Reference Ladder is powered in low-power mode  
10= Internal LCD Reference Ladder is powered in medium-power mode  
11= Internal LCD Reference Ladder is powered in high-power mode  
LRLBP<1:0>: LCD Reference Ladder B Time Power Control bits  
During Time interval B (Refer to Figure 21-4):  
00= Internal LCD Reference Ladder is powered down and unconnected  
01= Internal LCD Reference Ladder is powered in low-power mode  
10= Internal LCD Reference Ladder is powered in medium-power mode  
11= Internal LCD Reference Ladder is powered in high-power mode  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
LRLAT<2:0>: LCD Reference Ladder A Time interval control bits  
Sets the number of 32 kHz clocks that the A Time interval power mode is active  
For type A waveforms (WFT = 0):  
000= Internal LCD Reference Ladder is always in ‘B’ power mode  
001= Internal LCD Reference Ladder is in ‘A’ power mode for 1 clock and ‘B’ power mode for 15 clocks  
010= Internal LCD Reference Ladder is in ‘A’ power mode for 2 clocks and ‘B’ power mode for 14 clocks  
011= Internal LCD Reference Ladder is in ‘A’ power mode for 3 clocks and ‘B’ power mode for 13 clocks  
100= Internal LCD Reference Ladder is in ‘A’ power mode for 4 clocks and ‘B’ power mode for 12 clocks  
101= Internal LCD Reference Ladder is in ‘A’ power mode for 5 clocks and ‘B’ power mode for 11 clocks  
110= Internal LCD Reference Ladder is in ‘A’ power mode for 6 clocks and ‘B’ power mode for 10 clocks  
111= Internal LCD Reference Ladder is in ‘A’ power mode for 7 clocks and ‘B’ power mode for 9 clocks  
For type B waveforms (WFT = 1):  
000= Internal LCD Reference Ladder is always in ‘B’ power mode.  
001= Internal LCD Reference Ladder is in ‘A’ power mode for 1 clock and ‘B’ power mode for 31 clocks  
010= Internal LCD Reference Ladder is in ‘A’ power mode for 2 clocks and ‘B’ power mode for 30 clocks  
011= Internal LCD Reference Ladder is in ‘A’ power mode for 3 clocks and ‘B’ power mode for 29 clocks  
100= Internal LCD Reference Ladder is in ‘A’ power mode for 4 clocks and ‘B’ power mode for 28 clocks  
101= Internal LCD Reference Ladder is in ‘A’ power mode for 5 clocks and ‘B’ power mode for 27 clocks  
110= Internal LCD Reference Ladder is in ‘A’ power mode for 6 clocks and ‘B’ power mode for 26 clocks  
111= Internal LCD Reference Ladder is in ‘A’ power mode for 7 clocks and ‘B’ power mode for 25 clocks  
DS41364A-page 252  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
The contrast control circuit is used to decrease the  
output voltage of the signal source by a total of  
approximately 10%, when LCDCST = 111.  
21.4.4  
CONTRAST CONTROL  
The LCD contrast control circuit consists of a  
seven-tap resistor ladder, controlled by the LCDCST  
bits. Refer to Figure 21-6.  
Whenever the LCD module is inactive (LCDA = 0), the  
contrast control ladder will be turned off (open).  
FIGURE 21-6:  
INTERNAL REFERENCE AND CONTRAST CONTROL BLOCK DIAGRAM  
VDDIO  
7 Stages  
R
R
R
R
3.072V  
Analog  
MUX  
From FVR  
Buffer  
7
0
To top of  
Reference Ladder  
LCDCST<2:0>  
3
Internal Reference  
Contrast control  
21.4.5  
INTERNAL REFERENCE  
21.4.6  
VLCD<3:1> PINS  
Under firmware control, an internal reference for the  
LCD bias voltages can be enabled. When enabled, the  
source of this voltage can be either VDDIO or a voltage  
3 times the main fixed voltage reference (3.072V).  
When no internal reference is selected, the LCD con-  
trast control circuit is disabled and LCD bias must be  
provided externally.  
The VLCD<3:1> pins provide the ability for an external  
LCD bias network to be used instead of the internal lad-  
der. Use of the VLCD<3:1> pins does not prevent use  
of the internal ladder. Each VLCD pin has an indepen-  
dent control in the LCDREF register (Register 21-3),  
allowing access to any or all of the LCD Bias signals.  
This architecture allows for maximum flexibility in differ-  
ent applications  
Whenever the LCD module is inactive (LCDA = 0), the  
internal reference will be turned off.  
For example, the VLCD<3:1> pins may be used to add  
capacitors to the internal reference ladder, increasing  
the drive capacity.  
When the internal reference is enabled and the Fixed  
Voltage Reference is selected, the LCDIRI bit can be  
used to minimize power consumption by tieing into the  
LCD reference ladder automatic power mode switch-  
ing. When LCDIRI = 1, the power mode that the inter-  
nal LCD reference ladder enables the buffer when in  
power mode ‘A’ and disables it when in power mode ‘B’.  
For applications where the internal contrast control is  
insufficient, the firmware can choose to only enable the  
VLCD3 pin, allowing an external contrast control circuit  
to use the internal reference divider.  
.
Note:  
The LCD module automatically turns on the  
fixed voltage reference when needed.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 253  
PIC16F193X/LF193X  
TABLE 21-5: FRAME FREQUENCY  
FORMULAS  
21.5 LCD Multiplex Types  
The LCD driver module can be configured into one of  
four multiplex types:  
Multiplex  
Frame Frequency =  
• Static (only COM0 is used)  
Static  
1/2  
Clock source/(4 x 1 x (LP<3:0> + 1))  
Clock source/(2 x 2 x (LP<3:0> + 1))  
Clock source/(1 x 3 x (LP<3:0> + 1))  
Clock source/(1 x 4 x (LP<3:0> + 1))  
• 1/2 multiplex (COM<1:0> are used)  
• 1/3 multiplex (COM<2:0> are used)  
• 1/4 multiplex (COM<3:0> are used)  
1/3  
1/4  
The LMUX<1:0> bit setting of the LCDCON register  
decides which of the LCD common pins are used (see  
Table 21-4 for details).  
Note:  
Clock source is FOSC/256, T1OSC or  
LFINTOSC.  
If the pin is a digital I/O, the corresponding TRIS bit  
controls the data direction. If the pin is a COM drive,  
then the TRIS setting of that pin is overridden.  
TABLE 21-6: APPROXIMATE FRAME  
FREQUENCY (IN Hz) USING  
FOSC @ 8 MHz, TIMER1 @  
32.768 kHz OR LFINTOSC  
TABLE 21-4: COMMON PIN USAGE  
LMUX  
LP<3:0>  
Static  
1/2  
1/3  
1/4  
Multiplex  
COM3  
COM2  
COM1  
2
3
4
5
6
7
85  
64  
51  
43  
37  
32  
85  
64  
51  
43  
37  
32  
114  
85  
68  
57  
49  
43  
85  
64  
51  
43  
37  
32  
<1:0>  
Static  
1/2  
00  
01  
10  
11  
Unused  
Unused  
Unused  
Active  
Unused  
Unused  
Active  
Unused  
Active  
Active  
Active  
1/3  
1/4  
Active  
21.6 Segment Enables  
The LCDSEn registers are used to select the pin  
function for each segment pin. The selection allows  
each pin to operate as either an LCD segment driver or  
as one of the pin’s alternate functions. To configure the  
pin as a segment pin, the corresponding bits in the  
LCDSEn registers must be set to ‘1’.  
If the pin is a digital I/O, the corresponding TRIS bit  
controls the data direction. Any bit set in the LCDSEn  
registers overrides any bit settings in the corresponding  
TRIS register.  
Note:  
On a Power-on Reset, these pins are  
configured as normal I/O, not LCD pins.  
21.7 Pixel Control  
The LCDDATAx registers contain bits which define the  
state of each pixel. Each bit defines one unique pixel.  
Register 21-6 shows the correlation of each bit in the  
LCDDATAx registers to the respective common and  
segment signals.  
Any LCD pixel location not being used for display can  
be used as general purpose RAM.  
21.8 LCD Frame Frequency  
The rate at which the COM and SEG outputs change is  
called the LCD frame frequency.  
DS41364A-page 254  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
TABLE 21-7: LCD SEGMENT MAPPING WORKSHEET  
LCD  
Function  
COM0  
LCDDATAx  
COM1  
LCDDATAx  
COM2  
LCDDATAx  
COM3  
LCDDATAx  
LCD  
LCD  
LCD  
LCD  
Address  
Segment  
Address  
Segment  
Address  
Segment  
Address  
Segment  
SEG0  
LCDDATA0, 0  
LCDDATA0, 1  
LCDDATA0, 2  
LCDDATA0, 3  
LCDDATA0, 4  
LCDDATA0, 5  
LCDDATA0, 6  
LCDDATA0, 7  
LCDDATA1, 0  
LCDDATA1, 1  
LCDDATA1, 2  
LCDDATA1, 3  
LCDDATA1, 4  
LCDDATA1, 5  
LCDDATA1, 6  
LCDDATA1, 7  
LCDDATA2, 0  
LCDDATA2, 1  
LCDDATA2, 2  
LCDDATA2, 3  
LCDDATA2, 4  
LCDDATA2, 5  
LCDDATA2, 6  
LCDDATA2, 7  
LCDDATA3, 0  
LCDDATA3, 1  
LCDDATA3, 2  
LCDDATA3, 3  
LCDDATA3, 4  
LCDDATA3, 5  
LCDDATA3, 6  
LCDDATA3, 7  
LCDDATA4, 0  
LCDDATA4, 1  
LCDDATA4, 2  
LCDDATA4, 3  
LCDDATA4, 4  
LCDDATA4, 5  
LCDDATA4, 6  
LCDDATA4, 7  
LCDDATA5, 0  
LCDDATA5, 1  
LCDDATA5, 2  
LCDDATA5, 3  
LCDDATA5, 4  
LCDDATA5, 5  
LCDDATA5, 6  
LCDDATA5, 7  
LCDDATA6, 0  
LCDDATA6, 1  
LCDDATA6, 2  
LCDDATA6, 3  
LCDDATA6, 4  
LCDDATA6, 5  
LCDDATA6, 6  
LCDDATA6, 7  
LCDDATA7, 0  
LCDDATA7, 1  
LCDDATA7, 2  
LCDDATA7, 3  
LCDDATA7, 4  
LCDDATA7, 5  
LCDDATA7, 6  
LCDDATA7, 7  
LCDDATA8, 0  
LCDDATA8, 1  
LCDDATA8, 2  
LCDDATA8, 3  
LCDDATA8, 4  
LCDDATA8, 5  
LCDDATA8, 6  
LCDDATA8, 7  
LCDDATA9, 0  
LCDDATA9, 1  
LCDDATA9, 2  
LCDDATA9, 3  
LCDDATA9, 4  
LCDDATA9, 5  
LCDDATA9, 6  
LCDDATA9, 7  
LCDDATA10, 0  
LCDDATA10, 1  
LCDDATA10, 2  
LCDDATA10, 3  
LCDDATA10, 4  
LCDDATA10, 5  
LCDDATA10, 6  
LCDDATA10, 7  
LCDDATA11, 0  
LCDDATA11, 1  
LCDDATA11, 2  
LCDDATA11, 3  
LCDDATA11, 4  
LCDDATA11, 5  
LCDDATA11, 6  
LCDDATA11, 7  
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG7  
SEG8  
SEG9  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
SEG15  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 255  
PIC16F193X/LF193X  
The LCDs can be driven by two types of waveform:  
Type-A and Type-B. In Type-A waveform, the phase  
changes within each common type, whereas in Type-B  
waveform, the phase changes on each frame  
boundary. Thus, Type-A waveform maintains 0 VDC  
over a single frame, whereas Type-B waveform takes  
two frames.  
21.9 LCD Waveform Generation  
LCD waveforms are generated so that the net AC  
voltage across the dark pixel should be maximized and  
the net AC voltage across the clear pixel should be  
minimized. The net DC voltage across any pixel should  
be zero.  
The COM signal represents the time slice for each  
common, while the SEG contains the pixel data.  
Note 1: If Sleep has to be executed with LCD  
Sleep disabled (LCDCON<SLPEN> is  
1’), then care must be taken to execute  
Sleep only when VDC on all the pixels is  
0’.  
The pixel signal (COM-SEG) will have no DC  
component and it can take only one of the two RMS  
values. The higher RMS value will create a dark pixel  
and a lower RMS value will create a clear pixel.  
2: When the LCD clock source is FOSC/256,  
if Sleep is executed, irrespective of the  
LCDCON<SLPEN> setting, the LCD  
immediately goes into Sleep. Thus, take  
care to see that VDC on all pixels is ‘0’  
when Sleep is executed.  
As the number of commons increases, the delta  
between the two RMS values decreases. The delta  
represents the maximum contrast that the display can  
have.  
Figure 21-7 through Figure 21-17 provide waveforms  
for static, half-multiplex, 1/3-multiplex and 1/4-multiplex  
drives for Type-A and Type-B waveforms.  
FIGURE 21-7:  
TYPE-A/TYPE-B WAVEFORMS IN STATIC DRIVE  
V1  
COM0  
SEG0  
SEG1  
V0  
V1  
COM0  
V0  
V1  
V0  
V1  
V0  
COM0-SEG0  
COM0-SEG1  
-V1  
V0  
1 Frame  
DS41364A-page 256  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 21-8:  
TYPE-A WAVEFORMS IN 1/2 MUX, 1/2 BIAS DRIVE  
V2  
V1  
V0  
COM0  
COM1  
COM1  
COM0  
V2  
V1  
V0  
V2  
V1  
V0  
SEG0  
SEG1  
V2  
V1  
V0  
V2  
V1  
V0  
COM0-SEG0  
-V1  
-V2  
V2  
V1  
V0  
COM0-SEG1  
-V1  
-V2  
1 Frame  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 257  
PIC16F193X/LF193X  
FIGURE 21-9:  
TYPE-B WAVEFORMS IN 1/2 MUX, 1/2 BIAS DRIVE  
V2  
V1  
V0  
COM0  
COM1  
COM0  
V2  
V1  
V0  
COM1  
SEG0  
V2  
V1  
V0  
V2  
V1  
V0  
SEG1  
V2  
V1  
V0  
COM0-SEG0  
-V1  
-V2  
V2  
V1  
V0  
COM0-SEG1  
-V1  
-V2  
2 Frames  
DS41364A-page 258  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 21-10:  
TYPE-A WAVEFORMS IN 1/2 MUX, 1/3 BIAS DRIVE  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
COM0  
COM1  
COM0  
COM1  
SEG0  
SEG1  
V3  
V2  
V1  
V0  
COM0-SEG0  
-V1  
-V2  
-V3  
V3  
V2  
V1  
V0  
COM0-SEG1  
-V1  
-V2  
-V3  
1 Frame  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 259  
PIC16F193X/LF193X  
FIGURE 21-11:  
TYPE-B WAVEFORMS IN 1/2 MUX, 1/3 BIAS DRIVE  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
COM0  
COM1  
COM0  
COM1  
SEG0  
SEG1  
V3  
V2  
V1  
V0  
COM0-SEG0  
-V1  
-V2  
-V3  
V3  
V2  
V1  
V0  
COM0-SEG1  
-V1  
-V2  
-V3  
2 Frames  
DS41364A-page 260  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 21-12:  
TYPE-A WAVEFORMS IN 1/3 MUX, 1/2 BIAS DRIVE  
V2  
V1  
V0  
COM0  
V2  
V1  
V0  
COM2  
COM1  
COM2  
COM1  
COM0  
V2  
V1  
V0  
V2  
V1  
V0  
SEG0  
SEG2  
V2  
V1  
V0  
SEG1  
V2  
V1  
V0  
COM0-SEG0  
-V1  
-V2  
V2  
V1  
V0  
COM0-SEG1  
-V1  
-V2  
1 Frame  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 261  
PIC16F193X/LF193X  
FIGURE 21-13:  
TYPE-B WAVEFORMS IN 1/3 MUX, 1/2 BIAS DRIVE  
V2  
V1  
V0  
COM0  
COM1  
COM2  
SEG0  
SEG1  
COM2  
V2  
V1  
V0  
COM1  
COM0  
V2  
V1  
V0  
V2  
V1  
V0  
V2  
V1  
V0  
V2  
V1  
V0  
COM0-SEG0  
-V1  
-V2  
V2  
V1  
V0  
COM0-SEG1  
-V1  
-V2  
2 Frames  
DS41364A-page 262  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 21-14:  
TYPE-A WAVEFORMS IN 1/3 MUX, 1/3 BIAS DRIVE  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
-V1  
-V2  
-V3  
V3  
V2  
V1  
V0  
-V1  
-V2  
-V3  
COM0  
COM1  
COM2  
COM2  
COM1  
COM0  
SEG0  
SEG2  
SEG1  
COM0-SEG0  
COM0-SEG1  
1 Frame  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 263  
PIC16F193X/LF193X  
FIGURE 21-15:  
TYPE-B WAVEFORMS IN 1/3 MUX, 1/3 BIAS DRIVE  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
-V1  
-V2  
-V3  
V3  
V2  
V1  
V0  
-V1  
-V2  
-V3  
COM0  
COM1  
COM2  
SEG0  
SEG1  
COM2  
COM1  
COM0  
COM0-SEG0  
COM0-SEG1  
2 Frames  
DS41364A-page 264  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 21-16:  
COM3  
TYPE-A WAVEFORMS IN 1/4 MUX, 1/3 BIAS DRIVE  
V
V
V
V
3
2
1
0
COM2  
COM0  
COM1  
V
V
V
V
3
2
1
0
COM1  
COM0  
V
V
V
V
3
2
1
0
COM2  
COM3  
SEG0  
SEG1  
V
V
V
V
3
2
1
0
V
V
V
V
3
2
1
0
V
V
V
V
3
2
1
0
V
V
V
V
-V  
-V  
-V  
3
2
1
0
COM0-SEG0  
COM0-SEG1  
1
2
3
V
V
V
V
3
2
1
0
-V  
-V  
-V  
1
2
3
1 Frame  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 265  
PIC16F193X/LF193X  
FIGURE 21-17:  
COM3  
TYPE-B WAVEFORMS IN 1/4 MUX, 1/3 BIAS DRIVE  
V
V
V
V
3
2
1
0
COM2  
COM0  
COM1  
V
V
V
V
3
2
1
0
COM1  
COM0  
V
V
V
V
3
2
1
0
COM2  
COM3  
SEG0  
SEG1  
V
V
V
V
3
2
1
0
V
V
V
V
3
2
1
0
V
V
V
V
3
2
1
0
V
V
V
V
-V  
-V  
-V  
3
2
1
0
COM0-SEG0  
COM0-SEG1  
1
2
3
V
V
V
V
3
2
1
0
-V  
-V  
-V  
1
2
3
2 Frames  
DS41364A-page 266  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
21.10 LCD Interrupts  
The LCD module provides an interrupt in two cases. An  
interrupt when the LCD controller goes from active to  
inactive controller. An interrupt also provides unframe  
boundaries for Type B waveform. The LCD timing gen-  
eration provides an interrupt that defines the LCD  
frame timing.  
21.10.1 LCD INTERRUPT ON MODULE  
SHUTDOWN  
An LCD interrupt is generated when the module com-  
pletes shutting down (LCDA goes from ‘1’ to ‘0’).  
21.10.2 LCD FRAME INTERRUPTS  
A new frame is defined to begin at the leading edge of  
the COM0 common signal. The interrupt will be set  
immediately after the LCD controller completes access-  
ing all pixel data required for a frame. This will occur at  
a fixed interval before the frame boundary (TFINT), as  
shown in Figure 21-18. The LCD controller will begin to  
access data for the next frame within the interval from  
the interrupt to when the controller begins to access  
data after the interrupt (TFWR). New data must be writ-  
ten within TFWR, as this is when the LCD controller will  
begin to access the data for the next frame.  
When the LCD driver is running with Type-B waveforms  
and the LMUX<1:0> bits are not equal to ‘00’ (static  
drive), there are some additional issues that must be  
addressed. Since the DC voltage on the pixel takes two  
frames to maintain zero volts, the pixel data must not  
change between subsequent frames. If the pixel data  
were allowed to change, the waveform for the odd  
frames would not necessarily be the complement of the  
waveform generated in the even frames and a DC  
component would be introduced into the panel.  
Therefore, when using Type-B waveforms, the user  
must synchronize the LCD pixel updates to occur within  
a subframe after the frame interrupt.  
To correctly sequence writing while in Type-B, the  
interrupt will only occur on complete phase intervals. If  
the user attempts to write when the write is disabled,  
the WERR bit of the LCDCON register is set and the  
write does not occur.  
Note: The LCD frame interrupt is not generated  
when the Type-A waveform is selected and  
when the Type-B with no multiplex (static)  
is selected.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 267  
PIC16F193X/LF193X  
FIGURE 21-18:  
WAVEFORMS AND INTERRUPT TIMING IN QUARTER-DUTY CYCLE DRIVE  
(EXAMPLE – TYPE-B, NON-STATIC)  
LCD  
Interrupt  
Occurs  
Controller Accesses  
Next Frame Data  
V
V
V
V
3
2
1
0
COM0  
COM1  
V
V
V
V
3
2
1
0
V
V
V
V
3
2
1
0
COM2  
COM3  
V
V
V
V
3
2
1
0
2 Frames  
TFINT  
TFWR  
Frame  
Frame  
Frame  
Boundary  
Boundary  
Boundary  
TFWR = TFRAME/2*(LMUX<1:0> + 1) + TCY/2  
TFINT = (TFWR/2 – (2 TCY + 40 ns)) minimum = 1.5(TFRAME/4) – (2 TCY + 40 ns)  
(TFWR/2 – (1 TCY + 40 ns)) maximum = 1.5(TFRAME/4) – (1 TCY + 40 ns)  
DS41364A-page 268  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
Table 21-8 shows the status of the LCD module during  
a Sleep while using each of the three available clock  
sources.  
21.11 Operation During Sleep  
The LCD module can operate during Sleep. The  
selection is controlled by bit SLPEN of the LCDCON  
register. Setting the SLPEN bit allows the LCD module  
to go to Sleep. Clearing the SLPEN bit allows the  
module to continue to operate during Sleep.  
Note:  
When the LCDEN bit is cleared, the LCD  
module will be disabled at the completion  
of frame. At this time, the port pins will  
revert to digital functionality. To minimize  
power consumption due to floating digital  
inputs, the LCD pins should be driven low  
using the PORT and TRIS registers.  
If a SLEEPinstruction is executed and SLPEN = 1, the  
LCD module will cease all functions and go into a very  
low-current Consumption mode. The module will stop  
operation immediately and drive the minimum LCD  
voltage on both segment and common lines.  
Figure 21-19 shows this operation.  
If a SLEEPinstruction is executed and SLPEN = 0, the  
module will continue to display the current contents of  
the LCDDATA registers. To allow the module to  
continue operation while in Sleep, the clock source  
must be either the LFINTOSC or T1OSC external  
oscillator. While in Sleep, the LCD data cannot be  
changed. The LCD module current consumption will  
not decrease in this mode; however, the overall  
consumption of the device will be lower due to shut  
down of the core and other peripheral functions.  
The LCD module can be configured to operate during  
Sleep. The selection is controlled by bit SLPEN of the  
LCDCON register. Clearing SLPEN and correctly con-  
figuring the LCD module clock will allow the LCD mod-  
ule to operate during Sleep. Setting SLPEN and  
correctly executing the LCD module shutdown will dis-  
able the LCD module during Sleep and save power.  
If a SLEEPinstruction is executed and SLPEN = 1, the  
LCD module will immediately cease all functions, drive  
the outputs to Vss and go into a very low-current mode.  
The SLEEP instruction should only be executed after  
the LCD module has been disabled and the current  
cycle completed, thus ensuring that there are no DC  
voltages on the glass. To disable the LCD module,  
clear the LCDEN bit. The LCD module will complete the  
disabling process after the current frame, clear the  
LCDA bit and optionally cause an interrupt.  
Table 21-8 shows the status of the LCD module during  
Sleep while using each of the three available clock  
sources:  
TABLE 21-8: LCD MODULE STATUS  
DURING SLEEP  
Operational  
During Sleep  
Clock Source  
T1OSC  
SLPEN  
0
1
0
1
0
1
Yes  
No  
Yes  
No  
No  
No  
The steps required to properly enter Sleep with the  
LCD disabled are:  
• Clear LCDEN  
LFINTOSC  
FOSC/4  
• Wait for LCDA = 0either by polling or by interrupt  
• Execute SLEEP  
If SLPEN = 0 and SLEEP is executed while the LCD  
module clock source is FOSC/4, then the LCD module  
will halt with the pin driving the last LCD voltage pat-  
tern. Prolonged exposure to a fixed LCD voltage pat-  
tern will cause damage to the LCD glass. To prevent  
LCD glass damage, either perform the proper LCD  
module shutdown prior to Sleep, or change the LCD  
module clock to allow the LCD module to continue  
operation during Sleep.  
Note:  
The LFINTOSC or external T1OSC  
oscillator must be used to operate the LCD  
module during Sleep.  
If LCD interrupts are being generated (Type-B wave-  
form with a multiplex mode not static) and LCDIE = 1,  
the device will awaken from Sleep on the next frame  
boundary.  
If a SLEEPinstruction is executed and SLPEN = 0and  
the LCD module clock is either T1OSC or LFINTOSC,  
the module will continue to display the current contents  
of the LCDDATA registers. While in Sleep, the LCD  
data cannot be changed. If the LCDIE bit is set, the  
device will wake from Sleep on the next LCD frame  
boundary. The LCD module current consumption will  
not decrease in this mode; however, the overall device  
power consumption will be lower due to the shutdown  
of the CPU and other peripherals.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 269  
PIC16F193X/LF193X  
FIGURE 21-19:  
SLEEP ENTRY/EXIT WHEN SLPEN = 1  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
COM0  
COM1  
COM2  
SEG0  
2 Frames  
Wake-up  
SLEEPInstruction Execution  
DS41364A-page 270  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
21.12 Configuring the LCD Module  
21.14 LCD Current Consumption  
The following is the sequence of steps to configure the  
LCD module.  
When using the LCD module the current consumption  
consists of the following three factors:  
1. Select the frame clock prescale using bits  
LP<3:0> of the LCDPS register.  
• Oscillator Selection  
• LCD Bias Source  
2. Configure the appropriate pins to function as  
segment drivers using the LCDSEn registers.  
• Capacitance of the LCD segments  
The current consumption of just the LCD module can  
be considered negligible compared to these other  
factors.  
3. Configure the LCD module for the following  
using the LCDCON register:  
- Multiplex and Bias mode, bits LMUX<1:0>  
- Timing source, bits CS<1:0>  
- Sleep mode, bit SLPEN  
21.14.1 OSCILLATOR SELECTION  
The current consumed by the clock source selected  
must be considered when using the LCD module. See  
Section 28.0 “Electrical Specifications” for oscillator  
current consumption information.  
4. Write initial values to pixel data registers,  
LCDDATA0 through LCDDATA11 (LCDDATA23  
on PIC16F1938).  
5. Clear LCD Interrupt Flag, LCDIF bit of the PIR2  
register and if desired, enable the interrupt by  
setting bit LCDIE of the PIE2 register.  
21.14.2 LCD BIAS SOURCE  
The LCD bias source, internal or external, can contrib-  
ute significantly to the current consumption. Use the  
highest possible resistor values while maintaining  
contrast to minimize current.  
6. Configure bias voltages by setting the LCDRL,  
LCDREF and the associated ANSELx  
registers as needed.  
7. Enable the LCD module by setting bit LCDEN of  
the LCDCON register.  
21.14.3 CAPACITANCE OF THE LCD  
SEGMENTS  
The LCD segments which can be modeled as capaci-  
tors which must be both charged and discharged every  
frame. The size of the LCD segment and its technology  
determines the segment’s capacitance.  
21.13 Disabling the LCD Module  
To disable the LCD module, write all ‘0’s to the  
LCDCON register.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 271  
PIC16F193X/LF193X  
TABLE 21-9: REGISTERS ASSOCIATED WITH LCD OPERATION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE  
LCDEN  
PEIE  
SLPEN  
TMR0IE  
WERR  
INTE  
IOCIE  
CS1  
TMR0IF  
CS0  
INTF  
IOCIF  
73  
LCDCON  
LCDCST  
LMUX1  
LMUX0  
243  
246  
247  
LCDCST2 LCDCST1 LCDCST0  
LCDDATA0  
SEG7  
COM0  
SEG6  
COM0  
SEG5  
COM0  
SEG4  
COM0  
SEG3  
COM0  
SEG2  
COM0  
SEG1  
COM0  
SEG0  
COM0  
LCDDATA1  
LCDDATA2  
LCDDATA3  
LCDDATA4  
LCDDATA5  
LCDDATA6  
LCDDATA7  
LCDDATA8  
LCDDATA9  
LCDDATA10  
LCDDATA11  
SEG15  
COM0  
SEG14  
COM0  
SEG13  
COM0  
SEG12  
COM0  
SEG11  
COM0  
SEG10  
COM0  
SEG9  
COM0  
SEG8  
COM0  
247  
247  
247  
247  
247  
247  
247  
247  
247  
247  
247  
SEG23  
COM0  
SEG22  
COM0  
SEG21  
COM0  
SEG20  
COM0  
SEG19  
COM0  
SEG18  
COM0  
SEG17  
COM0  
SEG16  
COM0  
SEG7  
COM1  
SEG6  
COM1  
SEG5  
COM1  
SEG4  
COM1  
SEG3  
COM1  
SEG2  
COM1  
SEG1  
COM1  
SEG0  
COM1  
SEG15  
COM1  
SEG14  
COM1  
SEG13  
COM1  
SEG12  
COM1  
SEG11  
COM1  
SEG10  
COM1  
SEG9  
COM1  
SEG8  
COM1  
SEG23  
COM1  
SEG22  
COM1  
SEG21  
COM1  
SEG20  
COM1  
SEG19  
COM1  
SEG18  
COM1  
SEG17  
COM1  
SEG16  
COM1  
SEG7  
COM2  
SEG6  
COM2  
SEG5  
COM2  
SEG4  
COM2  
SEG3  
COM2  
SEG2  
COM2  
SEG1  
COM2  
SEG0  
COM2  
SEG15  
COM2  
SEG14  
COM2  
SEG13  
COM2  
SEG12  
COM2  
SEG11  
COM2  
SEG10  
COM2  
SEG9  
COM2  
SEG8  
COM2  
SEG23  
COM2  
SEG22  
COM2  
SEG21  
COM2  
SEG20  
COM2  
SEG19  
COM2  
SEG18  
COM2  
SEG17  
COM2  
SEG16  
COM2  
SEG7  
COM3  
SEG6  
COM3  
SEG5  
COM3  
SEG4  
COM3  
SEG3  
COM3  
SEG2  
COM3  
SEG1  
COM3  
SEG0  
COM3  
SEG15  
COM3  
SEG14  
COM3  
SEG13  
COM3  
SEG12  
COM3  
SEG11  
COM3  
SEG10  
COM3  
SEG9  
COM3  
SEG8  
COM3  
SEG23  
COM3  
SEG22  
COM3  
SEG21  
COM3  
SEG20  
COM3  
SEG19  
COM3  
SEG18  
COM3  
SEG17  
COM3  
SEG16  
COM3  
LCDPS  
LCDREF  
LCDRL  
LCDSE0  
LCDSE1  
LCDSE2  
PIE2  
WFT  
LCDIRE  
LRLAP1  
SE7  
BIASMD  
LCDIRS  
LRLAP0  
SE6  
LCDA  
LCDIRI  
LRLBP1  
SE5  
WA  
LP3  
LP2  
LP1  
LP0  
244  
245  
252  
247  
247  
247  
75  
VLCD3PE VLCD2PE VLCD1PE  
LRLBP0  
SE4  
LRLAT2  
SE2  
LRLAT1  
SE1  
SE9  
SE17  
LRLAT0  
SE0  
SE3  
SE15  
SE14  
SE13  
SE21  
C1IE  
SE12  
SE20  
EEIE  
EEIF  
SE11  
SE19  
BCLIE  
BCLIF  
SE10  
SE8  
SE23  
SE22  
SE18  
SE16  
OSFIE  
OSFIF  
C2IE  
LCDIE  
LCDIF  
CCP2IE  
CCP2IF  
TMR1ON  
PIR2  
C2IF  
C1IF  
78  
T1CON  
Legend:  
TMR1CS1 TMR1CS0 T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
169  
x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used by the LCD module.  
DS41364A-page 272  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
Figure 22-1 is a block diagram of the SPI interface  
module.  
22.0 MASTER SYNCHRONOUS  
SERIAL PORT (MSSP)  
MODULE  
22.1 Master SSP (MSSP) Module  
Overview  
The Master Synchronous Serial Port (MSSP) module is  
a serial interface useful for communicating with other  
peripheral or microcontroller devices. These peripheral  
devices may be Serial EEPROMs, shift registers, dis-  
play drivers, A/D converters, etc. The MSSP module  
can operate in one of two modes:  
• Serial Peripheral Interface (SPI)  
• Inter-Integrated Circuit (I2C™)  
The SPI interface supports the following modes and  
features:  
• Master mode  
• Slave mode  
• Clock Parity  
• Slave Select Synchronization (Slave mode only)  
• Daisy chain connection of Slave devices  
FIGURE 22-1:  
MSSP BLOCK DIAGRAM (SPI MODE)  
Data Bus  
Write  
Read  
SSPBUF Reg  
SDI  
SSPSR Reg  
Shift  
Clock  
bit 0  
SDO  
SS  
Control  
Enable  
SS  
2 (CKP, CKE)  
Clock Select  
Edge  
Select  
SSPM<3:0>  
4
TMR2 Output  
(
)
2
SCK  
Edge  
Select  
TOSC  
Prescaler  
4, 16, 64  
Baud rate  
generator  
(SSPADD)  
TRIS bit  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 273  
PIC16F193X/LF193X  
The I2C interface supports the following modes and  
features:  
• Master mode  
• Slave mode  
• Byte NACKing (Slave mode)  
• Limited Multi-master support  
• 7-bit and 10-bit addressing  
• Start and Stop interrupts  
• Interrupt masking  
• Clock stretching  
• Bus collision detection  
• General call address matching  
• Address masking  
• Address Hold and Data Hold modes  
• Selectable SDA hold times  
Figure 22-2 is a block diagram of the I2C interface mod-  
ule in Master mode. Figure 22-3 is a diagram of the I2C  
interface module in Slave mode.  
FIGURE 22-2:  
MSSP BLOCK DIAGRAM (I2C™ MASTER MODE)  
Internal  
data bus  
[SSPM 3:0]  
Read  
Write  
SSPBUF  
SSPSR  
Baud rate  
generator  
(SSPADD)  
SDA  
Shift  
Clock  
SDA in  
MSb  
LSb  
Start bit, Stop bit,  
Acknowledge  
Generate (SSPCON2)  
SCL  
Start bit detect,  
Stop bit detect  
SCL in  
Bus Collision  
Write collision detect  
Clock arbitration  
State counter for  
Set/Reset: S, P, SSPSTAT, WCOL, SSPOV  
Reset SEN, PEN (SSPCON2)  
Set SSPIF, BCLIF  
end of XMIT/RCV  
Address Match detect  
DS41364A-page 274  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 22-3:  
MSSP BLOCK DIAGRAM (I2C™ SLAVE MODE)  
Internal  
Data Bus  
Read  
Write  
SSPBUF Reg  
SSPSR Reg  
SCL  
SDA  
Shift  
Clock  
MSb  
LSb  
SSPMSK Reg  
Match Detect  
SSPADD Reg  
Addr Match  
Set, Reset  
S, P bits  
(SSPSTAT Reg)  
Start and  
Stop bit Detect  
22.2 MSSP Control Registers  
The MSSP module has seven associated registers:  
• MSSP STATUS register (SSPSTAT)  
• MSSP Control Register 1 (SSPCON1)  
• MSSP Control Register 2 (SSPCON2)  
• MSSP Control Register 3 (SSPCON3)  
• MSSP Address Masking register (SSPMSK)  
• MSSP Data Buffer register (SSPBUF)  
• MSSP Address register (SSPADD)  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 275  
PIC16F193X/LF193X  
REGISTER 22-1: SSPSTAT: SSP STATUS REGISTER  
R/W-0/0  
SMP  
R/W-0/0  
CKE  
R-0/0  
D/A  
R-0/0  
P
R-0/0  
S
R-0/0  
R/W  
R-0/0  
UA  
R-0/0  
BF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
SMP: SPI Data Input Sample bit  
SPI Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
SPI Slave mode:  
SMP must be cleared when SPI is used in Slave mode  
2
In I C Master or Slave mode:  
1 = Slew rate control disabled for standard speed mode (100 kHz and 1 MHz)  
0 = Slew rate control enabled for high speed mode (400 kHz)  
bit 6  
CKE: SPI Clock Edge Select bit (SPI mode only)  
CKP = 0:  
1= Data transmitted on rising edge of SCK  
0= Data transmitted on falling edge of SCK  
CKP = 1:  
1= Data transmitted on falling edge of SCK  
0= Data transmitted on rising edge of SCK  
2
bit 5  
bit 4  
D/A: Data/Address bit (I C mode only)  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
P: Stop bit  
2
(I C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)  
1= Indicates that a Stop bit has been detected last (this bit is ‘0’ on Reset)  
0= Stop bit was not detected last  
bit 3  
bit 2  
S: Start bit  
2
(I C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)  
1= Indicates that a Start bit has been detected last (this bit is ‘0’ on Reset)  
0= Start bit was not detected last  
2
R/W: Read/Write bit information (I C mode only)  
This bit holds the R/W bit information following the last address match. This bit is only valid from the address match  
to the next Start bit, Stop bit, or not ACK bit.  
2
In I C Slave mode:  
1= Read  
0= Write  
2
In I C Master mode:  
1= Transmit is in progress  
0= Transmit is not in progress  
OR-ing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is in Idle mode.  
2
bit 1  
bit 0  
UA: Update Address bit (10-bit I C mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
2
Receive (SPI and I C modes):  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
2
Transmit (I C mode only):  
1= Data transmit in progress (does not include the ACK and Stop bits), SSPBUF is full  
0= Data transmit complete (does not include the ACK and Stop bits), SSPBUF is empty  
DS41364A-page 276  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
REGISTER 22-2: SSPCON1: SSP CONTROL REGISTER 1  
R/W-0/0  
WCOL  
R/W-0/0  
SSPOV  
R/W-0/0  
SSPEN  
R/W-0/0  
CKP  
R/W-0/0  
SSPM3  
R/W-0/0  
SSPM2  
R/W-0/0  
SSPM1  
R/W-0/0  
SSPM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
WCOL: Write Collision Detect bit  
Master mode:  
1= A write to the SSPBUF register was attempted while the I2C conditions were not valid for a transmission to be started  
0= No collision  
Slave mode:  
1= The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software)  
0= No collision  
bit 6  
SSPOV: Receive Overflow Indicator bit(1)  
In SPI mode:  
1= A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost.  
Overflow can only occur in Slave mode. In Slave mode, the user must read the SSPBUF, even if only transmitting data, to avoid  
setting overflow. In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the  
SSPBUF register (must be cleared in software).  
0= No overflow  
In I2C mode:  
1= A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a “don’t care” in Transmit mode  
(must be cleared in software).  
0= No overflow  
bit 5  
SSPEN: Synchronous Serial Port Enable bit  
In both modes, when enabled, these pins must be properly configured as input or output  
In SPI mode:  
1= Enables serial port and configures SCK, SDO, SDI and SS as the source of the serial port pins(2)  
0= Disables serial port and configures these pins as I/O port pins  
In I2C mode:  
1= Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins(3)  
0= Disables serial port and configures these pins as I/O port pins  
bit 4  
CKP: Clock Polarity Select bit  
In SPI mode:  
1= Idle state for clock is a high level  
0= Idle state for clock is a low level  
In I2C Slave mode:  
SCK release control  
1= Enable clock  
0= Holds clock low (clock stretch). (Used to ensure data setup time.)  
In I2C Master mode:  
Unused in this mode  
bit 3-0  
SSPM<3:0>: Synchronous Serial Port Mode Select bits  
0000= SPI Master mode, clock = FOSC/4  
0001= SPI Master mode, clock = FOSC/16  
0010= SPI Master mode, clock = FOSC/64  
0011= SPI Master mode, clock = TMR2 output/2  
0100= SPI Slave mode, clock = SCK pin, SS pin control enabled  
0101= SPI Slave mode, clock = SCK pin, SS pin control disabled, SS can be used as I/O pin  
0110= I2C Slave mode, 7-bit address  
0111= I2C Slave mode, 10-bit address  
1000= I2C Master mode, clock = FOSC / (4 * (SSPADD+1))(4)  
1001= Reserved  
1010= SPI Master mode, clock = FOSC/(4 * (SSPADD+1))  
1011= I2C firmware controlled Master mode (Slave idle)  
1100= Reserved  
1101= Reserved  
1110= I2C Slave mode, 7-bit address with Start and Stop bit interrupts enabled  
1111= I2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled  
Note 1:  
In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register.  
When enabled, these pins must be properly configured as input or output.  
When enabled, the SDA and SCL pins must be configured as inputs.  
SSPADD values of 0, 1 or 2 are not supported for I2C Mode.  
2:  
3:  
4:  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 277  
PIC16F193X/LF193X  
REGISTER 22-3: SSPCON2: SSP CONTROL REGISTER 2  
R/W-0/0  
GCEN  
R-0/0  
R/W-0/0  
ACKDT  
R/W-0/0  
ACKEN  
R/W-0/0  
RCEN  
R/W-0/0  
PEN  
R/W-0/0  
RSEN  
R/W-0/0  
SEN  
ACKSTAT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
bit 6  
bit 5  
GCEN: General Call Enable bit (in I2C Slave mode only)  
1= Enable interrupt when a general call address (0x00 or 00h) is received in the SSPSR  
0= General call address disabled  
ACKSTAT: Acknowledge Status bit (in I2C mode only)  
1= Acknowledge was not received  
0= Acknowledge was received  
ACKDT: Acknowledge Data bit (in I2C mode only)  
In Receive mode:  
Value transmitted when the user initiates an Acknowledge sequence at the end of a receive  
1= Not Acknowledge  
0= Acknowledge  
bit 4  
ACKEN: Acknowledge Sequence Enable bit (in I2C Master mode only)  
In Master Receive mode:  
1= Initiate Acknowledge sequence on SDA and SCL pins, and transmit ACKDT data bit.  
Automatically cleared by hardware.  
0= Acknowledge sequence idle  
bit 3  
bit 2  
RCEN: Receive Enable bit (in I2C Master mode only)  
1= Enables Receive mode for I2C  
0= Receive idle  
PEN: Stop Condition Enable bit (in I2C Master mode only)  
SCK Release Control:  
1= Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Stop condition Idle  
bit 1  
bit 0  
RSEN: Repeated Start Condition Enabled bit (in I2C Master mode only)  
1= Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Repeated Start condition Idle  
SEN: Start Condition Enabled bit (in I2C Master mode only)  
In Master mode:  
1= Initiate Start condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Start condition Idle  
In Slave mode:  
1= Clock stretching is enabled for both slave transmit and slave receive (stretch enabled)  
0= Clock stretching is disabled  
Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I2C module is not in the Idle mode, this bit may not be  
set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).  
DS41364A-page 278  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
REGISTER 22-4: SSPCON3: SSP CONTROL REGISTER 3  
R-0/0  
R/W-0/0  
PCIE  
R/W-0/0  
SCIE  
R/W-0/0  
BOEN  
R/W-0/0  
SDAHT  
R/W-0/0  
SBCDE  
R/W-0/0  
AHEN  
R/W-0/0  
DHEN  
ACKTIM  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
bit 6  
bit 5  
bit 4  
ACKTIM: Acknowledge Time Status bit (I2C mode only)  
1= Indicates the I2C bus is in an Acknowledge sequence, set on 8TH falling edge of SCL clock  
0= Not an Acknowledge sequence, cleared on 9TH rising edge of SCL clock  
PCIE: Stop Condition Interrupt Enable bit (I2C mode only)  
1= Enable interrupt on detection of Stop condition  
0= Stop detection interrupts are disabled(2)  
SCIE: Start Condition Interrupt Enable bit (I2C mode only)  
1= Enable interrupt on detection of Start or Restart conditions  
0= Start detection interrupts are disabled(2)  
BOEN: Buffer Overwrite Enable bit  
In SPI Slave mode:(1)  
1= SSPBUF updates every time that a new data byte is shifted in ignoring the BF bit  
0 = If new byte is received with BF bit of the SSPSTAT register already set, SSPOV bit of the  
SSPCON1 register is set, and the buffer is not updated  
In I2C Master mode:  
This bit is ignored.  
In I2C Slave mode:  
1= SSPBUF is updated and ACK is generated for a received address/data byte, ignoring the state  
of the SSPOV bit only if the BF bit = 0.  
0= SSPBUF is only updated when SSPOV is clear  
bit 3  
bit 2  
SDAHT: SDA Hold Time Selection bit (I2C mode only)  
1= Minimum of 300 ns hold time on SDA after the falling edge of SCL  
0= Minimum of 100 ns hold time on SDA after the falling edge of SCL  
SBCDE: Slave Mode Bus Collision Detect Enable bit (I2C Slave mode only)  
If on the rising edge of SCL, SDA is sampled low when the module is outputting a high state, the BCLIF  
bit of the PIR2 register is set, and bus goes idle  
1= Enable slave bus collision interrupts  
0= Slave bus collision interrupts are disabled  
bit 1  
bit 0  
AHEN: Address Hold Enable bit (I2C Slave mode only)  
1 = Following the 8th falling edge of SCL for a matching received address byte; CKP bit of the  
SSPCON1 register will be cleared and the SCL will be held low.  
0= Address holding is disabled  
DHEN: Data Hold Enable bit (I2C Slave mode only)  
1= Following the 8th falling edge of SCL for a received data byte; slave hardware clears the CKP bit  
of the SSPCON1 register and SCL is held low.  
0= Data holding is disabled  
Note 1: For daisy-chained SPI operation; allows the user to ignore all but the last received byte. SSPOV is still set  
when a new byte is received and BF = 1, but hardware continues to write the most recent byte to SSPBUF.  
2: This bit has no effect in Slave modes that Start and Stop condition detection is explicitly listed as enabled.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 279  
PIC16F193X/LF193X  
REGISTER 22-5: SSPMSK: SSP MASK REGISTER  
R/W-1/1  
MSK7  
R/W-1/1  
MSK6  
R/W-1/1  
MSK5  
R/W-1/1  
MSK4  
R/W-1/1  
MSK3  
R/W-1/1  
MSK2  
R/W-1/1  
MSK1  
R/W-1/1  
(2)  
MSK0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
u = bit is unchanged  
‘1’ = Bit is set  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-1  
bit 0  
MSK<7:1>: Mask bits  
2
1= The received address bit n is compared to SSPADD<n> to detect I C address match  
0= The received address bit n is not used to detect I C address match  
2
2
MSK<0>: Mask bit for I C Slave mode, 10-bit Address  
2
I C Slave mode, 10-bit address (SSPM<3:0> = 0111or 1111):  
2
1= The received address bit 0 is compared to SSPADD<0> to detect I C address match  
2
0= The received address bit 0 is not used to detect I C address match  
2
I C Slave mode, 7-bit address, the bit is ignored  
REGISTER 22-6: SSPADD: MSSP ADDRESS AND BAUD RATE REGISTER (I2C MODE)  
R/W-0/0  
ADD7  
R/W-0/0  
ADD6  
R/W-0/0  
ADD5  
R/W-0/0  
ADD4  
R/W-0/0  
ADD3  
R/W-0/0  
ADD2  
R/W-0/0  
ADD1  
R/W-0/0  
ADD0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
Master mode:  
bit 7-0  
ADD<7:0>: Baud Rate Clock Divider bits  
SCL pin clock period = ((ADD<7:0> + 1) *4)/FOSC  
10-Bit Slave mode — Most Significant Address byte:  
bit 7-3  
Not used: Unused for Most Significant Address byte. Bit state of this register is a “don’t care”. Bit pat-  
tern sent by master is fixed by I2C specification and must be equal to ‘11110’. However, those bits are  
compared by hardware and are not affected by the value in this register.  
bit 2-1  
bit 0  
ADD<2:1>: Two Most Significant bits of 10-bit address  
Not used: Unused in this mode. Bit state is a “don’t care”.  
10-Bit Slave mode — Least Significant Address byte:  
bit 7-0  
ADD<7:0>: Eight Least Significant bits of 10-bit address  
7-Bit Slave mode:  
bit 7-1  
bit 0  
ADD<7:1>: 7-bit address  
Not used: Unused in this mode. Bit state is a “don’t care”.  
DS41364A-page 280  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
22.3.2 OPERATIONS  
22.3 SPI Mode  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits (SSPCON1<5:0> and SSPSTAT<7:6>).  
These control bits allow the following to be specified:  
The SPI mode allows 8 bits of data to be synchronously  
transmitted and received simultaneously. All four clock  
modes of SPI are supported in both Master and Slave  
modes. To accomplish communication, typically three  
pins are used:  
• Master mode (SCK is the clock output)  
• Slave mode (SCK is the clock input)  
• Clock Polarity (Idle state of SCK)  
• Serial Data Out (SDO)  
• Serial Data In (SDI)  
• Serial Clock (SCK)  
• Data Input Sample Phase (middle or end of data  
output time)  
Additionally, a fourth pin may be used when in a Slave  
mode of operation:  
• Clock Edge (output data on rising/falling edge of  
SCK)  
• Slave Select (SS)  
• Clock Rate (Master mode only)  
Figure 22-1 shows the block diagram of the MSSP  
module when operating in SPI mode.  
• Slave Select mode (Slave mode only)  
The MSSP consists of a transmit/receive shift register  
(SSPSR) and a buffer register (SSPBUF). The SSPSR  
shifts the data in and out of the device, MSb first. The  
SSPBUF holds the data that was written to the SSPSR  
until the received data is ready. Once the 8 bits of data  
have been received, that byte is moved to the SSPBUF  
register. Then, the Buffer Full Detect bit, BF of the  
SSPSTAT register, and the interrupt flag bit, SSPIF, are  
set. This double-buffering of the received data  
(SSPBUF) allows the next byte to start reception before  
reading the data that was just received. Any write to the  
SSPBUF register during transmission/reception of data  
will be ignored and the write collision detect bit WCOL  
of the SSPCON1 register, will be set. User software  
must clear the WCOL bit to allow the following write(s)  
to the SSPBUF register to complete successfully.  
22.3.1 REGISTERS  
The MSSP module has five registers for SPI mode  
operation. These are:  
• MSSP STATUS register (SSPSTAT)  
• MSSP Control Register 1 (SSPCON1)  
• MSSP Control Register 3 (SSPCON3)  
• MSSP Data Buffer register (SSPBUF)  
• MSSP Address register (SSPADD)  
• MSSP Shift register (SSPSR)  
(Not directly accessible)  
SSPCON1 and SSPSTAT are the control and STATUS  
registers in SPI mode operation. The SSPCON1 regis-  
ter is readable and writable. The lower 6 bits of the  
SSPSTAT are read-only. The upper two bits of the  
SSPSTAT are read/write.  
When the application software is expecting to receive  
valid data, the SSPBUF should be read before the next  
byte of data to transfer is written to the SSPBUF. The  
Buffer Full bit, BF of the SSPSTAT register, indicates  
when SSPBUF has been loaded with the received data  
(transmission is complete). When the SSPBUF is read,  
the BF bit is cleared. This data may be irrelevant if the  
SPI is only a transmitter. Generally, the MSSP interrupt  
is used to determine when the transmission/reception  
has completed. If the interrupt method is not going to  
be used, then software polling can be done to ensure  
that a write collision does not occur.  
In one SPI master mode, SSPADD can be loaded with  
a value used in the Baud Rate Generator. More infor-  
mation on the Baud Rate Generator is available in  
Section 22.7 “Baud Rate Generator”.  
SSPSR is the shift register used for shifting data in and  
out. SSPBUF provides indirect access to the SSPSR  
register. SSPBUF is the buffer register to which data  
bytes are written, and from which data bytes are read.  
In receive operations, SSPSR and SSPBUF together  
create a buffered receiver. When SSPSR receives a  
complete byte, it is transferred to SSPBUF and the  
SSPIF interrupt is set.  
The SSPSR is not directly readable or writable and can  
only be accessed by addressing the SSPBUF register.  
Additionally, the SSPSTAT register indicates the  
various Status conditions.  
During transmission, the SSPBUF is not buffered. A  
write to SSPBUF will write to both SSPBUF and  
SSPSR.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 281  
PIC16F193X/LF193X  
22.3.3 ENABLING SPI I/O  
22.3.4  
TYPICAL CONNECTION  
Figure 22-4 shows a typical connection between two  
microcontrollers. The master controller (Processor 1)  
initiates the data transfer by sending the SCK signal.  
Data is shifted out of both shift registers on their pro-  
grammed clock edge and latched on the opposite edge  
of the clock. Both processors should be programmed to  
the same Clock Polarity (CKP), then both controllers  
would send and receive data at the same time.  
Whether the data is meaningful (or dummy data)  
depends on the application software. This leads to  
three scenarios for data transmission:  
To enable the serial port, SSP Enable bit, SSPEN of the  
SSPCON1 register, must be set. To reset or reconfig-  
ure SPI mode, clear the SSPEN bit, re-initialize the  
SSPCONx registers and then set the SSPEN bit. This  
configures the SDI, SDO, SCK and SS pins as serial  
port pins. For the pins to behave as the serial port func-  
tion, some must have their data direction bits (in the  
TRIS register) appropriately programmed as follows:  
• SDI must have corresponding TRIS bit set  
• SDO must have corresponding TRIS bit cleared  
• SCK (Master mode) must have corresponding  
TRIS bit cleared  
• Master sends data (Slave sends dummy data)  
• Master sends data (Slave sends data)  
• SCK (Slave mode) must have corresponding  
TRIS bit set  
• Master sends dummy data (Slave sends data)  
• SS must have corresponding TRIS bit set  
Any serial port function that is not desired may be  
overridden by programming the corresponding data  
direction (TRIS) register to the opposite value.  
FIGURE 22-4:  
SPI MASTER/SLAVE CONNECTION  
SPI Master SSPM<3:0> = 00xx  
= 1010  
SPI Slave SSPM<3:0> = 010x  
SDO  
SDI  
Serial Input Buffer  
Serial Input Buffer  
(SSPBUF)  
(SSPBUF)  
SDI  
SDO  
Shift Register  
(SSPSR)  
Shift Register  
(SSPSR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCK  
SCK  
SS  
Slave Select  
(optional)  
General I/O  
Processor 2  
Processor 1  
DS41364A-page 282  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
The clock polarity is selected by appropriately  
programming the CKP bit of the SSPCON1 register  
and the CKE bit of the SSPSTAT register. This then,  
would give waveforms for SPI communication as  
shown in Figure 22-5, Figure 22-6 and Figure 22-7,  
where the MSB is transmitted first. In Master mode, the  
SPI clock rate (bit rate) is user programmable to be one  
of the following:  
22.3.5  
MASTER MODE  
The master can initiate the data transfer at any time  
because it controls the SCK. The master determines  
when the slave (Processor 2, Figure 22-4) is to  
broadcast data by the software protocol.  
In Master mode, the data is transmitted/received as  
soon as the SSPBUF register is written to. If the SPI is  
only going to receive, the SDO output could be dis-  
abled (programmed as an input). The SSPSR register  
will continue to shift in the signal present on the SDI pin  
at the programmed clock rate. As each byte is  
received, it will be loaded into the SSPBUF register as  
if a normal received byte (interrupts and Status bits  
appropriately set).  
• FOSC/4 (or TCY)  
• FOSC/16 (or 4 * TCY)  
• FOSC/64 (or 16 * TCY)  
• Timer2 output/2  
• Fosc/(4 * (SSPADD + 1))  
Figure 22-5 shows the waveforms for Master mode.  
When the CKE bit is set, the SDO data is valid before  
there is a clock edge on SCK. The change of the input  
sample is shown based on the state of the SMP bit. The  
time when the SSPBUF is loaded with the received  
data is shown.  
FIGURE 22-5:  
SPI MODE WAVEFORM (MASTER MODE)  
Write to  
SSPBUF  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
4 Clock  
Modes  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
bit 6  
bit 6  
bit 2  
bit 2  
bit 5  
bit 5  
bit 4  
bit 4  
bit 1  
bit 1  
bit 0  
bit 0  
SDO  
(CKE = 0)  
bit 7  
bit 7  
bit 3  
bit 3  
SDO  
(CKE = 1)  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SDI  
(SMP = 1)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 1)  
SSPIF  
SSPSR to  
SSPBUF  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 283  
PIC16F193X/LF193X  
22.3.6  
SLAVE MODE  
22.3.7 SLAVE SELECT SYNCHRONIZATION  
In Slave mode, the data is transmitted and received as  
external clock pulses appear on SCK. When the last  
bit is latched, the SSPIF interrupt flag bit is set.  
The SS pin allows a Synchronous Slave mode. The  
SPI must be in Slave mode with SS pin control enabled  
(SSPCON1<3:0> = 0100).  
Before enabling the module in SPI Slave mode, the clock  
line must match the proper Idle state. The clock line can  
be observed by reading the SCK pin. The Idle state is  
determined by the CKP bit of the SSPCON1 register.  
When the SS pin is low, transmission and reception are  
enabled and the SDO pin is driven.  
When the SS pin goes high, the SDO pin is no longer  
driven, even if in the middle of a transmitted byte and  
becomes a floating output. External pull-up/pull-down  
resistors may be desirable depending on the applica-  
tion.  
While in Slave mode, the external clock is supplied by  
the external clock source on the SCK pin. This external  
clock must meet the minimum high and low times as  
specified in the electrical specifications.  
Note 1: When the SPI is in Slave mode with SS pin  
While in Sleep mode, the slave can transmit/receive  
data. The shift register is clocked from the SCK pin  
input and when a byte is received, the device will gen-  
erate an interrupt. If enabled, the device will wake-up  
from Sleep.  
control enabled (SSPCON1<3:0>  
=
0100), the SPI module will reset if the SS  
pin is set to VDD.  
2: When the SPI is used in Slave mode with  
CKE set; the user must enable SS pin  
control.  
22.3.6.1 Buffer Overwrite Enable  
3: While operated in SPI Slave mode the  
SMP bit of the SSPSTAT register must  
remain clear.  
In SPI daisy-chained configurations only the most  
recent byte on the bus is required by the slave. Setting  
the BOEN bit of the SSPCON3 register will enable  
writes to the SSPBUF register, even if the previous  
byte has not been read. Allowing the software to  
ignore data that may not apply to it.  
When the SPI module resets, the bit counter is forced  
to ‘0’. This can be done by either forcing the SS pin to  
a high level or clearing the SSPEN bit.  
FIGURE 22-6:  
SLAVE SELECT SYNCRONIZATION WAVEFORM  
SS  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
Shift register SSPSR  
and bit count are reset  
SSPBUF to  
SSPSR  
bit 6  
bit 6  
bit 7  
bit 7  
bit 0  
SDO  
SDI  
bit 7  
bit 0  
bit 7  
Input  
Sample  
SSPIF  
Interrupt  
Flag  
SSPSR to  
SSPBUF  
DS41364A-page 284  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 22-7:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)  
SS  
Optional  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
Valid  
bit 6  
bit 2  
bit 5  
bit 4  
bit 3  
bit 1  
bit 0  
SDO  
bit 7  
SDI  
bit 0  
bit 7  
Input  
Sample  
SSPIF  
Interrupt  
Flag  
SSPSR to  
SSPBUF  
Write Collision  
detection active  
FIGURE 22-8:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)  
SS  
Not Optional  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
Write to  
SSPBUF  
Valid  
bit 6  
bit 3  
bit 2  
bit 5  
bit 4  
bit 1  
bit 0  
SDO  
bit 7  
bit 7  
SDI  
bit 0  
Input  
Sample  
SSPIF  
Interrupt  
Flag  
SSPSR to  
SSPBUF  
Write Collision  
detection active  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 285  
PIC16F193X/LF193X  
22.3.8 OPERATION IN POWER-MANAGED  
MODES  
If an exit from Sleep or Idle mode is not desired, MSSP  
interrupts should be disabled.  
In SPI Master mode, when the Sleep mode is selected,  
all module clocks are halted and the transmis-  
sion/reception will remain in that state until the device  
wakes. After the device returns to Run mode, the mod-  
ule will resume transmitting and receiving data.  
In SPI Master mode, module clocks may be operating  
at a different speed than when in full power mode; in  
the case of the Sleep mode, all clocks are halted.  
Special care must be taken by the user when the MSSP  
clock is much faster than the system clock.  
In SPI Slave mode, the SPI Transmit/Receive Shift  
register operates asynchronously to the device. This  
allows the device to be placed in any power-managed  
mode and data to be shifted into the SPI  
Transmit/Receive Shift register. When all 8 bits have  
been received, the MSSP interrupt flag bit will be set  
and if enabled, will wake the device.  
When MSSP interrupts are enabled, after the master  
completes sending data, an MSSP interrupt will wake  
the controller:  
• from Sleep, in Slave mode  
• from Idle, in Slave or Master mode  
TABLE 22-1: REGISTERS ASSOCIATED WITH SPI OPERATION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
APFCON  
INTCON  
PIE1  
CCP3SEL  
PEIE  
T1GSEL  
TMR0IE  
RCIE  
P2BSEL  
INTE  
SRNQSEL C2OUTSEL  
SSSEL  
INTF  
CCP2SEL  
IOCIF  
84  
73  
GIE  
IOCIE  
SSPIE  
SSPIF  
TMR0IF  
CCP1IE  
CCP1IF  
TMR1GIE  
TMR1GIf  
ADIE  
TXIE  
TMR2IE  
TMR2IF  
TMR1IE  
TMR1IF  
74  
PIR1  
ADIF  
RCIF  
TXIF  
77  
SSPBUF  
SSPCON1  
SSPCON3  
Synchronous Serial Port Receive Buffer/Transmit Register  
281*  
277  
279  
276  
86  
WCOL  
SSPOV  
PCIE  
SSPEN  
SCIE  
CKP  
SSPM3  
SDAHT  
SSPM2  
SBCDE  
SSPM1  
AHEN  
SSPM0  
DHEN  
ACKTIM  
BOEN  
SSPSTAT  
TRISA  
SMP  
CKE  
D/A  
P
S
R/W  
UA  
BF  
TRISA7  
TRISC7  
TRISA6  
TRISC6  
TRISA5  
TRISC5  
TRISA4  
TRISC4  
TRISA3  
TRISC3  
TRISA2  
TRISC2  
TRISA1  
TRISC1  
TRISA0  
TRISC0  
TRISC  
94  
Legend:  
Shaded cells are not used by the MSSP in SPI mode.  
Page provides register information.  
*
DS41364A-page 286  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
TABLE 22-2: I2C BUS TERMS  
22.4 I2C MODE  
TERM  
Description  
All MSSP I2C communication is byte oriented and  
shifted out MSb first. Six SFR registers and 2 interrupt  
flags interface the module with the PIC® microcon-  
troller and user software. Two pins, SDA and SCL, are  
exercised by the module to communicate with other  
external I2C devices.  
Transmitter  
The device which shifts data out  
onto the bus.  
Receiver  
Master  
The device which shifts data in  
from the bus.  
The device that initiates a transfer,  
generates clock signals and termi-  
nates a transfer.  
22.4.1 SDA AND SCL PINS  
Selection of any I2C mode with the SSPEN bit set,  
forces the SCL and SDA pins to be open-drain. These  
pins should be set by the user to inputs by setting the  
appropriate TRIS bits.  
Slave  
The device addressed by the mas-  
ter.  
Multi-master  
Arbitration  
A bus with more than one device  
that can initiate data transfers.  
Note: Data is tied to output zero when an I2C mode  
Procedure to ensure that only one  
master at a time controls the bus.  
Winning arbitration ensures that  
the message is not corrupted.  
is enabled.  
22.4.2 BYTE FORMAT  
All communication in I2C is done in 9-bit segments. A  
byte is sent from a Master to a Slave or vice-versa, fol-  
lowed by an Acknowledge bit sent back. After the 8th  
falling edge of the SCL line, the device outputting data  
on the SDA changes that pin to an input and reads in  
an acknowledge value on the next clock pulse.  
Synchronization Procedure to synchronize the  
clocks of two or more devices on  
the bus.  
Idle  
No master is controlling the bus,  
and both SDA and SCL lines are  
high.  
Active  
Any time one or more master  
devices are controlling the bus.  
The clock signal, SCL, is provided by the master. Data  
is valid to change while the SCL signal is low, and  
sampled on the rising edge of the clock. Changes on  
the SDA line while the SCL line is high define special  
conditions on the bus, explained below.  
Addressed  
Slave  
Slave device that has received a  
matching address and is actively  
being clocked by a master.  
Matching  
Address  
Address byte that is clocked into a  
slave that matches the value  
stored in SSPADD.  
22.4.3 DEFINITION OF I2C TERMINOLOGY  
There is language and terminology in the description  
of I2C communication that have definitions specific to  
I2C. That word usage is defined below and may be  
used in the rest of this document without explana-  
tion. This table was adapted from the Phillips I2C  
specification.  
Write Request  
Read Request  
Slave receives a matching  
address with R/W bit clear, and is  
ready to clock in data.  
Master sends an address byte with  
the R/W bit set, indicating that it  
wishes to clock data out of the  
Slave. This data is the next and all  
following bytes until a Restart or  
Stop.  
Clock Stretching When a device on the bus hold  
SCL low to stall communication.  
Bus Collision  
Any time the SDA line is sampled  
low by the module while it is out-  
putting and expected high state.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 287  
PIC16F193X/LF193X  
22.4.4 START CONDITION  
22.4.6 RESTART CONDITION  
The I2C specification defines a Start condition as a  
transition of SDA from a high to a low state while SCL  
line is high. A Start condition is always generated by  
the master and signifies the transition of the bus from  
an Idle to an Active state. Figure 22-8 shows wave  
forms for Start and Stop conditions.  
A Restart is valid any time that a Stop would be valid.  
A master can issue a Restart if it wishes to hold the  
bus after terminating the current transfer. A Restart  
has the same effect on the slave that a Start would,  
resetting all slave logic and preparing it to clock in an  
address. The master may want to address the same or  
another slave.  
A bus collision can occur on a Start condition if the  
module samples the SDA line low before asserting it  
low. This does not conform to the I2C Specification that  
states no bus collision can occur on a Start.  
In 10-bit Addressing Slave mode a Restart is required  
for the master to clock data out of the addressed  
slave. Once a slave has been fully address, matching  
both high and low address bytes, the master can issue  
a Restart and the high address byte with the R/W bit  
set. The slave logic will then hold the clock and pre-  
pare to clock out data.  
Note: The Philips I2C Specification states that a  
bus collision cannot occur on a Start, and  
should occur during the address sequence.  
22.4.5 STOP CONDITION  
After a full match with R/W clear in 10-bit mode, a prior  
match flag is set and maintained. Until a Stop condi-  
tion, a high address with R/W clear, or high address  
match fails.  
A Stop condition is a transition of the SDA line from  
low to high state while the SCL line is high.  
Note: At least one SCL low time must appear  
before a Stop is valid, therefore, if the SDA  
line goes low then high again while the SCL  
line stays high, only the Start condition is  
detected.  
22.4.7 START/STOP CONDITION INTERRUPT  
MASKING  
The SCIE and PCIE bits of the SSPCON3 register can  
enable the generation of an interrupt in Slave mode.  
Slave modes where interrupt on Start and Stop detect  
are already enabled, these bits will have no effect.  
FIGURE 22-9:  
I2C START AND STOP CONDITIONS  
SDA  
SCL  
S
P
Change of  
Change of  
Data Allowed  
Data Allowed  
Stop  
Start  
Condition  
Condition  
DS41364A-page 288  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 22-10:  
I2C RESTART CONDITION  
Sr  
Change of  
Change of  
Data Allowed  
Data Allowed  
Restart  
Condition  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 289  
PIC16F193X/LF193X  
22.5 I2C SLAVE MODE OPERATION  
22.4.8 ACKNOWLEDGE SEQUENCE  
The 9th SCL pulse for any transferred byte in I2C is  
dedicated as an Acknowledge. It allows receiving  
devices to respond back to the transmitter by pulling  
the SDA line low. The transmitter must release control  
of the line during this time to shift in the response. The  
Acknowledge (ACK) is an active-low signal, pulling the  
SDA line low indicated to the transmitter that the  
device has received the transmitted data and is ready  
to receive more.  
The MSSP Slave mode operates in one of four modes  
selected in the SSPM bits of SSPCON1 register. The  
modes can be divided into 7-bit and 10-bit Addressing  
mode. 10-bit Addressing modes operate the same as  
7-bit with some additional overhead for handling the  
larger addresses.  
Modes with Start and Stop bit interrupts operated the  
same as the other modes with SSPIF additionally get-  
ting set upon detection of a Start, Restart, or Stop  
condition.  
The result of an ACK is placed in the ACKSTAT bit of  
the SSPCON2 register.  
22.5.1 SLAVE MODE ADDRESSES  
Slave software, when the AHEN and DHEN bits are  
set, allow the user to set the ACK value sent back to  
the transmitter. The ACKDT bit of the SSPCON2 regis-  
ter is set/cleared to determine the response.  
The SSPADD register (Register 22-6) contains the  
Slave mode address. The first byte received after a  
Start or Restart condition is compared against the  
value stored in this register. If the byte matches the  
value is loaded into the SSPBUF register and an inter-  
rupt is generated. If the value does not match, the  
module goes idle and no indication is given to the soft-  
ware that anything happened.  
Slave hardware will generate an ACK response if the  
AHEN and DHEN bits of the SSPCON3 register are  
clear.  
There are certain conditions where an ACK will not be  
sent by the slave. If the BF bit of the SSPSTAT register  
or the SSPOV bit of the SSPCON1 register are set  
when a byte is received.  
The SSP Mask register (Register 22-5) affects the  
address matching process. See Section 22.5.9 “SSP  
Mask Register” for more information.  
22.5.1.1 I2C Slave 7-bit Addressing Mode  
In 7-bit Addressing mode, the LSb of the received data  
byte is ignored when determining if there is an address  
match.  
22.5.1.2 I2C Slave 10-bit Addressing Mode  
In 10-bit Addressing mode, the first received byte is  
compared to the binary value of ‘1 1 1 1 0 A9 A8 0’. A9  
and A8 are the two MSb of the 10-bit address and  
stored in bits 2 and 1 of the SSPADD register.  
After the acknowledge of the high byte the UA bit is set  
and SCL is held low until the user updates SSPADD  
with the low address. The low address byte is clocked  
in and all 8 bits are compared to the low address value  
in SSPADD. Even if there is not an address match;  
SSPIF and UA are set, and SCL is held low until  
SSPADD is updated to receive a high byte again.  
When SSPADD is updated the UA bit is cleared. This  
ensures the module is ready to receive the high  
address byte on the next communication.  
A high and low address match as a write request is  
required at the start of all 10-bit addressing communi-  
cation. A transmission can be initiated by issuing a  
Restart once the slave is addressed, and clocking in  
the high address with the R/W bit set. The slave hard-  
ware will then acknowledge the read request and pre-  
pare to clock out data. This is only valid for a slave  
after it has received a complete high and low address  
byte match.  
DS41364A-page 290  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
22.5.2 SLAVE RECEPTION  
22.5.2.2 7-bit Reception with AHEN and DHEN  
When the R/W bit of a matching received address byte  
is clear, the R/W bit of the SSPSTAT register is cleared.  
The received address is loaded into the SSPBUF reg-  
ister and acknowledged.  
Slave device reception with AHEN and DHEN set  
operate the same as without these options with extra  
interrupts and clock stretching added after the 8th fall-  
ing edge of SCL. These additional interrupts allow the  
slave software to decide whether it wants to ACK the  
receive address or data byte, rather than the hard-  
ware. This functionality adds support for PMBus™ that  
was not present on previous versions of this module.  
When the overflow condition exists for a received  
address, then not Acknowledge is given. An overflow  
condition is defined as either bit BF bit of the SSPSTAT  
register is set, or bit SSPOV bit of the SSPCON1 reg-  
ister is set. The BOEN bit of the SSPCON3 register  
modifies this operation. For more information see  
Register 22-4.  
This list describes the steps that need to be taken by  
slave software to use these options for I2C commun-  
cation. Figure 22-12 displays a module using both  
address and data holding. Figure 22-13 includes the  
operation with the SEN bit of the SSPCON2 register  
set.  
An MSSP interrupt is generated for each transferred  
data byte. Flag bit, SSPIF, must be cleared by software.  
When the SEN bit of the SSPCON2 register is set, SCL  
will be held low (clock stretch) following each received  
byte. The clock must be released by setting the CKP  
bit of the SSPCON1 register, except sometimes in  
10-bit mode. See Section 22.3.5 “Master Mode” for  
more detail.  
1. S bit of SSPSTAT is set; SSPIF is set if interrupt  
on Start detect is enabled.  
2. Matching address with R/W bit clear is clocked  
in. SSPIF is set and CKP cleared after the 8th  
falling edge of SCL.  
3. Slave clears the SSPIF.  
22.5.2.1 7-bit Addressing Reception  
4. Slave can look at the ACKTIM bit of the  
SSPCON3 register to determine if the SSPIF  
was after or before the ACK.  
This section describes a standard sequence of events  
for the MSSP module configured as an I2C Slave in  
7-bit Addressing mode. All decisions made by hard-  
ware or software and their effect on reception.  
Figure 22-10 and Figure 22-11 is used as a visual  
reference for this description.  
5. Slave reads the address value from SSPBUF,  
clearing the BF flag.  
6. Slave sets ACK value clocked out to the master  
by setting ACKDT.  
This is a step by step process of what typically must  
be done to accomplish I2C communication.  
7. Slave releases the clock by setting CKP.  
8. SSPIF is set after an ACK, not after a NACK.  
1. Start bit detected.  
9. If SEN = 1 the slave hardware will stretch the  
clock after the ACK.  
2. S bit of SSPSTAT is set; SSPIF is set if interrupt  
on Start detect is enabled.  
10. Slave clears SSPIF.  
3. Matching address with R/W bit clear is received.  
Note: SSPIF is still set after the 9th falling edge of  
SCL even if there is no clock stretching and  
BF has been cleared. Only if NACK is sent to  
Master is SSPIF not set  
4. The slave pulls SDA low sending an ACK to the  
master, and sets SSPIF bit.  
5. Software clears the SSPIF bit.  
6. Software reads received address from SSPBUF  
clearing the BF flag.  
11. SSPIF set and CKP cleared after 8th falling  
edge of SCL for a received data byte.  
7. If SEN = 1; Slave software sets CKP bit to  
12. Slave looks at ACKTIM bit of SSPCON3 to  
determine the source of the interrupt.  
release the SCL line.  
8. The master clocks out a data byte.  
13. Slave reads the received data from SSPBUF  
clearing BF.  
9. Slave drives SDA low sending an ACK to the  
master, and sets SSPIF bit.  
14. Steps 7-14 are the same for each received data  
byte.  
10. Software clears SSPIF.  
15. Communication is ended by either the slave  
sending an ACK = 1, or the master sending a  
Stop condition. If a Stop is sent and Interrupt on  
Stop Detect is disabled, the slave will only know  
by polling the P bit of the SSTSTAT register.  
11. Software reads the received byte from SSPBUF  
clearing BF.  
12. Steps 8-12 are repeated for all received bytes  
from the Master.  
13. Master sends Stop condition, setting P bit of  
SSPSTAT, and the bus goes idle.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 291  
PIC16F193X/LF193X  
FIGURE 22-11:  
I2C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 0, DHEN = 0)  
DS41364A-page 292  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 22-12:  
I2C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 0, DHEN = 0)  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 293  
PIC16F193X/LF193X  
FIGURE 22-13:  
I2C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 1, DHEN = 1)  
DS41364A-page 294  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 22-14:  
I2C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 1, DHEN = 1)  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 295  
PIC16F193X/LF193X  
22.5.3 SLAVE TRANSMISSION  
22.5.3.1 7-bit Transmission  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register, and an ACK pulse is  
sent by the slave on the ninth bit.  
A Master device can transmit a read request to a  
slave, and then clock data out of the slave. The list  
below outlines what software for a slave will need to  
do to accomplish  
a
standard transmission.  
Figure 22-14 can be used as a reference to this list.  
Following the ACK, slave hardware clears the CKP bit  
and the SCL pin is held low (see Section 22.5.6  
“Clock Stretching” for more detail). By stretching the  
clock, the master will be unable to assert another clock  
pulse until the slave is done preparing the transmit  
data.  
1. Master sends a Start condition on SDA and  
SCL.  
2. S bit of SSPSTAT is set; SSPIF is set if interrupt  
on Start detect is enabled.  
3. Matching address with R/W bit set is received by  
the Slave setting SSPIF bit.  
The transmit data must be loaded into the SSPBUF  
register which also loads the SSPSR register. Then the  
SCL pin should be released by setting the CKP bit of  
the SSPCON1 register. The eight data bits are shifted  
out on the falling edge of the SCL input. This ensures  
that the SDA signal is valid during the SCL high time.  
4. Slave hardware generates an ACK and sets  
SSPIF.  
5. SSPIF bit is cleared by user.  
6. Software reads the received address from SSP-  
BUF, clearing BF.  
7. R/W is set so CKP was automatically cleared  
after the ACK.  
The ACK pulse from the master-receiver is latched on  
the rising edge of the ninth SCL input pulse. This ACK  
value is copied to the ACKSTAT bit of the SSPCON2  
register. If ACKSTAT is set (not ACK), then the data  
transfer is complete. In this case, when the not ACK is  
latched by the slave, the slave goes idle and waits for  
another occurrence of the Start bit. If the SDA line was  
low (ACK), the next transmit data must be loaded into  
the SSPBUF register. Again, the SCL pin must be  
released by setting bit CKP.  
8. The slave software loads the transmit data into  
SSPBUF.  
9. CKP bit is set releasing SCL, allowing the mas-  
ter to clock the data out of the slave.  
10. SSPIF is set after the ACK response from the  
master is loaded into the ACKSTAT register.  
11. SSPIF bit is cleared.  
12. The slave software checks the ACKSTAT bit to  
see if the master wants to clock out more data.  
An MSSP interrupt is generated for each data transfer  
byte. The SSPIF bit must be cleared by software and  
the SSPSTAT register is used to determine the status  
of the byte. The SSPIF bit is set on the falling edge of  
the ninth clock pulse.  
Note 1: If the master ACKs the clock will be  
stretched.  
2: ACKSTAT is the only bit updated on the  
rising edge of SCL (9th) rather than the  
falling.  
13. Steps 9-13 are repeated for each transmitted  
byte.  
14. If the master sends a not ACK; the clock is not  
held, but SSPIF is still set.  
15. The master sends a Restart condition or a Stop.  
16. The slave is no longer addressed.  
DS41364A-page 296  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 22-15:  
I2C SLAVE, 7-BIT ADDRESS, TRANSMISSION (AHEN = 0)  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 297  
PIC16F193X/LF193X  
22.5.3.2 7-bit TRANSMISSION WITH Address Hold  
Enabled  
Setting the AHEN bit of the SSPCON3 register  
enables additional clock stretching and interrupt gen-  
eration after the 8th falling edge of a received match-  
ing address. Once a matching address has been  
clocked in, CKP is cleared and the SSPIF interrupt is  
set.  
Figure 22-15 displays a standard waveform of a 7-bit  
Address Slave Transmission with AHEN enabled.  
1. Bus starts Idle.  
2. Master sends Start condition; the S bit of  
SSPSTAT is set; SSPIF is set if interrupt on Start  
detect is enabled.  
3. Master sends matching address with R/W bit  
set. After the 8th falling edge of the SCL line the  
CKP bit is cleared and SSPIF interrupt is gener-  
ated.  
4. Slave software clears SSPIF.  
5. Slave software reads ACKTIM bit of SSPCON3  
register, and R/W and D/A of the SSPSTAT reg-  
ister to determine the source of the interrupt.  
6. Slave reads the address value from the  
SSPBUF register clearing the BF bit.  
7. Slave software decides from this information if it  
wishes to ACK or not ACK and sets ACKDT bit  
of the SSPCON2 register accordingly.  
8. Slave sets the CKP bit releasing SCL.  
9. Master clocks in the ACK value from the slave.  
10. Slave hardware automatically clears the CKP bit  
and sets SSPIF after the ACK if the R/W bit is  
set.  
11. Slave software clears SSPIF.  
12. Slave loads value to transmit to the master into  
SSPBUF setting the BF bit.  
Note: SSPBUF cannot be loaded until after the  
ACK.  
13. Slave sets CKP bit releasing the clock.  
14. Master clocks out the data from the slave and  
sends an ACK value on the 9th SCL pulse.  
15. Slave hardware copies the ACK value into the  
ACKSTAT bit of the SSPCON2 register.  
16. Steps 10-15 are repeated for each byte transmit-  
ted to the master from the slave.  
17. If the master sends a not ACK the slave  
releases the bus allowing the master to send a  
Stop and end the communication.  
Note: Master must send a not ACK on the last byte  
to ensure that the slave releases the SCL  
line to receive a Stop.  
DS41364A-page 298  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 22-16:  
I2C SLAVE, 7-BIT ADDRESS, TRANSMISSION (AHEN = 1)  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 299  
PIC16F193X/LF193X  
22.5.4 SLAVE MODE 10-BIT ADDRESS  
RECEPTION  
22.5.5 10-BIT ADDRESSING WITH ADDRESS OR  
DATA HOLD  
This section describes a standard sequence of events  
for the MSSP module configured as an I2C Slave in  
10-bit Addressing mode.  
Reception using 10-bit addressing with AHEN or  
DHEN set is the same as with 7-bit modes. The only  
difference is the need to update the SSPADD register  
using the UA bit. All functionality, specifically when the  
CKP bit is cleared and SCL line is held low are the  
same. Figure 22-17 can be used as a reference of a  
slave in 10-bit addressing with AHEN set.  
Figure 22-16 and is used as a visual reference for this  
description.  
This is a step by step process of what must be done by  
slave software to accomplish I2C communication.  
Figure 22-18 shows a standard waveform for a slave  
transmitter in 10-bit Addressing mode.  
1. Bus starts Idle.  
2. Master sends Start condition; S bit of SSPSTAT  
is set; SSPIF is set if interrupt on Start detect is  
enabled.  
3. Master sends matching high address with R/W  
bit clear; UA bit of the SSPSTAT register is set.  
4. Slave sends ACK and SSPIF is set.  
5. Software clears the SSPIF bit.  
6. Software reads received address from SSPBUF  
clearing the BF flag.  
7. Slave loads low address into SSPADD,  
releasing SCL.  
8. Master sends matching low address byte to the  
Slave; UA bit is set.  
Note: Updates to the SSPADD register are not  
allowed until after the ACK sequence.  
9. Slave sends ACK and SSPIF is set.  
Note: If the low address does not match, SSPIF  
and UA are still set so that the slave software  
can set SSPADD back to the high address.  
BF is not set because there is no match.  
CKP is unaffected.  
10. Slave clears SSPIF.  
11. Slave reads the received matching address  
from SSPBUF clearing BF.  
12. Slave loads high address into SSPADD.  
13. Master clocks a data byte to the slave and  
clocks out the slaves ACK on the 9th SCL pulse;  
SSPIF is set.  
14. If SEN bit of SSPCON2 is set, CKP is cleared by  
hardware and the clock is stretched.  
15. Slave clears SSPIF.  
16. Slave reads the received byte from SSPBUF  
clearing BF.  
17. If SEN is set the slave sets CKP to release the  
SCL.  
18. Steps 13-17 repeat for each received byte.  
19. Master sends Stop to end the transmission.  
DS41364A-page 300  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 22-17:  
I2C SLAVE, 10-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 0, DHEN = 0)  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 301  
PIC16F193X/LF193X  
FIGURE 22-18:  
I2C SLAVE, 10-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 1, DHEN = 0)  
DS41364A-page 302  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 22-19:  
I2C SLAVE, 10-BIT ADDRESS, TRANSMISSION (SEN = 0, AHEN = 0, DHEN = 0)  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 303  
PIC16F193X/LF193X  
22.5.6 CLOCK STRETCHING  
22.5.6.2 10-bit Addressing Mode  
Clock stretching occurs when a device on the bus  
holds the SCL line low effectively pausing communica-  
tion. The slave may stretch the clock to allow more  
time to handle data or prepare a response for the mas-  
ter device. A master device is not concerned with  
stretching as anytime it is active on the bus and not  
transferring data it is stretching. Any stretching done  
by a slave is invisible to the master software and han-  
dled by the hardware that generates SCL.  
In 10-bit Addressing mode, when the UA bit is set the  
clock is always stretched. This is the only time the SCL  
is stretched without CKP being cleared. SCL is  
releases immediately after a write to SSPADD.  
Note: Previous versions of the module did not  
stretch the clock if the second address byte  
did not match.  
22.5.6.3 Byte NACKing  
The CKP bit of the SSPCON1 register is used to con-  
trol stretching in software. Any time the CKP bit is  
cleared, the module will wait for the SCL line to go low  
and then hold it. Setting CKP will release SCL and  
allow more communication.  
When AHEN bit of SSPCON3 is set; CKP is cleared by  
hardware after the 8th falling edge of SCL for a  
received matching address byte. When DHEN bit of  
SSPCON3 is set; CKP is cleared after the 8th falling  
edge of SCL for received data.  
22.5.6.1 Normal Clock Stretching  
Stretching after the 8th falling edge of SCL allows the  
slave to look at the received address or data and  
decide if it wants to ACK the received data.  
Following an ACK if the R/W bit of SSPSTAT is set, a  
read request, the slave hardware will clear CKP. This  
allows the slave time to update SSPBUF with data to  
transfer to the master. If the SEN bit of SSPCON2 is  
set, the slave hardware will always stretch the clock  
after the ACK sequence. Once the slave is ready; CKP  
is set by software and communication resumes.  
22.5.7 CLOCK SYNCHRONIZATION AND  
THE CKP BIT  
Any time the CKP bit is cleared, the module will wait  
for the SCL line to go low and then hold it. However,  
clearing the CKP bit will not assert the SCL output low  
until the SCL output is already sampled low. There-  
fore, the CKP bit will not assert the SCL line until an  
external I2C master device has already asserted the  
SCL line. The SCL output will remain low until the CKP  
bit is set and all other devices on the I2C bus have  
released SCL. This ensures that a write to the CKP bit  
will not violate the minimum high time requirement for  
SCL (see Figure 22-19).  
Note 1: The BF bit has no effect on if the clock will  
be stretched or not. This is different than  
previous versions of the module that  
would not stretch the clock, clear CKP, if  
SSPBUF was read before the 9th falling  
edge of SCL.  
2: Previous versions of the module did not  
stretch the clock for a transmission if  
SSPBUF was loaded before the 9th falling  
edge of SCL. It is now always cleared for  
read requests.  
FIGURE 22-20:  
CLOCK SYNCHRONIZATION TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
SDA  
SCL  
DX  
DX ‚ 1  
Master device  
asserts clock  
CKP  
Master device  
releases clock  
WR  
SSPCON1  
DS41364A-page 304  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
22.5.8 GENERAL CALL ADDRESS SUPPORT  
In 10-bit Address mode, the UA bit will not be set on  
the reception of the general call address. The slave  
will prepare to receive the second byte as data, just as  
it would in 7-bit mode.  
The addressing procedure for the I2C bus is such that  
the first byte after the Start condition usually deter-  
mines which device will be the slave addressed by the  
master device. The exception is the general call  
address which can address all devices. When this  
address is used, all devices should, in theory, respond  
with an acknowledge.  
If the AHEN bit of the SSPCON3 register is set, just as  
with any other address reception, the slave hardware  
will stretch the clock after the 8th falling edge of SCL.  
The slave must then set its ACKDT value and release  
the clock with communication progressing as it would  
normally.  
The general call address is a reserved address in the  
I2C protocol, defined as address 0x00. When the  
GCEN bit of the SSPCON2 register is set, the slave  
module will automatically ACK the reception of this  
address regardless of the value stored in SSPADD.  
After the slave clocks in an address of all zeros with  
the R/W bit clear, an interrupt is generated and slave  
software can read SSPBUF and respond.  
Figure 22-20 shows  
sequence.  
a
General Call reception  
FIGURE 22-21:  
SLAVE MODE GENERAL CALL ADDRESS SEQUENCE  
Address is compared to General Call Address  
after ACK, set interrupt  
Receiving Data  
D5 D4 D3 D2 D1  
ACK  
R/W = 0  
ACK  
General Call Address  
SDA  
D7 D6  
D0  
8
SCL  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
9
S
SSPIF  
BF (SSPSTAT<0>)  
Cleared by software  
SSPBUF is read  
GCEN (SSPCON2<7>)  
’1’  
22.5.9 SSP MASK REGISTER  
An SSP Mask (SSPMSK) register (Register 22-5) is  
available in I2C Slave mode as a mask for the value  
held in the SSPSR register during an address  
comparison operation. A zero (‘0’) bit in the SSPMSK  
register has the effect of making the corresponding bit  
of the received address a “don’t care”.  
This register is reset to all ‘1’s upon any Reset  
condition and, therefore, has no effect on standard  
SSP operation until written with a mask value.  
The SSP Mask register is active during:  
• 7-bit Address mode: address compare of A<7:1>.  
• 10-bit Address mode: address compare of A<7:0>  
only. The SSP mask has no effect during the  
reception of the first (high) byte of the address.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 305  
PIC16F193X/LF193X  
22.6.1 I2C MASTER MODE OPERATION  
2
22.6 I C MASTER MODE  
The master device generates all of the serial clock  
pulses and the Start and Stop conditions. A transfer is  
ended with a Stop condition or with a Repeated Start  
condition. Since the Repeated Start condition is also  
the beginning of the next serial transfer, the I2C bus will  
not be released.  
Master mode is enabled by setting and clearing the  
appropriate SSPM bits in the SSPCON1 register and  
by setting the SSPEN bit. In Master mode, the SCL and  
SDA lines are set as inputs and are manipulated by the  
MSSP hardware.  
Master mode of operation is supported by interrupt  
generation on the detection of the Start and Stop con-  
ditions. The Stop (P) and Start (S) bits are cleared from  
a Reset or when the MSSP module is disabled. Control  
of the I2C bus may be taken when the P bit is set, or the  
bus is Idle.  
In Master Transmitter mode, serial data is output  
through SDA, while SCL outputs the serial clock. The  
first byte transmitted contains the slave address of the  
receiving device (7 bits) and the Read/Write (R/W) bit.  
In this case, the R/W bit will be logic ‘0’. Serial data is  
transmitted 8 bits at a time. After each byte is transmit-  
ted, an Acknowledge bit is received. Start and Stop  
conditions are output to indicate the beginning and the  
end of a serial transfer.  
In Firmware Controlled Master mode, user code  
conducts all I2C bus operations based on Start and  
Stop bit condition detection. Start and Stop condition  
detection is the only active circuitry in this mode. All  
other communication is done by the user software  
directly manipulating the SDA and SCL lines.  
In Master Receive mode, the first byte transmitted con-  
tains the slave address of the transmitting device  
(7 bits) and the R/W bit. In this case, the R/W bit will be  
logic ‘1’. Thus, the first byte transmitted is a 7-bit slave  
address followed by a ‘1’ to indicate the receive bit.  
Serial data is received via SDA, while SCL outputs the  
serial clock. Serial data is received 8 bits at a time. After  
each byte is received, an Acknowledge bit is transmit-  
ted. Start and Stop conditions indicate the beginning  
and end of transmission.  
The following events will cause the SSP Interrupt Flag  
bit, SSPIF, to be set (SSP interrupt, if enabled):  
• Start condition detected  
• Stop condition detected  
• Data transfer byte transmitted/received  
• Acknowledge transmitted/received  
• Repeated Start generated  
A Baud Rate Generator is used to set the clock fre-  
quency output on SCL. See Section 22.7 “Baud Rate  
Generator” for more detail.  
Note 1: The MSSP module, when configured in  
I2C Master mode, does not allow queue-  
ing of events. For instance, the user is not  
allowed to initiate a Start condition and  
immediately write the SSPBUF register to  
initiate transmission before the Start con-  
dition is complete. In this case, the  
SSPBUF will not be written to and the  
WCOL bit will be set, indicating that a write  
to the SSPBUF did not occur  
2: When in Master mode, Start/Stop detec-  
tion is masked and an interrupt is gener-  
ated when the SEN/PEN bit is cleared and  
the generation is complete.  
DS41364A-page 306  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
22.6.2 CLOCK ARBITRATION  
Clock arbitration occurs when the master, during any  
receive, transmit or Repeated Start/Stop condition,  
releases the SCL pin (SCL allowed to float high). When  
the SCL pin is allowed to float high, the Baud Rate Gen-  
erator (BRG) is suspended from counting until the SCL  
pin is actually sampled high. When the SCL pin is sam-  
pled high, the Baud Rate Generator is reloaded with  
the contents of SSPADD<7:0> and begins counting.  
This ensures that the SCL high time will always be at  
least one BRG rollover count in the event that the clock  
is held low by an external device (Figure 22-22).  
FIGURE 22-22:  
BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION  
SDA  
DX  
DX ‚ 1  
SCL allowed to transition high  
SCL deasserted but slave holds  
SCL low (clock arbitration)  
SCL  
BRG decrements on  
Q2 and Q4 cycles  
BRG  
Value  
03h  
02h  
01h  
00h (hold off)  
03h  
02h  
SCL is sampled high, reload takes  
place and BRG starts its count  
BRG  
Reload  
22.6.3 WCOL STATUS FLAG  
If the user writes the SSPBUF when a Start, Restart,  
Stop, Receive or Transmit sequence is in progress, the  
WCOL is set and the contents of the buffer are  
unchanged (the write doesn’t occur). Any time the  
WCOL bit is set it indicates that an action on SSPBUF  
was attempted while the module was not Idle.  
Note:  
Because queueing of events is not  
allowed, writing to the lower 5 bits of  
SSPCON2 is disabled until the Start  
condition is complete.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 307  
PIC16F193X/LF193X  
2
22.6.4 I C MASTER MODE START  
ister will be automatically cleared by hardware; the  
Baud Rate Generator is suspended, leaving the SDA  
line held low and the Start condition is complete.  
CONDITION TIMING  
To initiate a Start condition, the user sets the Start  
Enable bit, SEN bit of the SSPCON2 register. If the  
SDA and SCL pins are sampled high, the Baud Rate  
Generator is reloaded with the contents of  
SSPADD<7:0> and starts its count. If SCL and SDA  
are both sampled high when the Baud Rate Generator  
times out (TBRG), the SDA pin is driven low. The action  
of the SDA being driven low while SCL is high is the  
Start condition and causes the S bit of the SSPSTAT1  
register to be set. Following this, the Baud Rate Gen-  
erator is reloaded with the contents of SSPADD<7:0>  
and resumes its count. When the Baud Rate Genera-  
tor times out (TBRG), the SEN bit of the SSPCON2 reg-  
Note 1: If at the beginning of the Start condition,  
the SDA and SCL pins are already sam-  
pled low, or if during the Start condition,  
the SCL line is sampled low before the  
SDA line is driven low, a bus collision  
occurs, the Bus Collision Interrupt Flag,  
BCLIF, is set, the Start condition is aborted  
and the I2C module is reset into its Idle  
state.  
2: The Philips I2C Specification states that a  
bus collision cannot occur on a Start.  
FIGURE 22-23:  
FIRST START BIT TIMING  
Set S bit (SSPSTAT<3>)  
Write to SEN bit occurs here  
At completion of Start bit,  
hardware clears SEN bit  
and sets SSPIF bit  
SDA = 1,  
SCL = 1  
TBRG  
TBRG  
Write to SSPBUF occurs here  
SDA  
2nd bit  
1st bit  
TBRG  
SCL  
S
TBRG  
DS41364A-page 308  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
2
22.6.5 I C MASTER MODE REPEATED  
SSPCON2 register will be automatically cleared and  
the Baud Rate Generator will not be reloaded, leaving  
the SDA pin held low. As soon as a Start condition is  
detected on the SDA and SCL pins, the S bit of the  
SSPSTAT register will be set. The SSPIF bit will not be  
set until the Baud Rate Generator has timed out.  
START CONDITION TIMING  
A Repeated Start condition occurs when the RSEN bit  
of the SSPCON2 register is programmed high and the  
Master state machine is no longer active. When the  
RSEN bit is set, the SCL pin is asserted low. When the  
SCL pin is sampled low, the Baud Rate Generator is  
loaded and begins counting. The SDA pin is released  
(brought high) for one Baud Rate Generator count  
(TBRG). When the Baud Rate Generator times out, if  
SDA is sampled high, the SCL pin will be deasserted  
(brought high). When SCL is sampled high, the Baud  
Rate Generator is reloaded and begins counting. SDA  
and SCL must be sampled high for one TBRG. This  
action is then followed by assertion of the SDA pin  
(SDA = 0) for one TBRG while SCL is high. SCL is  
asserted low. Following this, the RSEN bit of the  
Note 1: If RSEN is programmed while any other  
event is in progress, it will not take effect.  
2: A bus collision during the Repeated Start  
condition occurs if:  
• SDA is sampled low when SCL  
goes from low-to-high.  
• SCL goes low before SDA is  
asserted low. This may indicate that  
another master is attempting to  
transmit a data ‘1’.  
FIGURE 22-24:  
REPEAT START CONDITION WAVEFORM  
S bit set by hardware  
Write to SSPCON2  
occurs here  
SDA = 1,  
At completion of Start bit,  
hardware clears RSEN bit  
and sets SSPIF  
SDA = 1,  
SCL = 1  
SCL (no change)  
TBRG  
TBRG  
TBRG  
1st bit  
SDA  
SCL  
Write to SSPBUF occurs here  
TBRG  
Sr  
Repeated Start  
TBRG  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 309  
PIC16F193X/LF193X  
22.6.6 I2C MASTER MODE TRANSMISSION  
22.6.6.3  
ACKSTAT Status Flag  
In Transmit mode, the ACKSTAT bit of the SSPCON2  
register is cleared when the slave has sent an Acknowl-  
edge (ACK = 0) and is set when the slave does not  
Acknowledge (ACK = 1). A slave sends an Acknowl-  
edge when it has recognized its address (including a  
general call), or when the slave has properly received  
its data.  
Transmission of a data byte, a 7-bit address or the  
other half of a 10-bit address is accomplished by simply  
writing a value to the SSPBUF register. This action will  
set the Buffer Full flag bit, BF and allow the Baud Rate  
Generator to begin counting and start the next trans-  
mission. Each bit of address/data will be shifted out  
onto the SDA pin after the falling edge of SCL is  
asserted. SCL is held low for one Baud Rate Generator  
rollover count (TBRG). Data should be valid before SCL  
is released high. When the SCL pin is released high, it  
is held that way for TBRG. The data on the SDA pin  
must remain stable for that duration and some hold  
time after the next falling edge of SCL. After the eighth  
bit is shifted out (the falling edge of the eighth clock),  
the BF flag is cleared and the master releases SDA.  
This allows the slave device being addressed to  
respond with an ACK bit during the ninth bit time if an  
address match occurred, or if data was received prop-  
erly. The status of ACK is written into the ACKSTAT bit  
on the rising edge of the ninth clock. If the master  
receives an Acknowledge, the Acknowledge Status bit,  
ACKSTAT, is cleared. If not, the bit is set. After the ninth  
clock, the SSPIF bit is set and the master clock (Baud  
Rate Generator) is suspended until the next data byte  
is loaded into the SSPBUF, leaving SCL low and SDA  
unchanged (Figure 22-24).  
22.6.6.4 Typical transmit sequence:  
1. The user generates a Start condition by setting  
the SEN bit of the SSPCON2 register.  
2. SSPIF is set by hardware on completion of the  
Start.  
3. SSPIF is cleared by software.  
4. The MSSP module will wait the required start  
time before any other operation takes place.  
5. The user loads the SSPBUF with the slave  
address to transmit.  
6. Address is shifted out the SDA pin until all 8 bits  
are transmitted. Transmission begins as soon  
as SSPBUF is written to.  
7. The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
ACKSTAT bit of the SSPCON2 register.  
8. The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
After the write to the SSPBUF, each bit of the address  
will be shifted out on the falling edge of SCL until all  
seven address bits and the R/W bit are completed. On  
the falling edge of the eighth clock, the master will  
release the SDA pin, allowing the slave to respond with  
an Acknowledge. On the falling edge of the ninth clock,  
the master will sample the SDA pin to see if the address  
was recognized by a slave. The status of the ACK bit is  
loaded into the ACKSTAT Status bit of the SSPCON2  
register. Following the falling edge of the ninth clock  
transmission of the address, the SSPIF is set, the BF  
flag is cleared and the Baud Rate Generator is turned  
off until another write to the SSPBUF takes place, hold-  
ing SCL low and allowing SDA to float.  
9. The user loads the SSPBUF with eight bits of  
data.  
10. Data is shifted out the SDA pin until all 8 bits are  
transmitted.  
11. The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
ACKSTAT bit of the SSPCON2 register.  
12. Steps 8-11 are repeated for all transmitted data  
bytes.  
13. The user generates a Stop or Restart condition  
by setting the PEN or RSEN bits of the  
SSPCON2 register. Interrupt is generated once  
the Stop/Restart condition is complete.  
22.6.6.1  
BF Status Flag  
In Transmit mode, the BF bit of the SSPSTAT register  
is set when the CPU writes to SSPBUF and is cleared  
when all 8 bits are shifted out.  
22.6.6.2  
WCOL Status Flag  
If the user writes the SSPBUF when a transmit is  
already in progress (i.e., SSPSR is still shifting out a  
data byte), the WCOL is set and the contents of the buf-  
fer are unchanged (the write doesn’t occur).  
WCOL must be cleared by software before the next  
transmission.  
DS41364A-page 310  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
2
FIGURE 22-25:  
I C MASTER MODE WAVEFORM (TRANSMISSION, 7 OR 10-BIT ADDRESS)  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 311  
PIC16F193X/LF193X  
I2C MASTER MODE RECEPTION  
22.6.7.4 Typical Receive Sequence:  
22.6.7  
Master mode reception is enabled by programming the  
Receive Enable bit, RCEN bit of the SSPCON2  
register.  
1. The user generates a Start condition by setting  
the SEN bit of the SSPCON2 register.  
2. SSPIF is set by hardware on completion of the  
Start.  
Note:  
The MSSP module must be in an Idle state  
before the RCEN bit is set or the RCEN bit  
will be disregarded.  
3. SSPIF is cleared by software.  
4. User writes SSPBUF with the slave address to  
transmit and the R/W bit set.  
The Baud Rate Generator begins counting and on each  
rollover, the state of the SCL pin changes  
(high-to-low/low-to-high) and data is shifted into the  
SSPSR. After the falling edge of the eighth clock, the  
receive enable flag is automatically cleared, the con-  
tents of the SSPSR are loaded into the SSPBUF, the  
BF flag bit is set, the SSPIF flag bit is set and the Baud  
Rate Generator is suspended from counting, holding  
SCL low. The MSSP is now in Idle state awaiting the  
next command. When the buffer is read by the CPU,  
the BF flag bit is automatically cleared. The user can  
then send an Acknowledge bit at the end of reception  
by setting the Acknowledge Sequence Enable, ACKEN  
bit of the SSPCON2 register.  
5. Address is shifted out the SDA pin until all 8 bits  
are transmitted. Transmission begins as soon  
as SSPBUF is written to.  
6. The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
ACKSTAT bit of the SSPCON2 register.  
7. The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
8. User sets the RCEN bit of the SSPCON2 register  
and the Master clocks in a byte from the slave.  
9. After the 8th falling edge of SCL, SSPIF and BF  
are set.  
10. Master clears SSPIF and reads the received  
byte from SSPUF, clears BF.  
22.6.7.1  
BF Status Flag  
In receive operation, the BF bit is set when an address  
or data byte is loaded into SSPBUF from SSPSR. It is  
cleared when the SSPBUF register is read.  
11. Master sets ACK value sent to slave in ACKDT  
bit of the SSPCON2 register and initiates the  
ACK by setting the ACKEN bit.  
22.6.7.2  
SSPOV Status Flag  
12. Masters ACK is clocked out to the Slave and  
SSPIF is set.  
In receive operation, the SSPOV bit is set when 8 bits  
are received into the SSPSR and the BF flag bit is  
already set from a previous reception.  
13. User clears SSPIF.  
14. Steps 8-13 are repeated for each received byte  
from the slave.  
22.6.7.3  
WCOL Status Flag  
15. Master sends a not ACK or Stop to end  
communication.  
If the user writes the SSPBUF when a receive is  
already in progress (i.e., SSPSR is still shifting in a data  
byte), the WCOL bit is set and the contents of the buffer  
are unchanged (the write doesn’t occur).  
DS41364A-page 312  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
2
FIGURE 22-26:  
I C MASTER MODE WAVEFORM (RECEPTION, 7-BIT ADDRESS)  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 313  
PIC16F193X/LF193X  
22.6.8  
ACKNOWLEDGE SEQUENCE  
TIMING  
22.6.9  
STOP CONDITION TIMING  
A Stop bit is asserted on the SDA pin at the end of a  
receive/transmit by setting the Stop Sequence Enable  
bit, PEN bit of the SSPCON2 register. At the end of a  
receive/transmit, the SCL line is held low after the  
falling edge of the ninth clock. When the PEN bit is set,  
the master will assert the SDA line low. When the SDA  
line is sampled low, the Baud Rate Generator is  
reloaded and counts down to ‘0’. When the Baud Rate  
Generator times out, the SCL pin will be brought high  
and one TBRG (Baud Rate Generator rollover count)  
later, the SDA pin will be deasserted. When the SDA  
pin is sampled high while SCL is high, the P bit of the  
SSPSTAT register is set. A TBRG later, the PEN bit is  
cleared and the SSPIF bit is set (Figure 22-27).  
An Acknowledge sequence is enabled by setting the  
Acknowledge Sequence Enable bit, ACKEN bit of the  
SSPCON2 register. When this bit is set, the SCL pin is  
pulled low and the contents of the Acknowledge data bit  
are presented on the SDA pin. If the user wishes to gen-  
erate an Acknowledge, then the ACKDT bit should be  
cleared. If not, the user should set the ACKDT bit before  
starting an Acknowledge sequence. The Baud Rate  
Generator then counts for one rollover period (TBRG)  
and the SCL pin is deasserted (pulled high). When the  
SCL pin is sampled high (clock arbitration), the Baud  
Rate Generator counts for TBRG. The SCL pin is then  
pulled low. Following this, the ACKEN bit is automatically  
cleared, the Baud Rate Generator is turned off and the  
MSSP module then goes into Idle mode (Figure 22-26).  
22.6.9.1  
WCOL Status Flag  
If the user writes the SSPBUF when a Stop sequence  
is in progress, then the WCOL bit is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
22.6.8.1  
WCOL Status Flag  
If the user writes the SSPBUF when an Acknowledge  
sequence is in progress, then WCOL is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
FIGURE 22-27:  
ACKNOWLEDGE SEQUENCE WAVEFORM  
Acknowledge sequence starts here,  
write to SSPCON2  
ACKEN automatically cleared  
ACKEN = 1, ACKDT = 0  
TBRG  
ACK  
TBRG  
SDA  
SCL  
D0  
8
9
SSPIF  
Cleared in  
SSPIF set at  
the end of receive  
software  
Cleared in  
software  
SSPIF set at the end  
of Acknowledge sequence  
Note: TBRG = one Baud Rate Generator period.  
FIGURE 22-28:  
STOP CONDITION RECEIVE OR TRANSMIT MODE  
SCL = 1for TBRG, followed by SDA = 1for TBRG  
after SDA sampled high. P bit (SSPSTAT<4>) is set.  
Write to SSPCON2,  
set PEN  
PEN bit (SSPCON2<2>) is cleared by  
hardware and the SSPIF bit is set  
Falling edge of  
9th clock  
TBRG  
SCL  
SDA  
ACK  
P
TBRG  
TBRG  
TBRG  
SCL brought high after TBRG  
SDA asserted low before rising edge of clock  
to setup Stop condition  
Note: TBRG = one Baud Rate Generator period.  
DS41364A-page 314  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
22.6.10 SLEEP OPERATION  
22.6.13 MULTI -MASTER COMMUNICATION,  
BUS COLLISION AND BUS  
While in Sleep mode, the I2C slave module can receive  
addresses or data and when an address match or  
complete byte transfer occurs, wake the processor  
from Sleep (if the MSSP interrupt is enabled).  
ARBITRATION  
Multi-Master mode support is achieved by bus arbitra-  
tion. When the master outputs address/data bits onto  
the SDA pin, arbitration takes place when the master  
outputs a ‘1’ on SDA, by letting SDA float high and  
another master asserts a ‘0’. When the SCL pin floats  
high, data should be stable. If the expected data on  
SDA is a ‘1’ and the data sampled on the SDA pin is ‘0’,  
then a bus collision has taken place. The master will set  
the Bus Collision Interrupt Flag, BCLIF and reset the  
I2C port to its Idle state (Figure 22-28).  
22.6.11 EFFECTS OF A RESET  
A Reset disables the MSSP module and terminates the  
current transfer.  
22.6.12 MULTI-MASTER MODE  
In Multi-Master mode, the interrupt generation on the  
detection of the Start and Stop conditions allows the  
determination of when the bus is free. The Stop (P) and  
Start (S) bits are cleared from a Reset or when the  
MSSP module is disabled. Control of the I2C bus may  
be taken when the P bit of the SSPSTAT register is set,  
or the bus is Idle, with both the S and P bits clear. When  
the bus is busy, enabling the SSP interrupt will gener-  
ate the interrupt when the Stop condition occurs.  
If a transmit was in progress when the bus collision  
occurred, the transmission is halted, the BF flag is  
cleared, the SDA and SCL lines are deasserted and the  
SSPBUF can be written to. When the user services the  
bus collision Interrupt Service Routine and if the I2C  
bus is free, the user can resume communication by  
asserting a Start condition.  
In multi-master operation, the SDA line must be  
monitored for arbitration to see if the signal level is the  
expected output level. This check is performed by  
hardware with the result placed in the BCLIF bit.  
If a Start, Repeated Start, Stop or Acknowledge condi-  
tion was in progress when the bus collision occurred, the  
condition is aborted, the SDA and SCL lines are deas-  
serted and the respective control bits in the SSPCON2  
register are cleared. When the user services the bus col-  
lision Interrupt Service Routine and if the I2C bus is free,  
the user can resume communication by asserting a Start  
condition.  
The states where arbitration can be lost are:  
• Address Transfer  
• Data Transfer  
• A Start Condition  
The master will continue to monitor the SDA and SCL  
pins. If a Stop condition occurs, the SSPIF bit will be set.  
• A Repeated Start Condition  
• An Acknowledge Condition  
A write to the SSPBUF will start the transmission of  
data at the first data bit, regardless of where the  
transmitter left off when the bus collision occurred.  
In Multi-Master mode, the interrupt generation on the  
detection of Start and Stop conditions allows the deter-  
mination of when the bus is free. Control of the I2C bus  
can be taken when the P bit is set in the SSPSTAT  
register, or the bus is Idle and the S and P bits are  
cleared.  
FIGURE 22-29:  
BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE  
Sample SDA. While SCL is high,  
data doesn’t match what is driven  
by the master.  
Data changes  
while SCL = 0  
SDA line pulled low  
by another source  
Bus collision has occurred.  
SDA released  
by master  
SDA  
SCL  
Set bus collision  
interrupt (BCLIF)  
BCLIF  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 315  
PIC16F193X/LF193X  
If the SDA pin is sampled low during this count, the  
BRG is reset and the SDA line is asserted early  
(Figure 22-31). If, however, a ‘1’ is sampled on the SDA  
pin, the SDA pin is asserted low at the end of the BRG  
count. The Baud Rate Generator is then reloaded and  
counts down to zero; if the SCL pin is sampled as ‘0’  
during this time, a bus collision does not occur. At the  
end of the BRG count, the SCL pin is asserted low.  
22.6.13.1 Bus Collision During a Start  
Condition  
During a Start condition, a bus collision occurs if:  
a) SDA or SCL are sampled low at the beginning of  
the Start condition (Figure 22-29).  
b) SCL is sampled low before SDA is asserted low  
(Figure 22-30).  
During a Start condition, both the SDA and the SCL  
pins are monitored.  
Note:  
The reason that bus collision is not a factor  
during a Start condition is that no two bus  
masters can assert a Start condition at the  
exact same time. Therefore, one master  
will always assert SDA before the other.  
This condition does not cause a bus colli-  
sion because the two masters must be  
allowed to arbitrate the first address fol-  
lowing the Start condition. If the address is  
the same, arbitration must be allowed to  
continue into the data portion, Repeated  
Start or Stop conditions.  
If the SDA pin is already low, or the SCL pin is already  
low, then all of the following occur:  
• the Start condition is aborted,  
• the BCLIF flag is set and  
the MSSP module is reset to its Idle state  
(Figure 22-29).  
The Start condition begins with the SDA and SCL pins  
deasserted. When the SDA pin is sampled high, the  
Baud Rate Generator is loaded and counts down. If the  
SCL pin is sampled low while SDA is high, a bus colli-  
sion occurs because it is assumed that another master  
is attempting to drive a data ‘1’ during the Start  
condition.  
FIGURE 22-30:  
BUS COLLISION DURING START CONDITION (SDA ONLY)  
SDA goes low before the SEN bit is set.  
Set BCLIF,  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
SDA  
SCL  
SEN  
Set SEN, enable Start  
condition if SDA = 1, SCL = 1  
SEN cleared automatically because of bus collision.  
SSP module reset into Idle state.  
SDA sampled low before  
Start condition. Set BCLIF.  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
BCLIF  
SSPIF and BCLIF are  
cleared by software  
S
SSPIF  
SSPIF and BCLIF are  
cleared by software  
DS41364A-page 316  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 22-31:  
BUS COLLISION DURING START CONDITION (SCL = 0)  
SDA = 0, SCL = 1  
TBRG  
TBRG  
SDA  
Set SEN, enable Start  
sequence if SDA = 1, SCL = 1  
SCL  
SEN  
SCL = 0before SDA = 0,  
bus collision occurs. Set BCLIF.  
SCL = 0before BRG time-out,  
bus collision occurs. Set BCLIF.  
BCLIF  
Interrupt cleared  
by software  
S
0’  
0’  
0’  
0’  
SSPIF  
FIGURE 22-32:  
BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION  
SDA = 0, SCL = 1  
Set S  
Set SSPIF  
Less than TBRG  
TBRG  
SDA pulled low by other master.  
Reset BRG and assert SDA.  
SDA  
SCL  
S
SCL pulled low after BRG  
time-out  
SEN  
Set SEN, enable Start  
sequence if SDA = 1, SCL = 1  
0’  
BCLIF  
S
SSPIF  
Interrupts cleared  
by software  
SDA = 0, SCL = 1,  
set SSPIF  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 317  
PIC16F193X/LF193X  
If SDA is low, a bus collision has occurred (i.e., another  
master is attempting to transmit a data ‘0’, Figure 22-32).  
If SDA is sampled high, the BRG is reloaded and begins  
counting. If SDA goes from high-to-low before the BRG  
times out, no bus collision occurs because no two  
masters can assert SDA at exactly the same time.  
22.6.13.2 Bus Collision During a Repeated  
Start Condition  
During a Repeated Start condition, a bus collision  
occurs if:  
a) A low level is sampled on SDA when SCL goes  
from low level to high level.  
If SCL goes from high-to-low before the BRG times out  
and SDA has not already been asserted, a bus collision  
occurs. In this case, another master is attempting to  
transmit a data ‘1’ during the Repeated Start condition,  
see Figure 22-33.  
b) SCL goes low before SDA is asserted low,  
indicating that another master is attempting to  
transmit a data ‘1’.  
When the user releases SDA and the pin is allowed to  
float high, the BRG is loaded with SSPADD and counts  
down to zero. The SCL pin is then deasserted and  
when sampled high, the SDA pin is sampled.  
If, at the end of the BRG time-out, both SCL and SDA  
are still high, the SDA pin is driven low and the BRG is  
reloaded and begins counting. At the end of the count,  
regardless of the status of the SCL pin, the SCL pin is  
driven low and the Repeated Start condition is  
complete.  
FIGURE 22-33:  
BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)  
SDA  
SCL  
Sample SDA when SCL goes high.  
If SDA = 0, set BCLIF and release SDA and SCL.  
RSEN  
BCLIF  
Cleared by software  
0’  
S
0’  
SSPIF  
FIGURE 22-34:  
BUS COLLISION DURING REPEATED START CONDITION (CASE 2)  
TBRG  
TBRG  
SDA  
SCL  
SCL goes low before SDA,  
BCLIF  
RSEN  
set BCLIF. Release SDA and SCL.  
Interrupt cleared  
by software  
0’  
S
SSPIF  
DS41364A-page 318  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
The Stop condition begins with SDA asserted low.  
When SDA is sampled low, the SCL pin is allowed to  
float. When the pin is sampled high (clock arbitration),  
the Baud Rate Generator is loaded with SSPADD and  
counts down to 0. After the BRG times out, SDA is  
sampled. If SDA is sampled low, a bus collision has  
occurred. This is due to another master attempting to  
drive a data ‘0’ (Figure 22-34). If the SCL pin is sampled  
low before SDA is allowed to float high, a bus collision  
occurs. This is another case of another master  
attempting to drive a data ‘0’ (Figure 22-35).  
22.6.13.3 Bus Collision During a Stop  
Condition  
Bus collision occurs during a Stop condition if:  
a) After the SDA pin has been deasserted and  
allowed to float high, SDA is sampled low after  
the BRG has timed out.  
b) After the SCL pin is deasserted, SCL is sampled  
low before SDA goes high.  
FIGURE 22-35:  
BUS COLLISION DURING A STOP CONDITION (CASE 1)  
SDA sampled  
low after TBRG,  
set BCLIF  
TBRG  
TBRG  
TBRG  
SDA  
SDA asserted low  
SCL  
PEN  
BCLIF  
P
0’  
0’  
SSPIF  
FIGURE 22-36:  
BUS COLLISION DURING A STOP CONDITION (CASE 2)  
TBRG  
TBRG  
TBRG  
SDA  
SCL goes low before SDA goes high,  
set BCLIF  
Assert SDA  
SCL  
PEN  
BCLIF  
P
0’  
0’  
SSPIF  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 319  
PIC16F193X/LF193X  
clock line. The logic dictating when the reload signal is  
asserted depends on the mode the MSSP is being  
operated in.  
22.7 BAUD RATE GENERATOR  
The MSSP module has a Baud Rate Generator avail-  
able for clock generation in both I2C and SPI Master  
modes. The Baud Rate Generator (BRG) reload value  
is placed in the SSPADD register (Register 22-6).  
When a write occurs to SSPBUF, the Baud Rate Gen-  
erator will automatically begin counting down.  
Table 22-3 demonstrates clock rates based on  
instruction cycles and the BRG value loaded into  
SSPADD.  
EQUATION 22-1:  
Once the given operation is complete, the internal clock  
will automatically stop counting and the clock pin will  
remain in its last state.  
FOSC  
FCLOCK = ----------------------------------------------  
(SSPADD + 1)(4)  
An internal signal “Reload” in Figure 22-36 triggers the  
value from SSPADD to be loaded into the BRG counter.  
This occurs twice for each oscillation of the module  
FIGURE 22-37:  
BAUD RATE GENERATOR BLOCK DIAGRAM  
SSPM<3:0>  
SSPADD<7:0>  
SSPM<3:0>  
SCL  
Reload  
Control  
Reload  
BRG Down Counter  
SSPCLK  
FOSC/2  
Note: Values of 0x00, 0x01 and 0x02 are not valid  
for SSPADD when used as a Baud Rate  
Generator for I2C. This is an implementation  
limitation.  
TABLE 22-3: MSSP CLOCK RATE W/BRG  
FCLOCK  
(2 Rollovers of BRG)  
FOSC  
FCY  
BRG Value  
32 MHz  
32 MHz  
32 MHz  
16 MHz  
16 MHz  
16 MHz  
4 MHz  
8 MHz  
8 MHz  
8 MHz  
4 MHz  
4 MHz  
4 MHz  
1 MHz  
1 MHz  
13h  
19h  
4Fh  
09h  
0Ch  
27h  
09h  
00h  
400 kHz(1)  
308 kHz  
100 kHz  
400 kHz(1)  
308 kHz  
100 kHz  
100 kHz  
250 kHz(2)  
4 MHz  
Note 1: The I2C interface does not conform to the 400 kHz I2C specification (which applies to rates greater than  
100 kHz) in all details, but may be used with care where higher rates are required by the application.  
2: SPI mode only.  
DS41364A-page 320  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
23.1 EEADRL and EEADRH Registers  
23.0 DATA EEPROM AND FLASH  
PROGRAM MEMORY  
CONTROL  
The EEADRL and EEADRH registers can address up  
to a maximum of 256 bytes of data EEPROM or up to a  
maximum of 32K words of program memory.  
The Data EEPROM and Flash program memory are  
readable and writable during normal operation (full VDD  
range). These memories are not directly mapped in the  
register file space. Instead, they are indirectly  
addressed through the Special Function Registers  
(SFRs). There are six SFRs used to access these  
memories:  
When selecting a program address value, the MSB of  
the address is written to the EEADRH register and the  
LSB is written to the EEADRL register. When selecting  
a EEPROM address value, only the LSB of the address  
is written to the EEADRL register.  
23.1.1  
EECON1 AND EECON2 REGISTERS  
• EECON1  
• EECON2  
• EEDATL  
• EEDATH  
• EEADRL  
• EEADRH  
EECON1 is the control register for EE memory  
accesses.  
Control bit EEPGD determines if the access will be a  
program or data memory access. When clear, any  
subsequent operations will operate on the EEPROM  
memory. When set, any subsequent operations will  
operate on the program memory. On Reset, EEPROM is  
selected by default.  
When interfacing the data memory block, EEDATL  
holds the 8-bit data for read/write, and EEADRL holds  
the address of the EEDATL location being accessed.  
These devices have 256 bytes of data EEPROM with  
an address range from 0h to 0FFh.  
Control bits RD and WR initiate read and write,  
respectively. These bits cannot be cleared, only set, in  
software. They are cleared in hardware at completion  
of the read or write operation. The inability to clear the  
WR bit in software prevents the accidental, premature  
termination of a write operation.  
When accessing the program memory block of the  
PIC16F1936/PIC16F1937 devices, the EEDATL and  
EEDATH registers form a 2-byte word that holds the  
14-bit data for read/write, and the EEADRL and  
EEADRH registers form a 2-byte word that holds the  
15-bit address of the program memory location being  
read.  
The WREN bit, when set, will allow a write operation to  
occur. On power-up, the WREN bit is clear. The  
WRERR bit is set when a write operation is interrupted  
by a Reset during normal operation. In these situations,  
following Reset, the user can check the WRERR bit  
and execute the appropriate error handling routine.  
The EEPROM data memory allows byte read and write.  
An EEPROM byte write automatically erases the loca-  
tion and writes the new data (erase before write).  
Interrupt flag bit EEIF of the PIR2 register is set when  
write is complete. It must be cleared in the software.  
The write time is controlled by an on-chip timer. The  
write/erase voltages are generated by an on-chip  
charge pump rated to operate over the voltage range of  
the device for byte or word operations.  
Reading EECON2 will read all ‘0’s. The EECON2 reg-  
ister is used exclusively in the data EEPROM write  
sequence. To enable writes, a specific pattern must be  
written to EECON2.  
Depending on the setting of the Flash Program  
Memory Self Write Enable bits WRT<1:0> of the  
Configuration Word Register 2, the device may or may  
not be able to write certain blocks of the program  
memory. However, reads from the program memory  
are always allowed.  
When the device is code-protected, the device  
programmer can no longer access data or program  
memory. When code-protected, the CPU may continue  
to read and write the data EEPROM memory and Flash  
program memory.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 321  
PIC16F193X/LF193X  
REGISTER 23-1: EEDATL: EEPROM DATA REGISTER  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
EEDATL7  
EEDATL6  
EEDATL5  
EEDATL4  
EEDATL3  
EEDATL2  
EEDATL1  
EEDATL0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-0  
EEDATL<7:0>: 8 Least Significant data bits of data EEPROM or Read from program memory  
REGISTER 23-2: EEDATH: EEPROM DATA HIGH BYTE REGISTER  
U-0  
U-0  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
EEDATH0  
bit 0  
EEDATH5  
EEDATH4  
EEDATH3  
EEDATH2  
EEDATH1  
bit 7  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
EEDATH<5:0>: 6 Most Significant Data bits from program memory  
REGISTER 23-3: EEADRL: EEPROM ADDRESS REGISTER  
R/W-0/0  
EEADR7  
R/W-0/0  
EEADR6  
R/W-0/0  
EEADR5  
R/W-0/0  
EEADR4  
R/W-0/0  
EEADR3  
R/W-0/0  
EEADR2  
R/W-0/0  
EEADR1  
R/W-0/0  
EEADR0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-0  
EEADRL<7:0>: 8 Least Significant Address bits for EEPROM or program memory  
REGISTER 23-4: EEADRH: EEPROM ADDRESS HIGH BYTE REGISTER  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
EEADRH0  
bit 0  
EEADRH6  
EEADRH5  
EEADRH4  
EEADRH3  
EEADRH2  
EEADRH1  
bit 7  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
Unimplemented: Read as ‘0’  
EEADRH<6:0>: Specifies the 7 Most Significant Address bits or high bits for program memory reads  
bit 6-0  
DS41364A-page 322  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
REGISTER 23-5: EECON1: EEPROM CONTROL 1 REGISTER  
R/W-0/0  
EEPGD  
R/W-0/0  
CFGS  
R/W-0/0  
LWLO  
R/W/HC-0/0  
FREE  
R/W-x/q  
WRERR  
R/W-0/0  
WREN  
R/S/HC-0/0 R/S/HC-0/0  
WR RD  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
S = Bit can only be set  
‘1’ = Bit is set  
-n/n = Value at POR and BOR/Value at all other Resets  
HC = bit is cleared by hardware  
bit 7  
bit 6  
bit 5  
EEPGD: Flash Program/Data EEPROM Memory Select bit  
1= Accesses program space Flash memory  
0= Accesses data EEPROM memory  
CFGS: Flash Program/Data EEPROM or Configuration Select bit  
1= Accesses Configuration, User ID and Device ID Registers  
0= Accesses Flash Program or data EEPROM Memory  
LWLO: Load Write Latches Only bit  
If EEPGD = 1or CFGS = 1: (accessing program Flash)  
1= The next WR command does not initiate a write to the PFM; only the program memory  
latches are updated.  
0= The next WR command writes a value from EEDATH:EEDATL into program memory latches  
and initiates a write to the PFM of all the data stored in the program memory latches.  
If EEPGD = 0and CFGS = 1: (Accessing data EEPROM)  
LWLO is ignored. The next WR command initiates a write to the data EEPROM.  
bit 4  
FREE: Program Flash Erase Enable bit  
If EEPGD = 1or CFGS = 1: (accessing program Flash)  
1= Perform an program Flash erase operation on the next WR command (cleared by hardware  
after completion of erase).  
0= Perform a program Flash write operation on the next WR command.  
If EEPGD = 0 and CFGS = 0: (Accessing data EEPROM)  
FREE is ignored. The next WR command will initiate both a erase cycle and a write cycle.  
bit 3  
WRERR: EEPROM Error Flag bit  
1= Condition could indicate an improper program or erase sequence attempt or termination (bit is set  
automatically on any set attempt (write ‘1’) of the WR bit.  
0= The program or erase operation completed normally.  
bit 2  
bit 1  
WREN: Program/Erase Enable bit  
1= Allows program/erase cycles  
0= Inhibits programming/erasing of program Flash and data EEPROM  
WR: Write Control bit  
1= Initiates a program Flash or data EEPROM program/erase operation.  
The operation is self-timed and the bit is cleared by hardware once operation is complete.  
The WR bit can only be set (not cleared) in software.  
0= Program/erase operation to the Flash or data EEPROM is complete and inactive.  
bit 0  
RD: Read Control bit  
1= Initiates an program Flash or data EEPROM read. Read takes one cycle. RD is cleared in  
hardware. The RD bit can only be set (not cleared) in software.  
0= Does not initiate a program Flash or data EEPROM data read.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 323  
PIC16F193X/LF193X  
REGISTER 23-6: EECON2: EEPROM CONTROL 2 REGISTER  
R-0/0  
R-0/0  
R-0/0  
R-0/0  
R-0/0  
R-0/0  
R-0/0  
R-0/0  
EEUNLK7  
EEUNLK6  
EEUNLK5  
EEUNLK4  
EEUNLK3  
EEUNLK2  
EEUNLK1  
EEUNLK0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
S = Bit can only be set  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
EEUNLK<7:0>: Data EEPROM Unlock Pattern bits  
To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the  
EECON1 register. The value written to this register is used to unlock the writes. There are specific  
timing requirements on these writes. Refer to Section 23.1.3 “Writing to the Data EEPROM  
Memory” for more information.  
DS41364A-page 324  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
23.1.2  
READING THE DATA EEPROM  
MEMORY  
23.1.3  
WRITING TO THE DATA EEPROM  
MEMORY  
To read a data memory location, the user must write the  
address to the EEADRL register, clear the EEPGD and  
CFGS control bits of the EECON1 register, and then  
set control bit RD. The data is available at the very next  
cycle, in the EEDATL register; therefore, it can be read  
in the next instruction. EEDATL will hold this value until  
another read or until it is written to by the user (during  
a write operation).  
To write an EEPROM data location, the user must first  
write the address to the EEADRL register and the data  
to the EEDATL register. Then the user must follow a  
specific sequence to initiate the write for each byte.  
The write will not initiate if the above sequence is not  
followed exactly (write 55h to EECON2, write AAh to  
EECON2, then set WR bit) for each byte. Interrupts  
should be disabled during this code segment.  
Additionally, the WREN bit in EECON1 must be set to  
enable write. This mechanism prevents accidental  
writes to data EEPROM due to errant (unexpected)  
code execution (i.e., lost programs). The user should  
keep the WREN bit clear at all times, except when  
updating EEPROM. The WREN bit is not cleared  
by hardware.  
EXAMPLE 23-1:  
DATA EEPROM READ  
BANKSELEEADRL  
;
MOVLW  
MOVWF  
DATA_EE_ADDR ;  
EEADRL  
;Data Memory  
;Address to read  
BCF  
BCF  
BSF  
MOVF  
BCF  
EECON1, CFGS ;Deselect Config space  
EECON1, EEPGD;Point to DATA memory  
EECON1, RD  
EEDATL, W  
;EE Read  
;W = EEDATL  
After a write sequence has been initiated, clearing the  
WREN bit will not affect this write cycle. The WR bit will  
be inhibited from being set unless the WREN bit is set.  
STATUS, RP1 ;Bank 0  
At the completion of the write cycle, the WR bit is  
cleared in hardware and the EE Write Complete  
Interrupt Flag bit (EEIF) is set. The user can either  
enable this interrupt or poll this bit. EEIF must be  
cleared by software.  
Note:  
Data EEPROM can be read regardless of  
the setting of the CPD bit.  
EXAMPLE 23-2:  
DATA EEPROM WRITE  
BANKSEL EEADRL  
;
;
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BCF  
DATA_EE_ADDR  
EEADRL  
DATA_EE_DATA  
EEDATL  
;Data Memory Address to write  
;
;Data Memory Value to write  
;Deselect Configuration space  
EECON1, CFGS  
BCF  
EECON1, EEPGD ;Point to DATA memory  
BSF  
EECON1, WREN  
;Enable writes  
BCF  
INTCON, GIE  
INTCON, GIE  
$-2  
55h  
EECON2  
AAh  
EECON2  
EECON1, WR  
;Disable INTs.  
;SEE AN576  
BTFSC  
GOTO  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
;
;Write 55h  
;
;Write AAh  
;Set WR bit to begin write  
BCF  
BTFSC  
GOTO  
EECON1, WREN  
EECON1, WR  
$-2  
;Disable writes  
;Wait for write to complete  
;Done  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 325  
PIC16F193X/LF193X  
EEDATL and EEDATH registers will hold this value until  
another read or until it is written to by the user.  
23.1.4  
READING THE FLASH PROGRAM  
MEMORY  
To read a program memory location, the user must:  
Note 1: The two instructions following a program  
memory read are required to be NOPs.  
This prevents the user from executing a  
two-cycle instruction on the next  
instruction after the RD bit is set.  
1. Write the Least and Most Significant address  
bits to the EEADRL and EEADRH registers.  
2. Clear the CFGS bit of the EECON1 register.  
3. Set the EEPGD control bit of the EECON1  
register.  
2: Data EEPROM can be read regardless of  
the setting of the CPD bit.  
4. Then, set control bit RD of the EECON1 register.  
Once the read control bit is set, the program memory  
Flash controller will use the second instruction cycle to  
read the data. This causes the second instruction  
immediately following the “BSF EECON1,RD” instruction  
to be ignored. The data is available in the very next cycle,  
in the EEDATL and EEDATH registers; therefore, it can  
be read as two bytes in the following instructions.  
EXAMPLE 23-3:  
FLASH PROGRAM READ  
BANKSELEEADRL  
;
;
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MS_PROG_EE_ADDR  
EEADRH  
LS_PROG_EE_ADDR  
EEADRL  
;MS Byte of Program Address to read  
;
;LS Byte of Program Address to read  
BANKSELEECON1  
;
BSF  
BSF  
EECON1, EEPGD  
EECON1, RD  
;Point to PROGRAM memory  
;EE Read  
;
;
;First instruction after BSF EECON1,RD executes normally  
NOP  
NOP  
;Any instructions here are ignored as program  
;memory is read in second cycle after BSF EECON1,RD  
BANKSELEEDATL  
;
MOVF  
EEDATL, W  
;W = LS Byte of Program Memory  
MOVWF  
MOVF  
MOVWF  
LOWPMBYTE  
EEDATH, W  
HIGHPMBYTE  
;
;W = MS Byte of Program EEDATL  
;
BCF STATUS, RP1  
;Bank 0  
DS41364A-page 326  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
EXAMPLE 23-4:  
FLASH PROGRAM MEMORY READ  
* This code block will read 1 word of program  
* memory at the memory address:  
PROG_ADDR_HI : PROG_ADDR_LO  
*
*
data will be returned in the variables;  
PROG_DATA_HI, PROG_DATA_LO  
BANKSEL EEADRL  
; Select Bank for EEPROM registers  
MOVLW  
MOVWF  
MOVLW  
MOVWL  
PROG_ADDR_LO  
EEADRL  
PROG_ADDR_HI  
EEADRH  
;
; Store LSB of address  
;
; Store MSB of address  
BCF  
BSF  
BCF  
BSF  
NOP  
NOP  
BSF  
EECON1,CFGS  
EECON1,EEPGD  
INTCON,GIE  
EECON1,RD  
; Select Configuration Space  
; Select Program Memory  
; Disable interrupts  
; Initiate read  
; Executed (Figure 23-1)  
; Ignored (Figure 23-1)  
; Restore interrupts  
INTCON,GIE  
MOVF  
EEDATL,W  
; Get LSB of word  
MOVWF  
MOVF  
PROG_DATA_LO  
EEDATH,W  
; Store in user location  
; Get MSB of word  
MOVWF  
PROG_DATA_HI  
; Store in user location  
FIGURE 23-1:  
FLASH PROGRAM MEMORY READ CYCLE EXECUTION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
PC + 1  
EEADRH,EEADRL  
PC + 3  
PC + 4  
PC + 5  
Flash ADDR  
Flash Data  
INSTR (PC)  
INSTR (PC + 1)  
EEDATH,EEDATL  
INSTR (PC + 3)  
INSTR (PC + 4)  
BSF EECON1,RD  
executed here  
INSTR(PC - 1)  
executed here  
INSTR(PC + 1)  
executed here  
Forced NOP  
executed here  
INSTR(PC + 3)  
executed here  
INSTR(PC + 4)  
executed here  
RD bit  
EEDATH  
EEDATL  
Register  
EERHLT  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 327  
PIC16F193X/LF193X  
Up to eight buffer register locations can be written to  
with correct data. If less than eight words are being writ-  
ten to in the block of eight words, then the data for the  
unprogrammed words should be set to all ones.  
23.2 Erasing Program Memory  
While executing code, program memory can only be  
erased by rows. A row consists of 32 words where the  
EEADRL<4:0> = 0000. To erase a row:  
After the “BSF EECON1,WR” instruction, the processor  
requires two cycles to set up the erase/write operation.  
The user must place two NOPinstructions after the WR  
bit is set. Since data is being written to buffer registers,  
the writing of the first seven words of the block appears  
to occur immediately. The processor will halt internal  
operations for the typical 2 ms, only during the cycle in  
which the erase takes place (i.e., the last word of the  
sixteen-word block erase). This is not Sleep mode as  
the clocks and peripherals will continue to run. After the  
eight-word write cycle, the processor will resume oper-  
ation with the third instruction after the EECON1 write  
instruction.  
1. Load the EEADRH and EEADRL registers with  
the address of new row to be erased.  
2. Clear the CFGS bit of the EECON1 register.  
3. Set the EEPGD bit of the EECON1 register.  
4. Set the FREE bit of the EECON1 register.  
5. Write 55h, then AAh, to EECON2 (Flash  
programming unlock sequence).  
6. Set control bit WR of the EECON1 register to  
begin the write operation.  
23.3 Writing to Flash Program Memory  
An example of the complete eight-word write sequence  
is shown in Example 23-5. The initial address is loaded  
into the EEADRH and EEADRL register pair; the eight  
words of data are loaded using indirect addressing.  
Before writing, program memory should be erased  
using the Erase Program Memory command.  
No automatic erase occurs upon the initiation of the  
write; if the program Flash needs to be erased before  
writing, the row (32 words) must be erased previously.  
Flash program memory may only be written to if the  
destination address is in a segment of memory that is  
not write-protected, as defined in bits WRT<1:0> of the  
Configuration Word Register 2. Flash program memory  
must be written in eight-word blocks. See Figure 23-2  
for more details. A block consists of eight words with  
sequential addresses, with a lower boundary defined  
by an address, where EEADRL<2:0> = 000. All block  
writes to program memory are done as 32-word erase  
by eight-word write operations. The write operation is  
edge-aligned and cannot occur across boundaries.  
When the LWLO bit is ‘1’, the write sequence will only  
load the buffer register and will not actually initiate the  
write to program Flash:  
1. Set the EEPGD, WREN and LWLO bits of the  
EECON1 register.  
2. Write 55h, then AAh, to EECON2 (Flash  
programming unlock sequence).  
3. Set control bit WR of the EECON1 register to  
begin the write operation.  
To write program data, it must first be loaded into the  
buffer registers (see Figure 23-1). This is accomplished  
by first writing the destination address to EEADRL and  
EEADRH and then writing the data to EEDATA and  
EEDATH. After the address and data have been set up,  
then the following sequence of events must be executed:  
1. Set the EEPGD control bit of the EECON1  
register.  
2. Set the LWLO bit of the EECON1 register.  
3. Write 55h, then AAh, to EECON2 (Flash  
programming sequence).  
4. Set the WR control bit of the EECON1 register.  
DS41364A-page 328  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 23-2:  
BLOCK WRITES TO 8K FLASH PROGRAM MEMORY  
7
5
0
0 7  
EEDATH  
6
EEDATA  
8
First word of block  
to be written  
14  
14  
14  
14  
EEADRL<2:0> = 000  
EEADRL<2:0> = 001  
Buffer Register  
EEADRL<2:0> = 010  
Buffer Register  
EEADRL<2:0> = 111  
Buffer Register  
Buffer Register  
Program Memory  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 329  
PIC16F193X/LF193X  
EXAMPLE 23-5:  
WRITING TO FLASH PROGRAM MEMORY  
; This write routine assumes the following:  
; 1. A valid starting address (the least significant bits = 00)is loaded in ADDRH:ADDRL  
; 2. The 8 bytes of data are loaded, starting at the address in DATADDR  
; 3. ADDRH, ADDRL and DATADDR are all located in shared data memory 0x70 - 0x7f  
;
BANKSELEEADRH  
; Bank 3  
MOVF  
MOVWF  
MOVF  
MOVWF  
MOVF  
MOVWF  
MOVF  
ADDRH,W  
EEADRH  
ADDRL,W  
EEADRL  
DATAADDRL,W  
FSR0L  
DATAADDRH,W  
FSR0H  
; Load initial address  
;
;
;
; Load initial data address  
;
; Load initial data address  
;
MOVWF  
LOOP  
MOVIW  
MOVWF  
MOVIW  
MOVWF  
BSF  
BCF  
BSF  
BSF  
INDF0++  
EEDATL  
INDF0++  
EEDATH  
EECON1,EEPGD  
EECON1,CFGS  
EECON1,WREN  
EECON1,LWLO  
; Load first data byte into lower  
;
; Load second data byte into upper  
;
; Point to program memory  
; Not configuration space  
; Enable writes  
; Only Load Write Latches  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
55h  
EECON2  
AAh  
EECON2  
EECON1,WR  
; Start of required write sequence:  
; Write 55h  
;
; Write AAh  
; Set WR bit to begin write  
NOP  
NOP  
; Any instructions here are ignored as processor  
; halts to begin write sequence  
; processor will stop here and wait for write complete  
; after write processor continues with 3rd instruction  
MOVF  
EEADR,W  
; Check if lower two bits of address are ‘00’  
XORLW  
ANDLW  
BTFSC  
GOTO  
0x08  
0x08  
STATUS,Z  
START_WRITE  
; Check if we’re on the last of 8 addresses  
;
; Exit if last of eight words,  
;
INCF  
GOTO  
EEADR,F  
LOOP  
; Still loading latches Increment address  
; Write next latches  
START_WRITE  
BCF  
EECON1,LWLO  
; No more Latches only; Actually start write  
MOVLW  
55h  
; Start of required write sequence:  
MOVWF  
MOVLW  
MOVWF  
BSF  
EECON2  
AAh  
EECON2  
EECON1,WR  
; Write 55h  
;
; Write AAh  
; Set WR bit to begin write  
NOP  
NOP  
BCF  
; Any instructions here are ignored as processor  
; halts to begin write sequence  
; processor will stop here and wait for write complete  
; after write processor continues with 3rd instruction  
; Disable writes  
EECON1,WREN  
DS41364A-page 330  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
When read access is initiated on an unallowed  
address, the EEDATH:EEDATL registers are cleared.  
23.4 Configuration Word and Device ID  
Access  
Writes can be disabled via the WRT Configuration bits.  
Refer to the Configuration Word 2 register.  
Instead of accessing program memory or EEPROM  
data memory, the User ID’s, Device ID/Revision ID and  
Configuration Words can be accessed when  
CFGS = 1. This is the region that would be pointed to  
by PC<15> = 1, but not all addresses are accessible.  
Different access may exist for reads and writes. Refer  
to Table 23-1.  
TABLE 23-1: PFM AND FUSE ACCESS VIA EECON1/EEDATH:EEDATL REGISTERS  
(WHEN CFGS = 1)  
Address  
Function  
Read Access  
Write Access  
8000h-8003h  
8006h  
User IDs  
Yes  
Yes  
Yes  
Yes  
No  
No  
Device ID/Revision ID  
Configuration Words 1 and 2  
8007h-8008h  
EXAMPLE 23-3: CONFIGURATION WORD AND DEVICE ID ACCESS  
* This code block will read 1 word of program  
* memory at the memory address:  
PROG_ADDR_HI : PROG_ADDR_LO  
*
*
data will be returned in the variables;  
PROG_DATA_HI, PROG_DATA_LO  
BANKSEL EEADRL  
; Select Bank 2  
MOVLW  
MOVWF  
MOVLW  
MOVWL  
PROG_ADDR_LO  
EEADRL  
PROG_ADDR_HI  
EEADRH  
;
; Store LSB of address  
;
; Store MSB of address  
BCF  
BSF  
BCF  
BSF  
NOP  
NOP  
BSF  
EECON1,CFGS  
EECON1,EEPGD  
INTCON,GIE  
EECON1,RD  
; Deselect Configuration Space  
; Select Program Memory  
; Disable interrupts  
; Initiate read  
; Executed (Figure 23-1)  
; Ignored (Figure 23-1)  
; Restore interrupts  
INTCON,GIE  
MOVF  
EEDATL,W  
; Get LSB of word  
MOVWF  
MOVF  
PROG_DATA_LO  
EEDATH,W  
; Store in user location  
; Get MSB of word  
MOVWF  
PROG_DATA_HI  
; Store in user location  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 331  
PIC16F193X/LF193X  
23.5 Write Verify  
23.6 Protection Against Spurious Write  
Depending on the application, good programming  
practice may dictate that the value written to the data  
EEPROM or program memory should be verified (see  
Example 23-6) to the desired value to be written.  
There are conditions when the user may not want to  
write to the data EEPROM memory. To protect against  
spurious EEPROM writes, various mechanisms have  
been built-in. On power-up, WREN is cleared. Also, the  
Power-up  
Timer  
(64 ms  
duration)  
prevents  
EEPROM write.  
EXAMPLE 23-6:  
WRITE VERIFY  
The write initiate sequence and the WREN bit together  
help prevent an accidental write during:  
BANKSELEEDATL  
;
MOVF  
EEDATL, W ;EEDATL not changed  
;from previous write  
• Brown-out  
BSF  
EECON1, RD ;YES, Read the  
;value written  
• Power Glitch  
XORWF  
BTFSS  
GOTO  
:
EEDATL, W  
;
• Software Malfunction  
STATUS, Z ;Is data the same  
WRITE_ERR ;No, handle error  
;Yes, continue  
23.7 Data EEPROM Operation During  
Code-Protect  
Data memory can be code-protected by programming  
the CPD bit in the Configuration Word Register 1  
(Register 10-1) to ‘0’.  
23.5.1  
USING THE DATA EEPROM  
The data EEPROM is  
a high-endurance, byte  
addressable array that has been optimized for the  
storage of frequently changing information (e.g.,  
program variables or other data that are updated often).  
When variables in one section change frequently, while  
variables in another section do not change, it is possible  
to exceed the total number of write cycles to the  
EEPROM (specification D124) without exceeding the  
When the data memory is code-protected, only the  
CPU is able to read and write data to the data  
EEPROM. It is recommended to code-protect the  
program memory when code-protecting data memory.  
This prevents anyone from replacing your program with  
a program that will access the contents of the data  
EEPROM.  
total number of write cycles to  
a single byte  
(specifications D120 and D120A). If this is the case,  
then a refresh of the array must be performed. For this  
reason, variables that change infrequently (such as  
constants, IDs, calibration, etc.) should be stored in  
Flash program memory.  
TABLE 23-2: SUMMARY OF REGISTERS ASSOCIATED WITH DATA EEPROM  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
EECON1 EEPGD  
CFGS  
LWLO  
FREE  
WRERR  
WREN  
WR  
RD  
323  
324*  
322  
322  
322  
322  
73  
EECON2 EEPROM Control Register 2 (not a physical register)  
EEADRL EEADRL7 EEADRL6 EEADRL5 EEADRL4 EEADRL3 EEADRL2 EEADRL1 EEADRL0  
EEADRH EEADRH6 EEADRH5 EEADRH4 EEADRH3 EEADRH2 EEADRH1 EEADRH0  
EEDATL EEDATL7 EEDATL6 EEDATL5 EEDATL4 EEDATL3 EEDATL2 EEDALT1 EEDATL0  
EEDATH  
INTCON  
PIE2  
EEDATH5 EEDATH4 EEDATH3 EEDATH2 EEDATH1 EEDATH0  
GIE  
PEIE  
C2IE  
C2IF  
TMR0IE  
C1IE  
INTE  
EEIE  
EEIF  
IOCIE  
BCLIE  
BCLIF  
TMR0IF  
LCDIE  
LCDIF  
INTF  
IOCIF  
CCP2IE  
CCP2IF  
OSFIE  
OSFIF  
75  
PIR2  
C1IF  
78  
Legend: x= unknown, u= unchanged, = unimplemented read as ‘0’, q= value depends upon condition.  
Shaded cells are not used by data EEPROM module.  
*
Page provides register information.  
DS41364A-page 332  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
address (0004h). In cases where the execution of the  
instruction following SLEEP is not desirable, the user  
should have a NOPafter the SLEEPinstruction.  
24.0 POWER-DOWN MODE (SLEEP)  
The Power-down mode is entered by executing a  
SLEEPinstruction.  
Note:  
If the global interrupts are disabled (GIE is  
cleared), but any interrupt source has both  
its interrupt enable bit and the correspond-  
ing interrupt flag bits set, the device will  
immediately wake-up from Sleep. The  
SLEEPinstruction is completely executed.  
If the Watchdog Timer is enabled:  
• WDT will be cleared but keeps running.  
• PD bit of the STATUS register is cleared.  
• TO bit of the STATUS register is set.  
• Oscillator driver is turned off.  
The WDT is cleared when the device wakes up from  
Sleep, regardless of the source of wake-up.  
• Timer1 oscillator is unaffected  
• I/O ports maintain the status they had before  
SLEEPwas executed (driving high, low or high-  
impedance).  
For lowest current consumption in this mode, all I/O  
pins should be either at VDD or VSS, with no external  
circuitry drawing current from the I/O pin. I/O pins that  
are high-impedance inputs should be pulled high or low  
externally to avoid switching currents caused by float-  
ing inputs. The T0CKI input should also be at VDD or  
VSS for lowest current consumption. The contribution  
from on-chip pull-ups on PORTB should be considered.  
Enabled Resets remain functional during Sleep.  
24.1 Wake-up from Sleep  
The device can wake-up from Sleep through one of the  
following events:  
1. External Reset input on MCLR pin, if enabled.  
2. BOR Reset, if enabled.  
3. Watchdog Timer wake-up (if WDT was  
enabled).  
4. Any external interrupt.  
5. Certain peripheral interrupts (see individual  
peripheral for more information).  
The first two events will cause a device Reset. The last  
three events are considered a continuation of program  
execution. The TO and PD bits in the STATUS register  
can be used to determine the cause of device Reset.  
The PD bit, which is set on power-up, is cleared when  
Sleep is invoked. TO bit is cleared if WDT wake-up  
occurred.  
Certain peripherals cannot generate interrupts since  
during Sleep, no on-chip clocks are present.  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is prefetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction, then branches to the interrupt  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 333  
PIC16F193X/LF193X  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
24.2 Wake-up Using Interrupts  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
• If the interrupt occurs before the execution of a  
SLEEPinstruction, the SLEEPinstruction will  
complete as a NOP. Therefore, the WDT and WDT  
prescaler and postscaler (if enabled) will not be  
cleared, the TO bit will not be set and the PD bit  
will not be cleared.  
• If the interrupt occurs during or after the  
execution of a SLEEPinstruction, the device will  
immediately wake-up from Sleep. The SLEEP  
instruction will be completely executed before the  
wake-up. Therefore, the WDT and WDT prescaler  
and postscaler (if enabled) will be cleared, the TO  
bit will be set and the PD bit will be cleared.  
FIGURE 24-1:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1(1)  
CLKOUT(4)  
INT pin  
(2)  
TOST  
INTF flag  
(INTCON reg.)  
Interrupt Latency(3)  
GIE bit  
(INTCON reg.)  
Processor in  
Sleep  
Instruction Flow  
PC  
PC  
PC + 1  
PC + 2  
PC + 2  
PC + 2  
0004h  
0005h  
Instruction  
Fetched  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = Sleep  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Sleep  
Inst(PC + 1)  
Inst(PC - 1)  
Inst(0004h)  
Note 1:  
XT, HS or LP Oscillator mode assumed.  
TOST = 1024 TOSC (drawing not to scale). This delay does not apply to EC and RC Oscillator modes.  
GIE = 1assumed. In this case after wake-up, the processor jumps to 0004h. If GIE = 0, execution will continue in-line.  
2:  
3:  
4:  
CLKOUT is not available in XT, HS, or LP Oscillator modes, but shown here for timing reference.  
TABLE 24-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE  
Register on  
Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IOCBF  
IOCBN  
IOCBP  
INTCON  
PIE1  
IOCBF7 IOCBF6 IOCBF5 IOCBF4 IOCBF3 IOCBF2 IOCBF1 IOCBF0  
IOCBN7 IOCBN6 IOCBN5 IOCBN4 IOCBN3 IOCBN2 IOCBN1 IOCBN0  
IOCBP7 IOCBP6 IOCBP5 IOCBP4 IOCBP3 IOCBP2 IOCBP1 IOCBP0  
104  
104  
104  
73  
GIE  
PEIE  
ADIE  
C2IE  
ADIF  
C2IE  
TMR0IE  
RCIE  
C1IE  
INTE  
TXIE  
EEIE  
TXIF  
EEIE  
IOCIE  
SSPIE  
BCLIE  
SSPIF  
BCLIE  
TMR0IF  
CCP1IE TMR2IE TMR1IE  
LCDIE CCP2IE  
CCP1IF TMR2IF TMR1IF  
LCDIE CCP2IE  
INTF  
IOCIF  
TMR1GIE  
OSFIE  
74  
PIE2  
75  
PIR1  
TMR1GIF  
OSFIE  
RCIF  
77  
PIR2  
C1IE  
78  
Legend: x= unknown, u= unchanged, = unimplemented, read as ‘0’. Shaded cells are not used in Power-down  
mode.  
DS41364A-page 334  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
25.0 IN-CIRCUIT SERIAL  
PROGRAMMING™ (ICSP™)  
Note:  
The ICD 2 produces a VPP voltage greater  
than the maximum VPP specification of the  
PIC16F193X/LF193X. When using this  
programmer, an external circuit is required  
to keep the VPP voltage within the device  
specifications.  
ICSP™ programming allows customers to manufacture  
circuit boards with unprogrammed devices. Programming  
can be done after the assembly process allowing the  
device to be programmed with the most recent firmware  
or a custom firmware. Five pins are needed for ICSP™  
programming:  
• ICSPCLK  
• ICSPDAT  
• MCLR/VPP  
• VDD  
25.2 Low-Voltage Programming Mode  
The Low-Voltage Programming mode allows the  
PIC16F193X/LF193X devices to be programmed using  
VDD only, without high voltage. When the LVP bit of the  
Configuration Word 2 register is set to ‘1’, the  
low-voltage ICSP programming entry is enabled. To  
disable the Low-Voltage ICSP mode, the LVP bit must  
be programmed to ‘0’.  
• VSS  
In Program/Verify mode the Program Memory, User  
IDs and the Configuration Words are programmed  
through serial communications. The ICSPDAT pin is a  
bidirectional I/O used for transferring the serial data  
and the ICSPCLK pin is the clock input. For more infor-  
Entry into the Low-Voltage ICSP Program/Verify modes  
requires the following steps:  
mation  
on  
ICSP™  
refer  
to  
the  
1. MCLR is brought to VIL.  
PIC16193X/PIC16LF193X Memory Programming  
Specification” (DS41360A)  
2.  
A
32-bit key sequence is presented on  
ICSPDAT, while clocking ICSPCLK.  
Once the key sequence is complete, MCLR must be  
held at VIL for as long as Program/Verify mode is to be  
maintained.  
25.1 High-voltage Programming Mode  
The device is placed into high-voltage Program/Verify  
mode by holding the ICSPCLK and ICSPDAT pins low  
then raising the voltage on MCLR/VPP to VIHH.  
FIGURE 25-1:  
TYPICAL CONNECTION FOR ICSP™ PROGRAMMING  
External  
Programming  
Signals  
Device to be  
Programmed  
VDD  
VDD  
VDD  
10k  
VPP  
VSS  
MCLR/VPP  
VSS  
Data  
ICSPDAT  
ICSPCLK  
Clock  
*
*
*
To Normal Connections  
Isolation devices (as required).  
*
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 335  
PIC16F193X/LF193X  
NOTES:  
DS41364A-page 336  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
26.1 Read-Modify-Write Operations  
26.0 INSTRUCTION SET SUMMARY  
Any instruction that specifies a file register as part of  
the instruction performs a Read-Modify-Write (R-M-W)  
operation. The register is read, the data is modified,  
and the result is stored according to either the instruc-  
tion, or the destination designator ‘d’. A read operation  
is performed on a register even if the instruction writes  
to that register.  
Each PIC16 instruction is a 14-bit word containing the  
operation code (opcode) and all required operands.  
The opcodes are broken into three broad categories.  
• Byte Oriented  
• Bit Oriented  
• Literal and Control  
The literal and control category contains the most var-  
ied instruction word format.  
TABLE 26-1: OPCODE FIELD  
DESCRIPTIONS  
Table 26-3 lists the instructions recognized by the  
MPASMTM assembler.  
Field  
Description  
All instructions are executed within a single instruction  
cycle, with the following exceptions, which may take  
two or three cycles:  
f
W
b
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
Bit address within an 8-bit file register  
Literal field, constant data or label  
• Subroutine takes two cycles (CALL, CALLW)  
• Returns from interrupts or subroutines take two  
cycles (RETURN, RETLW, RETFIE)  
k
x
Don’t care location (= 0or 1).  
• Program branching takes two cycles (GOTO, BRA,  
BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)  
• One additional instruction cycle will be used when  
any instruction references an indirect file register  
and the MSb of the appropriate file select register  
is set.  
The assembler will generate code with x = 0.  
It is the recommended form of use for  
compatibility with all Microchip software tools.  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1.  
One instruction cycle consists of 4 oscillator cycles; for  
an oscillator frequency of 4 MHz, this gives a nominal  
instruction execution rate of 1 MHz.  
n
FSR or INDF number. (0-1)  
mm  
Pre-post increment-decrement mode  
selection  
All instruction examples use the format ‘0xhh’ to  
represent a hexadecimal number, where ‘h’ signifies a  
hexadecimal digit.  
TABLE 26-2: ABBREVIATION  
DESCRIPTIONS  
Field  
Description  
PC  
TO  
C
Program Counter  
Time-out bit  
Carry bit  
DC  
Z
Digit carry bit  
Zero bit  
PD  
Power-down bit  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 337  
PIC16F193X/LF193X  
FIGURE 26-1:  
GENERAL FORMAT FOR  
INSTRUCTIONS  
Byte-oriented file register operations  
13  
8
7
6
0
OPCODE  
d
f (FILE #)  
d = 0for destination W  
d = 1for destination f  
f = 7-bit file register address  
Bit-oriented file register operations  
13 10 9  
7 6  
0
OPCODE  
b (BIT #)  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
Literal and control operations  
General  
13  
8
7
0
OPCODE  
k (literal)  
k = 8-bit immediate value  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
0
k (literal)  
k = 11-bit immediate value  
MOVLPinstruction only  
13  
7
6
0
0
OPCODE  
k (literal)  
k = 7-bit immediate value  
MOVLBinstruction only  
13  
5 4  
OPCODE  
k (literal)  
k = 5-bit immediate value  
BRAinstruction only  
13  
9
8
0
OPCODE  
k (literal)  
k = 9-bit immediate value  
FSR Offset instructions  
13  
7
6
5
0
0
OPCODE  
n
k (literal)  
n = appropriate FSR  
k = 6-bit immediate value  
FSRIncrement instructions  
13  
3
2
n
1
OPCODE  
m (mode)  
n = appropriate FSR  
m = 2-bit mode value  
OPCODE only  
13  
0
OPCODE  
DS41364A-page 338  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
TABLE 26-3: PIC16F193X/LF193X ENHANCED INSTRUCTION SET  
14-Bit Opcode  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ADDWFC f, d  
ANDWF  
ASRF  
LSLF  
f, d  
Add W and f  
Add with Carry W and f  
AND W with f  
Arithmetic Right Shift  
Logical Left Shift  
Logical Right Shift  
Clear f  
Clear W  
Complement f  
Decrement f  
Increment f  
Inclusive OR W with f  
Move f  
Move W to f  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Subtract with Borrow W from f  
Swap nibbles in f  
Exclusive OR W with f  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
00 0111 dfff ffff C, DC, Z  
11 1101 dfff ffff C, DC, Z  
00 0101 dfff ffff Z  
11 0111 dfff ffff C, Z  
11 0101 dfff ffff C, Z  
11 0110 dfff ffff C, Z  
2
2
2
2
2
2
2
f, d  
f, d  
f, d  
f, d  
f
LSRF  
CLRF  
CLRW  
COMF  
DECF  
INCF  
IORWF  
MOVF  
MOVWF  
RLF  
RRF  
SUBWF  
SUBWFB f, d  
SWAPF  
XORWF  
00 0001 lfff ffff  
00 0001 0000 00xx  
00 1001 dfff ffff  
00 0011 dfff ffff  
00 1010 dfff ffff  
00 0100 dfff ffff  
00 1000 dfff ffff  
00 0000 1fff ffff  
00 1101 dfff ffff  
00 1100 dfff ffff  
Z
Z
Z
Z
Z
Z
Z
f, d  
f, d  
f, d  
f, d  
f, d  
f
f, d  
f, d  
f, d  
2
2
2
2
2
2
2
2
2
2
2
2
C
C
00 0010 dfff ffff C, DC, Z  
11 1011 dfff ffff C, DC, Z  
00 1110 dfff ffff  
f, d  
f, d  
00 0110 dfff ffff  
Z
BYTE ORIENTED SKIP OPERATIONS  
f, d  
f, d  
Decrement f, Skip if 0  
Increment f, Skip if 0  
1(2)  
1(2)  
00  
00  
1011 dfff ffff  
1111 dfff ffff  
1, 2  
1, 2  
DECFSZ  
INCFSZ  
BIT-ORIENTED FILE REGISTER OPERATIONS  
f, b  
f, b  
Bit Clear f  
Bit Set f  
1
1
01  
01  
00bb bfff ffff  
01bb bfff ffff  
2
2
BCF  
BSF  
BIT-ORIENTED SKIP OPERATIONS  
BTFSC  
BTFSS  
f, b  
f, b  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1 (2)  
1 (2)  
01  
01  
10bb bfff ffff  
11bb bfff ffff  
1, 2  
1, 2  
LITERAL OPERATIONS  
ADDLW  
ANDLW  
IORLW  
MOVLB  
MOVLP  
MOVLW  
SUBLW  
XORLW  
k
k
k
k
k
k
k
k
Add literal and W  
AND literal with W  
Inclusive OR literal with W  
Move literal to BSR  
Move literal to PCLATH  
Move literal to W  
1
1
1
1
1
1
1
1
11  
11  
11  
00  
11  
11  
11  
11  
1110 kkkk kkkk C, DC, Z  
1001 kkkk kkkk  
1000 kkkk kkkk  
0000 001k kkkk  
0001 1kkk kkkk  
0000 kkkk kkkk  
Z
Z
Subtract W from literal  
Exclusive OR literal with W  
1100 kkkk kkkk C, DC, Z  
1010 kkkk kkkk  
Z
Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle  
is executed as a NOP.  
2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one  
additional instruction cycle.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 339  
PIC16F193X/LF193X  
TABLE 26-3: PIC16F193X/LF193X ENHANCED INSTRUCTION SET (CONTINUED)  
14-Bit Opcode  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
CONTROL OPERATIONS  
BRA  
BRW  
CALL  
CALLW  
GOTO  
RETFIE  
RETLW  
RETURN  
k
k
k
k
k
Relative Branch  
Relative Branch with W  
Call Subroutine  
Call Subroutine with W  
Go to address  
Return from interrupt  
Return with literal in W  
Return from Subroutine  
2
2
2
2
2
2
2
2
11  
00  
10  
00  
10  
00  
11  
00  
001k kkkk kkkk  
0000 0000 1011  
0kkk kkkk kkkk  
0000 0000 1010  
1kkk kkkk kkkk  
0000 0000 1001  
0100 kkkk kkkk  
0000 0000 1000  
INHERENT OPERATIONS  
CLRWDT  
NOP  
OPTION  
RESET  
SLEEP  
TRIS  
f
Clear Watchdog Timer  
No Operation  
Load OPTION_REG register with W  
Software device Reset  
Go into Standby mode  
Load TRIS register with W  
1
1
1
1
1
1
00  
00  
00  
00  
00  
00  
0000 0110 0100 TO, PD  
0000 0000 0000  
0000 0110 0010  
0000 0000 0001  
0000 0110 0011 TO, PD  
0000 0110 01kk  
C-COMPILER OPTIMIZED  
ADDFSR n, k  
Add Literal to FSRn  
1
11 0001 0nkk kkkk  
00 0000 0001 0mmn  
00 0000 0001 0nmm  
11 1111 0nkk kkkk  
00 0000 0001 1mmn  
00 0000 0001 1nmm  
11 1111 1nkk kkkk  
MOVIW  
mm n  
Move INDFn to W, with pre/post inc/dec  
Move INDFn to W, with pre/post inc/dec  
Move INDFn to W, Indexed Indirect.  
Move W to INDFn, with pre/post inc/dec  
Move W to INDFn, with pre/post inc/dec  
Move W to INDFn, Indexed Indirect.  
1
1
1
1
1
1
Z
Z
Z
2
n mm  
k[n]  
2
2
2
2
2
MOVWI  
mm n  
n mm  
k[n]  
Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle  
is executed as a NOP.  
2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require  
one additional instruction cycle.  
DS41364A-page 340  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
26.2 Instruction Descriptions  
ADDFSR  
Add Literal to FSRn  
ANDLW  
AND literal with W  
Syntax:  
[ label ] ADDFSR n, k  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Operands:  
-32 k 31  
n [ 0, 1]  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .AND. (k) (W)  
Operation:  
FSR(n) + k FSR(n)  
Z
Status Affected:  
Description:  
None  
The contents of W register are  
AND’ed with the eight-bit literal ‘k’.  
The result is placed in the W register.  
The signed 6-bit literal ‘k’ is added to  
the contents of the FSRnH:FSRnL  
register pair.  
FSRn is limited to the range 0000h -  
FFFFh. Moving beyond these bounds  
will cause the FSR to wrap around.  
ANDWF  
AND W with f  
ADDLW  
Add literal and W  
Syntax:  
[ label ] ANDWF f,d  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Operands:  
0 f 127  
d ∈ [0,1]  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) + k (W)  
C, DC, Z  
Operation:  
(W) .AND. (f) (destination)  
Status Affected:  
Description:  
Z
The contents of the W register are  
added to the eight-bit literal ‘k’ and the  
result is placed in the W register.  
AND the W register with register ‘f’. If  
‘d’ is ‘0’, the result is stored in the W  
register. If ‘d’ is ‘1’, the result is stored  
back in register ‘f’.  
ASRF  
Arithmetic Right Shift  
ADDWF  
Add W and f  
Syntax:  
[ label ] ASRF f {,d}  
Syntax:  
[ label ] ADDWF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d ∈ [0,1]  
Operation:  
(f<7>)dest<7>  
(f<7:1>) dest<6:0>,  
(f<0>) C,  
Operation:  
(W) + (f) (destination)  
Status Affected:  
Description:  
C, DC, Z  
Add the contents of the W register  
with register ‘f’. If ‘d’ is ‘0’, the result is  
stored in the W register. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’.  
Status Affected:  
Description:  
C, Z  
The contents of register ‘f’ are shifted  
one bit to the right through the Carry  
flag. The MSb remains unchanged. If  
‘d’ is ‘0’, the result is placed in W. If ‘d’  
is ‘1’, the result is stored back in reg-  
ister ‘f’.  
ADDWFC  
ADD W and CARRY bit to f  
C
register f  
Syntax:  
[ label ] ADDWFC  
f {,d}  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(W) + (f) + (C) dest  
Status Affected:  
Description:  
C, DC, Z  
Add W, the Carry flag and data mem-  
ory location ‘f’. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed in data memory location ‘f’.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 341  
PIC16F193X/LF193X  
BTFSC  
Bit Test f, Skip if Clear  
BCF  
Bit Clear f  
Syntax:  
[ label ] BTFSC f,b  
Syntax:  
[ label ] BCF f,b  
Operands:  
0 f 127  
0 b 7  
Operands:  
0 f 127  
0 b 7  
Operation:  
skip if (f<b>) = 0  
Operation:  
0(f<b>)  
Status Affected:  
Description:  
None  
Status Affected:  
Description:  
None  
If bit ‘b’ in register ‘f’ is ‘1’, the next  
instruction is executed.  
Bit ‘b’ in register ‘f’ is cleared.  
If bit ‘b’, in register ‘f’, is ‘0’, the next  
instruction is discarded, and a NOPis  
executed instead, making this a  
2-cycle instruction.  
BTFSS  
Bit Test f, Skip if Set  
BRA  
Relative Branch  
Syntax:  
[ label ] BTFSS f,b  
Syntax:  
[ label ] BRA  
-256 k 255  
(PC) + k PC  
None  
k
Operands:  
0 f 127  
0 b < 7  
Operands:  
Operation:  
Status Affected:  
Description:  
Operation:  
skip if (f<b>) = 1  
Status Affected:  
Description:  
None  
Add the signed 9-bit literal ‘k’ to the  
PC. Since the PC will have incre-  
mented to fetch the next instruction,  
the new address will be PC + 1 + k.  
This instruction is a two-cycle instruc-  
tion.  
If bit ‘b’ in register ‘f’ is ‘0’, the next  
instruction is executed.  
If bit ‘b’ is ‘1’, then the next  
instruction is discarded and a NOPis  
executed instead, making this a  
2-cycle instruction.  
BRW  
Relative Branch with W  
Syntax:  
[ label ] BRW  
None  
Operands:  
Operation:  
Status Affected:  
Description:  
(PC) + (W) PC  
None  
Add the contents of W (unsigned) to  
the PC. Since the PC will have incre-  
mented to fetch the next instruction,  
the new address will be PC + 1 + (W).  
This instruction is a two-cycle instruc-  
tion.  
BSF  
Bit Set f  
Syntax:  
[ label ] BSF f,b  
Operands:  
0 f 127  
0 b 7  
Operation:  
1(f<b>)  
Status Affected:  
Description:  
None  
Bit ‘b’ in register ‘f’ is set.  
DS41364A-page 342  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
CALL  
Call Subroutine  
CLRWDT  
Clear Watchdog Timer  
Syntax:  
[ label ] CALL  
0 k 2047  
k
Syntax:  
[ label ] CLRWDT  
Operands:  
Operation:  
Operands:  
Operation:  
None  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
00h WDT  
0WDT prescaler,  
1TO  
1PD  
Status Affected:  
Description:  
None  
Status Affected:  
Description:  
TO, PD  
Call Subroutine. First, return address  
(PC + 1) is pushed onto the stack.  
The eleven-bit immediate address is  
loaded into PC bits <10:0>. The upper  
bits of the PC are loaded from  
PCLATH. CALLis a two-cycle instruc-  
tion.  
CLRWDTinstruction resets the Watch-  
dog Timer. It also resets the prescaler  
of the WDT.  
Status bits TO and PD are set.  
COMF  
Complement f  
CALLW  
Subroutine Call With W  
Syntax:  
[ label ] COMF f,d  
Syntax:  
[ label ] CALLW  
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
None  
(PC) +1 TOS,  
(W) PC<7:0>,  
Operation:  
(f) (destination)  
(PCLATH<6:0>) PC<14:8>  
Status Affected:  
Description:  
Z
The contents of register ‘f’ are com-  
plemented. If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
Status Affected:  
Description:  
None  
Subroutine call with W. First, the  
return address (PC + 1) is pushed  
onto the return stack. Then, the con-  
tents of W is loaded into PC<7:0>,  
and the contents of PCLATH into  
PC<14:8>. CALLWis a two-cycle  
instruction.  
DECF  
Decrement f  
CLRF  
Clear f  
Syntax:  
[ label ] DECF f,d  
Syntax:  
[ label ] CLRF  
0 f 127  
f
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
00h (f)  
1Z  
Operation:  
(f) - 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Decrement register ‘f’. If ‘d’ is ‘0’, the  
result is stored in the W  
The contents of register ‘f’ are cleared  
and the Z bit is set.  
register. If ‘d’ is ‘1’, the result is stored  
back in register ‘f’.  
CLRW  
Clear W  
Syntax:  
[ label ] CLRW  
Operands:  
Operation:  
None  
00h (W)  
1Z  
Status Affected:  
Description:  
Z
W register is cleared. Zero bit (Z) is  
set.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 343  
PIC16F193X/LF193X  
DECFSZ  
Decrement f, Skip if 0  
INCFSZ  
Increment f, Skip if 0  
Syntax:  
[ label ] DECFSZ f,d  
Syntax:  
[ label ] INCFSZ f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) - 1 (destination);  
skip if result = 0  
Operation:  
(f) + 1 (destination),  
skip if result = 0  
Status Affected:  
Description:  
None  
Status Affected:  
Description:  
None  
The contents of register ‘f’ are decre-  
mented. If ‘d’ is ‘0’, the result is placed  
in the W register. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’.  
The contents of register ‘f’ are incre-  
mented. If ‘d’ is ‘0’, the result is placed  
in the W register. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’.  
If the result is ‘1’, the next instruction is  
executed. If the result is ‘0’, then a  
NOPis executed instead, making it a  
2-cycle instruction.  
If the result is ‘1’, the next instruction is  
executed. If the result is ‘0’, a NOPis  
executed instead, making it a 2-cycle  
instruction.  
GOTO  
Unconditional Branch  
IORLW  
Inclusive OR literal with W  
Syntax:  
[ label ] GOTO  
0 k 2047  
k
Syntax:  
[ label ] IORLW  
0 k 255  
(W) .OR. k (W)  
Z
k
Operands:  
Operation:  
Operands:  
Operation:  
Status Affected:  
Description:  
k PC<10:0>  
PCLATH<4:3> PC<12:11>  
Status Affected:  
Description:  
None  
The contents of the W register are  
OR’ed with the eight-bit literal ‘k’. The  
result is placed in the W register.  
GOTOis an unconditional branch. The  
eleven-bit immediate value is loaded  
into PC bits <10:0>. The upper bits of  
PC are loaded from PCLATH<4:3>.  
GOTOis a two-cycle instruction.  
INCF  
Increment f  
IORWF  
Inclusive OR W with f  
Syntax:  
[ label ] INCF f,d  
Syntax:  
[ label ] IORWF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) + 1 (destination)  
Operation:  
(W) .OR. (f) (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
The contents of register ‘f’ are incre-  
mented. If ‘d’ is ‘0’, the result is placed  
in the W register. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’.  
Inclusive OR the W register with regis-  
ter ‘f’. If ‘d’ is ‘0’, the result is placed in  
the W register. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’.  
DS41364A-page 344  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
LSLF  
Logical Left Shift  
MOVF  
Move f  
Syntax:  
[ label ] LSLF f {,d}  
Syntax:  
[ label ] MOVF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f<7>) C  
Operation:  
(f) (dest)  
(f<6:0>) dest<7:1>  
0 dest<0>  
Status Affected:  
Description:  
Z
The contents of register f is moved to  
a destination dependent upon the  
status of d. If d = 0,  
destination is W register. If d = 1, the  
destination is file register f itself. d = 1  
is useful to test a file register since  
status flag Z is affected.  
Status Affected:  
Description:  
C, Z  
The contents of register ‘f’ are shifted  
one bit to the left through the Carry flag.  
A ‘0’ is shifted into the LSb. If ‘d’ is ‘0’,  
the result is placed in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’.  
Words:  
1
1
C
register f  
0
Cycles:  
Example:  
MOVF  
FSR, 0  
After Instruction  
LSRF  
Logical Right Shift  
W
Z
=
=
value in FSR register  
1
Syntax:  
[ label ] LSLF f {,d}  
Operands:  
0 f 127  
d [0,1]  
Operation:  
0 dest<7>  
(f<7:1>) dest<6:0>,  
(f<0>) C,  
Status Affected:  
Description:  
C, Z  
The contents of register ‘f’ are shifted  
one bit to the right through the Carry  
flag. A ‘0’ is shifted into the MSb. If ‘d’ is  
0’, the result is placed in W. If ‘d’ is ‘1’,  
the result is stored back in register ‘f’.  
0
C
register f  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 345  
PIC16F193X/LF193X  
MOVIW  
Move INDFn to W  
MOVLP  
Move literal to PCLATH  
Syntax:  
[ label ] MOVIW ++INDFn  
[ label ] MOVIW --INDFn  
[ label ] MOVIW INDFn++  
[ label ] MOVIW INDFn--  
[ label ] MOVIW [k]INDFn  
[ label ] MOVIW INDFn  
Syntax:  
[ label ] MOVLP  
0 k 127  
k PCLATH  
None  
k
Operands:  
Operation:  
Status Affected:  
Description:  
The seven-bit literal ‘k’ is loaded into the  
PCLATH register.  
Operands:  
Operation:  
n [0,1]  
mm [00, 01, 10, 11].  
-32 k 31  
If not present, k = 0.  
MOVLW  
Move literal to W  
INDFn W  
Effective address is determined by  
Syntax:  
[ label ] MOVLW  
0 k 255  
k (W)  
k
FSR + 1 (preincrement)  
FSR - 1 (predecrement)  
FSR + k (relative offset)  
Operands:  
Operation:  
Status Affected:  
Description:  
None  
After the Move, the FSR value will be  
either:  
The eight-bit literal ‘k’ is loaded into W  
register. The “don’t cares” will assem-  
ble as ‘0’s.  
FSR + 1 (all increments)  
FSR - 1 (all decrements)  
Unchanged  
Words:  
1
1
Status Affected:  
Z
Cycles:  
Example:  
MOVLW  
0x5A  
mm  
00  
01  
10  
11  
Mode  
Syntax  
After Instruction  
Preincrement  
Predecrement  
Postincrement  
Postdecrement  
++INDFn  
--INDFn  
INDFn++  
INDFn--  
W
=
0x5A  
MOVWF  
Move W to f  
[ label ] MOVWF  
0 f 127  
(W) (f)  
Syntax:  
f
Operands:  
Operation:  
Status Affected:  
Description:  
Description:  
This instruction is used to move data  
between W and one of the indirect  
registers (INDFn). Before/after this  
move, the pointer (FSRn) is updated by  
pre/post incrementing/decrementing it.  
None  
Move data from W register to register  
‘f’.  
Words:  
1
1
FSRn is limited to the range 0000h -  
FFFFh. Incrementing/decrementing it  
beyond these bounds will cause it to wrap  
around.  
Cycles:  
Example:  
MOVWF  
Before Instruction  
OPTION =  
OPTION  
0xFF  
0x4F  
The increment/decrement operation on  
FSRn WILL NOT affect any Status bits.  
W
=
After Instruction  
OPTION =  
0x4F  
0x4F  
W
=
MOVLB  
Move literal to BSR  
Syntax:  
[ label ] MOVLB  
0 k 15  
k BSR  
None  
k
Operands:  
Operation:  
Status Affected:  
Description:  
The five-bit literal ‘k’ is loaded into the  
Bank Select Register (BSR).  
DS41364A-page 346  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
MOVWI  
Move W to INDFn  
NOP  
No Operation  
Syntax:  
[ label ] MOVWI ++INDFn  
[ label ] MOVWI --INDFn  
[ label ] MOVWI INDFn++  
[ label ] MOVWI INDFn--  
[ label ] MOVWI [k]INDFn  
[ label ] MOVWI INDFn  
Syntax:  
[ label ] NOP  
Operands:  
Operation:  
Status Affected:  
Description:  
Words:  
None  
No operation  
None  
No operation.  
Operands:  
Operation:  
n [0,1]  
mm [00, 01, 10, 11].  
-32 k 31  
1
Cycles:  
1
If not present, k = 0.  
Example:  
NOP  
W INDFn  
Effective address is determined by  
FSR + 1 (preincrement)  
FSR - 1 (predecrement)  
FSR + k (relative offset)  
Load OPTION_REG Register  
with W  
OPTION  
After the Move, the FSR value will be  
either:  
Syntax:  
[ label ] OPTION  
None  
FSR + 1 (all increments)  
FSR - 1 (all decrements)  
Operands:  
Operation:  
Status Affected:  
Description:  
Unchanged  
(W) OPTION_REG  
None  
Status Affected:  
None  
Move data from W register to  
OPTION_REG register.  
mm  
00  
01  
10  
11  
Mode  
Syntax  
Preincrement  
Predecrement  
Postincrement  
Postdecrement  
++INDFn  
--INDFn  
INDFn++  
INDFn--  
RESET  
Software Reset  
Syntax:  
[ label ] RESET  
Operands:  
Operation:  
None  
Description:  
This instruction is used to move data  
between W and one of the indirect  
registers (INDFn). Before/after this  
move, the pointer (FSRn) is updated by  
pre/post incrementing/decrementing it.  
Execute a device Reset. Resets the  
nRI flag of the PCON register.  
Status Affected:  
Description:  
None  
This instruction provides a way to  
execute a hardware Reset by soft-  
ware.  
FSRn is limited to the range 0000h -  
FFFFh. Incrementing/decrementing it  
beyond these bounds will cause it to wrap  
around.  
The increment/decrement operation on  
FSRn WILL NOT affect any Status bits.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 347  
PIC16F193X/LF193X  
RETURN  
Return from Subroutine  
RETFIE  
Syntax:  
Return from Interrupt  
[ label ] RETFIE  
None  
Syntax:  
[ label ] RETURN  
None  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
Operation:  
TOS PC  
None  
TOS PC,  
1GIE  
Status Affected:  
Description:  
None  
Return from subroutine. The stack is  
POPed and the top of the stack (TOS)  
is loaded into the program counter.  
This is a two-cycle instruction.  
Return from Interrupt. Stack is POPed  
and Top-of-Stack (TOS) is loaded in  
the PC. Interrupts are enabled by  
setting Global  
Interrupt Enable bit, GIE  
(INTCON<7>). This is a two-cycle  
instruction.  
Words:  
1
Cycles:  
Example:  
2
RETFIE  
After Interrupt  
PC  
=
TOS  
GIE =  
1
RLF  
Rotate Left f through Carry  
RETLW  
Syntax:  
Return with literal in W  
Syntax:  
Operands:  
[ label ]  
RLF f,d  
[ label ] RETLW  
0 k 255  
k
0 f 127  
d [0,1]  
Operands:  
Operation:  
k (W);  
TOS PC  
Operation:  
See description below  
C
Status Affected:  
Description:  
Status Affected:  
Description:  
None  
The contents of register ‘f’ are rotated  
one bit to the left through the Carry  
flag. If ‘d’ is ‘0’, the result is placed in  
the W register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
The W register is loaded with the eight  
bit literal ‘k’. The program counter is  
loaded from the top of the stack (the  
return address). This is a two-cycle  
instruction.  
C
Register f  
Words:  
1
2
Cycles:  
Example:  
Words:  
1
1
CALL TABLE;W contains table  
;offset value  
Cycles:  
Example:  
;W now has table value  
RLF  
REG1,0  
TABLE  
Before Instruction  
REG1  
C
=
=
1110 0110  
0
ADDWF PC ;W = offset  
RETLW k1 ;Begin table  
After Instruction  
RETLW k2  
;
REG1  
W
C
=
=
=
1110 0110  
1100 1100  
1
RETLW kn ; End of table  
Before Instruction  
W
=
0x07  
After Instruction  
W
=
value of k8  
DS41364A-page 348  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
SUBLW  
Subtract W from literal  
RRF  
Rotate Right f through Carry  
Syntax:  
[ label ] SUBLW  
0 k 255  
k
Syntax:  
[ label ] RRF f,d  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
0 f 127  
d [0,1]  
k - (W) → (W)  
C, DC, Z  
Operation:  
See description below  
C
The W register is subtracted (2’s com-  
plement method) from the eight-bit  
literal ‘k’. The result is placed in the W  
register.  
Status Affected:  
Description:  
The contents of register ‘f’ are rotated  
one bit to the right through the Carry  
flag. If ‘d’ is ‘0’, the result is placed in  
the W register. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’.  
C = 0  
W > k  
C = 1  
W k  
C
Register f  
DC = 0  
DC = 1  
W<3:0> > k<3:0>  
W<3:0> k<3:0>  
SUBWF  
Subtract W from f  
SLEEP  
Enter Sleep mode  
[ label ] SLEEP  
None  
Syntax:  
[ label ] SUBWF f,d  
Syntax:  
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
00h WDT,  
0WDT prescaler,  
1TO,  
Operation:  
(f) - (W) → (destination)  
Status Affected:  
Description:  
C, DC, Z  
0PD  
Subtract (2’s complement method) W  
register from register ‘f’. If ‘d’ is ‘0’, the  
result is stored in the W  
register. If ‘d’ is ‘1’, the result is stored  
back in register ‘f.  
Status Affected:  
Description:  
TO, PD  
The power-down Status bit, PD is  
cleared. Time-out Status bit, TO is  
set. Watchdog Timer and its pres-  
caler are cleared.  
C = 0  
W > f  
The processor is put into Sleep mode  
with the oscillator stopped.  
C = 1  
W f  
DC = 0  
DC = 1  
W<3:0> > f<3:0>  
W<3:0> f<3:0>  
SUBWFB  
Subtract W from f with Borrow  
Syntax:  
SUBWFB f {,d}  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) – (W) – (B) dest  
Status Affected:  
Description:  
C, DC, Z  
Subtract W and the BORROW flag  
(CARRY) from register ‘f’ (2’s comple-  
ment method). If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 349  
PIC16F193X/LF193X  
SWAPF  
Swap Nibbles in f  
XORLW  
Exclusive OR literal with W  
Syntax:  
[ label ] SWAPF f,d  
Syntax:  
[ label ] XORLW  
0 k 255  
k
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .XOR. k → (W)  
Z
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
The contents of the W register are  
XOR’ed with the eight-bit  
literal ‘k’. The result is placed in the  
W register.  
Status Affected:  
Description:  
None  
The upper and lower nibbles of regis-  
ter ‘f’ are exchanged. If ‘d’ is ‘0’, the  
result is placed in the W register. If ‘d’  
is ‘1’, the result is placed in register ‘f’.  
XORWF  
Exclusive OR W with f  
TRIS  
Load TRIS Register with W  
Syntax:  
[ label ] XORWF f,d  
Syntax:  
[ label ] TRIS f  
5 f 7  
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) TRIS register ‘f’  
None  
Operation:  
(W) .XOR. (f) → (destination)  
Status Affected:  
Description:  
Z
Move data from W register to TRIS  
register.  
When ‘f’ = 5, TRISA is loaded.  
When ‘f’ = 6, TRISB is loaded.  
When ‘f’ = 7, TRISC is loaded.  
Exclusive OR the contents of the W  
register with register ‘f’. If ‘d’ is ‘0’, the  
result is stored in the W register. If ‘d’  
is ‘1’, the result is stored back in regis-  
ter ‘f’.  
DS41364A-page 350  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
27.1 MPLAB Integrated Development  
Environment Software  
27.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers are supported with a full  
range of hardware and software development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16-bit micro-  
controller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
• A single graphical interface to all debugging tools  
- Simulator  
- MPLAB C18 and MPLAB C30 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- Programmer (sold separately)  
- Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLAB ASM30 Assembler/Linker/Library  
• Simulators  
- MPLAB SIM Software Simulator  
• Emulators  
• Customizable data windows with direct edit of  
contents  
- MPLAB ICE 2000 In-Circuit Emulator  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debugger  
• High-level source code debugging  
• Visual device initializer for easy register  
initialization  
- MPLAB ICD 2  
• Mouse over variable inspection  
• Device Programmers  
• Drag and drop variables from source to watch  
windows  
- PICSTART® Plus Development Programmer  
- MPLAB PM3 Device Programmer  
- PICkit™ 2 Development Programmer  
• Extensive on-line help  
• Integration of select third party tools, such as  
HI-TECH Software C Compilers and IAR  
C Compilers  
• Low-Cost Demonstration and Development  
Boards and Evaluation Kits  
The MPLAB IDE allows you to:  
• Edit your source files (either assembly or C)  
• One touch assemble (or compile) and download  
to PIC MCU emulator and simulator tools  
(automatically updates all project information)  
• Debug using:  
- Source files (assembly or C)  
- Mixed assembly and C  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 351  
PIC16F193X/LF193X  
27.2 MPASM Assembler  
27.5 MPLAB ASM30 Assembler, Linker  
and Librarian  
The MPASM Assembler is a full-featured, universal  
macro assembler for all PIC MCUs.  
MPLAB ASM30 Assembler produces relocatable  
machine code from symbolic assembly language for  
dsPIC30F devices. MPLAB C30 C Compiler uses the  
assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• Support for the entire dsPIC30F instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• User-defined macros to streamline  
assembly code  
• Rich directive set  
• Conditional assembly for multi-purpose  
source files  
• Flexible macro language  
• MPLAB IDE compatibility  
• Directives that allow complete control over the  
assembly process  
27.6 MPLAB SIM Software Simulator  
27.3 MPLAB C18 and MPLAB C30  
C Compilers  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
The MPLAB C18 and MPLAB C30 Code Development  
Systems are complete ANSI  
C
compilers for  
Microchip’s PIC18 and PIC24 families of microcon-  
trollers and the dsPIC30 and dsPIC33 family of digital  
signal controllers. These compilers provide powerful  
integration capabilities, superior code optimization and  
ease of use not found with other compilers.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C18 and  
MPLAB C30 C Compilers, and the MPASM and  
MPLAB ASM30 Assemblers. The software simulator  
offers the flexibility to develop and debug code outside  
of the hardware laboratory environment, making it an  
excellent, economical software development tool.  
27.4 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
DS41364A-page 352  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
27.7 MPLAB ICE 2000  
High-Performance  
27.9 MPLAB ICD 2 In-Circuit Debugger  
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a  
powerful, low-cost, run-time development tool,  
connecting to the host PC via an RS-232 or high-speed  
USB interface. This tool is based on the Flash PIC  
MCUs and can be used to develop for these and other  
PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes  
the in-circuit debugging capability built into the Flash  
devices. This feature, along with Microchip’s In-Circuit  
Serial ProgrammingTM (ICSPTM) protocol, offers cost-  
effective, in-circuit Flash debugging from the graphical  
user interface of the MPLAB Integrated Development  
Environment. This enables a designer to develop and  
debug source code by setting breakpoints, single step-  
ping and watching variables, and CPU status and  
peripheral registers. Running at full speed enables  
testing hardware and applications in real time. MPLAB  
ICD 2 also serves as a development programmer for  
selected PIC devices.  
In-Circuit Emulator  
The MPLAB ICE 2000 In-Circuit Emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PIC  
microcontrollers. Software control of the MPLAB ICE  
2000 In-Circuit Emulator is advanced by the MPLAB  
Integrated Development Environment, which allows  
editing, building, downloading and source debugging  
from a single environment.  
The MPLAB ICE 2000 is a full-featured emulator  
system with enhanced trace, trigger and data monitor-  
ing features. Interchangeable processor modules allow  
the system to be easily reconfigured for emulation of  
different processors. The architecture of the MPLAB  
ICE 2000 In-Circuit Emulator allows expansion to  
support new PIC microcontrollers.  
The MPLAB ICE 2000 In-Circuit Emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft® Windows® 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
27.10 MPLAB PM3 Device Programmer  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an SD/MMC card for  
file storage and secure data applications.  
27.8 MPLAB REAL ICE In-Circuit  
Emulator System  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The MPLAB REAL ICE probe is connected to the design  
engineer’s PC using a high-speed USB 2.0 interface and  
is connected to the target with either a connector  
compatible with the popular MPLAB ICD 2 system  
(RJ11) or with the new high-speed, noise tolerant, Low-  
Voltage Differential Signal (LVDS) interconnection  
(CAT5).  
MPLAB REAL ICE is field upgradeable through future  
firmware downloads in MPLAB IDE. In upcoming  
releases of MPLAB IDE, new devices will be supported,  
and new features will be added, such as software break-  
points and assembly code trace. MPLAB REAL ICE  
offers significant advantages over competitive emulators  
including low-cost, full-speed emulation, real-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 353  
PIC16F193X/LF193X  
27.11 PICSTART Plus Development  
Programmer  
27.13 Demonstration, Development and  
Evaluation Boards  
The PICSTART Plus Development Programmer is an  
easy-to-use, low-cost, prototype programmer. It  
connects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient. The  
PICSTART Plus Development Programmer supports  
most PIC devices in DIP packages up to 40 pins.  
Larger pin count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus Development Programmer is CE  
compliant.  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
27.12 PICkit 2 Development Programmer  
The PICkit™ 2 Development Programmer is a low-cost  
programmer and selected Flash device debugger with  
an easy-to-use interface for programming many of  
Microchip’s baseline, mid-range and PIC18F families of  
Flash memory microcontrollers. The PICkit 2 Starter Kit  
includes a prototyping development board, twelve  
sequential lessons, software and HI-TECH’s PICC™  
Lite C compiler, and is designed to help get up to speed  
quickly using PIC® microcontrollers. The kit provides  
everything needed to program, evaluate and develop  
applications using Microchip’s powerful, mid-range  
Flash memory family of microcontrollers.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS41364A-page 354  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
28.0 ELECTRICAL SPECIFICATIONS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias....................................................................................................... -40°C to +125°C  
Storage temperature ........................................................................................................................ -65°C to +150°C  
Voltage on VDD with respect to VSS, PIC16F193X ............................................................................. -0.3V to +6.5V  
Voltage on VDD with respect to VSS, PIC16LF193X ........................................................................... -0.3V to +4.0V  
Voltage on MCLR with respect to Vss ................................................................................................. -0.3V to +9.0V  
Voltage on all other pins with respect to VSS ........................................................................... -0.3V to (VDD + 0.3V)  
Total power dissipation(1) ...............................................................................................................................800 mW  
Maximum current out of VSS pin ...................................................................................................................... 95 mA  
Maximum current into VDD pin......................................................................................................................... 70 mA  
Clamp current, IK (VPIN < 0 or VPIN > VDD)................................................................................................................± 20 mA  
Maximum output current sunk by any I/O pin....................................................................................................25 mA  
Maximum output current sourced by any I/O pin .............................................................................................. 25 mA  
Maximum current sunk by all ports(2), -40°C TA +85°C for industrial ........................................................ 200 mA  
Maximum current sunk by all ports(2), -40°C TA +125°C for extended........................................................ 90 mA  
Maximum current sourced by all ports(2), 40°C TA +85°C for industrial ................................................... 140 mA  
Maximum current sourced by all ports(2), -40°C TA +125°C for extended................................................... 65 mA  
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOl x IOL).  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for  
extended periods may affect device reliability.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 355  
PIC16F193X/LF193X  
FIGURE 28-1:  
PIC16F193X VOLTAGE FREQUENCY GRAPH, -40°C TA +125°C  
5.5  
3.6  
2.5  
2.3  
2.0  
1.8  
0
4
10  
16  
32  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: Refer to Table 28-1 for each Oscillator mode’s supported frequencies.  
FIGURE 28-2:  
PIC16LF193X VOLTAGE FREQUENCY GRAPH, -40°C TA +125°C  
3.6  
2.5  
2.3  
2.0  
1.8  
0
4
10  
16  
32  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: Refer to Table 28-1 for each Oscillator mode’s supported frequencies.  
DS41364A-page 356  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
HFINTOSC FREQUENCY ACCURACY OVER DEVICE VDD AND TEMPERATURE  
+ 5%  
FIGURE 28-3:  
125  
85  
60  
25  
± 2%  
0
-20  
+ 5%  
3.5  
-40  
1.8  
2.0  
2.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
3.0  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 357  
PIC16F193X/LF193X  
28.1 DC Characteristics: PIC16F193X/LF193X-I/E (Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF193X  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
PIC16F193X  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param.  
No.  
Sym.  
Characteristic  
Supply Voltage  
Min.  
Typ† Max. Units  
Conditions  
D001  
VDD  
PIC16LF193X  
1.8  
2.3  
3.6  
3.6  
V
V
FOSC 16 MHz:  
FOSC 32 MHz (NOTE 2)  
D001  
PIC16F193X  
1.8  
2.3  
5.5  
5.5  
V
V
FOSC 16 MHz:  
FOSC 32 MHz (NOTE 2)  
D002*  
VDR  
RAM Data Retention Voltage(1)  
PIC16LF193X  
PIC16F193X  
Power-on Reset Release Voltage  
Power-on Reset Rearm Voltage  
PIC16LF193X  
PIC16F193X  
1.5  
1.7  
V
V
V
Device in Sleep mode  
Device in Sleep mode  
D002*  
VPOR*  
1.6  
VPORR*  
0.8  
1.7  
V
V
V
Device in Sleep mode  
Device in Sleep mode  
VADFVR  
Fixed Voltage Reference Voltage for 0.984 1.024 1.064  
ADC (calibrated) 0.974 1.064  
1.968 2.048 2.158  
1.938 2.148  
3.966 4.096 4.226  
3.936 4.226  
Fixed Voltage Reference Voltage for 0.984 1.024 1.064  
Comparator and DAC 0.974 1.064  
1.968 2.048 2.158  
1.938 2.148  
3.966 4.096 4.226  
3.936 4.226  
VFVR_REF Fixed Voltage Reference Voltage for 0.984 1.024 1.064  
FVRV = 00 (1x), VDD 2.5V  
125°C  
FVRV = 01 (2x), VDD 2.5V  
125°C  
FVRV = 10 (4x), VDD 4.75V  
125°C  
VCDAFVR  
V
V
FVRV = 00 (1x), VDD 2.5V  
125°C  
FVRV = 01 (2x), VDD 2.5V  
125°C  
FVRV = 10 (4x), VDD 4.75V  
125°C  
FVRV = 00 (1x), VDD 2.5V  
LCD Bias  
0.974  
1.064  
125°C  
D004*  
SVDD  
VDD Rise Rate to ensure internal  
Power-on Reset signal  
0.05  
V/ms See Section 3.2 “Power-on Reset  
(POR)” for details.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.  
2: PLL required for 32 MHz operation.  
DS41364A-page 358  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 28-4:  
POR AND POR REARM WITH SLOW RISING VDD  
VDD  
VPOR  
VPORR  
VSS  
NPOR  
POR REARM  
VSS  
(3)  
(2)  
TPOR  
TVLOW  
Note 1: When NPOR is low, the device is held in Reset.  
2: TPOR 1 μs typical.  
3: TVLOW 2.7 μs typical.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 359  
PIC16F193X/LF193X  
28.2 DC Characteristics: PIC16F193X/LF193X-I/E (Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF193X  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
PIC16F193X  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Conditions  
Param  
No.  
Device  
Characteristics  
Min.  
Typ†  
Max.  
Units  
VDD  
Note  
(1, 2)  
Supply Current (IDD)  
LDO Regulator  
D009  
350  
TBD  
μA  
HS, EC OR INTOSC/INTOSCIO (8-16 MHZ)  
Clock modes with all VCAP pins disabled  
50  
30  
5
μA  
μA  
μA  
All VCAP pins disabled  
TBD  
TBD  
TBD  
VCAP enabled on RA0, RA5 or RA6  
LP Clock mode and Sleep (requires FVR and  
BOR to be disabled)  
D010  
D010  
7.0  
9.0  
TBD  
TBD  
μA  
μA  
1.8  
3.0  
FOSC = 32 kHz  
LP Oscillator mode (Note 4),  
-40°C TA +85°C  
9.5  
12.5  
13.5  
7.0  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
FOSC = 32 kHz  
LP Oscillator mode (Note 4),  
-40°C TA +85°C  
D011*  
D011*  
FOSC = 32 kHz  
LP Oscillator mode  
9.0  
9.5  
FOSC = 32 kHz  
LP Oscillator mode (Note 4)  
12.5  
13.5  
150  
270  
160  
280  
390  
430  
750  
450  
770  
930  
180  
350  
D011A*  
D011A*  
FOSC = 1 MHz  
XT Oscillator mode  
FOSC = 1 MHz  
XT Oscillator mode (Note 5)  
D012  
D012  
FOSC = 4 MHz  
XT Oscillator mode  
FOSC = 4 MHz  
XT Oscillator mode (Note 5)  
D013*  
FOSC = 1 MHz  
EC Oscillator mode  
*
These parameters are characterized but not tested.  
TBD = To Be Determined  
Legend:  
Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from  
rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current  
consumption.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended  
by the formula IR = VDD/2REXT (mA) with REXT in kΩ.  
4: FVR and BOR are disabled.  
5: 0.1 μF capacitor on VCAP (RA0).  
DS41364A-page 360  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
28.2 DC Characteristics: PIC16F193X/LF193X-I/E (Industrial, Extended) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF193X  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
PIC16F193X  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Conditions  
Param  
No.  
Device  
Characteristics  
Min.  
Typ†  
Max.  
Units  
VDD  
Note  
D013*  
200  
370  
450  
TBD  
TBD  
TBD  
μA  
μA  
μA  
1.8  
3.0  
5.0  
FOSC = 1 MHz  
EC Oscillator mode (Note 5)  
(1, 2)  
Supply Current (IDD)  
D014  
D014  
450  
830  
475  
850  
980  
130  
190  
150  
210  
270  
980  
1780  
1.0  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
μA  
μA  
μA  
μA  
μA  
mA  
mA  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
3.0  
3.6  
FOSC = 4 MHz  
EC Oscillator mode  
FOSC = 4 MHz  
EC Oscillator mode (Note 5)  
D015  
D015  
FOSC = 500 kHz  
MFINTOSC mode  
FOSC = 500 kHz  
MFINTOSC mode (Note 5)  
D016*  
D016*  
FOSC = 8 MHz  
HFINTOSC mode  
FOSC = 8 MHz  
HFINTOSC mode (Note 5)  
1.8  
2.0  
D017  
D017  
1.5  
FOSC = 16 MHz  
HFINTOSC mode  
2.8  
1.7  
FOSC = 16 MHz  
HFINTOSC mode (Note 5)  
2.9  
3.1  
D018  
D018  
410  
710  
430  
730  
860  
5.3  
FOSC = 4 MHz  
EXTRC mode (Note 3, Note 5)  
FOSC = 4 MHz  
EXTRC mode (Note 3, Note 5)  
D019  
FOSC = 32 MHz  
HS Oscillator mode  
6.0  
*
These parameters are characterized but not tested.  
TBD = To Be Determined  
Legend:  
Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from  
rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current  
consumption.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended  
by the formula IR = VDD/2REXT (mA) with REXT in kΩ.  
4: FVR and BOR are disabled.  
5: 0.1 μF capacitor on VCAP (RA0).  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 361  
PIC16F193X/LF193X  
28.2 DC Characteristics: PIC16F193X/LF193X-I/E (Industrial, Extended) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF193X  
PIC16F193X  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Conditions  
Param  
No.  
Device  
Characteristics  
Min.  
Typ†  
Max.  
Units  
VDD  
Note  
D019  
5.3  
6.0  
TBD  
TBD  
mA  
mA  
3.0  
5.0  
FOSC = 32 MHz  
HS Oscillator mode (Note 5)  
*
These parameters are characterized but not tested.  
TBD = To Be Determined  
Legend:  
Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from  
rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current  
consumption.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended  
by the formula IR = VDD/2REXT (mA) with REXT in kΩ.  
4: FVR and BOR are disabled.  
5: 0.1 μF capacitor on VCAP (RA0).  
DS41364A-page 362  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
28.3 DC Characteristics: PIC16F193X/LF193X-I/E (Power-Down)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF193X  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
PIC16F193X  
Param  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Conditions  
Max.  
Max.  
Device Characteristics  
Min.  
Typ†  
Units  
No.  
+85°C +125°C  
VDD  
Note  
(2)  
Power-down Base Current (IPD)  
D020  
0.06  
0.08  
3.1  
3.6  
4.5  
0.5  
0.8  
3.8  
4.3  
5.3  
8.5  
8.5  
32  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
WDT, BOR, FVR, and T1OSC  
disabled, all Peripherals Inactive  
D020  
WDT, BOR, FVR, and T1OSC  
disabled, all Peripherals Inactive  
D021  
D021  
LPWDT Current (Note 1)  
LPWDT Current (Note 1)  
D021A  
D021A  
FVR current (Note 3)  
FVR current (Note 3, Note 5)  
39  
70  
D022  
D022  
BOR Current (Note 1, Note 3)  
7.5  
BOR Current (Note 1, Note 3,  
Note 5)  
34  
67  
D026  
D026  
0.6  
1.8  
4.5  
6
T1OSC Current (Note 1)  
T1OSC Current (Note 1)  
7
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Legend:  
TBD = To Be Determined  
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is  
enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max  
values should be used when calculating total current consumption.  
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
3: Fixed Voltage Reference is automatically enabled whenever the BOR is enabled.  
4: A/D oscillator source is FRC.  
5: 0.1 μF capacitor on VCAP (RA0).  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 363  
PIC16F193X/LF193X  
28.3 DC Characteristics: PIC16F193X/LF193X-I/E (Power-Down) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF193X  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
PIC16F193X  
Param  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Conditions  
Max.  
Max.  
Device Characteristics  
Min.  
Typ†  
Units  
No.  
+85°C +125°C  
VDD  
Note  
(2)  
Power-down Base Current (IPD)  
D027  
0.1  
0.1  
3.5  
4
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
3.6  
3.6  
3.6  
5.0  
5.0  
5.0  
A/D Current (Note 1, Note 4), no  
conversion in progress  
D027  
A/D Current (Note 1, Note 4), no  
conversion in progress  
4.5  
250  
250  
280  
280  
280  
3.5  
7
D027A  
D027A  
A/D Current (Note 1, Note 4),  
conversion in progress  
A/D Current (Note 1, Note 4,  
Note 5), conversion in progress  
D028  
D028  
Cap Sense  
Cap Sense  
3.5  
7
32  
D029  
D029  
1
LCD Bias Ladder, Low-power  
LCD Bias Ladder, Medium-power  
LCD Bias Ladder, High-power  
LCD Bias Ladder, Low-power  
LCD Bias Ladder, Medium-power  
LCD Bias Ladder, High-power  
10  
100  
1
10  
100  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Legend:  
TBD = To Be Determined  
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is  
enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max  
values should be used when calculating total current consumption.  
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
3: Fixed Voltage Reference is automatically enabled whenever the BOR is enabled.  
4: A/D oscillator source is FRC.  
5: 0.1 μF capacitor on VCAP (RA0).  
DS41364A-page 364  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
28.4 DC Characteristics: PIC16F193X/LF193X-I/E  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
DC CHARACTERISTICS  
Param  
No.  
Sym.  
Characteristic  
Min.  
Typ†  
Max.  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O PORT:  
D030  
D030A  
D031  
with TTL buffer  
0.8  
V
V
V
V
V
V
V
4.5V VDD 5.5V  
0.15 VDD  
0.2 VDD  
0.3 VDD  
0.8  
1.8V VDD 4.5V  
2.0V VDD 5.5V  
with Schmitt Trigger buffer  
2
with I C™ levels  
with SMBus™ levels  
2.7V VDD 5.5V  
(1)  
D032  
MCLR, OSC1 (RC mode)  
0.2 VDD  
0.3 VDD  
D033A  
OSC1 (HS mode)  
Input High Voltage  
I/O ports:  
VIH  
D040  
with TTL buffer  
2.0  
V
V
4.5V VDD 5.5V  
1.8V VDD 4.5V  
D040A  
0.25 VDD +  
0.8  
D041  
with Schmitt Trigger buffer  
0.8 VDD  
0.7 VDD  
2.1  
V
V
V
V
V
V
2.0V VDD 5.5V  
2.7V VDD 5.5V  
2
with I C™ levels  
with SMBus™ levels  
MCLR  
D042  
0.8 VDD  
0.7 VDD  
0.9 VDD  
D043A  
D043B  
OSC1 (HS mode)  
OSC1 (RC mode)  
(Note 1)  
(2)  
IIL  
Input Leakage Current  
D060  
I/O ports  
± 5  
± 100  
nA  
VSS VPIN VDD, Pin at high-  
impedance  
± 5  
± 1000  
± 200  
± 100  
nA 125°C  
(3)  
D061  
D063  
MCLR  
± 50  
± 50  
nA  
nA  
VSS VPIN VDD  
OSC1  
VSS VPIN VDD, XT, HS and LP  
oscillator configuration  
IPUR  
VOL  
Weak Pull-up Current  
D070*  
D080  
25  
25  
100  
140  
200  
300  
VDD = 3.3V, VPIN = VSS  
VDD = 5.0V, VPIN = VSS  
μA  
(4)  
Output Low Voltage  
I/O ports  
IOH = 8mA, VDD = 5V  
IOH = 6mA, VDD = 3.3V  
IOH = 3mA, VDD = 1.8V  
0.6  
V
Legend:  
TBD = To Be Determined  
These parameters are characterized but not tested.  
*
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external  
clock in RC mode.  
2: Negative current is defined as current sourced by the pin.  
3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent  
normal operating conditions. Higher leakage current may be measured at different input voltages.  
4: Including OSC2 in CLKOUT mode.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 365  
PIC16F193X/LF193X  
28.4 DC Characteristics: PIC16F193X/LF193X-I/E (Continued)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
No.  
Sym.  
Characteristic  
Min.  
Typ†  
Max.  
Units  
Conditions  
(4)  
VOH  
Output High Voltage  
D090  
I/O ports  
IOH = 3.5mA, VDD = 5V  
IOH = 3mA, VDD = 3.3V  
IOH = 2mA, VDD = 1.8V  
VDD - 0.7  
V
Capacitive Loading Specs on Output Pins  
D101*  
COSC2 OSC2 pin  
15  
50  
pF  
pF  
In XT, HS and LP modes when  
external clock is used to drive  
OSC1  
D101A* CIO  
All I/O pins  
VCAP Capacitor Charging  
Charging current  
D102  
200  
0.0  
μA  
mA  
D102A  
Source/sink capability when  
charging complete  
Legend:  
TBD = To Be Determined  
These parameters are characterized but not tested.  
*
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external  
clock in RC mode.  
2: Negative current is defined as current sourced by the pin.  
3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent  
normal operating conditions. Higher leakage current may be measured at different input voltages.  
4: Including OSC2 in CLKOUT mode.  
DS41364A-page 366  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
28.5 Memory Programming Requirements  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +125°C  
DC CHARACTERISTICS  
Param  
Sym.  
No.  
Characteristic  
Program Memory  
Min.  
Typ†  
Max.  
Units  
Conditions  
Programming Specifications  
D110  
D111  
VIHH  
IDDP  
Voltage on MCLR/VPP/RE3 pin  
8.0  
9.0  
10  
V
(Note 3, Note 4)  
Supply Current during  
Programming  
mA  
D112  
D113  
VDD for Bulk Erase  
2.7  
VDD  
max.  
V
V
VPEW  
VDD for Write or Row Erase  
VDD  
min.  
VDD  
max.  
D114  
D115  
IPPPGM Current on MCLR/VPP during Erase/  
Write  
1.0  
mA  
mA  
IDDPGM Current on VDD during Erase/Write  
5.0  
Data EEPROM Memory  
D116  
D117  
ED  
Byte Endurance  
100K  
E/W -40°C to +85°C  
VDD  
min.  
VDD  
max.  
VDRW VDD for Read/Write  
V
D118  
D119  
TDEW Erase/Write Cycle Time  
TRETD Characteristic Retention  
4.0  
5.0  
ms  
40  
Year Provided no other  
specifications are violated  
D120  
TREF  
Number of Total Erase/Write  
Cycles before Refresh  
1M  
10M  
E/W -40°C to +85°C  
(2)  
Program Flash Memory  
Cell Endurance  
D121  
D122  
EP  
10K  
E/W -40°C to +85°C (Note 1)  
VDD  
min.  
VDD  
max.  
VPR  
VDD for Read  
V
D123  
D124  
TIW  
Self-timed Write Cycle Time  
2
2.5  
ms  
TRETD Characteristic Retention  
40  
Year Provided no other  
specifications are violated  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Self-write and Block Erase.  
2: Refer to Section 23.5.1 “Using the Data EEPROM” for a more detailed discussion on data EEPROM  
endurance.  
3: Required only if single-supply programming is disabled.  
4: The MPLAB ICD 2 does not support variable VPP output. Circuitry to limit the ICD 2 VPP voltage must be  
placed between the ICD 2 and target system when programming or debugging with the ICD 2.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 367  
PIC16F193X/LF193X  
28.6 Thermal Considerations  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +125°C  
Param  
No.  
Sym.  
Characteristic  
Typ.  
Units  
Conditions  
28-pin SPDIP package  
TH01  
θJA  
Thermal Resistance Junction to Ambient  
60  
80  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C  
28-pin SOIC package  
90  
28-pin SSOP package  
28-pin QFN 6x6mm package  
40-pin PDIP package  
27.5  
47.2  
46  
44-pin TQFP package  
44-pin QFN 8x8mm package  
28-pin SPDIP package  
28-pin SOIC package  
24.4  
31.4  
24  
TH02  
θJC  
Thermal Resistance Junction to Case  
24  
28-pin SSOP package  
28-pin QFN 6x6mm package  
40-pin PDIP package  
24  
24.7  
14.5  
20  
44-pin TQFP package  
44-pin QFN 8x8mm package  
TH03  
TH04  
TH05  
TH06  
TH07  
TJMAX  
PD  
Maximum Junction Temperature  
Power Dissipation  
150  
W
PD = PINTERNAL + PI/O  
(1)  
PINTERNAL Internal Power Dissipation  
W
PINTERNAL = IDD x VDD  
PI/O  
I/O Power Dissipation  
Derated Power  
W
PI/O = Σ (IOL * VOL) + Σ (IOH * (VDD - VOH))  
(2)  
PDER  
W
PDER = PDMAX (TJ - TA)/θJA  
Note 1: IDD is current to run the chip alone without driving any load on the output pins.  
2: TA = Ambient Temperature  
3: TJ = Junction Temperature  
DS41364A-page 368  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
28.7  
Timing Parameter Symbology  
The timing parameter symbols have been created with  
one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O PORT  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (High-impedance)  
Low  
Valid  
L
High-impedance  
FIGURE 28-5:  
LOAD CONDITIONS  
Load Condition  
Pin  
CL  
VSS  
Legend: CL = 50 pF for all pins, 15 pF for  
OSC2 output  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 369  
PIC16F193X/LF193X  
28.8 AC Characteristics: PIC16F193X/LF193X-I/E  
FIGURE 28-6:  
CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
OSC1/CLKIN  
OS02  
OS04  
OS04  
OS03  
OSC2/CLKOUT  
(LP,XT,HS Modes)  
OSC2/CLKOUT  
(CLKOUT Mode)  
TABLE 28-1: CLOCK OSCILLATOR TIMING REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
Sym.  
No.  
Characteristic  
Min.  
Typ†  
Max.  
Units  
Conditions  
(1)  
OS01  
FOSC  
TOSC  
TCY  
External CLKIN Frequency  
DC  
DC  
DC  
1
4
MHz EC Oscillator mode (low)  
MHz EC Oscillator mode (medium)  
MHz EC Oscillator mode (high)  
32  
4
(1)  
Oscillator Frequency  
32.768  
kHz  
LP Oscillator mode  
0.1  
1
MHz XT Oscillator mode  
4
MHz HS Oscillator mode, VDD 2.3V  
MHz HS Oscillator mode, VDD > 2.3V  
MHz RC Oscillator mode  
1
20  
4
DC  
27  
(1)  
OS02  
External CLKIN Period  
μs  
ns  
ns  
ns  
μs  
ns  
ns  
ns  
ns  
μs  
ns  
ns  
ns  
ns  
ns  
LP Oscillator mode  
XT Oscillator mode  
HS Oscillator mode  
EC Oscillator mode  
LP Oscillator mode  
XT Oscillator mode  
HS Oscillator mode  
RC Oscillator mode  
TCY = 4/FOSC  
250  
50  
31.25  
(1)  
Oscillator Period  
30.5  
10,000  
1,000  
DC  
250  
50  
250  
200  
2
(1)  
OS03  
Instruction Cycle Time  
TCY  
OS04*  
TosH,  
TosL  
External CLKIN High,  
External CLKIN Low  
LP oscillator  
100  
20  
XT oscillator  
HS oscillator  
OS05*  
TosR,  
TosF  
External CLKIN Rise,  
External CLKIN Fall  
0
LP oscillator  
0
XT oscillator  
0
HS oscillator  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing code.  
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current con-  
sumption. All devices are tested to operate at “min” values with an external clock applied to OSC1 pin. When an external  
clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
DS41364A-page 370  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
TABLE 28-2: OSCILLATOR PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param  
Sym.  
No.  
Freq.  
Tolerance  
Characteristic  
Min. Typ† Max. Units  
Conditions  
OS08  
HFOSC  
Internal Calibrated HFINTOSC  
Frequency  
±2%  
±5%  
±2%  
±5%  
16.0  
16.0  
500  
500  
5
7
MHz 0°C TA +85°C  
MHz -40°C TA +125°C  
kHz 0°C TA +85°C  
kHz -40°C TA +125°C  
(2)  
OS08A MFOSC  
Internal Calibrated MFINTOSC  
(2)  
Frequency  
OS10* TIOSC ST HFINTOSC and MFINTOSC  
Wake-up from Sleep Start-up Time  
μs  
μs  
μs  
VDD = 2.0V, -40°C to +85°C  
5
7
VDD = 3.0V, -40°C to +85°C  
VDD = 5.0V, -40°C to +85°C  
5
7
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing  
code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current  
consumption. All devices are tested to operate at “min” values with an external clock applied to the OSC1 pin. When an  
external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
2: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as  
possible. 0.1 μF and 0.01 μF values in parallel are recommended.  
3: By design.  
TABLE 28-3: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.7V TO 5.5V)  
Param  
Sym.  
Characteristic  
Min.  
Typ†  
Max.  
Units Conditions  
No.  
F10  
FOSC Oscillator Frequency Range  
4
16  
8
32  
MHz  
MHz  
ms  
F11  
FSYS On-Chip VCO System Frequency  
F12  
F13*  
TRC  
PLL Start-up Time (Lock Time)  
2
ΔCLK CLKOUT Stability (Jitter)  
-0.25%  
+0.25%  
%
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 371  
PIC16F193X/LF193X  
FIGURE 28-7:  
CLKOUT AND I/O TIMING  
Cycle  
Write  
Q4  
Fetch  
Q1  
Read  
Q2  
Execute  
Q3  
FOSC  
OS12  
OS11  
OS20  
OS21  
CLKOUT  
OS19  
OS13  
OS18  
OS16  
OS17  
I/O pin  
(Input)  
OS14  
OS15  
I/O pin  
(Output)  
New Value  
Old Value  
OS18, OS19  
DS41364A-page 372  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
TABLE 28-4: CLKOUT AND I/O TIMING PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym.  
Characteristic  
Min.  
Typ† Max. Units  
Conditions  
OS11 TosH2ckL FOSCto CLKOUT(1)  
OS12 TosH2ckH FOSCto CLKOUT(1)  
OS13 TckL2ioV CLKOUTto Port out valid(1)  
70  
72  
20  
ns VDD = 3.3-5.0V  
ns VDD = 3.3-5.0V  
ns  
OS14 TioV2ckH Port input valid before CLKOUT(1)  
OS15 TosH2ioV Fosc(Q1 cycle) to Port out valid  
TOSC + 200 ns  
50  
70*  
ns  
ns VDD = 3.3-5.0V  
ns VDD = 3.3-5.0V  
OS16 TosH2ioI  
Fosc(Q2 cycle) to Port input invalid  
50  
(I/O in hold time)  
OS17 TioV2osH Port input valid to Fosc(Q2 cycle)  
20  
ns  
(I/O in setup time)  
OS18 TioR  
OS19 TioF  
Port output rise time(2)  
40  
15  
72  
32  
ns  
ns  
VDD = 1.8V  
VDD = 3.3-5.0V  
Port output fall time(2)  
28  
15  
55  
30  
VDD = 1.8V  
VDD = 3.3-5.0V  
OS20* Tinp  
OS21* Tioc  
INT pin input high or low time  
25  
25  
ns  
ns  
Interrupt-on-change new input level  
time  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated.  
Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x TOSC.  
2: Includes OSC2 in CLKOUT mode.  
FIGURE 28-8:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Start-Up Time  
(1)  
Internal Reset  
Watchdog Timer  
(1)  
Reset  
31  
34  
34  
I/O pins  
Note 1: Asserted low.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 373  
PIC16F193X/LF193X  
FIGURE 28-9:  
BROWN-OUT RESET TIMING AND CHARACTERISTICS  
VDD  
VBOR and VHYST  
VBOR  
(Device in Brown-out Reset)  
(Device not in Brown-out Reset)  
37  
Reset  
(1)  
33  
(due to BOR)  
Note 1: 64 ms delay only if PWRTE bit in the Configuration Word register is programmed to ‘0’.  
2 ms delay if PWRTE = 0and VREGEN = 1.  
DS41364A-page 374  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
TABLE 28-5: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym.  
TMCL  
Characteristic  
Min. Typ† Max. Units  
Conditions  
30  
MCLR Pulse Width (low)  
2
5
μs VDD = 3.3-5V, -40°C to +85°C  
μs VDD = 3.3-5V  
31  
TWDTLP Low-Power Watchdog Timer  
Time-out Period (No Prescaler)  
10  
10  
18  
18  
27  
33  
ms VDD = 3.3V-5V, -40°C to +85°C  
ms VDD = 3.3V-5V  
32  
TOST  
Oscillator Start-up Timer Period(1), (2)  
1024  
65  
140  
2.0  
Tosc (Note 3)  
33*  
34*  
TPWRT Power-up Timer Period, PWRTE = 0 40  
ms  
TIOZ  
I/O high-impedance from MCLR Low  
or Watchdog Timer Reset  
μs  
35  
VBOR  
VHYST  
Brown-out Reset Voltage  
2.40  
1.80  
2.5  
1.9  
2.60  
2.00  
V
BORV=2.5V  
BORV=1.9V  
36*  
37*  
Brown-out Reset Hysteresis  
25  
50  
75  
100  
mV -40°C to +85°C  
-40°C to 125°C  
TBORDC Brown-out Reset DC Response  
Time  
1
3
5
10  
μs VDD VBOR, -40°C to +85°C  
VDD VBOR  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with the  
device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption. All devices are tested to operate at “min” values with an external  
clock applied to the OSC1 pin. When an external clock input is used, the “max” cycle time limit is “DC” (no  
clock) for all devices.  
2: By design.  
3: Period of the slower clock.  
4: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as  
possible. 0.1 μF and 0.01 μF values in parallel are recommended.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 375  
PIC16F193X/LF193X  
FIGURE 28-10:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
40  
41  
42  
T1CKI  
45  
46  
49  
47  
TMR0 or  
TMR1  
TABLE 28-6: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym.  
TT0H  
Characteristic  
T0CKI High Pulse Width  
Min.  
Typ†  
Max.  
Units  
Conditions  
40*  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
10  
0.5 TCY + 20  
10  
41*  
42*  
TT0L  
TT0P  
T0CKI Low Pulse Width  
T0CKI Period  
Greater of:  
20 or TCY + 40  
N
ns N = prescale value  
(2, 4, ..., 256)  
45*  
TT1H  
T1CKI High Synchronous, No Prescaler  
0.5 TCY + 20  
15  
ns  
ns  
Time  
Synchronous,  
with Prescaler  
Asynchronous  
30  
ns  
ns  
ns  
ns  
46*  
47*  
TT1L  
TT1P  
T1CKI Low Synchronous, No Prescaler  
0.5 TCY + 20  
Time  
Synchronous, with Prescaler  
Asynchronous  
15  
30  
T1CKI Input Synchronous  
Period  
Greater of:  
30 or TCY + 40  
N
ns N = prescale value  
(1, 2, 4, 8)  
Asynchronous  
60  
ns  
48  
FT1  
Timer1 Oscillator Input Frequency Range  
(oscillator enabled by setting bit T1OSCEN)  
32.4  
32.768  
33.1  
kHz  
49*  
TCKEZTMR1 Delay from External Clock Edge to Timer  
Increment  
2 TOSC  
7 TOSC  
Timers in Sync  
mode  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS41364A-page 376  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 28-11:  
CAPTURE/COMPARE/PWM TIMINGS (CCP)  
CCPx  
(Capture mode)  
CC01  
CC02  
CC03  
Note: Refer to Figure 28.5 for load conditions.  
TABLE 28-7: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym.  
Characteristic  
Min.  
Typ† Max. Units  
Conditions  
CC01* TccL CCPx Input Low Time  
CC02* TccH CCPx Input High Time  
CC03* TccP CCPx Input Period  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5TCY + 20  
ns  
ns  
ns  
ns  
ns  
20  
0.5TCY + 20  
20  
3TCY + 40  
N
N = prescale value (1, 4 or 16)  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
TABLE 28-8: PIC16F193X/LF193X A/D CONVERTER (ADC) CHARACTERISTICS:  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +125°C  
Param  
No.  
Sym.  
Characteristic  
Min.  
Typ†  
Max. Units  
Conditions  
AD01 NR  
AD02 EIL  
AD03 EDL  
Resolution  
10  
±1  
±1  
bit  
Integral Error  
LSb VREF = 3.0V  
Differential Error  
LSb No missing codes  
VREF = 3.0V  
AD04 EOFF Offset Error  
±3  
±3  
LSb VREF = 3.0V  
AD05 EGN Gain Error  
LSb VREF = 3.0V  
(3)  
AD06 VREF Reference Voltage  
AD07 VAIN Full-Scale Range  
1.8  
VSS  
VDD  
VREF  
50  
V
V
AD08 ZAIN Recommended Impedance of  
Analog Voltage Source  
kΩ Can go higher if external 0.01μF capacitor is  
present on input pin.  
(3)  
AD09* IREF VREF Input Current  
10  
1000  
10  
μA During VAIN acquisition.  
Based on differential of VHOLD to VAIN.  
μA During A/D conversion cycle.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Total Absolute Error includes integral, differential, offset and gain errors.  
2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.  
3: ADC VREF is from external VREF, VDD pin or FVREF, whichever is selected as reference input.  
4: When ADC is off, it will not consume any current other than leakage current. The power-down current specification  
includes any such leakage from the ADC module.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 377  
PIC16F193X/LF193X  
TABLE 28-9: PIC16F193X/LF193X A/D CONVERSION REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
Sym.  
No.  
Characteristic  
Min.  
Typ†  
Max. Units  
Conditions  
AD130* TAD  
A/D Clock Period  
1.0  
1.0  
9.0  
6.0  
μs  
μs  
TOSC-based  
ADCS<1:0> = 11(ADRC mode)  
A/D Internal RC Oscillator  
Period  
1.6  
AD131 TCNV Conversion Time (not including  
10.5  
9.5  
TAD Set GO/DONE bit to conversion  
complete  
(1)  
Acquisition Time)  
AD132* TACQ Acquisition Time  
μs  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: The ADRES register may be read on the following TCY cycle.  
FIGURE 28-12:  
PIC16F193X/LF193X A/D CONVERSION TIMING (NORMAL MODE)  
BSF ADCON0, GO  
1 TCY  
(1)  
(TOSC/2  
AD134  
Q4  
)
AD131  
AD130  
A/D CLK  
7
6
5
4
3
2
1
0
A/D Data  
ADRES  
NEW_DATA  
1 TCY  
OLD_DATA  
ADIF  
GO  
DONE  
Sampling Stopped  
AD132  
Sample  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
DS41364A-page 378  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 28-13:  
PIC16F193X/LF193X A/D CONVERSION TIMING (SLEEP MODE)  
BSF ADCON0, GO  
AD134  
(1)  
(TOSC/2 + TCY  
1 TCY  
)
AD131  
Q4  
AD130  
A/D CLK  
A/D Data  
7
6
5
3
2
1
0
4
NEW_DATA  
1 TCY  
OLD_DATA  
ADRES  
ADIF  
GO  
DONE  
Sampling Stopped  
AD132  
Sample  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 379  
PIC16F193X/LF193X  
TABLE 28-10: COMPARATOR SPECIFICATIONS  
Operating Conditions: 1.8V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated).  
Param  
No.  
Sym.  
Characteristics  
Input Offset Voltage  
Min.  
Typ.  
Max.  
Units  
Comments  
CM01  
VIOFF  
0
±7.5  
±15  
VDD  
mV  
V
CM02  
CM03  
CM04  
CM05  
VICM  
Input Common Mode Voltage  
Common Mode Rejection Ratio  
Response Time  
CMRR  
TRESP  
55  
dB  
ns  
μs  
150  
400  
10  
Note 1  
TMC2OV Comparator Mode Change to  
Output Valid*  
*
These parameters are characterized but not tested.  
Note 1: Response time measured with one comparator input at VDD/2, while the other input transitions  
from VSS to VDD.  
TABLE 28-11: DIGITAL-TO-ANALOG CONVERTER (DAC) SPECIFICATIONS  
Operating Conditions: 1.8V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated).  
Param  
No.  
Sym.  
Characteristics  
Step Size(2)  
Min.  
Typ.  
Max.  
Units  
Comments  
DAC01*  
DAC02*  
DAC03*  
DAC04*  
*
CLSB  
VDD/32  
± 1/2  
V
LSb  
Ω
CACC  
CR  
Absolute Accuracy  
Unit Resistor Value (R)  
Settling Time(1)  
TBD  
CST  
10  
μs  
These parameters are characterized but not tested.  
Legend: TBD = To Be Determined  
Note 1: Settling time measured while DACR<4:0> transitions from ‘0000’ to ‘1111’.  
TABLE 28-12: FIXED VOLTAGE REFERENCE (FVR) SPECIFICATIONS  
Operating Conditions: 1.8V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated).  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C  
VR Voltage Reference Specifications  
Param  
Sym.  
Characteristics  
Min.  
Typ.  
1.024  
2.048  
4.096  
Max.  
Units  
Comments  
No.  
VR01  
VFVR  
Fixed Voltage Reference  
Voltage  
0.984  
0.974  
1.968  
1.938  
3.966  
3.936  
1.064  
1.064  
2.158  
2.148  
4.226  
4.226  
V
FVRV = 00 (1x), VDD 2V  
125°C  
(calibrated)  
FVRV = 01 (2x), VDD ≥  
2.5V  
125°C  
FVRV = 10 (4x), VDD ≥  
4.75V  
125°C  
VR02  
VR03  
VR04  
TCVOUT Voltage drift temperature  
coefficient  
TBD  
TBD  
TBD  
TBD  
ppm/°C  
μV/V  
μs  
ΔVROUT/ Voltage drift with respect to  
ΔVDD  
VDD regulation  
TSTABLE Settling Time  
TBD  
Legend: TBD = To Be Determined  
These parameters are characterized but not tested.  
*
DS41364A-page 380  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 28-14:  
USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
CK  
DT  
US121  
US121  
US122  
US120  
Refer to Figure 28-5 for load conditions.  
Note:  
TABLE 28-13: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param.  
Symbol  
No.  
Characteristic  
Min.  
Max.  
Units Conditions  
US120 TCKH2DTV SYNC XMIT (Master and Slave)  
Clock high to data-out valid  
3.0-5.5V  
1.8-5.5V  
3.0-5.5V  
1.8-5.5V  
3.0-5.5V  
1.8-5.5V  
80  
100  
45  
ns  
ns  
ns  
ns  
ns  
ns  
US121 TCKRF  
Clock out rise time and fall time  
(Master mode)  
50  
US122 TDTRF  
Data-out rise time and fall time  
45  
50  
FIGURE 28-15:  
USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
CK  
DT  
US125  
US126  
Note: Refer to Figure 28-5 for load conditions.  
TABLE 28-14: USART SYNCHRONOUS RECEIVE REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param.  
Symbol  
No.  
Characteristic  
Min.  
Max. Units  
Conditions  
US125 TDTV2CKL SYNC RCV (Master and Slave)  
Data-hold before CK (DT hold time)  
10  
15  
ns  
ns  
US126 TCKL2DTL Data-hold after CK (DT hold time)  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 381  
PIC16F193X/LF193X  
FIGURE 28-16:  
SPI MASTER MODE TIMING (CKE = 0, SMP = 0)  
SS  
SP70  
SCK  
(CKP = 0)  
SP71  
SP72  
SP78  
SP79  
SP79  
SCK  
(CKP = 1)  
SP78  
LSb  
SP80  
MSb  
bit 6 - - - - - -1  
SDO  
SDI  
SP75, SP76  
bit 6 - - - -1  
MSb In  
LSb In  
SP74  
SP73  
Note: Refer to Figure 28-5 for load conditions.  
FIGURE 28-17:  
SPI MASTER MODE TIMING (CKE = 1, SMP = 1)  
SS  
SP81  
SCK  
(CKP = 0)  
SP71  
SP73  
SP72  
SP79  
SCK  
(CKP = 1)  
SP80  
SP78  
LSb  
MSb  
bit 6 - - - - - -1  
SDO  
SDI  
SP75, SP76  
bit 6 - - - -1  
MSb In  
SP74  
Note: Refer to Figure 28-5 for load conditions.  
LSb In  
DS41364A-page 382  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
FIGURE 28-18:  
SPI SLAVE MODE TIMING (CKE = 0)  
SS  
SP70  
SCK  
(CKP = 0)  
SP83  
SP71  
SP72  
SP78  
SP79  
SP79  
SCK  
(CKP = 1)  
SP78  
LSb  
SP80  
MSb  
SDO  
SDI  
bit 6 - - - - - -1  
SP77  
SP75, SP76  
bit 6 - - - -1  
MSb In  
SP74  
SP73  
LSb In  
Note: Refer to Figure 28-5 for load conditions.  
FIGURE 28-19:  
SPI SLAVE MODE TIMING (CKE = 1)  
SP82  
SP70  
SS  
SP83  
SCK  
(CKP = 0)  
SP72  
SP71  
SCK  
(CKP = 1)  
SP80  
MSb  
bit 6 - - - - - -1  
LSb  
SDO  
SDI  
SP77  
SP75, SP76  
bit 6 - - - -1  
MSb In  
SP74  
LSb In  
Note: Refer to Figure 28-5 for load conditions.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 383  
PIC16F193X/LF193X  
TABLE 28-15: SPI MODE REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ† Max. Units Conditions  
SP70* TSSL2SCH, SSto SCKor SCKinput  
TCY  
ns  
TSSL2SCL  
SP71* TSCH  
SP72* TSCL  
SCK input high time (Slave mode)  
SCK input low time (Slave mode)  
TCY + 20  
TCY + 20  
100  
ns  
ns  
ns  
SP73* TDIV2SCH, Setup time of SDI data input to SCK edge  
TDIV2SCL  
SP74* TSCH2DIL, Hold time of SDI data input to SCK edge  
TSCL2DIL  
100  
ns  
SP75* TDOR  
SDO data output rise time  
3.0-5.5V  
1.8-5.5V  
10  
Tcy  
10  
25  
10  
10  
25  
10  
25  
50  
25  
50  
25  
50  
25  
50  
145  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SP76* TDOF  
SDO data output fall time  
SP77* TSSH2DOZ SSto SDO output high-impedance  
SP78* TSCR  
SCK output rise time  
(Master mode)  
3.0-5.5V  
1.8-5.5V  
SP79* TSCF  
SCK output fall time (Master mode)  
SP80* TSCH2DOV, SDO data output valid after  
TSCL2DOV SCK edge  
3.0-5.5V  
1.8-5.5V  
SP81* TDOV2SCH, SDO data output setup to SCK edge  
TDOV2SCL  
SP82* TSSL2DOV SDO data output valid after SSedge  
50  
ns  
ns  
SP83* TSCH2SSH, SS after SCK edge  
1.5TCY + 40  
TSCL2SSH  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
FIGURE 28-20:  
I2C™ BUS START/STOP BITS TIMING  
SCL  
SP93  
SP91  
SP90  
SP92  
SDA  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 28-5 for load conditions.  
DS41364A-page 384  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
TABLE 28-16: I2C™ BUS START/STOP BITS REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
Min. Typ Max. Units  
Conditions  
SP90* TSU:STA Start condition  
Setup time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
ns Only relevant for Repeated  
Start condition  
SP91* THD:STA Start condition  
Hold time  
4000  
600  
ns After this period, the first  
clock pulse is generated  
SP92* TSU:STO Stop condition  
Setup time  
4700  
600  
ns  
SP93 THD:STO Stop condition  
Hold time  
4000  
600  
ns  
*
These parameters are characterized but not tested.  
FIGURE 28-21:  
I2C™ BUS DATA TIMING  
SP100  
SP103  
SP102  
SP101  
SCL  
SP90  
SP106  
SP107  
SP92  
SP91  
SDA  
In  
SP110  
SP109  
SP109  
SDA  
Out  
Note: Refer to Figure 28-5 for load conditions.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 385  
PIC16F193X/LF193X  
TABLE 28-17: I2C™ BUS DATA REQUIREMENTS  
Param.  
No.  
Symbol  
Characteristic  
Min.  
Max. Units  
Conditions  
SP100* THIGH  
Clock high time  
100 kHz mode  
4.0  
μs  
μs  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
0.6  
Device must operate at a  
minimum of 10 MHz  
SSP module  
1.5TCY  
4.7  
SP101* TLOW  
Clock low time  
100 kHz mode  
μs  
μs  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
SSP module  
1.3  
Device must operate at a  
minimum of 10 MHz  
1.5TCY  
SP102* TR  
SP103* TF  
SDA and SCL rise 100 kHz mode  
time  
1000  
ns  
ns  
400 kHz mode  
20 + 0.1CB 300  
CB is specified to be from  
10-400 pF  
SDA and SCL fall  
time  
100 kHz mode  
400 kHz mode  
250  
ns  
ns  
20 + 0.1CB 250  
CB is specified to be from  
10-400 pF  
SP90* TSU:STA Start condition  
setup time  
100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
μs  
μs  
μs  
μs  
ns  
μs  
ns  
ns  
μs  
μs  
ns  
ns  
μs  
μs  
Only relevant for  
Repeated Start condition  
SP91* THD:STA Start condition hold 100 kHz mode  
After this period the first  
clock pulse is generated  
time  
400 kHz mode  
SP106* THD:DAT Data input hold time 100 kHz mode  
400 kHz mode  
0
0.9  
SP107* TSU:DAT Data input setup  
time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
250  
100  
4.7  
0.6  
(Note 2)  
SP92* TSU:STO Stop condition  
setup time  
SP109* TAA  
Output valid from  
clock  
3500  
(Note 1)  
SP110* TBUF  
Bus free time  
4.7  
1.3  
Time the bus must be free  
before a new transmission  
can start  
SP111 CB  
Bus capacitive loading  
400  
pF  
*
These parameters are characterized but not tested.  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region  
(min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.  
2: A Fast mode (400 kHz) I2Cbus device can be used in a Standard mode (100 kHz) I2C bus system, but  
the requirement TSU:DAT 250 ns must then be met. This will automatically be the case if the device does  
not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal,  
it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to  
the Standard mode I2C bus specification), before the SCL line is released.  
DS41364A-page 386  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
TABLE 28-18: CAP SENSE OSCILLATOR SPECIFICATIONS  
Param.  
No.  
Symbol  
Characteristic  
Min.  
Typ†  
Max. Units  
Conditions  
CS01  
ISRC  
Current Source  
High  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
-5.8  
-1.1  
-0.2  
6.6  
Medium  
Low  
CS02  
ISNK  
Current Sink  
High  
Medium  
Low  
1.3  
0.24  
0.8  
CS03 VCTH  
CS04 VCTL  
Cap Threshold  
Cap Threshold  
High  
Low  
0.4  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
FIGURE 28-22:  
CAP SENSE OSCILLATOR  
VCTH  
VCTL  
ISRC  
Enabled  
ISNK  
Enabled  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 387  
PIC16F193X/LF193X  
NOTES:  
DS41364A-page 388  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
29.0 DC AND AC  
CHARACTERISTICS GRAPHS  
AND CHARTS  
Graphs and charts are not available at this time.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 389  
PIC16F193X/LF193X  
NOTES:  
DS41364A-page 390  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
30.0 PACKAGING INFORMATION  
30.1 Package Marking Information  
28-Lead SPDIP  
Example  
PIC16F1936  
-I/SP  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
e
3
YYWWNNN  
0810017  
40-Lead PDIP  
Example  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
YYWWNNN  
PIC16F1937  
-I/P  
e
3
0810017  
Example  
28-Lead QFN  
16F1936  
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
e
3
-I/ML  
0810017  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
*
Standard PICmicro® device marking consists of Microchip part number, year code, week code and  
traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check  
with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP  
price.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 391  
PIC16F193X/LF193X  
Package Marking Information (Continued)  
44-Lead QFN  
Example  
-I/ML  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC16F1937  
e
3
0810017  
28-Lead SOIC  
Example  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
PIC16F1936  
-I/SO  
e
3
0810017  
YYWWNNN  
28-Lead SSOP  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
PIC16F1936  
-I/SS  
e
3
YYWWNNN  
0810017  
44-Lead TQFP  
Example  
-I/PT  
XXXXXXXXXXX  
XXXXXXXXXXX  
XXXXXXXXXXX  
YYWWNNN  
PIC16F1937  
e
3
0810017  
DS41364A-page 392  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
30.2 Package Details  
The following sections give the technical details of the packages.  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢊꢋꢋꢌꢇꢍꢎꢅꢏꢐꢊꢑꢇꢒꢓꢅꢎꢇꢔꢋꢂꢃꢊꢋꢄꢇꢕꢈꢍꢖꢇMꢇꢗꢘꢘꢇꢙꢊꢎꢇꢚꢛꢆꢌꢇꢜꢈꢍꢒꢔꢍ  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
N
NOTE 1  
E1  
1
2 3  
D
E
A2  
A
L
c
b1  
A1  
b
e
eB  
6ꢄꢃ&!  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢚ7,8.ꢐ  
7:ꢔ  
ꢎ<  
ꢁꢀꢕꢕꢅ1ꢐ,  
M
ꢔꢚ7  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
ꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
M
ꢁꢎꢕꢕ  
ꢁꢀꢘꢕ  
M
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
1ꢆ!ꢈꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
ꢐꢍꢋ"ꢇ#ꢈꢉꢅ&ꢋꢅꢐꢍꢋ"ꢇ#ꢈꢉꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
ꢙꢃꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
6ꢓꢓꢈꢉꢅ9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
ꢗꢎ  
ꢗꢀ  
.
.ꢀ  
9
)ꢀ  
)
ꢈ1  
ꢁꢀꢎꢕ  
ꢁꢕꢀꢘ  
ꢁꢎꢛꢕ  
ꢁꢎꢖꢕ  
ꢀꢁ-ꢖꢘ  
ꢁꢀꢀꢕ  
ꢁꢕꢕ<  
ꢁꢕꢖꢕ  
ꢁꢕꢀꢖ  
M
ꢁꢀ-ꢘ  
M
ꢁ-ꢀꢕ  
ꢁꢎ<ꢘ  
ꢀꢁ-?ꢘ  
ꢁꢀ-ꢕ  
ꢁꢕꢀꢕ  
ꢁꢕꢘꢕ  
ꢁꢕꢀ<  
M
ꢁ--ꢘ  
ꢁꢎꢛꢘ  
ꢀꢁꢖꢕꢕ  
ꢁꢀꢘꢕ  
ꢁꢕꢀꢘ  
ꢁꢕꢜꢕ  
ꢁꢕꢎꢎ  
ꢁꢖ-ꢕ  
9ꢋ*ꢈꢉꢅ9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅꢝꢋ*ꢅꢐꢓꢆꢌꢃꢄꢑꢅꢅꢏ  
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢏꢅꢐꢃꢑꢄꢃ%ꢃꢌꢆꢄ&ꢅ,ꢍꢆꢉꢆꢌ&ꢈꢉꢃ!&ꢃꢌꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢁꢕꢀꢕ/ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢜꢕ1  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 393  
PIC16F193X/LF193X  
#ꢘꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇꢒꢓꢅꢎꢇꢔꢋꢂꢃꢊꢋꢄꢇꢕꢍꢖꢇMꢇ$ꢘꢘꢇꢙꢊꢎꢇꢚꢛꢆꢌꢇꢜꢍꢒꢔꢍ  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
N
NOTE 1  
E1  
1 2 3  
D
E
A2  
A
L
c
b1  
b
A1  
e
eB  
6ꢄꢃ&!  
ꢚ7,8.ꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
ꢖꢕ  
ꢁꢀꢕꢕꢅ1ꢐ,  
ꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
1ꢆ!ꢈꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
ꢐꢍꢋ"ꢇ#ꢈꢉꢅ&ꢋꢅꢐꢍꢋ"ꢇ#ꢈꢉꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
ꢙꢃꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
6ꢓꢓꢈꢉꢅ9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
M
M
M
M
M
M
M
M
M
M
M
M
ꢁꢎꢘꢕ  
ꢁꢀꢛꢘ  
M
ꢗꢎ  
ꢗꢀ  
.
.ꢀ  
9
)ꢀ  
)
ꢈ1  
ꢁꢀꢎꢘ  
ꢁꢕꢀꢘ  
ꢁꢘꢛꢕ  
ꢁꢖ<ꢘ  
ꢀꢁꢛ<ꢕ  
ꢁꢀꢀꢘ  
ꢁꢕꢕ<  
ꢁꢕ-ꢕ  
ꢁꢕꢀꢖ  
M
ꢁ?ꢎꢘ  
ꢁꢘ<ꢕ  
ꢎꢁꢕꢛꢘ  
ꢁꢎꢕꢕ  
ꢁꢕꢀꢘ  
ꢁꢕꢜꢕ  
ꢁꢕꢎ-  
ꢁꢜꢕꢕ  
9ꢋ*ꢈꢉꢅ9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅꢝꢋ*ꢅꢐꢓꢆꢌꢃꢄꢑꢅꢅꢏ  
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢏꢅꢐꢃꢑꢄꢃ%ꢃꢌꢆꢄ&ꢅ,ꢍꢆꢉꢆꢌ&ꢈꢉꢃ!&ꢃꢌꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢁꢕꢀꢕ/ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢀ?1  
DS41364A-page 394  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
ꢀꢁꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇ%ꢓꢅꢆꢇ&ꢎꢅꢐ'ꢇ!ꢛꢇꢃꢄꢅꢆꢇꢍꢅꢑꢉꢅ(ꢄꢇꢕ)ꢃꢖꢇMꢇ$*$ꢇꢙꢙꢇꢚꢛꢆꢌꢇꢜ%&!  
+ꢊꢐ,ꢇꢘ-..ꢇꢙꢙꢇ/ꢛꢋꢐꢅꢑꢐꢇꢃꢄꢋ(ꢐ,  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D
D2  
EXPOSED  
PAD  
e
E
b
E2  
2
1
2
1
K
N
N
NOTE 1  
L
BOTTOM VIEW  
TOP VIEW  
A
A3  
A1  
6ꢄꢃ&!  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
7:ꢔ  
ꢔꢚ7  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢐ&ꢆꢄ#ꢋ%%ꢅ  
,ꢋꢄ&ꢆꢌ&ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ9ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ>ꢃ#&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ9ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢞ&ꢋꢞ.$ꢓꢋ!ꢈ#ꢅꢂꢆ#  
7
ꢗꢀ  
ꢗ-  
.
.ꢎ  
ꢎ<  
ꢕꢁ?ꢘꢅ1ꢐ,  
ꢕꢁꢛꢕ  
ꢕꢁ<ꢕ  
ꢕꢁꢕꢕ  
ꢀꢁꢕꢕ  
ꢕꢁꢕꢘ  
ꢕꢁꢕꢎ  
ꢕꢁꢎꢕꢅꢝ.3  
?ꢁꢕꢕꢅ1ꢐ,  
-ꢁꢜꢕ  
?ꢁꢕꢕꢅ1ꢐ,  
-ꢁꢜꢕ  
ꢕꢁ-ꢕ  
ꢕꢁꢘꢘ  
M
-ꢁ?ꢘ  
ꢖꢁꢎꢕ  
ꢒꢎ  
)
9
-ꢁ?ꢘ  
ꢕꢁꢎ-  
ꢕꢁꢘꢕ  
ꢕꢁꢎꢕ  
ꢖꢁꢎꢕ  
ꢕꢁ-ꢘ  
ꢕꢁꢜꢕ  
M
@
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢂꢆꢌ4ꢆꢑꢈꢅꢃ!ꢅ!ꢆ*ꢅ!ꢃꢄꢑ"ꢇꢆ&ꢈ#ꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢀꢕꢘ1  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 395  
PIC16F193X/LF193X  
ꢀꢁꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇ%ꢓꢅꢆꢇ&ꢎꢅꢐ'ꢇ!ꢛꢇꢃꢄꢅꢆꢇꢍꢅꢑꢉꢅ(ꢄꢇꢕ)ꢃꢖꢇMꢇ$*$ꢇꢙꢙꢇꢚꢛꢆꢌꢇꢜ%&!  
+ꢊꢐ,ꢇꢘ-..ꢇꢙꢙꢇ/ꢛꢋꢐꢅꢑꢐꢇꢃꢄꢋ(ꢐ,  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
DS41364A-page 396  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
##ꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇ%ꢓꢅꢆꢇ&ꢎꢅꢐ'ꢇ!ꢛꢇꢃꢄꢅꢆꢇꢍꢅꢑꢉꢅ(ꢄꢇꢕ)ꢃꢖꢇMꢇꢁ*ꢁꢇꢙꢙꢇꢚꢛꢆꢌꢇꢜ%&!  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D2  
D
EXPOSED  
PAD  
e
b
K
E
E2  
2
1
2
1
N
N
NOTE 1  
L
TOP VIEW  
BOTTOM VIEW  
A
A3  
A1  
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢖꢖ  
ꢕꢁ?ꢘꢅ1ꢐ,  
ꢕꢁꢛꢕ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢐ&ꢆꢄ#ꢋ%%ꢅ  
,ꢋꢄ&ꢆꢌ&ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
7
ꢗꢀ  
ꢗ-  
.
.ꢎ  
ꢕꢁ<ꢕ  
ꢕꢁꢕꢕ  
ꢀꢁꢕꢕ  
ꢕꢁꢕꢘ  
ꢕꢁꢕꢎ  
ꢕꢁꢎꢕꢅꢝ.3  
<ꢁꢕꢕꢅ1ꢐ,  
?ꢁꢖꢘ  
<ꢁꢕꢕꢅ1ꢐ,  
?ꢁꢖꢘ  
ꢕꢁ-ꢕ  
ꢕꢁꢖꢕ  
M
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ9ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ>ꢃ#&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ9ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢞ&ꢋꢞ.$ꢓꢋ!ꢈ#ꢅꢂꢆ#  
?ꢁ-ꢕ  
?ꢁ<ꢕ  
ꢒꢎ  
)
9
?ꢁ-ꢕ  
ꢕꢁꢎꢘ  
ꢕꢁ-ꢕ  
ꢕꢁꢎꢕ  
?ꢁ<ꢕ  
ꢕꢁ-<  
ꢕꢁꢘꢕ  
M
@
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢂꢆꢌ4ꢆꢑꢈꢅꢃ!ꢅ!ꢆ*ꢅ!ꢃꢄꢑ"ꢇꢆ&ꢈ#ꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢀꢕ-1  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 397  
PIC16F193X/LF193X  
##ꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇ%ꢓꢅꢆꢇ&ꢎꢅꢐ'ꢇ!ꢛꢇꢃꢄꢅꢆꢇꢍꢅꢑꢉꢅ(ꢄꢇꢕ)ꢃꢖꢇMꢇꢁ*ꢁꢇꢙꢙꢇꢚꢛꢆꢌꢇꢜ%&!  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
DS41364A-page 398  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
ꢀꢁꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇꢈꢙꢅꢎꢎꢇ0ꢓꢐꢎꢊꢋꢄꢇꢕꢈ0ꢖꢇMꢇ1ꢊꢆꢄ'ꢇ2-.ꢘꢇꢙꢙꢇꢚꢛꢆꢌꢇꢜꢈ0ꢔ/  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D
N
E
E1  
NOTE 1  
1
2
3
e
b
h
α
h
c
φ
A2  
A
L
A1  
L1  
β
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
ꢎ<  
ꢀꢁꢎꢜꢅ1ꢐ,  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
ꢐ&ꢆꢄ#ꢋ%%ꢅꢅꢏ  
M
ꢎꢁꢕꢘ  
ꢕꢁꢀꢕ  
M
M
M
ꢎꢁ?ꢘ  
M
ꢕꢁ-ꢕ  
ꢗꢎ  
ꢗꢀ  
.
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
ꢀꢕꢁ-ꢕꢅ1ꢐ,  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
,ꢍꢆ'%ꢈꢉꢅAꢋꢓ&ꢃꢋꢄꢆꢇB  
3ꢋꢋ&ꢅ9ꢈꢄꢑ&ꢍ  
.ꢀ  
ꢜꢁꢘꢕꢅ1ꢐ,  
ꢀꢜꢁꢛꢕꢅ1ꢐ,  
ꢕꢁꢎꢘ  
ꢕꢁꢖꢕ  
M
M
ꢕꢁꢜꢘ  
ꢀꢁꢎꢜ  
9
3ꢋꢋ&ꢓꢉꢃꢄ&  
9ꢀ  
ꢀꢁꢖꢕꢅꢝ.3  
3ꢋꢋ&ꢅꢗꢄꢑꢇꢈꢅ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ1ꢋ&&ꢋ'  
ꢕꢟ  
ꢕꢁꢀ<  
ꢕꢁ-ꢀ  
ꢘꢟ  
M
M
M
M
M
<ꢟ  
)
ꢕꢁ--  
ꢕꢁꢘꢀ  
ꢀꢘꢟ  
ꢘꢟ  
ꢀꢘꢟ  
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢏꢅꢐꢃꢑꢄꢃ%ꢃꢌꢆꢄ&ꢅ,ꢍꢆꢉꢆꢌ&ꢈꢉꢃ!&ꢃꢌꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢕꢁꢀꢘꢅ''ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢘꢎ1  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 399  
PIC16F193X/LF193X  
ꢀꢁꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇꢈ,3ꢊꢋꢉꢇꢈꢙꢅꢎꢎꢇ0ꢓꢐꢎꢊꢋꢄꢇꢕꢈꢈꢖꢇMꢇ.-ꢗꢘꢇꢙꢙꢇꢚꢛꢆꢌꢇꢜꢈꢈ0ꢍ  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D
N
E
E1  
1
2
b
NOTE 1  
e
c
A2  
A
φ
A1  
L
L1  
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
ꢎ<  
ꢕꢁ?ꢘꢅ1ꢐ,  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
ꢐ&ꢆꢄ#ꢋ%%ꢅ  
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
3ꢋꢋ&ꢅ9ꢈꢄꢑ&ꢍ  
3ꢋꢋ&ꢓꢉꢃꢄ&  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
3ꢋꢋ&ꢅꢗꢄꢑꢇꢈ  
M
M
ꢀꢁꢜꢘ  
M
ꢜꢁ<ꢕ  
ꢘꢁ-ꢕ  
ꢀꢕꢁꢎꢕ  
ꢕꢁꢜꢘ  
ꢀꢁꢎꢘꢅꢝ.3  
M
ꢎꢁꢕꢕ  
ꢀꢁ<ꢘ  
M
<ꢁꢎꢕ  
ꢘꢁ?ꢕ  
ꢀꢕꢁꢘꢕ  
ꢕꢁꢛꢘ  
ꢗꢎ  
ꢗꢀ  
.
.ꢀ  
9
9ꢀ  
ꢀꢁ?ꢘ  
ꢕꢁꢕꢘ  
ꢜꢁꢖꢕ  
ꢘꢁꢕꢕ  
ꢛꢁꢛꢕ  
ꢕꢁꢘꢘ  
ꢕꢁꢕꢛ  
ꢕꢟ  
ꢕꢁꢎꢘ  
<ꢟ  
ꢖꢟ  
9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
)
ꢕꢁꢎꢎ  
M
ꢕꢁ-<  
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢕꢁꢎꢕꢅ''ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢜ-1  
DS41364A-page 400  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
##ꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇ4,ꢊꢋꢇ%ꢓꢅꢆꢇ&ꢎꢅꢐ5ꢅꢑꢉꢇꢕꢍ4ꢖꢇMꢇ6ꢘ*6ꢘ*6ꢇꢙꢙꢇꢚꢛꢆꢌ'ꢇꢀ-ꢘꢘꢇꢙꢙꢇꢜ4%&ꢍ  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D
D1  
E
e
E1  
N
b
NOTE 1  
1 2 3  
NOTE 2  
α
A
c
φ
A2  
β
A1  
L
L1  
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢖꢖ  
ꢕꢁ<ꢕꢅ1ꢐ,  
M
ꢀꢁꢕꢕ  
M
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅ9ꢈꢆ#!  
9ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
ꢐ&ꢆꢄ#ꢋ%%ꢅꢅ  
3ꢋꢋ&ꢅ9ꢈꢄꢑ&ꢍ  
7
ꢗꢎ  
ꢗꢀ  
9
M
ꢀꢁꢎꢕ  
ꢀꢁꢕꢘ  
ꢕꢁꢀꢘ  
ꢕꢁꢜꢘ  
ꢕꢁꢛꢘ  
ꢕꢁꢕꢘ  
ꢕꢁꢖꢘ  
ꢕꢁ?ꢕ  
3ꢋꢋ&ꢓꢉꢃꢄ&  
3ꢋꢋ&ꢅꢗꢄꢑꢇꢈ  
9ꢀ  
ꢀꢁꢕꢕꢅꢝ.3  
-ꢁꢘꢟ  
ꢕꢟ  
ꢜꢟ  
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
.
.ꢀ  
ꢒꢀ  
ꢀꢎꢁꢕꢕꢅ1ꢐ,  
ꢀꢎꢁꢕꢕꢅ1ꢐ,  
ꢀꢕꢁꢕꢕꢅ1ꢐ,  
ꢀꢕꢁꢕꢕꢅ1ꢐ,  
M
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ9ꢈꢄꢑ&ꢍ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ1ꢋ&&ꢋ'  
ꢕꢁꢕꢛ  
ꢕꢁ-ꢕ  
ꢀꢀꢟ  
ꢕꢁꢎꢕ  
ꢕꢁꢖꢘ  
ꢀ-ꢟ  
)
ꢕꢁ-ꢜ  
ꢀꢎꢟ  
ꢀꢎꢟ  
ꢀꢀꢟ  
ꢀ-ꢟ  
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ,ꢍꢆ'%ꢈꢉ!ꢅꢆ&ꢅꢌꢋꢉꢄꢈꢉ!ꢅꢆꢉꢈꢅꢋꢓ&ꢃꢋꢄꢆꢇDꢅ!ꢃEꢈꢅ'ꢆꢊꢅ ꢆꢉꢊꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢀꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢕꢁꢎꢘꢅ''ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢜ?1  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 401  
PIC16F193X/LF193X  
##ꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇ4,ꢊꢋꢇ%ꢓꢅꢆꢇ&ꢎꢅꢐ5ꢅꢑꢉꢇꢕꢍ4ꢖꢇMꢇ6ꢘ*6ꢘ*6ꢇꢙꢙꢇꢚꢛꢆꢌ'ꢇꢀ-ꢘꢘꢇꢙꢙꢇꢜ4%&ꢍ  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
DS41364A-page 402  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
APPENDIX A: DATA SHEET  
REVISION HISTORY  
APPENDIX B: MIGRATING FROM  
OTHER PIC®  
DEVICES  
Revision A  
This discusses some of the issues in migrating from  
other PIC® devices to the PIC16F193X/LF193X family  
of devices.  
Original release (12/2008)  
B.1  
TABLE B-1:  
Feature  
PIC16F917 to PIC16F193X/LF193X  
FEATURE COMPARISON  
PIC16F917 PIC16F1937  
Max. Operating Speed  
20 MHz  
8K  
32 MHz  
8K  
Max. Program  
Memory (Words)  
Max. SRAM (Bytes)  
A/D Resolution  
368  
512  
10-bit  
10-bit  
Timers (8/16-bit)  
Oscillator Modes  
Brown-out Reset  
Internal Pull-ups  
Interrupt-on-change  
Comparator  
2/1  
4/1  
4
8
Y
Y
RB<7:0>  
RB<7:0>  
RB<7:4>  
RB<7:0>  
2
1/0  
Y
2
0/1  
Y
AUSART/EUSART  
Extended WDT  
Software Control  
N
Y
Option of WDT/BOR  
INTOSC Frequencies  
30 kHz -  
8 MHz  
500 kHz -  
32 MHz  
Clock Switching  
Capacitive Sensing  
CCP/ECCP  
Y
N
Y
Y
2/0  
N
2/3  
Y
Enhanced PIC16 CPU  
MSSP/SSP  
0/1  
Y
1/0  
Y
LCD  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 403  
PIC16F193X/LF193X  
NOTES:  
DS41364A-page 404  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
INDEX  
Digital-to-Analog Converter (DAC) ........................... 152  
EUSART Receive..................................................... 214  
EUSART Transmit.................................................... 213  
External RC Mode .................................................... 111  
Fail-Safe Clock Monitor (FSCM)............................... 119  
Generic I/O Port.......................................................... 83  
Interrupt Logic............................................................. 69  
LCD Bias Voltage Generation .................................. 249  
LCD Clock Generation.............................................. 248  
MCLR Circuit .............................................................. 59  
On-Chip Reset Circuit................................................. 57  
Peripheral Interrupt Logic ........................................... 70  
PIC16F193X/LF193X ................................................. 13  
PWM (Enhanced) ..................................................... 195  
Resonator Operation ................................................ 110  
Timer0 ...................................................................... 157  
Timer1 ...................................................................... 161  
Timer1 Gate.............................................. 166, 167, 168  
Timer2/4/6 ................................................................ 173  
Voltage Reference.................................................... 155  
Voltage Reference Output Buffer Example .............. 155  
BORCON Register.............................................................. 63  
BRA .................................................................................. 342  
Break Character (12-bit) Transmit and Receive ............... 233  
Brown-out Reset (BOR)...................................................... 62  
Specifications ........................................................... 375  
Timing and Characteristics....................................... 374  
A
A/D  
Specifications.................................................... 377, 378  
Absolute Maximum Ratings .............................................. 355  
AC Characteristics  
Industrial and Extended ............................................ 370  
Load Conditions........................................................ 369  
ACKSTAT ......................................................................... 310  
ACKSTAT Status Flag ...................................................... 310  
ADC .................................................................................. 131  
Acquisition Requirements ......................................... 140  
Associated registers.................................................. 142  
Block Diagram........................................................... 131  
Calculating Acquisition Time..................................... 140  
Channel Selection..................................................... 132  
Configuration............................................................. 132  
Configuring Interrupt ................................................. 136  
Conversion Clock...................................................... 132  
Conversion Procedure .............................................. 136  
Internal Sampling Switch (RSS) Impedance.............. 140  
Interrupts................................................................... 134  
Operation .................................................................. 135  
Operation During Sleep ............................................ 135  
Port Configuration..................................................... 132  
Reference Voltage (VREF)......................................... 132  
Source Impedance.................................................... 140  
Special Event Trigger................................................ 135  
Starting an A/D Conversion ...................................... 134  
ADCON0 Register....................................................... 36, 137  
ADCON1 Register....................................................... 36, 138  
ADDFSR ........................................................................... 341  
ADDWFC .......................................................................... 341  
ADRESH Register............................................................... 36  
ADRESH Register (ADFM = 0)......................................... 138  
ADRESH Register (ADFM = 1)......................................... 139  
ADRESL Register (ADFM = 0).......................................... 139  
ADRESL Register (ADFM = 1).......................................... 139  
Alternate Pin Function......................................................... 84  
Analog-to-Digital Converter. See ADC  
C
C Compilers  
MPLAB C18.............................................................. 352  
MPLAB C30.............................................................. 352  
CALL................................................................................. 343  
CALLW ............................................................................. 343  
Capacitive Sensing........................................................... 177  
Associated registers w/ Capacitive Sensing............. 181  
Specifications ........................................................... 387  
Capture Module. See Enhanced Capture/Compare/  
PWM(ECCP)  
Capture/Compare/PWM ................................................... 183  
Capture/Compare/PWM (CCP) ........................................ 185  
Associated Registers w/ Capture ............................. 188  
Associated Registers w/ Compare ........................... 190  
Associated Registers w/ PWM ................................. 211  
Capture Mode........................................................... 187  
CCPx Pin Configuration............................................ 187  
Clock Selection......................................................... 185  
Compare Mode......................................................... 189  
CCPx Pin Configuration.................................... 189  
Software Interrupt Mode........................... 187, 189  
Special Event Trigger....................................... 189  
Timer1 Mode Selection............................. 187, 189  
Prescaler .................................................................. 187  
PWM Mode............................................................... 191  
Duty Cycle ........................................................ 192  
Effects of Reset................................................ 194  
Example PWM Frequencies and  
ANSELA Register ............................................................... 86  
ANSELB Register ............................................................... 91  
ANSELD Register ............................................................... 97  
ANSELE Register ............................................................. 101  
APFCON Register............................................................... 84  
Assembler  
MPASM Assembler................................................... 352  
B
BAUDCON Register.......................................................... 224  
BF ............................................................................. 310, 312  
BF Status Flag .......................................................... 310, 312  
Block Diagram  
Capacitive Sensing ................................................... 177  
Block Diagrams  
(CCP) Capture Mode Operation ............................... 187  
ADC .......................................................................... 131  
ADC Transfer Function ............................................. 141  
Analog Input Model........................................... 141, 147  
CCP PWM................................................................. 191  
Clock Source............................................................. 107  
Comparator............................................................... 144  
Compare ................................................................... 189  
Crystal Operation...................................................... 110  
Resolutions, 20 MHZ................................ 193  
Example PWM Frequencies and  
Resolutions, 32 MHZ................................ 193  
Example PWM Frequencies and  
Resolutions, 8 MHz .................................. 193  
Operation in Sleep Mode.................................. 194  
Resolution ........................................................ 193  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 405  
PIC16F193X/LF193X  
Setup for Operation...........................................194  
System Clock Frequency Changes...................194  
PWM Period..............................................................192  
Setup for PWM Operation.........................................194  
CCP1CON Register ...................................................... 40, 41  
CCPR1H Register......................................................... 40, 41  
CCPR1L Register.......................................................... 40, 41  
CCPTMRS0 Register........................................................185  
CCPTMRS1 Register........................................................186  
CCPxAS Register..............................................................204  
CCPxCON (ECCPx) Register ...........................................184  
Clock Accuracy with Asynchronous Operation .................222  
Clock Sources  
External Modes.........................................................109  
EC.....................................................................109  
HS.....................................................................110  
LP......................................................................110  
OST...................................................................109  
RC.....................................................................111  
XT .....................................................................110  
Internal Modes ..........................................................111  
Frequency Selection .........................................115  
HFINTOSC........................................................112  
Internal Oscillator Clock Switch Timing.............115  
INTOSC ............................................................111  
INTOSCIO.........................................................111  
LFINTOSC ........................................................112  
MFINTOSC .......................................................112  
Clock Switching.................................................................117  
CMOUT Register...............................................................149  
CMxCON0 Register ..........................................................148  
CMxCON1 Register ..........................................................149  
Code Examples  
A/D Conversion.........................................................136  
Changing Between Capture Prescalers....................187  
Initializing PORTA.......................................................85  
Initializing PORTB.......................................................89  
Initializing PORTC.......................................................93  
Initializing PORTD.......................................................96  
Initializing PORTE.....................................................101  
Write Verify ...............................................................332  
Writing to Flash Program Memory ............................330  
Comparator  
Associated Registers ................................................150  
Operation ..................................................................143  
Comparator Module ..........................................................143  
Cx Output State Versus Input Conditions .................145  
Comparator Specifications................................................380  
Comparator Voltage Reference (CVREF)  
DACCON1 (Digital-to-Analog Converter Control 1)  
Register .................................................................... 153  
Data EEPROM Memory.................................................... 321  
Associated Registers................................................ 332  
Code Protection........................................................ 332  
Reading .................................................................... 325  
Writing ...................................................................... 325  
Data Memory ...................................................................... 24  
DC and AC Characteristics............................................... 389  
DC Characteristics  
Extended and Industrial............................................ 365  
Industrial and Extended............................................ 358  
Development Support....................................................... 351  
Device Configuration ........................................................ 125  
Code Protection........................................................ 129  
Configuration Word................................................... 125  
User ID ..................................................................... 129  
Device Overview................................................................. 13  
Digital-to-Analog Converter (DAC) ................................... 151  
Associated Registers................................................ 154  
Effects of a Reset ..................................................... 151  
Operation During Sleep ............................................ 151  
Specifications ........................................................... 380  
E
ECCP/CCP. See Enhanced Capture/Compare/PWM  
EEADR Registers ............................................................. 321  
EEADRH Registers........................................................... 321  
EEADRL Register............................................................. 322  
EEADRL Registers ........................................................... 321  
EECON1 Register..................................................... 321, 323  
EECON2 Register..................................................... 321, 324  
EEDATH Register............................................................. 322  
EEDATL Register ............................................................. 322  
EEPROM Data Memory  
Avoiding Spurious Write ........................................... 332  
Write Verify............................................................... 332  
Effects of Reset  
PWM mode............................................................... 194  
Electrical Specifications.................................................... 355  
Enhanced Capture/Compare/PWM  
Timer Resources ...................................................... 184  
Enhanced Capture/Compare/PWM (ECCP)..................... 184  
Enhanced PWM Mode.............................................. 195  
Auto-Restart ..................................................... 205  
Auto-shutdown.................................................. 203  
Direction Change in Full-Bridge Output Mode.. 201  
Full-Bridge Application...................................... 199  
Full-Bridge Mode .............................................. 199  
Half-Bridge Application..................................... 198  
Half-Bridge Application Examples .................... 206  
Half-Bridge Mode.............................................. 198  
Output Relationships (Active-High and  
Associated Registers ................................................156  
Comparators  
C2OUT as T1 Gate ...................................................163  
Compare Module. See Enhanced Capture/  
Active-Low)............................................... 196  
Compare/PWM (ECCP)  
Output Relationships Diagram.......................... 197  
Programmable Dead Band Delay..................... 206  
Shoot-through Current...................................... 206  
Start-up Considerations.................................... 203  
Specifications ........................................................... 377  
Enhanced Mid-range CPU.................................................. 14  
Enhanced Universal Synchronous Asynchronous  
Receiver Transmitter (EUSART) .............................. 213  
Errata.................................................................................. 11  
EUSART ........................................................................... 213  
Associated Registers  
CONFIG1 Register............................................................126  
CONFIG2 Register............................................................128  
Core Registers ....................................................................49  
CPSCON0 Register ..........................................................180  
CPSCON1 Register ..........................................................181  
Customer Change Notification Service .............................413  
Customer Notification Service...........................................413  
Customer Support.............................................................413  
D
DACCON0 (Digital-to-Analog Converter Control 0) Register..  
153  
Baud Rate Generator ....................................... 226  
DS41364A-page 406  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
Asynchronous Mode ................................................. 215  
12-bit Break Transmit and Receive .................. 233  
Associated Registers  
Sleep Operation........................................................ 315  
Stop Condition Timing .............................................. 314  
INDF Register35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48  
Indirect Addressing, INDF and FSR Registers ................... 53  
Instruction Format............................................................. 338  
Instruction Set................................................................... 337  
ADDLW..................................................................... 341  
ADDWF .................................................................... 341  
ADDWFC.................................................................. 341  
ANDLW..................................................................... 341  
ANDWF .................................................................... 341  
BRA .......................................................................... 342  
CALL......................................................................... 343  
CALLW ..................................................................... 343  
LSLF......................................................................... 345  
LSRF ........................................................................ 345  
MOVF ....................................................................... 345  
MOVIW..................................................................... 346  
MOVLB..................................................................... 346  
MOVWI..................................................................... 347  
OPTION.................................................................... 347  
RESET...................................................................... 347  
SUBWFB .................................................................. 349  
TRIS ......................................................................... 350  
BCF .......................................................................... 342  
BSF........................................................................... 342  
BTFSC...................................................................... 342  
BTFSS...................................................................... 342  
CALL......................................................................... 343  
CLRF ........................................................................ 343  
CLRW....................................................................... 343  
CLRWDT .................................................................. 343  
COMF....................................................................... 343  
DECF........................................................................ 343  
DECFSZ ................................................................... 344  
GOTO....................................................................... 344  
INCF ......................................................................... 344  
INCFSZ..................................................................... 344  
IORLW...................................................................... 344  
IORWF...................................................................... 344  
MOVLW.................................................................... 346  
MOVWF.................................................................... 346  
NOP.......................................................................... 347  
RETFIE..................................................................... 348  
RETLW..................................................................... 348  
RETURN................................................................... 348  
RLF........................................................................... 348  
RRF .......................................................................... 349  
SLEEP...................................................................... 349  
SUBLW..................................................................... 349  
SUBWF..................................................................... 349  
SWAPF..................................................................... 350  
XORLW .................................................................... 350  
XORWF .................................................................... 350  
INTCON Register................................................................ 73  
Internal Oscillator Block  
Receive..................................................... 221  
Transmit.................................................... 217  
Auto-Wake-up on Break ................................... 231  
Baud Rate Generator (BRG) ............................ 225  
Clock Accuracy................................................. 222  
Receiver............................................................ 218  
Setting up 9-bit Mode with Address Detect....... 220  
Transmitter........................................................ 215  
Baud Rate Generator (BRG)  
Auto Baud Rate Detect..................................... 230  
Baud Rate Error, Calculating ............................ 225  
Baud Rates, Asynchronous Modes .................. 227  
Formulas........................................................... 226  
High Baud Rate Select (BRGH Bit) .................. 225  
Synchronous Master Mode............................... 234, 238  
Associated Registers  
Receive..................................................... 237  
Transmit.................................................... 235  
Reception.......................................................... 236  
Transmission .................................................... 234  
Synchronous Slave Mode  
Associated Registers  
Receive..................................................... 239  
Transmit.................................................... 238  
Reception.......................................................... 239  
Transmission .................................................... 238  
Extended Instruction Set  
ADDFSR ................................................................... 341  
F
Fail-Safe Clock Monitor..................................................... 119  
Fail-Safe Condition Clearing..................................... 119  
Fail-Safe Detection ................................................... 119  
Fail-Safe Operation................................................... 119  
Reset or Wake-up from Sleep................................... 119  
Firmware Instructions........................................................ 337  
Fixed Voltage Reference (FVR)  
Specifications............................................................ 380  
Flash Program Memory .................................................... 321  
Erasing...................................................................... 328  
Writing....................................................................... 328  
FSR Register35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48  
FVRCON (Fixed Voltage Reference Control) Register..... 156  
I
2
I C Mode (MSSP)  
Acknowledge Sequence Timing................................ 314  
Bus Collision  
During a Repeated Start Condition................... 318  
During a Stop Condition.................................... 319  
Effects of a Reset...................................................... 315  
2
I C Clock Rate w/BRG.............................................. 320  
Master Mode  
Operation .......................................................... 306  
Reception.......................................................... 312  
Start Condition Timing .............................. 308, 309  
Transmission .................................................... 310  
Multi-Master Communication, Bus Collision  
and Arbitration .................................................. 315  
Multi-Master Mode .................................................... 315  
Read/Write Bit Information (R/W Bit) ........................ 291  
Slave Mode  
INTOSC  
Specifications ................................................... 371  
Internal Sampling Switch (RSS) Impedance ..................... 140  
Internet Address ............................................................... 413  
Interrupt-On-Change......................................................... 103  
Associated Registers................................................ 105  
Interrupts ............................................................................ 69  
ADC.......................................................................... 136  
Associated registers w/ Interrupts .............................. 80  
Transmission .................................................... 296  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 407  
PIC16F193X/LF193X  
TMR1 ........................................................................165  
INTOSC Specifications .....................................................371  
IOCBF Register.................................................................104  
IOCBN Register ................................................................104  
IOCBP Register.................................................................104  
O
OPCODE Field Descriptions............................................. 337  
OPTION............................................................................ 347  
OPTION Register........................................................ 51, 159  
OSCCON Register............................................................ 108  
Oscillator  
L
Associated Registers................................................ 120  
Oscillator Module.............................................................. 107  
EC............................................................................. 107  
HFINTOSC ............................................................... 107  
HS............................................................................. 107  
INTOSC .................................................................... 107  
LFINTOSC................................................................ 107  
LP ............................................................................. 107  
MFINTOSC............................................................... 107  
RC ............................................................................ 107  
XT ............................................................................. 107  
Oscillator Parameters ....................................................... 371  
Oscillator Specifications.................................................... 370  
Oscillator Start-up Timer (OST)  
Specifications ........................................................... 375  
Oscillator Switching  
Fail-Safe Clock Monitor ............................................ 119  
Two-Speed Clock Start-up........................................ 117  
OSCSTAT Register .......................................................... 113  
OSCTUNE Register.......................................................... 114  
LATA Register............................................................... 85, 93  
LATB Register.....................................................................90  
LATD Register.....................................................................96  
LATE Register.....................................................................99  
LCD  
Associated Registers ................................................272  
Bias Voltage Generation ................................... 249, 250  
Clock Source Selection.............................................248  
Configuring the Module.............................................271  
Disabling the Module ................................................271  
Frame Frequency......................................................254  
Interrupts...................................................................267  
LCDCON Register ....................................................241  
LCDPS Register........................................................241  
Multiplex Types.........................................................254  
Operation During Sleep ............................................269  
Pixel Control..............................................................254  
Prescaler...................................................................248  
Segment Enables......................................................254  
Waveform Generation...............................................256  
LCDCON Register..................................................... 241, 243  
LCDCST Register .............................................................246  
LCDDATAx Registers ............................................... 247, 252  
LCDPS Register........................................................ 241, 244  
LP Bits.......................................................................248  
LCDREF Register .............................................................245  
LCDRL Register................................................................252  
LCDSEn Registers............................................................247  
Liquid Crystal Display (LCD) Driver ..................................241  
Load Conditions ................................................................369  
LSLF..................................................................................345  
LSRF.................................................................................345  
P
P1A/P1B/P1C/P1D.See Enhanced Capture/  
Compare/PWM (ECCP)............................................ 195  
Packaging......................................................................... 391  
Marking............................................................. 391, 392  
PDIP Details ............................................................. 393  
PCL and PCLATH............................................................... 52  
PCL Register35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48  
PCLATH Register35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47,  
48  
PCON Register............................................................. 36, 65  
PICSTART Plus Development Programmer..................... 354  
PIE1 Register................................................................ 36, 74  
PIE2 Register................................................................ 36, 75  
PIE3 Register...................................................................... 76  
Pin Diagram  
M
Master Synchronous Serial Port. See MSSP  
MCLR..................................................................................59  
Internal ........................................................................59  
Memory Organization..........................................................21  
Data ............................................................................24  
Program ......................................................................21  
Microchip Internet Web Site..............................................413  
Migrating from other PIC Microcontroller Devices.............403  
MOVIW..............................................................................346  
MOVLB..............................................................................346  
MOVWI..............................................................................347  
MPLAB ASM30 Assembler, Linker, Librarian ...................352  
MPLAB ICD 2 In-Circuit Debugger....................................353  
MPLAB ICE 2000 High-Performance Universal  
PIC16F1933/1936/1938, PICLF1933/1936/1938,  
28-pin PDIP/SOIC/SSOP ..................................... 3  
PIC16F1933/1936/1938, PICLF1933/1936/1938,  
28-pin QFN........................................................... 4  
PICF1934/1937/1939, PICLF1934/1937/1939,  
44-pin QFN........................................................... 7  
PICF1934/1937/1939, PICLF1934/1937/1939,  
44-pin TQFP......................................................... 8  
PICF1934/1937/1939,PICLF1934/1937/1939,  
40-pin PDIP .......................................................... 6  
Pinout Descriptions  
PIC16F193X/PIC16LF193X........................................ 15  
PIR1 Register ............................................................... 35, 77  
PIR2 Register ............................................................... 35, 78  
PIR3 Register ..................................................................... 79  
PORTA ............................................................................... 85  
ANSELA Register ....................................................... 86  
Associated Registers.................................................. 88  
PORTA Register................................................... 35, 37  
Specifications ........................................................... 373  
PORTA Register................................................................. 85  
PORTB ............................................................................... 89  
In-Circuit Emulator ....................................................353  
MPLAB Integrated Development Environment Software ..351  
MPLAB PM3 Device Programmer.....................................353  
MPLAB REAL ICE In-Circuit Emulator System.................353  
MPLINK Object Linker/MPLIB Object Librarian ................352  
MSSP................................................................................273  
SSPBUF Register .....................................................283  
SSPSR Register .......................................................283  
DS41364A-page 408  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
Additional Pin Functions  
ADCON0 (ADC Control 0)........................................ 137  
ADCON1 (ADC Control 1)........................................ 138  
ADRESH (ADC Result High) with ADFM = 0) .......... 138  
ADRESH (ADC Result High) with ADFM = 1) .......... 139  
ADRESL (ADC Result Low) with ADFM = 0)............ 139  
ADRESL (ADC Result Low) with ADFM = 1)............ 139  
ANSELA (PORTA Analog Select) .............................. 86  
ANSELB (PORTB Analog Select) .............................. 91  
ANSELD (PORTD Analog Select).............................. 97  
ANSELE (PORTE Analog Select) ............................ 101  
APFCON (Alternate Pin Function Control) ................. 84  
BAUDCON (Baud Rate Control)............................... 224  
BORCON Brown-out Reset Control) .......................... 63  
CCPTMRS0 (CCP Timers Control 0) ....................... 185  
CCPTMRS1 (CCP Timers Control 1) ....................... 186  
CCPxAS (CCPx Auto-Shutdown Control) ................ 204  
CCPxCON (ECCPx Control) .................................... 184  
CMOUT (Comparator Output) .................................. 149  
CMxCON0 (Cx Control)............................................ 148  
CMxCON1 (Cx Control 1)......................................... 149  
Configuration Word 1................................................ 126  
Configuration Word 2................................................ 128  
CPSCON0 (Capacitive Sensing Control Register 0) 180  
CPSCON1 (Capacitive Sensing Control Register 1) 181  
DACCON0................................................................ 153  
DACCON1................................................................ 153  
EEADRL (EEPROM Address).................................. 322  
EECON1 (EEPROM Control 1) ................................ 323  
EECON2 (EEPROM Control 2) ................................ 324  
EEDATH (EEPROM Data) ....................................... 322  
EEDATL (EEPROM Data)........................................ 322  
FVRCON .................................................................. 156  
INTCON (Interrupt Control) ........................................ 73  
IOCBF (Interrupt-on-Change Flag)........................... 104  
IOCBN (Interrupt-on-Change Negative Edge).......... 104  
IOCBP (Interrupt-on-Change Positive Edge)............ 104  
LATA (Data Latch PORTA) ........................................ 85  
LATB (Data Latch PORTB) ........................................ 90  
LATC (Data Latch PORTC)........................................ 93  
LATD (Data Latch PORTD)........................................ 96  
LATE (Data Latch PORTE) ........................................ 99  
LCDCON (LCD Control) ........................................... 243  
LCDCST (LCD Contrast Control) ............................. 246  
LCDDATAx (LCD Data).................................... 247, 252  
LCDPS (LCD Phase)................................................ 244  
LCDREF (LCD Reference Voltage Control) ............. 245  
LCDRL (LCD Reference Voltage Control)................ 252  
LCDSEn (LCD Segment Enable) ............................. 247  
OPTION_REG (OPTION)................................... 51, 159  
OSCCON (Oscillator Control)................................... 108  
OSCSTAT (Oscillator Status)................................... 113  
OSCTUNE (Oscillator Tuning).................................. 114  
PCON (Power Control Register)................................. 65  
PCON (Power Control)............................................... 65  
PIE1 (Peripheral Interrupt Enable 1) .......................... 74  
PIE2 (Peripheral Interrupt Enable 2) .......................... 75  
PIE3 (Peripheral Interrupt Enable 3) .......................... 76  
PIR1 (Peripheral Interrupt Register 1)........................ 77  
PIR2 (Peripheral Interrupt Request 2)........................ 78  
PIR3 (Peripheral Interrupt Request 3)........................ 79  
PORTA ....................................................................... 85  
PORTB ....................................................................... 90  
PORTC....................................................................... 93  
PORTD....................................................................... 96  
PORTE ....................................................................... 99  
Weak Pull-up ...................................................... 89  
ANSELB Register ....................................................... 91  
Associated Registers .................................................. 92  
Interrupt-on-Change.................................................... 89  
P1B/P1C/P1D.See Enhanced Capture/  
Compare/PWM+ (ECCP+).................................. 89  
Pin Descriptions and Diagrams................................... 92  
PORTB Register ................................................... 35, 37  
PORTB Register ................................................................. 90  
PORTC ............................................................................... 93  
Associated Registers .................................................. 95  
P1A.See Enhanced Capture/Compare/  
PWM+ (ECCP+) ................................................. 93  
Pin Descriptions and Diagrams................................... 95  
PORTC Register................................................... 35, 37  
Specifications............................................................ 373  
PORTC Register................................................................. 93  
PORTD ............................................................................... 96  
Additional Pin Functions  
ANSELD Register............................................... 97  
Associated Registers .................................................. 98  
P1B/P1C/P1D.See Enhanced Capture/  
Compare/PWM+ (ECCP+).................................. 96  
Pin Descriptions and Diagrams................................... 98  
PORTD Register................................................... 35, 37  
PORTD Register................................................................. 96  
PORTE................................................................................ 99  
ANSELE Register ..................................................... 101  
Associated Registers ................................................ 102  
Pin Descriptions and Diagrams................................. 102  
PORTE Register ................................................... 35, 37  
PORTE Register ................................................................. 99  
Power-Down Mode (Sleep)............................................... 333  
Associated Registers ................................................ 334  
Power-on Reset .................................................................. 59  
Power-up Time-out Sequence ............................................ 64  
Power-up Timer (PWRT) .................................................... 59  
Specifications............................................................ 375  
PR2 Register................................................................. 35, 43  
Precision Internal Oscillator Parameters........................... 371  
Program Memory ................................................................ 21  
Map and Stack (PIC16F1933/LF1933,  
PIC16F1934/LF1934) ......................................... 22  
Map and Stack (PIC16F1936/LF1936,  
PIC16F1937/LF1937) ......................................... 22  
Map and Stack (PIC16F1938/LF1938,  
PIC16F1939/LF1939) ......................................... 23  
Programming, Device Instructions .................................... 337  
PSTRxCON Register ........................................................ 208  
Pulse Steering................................................................... 208  
PWM (ECCP Module)  
Pulse Steering........................................................... 208  
Steering Synchronization.......................................... 210  
PWM Mode. See Enhanced Capture/Compare/PWM ...... 195  
PWMxCON Register ......................................................... 207  
R
RCREG............................................................................. 220  
RCREG Register................................................................. 38  
RCSTA Register ......................................................... 38, 223  
Reader Response............................................................. 414  
Read-Modify-Write Operations ......................................... 337  
Register  
RCREG Register....................................................... 230  
Registers  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 409  
PIC16F193X/LF193X  
PSTRxCON (Pulse Steering Control) .......................208  
PWMxCON (Enhanced PWM Control) .....................207  
RCSTA (Receive Status and Control).......................223  
Special Function, Summary........................................35  
SRCON0 (SR Latch Control 0) .................................122  
SRCON1 (SR Latch Control 1) .................................123  
SSPADD (MSSP Address and Baud Rate,  
SSPOV ............................................................................. 312  
SSPOV Status Flag .......................................................... 312  
SSPSTAT Register..................................................... 39, 276  
R/W Bit ..................................................................... 291  
Stack................................................................................... 52  
Accessing ................................................................... 53  
Reset .......................................................................... 53  
Stack Overflow/Underflow .................................................. 64  
STATUS Register ............................................................... 50  
SUBWFB .......................................................................... 349  
2
I C Mode)..........................................................280  
SSPCON1 (MSSP Control 1)....................................277  
SSPCON2 (SSP Control 2).......................................278  
SSPCON3 (SSP Control 3).......................................279  
SSPMSK (SSP Mask)...............................................280  
SSPSTAT (SSP Status)............................................276  
STATUS......................................................................50  
T1CON (Timer1 Control)...........................................169  
T1GCON (Timer1 Gate Control)...............................170  
TRISA (Tri-State PORTA)...........................................86  
TRISB (Tri-State PORTB)...........................................91  
TRISC (Tri-State PORTC) ..........................................94  
TRISD (Tri-State PORTD) ..........................................97  
TRISE (Tri-State PORTE).........................................101  
TxCON ......................................................................175  
TXSTA (Transmit Status and Control) ......................222  
WDTCON (Watchdog Timer Control)..........................61  
WPUB (Weak Pull-up PORTB)...................................90  
RESET ..............................................................................347  
Reset...................................................................................57  
Reset Instruction .................................................................64  
Resets.................................................................................57  
Associated Registers ..................................................68  
Revision History ................................................................403  
T
T1CON Register ......................................................... 35, 169  
T1GCON Register ............................................................ 170  
T2CON Register ........................................................... 35, 43  
Thermal Considerations.................................................... 368  
Timer0............................................................................... 157  
Associated Registers................................................ 159  
Operation.................................................................. 157  
Specifications ........................................................... 376  
Timer1............................................................................... 161  
Associated registers ................................................. 171  
Asynchronous Counter Mode ................................... 163  
Reading and Writing......................................... 163  
Clock Source Selection............................................. 162  
Interrupt .................................................................... 165  
Operation.................................................................. 162  
Operation During Sleep ............................................ 165  
Oscillator................................................................... 163  
Prescaler .................................................................. 163  
Specifications ........................................................... 376  
Timer1 Gate  
S
Selecting Source .............................................. 163  
TMR1H Register....................................................... 161  
TMR1L Register........................................................ 161  
Timer2  
Associated registers ................................................. 176  
Timer2/4/6......................................................................... 173  
Associated registers ................................................. 176  
Timers  
SCK...................................................................................281  
SDI ....................................................................................281  
SDO ..................................................................................281  
Serial Clock, SCK..............................................................281  
Serial Data In (SDI)...........................................................281  
Serial Data Out (SDO) ......................................................281  
Shoot-through Current ......................................................206  
Slave Select (SS)..............................................................281  
Software Simulator (MPLAB SIM).....................................352  
SPBRG..............................................................................225  
SPBRG Register ........................................................... 37, 38  
SPBRGH...........................................................................225  
Special Event Trigger........................................................135  
Special Function Registers (SFRs).....................................35  
SPI Mode (MSSP)  
Associated Registers ................................................286  
Serial Clock...............................................................281  
Serial Data In ............................................................281  
Serial Data Out .........................................................281  
Slave Select..............................................................281  
SPI Clock ..................................................................283  
Typical Connection ...................................................282  
SR Latch ...........................................................................121  
SRCON0 Register.............................................................122  
SRCON1 Register.............................................................123  
SS .....................................................................................281  
SSPADD Register....................................................... 39, 280  
SSPBUF Register ...............................................................39  
SSPCON 1 Register..........................................................277  
SSPCON Register...............................................................39  
SSPCON2 Register...........................................................278  
SSPCON3 Register...........................................................279  
SSPMSK Register.............................................................280  
Timer1  
T1CON ............................................................. 169  
T1GCON........................................................... 170  
Timer2/4/6  
TxCON.............................................................. 175  
Timing Diagrams  
A/D Conversion......................................................... 378  
A/D Conversion (Sleep Mode).................................. 379  
Acknowledge Sequence ........................................... 314  
Asynchronous Reception.......................................... 220  
Asynchronous Transmission..................................... 216  
Asynchronous Transmission (Back to Back) ............ 216  
Auto Wake-up Bit (WUE) During Normal Operation. 232  
Auto Wake-up Bit (WUE) During Sleep .................... 232  
Automatic Baud Rate Calibration.............................. 230  
Baud Rate Generator with Clock Arbitration............. 307  
BRG Reset Due to SDA Arbitration During  
Start Condition.................................................. 317  
Brown-out Reset (BOR)............................................ 374  
Brown-out Reset Situations ........................................ 62  
Bus Collision During a Repeated Start Condition  
(Case 1)........................................................... 318  
Bus Collision During a Repeated Start Condition  
(Case 2)........................................................... 318  
Bus Collision During a Start Condition (SCL = 0)..... 317  
Bus Collision During a Stop Condition (Case 1)....... 319  
DS41364A-page 410  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
Bus Collision During a Stop Condition (Case 2) ....... 319  
Bus Collision During Start Condition (SDA only) ...... 316  
Bus Collision for Transmit and Acknowledge............ 315  
CLKOUT and I/O....................................................... 372  
Clock Synchronization .............................................. 304  
Clock Timing ............................................................. 370  
Comparator Output ................................................... 143  
Enhanced Capture/Compare/PWM (ECCP)............. 377  
Fail-Safe Clock Monitor (FSCM)............................... 120  
First Start Bit Timing ................................................. 308  
Full-Bridge PWM Output........................................... 200  
Half-Bridge PWM Output .................................. 198, 206  
TMR0 Register.................................................................... 35  
TMR1H Register................................................................. 35  
TMR1L Register.................................................................. 35  
TMR2 Register.............................................................. 35, 43  
TRIS ................................................................................. 350  
TRISA Register............................................................. 36, 86  
TRISB ................................................................................. 89  
TRISB Register............................................................. 36, 91  
TRISC................................................................................. 93  
TRISC Register............................................................. 36, 94  
TRISD................................................................................. 96  
TRISD Register............................................................. 36, 97  
TRISE ................................................................................. 99  
TRISE Register........................................................... 36, 101  
Two-Speed Clock Start-up Mode...................................... 117  
TXCON (Timer2/4/6) Register .......................................... 175  
TxCON Register ............................................................... 211  
TXREG ............................................................................. 215  
TXREG Register................................................................. 38  
TXSTA Register.......................................................... 38, 222  
BRGH Bit.................................................................. 225  
2
I C Bus Data............................................................. 385  
2
I C Bus Start/Stop Bits.............................................. 384  
2
I C Master Mode (7 or 10-Bit Transmission) ............ 311  
2
I C Master Mode (7-Bit Reception)........................... 313  
2
I C Stop Condition Receive or Transmit Mode......... 314  
INT Pin Interrupt.......................................................... 71  
Internal Oscillator Switch Timing............................... 116  
LCD Interrupt Timing in Quarter-Duty Cycle Drive.... 268  
LCD Sleep Entry/Exit when SLPEN = 1 or CS = 00 . 270  
PWM Auto-shutdown ................................................ 205  
Firmware Restart .............................................. 205  
PWM Direction Change ............................................ 201  
PWM Direction Change at Near 100% Duty Cycle... 202  
PWM Output (Active-High)........................................ 196  
PWM Output (Active-Low) ........................................ 197  
Repeat Start Condition.............................................. 309  
Reset, WDT, OST and Power-up Timer ................... 373  
Send Break Character Sequence ............................. 233  
SPI Master Mode (CKE = 1, SMP = 1) ..................... 382  
SPI Mode (Master Mode).......................................... 283  
SPI Slave Mode (CKE = 0) ....................................... 383  
SPI Slave Mode (CKE = 1) ....................................... 383  
Synchronous Reception (Master Mode, SREN) ....... 237  
Synchronous Transmission....................................... 235  
Synchronous Transmission (Through TXEN) ........... 235  
Time-out Sequence  
U
USART  
Synchronous Master Mode  
Requirements, Synchronous Receive .............. 381  
Requirements, Synchronous Transmission...... 381  
Timing Diagram, Synchronous Receive ........... 381  
Timing Diagram, Synchronous Transmission... 381  
V
VREF. SEE ADC Reference Voltage  
W
Wake-up on Break............................................................ 231  
Wake-up Using Interrupts................................................. 334  
Watchdog Timer (WDT)...................................................... 59  
Clock Source .............................................................. 59  
Modes......................................................................... 60  
Period ......................................................................... 59  
Specifications ........................................................... 375  
WCOL....................................................... 307, 310, 312, 314  
WCOL Status Flag.................................... 307, 310, 312, 314  
WDTCON Register ............................................................. 61  
WPUB Register................................................................... 90  
WWW Address ................................................................. 413  
WWW, On-Line Support ..................................................... 11  
Case 1 ................................................................ 66  
Case 2 ................................................................ 67  
Case 3 ................................................................ 67  
Timer0 and Timer1 External Clock ........................... 376  
Timer1 Incrementing Edge........................................ 165  
Two Speed Start-up.................................................. 118  
Type-A in 1/2 Mux, 1/2 Bias Drive ............................ 257  
Type-A in 1/2 Mux, 1/3 Bias Drive ............................ 259  
Type-A in 1/3 Mux, 1/2 Bias Drive ............................ 261  
Type-A in 1/3 Mux, 1/3 Bias Drive ............................ 263  
Type-A in 1/4 Mux, 1/3 Bias Drive ............................ 265  
Type-A/Type-B in Static Drive................................... 256  
Type-B in 1/2 Mux, 1/2 Bias Drive ............................ 258  
Type-B in 1/2 Mux, 1/3 Bias Drive ............................ 260  
Type-B in 1/3 Mux, 1/2 Bias Drive ............................ 262  
Type-B in 1/3 Mux, 1/3 Bias Drive ............................ 264  
Type-B in 1/4 Mux, 1/3 Bias Drive ............................ 266  
USART Synchronous Receive (Master/Slave) ......... 381  
USART Synchronous Transmission (Master/Slave). 381  
Wake-up from Interrupt............................................. 334  
Timing Diagrams and Specifications  
PLL Clock.................................................................. 371  
Timing Parameter Symbology........................................... 369  
Timing Requirements  
2
I C Bus Data............................................................. 386  
I2C Bus Start/Stop Bits ............................................. 385  
SPI Mode .................................................................. 384  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 411  
PIC16F193X/LF193X  
NOTES:  
DS41364A-page 412  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change  
Notification and follow the registration instructions.  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 413  
PIC16F193X/LF193X  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
PIC16F193X/LF193X  
DS41364A  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS41364A-page 414  
Preliminary  
© 2008 Microchip Technology Inc.  
PIC16F193X/LF193X  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature  
Range  
Package  
Pattern  
a)  
b)  
PIC16LF1937 - I/P = Industrial temp., Plastic  
DIP package, low-voltage VDD limits.  
PIC16F1934 - I/PT = Industrial temp., TQFP  
package, standard VDD limits.  
c)  
PIC16F1933 - E/ML = Extended temp., QFN  
package, standard VDD limits.  
Device:  
PIC16F1933, PIC16LF1933, PIC16F1933T, PIC16LF1933T(1)  
PIC16F1934, PIC16LF1934, PIC16F1934T, PIC16LF1934T(1)  
PIC16F1936, PIC16LF1936, PIC16F1936T, PIC16LF1936T(1)  
PIC16F1937, PIC16LF1937, PIC16F1937T, PIC16LF1937T(1)  
PIC16F1938, PIC16LF1938, PIC16F1938T, PIC16LF1938T(1)  
PIC16F1939, PIC16LF1939, PIC16F1939T, PIC16LF1939T(1)  
Temperature  
Range:  
I
E
=
=
-40°C to +85°C  
-40°C to +125°C  
Package:  
ML  
P
PT  
SO  
SP  
SS  
=
=
=
=
=
=
Micro Lead Frame (QFN)  
Plastic DIP  
TQFP (Thin Quad Flatpack)  
SOIC  
Skinny Plastic DIP  
SSOP  
Note 1:  
2:  
F
LF  
T
=
=
=
Standard Voltage Range  
Low Voltage Range  
In tape and reel for QFN, TQFP,  
SOIC and SSOP packages only.  
Pattern:  
3-Digit Pattern Code for QTP (blank otherwise)  
© 2008 Microchip Technology Inc.  
Preliminary  
DS41364A-page 415  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
01/02/08  
DS41364A-page 416  
Preliminary  
© 2008 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY