PIC16F508-I/MC [MICROCHIP]

8/14-Pin, 8-Bit Flash Microcontrollers; 8月14日引脚, 8位闪存微控制器
PIC16F508-I/MC
型号: PIC16F508-I/MC
厂家: MICROCHIP    MICROCHIP
描述:

8/14-Pin, 8-Bit Flash Microcontrollers
8月14日引脚, 8位闪存微控制器

闪存 微控制器
文件: 总110页 (文件大小:1484K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC12F508/509/16F505  
Data Sheet  
8/14-Pin, 8-Bit Flash Microcontrollers  
© 2009 Microchip Technology Inc.  
DS41236E  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
rfPIC and UNI/O are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
32  
PICtail, PIC logo, REAL ICE, rfLAB, Select Mode, Total  
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA  
are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
DS41236E-page 2  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
8/14-Pin, 8-Bit Flash Microcontrollers  
Devices Included In This Data Sheet:  
Low-Power Features/CMOS Technology:  
• Operating Current:  
• PIC12F508  
• PIC12F509  
• PIC16F505  
- < 175 μA @ 2V, 4 MHz, typical  
• Standby Current:  
High-Performance RISC CPU:  
- 100 nA @ 2V, typical  
• Only 33 Single-Word Instructions to Learn  
• Low-Power, High-Speed Flash Technology:  
- 100,000 Flash endurance  
- > 40 year retention  
• All Single-Cycle Instructions Except for Program  
Branches, which are Two-Cycle  
• 12-Bit Wide Instructions  
• Fully Static Design  
• 2-Level Deep Hardware Stack  
• Wide Operating Voltage Range: 2.0V to 5.5V  
• Wide Temperature Range:  
- Industrial: -40°C to +85°C  
- Extended: -40°C to +125°C  
• Direct, Indirect and Relative Addressing modes  
for Data and Instructions  
• 8-Bit Wide Data Path  
• 8 Special Function Hardware Registers  
• Operating Speed:  
Peripheral Features (PIC12F508/509):  
- DC – 20 MHz clock input (PIC16F505 only)  
- DC – 200 ns instruction cycle (PIC16F505  
only)  
• 6 I/O Pins:  
- 5 I/O pins with individual direction control  
- 1 input only pin  
- DC – 4 MHz clock input  
- DC – 1000 ns instruction cycle  
- High current sink/source for direct LED drive  
- Wake-on-change  
Special Microcontroller Features:  
- Weak pull-ups  
• 4 MHz Precision Internal Oscillator:  
- Factory calibrated to ±1%  
• 8-Bit Real-Time Clock/Counter (TMR0) with 8-Bit  
Programmable Prescaler  
• In-Circuit Serial Programming™ (ICSP™)  
• In-Circuit Debugging (ICD) Support  
• Power-On Reset (POR)  
Peripheral Features (PIC16F505):  
• 12 I/O Pins:  
• Device Reset Timer (DRT)  
- 11 I/O pins with individual direction control  
- 1 input only pin  
• Watchdog Timer (WDT) with Dedicated On-Chip  
RC Oscillator for Reliable Operation  
- High current sink/source for direct LED drive  
- Wake-on-change  
• Programmable Code Protection  
• Multiplexed MCLR Input Pin  
- Weak pull-ups  
• Internal Weak Pull-Ups on I/O Pins  
• Power-Saving Sleep mode  
• 8-Bit Real-Time Clock/Counter (TMR0) with 8-Bit  
Programmable Prescaler  
• Wake-Wp from Sleep on Pin Change  
• Selectable Oscillator Options:  
- INTRC: 4 MHz precision Internal oscillator  
- EXTRC: External low-cost RC oscillator  
- XT:  
- HS:  
Standard crystal/resonator  
High-speed crystal/resonator  
(PIC16F505 only)  
- LP:  
- EC:  
Power-saving, low-frequency crystal  
High-speed external clock input  
(PIC16F505 only)  
© 2009 Microchip Technology Inc.  
DS41236E-page 3  
PIC12F508/509/16F505  
Pin Diagrams  
PDIP, SOIC, TSSOP  
PDIP, SOIC, MSOP  
14  
13  
12  
VDD  
RB5/OSC1/CLKIN  
RB4/OSC2/CLKOUT  
VSS  
1
2
3
8
7
6
5
VDD  
GP5/OSC1/CLKIN  
GP4/OSC2  
VSS  
1
2
3
4
RB0/ICSPDAT  
RB1/ICSPCLK  
GP0/ICSPDAT  
GP1/ICSPCLK  
GP2/T0CKI  
RB3/MCLR/VPP  
RC5/T0CKI  
4
5
11  
10  
RB2  
RC0  
GP3/MCLR/VPP  
6
7
9
8
RC4  
RC3  
RC1  
RC2  
DFN  
VDD  
1
2
3
4
8
7
6
5
VSS  
GP0/ICSPDAT  
GP1/ICSPCLK  
GP2/T0CKI  
GP5/OSC1/CLKIN  
GP4/OSC2  
GP3/MCLR/VPP  
PIC16F505 16-Pin Diagram (QFN)  
RB5/OSC1/CLKIN  
RB4/OSC2/CLKOUT  
RB3/MCLR/VPP  
RC5/TOCKI  
RB0/ICSPDAT  
RB1/ICSPCLK  
RB2  
12  
11  
1
2
3
4
PIC16F505  
10  
9
RC0  
DS41236E-page 4  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
Program Memory  
Flash (words)  
Data Memory  
Timers  
Device  
PIC12F508  
I/O  
8-bit  
SRAM (bytes)  
512  
1024  
1024  
25  
41  
72  
6
6
1
1
1
PIC12F509  
PIC16F505  
12  
© 2009 Microchip Technology Inc.  
DS41236E-page 5  
PIC12F508/509/16F505  
Table of Contents  
1.0 General Description...................................................................................................................................................................... 7  
2.0 PIC12F508/509/16F505 Device Varieties ................................................................................................................................... 9  
3.0 Architectural Overview ............................................................................................................................................................... 11  
4.0 Memory Organization................................................................................................................................................................. 17  
5.0 I/O Port....................................................................................................................................................................................... 31  
6.0 Timer0 Module and TMR0 Register ........................................................................................................................................... 35  
7.0 Special Features Of The CPU.................................................................................................................................................... 41  
8.0 Instruction Set Summary............................................................................................................................................................ 57  
9.0 Development Support................................................................................................................................................................. 65  
10.0 Electrical Characteristics ............................................................................................................................................................ 69  
11.0 DC and AC Characteristics Graphs and Charts......................................................................................................................... 81  
12.0 Packaging Information................................................................................................................................................................ 91  
Index .................................................................................................................................................................................................. 105  
The Microchip Web Site..................................................................................................................................................................... 107  
Customer Change Notification Service .............................................................................................................................................. 107  
Customer Support.............................................................................................................................................................................. 107  
Reader Response .............................................................................................................................................................................. 108  
Product Identification System............................................................................................................................................................. 109  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your  
Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be  
refined and enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@mail.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150.  
We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include  
literature number) you are using.  
Customer Notification System  
Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.  
DS41236E-page 6  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
1.1  
Applications  
1.0  
GENERAL DESCRIPTION  
The PIC12F508/509/16F505 devices fit in applications  
ranging from personal care appliances and security  
systems to low-power remote transmitters/receivers.  
The Flash technology makes customizing application  
programs (transmitter codes, appliance settings,  
receiver frequencies, etc.) extremely fast and conve-  
nient. The small footprint packages, for through hole or  
surface mounting, make these microcontrollers perfect  
for applications with space limitations. Low cost, low  
power, high performance, ease-of-use and I/O flexibil-  
ity make the PIC12F508/509/16F505 devices very ver-  
satile even in areas where no microcontroller use has  
been considered before (e.g., timer functions, logic and  
PLDs in larger systems and coprocessor applications).  
The PIC12F508/509/16F505 devices from Microchip  
Technology are low-cost, high-performance, 8-bit,  
fully-static, Flash-based CMOS microcontrollers. They  
employ a RISC architecture with only 33 single-word/  
single-cycle instructions. All instructions are single  
cycle (200 μs) except for program branches, which  
take two cycles. The PIC12F508/509/16F505 devices  
deliver performance an order of magnitude higher than  
their competitors in the same price category. The 12-bit  
wide instructions are highly symmetrical, resulting in a  
typical 2:1 code compression over other 8-bit  
microcontrollers in its class. The easy to use and easy  
to remember instruction set reduces development time  
significantly.  
The PIC12F508/509/16F505 products are equipped  
with special features that reduce system cost and  
power requirements. The Power-on Reset (POR) and  
Device Reset Timer (DRT) eliminate the need for exter-  
nal Reset circuitry. There are four oscillator configura-  
tions to choose from (six on the PIC16F505), including  
INTRC Internal Oscillator mode and the power-saving  
LP (Low-Power) Oscillator mode. Power-Saving Sleep  
mode, Watchdog Timer and code protection features  
improve system cost, power and reliability.  
The PIC12F508/509/16F505 devices are available in  
the cost-effective Flash programmable version, which  
is suitable for production in any volume. The customer  
can take full advantage of Microchip’s price leadership  
in Flash programmable microcontrollers, while  
benefiting from the Flash programmable flexibility.  
The PIC12F508/509/16F505 products are supported  
by a full-featured macro assembler, a software simula-  
tor, an in-circuit emulator, a ‘C’ compiler, a low-cost  
development programmer and a full featured program-  
mer. All the tools are supported on IBM® PC and  
compatible machines.  
TABLE 1-1:  
PIC12F508/509/16F505 DEVICES  
PIC12F508  
PIC12F509  
PIC16F505  
Clock  
Maximum Frequency of Operation (MHz)  
Flash Program Memory (words)  
Data Memory (bytes)  
Timer Module(s)  
4
512  
25  
4
1024  
41  
20  
1024  
72  
Memory  
Peripherals  
Features  
TMR0  
Yes  
5
TMR0  
Yes  
5
TMR0  
Yes  
11  
Wake-up from Sleep on Pin Change  
I/O Pins  
Input Pins  
1
1
1
Internal Pull-ups  
Yes  
Yes  
33  
Yes  
Yes  
33  
Yes  
Yes  
33  
In-Circuit Serial Programming  
Number of Instructions  
Packages  
8-pin PDIP, SOIC,  
MSOP, DFN  
8-pin PDIP, SOIC,  
MSOP, DFN  
14-pin PDIP, SOIC,  
TSSOP  
The PIC12F508/509/16F505 devices have Power-on Reset, selectable Watchdog Timer, selectable code-protect, high I/O current  
capability and precision internal oscillator.  
The PIC12F508/509/16F505 devices use serial programming with data pin RB0/GP0 and clock pin RB1/GP1.  
© 2009 Microchip Technology Inc.  
DS41236E-page 7  
PIC12F508/509/16F505  
NOTES:  
DS41236E-page 8  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
2.2  
Serialized Quick Turn  
ProgrammingSM (SQTPSM) Devices  
2.0  
PIC12F508/509/16F505 DEVICE  
VARIETIES  
Microchip offers a unique programming service, where  
a few user-defined locations in each device are  
programmed with different serial numbers. The serial  
numbers may be random, pseudo-random or  
sequential.  
A variety of packaging options are available. Depend-  
ing on application and production requirements, the  
proper device option can be selected using the  
information in this section. When placing orders, please  
use the PIC12F508/509/16F505 Product Identification  
System at the back of this data sheet to specify the  
correct part number.  
Serial programming allows each device to have a  
unique number, which can serve as an entry code,  
password or ID number.  
2.1  
Quick Turn Programming (QTP)  
Devices  
Microchip offers a QTP programming service for  
factory production orders. This service is made  
available for users who choose not to program  
medium-to-high quantity units and whose code  
patterns have stabilized. The devices are identical to  
the Flash devices but with all Flash locations and fuse  
options already programmed by the factory. Certain  
code and prototype verification procedures do apply  
before production shipments are available. Please  
contact your local Microchip Technology sales office for  
more details.  
© 2009 Microchip Technology Inc.  
DS41236E-page 9  
PIC12F508/509/16F505  
NOTES:  
DS41236E-page 10  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
The PIC12F508/509/16F505 devices contain an 8-bit  
ALU and working register. The ALU is a general  
purpose arithmetic unit. It performs arithmetic and  
Boolean functions between data in the working register  
and any register file.  
3.0  
ARCHITECTURAL OVERVIEW  
The high performance of the PIC12F508/509/16F505  
devices can be attributed to a number of architectural  
features commonly found in RISC microprocessors.  
To begin with, the PIC12F508/509/16F505 devices  
use a Harvard architecture in which program and data  
are accessed on separate buses. This improves  
bandwidth over traditional von Neumann architec-  
tures where program and data are fetched on the  
same bus. Separating program and data memory fur-  
ther allows instructions to be sized differently than the  
8-bit wide data word. Instruction opcodes are 12 bits  
wide, making it possible to have all single-word  
instructions. A 12-bit wide program memory access  
bus fetches a 12-bit instruction in a single cycle. A  
two-stage pipeline overlaps fetch and execution of  
instructions. Consequently, all instructions (33)  
execute in a single cycle (200 ns @ 20 MHz, 1 μs @  
4 MHz) except for program branches.  
The ALU is 8 bits wide and capable of addition, sub-  
traction, shift and logical operations. Unless otherwise  
mentioned, arithmetic operations are two’s comple-  
ment in nature. In two-operand instructions, one  
operand is typically the W (working) register. The other  
operand is either a file register or an immediate  
constant. In single operand instructions, the operand is  
either the W register or a file register.  
The W register is an 8-bit working register used for ALU  
operations. It is not an addressable register.  
Depending on the instruction executed, the ALU may  
affect the values of the Carry (C), Digit Carry (DC) and  
Zero (Z) bits in the STATUS register. The C and DC bits  
operate as a borrow and digit borrow out bit, respec-  
tively, in subtraction. See the SUBWF and ADDWF  
instructions for examples.  
Table 3-1 below lists program memory (Flash) and data  
memory (RAM) for the PIC12F508/509/16F505  
devices.  
Simplified block diagrams are shown in Figure 3-1 and  
Figure 3-2, with the corresponding pin described in  
Table 3-2 and Table 3-3.  
TABLE 3-1:  
PIC12F508/509/16F505  
MEMORY  
Memory  
Device  
Program  
Data  
PIC12F508  
PIC12F509  
PIC16F505  
512 x 12  
1024 x 12  
1024 x 12  
25 x 8  
41 x 8  
72 x 8  
The PIC12F508/509/16F505 devices can directly or  
indirectly address its register files and data memory. All  
Special Function Registers (SFR), including the PC,  
are mapped in the data memory. The PIC12F508/509/  
16F505 devices have a highly orthogonal (symmetri-  
cal) instruction set that makes it possible to carry out  
any operation, on any register, using any addressing  
mode. This symmetrical nature and lack of “special  
optimal situations” make programming with the  
PIC12F508/509/16F505 devices simple, yet efficient.  
In addition, the learning curve is reduced significantly.  
© 2009 Microchip Technology Inc.  
DS41236E-page 11  
PIC12F508/509/16F505  
FIGURE 3-1:  
PIC12F508/509 BLOCK DIAGRAM  
12  
8
GPIO  
Data Bus  
Program Counter  
Flash  
GP0/ISCPDAT  
GP1/ISCPCLK  
GP2/T0CKI  
GP3/MCLR/VPP  
GP4/OSC2  
512 x 12 or  
1024 x 12  
RAM  
Program  
Memory  
25 x 8 or  
Stack 1  
Stack 2  
File  
Registers  
GP5/OSC1/CLKIN  
Program  
Bus  
12  
RAM Addr  
9
Addr MUX  
Instruction Reg  
Indirect  
Addr  
5
Direct Addr  
5-7  
FSR Reg  
Status Reg  
8
3
MUX  
Device Reset  
Timer  
Instruction  
Decode and  
Control  
ALU  
Power-on  
Reset  
8
Timing  
Generation  
Watchdog  
Timer  
OSC1/CLKIN  
OSC2  
W Reg  
Internal RC  
OSC  
Timer0  
MCLR  
VDD, VSS  
DS41236E-page 12  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
TABLE 3-2:  
Name  
PIC12F508/509 PINOUT DESCRIPTION  
Input Output  
Function  
Description  
Type  
Type  
GP0/ICSPDAT  
GP0  
TTL  
CMOS Bidirectional I/O pin. Can be software programmed for internal  
weak pull-up and wake-up from Sleep on pin change.  
ICSPDAT  
GP1  
ST  
CMOS In-Circuit Serial Programming™ data pin.  
GP1/ICSPCLK  
TTL  
CMOS Bidirectional I/O pin. Can be software programmed for internal  
weak pull-up and wake-up from Sleep on pin change.  
ICSPCLK  
GP2  
ST  
TTL  
ST  
CMOS In-Circuit Serial Programming clock pin.  
CMOS Bidirectional I/O pin.  
GP2/T0CKI  
T0CKI  
GP3  
Clock input to TMR0.  
GP3/MCLR/VPP  
TTL  
Input pin. Can be software programmed for internal weak  
pull-up and wake-up from Sleep on pin change.  
MCLR  
ST  
Master Clear (Reset). When configured as MCLR, this pin is  
an active-low Reset to the device. Voltage on MCLR/VPP must  
not exceed VDD during normal device operation or the device  
will enter Programming mode. Weak pull-up always on if  
configured as MCLR.  
VPP  
GP4  
HV  
TTL  
Programming voltage input.  
GP4/OSC2  
CMOS Bidirectional I/O pin.  
OSC2  
XTAL Oscillator crystal output. Connections to crystal or resonator in  
Crystal Oscillator mode (XT and LP modes only, GPIO in other  
modes).  
GP5/OSC1/CLKIN  
GP5  
OSC1  
CLKIN  
VDD  
TTL  
XTAL  
ST  
CMOS Bidirectional I/O pin.  
P
Oscillator crystal input.  
External clock source input.  
VDD  
VSS  
Positive supply for logic and I/O pins.  
Ground reference for logic and I/O pins.  
VSS  
P
Legend: I = Input, O = Output, I/O = Input/Output, P = Power, — = Not used, TTL = TTL input,  
ST = Schmitt Trigger input, HV = High Voltage  
© 2009 Microchip Technology Inc.  
DS41236E-page 13  
PIC12F508/509/16F505  
FIGURE 3-2:  
PIC16F505 BLOCK DIAGRAM  
12  
8
PORTB  
Data Bus  
RAM  
Program Counter  
RB0/ICSPCLK  
RB1/ICSPDAT  
RB2  
Flash  
1K x 12  
Program  
Stack 1  
Memory  
RB3/MCLR/VPP  
RB4/OSC2/CLKOUT  
RB5/OSC1/CLKIN  
File  
Stack 2  
Registers  
Program  
Bus  
12  
RAM Addr  
9
PORTC  
Addr MUX  
Instruction Reg  
RC0  
RC1  
RC2  
Indirect  
Addr  
5
Direct Addr  
5-7  
RC3  
RC4  
FSR Reg  
RC5/T0CKI  
Status Reg  
8
3
MUX  
Device Reset  
Timer  
Power-on  
Reset  
ALU  
Instruction  
Decode and  
Control  
8
Watchdog  
Timer  
W Reg  
Timing  
Generation  
OSC1/CLKIN  
OSC2/CLKOUT  
Internal RC  
OSC  
Timer0  
MCLR  
VDD, VSS  
DS41236E-page 14  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
TABLE 3-3:  
Name  
PIC16F505 PINOUT DESCRIPTION  
Input Output  
Function  
Description  
Type  
Type  
RB0/ICSPDAT  
RB0  
TTL  
CMOS Bidirectional I/O pin. Can be software programmed for internal  
weak pull-up and wake-up from Sleep on pin change.  
ICSPDAT  
RB1  
ST  
CMOS In-Circuit Serial Programming™ data pin.  
RB1/ICSPCLK  
TTL  
CMOS Bidirectional I/O pin. Can be software programmed for internal  
weak pull-up and wake-up from Sleep on pin change.  
ICSPCLK  
RB2  
ST  
CMOS In-Circuit Serial Programming clock pin.  
CMOS Bidirectional I/O pin.  
RB2  
TTL  
TTL  
RB3/MCLR/VPP  
RB3  
Input port. Can be software programmed for internal weak  
pull-up and wake-up from Sleep on pin change.  
MCLR  
ST  
Master Clear (Reset). When configured as MCLR, this pin is  
an active-low Reset to the device. Voltage on MCLR/VPP must  
not exceed VDD during normal device operation or the device  
will enter Programming mode. Weak pull-up always on if  
configured as MCLR.  
VPP  
HV  
Programming voltage input.  
RB4/OSC2/CLKOUT  
RB4  
TTL  
CMOS Bidirectional I/O pin. Can be software programmed for internal  
weak pull-up and wake-up from Sleep on pin change.  
OSC2  
XTAL Oscillator crystal output. Connections to crystal or resonator in  
Crystal Oscillator mode (XT, HS and LP modes only).  
CLKOUT  
CMOS In EXTRC and INTRC modes, the pin output can be  
configured for CLKOUT, which has 1/4 the frequency of OSC1  
and denotes the instruction cycle rate.  
RB5/OSC1/CLKIN  
RB5  
OSC1  
CLKIN  
RC0  
TTL  
XTAL  
ST  
CMOS Bidirectional I/O pin.  
Crystal input.  
External clock source input.  
RC0  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
ST  
CMOS Bidirectional I/O pin.  
CMOS Bidirectional I/O pin.  
CMOS Bidirectional I/O pin.  
CMOS Bidirectional I/O pin.  
CMOS Bidirectional I/O pin.  
CMOS Bidirectional I/O pin.  
RC1  
RC1  
RC2  
RC2  
RC3  
RC3  
RC4  
RC4  
RC5/T0CKI  
RC5  
T0CKI  
VDD  
P
Clock input to TMR0.  
VDD  
VSS  
Positive supply for logic and I/O pins.  
Ground reference for logic and I/O pins.  
VSS  
P
Legend: I = Input, O = Output, I/O = Input/Output, P = Power, — = Not used, TTL = TTL input,  
ST = Schmitt Trigger input, HV = High Voltage  
© 2009 Microchip Technology Inc.  
DS41236E-page 15  
PIC12F508/509/16F505  
3.1  
Clocking Scheme/Instruction  
Cycle  
3.2  
Instruction Flow/Pipelining  
An instruction cycle consists of four Q cycles (Q1, Q2,  
Q3 and Q4). The instruction fetch and execute are  
pipelined such that fetch takes one instruction cycle,  
while decode and execute take another instruction  
cycle. However, due to the pipelining, each instruction  
effectively executes in one cycle. If an instruction  
causes the PC to change (e.g., GOTO), then two cycles  
are required to complete the instruction (Example 3-1).  
The clock input (OSC1/CLKIN pin) is internally divided  
by four to generate four non-overlapping quadrature  
clocks, namely Q1, Q2, Q3 and Q4. Internally, the PC  
is incremented every Q1 and the instruction is fetched  
from program memory and latched into the instruction  
register in Q4. It is decoded and executed during the  
following Q1 through Q4. The clocks and instruction  
execution flow is shown in Figure 3-3 and Example 3-1.  
A fetch cycle begins with the PC incrementing in Q1.  
In the execution cycle, the fetched instruction is latched  
into the Instruction Register (IR) in cycle Q1. This  
instruction is then decoded and executed during the  
Q2, Q3 and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
FIGURE 3-3:  
CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Q4  
PC  
Internal  
phase  
clock  
PC  
PC + 1  
PC + 2  
Fetch INST (PC)  
Execute INST (PC – 1)  
Fetch INST (PC + 1)  
Execute INST (PC)  
Fetch INST (PC + 2)  
Execute INST (PC + 1)  
EXAMPLE 3-1:  
INSTRUCTION PIPELINE FLOW  
1. MOVLW 03H  
Fetch 1  
Execute 1  
Fetch 2  
2. MOVWF PORTB  
3. CALL SUB_1  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTB, BIT1  
Flush  
Fetch SUB_1 Execute SUB_1  
All instructions are single cycle, except for any program branches. These take two cycles, since the fetch instruction  
is “flushed” from the pipeline, while the new instruction is being fetched and then executed.  
DS41236E-page 16  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
FIGURE 4-1:  
PROGRAM MEMORY MAP  
AND STACK FOR THE  
PIC12F508/509  
4.0  
MEMORY ORGANIZATION  
The PIC12F508/509/16F505 memories are organized  
into program memory and data memory. For devices  
with more than 512 bytes of program memory, a paging  
scheme is used. Program memory pages are accessed  
using one STATUS register bit. For the PIC12F509 and  
PIC16F505, with data memory register files of more  
than 32 registers, a banking scheme is used. Data  
memory banks are accessed using the File Select  
Register (FSR).  
PC<11:0>  
12  
CALL, RETLW  
Stack Level 1  
Stack Level 2  
(1)  
Reset Vector  
0000h  
4.1  
Program Memory Organization for  
the PIC12F508/509  
On-chip Program  
Memory  
The PIC12F508 device has a 10-bit Program Counter  
(PC) and PIC12F509 has a 11-bit Program Counter  
(PC) capable of addressing a 2K x 12 program memory  
space.  
512 Word  
01FFh  
0200h  
Only the first 512 x 12 (0000h-01FFh) for the  
PIC12F508, and 1K x 12 (0000h-03FFh) for the  
PIC12F509 are physically implemented (see  
On-chip Program  
Memory  
Figure 4-1). Accessing  
a location above these  
boundaries will cause a wrap-around within the first  
512 x 12 space (PIC12F508) or 1K x 12 space  
(PIC12F509). The effective Reset vector is a 0000h  
(see Figure 4-1). Location 01FFh (PIC12F508) and  
location 03FFh (PIC12F509) contain the internal  
clock oscillator calibration value. This value should  
never be overwritten.  
1024 Word  
03FFh  
0400h  
7FFh  
Note 1: Address 0000h becomes the  
effective Reset vector. Location  
01FFh, 03FFh (PIC12F508,  
PIC12F509) contains the MOVLW XX  
internal oscillator calibration value.  
© 2009 Microchip Technology Inc.  
DS41236E-page 17  
PIC12F508/509/16F505  
4.2  
Program Memory Organization  
For The PIC16F505  
4.3  
Data Memory Organization  
Data memory is composed of registers or bytes of  
RAM. Therefore, data memory for a device is specified  
by its register file. The register file is divided into two  
functional groups: Special Function Registers (SFR)  
and General Purpose Registers (GPR).  
The PIC16F505 device has a 11-bit Program Counter  
(PC) capable of addressing a 2K x 12 program memory  
space.  
The 1K x 12 (0000h-03FFh) for the PIC16F505 are  
physically implemented. Refer to Figure 4-2.  
Accessing a location above this boundary will cause a  
wrap-around within the first 1K x 12 space. The  
effective Reset vector is at 0000h (see Figure 4-2).  
Location 03FFh contains the internal oscillator  
calibration value. This value should never be  
overwritten.  
The Special Function Registers include the TMR0  
register, the Program Counter (PCL), the STATUS  
register, the I/O registers (ports) and the File Select  
Register (FSR). In addition, Special Function Registers  
are used to control the I/O port configuration and  
prescaler options.  
The General Purpose Registers are used for data and  
control information under command of the instructions.  
FIGURE 4-2:  
PROGRAM MEMORY MAP  
AND STACK FOR THE  
PIC16F505  
For the PIC12F508/509, the register file is composed of  
7 Special Function Registers, 9 General Purpose  
Registers and 16 or 32 General Purpose Registers  
accessed by banking (see Figure 4-3 and Figure 4-4).  
PC<11:0>  
12  
For the PIC16F505, the register file is composed of 8  
CALL, RETLW  
Special Function Registers,  
Registers and 64 General Purpose Registers accessed  
by banking (Figure 4-5).  
8 General Purpose  
Stack Level 1  
Stack Level 2  
4.3.1  
GENERAL PURPOSE REGISTER  
FILE  
(1)  
Reset Vector  
0000h  
The General Purpose Register file is accessed, either  
directly or indirectly, through the File Select Register  
(FSR). See Section 4.9 “Indirect Data Addressing:  
INDF and FSR Registers”.  
01FFh  
0200h  
On-chip Program  
Memory  
1024 Words  
03FFh  
0400h  
7FFh  
Note 1: Address 0000h becomes the  
effective Reset vector. Location  
03FFh contains the MOVLW XX  
internal oscillator calibration value.  
DS41236E-page 18  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
FIGURE 4-3:  
PIC12F508 REGISTER  
FILE MAP  
FIGURE 4-4:  
PIC12F509 REGISTER  
FILE MAP  
FSR<5>  
File Address  
00h  
0
1
File Address  
(1)  
INDF  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
(1)  
20h  
INDF  
TMR0  
PCL  
TMR0  
PCL  
01h  
02h  
03h  
04h  
05h  
STATUS  
FSR  
Addresses map  
back to  
addresses  
in Bank 0.  
STATUS  
FSR  
OSCCAL  
GPIO  
OSCCAL  
GPIO  
06h  
07h  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
2Fh  
0Fh  
10h  
30h  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
1Fh  
1Fh  
3Fh  
Bank 0  
Bank 1  
Note 1: Not a physical register. See Section 4.9  
“Indirect Data Addressing: INDF and FSR  
Registers”.  
Note 1: Not a physical register. See Section 4.9  
“Indirect Data Addressing: INDF and  
FSR Registers”.  
FIGURE 4-5:  
PIC16F505 REGISTER FILE MAP  
FSR<6:5>  
00  
01  
10  
11  
File Address  
00h  
(1)  
20h  
40h  
60h  
INDF  
01h  
02h  
03h  
04h  
05h  
06h  
TMR0  
PCL  
Addresses map back to  
addresses in Bank 0.  
STATUS  
FSR  
OSCCAL  
PORTB  
PORTC  
07h  
08h  
General  
Purpose  
Registers  
2Fh  
30h  
4Fh  
50h  
6Fh  
0Fh  
70h  
10h  
1Fh  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
General  
Purpose  
Registers  
3Fh  
5Fh  
7Fh  
Bank 1  
Bank 2  
Bank 3  
Bank 0  
Note 1: Not a physical register. See Section 4.9 “Indirect Data Addressing: INDF and FSR Registers”.  
© 2009 Microchip Technology Inc.  
DS41236E-page 19  
PIC12F508/509/16F505  
4.3.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers (SFRs) are registers  
used by the CPU and peripheral functions to control the  
operation of the device (Table 4-1).  
The Special Function Registers can be classified into  
two sets. The Special Function Registers associated  
with the “core” functions are described in this section.  
Those related to the operation of the peripheral  
features are described in the section for each  
peripheral feature.  
TABLE 4-1:  
Address  
SPECIAL FUNCTION REGISTER (SFR) SUMMARY (PIC12F508/509)  
Value on  
Power-On  
Reset(2)  
Name  
INDF  
TMR0  
Bit 7  
Bit 6 Bit 5 Bit 4  
Bit 3  
Bit 2  
Bit 1 Bit 0  
Page #  
00h  
Uses Contents of FSR to Address Data Memory (not a physical  
register)  
xxxx xxxx  
28  
01h  
8-bit Real-Time Clock/Counter  
xxxx xxxx  
1111 1111  
0-01 1xxx(3)  
111x xxxx  
110x xxxx  
1111 111-  
--xx xxxx  
--11 1111  
1111 1111  
35  
27  
22  
28  
28  
26  
31  
31  
24  
02h(1)  
PCL  
Low-order 8 bits of PC  
03h  
STATUS  
FSR  
GPWUF  
PA0(5)  
TO  
PD  
Z
DC  
C
04h  
Indirect Data Memory Address Pointer  
Indirect Data Memory Address Pointer  
04h(4)  
FSR  
05h  
OSCCAL  
GPIO  
CAL6  
CAL5 CAL4 CAL3 CAL2  
CAL1 CAL0  
06h  
GP5  
I/O Control Register  
PSA  
GP4  
GP3  
GP2  
GP1 GP0  
N/A  
TRISGPIO  
OPTION  
N/A  
GPWU GPPU TOCS TOSE  
PS2  
PS1 PS0  
Legend: – = unimplemented, read as ‘0’, x= unknown, u= unchanged, q= value depends on condition.  
Note 1: The upper byte of the Program Counter is not directly accessible. See Section 4.7 “Program Counter”  
for an explanation of how to access these bits.  
2: Other (non Power-up) Resets include external Reset through MCLR, Watchdog Timer and wake-up on pin  
change Reset.  
3: If Reset was due to wake-up on pin change, then bit 7 = 1. All other Resets will cause bit 7 = 0.  
4: PIC12F509 only.  
5: This bit is used on the PIC12F509. For code compatibility do not use this bit on the PIC12F508.  
DS41236E-page 20  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
TABLE 4-2:  
Address  
SPECIAL FUNCTION REGISTER (SFR) SUMMARY (PIC16F505)  
Value on  
Bit 1 Bit 0 Power-On  
Reset(2)  
Name  
INDF  
TMR0  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Page #  
00h  
Uses Contents of FSR to Address Data Memory (not a physical  
register)  
xxxx xxxx  
28  
01h  
02h(1)  
03h  
04h  
05h  
06h  
07h  
N/A  
N/A  
N/A  
8-bit Real-Time Clock/Counter  
Low-order 8 bits of PC  
xxxx xxxx  
1111 1111  
0-01 1xxx  
100x xxxx  
1111 111-  
35  
27  
22  
28  
26  
31  
31  
31  
31  
25  
PCL  
STATUS  
FSR  
RBWUF  
PA0  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address Pointer  
OSCCAL  
PORTB  
PORTC  
TRISB  
TRISC  
OPTION  
CAL6  
CAL5 CAL4 CAL3  
CAL2  
RB3  
CAL1 CAL0  
RB5  
RC5  
RB4  
RC4  
RB2  
RC2  
RB1 RB0 --xxxxxx  
RC1 RC0 --xx xxxx  
--11 1111  
RC3  
I/O Control Register  
I/O Control Register  
--11 1111  
RBWU RBPU TOCS TOSE  
PSA  
PS2  
PS1 PS0 1111 1111  
Legend: – = unimplemented, read as ‘0’, x= unknown, u= unchanged, q= value depends on condition.  
Note 1: If Reset was due to wake-up on pin change, then bit 7 = 1. All other Resets will cause bit 7 = 0.  
2: Other (non Power-up) Resets include external reset through MCLR, Watchdog Timer and wake-up on pin  
change Reset.  
© 2009 Microchip Technology Inc.  
DS41236E-page 21  
PIC12F508/509/16F505  
For example, CLRF STATUS,will clear the upper three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
4.4  
STATUS Register  
This register contains the arithmetic status of the ALU,  
the Reset status and the page preselect bit.  
Therefore, it is recommended that only BCF, BSF and  
MOVWFinstructions be used to alter the STATUS regis-  
ter. These instructions do not affect the Z, DC or C bits  
from the STATUS register. For other instructions which  
do affect Status bits, see Section 8.0 “Instruction Set  
Summary”.  
The STATUS register can be the destination for any  
instruction, as with any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
REGISTER 4-1:  
STATUS REGISTER (ADDRESS: 03h) (PIC12F508/509)  
R/W-0  
GPWUF  
bit 7  
R/W-0  
R/W-0  
PA0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
GPWUF: GPIO Reset bit  
1= Reset due to wake-up from Sleep on pin change  
0= After power-up or other Reset  
bit 6  
bit 5  
Reserved: Do not use  
(1)  
PA0: Program Page Preselect bits  
1= Page 1 (200h-3FFh)  
0= Page 0 (000h-1FFh)  
Each page is 512 bytes.  
Using the PA0 bit as a general purpose read/write bit in devices which do not use it for program page preselect is  
not recommended, since this may affect upward compatibility with future products.  
bit 4  
bit 3  
bit 2  
bit 1  
TO: Time-Out bit  
1= After power-up, CLRWDTinstruction, or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-Down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit Carry/Borrow bit (for ADDWFand SUBWFinstructions)  
ADDWF:  
1= A carry from the 4th low-order bit of the result occurred  
0= A carry from the 4th low-order bit of the result did not occur  
SUBWF:  
1= A borrow from the 4th low-order bit of the result did not occur  
0= A borrow from the 4th low-order bit of the result occurred  
bit 0  
C: Carry/Borrow bit (for ADDWF, SUBWFand RRF, RLFinstructions)  
ADDWF:  
SUBWF:  
RRFor RLF:  
1= A carry occurred  
0= A carry did not occur  
1= A borrow did not occur  
0= A borrow occurred  
Load bit with LSb or MSb, respectively  
Note 1: This bit is used on the PIC12F509. For code compatibility do not use this bit on the PIC12F508.  
DS41236E-page 22  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
REGISTER 4-2:  
STATUS REGISTER (ADDRESS: 03h) (PIC16F505)  
R/W-x  
C
R/W-0  
RBWUF  
bit 7  
R/W-0  
R/W-0  
PA0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
RBWUF: PORTB Reset bit  
1= Reset due to wake-up from Sleep on pin change  
0= After power-up or other Reset  
bit 6  
bit 5  
Reserved: Do not use  
PA0: Program Page Preselect bits  
1= Page 1 (200h-3FFh)  
0= Page 0 (000h-1FFh)  
Each page is 512 bytes.  
Using the PA0 bit as a general purpose read/write bit in devices which do not use it for program page  
preselect is not recommended, since this may affect upward compatibility with future products.  
bit 4  
bit 3  
bit 2  
bit 1  
TO: Time-Out bit  
1= After power-up, CLRWDTinstruction, or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-Down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit Carry/Borrow bit (for ADDWFand SUBWFinstructions)  
ADDWF:  
1= A carry from the 4th low-order bit of the result occurred  
0= A carry from the 4th low-order bit of the result did not occur  
SUBWF:  
1= A borrow from the 4th low-order bit of the result did not occur  
0= A borrow from the 4th low-order bit of the result occurred  
bit 0  
C: Carry/Borrow bit (for ADDWF, SUBWFand RRF, RLFinstructions)  
ADDWF:  
SUBWF:  
RRFor RLF:  
1= A carry occurred  
1= A borrow did not occur Load bit with LSb or MSb, respectively  
0= A carry did not occur 0= A borrow occurred  
© 2009 Microchip Technology Inc.  
DS41236E-page 23  
PIC12F508/509/16F505  
4.5  
OPTION Register  
The OPTION register is a 8-bit wide, write-only register,  
which contains various control bits to configure the  
Timer0/WDT prescaler and Timer0.  
Note:  
Note:  
If TRIS bit is set to ‘0’, the wake-up on  
change and pull-up functions are disabled  
for that pin (i.e., note that TRIS overrides  
Option control of GPPU/RBPU and  
GPWU/RBWU).  
By executing the OPTION instruction, the contents of  
the W register will be transferred to the OPTION regis-  
ter. A Reset sets the OPTION<7:0> bits.  
If the T0CS bit is set to ‘1’, it will override  
the TRIS function on the T0CKI pin.  
REGISTER 4-3:  
OPTION REGISTER (PIC12F508/509)  
W-1  
PS0  
W-1  
GPWU  
bit 7  
W-1  
W-1  
W-1  
W-1  
PSA  
W-1  
PS2  
W-1  
PS1  
GPPU  
T0CS  
T0SE  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
GPWU: Enable Wake-up on Pin Change bit (GP0, GP1, GP3)  
1= Disabled  
0= Enabled  
GPPU: Enable Weak Pull-ups bit (GP0, GP1, GP3)  
1= Disabled  
0= Enabled  
T0CS: Timer0 Clock Source Select bit  
1= Transition on T0CKI pin (overrides TRIS on the T0CKI pin)  
0= Transition on internal instruction cycle clock, FOSC/4  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on the T0CKI pin  
0= Increment on low-to-high transition on the T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler assigned to the WDT  
0= Prescaler assigned to Timer0  
PS<2:0>: Prescaler Rate Select bits  
Bit Value Timer0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
DS41236E-page 24  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
REGISTER 4-4:  
OPTION REGISTER (PIC16F505)  
W-1  
PS0  
W-1  
RBWU  
bit 7  
W-1  
W-1  
W-1  
W-1  
W-1  
PS2  
W-1  
PS1  
RBPU  
T0CS  
T0SE  
PSA  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RBWU: Enable Wake-up on Pin Change bit (RB0, RB1, RB3, RB4)  
1= Disabled  
0= Enabled  
RBPU: Enable Weak Pull-ups bit (RB0, RB1, RB3, RB4)  
1= Disabled  
0= Enabled  
T0CS: Timer0 clock Source Select bit  
1= Transition on T0CKI pin (overrides TRIS on the T0CKI pin)  
0= Transition on internal instruction cycle clock, FOSC/4  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on the T0CKI pin  
0= Increment on low-to-high transition on the T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler assigned to the WDT  
0= Prescaler assigned to Timer0  
PS<2:0>: Prescaler Rate Select bits  
Bit Value Timer0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
© 2009 Microchip Technology Inc.  
DS41236E-page 25  
PIC12F508/509/16F505  
After you move in the calibration constant, do not  
change the value. See Section 7.2.5 “Internal 4 MHz  
RC Oscillator”.  
4.6  
OSCCAL Register  
The Oscillator Calibration (OSCCAL) register is used to  
calibrate the internal precision 4 MHz oscillator. It  
contains seven bits for calibration.  
Note:  
Erasing the device will also erase the pre-  
programmed internal calibration value for  
the internal oscillator. The calibration  
value must be read prior to erasing the  
part so it can be reprogrammed correctly  
later.  
REGISTER 4-5:  
OSCCAL REGISTER (ADDRESS: 05h)  
R/W-0  
R/W-1  
CAL6  
R/W-1  
CAL5  
R/W-1  
CAL4  
R/W-1  
CAL3  
R/W-1  
CAL2  
R/W-1  
CAL1  
R/W-1  
CAL0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-1  
CAL<6:0>: Oscillator Calibration bits  
0111111= Maximum frequency  
0000001  
0000000= Center frequency  
1111111  
1000000= Minimum frequency  
bit 0  
Unimplemented: Read as ‘0’  
DS41236E-page 26  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
4.7.1  
EFFECTS OF RESET  
4.7  
Program Counter  
The PC is set upon a Reset, which means that the PC  
addresses the last location in the last page (i.e., the  
oscillator calibration instruction). After executing  
MOVLW XX, the PC will roll over to location 00h and  
begin executing user code.  
As a program instruction is executed, the Program  
Counter (PC) will contain the address of the next  
program instruction to be executed. The PC value is  
increased by one every instruction cycle, unless an  
instruction changes the PC.  
The STATUS register page preselect bits are cleared  
upon a Reset, which means that page 0 is pre-selected.  
For a GOTOinstruction, bits 8:0 of the PC are provided  
by the GOTO instruction word. The Program Counter  
(PCL) is mapped to PC<7:0>. Bit 5 of the STATUS  
register provides page information to bit 9 of the PC  
(Figure 4-6).  
Therefore, upon a Reset, a GOTO instruction will  
automatically cause the program to jump to page 0 until  
the value of the page bits is altered.  
For a CALL instruction, or any instruction where the  
PCL is the destination, bits 7:0 of the PC again are  
provided by the instruction word. However, PC<8>  
does not come from the instruction word, but is always  
cleared (Figure 4-6).  
4.8  
Stack  
The PIC12F508/509/16F505 devices have a 2-deep,  
12-bit wide hardware PUSH/POP stack.  
A CALLinstruction will PUSH the current value of Stack  
1 into Stack 2 and then PUSH the current PC value,  
incremented by one, into Stack Level 1. If more than two  
sequential CALLs are executed, only the most recent two  
return addresses are stored.  
Instructions where the PCL is the destination, or modify  
PCL instructions, include MOVWF PC, ADDWF PCand  
BSF PC,5.  
Note:  
Because PC<8> is cleared in the CALL  
instruction or any modify PCL instruction,  
all subroutine calls or computed jumps are  
limited to the first 256 locations of any  
program memory page (512 words long).  
A RETLW instruction will POP the contents of Stack  
Level 1 into the PC and then copy Stack Level 2  
contents into Stack Level 1. If more than two sequential  
RETLWs are executed, the stack will be filled with the  
address previously stored in Stack Level 2. Note that  
the W register will be loaded with the literal value  
specified in the instruction. This is particularly useful for  
the implementation of data look-up tables within the  
program memory.  
FIGURE 4-6:  
LOADING OF PC  
BRANCH INSTRUCTIONS  
GOTOInstruction  
11 10 9 8 7  
0
Note 1: There are no Status bits to indicate stack  
PC  
PCL  
overflows or stack underflow conditions.  
2: There are no instruction mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the CALL  
and RETLWinstructions.  
Instruction Word  
PA0  
7
0
Status  
CALLor Modify PCL Instruction  
11 10 9 8 7  
0
PC  
PCL  
Instruction Word  
Reset to ‘0’  
PA0  
7
0
Status  
© 2009 Microchip Technology Inc.  
DS41236E-page 27  
PIC12F508/509/16F505  
EXAMPLE 4-1:  
HOW TO CLEAR RAM  
USING INDIRECT  
ADDRESSING  
4.9  
Indirect Data Addressing: INDF  
and FSR Registers  
The INDF register is not  
a physical register.  
MOVLW  
MOVWF  
0x10  
;initialize pointer  
;to RAM  
Addressing INDF actually addresses the register  
whose address is contained in the FSR register (FSR  
is a pointer). This is indirect addressing.  
FSR  
NEXT  
CLRF  
INDF  
;clear INDF  
;register  
INCF  
BTFSC  
GOTO  
FSR,F  
FSR,4  
NEXT  
;inc pointer  
;all done?  
;NO, clear next  
4.9.1  
INDIRECT ADDRESSING  
• Register file 07 contains the value 10h  
• Register file 08 contains the value 0Ah  
• Load the value 07 into the FSR register  
CONTINUE  
:
:
;YES, continue  
• A read of the INDF register will return the value  
of 10h  
The FSR is a 5-bit wide register. It is used in conjunction  
with the INDF register to indirectly address the data  
memory area.  
• Increment the value of the FSR register by one  
(FSR = 08)  
• A read of the INDR register now will return the  
value of 0Ah.  
The FSR<4:0> bits are used to select data memory  
addresses 00h to 1Fh.  
Reading INDF itself indirectly (FSR = 0) will produce  
00h. Writing to the INDF register indirectly results in a  
no operation (although Status bits may be affected).  
PIC12F508 – Does not use banking. FSR <7:5> are  
unimplemented and read as ‘1’s.  
PIC12F509 – Uses FSR<5>. Selects between bank 0  
and bank 1. FSR<7:6> are unimplemented, read as  
1’.  
A simple program to clear RAM locations 10h-1Fh  
using indirect addressing is shown in Example 4-1.  
PIC16F505 – Uses FSR<6:5>. Selects from bank 0 to  
bank 3. FSR<7> is unimplemented, read as ‘1’.  
FIGURE 4-7:  
DIRECT/INDIRECT ADDRESSING (PIC12F508/509)  
Direct Addressing  
Indirect Addressing  
(FSR)  
4
(opcode)  
0
5
(FSR)  
0
6
4
5
6
Location Select  
Bank Select  
Location Select  
Bank  
00  
01  
00h  
Addresses  
map back to  
addresses  
in Bank 0.  
Data  
Memory  
0Fh  
10h  
(1)  
1Fh  
Bank 0  
3Fh  
Bank 1  
(2)  
Note 1: For register map detail, see Section 4.3 “Data Memory Organization”.  
2: PIC12F509.  
DS41236E-page 28  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
FIGURE 4-8:  
DIRECT/INDIRECT ADDRESSING (PIC16F505)  
Direct Addressing  
Indirect Addressing  
(FSR) 0  
(FSR)  
6
5
4
(opcode)  
0
6
5
4
Bank Select  
Location Select  
00h  
Bank  
Location Select  
00  
01  
10  
11  
Addresses  
map back to  
addresses  
in Bank 0.  
0Fh  
10h  
Data  
Memory  
(1)  
1Fh  
3Fh  
Bank 1  
5Fh  
Bank 2  
7Fh  
Bank 0  
Bank 3  
Note 1: For register map detail, see Section 4.3 “Data Memory Organization”.  
© 2009 Microchip Technology Inc.  
DS41236E-page 29  
PIC12F508/509/16F505  
NOTES:  
DS41236E-page 30  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
5.4  
I/O Interfacing  
5.0  
I/O PORT  
The equivalent circuit for an I/O port pin is shown in  
Figure 5-2. All port pins, except RB3/GP3 which is  
input only, may be used for both input and output oper-  
ations. For input operations, these ports are non-latch-  
ing. Any input must be present until read by an input  
instruction (e.g., MOVF PORTB, W). The outputs are  
latched and remain unchanged until the output latch is  
rewritten. To use a port pin as output, the correspond-  
ing direction control bit in TRIS must be cleared (= 0).  
For use as an input, the corresponding TRIS bit must  
be set. Any I/O pin (except RB3/GP3) can be  
programmed individually as input or output.  
As with any other register, the I/O register(s) can be  
written and read under program control. However, read  
instructions (e.g., MOVF PORTB,W) always read the I/O  
pins independent of the pin’s Input/Output modes. On  
Reset, all I/O ports are defined as input (inputs are at  
high-impedance) since the I/O control registers are all  
set.  
Note:  
On the PIC12F508/509, I/O PORTB is ref-  
erenced as GPIO. On the PIC16F505, I/O  
PORTB is referenced as PORTB.  
5.1  
PORTB/GPIO  
FIGURE 5-1:  
PIC12F508/509/16F505  
EQUIVALENT CIRCUIT  
FOR A SINGLE I/O PIN  
PORTB/GPIO is an 8-bit I/O register. Only the low-  
order 6 bits are used (RB/GP<5:0>). Bits 7 and 6 are  
unimplemented and read as ‘0’s. Please note that RB3/  
GP3 is an input only pin. The Configuration Word can  
set several I/O’s to alternate functions. When acting as  
alternate functions, the pins will read as ‘0’ during a port  
read. Pins RB0/GP0, RB1/GP1, RB3/GP3 and RB4  
can be configured with weak pull-ups and also for  
wake-up on change. The wake-up on change and weak  
pull-up functions are not pin selectable. If RB3/GP3/  
MCLR is configured as MCLR, weak pull-up is always  
on and wake-up on change for this pin is not enabled.  
Data  
Bus  
D
Q
Q
Data  
Latch  
VDD  
P
VDD  
WR  
Port  
CK  
N
I/O  
pin  
W
Reg  
D
Q
Q
TRIS  
Latch  
5.2  
PORTC (PIC16F505 Only)  
VSS VSS  
TRIS ‘f’  
PORTC is an 8-bit I/O register. Only the low-order 6 bits  
are used (RC<5:0>). Bits 7 and 6 are unimplemented  
and read as ‘0’s.  
CK  
Reset  
Note:  
On power-up, TOCKI functionality is  
enabled in the OPTION register and must  
be disabled to allow RC5 to be used as  
general purpose I/O.  
(1)  
RD Port  
5.3  
TRIS Registers  
Note 1: See Table 3-3 for buffer type.  
The Output Driver Control register is loaded with the  
contents of the W register by executing the TRIS f  
instruction. A ‘1’ from a TRIS register bit puts the corre-  
sponding output driver in a High-Impedance mode. A  
0’ puts the contents of the output data latch on the  
selected pins, enabling the output buffer. The excep-  
tions are RB3/GP3, which is input only and the T0CKI  
pin, which may be controlled by the OPTION register.  
See Register 4-3 and Register 4-4.  
Note:  
A read of the ports reads the pins, not the  
output data latches. That is, if an output  
driver on a pin is enabled and driven high,  
but the external system is holding it low, a  
read of the port will indicate that the pin is  
low.  
The TRIS registers are “write-only” and are set (output  
drivers disabled) upon Reset.  
© 2009 Microchip Technology Inc.  
DS41236E-page 31  
PIC12F508/509/16F505  
TABLE 5-1:  
SUMMARY OF PORT REGISTERS  
Value on  
Power-On  
Reset  
Value on  
All Other  
Resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1 Bit 0  
(1)  
N/A  
TRISGPIO  
I/O Control Register  
I/O Control Register  
I/O Control Register  
--11 1111  
--11 1111  
--11 1111  
1111 1111  
1111 1111  
--11 1111  
--11 1111  
--11 1111  
1111 1111  
1111 1111  
(2)  
N/A  
TRISB  
(2)  
N/A  
TRISC  
(1)  
N/A  
OPTION  
GPWU  
RBWU  
GPWUF  
RBWUF  
GPPU  
RBPU  
TOCS  
TOCS  
PAO  
PAO  
GP5  
TOSE  
TOSE  
TO  
PSA  
PSA  
PD  
PS2  
PS2  
Z
PS1  
PS1  
DC  
PS0  
PS0  
C
(2)  
N/A  
OPTION  
(1)  
(3)  
03h  
STATUS  
0-01 1xxx q00q quuu  
0-01 1xxx q00q quuu  
(2)  
(3)  
03h  
STATUS  
TO  
PD  
Z
DC  
C
(1)  
06h  
GPIO  
GP4  
RB4  
RC4  
GP3  
RB3  
RC3  
GP2  
RB2  
RC2  
GP1  
RB1  
RC1  
GP0  
RB0  
RC0  
--xxxxxx  
--xxxxxx  
--xx xxxx  
--uu uuuu  
(2)  
06h  
PORTB  
RB5  
--uu uuuu  
--uu uuuu  
(2)  
07h  
PORTC  
RC5  
Legend:  
Shaded cells are not used by Port registers, read as ‘0’. – = unimplemented, read as ‘0’, x= unknown, u= unchanged,  
q= depends on condition.  
Note 1: PIC12F508/509 only.  
2: PIC16F505 only.  
3: If Reset was due to wake-up on pin change, then bit 7 = 1. All other Resets will cause bit 7 = 0.  
DS41236E-page 32  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
EXAMPLE 5-1:  
READ-MODIFY-WRITE  
INSTRUCTIONS ON AN  
I/O PORT(e.g., PIC16F505)  
5.5  
I/O Programming Considerations  
5.5.1  
BIDIRECTIONAL I/O PORTS  
Some instructions operate internally as read followed  
by write operations. The BCFand BSFinstructions, for  
example, read the entire port into the CPU, execute the  
bit operation and re-write the result. Caution must be  
used when these instructions are applied to a port  
where one or more pins are used as input/outputs. For  
example, a BSFoperation on bit 5 of PORTB/GPIO will  
cause all eight bits of PORTB/GPIO to be read into the  
CPU, bit 5 to be set and the PORTB/GPIO value to be  
written to the output latches. If another bit of PORTB/  
GPIO is used as a bidirectional I/O pin (say bit 0) and it  
is defined as an input at this time, the input signal pres-  
ent on the pin itself would be read into the CPU and  
rewritten to the data latch of this particular pin, overwrit-  
ing the previous content. As long as the pin stays in the  
Input mode, no problem occurs. However, if bit 0 is  
switched into Output mode later on, the content of the  
data latch may now be unknown.  
;Initial PORTB Settings  
;PORTB<5:3> Inputs  
;PORTB<2:0> Outputs  
;
;
;
PORTB latch PORTB pins  
----------  
PORTB, 5 ;--01 -ppp  
PORTB, 4 ;--10 -ppp  
----------  
--11 pppp  
--11 pppp  
BCF  
BCF  
MOVLW 007h;  
TRIS PORTB  
;--10 -ppp  
--11 pppp  
;
Note 1: The user may have expected the pin values to  
be ‘--00 pppp’. The 2nd BCFcaused RB5 to  
be latched as the pin value (High).  
5.5.2  
SUCCESSIVE OPERATIONS ON  
I/O PORTS  
The actual write to an I/O port happens at the end of an  
instruction cycle, whereas for reading, the data must be  
valid at the beginning of the instruction cycle (Figure 5-2).  
Therefore, care must be exercised if a write followed by  
a read operation is carried out on the same I/O port. The  
sequence of instructions should allow the pin voltage to  
stabilize (load dependent) before the next instruction  
causes that file to be read into the CPU. Otherwise, the  
previous state of that pin may be read into the CPU rather  
than the new state. When in doubt, it is better to separate  
these instructions with a NOP or another instruction not  
accessing this I/O port.  
Example 5-1 shows the effect of two sequential  
Read-Modify-Write instructions (e.g., BCF, BSF, etc.)  
on an I/O port.  
A pin actively outputting a high or a low should not be  
driven from external devices at the same time in order  
to change the level on this pin (“wired OR”, “wired  
AND”). The resulting high output currents may damage  
the chip.  
FIGURE 5-2:  
SUCCESSIVE I/O OPERATION (PIC16F505 Shown)  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC + 3  
PC  
MOVWFPORTB  
PC + 1  
PC + 2  
This example shows a write to PORTB  
followed by a read from PORTB.  
Instruction  
Fetched  
MOVFPORTB, W  
NOP  
NOP  
Data setup time = (0.25 TCY – TPD)  
where: TCY = instruction cycle  
TPD = propagation delay  
RB<5:0>  
Port pin  
written here  
Port pin  
sampled here  
Therefore, at higher clock frequencies, a  
write followed by a read may be problematic.  
Instruction  
Executed  
MOVWF PORTB  
MOVF PORTB,W  
NOP  
(Write to PORTB)  
(Read PORTB)  
© 2009 Microchip Technology Inc.  
DS41236E-page 33  
PIC12F508/509/16F505  
NOTES:  
DS41236E-page 34  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
Counter mode is selected by setting the T0CS bit  
(OPTION<5>). In this mode, Timer0 will increment  
either on every rising or falling edge of pin T0CKI. The  
T0SE bit (OPTION<4>) determines the source edge.  
Clearing the T0SE bit selects the rising edge. Restric-  
tions on the external clock input are discussed in detail  
in Section 6.1 “Using Timer0 with an External  
Clock”.  
6.0  
TIMER0 MODULE AND TMR0  
REGISTER  
The Timer0 module has the following features:  
• 8-bit timer/counter register, TMR0  
• Readable and writable  
• 8-bit software programmable prescaler  
• Internal or external clock select:  
- Edge select for external clock  
The prescaler may be used by either the Timer0  
module or the Watchdog Timer, but not both. The  
prescaler assignment is controlled in software by the  
control bit, PSA (OPTION<3>). Clearing the PSA bit  
will assign the prescaler to Timer0. The prescaler is not  
readable or writable. When the prescaler is assigned to  
the Timer0 module, prescale values of 1:2, 1:4,...,  
1:256 are selectable. Section 6.2 “Prescaler” details  
the operation of the prescaler.  
Figure 6-1 is a simplified block diagram of the Timer0  
module.  
Timer mode is selected by clearing the T0CS bit  
(OPTION<5>). In Timer mode, the Timer0 module will  
increment every instruction cycle (without prescaler). If  
TMR0 register is written, the increment is inhibited for  
the following two cycles (Figure 6-2 and Figure 6-3).  
The user can work around this by writing an adjusted  
value to the TMR0 register.  
A summary of registers associated with the Timer0  
module is found in Table 6-1.  
FIGURE 6-1:  
TIMER0 BLOCK DIAGRAM  
Data Bus  
(GP2/RC5)/T0CKI FOSC/4  
0
1
PSOUT  
8
Pin  
1
0
Sync with  
Internal  
Clocks  
TMR0 Reg  
Programmable  
PSOUT  
Sync  
(2)  
Prescaler  
(2 TCY delay)  
T0SE  
3
(1)  
(1)  
PS2, PS1, PS0  
PSA  
(1)  
T0CS  
Note 1: Bits T0CS, T0SE, PSA, PS2, PS1 and PS0 are located in the OPTION register.  
2: The prescaler is shared with the Watchdog Timer (Figure 6-5).  
FIGURE 6-2:  
TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALE  
PC  
(Program  
Counter)  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC – 1 PC PC + 1 PC + 2 PC + 3 PC + 4 PC + 5 PC + 6  
MOVWF TMR0 MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W  
Instruction  
Fetch  
T0  
NT0 + 1  
T0 + 1  
T0 + 2  
NT0  
NT0 + 2  
Timer0  
Instruction  
Executed  
Read TMR0  
reads NT0 + 1  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0 + 2  
Write TMR0  
executed  
© 2009 Microchip Technology Inc.  
DS41236E-page 35  
PIC12F508/509/16F505  
FIGURE 6-3:  
TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2  
PC  
(Program  
Counter)  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC – 1  
PC  
PC + 1  
PC + 2  
PC + 3  
PC + 4  
PC + 5  
PC + 6  
Instruction  
Fetch  
MOVWF TMR0 MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W  
T0  
T0 + 1  
NT0  
NT0 + 1  
Timer0  
Instruction  
Executed  
Read TMR0  
reads NT0 + 1  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0 + 2  
Write TMR0  
executed  
TABLE 6-1:  
REGISTERS ASSOCIATED WITH TIMER0  
Value on  
Power-On  
Reset  
Value on  
All Other  
Resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3 Bit 2  
Bit 1  
Bit 0  
01h  
TMR0  
Timer0 – 8-bit Real-Time Clock/Counter  
GPWU GPPU T0CS T0SE PSA  
PSA  
I/O Control Register  
RC5 RC4 RC3  
xxxx xxxx  
1111 1111  
1111 1111  
--11 1111  
--11 1111  
uuuu uuuu  
1111 1111  
1111 1111  
--11 1111  
--11 1111  
(1)  
(2)  
N/A  
OPTION  
OPTION  
PS2  
PS2  
PS1  
PS1  
PS0  
PS0  
N/A  
RBWU  
RBPU  
T0CS T0SE  
(1), (3)  
N/A  
TRISGPIO  
(2), (3)  
N/A  
TRISC  
RC2  
RC1  
RC0  
Legend:  
Shaded cells are not used by Timer0. – = unimplemented, x = unknown, u= unchanged.  
Note 1: PIC12F508/509 only.  
2: PIC16F505 only.  
3: The TRIS of the T0CKI pin is overridden when T0CS = 1.  
DS41236E-page 36  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
When a prescaler is used, the external clock input is  
divided by the asynchronous ripple counter-type  
prescaler, so that the prescaler output is symmetrical.  
For the external clock to meet the sampling require-  
ment, the ripple counter must be taken into account.  
Therefore, it is necessary for T0CKI to have a period of  
at least 4 TOSC (and a small RC delay of 4 Tt0H)  
divided by the prescaler value. The only requirement  
on T0CKI high and low time is that they do not violate  
the minimum pulse width requirement of Tt0H. Refer to  
parameters 40, 41 and 42 in the electrical specification  
of the desired device.  
6.1  
Using Timer0 with an External  
Clock  
When an external clock input is used for Timer0, it must  
meet certain requirements. The external clock require-  
ment is due to internal phase clock (TOSC) synchroni-  
zation. Also, there is a delay in the actual incrementing  
of Timer0 after synchronization.  
6.1.1  
EXTERNAL CLOCK  
SYNCHRONIZATION  
When no prescaler is used, the external clock input is  
the same as the prescaler output. The synchronization  
of T0CKI with the internal phase clocks is accom-  
plished by sampling the prescaler output on the Q2 and  
Q4 cycles of the internal phase clocks (Figure 6-4).  
Therefore, it is necessary for T0CKI to be high for at  
least 2 TOSC (and a small RC delay of 2 Tt0H) and low  
for at least 2 TOSC (and a small RC delay of 2 Tt0H).  
Refer to the electrical specification of the desired  
device.  
6.1.2  
TIMER0 INCREMENT DELAY  
Since the prescaler output is synchronized with the  
internal clocks, there is a small delay from the time the  
external clock edge occurs to the time the Timer0  
module is actually incremented. Figure 6-4 shows the  
delay from the external clock edge to the timer  
incrementing.  
FIGURE 6-4:  
TIMER0 TIMING WITH EXTERNAL CLOCK  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Small pulse  
misses sampling  
External Clock Input or  
(2)  
Prescaler Output  
(1)  
External Clock/Prescaler  
Output After Sampling  
(3)  
Increment Timer0 (Q4)  
Timer0  
T0  
T0 + 1  
T0 + 2  
Note 1: Delay from clock input change to Timer0 increment is 3 TOSC to 7 TOSC. (Duration of Q = TOSC). Therefore, the error  
in measuring the interval between two edges on Timer0 input = ±4 TOSC max.  
2: External clock if no prescaler selected; prescaler output otherwise.  
3: The arrows indicate the points in time where sampling occurs.  
© 2009 Microchip Technology Inc.  
DS41236E-page 37  
PIC12F508/509/16F505  
EXAMPLE 6-1:  
CHANGING PRESCALER  
(TIMER0 WDT)  
;Clear WDT  
6.2  
Prescaler  
An 8-bit counter is available as a prescaler for the  
Timer0 module or as a postscaler for the Watchdog  
Timer (WDT), respectively (see Section 7.6 “Watch-  
dog Timer (WDT)”). For simplicity, this counter is  
being referred to as “prescaler” throughout this data  
sheet.  
CLRWDT  
CLRF  
TMR0  
;Clear TMR0 & Prescaler  
MOVLW ‘00xx1111’b;These 3 lines (5, 6, 7)  
OPTION  
;are required only if  
;desired  
;PS<2:0> are 000 or 001  
CLRWDT  
MOVLW ‘00xx1xxx’b;Set Postscaler to  
OPTION ;desired WDT rate  
Note:  
The prescaler may be used by either the  
Timer0 module or the WDT, but not both.  
Thus, a prescaler assignment for the  
Timer0 module means that there is no  
prescaler for the WDT and vice versa.  
To change the prescaler from the WDT to the Timer0  
module, use the sequence shown in Example 6-2. This  
sequence must be used even if the WDT is disabled. A  
CLRWDT instruction should be executed before  
switching the prescaler.  
The PSA and PS<2:0> bits (OPTION<3:0>) determine  
prescaler assignment and prescale ratio.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g., CLRF 1, MOVWF 1,  
BSF 1, x, etc.) will clear the prescaler. When assigned  
to WDT, a CLRWDT instruction will clear the prescaler  
along with the WDT. The prescaler is neither readable  
nor writable. On a Reset, the prescaler contains all ‘0’s.  
EXAMPLE 6-2:  
CHANGING PRESCALER  
(WDT TIMER0)  
;Clear WDT and  
;prescaler  
CLRWDT  
MOVLW ‘xxxx0xxx’ ;Select TMR0, new  
;prescale value and  
;clock source  
6.2.1  
SWITCHING PRESCALER  
ASSIGNMENT  
OPTION  
The prescaler assignment is fully under software control  
(i.e., it can be changed “on-the-fly” during program  
execution). To avoid an unintended device Reset, the  
following instruction sequence (Example 6-1) must be  
executed when changing the prescaler assignment  
from Timer0 to the WDT.  
DS41236E-page 38  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
FIGURE 6-5:  
BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER(1), (2)  
TCY (= FOSC/4)  
Data Bus  
8
0
1
(GP2/RC5)/T0CKI  
pin  
M
U
X
1
0
M
U
X
Sync  
2
Cycles  
TMR0 Reg  
T0SE  
T0CS  
PSA  
0
1
8-bit Prescaler  
M
U
X
8
Watchdog  
Timer  
8-to-1 MUX  
PS<2:0>  
PSA  
1
0
WDT Enable bit  
MUX  
PSA  
WDT  
Time-out  
Note 1: T0CS, T0SE, PSA, PS<2:0> are bits in the OPTION register.  
2: T0CKI is shared with pin RC5 on the PIC16F505 and pin GP2 on the PIC12F508/509.  
© 2009 Microchip Technology Inc.  
DS41236E-page 39  
PIC12F508/509/16F505  
NOTES:  
DS41236E-page 40  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
The PIC12F508/509/16F505 devices have a Watchdog  
Timer, which can be shut off only through Configuration  
bit WDTE. It runs off of its own RC oscillator for added  
reliability. If using HS (PIC16F505), XT or LP selectable  
oscillator options, there is always an 18 ms (nominal)  
delay provided by the Device Reset Timer (DRT),  
intended to keep the chip in Reset until the crystal  
oscillator is stable. If using INTRC or EXTRC, there is  
an 18 ms delay only on VDD power-up. With this timer  
on-chip, most applications need no external Reset  
circuitry.  
7.0  
SPECIAL FEATURES OF THE  
CPU  
What sets  
a
microcontroller apart from other  
processors are special circuits that deal with the needs  
of real-time applications. The PIC12F508/509/16F505  
microcontrollers have a host of such features intended  
to maximize system reliability, minimize cost through  
elimination of external components, provide power-  
saving operating modes and offer code protection.  
These features are:  
The Sleep mode is designed to offer a very low-current  
Power-Down mode. The user can wake-up from Sleep  
through a change on input pins or through a Watchdog  
Timer time-out. Several oscillator options are also  
made available to allow the part to fit the application,  
including an internal 4 MHz oscillator. The EXTRC  
oscillator option saves system cost while the LP crystal  
option saves power. A set of Configuration bits are  
used to select various options.  
• Oscillator Selection  
• Reset:  
- Power-on Reset (POR)  
- Device Reset Timer (DRT)  
- Wake-up from Sleep on Pin Change  
• Watchdog Timer (WDT)  
• Sleep  
• Code Protection  
• ID Locations  
7.1  
Configuration Bits  
• In-Circuit Serial Programming™  
• Clock Out  
The PIC12F508/509/16F505 Configuration Words  
consist of 12 bits. Configuration bits can be  
programmed to select various device configurations.  
Three bits are for the selection of the oscillator type;  
(two bits on the PIC12F508/509), one bit is the  
Watchdog Timer enable bit, one bit is the MCLR enable  
bit and one bit is for code protection (Register 7-1,  
Register 7-2).  
© 2009 Microchip Technology Inc.  
DS41236E-page 41  
PIC12F508/509/16F505  
REGISTER 7-1:  
CONFIGURATION WORD FOR PIC12F508/509(1)  
MCLRE  
CP  
WDTE FOSC1 FOSC0  
bit 0  
bit 11  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 11-5 Unimplemented: Read as ‘0’  
bit 4  
MCLRE: GP3/MCLR Pin Function Select bit  
1= GP3/MCLR pin function is MCLR  
0= GP3/MCLR pin function is digital input, MCLR internally tied to VDD  
bit 3  
CP: Code Protection bit  
1= Code protection off  
0= Code protection on  
bit 2  
WDTE: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled  
bit 1-0  
FOSC<1:0>: Oscillator Selection bits  
11= EXTRC = external RC oscillator  
10= INTRC = internal RC oscillator  
01= XT oscillator  
00= LP oscillator  
Note 1: Refer to the “PIC12F508/509 Memory Programming Specifications” (DS41227) to determine how to  
access the Configuration Word. The Configuration Word is not user addressable during device operation.  
DS41236E-page 42  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
REGISTER 7-2:  
CONFIGURATION WORD FOR PIC16F505(1)  
MCLRE  
CP  
WDTE FOSC2 FOSC1 FOSC0  
bit 0  
bit 11  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
Unimplemented: Read as ‘0’  
bit 11-6  
bit 5  
MCLRE: RB3/MCLR Pin Function Select bit  
1= RB3/MCLR pin function is MCLR  
0= RB3/MCLR pin function is digital input, MCLR internally tied to VDD  
bit 4  
CP: Code Protection bit  
1= Code protection off  
0= Code protection on  
bit 3  
WDTE: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled  
bit 2-0  
FOSC<1:0>: Oscillator Selection bits  
111= External RC oscillator/CLKOUT function on RB4/OSC2/CLKOUT pin  
110= External RC oscillator/RB4 function on RB4/OSC2/CLKOUT pin  
101= Internal RC oscillator/CLKOUT function on RB4/OSC2/CLKOUT pin  
100= Internal RC oscillator/RB4 function on RB4/OSC2/CLKOUT pin  
011= EC oscillator/RB4 function on RB4/OSC2/CLKOUT pin  
010= HS oscillator  
001= XT oscillator  
000= LP oscillator  
Note 1: Refer to the “PIC16F505 Memory Programming Specifications” (DS41226) to determine how to access  
the Configuration Word. The Configuration Word is not user addressable during device operation.  
© 2009 Microchip Technology Inc.  
DS41236E-page 43  
PIC12F508/509/16F505  
FIGURE 7-1:  
CRYSTAL OPERATION  
(OR CERAMIC  
RESONATOR)  
7.2  
Oscillator Configurations  
7.2.1  
OSCILLATOR TYPES  
(HS, XT OR LP OSC  
CONFIGURATION)  
The PIC12F508/509/16F505 devices can be operated  
in up to six different oscillator modes. The user can  
program up to three Configuration bits (FOSC<1:0>  
[PIC12F508/509], FOSC<2:0> [PIC16F505]). To select  
one of these modes:  
(1)  
C1  
PIC12F508/509  
PIC16F505  
OSC1  
OSC2  
Sleep  
• LP:  
• XT:  
• HS:  
Low-Power Crystal  
Crystal/Resonator  
XTAL  
(3)  
RF  
To internal  
logic  
High-Speed Crystal/Resonator  
(PIC16F505 only)  
(2)  
RS  
(1)  
C2  
• INTRC: Internal 4 MHz Oscillator  
• EXTRC: External Resistor/Capacitor  
Note 1: See Capacitor Selection tables for  
recommended values of C1 and C2.  
2: A series resistor (RS) may be required for AT  
strip cut crystals.  
• EC:  
External High-Speed Clock Input  
(PIC16F505 only)  
3: RF approx. value = 10 MΩ.  
7.2.2  
CRYSTAL OSCILLATOR/CERAMIC  
RESONATORS  
In HS (PIC16F505), XT or LP modes, a crystal or  
ceramic resonator is connected to the (GP5/RB5)/  
OSC1/(CLKIN) and (GP4/RB4)/OSC2/(CLKOUT) pins  
to establish oscillation (Figure 7-1). The PIC12F508/  
509/16F505 oscillator designs require the use of a  
parallel cut crystal. Use of a series cut crystal may give  
FIGURE 7-2:  
EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR  
LP OSC  
CONFIGURATION)  
a
frequency out of the crystal manufacturers  
OSC1  
Clock from  
ext. system  
specifications. When in HS (PIC16F505), XT or LP  
modes, the device can have an external clock source  
drive the (GP5/RB5)/OSC1/CLKIN pin (Figure 7-2).  
When the part is used in this fashion, the output drive  
levels on the OSC2 pin are very weak. This pin should  
be left open and unloaded. Also, when using this mode,  
the external clock should observe the frequency limits  
for the clock mode chosen (HS, XT or LP).  
PIC12F508/509  
PIC16F505  
OSC2  
Open  
TABLE 7-1:  
CAPACITOR SELECTION FOR  
CERAMIC RESONATORS –  
PIC12F508/509/16F505(1)  
Note 1: This device has been designed to per-  
form to the parameters of its data sheet.  
It has been tested to an electrical  
specification designed to determine its  
conformance with these parameters.  
Due to process differences in the  
manufacture of this device, this device  
may have different performance charac-  
teristics than its earlier version. These  
differences may cause this device to  
perform differently in your application  
than the earlier version of this device.  
Osc  
Type  
Resonator Cap. Range Cap. Range  
Freq.  
C1  
C2  
XT  
HS(2)  
4.0 MHz  
16 MHz  
30 pF  
30 pF  
10-47 pF  
10-47 pF  
Note 1: These values are for design guidance  
only. Since each resonator has its own  
characteristics, the user should consult  
the resonator manufacturer for  
appropriate values of external  
components.  
2: PIC16F505 only.  
2: The user should verify that the device  
oscillator starts and performs as  
expected. Adjusting the loading capacitor  
values and/or the Oscillator mode may  
be required.  
DS41236E-page 44  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
TABLE 7-2:  
CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR –  
PIC12F508/509/16F505(2)  
FIGURE 7-3:  
EXTERNAL PARALLEL  
RESONANT CRYSTAL  
OSCILLATOR CIRCUIT  
+5V  
Osc  
Type  
Resonator Cap. Range Cap. Range  
To Other  
Devices  
Freq.  
C1  
C2  
10k  
32 kHz(1)  
15 pF  
15 pF  
4.7k  
74AS04  
LP  
XT  
200 kHz  
1 MHz  
4 MHz  
47-68 pF  
15 pF  
15 pF  
47-68 pF  
15 pF  
15 pF  
CLKIN  
74AS04  
PIC16F505  
PIC12F508  
PIC12F509  
(3)  
10k  
HS  
20 MHz  
15-47 pF  
15-47 pF  
XTAL  
Note 1: For VDD > 4.5V, C1 = C2 30 pF is  
recommended.  
10k  
2: These values are for design guidance  
only. Rs may be required to avoid over-  
driving crystals with low drive level specifi-  
cation. Since each crystal has its own  
characteristics, the user should consult  
the crystal manufacturer for appropriate  
values of external components.  
20 pF  
20 pF  
Figure 7-4 shows a series resonant oscillator circuit.  
This circuit is also designed to use the fundamental  
frequency of the crystal. The inverter performs a 180-  
degree phase shift in a series resonant oscillator  
circuit. The 330 Ω resistors provide the negative  
feedback to bias the inverters in their linear region.  
3: PIC16F505 only.  
7.2.3  
EXTERNAL CRYSTAL OSCILLATOR  
CIRCUIT  
FIGURE 7-4:  
EXTERNAL SERIES  
RESONANT CRYSTAL  
OSCILLATOR CIRCUIT  
Either a prepackaged oscillator or a simple oscillator  
circuit with TTL gates can be used as an external  
crystal oscillator circuit. Prepackaged oscillators  
provide a wide operating range and better stability. A  
well-designed crystal oscillator will provide good perfor-  
mance with TTL gates. Two types of crystal oscillator  
circuits can be used: one with parallel resonance, or  
one with series resonance.  
To Other  
Devices  
330  
330  
74AS04  
74AS04  
74AS04  
CLKIN  
0.1 mF  
XTAL  
PIC16F505  
PIC12F508  
PIC12F509  
Figure 7-3 shows implementation of a parallel resonant  
oscillator circuit. The circuit is designed to use the fun-  
damental frequency of the crystal. The 74AS04 inverter  
performs the 180-degree phase shift that a parallel  
oscillator requires. The 4.7 kΩ resistor provides the  
negative feedback for stability. The 10 kΩ potentiome-  
ters bias the 74AS04 in the linear region. This circuit  
could be used for external oscillator designs.  
7.2.4  
EXTERNAL RC OSCILLATOR  
For timing insensitive applications, the RC device  
option offers additional cost savings. The RC oscillator  
frequency is a function of the supply voltage, the resis-  
tor (REXT) and capacitor (CEXT) values, and the operat-  
ing temperature. In addition to this, the oscillator  
frequency will vary from unit-to-unit due to normal pro-  
cess parameter variation. Furthermore, the difference  
in lead frame capacitance between package types will  
also affect the oscillation frequency, especially for low  
CEXT values. The user also needs to take into account  
variation due to tolerance of external R and C  
components used.  
Figure 7-5 shows how the R/C combination is  
connected to the PIC12F508/509/16F505 devices. For  
REXT values below 3.0 kΩ, the oscillator operation may  
become unstable, or stop completely. For very high  
REXT values (e.g., 1 MΩ), the oscillator becomes  
sensitive to noise, humidity and leakage. Thus, we  
recommend keeping REXT between 5.0 kΩ and  
100 kΩ.  
© 2009 Microchip Technology Inc.  
DS41236E-page 45  
PIC12F508/509/16F505  
Although the oscillator will operate with no external  
capacitor (CEXT = 0pF), we recommend using values  
above 20 pF for noise and stability reasons. With no or  
small external capacitance, the oscillation frequency  
can vary dramatically due to changes in external  
capacitances, such as PCB trace capacitance or  
package lead frame capacitance.  
In addition, a calibration instruction is programmed into  
the last address of memory, which contains the  
calibration value for the internal RC oscillator. This  
location is always uncode protected, regardless of the  
code-protect settings. This value is programmed as a  
MOVLW XXinstruction where XXis the calibration value,  
and is placed at the Reset vector. This will load the W  
register with the calibration value upon Reset and the  
PC will then roll over to the users program at address  
0x000. The user then has the option of writing the value  
to the OSCCAL Register (05h) or ignoring it.  
Section 10.0 “Electrical Characteristics” shows RC  
frequency variation from part-to-part due to normal  
process variation. The variation is larger for larger val-  
ues of R (since leakage current variation will affect RC  
frequency more for large R) and for smaller values of C  
(since variation of input capacitance will affect RC  
frequency more).  
OSCCAL, when written to with the calibration value, will  
“trim” the internal oscillator to remove process variation  
from the oscillator frequency.  
Also, see the Electrical Specifications section for  
variation of oscillator frequency due to VDD for given  
REXT/CEXT values, as well as frequency variation due  
to operating temperature for given R, C and VDD  
values.  
Note:  
Erasing the device will also erase the pre-  
programmed internal calibration value for  
the internal oscillator. The calibration  
value must be read prior to erasing the  
part so it can be reprogrammed correctly  
later.  
FIGURE 7-5:  
EXTERNAL RC  
OSCILLATOR MODE  
For the PIC12F508/509/16F505 devices, only bits  
<7:1> of OSCCAL are implemented. Bits CAL6-CAL0  
are used for calibration. Adjusting CAL6-CAL0 from  
0000000’ to ‘1111111’ changes the clock speed. See  
Register 4-5 for more information.  
VDD  
REXT  
Internal  
clock  
OSC1  
N
Note:  
The 0 bit of OSCCAL is unimplemented  
and should be written as ‘0’ when  
modifying OSCCAL for compatibility with  
future devices.  
CEXT  
VSS  
PIC16F505  
PIC12F508  
PIC12F509  
OSC2/CLKOUT  
FOSC/4  
7.2.5  
INTERNAL 4 MHz RC OSCILLATOR  
The internal RC oscillator provides a fixed 4 MHz  
(nominal) system clock at VDD = 5V and 25°C, (see  
Section 10.0 “Electrical Characteristics” for  
information on variation over voltage and temperature).  
DS41236E-page 46  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
Some registers are not reset in any way, they are  
unknown on POR and unchanged in any other Reset.  
Most other registers are reset to “Reset state” on  
Power-on Reset (POR), MCLR, WDT or Wake-up on  
pin change Reset during normal operation. They are  
not affected by a WDT Reset during Sleep or MCLR  
Reset during Sleep, since these Resets are viewed as  
resumption of normal operation. The exceptions to this  
are TO, PD and RBWUF/GPWUF bits. They are set or  
cleared differently in different Reset situations. These  
bits are used in software to determine the nature of  
Reset. See Table 7-4 for a full description of Reset  
states of all registers.  
7.3  
Reset  
The device differentiates between various kinds of  
Reset:  
• Power-on Reset (POR)  
• MCLR Reset during normal operation  
• MCLR Reset during Sleep  
• WDT time-out Reset during normal operation  
• WDT time-out Reset during Sleep  
• Wake-up from Sleep on pin change  
TABLE 7-3:  
Register  
RESET CONDITIONS FOR REGISTERS – PIC12F508/509  
MCLR Reset, WDT Time-out,  
Address  
Power-on Reset  
Wake-up On Pin Change  
W
qqqq qqqu(1)  
xxxx xxxx  
xxxx xxxx  
1111 1111  
qqqq qqqu(1)  
uuuu uuuu  
uuuu uuuu  
1111 1111  
INDF  
TMR0  
PC  
00h  
01h  
02h  
STATUS  
FSR(4)  
03h  
04h  
0001 1xxx  
110x xxxx  
q00q quuu(2), (3)  
11uu uuuu  
FSR(5)  
OSCCAL  
GPIO  
04h  
05h  
06h  
111x xxxx  
1111 111-  
--xx xxxx  
1111 1111  
--11 1111  
111u uuuu  
uuuu uuu-  
--uu uuuu  
1111 1111  
--11 1111  
OPTION  
TRIS  
Legend: u= unchanged, x= unknown, – = unimplemented bit, read as ‘0’, q= value depends on condition.  
Note 1: Bits <7:2> of W register contain oscillator calibration values due to MOVLW XXinstruction at top of  
memory.  
2: See Table 7-5 for Reset value for specific conditions.  
3: If Reset was due to wake-up on pin change, then bit 7 = 1. All other Resets will cause bit 7 = 0.  
4: PIC12F509 only.  
5: PIC12F508 only.  
© 2009 Microchip Technology Inc.  
DS41236E-page 47  
PIC12F508/509/16F505  
TABLE 7-4:  
Register  
RESET CONDITIONS FOR REGISTERS – PIC16F505  
MCLR Reset, WDT Time-out,  
Wake-up On Pin Change  
Address  
Power-on Reset  
W
qqqq qqqu(1)  
xxxx xxxx  
xxxx xxxx  
1111 1111  
qqqq qqqu(1)  
uuuu uuuu  
uuuu uuuu  
1111 1111  
INDF  
TMR0  
PC  
00h  
01h  
02h  
STATUS  
FSR  
03h  
04h  
05h  
06h  
07h  
0001 1xxx  
100x xxxx  
1111 111-  
--xx xxxx  
--xx xxxx  
1111 1111  
--11 1111  
--11 1111  
q00q quuu(2), (3)  
1uuu uuuu  
uuuu uuu-  
--uu uuuu  
--uu uuuu  
1111 1111  
--11 1111  
--11 1111  
OSCCAL  
PORTB  
PORTC  
OPTION  
TRISB  
TRISC  
Legend: u= unchanged, x= unknown, – = unimplemented bit, read as ‘0’, q= value depends on condition.  
Note 1: Bits <7:2> of W register contain oscillator calibration values due to MOVLW XXinstruction at top of  
memory.  
2: See Table 7-5 for Reset value for specific conditions.  
3: If Reset was due to wake-up on pin change, then bit 7 = 1. All other Resets will cause bit 7 = 0.  
TABLE 7-5:  
RESET CONDITION FOR SPECIAL REGISTERS  
STATUS Addr: 03h  
PCL Addr: 02h  
Power-on Reset  
0001 1xxx  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
MCLR Reset during normal operation  
MCLR Reset during Sleep  
000u uuuu  
0001 0uuu  
0000 0uuu  
0000 uuuu  
1001 0uuu  
WDT Reset during Sleep  
WDT Reset normal operation  
Wake-up from Sleep on pin change  
Legend: u= unchanged, x= unknown, – = unimplemented bit, read as ‘0’.  
DS41236E-page 48  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
The Power-on Reset circuit and the Device Reset  
Timer (see Section 7.5 “Device Reset Timer (DRT)”)  
circuit are closely related. On power-up, the Reset latch  
is set and the DRT is reset. The DRT timer begins  
counting once it detects MCLR to be high. After the  
time-out period, which is typically 18 ms, it will reset the  
Reset latch and thus end the on-chip Reset signal.  
7.3.1  
MCLR ENABLE  
This Configuration bit, when unprogrammed (left in the  
1’ state), enables the external MCLR function. When  
programmed, the MCLR function is tied to the internal  
VDD and the pin is assigned to be an input only. See  
Figure 7-6.  
A power-up example where MCLR is held low is shown  
in Figure 7-8. VDD is allowed to rise and stabilize before  
bringing MCLR high. The chip will actually come out of  
Reset TDRT msec after MCLR goes high.  
FIGURE 7-6:  
MCLR SELECT  
GPWU/RBWU  
(GP3/RB3)/MCLR/VPP  
In Figure 7-9, the on-chip Power-on Reset feature is  
being used (MCLR and VDD are tied together or the pin  
is programmed to be (GP3/RB3). The VDD is stable  
before the start-up timer times out and there is no prob-  
lem in getting a proper Reset. However, Figure 7-10  
depicts a problem situation where VDD rises too slowly.  
The time between when the DRT senses that MCLR is  
high and when MCLR and VDD actually reach their full  
value, is too long. In this situation, when the start-up  
timer times out, VDD has not reached the VDD (min)  
value and the chip may not function correctly. For such  
situations, we recommend that external RC circuits be  
used to achieve longer POR delay times (Figure 7-9).  
Internal MCLR  
MCLRE  
7.4  
Power-on Reset (POR)  
The PIC12F508/509/16F505 devices incorporate an  
on-chip Power-on Reset (POR) circuitry, which  
provides an internal chip Reset for most power-up  
situations.  
The on-chip POR circuit holds the chip in Reset until  
VDD has reached a high enough level for proper  
operation. To take advantage of the internal POR,  
program the (GP3/RB3)/MCLR/VPP pin as MCLR and  
tie through a resistor to VDD, or program the pin as  
(GP3/RB3). An internal weak pull-up resistor is  
implemented using a transistor (refer to Table 10-2 for  
the pull-up resistor ranges). This will eliminate external  
RC components usually needed to create a Power-on  
Reset. A maximum rise time for VDD is specified. See  
Section 10.0 “Electrical Characteristics” for details.  
Note:  
When the devices start normal operation  
(exit the Reset condition), device operat-  
ing parameters (voltage, frequency, tem-  
perature, etc.) must be met to ensure  
operation. If these conditions are not met,  
the device must be held in Reset until the  
operating conditions are met.  
For additional information, refer to Application Notes  
AN522 “Power-Up Considerations” (DS00522) and  
AN607 “Power-up Trouble Shooting” (DS00607).  
When the devices start normal operation (exit the  
Reset condition), device operating parameters  
(voltage, frequency, temperature,...) must be met to  
ensure operation. If these conditions are not met, the  
devices must be held in Reset until the operating  
parameters are met.  
A simplified block diagram of the on-chip Power-on  
Reset circuit is shown in Figure 7-7.  
© 2009 Microchip Technology Inc.  
DS41236E-page 49  
PIC12F508/509/16F505  
FIGURE 7-7:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
VDD  
Power-up  
Detect  
POR (Power-on Reset)  
MCLR Reset  
(GP3/RB3)/MCLR/VPP  
S
R
Q
Q
MCLRE  
WDT Reset  
WDT Time-out  
Start-up Timer  
CHIP Reset  
(10 μs or 18 ms)  
Pin Change  
Sleep  
Wake-up on pin Change Reset  
FIGURE 7-8:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR PULLED LOW)  
VDD  
MCLR  
Internal POR  
TDRT  
DRT Time-out  
Internal Reset  
FIGURE 7-9:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): FAST VDD RISE  
TIME  
VDD  
MCLR  
Internal POR  
TDRT  
DRT Time-out  
Internal Reset  
DS41236E-page 50  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
FIGURE 7-10:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): SLOW VDD RISE  
TIME  
V1  
VDD  
MCLR  
Internal POR  
TDRT  
DRT Time-out  
Internal Reset  
Note:  
When VDD rises slowly, the TDRT time-out expires long before VDD has reached its final  
value. In this example, the chip will reset properly if, and only if, V1 VDD min.  
© 2009 Microchip Technology Inc.  
DS41236E-page 51  
PIC12F508/509/16F505  
TABLE 7-6:  
DRT (DEVICE RESET TIMER  
PERIOD)  
7.5  
Device Reset Timer (DRT)  
On the PIC12F508/509/16F505 devices, the DRT runs  
any time the device is powered up. DRT runs from  
Reset and varies based on oscillator selection and  
Reset type (see Table 7-6).  
Oscillator  
Configuration  
Subsequent  
POR Reset  
Resets  
INTOSC, EXTRC 18 ms (typical) 10 μs (typical)  
The DRT operates on an internal RC oscillator. The  
processor is kept in Reset as long as the DRT is active.  
The DRT delay allows VDD to rise above VDD min. and  
for the oscillator to stabilize.  
HS(1), XT, LP  
18 ms (typical) 18 ms (typical)  
EC(1)  
18 ms (typical) 10 μs (typical)  
Note 1: PIC16F505 only.  
Oscillator circuits based on crystals or ceramic resona-  
tors require a certain time after power-up to establish a  
stable oscillation. The on-chip DRT keeps the devices in  
a Reset condition for approximately 18 ms after MCLR  
7.6.1 WDT PERIOD  
The WDT has a nominal time-out period of 18 ms, (with  
no prescaler). If a longer time-out period is desired, a  
prescaler with a division ratio of up to 1:128 can be  
assigned to the WDT (under software control) by  
writing to the OPTION register. Thus, a time-out period  
of a nominal 2.3 seconds can be realized. These  
periods vary with temperature, VDD and part-to-part  
process variations (see DC specs).  
has reached  
a
logic high (VIH MCLR) level.  
Programming (GP3/RB3)/MCLR/VPP as MCLR and  
using an external RC network connected to the MCLR  
input is not required in most cases. This allows savings  
in cost-sensitive and/or space restricted applications, as  
well as allowing the use of the (GP3/RB3)/MCLR/VPP  
pin as a general purpose input.  
Under worst case conditions (VDD = Min., Temperature  
= Max., max. WDT prescaler), it may take several  
seconds before a WDT time-out occurs.  
The Device Reset Time delays will vary from chip-to-  
chip due to VDD, temperature and process variation.  
See AC parameters for details.  
7.6.2  
WDT PROGRAMMING  
CONSIDERATIONS  
The DRT will also be triggered upon a Watchdog Timer  
time-out from Sleep. This is particularly important for  
applications using the WDT to wake from Sleep mode  
automatically.  
The CLRWDT instruction clears the WDT and the  
postscaler, if assigned to the WDT, and prevents it from  
timing out and generating a device Reset.  
Reset sources are POR, MCLR, WDT time-out and  
wake-up on pin change. See Section 7.9.2 “Wake-up  
from Sleep”, Notes 1, 2 and 3.  
The SLEEP instruction resets the WDT and the post-  
scaler, if assigned to the WDT. This gives the maximum  
Sleep time before a WDT wake-up Reset.  
7.6  
Watchdog Timer (WDT)  
The Watchdog Timer (WDT) is a free running on-chip  
RC oscillator, which does not require any external  
components. This RC oscillator is separate from the  
external RC oscillator of the (GP5/RB5)/OSC1/CLKIN  
pin and the internal 4 MHz oscillator. This means that  
the WDT will run even if the main processor clock has  
been stopped, for example, by execution of a SLEEP  
instruction. During normal operation or Sleep, a WDT  
Reset or wake-up Reset, generates a device Reset.  
The TO bit (STATUS<4>) will be cleared upon a  
Watchdog Timer Reset.  
The WDT can be permanently disabled by  
programming the configuration WDTE as a ‘0’ (see  
Section 7.1 “Configuration Bits”). Refer to the  
PIC12F508/509/16F505 Programming Specifications  
to determine how to access the Configuration Word.  
DS41236E-page 52  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
FIGURE 7-11:  
WATCHDOG TIMER BLOCK DIAGRAM  
From Timer0 Clock Source  
(Figure 6-5)  
0
M
U
X
Postscaler  
8-to-1 MUX  
1
Watchdog  
Time  
PS<2:0>  
PSA  
WDT Enable  
Configuration  
(Figure 6-4)  
To Timer0  
Bit  
0
1
MUX  
PSA  
WDT Time-out  
Note 1: T0CS, T0SE, PSA, PS<2:0> are bits in the OPTION register.  
TABLE 7-7:  
Address  
SUMMARY OF REGISTERS ASSOCIATED WITH THE WATCHDOG TIMER  
Value on  
Value on  
All Other  
Resets  
Name  
Bit 7  
Bit 6  
Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Power-On  
Reset  
N/A  
N/A  
OPTION(1) GPWU GPPU T0CS T0SE PSA PS2 PS1 PS0 1111 1111 1111 1111  
OPTION(2) RBWU RBPU T0CS T0SE PSA PS2 PS1 PS0 1111 1111 1111 1111  
Legend: Shaded boxes = Not used by Watchdog Timer. – = unimplemented, read as ‘0’, u= unchanged.  
Note 1: PIC12F508/509 only.  
2: PIC16F505 only.  
© 2009 Microchip Technology Inc.  
DS41236E-page 53  
PIC12F508/509/16F505  
FIGURE 7-13:  
BROWN-OUT  
PROTECTION CIRCUIT 2  
7.7  
Time-out Sequence, Power-down  
and Wake-up from Sleep Status  
Bits (TO, PD, GPWUF/RBWUF)  
VDD  
VDD  
The TO, PD and (GPWUF/RBWUF) bits in the  
STATUS register can be tested to determine if a Reset  
condition has been caused by a Power-up condition, a  
MCLR or Watchdog Timer (WDT) Reset.  
R1  
R2  
PIC16F505  
PIC12F508  
PIC12F509  
Q1  
(2)  
MCLR  
(1)  
40k  
TABLE 7-8:  
TO/PD/(GPWUF/RBWUF)  
STATUS AFTER RESET  
GPWUF/  
RBWUF  
TO PD  
Reset Caused By  
Note 1: This brown-out circuit is less expensive,  
although less accurate. Transistor Q1 turns  
off when VDD is below a certain level such  
that:  
0
0
0
0
0
u
WDT wake-up from Sleep  
WDT time-out (not from  
Sleep)  
R1  
= 0.7V  
VDD •  
0
0
0
1
1
1
u
1
0
1
u
0
MCLR wake-up from Sleep  
Power-up  
R1 + R2  
2: Pin must be confirmed as MCLR.  
MCLR not during Sleep  
Wake-up from Sleep on pin  
change  
FIGURE 7-14:  
BROWN-OUT  
PROTECTION CIRCUIT 3  
Legend: u= unchanged  
VDD  
Note 1: The TO, PD and GPWUF/RBWUF bits  
maintain their status (u) until a Reset  
occurs. A low-pulse on the MCLR input  
does not change the TO, PD and  
MCP809  
VDD  
Bypass  
Capacitor  
VSS  
VDD  
GPWUF/RBWUF Status bits.  
RST  
MCLR  
PIC16F505  
PIC12F508  
PIC12F509  
7.8  
Reset on Brown-out  
A brown-out is a condition where device power (VDD)  
dips below its minimum value, but not to zero, and then  
recovers. The device should be reset in the event of a  
brown-out.  
Note:  
This brown-out protection circuit employs  
Microchip Technology’s MCP809 micro-  
controller supervisor. There are 7 different  
trip point selections to accommodate 5V to  
3V systems.  
To reset PIC12F508/509/16F505 devices when a  
brown-out occurs, external brown-out protection  
circuits may be built, as shown in Figure 7-12 and  
Figure 7-13.  
FIGURE 7-12:  
BROWN-OUT  
PROTECTION CIRCUIT 1  
VDD  
VDD  
33k  
PIC16F505  
PIC12F508  
PIC12F509  
Q1  
(2)  
MCLR  
10k  
(1)  
40k  
Note 1: This circuit will activate Reset when VDD goes  
below Vz + 0.7V (where Vz = Zener voltage).  
2: Pin must be confirmed as MCLR.  
DS41236E-page 54  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
7.9  
Power-down Mode (Sleep)  
7.10 Program Verification/Code  
Protection  
A device may be powered down (Sleep) and later  
powered up (wake-up from Sleep).  
If the code protection bit has not been programmed, the  
on-chip program memory can be read out for  
verification purposes.  
7.9.1  
SLEEP  
The Power-Down mode is entered by executing a  
SLEEPinstruction.  
The first 64 locations and the last location (OSCCAL)  
can be read, regardless of the code protection bit  
setting.  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the TO bit (STATUS<4>) is set, the PD  
bit (STATUS<3>) is cleared and the oscillator driver is  
turned off. The I/O ports maintain the status they had  
before the SLEEP instruction was executed (driving  
high, driving low or high-impedance).  
The last memory location can be read regardless of the  
code protection bit setting on the PIC12F508/509/  
16F505 devices.  
7.11 ID Locations  
Note:  
A Reset generated by a WDT time-out  
does not drive the MCLR pin low.  
Four memory locations are designated as ID locations  
where the user can store checksum or other code  
identification numbers. These locations are not  
accessible during normal execution, but are readable  
and writable during Program/Verify.  
For lowest current consumption while powered down,  
the T0CKI input should be at VDD or VSS and the  
(GP3/RB3)/MCLR/VPP pin must be at a logic high  
level if MCLR is enabled.  
Use only the lower 4 bits of the ID locations and always  
program the upper 8 bits as ‘0’s.  
7.9.2  
WAKE-UP FROM SLEEP  
The device can wake-up from Sleep through one of  
the following events:  
7.12 In-Circuit Serial Programming™  
The PIC12F508/509/16F505 microcontrollers can be  
serially programmed while in the end application circuit.  
This is simply done with two lines for clock and data,  
and three other lines for power, ground and the  
programming voltage. This allows customers to manu-  
facture boards with unprogrammed devices and then  
program the microcontroller just before shipping the  
product. This also allows the most recent firmware, or  
a custom firmware, to be programmed.  
1. An external Reset input on (GP3/RB3)/MCLR/  
VPP pin, when configured as MCLR.  
2. A Watchdog Timer time-out Reset (if WDT was  
enabled).  
3. A change on input pin GP0/RB0, GP1/RB1,  
GP3/RB3 or RB4 when wake-up on change is  
enabled.  
These events cause a device Reset. The TO, PD and  
GPWUF/RBWUF bits can be used to determine the  
cause of device Reset. The TO bit is cleared if a WDT  
time-out occurred (and caused wake-up). The PD bit,  
which is set on power-up, is cleared when SLEEP is  
invoked. The GPWUF/RBWUF bit indicates a change  
in state while in Sleep at pins GP0/RB0, GP1/RB1,  
GP3/RB3 or RB4 (since the last file or bit operation on  
GP/RB port).  
The devices are placed into a Program/Verify mode by  
holding the GP1/RB1 and GP0/RB0 pins low while  
raising the MCLR (VPP) pin from VIL to VIHH (see  
programming specification). GP1/RB1 becomes the  
programming clock and GP0/RB0 becomes the  
programming data. Both GP1/RB1 and GP0/RB0 are  
Schmitt Trigger inputs in this mode.  
After Reset, a 6-bit command is then supplied to the  
device. Depending on the command, 14 bits of program  
data are then supplied to or from the device, depending  
if the command was a Load or a Read. For complete  
details of serial programming, please refer to the  
PIC12F508/509/16F505 Programming Specifications.  
Note:  
Caution: Right before entering Sleep,  
read the input pins. When in Sleep, wake-  
up occurs when the values at the pins  
change from the state they were in at the  
last reading. If a wake-up on change  
occurs and the pins are not read before re-  
entering Sleep, a wake-up will occur  
immediately even if no pins change while  
in Sleep mode.  
A typical In-Circuit Serial Programming connection is  
shown in Figure 7-15.  
The WDT is cleared when the device wakes from  
Sleep, regardless of the wake-up source.  
© 2009 Microchip Technology Inc.  
DS41236E-page 55  
PIC12F508/509/16F505  
FIGURE 7-15:  
TYPICAL IN-CIRCUIT  
SERIAL PROGRAMMING  
CONNECTION  
To Normal  
Connections  
PIC16F505  
PIC12F508  
PIC12F509  
External  
Connector  
Signals  
+5V  
0V  
VDD  
VSS  
VPP  
MCLR/VPP  
GP1/RB1  
GP0/RB0  
CLK  
Data I/O  
VDD  
To Normal  
Connections  
DS41236E-page 56  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
All instructions are executed within a single instruction  
cycle, unless a conditional test is true or the program  
counter is changed as a result of an instruction. In this  
case, the execution takes two instruction cycles. One  
instruction cycle consists of four oscillator periods.  
Thus, for an oscillator frequency of 4 MHz, the normal  
instruction execution time is 1 μs. If a conditional test is  
true or the program counter is changed as a result of an  
instruction, the instruction execution time is 2 μs.  
8.0  
INSTRUCTION SET SUMMARY  
The PIC16 instruction set is highly orthogonal and is  
comprised of three basic categories.  
Byte-oriented operations  
Bit-oriented operations  
Literal and control operations  
Each PIC16 instruction is a 12-bit word divided into an  
opcode, which specifies the instruction type, and one  
or more operands which further specify the operation  
of the instruction. The formats for each of the catego-  
ries is presented in Figure 8-1, while the various  
opcode fields are summarized in Table 8-1.  
Figure 8-1 shows the three general formats that the  
instructions can have. All examples in the figure use  
the following format to represent a hexadecimal  
number:  
0xhhh  
For byte-oriented instructions, ‘f’ represents a file  
register designator and ‘d’ represents a destination  
designator. The file register designator specifies which  
file register is to be used by the instruction.  
where ‘h’ signifies a hexadecimal digit.  
FIGURE 8-1:  
GENERAL FORMAT FOR  
INSTRUCTIONS  
The destination designator specifies where the result of  
the operation is to be placed. If ‘d’ is ‘0’, the result is  
placed in the W register. If ‘d’ is ‘1’, the result is placed  
in the file register specified in the instruction.  
Byte-oriented file register operations  
11  
6
5
d
4
0
OPCODE  
f (FILE #)  
For bit-oriented instructions, ‘b’ represents a bit field  
designator which selects the number of the bit affected  
by the operation, while ‘f’ represents the number of the  
file in which the bit is located.  
d = 0for destination W  
d = 1for destination f  
f = 5-bit file register address  
Bit-oriented file register operations  
11 8 7  
b (BIT #)  
For literal and control operations, ‘k’ represents an  
8 or 9-bit constant or literal value.  
5
4
0
OPCODE  
f (FILE #)  
b = 3-bit bit address  
f = 5-bit file register address  
TABLE 8-1:  
OPCODE FIELD  
DESCRIPTIONS  
Literal and control operations (except GOTO)  
11  
Field  
Description  
8
7
0
f
W
b
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
OPCODE  
k (literal)  
Bit address within an 8-bit file register  
Literal field, constant data or label  
k = 8-bit immediate value  
k
Literal and control operations GOTOinstruction  
11  
x
Don’t care location (= 0or 1)  
The assembler will generate code with x = 0. It is  
the recommended form of use for compatibility with  
all Microchip software tools.  
9
8
0
OPCODE  
k (literal)  
d
Destination select;  
k = 9-bit immediate value  
d = 0(store result in W)  
d = 1(store result in file register ‘f’)  
Default is d = 1  
label  
TOS  
PC  
Label name  
Top-of-Stack  
Program Counter  
Watchdog Timer counter  
Time-out bit  
WDT  
TO  
PD  
Power-down bit  
dest  
Destination, either the W register or the specified  
register file location  
[ ]  
( )  
< >  
Options  
Contents  
Assigned to  
Register bit field  
In the set of  
italics User defined term (font is courier)  
© 2009 Microchip Technology Inc.  
DS41236E-page 57  
PIC12F508/509/16F505  
TABLE 8-2:  
INSTRUCTION SET SUMMARY  
Description  
12-Bit Opcode  
MSb LSb  
Mnemonic,  
Operands  
Status  
Affected  
Cycles  
Notes  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
DECFSZ  
INCF  
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
f, d  
f, d  
f
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
Move W to f  
No Operation  
Rotate left f through Carry  
Rotate right f through Carry  
Subtract W from f  
Swap f  
1
1
1
1
1
0001 11df ffff C, DC, Z 1, 2, 4  
0001 01df ffff  
0000 011f ffff  
0000 0100 0000  
0010 01df ffff  
0000 11df ffff  
0010 11df ffff  
0010 10df ffff  
0011 11df ffff  
0001 00df ffff  
0010 00df ffff  
0000 001f ffff  
0000 0000 0000  
0011 01df ffff  
0011 00df ffff  
Z
Z
Z
Z
Z
None  
Z
None  
Z
2, 4  
4
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
1
2, 4  
2, 4  
2, 4  
2, 4  
2, 4  
2, 4  
1, 4  
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
Z
None  
None  
C
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
f, d  
f, d  
f, d  
f, d  
f, d  
2, 4  
2, 4  
C
0000 10df ffff C, DC, Z 1, 2, 4  
0011 10df ffff  
0001 10df ffff  
None  
Z
2, 4  
2, 4  
Exclusive OR W with f  
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1
1
0100 bbbf ffff  
None  
None  
None  
None  
2, 4  
2, 4  
0101 bbbf ffff  
0110 bbbf ffff  
0111 bbbf ffff  
1(2)  
1(2)  
LITERAL AND CONTROL OPERATIONS  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
OPTION  
RETLW  
SLEEP  
TRIS  
k
k
k
k
k
k
f
k
AND literal with W  
Call Subroutine  
1
2
1
2
1
1
1
2
1
1
1
1110 kkkk kkkk  
1001 kkkk kkkk  
0000 0000 0100 TO, PD  
101k kkkk kkkk  
1101 kkkk kkkk  
1100 kkkk kkkk  
0000 0000 0010  
1000 kkkk kkkk  
Z
None  
1
3
Clear Watchdog Timer  
Unconditional branch  
Inclusive OR literal with W  
Move literal to W  
Load OPTION register  
Return, place literal in W  
Go into Standby mode  
Load TRIS register  
None  
Z
None  
None  
None  
0000 0000 0011 TO, PD  
0000 0000 0fff  
1111 kkkk kkkk  
None  
Z
XORLW  
Exclusive OR literal to W  
Note 1: The 9th bit of the program counter will be forced to a ‘0’ by any instruction that writes to the PC except for  
GOTO. See Section 4.7 “Program Counter”.  
2: When an I/O register is modified as a function of itself (e.g. MOVF PORTB, 1), the value used will be that  
value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and  
is driven low by an external device, the data will be written back with a ‘0’.  
3: The instruction TRIS f, where f = 6, causes the contents of the W register to be written to the tri-state  
latches of PORTB. A ‘1’ forces the pin to a high-impedance state and disables the output buffers.  
4: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be  
cleared (if assigned to TMR0).  
DS41236E-page 58  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
ADDWF  
Add W and f  
BCF  
Bit Clear f  
Syntax:  
[ label ] ADDWF f,d  
Syntax:  
[ label ] BCF f,b  
Operands:  
0 f 31  
d ∈ [0,1]  
Operands:  
0 f 31  
0 b 7  
Operation:  
(W) + (f) (dest)  
Operation:  
0 (f<b>)  
Status Affected: C, DC, Z  
Status Affected: None  
Description:  
Add the contents of the W register  
Description:  
Bit ‘b’ in register ‘f’ is cleared.  
and register ‘f’. If ‘d’ is’0’, the result  
is stored in the W register. If ‘d’ is  
1’, the result is stored back in  
register ‘f’.  
ANDLW  
AND literal with W  
BSF  
Bit Set f  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Syntax:  
[ label ] BSF f,b  
Operands:  
Operation:  
Operands:  
0 f 31  
0 b 7  
(W).AND. (k) (W)  
Operation:  
1 (f<b>)  
Status Affected: Z  
Status Affected: None  
Description:  
The contents of the W register are  
AND’ed with the eight-bit literal ‘k’.  
The result is placed in the W  
register.  
Description: Bit ‘b’ in register ‘f’ is set.  
BTFSC  
Bit Test f, Skip if Clear  
ANDWF  
AND W with f  
Syntax:  
[ label ] BTFSC f,b  
Syntax:  
[ label ] ANDWF f,d  
Operands:  
0 f 31  
0 b 7  
Operands:  
0 f 31  
d [0,1]  
Operation:  
skip if (f<b>) = 0  
Operation:  
(W) .AND. (f) (dest)  
Status Affected: None  
Status Affected: Z  
Description: If bit ‘b’ in register ‘f’ is ‘0’, then the  
Description: The contents of the W register are  
next instruction is skipped.  
AND’ed with register ‘f’. If ‘d’ is ‘0’,  
the result is stored in the W register.  
If ‘d’ is ‘1’, the result is stored back  
in register ‘f’.  
If bit ‘b’ is ‘0’, then the next instruc-  
tion fetched during the current  
instruction execution is discarded,  
and a NOPis executed instead,  
making this a two-cycle instruction.  
© 2009 Microchip Technology Inc.  
DS41236E-page 59  
PIC12F508/509/16F505  
CLRW  
Clear W  
BTFSS  
Bit Test f, Skip if Set  
Syntax:  
[ label ] CLRW  
None  
Syntax:  
[ label ] BTFSS f,b  
Operands:  
Operation:  
Operands:  
0 f 31  
0 b < 7  
00h (W);  
1 Z  
Operation:  
skip if (f<b>) = 1  
Status Affected:  
Description:  
Z
Status Affected: None  
The W register is cleared. Zero bit  
(Z) is set.  
Description:  
If bit ‘b’ in register ‘f’ is ‘1’, then the  
next instruction is skipped.  
If bit ‘b’ is ‘1’, then the next instruc-  
tion fetched during the current  
instruction execution, is discarded  
and a NOPis executed instead,  
making this a two-cycle instruction.  
CLRWDT  
Syntax:  
Clear Watchdog Timer  
[ label ] CLRWDT  
None  
CALL  
Subroutine Call  
[ label ] CALL k  
0 k 255  
Syntax:  
Operands:  
Operation:  
Operands:  
Operation:  
00h WDT;  
0 WDT prescaler (if assigned);  
1 TO;  
1 PD  
(PC) + 1Top-of-Stack;  
k PC<7:0>;  
(STATUS<6:5>) PC<10:9>;  
0 PC<8>  
Status Affected: TO, PD  
Status Affected: None  
Description:  
The CLRWDTinstruction resets the  
Description:  
Subroutine call. First, return  
WDT. It also resets the prescaler, if  
the prescaler is assigned to the  
WDT and not Timer0. Status bits  
TO and PD are set.  
address (PC + 1) is PUSHed onto  
the stack. The eight-bit immediate  
address is loaded into PC  
bits <7:0>. The upper bits  
PC<10:9> are loaded from  
STATUS<6:5>, PC<8> is cleared.  
CALLis a two-cycle instruction.  
CLRF  
Clear f  
COMF  
Complement f  
Syntax:  
[ label ] CLRF  
0 f 31  
f
Syntax:  
Operands:  
[ label ] COMF f,d  
Operands:  
Operation:  
0 f 31  
d [0,1]  
00h (f);  
1 Z  
Operation:  
(f) (dest)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
The contents of register ‘f’ are  
cleared and the Z bit is set.  
The contents of register ‘f’ are  
complemented. If ‘d’ is ‘0’, the  
result is stored in the W register. If  
‘d’ is ‘1’, the result is stored back in  
register ‘f’.  
DS41236E-page 60  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
DECF  
Decrement f  
INCF  
Increment f  
Syntax:  
Operands:  
[ label ] DECF f,d  
Syntax:  
Operands:  
[ label ] INCF f,d  
0 f 31  
d [0,1]  
0 f 31  
d [0,1]  
Operation:  
(f) – 1 (dest)  
Operation:  
(f) + 1 (dest)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Decrement register ‘f’. If ‘d’ is ‘0’,  
the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
INCFSZ  
Syntax:  
Increment f, Skip if 0  
DECFSZ  
Syntax:  
Decrement f, Skip if 0  
[ label ] INCFSZ f,d  
[ label ] DECFSZ f,d  
Operands:  
0 f 31  
d [0,1]  
Operands:  
0 f 31  
d [0,1]  
Operation:  
(f) + 1 (dest), skip if result = 0  
Operation:  
(f) – 1 d; skip if result = 0  
Status Affected: None  
Status Affected: None  
Description:  
The contents of register ‘f’ are  
Description:  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
decremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
If the result is ‘0’, then the next  
instruction, which is already  
fetched, is discarded and a NOPis  
executed instead making it a  
two-cycle instruction.  
If the result is ‘0’, the next instruc-  
tion, which is already fetched, is  
discarded and a NOPis executed  
instead making it a two-cycle  
instruction.  
IORLW  
Inclusive OR literal with W  
[ label ] IORLW k  
0 k 255  
GOTO  
Unconditional Branch  
[ label ] GOTO k  
0 k 511  
Syntax:  
Syntax:  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
Operation:  
(W) .OR. (k) (W)  
Z
k PC<8:0>;  
STATUS<6:5> PC<10:9>  
Status Affected: None  
The contents of the W register are  
OR’ed with the eight-bit literal ‘k’.  
The result is placed in the  
W register.  
Description: GOTOis an unconditional branch.  
The 9-bit immediate value is  
loaded into PC bits <8:0>. The  
upper bits of PC are loaded from  
STATUS<6:5>. GOTOis a two-  
cycle instruction.  
© 2009 Microchip Technology Inc.  
DS41236E-page 61  
PIC12F508/509/16F505  
IORWF  
Inclusive OR W with f  
MOVWF  
Syntax:  
Move W to f  
[ label ] MOVWF  
0 f 31  
Syntax:  
[ label ] IORWF f,d  
f
Operands:  
0 f 31  
d [0,1]  
Operands:  
Operation:  
(W) (f)  
Operation:  
(W).OR. (f) (dest)  
Status Affected: None  
Status Affected:  
Description:  
Z
Description:  
Move data from the W register to  
register ‘f’.  
Inclusive OR the W register with  
register ‘f’. If ‘d’ is ‘0’, the result is  
placed in the W register. If ‘d’ is ‘1’,  
the result is placed back in register  
‘f’.  
MOVF  
Move f  
NOP  
No Operation  
[ label ] NOP  
None  
Syntax:  
Operands:  
[ label ] MOVF f,d  
Syntax:  
0 f 31  
d [0,1]  
Operands:  
Operation:  
No operation  
Operation:  
(f) (dest)  
Status Affected: None  
Status Affected:  
Description:  
Z
Description:  
No operation.  
The contents of register ‘f’ are  
moved to destination ‘d’. If ‘d’ is ‘0’,  
destination is the W register. If ‘d’  
is ‘1’, the destination is file  
register ‘f’. ‘d’ = 1is useful as a  
test of a file register, since status  
flag Z is affected.  
MOVLW  
Syntax:  
Move Literal to W  
[ label ] MOVLW k  
0 k 255  
OPTION  
Syntax:  
Load OPTION Register  
[ label ] OPTION  
None  
Operands:  
Operation:  
Operands:  
Operation:  
(W) OPTION  
k (W)  
Status Affected: None  
Status Affected: None  
Description: The content of the W register is  
Description:  
The eight-bit literal ‘k’ is loaded  
into the W register. The “don’t  
loaded into the OPTION register.  
cares” will assembled as ‘0’s.  
DS41236E-page 62  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
RETLW  
Return with Literal in W  
[ label ] RETLW k  
0 k 255  
SLEEP  
Enter SLEEP Mode  
Syntax:  
Syntax:  
[label ]  
SLEEP  
Operands:  
Operation:  
Operands:  
Operation:  
None  
k (W);  
TOS PC  
00h WDT;  
0 WDT prescaler;  
1 TO;  
Status Affected: None  
0 PD  
Description:  
The W register is loaded with the  
Status Affected: TO, PD, RBWUF  
eight-bit literal ‘k’. The program  
counter is loaded from the top of  
the stack (the return address). This  
is a two-cycle instruction.  
Description:  
Time-out Status bit (TO) is set. The  
Power-down Status bit (PD) is  
cleared.  
RBWUF is unaffected.  
The WDT and its prescaler are  
cleared.  
The processor is put into Sleep  
mode with the oscillator stopped.  
See Section 7.9 “Power-down  
Mode (Sleep)” on Sleep for more  
details.  
RLF  
Rotate Left f through Carry  
SUBWF  
Subtract W from f  
Syntax:  
Operands:  
[ label ]  
RLF f,d  
Syntax:  
[label ] SUBWF f,d  
0 f 31  
d [0,1]  
Operands:  
0 f 31  
d [0,1]  
Operation:  
See description below  
C
Operation:  
(f) – (W) → (dest)  
Status Affected:  
Description:  
Status Affected: C, DC, Z  
The contents of register ‘f’ are  
rotated one bit to the left through  
the Carry flag. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is stored back in  
register ‘f’.  
Description:  
Subtract (2’s complement method)  
the W register from register ‘f’. If ‘d’  
is ‘0’, the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
register ‘f’  
C
RRF  
Rotate Right f through Carry  
SWAPF  
Syntax:  
Swap Nibbles in f  
Syntax:  
Operands:  
[ label ] RRF f,d  
[ label ] SWAPF f,d  
0 f 31  
d [0,1]  
Operands:  
0 f 31  
d [0,1]  
Operation:  
See description below  
C
Operation:  
(f<3:0>) (dest<7:4>);  
(f<7:4>) (dest<3:0>)  
Status Affected:  
Description:  
Status Affected: None  
The contents of register ‘f’ are  
rotated one bit to the right through  
the Carry flag. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
Description: The upper and lower nibbles of  
register ‘f’ are exchanged. If ‘d’ is  
0’, the result is placed in W  
register. If ‘d’ is ‘1’, the result is  
placed in register ‘f’.  
register ‘f’  
C
© 2009 Microchip Technology Inc.  
DS41236E-page 63  
PIC12F508/509/16F505  
TRIS  
Load TRIS Register  
XORWF  
Syntax:  
Exclusive OR W with f  
Syntax:  
[ label ] TRIS  
f
[ label ] XORWF f,d  
Operands:  
Operation:  
f = 6  
Operands:  
0 f 31  
d [0,1]  
(W) TRIS register f  
Status Affected: None  
Operation:  
(W) .XOR. (f) → (dest)  
Description:  
TRIS register ‘f’ (f = 6 or 7) is  
loaded with the contents of the W  
register  
Status Affected:  
Description:  
Z
Exclusive OR the contents of the  
W register with register ‘f’. If ‘d’ is  
0’, the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
XORLW  
Exclusive OR literal with W  
Syntax:  
[label ] XORLW k  
0 k 255  
Operands:  
Operation:  
(W) .XOR. k → (W)  
Z
Status Affected:  
Description:  
The contents of the W register are  
XOR’ed with the eight-bit literal ‘k’.  
The result is placed in the W  
register.  
DS41236E-page 64  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
9.1  
MPLAB Integrated Development  
Environment Software  
9.0  
DEVELOPMENT SUPPORT  
The PIC® microcontrollers are supported with a full  
range of hardware and software development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16-bit micro-  
controller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
• A single graphical interface to all debugging tools  
- Simulator  
- MPLAB C18 and MPLAB C30 C Compilers  
- MPLINKTM Object Linker/  
- Programmer (sold separately)  
- Emulator (sold separately)  
MPLIBTM Object Librarian  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLAB ASM30 Assembler/Linker/Library  
• Simulators  
- MPLAB SIM Software Simulator  
• Emulators  
• Customizable data windows with direct edit of  
contents  
- MPLAB ICE 2000 In-Circuit Emulator  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debugger  
• High-level source code debugging  
• Visual device initializer for easy register  
initialization  
- MPLAB ICD 2  
• Mouse over variable inspection  
• Device Programmers  
• Drag and drop variables from source to watch  
windows  
- PICSTART® Plus Development Programmer  
- MPLAB PM3 Device Programmer  
- PICkit™ 2 Development Programmer  
• Extensive on-line help  
• Integration of select third party tools, such as  
HI-TECH Software C Compilers and IAR  
C Compilers  
• Low-Cost Demonstration and Development  
Boards and Evaluation Kits  
The MPLAB IDE allows you to:  
• Edit your source files (either assembly or C)  
• One touch assemble (or compile) and download  
to PIC MCU emulator and simulator tools  
(automatically updates all project information)  
• Debug using:  
- Source files (assembly or C)  
- Mixed assembly and C  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
© 2009 Microchip Technology Inc.  
DS41236E-page 65  
PIC12F508/509/16F505  
9.2  
MPASM Assembler  
9.5  
MPLAB ASM30 Assembler, Linker  
and Librarian  
The MPASM Assembler is a full-featured, universal  
macro assembler for all PIC MCUs.  
MPLAB ASM30 Assembler produces relocatable  
machine code from symbolic assembly language for  
dsPIC30F devices. MPLAB C30 C Compiler uses the  
assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• Support for the entire dsPIC30F instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• User-defined macros to streamline  
assembly code  
• Rich directive set  
• Conditional assembly for multi-purpose  
source files  
• Flexible macro language  
• MPLAB IDE compatibility  
• Directives that allow complete control over the  
assembly process  
9.6  
MPLAB SIM Software Simulator  
9.3  
MPLAB C18 and MPLAB C30  
C Compilers  
The MPLAB SIM Software Simulator allows code  
development in PC-hosted environment by  
a
simulating the PIC MCUs and dsPIC® DSCs on an  
instruction level. On any given instruction, the data  
areas can be examined or modified and stimuli can be  
applied from a comprehensive stimulus controller.  
Registers can be logged to files for further run-time  
analysis. The trace buffer and logic analyzer display  
extend the power of the simulator to record and track  
program execution, actions on I/O, most peripherals  
and internal registers.  
The MPLAB C18 and MPLAB C30 Code Development  
Systems are complete ANSI compilers for  
C
Microchip’s PIC18 and PIC24 families of microcon-  
trollers and the dsPIC30 and dsPIC33 family of digital  
signal controllers. These compilers provide powerful  
integration capabilities, superior code optimization and  
ease of use not found with other compilers.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C18 and  
MPLAB C30 C Compilers, and the MPASM and  
MPLAB ASM30 Assemblers. The software simulator  
offers the flexibility to develop and debug code outside  
of the hardware laboratory environment, making it an  
excellent, economical software development tool.  
9.4  
MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
DS41236E-page 66  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
9.7  
MPLAB ICE 2000  
High-Performance  
In-Circuit Emulator  
9.9  
MPLAB ICD 2 In-Circuit Debugger  
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a  
powerful, low-cost, run-time development tool,  
connecting to the host PC via an RS-232 or high-speed  
USB interface. This tool is based on the Flash PIC  
MCUs and can be used to develop for these and other  
PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes  
the in-circuit debugging capability built into the Flash  
devices. This feature, along with Microchip’s In-Circuit  
Serial ProgrammingTM (ICSPTM) protocol, offers cost-  
effective, in-circuit Flash debugging from the graphical  
user interface of the MPLAB Integrated Development  
Environment. This enables a designer to develop and  
debug source code by setting breakpoints, single step-  
ping and watching variables, and CPU status and  
peripheral registers. Running at full speed enables  
testing hardware and applications in real time. MPLAB  
ICD 2 also serves as a development programmer for  
selected PIC devices.  
The MPLAB ICE 2000 In-Circuit Emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PIC  
microcontrollers. Software control of the MPLAB ICE  
2000 In-Circuit Emulator is advanced by the MPLAB  
Integrated Development Environment, which allows  
editing, building, downloading and source debugging  
from a single environment.  
The MPLAB ICE 2000 is a full-featured emulator  
system with enhanced trace, trigger and data monitor-  
ing features. Interchangeable processor modules allow  
the system to be easily reconfigured for emulation of  
different processors. The architecture of the MPLAB  
ICE 2000 In-Circuit Emulator allows expansion to  
support new PIC microcontrollers.  
The MPLAB ICE 2000 In-Circuit Emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft® Windows® 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
9.10 MPLAB PM3 Device Programmer  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an SD/MMC card for  
file storage and secure data applications.  
9.8  
MPLAB REAL ICE In-Circuit  
Emulator System  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The MPLAB REAL ICE probe is connected to the design  
engineer’s PC using a high-speed USB 2.0 interface and  
is connected to the target with either a connector  
compatible with the popular MPLAB ICD 2 system  
(RJ11) or with the new high-speed, noise tolerant, Low-  
Voltage Differential Signal (LVDS) interconnection  
(CAT5).  
MPLAB REAL ICE is field upgradeable through future  
firmware downloads in MPLAB IDE. In upcoming  
releases of MPLAB IDE, new devices will be supported,  
and new features will be added, such as software break-  
points and assembly code trace. MPLAB REAL ICE  
offers significant advantages over competitive emulators  
including low-cost, full-speed emulation, real-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
© 2009 Microchip Technology Inc.  
DS41236E-page 67  
PIC12F508/509/16F505  
9.11 PICSTART Plus Development  
Programmer  
9.13 Demonstration, Development and  
Evaluation Boards  
The PICSTART Plus Development Programmer is an  
easy-to-use, low-cost, prototype programmer. It  
connects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient. The  
PICSTART Plus Development Programmer supports  
most PIC devices in DIP packages up to 40 pins.  
Larger pin count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus Development Programmer is CE  
compliant.  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
9.12 PICkit 2 Development Programmer  
The PICkit™ 2 Development Programmer is a low-cost  
programmer and selected Flash device debugger with  
an easy-to-use interface for programming many of  
Microchip’s baseline, mid-range and PIC18F families  
of Flash memory microcontrollers. The PICkit 2 Starter  
Kit includes a prototyping development board, twelve  
sequential lessons, software and HI-TECH’s PICC™  
Lite C compiler, and is designed to help get up to speed  
quickly using PIC® microcontrollers. The kit provides  
everything needed to program, evaluate and develop  
applications using Microchip’s powerful, mid-range  
Flash memory family of microcontrollers.  
In addition to the PICDEM™ and dsPICDEM™  
demonstration/development board series of circuits,  
Microchip has  
a
line of evaluation kits and  
demonstration software for analog filter design,  
®
KEELOQ security ICs, CAN, IrDA®, PowerSmart  
battery management, SEEVAL® evaluation system,  
Sigma-Delta ADC, flow rate sensing, plus many more.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS41236E-page 68  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
10.0 ELECTRICAL CHARACTERISTICS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias..........................................................................................................-40°C to +125°C  
Storage temperature ............................................................................................................................-65°C to +150°C  
Voltage on VDD with respect to VSS ...............................................................................................................0 to +6.5V  
Voltage on MCLR with respect to VSS..........................................................................................................0 to +13.5V  
Voltage on all other pins with respect to VSS ............................................................................... -0.3V to (VDD + 0.3V)  
Total power dissipation(1) ..................................................................................................................................800 mW  
Max. current out of VSS pin ................................................................................................................................200 mA  
Max. current into VDD pin...................................................................................................................................150 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)................................................................................................................... 20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) ........................................................................................................... 20 mA  
Max. output current sunk by any I/O pin ..............................................................................................................25 mA  
Max. output current sourced by any I/O pin.........................................................................................................25 mA  
Max. output current sourced by I/O port ..............................................................................................................75 mA  
Max. output current sunk by I/O port ...................................................................................................................75 mA  
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOL x IOL)  
NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above  
those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions  
for extended periods may affect device reliability.  
© 2009 Microchip Technology Inc.  
DS41236E-page 69  
PIC12F508/509/16F505  
FIGURE 10-1:  
6.0  
PIC12F508/509/16F505 VOLTAGE-FREQUENCY GRAPH, -40°C TA +125°C  
5.5  
(PIC16F505 only)  
5.0  
4.5  
4.0  
3.5  
VDD  
(Volts)  
3.0  
2.5  
2.0  
0
4
8
10  
20  
25  
Frequency (MHz)  
FIGURE 10-2:  
MAXIMUM OSCILLATOR FREQUENCY TABLE  
LP  
XT  
INTOSC  
EXTRC  
EC(1)  
HS(1)  
0
200 kHz  
4 MHz  
20 MHz  
Frequency (MHz)  
Note 1: For PIC16F505 only.  
DS41236E-page 70  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
10.1 DC Characteristics: PIC12F508/509/16F505 (Industrial)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature -40°C TA +85°C (industrial)  
DC Characteristics  
Param  
Sym.  
No.  
Characteristic  
Min. Typ(1) Max. Units  
Conditions  
D001  
D002  
D003  
VDD Supply Voltage  
VDR RAM Data Retention Voltage(2)  
2.0  
5.5  
V
V
V
See Figure 10-1  
1.5*  
Vss  
Device in Sleep mode  
VPOR VDD Start Voltage to ensure  
See Section 7.4 "Power-on  
Reset (POR)" for details  
Power-on Reset  
D004  
D010  
SVDD VDD Rise Rate to ensure  
Power-on Reset  
IDD Supply Current(3,4)  
0.05*  
V/ms See Section 7.4 "Power-on  
Reset (POR)" for details  
175  
0.625 1.1  
275  
μA  
FOSC = 4 MHz, VDD = 2.0V  
FOSC = 4 MHz, VDD = 5.0V  
mA  
500  
1.5  
650  
2.2  
μA  
mA  
FOSC = 10 MHz, VDD = 3.0V  
FOSC = 20 MHz, VDD = 5.0V  
(PIC16F505 only)  
11  
38  
20  
54  
μA  
μA  
FOSC = 32 kHz, VDD = 2.0V  
FOSC = 32 kHz, VDD = 5.0V  
D020  
D022  
IPD Power-down Current(5)  
IWDT WDT Current(5)  
0.1  
0.35  
1.2  
2.4  
μA  
μA  
VDD = 2.0V  
VDD = 5.0V  
1.0  
7.0  
3.0  
16.0  
μA  
μA  
VDD = 2.0V  
VDD = 5.0V  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design  
guidance only and is not tested.  
2: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on  
the current consumption.  
4: The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VSS, T0CKI = VDD, MCLR =  
VDD; WDT enabled/disabled as specified.  
5: For standby current measurements, the conditions are the same as IDD, except that the device is in Sleep  
mode. If a module current is listed, the current is for that specific module enabled and the device in Sleep.  
© 2009 Microchip Technology Inc.  
DS41236E-page 71  
PIC12F508/509/16F505  
10.2 DC Characteristics: PIC12F508/509/16F505 (Extended)  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature -40°C TA +125°C (extended)  
DC Characteristics  
Param  
Sym.  
No.  
Characteristic  
Min. Typ(1) Max. Units  
Conditions  
D001  
D002  
D003  
VDD Supply Voltage  
VDR RAM Data Retention Voltage(2)  
2.0  
5.5  
V
V
V
See Figure 10-1  
1.5*  
Vss  
Device in Sleep mode  
VPOR VDD Start Voltage to ensure  
See Section 7.4 "Power-on  
Reset (POR)" for details  
Power-on Reset  
D004  
D010  
SVDD VDD Rise Rate to ensure  
Power-on Reset  
IDD Supply Current(3,4)  
0.05*  
V/ms See Section 7.4 "Power-on  
Reset (POR)" for details  
175  
0.625 1.1  
275  
μA  
FOSC = 4 MHz, VDD = 2.0V  
FOSC = 4 MHz, VDD = 5.0V  
mA  
500  
1.5  
650  
2.2  
μA  
mA  
FOSC = 10 MHz, VDD = 3.0V  
FOSC = 20 MHz, VDD = 5.0V  
(PIC16F515 only)  
11  
38  
26  
110  
μA  
μA  
FOSC = 32 kHz, VDD = 2.0V  
FOSC = 32 kHz, VDD = 5.0V  
D020  
D022  
IPD Power-down Current(5)  
IWDT WDT Current(5)  
0.1  
0.35 15.0  
9.0  
μA  
μA  
VDD = 2.0V  
VDD = 5.0V  
1.0  
7.0  
18  
22  
μA  
μA  
VDD = 2.0V  
VDD = 5.0V  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design  
guidance only and is not tested.  
2: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus  
loading, oscillator type, bus rate, internal code execution pattern and temperature also have an impact on  
the current consumption.  
4: The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VSS, T0CKI = VDD, MCLR =  
VDD; WDT enabled/disabled as specified.  
5: For standby current measurements, the conditions are the same as IDD, except that the device is in Sleep  
mode. If a module current is listed, the current is for that specific module enabled and the device in Sleep.  
DS41236E-page 72  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
TABLE 10-1: DC CHARACTERISTICS: PIC12F508/509/16F505 (Industrial, Extended)  
Standard Operating Conditions (unless otherwise specified)  
Operating temperature -40°C TA +85°C (industrial)  
DC CHARACTERISTICS  
-40°C TA +125°C (extended)  
Operating voltage VDD range as described in DC specification  
Param  
No.  
Sym.  
Characteristic  
Min.  
Typ†  
Max.  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O ports:  
with TTL buffer  
D030  
D030A  
D031  
D032  
D033  
D033  
D033  
Vss  
Vss  
Vss  
Vss  
Vss  
Vss  
Vss  
0.8V  
V
V
V
V
V
V
V
For all 4.5 VDD 5.5V  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.15 VDD  
0.3 VDD  
0.3  
Otherwise  
with Schmitt Trigger buffer  
MCLR, T0CKI  
OSC1 (in EXTRC)  
OSC1 (in HS)  
(Note1)  
(Note1)  
(Note1)  
OSC1 (in XT and LP)  
Input High Voltage  
I/O ports:  
VIH  
D040  
with TTL buffer  
2.0  
VDD  
VDD  
V
V
4.5 VDD 5.5V  
D040A  
0.25 VDD  
+ 0.8  
Otherwise  
D041  
D042  
D043  
D043  
D043  
D070  
with Schmitt Trigger buffer  
0.85 VDD  
0.85 VDD  
0.85 VDD  
0.7 VDD  
1.6  
VDD  
VDD  
VDD  
VDD  
VDD  
400  
V
V
For entire VDD range  
MCLR, T0CKI  
OSC1 (in EXTRC)  
OSC1 (in HS)  
V
(Note1)  
(Note1)  
V
OSC1 (in XT and LP)  
V
IPUR GPIO/PORTB weak pull-up  
50  
250  
μA  
VDD = 5V, VPIN = VSS  
current(4)  
IIL  
Input Leakage Current(2), (3)  
D060  
D061  
D063  
I/O ports  
± 0.7  
± 1  
± 5  
± 5  
μA  
μA  
μA  
Vss VPIN VDD, Pin at high-impedance  
Vss VPIN VDD  
GP3/RB3/MCLRI(5)  
OSC1  
Vss VPIN VDD, XT, HS and LP oscillator  
configuration  
Output Low Voltage  
D080  
I/O ports/CLKOUT  
0.6  
0.6  
0.6  
0.6  
V
V
V
V
IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C  
IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C  
IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C  
IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C  
D080A  
D083  
OSC2  
D083A  
Output High Voltage  
D090  
I/O ports/CLKOUT(3)  
VDD – 0.7  
VDD – 0.7  
VDD – 0.7  
VDD – 0.7  
V
V
V
V
IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C  
IOH = -2.5 mA, VDD = 4.5V, -40°C to +125°C  
IOH = -1.3 mA, VDD = 4.5V, -40°C to +85°C  
IOH = -1.0 mA, VDD = 4.5V, -40°C to +125°C  
D090A  
D092  
OSC2  
D092A  
Capacitive Loading Specs on  
Output Pins  
D100  
D101  
OSC2 pin  
15  
50  
pF  
pF  
In XT, HS and LP modes when external clock is  
used to drive OSC1.  
All I/O pins and OSC2  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC12F508/509/  
16F505 be driven with external clock in RC mode.  
Note 1:  
2:  
The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating  
conditions. Higher leakage current may be measured at different input voltages.  
3:  
4:  
Negative current is defined as coming out of the pin.  
The specification applies to all weak pull-up devices, including the weak pull-up on GP3/MCLR. The current listed will be the same  
whether GP3/MCLR is configured as GP3 with a weak pull-up or enabled as MCLR.  
5:  
This specification applies when GP3/RB3/MCLR is configured as an input with pull-up disabled. The leakage current of the MCLR circuit  
is higher than the standard I/O logic.  
© 2009 Microchip Technology Inc.  
DS41236E-page 73  
PIC12F508/509/16F505  
TABLE 10-2: PULL-UP RESISTOR RANGES – PIC12F508/509/16F505  
VDD (Volts)  
Temperature (°C)  
Min.  
Typ.  
Max.  
GP0(RBO)/GP1(RB1)  
2.0  
–40  
25  
73K  
73K  
82K  
86K  
15K  
15K  
19K  
23K  
105K  
113K  
123K  
132k  
21K  
186K  
187K  
190K  
190K  
33K  
85  
125  
–40  
25  
5.5  
22K  
34K  
85  
26k  
35K  
125  
29K  
35K  
GP3(RB3)  
2.0  
–40  
25  
63K  
77K  
82K  
86K  
16K  
16K  
24K  
26K  
81K  
93K  
96k  
96K  
116K  
116K  
119K  
22K  
85  
125  
–40  
25  
100K  
20k  
5.5  
21K  
25k  
23K  
85  
28K  
125  
27K  
29K  
*
These parameters are characterized but not tested.  
DS41236E-page 74  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
10.3 Timing Parameter Symbology and Load Conditions – PIC12F508/509/16F505  
The timing parameter symbols have been created following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
T Time  
Lowercase subscripts (pp) and their meanings:  
pp  
2
to  
mc  
osc  
os  
MCLR  
ck  
cy  
drt  
io  
CLKOUT  
Cycle time  
Device Reset Timer  
I/O port  
Oscillator  
OSC1  
t0  
T0CKI  
wdt  
Watchdog Timer  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (high-impedance)  
Low  
Valid  
L
High-impedance  
FIGURE 10-3:  
LOAD CONDITIONS – PIC12F508/509/16F505  
Legend:  
CL  
CL = 50 pF for all pins except OSC2  
pin  
15 pF for OSC2 in XT, HS or LP  
modes when external clock  
is used to drive OSC1  
VSS  
FIGURE 10-4:  
EXTERNAL CLOCK TIMING – PIC12F508/509/16F505  
Q4  
Q3  
Q4  
Q1  
Q1  
Q2  
OSC1  
1
3
3
4
4
2
© 2009 Microchip Technology Inc.  
DS41236E-page 75  
PIC12F508/509/16F505  
TABLE 10-3: EXTERNAL CLOCK TIMING REQUIREMENTS – PIC12F508/509/16F505  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature -40°C TA +85°C (industrial),  
AC CHARACTERISTICS  
-40°C TA +125°C (extended)  
Operating Voltage VDD range is described in Section 10.1 "Power-  
on Reset (POR)"  
Param  
Sym.  
Characteristic  
Min. Typ(1)  
Max. Units  
Conditions  
No.  
1A  
FOSC External CLKIN Frequency(2) DC  
DC  
4
MHz XT Oscillator mode  
20  
MHz EC, HS Oscillator mode  
(PIC16F505 only)  
DC  
200  
4
kHz LP Oscillator mode  
MHz EXTRC Oscillator mode  
MHz XT Oscillator mode  
Oscillator Frequency(2)  
0.1  
4
4
20  
MHz HS Oscillator mode (PIC16F505  
only)  
250  
50  
200  
kHz LP Oscillator mode  
ns XT Oscillator mode  
1
TOSC  
External CLKIN Period(2)  
Oscillator Period(2)  
ns EC, HS Oscillator mode  
(PIC16F505 only)  
5
μs LP Oscillator mode  
250  
250  
ns EXTRC Oscillator mode  
10,000 ns XT Oscillator mode  
50  
5
250  
ns HS Oscillator mode (PIC16F505  
only)  
μs LP Oscillator mode  
ns  
2
3
TCY  
Instruction Cycle Time  
200 4/FOSC  
TosL, Clock in (OSC1) Low or High 50*  
ns XT Oscillator  
μs LP Oscillator  
TosH Time  
2*  
10*  
ns EC, HS Oscillator  
(PIC16F505 only)  
4
TosR, Clock in (OSC1) Rise or Fall  
TosF Time  
25*  
50*  
15*  
ns XT Oscillator  
ns LP Oscillator  
ns EC, HS Oscillator  
(PIC16F505 only)  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for  
design guidance only and are not tested.  
2: All specified values are based on characterization data for that particular oscillator type under standard  
operating conditions with the device executing code. Exceeding these specified limits may result in an  
unstable oscillator operation and/or higher than expected current consumption. When an external clock  
input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
DS41236E-page 76  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
TABLE 10-4: CALIBRATED INTERNAL RC FREQUENCIES – PIC12F508/509/16F505  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature -40°C TA +85°C (industrial),  
-40°C TA +125°C (extended)  
AC CHARACTERISTICS  
Param  
Freq  
Tolerance  
Sym.  
Characteristic  
Min. Typ† Max. Units  
Conditions  
No.  
F10  
FOSC  
Internal Calibrated  
1%  
2%  
3.96 4.00  
3.92 4.00  
4.04 MHz VDD = 3.5V, TA = 25°C  
INTOSC Frequency(1)  
4.08 MHz 2.5V VDD 5.5V  
0°C TA +85°C  
5%  
3.80 4.00  
4.20 MHz 2.0V VDD 5.5V  
-40°C TA +85°C (Ind.)  
-40°C TA +125°C (Ext.)  
*
These parameters are characterized but not tested.  
Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for  
design guidance only and are not tested.  
Note 1: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to  
the device as possible. 0.1 uF and 0.01 uF values in parallel are recommended.  
FIGURE 10-5:  
I/O TIMING – PIC12F508/509/16F505  
Q1  
Q4  
Q2  
Q3  
OSC1  
I/O Pin  
(input)  
17  
18  
19  
I/O Pin  
(output)  
New Value  
Old Value  
20, 21  
Note:  
All tests must be done with specified capacitive loads (see data sheet) 50 pF on I/O pins and CLKOUT.  
© 2009 Microchip Technology Inc.  
DS41236E-page 77  
PIC12F508/509/16F505  
TABLE 10-5: TIMING REQUIREMENTS – PIC12F508/509/16F505  
Standard Operating Conditions (unless otherwise specified)  
AC  
Operating Temperature -40°C TA +85°C (industrial)  
-40°C TA +125°C (extended)  
CHARACTERISTICS  
Operating Voltage VDD range is described in Section 10.1 "Power-on Reset (POR)"  
Param  
Sym.  
No.  
Characteristic  
Min.  
Typ(1)  
Max.  
Units  
17  
18  
19  
20  
21  
TOSH2IOV OSC1(Q1 cycle) to Port Out Valid(2), (3)  
TOSH2IOI  
OSC1(Q2 cycle) to Port Input Invalid (I/O in hold time)(2)  
TIOV2OSH Port Input Valid to OSC1(I/O in setup time)  
50  
20  
10  
10  
100*  
ns  
ns  
ns  
ns  
ns  
TIOR  
TIOF  
Port Output Rise Time(3)  
Port Output Fall Time(3)  
25**  
25**  
*
These parameters are characterized but not tested.  
** These parameters are design targets and are not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
2: Measurements are taken in EXTRC mode.  
3: See Figure 10-3 for loading conditions.  
FIGURE 10-6:  
RESET, WATCHDOG TIMER AND DEVICE RESET TIMER TIMING –  
PIC12F508/509/16F505  
VDD  
MCLR  
30  
Internal  
POR  
32  
32  
32  
DRT  
(2)  
Timeout  
Internal  
Reset  
Watchdog  
Timer  
Reset  
31  
34  
34  
(1)  
I/O pin  
Note 1: I/O pins must be taken out of High-Impedance mode by enabling the output drivers in software.  
2: Runs in MCLR or WDT Reset only in XT, LP and HS (PIC16F505) modes.  
DS41236E-page 78  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
TABLE 10-6: RESET, WATCHDOG TIMER AND DEVICE RESET TIMER – PIC12F508/509/16F505  
Standard Operating Conditions (unless otherwise specified)  
AC CHARACTERISTICS  
Operating Temperature -40°C TA +85°C (industrial)  
-40°C TA +125°C (extended)  
Param  
Sym.  
No.  
Characteristic  
Min. Typ(1) Max. Units  
Conditions  
30  
31  
TMCL MCLR Pulse Width (low)  
2000*  
ns  
VDD = 5.0V  
TWDT Watchdog Timer Time-out Period  
(no prescaler)  
9*  
9*  
18*  
18*  
30*  
40*  
ms  
ms  
VDD = 5.0V (Industrial)  
VDD = 5.0V (Extended)  
32  
34  
TDRT  
Device Reset Timer Period(2)  
9*  
9*  
18*  
18*  
30*  
40*  
ms  
ms  
VDD = 5.0V (Industrial)  
VDD = 5.0V (Extended)  
TIOZ  
I/O High-impedance from MCLR  
low  
2000*  
ns  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for  
design guidance only and are not tested.  
© 2009 Microchip Technology Inc.  
DS41236E-page 79  
PIC12F508/509/16F505  
FIGURE 10-7:  
TIMER0 CLOCK TIMINGS – PIC12F508/509/16F505  
T0CKI  
40  
41  
42  
TABLE 10-7: TIMER0 CLOCK REQUIREMENTS – PIC12F508/509/16F505  
Standard Operating Conditions (unless otherwise specified)  
Operating Temperature -40°C TA +85°C (industrial)  
AC CHARACTERISTICS  
-40°C TA +125°C (extended)  
Operating Voltage VDD range is described in  
Section 10.1 "Power-on Reset (POR)"  
Param  
Sym.  
No.  
Characteristic  
Min.  
Typ(1) Max. Units  
Conditions  
40  
41  
42  
Tt0H T0CKI High Pulse  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5 TCY + 20*  
10*  
ns  
ns  
ns  
ns  
Width  
Tt0L T0CKI Low Pulse  
Width  
0.5 TCY + 20*  
10*  
Tt0P T0CKI Period  
20 or TCY + 40* N  
ns Whichever is greater.  
N = Prescale Value  
(1, 2, 4,..., 256)  
*
These parameters are characterized but not tested.  
Note 1: Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
DS41236E-page 80  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
11.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein are  
not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.  
“Typical” represents the mean of the distribution at 25°C. “Maximum” or “minimum” represents (mean + 3σ) or (mean -  
3σ) respectively, where s is a standard deviation, over each temperature range.  
FIGURE 11-1:  
IDD vs. VDD at FOSC = 4 MHz  
1,400  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
1,200  
1,000  
800  
600  
400  
200  
0
Maximum  
4 MHz  
4 MHz  
Typical  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41236E-page 81  
PIC12F508/509/16F505  
FIGURE 11-2:  
IDD VS. FOSC Over VDD (HS MODE, PIC16F505 only)  
3.00  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
2.50  
Max. 5V  
Typical 5V  
2.00  
1.50  
1.00  
Max. 3V  
0.50  
0.00  
Typical 3V  
10  
25  
5
15  
20  
Fosc (MHz)  
FIGURE 11-3:  
TYPICAL IPD vs. VDD (SLETEyPpicMaOl DE, ALL PERIPHERALS DISABLED)  
0.45  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41236E-page 82  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
FIGURE 11-4:  
MAXIMUM IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED)  
18.0  
Typical: Statistical Mean @25°C  
16.0  
14.0  
12.0  
10.0  
8.0  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
Max. 125°C  
6.0  
4.0  
Max. 85°C  
2.0  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 11-5:  
TYPICAL WDT IPD vs. VDD  
9
8
7
6
5
4
3
2
1
0
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41236E-page 83  
PIC12F508/509/16F505  
FIGURE 11-6:  
MAXIMUM WDT IPD vs. VDD OVER TEMPERATURE  
Maximum  
25.0  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
20.0  
15.0  
10.0  
5.0  
Max. 125°C  
Max. 85°C  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 11-7:  
WDT TIME-OUT or DEVICE RESET TIMER vs. VDD OVER TEMPERATURE (NO  
WDT PRESCALER)(1)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
Max. 125°C  
Max. 85°C  
Typical. 25°C  
Min. -40°C  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
Note 1: Device Reset Timer (DRT) values are for case of Reset of power-up. Table 7-6 shows DRT values for  
the case of other types of Reset events.  
DS41236E-page 84  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
FIGURE 11-8:  
VOL vs. IOL OVER TEMPERATURE (VDD = 3.0V)  
(VDD = 3V, -40×C TO 125×C)  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
Max. 125°C  
Max. 85°C  
Typical 25°C  
Min. -40°C  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
9.5  
10.0  
IOL (mA)  
FIGURE 11-9:  
VOL vs. IOL OVER TEMPERATURE (VDD = 5.0V)  
0.45  
Typical: Statistical Mean @25°C  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
Max. 125°C  
Max. 85°C  
Typ. 25°C  
Min. -40°C  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
9.5  
10.0  
IOL (mA)  
© 2009 Microchip Technology Inc.  
DS41236E-page 85  
PIC12F508/509/16F505  
FIGURE 11-10:  
VOH vs. IOH OVER TEMPERATURE (VDD = 3.0V)  
3.5  
3.0  
2.5  
2.0  
1.5  
Max. -40°C  
Typ. 25°C  
Min. 125°C  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
1.0  
0.5  
0.0  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
-4.0  
IOH (mA)  
FIGURE 11-11:  
VOH vs. IOH OVER TEMPERATURE (VDD = 5.0V)  
5.5  
5.0  
4.5  
4.0  
Max. -40°C  
Typ. 25°C  
Min. 125°C  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
3.5  
3.0  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
-4.0  
-4.5  
-5.0  
IOH (mA)  
DS41236E-page 86  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
FIGURE 11-12:  
TTL INPUT THRESHOLD VIN vs. VDD  
1.7  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
Max. -40°C  
Typ. 25°C  
Min. 125°C  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 11-13:  
SCHMITT TRIGGER INPUT THRESHOLD VIN vs. VDD  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
VIH Max. 125°C  
VIH Min. -40°C  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
VIL Max. -40°C  
VIL Min. 125°C  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41236E-page 87  
PIC12F508/509/16F505  
FIGURE 11-14:  
TYPICAL INTOSC FREQUENCY CHANGE vs VDD (25°C)  
5
4
3
2
1
0
-1  
-2  
-3  
-4
-5  
5.5  
2
2.5  
3
3.5  
4
4.5
5
VDD (V)  
FIGURE 11-15:  
TYPICAL INTOSC FREQUENCY CHANGE vs VDD (-40°C)  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
5
5.5  
4
4.5  
3
3.5  
2.5  
2
VDD (V)  
DS41236E-page 88  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
FIGURE 11-16:  
TYPICAL INTOSC FREQUENCY CHANGE vs VDD (85°C)  
5
4
3
2
1
0
-1  
-2
-3  
-4  
-5  
3
3.5  
4
4.5  
5
5.5  
2.5  
2
VDD (V)  
FIGURE 11-17:  
TYPICAL INTOSC FREQUENCY CHANGE vs VDD (125°C  
5
4
3
2
1
0
-1
-2  
-3  
-4  
-5  
2.5  
3
3.5  
4
4.5  
5
5.5  
2
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41236E-page 89  
PIC12F508/509/16F505  
NOTES:  
DS41236E-page 90  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
12.0 PACKAGING INFORMATION  
12.1 Package Marking Information  
8-Lead PDIP  
Example  
12F508-I  
XXXXXXXX  
XXXXXNNN  
YYWW  
e
3
/P  
017  
0610  
8-Lead SOIC (3.90 mm)  
Example  
XXXXXXXX  
XXXXYYWW  
12F509-I  
/SN 0610  
e
3
NNN  
017  
8-Lead MSOP  
Example  
12F509  
0610017  
XXXXXX  
YWWNNN  
8-Lead 2x3 DFN*  
Example  
X X X  
Y W W  
N N  
B E Q  
6 1 0  
1 7  
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
3
e
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard PIC® device marking consists of Microchip part number, year code, week code, and traceability  
code. For PIC device marking beyond this, certain price adders apply. Please check with your Microchip  
Sales Office. For QTP devices, any special marking adders are included in QTP price.  
© 2009 Microchip Technology Inc.  
DS41236E-page 91  
PIC12F508/509/16F505  
12.1 Package Marking Information (Continued)  
14-Lead PDIP (300 mil)  
Example  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
PIC16F505  
-I/P  
0215  
e
3
YYWWNNN  
0610017  
Example  
14-Lead SOIC (3.90 mm)  
PIC16F505-E  
/SL0125  
XXXXXXXXXXX  
XXXXXXXXXXX  
YYWWNNN  
0610017  
Example  
16F505-I  
14-Lead TSSOP (4.4 mm)  
XXXXXXXX  
YYWW  
0610  
017  
NNN  
16-Lead QFN  
Example  
XXXXXXX  
XXXXXXX  
YYWWNNN  
16F505  
-I/MG  
0610017  
TABLE 12-1: 8-LEAD 2X3 DFN (MC) TOP MARKING  
Part Number  
Marking  
PIC12F508 (T) - I/MC  
PIC12F508-E/MC  
BN0  
BP0  
BQ0  
BR0  
PIC12F509 (T) - I/MC  
PIC12F509-E/MC  
DS41236E-page 92  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢐꢁꢂꢋꢐꢃꢆꢑꢇꢒꢆMꢆꢓꢔꢔꢆꢕꢋꢈꢆꢖꢗꢅꢘꢆꢙꢇꢍꢏꢇꢚ  
ꢛꢗꢊꢃꢜ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
A1  
c
e
eB  
b1  
b
6ꢄꢃ&!  
ꢚ7,8.ꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
<
ꢁꢀꢕꢕꢅ1ꢐ,  
M
ꢁꢀ-ꢕ  
M
ꢁ-ꢀꢕ  
ꢁꢎꢘꢕ  
ꢁ-?ꢘ  
ꢁꢀ-ꢕ  
ꢁꢕꢀꢕ  
ꢁꢕ?ꢕ  
ꢁꢕꢀ<  
M
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
ꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
1ꢆ!ꢈꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
ꢐꢍꢋ"ꢇ#ꢈꢉꢅ&ꢋꢅꢐꢍꢋ"ꢇ#ꢈꢉꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
7
ꢗꢎ  
ꢗꢀ  
.
.ꢀ  
9
)ꢀ  
)
ꢈ1  
M
ꢁꢎꢀꢕ  
ꢁꢀꢛꢘ  
M
ꢁꢀꢀꢘ  
ꢁꢕꢀꢘ  
ꢁꢎꢛꢕ  
ꢁꢎꢖꢕ  
ꢁ-ꢖ<  
ꢁꢀꢀꢘ  
ꢁꢕꢕ<  
ꢁꢕꢖꢕ  
ꢁꢕꢀꢖ  
M
ꢁ-ꢎꢘ  
ꢁꢎ<ꢕ  
ꢁꢖꢕꢕ  
ꢁꢀꢘꢕ  
ꢁꢕꢀꢘ  
ꢁꢕꢜꢕ  
ꢁꢕꢎꢎ  
ꢁꢖ-ꢕ  
ꢙꢃꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
6ꢓꢓꢈꢉꢅ9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
9ꢋ*ꢈꢉꢅ9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅꢝꢋ*ꢅꢐꢓꢆꢌꢃꢄꢑꢅꢅꢏ  
ꢛꢗꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢏꢅꢐꢃꢑꢄꢃ%ꢃꢌꢆꢄ&ꢅ,ꢍꢆꢉꢆꢌ&ꢈꢉꢃ!&ꢃꢌꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢁꢕꢀꢕ/ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2ꢅ1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢀ<1  
© 2009 Microchip Technology Inc.  
DS41236E-page 93  
PIC12F508/509/16F505  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ ꢕꢄꢈꢈꢆ!ꢎꢊꢈꢋꢐꢃꢆꢑ ꢛꢒꢆMꢆꢛꢄ""ꢗ#$ꢆꢓ%&ꢔꢆꢕꢕꢆꢖꢗꢅꢘꢆꢙ !ꢏ'ꢚ  
ꢛꢗꢊꢃꢜ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D
e
N
E
E1  
NOTE 1  
1
2
3
α
h
b
h
c
φ
A2  
A
L
A1  
L1  
β
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
<
ꢀꢁꢎꢜꢅ1ꢐ,  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
ꢐ&ꢆꢄ#ꢋ%%ꢅꢅ  
M
ꢀꢁꢎꢘ  
ꢕꢁꢀꢕ  
M
M
M
ꢀꢁꢜꢘ  
M
ꢕꢁꢎꢘ  
ꢗꢎ  
ꢗꢀ  
.
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
?ꢁꢕꢕꢅ1ꢐ,  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
,ꢍꢆ'%ꢈꢉꢅ@ꢋꢓ&ꢃꢋꢄꢆꢇA  
3ꢋꢋ&ꢅ9ꢈꢄꢑ&ꢍ  
.ꢀ  
-ꢁꢛꢕꢅ1ꢐ,  
ꢖꢁꢛꢕꢅ1ꢐ,  
ꢕꢁꢎꢘ  
ꢕꢁꢖꢕ  
M
M
ꢕꢁꢘꢕ  
ꢀꢁꢎꢜ  
9
3ꢋꢋ&ꢓꢉꢃꢄ&  
3ꢋꢋ&ꢅꢗꢄꢑꢇꢈ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ1ꢋ&&ꢋ'  
9ꢀ  
ꢀꢁꢕꢖꢅꢝ.3  
ꢕꢟ  
ꢕꢁꢀꢜ  
ꢕꢁ-ꢀ  
ꢘꢟ  
M
M
M
M
M
<ꢟ  
)
ꢕꢁꢎꢘ  
ꢕꢁꢘꢀ  
ꢀꢘꢟ  
ꢘꢟ  
ꢀꢘꢟ  
ꢛꢗꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢏꢅꢐꢃꢑꢄꢃ%ꢃꢌꢆꢄ&ꢅ,ꢍꢆꢉꢆꢌ&ꢈꢉꢃ!&ꢃꢌꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢕꢁꢀꢘꢅ''ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢘꢜ1  
DS41236E-page 94  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ ꢕꢄꢈꢈꢆ!ꢎꢊꢈꢋꢐꢃꢆꢑ ꢛꢒꢆMꢆꢛꢄ""ꢗ#$ꢆꢓ%&ꢔꢆꢕꢕꢆꢖꢗꢅꢘꢆꢙ !ꢏ'ꢚ  
ꢛꢗꢊꢃꢜ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
© 2009 Microchip Technology Inc.  
DS41236E-page 95  
PIC12F508/509/16F505  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ(ꢋꢌ"ꢗꢆ ꢕꢄꢈꢈꢆ!ꢎꢊꢈꢋꢐꢃꢆꢇꢄꢌ)ꢄ*ꢃꢆꢑ( ꢒꢆꢙ( !ꢇꢚ  
ꢛꢗꢊꢃꢜ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D
N
E
E1  
NOTE 1  
2
b
1
e
c
φ
A2  
A
L
L1  
A1  
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
<
ꢕꢁ?ꢘꢅ1ꢐ,  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
ꢐ&ꢆꢄ#ꢋ%%ꢅ  
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
3ꢋꢋ&ꢅ9ꢈꢄꢑ&ꢍ  
M
ꢕꢁꢜꢘ  
ꢕꢁꢕꢕ  
M
ꢕꢁ<ꢘ  
ꢀꢁꢀꢕ  
ꢕꢁꢛꢘ  
ꢕꢁꢀꢘ  
ꢗꢎ  
ꢗꢀ  
.
.ꢀ  
M
ꢖꢁꢛꢕꢅ1ꢐ,  
-ꢁꢕꢕꢅ1ꢐ,  
-ꢁꢕꢕꢅ1ꢐ,  
ꢕꢁ?ꢕ  
9
ꢕꢁꢖꢕ  
ꢕꢁ<ꢕ  
3ꢋꢋ&ꢓꢉꢃꢄ&  
3ꢋꢋ&ꢅꢗꢄꢑꢇꢈ  
9ꢀ  
ꢕꢁꢛꢘꢅꢝ.3  
M
ꢕꢟ  
<ꢟ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
)
ꢕꢁꢕ<  
ꢕꢁꢎꢎ  
M
M
ꢕꢁꢎ-  
ꢕꢁꢖꢕ  
ꢛꢗꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢕꢁꢀꢘꢅ''ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢀꢀꢀ1  
DS41236E-page 96  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆ+ꢈꢄꢊ$ꢆꢛꢗꢆꢂꢃꢄꢅꢆꢇꢄꢌ)ꢄ*ꢃꢆꢑ('ꢒꢆMꢆ,-ꢓ-ꢔ%&ꢆꢕꢕꢆꢖꢗꢅꢘꢆꢙꢍ+ꢛꢚ  
ꢛꢗꢊꢃꢜ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
e
D
b
N
N
L
K
E2  
E
EXPOSED PAD  
NOTE 1  
NOTE 1  
2
1
1
2
D2  
BOTTOM VIEW  
TOP VIEW  
A
NOTE 2  
A3  
A1  
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
<
ꢕꢁꢘꢕꢅ1ꢐ,  
ꢕꢁꢛꢕ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢐ&ꢆꢄ#ꢋ%%ꢅ  
,ꢋꢄ&ꢆꢌ&ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
7
ꢗꢀ  
ꢗ-  
ꢕꢁ<ꢕ  
ꢕꢁꢕꢕ  
ꢀꢁꢕꢕ  
ꢕꢁꢕꢘ  
ꢕꢁꢕꢎ  
ꢕꢁꢎꢕꢅꢝ.3  
ꢎꢁꢕꢕꢅ1ꢐ,  
-ꢁꢕꢕꢅ1ꢐ,  
M
M
ꢕꢁꢎꢘ  
.
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ9ꢈꢄꢑ&ꢍ  
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ>ꢃ#&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ>ꢃ#&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ9ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢞ&ꢋꢞ.$ꢓꢋ!ꢈ#ꢅꢂꢆ#  
ꢒꢎ  
.ꢎ  
)
9
C
ꢀꢁ-ꢕ  
ꢀꢁꢘꢕ  
ꢕꢁꢎꢕ  
ꢕꢁ-ꢕ  
ꢕꢁꢎꢕ  
ꢀꢁꢘꢘ  
ꢀꢁꢜꢘ  
ꢕꢁ-ꢕ  
ꢕꢁꢘꢕ  
M
ꢕꢁꢖꢕ  
M
ꢛꢗꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢂꢆꢌ4ꢆꢑꢈꢅ'ꢆꢊꢅꢍꢆ ꢈꢅꢋꢄꢈꢅꢋꢉꢅ'ꢋꢉꢈꢅꢈ$ꢓꢋ!ꢈ#ꢅ&ꢃꢈꢅ)ꢆꢉ!ꢅꢆ&ꢅꢈꢄ#!ꢁ  
-ꢁ ꢂꢆꢌ4ꢆꢑꢈꢅꢃ!ꢅ!ꢆ*ꢅ!ꢃꢄꢑ"ꢇꢆ&ꢈ#ꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢀꢎ-,  
© 2009 Microchip Technology Inc.  
DS41236E-page 97  
PIC12F508/509/16F505  
./ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢐꢁꢂꢋꢐꢃꢆꢑꢇꢒꢆMꢆꢓꢔꢔꢆꢕꢋꢈꢆꢖꢗꢅꢘꢆꢙꢇꢍꢏꢇꢚ  
ꢛꢗꢊꢃꢜ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
c
A1  
b1  
b
e
eB  
6ꢄꢃ&!  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢚ7,8.ꢐ  
7:ꢔ  
ꢀꢖ  
ꢁꢀꢕꢕꢅ1ꢐ,  
M
ꢔꢚ7  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
ꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
M
ꢁꢎꢀꢕ  
ꢁꢀꢛꢘ  
M
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
1ꢆ!ꢈꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
ꢐꢍꢋ"ꢇ#ꢈꢉꢅ&ꢋꢅꢐꢍꢋ"ꢇ#ꢈꢉꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
ꢙꢃꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
6ꢓꢓꢈꢉꢅ9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
ꢗꢎ  
ꢗꢀ  
.
.ꢀ  
9
)ꢀ  
)
ꢈ1  
ꢁꢀꢀꢘ  
ꢁꢕꢀꢘ  
ꢁꢎꢛꢕ  
ꢁꢎꢖꢕ  
ꢁꢜ-ꢘ  
ꢁꢀꢀꢘ  
ꢁꢕꢕ<  
ꢁꢕꢖꢘ  
ꢁꢕꢀꢖ  
M
ꢁꢀ-ꢕ  
M
ꢁ-ꢀꢕ  
ꢁꢎꢘꢕ  
ꢁꢜꢘꢕ  
ꢁꢀ-ꢕ  
ꢁꢕꢀꢕ  
ꢁꢕ?ꢕ  
ꢁꢕꢀ<  
M
ꢁ-ꢎꢘ  
ꢁꢎ<ꢕ  
ꢁꢜꢜꢘ  
ꢁꢀꢘꢕ  
ꢁꢕꢀꢘ  
ꢁꢕꢜꢕ  
ꢁꢕꢎꢎ  
ꢁꢖ-ꢕ  
9ꢋ*ꢈꢉꢅ9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅꢝꢋ*ꢅꢐꢓꢆꢌꢃꢄꢑꢅꢅꢏ  
ꢛꢗꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢏꢅꢐꢃꢑꢄꢃ%ꢃꢌꢆꢄ&ꢅ,ꢍꢆꢉꢆꢌ&ꢈꢉꢃ!&ꢃꢌꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢁꢕꢀꢕ/ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2ꢅ1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢕꢘ1  
DS41236E-page 98  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
./ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ ꢕꢄꢈꢈꢆ!ꢎꢊꢈꢋꢐꢃꢆꢑ ꢂꢒꢆMꢆꢛꢄ""ꢗ#$ꢆꢓ%&ꢔꢆꢕꢕꢆꢖꢗꢅꢘꢆꢙ !ꢏ'ꢚ  
ꢛꢗꢊꢃꢜ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D
N
E
E1  
NOTE 1  
1
2
3
e
h
b
α
h
c
φ
A2  
A
L
A1  
β
L1  
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
ꢀꢖ  
ꢀꢁꢎꢜꢅ1ꢐ,  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
ꢐ&ꢆꢄ#ꢋ%%ꢅꢅꢏ  
M
ꢀꢁꢎꢘ  
ꢕꢁꢀꢕ  
M
M
M
ꢀꢁꢜꢘ  
M
ꢕꢁꢎꢘ  
ꢗꢎ  
ꢗꢀ  
.
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
?ꢁꢕꢕꢅ1ꢐ,  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
,ꢍꢆ'%ꢈꢉꢅ@ꢋꢓ&ꢃꢋꢄꢆꢇA  
3ꢋꢋ&ꢅ9ꢈꢄꢑ&ꢍ  
.ꢀ  
-ꢁꢛꢕꢅ1ꢐ,  
<ꢁ?ꢘꢅ1ꢐ,  
ꢕꢁꢎꢘ  
ꢕꢁꢖꢕ  
M
M
ꢕꢁꢘꢕ  
ꢀꢁꢎꢜ  
9
3ꢋꢋ&ꢓꢉꢃꢄ&  
3ꢋꢋ&ꢅꢗꢄꢑꢇꢈ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ1ꢋ&&ꢋ'  
9ꢀ  
ꢀꢁꢕꢖꢅꢝ.3  
ꢕꢟ  
ꢕꢁꢀꢜ  
ꢕꢁ-ꢀ  
ꢘꢟ  
M
M
M
M
M
<ꢟ  
)
ꢕꢁꢎꢘ  
ꢕꢁꢘꢀ  
ꢀꢘꢟ  
ꢘꢟ  
ꢀꢘꢟ  
ꢛꢗꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢏꢅꢐꢃꢑꢄꢃ%ꢃꢌꢆꢄ&ꢅ,ꢍꢆꢉꢆꢌ&ꢈꢉꢃ!&ꢃꢌꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢕꢁꢀꢘꢅ''ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕ?ꢘ1  
© 2009 Microchip Technology Inc.  
DS41236E-page 99  
PIC12F508/509/16F505  
./ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ01ꢋꢐꢆ 1"ꢋꢐ)ꢆ ꢕꢄꢈꢈꢆ!ꢎꢊꢈꢋꢐꢃꢆꢑ 0ꢒꢆMꢆ/%/ꢆꢕꢕꢆꢖꢗꢅꢘꢆꢙ0  !ꢇꢚ  
ꢛꢗꢊꢃꢜ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
φ
A2  
A
A1  
L
L1  
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
ꢀꢖ  
ꢕꢁ?ꢘꢅ1ꢐ,  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
ꢐ&ꢆꢄ#ꢋ%%ꢅ  
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ9ꢈꢄꢑ&ꢍ  
3ꢋꢋ&ꢅ9ꢈꢄꢑ&ꢍ  
M
ꢕꢁ<ꢕ  
ꢕꢁꢕꢘ  
M
ꢀꢁꢕꢕ  
M
?ꢁꢖꢕꢅ1ꢐ,  
ꢖꢁꢖꢕ  
ꢘꢁꢕꢕ  
ꢕꢁ?ꢕ  
ꢀꢁꢎꢕ  
ꢀꢁꢕꢘ  
ꢕꢁꢀꢘ  
ꢗꢎ  
ꢗꢀ  
.
.ꢀ  
ꢖꢁ-ꢕ  
ꢖꢁꢛꢕ  
ꢕꢁꢖꢘ  
ꢖꢁꢘꢕ  
ꢘꢁꢀꢕ  
ꢕꢁꢜꢘ  
9
3ꢋꢋ&ꢓꢉꢃꢄ&  
3ꢋꢋ&ꢅꢗꢄꢑꢇꢈ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
9ꢀ  
ꢀꢁꢕꢕꢅꢝ.3  
ꢕꢟ  
ꢕꢁꢕꢛ  
ꢕꢁꢀꢛ  
M
M
M
<ꢟ  
)
ꢕꢁꢎꢕ  
ꢕꢁ-ꢕ  
ꢛꢗꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢕꢁꢀꢘꢅ''ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕ<ꢜ1  
DS41236E-page 100  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2009 Microchip Technology Inc.  
DS41236E-page 101  
PIC12F508/509/16F505  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS41236E-page 102  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
APPENDIX A: REVISION HISTORY  
Revision A (April 2004)  
Original data sheet for PIC12F508/509/16F505  
devices  
Revision B (June 2005)  
Update packages  
Revision C (03/2007)  
Revised Table 3-2 Legend; Revised Table 3-3 RB3 and  
Legend; Revised Table 10-4 F10; Replaced Package  
Drawings (Rev. AN); Added DFN package; Replaced  
Development Support Section; Revised Product ID  
System.  
Revision D (12/2007)  
Revised Title; Operating Current; Table 1-1 added DFN  
and revised note; Revised Section 3.0, last paragraph;  
Revised Figure 4-4; Revised Table 4-2 (FSR); Revised  
Register 7-1 and Register 7-2; Revised Section 7.2.2;  
Revised Table 7-3, Note 2; Revised Table 7-4 (FSR)  
and Note 2; Deleted Section 7.3.1: External Clock In  
and Figure 7-6; Revised new Section 7.3.1; Replaced  
TBD with new data in Tables 10-4 and 10-5; Revised  
Tables 10-1 (Industrial), 10-2 (Extended), and Tables  
10-1 (Industrial, Extended) and 10-2 (Pull-up Resistor  
Ranges), 10-3, 10-4 and 10-6; Revised Figure 10-1,  
Figure 10-2; Section 11.0, Added Char data; Revised  
Package Marking Information; Revised Product ID  
System.  
Revision E (08/2009)  
Added PIC16F505 16-Pin diagram (QFN); Added Note  
after subsection 5.2 PORTC; Updated Note 4 and  
deleted Note 5, Table 10-1; Deleted Param. No. D061  
(Table 10-1) and Param. No. D061A becomes D061;  
Added QFN Package Information; Revised Product  
Identification System; Added Figures 11-14, 11-15, 11-  
16, 11-7 to Char Data section; Other minor corrections;  
Removed Preliminary status.  
© 2009 Microchip Technology Inc.  
DS41236E-page 103  
PIC12F508/509/16F505  
NOTES:  
DS41236E-page 104  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
INDEX  
MPLAB Integrated Development Environment Software.... 65  
MPLAB PM3 Device Programmer ...................................... 67  
MPLAB REAL ICE In-Circuit Emulator System .................. 67  
MPLINK Object Linker/MPLIB Object Librarian.................. 66  
A
ALU ..................................................................................... 11  
Assembler  
MPASM Assembler..................................................... 66  
O
B
Option Register................................................................... 24  
OSC selection..................................................................... 41  
OSCCAL Register............................................................... 26  
Oscillator Configurations..................................................... 44  
Oscillator Types  
Block Diagram  
On-Chip Reset Circuit................................................. 50  
Timer0......................................................................... 35  
TMR0/WDT Prescaler................................................. 39  
Watchdog Timer.......................................................... 53  
Brown-Out Protection Circuit .............................................. 54  
HS............................................................................... 44  
LP ............................................................................... 44  
RC .............................................................................. 44  
XT............................................................................... 44  
C
C Compilers  
MPLAB C18 ................................................................ 66  
MPLAB C30 ................................................................ 66  
Carry ................................................................................... 11  
Clocking Scheme ................................................................ 16  
Code Protection ............................................................ 41, 55  
Configuration Bits................................................................ 41  
Configuration Word ............................................................. 43  
Customer Change Notification Service ............................. 107  
Customer Notification Service........................................... 107  
Customer Support............................................................. 107  
P
PIC12F508/509/16F505 Device Varieties ............................ 9  
PICSTART Plus Development Programmer....................... 68  
POR  
Device Reset Timer (DRT) ................................... 41, 52  
PD......................................................................... 54, 41  
TO............................................................................... 54  
PORTB ............................................................................... 31  
Power-down Mode.............................................................. 55  
Prescaler ............................................................................ 38  
Program Counter................................................................ 27  
D
DC and AC Characteristics................................................. 81  
Development Support ......................................................... 65  
Digit Carry........................................................................... 11  
Q
Q cycles.............................................................................. 16  
R
E
RC Oscillator....................................................................... 45  
Reader Response............................................................. 108  
Read-Modify-Write.............................................................. 33  
Register File Map  
Errata .................................................................................... 6  
F
Family of Devices  
PIC12F508 ................................................................. 19  
PIC12F509 ................................................................. 19  
PIC16F505 ................................................................. 19  
Registers  
PIC12F508/509/PIC16F505.......................................... 7  
FSR..................................................................................... 28  
I
Special Function......................................................... 20  
Reset .................................................................................. 41  
Reset on Brown-Out ........................................................... 54  
I/O Interfacing ..................................................................... 31  
I/O Ports.............................................................................. 31  
I/O Programming Considerations........................................ 33  
ID Locations.................................................................. 41, 55  
INDF.................................................................................... 28  
Indirect Data Addressing..................................................... 28  
Instruction Cycle ................................................................. 16  
Instruction Flow/Pipelining .................................................. 16  
Instruction Set Summary..................................................... 58  
Internet Address................................................................ 107  
S
Sleep ............................................................................ 41, 55  
Software Simulator (MPLAB SIM) ...................................... 66  
Special Features of the CPU .............................................. 41  
Special Function Registers................................................. 20  
Stack................................................................................... 27  
Status Register ............................................................. 11, 22  
L
T
Loading of PC ..................................................................... 27  
Timer0  
M
Timer0 ........................................................................ 35  
Timer0 (TMR0) Module .............................................. 35  
TMR0 with External Clock .......................................... 37  
Timing Diagrams and Specifications .................................. 75  
Timing Parameter Symbology and Load Conditions .......... 75  
TRIS Registers ................................................................... 31  
Memory Organization.......................................................... 17  
Data Memory .............................................................. 18  
Program Memory (PIC12F508/509)............................ 17  
Program Memory (PIC16F505)................................... 18  
Microchip Internet Web Site.............................................. 107  
MPLAB ASM30 Assembler, Linker, Librarian ..................... 66  
MPLAB ICD 2 In-Circuit Debugger ..................................... 67  
MPLAB ICE 2000 High-Performance Universal  
In-Circuit Emulator ...................................................... 67  
© 2009 Microchip Technology Inc.  
DS41236E-page 105  
PIC12F508/509/16F505  
W
Wake-up from Sleep ...........................................................55  
Watchdog Timer (WDT) ................................................ 41, 52  
Period..........................................................................52  
Programming Considerations .....................................52  
WWW Address..................................................................107  
WWW, On-Line Support........................................................6  
Z
Zero bit................................................................................11  
DS41236E-page 106  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change  
Notification and follow the registration instructions.  
© 2009 Microchip Technology Inc.  
DS41236E-page 107  
PIC12F508/509/16F505  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
PIC12F508/509/16F505  
DS41236E  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS41236E-page 108  
© 2009 Microchip Technology Inc.  
PIC12F508/509/16F505  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature  
Range  
Package  
Pattern  
a)  
b)  
c)  
PIC12F508-E/P 301 = Extended Temp., PDIP  
package, QTP pattern #301  
PIC12F508-I/SN  
package  
=
Industrial Temp., SOIC  
PIC12F508T-E/P  
=
Extended Temp., PDIP  
Device:  
PIC16F505  
PIC12F508  
package, Tape and Reel  
PIC12F509  
PIC16F505T(1)  
PIC12F508T(2)  
PIC12F509T(2)  
Temperature  
Range:  
I
E
=
=
-40°C to +85°C (Industrial)  
-40°C to +125°C (Extended)  
Package:  
MC  
MS  
P
SL  
SN  
ST  
MG  
=
8L DFN 2x3 (DUAL Flatpack No-Leads)(3, 4)  
Micro-Small Outline Package (MSOP)(3, 4)  
Plastic (PDIP)(4)  
=
=
=
=
=
=
Note 1:  
2:  
T
T
=
=
in tape and reel SOIC, TSSOP and  
QFN packages only  
in tape and reel SOIC and MSOP  
packages only.  
14L Small Outline, 3.90 mm (SOIC)(4)  
8L Small Outline, 3.90 mm Narrow (SOIC)(4)  
Thin Shrink Small Outline (TSSOP)(4)  
16L QFN (3x3x0.9)(5)  
3:  
4:  
5:  
PIC12F508/PIC12F509 only.  
Pb-free.  
PIC16F505 only.  
Pattern:  
Note:  
Special Requirements  
Tape and Reel available for only the following packages: SOIC, MSOP  
and TSSOP.  
© 2009 Microchip Technology Inc.  
DS41236E-page 109  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4080  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
03/26/09  
DS41236E-page 110  
© 2009 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY