PIC16F631-I/SO [MICROCHIP]

20-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanoWatt Technology; 20引脚基于闪存的8位CMOS微控制器采用纳瓦技术
PIC16F631-I/SO
型号: PIC16F631-I/SO
厂家: MICROCHIP    MICROCHIP
描述:

20-Pin Flash-Based, 8-Bit CMOS Microcontrollers with nanoWatt Technology
20引脚基于闪存的8位CMOS微控制器采用纳瓦技术

闪存 微控制器和处理器 外围集成电路 光电二极管 PC 时钟
文件: 总294页 (文件大小:5272K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16F631/677/685/687/689/690  
Data Sheet  
20-Pin Flash-Based, 8-Bit  
CMOS Microcontrollers with  
nanoWatt Technology  
© 2007 Microchip Technology Inc.  
DS41262D  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC,  
PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and  
SmartShunt are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
AmpLab, FilterLab, Linear Active Thermistor, Migratable  
Memory, MXDEV, MXLAB, PS logo, SEEVAL, SmartSensor  
and The Embedded Control Solutions Company are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi,  
MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2007, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The  
Company’s quality system processes and procedures are for its PIC®  
MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial  
EEPROMs, microperipherals, nonvolatile memory and analog  
products. In addition, Microchip’s quality system for the design and  
manufacture of development systems is ISO 9001:2000 certified.  
DS41262D-page ii  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
20-Pin Flash-Based, 8-Bit CMOS Microcontrollers with  
nanoWatt Technology  
High-Performance RISC CPU:  
Low-Power Features:  
• Only 35 instructions to learn:  
- All single-cycle instructions except branches  
• Operating speed:  
Standby Current:  
- 50 nA @ 2.0V, typical  
• Operating Current:  
- DC – 20 MHz oscillator/clock input  
- DC – 200 ns instruction cycle  
• Interrupt capability  
• 8-level deep hardware stack  
• Direct, Indirect and Relative Addressing modes  
- 11 μA @ 32 kHz, 2.0V, typical  
- 220 μA @ 4 MHz, 2.0V, typical  
• Watchdog Timer Current:  
- <1 μA @ 2.0V, typical  
Peripheral Features:  
Special Microcontroller Features:  
• 17 I/O pins and 1 input only pin:  
- High current source/sink for direct LED drive  
- Interrupt-on-Change pin  
• Precision Internal Oscillator:  
- Factory calibrated to ± 1%  
- Software selectable frequency range of  
8 MHz to 32 kHz  
- Software tunable  
- Individually programmable weak pull-ups  
- Ultra Low-Power Wake-up (ULPWU)  
• Analog Comparator module with:  
- Two analog comparators  
- Two-Speed Start-up mode  
- Crystal fail detect for critical applications  
- Clock mode switching during operation for  
power savings  
- Programmable on-chip voltage reference  
(CVREF) module (% of VDD)  
- Comparator inputs and outputs externally  
accessible  
• Power-Saving Sleep mode  
• Wide operating voltage range (2.0V-5.5V)  
• Industrial and Extended Temperature range  
• Power-on Reset (POR)  
- SR Latch mode  
- Timer 1 Gate Sync Latch  
- Fixed 0.6V VREF  
• Power-up Timer (PWRTE) and Oscillator Start-up  
Timer (OST)  
• Brown-out Reset (BOR) with software control  
option  
• A/D Converter:  
- 10-bit resolution and 12 channels  
• Timer0: 8-bit timer/counter with 8-bit  
programmable prescaler  
• Enhanced low-current Watchdog Timer (WDT)  
with on-chip oscillator (software selectable  
nominal 268 seconds with full prescaler) with  
software enable  
• Multiplexed Master Clear/Input pin  
• Programmable code protection  
• High Endurance Flash/EEPROM cell:  
- 100,000 write Flash endurance  
- 1,000,000 write EEPROM endurance  
- Flash/Data EEPROM retention: > 40 years  
• Enhanced USART module:  
• Enhanced Timer1:  
- 16-bit timer/counter with prescaler  
- External Timer1 Gate (count enable)  
- Option to use OSC1 and OSC2 in LP mode  
as Timer1 oscillator if INTOSC mode  
selected  
• Timer2: 8-bit timer/counter with 8-bit period  
register, prescaler and postscaler  
• Enhanced Capture, Compare, PWM+ module:  
- 16-bit Capture, max resolution 12.5 ns  
- Compare, max resolution 200 ns  
- 10-bit PWM with 1, 2 or 4 output channels,  
programmable “dead time”, max frequency  
20 kHz  
- Supports RS-485, RS-232 and LIN 2.0  
- Auto-Baud Detect  
- Auto-wake-up on Start bit  
- PWM output steering control  
• Synchronous Serial Port (SSP):  
- SPI mode (Master and Slave)  
• I2C™ (Master/Slave modes):  
- I2C™ address mask  
• In-Circuit Serial ProgrammingTM (ICSPTM) via two  
pins  
© 2007 Microchip Technology Inc.  
DS41262D-page 1  
PIC16F631/677/685/687/689/690  
Program  
Data Memory  
Memory  
10-bitA/D  
(ch)  
Timers  
8/16-bit  
Device  
I/O  
Comparators  
SSP ECCP+ EUSART  
Flash  
SRAM EEPROM  
(words) (bytes) (bytes)  
PIC16F631 1024  
PIC16F677 2048  
PIC16F685 4096  
PIC16F687 2048  
PIC16F689 4096  
PIC16F690 4096  
64  
128  
256  
256  
256  
256  
256  
18  
18  
18  
18  
18  
18  
12  
12  
12  
12  
12  
2
2
2
2
2
2
1/1  
1/1  
2/1  
1/1  
1/1  
2/1  
No  
Yes  
No  
No  
No  
No  
No  
128  
256  
128  
256  
256  
Yes  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
PIC16F631 Pin Diagram  
20-pin PDIP, SOIC, SSOP  
VDD  
1
20  
VSS  
RA5/T1CKI/OSC1/CLKIN  
RA4/T1G/OSC2/CLKOUT  
2
19  
18  
RA0/C1IN+/ICSPDAT/ULPWU  
RA1/C12IN0-/ICSPCLK  
RA2/T0CKI/INT/C1OUT  
RC0/C2IN+  
3
4
RA3/MCLR/VPP  
RC5  
17  
16  
5
RC4/C2OUT  
RC3/C12IN3-  
RC6  
6
15  
14  
13  
12  
11  
RC1/C12IN1-  
RC2/C12IN2-  
RB4  
RB5  
RB6  
7
8
RC7  
RB7  
9
10  
TABLE 1:  
PIC16F631 PIN SUMMARY  
I/O  
Pin  
Analog  
Comparators  
Timers  
Interrupt  
Pull-up  
Basic  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RB4  
RB5  
RB6  
RB7  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
19  
18  
17  
4
AN0/ULPWU  
C1IN+  
C12IN0-  
C1OUT  
IOC  
IOC  
IOC/INT  
IOC  
IOC  
IOC  
IOC  
IOC  
IOC  
IOC  
Y
Y
ICSPDAT  
AN1  
ICSPCLK  
T0CKI  
Y
Y(1)  
MCLR/VPP  
3
T1G  
T1CKI  
Y
OSC2/CLKOUT  
2
Y
OSC1/CLKIN  
13  
12  
11  
10  
16  
15  
14  
7
Y
Y
Y
Y
AN4  
AN5  
AN6  
AN7  
C2IN+  
C12IN1-  
C12IN2-  
C12IN3-  
C2OUT  
6
5
8
9
1
VDD  
VSS  
20  
Note 1: Pull-up enabled only with external MCLR configuration.  
DS41262D-page 2  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
PIC16F677 Pin Diagram  
20-pin PDIP, SOIC, SSOP  
VDD  
1
20  
19  
18  
VSS  
RA5/T1CKI/OSC1/CLKIN  
RA4/AN3/T1G/OSC2/CLKOUT  
RA3/MCLR/VPP  
RC5  
2
3
RA0/AN0/C1IN+/ICSPDAT/ULPWU  
RA1/AN1/C12IN0-/VREF/ICSPCLK  
RA2/AN2/T0CKI/INT/C1OUT  
RC0/AN4/C2IN+  
4
5
17  
16  
RC4/C2OUT  
RC3/AN7C12IN3-  
RC6/AN8/SS  
6
7
8
9
15  
14  
13  
12  
11  
RC1/AN5/C12IN1-  
RC2/AN6/C12IN2-  
RB4/AN10/SDI/SDA  
RB5/AN11  
RC7/AN9/SDO  
RB7  
10  
RB6/SCK/SCL  
TABLE 2:  
PIC16F677 PIN SUMMARY  
I/O  
Pin  
Analog  
Comparators Timers  
SSP  
Interrupt  
Pull-up  
Basic  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RB4  
RB5  
RB6  
RB7  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
19  
18  
17  
4
AN0/ULPWU  
AN1/VREF  
AN2  
C1IN+  
C12IN0-  
C1OUT  
IOC  
IOC  
IOC/INT  
IOC  
IOC  
IOC  
IOC  
IOC  
IOC  
IOC  
Y
Y
ICSPDAT  
ICSPCLK  
T0CKI  
Y
Y(1)  
MCLR/VPP  
3
AN3  
Y
OSC2/CLKOUT  
T1G  
T1CKI  
2
Y
OSC1/CLKIN  
13  
12  
11  
10  
16  
15  
14  
7
AN10  
AN11  
SDI/SDA  
Y
SCL/SCK  
Y
Y
Y
AN4  
AN5  
AN6  
AN7  
C2IN+  
C12IN1-  
C12IN2-  
C12IN3-  
C2OUT  
6
5
8
AN8  
AN9  
SS  
9
SDO  
1
VDD  
VSS  
20  
Note 1: Pull-up activated only with external MCLR configuration.  
© 2007 Microchip Technology Inc.  
DS41262D-page 3  
PIC16F631/677/685/687/689/690  
PIC16F685 Pin Diagram  
20-pin PDIP, SOIC, SSOP  
VDD  
RA5/T1CKI/OSC1/CLKIN  
RA4/AN3/T1G/OSC2/CLKOUT  
RA3/MCLR/VPP  
1
20  
19  
18  
VSS  
2
3
RA0/AN0/C1IN+/ICSPDAT/ULPWU  
RA1/AN1/C12IN0-/VREF/ICSPCLK  
RA2/AN2/T0CKI/INT/C1OUT  
RC0/AN4/C2IN+  
4
5
17  
16  
RC5/CCP1/P1A  
RC4/C2OUT/P1B  
RC3/AN7/C12IN3-/P1C  
RC6/AN8  
6
15  
14  
13  
12  
11  
RC1/AN5/C12IN1-  
RC2/AN6/C12IN2-/P1D  
RB4/AN10  
RB5/AN11  
RB6  
7
8
9
10  
RC7/AN9  
RB7  
TABLE 3:  
PIC16F685 PIN SUMMARY  
I/O  
Pin  
Analog  
Comparators Timers  
ECCP  
Interrupt  
Pull-up  
Basic  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RB4  
RB5  
RB6  
RB7  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
19  
18  
17  
4
AN0/ULPWU  
AN1/VREF  
AN2  
C1IN+  
C12IN0-  
C1OUT  
IOC  
IOC  
IOC/INT  
IOC  
IOC  
IOC  
IOC  
IOC  
IOC  
IOC  
Y
Y
ICSPDAT  
ICSPCLK  
T0CKI  
Y
Y(1)  
MCLR/VPP  
3
AN3  
Y
OSC2/CLKOUT  
T1G  
T1CKI  
2
Y
OSC1/CLKIN  
13  
12  
11  
10  
16  
15  
14  
7
AN10  
AN11  
Y
Y
Y
Y
AN4  
AN5  
AN6  
AN7  
C2IN+  
C12IN1-  
C12IN2-  
C12IN3-  
C2OUT  
P1D  
P1C  
P1B  
6
5
CCP1/P1A  
8
AN8  
AN9  
9
1
VDD  
VSS  
20  
Note 1: Pull-up activated only with external MCLR configuration.  
DS41262D-page 4  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
PIC16F687/689 Pin Diagram  
20-pin PDIP, SOIC, SSOP  
VDD  
1
2
20  
19  
18  
VSS  
RA5/T1CKI/OSC1/CLKIN  
RA4/AN3/T1G/OSC2/CLKOUT  
RA3/MCLR/VPP  
RC5  
RA0/AN0/C1IN+/ICSPDAT/ULPWU  
RA1/AN1/C12IN0-/VREF/ICSPCLK  
RA2/AN2/T0CKI/INT/C1OUT  
RC0/AN4/C2IN+  
3
4
17  
16  
5
RC4/C2OUT  
RC3/AN7/C12IN3-  
RC6/AN8/SS  
6
15  
14  
13  
12  
11  
RC1/AN5/C12IN1-  
RC2/AN6/C12IN2-  
RB4/AN10/SDI/SDA  
RB5/AN11/RX/DT  
RB6/SCK/SCL  
7
8
RC7/AN9/SDO  
9
10  
RB7/TX/CK  
TABLE 4:  
PIC16F687/689 PIN SUMMARY  
I/O  
Pin  
Analog  
Comparators Timers EUSART  
SSP  
Interrupt Pull-up  
Basic  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RB4  
RB5  
RB6  
RB7  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
19  
18  
17  
4
AN0/ULPWU  
AN1/VREF  
AN2  
C1IN+  
C12IN0-  
C1OUT  
IOC  
IOC  
IOC/INT  
IOC  
IOC  
IOC  
IOC  
IOC  
IOC  
IOC  
Y
Y
ICSPDAT  
ICSPCLK  
T0CKI  
Y
Y(1)  
MCLR/VPP  
3
AN3  
Y
OSC2/CLKOUT  
T1G  
T1CKI  
2
Y
OSC1/CLKIN  
13  
12  
11  
10  
16  
15  
14  
7
AN10  
AN11  
SDI/SDA  
Y
RX/DT  
SCL/SCK  
Y
Y
TX/CK  
Y
AN4  
AN5  
AN6  
AN7  
C2IN+  
C12IN1-  
C12IN2-  
C12IN3-  
C2OUT  
6
5
8
AN8  
AN9  
SS  
9
SDO  
1
VDD  
VSS  
20  
Note 1: Pull-up activated only with external MCLR configuration.  
© 2007 Microchip Technology Inc.  
DS41262D-page 5  
PIC16F631/677/685/687/689/690  
PIC16F690 Pin Diagram (PDIP, SOIC, SSOP)  
20-pin PDIP, SOIC, SSOP  
VDD  
RA5/T1CKI/OSC1/CLKIN  
RA4/AN3/T1G/OSC2/CLKOUT  
RA3/MCLR/VPP  
1
20  
19  
18  
VSS  
2
3
RA0/AN0/C1IN+/ICSPDAT/ULPWU  
RA1/AN1/C12IN0-/VREF/ICSPCLK  
RA2/AN2/T0CKI/INT/C1OUT  
RC0/AN4/C2IN+  
4
5
17  
16  
RC5/CCP1/P1A  
RC4/C2OUT/P1B  
RC3/AN7/C12IN3-/P1C  
RC6/AN8/SS  
6
7
8
9
15  
14  
13  
12  
11  
RC1/AN5/C12IN1-  
RC2/AN6/C12IN2-/P1D  
RB4/AN10/SDI/SDA  
RB5/AN11/RX/DT  
RC7/AN9/SDO  
RB7/TX/CK  
10  
RB6/SCK/SCL  
TABLE 5:  
PIC16F690 PIN SUMMARY  
I/O  
Pin  
Analog  
Comparators Timers  
ECCP  
EUSART  
SSP  
Interrupt Pull-up  
Basic  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RB4  
RB5  
RB6  
RB7  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
19  
18  
17  
4
AN0/ULPWU  
AN1/VREF  
AN2  
C1IN+  
C12IN0-  
C1OUT  
IOC  
IOC  
IOC/INT  
IOC  
IOC  
IOC  
IOC  
IOC  
IOC  
IOC  
Y
Y
Y
ICSPDAT  
ICSPCLK  
T0CKI  
(1)  
Y
MCLR/VPP  
3
AN3  
Y
Y
OSC2/CLKOUT  
T1G  
T1CKI  
2
OSC1/CLKIN  
13  
12  
11  
10  
16  
15  
14  
7
AN10  
AN11  
SDI/SDA  
Y
RX/DT  
SCL/SCK  
Y
Y
TX/CK  
Y
AN4  
AN5  
AN6  
AN7  
C2IN+  
C12IN1-  
C12IN2-  
C12IN3-  
C2OUT  
P1D  
P1C  
P1B  
CCP1/P1A  
6
5
8
AN8  
AN9  
SS  
9
SDO  
1
VDD  
VSS  
20  
Note 1: Pull-up activated only with external MCLR configuration.  
DS41262D-page 6  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
PIC16F690 Pin Diagram (QFN)  
20-pin QFN  
1
2
15  
14  
13  
12  
11  
RA3/MCLR/VPP  
RA1/AN1/C12IN0-/VREF/ICSPCLK  
RA2/AN2/T0CKI/INT/C1OUT  
RC0/AN4/C2IN+  
(1)  
RC5/CCP1/P1A  
PIC16F631/677/  
685/687/689/690  
(1)  
RC4/C2OUT/P1B  
3
4
(1)  
RC3/AN7/C12IN3-/P1C  
RC6/AN8/SS  
RC1/AN5/C12IN1-  
(2)  
(1)  
5
RC2/AN6/C12IN2-/P1D  
Note 1: CCP1/P1A, P1B, P1C and P1D are available on PIC16F685/PIC16F690 only.  
2: SS, SDO, SDI/SDA and SCL/SCK are available on PIC16F677/PIC16F687/PIC16F689/PIC16F690 only.  
3: RX/DT and TX/CK are available on PIC16F687/PIC16F689/PIC16F690 only.  
© 2007 Microchip Technology Inc.  
DS41262D-page 7  
PIC16F631/677/685/687/689/690  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 9  
2.0 Memory Organization................................................................................................................................................................. 25  
3.0 Oscillator Module (With Fail-Safe Clock Monitor)....................................................................................................................... 47  
4.0 I/O Ports ..................................................................................................................................................................................... 59  
5.0 Timer0 Module ........................................................................................................................................................................... 81  
6.0 Timer1 Module with Gate Control............................................................................................................................................... 84  
7.0 Timer2 Module ........................................................................................................................................................................... 91  
8.0 Comparator Module.................................................................................................................................................................... 93  
9.0 Analog-to-Digital Converter (ADC) Module .............................................................................................................................. 107  
10.0 Data EEPROM and Flash Program Memory Control............................................................................................................... 119  
11.0 Enhanced Capture/Compare/PWM Module ............................................................................................................................. 127  
12.0 Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)............................................................... 149  
13.0 SSP Module Overview ............................................................................................................................................................. 175  
14.0 Special Features of the CPU.................................................................................................................................................... 193  
15.0 Instruction Set Summary.......................................................................................................................................................... 213  
16.0 Development Support............................................................................................................................................................... 223  
17.0 Electrical Specifications............................................................................................................................................................ 227  
18.0 DC and AC Characteristics Graphs and Tables....................................................................................................................... 255  
19.0 Packaging Information.............................................................................................................................................................. 275  
Appendix A: Data Sheet Revision History.......................................................................................................................................... 281  
Appendix B: Migrating from other PIC® Devices............................................................................................................................... 281  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of  
silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
DS41262D-page 8  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
Block Diagrams and pinout descriptions of the devices  
are as follows:  
1.0  
DEVICE OVERVIEW  
The PIC16F631/677/685/687/689/690 devices are  
covered by this data sheet. They are available in 20-pin  
PDIP, SOIC, TSSOP and QFN packages.  
• PIC16F631 (Figure 1-1, Table 1-1)  
• PIC16F677 (Figure 1-2, Table 1-2)  
• PIC16F685 (Figure 1-3, Table 1-3)  
• PIC16F687/PIC16F689 (Figure 1-4, Table 1-4)  
• PIC16F690 (Figure 1-5, Table 1-5)  
FIGURE 1-1:  
PIC16F631 BLOCK DIAGRAM  
INT  
Configuration  
13  
8
PORTA  
Data Bus  
Program Counter  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
Flash  
1K x 14  
Program  
Memory  
RAM  
64 bytes  
File  
8-Level Stack (13-bit)  
Registers  
Program  
Bus  
14  
RAM Addr  
PORTB  
9
Addr MUX  
Instruction Reg  
RB4  
Indirect  
Addr  
7
Direct Addr  
8
RB5  
RB6  
RB7  
FSR Reg  
STATUS Reg  
MUX  
8
PORTC  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
3
Power-up  
Timer  
Instruction  
Decode and  
Control  
Oscillator  
Start-up Timer  
ALU  
OSC1/CLKI  
OSC2/CLKO  
Power-on  
Reset  
8
Timing  
Generation  
Watchdog  
Timer  
W Reg  
Brown-out  
Reset  
Internal  
Oscillator  
Block  
VDD  
VSS  
MCLR  
C1IN- C1IN+ C1OUT C2IN- C2IN+ C2OUT  
T0CKI  
T1G T1CKI  
ULPWU  
EEDAT  
128 Bytes  
Data  
EEPROM  
2
Ultra Low-Power  
Wake-up  
Analog Comparators  
and Reference  
Timer0  
Timer1  
EEADR  
8
© 2007 Microchip Technology Inc.  
DS41262D-page 9  
PIC16F631/677/685/687/689/690  
FIGURE 1-2:  
PIC16F677 BLOCK DIAGRAM  
INT  
Configuration  
13  
8
PORTA  
Data Bus  
Program Counter  
Flash  
RA0  
RA1  
2K x 14  
RA2  
RA3  
RA4  
RA5  
Program  
RAM  
128 bytes  
File  
8-Level Stack (13-bit)  
Memory  
Registers  
Program  
Bus  
14  
RAM Addr  
9
PORTB  
Addr MUX  
Instruction Reg  
Indirect  
Addr  
7
RB4  
RB5  
RB6  
RB7  
Direct Addr  
8
FSR Reg  
STATUS Reg  
MUX  
8
PORTC  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
3
Power-up  
Timer  
Instruction  
Decode and  
Control  
Oscillator  
Start-up Timer  
ALU  
OSC1/CLKI  
OSC2/CLKO  
Power-on  
Reset  
8
Timing  
Generation  
Watchdog  
Timer  
W Reg  
Brown-out  
Reset  
Internal  
Oscillator  
Block  
VDD VSS  
MCLR  
T0CKI  
SDI/ SCK/  
SDO SDA SCL  
SS  
T1G T1CKI  
ULPWU  
Ultra Low-Power  
Wake-up  
Synchronous  
Serial Port  
Timer0  
Timer1  
AN8 AN9 AN10 AN11  
EEDAT  
256 Bytes  
Data  
EEPROM  
8
2
Analog Comparators  
and Reference  
Analog-To-Digital Converter  
EEADR  
VREF  
AN0 AN1 AN2 AN3 AN4 AN5 AN6 AN7 C1IN- C1IN+ C1OUT C2IN- C2IN+ C2OUT  
DS41262D-page 10  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
FIGURE 1-3:  
PIC16F685 BLOCK DIAGRAM  
INT  
Configuration  
13  
8
PORTA  
Data Bus  
Program Counter  
Flash  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
4K x 14  
Program  
Memory  
RAM  
256 bytes  
File  
8-Level Stack (13-bit)  
Registers  
Program  
Bus  
14  
RAM Addr  
9
PORTB  
Addr MUX  
Instruction Reg  
Indirect  
Addr  
RB4  
RB5  
7
Direct Addr  
8
RB6  
RB7  
FSR Reg  
STATUS Reg  
MUX  
8
PORTC  
RC0  
RC1  
3
Power-up  
Timer  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
Instruction  
Decode and  
Control  
Oscillator  
Start-up Timer  
ALU  
OSC1/CLKI  
OSC2/CLKO  
Power-on  
Reset  
8
Timing  
Generation  
Watchdog  
Timer  
W Reg  
Brown-out  
Reset  
Internal  
Oscillator  
Block  
VDD VSS  
MCLR  
CCP1/  
P1A P1B P1C P1D  
T0CKI  
T1G T1CKI  
ULPWU  
Ultra Low-Power  
Wake-up  
Timer2  
Timer0  
Timer1  
ECCP+  
AN8 AN9 AN10 AN11  
EEDAT  
256 Bytes  
Data  
EEPROM  
8
2
Analog Comparators  
and Reference  
Analog-To-Digital Converter  
EEADR  
VREF AN0 AN1 AN2 AN3 AN4 AN5 AN6 AN7  
C1IN- C1IN+ C1OUT C2IN- C2IN+ C2OUT  
© 2007 Microchip Technology Inc.  
DS41262D-page 11  
PIC16F631/677/685/687/689/690  
FIGURE 1-4:  
PIC16F687/PIC16F689 BLOCK DIAGRAM  
INT  
Configuration  
13  
8
PORTA  
Data Bus  
Program Counter  
Flash  
2K(1)/4K x 14  
Program  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RAM  
128(1)/256 bytes  
File  
8-Level Stack (13-bit)  
Memory  
Registers  
Program  
Bus  
14  
RAM Addr  
9
PORTB  
Addr MUX  
Instruction Reg  
Indirect  
Addr  
7
RB4  
Direct Addr  
8
RB5  
RB6  
RB7  
FSR Reg  
STATUS Reg  
8
PORTC  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
3
MUX  
Power-up  
Timer  
Instruction  
Decode and  
Control  
Oscillator  
Start-up Timer  
ALU  
OSC1/CLKI  
OSC2/CLKO  
Power-on  
Reset  
8
Timing  
Generation  
Watchdog  
Timer  
W Reg  
Brown-out  
Reset  
Internal  
Oscillator  
Block  
VDD  
VSS  
MCLR  
SDI/ SCK/  
SDA SCL  
SS  
SDO  
TX/CK  
RX/DT  
T0CKI  
T1G T1CKI  
ULPWU  
Ultra Low-Power  
Wake-up  
Synchronous  
Serial Port  
EUSART  
Timer0  
Timer1  
AN8 AN9 AN10 AN11  
EEDAT  
256 Bytes  
Data  
EEPROM  
8
2
Analog Comparators  
and Reference  
Analog-To-Digital Converter  
EEADR  
VREF  
AN0 AN1 AN2 AN3 AN4 AN5 AN6 AN7 C1IN- C1IN+ C1OUT C2IN- C2IN+ C2OUT  
Note 1: PIC16F687 only.  
DS41262D-page 12  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
FIGURE 1-5:  
PIC16F690 BLOCK DIAGRAM  
INT  
Configuration  
13  
8
PORTA  
Data Bus  
Program Counter  
Flash  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
4k x 14  
Program  
Memory  
RAM  
256 bytes  
File  
8-Level Stack (13-bit)  
Registers  
Program  
Bus  
14  
RAM Addr  
9
PORTB  
Addr MUX  
Instruction Reg  
Indirect  
Addr  
7
RB4  
RB5  
RB6  
RB7  
Direct Addr  
8
FSR Reg  
STATUS Reg  
MUX  
8
PORTC  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
3
Power-up  
Timer  
Instruction  
Decode and  
Control  
Oscillator  
Start-up Timer  
ALU  
OSC1/CLKI  
OSC2/CLKO  
Power-on  
Reset  
8
Timing  
Generation  
Watchdog  
Timer  
W Reg  
Brown-out  
Reset  
Internal  
Oscillator  
Block  
VDD VSS  
MCLR  
CCP1/  
P1A  
SDI/ SCK/  
SDA SCL  
TX/CK RX/DT  
SS  
SDO  
P1B P1C P1D  
ECCP+  
T1G T1CKI  
ULPWU  
T0CKI  
Timer0  
Ultra Low-Power  
Wake-up  
Synchronous  
Serial Port  
Timer1  
Timer2  
EUSART  
AN8 AN9 AN10 AN11  
EEDAT  
256 Bytes  
Data  
EEPROM  
8
2
Analog Comparators  
and Reference  
Analog-To-Digital Converter  
EEADR  
VREF  
AN0 AN1 AN2 AN3 AN4 AN5 AN6 AN7 C1IN- C1IN+ C1OUT C2IN- C2IN+ C2OUT  
© 2007 Microchip Technology Inc.  
DS41262D-page 13  
PIC16F631/677/685/687/689/690  
TABLE 1-1:  
PINOUT DESCRIPTION – PIC16F631  
Input Output  
Function  
Name  
Description  
Type  
Type  
RA0/C1IN+/ICSPDAT/ULPWU  
RA0  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
C1IN+  
ICSPDAT  
ULPWU  
RA1  
AN  
ST  
Comparator C1 non-inverting input.  
CMOS ICSP™ Data I/O.  
AN  
TTL  
Ultra Low-Power Wake-up input.  
RA1/C12IN0-/ICSPCLK  
RA2/T0CKI/INT/C1OUT  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
C12IN0-  
ICSPCLK  
RA2  
AN  
ST  
ST  
Comparator C1 or C2 inverting input.  
ICSP™ clock.  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
T0CKI  
INT  
ST  
ST  
Timer0 clock input.  
External interrupt pin.  
C1OUT  
RA3  
CMOS Comparator C1 output.  
RA3/MCLR/VPP  
TTL  
General purpose input. Individually controlled interrupt-on-  
change.  
MCLR  
VPP  
ST  
HV  
Master Clear with internal pull-up.  
Programming voltage.  
RA4/T1G/OSC2/CLKOUT  
RA4  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
T1G  
OSC2  
CLKOUT  
RA5  
ST  
Timer1 gate input.  
XTAL Crystal/Resonator.  
CMOS FOSC/4 output.  
RA5/T1CKI/OSC1/CLKIN  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
T1CKI  
OSC1  
CLKIN  
RB4  
ST  
XTAL  
ST  
Timer1 clock input.  
Crystal/Resonator.  
External clock input/RC oscillator connection.  
RB4  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
RB5  
RB5  
RB6  
RB7  
TTL  
TTL  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
RB6  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
RB7  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
RC0/C2IN+  
RC0  
C2IN+  
RC1  
ST  
AN  
ST  
AN  
ST  
AN  
ST  
AN  
ST  
CMOS General purpose I/O.  
Comparator C2 non-inverting input.  
RC1/C12IN1-  
RC2/C12IN2-  
RC3/C12IN3-  
RC4/C2OUT  
RC5  
CMOS General purpose I/O.  
C12IN1-  
RC2  
Comparator C1 or C2 inverting input.  
CMOS General purpose I/O.  
C12IN2-  
RC3  
Comparator C1 or C2 inverting input.  
CMOS General purpose I/O.  
C12IN3-  
RC4  
Comparator C1 or C2 inverting input.  
CMOS General purpose I/O.  
CMOS Comparator C2 output.  
CMOS General purpose I/O.  
C2OUT  
RC5  
ST  
Legend:  
AN  
TTL  
HV  
=
=
=
Analog input or output  
TTL compatible input  
High Voltage  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
XTAL = Crystal  
DS41262D-page 14  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
TABLE 1-1:  
PINOUT DESCRIPTION – PIC16F631 (CONTINUED)  
Input Output  
Name  
Function  
Description  
Type  
Type  
RC6  
RC6  
RC7  
VSS  
VDD  
ST  
ST  
CMOS General purpose I/O.  
CMOS General purpose I/O.  
RC7  
VSS  
Power  
Power  
Ground reference.  
Positive supply.  
VDD  
Legend:  
AN  
TTL  
HV  
=
=
=
Analog input or output  
TTL compatible input  
High Voltage  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
XTAL = Crystal  
© 2007 Microchip Technology Inc.  
DS41262D-page 15  
PIC16F631/677/685/687/689/690  
TABLE 1-2:  
PINOUT DESCRIPTION – PIC16F677  
Input Output  
Function  
Name  
Description  
Type  
Type  
RA0/AN0/C1IN+/ICSPDAT/  
ULPWU  
RA0  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN0  
C1IN+  
AN  
AN  
ST  
A/D Channel 0 input.  
Comparator C1 non-inverting input.  
ICSPDAT  
ULPWU  
RA1  
CMOS ICSP™ Data I/O.  
AN  
TTL  
Ultra Low-Power Wake-up input.  
RA1/AN1/C12IN0-/VREF/  
ICSPCLK  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN1  
C12IN0-  
VREF  
AN  
AN  
AN  
ST  
ST  
A/D Channel 1 input.  
Comparator C1 or C2 inverting input.  
External Voltage Reference for A/D.  
ICSP™ clock.  
ICSPCLK  
RA2  
RA2/AN2/T0CKI/INT/C1OUT  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN2  
T0CKI  
INT  
AN  
ST  
ST  
A/D Channel 2 input.  
Timer0 clock input.  
External interrupt pin.  
C1OUT  
RA3  
CMOS Comparator C1 output.  
RA3/MCLR/VPP  
TTL  
General purpose input. Individually controlled interrupt-on-  
change.  
MCLR  
VPP  
ST  
HV  
Master Clear with internal pull-up.  
Programming voltage.  
RA4/AN3/T1G/OSC2/CLKOUT  
RA4  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN3  
T1G  
AN  
ST  
A/D Channel 3 input.  
Timer1 gate input.  
OSC2  
CLKOUT  
RA5  
XTAL Crystal/Resonator.  
CMOS FOSC/4 output.  
RA5/T1CKI/OSC1/CLKIN  
RB4/AN10/SDI/SDA  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
T1CKI  
OSC1  
CLKIN  
RB4  
ST  
XTAL  
ST  
Timer1 clock input.  
Crystal/Resonator.  
External clock input/RC oscillator connection.  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN10  
SDI  
AN  
ST  
A/D Channel 10 input.  
SPI data input.  
2
SDA  
RB5  
ST  
OD  
I C™ data input/output.  
RB5/AN11  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN11  
RB6  
AN  
A/D Channel 11 input.  
RB6/SCK/SCL  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
SCK  
SCL  
ST  
ST  
CMOS SPI clock.  
2
OD  
I C™ clock.  
Legend:  
AN  
TTL  
HV  
=
=
=
Analog input or output  
TTL compatible input  
High Voltage  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
XTAL = Crystal  
DS41262D-page 16  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
TABLE 1-2:  
PINOUT DESCRIPTION – PIC16F677 (CONTINUED)  
Input Output  
Name  
Function  
Description  
Type  
Type  
RB7  
RB7  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
RC0/AN4/C2IN+  
RC0  
AN4  
ST  
AN  
AN  
ST  
CMOS General purpose I/O.  
A/D Channel 4 input.  
C2IN+  
RC1  
Comparator C2 non-inverting input.  
RC1/AN5/C12IN1-  
RC2/AN6/C12IN2-  
RC3/AN7/C12IN3-  
RC4/C2OUT  
CMOS General purpose I/O.  
AN5  
AN  
AN  
ST  
A/D Channel 5 input.  
C12IN1-  
RC2  
Comparator C1 or C2 inverting input.  
CMOS General purpose I/O.  
AN6  
AN  
AN  
ST  
A/D Channel 6 input.  
C12IN2-  
RC3  
Comparator C1 or C2 inverting input.  
CMOS General purpose I/O.  
AN7  
AN  
AN  
ST  
A/D Channel 7 input.  
C12IN3-  
RC4  
Comparator C1 or C2 inverting input.  
CMOS General purpose I/O.  
CMOS Comparator C2 output.  
CMOS General purpose I/O.  
CMOS General purpose I/O.  
C2OUT  
RC5  
RC5  
ST  
RC6/AN8/SS  
RC6  
ST  
AN8  
AN  
ST  
A/D Channel 8 input.  
Slave Select input.  
SS  
RC7/AN9/SDO  
RC7  
ST  
CMOS General purpose I/O.  
A/D Channel 9 input.  
CMOS SPI data output.  
AN9  
AN  
SDO  
VSS  
VSS  
VDD  
Power  
Power  
Ground reference.  
Positive supply.  
VDD  
Legend:  
AN  
TTL  
HV  
=
=
=
Analog input or output  
TTL compatible input  
High Voltage  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
XTAL = Crystal  
© 2007 Microchip Technology Inc.  
DS41262D-page 17  
PIC16F631/677/685/687/689/690  
TABLE 1-3:  
PINOUT DESCRIPTION – PIC16F685  
Input Output  
Name  
Function  
Description  
Type  
Type  
RA0/AN0/C1IN+/ICSPDAT/  
ULPWU  
RA0  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-  
change. Individually enabled pull-up.  
AN0  
C1IN+  
AN  
AN  
A/D Channel 0 input.  
Comparator C1 positive input.  
ICSPDAT  
ULPWU  
RA1  
TTL  
AN  
CMOS ICSP™ Data I/O.  
Ultra Low-Power Wake-up input.  
RA1/AN1/C12IN0-/VREF/ICSPCLK  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-  
change. Individually enabled pull-up.  
AN1  
C12IN0-  
VREF  
AN  
AN  
AN  
ST  
ST  
A/D Channel 1 input.  
Comparator C1 or C2 negative input.  
External Voltage Reference for A/D.  
ICSP™ clock.  
ICSPCLK  
RA2  
RA2/AN2/T0CKI/INT/C1OUT  
CMOS General purpose I/O. Individually controlled interrupt-on-  
change. Individually enabled pull-up.  
AN2  
T0CKI  
INT  
AN  
ST  
ST  
A/D Channel 2 input.  
Timer0 clock input.  
External interrupt pin.  
C1OUT  
RA3  
CMOS Comparator C1 output.  
RA3/MCLR/VPP  
TTL  
General purpose input. Individually controlled interrupt-on-  
change.  
MCLR  
VPP  
ST  
HV  
Master Clear with internal pull-up.  
Programming voltage.  
RA4/AN3/T1G/OSC2/CLKOUT  
RA4  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-  
change. Individually enabled pull-up.  
AN3  
T1G  
AN  
ST  
A/D Channel 3 input.  
Timer1 gate input.  
OSC2  
CLKOUT  
RA5  
XTAL Crystal/Resonator.  
CMOS FOSC/4 output.  
RA5/T1CKI/OSC1/CLKIN  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-  
change. Individually enabled pull-up.  
T1CKI  
OSC1  
CLKIN  
RB4  
ST  
XTAL  
ST  
Timer1 clock input.  
Crystal/Resonator.  
External clock input/RC oscillator connection.  
RB4/AN10  
RB5/AN11  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-  
change. Individually enabled pull-up.  
AN10  
RB5  
AN  
A/D Channel 10 input.  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-  
change. Individually enabled pull-up.  
AN11  
RB6  
AN  
A/D Channel 11 input.  
RB6  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-  
change. Individually enabled pull-up.  
RB7  
RB7  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-  
change. Individually enabled pull-up.  
RC0/AN4/C2IN+  
RC0  
AN4  
ST  
AN  
AN  
CMOS General purpose I/O.  
A/D Channel 4 input.  
C2IN+  
Comparator C2 positive input.  
Legend:  
AN  
TTL  
HV  
=
=
=
Analog input or output  
TTL compatible input  
High Voltage  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
XTAL = Crystal  
DS41262D-page 18  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
TABLE 1-3:  
PINOUT DESCRIPTION – PIC16F685 (CONTINUED)  
Input Output  
Name  
Function  
Description  
Type  
Type  
RC1/AN5/C12IN1-  
RC1  
AN5  
ST  
AN  
AN  
ST  
CMOS General purpose I/O.  
A/D Channel 5 input.  
Comparator C1 or C2 negative input.  
C12IN1-  
RC2  
RC2/AN6/C12IN2-/P1D  
CMOS General purpose I/O.  
AN6  
AN  
AN  
A/D Channel 6 input.  
C12IN2-  
P1D  
Comparator C1 or C2 negative input.  
CMOS PWM output.  
RC3/AN7/C12IN3-/P1C  
RC3  
ST  
CMOS General purpose I/O.  
AN7  
AN  
AN  
A/D Channel 7 input.  
C12IN3-  
P1C  
Comparator C1 or C2 negative input.  
CMOS PWM output.  
RC4/C2OUT/P1B  
RC5/CCP1/P1A  
RC4  
ST  
CMOS General purpose I/O.  
CMOS Comparator C2 output.  
CMOS PWM output.  
C2OUT  
P1B  
RC5  
ST  
CMOS General purpose I/O.  
CMOS Capture/Compare input.  
CMOS PWM output.  
CCP1  
P1A  
ST  
ST  
RC6/AN8  
RC7/AN9  
RC6  
ST  
CMOS General purpose I/O.  
AN8  
AN  
ST  
A/D Channel 8 input.  
RC7  
CMOS General purpose I/O.  
AN9  
AN  
Power  
Power  
A/D Channel 9 input.  
Ground reference.  
Positive supply.  
VSS  
VDD  
VSS  
VDD  
Legend:  
AN  
TTL  
HV  
=
=
=
Analog input or output  
TTL compatible input  
High Voltage  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
XTAL = Crystal  
© 2007 Microchip Technology Inc.  
DS41262D-page 19  
PIC16F631/677/685/687/689/690  
TABLE 1-4:  
PINOUT DESCRIPTION – PIC16F687/PIC16F689  
Input Output  
Name  
Function  
Description  
Type  
Type  
RA0/AN0/C1IN+/ICSPDAT/  
ULPWU  
RA0  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-  
change. Individually enabled pull-up.  
AN0  
C1IN+  
AN  
AN  
A/D Channel 0 input.  
Comparator C1 positive input.  
ICSPDAT  
ULPWU  
RA1  
TTL  
AN  
CMOS ICSP™ Data I/O.  
Ultra Low-Power Wake-up input.  
RA1/AN1/C12IN0-/VREF/ICSPCLK  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-  
change. Individually enabled pull-up.  
AN1  
C12IN0-  
VREF  
AN  
AN  
AN  
ST  
ST  
A/D Channel 1 input.  
Comparator C1 or C2 negative input.  
External Voltage Reference for A/D.  
ICSP™ clock.  
ICSPCLK  
RA2  
RA2/AN2/T0CKI/INT/C1OUT  
CMOS General purpose I/O. Individually controlled interrupt-on-  
change. Individually enabled pull-up.  
AN2  
T0CKI  
INT  
AN  
ST  
ST  
A/D Channel 2 input.  
Timer0 clock input.  
External Interrupt.  
C1OUT  
RA3  
CMOS Comparator C1 output.  
RA3/MCLR/VPP  
TTL  
General purpose input. Individually controlled  
interrupt-on-change.  
MCLR  
VPP  
ST  
HV  
Master Clear with internal pull-up.  
Programming voltage.  
RA4/AN3/T1G/OSC2/CLKOUT  
RA4  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-  
change. Individually enabled pull-up.  
AN3  
T1G  
AN  
ST  
A/D Channel 3 input.  
Timer1 gate input.  
OSC2  
CLKOUT  
RA5  
XTAL Crystal/Resonator.  
CMOS FOSC/4 output.  
RA5/T1CKI/OSC1/CLKIN  
RB4/AN10/SDI/SDA  
RB5/AN11/RX/DT  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-  
change. Individually enabled pull-up.  
T1CKI  
OSC1  
CLKIN  
RB4  
ST  
XTAL  
ST  
Timer1 clock input.  
Crystal/Resonator.  
External clock input/RC oscillator connection.  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-  
change. Individually enabled pull-up.  
AN10  
SDI  
AN  
ST  
A/D Channel 10 input.  
SPI data input.  
2
SDA  
RB5  
ST  
OD  
I C™ data input/output.  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-  
change. Individually enabled pull-up.  
AN11  
RX  
AN  
ST  
ST  
A/D Channel 11 input.  
EUSART asynchronous input.  
DT  
CMOS EUSART synchronous data.  
Legend:  
AN  
TTL  
HV  
=
=
=
Analog input or output  
TTL compatible input  
High Voltage  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
XTAL = Crystal  
OD = Open Drain  
DS41262D-page 20  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
TABLE 1-4:  
PINOUT DESCRIPTION – PIC16F687/PIC16F689 (CONTINUED)  
Input Output  
Name  
Function  
Description  
Type  
Type  
RB6/SCK/SCL  
RB6  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-  
change. Individually enabled pull-up.  
SCK  
SCL  
RB7  
ST  
ST  
CMOS SPI clock.  
2
OD  
I C™ clock.  
RB7/TX/CK  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-  
change. Individually enabled pull-up.  
TX  
CK  
ST  
CMOS EUSART asynchronous output.  
CMOS EUSART synchronous clock.  
CMOS General purpose I/O.  
RC0/AN4/C2IN+  
RC1/AN5/C12IN1-  
RC2/AN6/C12IN2-  
RC3/AN7/C12IN3-  
RC4/C2OUT  
RC0  
ST  
AN4  
AN  
AN  
ST  
A/D Channel 4 input.  
C2IN+  
RC1  
Comparator C2 positive input.  
CMOS General purpose I/O.  
AN5  
AN  
AN  
ST  
A/D Channel 5 input.  
C12IN1-  
RC2  
Comparator C1 or C2 negative input.  
CMOS General purpose I/O.  
AN6  
AN  
AN  
ST  
A/D Channel 6 input.  
C12IN2-  
RC3  
Comparator C1 or C2 negative input.  
CMOS General purpose I/O.  
AN7  
AN  
AN  
ST  
A/D Channel 7 input.  
C12IN3-  
RC4  
Comparator C1 or C2 negative input.  
CMOS General purpose I/O.  
CMOS Comparator C2 output.  
CMOS General purpose I/O.  
CMOS General purpose I/O.  
C2OUT  
RC5  
RC5  
ST  
RC6/AN8/SS  
RC6  
ST  
AN8  
AN  
ST  
A/D Channel 8 input.  
Slave Select input.  
SS  
RC7/AN9/SDO  
RC7  
ST  
CMOS General purpose I/O.  
A/D Channel 9 input.  
CMOS SPI data output.  
AN9  
AN  
SDO  
VSS  
VSS  
VDD  
Power  
Power  
Ground reference.  
Positive supply.  
VDD  
Legend:  
AN  
TTL  
HV  
=
=
=
Analog input or output  
TTL compatible input  
High Voltage  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
XTAL = Crystal  
OD = Open Drain  
© 2007 Microchip Technology Inc.  
DS41262D-page 21  
PIC16F631/677/685/687/689/690  
TABLE 1-5:  
PINOUT DESCRIPTION – PIC16F690  
Input Output  
Name  
Function  
Description  
Type  
Type  
RA0/AN0/C1IN+/ICSPDAT/  
ULPWU  
RA0  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-  
change. Individually enabled pull-up.  
AN0  
C1IN+  
AN  
AN  
A/D Channel 0 input.  
Comparator C1 positive input.  
ICSPDAT  
ULPWU  
RA1  
TTL  
AN  
CMOS ICSP™ Data I/O.  
Ultra Low-Power Wake-up input.  
RA1/AN1/C12IN0-/VREF/ICSPCLK  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-  
change. Individually enabled pull-up.  
AN1  
C12IN0-  
VREF  
AN  
AN  
AN  
ST  
ST  
A/D Channel 1 input.  
Comparator C1 or C2 negative input.  
External Voltage Reference for A/D.  
ICSP™ clock.  
ICSPCLK  
RA2  
RA2/AN2/T0CKI/INT/C1OUT  
CMOS General purpose I/O. Individually controlled interrupt-on-  
change. Individually enabled pull-up.  
AN2  
T0CKI  
INT  
AN  
ST  
ST  
A/D Channel 2 input.  
Timer0 clock input.  
External interrupt.  
C1OUT  
RA3  
CMOS Comparator C1 output.  
RA3/MCLR/VPP  
TTL  
General purpose input. Individually controlled interrupt-on-  
change.  
MCLR  
VPP  
ST  
HV  
Master Clear with internal pull-up.  
Programming voltage.  
RA4/AN3/T1G/OSC2/CLKOUT  
RA4  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-  
change. Individually enabled pull-up.  
AN3  
T1G  
AN  
ST  
A/D Channel 3 input.  
Timer1 gate input.  
OSC2  
CLKOUT  
RA5  
XTAL Crystal/Resonator.  
CMOS FOSC/4 output.  
RA5/T1CKI/OSC1/CLKIN  
RB4/AN10/SDI/SDA  
RB5/AN11/RX/DT  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-  
change. Individually enabled pull-up.  
T1CKI  
OSC1  
CLKIN  
RB4  
ST  
XTAL  
ST  
Timer1 clock input.  
Crystal/Resonator.  
External clock input/RC oscillator connection.  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-  
change. Individually enabled pull-up.  
AN10  
SDI  
AN  
ST  
A/D Channel 10 input.  
SPI data input.  
2
SDA  
RB5  
ST  
OD  
I C™ data input/output.  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-  
change. Individually enabled pull-up.  
AN11  
RX  
AN  
ST  
ST  
A/D Channel 11 input.  
EUSART asynchronous input.  
DT  
CMOS EUSART synchronous data.  
Legend:  
AN  
TTL  
HV  
=
=
=
Analog input or output  
TTL compatible input  
High Voltage  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
XTAL = Crystal  
OD = Open Drain  
DS41262D-page 22  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
TABLE 1-5:  
PINOUT DESCRIPTION – PIC16F690 (CONTINUED)  
Input Output  
Name  
Function  
Description  
Type  
Type  
RB6/SCK/SCL  
RB6  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-  
change. Individually enabled pull-up.  
SCK  
SCL  
RB7  
ST  
ST  
CMOS SPI clock.  
2
OD  
I C™ clock.  
RB7/TX/CK  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-  
change. Individually enabled pull-up.  
TX  
CK  
ST  
ST  
AN  
AN  
ST  
AN  
AN  
ST  
AN  
AN  
CMOS EUSART asynchronous output.  
CMOS EUSART synchronous clock.  
CMOS General purpose I/O.  
RC0/AN4/C2IN+  
RC0  
AN4  
A/D Channel 4 input.  
C2IN+  
RC1  
Comparator C2 positive input.  
RC1/AN5/C12IN1-  
RC2/AN6/C12IN2-/P1D  
CMOS General purpose I/O.  
AN5  
A/D Channel 5 input.  
C12IN1-  
RC2  
Comparator C1 or C2 negative input.  
CMOS General purpose I/O.  
AN6  
A/D Channel 6 input.  
C12IN2-  
P1D  
Comparator C1 or C2 negative input.  
CMOS PWM output.  
RC3/AN7/C12IN3-/P1C  
RC3  
ST  
AN  
AN  
CMOS General purpose I/O.  
AN7  
A/D Channel 7 input.  
C12IN3-  
P1C  
Comparator C1 or C2 negative input.  
CMOS PWM output.  
RC4/C2OUT/P1B  
RC5/CCP1/P1A  
RC6/AN8/SS  
RC4  
ST  
CMOS General purpose I/O.  
CMOS Comparator C2 output.  
CMOS PWM output.  
C2OUT  
P1B  
RC5  
ST  
ST  
ST  
ST  
AN  
ST  
ST  
AN  
CMOS General purpose I/O.  
CMOS Capture/Compare input.  
CMOS PWM output.  
CCP1  
P1A  
RC6  
CMOS General purpose I/O.  
AN8  
A/D Channel 8 input.  
Slave Select input.  
SS  
RC7/AN9/SDO  
RC7  
CMOS General purpose I/O.  
A/D Channel 9 input.  
CMOS SPI data output.  
AN9  
SDO  
VSS  
VSS  
VDD  
Power  
Power  
Ground reference.  
Positive supply.  
VDD  
Legend:  
AN  
TTL  
HV  
=
=
=
Analog input or output  
TTL compatible input  
High Voltage  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
XTAL = Crystal  
OD = Open Drain  
© 2007 Microchip Technology Inc.  
DS41262D-page 23  
PIC16F631/677/685/687/689/690  
NOTES:  
DS41262D-page 24  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
FIGURE 2-2:  
PROGRAM MEMORY MAP  
AND STACK FOR THE  
PIC16F685/689/690  
2.0  
2.1  
MEMORY ORGANIZATION  
Program Memory Organization  
The PIC16F631/677/685/687/689/690 has a 13-bit  
program counter capable of addressing an 8K x 14  
program memory space. Only the first 1K x 14  
(0000h-03FFh) is physically implemented for the  
PIC16F631, the first 2K x 14 (0000h-07FFh) for the  
PIC16F677/PIC16F687, and the first 4K x 14  
(0000h-0FFFh) for the PIC16F685/PIC16F689/  
PC<12:0>  
13  
CALL, RETURN  
RETFIE, RETLW  
Stack Level 1  
Stack Level 2  
PIC16F690. Accessing  
a location above these  
boundaries will cause a wraparound. The Reset vector  
is at 0000h and the interrupt vector is at 0004h (see  
Figures 2-1 through 2-3).  
Stack Level 8  
Reset Vector  
0000h  
FIGURE 2-1:  
PROGRAM MEMORY MAP  
AND STACK FOR THE  
PIC16F631  
0004h  
0005h  
Interrupt Vector  
On-chip Program  
Memory  
PC<12:0>  
13  
CALL, RETURN  
RETFIE, RETLW  
0FFFh  
1000h  
Stack Level 1  
Stack Level 2  
Access 0-FFFh  
1FFFh  
Stack Level 8  
Reset Vector  
0000h  
0004h  
0005h  
Interrupt Vector  
On-chip Program  
Memory  
03FFh  
0400h  
Access 0-3FFh  
1FFFh  
© 2007 Microchip Technology Inc.  
DS41262D-page 25  
PIC16F631/677/685/687/689/690  
FIGURE 2-3:  
PROGRAM MEMORY MAP  
AND STACK FOR THE  
PIC16F677/PIC16F687  
2.2  
Data Memory Organization  
The data memory (see Figures 2-6 through 2-8) is  
partitioned into four banks which contain the General  
Purpose Registers (GPR) and the Special Function  
Registers (SFR). The Special Function Registers are  
located in the first 32 locations of each bank. The  
General Purpose Registers, implemented as static  
RAM, are located in the last 96 locations of each Bank.  
Register locations F0h-FFh in Bank 1, 170h-17Fh in  
Bank 2 and 1F0h-1FFh in Bank 3 point to addresses  
70h-7Fh in Bank 0. The actual number of General  
Purpose Resisters (GPR) in each Bank depends on the  
device. Details are shown in Figures 2-4 through 2-8.  
All other RAM is unimplemented and returns ‘0’ when  
read. RP<1:0> of the STATUS register are the bank  
select bits:  
PC<12:0>  
13  
CALL, RETURN  
RETFIE, RETLW  
Stack Level 1  
Stack Level 2  
Stack Level 8  
Reset Vector  
0000h  
RP1  
0
RP0  
0
0004h  
0005h  
Interrupt Vector  
Bank 0 is selected  
Bank 1 is selected  
Bank 2 is selected  
Bank 3 is selected  
0
1
On-chip Program  
Memory  
1
0
1
1
07FFh  
0800h  
2.2.1  
GENERAL PURPOSE REGISTER  
FILE  
Access 0-7FFh  
The register file is organized as 128 x 8 in the  
PIC16F687 and 256 in the  
1FFFh  
x
8
PIC16F685/PIC16F689/PIC16F690. Each register is  
accessed, either directly or indirectly, through the File  
Select Register (FSR) (see Section 2.4 “Indirect  
Addressing, INDF and FSR Registers”).  
2.2.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers are registers used by  
the CPU and peripheral functions for controlling the  
desired operation of the device (see Tables 2-1  
through 2-4). These registers are static RAM.  
The special registers can be classified into two sets:  
core and peripheral. The Special Function Registers  
associated with the “core” are described in this section.  
Registers related to the operation of peripheral features  
are described in the section of that peripheral feature.  
DS41262D-page 26  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
FIGURE 2-4:  
PIC16F631 SPECIAL FUNCTION REGISTERS  
File  
File  
File  
File  
Address  
Address  
Address  
Address  
Indirect addr. (1) 00h  
Indirect addr. (1) 80h  
Indirect addr. (1) 100h  
Indirect addr. (1) 180h  
TMR0  
PCL  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
OPTION_REG 81h  
TMR0  
PCL  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
OPTION_REG 181h  
PCL  
STATUS  
FSR  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
PCL  
STATUS  
FSR  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
1A0h  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
TRISC  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
TRISC  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
PCLATH  
INTCON  
EEDAT  
PCLATH  
INTCON  
EECON1  
EECON2(1)  
PIR2  
PIE2  
EEADR  
TMR1L  
TMR1H  
T1CON  
PCON  
OSCCON  
OSCTUNE  
WPUA  
IOCA  
WPUB  
IOCB  
WDTCON  
VRCON  
CM1CON0  
CM2CON0  
CM2CON1  
ANSEL  
SRCON  
3Fh  
40h  
General  
Purpose  
Registers  
6Fh  
70h  
7Fh  
EFh  
F0h  
FFh  
16Fh  
170h  
17Fh  
1EFh  
1F0h  
1FFh  
64 Bytes  
Bank 0  
accesses  
70h-7Fh  
accesses  
70h-7Fh  
accesses  
70h-7Fh  
Bank 1  
Bank 2  
Bank 3  
Unimplemented data memory locations, read as ‘0’.  
Note 1: Not a physical register.  
© 2007 Microchip Technology Inc.  
DS41262D-page 27  
PIC16F631/677/685/687/689/690  
FIGURE 2-5:  
PIC16F677 SPECIAL FUNCTION REGISTERS  
File  
Address  
Indirect addr. (1) 00h  
File  
File  
File  
Address  
Indirect addr. (1) 80h  
Address  
Indirect addr. (1) 100h  
Address  
Indirect addr. (1) 180h  
TMR0  
PCL  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
OPTION_REG 81h  
TMR0  
PCL  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
OPTION_REG 181h  
PCL  
STATUS  
FSR  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
PCL  
STATUS  
FSR  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
1A0h  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
TRISC  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
TRISC  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
PCLATH  
INTCON  
EEDAT  
PCLATH  
INTCON  
EECON1  
EECON2(1)  
PIR2  
PIE2  
EEADR  
TMR1L  
TMR1H  
T1CON  
PCON  
OSCCON  
OSCTUNE  
SSPBUF  
SSPCON  
SSPADD(2)  
SSPSTAT  
WPUA  
WPUB  
IOCB  
IOCA  
WDTCON  
VRCON  
CM1CON0  
CM2CON0  
CM2CON1  
ADRESH  
ADCON0  
ADRESL  
ADCON1  
ANSEL  
SRCON  
ANSELH  
General  
Purpose  
Register  
General  
Purpose  
Register  
32 Bytes  
BFh  
C0h  
96 Bytes  
EFh  
F0h  
FFh  
16Fh  
170h  
17Fh  
1EFh  
1F0h  
1FFh  
accesses  
70h-7Fh  
accesses  
70h-7Fh  
accesses  
70h-7Fh  
7Fh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Unimplemented data memory locations, read as ‘0’.  
Note 1: Not a physical register.  
2: Address 93h also accesses the SSP Mask (SSPMSK) register under certain conditions.  
See Registers 13-2 and 13-3 for more details.  
DS41262D-page 28  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
FIGURE 2-6:  
PIC16F685 SPECIAL FUNCTION REGISTERS  
File  
File  
File  
File  
Address  
Address  
Address  
Address  
Indirect addr. (1) 00h  
Indirect addr. (1) 80h  
Indirect addr. (1) 100h  
Indirect addr. (1) 180h  
TMR0  
PCL  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
OPTION_REG 81h  
TMR0  
PCL  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
OPTION_REG 181h  
PCL  
STATUS  
FSR  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
PCL  
STATUS  
FSR  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
1A0h  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
TRISC  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
TRISC  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
PCLATH  
INTCON  
EEDAT  
PCLATH  
INTCON  
EECON1  
EECON2(1)  
PIR2  
PIE2  
EEADR  
EEDATH  
EEADRH  
TMR1L  
TMR1H  
T1CON  
TMR2  
PCON  
OSCCON  
OSCTUNE  
T2CON  
PR2  
CCPR1L  
CCPR1H  
CCP1CON  
WPUA  
IOCA  
WPUB  
IOCB  
WDTCON  
VRCON  
CM1CON0  
CM2CON0  
CM2CON1  
PWM1CON  
ECCPAS  
ADRESH  
ADCON0  
PSTRCON  
SRCON  
ADRESL  
ADCON1  
ANSEL  
ANSELH  
General  
Purpose  
Register  
General  
Purpose  
Register  
General  
Purpose  
Register  
80 Bytes  
80 Bytes  
96 Bytes  
EFh  
F0h  
FFh  
16Fh  
170h  
17Fh  
accesses  
70h-7Fh  
accesses  
70h-7Fh  
accesses  
70h-7Fh  
1F0h  
1FFh  
7Fh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Unimplemented data memory locations, read as ‘0’.  
Note 1: Not a physical register.  
© 2007 Microchip Technology Inc.  
DS41262D-page 29  
PIC16F631/677/685/687/689/690  
FIGURE 2-7:  
PIC16F687/PIC16F689 SPECIAL FUNCTION REGISTERS  
File  
File  
File  
File  
Address  
Address  
Address  
Address  
Indirect addr. (1) 00h  
Indirect addr. (1) 80h  
Indirect addr. (1) 100h  
Indirect addr. (1) 180h  
TMR0  
PCL  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
OPTION_REG 81h  
TMR0  
PCL  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
OPTION_REG 181h  
PCL  
STATUS  
FSR  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
PCL  
STATUS  
FSR  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
1A0h  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
TRISC  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
TRISC  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
PCLATH  
INTCON  
EEDAT  
PCLATH  
INTCON  
EECON1  
EECON2(1)  
PIR2  
PIE2  
EEADR  
TMR1L  
TMR1H  
T1CON  
PCON  
EEDATH(3)  
EEADRH(3)  
OSCCON  
OSCTUNE  
SSPBUF  
SSPCON  
SSPADD(2)  
SSPSTAT  
WPUA  
WPUB  
IOCB  
IOCA  
WDTCON  
TXSTA  
RCSTA  
TXREG  
RCREG  
VRCON  
SPBRG  
CM1CON0  
CM2CON0  
CM2CON1  
SPBRGH  
BAUDCTL  
ADRESH  
ADCON0  
ADRESL  
ADCON1  
ANSEL  
SRCON  
ANSELH  
General  
Purpose  
Register  
32 Bytes  
General  
Purpose  
Register  
80 Bytes  
(PIC16F689  
only)  
General  
Purpose  
Register  
BFh  
C0h  
48 Bytes  
(PIC16F689  
only)  
96 Bytes  
EFh  
F0h  
FFh  
accesses  
70h-7Fh  
accesses  
70h-7Fh  
170h  
17Fh  
accesses  
70h-7Fh  
1F0h  
1FFh  
7Fh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Unimplemented data memory locations, read as ‘0’.  
Note 1: Not a physical register.  
2: Address 93h also accesses the SSP Mask (SSPMSK) register under certain conditions.  
See Registers 13-2 and 13-3 for more details.  
3: PIC16F689 only.  
DS41262D-page 30  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
FIGURE 2-8:  
PIC16F690 SPECIAL FUNCTION REGISTERS  
File  
File  
File  
File  
Address  
Address  
Address  
Address  
Indirect addr. (1) 00h  
Indirect addr. (1) 80h  
Indirect addr. (1) 100h  
Indirect addr. (1) 180h  
TMR0  
PCL  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
OPTION_REG 81h  
TMR0  
PCL  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
OPTION_REG 181h  
PCL  
STATUS  
FSR  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
PCL  
STATUS  
FSR  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
1A0h  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
TRISC  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
TRISC  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
PCLATH  
INTCON  
EEDAT  
PCLATH  
INTCON  
EECON1  
EECON2(1)  
PIR2  
PIE2  
EEADR  
EEDATH  
EEADRH  
TMR1L  
TMR1H  
T1CON  
TMR2  
PCON  
OSCCON  
OSCTUNE  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
RCREG  
PR2  
SSPADD(2)  
SSPSTAT  
WPUA  
WPUB  
IOCB  
IOCA  
WDTCON  
TXSTA  
VRCON  
SPBRG  
SPBRGH  
BAUDCTL  
CM1CON0  
CM2CON0  
CM2CON1  
PWM1CON  
ECCPAS  
ADRESH  
ADCON0  
PSTRCON  
SRCON  
ADRESL  
ADCON1  
ANSEL  
ANSELH  
General  
Purpose  
Register  
General  
Purpose  
Register  
General  
Purpose  
Register  
80 Bytes  
80 Bytes  
96 Bytes  
EFh  
F0h  
FFh  
16Fh  
170h  
17Fh  
accesses  
70h-7Fh  
accesses  
70h-7Fh  
accesses  
70h-7Fh  
1F0h  
1FFh  
7Fh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Unimplemented data memory locations, read as ‘0’.  
Note 1: Not a physical register.  
2: Address 93h also accesses the SSP Mask (SSPMSK) register under certain conditions.  
See Registers 13-2 and 13-3 for more details.  
© 2007 Microchip Technology Inc.  
DS41262D-page 31  
PIC16F631/677/685/687/689/690  
TABLE 2-1:  
PIC16F631/677/685/687/689/690 SPECIAL FUNCTION REGISTERS SUMMARY BANK 0  
Value on  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 Module Register  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0001 1xxx  
xxxx xxxx  
--xx xxxx  
xxxx ----  
xxxx xxxx  
44,201  
81,201  
44,201  
36,201  
44,201  
59,201  
69,201  
76,201  
TMR0  
PCL  
Program Counter’s (PC) Least Significant Byte  
STATUS  
FSR  
PORTA(7)  
PORTB(7)  
PORTC(7)  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address Pointer  
RA5  
RB5  
RC5  
RA4  
RB4  
RC4  
RA3  
RA2  
RA1  
RA0  
RB7  
RB6  
RC6  
RC7  
RC3  
RC2  
RC1  
RC0  
Unimplemented  
Unimplemented  
0Ah PCLATH  
0Bh INTCON  
0Ch PIR1  
Write Buffer for upper 5 bits of Program Counter  
---0 0000  
44,201  
38,201  
41,201  
42,201  
86,201  
86,201  
GIE  
PEIE  
ADIF(4)  
C2IF  
T0IE  
INTE  
TXIF(2)  
EEIF  
RABIE  
T0IF  
INTF  
RABIF(1) 0000 000x  
RCIF(2)  
C1IF  
SSPIF(5) CCP1IF(3) TMR2IF(3) TMR1IF -000 0000  
0Dh PIR2  
OSFIF  
0000 ----  
xxxx xxxx  
xxxx xxxx  
0Eh TMR1L  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
0Fh  
TMR1H  
10h  
11h  
12h  
13h  
14h  
T1CON  
TMR2(3)  
T2CON(3)  
SSPBUF(5)  
SSPCON(5, 6)  
T1GINV  
Timer2 Module Register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000  
TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000  
88,201  
91,201  
92,201  
178,201  
177,201  
0000 0000  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL SSPOV SSPEN CKP SSPM3  
xxxx xxxx  
SSPM0 0000 0000  
xxxx xxxx  
SSPM2  
SSPM1  
15h  
16h  
17h  
18h  
19h  
CCPR1L(3)  
CCPR1H(3)  
CCP1CON(3)  
RCSTA(2)  
Capture/Compare/PWM Register 1 (LSB)  
Capture/Compare/PWM Register 1 (MSB)  
128,201  
128,201  
127,201  
xxxx xxxx  
P1M1  
SPEN  
P1M0  
RX9  
DC1B1  
SREN  
DC1B0  
CREN  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 0000 0000  
ADDEN  
FERR  
OERR  
RX9D  
0000 000x  
0000 0000  
0000 0000  
159,201  
151  
TXREG(2)  
EUSART Transmit Data Register  
EUSART Receive Data Register  
Unimplemented  
1Ah RCREG(2)  
154  
1Bh  
1Ch  
1Dh  
PWM1CON(3)  
PRSEN  
PDC6  
PDC5  
PDC4  
PDC3  
PDC2  
PDC1  
PDC0  
0000 0000  
144,201  
ECCPAS(3)  
ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1  
A/D Result Register High Byte  
PSSAC0  
PSSBD1  
PSSBD0 0000 0000  
141,201  
115,201  
113,201  
1Eh ADRESH(4)  
xxxx xxxx  
1Fh  
ADCON0(4)  
ADFM  
VCFG  
CHS3  
CHS2  
CHS1  
CHS0  
GO/DONE  
ADON  
0000 0000  
Legend:  
– = Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition, shaded = unimplemented  
Note 1:  
MCLR and WDT Reset do not affect the previous value data latch. The RABIF bit will be cleared upon Reset but will set again if the  
mismatch exists.  
2:  
3:  
4:  
5:  
6:  
PIC16F687/PIC16F689/PIC16F690 only.  
PIC16F685/PIC16F690 only.  
PIC16F677/PIC16F685/PIC16F687/PIC16F689/PIC16F690 only.  
PIC16F677/PIC16F687/PIC16F689/PIC16F690 only.  
When SSPCON register bits SSPM<3:0> = 1001, any reads or writes to the SSPADD SFR address are accessed through the SSPMSK  
register. See Registers 13-2 and 13-3 for more detail.  
7:  
Port pins with analog functions controlled by the ANSEL and ANSELH registers will read ‘0’ immediately after a Reset even though the  
data latches are either undefined (POR) or unchanged (other Resets).  
DS41262D-page 32  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
TABLE 2-2:  
PIC16F631/677/685/687/689/690 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1  
Value on  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 1  
80h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register) xxxx xxxx  
44,201  
37,201  
44,201  
81h  
OPTION_REG RABPU  
INTEDG  
Program Counter’s (PC) Least Significant Byte  
IRP RP1 RP0 TO  
Indirect Data Memory Address Pointer  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
1111 1111  
0000 0000  
82h  
PCL  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
STATUS  
FSR  
PD  
Z
DC  
C
0001 1xxx  
xxxx xxxx  
--11 1111  
1111 ----  
1111 1111  
36,201  
44,201  
59,201  
70,202  
76,201  
TRISA  
TRISB  
TRISC  
TRISA5  
TRISB5  
TRISC5  
TRISA4  
TRISB4  
TRISC4  
TRISA3  
TRISA2  
TRISA1  
TRISA0  
TRISB7  
TRISC7  
TRISB6  
TRISC6  
TRISC3  
TRISC2  
TRISC1  
TRISC0  
Unimplemented  
Unimplemented  
8Ah PCLATH  
8Bh INTCON  
Write Buffer for the upper 5 bits of the Program Counter  
---0 0000  
0000 000x  
44,201  
38,201  
GIE  
PEIE  
T0IE  
INTE  
RABIE  
T0IF  
INTF  
RABIF(1)  
8Ch PIE1  
8Dh PIE2  
8Eh PCON  
OSFIE  
ADIE(4)  
C2IE  
RCIE(2)  
C1IE  
TXIE(2)  
EEIE  
SSPIE(5) CCP1IE(3) TMR2IE(3) TMR1IE  
-000 0000  
0000 ----  
--01 --qq  
-110 q000  
---0 0000  
39,202  
40,202  
43,202  
48,202  
52,202  
ULPWUE SBOREN  
POR  
LTS  
BOR  
SCS  
TUN0  
8Fh  
90h  
91h  
92h  
93h  
OSCCON  
OSCTUNE  
IRCF2  
IRCF1  
IRCF0  
TUN4  
OSTS  
TUN3  
HTS  
TUN2  
TUN1  
Unimplemented  
PR2(3)  
Timer2 Period Register  
1111 1111  
0000 0000  
91,202  
184,202  
SSPADD(5, 7)  
Synchronous Serial Port (I2C mode) Address Register  
93h  
94h  
95h  
96h  
97h  
SSPMSK(5, 7)  
SSPSTAT(5)  
WPUA(6)  
MSK7  
SMP  
MSK6  
CKE  
MSK5  
D/A  
MSK4  
P
MSK3  
S
MSK2  
R/W  
MSK1  
UA  
MSK0  
BF  
1111 1111  
0000 0000  
--11 -111  
--00 0000  
187,202  
176,202  
62,202  
WPUA5  
IOCA5  
WPUA4  
IOCA4  
WPUA2  
IOCA2  
WPUA1  
IOCA1  
WPUA0  
IOCA0  
IOCA  
IOCA3  
62,202  
WDTCON  
WDTPS3 WDTPS2 WDTPS1 WDTPS0 SWDTEN ---0 1000  
209,202  
98h  
99h  
TXSTA(2)  
SPBRG(2)  
CSRC  
BRG7  
TX9  
TXEN  
BRG5  
BRG13  
SYNC  
BRG4  
BRG12  
SCKP  
SENDB  
BRG3  
BRGH  
BRG2  
BRG10  
TRMT  
BRG1  
BRG9  
WUE  
TX9D  
BRG0  
BRG8  
ABDEN  
0000 0010  
0000 0000  
0000 0000  
01-0 0-00  
158,202  
161,202  
161,202  
160,202  
BRG6  
BRG14  
RCIDL  
9Ah SPBRGH(2)  
9Bh BAUDCTL(2)  
BRG15  
ABDOVF  
BRG11  
BRG16  
9Ch  
9Dh  
Unimplemented  
Unimplemented  
9Eh ADRESL(4)  
A/D Result Register Low Byte  
ADCS2 ADCS1  
xxxx xxxx  
-000 ----  
115,202  
114,202  
9Fh  
ADCON1(4)  
ADCS0  
Legend:  
Note 1:  
– = Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition, shaded = unimplemented  
MCLR and WDT Reset do not affect the previous value data latch. The RABIF bit will be cleared upon Reset but will set again if the  
mismatch exists.  
2:  
3:  
4:  
5:  
6:  
7:  
PIC16F687/PIC16F689/PIC16F690 only.  
PIC16F685/PIC16F690 only.  
PIC16F677/PIC16F685/PIC16F687/PIC16F689/PIC16F690 only.  
PIC16F677/PIC16F687/PIC16F689/PIC16F690 only.  
RA3 pull-up is enabled when pin is configured as MCLR in Configuration Word.  
Accessible only when SSPCON register bits SSPM<3:0> = 1001.  
© 2007 Microchip Technology Inc.  
DS41262D-page 33  
PIC16F631/677/685/687/689/690  
TABLE 2-3:  
PIC16F631/677/685/687/689/690 SPECIAL FUNCTION REGISTERS SUMMARY BANK 2  
Value on  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 2  
100h INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 Module Register  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0001 1xxx  
xxxx xxxx  
--xx xxxx  
xxxx ----  
xxxx xxxx  
44,201  
81,201  
44,201  
36,201  
44,201  
59,201  
69,201  
76,201  
101h TMR0  
102h PCL  
Program Counter’s (PC) Least Significant Byte  
103h STATUS  
104h FSR  
105h PORTA(4)  
106h PORTB(4)  
107h PORTC(4)  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address Pointer  
RA5  
RB5  
RC5  
RA4  
RB4  
RC4  
RA3  
RA2  
RA1  
RA0  
RB7  
RB6  
RC6  
RC7  
RC3  
RC2  
RC1  
RC0  
108h  
109h  
Unimplemented  
Unimplemented  
10Ah PCLATH  
10Bh INTCON  
Write Buffer for the upper 5 bits of the Program Counter  
---0 0000  
44,201  
38,201  
GIE  
PEIE  
T0IE  
INTE  
RABIE  
EEDAT3  
EEADR3  
T0IF  
INTF  
RABIF(1) 0000 000x  
EEDAT  
EEADR  
EEDAT7  
EEDAT6  
EEDAT5  
EEDAT4  
EEDAT2  
EEADR2  
EEDAT1  
EEADR1  
EEDAT0 0000 0000 120,202  
EEADR0 0000 0000 120,202  
10Ch  
EEADR7(3) EEADR6 EEADR5 EEADR4  
10Dh  
10Eh EEDATH(2)  
10Fh EEADRH(2)  
--00 0000 120,202  
---- 0000 120,202  
EEDATH5 EEDATH4 EEDATH3 EEDATH2 EEDATH1 EEDATH0  
EEADRH3 EEADRH2 EEADRH1 EEADRH0  
110h  
111h  
112h  
113h  
114h  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
115h WPUB  
116h IOCB  
WPUB7  
IOCB7  
WPUB6  
IOCB6  
WPUB5  
IOCB5  
WPUB4  
IOCB4  
1111 ----  
0000 ----  
70,202  
70,202  
117h  
Unimplemented  
118h VRCON  
119h CM1CON0  
11Ah CM2CON0  
11Bh CM2CON1  
C1VREN  
C1ON  
C2VREN  
VRR  
C1OE  
C2OE  
VP6EN  
C1POL  
C2POL  
VR3  
VR2  
C1R  
C2R  
VR1  
VR0  
0000 0000 106,202  
C1OUT  
C2OUT  
C1CH1  
C2CH1  
T1GSS  
C1CH0  
C2CH0  
0000 -000  
0000 -000  
98,202  
99,202  
C2ON  
MC1OUT MC2OUT  
Unimplemented  
C2SYNC 00-- --10 101,202  
11Ch  
11Dh  
Unimplemented  
11Eh ANSEL  
11Fh ANSELH(3)  
ANS7  
ANS6  
ANS5  
ANS4  
ANS3(3)  
ANS11  
ANS2(3)  
ANS10  
ANS1  
ANS9  
ANS0  
ANS8  
1111 1111  
---- 1111  
61,202  
115,202  
Legend:  
– = Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition, shaded = unimplemented  
Note 1:  
MCLR and WDT Reset does not affect the previous value data latch. The RABIF bit will be cleared upon Reset but will set again if the  
mismatch exists.  
2:  
3:  
4:  
PIC16F685/PIC16F689/PIC16F690 only.  
PIC16F677/PIC16F685/PIC16F687/PIC16F689/PIC16F690 only.  
Port pins with analog functions controlled by the ANSEL and ANSELH registers will read ‘0’ immediately after a Reset even though the  
data latches are either undefined (POR) or unchanged (other Resets).  
DS41262D-page 34  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
TABLE 2-4:  
PIC16F631/677/685/687/689/690 SPECIAL FUNCTION REGISTERS SUMMARY BANK 3  
Value on  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 3  
180h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register) xxxx xxxx  
44,201  
37,201  
44,201  
181h  
OPTION_REG RABPU  
INTEDG  
Program Counter’s (PC) Least Significant Byte  
IRP RP1 RP0 TO  
Indirect Data Memory Address Pointer  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
1111 1111  
0000 0000  
182h  
PCL  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
STATUS  
FSR  
PD  
Z
DC  
C
0001 1xxx  
xxxx xxxx  
--11 1111  
1111 ----  
1111 1111  
36,201  
44,201  
59,201  
70,202  
76,202  
TRISA  
TRISB  
TRISC  
TRISA5  
TRISB5  
TRISC5  
TRISA4  
TRISB4  
TRISC4  
TRISA3  
TRISA2  
TRISA1  
TRISA0  
TRISB7  
TRISC7  
TRISB6  
TRISC6  
TRISC3  
TRISC2  
TRISC1  
TRISC0  
Unimplemented  
Unimplemented  
18Ah PCLATH  
18Bh INTCON  
18Ch EECON1  
18Dh EECON2  
T0IE  
Write Buffer for the upper 5 bits of the Program Counter  
---0 0000  
44,201  
38,201  
121,202  
119,202  
GIE  
PEIE  
INTE  
RABIE  
T0IF  
INTF  
WR  
RABIF(1) 0000 000x  
EEPGD(2)  
WRERR  
WREN  
RD  
x--- x000  
EEPROM Control Register 2 (not a physical register)  
Unimplemented  
---- ----  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
19Dh PSTRCON(2)  
STRSYNC  
C2REN  
STRD  
STRC  
STRB  
STRA  
---0 0001  
0000 00--  
145,202  
103,202  
19Eh SRCON  
SR1  
SR0  
C1SEN  
PULSS  
PULSR  
19Fh  
Unimplemented  
Legend:  
– = Unimplemented locations read as ‘0’, u= unchanged, x= unknown, q= value depends on condition, shaded = unimplemented  
Note 1:  
MCLR and WDT Reset does not affect the previous value data latch. The RABIF bit will be cleared upon Reset but will set again if the  
mismatch exists.  
2:  
PIC16F685/PIC16F690 only.  
© 2007 Microchip Technology Inc.  
DS41262D-page 35  
PIC16F631/677/685/687/689/690  
For example, CLRF STATUS,will clear the upper three  
bits and set the Z bit. This leaves the STATUS register  
as ‘000u u1uu(where u= unchanged).  
2.2.2.1  
STATUS Register  
The STATUS register, shown in Register 2-1, contains:  
• the arithmetic status of the ALU  
• the Reset status  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register, because these instructions do not  
affect any Status bits. For other instructions not affect-  
ing any Status bits, see Section 15.0 “Instruction Set  
Summary”  
• the bank select bits for data memory (GPR and  
SFR)  
The STATUS register can be the destination for any  
instruction, like any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 1: The C and DC bits operate as a Borrow  
and Digit Borrow out bit, respectively, in  
subtraction. See the SUBLW and SUBWF  
instructions for examples.  
REGISTER 2-1:  
STATUS: STATUS REGISTER  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC(1)  
R/W-x  
C(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
IRP: Register Bank Select bit (used for indirect addressing)  
1= Bank 2, 3 (100h-1FFh)  
0= Bank 0, 1 (00h-FFh)  
bit 6-5  
RP<1:0>: Register Bank Select bits (used for direct addressing)  
00= Bank 0 (00h-7Fh)  
01= Bank 1 (80h-FFh)  
10= Bank 2 (100h-17Fh)  
11= Bank 3 (180h-1FFh)  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit Carry/Borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions)(1)  
1= A carry-out from the 4th low-order bit of the result occurred  
0= No carry-out from the 4th low-order bit of the result  
C: Carry/Borrow bit(1) (ADDWF, ADDLW, SUBLW, SUBWF instructions)(1)  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two’s complement of the  
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order  
bit of the source register.  
DS41262D-page 36  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
2.2.2.2  
OPTION Register  
Note:  
To achieve a 1:1 prescaler assignment for  
Timer0, assign the prescaler to the WDT by  
setting PSA bit of the OPTION register to  
1’. See Section 6.3 “Timer1 Prescaler”.  
The OPTION register, shown in Register 2-2, is a  
readable and writable register, which contains various  
control bits to configure:  
• Timer0/WDT prescaler  
• External RA2/INT interrupt  
• Timer0  
• Weak pull-ups on PORTA/PORTB  
REGISTER 2-2:  
OPTION_REG: OPTION REGISTER  
R/W-1  
RABPU  
bit 7  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RABPU: PORTA/PORTB Pull-up Enable bit  
1= PORTA/PORTB pull-ups are disabled  
0= PORTA/PORTB pull-ups are enabled by individual PORT latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of RA2/INT pin  
0= Interrupt on falling edge of RA2/INT pin  
T0CS: Timer0 Clock Source Select bit  
1= Transition on RA2/T0CKI pin  
0= Internal instruction cycle clock (FOSC/4)  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on RA2/T0CKI pin  
0= Increment on low-to-high transition on RA2/T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS<2:0>: Prescaler Rate Select bits  
Bit Value  
Timer0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
© 2007 Microchip Technology Inc.  
DS41262D-page 37  
PIC16F631/677/685/687/689/690  
2.2.2.3  
INTCON Register  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE of the INTCON register.  
User software should ensure the  
appropriate interrupt flag bits are clear  
prior to enabling an interrupt.  
The INTCON register, shown in Register 2-3, is a  
readable and writable register, which contains the various  
enable and flag bits for TMR0 register overflow, PORTA  
change and external RA2/AN2/T0CKI/INT/C1OUT pin  
interrupts.  
REGISTER 2-3:  
INTCON: INTERRUPT CONTROL REGISTER  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
RABIE(1,3)  
R/W-0  
T0IF(2)  
R/W-0  
INTF  
R/W-x  
RABIF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
GIE: Global Interrupt Enable bit  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
T0IE: Timer0 Overflow Interrupt Enable bit  
1= Enables the Timer0 interrupt  
0= Disables the Timer0 interrupt  
INTE: RA2/INT External Interrupt Enable bit  
1= Enables the RA2/INT external interrupt  
0= Disables the RA2/INT external interrupt  
RABIE: PORTA/PORTB Change Interrupt Enable bit(1,3)  
1= Enables the PORTA/PORTB change interrupt  
0= Disables the PORTA/PORTB change interrupt  
T0IF: Timer0 Overflow Interrupt Flag bit(2)  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INTF: RA2/INT External Interrupt Flag bit  
1= The RA2/INT external interrupt occurred (must be cleared in software)  
0= The RA2/INT external interrupt did not occur  
RABIF: PORTA/PORTB Change Interrupt Flag bit  
1= When at least one of the PORTA or PORTB general purpose I/O pins changed state (must be  
cleared in software)  
0= None of the PORTA or PORTB general purpose I/O pins have changed state  
Note 1: IOCA or IOCB register must also be enabled.  
2: T0IF bit is set when Timer0 rolls over. Timer0 is unchanged on Reset and should be initialized before  
clearing T0IF bit.  
3: Includes ULPWU interrupt.  
DS41262D-page 38  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
2.2.2.4  
PIE1 Register  
The PIE1 register contains the interrupt enable bits, as  
shown in Register 2-4.  
Note:  
Bit PEIE of the INTCON register must be  
set to enable any peripheral interrupt.  
REGISTER 2-4:  
PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1  
U-0  
R/W-0  
ADIE(5)  
R/W-0  
RCIE(3)  
R/W-0  
TXIE(3)  
R/W-0  
SSPIE(4)  
R/W-0  
CCP1IE(2)  
R/W-0  
TMR2IE(1)  
R/W-0  
TMR1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
ADIE: A/D Converter (ADC) Interrupt Enable bit(5)  
1= Enables the ADC interrupt  
0= Disables the ADC interrupt  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RCIE: EUSART Receive Interrupt Enable bit(3)  
1= Enables the EUSART receive interrupt  
0= Disables the EUSART receive interrupt  
TXIE: EUSART Transmit Interrupt Enable bit(5)  
1= Enables the EUSART transmit interrupt  
0= Disables the EUSART transmit interrupt  
SSPIE: Synchronous Serial Port (SSP) Interrupt Enable bit(4)  
1= Enables the SSP interrupt  
0= Disables the SSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit(2)  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: Timer2 to PR2 Match Interrupt Enable bit(1)  
1= Enables the Timer2 to PR2 match interrupt  
0= Disables the Timer2 to PR2 match interrupt  
TMR1IE: Timer1 Overflow Interrupt Enable bit  
1= Enables the Timer1 overflow interrupt  
0= Disables the Timer1 overflow interrupt  
Note 1: PIC16F685/PIC16F690 only.  
2: PIC16F685/PIC16F689/PIC16F690 only.  
3: PIC16F687/PIC16F689/PIC16F690 only.  
4: PIC16F677/PIC16F687/PIC16F689/PIC16F690 only.  
5: PIC16F677/PIC16F685/PIC16F687/PIC16F689/PIC16F690 only.  
© 2007 Microchip Technology Inc.  
DS41262D-page 39  
PIC16F631/677/685/687/689/690  
2.2.2.5  
PIE2 Register  
The PIE2 register contains the interrupt enable bits, as  
shown in Register 2-5.  
Note:  
Bit PEIE of the INTCON register must be  
set to enable any peripheral interrupt.  
REGISTER 2-5:  
PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2  
R/W-0  
OSFIE  
bit 7  
R/W-0  
C2IE  
R/W-0  
C1IE  
R/W-0  
EEIE  
U-0  
U-0  
U-0  
U-0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3-0  
OSFIE: Oscillator Fail Interrupt Enable bit  
1= Enables oscillator fail interrupt  
0= Disables oscillator fail interrupt  
C2IE: Comparator C2 Interrupt Enable bit  
1= Enables Comparator C2 interrupt  
0= Disables Comparator C2 interrupt  
C1IE: Comparator C1 Interrupt Enable bit  
1= Enables Comparator C1 interrupt  
0= Disables Comparator C1 interrupt  
EEIE: EE Write Operation Interrupt Enable bit  
1= Enables write operation interrupt  
0= Disables write operation interrupt  
Unimplemented: Read as ‘0’  
DS41262D-page 40  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
2.2.2.6  
PIR1 Register  
The PIR1 register contains the interrupt flag bits, as  
shown in Register 2-6.  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE of the INTCON register.  
User software should ensure the  
appropriate interrupt flag bits are clear  
prior to enabling an interrupt.  
REGISTER 2-6:  
PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1  
U-0  
R/W-0  
ADIF(5)  
R-0  
RCIF(3)  
R-0  
TXIF(3)  
R/W-0  
SSPIF(4)  
R/W-0  
CCP1IF(2)  
R/W-0  
TMR2IF(1)  
R/W-0  
TMR1IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
ADIF: A/D Converter Interrupt Flag bit(5)  
1= A/D conversion complete (must be cleared in software)  
0= A/D conversion has not completed or has not been started  
bit 5  
bit 4  
bit 3  
bit 2  
RCIF: EUSART Receive Interrupt Flag bit(3)  
1= The EUSART receive buffer is full (cleared by reading RCREG)  
0= The EUSART receive buffer is not full  
TXIF: EUSART Transmit Interrupt Flag bit(3)  
1= The EUSART transmit buffer is empty (cleared by writing to TXREG)  
0= The EUSART transmit buffer is full  
SSPIF: Synchronous Serial Port (SSP) Interrupt Flag bit(4)  
1= The Transmission/Reception is complete (must be cleared in software)  
0= Waiting to Transmit/Receive  
CCP1IF: CCP1 Interrupt Flag bit(2)  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode  
bit 1  
bit 0  
TMR2IF: Timer2 to PR2 Interrupt Flag bit(1)  
1= A Timer2 to PR2 match occurred (must be cleared in software)  
0= No Timer2 to PR2 match occurred  
TMR1IF: Timer1 Overflow Interrupt Flag bit  
1= The TMR1 register overflowed (must be cleared in software)  
0= The TMR1 register did not overflow  
Note 1: PIC16F685/PIC16F690 only.  
2: PIC16F685/PIC16F689/PIC16F690 only.  
3: PIC16F687/PIC16F689/PIC16F690 only.  
4: PIC16F677/PIC16F687/PIC16F689/PIC16F690 only.  
5: PIC16F677/PIC16F685/PIC16F687/PIC16F689/PIC16F690 only.  
© 2007 Microchip Technology Inc.  
DS41262D-page 41  
PIC16F631/677/685/687/689/690  
2.2.2.7  
PIR2 Register  
The PIR2 register contains the interrupt flag bits, as  
shown in Register 2-7.  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE of the INTCON register.  
User software should ensure the  
appropriate interrupt flag bits are clear prior  
to enabling an interrupt.  
REGISTER 2-7:  
PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2  
R/W-0  
OSFIF  
bit 7  
R/W-0  
C2IF  
R/W-0  
C1IF  
R/W-0  
EEIF  
U-0  
U-0  
U-0  
U-0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3-0  
OSFIF: Oscillator Fail Interrupt Flag bit  
1= System oscillator failed, clock input has changed to INTOSC (must be cleared in software)  
0= System clock operating  
C2IF: Comparator C2 Interrupt Flag bit  
1= Comparator output (C2OUT bit) has changed (must be cleared in software)  
0= Comparator output (C2OUT bit) has not changed  
C1IF: Comparator C1 Interrupt Flag bit  
1= Comparator output (C1OUT bit) has changed (must be cleared in software)  
0= Comparator output (C1OUT bit) has not changed  
EEIF: EE Write Operation Interrupt Flag bit  
1= Write operation completed (must be cleared in software)  
0= Write operation has not completed or has not started  
Unimplemented: Read as ‘0’  
DS41262D-page 42  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
2.2.2.8  
PCON Register  
The Power Control (PCON) register (see Register 2-8)  
contains flag bits to differentiate between a:  
• Power-on Reset (POR)  
• Brown-out Reset (BOR)  
• Watchdog Timer Reset (WDT)  
• External MCLR Reset  
The PCON register also controls the Ultra Low-Power  
Wake-up and software enable of the BOR.  
REGISTER 2-8:  
PCON: POWER CONTROL REGISTER  
U-0  
U-0  
R/W-0  
R/W-1  
SBOREN(1)  
U-0  
U-0  
R/W-0  
POR  
R/W-x  
BOR  
ULPWUE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
ULPWUE: Ultra Low-Power Wake-up Enable bit  
1= Ultra Low-Power Wake-up enabled  
0= Ultra Low-Power Wake-up disabled  
bit 4  
SBOREN: Software BOR Enable bit(1)  
1= BOR enabled  
0= BOR disabled  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0  
BOR: Brown-out Reset Status bit  
1= No Brown-out Reset occurred  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Note 1: BOREN<1:0> = 01in the Configuration Word register for this bit to control the BOR.  
© 2007 Microchip Technology Inc.  
DS41262D-page 43  
PIC16F631/677/685/687/689/690  
2.3.2  
STACK  
2.3  
PCL and PCLATH  
The PIC16F631/677/685/687/689/690devices have an  
8-level x 13-bit wide hardware stack (see Figures 2-2  
and 2-3). The stack space is not part of either program  
or data space and the Stack Pointer is not readable or  
writable. The PC is PUSHed onto the stack when a  
CALLinstruction is executed or an interrupt causes a  
branch. The stack is POPed in the event of a RETURN,  
RETLWor a RETFIEinstruction execution. PCLATH is  
not affected by a PUSH or POP operation.  
The Program Counter (PC) is 13 bits wide. The low byte  
comes from the PCL register, which is a readable and  
writable register. The high byte (PC<12:8>) is not directly  
readable or writable and comes from PCLATH. On any  
Reset, the PC is cleared. Figure 2-9 shows the two  
situations for the loading of the PC. The upper example  
in Figure 2-9 shows how the PC is loaded on a write to  
PCL (PCLATH<4:0> PCH). The lower example in  
Figure 2-9 shows how the PC is loaded during a CALLor  
GOTOinstruction (PCLATH<4:3> PCH).  
The stack operates as a circular buffer. This means that  
after the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
FIGURE 2-9:  
LOADING OF PC IN  
DIFFERENT SITUATIONS  
PCH  
PCL  
Instruction with  
Note 1: There are no Status bits to indicate stack  
12  
8
7
0
PCL as  
overflow or stack underflow conditions.  
Destination  
PC  
2: There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the  
CALL, RETURN, RETLW and RETFIE  
instructions or the vectoring to an  
interrupt address.  
8
PCLATH<4:0>  
PCLATH  
5
ALU Result  
PCH  
12 11 10  
PC  
PCL  
8
7
0
GOTO, CALL  
2.4  
Indirect Addressing, INDF and  
FSR Registers  
PCLATH<4:3>  
PCLATH  
11  
2
OPCODE<10:0>  
The INDF register is not a physical register. Addressing  
the INDF register will cause indirect addressing.  
Indirect addressing is possible by using the INDF  
register. Any instruction using the INDF register actually  
accesses data pointed to by the File Select Register  
(FSR). Reading INDF itself indirectly will produce 00h.  
Writing to the INDF register indirectly results in a no  
operation (although Status bits may be affected). An  
effective 9-bit address is obtained by concatenating the  
8-bit FSR and the IRP bit of the STATUS register, as  
shown in Figure 2-10.  
2.3.1  
MODIFYING PCL  
Executing any instruction with the PCL register as the  
destination simultaneously causes the Program  
Counter PC<12:8> bits (PCH) to be replaced by the  
contents of the PCLATH register. This allows the entire  
contents of the program counter to be changed by  
writing the desired upper 5 bits to the PCLATH register.  
When the lower 8 bits are written to the PCL register, all  
13 bits of the program counter will change to the values  
contained in the PCLATH register and those being  
written to the PCL register.  
A simple program to clear RAM location 20h-2Fh using  
indirect addressing is shown in Example 2-1.  
EXAMPLE 2-1:  
INDIRECT ADDRESSING  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL). Care should be  
exercised when jumping into a look-up table or  
program branch table (computed GOTO) by modifying  
the PCL register. Assuming that PCLATH is set to the  
table start address, if the table length is greater than  
255 instructions or if the lower 8 bits of the memory  
address rolls over from 0xFF to 0x00 in the middle of  
the table, then PCLATH must be incremented for each  
address rollover that occurs between the table  
beginning and the target location within the table.  
MOVLW  
MOVWF  
0x20  
FSR  
;initialize pointer  
;to RAM  
NEXT  
CLRF  
INCF  
BTFSS  
GOTO  
INDF  
FSR  
;clear INDF register  
;inc pointer  
FSR,4  
NEXT  
;all done?  
;no clear next  
;yes continue  
CONTINUE  
For more information refer to Application Note AN556,  
Implementing a Table Read” (DS00556).  
DS41262D-page 44  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
FIGURE 2-10:  
DIRECT/INDIRECT ADDRESSING PIC16F631/677/685/687/689/690  
Direct Addressing  
Indirect Addressing  
From Opcode  
7
RP1 RP0  
6
0
0
IRP  
File Select Register  
Bank Select  
180h  
Location Select  
Bank Select  
Location Select  
00h  
00  
01  
10  
11  
Data  
Memory  
7Fh  
1FFh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
For memory map detail, see Figures 2-6, 2-7 and 2-8.  
© 2007 Microchip Technology Inc.  
DS41262D-page 45  
PIC16F631/677/685/687/689/690  
NOTES:  
DS41262D-page 46  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
The Oscillator module can be configured in one of eight  
clock modes.  
3.0  
3.1  
OSCILLATOR MODULE (WITH  
FAIL-SAFE CLOCK MONITOR)  
1. EC – External clock with I/O on OSC2/CLKOUT.  
2. LP – 32 kHz Low-Power Crystal mode.  
Overview  
3. XT – Medium Gain Crystal or Ceramic Resonator  
Oscillator mode.  
The Oscillator module has a wide variety of clock  
sources and selection features that allow it to be used  
in a wide range of applications while maximizing perfor-  
mance and minimizing power consumption. Figure 3-1  
illustrates a block diagram of the Oscillator module.  
4. HS – High Gain Crystal or Ceramic Resonator  
mode.  
5. RC – External Resistor-Capacitor (RC) with  
FOSC/4 output on OSC2/CLKOUT.  
Clock sources can be configured from external  
oscillators, quartz crystal resonators, ceramic resonators  
and Resistor-Capacitor (RC) circuits. In addition, the  
system clock source can be configured from one of two  
internal oscillators, with a choice of speeds selectable via  
software. Additional clock features include:  
6. RCIO – External Resistor-Capacitor (RC) with  
I/O on OSC2/CLKOUT.  
7. INTOSC – Internal oscillator with FOSC/4 output  
on OSC2 and I/O on OSC1/CLKIN.  
8. INTOSCIO – Internal oscillator with I/O on  
OSC1/CLKIN and OSC2/CLKOUT.  
• Selectable system clock source between external  
or internal via software.  
Clock Source modes are configured by the FOSC<2:0>  
bits in the Configuration Word register (CONFIG). The  
internal clock can be generated from two internal  
oscillators. The HFINTOSC is a calibrated high-  
frequency oscillator. The LFINTOSC is an uncalibrated  
low-frequency oscillator.  
• Two-Speed Start-up mode, which minimizes  
latency between external oscillator start-up and  
code execution.  
• Fail-Safe Clock Monitor (FSCM) designed to  
detect a failure of the external clock source (LP,  
XT, HS, EC or RC modes) and switch  
automatically to the internal oscillator.  
FIGURE 3-1:  
PIC® MCU CLOCK SOURCE BLOCK DIAGRAM  
FOSC<2:0>  
(Configuration Word Register)  
External Oscillator  
SCS<0>  
(OSCCON Register)  
OSC2  
OSC1  
Sleep  
LP, XT, HS, RC, RCIO, EC  
IRCF<2:0>  
(OSCCON Register)  
System Clock  
(CPU and Peripherals)  
8 MHz  
111  
110  
101  
INTOSC  
Internal Oscillator  
4 MHz  
2 MHz  
1 MHz  
HFINTOSC  
8 MHz  
100  
011  
010  
001  
000  
500 kHz  
250 kHz  
125 kHz  
31 kHz  
LFINTOSC  
31 kHz  
Power-up Timer (PWRT)  
Watchdog Timer (WDT)  
Fail-Safe Clock Monitor (FSCM)  
© 2007 Microchip Technology Inc.  
DS41262D-page 47  
PIC16F631/677/685/687/689/690  
3.2  
Oscillator Control  
The Oscillator Control (OSCCON) register (Figure 3-1)  
controls the system clock and frequency selection  
options. The OSCCON register contains the following  
bits:  
• Frequency selection bits (IRCF)  
• Frequency Status bits (HTS, LTS)  
• System clock control bits (OSTS, SCS)  
REGISTER 3-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
U-0  
R/W-1  
IRCF2  
R/W-1  
IRCF1  
R/W-0  
IRCF0  
R-1  
OSTS(1)  
R-0  
R-0  
LTS  
R/W-0  
SCS  
HTS  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IRCF<2:0>: Internal Oscillator Frequency Select bits  
111= 8 MHz  
110= 4 MHz (default)  
101= 2 MHz  
100= 1 MHz  
011= 500 kHz  
010= 250 kHz  
001= 125 kHz  
000= 31 kHz (LFINTOSC)  
bit 3  
bit 2  
bit 1  
bit 0  
OSTS: Oscillator Start-up Time-out Status bit(1)  
1= Device is running from the external clock defined by FOSC<2:0> of the CONFIG register  
0= Device is running from the internal oscillator (HFINTOSC or LFINTOSC)  
HTS: HFINTOSC Status bit (High Frequency – 8 MHz to 125 kHz)  
1= HFINTOSC is stable  
0= HFINTOSC is not stable  
LTS: LFINTOSC Stable bit (Low Frequency – 31 kHz)  
1= LFINTOSC is stable  
0= LFINTOSC is not stable  
SCS: System Clock Select bit  
1= Internal oscillator is used for system clock  
0= Clock source defined by FOSC<2:0> of the CONFIG register  
Note 1: Bit resets to ‘0’ with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe  
mode is enabled.  
DS41262D-page 48  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
3.3  
Clock Source Modes  
3.4  
External Clock Modes  
Clock Source modes can be classified as external or  
internal.  
3.4.1 OSCILLATOR START-UP TIMER (OST)  
If the Oscillator module is configured for LP, XT or HS  
modes, the Oscillator Start-up Timer (OST) counts  
1024 oscillations from OSC1. This occurs following a  
Power-on Reset (POR) and when the Power-up Timer  
(PWRT) has expired (if configured), or a wake-up from  
Sleep. During this time, the program counter does not  
increment and program execution is suspended. The  
OST ensures that the oscillator circuit, using a quartz  
crystal resonator or ceramic resonator, has started and  
is providing a stable system clock to the Oscillator  
module. When switching between clock sources, a  
delay is required to allow the new clock to stabilize.  
These oscillator delays are shown in Table 3-1.  
• External Clock modes rely on external circuitry for  
the clock source. Examples are: Oscillator mod-  
ules (EC mode), quartz crystal resonators or  
ceramic resonators (LP, XT and HS modes) and  
Resistor-Capacitor (RC) mode circuits.  
• Internal clock sources are contained internally  
within the Oscillator module. The Oscillator  
module has two internal oscillators: the 8 MHz  
High-Frequency Internal Oscillator (HFINTOSC)  
and the 31 kHz Low-Frequency Internal Oscillator  
(LFINTOSC).  
The system clock can be selected between external or  
internal clock sources via the System Clock Select  
(SCS) bit of the OSCCON register. See Section 3.6  
“Clock Switching” for additional information.  
In order to minimize latency between external oscillator  
start-up and code execution, the Two-Speed Clock  
Start-up mode can be selected (see Section 3.7 “Two-  
Speed Clock Start-up Mode”).  
TABLE 3-1:  
Switch From  
OSCILLATOR DELAY EXAMPLES  
Switch To  
Frequency  
Oscillator Delay  
LFINTOSC  
HFINTOSC  
31 kHz  
125 kHz to 8 MHz  
DC – 20 MHz  
Sleep/POR  
Oscillator Warm-up Delay (TWARM)  
Sleep/POR  
EC, RC  
2 cycles  
LFINTOSC (31 kHz)  
Sleep/POR  
EC, RC  
DC – 20 MHz  
1 cycle of each  
1024 Clock Cycles (OST)  
1 μs (approx.)  
LP, XT, HS  
HFINTOSC  
32 kHz to 20 MHz  
125 kHz to 8 MHz  
LFINTOSC (31 kHz)  
3.4.2  
EC MODE  
FIGURE 3-2:  
EXTERNAL CLOCK (EC)  
MODE OPERATION  
The External Clock (EC) mode allows an externally  
generated logic level as the system clock source. When  
operating in this mode, an external clock source is  
connected to the OSC1 input and the OSC2 is available  
for general purpose I/O. Figure 3-2 shows the pin  
connections for EC mode.  
OSC1/CLKIN  
Clock from  
Ext. System  
PIC® MCU  
(1)  
I/O  
OSC2/CLKOUT  
The Oscillator Start-up Timer (OST) is disabled when  
EC mode is selected. Therefore, there is no delay in  
operation after a Power-on Reset (POR) or wake-up  
from Sleep. Because the PIC® MCU design is fully  
static, stopping the external clock input will have the  
effect of halting the device while leaving all data intact.  
Upon restarting the external clock, the device will  
resume operation as if no time had elapsed.  
Note 1: Alternate pin functions are listed in the  
Section 1.0 “Device Overview”.  
© 2007 Microchip Technology Inc.  
DS41262D-page 49  
PIC16F631/677/685/687/689/690  
3.4.3  
LP, XT, HS MODES  
Note 1: Quartz crystal characteristics vary according  
to type, package and manufacturer. The  
user should consult the manufacturer data  
sheets for specifications and recommended  
application.  
The LP, XT and HS modes support the use of quartz  
crystal resonators or ceramic resonators connected to  
OSC1 and OSC2 (Figure 3-3). The mode selects a low,  
medium or high gain setting of the internal inverter-  
amplifier to support various resonator types and speed.  
2: Always verify oscillator performance over  
the VDD and temperature range that is  
expected for the application.  
LP Oscillator mode selects the lowest gain setting of the  
internal inverter-amplifier. LP mode current consumption  
is the least of the three modes. This mode is designed to  
drive only 32.768 kHz tuning-fork type crystals (watch  
crystals).  
3: For oscillator design assistance, reference  
the following Microchip Applications Notes:  
• AN826, “Crystal Oscillator Basics and  
Crystal Selection for rfPIC® and PIC®  
Devices” (DS00826)  
• AN849, “Basic PIC® Oscillator Design”  
(DS00849)  
• AN943, “Practical PIC® Oscillator  
XT Oscillator mode selects the intermediate gain  
setting of the internal inverter-amplifier. XT mode  
current consumption is the medium of the three modes.  
This mode is best suited to drive resonators with a  
medium drive level specification.  
HS Oscillator mode selects the highest gain setting of the  
internal inverter-amplifier. HS mode current consumption  
is the highest of the three modes. This mode is best  
suited for resonators that require a high drive setting.  
Analysis and Design” (DS00943)  
• AN949, “Making Your Oscillator Work”  
(DS00949)  
Figure 3-3 and Figure 3-4 show typical circuits for  
quartz crystal and ceramic resonators, respectively.  
FIGURE 3-4:  
CERAMIC RESONATOR  
OPERATION  
(XT OR HS MODE)  
FIGURE 3-3:  
QUARTZ CRYSTAL  
OPERATION (LP, XT OR  
HS MODE)  
PIC® MCU  
OSC1/CLKIN  
PIC® MCU  
C1  
To Internal  
Logic  
OSC1/CLKIN  
(3)  
(2)  
RP  
RF  
C1  
Sleep  
To Internal  
Logic  
Quartz  
Crystal  
(2)  
RF  
Sleep  
OSC2/CLKOUT  
(1)  
C2  
RS  
Ceramic  
Resonator  
OSC2/CLKOUT  
(1)  
C2  
RS  
Note 1: A series resistor (RS) may be required for  
ceramic resonators with low drive level.  
Note 1: A series resistor (RS) may be required for  
2: The value of RF varies with the Oscillator mode  
selected (typically between 2 MΩ to 10 MΩ).  
quartz crystals with low drive level.  
2: The value of RF varies with the Oscillator mode  
selected (typically between 2 MΩ to 10 MΩ).  
3: An additional parallel feedback resistor (RP)  
may be required for proper ceramic resonator  
operation.  
DS41262D-page 50  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
3.4.4  
EXTERNAL RC MODES  
3.5  
Internal Clock Modes  
The external Resistor-Capacitor (RC) modes support  
the use of an external RC circuit. This allows the  
designer maximum flexibility in frequency choice while  
keeping costs to a minimum when clock accuracy is not  
required. There are two modes: RC and RCIO.  
The Oscillator module has two independent, internal  
oscillators that can be configured or selected as the  
system clock source.  
1. The HFINTOSC (High-Frequency Internal  
Oscillator) is factory calibrated and operates at  
8 MHz. The frequency of the HFINTOSC can be  
user-adjusted via software using the OSCTUNE  
register (Register 3-2).  
In RC mode, the RC circuit connects to OSC1. OSC2/  
CLKOUT outputs the RC oscillator frequency divided  
by 4. This signal may be used to provide a clock for  
external circuitry, synchronization, calibration, test or  
other application requirements. Figure 3-5 shows the  
external RC mode connections.  
2. The LFINTOSC (Low-Frequency Internal  
Oscillator) is uncalibrated and operates at  
31 kHz.  
The system clock speed can be selected via software  
using the Internal Oscillator Frequency Select bits  
IRCF<2:0> of the OSCCON register.  
FIGURE 3-5:  
EXTERNAL RC MODES  
VDD  
PIC® MCU  
The system clock can be selected between external or  
internal clock sources via the System Clock Selection  
(SCS) bit of the OSCCON register. See Section 3.6  
“Clock Switching” for more information.  
REXT  
OSC1/CLKIN  
Internal  
Clock  
CEXT  
VSS  
3.5.1 INTOSC AND INTOSCIO MODES  
The INTOSC and INTOSCIO modes configure the  
internal oscillators as the system clock source when  
the device is programmed using the oscillator selection  
or the FOSC<2:0> bits in the Configuration Word  
register (CONFIG).  
(1)  
FOSC/4 or  
I/O  
OSC2/CLKOUT  
(2)  
Recommended values: 10 kΩ ≤ REXT 100 kΩ, <3V  
3 kΩ ≤ REXT 100 kΩ, 3-5V  
In INTOSC mode, OSC1/CLKIN is available for general  
purpose I/O. OSC2/CLKOUT outputs the selected  
internal oscillator frequency divided by 4. The CLKOUT  
signal may be used to provide a clock for external  
circuitry, synchronization, calibration, test or other  
application requirements.  
CEXT > 20 pF, 2-5V  
Note 1: Alternate pin functions are listed in the  
Section 1.0 “Device Overview”.  
2: Output depends upon RC or RCIO Clock  
mode.  
In INTOSCIO mode, OSC1/CLKIN and OSC2/CLKOUT  
are available for general purpose I/O.  
In RCIO mode, the RC circuit is connected to OSC1.  
OSC2 becomes an additional general purpose I/O pin.  
3.5.2  
HFINTOSC  
The RC oscillator frequency is a function of the supply  
voltage, the resistor (REXT) and capacitor (CEXT) values  
and the operating temperature. Other factors affecting  
the oscillator frequency are:  
The High-Frequency Internal Oscillator (HFINTOSC) is  
a factory calibrated 8 MHz internal clock source. The  
frequency of the HFINTOSC can be altered via  
software using the OSCTUNE register (Register 3-2).  
• threshold voltage variation  
• component tolerances  
• packaging variations in capacitance  
The output of the HFINTOSC connects to a postscaler  
and multiplexer (see Figure 3-1). One of seven  
frequencies can be selected via software using the  
IRCF<2:0> bits of the OSCCON register. See  
Section 3.5.4 “Frequency Select Bits (IRCF)” for  
more information.  
The user also needs to take into account variation due  
to tolerance of external RC components used.  
The HFINTOSC is enabled by selecting any frequency  
between 8 MHz and 125 kHz by setting the IRCF<2:0>  
bits of the OSCCON register 000. Then, set the  
System Clock Source (SCS) bit of the OSCCON  
register to ‘1’ or enable Two-Speed Start-up by setting  
the IESO bit in the Configuration Word register  
(CONFIG) to ‘1’.  
The HF Internal Oscillator (HTS) bit of the OSCCON  
register indicates whether the HFINTOSC is stable or not.  
© 2007 Microchip Technology Inc.  
DS41262D-page 51  
PIC16F631/677/685/687/689/690  
When the OSCTUNE register is modified, the  
HFINTOSC frequency will begin shifting to the new  
frequency. Code execution continues during this shift.  
There is no indication that the shift has occurred.  
3.5.2.1  
OSCTUNE Register  
The HFINTOSC is factory calibrated but can be  
adjusted in software by writing to the OSCTUNE  
register (Register 3-2).  
OSCTUNE does not affect the LFINTOSC frequency.  
Operation of features that depend on the LFINTOSC  
clock source frequency, such as the Power-up Timer  
(PWRT), Watchdog Timer (WDT), Fail-Safe Clock  
Monitor (FSCM) and peripherals, are not affected by the  
change in frequency.  
The default value of the OSCTUNE register is ‘0’. The  
value is a 5-bit two’s complement number.  
REGISTER 3-2:  
OSCTUNE: OSCILLATOR TUNING REGISTER  
U-0  
U-0  
U-0  
R/W-0  
TUN4  
R/W-0  
TUN3  
R/W-0  
TUN2  
R/W-0  
TUN1  
R/W-0  
TUN0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
TUN<4:0>: Frequency Tuning bits  
01111= Maximum frequency  
01110=  
00001=  
00000= Oscillator module is running at the calibrated frequency.  
11111=  
10000= Minimum frequency  
DS41262D-page 52  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
3.5.3  
LFINTOSC  
3.5.5  
HFINTOSC AND LFINTOSC CLOCK  
SWITCH TIMING  
The Low-Frequency Internal Oscillator (LFINTOSC) is  
an uncalibrated 31 kHz internal clock source.  
When switching between the LFINTOSC and the  
HFINTOSC, the new oscillator may already be shut  
down to save power (see Figure 3-6). If this is the case,  
there is a delay after the IRCF<2:0> bits of the  
OSCCON register are modified before the frequency  
selection takes place. The LTS and HTS bits of the  
OSCCON register will reflect the current active status  
of the LFINTOSC and HFINTOSC oscillators. The  
timing of a frequency selection is as follows:  
The output of the LFINTOSC connects to a postscaler  
and multiplexer (see Figure 3-1). Select 31 kHz, via  
software, using the IRCF<2:0> bits of the OSCCON  
register. See Section 3.5.4 “Frequency Select Bits  
(IRCF)” for more information. The LFINTOSC is also the  
frequency for the Power-up Timer (PWRT), Watchdog  
Timer (WDT) and Fail-Safe Clock Monitor (FSCM).  
The LFINTOSC is enabled by selecting 31 kHz  
(IRCF<2:0> bits of the OSCCON register = 000)as the  
system clock source (SCS bit of the OSCCON  
register = 1), or when any of the following are enabled:  
1. IRCF<2:0> bits of the OSCCON register are  
modified.  
2. If the new clock is shut down, a clock start-up  
delay is started.  
• Two-Speed Start-up IESO bit of the Configuration  
Word register = 1and IRCF<2:0> bits of the  
OSCCON register = 000  
3. Clock switch circuitry waits for a falling edge of  
the current clock.  
4. CLKOUT is held low and the clock switch  
circuitry waits for a rising edge in the new clock.  
• Power-up Timer (PWRT)  
• Watchdog Timer (WDT)  
5. CLKOUT is now connected with the new clock.  
LTS and HTS bits of the OSCCON register are  
updated as required.  
• Fail-Safe Clock Monitor (FSCM)  
The LF Internal Oscillator (LTS) bit of the OSCCON  
register indicates whether the LFINTOSC is stable or  
not.  
6. Clock switch is complete.  
See Figure 3-1 for more details.  
3.5.4  
FREQUENCY SELECT BITS (IRCF)  
If the internal oscillator speed selected is between  
8 MHz and 125 kHz, there is no start-up delay before  
the new frequency is selected. This is because the old  
and new frequencies are derived from the HFINTOSC  
via the postscaler and multiplexer.  
The output of the 8 MHz HFINTOSC and 31 kHz  
LFINTOSC connects to a postscaler and multiplexer  
(see Figure 3-1). The Internal Oscillator Frequency  
Select bits IRCF<2:0> of the OSCCON register select  
the frequency output of the internal oscillators. One of  
eight frequencies can be selected via software:  
Start-up delay specifications are located in the  
oscillator tables of Section 17.0 “Electrical  
Specifications”.  
• 8 MHz  
• 4 MHz (Default after Reset)  
• 2 MHz  
• 1 MHz  
• 500 kHz  
• 250 kHz  
• 125 kHz  
• 31 kHz (LFINTOSC)  
Note:  
Following any Reset, the IRCF<2:0> bits of  
the OSCCON register are set to ‘110’ and  
the frequency selection is set to 4 MHz.  
The user can modify the IRCF bits to  
select a different frequency.  
© 2007 Microchip Technology Inc.  
DS41262D-page 53  
PIC16F631/677/685/687/689/690  
FIGURE 3-6:  
INTERNAL OSCILLATOR SWITCH TIMING  
HFINTOSC  
LFINTOSC (FSCM and WDT disabled)  
HFINTOSC  
Start-up Time  
2-cycle Sync  
Running  
LFINTOSC  
0  
= 0  
IRCF <2:0>  
System Clock  
HFINTOSC  
LFINTOSC (Either FSCM or WDT enabled)  
HFINTOSC  
2-cycle Sync  
Running  
LFINTOSC  
IRCF <2:0>  
0  
= 0  
System Clock  
LFINTOSC  
HFINTOSC  
LFINTOSC turns off unless WDT or FSCM is enabled  
Running  
LFINTOSC  
Start-up Time 2-cycle Sync  
HFINTOSC  
= 0  
¼ 0  
IRCF <2:0>  
System Clock  
DS41262D-page 54  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
When the Oscillator module is configured for LP, XT or  
HS modes, the Oscillator Start-up Timer (OST) is  
3.6  
Clock Switching  
The system clock source can be switched between  
external and internal clock sources via software using  
the System Clock Select (SCS) bit of the OSCCON  
register.  
enabled (see Section 3.4.1 “Oscillator Start-up Timer  
(OST)”). The OST will suspend program execution until  
1024 oscillations are counted. Two-Speed Start-up  
mode minimizes the delay in code execution by  
operating from the internal oscillator as the OST is  
counting. When the OST count reaches 1024 and the  
OSTS bit of the OSCCON register is set, program  
execution switches to the external oscillator.  
3.6.1  
SYSTEM CLOCK SELECT (SCS) BIT  
The System Clock Select (SCS) bit of the OSCCON  
register selects the system clock source that is used for  
the CPU and peripherals.  
3.7.1  
TWO-SPEED START-UP MODE  
CONFIGURATION  
• When the SCS bit of the OSCCON register = 0,  
the system clock source is determined by  
configuration of the FOSC<2:0> bits in the  
Configuration Word register (CONFIG).  
Two-Speed Start-up mode is configured by the  
following settings:  
• When the SCS bit of the OSCCON register = 1,  
the system clock source is chosen by the internal  
oscillator frequency selected by the IRCF<2:0>  
bits of the OSCCON register. After a Reset, the  
SCS bit of the OSCCON register is always  
cleared.  
• IESO (of the Configuration Word register) = 1;  
Internal/External Switchover bit (Two-Speed Start-  
up mode enabled).  
• SCS (of the OSCCON register) = 0.  
• FOSC<2:0> bits in the Configuration Word  
register (CONFIG) configured for LP, XT or HS  
mode.  
Note:  
Any automatic clock switch, which may  
occur from Two-Speed Start-up or Fail-Safe  
Clock Monitor, does not update the SCS bit  
of the OSCCON register. The user can  
monitor the OSTS bit of the OSCCON  
register to determine the current system  
clock source.  
Two-Speed Start-up mode is entered after:  
• Power-on Reset (POR) and, if enabled, after  
Power-up Timer (PWRT) has expired, or  
• Wake-up from Sleep.  
If the external clock oscillator is configured to be  
anything other than LP, XT or HS mode, then Two-  
speed Start-up is disabled. This is because the external  
clock oscillator does not require any stabilization time  
after POR or an exit from Sleep.  
3.6.2  
OSCILLATOR START-UP TIME-OUT  
STATUS (OSTS) BIT  
The Oscillator Start-up Time-out Status (OSTS) bit of  
the OSCCON register indicates whether the system  
clock is running from the external clock source, as  
defined by the FOSC<2:0> bits in the Configuration  
Word register (CONFIG), or from the internal clock  
source. In particular, OSTS indicates that the Oscillator  
Start-up Timer (OST) has timed out for LP, XT or HS  
modes.  
3.7.2  
TWO-SPEED START-UP  
SEQUENCE  
1. Wake-up from Power-on Reset or Sleep.  
2. Instructions begin execution by the internal  
oscillator at the frequency set in the IRCF<2:0>  
bits of the OSCCON register.  
3. OST enabled to count 1024 clock cycles.  
3.7  
Two-Speed Clock Start-up Mode  
4. OST timed out, wait for falling edge of the  
internal oscillator.  
Two-Speed Start-up mode provides additional power  
savings by minimizing the latency between external  
oscillator start-up and code execution. In applications  
that make heavy use of the Sleep mode, Two-Speed  
Start-up will remove the external oscillator start-up  
time from the time spent awake and can reduce the  
overall power consumption of the device.  
5. OSTS is set.  
6. System clock held low until the next falling edge  
of new clock (LP, XT or HS mode).  
7. System clock is switched to external clock  
source.  
This mode allows the application to wake-up from  
Sleep, perform a few instructions using the INTOSC  
as the clock source and go back to Sleep without  
waiting for the primary oscillator to become stable.  
Note:  
Executing a SLEEP instruction will abort  
the oscillator start-up time and will cause  
the OSTS bit of the OSCCON register to  
remain clear.  
© 2007 Microchip Technology Inc.  
DS41262D-page 55  
PIC16F631/677/685/687/689/690  
3.7.3  
CHECKING TWO-SPEED CLOCK  
STATUS  
Checking the state of the OSTS bit of the OSCCON  
register will confirm if the microcontroller is running  
from the external clock source, as defined by the  
FOSC<2:0> bits in the Configuration Word register  
(CONFIG), or the internal oscillator.  
FIGURE 3-7:  
TWO-SPEED START-UP  
HFINTOSC  
TOST  
OSC1  
0
1
1022 1023  
OSC2  
PC - N  
PC + 1  
Program Counter  
PC  
System Clock  
DS41262D-page 56  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
3.8.3  
FAIL-SAFE CONDITION CLEARING  
3.8  
Fail-Safe Clock Monitor  
The Fail-Safe condition is cleared after a Reset,  
executing a SLEEPinstruction or toggling the SCS bit  
of the OSCCON register. When the SCS bit is toggled,  
the OST is restarted. While the OST is running, the  
device continues to operate from the INTOSC selected  
in OSCCON. When the OST times out, the Fail-Safe  
condition is cleared and the device will be operating  
from the external clock source. The Fail-Safe condition  
must be cleared before the OSFIF flag can be cleared.  
The Fail-Safe Clock Monitor (FSCM) allows the device  
to continue operating should the external oscillator fail.  
The FSCM can detect oscillator failure any time after  
the Oscillator Start-up Timer (OST) has expired. The  
FSCM is enabled by setting the FCMEN bit in the  
Configuration Word register (CONFIG). The FSCM is  
applicable to all external Oscillator modes (LP, XT, HS,  
EC, RC and RCIO).  
FIGURE 3-8:  
FSCM BLOCK DIAGRAM  
3.8.4  
RESET OR WAKE-UP FROM SLEEP  
Clock Monitor  
Latch  
The FSCM is designed to detect an oscillator failure  
after the Oscillator Start-up Timer (OST) has expired.  
The OST is used after waking up from Sleep and after  
any type of Reset. The OST is not used with the EC or  
RC Clock modes so that the FSCM will be active as  
soon as the Reset or wake-up has completed. When  
the FSCM is enabled, the Two-Speed Start-up is also  
enabled. Therefore, the device will always be executing  
code while the OST is operating.  
External  
Clock  
S
Q
LFINTOSC  
Oscillator  
÷ 64  
R
Q
31 kHz  
(~32 μs)  
488 Hz  
(~2 ms)  
Note:  
Due to the wide range of oscillator start-up  
times, the Fail-Safe circuit is not active  
during oscillator start-up (i.e., after exiting  
Reset or Sleep). After an appropriate  
amount of time, the user should check the  
OSTS bit of the OSCCON register to verify  
the oscillator start-up and that the system  
Sample Clock  
Clock  
Failure  
Detected  
3.8.1  
FAIL-SAFE DETECTION  
The FSCM module detects a failed oscillator by  
comparing the external oscillator to the FSCM sample  
clock. The sample clock is generated by dividing the  
LFINTOSC by 64. See Figure 3-8. Inside the fail  
detector block is a latch. The external clock sets the  
latch on each falling edge of the external clock. The  
sample clock clears the latch on each rising edge of the  
sample clock. A failure is detected when an entire half-  
cycle of the sample clock elapses before the primary  
clock goes low.  
clock  
completed.  
switchover  
has  
successfully  
3.8.2  
FAIL-SAFE OPERATION  
When the external clock fails, the FSCM switches the  
device clock to an internal clock source and sets the bit  
flag OSFIF of the PIR2 register. Setting this flag will  
generate an interrupt if the OSFIE bit of the PIE2  
register is also set. The device firmware can then take  
steps to mitigate the problems that may arise from a  
failed clock. The system clock will continue to be  
sourced from the internal clock source until the device  
firmware successfully restarts the external oscillator  
and switches back to external operation.  
The internal clock source chosen by the FSCM is  
determined by the IRCF<2:0> bits of the OSCCON  
register. This allows the internal oscillator to be  
configured before a failure occurs.  
© 2007 Microchip Technology Inc.  
DS41262D-page 57  
PIC16F631/677/685/687/689/690  
FIGURE 3-9:  
FSCM TIMING DIAGRAM  
Sample Clock  
Oscillator  
Failure  
System  
Clock  
Output  
Clock Monitor Output  
(Q)  
Failure  
Detected  
OSCFIF  
Test  
Test  
Test  
Note:  
The system clock is normally at a much higher frequency than the sample clock. The relative frequencies in  
this example have been chosen for clarity.  
TABLE 3-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES  
Value on  
Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
POR, BOR  
(1)  
Resets  
(2)  
CONFIG  
CPD  
CP  
IRCF2  
MCLRE PWRTE  
WDTE  
OSTS  
TUN3  
SSPIE  
SSPIF  
FOSC2  
HTS  
FOSC1  
LTS  
FOSC0  
SCS  
OSCCON  
OSCTUNE  
PIE1  
IRCF1  
IRCF0  
TUN4  
TXIE  
-110 x000 -110 x000  
---0 0000 ---u uuuu  
TUN2  
TUN1  
TUN0  
ADIE  
ADIF  
RCIE  
RCIF  
CCP1IE TMR2IE TMR1IE -000 0000 -000 0000  
CCP1IF TMR2IF TMR1IF -000 0000 -000 0000  
PIR1  
TXIF  
Legend:  
x= unknown, u= unchanged, – =unimplemented locations read as ‘0’. Shaded cells are not used by oscillators.  
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
2: See Configuration Word register (Register 14-1) for operation of all register bits.  
DS41262D-page 58  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
port pins are read, this value is modified and then  
written to the PORT data latch. RA3 reads ‘0’ when  
4.0  
I/O PORTS  
There are as many as eighteen general purpose I/O  
pins available. Depending on which peripherals are  
enabled, some or all of the pins may not be available as  
general purpose I/O. In general, when a peripheral is  
enabled, the associated pin may not be used as a  
general purpose I/O pin.  
MCLRE = 1.  
The TRISA register controls the PORTA pin output  
drivers, even when they are being used as analog  
inputs. The user should ensure the bits in the TRISA  
register are maintained set when using them as analog  
inputs. I/O pins configured as analog input always read  
0’.  
4.1  
PORTA and the TRISA Registers  
Note:  
The ANSEL register must be initialized to  
configure an analog channel as a digital  
input. Pins configured as analog inputs will  
read ‘0’.  
PORTA is  
a 6-bit wide, bidirectional port. The  
corresponding data direction register is TRISA  
(Register 4-2). Setting a TRISA bit (= 1) will make the  
corresponding PORTA pin an input (i.e., disable the  
output driver). Clearing a TRISA bit (= 0) will make the  
corresponding PORTA pin an output (i.e., enables  
output driver and puts the contents of the output latch  
on the selected pin). The exception is RA3, which is  
input only and its TRIS bit will always read as ‘1’.  
Example 4-1 shows how to initialize PORTA.  
EXAMPLE 4-1:  
INITIALIZING PORTA  
BCF  
BCF  
STATUS,RP0 ;Bank 0  
STATUS,RP1  
;
CLRF PORTA  
;Init PORTA  
BSF  
STATUS,RP1 ;Bank 2  
CLRF ANSEL  
;digital I/O  
BSF  
BCF  
STATUS,RP0 ;Bank 1  
STATUS,RP1  
Reading the PORTA register (Register 4-1) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
;
MOVLW 0Ch  
MOVWF TRISA  
;Set RA<3:2> as inputs  
;and set RA<5:4,1:0>  
;as outputs  
BCF  
STATUS,RP0 ;Bank 0  
REGISTER 4-1:  
PORTA: PORTA REGISTER  
U-0  
U-0  
R/W-x  
RA5  
R/W-x  
RA4  
R-x  
R/W-x  
RA2  
R/W-x  
RA1  
R/W-x  
RA3  
RA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RA<5:0>: PORTA I/O Pin bit  
1= Port pin is > VIH  
0= Port pin is < VIL  
REGISTER 4-2:  
TRISA: PORTA TRI-STATE REGISTER  
U-0  
U-0  
R/W-1  
R/W-1  
R-1  
R/W-1  
R/W-1  
R/W-1  
TRISA5  
TRISA4  
TRISA3  
TRISA2  
TRISA1  
TRISA0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TRISA<5:0>: PORTA Tri-State Control bit  
1= PORTA pin configured as an input (tri-stated)  
0= PORTA pin configured as an output  
Note 1: TRISA<3> always reads ‘1’.  
2: TRISA<5:4> always reads ‘1’ in XT, HS and LP Oscillator modes.  
© 2007 Microchip Technology Inc.  
DS41262D-page 59  
PIC16F631/677/685/687/689/690  
4.2.3  
INTERRUPT-ON-CHANGE  
4.2  
Additional Pin Functions  
Each PORTA pin is individually configurable as an  
interrupt-on-change pin. Control bits IOCAx enable or  
disable the interrupt function for each pin. Refer to  
Register 4-6. The interrupt-on-change is disabled on a  
Power-on Reset.  
Every PORTA pin on this device family has an  
interrupt-on-change option and a weak pull-up option.  
RA0 also has an Ultra Low-Power Wake-up option. The  
next three sections describe these functions.  
4.2.1  
ANSEL AND ANSELH REGISTERS  
For enabled interrupt-on-change pins, the values are  
compared with the old value latched on the last read of  
PORTA. The ‘mismatch’ outputs of the last read are  
OR’d together to set the PORTA Change Interrupt Flag  
bit (RABIF) in the INTCON register (Register 2-6).  
The ANSEL and ANSELH registers are used to disable  
the input buffers of I/O pins, which allow analog voltages  
to be applied to those pins without causing excessive  
current. Setting the ANSx bit of a corresponding pin will  
cause all digital reads of that pin to return ‘0’ and also  
permit analog functions of that pin to operate correctly.  
This interrupt can wake the device from Sleep. The  
user, in the Interrupt Service Routine, clears the  
interrupt by:  
The state of the ANSx bit has no effect on the digital  
output function of its corresponding pin. A pin with the  
TRISx bit clear and ANSx bit set will operate as a digital  
output, together with the analog input function of that  
pin. Pins with the ANSx bit set always read ‘0’, which  
can cause unexpected behavior when executing read  
or write operations on the port due to the  
read-modify-write sequence of all such operations.  
a) Any read or write of PORTA. This will end the  
mismatch condition, then,  
b) Clear the flag bit RABIF.  
A mismatch condition will continue to set flag bit RABIF.  
Reading PORTA will end the mismatch condition and  
allow flag bit RABIF to be cleared. The latch holding the  
last read value is not affected by a MCLR nor BOR  
Reset. After these Resets, the RABIF flag will continue  
to be set if a mismatch is present.  
4.2.2  
WEAK PULL-UPS  
Each of the PORTA pins, except RA3, has an  
individually configurable internal weak pull-up. Control  
bits WPUAx enable or disable each pull-up. Refer to  
Register 4-4. Each weak pull-up is automatically turned  
off when the port pin is configured as an output. The  
pull-ups are disabled on a Power-on Reset by the  
RABPU bit of the OPTION register. A weak pull-up is  
automatically enabled for RA3 when configured as  
MCLR and disabled when RA3 is an I/O. There is no  
software control of the MCLR pull-up.  
Note:  
If a change on the I/O pin should occur  
when the read operation is being executed  
(start of the Q2 cycle), then the RABIF  
interrupt flag may not get set.  
DS41262D-page 60  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
REGISTER 4-3:  
ANSEL: ANALOG SELECT REGISTER  
R/W-1  
ANS7  
R/W-1  
ANS6  
R/W-1  
ANS5  
R/W-1  
ANS4  
R/W-1  
ANS3  
R/W-1  
ANS2  
R/W-1  
ANS1  
R/W-1  
ANS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
ANS<7:0>: Analog Select bits  
Analog select between analog or digital function on pins AN<7:0>, respectively.  
1= Analog input. Pin is assigned as analog input(1)  
0= Digital I/O. Pin is assigned to port or special function.  
.
Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups and  
interrupt-on-change if available. The corresponding TRIS bit must be set to Input mode in order to allow  
external control of the voltage on the pin.  
REGISTER 4-4:  
ANSELH: ANALOG SELECT HIGH REGISTER(2)  
U-0  
U-0  
U-0  
U-0  
R/W-1  
ANS11  
R/W-1  
R/W-1  
ANS9  
R/W-1  
ANS8  
ANS10  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-4  
bit 3-0  
Unimplemented: Read as ‘0’  
ANS<11:8>: Analog Select bits  
Analog select between analog or digital function on pins AN<7:0>, respectively.  
1= Analog input. Pin is assigned as analog input(1)  
0= Digital I/O. Pin is assigned to port or special function.  
.
Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups and  
interrupt-on-change if available. The corresponding TRIS bit must be set to Input mode in order to allow  
external control of the voltage on the pin.  
2: PIC16F677/PIC16F685/PIC16F687/PIC16F689/PIC16F690 only.  
© 2007 Microchip Technology Inc.  
DS41262D-page 61  
PIC16F631/677/685/687/689/690  
REGISTER 4-5:  
WPUA: PORTA REGISTER  
U-0  
U-0  
R/W-1  
R/W-1  
U-0  
R/W-1  
R/W-1  
R/W-1  
WPUA5  
WPUA4  
WPUA2  
WPUA1  
WPUA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
WPUA<5:4>: Weak Pull-up Register bit  
1= Pull-up enabled  
0= Pull-up disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
WPUA<2:0>: Weak Pull-up Register bit  
1= Pull-up enabled  
0= Pull-up disabled  
Note 1: Global RABPU bit of the OPTION register must be enabled for individual pull-ups to be enabled.  
2: The weak pull-up device is automatically disabled if the pin is in Output mode (TRISA = 0).  
3: The RA3 pull-up is enabled when configured as MCLR and disabled as an I/O in the Configuration Word.  
4: WPUA<5:4> always reads ‘1’ in XT, HS and LP Oscillator modes.  
REGISTER 4-6:  
IOCA: INTERRUPT-ON-CHANGE PORTA REGISTER  
U-0  
U-0  
R/W-0  
IOCA5  
R/W-0  
IOCA4  
R/W-0  
IOCA3  
R/W-0  
IOCA2  
R/W-0  
IOCA1  
R/W-0  
IOCA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
IOCA<5:0>: Interrupt-on-change PORTA Control bit  
1= Interrupt-on-change enabled  
0= Interrupt-on-change disabled  
Note 1: Global Interrupt Enable (GIE) must be enabled for individual interrupts to be recognized.  
2: IOCA<5:4> always reads ‘1’ in XT, HS and LP Oscillator modes.  
DS41262D-page 62  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
A series resistor between RA0 and the external  
capacitor provides overcurrent protection for the  
RA0/AN0/C1IN+/ICSPDAT/ULPWU pin and can allow  
for software calibration of the time-out (see Figure 4-1).  
A timer can be used to measure the charge time and  
discharge time of the capacitor. The charge time can  
then be adjusted to provide the desired interrupt delay.  
This technique will compensate for the affects of  
temperature, voltage and component accuracy. The  
Ultra Low-Power Wake-up peripheral can also be  
configured as a simple Programmable Low-Voltage  
Detect or temperature sensor.  
4.2.4  
ULTRA LOW-POWER WAKE-UP  
The Ultra Low-Power Wake-up (ULPWU) on RA0 allows  
a slow falling voltage to generate an interrupt-on-change  
on RA0 without excess current consumption. The mode  
is selected by setting the ULPWUE bit of the PCON  
register. This enables a small current sink, which can be  
used to discharge a capacitor on RA0.  
Follow these steps to use this feature:  
a) Charge the capacitor on RA0 by configuring the  
RA0 pin to output (= 1).  
b) Configure RA0 as an input.  
c) Enable interrupt-on-change for RA0.  
Note:  
For more information, refer to Application  
Note AN879, “Using the Microchip Ultra  
Low-Power Wake-up Module” (DS00879).  
d) Set the ULPWUE bit of the PCON register to  
begin the capacitor discharge.  
e) Execute a SLEEPinstruction.  
EXAMPLE 4-2:  
ULTRA LOW-POWER  
WAKE-UP INITIALIZATION  
When the voltage on RA0 drops below VIL, an interrupt  
will be generated which will cause the device to  
wake-up and execute the next instruction. If the GIE bit  
of the INTCON register is set, the device will then call  
the interrupt vector (0004h). See Section 4.4.2 “Inter-  
BCF  
STATUS,RP0  
;Bank 0  
;
;Set RA0 data latch  
;Bank 2  
;RA0 to digital I/O  
;Bank 1  
BCF  
BSF  
STATUS,RP1  
PORTA,0  
BSF  
BCF  
STATUS,RP1  
ANSEL,0  
rupt-on-change”  
and  
Section 14.3.3  
“PORTA/PORTB Interrupt” for more information.  
BSF  
BCF  
BCF  
STATUS,RP0  
STATUS,RP1  
TRISA,0  
This feature provides a low-power technique for  
periodically waking up the device from Sleep. The  
time-out is dependent on the discharge time of the RC  
circuit on RA0. See Example 4-2 for initializing the  
Ultra Low-Power Wake-up module.  
;
;Output high to  
;charge capacitor  
CALL  
BSF  
BSF  
CapDelay  
PCON,ULPWUE  
IOCA,0  
;Enable ULP Wake-up  
;Select RA0 IOC  
;RA0 to input  
;Enable interrupt  
;and clear flag  
;Bank 0  
BSF  
TRISA,0  
MOVLW  
MOVWF  
BCF  
B’10001000’  
INTCON  
STATUS,RP0  
SLEEP  
;Wait for IOC  
© 2007 Microchip Technology Inc.  
DS41262D-page 63  
PIC16F631/677/685/687/689/690  
4.2.5  
PIN DESCRIPTIONS AND  
DIAGRAMS  
4.2.5.1  
RA0/AN0/C1IN+/ICSPDAT/ULPWU  
Figure 4-2 shows the diagram for this pin. The  
RA0/AN0/C1IN+/ICSPDAT/ULPWU pin is configurable  
to function as one of the following:  
Each PORTA pin is multiplexed with other functions. The  
pins and their combined functions are briefly described  
here. For specific information about individual functions  
such as the comparator or the A/D Converter (ADC),  
refer to the appropriate section in this data sheet.  
• a general purpose I/O  
• an analog input for the ADC (except PIC16F631)  
• an analog input to Comparator C1  
• In-Circuit Serial Programming™ data  
• an analog input for the Ultra Low-Power Wake-up  
FIGURE 4-1:  
BLOCK DIAGRAM OF RA0  
Analog(1)  
Input Mode  
VDD  
Data Bus  
D
Q
Q
Weak  
CK  
WR  
WPUDA  
RABPU  
RD  
VDD  
WPUDA  
D
Q
Q
I/O Pin  
WR  
CK  
PORTA  
VSS  
-
+
VT  
D
Q
Q
WR  
TRISA  
CK  
IULP  
0
1
RD  
TRISA  
Analog(1)  
Input Mode  
VSS  
ULPWUE  
RD  
PORTA  
D
Q
Q
Q
D
D
CK  
WR  
IOCA  
Q3  
EN  
RD  
IOCA  
Q
EN  
Interrupt-on-Change  
RD PORTA  
To Comparator  
To A/D Converter(2)  
Note 1: ANSEL determines Analog Input mode.  
2: Not implemented on PIC16F631.  
DS41262D-page 64  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
4.2.5.2  
RA1/AN1/C12IN0-/VREF/ICSPCLK  
4.2.5.3  
RA2/AN2/T0CKI/INT/C1OUT  
Figure 4-2 shows the diagram for this pin. The  
RA1/AN1/C12IN0-/VREF/ICSPCLK pin is configurable to  
function as one of the following:  
Figure 4-3 shows the diagram for this pin. The  
RA2/AN2/T0CKI/INT/C1OUT pin is configurable to  
function as one of the following:  
• a general purpose I/O  
• a general purpose I/O  
• an analog input for the ADC (except PIC16F631)  
• an analog input to Comparator C1 or C2  
• a voltage reference input for the ADC  
• In-Circuit Serial Programming clock  
• an analog input for the ADC (except PIC16F631)  
• the clock input for TMR0  
• an external edge triggered interrupt  
• a digital output from Comparator C1  
FIGURE 4-2:  
BLOCK DIAGRAM OF RA1  
FIGURE 4-3:  
BLOCK DIAGRAM OF RA2  
Analog(1)  
Input Mode  
Analog(1)  
Input Mode  
Data Bus  
D
Data Bus  
D
Q
Q
VDD  
Q
Q
VDD  
WR  
CK  
WR  
CK  
Weak  
Weak  
WPUA  
WPUA  
RABPU  
RD  
WPUA  
RABPU  
RD  
WPUA  
C1OUT  
Enable  
VDD  
VDD  
D
Q
Q
D
Q
Q
WR  
PORTA  
WR  
PORTA  
CK  
CK  
C1OUT  
1
0
I/O Pin  
I/O Pin  
D
Q
Q
D
Q
Q
WR  
TRISA  
WR  
TRISA  
CK  
CK  
VSS  
VSS  
Analog(1)  
Analog(1)  
Input Mode  
Input Mode  
RD  
TRISA  
RD  
TRISA  
RD  
PORTA  
RD  
PORTA  
D
Q
Q
D
Q
Q
Q
Q
D
Q
Q
D
CK  
WR  
CK  
WR  
IOCA  
IOCA  
EN  
Q3  
Q3  
EN  
RD  
IOCA  
RD  
IOCA  
D
D
EN  
EN  
Interrupt-on-  
Change  
Interrupt-on-  
Change  
RD PORTA  
RD PORTA  
To Comparator  
To A/D Converter(2)  
To TMR0  
To INT  
To A/D Converter(2)  
Note 1: ANSEL determines Analog Input mode.  
2: Not implemented on PIC16F631.  
Note 1: ANSEL determines Analog Input mode.  
2: Not implemented on PIC16F631.  
© 2007 Microchip Technology Inc.  
DS41262D-page 65  
PIC16F631/677/685/687/689/690  
4.2.5.4  
RA3/MCLR/VPP  
4.2.5.5  
RA4/AN3/T1G/OSC2/CLKOUT  
Figure 4-4 shows the diagram for this pin. The  
RA3/MCLR/VPP pin is configurable to function as one  
of the following:  
Figure 4-5 shows the diagram for this pin. The  
RA4/AN3/T1G/OSC2/CLKOUT pin is configurable to  
function as one of the following:  
• a general purpose input  
• a general purpose I/O  
• as Master Clear Reset with weak pull-up  
• an analog input for the ADC (except PIC16F631)  
• a TMR1 gate input  
FIGURE 4-4:  
BLOCK DIAGRAM OF RA3  
• a crystal/resonator connection  
• a clock output  
VDD  
MCLRE  
Weak  
FIGURE 4-5:  
BLOCK DIAGRAM OF RA4  
Data Bus  
Analog(3)  
Input Mode  
MCLRE  
Reset  
Input  
Pin  
CLK(1)  
Modes  
VDD  
Data Bus  
D
RD  
TRISA  
VSS  
Q
Q
MCLRE  
VSS  
WR  
CK  
RD  
PORTA  
Weak  
WPUA  
D
Q
Q
RABPU  
RD  
WPUA  
Q
Q
D
CK  
WR  
IOCA  
Oscillator  
Circuit  
Q3  
OSC1  
EN  
VDD  
CLKOUT  
Enable  
RD  
IOCA  
D
FOSC/4  
1
0
D
Q
Q
EN  
Interrupt-on-  
Change  
I/O Pin  
WR  
CK  
PORTA  
CLKOUT  
Enable  
RD PORTA  
VSS  
D
Q
Q
INTOSC/  
RC/EC(2)  
WR  
TRISA  
CK  
CLKOUT  
Enable  
RD  
TRISA  
Analog  
Input Mode  
RD  
PORTA  
D
Q
Q
Q
D
D
CK  
WR  
IOCA  
Q3  
EN  
RD  
IOCA  
Q
EN  
Interrupt-on-  
Change  
RD PORTA  
To T1G  
To A/D Converter(4)  
Note 1: CLK modes are XT, HS, LP, LPTMR1 and CLKOUT  
Enable.  
2: With CLKOUT option.  
3: ANSEL determines Analog Input mode.  
4: Not implemented on PIC16F631.  
DS41262D-page 66  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
4.2.5.6  
RA5/T1CKI/OSC1/CLKIN  
Figure 4-6 shows the diagram for this pin. The  
RA5/T1CKI/OSC1/CLKIN pin is configurable to  
function as one of the following:  
• a general purpose I/O  
• a TMR1 clock input  
• a crystal/resonator connection  
• a clock input  
FIGURE 4-6:  
BLOCK DIAGRAM OF RA5  
INTOSC  
Mode  
TMR1LPEN(1)  
VDD  
Data Bus  
D
Q
Q
WR  
CK  
Weak  
WPUA  
RABPU  
RD  
WPUA  
Oscillator  
Circuit  
OSC2  
VDD  
D
Q
Q
WR  
PORTA  
CK  
I/O Pin  
D
Q
Q
WR  
TRISA  
CK  
VSS  
INTOSC  
Mode  
RD  
TRISA  
(2)  
RD  
PORTA  
D
Q
Q
Q
Q
D
CK  
WR  
IOCA  
Q3  
EN  
RD  
IOCA  
D
EN  
Interrupt-on-  
Change  
RD PORTA  
To TMR1 or CLKGEN  
Note 1: Timer1 LP Oscillator enabled.  
2: When using Timer1 with LP oscillator, the  
Schmitt Trigger is bypassed.  
© 2007 Microchip Technology Inc.  
DS41262D-page 67  
PIC16F631/677/685/687/689/690  
TABLE 4-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON0  
ADFM  
VCFG  
CHS3  
CHS2  
CHS1  
CHS0  
ADON  
0000 0000  
0000 0000  
GO/DONE  
ANS1  
ANSEL  
ANS7  
C1ON  
GIE  
ANS6  
C1OUT  
PEIE  
ANS5  
C1OE  
T0IE  
ANS4  
C1POL  
INTE  
ANS3  
ANS2  
C1R  
ANS0  
C1CH0  
RABIF  
IOCA0  
PS0  
1111 1111  
0000 -000  
0000 000x  
--00 0000  
1111 1111  
--xx xxxx  
0000 0000  
0000 0000  
--11 1111  
--11 -111  
1111 1111  
0000 -000  
0000 000x  
--00 0000  
1111 1111  
--uu uuuu  
0000 0000  
uuuu uuuu  
--11 1111  
--11 -111  
CM1CON0  
INTCON  
IOCA  
C1CH1  
INTF  
RABIE  
IOCA3  
PSA  
T0IF  
IOCA5  
T0CS  
RA5  
IOCA4  
T0SE  
RA4  
IOCA2  
PS2  
IOCA1  
PS1  
OPTION_REG RABPU  
INTEDG  
PORTA  
SSPCON  
T1CON  
TRISA  
WCOL  
T1GINV  
RA3  
RA2  
RA1  
RA0  
SSPOV  
SSPEN  
CKP  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
TMR1CS TMR1ON  
TRISA5  
WPUA5  
TRISA4  
WPUA4  
TRISA3  
TRISA2  
WPUA2  
TRISA1  
WPUA1  
TRISA0  
WPUA0  
WPUA  
Legend:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTA.  
DS41262D-page 68  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
4.4.1  
WEAK PULL-UPS  
4.3  
PORTB and TRISB Registers  
Each of the PORTB pins has an individually configurable  
internal weak pull-up. Control bits WPUB<7:4> enable or  
disable each pull-up (see Register 4-9). Each weak  
pull up is automatically turned off when the port pin is  
configured as an output. All pull-ups are disabled on a  
Power-on Reset by the RABPU bit of the OPTION  
register.  
PORTB is  
a 4-bit wide, bidirectional port. The  
corresponding data direction register is TRISB (Register  
4-6). Setting a TRISB bit (= 1) will make the  
corresponding PORTB pin an input (i.e., put the  
corresponding output driver in a High-Impedance mode).  
Clearing a TRISB bit (= 0) will make the corresponding  
PORTB pin an output (i.e., enable the output driver and  
put the contents of the output latch on the selected pin).  
Example 4-3 shows how to initialize PORTB. Reading  
the PORTB register (Register 4-5) reads the status of the  
pins, whereas writing to it will write to the PORT latch. All  
write operations are read-modify-write operations.  
Therefore, a write to a port implies that the port pins are  
read, this value is modified and then written to the PORT  
data latch.  
4.4.2  
INTERRUPT-ON-CHANGE  
Four of the PORTB pins are individually configurable as  
an interrupt-on-change pin. Control bits IOCB<7:4>  
enable or disable the interrupt function for each pin.  
Refer to Register 4-10. The interrupt-on-change feature  
is disabled on a Power-on Reset.  
For enabled interrupt-on-change pins, the present  
value is compared with the old value latched on the last  
read of PORTB to determine which bits have changed  
or mismatch the old value. The ‘mismatch’ outputs are  
OR’d together to set the PORTB Change Interrupt flag  
bit (RABIF) in the INTCON register (Register 2-3).  
The TRISB register controls the PORTB pin output  
drivers, even when they are being used as analog inputs.  
The user should ensure the bits in the TRISB register are  
maintained set when using them as analog inputs. I/O  
pins configured as analog input always read ‘0’.  
This interrupt can wake the device from Sleep. The user,  
in the Interrupt Service Routine, clears the interrupt by:  
EXAMPLE 4-3:  
INITIALIZING PORTB  
a) Any read or write of PORTB. This will end the  
mismatch condition.  
b) Clear the flag bit RABIF.  
BCF  
BCF  
CLRF  
BSF  
STATUS,RP0 ;Bank 0  
STATUS,RP1  
PORTB  
;
;Init PORTB  
STATUS,RP0 ;Bank 1  
A mismatch condition will continue to set flag bit RABIF.  
Reading or writing PORTB will end the mismatch  
condition and allow flag bit RABIF to be cleared. The latch  
holding the last read value is not affected by a MCLR nor  
Brown-out Reset. After these Resets, the RABIF flag will  
continue to be set if a mismatch is present.  
MOVLW  
MOVWF  
BCF  
FFh  
TRISB  
STATUS,RP0 ;Bank 0  
;Set RB<7:4> as inputs  
;
Note:  
The ANSELH register must be initialized  
to configure an analog channel as a digital  
input. Pins configured as analog inputs will  
read ‘0’.  
Note:  
If a change on the I/O pin should occur when  
the read operation is being executed (start of  
the Q2 cycle), then the RABIF interrupt flag  
may not get set. Furthermore, since a read  
or write on a port affects all bits of that port,  
care must be taken when using multiple pins  
in Interrupt-on-Change mode. Changes on  
one pin may not be seen while servicing  
changes on another pin.  
4.4  
Additional PORTB Pin Functions  
PORTB pins RB<7:4> on the device family device have  
an interrupt-on-change option and a weak pull-up  
option. The following three sections describe these  
PORTB pin functions.  
REGISTER 4-7:  
PORTB: PORTB REGISTER  
R/W-x  
RB7  
R/W-x  
RB6  
R/W-x  
RB5  
R/W-x  
RB4  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7-4  
bit 3-0  
RB<7:4>: PORTB I/O Pin bit  
1= Port pin is > VIH  
0= Port pin is < VIL  
Unimplemented: Read as ‘0’  
© 2007 Microchip Technology Inc.  
DS41262D-page 69  
PIC16F631/677/685/687/689/690  
REGISTER 4-8:  
TRISB: PORTB TRI-STATE REGISTER  
R/W-1  
TRISB7  
bit 7  
R/W-1  
R/W-1  
R/W-1  
U-0  
U-0  
U-0  
U-0  
TRISB6  
TRISB5  
TRISB4  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7-4  
TRISB<7:4>: PORTB Tri-State Control bit  
1= PORTB pin configured as an input (tri-stated)  
0= PORTB pin configured as an output  
bit 3-0  
Unimplemented: Read as ‘0’  
REGISTER 4-9:  
WPUB: WEAK PULL-UP PORTB REGISTER  
R/W-1  
WPUB7  
bit 7  
R/W-1  
R/W-1  
R/W-1  
U-0  
U-0  
U-0  
U-0  
WPUB6  
WPUB5  
WPUB4  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-4  
WPUB<7:4>: Weak Pull-up Register bit  
1= Pull-up enabled  
0= Pull-up disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
Note 1: Global RABPU bit of the OPTION register must be enabled for individual pull-ups to be enabled.  
2: The weak pull-up device is automatically disabled if the pin is in Output mode (TRISB<7:4> = 0).  
REGISTER 4-10: IOCB: INTERRUPT-ON-CHANGE PORTB REGISTER  
R/W-0  
IOCB7  
R/W-0  
IOCB6  
R/W-0  
IOCB5  
R/W-0  
IOCB4  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-4  
bit 3-0  
IOCB<7:4>: Interrupt-on-Change PORTB Control bit  
1= Interrupt-on-change enabled  
0= Interrupt-on-change disabled  
Unimplemented: Read as ‘0’  
DS41262D-page 70  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
4.4.3  
PIN DESCRIPTIONS AND  
DIAGRAMS  
4.4.3.1  
RB4/AN10/SDI/SDA  
Figure 4-7 shows the diagram for this pin. The  
RB4/AN10/SDI/SDA(1) pin is configurable to function  
as one of the following:  
Each PORTB pin is multiplexed with other functions. The  
pins and their combined functions are briefly described  
here. For specific information about individual functions  
such as the SSP, I2C™ or interrupts, refer to the  
appropriate section in this data sheet.  
• a general purpose I/O  
• an analog input for the ADC (except PIC16F631)  
• a SPI data I/O  
• an I2C data I/O  
Note 1: SDI and SDA are available on  
PIC16F687/PIC16F689/PIC16F690 only.  
FIGURE 4-7:  
BLOCK DIAGRAM OF RB4  
Analog(1)  
Input Mode  
Data Bus  
D
Q
Q
VDD  
WR  
CK  
Weak  
WPUB  
RABPU  
RD  
WPUB  
SSPEN  
SSPSR  
VDD  
D
Q
Q
10  
WR  
PORTB  
CK  
01  
I/O Pin  
D
Q
Q
From  
SSP  
10  
WR  
TRISB  
CK  
VSS  
0
Analog(1)  
Input Mode  
RD  
TRISB  
RD  
PORTB  
D
Q
Q
Q
Q
D
CK  
WR  
IOCB  
EN  
Q3  
RD  
IOCB  
D
ST  
EN  
Interrupt-on-  
Change  
RD PORTB  
To SSPSR  
To A/D Converter(2)  
Available on PIC16F677/PIC16F687/PIC16F689/PIC16F690  
only.  
Note 1:  
2:  
ANSEL determines Analog Input mode.  
Not implemented on PIC16F631.  
© 2007 Microchip Technology Inc.  
DS41262D-page 71  
PIC16F631/677/685/687/689/690  
4.4.3.2  
RB5/AN11/RX/DT  
FIGURE 4-8:  
BLOCK DIAGRAM OF RB5  
Figure 4-8 shows the diagram for this pin. The  
RB5/AN11/RX/DT(1,2) pin is configurable to function as  
one of the following:  
Analog(1)  
Input Mode  
Data Bus  
D
Q
Q
VDD  
WR  
CK  
• a general purpose I/O  
Weak  
WPUB  
• an analog input for the ADC (except PIC16F631)  
• an asynchronous serial input  
RABPU  
RD  
WPUB  
• a synchronous serial data I/O  
SYNC  
SPEN  
Note 1: RX and DT are available on  
VDD  
PIC16F687/PIC16F689/PIC16F690 only.  
D
Q
Q
EUSART  
DT  
2: AN11 is not implemented on PIC16F631.  
10  
WR  
PORTB  
CK  
01  
I/O Pin  
From  
D
Q
Q
EUSART 10  
WR  
TRISB  
CK  
VSS  
0
Analog(1)  
Input Mode  
RD  
TRISB  
RD  
PORTB  
D
Q
Q
Q
D
D
CK  
WR  
IOCB  
EN  
Q3  
RD  
IOCB  
Q
ST  
EN  
Interrupt-on-  
Change  
RD PORTB  
To EUSART RX/DT  
To A/D Converter(2)  
Available on PIC16F687/PIC16F689/PIC16F690 only.  
Note 1:  
2:  
ANSEL determines Analog Input mode.  
Not implemented on PIC16F631.  
DS41262D-page 72  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
4.4.3.3  
RB6/SCK/SCL  
FIGURE 4-9:  
BLOCK DIAGRAM OF RB6  
Figure 4-9 shows the diagram for this pin. The  
RB6/SCK/SCL(1) pin is configurable to function as one  
of the following:  
Data Bus  
D
Q
Q
VDD  
WR  
WPUB  
CK  
Weak  
• a general purpose I/O  
• a SPI clock  
• an I2C™ clock  
RABPU  
RD  
WPUB  
Note 1: SCK and SCL are available on  
PIC16F677/PIC16F687/PIC16F689/  
PIC16F690 only.  
SSPEN  
VDD  
D
Q
Q
SSP  
Clock  
10  
WR  
PORTB  
CK  
01  
I/O Pin  
From  
SSP  
D
Q
Q
10  
WR  
TRISB  
CK  
VSS  
01  
RD  
TRISB  
RD  
PORTB  
D
Q
Q
Q
Q
D
CK  
WR  
IOCB  
EN  
Q3  
RD  
IOCB  
D
ST  
EN  
Interrupt-on-  
Change  
RD PORTB  
To SSPSR  
Available on PIC16F677/PIC16F687/PIC16F689/PIC16F690  
only.  
© 2007 Microchip Technology Inc.  
DS41262D-page 73  
PIC16F631/677/685/687/689/690  
4.4.3.4  
RB7/TX/CK  
FIGURE 4-10:  
BLOCK DIAGRAM OF RB7  
Figure 4-10 shows the diagram for this pin. The  
RB7/TX/CK(1) pin is configurable to function as one of  
the following:  
Data Bus  
D
Q
VDD  
WR  
WPUB  
CK  
Weak  
Q
• a general purpose I/O  
• an asynchronous serial output  
• a synchronous clock I/O  
RABPU  
RD  
WPUB  
SPEN  
TXEN  
Note 1: TX and CK are available on  
PIC16F687/PIC16F689/PIC16F690 only.  
SYNC  
EUSART  
CK  
10  
EUSART  
TX  
D
Q
Q
0
VDD  
WR  
PORTB  
CK  
10  
01  
I/O Pin  
D
Q
Q
WR  
‘1’  
01  
CK  
TRISB  
VSS  
01  
RD  
TRISB  
RD  
PORTB  
D
Q
Q
Q
D
CK  
WR  
IOCB  
EN  
Q3  
RD  
IOCB  
Q
D
EN  
Interrupt-on-  
Change  
RD PORTB  
Available on PIC16F687/PIC16F689/PIC16F690 only.  
DS41262D-page 74  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
TABLE 4-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IOCB  
IOCB7 IOCB6 IOCB5 IOCB4  
RABIE  
T0IF  
INTF  
0000 ---- 0000 ----  
INTCON  
PORTB  
TRISB  
WPUB  
GIE  
PEIE  
RB6  
T0IE  
RB5  
INTE  
RB4  
RABIF 0000 000x 0000 000x  
RB7  
xxxx ---- uuuu ----  
1111 ---- 1111 ----  
1111 ---- 1111 ----  
TRISB7 TRISB6 TRISB5 TRISB4  
WPUB7 WPUB6 WPUB5 WPUB4  
Legend: x= unknown, u= unchanged, = unimplemented read as ‘0’. Shaded cells are not used by PORTB.  
© 2007 Microchip Technology Inc.  
DS41262D-page 75  
PIC16F631/677/685/687/689/690  
The TRISC register controls the PORTC pin output  
drivers, even when they are being used as analog inputs.  
The user should ensure the bits in the TRISC register are  
maintained set when using them as analog inputs. I/O  
pins configured as analog input always read ‘0’.  
4.5  
PORTC and TRISC Registers  
PORTC is  
a 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISC (Register  
4-10). Setting a TRISC bit (= 1) will make the  
corresponding PORTC pin an input (i.e., put the  
corresponding output driver in a High-Impedance mode).  
Clearing a TRISC bit (= 0) will make the corresponding  
PORTC pin an output (i.e., enable the output driver and  
put the contents of the output latch on the selected pin).  
Example 4-4 shows how to initialize PORTC. Reading  
the PORTC register (Register 4-9) reads the status of the  
pins, whereas writing to it will write to the PORT latch. All  
write operations are read-modify-write operations.  
Therefore, a write to a port implies that the port pins are  
read, this value is modified and then written to the PORT  
data latch.  
Note:  
The ANSEL and ANSELH registers must  
be initialized to configure an analog  
channel as a digital input. Pins configured  
as analog inputs will read ‘0’.  
EXAMPLE 4-4:  
INITIALIZING PORTC  
BCF  
STATUS,RP0  
;Bank 0  
BCF  
CLRF  
BSF  
CLRF  
BSF  
BCF  
STATUS,RP1  
PORTC  
STATUS,RP1  
ANSEL  
STATUS,RP0  
STATUS,RP1  
0Ch  
;
;Init PORTC  
;Bank 2  
;digital I/O  
;Bank 1  
;
MOVLW  
MOVWF  
;Set RC<3:2> as inputs  
;and set RC<5:4,1:0>  
;as outputs  
;Bank 0  
TRISC  
BCF  
STATUS,RP0  
REGISTER 4-11: PORTC: PORTC REGISTER  
R/W-0  
RC7  
R/W-x  
RC6  
R/W-x  
RC5  
R/W-x  
RC4  
R/W-x  
RC3  
R/W-x  
RC2  
R/W-x  
RC1  
R/W-x  
RC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7-0  
RC<7:0>: PORTC General Purpose I/O Pin bit  
1= Port pin is > VIH  
0= Port pin is < VIL  
REGISTER 4-12: TRISC: PORTC TRI-STATE REGISTER  
R/W-1  
R/W-1  
R/W-1  
TRISC5  
R/W-1  
R-1  
R/W-1  
R/W-1  
R/W-1  
TRISC7  
TRISC6  
TRISC4  
TRISC3  
TRISC2  
TRISC1  
TRISC0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
TRISC<7:0>: PORTC Tri-State Control bit  
1= PORTC pin configured as an input (tri-stated)  
0= PORTC pin configured as an output  
DS41262D-page 76  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
4.5.1  
RC0/AN4/C2IN+  
4.5.3  
RC2/AN6/C12IN2-/P1D  
The RC0 is configurable to function as one of the  
following:  
The RC2/AN6/P1D(1) is configurable to function as  
one of the following:  
• a general purpose I/O  
• a general purpose I/O  
• an analog input for the ADC (except PIC16F631)  
• an analog input to Comparator C2  
• an analog input for the ADC (except PIC16F631)  
• a PWM output  
• an analog input to Comparator C1 or C2  
4.5.2  
RC1/AN5/C12IN1-  
Note 1: P1D is available on  
The RC1 is configurable to function as one of the  
following:  
PIC16F685/PIC16F690 only.  
• a general purpose I/O  
4.5.4  
RC3/AN7/C12IN3-/P1C  
• an analog input for the ADC  
• an analog input to Comparator C1 or C2  
The RC3/AN7/P1C(1) is configurable to function as one  
of the following:  
• a general purpose I/O  
FIGURE 4-11:  
BLOCK DIAGRAM OF RC0  
AND RC1  
• an analog input for the ADC (except PIC16F631)  
• a PWM output  
Data Bus  
• a PWM output  
• an analog input to Comparator C1 or C2  
VDD  
D
Q
Note 1: P1C is available on  
WR  
PORTC  
CK  
Q
PIC16F685/PIC16F690 only.  
I/O Pin  
FIGURE 4-12:  
BLOCK DIAGRAM OF RC2  
AND RC3  
D
Q
Q
WR  
CK  
TRISC  
VSS  
Analog Input  
Data Bus  
CCP1OUT  
Enable  
VDD  
Mode(1)  
RD  
TRISC  
D
Q
WR  
PORTC  
CK  
RD  
PORTC  
Q
10  
CCP1OUT  
To Comparators  
01  
I/O Pin  
To A/D Converter(2)  
D
Q
Q
WR  
TRISC  
CK  
VSS  
Note 1:  
2:  
ANSEL determines Analog Input mode.  
Not implemented on PIC16F631.  
Analog Input  
Mode(1)  
RD  
TRISC  
RD  
PORTC  
To Comparators  
To A/D Converter(2)  
Available on PIC16F685/PIC16F690 only.  
Note 1:  
2:  
ANSEL determines Analog Input mode.  
Not implemented on PIC16F631.  
© 2007 Microchip Technology Inc.  
DS41262D-page 77  
PIC16F631/677/685/687/689/690  
4.5.5  
RC4/C2OUT/P1B  
4.5.6  
RC5/CCP1/P1A  
The RC4/C2OUT/P1B(1, 2) is configurable to function  
as one of the following:  
The RC5/CCP1/P1A(1) is configurable to function as  
one of the following:  
• a general purpose I/O  
• a digital output from Comparator C2  
• a PWM output  
• a general purpose I/O  
• a digital input/output for the Enhanced CCP  
• a PWM output  
Note 1: Enabling both C2OUT and P1B will cause  
a conflict on RC4 and create unpredictable  
results. Therefore, if C2OUT is enabled,  
the ECCP+ can not be used in Half-Bridge  
or Full-Bridge mode and vise-versa.  
Note 1: CCP1 and P1A are available on  
PIC16F685/PIC16F690 only.  
FIGURE 4-14:  
BLOCK DIAGRAM OF RC5  
Data bus  
2: P1B is available on  
CCP1OUT  
Enable  
VDD  
PIC16F685/PIC16F690 only.  
D
Q
FIGURE 4-13:  
BLOCK DIAGRAM OF RC4  
WR  
PORTC  
CK  
10  
Q
CCP1OUT  
C2OUT EN  
CCP1OUT EN  
01  
I/O Pin  
D
Q
Q
C2OUT EN  
C2OUT  
WR  
TRISC  
CK  
VDD  
VSS  
CCP1OUT EN  
CCP1OUT  
10  
RD  
TRISC  
01  
I/O Pin  
Data Bus  
RD  
PORTC  
D
Q
WR  
PORTC  
CK  
To Enhanced CCP  
VSS  
Q
D
Q
Q
Available on PIC16F685/PIC16F690 only.  
WR  
TRISC  
CK  
RD  
TRISC  
RD  
PORTC  
Available on PIC16F685/PIC16F690 only.  
DS41262D-page 78  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
4.5.7  
RC6/AN8/SS  
4.5.8  
RC7/AN9/SDO  
The RC6/AN8/SS(1,2) is configurable to function as one  
of the following:  
The RC7/AN9/SDO(1,2) is configurable to function as  
one of the following:  
• a general purpose I/O  
• a general purpose I/O  
• an analog input for the ADC (except PIC16F631)  
• a slave select input  
• an analog input for the ADC (except PIC16F631)  
• a serial data output  
Note 1: SS is available on  
Note 1: SDO is available on PIC16F687/  
PIC16F687/PIC16F689/PIC16F690 only.  
PIC16F689/PIC16F690 only.  
2: AN8 is not implemented on PIC16F631.  
2: AN9 is not implemented on PIC16F631.  
FIGURE 4-15:  
BLOCK DIAGRAM OF RC6  
FIGURE 4-16:  
BLOCK DIAGRAM OF RC7  
Data Bus  
PORT/SDO  
Select  
VDD  
Data Bus  
D
Q
10  
SDO  
WR  
PORTC  
CK  
Q
VDD  
D
Q
01  
WR  
PORTC  
CK  
I/O Pin  
Q
D
Q
Q
WR  
TRISC  
CK  
I/O Pin  
VSS  
Analog Input  
D
Q
Q
Mode(1)  
WR  
TRISC  
CK  
RD  
TRISC  
VSS  
Analog Input  
Mode(1)  
RD  
TRISC  
RD  
PORTC  
To SS Input  
To A/D Converter(2)  
RD  
PORTC  
To A/D Converter(2)  
Available on PIC16F685/PIC16F690 only.  
Note 1:  
2:  
ANSEL determines Analog Input mode.  
Not implemented on PIC16F631.  
Available on PIC16F685/PIC16F690 only.  
Note 1:  
2:  
ANSEL determines Analog Input mode.  
Not implemented on PIC16F631.  
© 2007 Microchip Technology Inc.  
DS41262D-page 79  
PIC16F631/677/685/687/689/690  
TABLE 4-3:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSEL  
ANS7  
ANS6  
ANS5  
ANS4  
ANS3  
ANS2  
ANS1  
ANS9  
ANS0  
ANS8  
1111 1111  
---- 1111  
0000 0000  
0000 -000  
1111 1111  
---- 1111  
0000 0000  
0000 -000  
00-- --10  
uuuu uuuu  
---0 0001  
0000 00--  
0000 0000  
1111 1111  
0000 0000  
ANSELH  
ANS11  
ANS10  
CCP1CON(2)  
CM2CON0  
P1M1  
C2ON  
P1M0  
C2OUT  
DC1B1  
C2OE  
DC1B0  
C2POL  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
C2R  
C2CH1  
C2CH0  
CM2CON1  
PORTC  
MC1OUT MC2OUT  
RC4  
T1GSS  
RC1  
C2SYNC  
RC0  
00-- --10  
xxxx xxxx  
---0 0001  
0000 00--  
0000 0000  
1111 1111  
0000 0000  
RC7  
RC6  
RC5  
RC3  
RC2  
PSTRCON  
SRCON  
STRSYNC  
C2REN  
CKP  
STRD  
PULSS  
SSPM3  
TRISC3  
VR3  
STRC  
PULSR  
SSPM2  
TRISC2  
VR2  
STRB  
STRA  
SR1  
SR0  
C1SEN  
SSPEN  
TRISC5  
VRR  
SSPCON(1)  
WCOL  
TRISC7  
SSPOV  
TRISC6  
SSPM1  
TRISC1  
VR1  
SSPM0  
TRISC0  
VR0  
TRISC  
TRISC4  
VP6EN  
VRCON  
C1VREN C2VREN  
Legend:  
Note 1:  
2:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTC.  
PIC16F687/PIC16F689/PIC16F690 only.  
PIC16F685/PIC16F690 only.  
DS41262D-page 80  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
5.1  
Timer0 Operation  
5.0  
TIMER0 MODULE  
When used as a timer, the Timer0 module can be used  
as either an 8-bit timer or an 8-bit counter.  
The Timer0 module is an 8-bit timer/counter with the  
following features:  
• 8-bit timer/counter register (TMR0)  
5.1.1  
8-BIT TIMER MODE  
• 8-bit prescaler (shared with Watchdog Timer)  
• Programmable internal or external clock source  
• Programmable external clock edge selection  
• Interrupt on overflow  
When used as a timer, the Timer0 module will  
increment every instruction cycle (without prescaler).  
Timer mode is selected by clearing the T0CS bit of the  
OPTION register to ‘0’.  
Figure 5-1 is a block diagram of the Timer0 module.  
When TMR0 is written, the increment is inhibited for  
two instruction cycles immediately following the write.  
Note:  
The value written to the TMR0 register can  
be adjusted, in order to account for the two  
instruction cycle delay when TMR0 is  
written.  
5.1.2  
8-BIT COUNTER MODE  
When used as a counter, the Timer0 module will  
increment on every rising or falling edge of the T0CKI  
pin. The incrementing edge is determined by the T0SE  
bit of the OPTION register. Counter mode is selected by  
setting the T0CS bit of the OPTION register to ‘1’.  
FIGURE 5-1:  
BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
FOSC/4  
Data Bus  
0
1
8
1
Sync 2  
TMR0  
cycles  
T0CKI  
pin  
0
0
1
Set Flag bit T0IF  
on Overflow  
T0CS  
T0SE  
8-bit  
Prescaler  
PSA  
8
PSA  
WDTE  
SWDTEN  
1
PS<2:0>  
WDT  
Time-out  
16-bit  
Prescaler  
0
16  
31 kHz  
INTOSC  
Watchdog  
Timer  
PSA  
WDTPS<3:0>  
Note 1: T0SE, T0CS, PSA, PS<2:0> are bits in the OPTION register.  
2: SWDTEN and WDTPS<3:0> are bits in the WDTCON register.  
3: WDTE bit is in the Configuration Word register.  
© 2007 Microchip Technology Inc.  
DS41262D-page 81  
PIC16F631/677/685/687/689/690  
When changing the prescaler assignment from the  
WDT to the Timer0 module, the following instruction  
sequence must be executed (see Example 5-2).  
5.1.3  
SOFTWARE PROGRAMMABLE  
PRESCALER  
A single software programmable prescaler is available  
for use with either Timer0 or the Watchdog Timer  
(WDT), but not both simultaneously. The prescaler  
assignment is controlled by the PSA bit of the OPTION  
register. To assign the prescaler to Timer0, the PSA bit  
must be cleared to a ‘0’.  
EXAMPLE 5-2:  
CHANGING PRESCALER  
(WDT TIMER0)  
CLRWDT  
;Clear WDT and  
;prescaler  
;
BANKSEL OPTION_REG  
There are 8 prescaler options for the Timer0 module  
ranging from 1:2 to 1:256. The prescale values are  
selectable via the PS<2:0> bits of the OPTION register.  
In order to have a 1:1 prescaler value for the Timer0  
module, the prescaler must be assigned to the WDT  
module.  
MOVLW  
ANDWF  
IORLW  
MOVWF  
b’11110000’ ;Mask TMR0 select and  
OPTION_REG,W ; prescaler bits  
b’00000011’ ;Set prescale to 1:16  
OPTION_REG  
;
5.1.4  
TIMER0 INTERRUPT  
The prescaler is not readable or writable. When the  
prescaler is assigned to the Timer0 module, all  
instructions writing to the TMR0 register will clear the  
prescaler.  
Timer0 will generate an interrupt when the TMR0  
register overflows from FFh to 00h. The T0IF interrupt  
flag bit of the INTCON register is set every time the  
TMR0 register overflows, regardless of whether or not  
the Timer0 interrupt is enabled. The T0IF bit must be  
cleared in software. The Timer0 interrupt enable is the  
T0IE bit of the INTCON register.  
When the prescaler is assigned to WDT, a CLRWDT  
instruction will clear the prescaler along with the WDT.  
5.1.3.1  
Switching Prescaler Between  
Timer0 and WDT Modules  
Note:  
The Timer0 interrupt cannot wake the  
processor from Sleep since the timer is  
frozen during Sleep.  
As a result of having the prescaler assigned to either  
Timer0 or the WDT, it is possible to generate an  
unintended device Reset when switching prescaler  
values. When changing the prescaler assignment from  
Timer0 to the WDT module, the instruction sequence  
shown in Example 5-1, must be executed.  
5.1.5  
USING TIMER0 WITH AN  
EXTERNAL CLOCK  
When Timer0 is in Counter mode, the synchronization  
of the T0CKI input and the Timer0 register is accom-  
plished by sampling the prescaler output on the Q2 and  
Q4 cycles of the internal phase clocks. Therefore, the  
high and low periods of the external clock source must  
meet the timing requirements as shown in  
Section 17.0 “Electrical Specifications”.  
EXAMPLE 5-1:  
CHANGING PRESCALER  
(TIMER0 WDT)  
BANKSEL TMR0  
CLRWDT  
CLRF  
;
;Clear WDT  
TMR0  
;Clear TMR0 and  
;
;
prescaler  
BANKSEL OPTION_REG  
BSF  
OPTION_REG,PSA ;Select WDT  
CLRWDT  
;
;
MOVLW  
ANDWF  
IORLW  
MOVWF  
b’11111000’  
OPTION_REG,W  
b’00000101’  
OPTION_REG  
;Mask prescaler  
bits  
;Set WDT prescaler  
to 1:32  
;
;
DS41262D-page 82  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
REGISTER 5-1:  
OPTION_REG: OPTION REGISTER  
R/W-1 R/W-1 R/W-1 R/W-1  
INTEDG T0CS T0SE PSA  
R/W-1  
RABPU  
bit 7  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RABPU: PORTA/PORTB Pull-up Enable bit  
1= PORTA/PORTB pull-ups are disabled  
0= PORTA/PORTB pull-ups are enabled by individual PORT latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of INT pin  
0= Interrupt on falling edge of INT pin  
T0CS: TMR0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (FOSC/4)  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS<2:0>: Prescaler Rate Select bits  
BIT VALUE TMR0 RATE  
WDT RATE  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 1  
1 : 4  
1 : 2  
1 : 8  
1 : 4  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
Note 1: A dedicated 16-bit WDT postscaler is available. See Section 14.5 “Watchdog Timer (WDT)” for more  
information.  
TABLE 5-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE  
PEIE  
T0IE  
INTE RABIE  
T0SE PSA  
T0IF  
PS2  
INTF RABIF 0000 0000 0000 0000  
OPTION_REG RABPU INTEDG T0CS  
PS1  
PS0 1111 1111 1111 1111  
TMR0  
TRISA  
Timer0 Module Register  
xxxx xxxx uuuu uuuu  
TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 --11 1111 --11 1111  
Legend: – = Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the  
Timer0 module.  
© 2007 Microchip Technology Inc.  
DS41262D-page 83  
PIC16F631/677/685/687/689/690  
6.1  
Timer1 Operation  
6.0  
TIMER1 MODULE WITH GATE  
CONTROL  
The Timer1 module is a 16-bit incrementing counter  
which is accessed through the TMR1H:TMR1L register  
pair. Writes to TMR1H or TMR1L directly update the  
counter.  
The Timer1 module is a 16-bit timer/counter with the  
following features:  
• 16-bit timer/counter register pair (TMR1H:TMR1L)  
• Programmable internal or external clock source  
• 3-bit prescaler  
When used with an internal clock source, the module is  
a timer. When used with an external clock source, the  
module can be used as either a timer or counter.  
• Optional LP oscillator  
• Synchronous or asynchronous operation  
6.2  
Clock Source Selection  
• Timer1 gate (count enable) via comparator or  
T1G pin  
The TMR1CS bit of the T1CON register is used to select  
the clock source. When TMR1CS = 0, the clock source  
is FOSC/4. When TMR1CS = 1, the clock source is  
supplied externally.  
• Interrupt on overflow  
• Wake-up on overflow (external clock,  
Asynchronous mode only)  
• Time base for the Capture/Compare function  
(PIC16F685/PIC16F690 only)  
Clock  
Source  
FOSC  
Mode  
T1OSCEN  
TMR1CS  
• Special Event Trigger (with ECCP)  
(PIC16F685/PIC16F690 only)  
FOSC/4  
x
0
1
xxx  
xxx  
0
1
1
• Comparator output synchronization to Timer1  
clock  
T1CKI pin  
T1LPOSC  
LP or  
INTOSCIO  
Figure 6-1 is a block diagram of the Timer1 module.  
FIGURE 6-1:  
TIMER1 BLOCK DIAGRAM  
TMR1GE  
T1GINV  
TMR1ON  
Set flag bit  
To C2 Comparator module  
Timer1 Clock  
TMR1IF on  
Overflow  
(1)  
TMR1  
TMR1H  
Synchronized  
clock input  
0
EN  
*
TMR1L  
1
Oscillator  
T1SYNC  
OSC1/T1CKI  
1
Synchronize  
det (2)  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
0
OSC2/T1G  
2
T1CKPS<1:0>  
TMR1CS  
1
0
T1OSCEN  
SYNCC2OUT  
FOSC = 100  
FOSC = 000  
T1GSS  
Sleep  
*
ST Buffer is low power type when using LP osc, or high speed type when using T1CKI.  
Note 1: Timer1 register increments on rising edge.  
2: Synchronize does not operate while in Sleep.  
DS41262D-page 84  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
TRISA5 and TRISA4 bits are set when the Timer1  
oscillator is enabled. RA5 and RA4 bits read as ‘0’ and  
TRISA5 and TRISA4 bits read as ‘1’.  
6.2.1  
INTERNAL CLOCK SOURCE  
When the internal clock source is selected the  
TMR1H:TMR1L register pair will increment on multiples  
of FOSC as determined by the Timer1 prescaler.  
Note:  
The oscillator requires a start-up and  
stabilization time before use. Thus,  
T1OSCEN should be set and a suitable  
delay observed prior to enabling Timer1.  
6.2.2  
EXTERNAL CLOCK SOURCE  
When the external clock source is selected, the Timer1  
module may work as a timer or a counter.  
6.5  
Timer1 Operation in  
Asynchronous Counter Mode  
When counting, Timer1 is incremented on the rising  
edge of the external clock input T1CKI. In addition, the  
Counter mode clock can be synchronized to the  
microcontroller system clock or run asynchronously.  
If control bit T1SYNC of the T1CON register is set, the  
external clock input is not synchronized. The timer  
increments asynchronously to the internal phase  
clocks. If external clock source is selected then the  
timer will continue to run during Sleep and can  
generate an interrupt on overflow, which will wake-up  
the processor. However, special precautions in  
software are needed to read/write the timer (see  
Section 6.5.1 “Reading and Writing Timer1 in  
Asynchronous Counter Mode”).  
If an external clock oscillator is needed (and the  
microcontroller is using the INTOSC without CLKOUT),  
Timer1 can use the LP oscillator as a clock source.  
Note:  
In Counter mode, a falling edge must be  
registered by the counter prior to the first  
incrementing rising edge after any one or  
more of the following conditions:  
• Timer1 enabled after POR reset  
• Write to TMR1H or TMR1L  
• Timer1 is disabled  
Note:  
When switching from synchronous to  
asynchronous operation, it is possible to  
skip an increment. When switching from  
asynchronous to synchronous operation,  
it is possible to produce an additional  
increment.  
• Timer1 is disabled (TMR1ON 0) when  
T1CKI is high then Timer1 is enabled  
(TMR1ON=1) when T1CKI is low.  
Note:  
See Figure 6-2  
6.5.1  
READING AND WRITING TIMER1 IN  
ASYNCHRONOUS COUNTER  
MODE  
6.3  
Timer1 Prescaler  
Timer1 has four prescaler options allowing 1, 2, 4 or 8  
divisions of the clock input. The T1CKPS bits of the  
T1CON register control the prescale counter. The  
prescale counter is not directly readable or writable;  
however, the prescaler counter is cleared upon a write to  
TMR1H or TMR1L.  
Reading TMR1H or TMR1L while the timer is running  
from an external asynchronous clock will ensure a valid  
read (taken care of in hardware). However, the user  
should keep in mind that reading the 16-bit timer in two  
8-bit values itself, poses certain problems, since the  
timer may overflow between the reads.  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write  
contention may occur by writing to the timer registers,  
while the register is incrementing. This may produce an  
unpredictable value in the TMR1H:TMR1L register pair.  
6.4  
Timer1 Oscillator  
A low-power 32.768 kHz crystal oscillator is built-in  
between pins OSC1 (input) and OSC2 (amplifier  
output). The oscillator is enabled by setting the  
T1OSCEN control bit of the T1CON register. The  
oscillator will continue to run during Sleep.  
6.6  
Timer1 Gate  
The Timer1 oscillator is shared with the system LP  
oscillator. Thus, Timer1 can use this mode only when  
the primary system clock is derived from the internal  
oscillator or when the oscillator is in the LP mode. The  
user must provide a software time delay to ensure  
proper oscillator start-up.  
Timer1 gate source is software configurable to be the  
T1G pin or the output of Comparator C2. This allows the  
device to directly time external events using T1G or  
analog events using Comparator C2. See the  
CM2CON1 register (Register 8-3) for selecting the  
Timer1 gate source. This feature can simplify the  
software for a Delta-Sigma A/D converter and many  
other applications. For more information on Delta-Sigma  
A/D converters, see the Microchip web site  
(www.microchip.com).  
© 2007 Microchip Technology Inc.  
DS41262D-page 85  
PIC16F631/677/685/687/689/690  
In Compare mode, an event is triggered when the value  
CCPR1H:CCPR1L register pair matches the value in  
the TMR1H:TMR1L register pair. This event can be a  
Special Event Trigger.  
Note:  
TMR1GE bit of the T1CON register must  
be set to use either T1G or C2OUT as the  
Timer1 gate source. See the CM2CON1  
register (Register 8-3) for more informa-  
tion on selecting the Timer1 gate source.  
For more information, see Section 11.0 “Enhanced  
Capture/Compare/PWM Module”.  
Timer1 gate can be inverted using the T1GINV bit of  
the T1CON register, whether it originates from the T1G  
pin or Comparator C2 output. This configures Timer1 to  
measure either the active-high or active-low time  
between events.  
6.10 ECCP Special Event Trigger  
When the ECCP is configured to trigger a special  
event, the trigger will clear the TMR1H:TMR1L register  
pair. This special event does not cause a Timer1 inter-  
rupt. The ECCP module may still be configured to  
generate a ECCP interrupt.  
6.7  
Timer1 Interrupt  
In this mode of operation, the CCPR1H:CCPR1L  
register pair becomes the period register for Timer1.  
The Timer1 register pair (TMR1H:TMR1L) increments  
to FFFFh and rolls over to 0000h. When Timer1 rolls  
over, the Timer1 interrupt flag bit of the PIR1 register is  
set. To enable the interrupt on rollover, you must set  
these bits:  
Timer1 should be synchronized to the FOSC to utilize  
the Special Event Trigger. Asynchronous operation of  
Timer1 can cause a Special Event Trigger to be  
missed.  
• TMR1ON bit of the T1CON register  
• TMR1IE bit of the PIE1 register  
• PEIE bit of the INTCON register  
• GIE bit of the INTCON register  
In the event that a write to TMR1H or TMR1L coincides  
with a Special Event Trigger from the ECCP, the write  
will take precedence.  
For more information, see Section 11.2.4 “Special  
Event Trigger”.  
The interrupt is cleared by clearing the TMR1IF bit in  
the Interrupt Service Routine.  
Note:  
The TMR1H:TTMR1L register pair and the  
TMR1IF bit should be cleared before  
enabling interrupts.  
6.11 Comparator Synchronization  
The same clock used to increment Timer1 can also be  
used to synchronize the comparator output. This  
feature is enabled in the Comparator module.  
6.8  
Timer1 Operation During Sleep  
When using the comparator for Timer1 gate, the  
comparator output should be synchronized to Timer1.  
This ensures Timer1 does not miss an increment if the  
comparator changes.  
Timer1 can only operate during Sleep when setup in  
Asynchronous Counter mode. In this mode, an external  
crystal or clock source can be used to increment the  
counter. To set up the timer to wake the device:  
For  
more  
information,  
see  
Section 8.8.2  
• TMR1ON bit of the T1CON register must be set  
• TMR1IE bit of the PIE1 register must be set  
• PEIE bit of the INTCON register must be set  
• T1SYNC bit of the T1CON register must be set  
• TMR1CS bit of the T1CON register must be set  
• T1OSCEN bit of the T1CON register (can be set)  
“Synchronizing Comparator C2 output to Timer1”.  
The device will wake-up on an overflow and execute  
the next instructions. If the GIE bit of the INTCON  
register is set, the device will call the Interrupt Service  
Routine (0004h).  
6.9  
ECCP Capture/Compare Time Base  
The ECCP module uses the TMR1H:TMR1L register  
pair as the time base when operating in Capture or  
Compare mode.  
In Capture mode, the value in the TMR1H:TMR1L  
register pair is copied into the CCPR1H:CCPR1L  
register pair on a configured event.  
DS41262D-page 86  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
FIGURE 6-2:  
TIMER1 INCREMENTING EDGE  
T1CKI = 1  
when TMR1  
Enabled  
T1CKI = 0  
when TMR1  
Enabled  
Note 1: Arrows indicate counter increments.  
2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock.  
© 2007 Microchip Technology Inc.  
DS41262D-page 87  
PIC16F631/677/685/687/689/690  
6.12 Timer1 Control Register  
The Timer1 Control register (T1CON), shown in  
Register 6-1, is used to control Timer1 and select the  
various features of the Timer1 module.  
REGISTER 6-1:  
T1CON: TIMER 1 CONTROL REGISTER  
R/W-0  
T1GINV(1)  
R/W-0  
TMR1GE(2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1CKPS1  
T1CKPS0  
T1OSCEN  
T1SYNC  
TMR1CS  
TMR1ON  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
T1GINV: Timer1 Gate Invert bit(1)  
1= Timer1 gate is active high (Timer1 counts when gate is high)  
0= Timer1 gate is active low (Timer1 counts when gate is low)  
TMR1GE: Timer1 Gate Enable bit(2)  
If TMR1ON = 0:  
This bit is ignored  
If TMR1ON = 1:  
1= Timer1 is on if Timer1 gate is not active  
0= Timer1 is on  
bit 5-4  
bit 3  
T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale Value  
10= 1:4 Prescale Value  
01= 1:2 Prescale Value  
00= 1:1 Prescale Value  
T1OSCEN: LP Oscillator Enable Control bit  
If INTOSC without CLKOUT oscillator is active:  
1= LP oscillator is enabled for Timer1 clock  
0= LP oscillator is off  
Else:  
This bit is ignored  
bit 2  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from T1CKI pin (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Note 1: T1GINV bit inverts the Timer1 gate logic, regardless of source.  
2: TMR1GE bit must be set to use either T1G pin or C2OUT, as selected by the T1GSS bit of the CM2CON1  
register, as a Timer1 gate source.  
DS41262D-page 88  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
TABLE 6-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CM2CON1 MC1OUT MC2OUT  
T1GSS  
INTF  
C2SYNC  
RABIF  
---- --10  
0000 0000  
---- --10  
0000 0000  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
T0IE  
INTE  
TXIE  
TXIF  
RABIE  
SSPIE  
SSPIF  
T0IF  
RCIE  
RCIF  
CCP1IE  
CCP1IF  
TMR2IE  
TMR2IF  
TMR1IE -000 0000 -000 0000  
TMR1IF -000 0000 -000 0000  
PIR1  
TMR1H  
TMR1L  
T1CON  
Legend:  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx  
xxxx xxxx  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
T1GINV  
TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
TMR1CS  
TMR1ON  
x= unknown, u= unchanged, = unimplemented, read as ‘0’. Shaded cells are not used by the Timer1 module.  
© 2007 Microchip Technology Inc.  
DS41262D-page 89  
PIC16F631/677/685/687/689/690  
NOTES:  
DS41262D-page 90  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
The TMR2 and PR2 registers are both fully readable  
and writable. On any Reset, the TMR2 register is set to  
00h and the PR2 register is set to FFh.  
7.0  
TIMER2 MODULE  
The Timer2 module is an eight-bit timer with the  
following features:  
Timer2 is turned on by setting the TMR2ON bit in the  
T2CON register to a ‘1’. Timer2 is turned off by clearing  
the TMR2ON bit to a ‘0’.  
• 8-bit timer register (TMR2)  
• 8-bit period register (PR2)  
• Interrupt on TMR2 match with PR2  
• Software programmable prescaler (1:1, 1:4, 1:16)  
• Software programmable postscaler (1:1 to 1:16)  
The Timer2 prescaler is controlled by the T2CKPS bits  
in the T2CON register. The Timer2 postscaler is  
controlled by the TOUTPS bits in the T2CON register.  
The prescaler and postscaler counters are cleared  
when:  
See Figure 7-1 for a block diagram of Timer2.  
• A write to TMR2 occurs.  
• A write to T2CON occurs.  
7.1  
Timer2 Operation  
The clock input to the Timer2 module is the system  
instruction clock (FOSC/4). The clock is fed into the  
Timer2 prescaler, which has prescale options of 1:1,  
1:4 or 1:16. The output of the prescaler is then used to  
increment the TMR2 register.  
• Any device Reset occurs (Power-on Reset, MCLR  
Reset, Watchdog Timer Reset or Brown-out  
Reset).  
Note:  
TMR2 is not cleared when T2CON is  
written.  
The values of TMR2 and PR2 are constantly compared  
to determine when they match. TMR2 will increment  
from 00h until it matches the value in PR2. When a  
match occurs, two things happen:  
• TMR2 is reset to 00h on the next increment cycle.  
• The Timer2 postscaler is incremented  
The match output of the Timer2/PR2 comparator is fed  
into the Timer2 postscaler. The postscaler has  
postscale options of 1:1 to 1:16 inclusive. The output of  
the Timer2 postscaler is used to set the TMR2IF  
interrupt flag bit in the PIR1 register.  
FIGURE 7-1:  
TIMER2 BLOCK DIAGRAM  
Sets Flag  
bit TMR2IF  
TMR2  
Output  
Prescaler  
Reset  
EQ  
TMR2  
FOSC/4  
1:1, 1:4, 1:16  
Postscaler  
1:1 to 1:16  
2
Comparator  
PR2  
T2CKPS<1:0>  
4
TOUTPS<3:0>  
© 2007 Microchip Technology Inc.  
DS41262D-page 91  
PIC16F631/677/685/687/689/690  
REGISTER 7-1:  
T2CON: TIMER 2 CONTROL REGISTER(1)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3  
TOUTPS2  
TOUTPS1  
TOUTPS0  
TMR2ON  
T2CKPS1  
T2CKPS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3  
TOUTPS<3:0>: Timer2 Output Postscaler Select bits  
0000= 1:1 Postscaler  
0001= 1:2 Postscaler  
0010= 1:3 Postscaler  
0011= 1:4 Postscaler  
0100= 1:5 Postscaler  
0101= 1:6 Postscaler  
0110= 1:7 Postscaler  
0111= 1:8 Postscaler  
1000= 1:9 Postscaler  
1001= 1:10 Postscaler  
1010= 1:11 Postscaler  
1011= 1:12 Postscaler  
1100= 1:13 Postscaler  
1101= 1:14 Postscaler  
1110= 1:15 Postscaler  
1111= 1:16 Postscaler  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0  
T2CKPS<1:0>: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
Note 1: PIC16F685/PIC16F690 only.  
TABLE 7-1:  
SUMMARY OF ASSOCIATED TIMER2(1) REGISTERS  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
INTE  
TXIE  
TXIF  
RABIE  
SSPIE  
SSPIF  
T0IF  
INTF  
RABIF  
TMR1IE  
TMR1IF  
0000 000x  
-000 0000  
-000 0000  
1111 1111  
0000 0000  
-000 0000  
0000 000x  
-000 0000  
-000 0000  
1111 1111  
0000 0000  
-000 0000  
CCP1IE  
CCP1IF  
TMR2IE  
TMR2IF  
PIR1  
PR2  
Timer2 Module Period Register  
Holding Register for the 8-bit TMR2 Register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0  
TMR2  
T2CON  
TMR2ON  
T2CKPS1  
T2CKPS0  
Legend:  
x= unknown, u= unchanged, = unimplemented read as ‘0’. Shaded cells are not used for Timer2 module.  
Note 1:  
PIC16F685/PIC16F690 only.  
DS41262D-page 92  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
FIGURE 8-1:  
SINGLE COMPARATOR  
8.0  
COMPARATOR MODULE  
Comparators are used to interface analog circuits to a  
digital circuit by comparing two analog voltages and  
providing a digital indication of their relative magnitudes.  
The comparators are very useful mixed signal building  
blocks because they provide analog functionality  
independent of program execution. The Analog  
Comparator module includes the following features:  
VIN+  
VIN-  
+
Output  
VIN-  
VIN+  
• Independent comparator control  
• Programmable input selection  
• Comparator output is available internally/externally  
• Programmable output polarity  
• Interrupt-on-change  
Output  
• Wake-up from Sleep  
• PWM shutdown  
• Timer1 gate (count enable)  
• Output synchronization to Timer1 clock input  
• SR Latch  
Note:  
The black areas of the output of the  
comparator represents the uncertainty  
due to input offsets and response time.  
• Programmable and fixed voltage reference  
Note:  
Only Comparator C2 can be linked to  
Timer1.  
8.1  
Comparator Overview  
A single comparator is shown in Figure 8-1 along with  
the relationship between the analog input levels and  
the digital output. When the analog voltage at VIN+ is  
less than the analog voltage at VIN-, the output of the  
comparator is a digital low level. When the analog  
voltage at VIN+ is greater than the analog voltage at  
VIN-, the output of the comparator is a digital high level.  
© 2007 Microchip Technology Inc.  
DS41262D-page 93  
PIC16F631/677/685/687/689/690  
FIGURE 8-2:  
COMPARATOR C1 SIMPLIFIED BLOCK DIAGRAM  
C1CH<1:0>  
C1POL  
2
To  
Data Bus  
D
Q
Q1  
C12IN0-  
EN  
0
RD_CM1CON0  
Set C1IF  
C12IN1-  
C12IN2-  
C12IN3-  
1
MUX  
2
D
Q
Q3*RD_CM1CON0  
EN  
3
CL  
NRESET  
C1OUT  
(1)  
To other peripherals  
C1OUT (to SR latch)  
C1ON  
C1  
C1R  
C1VIN-  
C1VIN+  
-
C1IN+  
0
+
MUX  
1
FixedRef  
0
C1POL  
MUX  
CVREF  
1
Note 1: When C1ON = 0, the C1 comparator will produce a ‘0’ output to the XOR Gate.  
2: Q1 and Q3 are phases of the four-phase system clock (FOSC).  
3: Q1 is held high during Sleep mode.  
C1VREN  
FIGURE 8-3:  
COMPARATOR C2 SIMPLIFIED BLOCK DIAGRAM  
C2POL  
To  
D
Q
Data Bus  
Q1  
EN  
RD_CM2CON0  
C2CH<1:0>  
Set C2IF  
2
D
Q
Q3*RD_CM2CON0  
EN  
(1)  
C2ON  
C2  
C12IN0-  
0
CL  
NRESET  
C2OUT  
C12IN1-  
C2IN2-  
C2IN3-  
1
MUX  
2
C2VIN-  
C2VIN+  
C2SYNC  
3
C2POL  
0
MUX  
1
C2R  
SYNCC2OUT  
to Timer1 Gate, SR latch  
and other peripherals  
D
Q
C2IN+  
0
From TMR1  
Clock  
MUX  
1
FixedRef  
0
MUX  
1
CVREF  
Note 1: When C2ON = 0, the C2 comparator will produce a ‘0’ output to the XOR Gate.  
2: Q1 and Q3 are phases of the four-phase system clock (FOSC).  
3: Q1 is held high during Sleep mode.  
C2VREN  
DS41262D-page 94  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
8.2.4  
COMPARATOR OUTPUT  
SELECTION  
8.2  
Comparator Control  
Each comparator has  
a
separate control and  
The output of the comparator can be monitored by  
reading either the CxOUT bit of the CMxCON0 register  
or the MCxOUT bit of the CM2CON1 register. In order  
to make the output available for an external connection,  
the following conditions must be true:  
Configuration register: CM1CON0 for Comparator C1  
and CM2CON0 for Comparator C2. In addition,  
Comparator C2 has  
a
second control register,  
CM2CON1, for controlling the interaction with Timer1 and  
simultaneous reading of both comparator outputs.  
• CxOE bit of the CMxCON0 register must be set  
• Corresponding TRIS bit must be cleared  
The CM1CON0 and CM2CON0 registers (see Registers  
8-1 and 8-2, respectively) contain the control and Status  
bits for the following:  
• CxON bit of the CMxCON0 register must be set  
• Enable  
Note 1: The CxOE bit overrides the PORT data  
latch. Setting the CxON has no impact on  
the port override.  
• Input selection  
• Reference selection  
• Output selection  
• Output polarity  
2: The internal output of the comparator is  
latched with each instruction cycle.  
Unless otherwise specified, external  
outputs are not latched.  
8.2.1  
COMPARATOR ENABLE  
Setting the CxON bit of the CMxCON0 register enables  
the comparator for operation. Clearing the CxON bit  
disables the comparator resulting in minimum current  
consumption.  
8.2.5  
COMPARATOR OUTPUT POLARITY  
Inverting the output of the comparator is functionally  
equivalent to swapping the comparator inputs. The  
polarity of the comparator output can be inverted by  
setting the CxPOL bit of the CMxCON0 register.  
Clearing the CxPOL bit results in a non-inverted output.  
8.2.2  
COMPARATOR INPUT SELECTION  
The CxCH<1:0> bits of the CMxCON0 register direct  
one of four analog input pins to the comparator  
inverting input.  
Table 8-1 shows the output state versus input  
conditions, including polarity control.  
TABLE 8-1:  
COMPARATOR OUTPUT  
STATE VS. INPUT CONDITIONS  
Note:  
To use CxIN+ and C12INx- pins as analog  
inputs, the appropriate bits must be set in  
the ANSEL register and the corresponding  
TRIS bits must also be set to disable the  
output drivers.  
Input Condition  
CxPOL  
CxOUT  
CxVIN- > CxVIN+  
CxVIN- < CxVIN+  
CxVIN- > CxVIN+  
CxVIN- < CxVIN+  
0
0
1
1
0
1
1
0
8.2.3  
COMPARATOR REFERENCE  
SELECTION  
Setting the CxR bit of the CMxCON0 register directs an  
internal voltage reference or an analog input pin to the  
non-inverting input of the comparator. See Section 8.9  
“Comparator SR Latch” for more information on the  
Internal Voltage Reference module.  
8.3  
Comparator Response Time  
The comparator output is indeterminate for a period of  
time after the change of an input source or the selection  
of a new reference voltage. This period is referred to as  
the response time. The response time of the  
comparator differs from the settling time of the voltage  
reference. Therefore, both of these times must be  
considered when determining the total response time  
to a comparator input change. See the Comparator and  
Voltage Reference Specifications in Section 17.0  
“Electrical Specifications” for more details.  
© 2007 Microchip Technology Inc.  
DS41262D-page 95  
PIC16F631/677/685/687/689/690  
FIGURE 8-4:  
COMPARATOR  
8.4  
Comparator Interrupt Operation  
INTERRUPT TIMING W/O  
CMxCON0 READ  
The comparator interrupt flag can be set whenever  
there is a change in the output value of the comparator.  
Changes are recognized by means of a mismatch  
circuit which consists of two latches and an exclusive-  
or gate (see Figure 8-2 and Figure 8-3). One latch is  
updated with the comparator output level when the  
CMxCON0 register is read. This latch retains the value  
until the next read of the CMxCON0 register or the  
occurrence of a Reset. The other latch of the mismatch  
circuit is updated on every Q1 system clock. A  
mismatch condition will occur when a comparator  
output change is clocked through the second latch on  
the Q1 clock cycle. At this point the two mismatch  
latches have opposite output levels which is detected  
by the exclusive-or gate and fed to the interrupt  
circuitry. The mismatch condition persists until either  
the CMxCON0 register is read or the comparator  
output returns to the previous state.  
Q1  
Q3  
CxIN+  
TRT  
Cxout  
Set CxIF (edge)  
CxIF  
reset by software  
FIGURE 8-5:  
COMPARATOR  
INTERRUPT TIMING WITH  
CMxCON0 READ  
Q1  
Q3  
CxIN+  
TRT  
Note 1: A write operation to the CMxCON0  
register will also clear the mismatch  
condition because all writes include a read  
operation at the beginning of the write  
cycle.  
Cxout  
Set CxIF (edge)  
CxIF  
cleared by CMxCON0 read  
reset by software  
2: Comparator interrupts will operate correctly  
regardless of the state of CxOE.  
The comparator interrupt is set by the mismatch edge  
and not the mismatch level. This means that the inter-  
rupt flag can be reset without the additional step of  
reading or writing the CMxCON0 register to clear the  
mismatch registers. When the mismatch registers are  
cleared, an interrupt will occur upon the comparator’s  
return to the previous state, otherwise no interrupt will  
be generated.  
Note 1: If a change in the CMxCON0 register  
(CxOUT) should occur when a read  
operation is being executed (start of the  
Q2 cycle), then the CxIF of the PIR1  
register interrupt flag may not get set.  
2: When either comparator is first enabled,  
bias circuitry in the Comparator module  
may cause an invalid output from the  
comparator until the bias circuitry is  
stable. Allow about 1 μs for bias settling  
then clear the mismatch condition and  
Software will need to maintain information about the  
status of the comparator output, as read from the  
CMxCON0 register, or CM2CON1 register, to determine  
the actual change that has occurred.  
interrupt  
flags  
before  
enabling  
comparator interrupts.  
The CxIF bit of the PIR1 register is the comparator  
interrupt flag. This bit must be reset in software by  
clearing it to ‘0’. Since it is also possible to write a '1' to  
this register, an interrupt can be generated.  
The CxIE bit of the PIE1 register and the PEIE and GIE  
bits of the INTCON register must all be set to enable  
comparator interrupts. If any of these bits are cleared,  
the interrupt is not enabled, although the CxIF bit of the  
PIR1 register will still be set if an interrupt condition  
occurs.  
DS41262D-page 96  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
8.5  
Operation During Sleep  
The comparator, if enabled before entering Sleep mode,  
remains active during Sleep. The additional current  
consumed by the comparator is shown separately in the  
Section 17.0 “Electrical Specifications”. If the  
comparator is not used to wake the device, power  
consumption can be minimized while in Sleep mode by  
turning off the comparator. Each comparator is turned off  
by clearing the CxON bit of the CMxCON0 register.  
A change to the comparator output can wake-up the  
device from Sleep. To enable the comparator to wake  
the device from Sleep, the CxIE bit of the PIE1 register  
and the PEIE bit of the INTCON register must be set.  
The instruction following the Sleep instruction always  
executes following a wake from Sleep. If the GIE bit of  
the INTCON register is also set, the device will then  
execute the Interrupt Service Routine.  
8.6  
Effects of a Reset  
A device Reset forces the CMxCON0 and CM2CON1  
registers to their Reset states. This forces both  
comparators and the voltage references to their OFF  
states.  
© 2007 Microchip Technology Inc.  
DS41262D-page 97  
PIC16F631/677/685/687/689/690  
REGISTER 8-1:  
CM1CON0: COMPARATOR C1 CONTROL REGISTER 0  
R/W-0  
C1ON  
R-0  
R/W-0  
C1OE  
R/W-0  
U-0  
R/W-0  
C1R  
R/W-0  
R/W-0  
C1OUT  
C1POL  
C1CH1  
C1CH0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
C1ON: Comparator C1 Enable bit  
1= Comparator C1 is enabled  
0= Comparator C1 is disabled  
C1OUT: Comparator C1 Output bit  
If C1POL = 1(inverted polarity):  
C1OUT = 0when C1VIN+ > C1VIN-  
C1OUT = 1when C1VIN+ < C1VIN-  
If C1POL = 0(non-inverted polarity):  
C1OUT = 1when C1VIN+ > C1VIN-  
C1OUT = 0when C1VIN+ < C1VIN-  
bit 5  
bit 4  
C1OE: Comparator C1 Output Enable bit  
1= C1OUT is present on the C1OUT pin(1)  
0= C1OUT is internal only  
C1POL: Comparator C1 Output Polarity Select bit  
1= C1OUT logic is inverted  
0= C1OUT logic is not inverted  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
C1R: Comparator C1 Reference Select bit (non-inverting input)  
1= C1VIN+ connects to C1VREF output  
0= C1VIN+ connects to C1IN+ pin  
bit 1-0  
C1CH<1:0>: Comparator C1 Channel Select bit  
00= C1VIN- of C1 connects to C12IN0- pin  
01= C1VIN- of C1 connects to C12IN1- pin  
10= C1VIN- of C1 connects to C12IN2- pin  
11= C1VIN- of C1 connects to C12IN3- pin  
Note 1: Comparator output requires the following three conditions: C1OE = 1, C1ON = 1and corresponding  
PORT TRIS bit = 0.  
DS41262D-page 98  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
REGISTER 8-2:  
CM2CON0: COMPARATOR C2 CONTROL REGISTER 0  
R/W-0  
C2ON  
R-0  
R/W-0  
C2OE  
R/W-0  
U-0  
R/W-0  
C2R  
R/W-0  
R/W-0  
C2OUT  
C2POL  
C2CH1  
C2CH0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
C2ON: Comparator C2 Enable bit  
1= Comparator C2 is enabled  
0= Comparator C2 is disabled  
C2OUT: Comparator C2 Output bit  
If C2POL = 1(inverted polarity):  
C2OUT = 0when C2VIN+ > C2VIN-  
C2OUT = 1when C2VIN+ < C2VIN-  
If C2POL = 0(non-inverted polarity):  
C2OUT = 1when C2VIN+ > C2VIN-  
C2OUT = 0when C2VIN+ < C2VIN-  
bit 5  
bit 4  
C2OE: Comparator C2 Output Enable bit  
1= C2OUT is present on C2OUT pin(1)  
0= C2OUT is internal only  
C1POL: Comparator C1 Output Polarity Select bit  
1= C1OUT logic is inverted  
0= C1OUT logic is not inverted  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
C2R: Comparator C2 Reference Select bits (non-inverting input)  
1= C2VIN+ connects to C2VREF  
0= C2VIN+ connects to C2IN+ pin  
bit 1-0  
C2CH<1:0>: Comparator C2 Channel Select bits  
00= C2VIN- of C2 connects to C12IN0- pin  
01= C2VIN- of C2 connects to C12IN1- pin  
10= C2VIN- of C2 connects to C12IN2- pin  
11= C2VIN- of C2 connects to C12IN3- pin  
Note 1: Comparator output requires the following three conditions: C2OE = 1, C2ON = 1and corresponding  
PORT TRIS bit = 0.  
© 2007 Microchip Technology Inc.  
DS41262D-page 99  
PIC16F631/677/685/687/689/690  
8.7  
Analog Input Connection  
Considerations  
Note 1: When reading a PORT register, all pins  
configured as analog inputs will read as a  
0’. Pins configured as digital inputs will  
convert as an analog input, according to  
the input specification.  
A simplified circuit for an analog input is shown in  
Figure 8-6. Since the analog input pins share their con-  
nection with a digital input, they have reverse biased  
ESD protection diodes to VDD and VSS. The analog  
input, therefore, must be between VSS and VDD. If the  
input voltage deviates from this range by more than  
0.6V in either direction, one of the diodes is forward  
biased and a latch-up may occur.  
2: Analog levels on any pin defined as a  
digital input, may cause the input buffer to  
consume more current than is specified.  
A maximum source impedance of 10 kΩ is recommended  
for the analog sources. Also, any external component  
connected to an analog input pin, such as a capacitor or  
a Zener diode, should have very little leakage current to  
minimize inaccuracies introduced.  
FIGURE 8-6:  
ANALOG INPUT MODEL  
VDD  
VT 0.6V  
RIC  
Rs < 10K  
To ADC Input  
AIN  
ILEAKAGE  
±500 nA  
CPIN  
5 pF  
VA  
VT 0.6V  
Vss  
Legend: CPIN  
= Input Capacitance  
ILEAKAGE = Leakage Current at the pin due to various junctions  
RIC  
RS  
VA  
= Interconnect Resistance  
= Source Impedance  
= Analog Voltage  
VT  
= Threshold Voltage  
DS41262D-page 100  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
8.8.2  
SYNCHRONIZING COMPARATOR  
C2 OUTPUT TO TIMER1  
8.8  
Additional Comparator Features  
There are three additional comparator features:  
The Comparator C2 output can be synchronized with  
Timer1 by setting the C2SYNC bit of the CM2CON1  
register. When enabled, the C2 output is latched on the  
falling edge of the Timer1 clock source. If a prescaler is  
used with Timer1, the comparator output is latched after  
the prescaling function. To prevent a race condition, the  
comparator output is latched on the falling edge of the  
Timer1 clock source and Timer1 increments on the  
rising edge of its clock source. See the Comparator  
Block Diagram (Figure 8-3) and the Timer1 Block  
Diagram (Figure 6-1) for more information.  
• Timer1 count enable (gate)  
• Synchronizing output with Timer1  
• Simultaneous read of comparator outputs  
8.8.1  
COMPARATOR C2 GATING TIMER1  
This feature can be used to time the duration or interval  
of analog events. Clearing the T1GSS bit of the  
CM2CON1 register will enable Timer1 to increment  
based on the output of Comparator C2. This requires  
that Timer1 is on and gating is enabled. See  
Section 6.0 “Timer1 Module with Gate Control” for  
details.  
8.8.3  
SIMULTANEOUS COMPARATOR  
OUTPUT READ  
It is recommended to synchronize the comparator with  
Timer1 by setting the C2SYNC bit when the comparator  
is used as the Timer1 gate source. This ensures Timer1  
does not miss an increment if the comparator changes  
during an increment.  
The MC1OUT and MC2OUT bits of the CM2CON1  
register are mirror copies of both comparator outputs.  
The ability to read both outputs simultaneously from a  
single register eliminates the timing skew of reading  
separate registers.  
Note 1: Obtaining the status of C1OUT or C2OUT  
by reading CM2CON1 does not affect the  
comparator interrupt mismatch registers.  
REGISTER 8-3:  
CM2CON1: COMPARATOR C2 CONTROL REGISTER 1  
R-0  
MC1OUT  
bit 7  
R-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
MC2OUT  
T1GSS  
C2SYNC  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
MC1OUT: Mirror Copy of C1OUT bit  
MC2OUT: Mirror Copy of C2OUT bit  
Unimplemented: Read as ‘0’  
bit 6  
bit 5-2  
bit 1  
T1GSS: Timer1 Gate Source Select bit(1)  
1= Timer1 gate source is T1G  
0= Timer1 gate source is SYNCC2OUT.  
bit 0  
C2SYNC: Comparator C2 Output Synchronization bit(2)  
1= Output is synchronous to falling edge of Timer1 clock  
0= Output is asynchronous  
Note 1: Refer to Section 6.6 “Timer1 Gate”.  
2: Refer to Figure 8-3.  
© 2007 Microchip Technology Inc.  
DS41262D-page 101  
PIC16F631/677/685/687/689/690  
8.9.2  
LATCH OUTPUT  
8.9  
Comparator SR Latch  
The SR<1:0> bits of the SRCON register control the  
latch output multiplexers and determine four possible  
output configurations. In these four configurations, the  
CxOUT I/O port logic is connected to:  
The SR Latch module provides additional control of the  
comparator outputs. The module consists of a single  
SR latch and output multiplexers. The SR latch can be  
set, reset or toggled by the comparator outputs. The SR  
latch may also be set or reset, independent of  
comparator output, by control bits in the SRCON control  
register. The SR latch output multiplexers select  
whether the latch outputs or the comparator outputs are  
directed to the I/O port logic for eventual output to a pin.  
• C1OUT and C2OUT  
• C1OUT and SR latch Q  
• C2OUT and SR latch Q  
• SR latch Q and Q  
After any Reset, the default output configuration is the  
unlatched C1OUT and C2OUT mode. This maintains  
compatibility with devices that do not have the SR latch  
feature.  
8.9.1  
LATCH OPERATION  
The latch is a Set-Reset latch that does not depend on a  
clock source. Each of the Set and Reset inputs are  
active-high. Each latch input is connected to  
a
The applicable TRIS bits of the corresponding ports  
must be cleared to enable the port pin output drivers.  
Additionally, the CxOE comparator output enable bits of  
the CMxCON0 registers must be set in order to make the  
comparator or latch outputs available on the output pins.  
The latch configuration enable states are completely  
independent of the enable states for the comparators.  
comparator output and a software controlled pulse  
generator. The latch can be set by C1OUT or the PULSS  
bit of the SRCON register. The latch can be reset by  
C2OUT or the PULSR bit of the SRCON register. The  
latch is reset-dominant, therefore, if both Set and Reset  
inputs are high, the latch will go to the Reset state. Both  
the PULSS and PULSR bits are self resetting which  
means that a single write to either of the bits is all that is  
necessary to complete a latch set or reset operation.  
FIGURE 8-7:  
SR LATCH SIMPLIFIED BLOCK DIAGRAM  
SR0  
C1OE  
PULSS  
Pulse  
Gen(2)  
0
MUX  
1
C1OUT (from comparator)  
C1SEN  
S
Q
(3)  
C1OUT pin  
SR  
Latch  
(1)  
C2OE  
SYNCC2OUT (from comparator)  
C2REN  
1
MUX  
R
Q
(3)  
0
C2OUT pin  
PULSR  
Pulse  
SR1  
Gen(2)  
Note 1: If R = 1and S = 1simultaneously, Q = 0, Q = 1  
2: Pulse generator causes a 1/2 Q-state (1 Tosc) pulse width.  
3: Output shown for reference only. See I/O port pin block diagram for more detail.  
DS41262D-page 102  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
REGISTER 8-4:  
SRCON: SR LATCH CONTROL REGISTER  
R/W-0  
SR1(2)  
bit 7  
R/W-0  
SR0(2)  
R/W-0  
R/W-0  
R/S-0  
R/S-0  
U-0  
U-0  
C1SEN  
C2REN  
PULSS  
PULSR  
bit 0  
Legend:  
S = Bit is set only  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1-0  
SR1: SR Latch Configuration bit(2)  
1= C2OUT pin is the latch Q output  
0= C2OUT pin is the C2 comparator output  
SR0: SR Latch Configuration bits(2)  
1= C1OUT pin is the latch Q output  
0= C1OUT pin is the Comparator C1 output  
C1SEN: C1 Set Enable bit  
1= C1 comparator output sets SR latch  
0= C1 comparator output has no effect on SR latch  
C2REN: C2 Reset Enable bit  
1= C2 comparator output resets SR latch  
0= C2 comparator output has no effect on SR latch  
PULSS: Pulse the SET Input of the SR Latch bit  
1= Triggers pulse generator to set SR latch. Bit is immediately reset by hardware.  
0= Does not trigger pulse generator  
PULSR: Pulse the Reset Input of the SR Latch bit  
1= Triggers pulse generator to reset SR latch. Bit is immediately reset by hardware.  
0= Does not trigger pulse generator  
Unimplemented: Read as ‘0’  
Note 1: The CxOUT bit in the CMxCON0 register will always reflect the actual comparator output (not the level on  
the pin), regardless of the SR latch operation.  
2: To enable an SR latch output to the pin, the appropriate CxOE and TRIS bits must be properly configured.  
© 2007 Microchip Technology Inc.  
DS41262D-page 103  
PIC16F631/677/685/687/689/690  
8.10.3  
OUTPUT CLAMPED TO VSS  
8.10 Comparator Voltage Reference  
The CVREF output voltage can be set to VSS with no  
power consumption by configuring VRCON as follows:  
The comparator voltage reference module provides an  
internally generated voltage reference for the compara-  
tors. The following features are available:  
• VREN = 0  
• VRR = 1  
• Independent from Comparator operation  
• Two 16-level voltage ranges  
• Output clamped to VSS  
• VR<3:0> = 0000  
This allows the comparator to detect a zero-crossing  
while not consuming additional CVREF module current.  
• Ratiometric with VDD  
• Fixed Reference (0.6)  
8.10.4  
OUTPUT RATIOMETRIC TO VDD  
The VRCON register (Register 8-5) controls the  
Voltage Reference module shown in Figure 8-8.  
The comparator voltage reference is VDD derived and  
therefore, the CVREF output changes with fluctuations in  
VDD. The tested absolute accuracy of the Comparator  
Voltage Reference can be found in Section 17.0  
“Electrical Specifications”.  
8.10.1  
INDEPENDENT OPERATION  
The comparator voltage reference is independent of  
the comparator configuration. Setting the VREN bit of  
the VRCON register will enable the voltage reference.  
8.10.2  
OUTPUT VOLTAGE SELECTION  
The CVREF voltage reference has 2 ranges with 16  
voltage levels in each range. Range selection is  
controlled by the VRR bit of the VRCON register. The  
16 levels are set with the VR<3:0> bits of the VRCON  
register.  
The CVREF output voltage is determined by the following  
equations:  
EQUATION 8-1:  
CVREF OUTPUT VOLTAGE  
VRR = 1 (low range):  
CVREF = (VR<3:0>/24) × VDD  
VRR = 0 (high range):  
CVREF = (VDD/4) +  
(VR<3:0> × VDD/32)  
The full range of VSS to VDD cannot be realized due to  
the construction of the module. See Figure 8-8.  
DS41262D-page 104  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
8.10.5  
FIXED VOLTAGE REFERENCE  
8.10.7  
VOLTAGE REFERENCE  
SELECTION  
The fixed voltage reference is independent of VDD, with  
a nominal output voltage of 0.6V. This reference can be  
enabled by setting the VP6EN bit of the VRCON  
register to ‘1’. This reference is always enabled when  
the HFINTOSC oscillator is active.  
Multiplexers on the output of the Voltage Reference  
module enable selection of either the CVREF or fixed  
voltage reference for use by the comparators.  
Setting the C1VREN bit of the VRCON register enables  
current to flow in the CVREF voltage divider and selects  
the CVREF voltage for use by C1. Clearing the C1VREN  
bit selects the fixed voltage for use by C1.  
8.10.6  
FIXED VOLTAGE REFERENCE  
STABILIZATION PERIOD  
When the Fixed Voltage Reference module is enabled,  
it will require some time for the reference and its  
amplifier circuits to stabilize. The user program must  
include a small delay routine to allow the module to  
settle. See the electrical specifications section for the  
minimum delay requirement.  
Setting the C2VREN bit of the VRCON register enables  
current to flow in the CVREF voltage divider and selects  
the CVREF voltage for use by C2. Clearing the C2VREN  
bit selects the fixed voltage for use by C2.  
When both the C1VREN and C2VREN bits are cleared,  
current flow in the CVREF voltage divider is disabled  
minimizing the power drain of the voltage reference  
peripheral.  
FIGURE 8-8:  
COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM  
16 Stages  
8R  
R
R
R
R
VDD  
VRR  
8R  
16-1 Analog  
MUX  
CVREF  
To Comparators  
and ADC module  
(1)  
VR<3:0>  
C1VREN  
C2VREN  
VP6EN  
Sleep  
HFINTOSC enable  
EN  
FixedRef  
0.6V  
Fixed Voltage  
Reference  
To Comparators  
and ADC module  
Note 1: Care should be taken to ensure VREF remains  
within the comparator common mode input  
range. See Section 17.0 “Electrical Specifica-  
tions” for more detail.  
© 2007 Microchip Technology Inc.  
DS41262D-page 105  
PIC16F631/677/685/687/689/690  
REGISTER 8-5:  
VRCON: VOLTAGE REFERENCE CONTROL REGISTER  
R/W-0  
C1VREN  
bit 7  
R/W-0  
R/W-0  
VRR  
R/W-0  
R/S-0  
VR3  
R/S-0  
VR2  
U-0  
U-0  
C2VREN  
VP6EN  
VR1  
VR0  
bit 0  
Legend:  
S = Bit is set only  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3-0  
C1VREN: Comparator C1 Voltage Reference Enable bit  
1= CVREF circuit powered on and routed to C1VREF input of Comparator C1  
0= 0.6 Volt constant reference routed to C1VREF input of Comparator C1  
C2VREN: Comparator C2 Voltage Reference Enable bit  
1= CVREF circuit powered on and routed to C2VREF input of Comparator C2  
0= 0.6 Volt constant reference routed to C2VREF input of Comparator C2  
VRR: Comparator Voltage Reference CVREF Range Selection bit  
1= Low Range  
0= High Range  
VP6EN: 0.6V Reference Enable bit  
1= Enabled  
0= Disabled  
VR<3:0>: Comparator Voltage Reference CVREF Value Selection 0 VR<3:0> 15  
When VRR = 1: CVREF = (VR<3:0>/24) * VDD  
When VRR = 0: CVREF = VDD/4 + (VR<3:0>/32) * VDD  
TABLE 8-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH THE COMPARATOR AND VOLTAGE  
REFERENCE MODULES  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
ANSEL  
ANS7  
C1ON  
C2ON  
ANS6  
C1OUT  
C2OUT  
ANS5  
ANS4  
ANS3  
ANS2  
C1R  
C2R  
ANS1  
C1CH1  
C2CH1  
T1GSS  
INTF  
ANS0  
C1CH0  
C2CH0  
C2SYNC  
RABIF  
1111 1111 1111 1111  
0000 -000 0000 0000  
0000 -000 0000 -000  
00-- --10 00-- --10  
0000 000x 0000 000x  
0000 ---- 0000 ----  
CM1CON0  
CM2CON0  
C1OE C1POL  
C2OE C2POL  
CM2CON1 MC1OUT MC2OUT  
INTCON  
PIE2  
GIE  
OSFIE  
OSFIF  
PEIE  
C2IE  
C2IF  
T0IE  
C1IE  
C1IF  
RA5  
INTE  
EEIE  
EEIF  
RA4  
RABIE  
T0IF  
PIR2  
0000----  
0000----  
PORTA  
PORTC  
REFCON  
SRCON  
TRISA  
RA3  
RC3  
VREN  
RA2  
RC2  
RA1  
RA0  
--xx xxxx --uu uuuu  
xxxx xxxx uuuu uuuu  
--00 000- --00 000-  
0000 00-- 0000 00--  
--11 1111 --11 1111  
1111 1111 1111 1111  
0000 0000 0000 0000  
RC7  
RC6  
RC5  
BGST  
RC4  
VRBB  
RC1  
RC0  
VROE CVROE  
SR1  
SR0  
C1SEN C2REN PULSS PULSR  
TRISA5 TRISA4 TRISA3 TRISA2 TRISA1  
TRISA0  
TRISC0  
VR0  
TRISC  
TRISC7  
TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1  
VRCON  
Legend:  
C1VREN C2VREN VRR VP6EN VR3 VR2 VR1  
x= unknown, u= unchanged, – = unimplemented, read as ‘0’. Shaded cells are not used for comparator.  
DS41262D-page 106  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
Figure 9-1 shows the block diagram of the ADC.  
9.0  
ANALOG-TO-DIGITAL  
CONVERTER (ADC) MODULE  
The Analog-to-Digital Converter (ADC) allows  
conversion of an analog input signal to a 10-bit binary  
representation of that signal. This device uses analog  
inputs, which are multiplexed into a single sample and  
hold circuit. The output of the sample and hold is  
connected to the input of the converter. The converter  
generates  
a 10-bit binary result via successive  
approximation and stores the conversion result into the  
ADC result registers (ADRESL and ADRESH).  
Note:  
The ADC module applies to PIC16F677/  
PIC16F685/PIC16F687/PIC16F689/  
PIC16F690 devices only.  
The ADC voltage reference is software selectable to  
either VDD or a voltage applied to the external reference  
pins.  
The ADC can generate an interrupt upon completion of  
a conversion. This interrupt can be used to wake-up the  
device from Sleep.  
FIGURE 9-1:  
ADC BLOCK DIAGRAM  
VDD  
VCFG = 0  
VCFG = 1  
VREF  
RA0/AN0/C1IN+/ICSPDAT/ULPWU  
RA1/AN1/C12IN0-/VREF/ICSPCLK  
RA2/AN2/T0CKI/INT/C1OUT  
RA4/AN3/T1G/OSC2/CLKOUT  
RC0/AN4/C2IN+  
RC1/AN5/C12IN1-  
(1)  
RC2/AN6/C12IN2-/P1D  
ADC  
(1)  
RC3/AN7/C12IN3-/P1C  
10  
(2)  
GO/DONE  
RC6/AN8/SS  
(2)  
RC7/AN9/SDO  
0= Left Justify  
1= Right Justify  
ADFM  
(2)  
RB4/AN10/SDI/SDA  
(2)  
ADON  
RB5/AN11/RX/DT  
10  
CVREF  
ADRESH ADRESL  
VSS  
VP6 Reference  
CHS  
Note 1: P1C and P1D available on PIC16F685/PIC16F690 only.  
2: SS, SDO, SDA, RX and DT available on PIC16F677/PIC16F687/PIC16F689/PIC16F690 only.  
3: ADC module applies to the PIC16F677/PIC16F685/PIC16F687/PIC16F689/PIC16F690 devices only.  
© 2007 Microchip Technology Inc.  
DS41262D-page 107  
PIC16F631/677/685/687/689/690  
9.1.3  
ADC VOLTAGE REFERENCE  
9.1  
ADC Configuration  
The VCFG bit of the ADCON0 register provides control  
of the positive voltage reference. The positive voltage  
reference can be either VDD or an external voltage  
source. The negative voltage reference is always  
connected to the ground reference.  
When configuring and using the ADC the following  
functions must be considered:  
• Port configuration  
• Channel selection  
• ADC voltage reference selection  
• ADC conversion clock source  
• Interrupt control  
9.1.4  
CONVERSION CLOCK  
The source of the conversion clock is software  
selectable via the ADCS bits of the ADCON1 register.  
There are seven possible clock options:  
• Results formatting  
9.1.1  
PORT CONFIGURATION  
• FOSC/2  
The ADC can be used to convert both analog and digital  
signals. When converting analog signals, the I/O pin  
should be configured for analog by setting the associated  
TRIS and ANSEL bits. See the corresponding port  
section for more information.  
• FOSC/4  
• FOSC/8  
• FOSC/16  
• FOSC/32  
• FOSC/64  
Note:  
Analog voltages on any pin that is defined  
as a digital input may cause the input  
buffer to conduct excess current.  
• FRC (dedicated internal oscillator)  
The time to complete one bit conversion is defined as  
TAD. One full 10-bit conversion requires 11 TAD periods  
as shown in Figure 9-2.  
9.1.2  
CHANNEL SELECTION  
For correct conversion, the appropriate TAD specification  
must be met. See A/D conversion requirements in  
Section 17.0 “Electrical Specifications” for more  
information. Table 9-1 gives examples of appropriate  
ADC clock selections.  
The CHS bits of the ADCON0 register determine which  
channel is connected to the sample and hold circuit.  
When changing channels, a delay is required before  
starting the next conversion. Refer to Section 9.2  
“ADC Operation” for more information.  
Note:  
Unless using the FRC, any changes in the  
system clock frequency will change the  
ADC clock frequency, which may  
adversely affect the ADC result.  
DS41262D-page 108  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
TABLE 9-1:  
ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES (VDD > 3.0V)  
ADC Clock Period (TAD)  
Device Frequency (FOSC)  
ADC Clock Source  
ADCS<2:0>  
20 MHz  
8 MHz  
4 MHz  
1 MHz  
FOSC/2  
FOSC/4  
FOSC/8  
FOSC/16  
FOSC/32  
FOSC/64  
FRC  
000  
100  
001  
101  
010  
110  
x11  
100 ns(2)  
200 ns(2)  
400 ns(2)  
800 ns(2)  
1.6 μs  
250 ns(2)  
500 ns(2)  
1.0 μs(2)  
2.0 μs  
500 ns(2)  
1.0 μs(2)  
2.0 μs  
2.0 μs  
4.0 μs  
8.0 μs(3)  
16.0 μs(3)  
32.0 μs(3)  
64.0 μs(3)  
2-6 μs(1,4)  
4.0 μs  
4.0 μs  
8.0 μs(3)  
16.0 μs(3)  
2-6 μs(1,4)  
3.2 μs  
2-6 μs(1,4)  
8.0 μs(3)  
2-6 μs(1,4)  
Legend: Shaded cells are outside of recommended range.  
Note 1: The FRC source has a typical TAD time of 4 μs for VDD > 3.0V.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: When the device frequency is greater than 1 MHz, the FRC clock source is only recommended if the  
conversion will be performed during Sleep.  
FIGURE 9-2:  
ANALOG-TO-DIGITAL CONVERSION TAD CYCLES  
TCY to TAD  
TAD1 TAD2 TAD3 TAD4 TAD5 TAD6 TAD7 TAD8 TAD9 TAD10 TAD11  
b9  
b8  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Conversion Starts  
Holding Capacitor is disconnected from analog input (typically 100 ns)  
Set GO/DONE bit  
ADRESH and ADRESL registers are loaded,  
GO bit is cleared,  
ADIF bit is set,  
Holding capacitor is connected to analog input  
9.1.5  
INTERRUPTS  
The ADC module allows for the ability to generate an  
interrupt upon completion of an Analog-to-Digital  
conversion. The ADC interrupt flag is the ADIF bit in the  
PIR1 register. The ADC interrupt enable is the ADIE bit  
in the PIE1 register. The ADIF bit must be cleared in  
software.  
Note:  
The ADIF bit is set at the completion of  
every conversion, regardless of whether  
or not the ADC interrupt is enabled.  
This interrupt can be generated while the device is  
operating or while in Sleep. If the device is in Sleep, the  
interrupt will wake-up the device. Upon waking from  
Sleep, the next instruction following the SLEEP  
instruction is always executed. If the user is attempting  
to wake-up from Sleep and resume in-line code  
execution, the global interrupt must be disabled. If the  
global interrupt is enabled, execution will switch to the  
interrupt service routine.  
Please see Section 9.1.5 “Interrupts” for more  
information.  
© 2007 Microchip Technology Inc.  
DS41262D-page 109  
PIC16F631/677/685/687/689/690  
9.1.6  
RESULT FORMATTING  
The 10-bit A/D conversion result can be supplied in two  
formats, left justified or right justified. The ADFM bit of  
the ADCON0 register controls the output format.  
Figure 9-3 shows the two output formats.  
FIGURE 9-3:  
10-BIT A/D CONVERSION RESULT FORMAT  
ADRESH  
ADRESL  
(ADFM = 0)  
MSB  
bit 7  
LSB  
bit 0  
bit 0  
bit 7  
bit 7  
bit 0  
10-bit A/D Result  
Unimplemented: Read as ‘0’  
(ADFM = 1)  
MSB  
LSB  
bit 0  
bit 7  
Unimplemented: Read as ‘0’  
10-bit A/D Result  
DS41262D-page 110  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
9.2.5  
SPECIAL EVENT TRIGGER  
9.2  
ADC Operation  
An ECCP Special Event Trigger allows periodic ADC  
measurements without software intervention. When  
this trigger occurs, the GO/DONE bit is set by hardware  
and the Timer1 counter resets to zero.  
9.2.1  
STARTING A CONVERSION  
To enable the ADC module, the ADON bit of the  
ADCON0 register must be set to a ‘1’. Setting the GO/  
DONE bit of the ADCON0 register to a ‘1’ will start the  
Analog-to-Digital conversion.  
Using the Special Event Trigger does not assure proper  
ADC timing. It is the user’s responsibility to ensure that  
the ADC timing requirements are met.  
Note:  
The GO/DONE bit should not be set in the  
same instruction that turns on the ADC.  
Refer to Section 9.2.6 “A/D Conversion  
Procedure”.  
See Section 11.0 “Enhanced Capture/Compare/  
PWM Module” for more information.  
9.2.6  
A/D CONVERSION PROCEDURE  
9.2.2  
COMPLETION OF A CONVERSION  
This is an example procedure for using the ADC to  
perform an Analog-to-Digital conversion:  
When the conversion is complete, the ADC module will:  
• Clear the GO/DONE bit  
• Set the ADIF flag bit  
1. Configure Port:  
• Disable pin output driver (See TRIS register)  
• Configure pin as analog  
• Update the ADRESH:ADRESL registers with new  
conversion result  
2. Configure the ADC module:  
• Select ADC conversion clock  
• Configure voltage reference  
• Select ADC input channel  
• Select result format  
9.2.3  
TERMINATING A CONVERSION  
If a conversion must be terminated before completion,  
the GO/DONE bit can be cleared in software. The  
ADRESH:ADRESL registers will not be updated with  
the partially complete Analog-to-Digital conversion  
sample. Instead, the ADRESH:ADRESL register pair  
will retain the value of the previous conversion. Addi-  
tionally, a 2 TAD delay is required before another acqui-  
sition can be initiated. Following this delay, an input  
acquisition is automatically started on the selected  
channel.  
• Turn on ADC module  
3. Configure ADC interrupt (optional):  
• Clear ADC interrupt flag  
• Enable ADC interrupt  
• Enable peripheral interrupt  
• Enable global interrupt(1)  
4. Wait the required acquisition time(2)  
.
Note:  
A device Reset forces all registers to their  
Reset state. Thus, the ADC module is  
turned off and any pending conversion is  
terminated.  
5. Start conversion by setting the GO/DONE bit.  
6. Wait for ADC conversion to complete by one of  
the following:  
• Polling the GO/DONE bit  
9.2.4  
ADC OPERATION DURING SLEEP  
• Waiting for the ADC interrupt (interrupts  
enabled)  
The ADC module can operate during Sleep. This  
requires the ADC clock source to be set to the FRC  
option. When the FRC clock source is selected, the  
ADC waits one additional instruction before starting the  
conversion. This allows the SLEEP instruction to be  
executed, which can reduce system noise during the  
conversion. If the ADC interrupt is enabled, the device  
will wake-up from Sleep when the conversion  
completes. If the ADC interrupt is disabled, the ADC  
module is turned off after the conversion completes,  
although the ADON bit remains set.  
7. Read ADC Result  
8. Clear the ADC interrupt flag (required if interrupt  
is enabled).  
Note 1: The global interrupt can be disabled if the  
user is attempting to wake-up from Sleep  
and resume in-line code execution.  
2: See Section 9.3 “A/D Acquisition  
Requirements”.  
When the ADC clock source is something other than  
FRC, a SLEEP instruction causes the present conver-  
sion to be aborted and the ADC module is turned off,  
although the ADON bit remains set.  
© 2007 Microchip Technology Inc.  
DS41262D-page 111  
PIC16F631/677/685/687/689/690  
EXAMPLE 9-1:  
A/D CONVERSION  
;This code block configures the ADC  
;for polling, Vdd reference, Frc clock  
;and AN0 input.  
;
;Conversion start & polling for completion  
; are included.  
;
BANKSEL  
MOVLW  
MOVWF  
BANKSEL  
BSF  
BANKSEL  
BSF  
BANKSEL  
MOVLW  
MOVWF  
CALL  
BSF  
BTFSC  
GOTO  
BANKSEL  
MOVF  
MOVWF  
BANKSEL  
MOVF  
ADCON1  
;
B’01110000’ ;ADC Frc clock  
ADCON1  
TRISA  
TRISA,0  
ANSEL  
ANSEL,0  
ADCON0  
B’10000001’ ;Right justify,  
ADCON0  
SampleTime  
ADCON0,GO  
ADCON0,GO  
$-1  
;
;
;Set RA0 to input  
;
;Set RA0 to analog  
;
; Vdd Vref, AN0, On  
;Acquisiton delay  
;Start conversion  
;Is conversion done?  
;No, test again  
;
;Read upper 2 bits  
;store in GPR space  
;
ADRESH  
ADRESH,W  
RESULTHI  
ADRESL  
ADRESL,W  
RESULTLO  
;Read lower 8 bits  
;Store in GPR space  
MOVWF  
9.2.7  
ADC REGISTER DEFINITIONS  
The following registers are used to control the  
operation of the ADC.  
DS41262D-page 112  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
REGISTER 9-1:  
ADCON0: A/D CONTROL REGISTER 0  
R/W-0  
ADFM  
bit 7  
R/W-0  
VCFG  
R/W-0  
CHS3  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
R/W-0  
ADON  
GO/DONE  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
ADFM: A/D Conversion Result Format Select bit  
1= Right justified  
0= Left justified  
bit 6  
VCFG: Voltage Reference bit  
1= VREF pin  
0= VDD  
bit 5-2  
CHS<3:0>: Analog Channel Select bits  
0000= AN0  
0001= AN1  
0010= AN2  
0011= AN3  
0100= AN4  
0101= AN5  
0110= AN6  
0111= AN7  
1000= AN8  
1001= AN9  
1010= AN10  
1011= AN11  
1100= CVREF  
1101= 0.6V Reference  
1110= Reserved. Do not use.  
1111= Reserved. Do not use.  
bit 1  
bit 0  
GO/DONE: A/D Conversion Status bit  
1= A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle.  
This bit is automatically cleared by hardware when the A/D conversion has completed.  
0= A/D conversion completed/not in progress  
ADON: ADC Enable bit  
1= ADC is enabled  
0= ADC is disabled and consumes no operating current  
© 2007 Microchip Technology Inc.  
DS41262D-page 113  
PIC16F631/677/685/687/689/690  
REGISTER 9-2:  
ADCON1: A/D CONTROL REGISTER 1  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
ADCS2  
ADCS1  
ADCS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
ADCS<2:0>: A/D Conversion Clock Select bits  
000= FOSC/2  
001= FOSC/8  
010= FOSC/32  
x11= FRC (clock derived from a dedicated internal oscillator = 500 kHz max)  
100= FOSC/4  
101= FOSC/16  
110= FOSC/64  
bit 3-0  
Unimplemented: Read as ‘0’  
DS41262D-page 114  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
REGISTER 9-3:  
ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0  
R/W-x  
ADRES9  
bit 7  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
ADRES8  
ADRES7  
ADRES6  
ADRES5  
ADRES4  
ADRES3  
ADRES2  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
ADRES<9:2>: ADC Result Register bits  
Upper 8 bits of 10-bit conversion result  
REGISTER 9-4:  
ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0  
R/W-x  
ADRES1  
bit 7  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
ADRES0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
ADRES<1:0>: ADC Result Register bits  
Lower 2 bits of 10-bit conversion result  
Reserved: Do not use.  
REGISTER 9-5:  
ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
ADRES9  
ADRES8  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-2  
bit 1-0  
Reserved: Do not use.  
ADRES<9:8>: ADC Result Register bits  
Upper 2 bits of 10-bit conversion result  
REGISTER 9-6:  
ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1  
R/W-x  
ADRES7  
bit 7  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
ADRES6  
ADRES5  
ADRES4  
ADRES3  
ADRES2  
ADRES1  
ADRES0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
ADRES<7:0>: ADC Result Register bits  
Lower 8 bits of 10-bit conversion result  
© 2007 Microchip Technology Inc.  
DS41262D-page 115  
PIC16F631/677/685/687/689/690  
an A/D acquisition must be done before the conversion  
can be started. To calculate the minimum acquisition  
time, Equation 9-1 may be used. This equation  
assumes that 1/2 LSb error is used (1024 steps for the  
ADC). The 1/2 LSb error is the maximum error allowed  
for the ADC to meet its specified resolution.  
9.3  
A/D Acquisition Requirements  
For the ADC to meet its specified accuracy, the charge  
holding capacitor (CHOLD) must be allowed to fully  
charge to the input channel voltage level. The Analog  
Input model is shown in Figure 9-4. The source  
impedance (RS) and the internal sampling switch (RSS)  
impedance directly affect the time required to charge the  
capacitor CHOLD. The sampling switch (RSS) impedance  
varies over the device voltage (VDD), see Figure 9-4.  
The maximum recommended impedance for analog  
sources is 10 kΩ. As the source impedance is  
decreased, the acquisition time may be decreased.  
After the analog input channel is selected (or changed),  
EQUATION 9-1:  
ACQUISITION TIME EXAMPLE  
Temperature = 50°C and external impedance of 10kΩ 5.0V VDD  
Assumptions:  
TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient  
= TAMP + TC + TCOFF  
= 5µs + TC + [(Temperature - 25°C)(0.05µs/°C)]  
The value for TC can be approximated with the following equations:  
1
2047  
= VCHOLD  
-----------  
;[1] VCHOLD charged to within 1/2 lsb  
VAPPLIED 1 –  
TC  
---------  
VAPPLIED 1 e RC = VCHOLD  
;[2] VCHOLD charge response to VAPPLIED  
Tc  
--------  
1
2047  
VAPPLIED 1 eRC = VAPPLIED 1 –  
;combining [1] and [2]  
-----------  
Solving for TC:  
TC = CHOLD(RIC + RSS + RS) ln(1/2047)  
= 10pF(1kΩ + 7kΩ + 10kΩ) ln(0.0004885)  
= 1.37µs  
Therefore:  
TACQ = 5µS + 1.37µS + [(50°C- 25°C)(0.05µS/°C)]  
= 7.67µS  
Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.  
2: The charge holding capacitor (CHOLD) is not discharged after each conversion.  
3: The maximum recommended impedance for analog sources is 10 kΩ. This is required to meet the pin  
leakage specification.  
DS41262D-page 116  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
FIGURE 9-4:  
ANALOG INPUT MODEL  
VDD  
VT = 0.6V  
Sampling  
Switch  
ANx  
SS  
RIC 1k  
Rss  
Rs  
CPIN  
5 pF  
VA  
I LEAKAGE  
± 500 nA  
CHOLD = 10 pF  
VSS/VREF-  
VT = 0.6V  
6V  
5V  
RSS  
VDD 4V  
3V  
Legend: CPIN  
= Input Capacitance  
= Threshold Voltage  
VT  
2V  
I LEAKAGE = Leakage current at the pin due to  
various junctions  
RIC  
SS  
CHOLD  
= Interconnect Resistance  
= Sampling Switch  
= Sample/Hold Capacitance  
5 6 7 8 9 1011  
Sampling Switch  
(kΩ)  
FIGURE 9-5:  
ADC TRANSFER FUNCTION  
Full-Scale Range  
3FFh  
3FEh  
3FDh  
3FCh  
3FBh  
1 LSB ideal  
Full-Scale  
Transition  
004h  
003h  
002h  
001h  
000h  
Analog Input Voltage  
1 LSB ideal  
Zero-Scale  
Transition  
VDD/VREF+  
VSS/VREF-  
© 2007 Microchip Technology Inc.  
DS41262D-page 117  
PIC16F631/677/685/687/689/690  
TABLE 9-2:  
SUMMARY OF ASSOCIATED ADC REGISTERS  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON0  
ADCON1  
ANSEL  
ADFM  
VCFG  
ADCS2  
ANS6  
CHS3  
ADCS1  
ANS5  
CHS2  
ADCS0  
ANS4  
CHS1  
CHS0  
GO/DONE ADON  
0000 0000 0000 0000  
-000 ---- -000 ----  
1111 1111 1111 1111  
---- 1111 ---- 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
0000 000x 0000 000x  
ANS7  
ANS3  
ANS11  
ANS2  
ANS10  
ANS1  
ANS9  
ANS0  
ANS8  
ANSELH  
ADRESH A/D Result Register High Byte  
ADRESL A/D Result Register Low Byte  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
RA5  
INTE  
TXIE  
TXIF  
RA4  
RB4  
RC4  
RABIE  
SSPIE  
SSPIF  
RA3  
T0IF  
CCP1IE  
CCP1IF  
RA2  
INTF  
TMR2IE  
TMR2IF  
RA1  
RABIF  
TMR1IE -000 0000 -000 0000  
TMR1IF -000 0000 -000 0000  
PIR1  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
TRISC  
Legend:  
RA0  
--xx xxxx --uu uuuu  
xxxx ---- uuuu ----  
xxxx xxxx uuuu uuuu  
RB7  
RC7  
RB6  
RC6  
RB5  
RC5  
RC3  
RC2  
RC1  
RC0  
TRISA5 TRISA4 TRISA3 TRISA2  
TRISA1  
TRISA0 --11 1111 --11 1111  
1111 ---- 1111 ----  
TRISC0 1111 1111 1111 1111  
TRISB7 TRISB6 TRISB5 TRISB4  
TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2  
TRISC1  
x= unknown, u= unchanged, = unimplemented read as ‘0’. Shaded cells are not used for ADC module.  
DS41262D-page 118  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
10.1 EEADR and EEADRH Registers  
10.0 DATA EEPROM AND FLASH  
PROGRAM MEMORY  
CONTROL  
The EEADR and EEADRH registers can address up to  
a maximum of 256 bytes of data EEPROM or up to a  
maximum of 4K words of program EEPROM.  
Data EEPROM memory is readable and writable and  
the Flash program memory (PIC16F685/PIC16F689/  
PIC16F690 only) is readable during normal operation  
(full VDD range). These memories are not directly  
mapped in the register file space. Instead, they are indi-  
rectly addressed through the Special Function Regis-  
ters (SFRs). There are six SFRs used to access these  
memories:  
When selecting a program address value, the MSB of  
the address is written to the EEADRH register and the  
LSB is written to the EEADR register. When selecting a  
data address value, only the LSB of the address is  
written to the EEADR register.  
10.1.1  
EECON1 AND EECON2 REGISTERS  
EECON1 is the control register for EE memory  
accesses.  
• EECON1  
• EECON2  
Control bit EEPGD (PIC16F685/PIC16F689/PIC16F690)  
determines if the access will be a program or data mem-  
ory access. When clear, as it is when reset, any subse-  
quent operations will operate on the data memory. When  
set, any subsequent operations will operate on the pro-  
gram memory. Program memory can only be read.  
• EEDAT  
• EEDATH (PIC16F685/PIC16F689/PIC16F690 only)  
• EEADR  
• EEADRH (PIC16F685/PIC16F689/PIC16F690 only)  
When interfacing the data memory block, EEDAT holds  
the 8-bit data for read/write, and EEADR holds the  
address of the EEDAT location being accessed. These  
devices, except for the PIC16F631, have 256 bytes of  
data EEPROM with an address range from 0h to 0FFh.  
The PIC16F631 has 128 bytes of data EEPROM with  
an address range from 0h to 07Fh.  
Control bits RD and WR initiate read and write,  
respectively. These bits cannot be cleared, only set, in  
software. They are cleared in hardware at completion  
of the read or write operation. The inability to clear the  
WR bit in software prevents the accidental, premature  
termination of a write operation.  
When accessing the program memory block of the  
PIC16F685/PIC16F689/PIC16F690 devices, the EEDAT  
and EEDATH registers form a 2-byte word that holds the  
14-bit data for read/write, and the EEADR and EEADRH  
registers form a 2-byte word that holds the 12-bit address  
of the EEPROM location being read. These devices  
(PIC16F685/PIC16F689/PIC16F690) have 4K words of  
program EEPROM with an address range from 0h to  
0FFFh. The program memory allows one-word reads.  
The WREN bit, when set, will allow a write operation to  
data EEPROM. On power-up, the WREN bit is clear.  
The WRERR bit is set when a write operation is  
interrupted by a MCLR or a WDT Time-out Reset  
during normal operation. In these situations, following  
Reset, the user can check the WRERR bit and rewrite  
the location.  
Interrupt flag bit EEIF of the PIR2 register is set when  
write is complete. It must be cleared in the software.  
The EEPROM data memory allows byte read and write.  
A byte write automatically erases the location and  
writes the new data (erase before write).  
EECON2 is not a physical register. Reading EECON2  
will read all ‘0’s. The EECON2 register is used  
exclusively in the data EEPROM write sequence.  
The write time is controlled by an on-chip timer. The  
write/erase voltages are generated by an on-chip  
charge pump rated to operate over the voltage range of  
the device for byte or word operations.  
When the device is code-protected, the CPU may  
continue to read and write the data EEPROM memory  
and read the program memory. When code-protected,  
the device programmer can no longer access data or  
program memory.  
© 2007 Microchip Technology Inc.  
DS41262D-page 119  
PIC16F631/677/685/687/689/690  
REGISTER 10-1: EEDAT: EEPROM DATA REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EEDAT7  
EEDAT6  
EEDAT5  
EEDAT4  
EEDAT3  
EEDAT2  
EEDAT1  
EEDAT0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
EEDAT<7:0>: 8 Least Significant Address bits to Write to or Read from data EEPROM or Read from program memory  
REGISTER 10-2: EEADR: EEPROM ADDRESS REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
(1)  
EEADR7  
EEADR6  
EEADR5  
EEADR4  
EEADR3  
EEADR2  
EEADR1  
EEADR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
(1)  
bit 7-0  
EEADR<7:0>: 8 Least Significant Address bits for EEPROM Read/Write Operation or Read from program memory  
Note 1: PIC16F677/PIC16F685/PIC16F687/PIC16F689/PIC16F690 only.  
REGISTER 10-3: EEDATH: EEPROM DATA HIGH BYTE REGISTER(1)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EEDATH5  
EEDATH4  
EEDATH3  
EEDATH2  
EEDATH1  
EEDATH0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
EEDATH<5:0>: 6 Most Significant Data bits from program memory  
Note 1: PIC16F685/PIC16F689/PIC16F690 only.  
REGISTER 10-4: EEADRH: EEPROM ADDRESS HIGH BYTE REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EEADRH3  
EEADRH2  
EEADRH1  
EEADRH0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-4  
bit 3-0  
Unimplemented: Read as ‘0’  
EEADRH<3:0>: Specifies the 4 Most Significant Address bits or high bits for program memory reads  
Note 1: PIC16F685/PIC16F689/PIC16F690 only.  
DS41262D-page 120  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
REGISTER 10-5: EECON1: EEPROM CONTROL REGISTER  
R/W-x  
EEPGD(1)  
U-0  
U-0  
U-0  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
WRERR  
bit 7  
bit 0  
Legend:  
S = Bit can only be set  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
EEPGD: Program/Data EEPROM Select bit(1)  
1= Accesses program memory  
0= Accesses data memory  
bit 6-4  
bit 3  
Unimplemented: Read as ‘0’  
WRERR: EEPROM Error Flag bit  
1= A write operation is prematurely terminated (any MCLR Reset, any WDT Reset during  
normal operation or BOR Reset)  
0= The write operation completed  
bit 2  
bit 1  
WREN: EEPROM Write Enable bit  
1= Allows write cycles  
0= Inhibits write to the data EEPROM  
WR: Write Control bit  
EEPGD = 1:  
This bit is ignored  
EEPGD = 0:  
1= Initiates a write cycle (The bit is cleared by hardware once write is complete. The WR bit can only  
be set, not cleared, in software.)  
0= Write cycle to the data EEPROM is complete  
bit 0  
RD: Read Control bit  
1= Initiates a memory read (the RD is cleared in hardware and can only be set, not cleared, in  
software.)  
0= Does not initiate a memory read  
Note 1: PIC16F685/PIC16F689/PIC16F690 only.  
© 2007 Microchip Technology Inc.  
DS41262D-page 121  
PIC16F631/677/685/687/689/690  
10.1.2  
READING THE DATA EEPROM  
MEMORY  
10.1.3  
WRITING TO THE DATA EEPROM  
MEMORY  
To read a data memory location, the user must write the  
address to the EEADR register, clear the EEPGD  
control bit of the EECON1 register, and then set control  
bit RD. The data is available at the very next cycle, in  
the EEDAT register; therefore, it can be read in the next  
instruction. EEDAT will hold this value until another  
read or until it is written to by the user (during a write  
operation).  
To write an EEPROM data location, the user must first  
write the address to the EEADR register and the data  
to the EEDAT register. Then the user must follow a  
specific sequence to initiate the write for each byte.  
The write will not initiate if the above sequence is not  
followed exactly (write 55h to EECON2, write AAh to  
EECON2, then set WR bit) for each byte. Interrupts  
should be disabled during this code segment.  
Additionally, the WREN bit in EECON1 must be set to  
enable write. This mechanism prevents accidental  
writes to data EEPROM due to errant (unexpected)  
code execution (i.e., lost programs). The user should  
keep the WREN bit clear at all times, except when  
updating EEPROM. The WREN bit is not cleared  
by hardware.  
EXAMPLE 10-1:  
DATA EEPROM READ  
BANKSEL EEADR  
;
MOVF  
DATA_EE_ADDR, W;  
MOVWF  
EEADR  
;Data Memory  
;Address to read  
;
BANKSEL EECON1  
BCF  
BSF  
EECON1, EEPGD ;Point to DATA memory  
EECON1, RD  
;EE Read  
;
;W = EEDAT  
;Bank 0  
After a write sequence has been initiated, clearing the  
WREN bit will not affect this write cycle. The WR bit will  
be inhibited from being set unless the WREN bit is set.  
BANKSEL EEDAT  
MOVF  
BCF  
EEDAT, W  
STATUS, RP1  
At the completion of the write cycle, the WR bit is  
cleared in hardware and the EE Write Complete  
Interrupt Flag bit (EEIF) is set. The user can either  
enable this interrupt or poll this bit. EEIF must be  
cleared by software.  
EXAMPLE 10-2:  
DATA EEPROM WRITE  
BANKSEL EEADR  
;
MOVF  
DATA_EE_ADDR, W;  
MOVWF  
MOVF  
EEADR  
DATA_EE_DATA, W;  
;Data Memory Address to write  
MOVWF  
EEDAT  
;Data Memory Value to write  
BANKSEL EECON1  
;
BCF  
BSF  
EECON1, EEPGD ;Point to DATA memory  
EECON1, WREN  
;Enable writes  
BCF  
INTCON, GIE  
INTCON, GIE  
$-2  
55h  
EECON2  
AAh  
EECON2  
EECON1, WR  
INTCON, GIE  
;Disable INTs.  
;SEE AN576  
BTFSC  
GOTO  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
;
;Write 55h  
;
;Write AAh  
;Set WR bit to begin write  
;Enable INTs.  
BSF  
SLEEP  
BCF  
BANKSEL 0x00  
;Wait for interrupt to signal write complete (optional)  
;Disable writes  
;Bank 0  
EECON1, WREN  
DS41262D-page 122  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
EEDAT and EEDATH registers will hold this value until  
another read or until it is written to by the user.  
10.1.4  
READING THE FLASH PROGRAM  
MEMORY (PIC16F685/PIC16F689/  
PIC16F690)  
Note 1: The two instructions following a program  
memory read are required to be NOPs.  
This prevents the user from executing a  
two-cycle instruction on the next  
instruction after the RD bit is set.  
To read a program memory location, the user must  
write the Least and Most Significant address bits to the  
EEADR and EEADRH registers, set the EEPGD con-  
trol bit of the EECON1 register, and then set control bit  
RD. Once the read control bit is set, the program mem-  
ory Flash controller will use the second instruction  
cycle to read the data. This causes the second instruc-  
tion immediately following the “BSF EECON1,RD”  
instruction to be ignored. The data is available in the  
very next cycle, in the EEDAT and EEDATH registers;  
therefore, it can be read as two bytes in the following  
instructions.  
2: If the WR bit is set when EEPGD = 1, it  
will be immediately reset to ‘0’ and no  
operation will take place.  
EXAMPLE 10-3:  
FLASH PROGRAM READ  
BANKSELEEADR  
;
;
MOVF  
MOVWF  
MOVF  
MS_PROG_EE_ADDR, W  
EEADRH  
LS_PROG_EE_ADDR, W  
EEADR  
;MS Byte of Program Address to read  
;
MOVWF  
;LS Byte of Program Address to read  
BANKSELEECON1  
;
BSF  
BSF  
EECON1, EEPGD  
EECON1, RD  
;Point to PROGRAM memory  
;EE Read  
;
;
NOP  
NOP  
;First instruction after BSF EECON1,RD executes normally  
;Any instructions here are ignored as program  
;memory is read in second cycle after BSF EECON1,RD  
BANKSELEEDAT  
;
MOVF  
EEDAT, W  
;W = LS Byte of Program Memory  
MOVWF  
MOVF  
MOVWF  
LOWPMBYTE  
EEDATH, W  
HIGHPMBYTE  
;
;W = MS Byte of Program EEDAT  
;
BANKSEL0x00  
;Bank 0  
© 2007 Microchip Technology Inc.  
DS41262D-page 123  
PIC16F631/677/685/687/689/690  
FIGURE 10-1:  
FLASH PROGRAM MEMORY READ CYCLE EXECUTION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
PC + 1  
EEADRH,EEADR  
PC + 3  
PC + 4  
PC + 5  
Flash ADDR  
Flash Data  
INSTR (PC)  
INSTR (PC + 1)  
EEDATH,EEDAT  
INSTR (PC + 3)  
INSTR (PC + 4)  
BSF EECON1,RD  
executed here  
INSTR(PC - 1)  
executed here  
INSTR(PC + 1)  
executed here  
Forced NOP  
executed here  
INSTR(PC + 3)  
executed here  
INSTR(PC + 4)  
executed here  
RD bit  
EEDATH  
EEDAT  
Register  
EERHLT  
DS41262D-page 124  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
When the data memory is code-protected, only the  
CPU is able to read and write data to the data  
10.2 Write Verify  
Depending on the application, good programming  
practice may dictate that the value written to the data  
EEPROM should be verified (see Example 10-4) to the  
desired value to be written.  
EEPROM. It is recommended to code-protect the pro-  
gram memory when code-protecting data memory.  
This prevents anyone from programming zeroes over  
the existing code (which will execute as NOPs) to reach  
an added routine, programmed in unused program  
memory, which outputs the contents of data memory.  
Programming unused locations in program memory to  
0’ will also help prevent data memory code protection  
from becoming breached.  
EXAMPLE 10-4:  
WRITE VERIFY  
BANKSEL EEDAT  
;
MOVF  
EEDAT, W  
;EEDAT not changed  
;from previous write  
BANKSEL EECON1  
;
BSF  
EECON1, RD  
;YES, Read the  
;value written  
;
BANKSEL EEDAT  
XORWF  
BTFSS  
GOTO  
:
EEDAT, W  
STATUS, Z  
WRITE_ERR  
;
;Is data the same  
;No, handle error  
;Yes, continue  
;Bank 0  
BANKSEL 0x00  
10.2.1  
USING THE DATA EEPROM  
The data EEPROM is  
a high-endurance, byte  
addressable array that has been optimized for the  
storage of frequently changing information (e.g.,  
program variables or other data that are updated often).  
When variables in one section change frequently, while  
variables in another section do not change, it is possible  
to exceed the total number of write cycles to the  
EEPROM (specification D124) without exceeding the  
total number of write cycles to  
a single byte  
(specifications D120 and D120A). If this is the case,  
then a refresh of the array must be performed. For this  
reason, variables that change infrequently (such as  
constants, IDs, calibration, etc.) should be stored in  
Flash program memory.  
10.3 Protection Against Spurious Write  
There are conditions when the user may not want to  
write to the data EEPROM memory. To protect against  
spurious EEPROM writes, various mechanisms have  
been built in. On power-up, WREN is cleared. Also, the  
Power-up  
Timer  
(64 ms  
duration)  
prevents  
EEPROM write.  
The write initiate sequence and the WREN bit together  
help prevent an accidental write during:  
• Brown-out  
• Power Glitch  
• Software Malfunction  
10.4 Data EEPROM Operation During  
Code-Protect  
Data memory can be code-protected by programming  
the CPD bit in the Configuration Word register  
(Register 14-1) to ‘0’.  
© 2007 Microchip Technology Inc.  
DS41262D-page 125  
PIC16F631/677/685/687/689/690  
TABLE 10-1: SUMMARY OF REGISTERS ASSOCIATED WITH DATA EEPROM  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
EECON1  
EECON2  
EEADR  
EEPGD(1)  
WRERR  
WREN  
WR  
RD  
x--- x000  
---- ----  
0000 0000  
0--- q000  
---- ----  
0000 0000  
EEPROM Control Register 2 (not a physical register)  
EEADR7(2) EEADR6 EEADR5  
EEADR4  
EEADR3  
EEADR2  
EEADR1  
EEADR0  
EEADRH(1)  
EEDAT  
EEDAT7  
EEDAT6  
EEADRH3 EEADRH2 EEADRH1 EEADRH0  
EEDAT3 EEDAT2 EEDAT1 EEDAT0  
---- 0000  
0000 0000  
--00 0000  
0000 0000  
0000 ----  
0000 ----  
---- 0000  
0000 0000  
--00 0000  
0000 0000  
0000 ----  
0000 ----  
EEDAT5  
EEDAT4  
EEDATH(1)  
INTCON  
PIE2  
EEDATH5 EEDATH4 EEDATH3 EEDATH2 EEDATH1 EEDATH0  
GIE  
PEIE  
C2IE  
C2IF  
T0IE  
C1IE  
C1IF  
INTE  
EEIE  
EEIF  
RABIE  
T0IF  
INTF  
RABIF  
OSFIE  
OSFIF  
PIR2  
Legend:  
x= unknown, u= unchanged, = unimplemented read as ‘0’, q= value depends upon condition.  
Shaded cells are not used by data EEPROM module.  
Note 1:  
2:  
PIC16F685/PIC16F689/PIC16F690 only.  
PIC16F677/PIC16F685/PIC16F687/PIC16F689/PIC16F690 only.  
DS41262D-page 126  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
Table 11-1 shows the timer resources required by the  
ECCP module.  
11.0 ENHANCED  
CAPTURE/COMPARE/PWM  
MODULE  
TABLE 11-1: ECCP MODE – TIMER  
RESOURCES REQUIRED  
The Enhanced Capture/Compare/PWM module is a  
peripheral which allows the user to time and control  
different events. In Capture mode, the peripheral  
allows the timing of the duration of an event. The  
Compare mode allows the user to trigger an external  
event when a predetermined amount of time has  
expired. The PWM mode can generate a Pulse-Width  
Modulated signal of varying frequency and duty cycle.  
ECCP Mode  
Timer Resource  
Capture  
Compare  
PWM  
Timer1  
Timer1  
Timer2  
REGISTER 11-1: CCP1CON: ENHANCED CCP1 CONTROL REGISTER  
R/W-0  
P1M1  
R/W-0  
P1M0  
R/W-0  
R/W-0  
DC1B0  
R/W-0  
R/W-0  
R/W-0  
CCP1M1  
R/W-0  
DC1B1  
CCP1M3  
CCP1M2  
CCP1M0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
P1M<1:0>: PWM Output Configuration bits  
If CCP1M<3:2> = 00, 01, 10:  
xx= P1A assigned as Capture/Compare input; P1B, P1C, P1D assigned as port pins  
If CCP1M<3:2> = 11:  
00= Single output; P1A modulated; P1B, P1C, P1D assigned as port pins  
01= Full-Bridge output forward; P1D modulated; P1A active; P1B, P1C inactive  
10= Half-Bridge output; P1A, P1B modulated with dead-band control; P1C, P1D assigned as port pins  
11= Full-Bridge output reverse; P1B modulated; P1C active; P1A, P1D inactive  
bit 5-4  
DC1B<1:0>: PWM Duty Cycle Least Significant bits  
Capture mode:  
Unused.  
Compare mode:  
Unused.  
PWM mode:  
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPR1L.  
bit 3-0  
CCP1M<3:0>: ECCP Mode Select bits  
0000= Capture/Compare/PWM off (resets ECCP module)  
0001= Unused (reserved)  
0010= Compare mode, toggle output on match (CCP1IF bit is set)  
0011= Unused (reserved)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (CCP1IF bit is set)  
1001= Compare mode, clear output on match (CCP1IF bit is set)  
1010= Compare mode, generate software interrupt on match (CCP1IF bit is set, CCP1 pin is  
unaffected)  
1011= Compare mode, trigger special event (CCP1IF bit is set; CCP1 resets TMR1 or TMR2, and starts  
an A/D conversion, if the ADC module is enabled)  
1100= PWM mode; P1A, P1C active-high; P1B, P1D active-high  
1101= PWM mode; P1A, P1C active-high; P1B, P1D active-low  
1110= PWM mode; P1A, P1C active-low; P1B, P1D active-high  
1111= PWM mode; P1A, P1C active-low; P1B, P1D active-low  
© 2007 Microchip Technology Inc.  
DS41262D-page 127  
PIC16F631/677/685/687/689/690  
11.1.2  
TIMER1 MODE SELECTION  
11.1 Capture Mode  
Timer1 must be running in Timer mode or Synchronized  
Counter mode for the CCP module to use the capture  
feature. In Asynchronous Counter mode, the capture  
operation may not work.  
In Capture mode, CCPR1H:CCPR1L captures the  
16-bit value of the TMR1 register when an event occurs  
on pin CCP1. An event is defined as one of the  
following and is configured by the CCP1M<3:0> bits of  
the CCP1CON register:  
11.1.3  
SOFTWARE INTERRUPT  
• Every falling edge  
• Every rising edge  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep the  
CCP1IE interrupt enable bit of the PIE1 register clear to  
avoid false interrupts. Additionally, the user should  
clear the CCP1IF interrupt flag bit of the PIR1 register  
following any change in operating mode.  
• Every 4th rising edge  
• Every 16th rising edge  
When a capture is made, the Interrupt Request Flag bit  
CCP1IF of the PIR1 register is set. The interrupt flag  
must be cleared in software. If another capture occurs  
before the value in the CCPR1H, CCPR1L register pair  
is read, the old captured value is overwritten by the new  
captured value (see Figure 11-1).  
11.1.4  
CCP PRESCALER  
There are four prescaler settings specified by the  
CCP1M<3:0> bits of the CCP1CON register.  
Whenever the CCP module is turned off, or the CCP  
module is not in Capture mode, the prescaler counter  
is cleared. Any Reset will clear the prescaler counter.  
11.1.1  
CCP1 PIN CONFIGURATION  
In Capture mode, the CCP1 pin should be configured  
as an input by setting the associated TRIS control bit.  
Switching from one capture prescaler to another does not  
clear the prescaler and may generate a false interrupt. To  
avoid this unexpected operation, turn the module off by  
clearing the CCP1CON register before changing the  
prescaler (see Example 11-1).  
Note:  
If the CCP1 pin is configured as an output,  
a write to the port can cause a capture  
condition.  
FIGURE 11-1:  
CAPTURE MODE  
OPERATION BLOCK  
DIAGRAM  
EXAMPLE 11-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
BANKSELCCP1CON  
;Set Bank bits to point  
;to CCP1CON  
;Turn CCP module off  
Set Flag bit CCP1IF  
(PIR1 register)  
Prescaler  
÷ 1, 4, 16  
CLRF  
CCP1CON  
MOVLW  
NEW_CAPT_PS;Load the W reg with  
; the new prescaler  
CCP1  
pin  
CCPR1H  
CCPR1L  
; move value and CCP ON  
Capture  
Enable  
MOVWF  
CCP1CON  
;Load CCP1CON with this  
; value  
and  
Edge Detect  
TMR1H  
TMR1L  
CCP1CON<3:0>  
System Clock (FOSC)  
DS41262D-page 128  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
11.2.2  
TIMER1 MODE SELECTION  
11.2 Compare Mode  
In Compare mode, Timer1 must be running in either  
Timer mode or Synchronized Counter mode. The  
compare operation may not work in Asynchronous  
Counter mode.  
In Compare mode, the 16-bit CCPR1 register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the CCP module may:  
Toggle the CCP1 output  
• Set the CCP1 output  
11.2.3  
SOFTWARE INTERRUPT MODE  
• Clear the CCP1 output  
When Generate Software Interrupt mode is chosen  
(CCP1M<3:0> = 1010), the CCP module does not  
assert control of the CCP1 pin (see the CCP1CON  
register).  
• Generate a Special Event Trigger  
• Generate a Software Interrupt  
The action on the pin is based on the value of the  
CCP1M<3:0> control bits of the CCP1CON register.  
11.2.4  
SPECIAL EVENT TRIGGER  
All Compare modes can generate an interrupt.  
When Special Event Trigger mode is chosen  
(CCP1M<3:0> = 1011), the CCP module does the  
following:  
FIGURE 11-2:  
COMPARE MODE  
OPERATION BLOCK  
DIAGRAM  
• Resets Timer1  
• Starts an ADC conversion if ADC is enabled  
CCP1CON<3:0>  
Mode Select  
The CCP module does not assert control of the CCP1  
pin in this mode (see the CCP1CON register).  
Set CCP1IF Interrupt Flag  
The Special Event Trigger output of the CCP occurs  
immediately upon a match between the TMR1H,  
TMR1L register pair and the CCPR1H, CCPR1L  
register pair. The TMR1H, TMR1L register pair is not  
reset until the next rising edge of the Timer1 clock. This  
allows the CCPR1H, CCPR1L register pair to  
effectively provide a 16-bit programmable period  
register for Timer1.  
(PIR1)  
4
CCP1  
Pin  
CCPR1H CCPR1L  
Comparator  
Q
S
R
Output  
Logic  
Match  
TMR1H TMR1L  
TRIS  
Output Enable  
Special Event Trigger  
Note 1: The Special Event Trigger from the CCP  
module does not set interrupt flag bit  
TMR1IF of the PIR1 register.  
Special Event Trigger will:  
Clear TMR1H and TMR1L registers.  
NOT set interrupt flag bit TMR1IF of the PIR1 register.  
Set the GO/DONE bit to start the ADC conversion.  
2: Removing the match condition by  
changing the contents of the CCPR1H  
and CCPR1L register pair, between the  
clock edge that generates the Special  
Event Trigger and the clock edge that  
generates the Timer1 Reset, will preclude  
the Reset from occurring.  
11.2.1  
CCP1 PIN CONFIGURATION  
The user must configure the CCP1 pin as an output by  
clearing the associated TRIS bit.  
Note:  
Clearing the CCP1CON register will force  
the CCP1 compare output latch to the  
default low level. This is not the port I/O  
data latch.  
© 2007 Microchip Technology Inc.  
DS41262D-page 129  
PIC16F631/677/685/687/689/690  
The PWM output (Figure 11-4) has a time base  
(period) and a time that the output stays high (duty  
cycle).  
11.3 PWM Mode  
The PWM mode generates a Pulse-Width Modulated  
signal on the CCP1 pin. The duty cycle, period and  
resolution are determined by the following registers:  
FIGURE 11-4:  
CCP PWM OUTPUT  
• PR2  
Period  
• T2CON  
• CCPR1L  
• CCP1CON  
Pulse Width  
TMR2 = PR2  
TMR2 = CCPR1L:CCP1CON<5:4>  
In Pulse-Width Modulation (PWM) mode, the CCP  
module produces up to a 10-bit resolution PWM output  
on the CCP1 pin. Since the CCP1 pin is multiplexed  
with the PORT data latch, the TRIS for that pin must be  
cleared to enable the CCP1 pin output driver.  
TMR2 = 0  
Note:  
Clearing the CCP1CON register will  
relinquish CCP1 control of the CCP1 pin.  
Figure 11-3 shows a simplified block diagram of PWM  
operation.  
Figure 11-4 shows a typical waveform of the PWM  
signal.  
For a step-by-step procedure on how to set up the CCP  
module for PWM operation, see Section 11.3.7  
“Setup for PWM Operation”.  
FIGURE 11-3:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
CCP1CON<5:4>  
Duty Cycle Registers  
CCPR1L  
CCPR1H(2) (Slave)  
Comparator  
CCP1  
R
S
Q
(1)  
TMR2  
TRIS  
Comparator  
PR2  
Clear Timer2,  
toggle CCP1 pin and  
latch duty cycle  
Note 1: The 8-bit timer TMR2 register is concatenated  
with the 2-bit internal system clock (FOSC), or  
2 bits of the prescaler, to create the 10-bit time  
base.  
2: In PWM mode, CCPR1H is a read-only register.  
DS41262D-page 130  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
11.3.1  
PWM PERIOD  
EQUATION 11-2: PULSE WIDTH  
The PWM period is specified by the PR2 register of  
Timer2. The PWM period can be calculated using the  
formula of Equation 11-1.  
Pulse Width = (CCPR1L:CCP1CON<5:4>) •  
TOSC (TMR2 Prescale Value)  
EQUATION 11-1: PWM PERIOD  
EQUATION 11-3: DUTY CYCLE RATIO  
PWM Period = [(PR2) + 1] • 4 TOSC •  
(TMR2 Prescale Value)  
(CCPR1L:CCP1CON<5:4>)  
Duty Cycle Ratio = -----------------------------------------------------------------------  
4(PR2 + 1)  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
The CCPR1H register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
• TMR2 is cleared  
• The CCP1 pin is set. (Exception: If the PWM duty  
cycle = 0%, the pin will not be set.)  
The 8-bit timer TMR2 register is concatenated with  
either the 2-bit internal system clock (FOSC), or 2 bits of  
the prescaler, to create the 10-bit time base. The system  
clock is used if the Timer2 prescaler is set to 1:1.  
• The PWM duty cycle is latched from CCPR1L into  
CCPR1H.  
Note:  
The Timer2 postscaler (see Section 7.1  
“Timer2 Operation”) is not used in the  
determination of the PWM frequency.  
When the 10-bit time base matches the CCPR1H and  
2-bit latch, then the CCP1 pin is cleared (see  
Figure 11-3).  
11.3.2  
PWM DUTY CYCLE  
11.3.3  
PWM RESOLUTION  
The PWM duty cycle is specified by writing a 10-bit  
value to multiple registers: CCPR1L register and  
DC1B<1:0> bits of the CCP1CON register. The  
CCPR1L contains the eight MSbs and the DC1B<1:0>  
bits of the CCP1CON register contain the two LSbs.  
CCPR1L and DC1B<1:0> bits of the CCP1CON  
register can be written to at any time. The duty cycle  
value is not latched into CCPR1H until after the period  
completes (i.e., a match between PR2 and TMR2  
registers occurs). While using the PWM, the CCPR1H  
register is read-only.  
The resolution determines the number of available duty  
cycles for a given period. For example, a 10-bit resolution  
will result in 1024 discrete duty cycles, whereas an 8-bit  
resolution will result in 256 discrete duty cycles.  
The maximum PWM resolution is 10 bits when PR2 is  
255. The resolution is a function of the PR2 register  
value as shown by Equation 11-4.  
EQUATION 11-4: PWM RESOLUTION  
log[4(PR2 + 1)]  
Equation 11-2 is used to calculate the PWM pulse  
width.  
Resolution = ----------------------------------------- bits  
log(2)  
Equation 11-3 is used to calculate the PWM duty cycle  
ratio.  
Note:  
If the pulse width value is greater than the  
period the assigned PWM pin(s) will  
remain unchanged.  
TABLE 11-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 20 MHz)  
PWM Frequency  
1.22 kHz  
4.88 kHz  
19.53 kHz  
78.12 kHz  
156.3 kHz  
208.3 kHz  
Timer Prescale (1, 4, 16)  
PR2 Value  
16  
0xFF  
10  
4
1
1
0x3F  
8
1
0x1F  
7
1
0xFF  
10  
0xFF  
10  
0x17  
6.6  
Maximum Resolution (bits)  
TABLE 11-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 8 MHz)  
PWM Frequency  
1.22 kHz  
4.90 kHz  
19.61 kHz  
76.92 kHz  
153.85 kHz 200.0 kHz  
Timer Prescale (1, 4, 16)  
PR2 Value  
16  
0x65  
8
4
0x65  
8
1
0x65  
8
1
0x19  
6
1
0x0C  
5
1
0x09  
5
Maximum Resolution (bits)  
© 2007 Microchip Technology Inc.  
DS41262D-page 131  
PIC16F631/677/685/687/689/690  
11.3.4  
OPERATION IN SLEEP MODE  
In Sleep mode, the TMR2 register will not increment  
and the state of the module will not change. If the CCP1  
pin is driving a value, it will continue to drive that value.  
When the device wakes up, TMR2 will continue from its  
previous state.  
11.3.5  
CHANGES IN SYSTEM CLOCK  
FREQUENCY  
The PWM frequency is derived from the system clock  
frequency. Any changes in the system clock frequency  
will result in changes to the PWM frequency. See  
Section 3.0 “Oscillator Module (With Fail-Safe  
Clock Monitor)” for additional details.  
11.3.6  
EFFECTS OF RESET  
Any Reset will force all ports to Input mode and the  
CCP registers to their Reset states.  
11.3.7  
SETUP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
1. Disable the PWM pin (CCP1) output driver by  
setting the associated TRIS bit.  
2. Set the PWM period by loading the PR2 register.  
3. Configure the CCP module for the PWM mode  
by loading the CCP1CON register with the  
appropriate values.  
4. Set the PWM duty cycle by loading the CCPR1L  
register and DC1B<1:0> bits of the CCP1CON  
register.  
5. Configure and start Timer2:  
• Clear the TMR2IF interrupt flag bit of the  
PIR1 register.  
• Set the Timer2 prescale value by loading the  
T2CKPS bits of the T2CON register.  
• Enable Timer2 by setting the TMR2ON bit of  
the T2CON register.  
6. Enable PWM output after a new PWM cycle has  
started:  
• Wait until Timer2 overflows (TMR2IF bit of  
the PIR1 register is set).  
• Enable the CCP1 pin output driver by clearing  
the associated TRIS bit.  
DS41262D-page 132  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
The PWM outputs are multiplexed with I/O pins and are  
11.4 PWM (Enhanced Mode)  
designated P1A, P1B, P1C and P1D. The polarity of the  
PWM pins is configurable and is selected by setting the  
CCP1M bits in the CCP1CON register appropriately.  
The Enhanced PWM Mode can generate a PWM signal  
on up to four different output pins with up to 10-bits of  
resolution. It can do this through four different PWM  
Output modes:  
Table 11-4 shows the pin assignments for each  
Enhanced PWM mode.  
• Single PWM  
Figure 11-5 shows an example of a simplified block  
diagram of the Enhanced PWM module.  
• Half-Bridge PWM  
• Full-Bridge PWM, Forward mode  
• Full-Bridge PWM, Reverse mode  
Note:  
To prevent the generation of an  
incomplete waveform when the PWM is  
first enabled, the ECCP module waits until  
the start of a new PWM period before  
generating a PWM signal.  
To select an Enhanced PWM mode, the P1M bits of the  
CCP1CON register must be set appropriately.  
FIGURE 11-5:  
EXAMPLE SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODE  
DC1B<1:0>  
P1M<1:0>  
CCP1M<3:0>  
4
Duty Cycle Registers  
2
CCPR1L  
CCP1/P1A  
CCP1/P1A  
P1B  
TRIS  
TRIS  
TRIS  
TRIS  
CCPR1H (Slave)  
Comparator  
P1B  
Output  
Controller  
R
S
Q
P1C  
P1C  
(1)  
TMR2  
P1D  
P1D  
Comparator  
PR2  
Clear Timer2,  
toggle PWM pin and  
latch duty cycle  
PWM1CON  
Note 1: The 8-bit timer TMR2 register is concatenated with the 2-bit internal Q clock, or 2 bits of the prescaler to create the 10-bit  
time base.  
Note 1: The TRIS register value for each PWM output must be configured appropriately.  
2: Clearing the CCP1CON register will relinquish ECCP control of all PWM output pins.  
3: Any pin not used by an Enhanced PWM mode is available for alternate pin functions  
TABLE 11-4: EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES  
ECCP Mode  
P1M<1:0>  
CCP1/P1A  
P1B  
P1C  
P1D  
Single  
00  
10  
01  
11  
Yes(1)  
Yes  
Yes(1)  
Yes  
Yes(1)  
No  
Yes(1)  
No  
Half-Bridge  
Full-Bridge, Forward  
Full-Bridge, Reverse  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Note 1: Pulse Steering enables outputs in Single mode.  
© 2007 Microchip Technology Inc.  
DS41262D-page 133  
PIC16F631/677/685/687/689/690  
FIGURE 11-6:  
EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH  
STATE)  
PR2+1  
Pulse  
Width  
0
Signal  
P1M<1:0>  
Period  
P1A Modulated  
(Single Output)  
00  
10  
Delay(1)  
Delay(1)  
P1A Modulated  
P1B Modulated  
P1A Active  
(Half-Bridge)  
P1B Inactive  
(Full-Bridge,  
Forward)  
01  
P1C Inactive  
P1D Modulated  
P1A Inactive  
P1B Modulated  
P1C Active  
(Full-Bridge,  
Reverse)  
11  
P1D Inactive  
Relationships:  
Period = 4 * TOSC * (PR2 + 1) * (TMR2 Prescale Value)  
Pulse Width = TOSC * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 Prescale Value)  
Delay = 4 * TOSC * (PWM1CON<6:0>)  
Note 1: Dead-band delay is programmed using the PWM1CON register (Section 11.4.6 “Programmable Dead-Band Delay  
mode”).  
DS41262D-page 134  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
FIGURE 11-7:  
EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)  
PR2+1  
Pulse  
Width  
0
Signal  
P1M<1:0>  
Period  
P1A Modulated  
P1A Modulated  
P1B Modulated  
P1A Active  
(Single Output)  
00  
10  
Delay(1)  
Delay(1)  
(Half-Bridge)  
(Full-Bridge,  
Forward)  
P1B Inactive  
P1C Inactive  
P1D Modulated  
P1A Inactive  
P1B Modulated  
P1C Active  
01  
(Full-Bridge,  
Reverse)  
11  
P1D Inactive  
Relationships:  
Period = 4 * TOSC * (PR2 + 1) * (TMR2 Prescale Value)  
Pulse Width = TOSC * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 Prescale Value)  
Delay = 4 * TOSC * (PWM1CON<6:0>)  
Note 1: Dead-band delay is programmed using the PWM1CON register (Section 11.4.6 “Programmable Dead-Band Delay  
mode”).  
© 2007 Microchip Technology Inc.  
DS41262D-page 135  
PIC16F631/677/685/687/689/690  
Since the P1A and P1B outputs are multiplexed with  
the PORT data latches, the associated TRIS bits must  
be cleared to configure P1A and P1B as outputs.  
11.4.1  
HALF-BRIDGE MODE  
In Half-Bridge mode, two pins are used as outputs to  
drive push-pull loads. The PWM output signal is output  
on the CCP1/P1A pin, while the complementary PWM  
output signal is output on the P1B pin (see  
Figure 11-6). This mode can be used for Half-Bridge  
applications, as shown in Figure 11-9, or for Full-Bridge  
applications, where four power switches are being  
modulated with two PWM signals.  
FIGURE 11-8:  
EXAMPLE OF  
HALF-BRIDGE PWM  
OUTPUT  
Period  
Period  
Pulse Width  
In Half-Bridge mode, the programmable dead-band delay  
can be used to prevent shoot-through current in  
Half-Bridge power devices. The value of the PDC<6:0>  
bits of the PWM1CON register sets the number of  
instruction cycles before the output is driven active. If the  
value is greater than the duty cycle, the corresponding  
output remains inactive during the entire cycle. See  
Section 11.4.6 “Programmable Dead-Band Delay  
mode” for more details of the dead-band delay  
operations.  
(2)  
(2)  
P1A  
td  
td  
P1B  
(1)  
(1)  
(1)  
td = Dead-Band Delay  
Note 1: At this time, the TMR2 register is equal to the  
PR2 register.  
2: Output signals are shown as active-high.  
FIGURE 11-9:  
EXAMPLE OF HALF-BRIDGE APPLICATIONS  
Standard Half-Bridge Circuit (“Push-Pull”)  
FET  
Driver  
+
-
P1A  
Load  
FET  
Driver  
+
-
P1B  
Half-Bridge Output Driving a Full-Bridge Circuit  
V+  
FET  
Driver  
FET  
Driver  
P1A  
Load  
FET  
FET  
Driver  
Driver  
P1B  
DS41262D-page 136  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
11.4.2  
FULL-BRIDGE MODE  
In Full-Bridge mode, all four pins are used as outputs.  
An example of Full-Bridge application is shown in  
Figure 11-10.  
In the Forward mode, pin CCP1/P1A is driven to its active  
state, pin P1D is modulated, while P1B and P1C will be  
driven to their inactive state as shown in Figure 11-11.  
In the Reverse mode, P1C is driven to its active state,  
pin P1B is modulated, while P1A and P1D will be driven  
to their inactive state as shown Figure 11-11.  
P1A, P1B, P1C and P1D outputs are multiplexed with  
the PORT data latches. The associated TRIS bits must  
be cleared to configure the P1A, P1B, P1C and P1D  
pins as outputs.  
FIGURE 11-10:  
EXAMPLE OF FULL-BRIDGE APPLICATION  
V+  
QC  
QA  
FET  
Driver  
FET  
Driver  
P1A  
P1B  
Load  
FET  
Driver  
FET  
Driver  
P1C  
P1D  
QD  
QB  
V-  
© 2007 Microchip Technology Inc.  
DS41262D-page 137  
PIC16F631/677/685/687/689/690  
FIGURE 11-11:  
EXAMPLE OF FULL-BRIDGE PWM OUTPUT  
Forward Mode  
Period  
(2)  
P1A  
Pulse Width  
(2)  
P1B  
(2)  
P1C  
(2)  
P1D  
(1)  
(1)  
Reverse Mode  
Period  
Pulse Width  
(2)  
P1A  
(2)  
P1B  
(2)  
P1C  
(2)  
P1D  
(1)  
(1)  
Note 1: At this time, the TMR2 register is equal to the PR2 register.  
2: Output signal is shown as active-high.  
DS41262D-page 138  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
The Full-Bridge mode does not provide dead-band  
delay. As one output is modulated at a time, dead-band  
delay is generally not required. There is a situation  
where dead-band delay is required. This situation  
occurs when both of the following conditions are true:  
11.4.2.1  
Direction Change in Full-Bridge  
Mode  
In the Full-Bridge mode, the P1M1 bit in the CCP1CON  
register allows users to control the forward/reverse  
direction. When the application firmware changes this  
direction control bit, the module will change to the new  
direction on the next PWM cycle.  
1. The direction of the PWM output changes when  
the duty cycle of the output is at or near 100%.  
2. The turn off time of the power switch, including  
the power device and driver circuit, is greater  
than the turn on time.  
A direction change is initiated in software by changing  
the P1M1 bit of the CCP1CON register. The following  
sequence occurs four Timer2 cycles prior to the end of  
the current PWM period:  
Figure 11-13 shows an example of the PWM direction  
changing from forward to reverse, at a near 100% duty  
cycle. In this example, at time t1, the output P1A and  
P1D become inactive, while output P1C becomes  
active. Since the turn off time of the power devices is  
longer than the turn on time, a shoot-through current  
will flow through power devices QC and QD (see  
Figure 11-10) for the duration of ‘t’. The same  
phenomenon will occur to power devices QA and QB  
for PWM direction change from reverse to forward.  
• The modulated outputs (P1B and P1D) are placed  
in their inactive state.  
• The associated unmodulated outputs (P1A and  
P1C) are switched to drive in the opposite  
direction.  
• PWM modulation resumes at the beginning of the  
next period.  
See Figure 11-12 for an illustration of this sequence.  
If changing PWM direction at high duty cycle is required  
for an application, two possible solutions for eliminating  
the shoot-through current are:  
1. Reduce PWM duty cycle for one PWM period  
before changing directions.  
2. Use switch drivers that can drive the switches off  
faster than they can drive them on.  
Other options to prevent shoot-through current may  
exist.  
FIGURE 11-12:  
EXAMPLE OF PWM DIRECTION CHANGE  
(1)  
Period  
Period  
Signal  
P1A (Active-High)  
P1B (Active-High)  
Pulse Width  
P1C (Active-High)  
P1D (Active-High)  
(2)  
Pulse Width  
Note 1: The direction bit P1M1 of the CCP1CON register is written any time during the PWM cycle.  
2: When changing directions, the P1A and P1C signals switch before the end of the current PWM cycle. The  
modulated P1B and P1D signals are inactive at this time. The length of this time is four Timer2 counts.  
© 2007 Microchip Technology Inc.  
DS41262D-page 139  
PIC16F631/677/685/687/689/690  
FIGURE 11-13:  
EXAMPLE OF PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE  
Forward Period  
Reverse Period  
t1  
P1A  
P1B  
PW  
P1C  
P1D  
PW  
TON  
External Switch C  
External Switch D  
TOFF  
Potential  
T = TOFF TON  
Shoot-Through Current  
Note 1: All signals are shown as active-high.  
2: TON is the turn on delay of power switch QC and its driver.  
3: TOFF is the turn off delay of power switch QD and its driver.  
11.4.3  
START-UP CONSIDERATIONS  
When any PWM mode is used, the application  
hardware must use the proper external pull-up and/or  
pull-down resistors on the PWM output pins.  
Note:  
When the microcontroller is released from  
Reset, all of the I/O pins are in the  
high-impedance state. The external cir-  
cuits must keep the power switch devices  
in the OFF state until the microcontroller  
drives the I/O pins with the proper signal  
levels or activates the PWM output(s).  
The CCP1M<1:0> bits of the CCP1CON register allow  
the user to choose whether the PWM output signals are  
active-high or active-low for each pair of PWM output pins  
(P1A/P1C and P1B/P1D). The PWM output polarities  
must be selected before the PWM pin output drivers are  
enabled. Changing the polarity configuration while the  
PWM pin output drivers are enabled is not recommended  
since it may result in damage to the application circuits.  
The P1A, P1B, P1C and P1D output latches may not be  
in the proper states when the PWM module is  
initialized. Enabling the PWM pin output drivers at the  
same time as the Enhanced PWM modes may cause  
damage to the application circuit. The Enhanced PWM  
modes must be enabled in the proper Output mode and  
complete a full PWM cycle before enabling the PWM  
pin output drivers. The completion of a full PWM cycle  
is indicated by the TMR2IF bit of the PIR1 register  
being set as the second PWM period begins.  
DS41262D-page 140  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
A shutdown condition is indicated by the ECCPASE  
11.4.4  
ENHANCED PWM  
(Auto-Shutdown Event Status) bit of the ECCPAS  
register. If the bit is a ‘0’, the PWM pins are operating  
normally. If the bit is a ‘1’, the PWM outputs are in the  
shutdown state.  
AUTO-SHUTDOWN MODE  
The PWM mode supports an Auto-Shutdown mode that  
will disable the PWM outputs when an external  
shutdown event occurs. Auto-Shutdown mode places  
the PWM output pins into a predetermined state. This  
mode is used to help prevent the PWM from damaging  
the application.  
When a shutdown event occurs, two things happen:  
The ECCPASE bit is set to ‘1’. The ECCPASE will  
remain set until cleared in firmware or an auto-restart  
occurs (see Section 11.4.5 “Auto-Restart Mode”).  
The auto-shutdown sources are selected using the  
ECCPASx bits of the ECCPAS register. A shutdown  
event may be generated by:  
The enabled PWM pins are asynchronously placed in  
their shutdown states. The PWM output pins are  
grouped into pairs [P1A/P1C] and [P1B/P1D]. The state  
of each pin pair is determined by the PSSAC and  
PSSBD bits of the ECCPAS register. Each pin pair may  
be placed into one of three states:  
• A logic ‘0’ on the INT pin  
• Comparator C1  
• Comparator C2  
• Setting the ECCPASE bit in firmware  
• Drive logic ‘1’  
• Drive logic ‘0’  
• Tri-state (high-impedance)  
REGISTER 11-2: ECCPAS: ENHANCED CAPTURE/COMPARE/PWM AUTO-SHUTDOWN  
CONTROL REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ECCPASE  
ECCPAS2  
ECCPAS1  
ECCPAS0  
PSSAC1  
PSSAC0  
PSSBD1  
PSSBD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
ECCPASE: ECCP Auto-Shutdown Event Status bit  
1= A shutdown event has occurred; ECCP outputs are in shutdown state  
0= ECCP outputs are operating  
bit 6-4  
ECCPAS<2:0>: ECCP Auto-shutdown Source Select bits  
000= Auto-Shutdown is disabled  
001= Comparator C1 output change  
010= Comparator C2 output change(1)  
011= Either Comparator C1 or C2 change  
100= VIL on INT pin  
101= VIL on INT pin or Comparator C1 change  
110= VIL on INT pin or Comparator C2 change  
111= VIL on INT pin or Comparator C1 or C2 change  
bit 3-2  
bit 1-0  
PSSACn: Pins P1A and P1C Shutdown State Control bits  
00= Drive pins P1A and P1C to ‘0’  
01= Drive pins P1A and P1C to ‘1’  
1x= Pins P1A and P1C tri-state  
PSSBDn: Pins P1B and P1D Shutdown State Control bits  
00= Drive pins P1B and P1D to ‘0’  
01= Drive pins P1B and P1D to ‘1’  
1x= Pins P1B and P1D tri-state  
Note 1: If C2SYNC is enabled, the shutdown will be delayed by Timer1.  
© 2007 Microchip Technology Inc.  
DS41262D-page 141  
PIC16F631/677/685/687/689/690  
Note 1: The auto-shutdown condition is  
a
level-based signal, not an edge-based  
signal. As long as the level is present, the  
auto-shutdown will persist.  
2: Writing to the ECCPASE bit is disabled  
while an auto-shutdown condition  
persists.  
3: Once the auto-shutdown condition has  
been removed and the PWM restarted  
(either through firmware or auto-restart)  
the PWM signal will always restart at the  
beginning of the next PWM period.  
FIGURE 11-14:  
PWM AUTO-SHUTDOWN WITH FIRMWARE RESTART (PRSEN = 0)  
PWM Period  
Shutdown Event  
ECCPASE bit  
PWM Activity  
Normal PWM  
ECCPASE  
Cleared by  
Firmware  
Start of  
Shutdown  
Shutdown  
PWM  
PWM Period  
Event Occurs Event Clears  
Resumes  
11.4.5  
AUTO-RESTART MODE  
The Enhanced PWM can be configured to automati-  
cally restart the PWM signal once the auto-shutdown  
condition has been removed. Auto-restart is enabled by  
setting the PRSEN bit in the PWM1CON register.  
If auto-restart is enabled, the ECCPASE bit will remain  
set as long as the auto-shutdown condition is active.  
When the auto-shutdown condition is removed, the  
ECCPASE bit will be cleared via hardware and normal  
operation will resume.  
FIGURE 11-15:  
PWM AUTO-SHUTDOWN WITH AUTO-RESTART ENABLED (PRSEN = 1)  
PWM Period  
Shutdown Event  
ECCPASE bit  
PWM Activity  
Normal PWM  
Start of  
PWM Period  
Shutdown  
Event Occurs Event Clears  
Shutdown  
PWM  
Resumes  
DS41262D-page 142  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
11.4.6  
PROGRAMMABLE DEAD-BAND  
DELAY MODE  
FIGURE 11-16:  
EXAMPLE OF  
HALF-BRIDGE PWM  
OUTPUT  
In Half-Bridge applications where all power switches  
are modulated at the PWM frequency, the power  
switches normally require more time to turn off than to  
turn on. If both the upper and lower power switches are  
switched at the same time (one turned on, and the  
other turned off), both switches may be on for a short  
period of time until one switch completely turns off.  
Period  
Period  
Pulse Width  
(2)  
(2)  
P1A  
td  
td  
During this brief interval,  
a very high current  
P1B  
(shoot-through current) will flow through both power  
switches, shorting the bridge supply. To avoid this  
potentially destructive shoot-through current from  
flowing during switching, turning on either of the power  
switches is normally delayed to allow the other switch  
to completely turn off.  
(1)  
(1)  
(1)  
td = Dead-Band Delay  
Note 1: At this time, the TMR2 register is equal to the  
PR2 register.  
In Half-Bridge mode,  
a
digitally programmable  
2: Output signals are shown as active-high.  
dead-band delay is available to avoid shoot-through  
current from destroying the bridge power switches. The  
delay occurs at the signal transition from the non-active  
state to the active state. See Figure 11-8 for illustration.  
The lower seven bits of the associated PWM1CON  
register (Register 11-3) sets the delay period in terms  
of microcontroller instruction cycles (TCY or 4 TOSC).  
FIGURE 11-17:  
EXAMPLE OF HALF-BRIDGE APPLICATIONS  
V+  
Standard Half-Bridge Circuit (“Push-Pull”)  
FET  
Driver  
+
V
-
P1A  
Load  
FET  
Driver  
+
V
-
P1B  
V-  
© 2007 Microchip Technology Inc.  
DS41262D-page 143  
PIC16F631/677/685/687/689/690  
REGISTER 11-3: PWM1CON: ENHANCED PWM CONTROL REGISTER  
R/W-0  
R/W-0  
PDC6  
R/W-0  
PDC5  
R/W-0  
PDC4  
R/W-0  
PDC3  
R/W-0  
PDC2  
R/W-0  
PDC1  
R/W-0  
PDC0  
PRSEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
PRSEN: PWM Restart Enable bit  
1= Upon auto-shutdown, the ECCPASE bit clears automatically once the shutdown event goes  
away; the PWM restarts automatically  
0= Upon auto-shutdown, ECCPASE must be cleared in software to restart the PWM  
bit 6-0  
PDC<6:0>: PWM Delay Count bits  
PDCn = Number of FOSC/4 (4 * TOSC) cycles between the scheduled time when a PWM signal  
should transition active and the actual time it transitions active  
Note 1: Bit resets to ‘0’ with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe  
mode is enabled.  
DS41262D-page 144  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
11.4.7  
PULSE STEERING MODE  
In Single Output mode, pulse steering allows any of the  
PWM pins to be the modulated signal. Additionally, the  
same PWM signal can be simultaneously available on  
multiple pins.  
Note:  
The associated TRIS bits must be set to  
output (‘0’) to enable the pin output driver  
in order to see the PWM signal on the pin.  
While the PWM Steering mode is active, CCP1M<1:0>  
bits of the CCP1CON register select the PWM output  
polarity for the P1<D:A> pins.  
Once the Single Output mode is selected  
(CCP1M<3:2> = 11 and P1M<1:0> = 00 of the  
CCP1CON register), the user firmware can bring out  
the same PWM signal to one, two, three or four output  
pins by setting the appropriate STR<D:A> bits of the  
PSTRCON register, as shown in Figure 11-18.  
The PWM auto-shutdown operation also applies to  
PWM Steering mode as described in Section 11.4.4  
“Enhanced PWM Auto-shutdown mode”. An  
auto-shutdown event will only affect pins that have  
PWM outputs enabled.  
REGISTER 11-4: PSTRCON: PULSE STEERING CONTROL REGISTER(1)  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
STRD  
R/W-0  
STRC  
R/W-0  
STRB  
R/W-1  
STRA  
STRSYNC  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
STRSYNC: Steering Sync bit  
1= Output steering update occurs on next PWM period  
0= Output steering update occurs at the beginning of the instruction cycle boundary  
bit 3  
bit 2  
bit 1  
bit 0  
STRD: Steering Enable bit D  
1= P1D pin has the PWM waveform with polarity control from CCP1M<1:0>  
0= P1D pin is assigned to port pin  
STRC: Steering Enable bit C  
1= P1C pin has the PWM waveform with polarity control from CCP1M<1:0>  
0= P1C pin is assigned to port pin  
STRB: Steering Enable bit B  
1= P1B pin has the PWM waveform with polarity control from CCP1M<1:0>  
0 = P1B pin is assigned to port pin  
STRA: Steering Enable bit A  
1= P1A pin has the PWM waveform with polarity control from CCP1M<1:0>  
0= P1A pin is assigned to port pin  
Note 1: The PWM Steering mode is available only when the CCP1CON register bits CCP1M<3:2> = 11and  
P1M<1:0> = 00.  
© 2007 Microchip Technology Inc.  
DS41262D-page 145  
PIC16F631/677/685/687/689/690  
FIGURE 11-18:  
SIMPLIFIED STEERING  
BLOCK DIAGRAM  
STRA  
P1A Signal  
CCP1M1  
P1A pin  
1
PORT Data  
STRB  
0
TRIS  
P1B pin  
CCP1M0  
1
PORT Data  
STRC  
0
TRIS  
P1C pin  
1
CCP1M1  
PORT Data  
0
TRIS  
STRD  
P1D pin  
1
CCP1M0  
PORT Data  
0
TRIS  
Note 1: Port outputs are configured as shown when  
the CCP1CON register bits P1M<1:0> = 00  
and CCP1M<3:2> = 11.  
2: Single PWM output requires setting at least  
one of the STRx bits.  
DS41262D-page 146  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
Figures 11-19 and 11-20 illustrate the timing diagrams  
of the PWM steering depending on the STRSYNC  
setting.  
11.4.7.1  
Steering Synchronization  
The STRSYNC bit of the PSTRCON register gives the  
user two selections of when the steering event will  
happen. When the STRSYNC bit is ‘0’, the steering  
event will happen at the end of the instruction that  
writes to the PSTRCON register. In this case, the  
output signal at the P1<D:A> pins may be an  
incomplete PWM waveform. This operation is useful  
when the user firmware needs to immediately remove  
a PWM signal from the pin.  
When the STRSYNC bit is ‘1’, the effective steering  
update will happen at the beginning of the next PWM  
period. In this case, steering on/off the PWM output will  
always produce a complete PWM waveform.  
FIGURE 11-19:  
EXAMPLE OF STEERING EVENT AT END OF INSTRUCTION (STRSYNC = 0)  
PWM Period  
PWM  
STRn  
P1<D:A>  
PORT Data  
PORT Data  
P1n = PWM  
FIGURE 11-20:  
EXAMPLE OF STEERING EVENT AT BEGINNING OF INSTRUCTION  
(STRSYNC = 1)  
PWM  
STRn  
P1<D:A>  
PORT Data  
PORT Data  
P1n = PWM  
© 2007 Microchip Technology Inc.  
DS41262D-page 147  
PIC16F631/677/685/687/689/690  
TABLE 11-5: SUMMARY OF REGISTERS ASSOCIATED WITH CAPTURE, COMPARE AND PWM  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
CCP1CON  
CM1CON0  
CM2CON0  
P1M1  
C1ON  
C2ON  
P1M0  
C1OUT  
C2OUT  
DC1B1  
C1OE  
C2OE  
DC1B0  
C1POL  
C2POL  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 0000 0000 0000 0000  
C1R  
C2R  
C1CH1  
C2CH1  
C1CH0 0000 -000 0000 -000  
C2CH0 0000 -000 0000 -000  
CM2CON1 MC1OUT MC2OUT  
T1GSS C2SYNC 00-- --10 00-- --10  
xxxx xxxx uuuu uuuu  
CCPR1L  
CCPR1H  
ECCPAS  
INTCON  
PIE1  
Capture/Compare/PWM Register 1 Low Byte  
Capture/Compare/PWM Register 1 High Byte  
xxxx xxxx uuuu uuuu  
ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0 0000 0000 0000 0000  
GIE  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
INTE  
TXIE  
RABIE  
SSPIE  
SSPIF  
STRD  
PDC3  
T0IF  
INTF  
RABIF  
0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE -000 0000 -000 0000  
CCP1IF TMR2IF TMR1IF -000 0000 -000 0000  
PIR1  
TXIF  
PSTRCON  
STRSYNC  
PDC4  
STRC  
PDC2  
STRB  
PDC1  
STRA  
PDC0  
---0 0001 ---0 0001  
0000 0000 0000 0000  
0000 0000 uuuu uuuu  
PWM1CON PRSEN  
PDC6  
PDC5  
T1CON  
T2CON  
TMR1L  
TMR1H  
TMR2  
T1GINV TMR1GE T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
Timer2 Module Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
TRISC  
TRISC7  
TRISC6  
TRISC5  
TRISC4  
TRISC3  
TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
Legend: – = Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the Capture,  
Compare and PWM.  
DS41262D-page 148  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
The EUSART module includes the following capabilities:  
12.0 ENHANCED UNIVERSAL  
• Full-duplex asynchronous transmit and receive  
• Two-character input buffer  
SYNCHRONOUS  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (EUSART)  
• One-character output buffer  
• Programmable 8-bit or 9-bit character length  
• Address detection in 9-bit mode  
The Enhanced Universal Synchronous Asynchronous  
Receiver Transmitter (EUSART) module is a serial I/O  
communications peripheral. It contains all the clock  
generators, shift registers and data buffers necessary  
to perform an input or output serial data transfer  
independent of device program execution. The  
EUSART, also known as a Serial Communications  
Interface (SCI), can be configured as a full-duplex  
asynchronous system or half-duplex synchronous  
• Input buffer overrun error detection  
• Received character framing error detection  
• Half-duplex synchronous master  
• Half-duplex synchronous slave  
• Programmable clock polarity in synchronous  
modes  
The EUSART module implements the following  
additional features, making it ideally suited for use in  
Local Interconnect Network (LIN) bus systems:  
system.  
Full-Duplex  
mode  
is  
useful  
for  
communications with peripheral systems, such as CRT  
terminals and personal computers. Half-Duplex  
Synchronous mode is intended for communications  
with peripheral devices, such as A/D or D/A integrated  
circuits, serial EEPROMs or other microcontrollers.  
These devices typically do not have internal clocks for  
baud rate generation and require the external clock  
signal provided by a master synchronous device.  
• Automatic detection and calibration of the baud rate  
• Wake-up on Break reception  
• 13-bit Break character transmit  
Block diagrams of the EUSART transmitter and  
receiver are shown in Figure 12-1 and Figure 12-2.  
FIGURE 12-1:  
EUSART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXIE  
Interrupt  
TXIF  
TXREG Register  
8
TX/CK pin  
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
• • •  
Transmit Shift Register (TSR)  
TXEN  
TRMT  
SPEN  
Baud Rate Generator  
BRG16  
FOSC  
÷ n  
TX9  
n
+ 1  
Multiplier x4  
x16 x64  
TX9D  
SYNC  
BRGH  
BRG16  
1
X
X
X
1
1
0
1
0
0
0
1
0
0
0
SPBRGH  
SPBRG  
© 2007 Microchip Technology Inc.  
DS41262D-page 149  
PIC16F631/677/685/687/689/690  
FIGURE 12-2:  
EUSART RECEIVE BLOCK DIAGRAM  
SPEN  
CREN  
OERR  
RCIDL  
RX/DT pin  
RSR Register  
MSb  
Stop (8)  
LSb  
Start  
Pin Buffer  
and Control  
Data  
Recovery  
7
1
0
• • •  
Baud Rate Generator  
FOSC  
RX9  
÷ n  
BRG16  
n
+ 1  
Multiplier  
x4  
x16 x64  
SYNC  
BRGH  
BRG16  
1
X
1
1
0
1
0
0
0
1
0
0
0
FIFO  
SPBRGH  
SPBRG  
X
X
RX9D  
FERR  
RCREG Register  
8
Data Bus  
RCIF  
RCIE  
Interrupt  
The operation of the EUSART module is controlled  
through three registers:  
• Transmit Status and Control (TXSTA)  
• Receive Status and Control (RCSTA)  
• Baud Rate Control (BAUDCTL)  
These registers are detailed in Register 12-1,  
Register 12-2 and Register 12-3, respectively.  
DS41262D-page 150  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
12.1 EUSART Asynchronous Mode  
Note 1: When the SPEN bit is set, the RX/DT I/O  
pin is automatically configured as an input,  
regardless of the state of the corresponding  
TRIS bit and whether or not the EUSART  
receiver is enabled. The RX/DT pin data  
can be read via a normal PORT read but  
PORT latch data output is precluded.  
The EUSART transmits and receives data using the  
standard non-return-to-zero (NRZ) format. NRZ is  
implemented with two levels: a VOH mark state which  
represents a ‘1’ data bit, and a VOL space state which  
represents a ‘0’ data bit. NRZ refers to the fact that  
consecutively transmitted data bits of the same value  
stay at the output level of that bit without returning to a  
neutral level between each bit transmission. An NRZ  
transmission port idles in the mark state. Each character  
transmission consists of one Start bit followed by eight  
or nine data bits and is always terminated by one or  
more Stop bits. The Start bit is always a space and the  
Stop bits are always marks. The most common data  
format is 8 bits. Each transmitted bit persists for a period  
of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud  
Rate Generator is used to derive standard baud rate  
frequencies from the system oscillator. See Table 12-5  
for examples of baud rate configurations.  
2: The TXIF transmitter interrupt flag is set  
when the TXEN enable bit is set.  
12.1.1.2  
Transmitting Data  
A transmission is initiated by writing a character to the  
TXREG register. If this is the first character, or the  
previous character has been completely flushed from  
the TSR, the data in the TXREG is immediately  
transferred to the TSR register. If the TSR still contains  
all or part of a previous character, the new character  
data is held in the TXREG until the Stop bit of the  
previous character has been transmitted. The pending  
character in the TXREG is then transferred to the TSR  
in one TCY immediately following the Stop bit  
transmission. The transmission of the Start bit, data bits  
and Stop bit sequence commences immediately  
following the transfer of the data to the TSR from the  
TXREG.  
The EUSART transmits and receives the LSb first. The  
EUSART’s transmitter and receiver are functionally  
independent, but share the same data format and baud  
rate. Parity is not supported by the hardware, but can  
be implemented in software and stored as the ninth  
data bit.  
12.1.1  
EUSART ASYNCHRONOUS  
TRANSMITTER  
12.1.1.3  
Transmit Interrupt Flag  
The EUSART transmitter block diagram is shown in  
Figure 12-1. The heart of the transmitter is the serial  
Transmit Shift Register (TSR), which is not directly  
accessible by software. The TSR obtains its data from  
the transmit buffer, which is the TXREG register.  
The TXIF interrupt flag bit of the PIR1 register is set  
whenever the EUSART transmitter is enabled and no  
character is being held for transmission in the TXREG.  
In other words, the TXIF bit is only clear when the TSR  
is busy with a character and a new character has been  
queued for transmission in the TXREG. The TXIF flag bit  
is not cleared immediately upon writing TXREG. TXIF  
becomes valid in the second instruction cycle following  
the write execution. Polling TXIF immediately following  
the TXREG write will return invalid results. The TXIF bit  
is read-only, it cannot be set or cleared by software.  
12.1.1.1  
Enabling the Transmitter  
The EUSART transmitter is enabled for asynchronous  
operations by configuring the following three control  
bits:  
• TXEN = 1  
• SYNC = 0  
• SPEN = 1  
The TXIF interrupt can be enabled by setting the TXIE  
interrupt enable bit of the PIE1 register. However, the  
TXIF flag bit will be set whenever the TXREG is empty,  
regardless of the state of TXIE enable bit.  
All other EUSART control bits are assumed to be in  
their default state.  
To use interrupts when transmitting data, set the TXIE  
bit only when there is more data to send. Clear the  
TXIE interrupt enable bit upon writing the last character  
of the transmission to the TXREG.  
Setting the TXEN bit of the TXSTA register enables the  
transmitter circuitry of the EUSART. Clearing the SYNC  
bit of the TXSTA register configures the EUSART for  
asynchronous operation. Setting the SPEN bit of the  
RCSTA register enables the EUSART and automatically  
configures the TX/CK I/O pin as an output. If the TX/CK  
pin is shared with an analog peripheral the analog I/O  
function must be disabled by clearing the corresponding  
ANSEL bit.  
© 2007 Microchip Technology Inc.  
DS41262D-page 151  
PIC16F631/677/685/687/689/690  
12.1.1.4  
TSR Status  
12.1.1.6  
Asynchronous Transmission Set-up:  
The TRMT bit of the TXSTA register indicates the  
status of the TSR register. This is a read-only bit. The  
TRMT bit is set when the TSR register is empty and is  
cleared when a character is transferred to the TSR  
register from the TXREG. The TRMT bit remains clear  
until all bits have been shifted out of the TSR register.  
No interrupt logic is tied to this bit, so the user has to  
poll this bit to determine the TSR status.  
1. Initialize the SPBRGH, SPBRG register pair and  
the BRGH and BRG16 bits to achieve the desired  
baud rate (see Section 12.3 “EUSART Baud  
Rate Generator (BRG)”).  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
3. If 9-bit transmission is desired, set the TX9 con-  
trol bit. A set ninth data bit will indicate that the 8  
Least Significant data bits are an address when  
the receiver is set for address detection.  
Note:  
The TSR register is not mapped in data  
memory, so it is not available to the user.  
4. Enable the transmission by setting the TXEN  
control bit. This will cause the TXIF interrupt bit  
to be set.  
12.1.1.5  
Transmitting 9-Bit Characters  
The EUSART supports 9-bit character transmissions.  
When the TX9 bit of the TXSTA register is set the  
EUSART will shift 9 bits out for each character transmit-  
ted. The TX9D bit of the TXSTA register is the ninth,  
and Most Significant, data bit. When transmitting 9-bit  
data, the TX9D data bit must be written before writing  
the 8 Least Significant bits into the TXREG. All nine bits  
of data will be transferred to the TSR shift register  
immediately after the TXREG is written.  
5. If interrupts are desired, set the TXIE interrupt  
enable bit. An interrupt will occur immediately  
provided that the GIE and PEIE bits of the  
INTCON register are also set.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded into the TX9D data bit.  
7. Load 8-bit data into the TXREG register. This  
will start the transmission.  
A special 9-bit Address mode is available for use with  
multiple receivers. See Section 12.1.2.7 “Address  
Detection” for more information on the Address mode.  
FIGURE 12-3:  
ASYNCHRONOUS TRANSMISSION  
Write to TXREG  
Word 1  
BRG Output  
(Shift Clock)  
RC4/C2OUT/TX/CK  
pin  
Start bit  
bit 0  
bit 1  
Word 1  
bit 7/8  
Stop bit  
TXIF bit  
(Transmit Buffer  
Reg. Empty Flag)  
1 TCY  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
FIGURE 12-4:  
ASYNCHRONOUS TRANSMISSION (BACK TO BACK)  
Write to TXREG  
Word 2  
Start bit  
Word 1  
BRG Output  
(Shift Clock)  
RC4/C2OUT/TX/CK  
pin  
Start bit  
Word 2  
bit 0  
bit 1  
bit 7/8  
bit 0  
Stop bit  
1 TCY  
Word 1  
TXIF bit  
(Interrupt Reg. Flag)  
1 TCY  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
Word 1  
Transmit Shift Reg.  
Word 2  
Transmit Shift Reg.  
Note:  
This timing diagram shows two consecutive transmissions.  
DS41262D-page 152  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
TABLE 12-1: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
BAUDCTL ABDOVF RCIDL  
SCKP  
INTE  
TXIE  
TXIF  
BRG16  
RABIE  
SSPIE  
SSPIF  
WUE  
INTF  
ABDEN 01-0 0-00 01-0 0-00  
RABIF 0000 000x 0000 000x  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
T0IF  
CCP1IE TMR2IE TMR1IE -000 0000 -000 0000  
CCP1IF TMR2IF TMR1IF -000 0000 -000 0000  
0000 0000 0000 0000  
PIR1  
RCREG  
RCSTA  
SPBRG  
SPBRGH  
TRISB  
EUSART Receive Data Register  
SPEN  
BRG7  
BRG15  
RX9  
BRG6  
BRG14  
SREN  
BRG5  
CREN  
BRG4  
ADDEN  
BRG3  
FERR  
BRG2  
OERR  
BRG1  
BRG9  
RX9D  
BRG0  
BRG8  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
1111 ---- 1111 ----  
0000 0000 0000 0000  
0000 0010 0000 0010  
BRG13  
BRG12  
BRG11  
BRG10  
TRISB7 TRISB6 TRISB5 TRISB4  
EUSART Transmit Data Register  
TXREG  
TXSTA  
Legend:  
CSRC  
TX9  
TXEN  
SYNC  
SENDB  
BRGH  
TRMT  
TX9D  
x= unknown, – = unimplemented read as ‘0’. Shaded cells are not used for Asynchronous Transmission.  
© 2007 Microchip Technology Inc.  
DS41262D-page 153  
PIC16F631/677/685/687/689/690  
12.1.2  
EUSART ASYNCHRONOUS  
RECEIVER  
12.1.2.2  
Receiving Data  
The receiver data recovery circuit initiates character  
reception on the falling edge of the first bit. The first bit,  
also known as the Start bit, is always a zero. The data  
recovery circuit counts one-half bit time to the center of  
the Start bit and verifies that the bit is still a zero. If it is  
not a zero then the data recovery circuit aborts  
character reception, without generating an error, and  
resumes looking for the falling edge of the Start bit. If  
the Start bit zero verification succeeds then the data  
recovery circuit counts a full bit time to the center of the  
next bit. The bit is then sampled by a majority detect  
circuit and the resulting ‘0’ or ‘1’ is shifted into the RSR.  
This repeats until all data bits have been sampled and  
shifted into the RSR. One final bit time is measured and  
the level sampled. This is the Stop bit, which is always  
a ‘1’. If the data recovery circuit samples a ‘0’ in the  
Stop bit position then a framing error is set for this  
character, otherwise the framing error is cleared for this  
character. See Section 12.1.2.4 “Receive Framing  
Error” for more information on framing errors.  
The Asynchronous mode would typically be used in  
RS-232 systems. The receiver block diagram is shown  
in Figure 12-2. The data is received on the RX/DT pin  
and drives the data recovery block. The data recovery  
block is actually a high-speed shifter operating at 16  
times the baud rate, whereas the serial Receive Shift  
Register (RSR) operates at the bit rate. When all 8 or 9  
bits of the character have been shifted in, they are  
immediately transferred to  
a
two character  
First-In-First-Out (FIFO) memory. The FIFO buffering  
allows reception of two complete characters and the  
start of a third character before software must start  
servicing the EUSART receiver. The FIFO and RSR  
registers are not directly accessible by software.  
Access to the received data is via the RCREG register.  
12.1.2.1  
Enabling the Receiver  
The EUSART receiver is enabled for asynchronous  
operation by configuring the following three control bits:  
Immediately after all data bits and the Stop bit have  
been received, the character in the RSR is transferred  
to the EUSART receive FIFO and the RCIF interrupt  
flag bit of the PIR1 register is set. The top character in  
the FIFO is transferred out of the FIFO by reading the  
RCREG register.  
• CREN = 1  
• SYNC = 0  
• SPEN = 1  
All other EUSART control bits are assumed to be in  
their default state.  
Setting the CREN bit of the RCSTA register enables the  
receiver circuitry of the EUSART. Clearing the SYNC bit  
of the TXSTA register configures the EUSART for  
asynchronous operation. Setting the SPEN bit of the  
RCSTA register enables the EUSART and automatically  
configures the RX/DT I/O pin as an input. If the RX/DT  
pin is shared with an analog peripheral the analog I/O  
function must be disabled by clearing the corresponding  
ANSEL bit.  
Note:  
If the receive FIFO is overrun, no additional  
characters will be received until the overrun  
condition is cleared. See Section 12.1.2.5  
“Receive Overrun Error” for more  
information on overrun errors.  
12.1.2.3  
Receive Interrupts  
The RCIF interrupt flag bit of the PIR1 register is set  
whenever the EUSART receiver is enabled and there is  
an unread character in the receive FIFO. The RCIF  
interrupt flag bit is read-only, it cannot be set or cleared  
by software.  
Note:  
When the SPEN bit is set the TX/CK I/O  
pin is automatically configured as an  
output, regardless of the state of the  
corresponding TRIS bit and whether or not  
the EUSART transmitter is enabled. The  
PORT latch is disconnected from the  
output driver so it is not possible to use the  
TX/CK pin as a general purpose output.  
RCIF interrupts are enabled by setting the following  
bits:  
• RCIE interrupt enable bit of the PIE1 register  
• PEIE peripheral interrupt enable bit of the  
INTCON register  
• GIE global interrupt enable bit of the INTCON  
register  
The RCIF interrupt flag bit will be set when there is an  
unread character in the FIFO, regardless of the state of  
interrupt enable bits.  
DS41262D-page 154  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
12.1.2.4  
Receive Framing Error  
12.1.2.7  
Address Detection  
Each character in the receive FIFO buffer has a  
corresponding framing error status bit. A framing error  
indicates that a Stop bit was not seen at the expected  
time. The framing error status is accessed via the  
FERR bit of the RCSTA register. The FERR bit  
represents the status of the top unread character in the  
receive FIFO. Therefore, the FERR bit must be read  
before reading the RCREG.  
A special Address Detection mode is available for use  
when multiple receivers share the same transmission  
line, such as in RS-485 systems. Address detection is  
enabled by setting the ADDEN bit of the RCSTA  
register.  
Address detection requires 9-bit character reception.  
When address detection is enabled, only characters  
with the ninth data bit set will be transferred to the  
receive FIFO buffer, thereby setting the RCIF interrupt  
bit. All other characters will be ignored.  
The FERR bit is read-only and only applies to the top  
unread character in the receive FIFO. A framing error  
(FERR = 1) does not preclude reception of additional  
characters. It is not necessary to clear the FERR bit.  
Reading the next character from the FIFO buffer will  
advance the FIFO to the next character and the next  
corresponding framing error.  
Upon receiving an address character, user software  
determines if the address matches its own. Upon  
address match, user software must disable address  
detection by clearing the ADDEN bit before the next  
Stop bit occurs. When user software detects the end of  
the message, determined by the message protocol  
used, software places the receiver back into the  
Address Detection mode by setting the ADDEN bit.  
The FERR bit can be forced clear by clearing the SPEN  
bit of the RCSTA register which resets the EUSART.  
Clearing the CREN bit of the RCSTA register does not  
affect the FERR bit. A framing error by itself does not  
generate an interrupt.  
Note:  
If all receive characters in the receive  
FIFO have framing errors, repeated reads  
of the RCREG will not clear the FERR bit.  
12.1.2.5  
Receive Overrun Error  
The receive FIFO buffer can hold two characters. An  
overrun error will be generated If a third character, in its  
entirety, is received before the FIFO is accessed. When  
this happens the OERR bit of the RCSTA register is set.  
The characters already in the FIFO buffer can be read  
but no additional characters will be received until the  
error is cleared. The error must be cleared by either  
clearing the CREN bit of the RCSTA register or by  
resetting the EUSART by clearing the SPEN bit of the  
RCSTA register.  
12.1.2.6  
Receiving 9-bit Characters  
The EUSART supports 9-bit character reception. When  
the RX9 bit of the RCSTA register is set the EUSART  
will shift 9 bits into the RSR for each character  
received. The RX9D bit of the RCSTA register is the  
ninth and Most Significant data bit of the top unread  
character in the receive FIFO. When reading 9-bit data  
from the receive FIFO buffer, the RX9D data bit must  
be read before reading the 8 Least Significant bits from  
the RCREG.  
© 2007 Microchip Technology Inc.  
DS41262D-page 155  
PIC16F631/677/685/687/689/690  
12.1.2.8  
Asynchronous Reception Set-up:  
12.1.2.9  
9-bit Address Detection Mode Set-up  
1. Initialize the SPBRGH, SPBRG register pair and  
the BRGH and BRG16 bits to achieve the  
desired baud rate (see Section 12.3 “EUSART  
Baud Rate Generator (BRG)”).  
This mode would typically be used in RS-485 systems.  
To set up an Asynchronous Reception with Address  
Detect Enable:  
1. Initialize the SPBRGH, SPBRG register pair and  
the BRGH and BRG16 bits to achieve the  
desired baud rate (see Section 12.3 “EUSART  
Baud Rate Generator (BRG)”).  
2. Enable the serial port by setting the SPEN bit.  
The SYNC bit must be clear for asynchronous  
operation.  
3. If interrupts are desired, set the RCIE interrupt  
enable bit and set the GIE and PEIE bits of the  
INTCON register.  
2. Enable the serial port by setting the SPEN bit.  
The SYNC bit must be clear for asynchronous  
operation.  
4. If 9-bit reception is desired, set the RX9 bit.  
5. Enable reception by setting the CREN bit.  
3. If interrupts are desired, set the RCIE interrupt  
enable bit and set the GIE and PEIE bits of the  
INTCON register.  
6. The RCIF interrupt flag bit will be set when a  
character is transferred from the receive shift  
register to the receive buffer. An interrupt will be  
generated if the RCIE interrupt enable bit was  
also set.  
4. Enable 9-bit reception by setting the RX9 bit.  
5. Enable address detection by setting the ADDEN  
bit.  
6. Enable reception by setting the CREN bit.  
7. Read the RCSTA register to get the error flags  
and, if 9-bit data reception is enabled, the ninth  
data bit.  
7. The RCIF interrupt flag bit will be set when a  
character with the ninth bit set is transferred  
from the receive shift register to the receive  
buffer. An interrupt will be generated if the RCIE  
interrupt enable bit was also set.  
8. Get the received 8 Least Significant data bits  
from the receive buffer by reading the RCREG  
register.  
8. Read the RCSTA register to get the error flags.  
The ninth data bit will always be set.  
9. If an overrun occurred, clear the OERR flag by  
clearing the CREN receiver enable bit.  
9. Get the received 8 Least Significant data bits  
from the receive buffer by reading the RCREG  
register. Software determines if this is the  
device’s address.  
10. If an overrun occurred, clear the OERR flag by  
clearing the CREN receiver enable bit.  
11. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and generate interrupts.  
FIGURE 12-5:  
ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RX/DT pin  
bit 7/8  
bit 7/8  
bit 0 bit 1  
Stop  
bit  
Stop  
bit  
Stop  
bit  
bit 0  
bit 7/8  
Rcv Shift  
Reg  
Rcv Buffer Reg  
Word 2  
RCREG  
Word 1  
RCREG  
RCIDL  
Read Rcv  
Buffer Reg  
RCREG  
RCIF  
(Interrupt Flag)  
OERR bit  
CREN  
Note:  
This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word,  
causing the OERR (overrun) bit to be set.  
DS41262D-page 156  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
TABLE 12-2: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCTL ABDOVF RCIDL  
SCKP  
INTE  
TXIE  
TXIF  
BRG16  
RABIE  
SSPIE  
SSPIF  
WUE  
INTF  
ABDEN 01-0 0-00 01-0 0-00  
RABIF 0000 000x 0000 000x  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
T0IF  
CCP1IE TMR2IE TMR1IE -000 0000 -000 0000  
CCP1IF TMR2IF TMR1IF -000 0000 -000 0000  
0000 0000 0000 0000  
PIR1  
RCREG  
RCSTA  
SPBRG  
SPBRGH  
TRISB  
EUSART Receive Data Register  
SPEN  
BRG7  
BRG15  
RX9  
BRG6  
BRG14  
SREN  
BRG5  
CREN  
BRG4  
ADDEN  
BRG3  
FERR  
BRG2  
OERR  
BRG1  
BRG9  
RX9D  
BRG0  
BRG8  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
1111 ---- 1111 ----  
0000 0000 0000 0000  
0000 0010 0000 0010  
BRG13  
BRG12  
BRG11  
BRG10  
TRISB7 TRISB6 TRISB5 TRISB4  
EUSART Transmit Data Register  
TXREG  
TXSTA  
Legend:  
CSRC  
TX9  
TXEN  
SYNC  
SENDB  
BRGH  
TRMT  
TX9D  
x= unknown, – = unimplemented read as ‘0’. Shaded cells are not used for Asynchronous Reception.  
© 2007 Microchip Technology Inc.  
DS41262D-page 157  
PIC16F631/677/685/687/689/690  
The first (preferred) method uses the OSCTUNE  
12.2 Clock Accuracy with  
Asynchronous Operation  
register to adjust the INTOSC output. Adjusting the  
value in the OSCTUNE register allows for fine resolution  
changes to the system clock source. See Section 3.5  
“Internal Clock Modes” for more information.  
The factory calibrates the internal oscillator block out-  
put (INTOSC). However, the INTOSC frequency may  
drift as VDD or temperature changes, and this directly  
affects the asynchronous baud rate. Two methods may  
be used to adjust the baud rate clock, but both require  
a reference clock source of some kind.  
The other method adjusts the value in the Baud Rate  
Generator. This can be done automatically with the  
Auto-Baud Detect feature (see Section 12.3.1  
“Auto-Baud Detect”). There may not be fine enough  
resolution when adjusting the Baud Rate Generator to  
compensate for a gradual change in the peripheral  
clock frequency.  
REGISTER 12-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
R/W-0  
SYNC  
R/W-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
(1)  
TXEN  
SENDB  
TRMT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
bit 4  
bit 3  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
(1)  
TXEN: Transmit Enable bit  
1= Transmit enabled  
0= Transmit disabled  
SYNC: EUSART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
SENDB: Send Break Character bit  
Asynchronous mode:  
1= Send Sync Break on next transmission (cleared by hardware upon completion)  
0= Sync Break transmission completed  
Synchronous mode:  
Don’t care  
bit 2  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: Ninth bit of Transmit Data  
Can be address/data bit or a parity bit.  
Note 1: SREN/CREN overrides TXEN in Sync mode.  
DS41262D-page 158  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
REGISTER 12-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER(1)  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (configures RX/DT and TX/CK pins as serial port pins)  
0= Serial port disabled (held in Reset)  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care  
Synchronous mode – Master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode – Slave  
Don’t care  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables receiver  
0= Disables receiver  
Synchronous mode:  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enables address detection, enable interrupt and load the receive buffer when RSR<8> is set  
0= Disables address detection, all bytes are received and ninth bit can be used as parity bit  
Asynchronous mode 8-bit (RX9 = 0):  
Don’t care  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be updated by reading RCREG register and receive next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: Ninth bit of Received Data  
This can be address/data bit or a parity bit and must be calculated by user firmware.  
© 2007 Microchip Technology Inc.  
DS41262D-page 159  
PIC16F631/677/685/687/689/690  
REGISTER 12-3: BAUDCTL: BAUD RATE CONTROL REGISTER  
R-0  
R-1  
U-0  
R/W-0  
SCKP  
R/W-0  
U-0  
R/W-0  
WUE  
R/W-0  
ABDOVF  
RCIDL  
BRG16  
ABDEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
ABDOVF: Auto-Baud Detect Overflow bit  
Asynchronous mode:  
1= Auto-baud timer overflowed  
0= Auto-baud timer did not overflow  
Synchronous mode:  
Don’t care  
RCIDL: Receive Idle Flag bit  
Asynchronous mode:  
1= Receiver is Idle  
0= Start bit has been received and the receiver is receiving  
Synchronous mode:  
Don’t care  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
SCKP: Synchronous Clock Polarity Select bit  
Asynchronous mode:  
1= Transmit inverted data to the RB7/TX/CK pin  
0= Transmit non-inverted data to the RB7/TX/CK pin  
Synchronous mode:  
1= Data is clocked on rising edge of the clock  
0= Data is clocked on falling edge of the clock  
bit 3  
BRG16: 16-bit Baud Rate Generator bit  
1= 16-bit Baud Rate Generator is used  
0= 8-bit Baud Rate Generator is used  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
WUE: Wake-up Enable bit  
Asynchronous mode:  
1= Receiver is waiting for a falling edge. No character will be received byte RCIF will be set. WUE will  
automatically clear after RCIF is set.  
0= Receiver is operating normally  
Synchronous mode:  
Don’t care  
bit 0  
ABDEN: Auto-Baud Detect Enable bit  
Asynchronous mode:  
1= Auto-Baud Detect mode is enabled (clears when auto-baud is complete)  
0= Auto-Baud Detect mode is disabled  
Synchronous mode:  
Don’t care  
DS41262D-page 160  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
If the system clock is changed during an active receive  
12.3 EUSART Baud Rate Generator  
operation, a receive error or data loss may result. To  
avoid this problem, check the status of the RCIDL bit to  
make sure that the receive operation is Idle before  
changing the system clock.  
(BRG)  
The Baud Rate Generator (BRG) is an 8-bit or 16-bit  
timer that is dedicated to the support of both the  
asynchronous and synchronous EUSART operation.  
By default, the BRG operates in 8-bit mode. Setting the  
BRG16 bit of the BAUDCTL register selects 16-bit  
mode.  
EXAMPLE 12-1:  
CALCULATING BAUD  
RATE ERROR  
For a device with FOSC of 16 MHz, desired baud rate  
of 9600, Asynchronous mode, 8-bit BRG:  
The SPBRGH, SPBRG register pair determines the  
period of the free running baud rate timer. In  
Asynchronous mode the multiplier of the baud rate  
period is determined by both the BRGH bit of the TXSTA  
register and the BRG16 bit of the BAUDCTL register. In  
Synchronous mode, the BRGH bit is ignored.  
FOSC  
--------------------------------------------------------------------  
=
Desired Baud Rate  
64([SPBRGH:SPBRG] + 1)  
Solving for SPBRGH:SPBRG:  
FOSC  
---------------------------------------------  
Table 12-3 contains the formulas for determining the  
baud rate. Example 12-1 provides a sample calculation  
for determining the baud rate and baud rate error.  
Desired Baud Rate  
---------------------------------------------  
X =  
=
1  
64  
16000000  
-----------------------  
9600  
64  
Typical baud rates and error values for various  
asynchronous modes have been computed for your  
convenience and are shown in Table 12-3. It may be  
advantageous to use the high baud rate (BRGH = 1),  
or the 16-bit BRG (BRG16 = 1) to reduce the baud rate  
error. The 16-bit BRG mode is used to achieve slow  
baud rates for fast oscillator frequencies.  
-----------------------  
1  
= [25.042] = 25  
16000000  
64(25 + 1)  
--------------------------  
=
Calculated Baud Rate  
= 9615  
Writing a new value to the SPBRGH, SPBRG register  
pair causes the BRG timer to be reset (or cleared). This  
ensures that the BRG does not wait for a timer overflow  
before outputting the new baud rate.  
Calc. Baud Rate Desired Baud Rate  
--------------------------------------------------------------------------------------------  
Error =  
Desired Baud Rate  
(9615 9600)  
----------------------------------  
=
= 0.16%  
9600  
TABLE 12-3: BAUD RATE FORMULAS  
Configuration Bits  
Baud Rate Formula  
BRG/EUSART Mode  
SYNC  
BRG16  
BRGH  
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
x
x
8-bit/Asynchronous  
8-bit/Asynchronous  
16-bit/Asynchronous  
16-bit/Asynchronous  
8-bit/Synchronous  
16-bit/Synchronous  
FOSC/[64 (n+1)]  
FOSC/[16 (n+1)]  
FOSC/[4 (n+1)]  
Legend:  
x= Don’t care, n = value of SPBRGH, SPBRG register pair  
TABLE 12-4: REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCTL ABDOVF RCIDL  
SCKP  
CREN  
BRG4  
BRG12  
SYNC  
BRG16  
ADDEN  
BRG3  
WUE  
OERR  
BRG1  
BRG9  
TRMT  
ABDEN 01-0 0-00 01-0 0-00  
RCSTA  
SPBRG  
SPBRGH  
TXSTA  
SPEN  
BRG7  
BRG15  
CSRC  
RX9  
BRG6  
BRG14  
TX9  
SREN  
BRG5  
BRG13  
TXEN  
FERR  
BRG2  
BRG10  
BRGH  
RX9D  
BRG0  
BRG8  
TX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0010 0000 0010  
BRG11  
SENDB  
Legend:  
x= unknown, – = unimplemented read as ‘0’. Shaded cells are not used for the Baud Rate Generator.  
© 2007 Microchip Technology Inc.  
DS41262D-page 161  
PIC16F631/677/685/687/689/690  
TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODES  
SYNC = 0, BRGH = 0, BRG16 = 0  
FOSC = 20.000 MHz  
FOSC = 18.432 MHz  
FOSC = 11.0592 MHz  
FOSC = 8.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
Error  
Error  
Error  
Error  
300  
1200  
255  
129  
32  
239  
119  
29  
143  
71  
17  
16  
8
1202  
2404  
9615  
10417  
0.16  
0.16  
0.16  
0.00  
103  
51  
12  
11  
1221  
2404  
9470  
10417  
19.53k  
1.73  
0.16  
-1.36  
0.00  
1.73  
1200  
2400  
9600  
10286  
19.20k  
0.00  
0.00  
0.00  
-1.26  
0.00  
0.00  
1200  
2400  
9600  
10165  
19.20k  
0.00  
0.00  
0.00  
-2.42  
0.00  
0.00  
2400  
9600  
10417  
19.2k  
57.6k  
115.2k  
29  
27  
15  
14  
2
57.60k  
7
57.60k  
SYNC = 0, BRGH = 0, BRG16 = 0  
FOSC = 3.6864 MHz FOSC = 2.000 MHz  
FOSC = 4.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
Error  
Error  
(decimal)  
(decimal)  
0.00  
0.00  
0.00  
0.00  
300  
1200  
300  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
300  
1200  
2400  
9600  
191  
47  
23  
5
300  
1202  
2404  
0.16  
0.16  
0.16  
103  
25  
12  
2
300  
1202  
0.16  
0.16  
51  
12  
2400  
9600  
10417  
19.2k  
57.6k  
115.2k  
10417  
0.00  
2
10417  
0.00  
19.20k  
0.00  
0.00  
0
57.60k  
SYNC = 0, BRGH = 1, BRG16 = 0  
FOSC = 18.432 MHz FOSC = 11.0592 MHz  
FOSC = 20.000 MHz  
FOSC = 8.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
Error  
Error  
(decimal)  
(decimal)  
300  
1200  
2400  
9600  
10417  
19.2k  
57.6k  
2404  
9615  
10417  
19231  
55556  
0.16  
0.16  
0.00  
0.16  
-3.55  
207  
51  
47  
25  
8
71  
65  
35  
11  
5
9615  
10417  
19.23k  
56.82k  
0.16  
0.00  
0.16  
-1.36  
129  
119  
64  
9600  
10378  
19.20k  
57.60k  
115.2k  
0.00  
-0.37  
0.00  
0.00  
0.00  
119  
110  
59  
19  
9
9600  
0.00  
0.53  
0.00  
0.00  
0.00  
10473  
19.20k  
57.60k  
115.2k  
21  
115.2k 113.64k -1.36  
10  
DS41262D-page 162  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)  
SYNC = 0, BRGH = 1, BRG16 = 0  
FOSC = 3.6864 MHz FOSC = 2.000 MHz  
FOSC = 4.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
Error  
Error  
(decimal)  
(decimal)  
300  
1200  
1202  
2404  
9615  
10417  
19.23k  
207  
103  
25  
191  
95  
23  
21  
11  
3
1202  
2404  
9615  
10417  
0.16  
0.16  
0.16  
0.00  
103  
51  
12  
11  
300  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
0.16  
0.16  
0.16  
0.00  
0.16  
1200  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
2400  
2400  
9600  
9600  
10417  
19.2k  
57.6k  
115.2k  
23  
10473  
19.2k  
57.60k  
115.2k  
10417  
0.00  
12  
1
SYNC = 0, BRGH = 0, BRG16 = 1  
FOSC = 18.432 MHz FOSC = 11.0592 MHz  
FOSC = 20.000 MHz  
FOSC = 8.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
Error  
Error  
(decimal)  
(decimal)  
300  
1200  
2400  
9600  
10417  
19.2k  
57.6k  
300.0  
1200  
-0.01  
-0.03  
-0.03  
0.16  
0.00  
0.16  
-1.36  
4166  
1041  
520  
129  
119  
64  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
-0.37  
0.00  
0.00  
0.00  
3839  
959  
479  
119  
110  
59  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
2303  
575  
287  
71  
299.9  
1199  
2404  
9615  
10417  
19.23k  
55556  
-0.02  
-0.08  
0.16  
0.16  
0.00  
0.16  
-3.55  
1666  
416  
207  
51  
2399  
2400  
2400  
9615  
9600  
9600  
10417  
19.23k  
56.818  
10378  
19.20k  
57.60k  
115.2k  
10473  
19.20k  
57.60k  
115.2k  
65  
47  
35  
25  
21  
19  
11  
8
115.2k 113.636 -1.36  
10  
9
5
SYNC = 0, BRGH = 0, BRG16 = 1  
FOSC = 3.6864 MHz FOSC = 2.000 MHz  
FOSC = 4.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
Error  
(decimal)  
(decimal)  
(decimal)  
300  
1200  
300.1  
1202  
2404  
9615  
10417  
19.23k  
0.04  
0.16  
0.16  
0.16  
0.00  
0.16  
832  
207  
103  
25  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
767  
191  
95  
23  
21  
11  
3
299.8  
1202  
2404  
9615  
10417  
-0.108  
0.16  
0.16  
0.16  
0.00  
416  
103  
51  
12  
11  
300.5  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
2400  
2400  
9600  
9600  
10417  
19.2k  
57.6k  
115.2k  
23  
10473  
19.20k  
57.60k  
115.2k  
10417  
0.00  
12  
1
© 2007 Microchip Technology Inc.  
DS41262D-page 163  
PIC16F631/677/685/687/689/690  
TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)  
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1  
FOSC = 20.000 MHz  
FOSC = 18.432 MHz  
FOSC = 11.0592 MHz  
FOSC = 8.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
Error  
Error  
Error  
Error  
300  
1200  
300.0  
1200  
0.00  
-0.01  
0.02  
-0.03  
0.00  
0.16  
-0.22  
0.94  
16665  
4166  
2082  
520  
479  
259  
86  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.08  
0.00  
0.00  
0.00  
15359  
3839  
1919  
479  
441  
239  
79  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.16  
0.00  
0.00  
0.00  
9215  
2303  
1151  
287  
264  
143  
47  
300.0  
1200  
0.00  
-0.02  
0.04  
0.16  
0
6666  
1666  
832  
207  
191  
103  
34  
2400  
2400  
2400  
2400  
2401  
9600  
9597  
9600  
9600  
9615  
10417  
19.2k  
57.6k  
115.2k  
10417  
19.23k  
57.47k  
116.3k  
10425  
19.20k  
57.60k  
115.2k  
10433  
19.20k  
57.60k  
115.2k  
10417  
19.23k  
57.14k  
117.6k  
0.16  
-0.79  
2.12  
42  
39  
23  
16  
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1  
FOSC = 3.6864 MHz FOSC = 2.000 MHz  
FOSC = 4.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
Error  
Error  
Error  
Error  
300  
1200  
300.0  
1200  
0.01  
0.04  
0.08  
0.16  
0.00  
0.16  
2.12  
-3.55  
3332  
832  
416  
103  
95  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
3071  
767  
383  
95  
299.9  
1199  
-0.02  
-0.08  
0.16  
0.16  
0.00  
0.16  
-3.55  
1666  
416  
207  
51  
300.1  
1202  
2404  
9615  
10417  
19.23k  
0.04  
0.16  
0.16  
0.16  
0.00  
0.16  
832  
207  
103  
25  
2400  
2398  
2400  
2404  
9615  
10417  
19.23k  
55.56k  
9600  
9615  
9600  
10417  
19.2k  
57.6k  
115.2k  
10417  
19.23k  
58.82k  
111.1k  
10473  
19.20k  
57.60k  
115.2k  
87  
47  
23  
51  
47  
25  
12  
16  
15  
8
8
7
DS41262D-page 164  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
and SPBRG registers are clocked at 1/8th the BRG  
base clock rate. The resulting byte measurement is the  
average bit time when clocked at full speed.  
12.3.1  
AUTO-BAUD DETECT  
The EUSART module supports automatic detection  
and calibration of the baud rate.  
Note 1: If the WUE bit is set with the ABDEN bit,  
auto-baud detection will occur on the byte  
following the Break character (see  
In the Auto-Baud Detect (ABD) mode, the clock to the  
BRG is reversed. Rather than the BRG clocking the  
incoming RX signal, the RX signal is timing the BRG.  
The Baud Rate Generator is used to time the period of  
a received 55h (ASCII “U”) which is the Sync character  
for the LIN bus. The unique feature of this character is  
that it has five rising edges including the Stop bit edge.  
Section 12.3.2  
“Auto-Wake-up  
on  
Break”).  
2: It is up to the user to determine that the  
incoming character baud rate is within the  
range of the selected BRG clock source.  
Some combinations of oscillator frequency  
and EUSART baud rates are not possible.  
Setting the ABDEN bit of the BAUDCTL register starts  
the auto-baud calibration sequence (Figure 12-6).  
While the ABD sequence takes place, the EUSART  
state machine is held in Idle. On the first rising edge of  
the receive line, after the Start bit, the SPBRG begins  
counting up using the BRG counter clock as shown in  
Table 12-6. The fifth rising edge will occur on the RX  
pin at the end of the eighth bit period. At that time, an  
accumulated value totaling the proper BRG period is  
left in the SPBRGH, SPBRG register pair, the ABDEN  
bit is automatically cleared and the RCIF interrupt flag  
is set. The value in the RCREG needs to be read to  
clear the RCIF interrupt. RCREG content should be  
discarded. When calibrating for modes that do not use  
the SPBRGH register the user can verify that the  
SPBRG register did not overflow by checking for 00h in  
the SPBRGH register.  
3: During the auto-baud process, the  
auto-baud counter starts counting at 1.  
Upon completion of the auto-baud  
sequence,  
accuracy,  
to  
achieve  
maximum  
from the  
subtract  
1
SPBRGH:SPBRG register pair.  
TABLE 12-6:  
BRG COUNTER CLOCK RATES  
BRG Base  
Clock  
BRG ABD  
Clock  
BRG16 BRGH  
0
0
0
1
FOSC/64  
FOSC/16  
FOSC/512  
FOSC/128  
1
1
0
1
FOSC/16  
FOSC/4  
FOSC/128  
FOSC/32  
The BRG auto-baud clock is determined by the BRG16  
and BRGH bits as shown in Table 12-6. During ABD,  
both the SPBRGH and SPBRG registers are used as a  
16-bit counter, independent of the BRG16 bit setting.  
While calibrating the baud rate period, the SPBRGH  
Note:  
During the ABD sequence, SPBRG and  
SPBRGH registers are both used as a 16-bit  
counter, independent of BRG16 setting.  
FIGURE 12-6:  
AUTOMATIC BAUD RATE CALIBRATION  
XXXXh  
0000h  
001Ch  
BRG Value  
Edge #1  
bit 1  
Edge #2  
bit 3  
Edge #3  
bit 5  
Edge #4  
bit 7  
bit 6  
Edge #5  
Stop bit  
RX pin  
Start  
bit 0  
bit 2  
bit 4  
BRG Clock  
Auto Cleared  
Set by User  
ABDEN bit  
RCIDL  
RCIF bit  
(Interrupt)  
Read  
RCREG  
XXh  
XXh  
1Ch  
00h  
SPBRG  
SPBRGH  
Note 1: The ABD sequence requires the EUSART module to be configured in Asynchronous mode.  
© 2007 Microchip Technology Inc.  
DS41262D-page 165  
PIC16F631/677/685/687/689/690  
12.3.2  
AUTO-WAKE-UP ON BREAK  
12.3.2.1  
Special Considerations  
During Sleep mode, all clocks to the EUSART are  
suspended. Because of this, the Baud Rate Generator  
is inactive and a proper character reception cannot be  
performed. The Auto-Wake-up feature allows the  
controller to wake-up due to activity on the RX/DT line.  
This feature is available only in Asynchronous mode.  
Break Character  
To avoid character errors or character fragments during  
a wake-up event, the wake-up character must be all  
zeros.  
When the wake-up is enabled the function works  
independent of the low time on the data stream. If the  
WUE bit is set and a valid non-zero character is  
received, the low time from the Start bit to the first rising  
edge will be interpreted as the wake-up event. The  
remaining bits in the character will be received as a  
fragmented character and subsequent characters can  
result in framing or overrun errors.  
The Auto-Wake-up feature is enabled by setting the  
WUE bit of the BAUDCTL register. Once set, the normal  
receive sequence on RX/DT is disabled, and the  
EUSART remains in an Idle state, monitoring for a  
wake-up event independent of the CPU mode. A  
wake-up event consists of a high-to-low transition on the  
RX/DT line. (This coincides with the start of a Sync Break  
or a wake-up signal character for the LIN protocol.)  
Therefore, the initial character in the transmission must  
be all ‘0’s. This must be 10 or more bit times, 13-bit  
times recommended for LIN bus, or any number of bit  
times for standard RS-232 devices.  
The EUSART module generates an RCIF interrupt  
coincident with the wake-up event. The interrupt is  
generated synchronously to the Q clocks in normal CPU  
operating modes (Figure 12-7), and asynchronously if  
the device is in Sleep mode (Figure 12-8). The interrupt  
condition is cleared by reading the RCREG register.  
Oscillator Startup Time  
Oscillator start-up time must be considered, especially  
in applications using oscillators with longer start-up  
intervals (i.e., LP, XT or HS/PLL mode). The Sync  
Break (or wake-up signal) character must be of  
sufficient length, and be followed by a sufficient  
interval, to allow enough time for the selected oscillator  
to start and provide proper initialization of the EUSART.  
The WUE bit is automatically cleared by the low-to-high  
transition on the RX line at the end of the Break. This  
signals to the user that the Break event is over. At this  
point, the EUSART module is in Idle mode waiting to  
receive the next character.  
WUE Bit  
The wake-up event causes a receive interrupt by  
setting the RCIF bit. The WUE bit is cleared in  
hardware by a rising edge on RX/DT. The interrupt  
condition is then cleared in software by reading the  
RCREG register and discarding its contents.  
To ensure that no actual data is lost, check the RCIDL  
bit to verify that a receive operation is not in process  
before setting the WUE bit. If a receive operation is not  
occurring, the WUE bit may then be set just prior to  
entering the Sleep mode.  
FIGURE 12-7:  
AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3Q4  
OSC1  
Auto Cleared  
Bit set by user  
WUE bit  
RX/DT Line  
RCIF  
Cleared due to User Read of RCREG  
Note 1: The EUSART remains in Idle while the WUE bit is set.  
DS41262D-page 166  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
FIGURE 12-8:  
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP  
Q4  
Q1Q2Q3 Q4 Q1Q2 Q3Q4 Q1Q2Q3  
Q1  
Q2 Q3Q4 Q1Q2Q3 Q4 Q1Q2Q3Q4 Q1Q2Q3 Q4 Q1Q2 Q3Q4  
Auto Cleared  
OSC1  
Bit Set by User  
WUE bit  
RX/DT Line  
Note 1  
RCIF  
Cleared due to User Read of RCREG  
Sleep Command Executed  
Sleep Ends  
Note 1: If the wake-up event requires long oscillator warm-up time, the automatic clearing of the WUE bit can occur while the stposcsignal is  
still active. This sequence should not depend on the presence of Q clocks.  
2: The EUSART remains in Idle while the WUE bit is set.  
12.3.3  
BREAK CHARACTER SEQUENCE  
12.3.4  
RECEIVING A BREAK CHARACTER  
The EUSART module has the capability of sending the  
special Break character sequences that are required by  
the LIN bus standard. A Break character consists of a  
Start bit, followed by 12 ‘0’ bits and a Stop bit.  
The Enhanced EUSART module can receive a Break  
character in two ways.  
The first method to detect a Break character uses the  
FERR bit of the RCSTA register and the Received data  
as indicated by RCREG. The Baud Rate Generator is  
assumed to have been initialized to the expected baud  
rate.  
To send a Break character, set the SENDB and TXEN  
bits of the TXSTA register. The Break character trans-  
mission is then initiated by a write to the TXREG. The  
value of data written to TXREG will be ignored and all  
0’s will be transmitted.  
A Break character has been received when;  
• RCIF bit is set  
• FERR bit is set  
• RCREG = 00h  
The SENDB bit is automatically reset by hardware after  
the corresponding Stop bit is sent. This allows the user  
to preload the transmit FIFO with the next transmit byte  
following the Break character (typically, the Sync  
character in the LIN specification).  
The second method uses the Auto-Wake-up feature  
described in Section 12.3.2 “Auto-Wake-up on  
Break”. By enabling this feature, the EUSART will  
sample the next two transitions on RX/DT, cause an  
RCIF interrupt, and receive the next data byte followed  
by another interrupt.  
The TRMT bit of the TXSTA register indicates when the  
transmit operation is active or Idle, just as it does during  
normal transmission. See Figure 12-9 for the timing of  
the Break character sequence.  
Note that following a Break character, the user will  
typically want to enable the Auto-Baud Detect feature.  
For both methods, the user can set the ABDEN bit of  
the BAUDCTL register before placing the EUSART in  
Sleep mode.  
12.3.3.1  
Break and Sync Transmit Sequence  
The following sequence will start a message frame  
header made up of a Break, followed by an auto-baud  
Sync byte. This sequence is typical of a LIN bus  
master.  
1. Configure the EUSART for the desired mode.  
2. Set the TXEN and SENDB bits to enable the  
Break sequence.  
3. Load the TXREG with a dummy character to  
initiate transmission (the value is ignored).  
4. Write ‘55h’ to TXREG to load the Sync character  
into the transmit FIFO buffer.  
5. After the Break has been sent, the SENDB bit is  
reset by hardware and the Sync character is  
then transmitted.  
When the TXREG becomes empty, as indicated by the  
TXIF, the next data byte can be written to TXREG.  
© 2007 Microchip Technology Inc.  
DS41262D-page 167  
PIC16F631/677/685/687/689/690  
FIGURE 12-9:  
SEND BREAK CHARACTER SEQUENCE  
Write to TXREG  
Dummy Write  
BRG Output  
(Shift Clock)  
TX (pin)  
Start bit  
bit 0  
bit 1  
Break  
bit 11  
Stop bit  
TXIF bit  
(Transmit  
interrupt Flag)  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
SENDB Sampled Here  
Auto Cleared  
SENDB  
(send Break  
control bit)  
DS41262D-page 168  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
the clock Idle state as high. When the SCKP bit is set,  
12.4 EUSART Synchronous Mode  
the data changes on the falling edge of each clock.  
Clearing the SCKP bit sets the Idle state as low. When  
the SCKP bit is cleared, the data changes on the rising  
edge of each clock.  
Synchronous serial communications are typically used  
in systems with a single master and one or more  
slaves. The master device contains the necessary cir-  
cuitry for baud rate generation and supplies the clock  
for all devices in the system. Slave devices can take  
advantage of the master clock by eliminating the  
internal clock generation circuitry.  
12.4.1.3  
Synchronous Master Transmission  
Data is transferred out of the device on the RX/DT pin.  
The RX/DT and TX/CK pin output drivers are automat-  
ically enabled when the EUSART is configured for  
synchronous master transmit operation.  
There are two signal lines in Synchronous mode: a bidi-  
rectional data line and a clock line. Slaves use the  
external clock supplied by the master to shift the serial  
data into and out of their respective receive and trans-  
mit shift registers. Since the data line is bidirectional,  
synchronous operation is half-duplex only. Half-duplex  
refers to the fact that master and slave devices can  
receive and transmit data but not both simultaneously.  
The EUSART can operate as either a master or slave  
device.  
A transmission is initiated by writing a character to the  
TXREG register. If the TSR still contains all or part of a  
previous character the new character data is held in the  
TXREG until the last bit of the previous character has  
been transmitted. If this is the first character, or the pre-  
vious character has been completely flushed from the  
TSR, the data in the TXREG is immediately transferred  
to the TSR. The transmission of the character  
commences immediately following the transfer of the  
data to the TSR from the TXREG.  
Start and Stop bits are not used in synchronous  
transmissions.  
Each data bit changes on the leading edge of the  
master clock and remains valid until the subsequent  
leading clock edge.  
12.4.1  
SYNCHRONOUS MASTER MODE  
The following bits are used to configure the EUSART  
for Synchronous Master operation:  
Note:  
The TSR register is not mapped in data  
memory, so it is not available to the user.  
• SYNC = 1  
• CSRC = 1  
12.4.1.4  
Synchronous Master Transmission  
Set-up:  
• SREN = 0(for transmit); SREN = 1(for receive)  
• CREN = 0(for transmit); CREN = 1(for receive)  
• SPEN = 1  
1. Initialize the SPBRGH, SPBRG register pair and  
the BRGH and BRG16 bits to achieve the  
desired baud rate (see Section 12.3 “EUSART  
Baud Rate Generator (BRG)”).  
Setting the SYNC bit of the TXSTA register configures  
the device for synchronous operation. Setting the CSRC  
bit of the TXSTA register configures the device as a  
master. Clearing the SREN and CREN bits of the RCSTA  
register ensures that the device is in the Transmit mode,  
otherwise the device will be configured to receive. Setting  
the SPEN bit of the RCSTA register enables the  
EUSART. If the RX/DT or TX/CK pins are shared with an  
analog peripheral the analog I/O functions must be  
disabled by clearing the corresponding ANSEL bits.  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
3. Disable Receive mode by clearing bits SREN  
and CREN.  
4. Enable Transmit mode by setting the TXEN bit.  
5. If 9-bit transmission is desired, set the TX9 bit.  
6. If interrupts are desired, set the TXIE, GIE and  
PEIE interrupt enable bits.  
12.4.1.1  
Master Clock  
7. If 9-bit transmission is selected, the ninth bit  
should be loaded in the TX9D bit.  
Synchronous data transfers use a separate clock line,  
which is synchronous with the data. A device config-  
ured as a master transmits the clock on the TX/CK line.  
The TX/CK pin is automatically configured as an output  
when the EUSART is configured for synchronous  
transmit operation. Serial data bits change on the lead-  
ing edge to ensure they are valid at the trailing edge of  
each clock. One clock cycle is generated for each data  
bit. Only as many clock cycles are generated as there  
are data bits.  
8. Start transmission by loading data to the TXREG  
register.  
12.4.1.2  
Clock Polarity  
A clock polarity option is provided for Microwire  
compatability. Clock polarity is selected with the SCKP  
bit of the BAUDCTL register. Setting the SCKP bit sets  
© 2007 Microchip Technology Inc.  
DS41262D-page 169  
PIC16F631/677/685/687/689/690  
FIGURE 12-10:  
SYNCHRONOUS TRANSMISSION  
RX/DT  
pin  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
Word 2  
bit 7  
Word 1  
TX/CK pin  
(SCKP = 0)  
TX/CK pin  
(SCKP = 1)  
Write to  
TXREG Reg  
Write Word 1  
Write Word 2  
TXIF bit  
(Interrupt Flag)  
TRMT bit  
1’  
1’  
TXEN bit  
Note:  
Sync Master mode, SPBRG = 0, continuous transmission of two 8-bit words.  
FIGURE 12-11:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RX/DT pin  
bit 0  
bit 2  
bit 1  
bit 6  
bit 7  
TX/CK pin  
Write to  
TXREG reg  
TXIF bit  
TRMT bit  
TXEN bit  
TABLE 12-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCTL ABDOVF RCIDL  
SCKP  
INTE  
TXIE  
TXIF  
BRG16  
RABIE  
SSPIE  
SSPIF  
WUE  
INTF  
ABDEN 01-0 0-00 01-0 0-00  
RABIF 0000 000x 0000 000x  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
T0IF  
CCP1IE TMR2IE TMR1IE -000 0000 -000 0000  
CCP1IF TMR2IF TMR1IF -000 0000 -000 0000  
0000 0000 0000 0000  
PIR1  
RCREG  
RCSTA  
SPBRG  
SPBRGH  
TRISB  
EUSART Receive Data Register  
SPEN  
BRG7  
BRG15  
RX9  
BRG6  
BRG14  
SREN  
BRG5  
CREN  
BRG4  
ADDEN  
BRG3  
FERR  
BRG2  
OERR  
BRG1  
BRG9  
RX9D  
BRG0  
BRG8  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
1111 ---- 1111 ----  
0000 0000 0000 0000  
0000 0010 0000 0010  
BRG13  
BRG12  
BRG11  
BRG10  
TRISB7 TRISB6 TRISB5 TRISB4  
EUSART Transmit Data Register  
TXREG  
TXSTA  
Legend:  
CSRC  
TX9  
TXEN  
SYNC  
SENDB  
BRGH  
TRMT  
TX9D  
x= unknown, – = unimplemented read as ‘0’. Shaded cells are not used for Synchronous Master Transmission.  
DS41262D-page 170  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
12.4.1.5  
Synchronous Master Reception  
12.4.1.8  
Synchronous Master Reception  
Set-up:  
Data is received at the RX/DT pin. The RX/DT and  
TX/CK pin output drivers are automatically disabled  
when the EUSART is configured for synchronous  
master receive operation.  
1. Initialize the SPBRGH, SPBRG register pair for  
the appropriate baud rate. Set or clear the  
BRGH and BRG16 bits, as required, to achieve  
the desired baud rate.  
In Synchronous mode, reception is enabled by setting  
either the Single Receive Enable bit (SREN of the  
RCSTA register) or the Continuous Receive Enable bit  
(CREN of the RCSTA register).  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
3. Ensure bits CREN and SREN are clear.  
4. If using interrupts, set the GIE and PEIE bits of  
the INTCON register and set RCIE.  
When SREN is set and CREN is clear, only as many  
clock cycles are generated as there are data bits in a  
single character. The SREN bit is automatically cleared  
at the completion of one character. When CREN is set,  
clocks are continuously generated until CREN is  
cleared. If CREN is cleared in the middle of a character  
the CK clock stops immediately and the partial charac-  
ter is discarded. If SREN and CREN are both set, then  
SREN is cleared at the completion of the first character  
and CREN takes precedence.  
5. If 9-bit reception is desired, set bit RX9.  
6. Start reception by setting the SREN bit or for  
continuous reception, set the CREN bit.  
7. Interrupt flag bit RCIF will be set when reception  
of a character is complete. An interrupt will be  
generated if the enable bit RCIE was set.  
8. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
To initiate reception, set either SREN or CREN. Data is  
sampled at the RX/DT pin on the trailing edge of the  
TX/CK clock pin and is shifted into the Receive Shift  
9. Read the 8-bit received data by reading the  
RCREG register.  
Register (RSR). When  
a complete character is  
10. If an overrun error occurs, clear the error by  
either clearing the CREN bit of the RCSTA  
register or by clearing the SPEN bit which resets  
the EUSART.  
received into the RSR, the RCIF bit is set and the char-  
acter is automatically transferred to the two character  
receive FIFO. The Least Significant eight bits of the top  
character in the receive FIFO are available in RCREG.  
The RCIF bit remains set as long as there are un-read  
characters in the receive FIFO.  
12.4.1.6  
Receive Overrun Error  
The receive FIFO buffer can hold two characters. An  
overrun error will be generated if a third character, in its  
entirety, is received before RCREG is read to access  
the FIFO. When this happens the OERR bit of the  
RCSTA register is set. Previous data in the FIFO will  
not be overwritten. The two characters in the FIFO  
buffer can be read, however, no additional characters  
will be received until the error is cleared. The OERR bit  
can only be cleared by clearing the overrun condition.  
If the overrun error occurred when the SREN bit is set  
and CREN is clear then the error is cleared by reading  
RCREG. If the overrun occurred when the CREN bit is  
set then the error condition is cleared by either clearing  
the CREN bit of the RCSTA register or by clearing the  
SPEN bit which resets the EUSART.  
12.4.1.7  
Receiving 9-bit Characters  
The EUSART supports 9-bit character reception. When  
the RX9 bit of the RCSTA register is set the EUSART  
will shift 9-bits into the RSR for each character  
received. The RX9D bit of the RCSTA register is the  
ninth, and Most Significant, data bit of the top unread  
character in the receive FIFO. When reading 9-bit data  
from the receive FIFO buffer, the RX9D data bit must  
be read before reading the 8 Least Significant bits from  
the RCREG.  
© 2007 Microchip Technology Inc.  
DS41262D-page 171  
PIC16F631/677/685/687/689/690  
FIGURE 12-12:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
RX/DT  
pin  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
TX/CK pin  
(SCKP = 0)  
TX/CK pin  
(SCKP = 1)  
Write to  
bit SREN  
SREN bit  
0’  
0’  
CREN bit  
RCIF bit  
(Interrupt)  
Read  
RXREG  
Note:  
Timing diagram demonstrates Sync Master mode with bit SREN = 1and bit BRGH = 0.  
TABLE 12-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCTL ABDOVF RCIDL  
SCKP  
INTE  
TXIE  
TXIF  
BRG16  
RABIE  
SSPIE  
SSPIF  
WUE  
INTF  
ABDEN 01-0 0-00 01-0 0-00  
RABIF 0000 000x 0000 000x  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
T0IF  
CCP1IE TMR2IE TMR1IE -000 0000 -000 0000  
CCP1IF TMR2IF TMR1IF -000 0000 -000 0000  
0000 0000 0000 0000  
PIR1  
RCREG  
RCSTA  
SPBRG  
SPBRGH  
TRISB  
EUSART Receive Data Register  
SPEN  
BRG7  
BRG15  
RX9  
BRG6  
BRG14  
SREN  
BRG5  
CREN  
BRG4  
ADDEN  
BRG3  
FERR  
BRG2  
OERR  
BRG1  
BRG9  
RX9D  
BRG0  
BRG8  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
1111 ---- 1111 ----  
0000 0000 0000 0000  
0000 0010 0000 0010  
BRG13  
BRG12  
BRG11  
BRG10  
TRISB7 TRISB6 TRISB5 TRISB4  
EUSART Transmit Data Register  
TXREG  
TXSTA  
Legend:  
CSRC  
TX9  
TXEN  
SYNC  
SENDB  
BRGH  
TRMT  
TX9D  
x= unknown, – = unimplemented read as ‘0’. Shaded cells are not used for Synchronous Master Reception.  
DS41262D-page 172  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
12.4.2  
SYNCHRONOUS SLAVE MODE  
The following bits are used to configure the EUSART  
for Synchronous slave operation:  
1. The first character will immediately transfer to  
the TSR register and transmit.  
• SYNC = 1  
2. The second word will remain in TXREG register.  
3. The TXIF bit will not be set.  
• CSRC = 0  
• SREN = 0(for transmit); SREN = 1(for receive)  
• CREN = 0(for transmit); CREN = 1(for receive)  
• SPEN = 1  
4. After the first character has been shifted out of  
TSR, the TXREG register will transfer the second  
character to the TSR and the TXIF bit will now be  
set.  
Setting the SYNC bit of the TXSTA register configures the  
device for synchronous operation. Clearing the CSRC bit  
of the TXSTA register configures the device as a slave.  
Clearing the SREN and CREN bits of the RCSTA register  
ensures that the device is in the Transmit mode,  
otherwise the device will be configured to receive. Setting  
the SPEN bit of the RCSTA register enables the  
EUSART. If the RX/DT or TX/CK pins are shared with an  
analog peripheral the analog I/O functions must be  
disabled by clearing the corresponding ANSEL bits.  
5. If the PEIE and TXIE bits are set, the interrupt  
will wake the device from Sleep and execute the  
next instruction. If the GIE bit is also set, the  
program will call the interrupt service routine.  
12.4.2.2  
Synchronous Slave Transmission  
Set-up:  
1. Set the SYNC and SPEN bits and clear the  
CSRC bit.  
2. Clear the CREN and SREN bits.  
12.4.2.1  
EUSART Synchronous Slave  
Transmit  
3. If using interrupts, ensure that the GIE and PEIE  
bits of the INTCON register are set and set the  
TXIE bit.  
The operation of the Synchronous Master and Slave  
modes are identical (see Section 12.4.1.3  
“Synchronous Master Transmission”), except in the  
4. If 9-bit transmission is desired, set the TX9 bit.  
5. Enable transmission by setting the TXEN bit.  
case of the Sleep mode.  
6. If 9-bit transmission is selected, insert the Most  
Significant bit into the TX9D bit.  
7. Start transmission by writing the Least  
Significant 8 bits to the TXREG register.  
TABLE 12-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCTL ABDOVF RCIDL  
SCKP  
INTE  
TXIE  
TXIF  
BRG16  
RABIE  
SSPIE  
SSPIF  
WUE  
INTF  
ABDEN 01-0 0-00 01-0 0-00  
RABIF 0000 000x 0000 000x  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
T0IF  
CCP1IE TMR2IE TMR1IE -000 0000 -000 0000  
CCP1IF TMR2IF TMR1IF -000 0000 -000 0000  
0000 0000 0000 0000  
PIR1  
RCREG  
RCSTA  
SPBRG  
SPBRGH  
TRISB  
EUSART Receive Data Register  
SPEN  
BRG7  
BRG15  
RX9  
BRG6  
BRG14  
SREN  
BRG5  
CREN  
BRG4  
ADDEN  
BRG3  
FERR  
BRG2  
BRG10  
OERR  
BRG1  
BRG9  
RX9D  
BRG0  
BRG8  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
1111 ---- 1111 ----  
0000 0000 0000 0000  
0000 0010 0000 0010  
BRG13  
BRG12  
BRG11  
TRISB7 TRISB6 TRISB5 TRISB4  
EUSART Transmit Data Register  
TXREG  
TXSTA  
Legend:  
CSRC  
TX9  
TXEN  
SYNC  
SENDB  
BRGH  
TRMT  
TX9D  
x= unknown, – = unimplemented read as ‘0’. Shaded cells are not used for Synchronous Slave Transmission.  
© 2007 Microchip Technology Inc.  
DS41262D-page 173  
PIC16F631/677/685/687/689/690  
12.4.2.3  
EUSART Synchronous Slave  
Reception  
12.4.2.4  
Synchronous Slave Reception  
Set-up:  
The operation of the Synchronous Master and Slave  
modes is identical (Section 12.4.1.5 “Synchronous  
Master Reception”), with the following exceptions:  
1. Set the SYNC and SPEN bits and clear the  
CSRC bit.  
2. If using interrupts, ensure that the GIE and PEIE  
bits of the INTCON register are set and set the  
RCIE bit.  
• Sleep  
• CREN bit is always set, therefore the receiver is  
never Idle  
3. If 9-bit reception is desired, set the RX9 bit.  
4. Set the CREN bit to enable reception.  
• SREN bit, which is a “don't care” in Slave mode  
5. The RCIF bit will be set when reception is  
complete. An interrupt will be generated if the  
RCIE bit was set.  
A character may be received while in Sleep mode by  
setting the CREN bit prior to entering Sleep. Once the  
word is received, the RSR register will transfer the data  
to the RCREG register. If the RCIE enable bit is set, the  
interrupt generated will wake the device from Sleep  
and execute the next instruction. If the GIE bit is also  
set, the program will branch to the interrupt vector.  
6. If 9-bit mode is enabled, retrieve the Most  
Significant bit from the RX9D bit of the RCSTA  
register.  
7. Retrieve the 8 Least Significant bits from the  
receive FIFO by reading the RCREG register.  
8. If an overrun error occurs, clear the error by  
either clearing the CREN bit of the RCSTA  
register or by clearing the SPEN bit which resets  
the EUSART.  
TABLE 12-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCTL ABDOVF RCIDL  
SCKP  
INTE  
TXIE  
TXIF  
BRG16  
RABIE  
SSPIE  
SSPIF  
WUE  
INTF  
ABDEN 01-0 0-00 01-0 0-00  
RABIF 0000 000x 0000 000x  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
T0IF  
CCP1IE TMR2IE TMR1IE -000 0000 -000 0000  
CCP1IF TMR2IF TMR1IF -000 0000 -000 0000  
0000 0000 0000 0000  
PIR1  
RCREG  
RCSTA  
SPBRG  
SPBRGH  
TRISB  
EUSART Receive Data Register  
SPEN  
BRG7  
BRG15  
RX9  
BRG6  
BRG14  
SREN  
BRG5  
CREN  
BRG4  
ADDEN  
BRG3  
FERR  
BRG2  
BRG10  
OERR  
BRG1  
BRG9  
RX9D  
BRG0  
BRG8  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
1111 ---- 1111 ----  
0000 0000 0000 0000  
0000 0010 0000 0010  
BRG13  
BRG12  
BRG11  
TRISB7 TRISB6 TRISB5 TRISB4  
EUSART Transmit Data Register  
TXREG  
TXSTA  
Legend:  
CSRC  
TX9  
TXEN  
SYNC  
SENDB  
BRGH  
TRMT  
TX9D  
x= unknown, – = unimplemented read as ‘0’. Shaded cells are not used for Synchronous Slave Reception.  
DS41262D-page 174  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
FIGURE 13-1:  
SSP BLOCK DIAGRAM  
(SPI MODE)  
13.0 SSP MODULE OVERVIEW  
The Synchronous Serial Port (SSP) module is a serial  
interface used to communicate with other peripheral or  
microcontroller devices. These peripheral devices  
may be serial EEPROMs, shift registers, display  
drivers, A/D converters, etc. The SSP module can  
operate in one of two modes:  
Internal  
Data Bus  
Read  
Write  
SSPBUF Reg  
• Serial Peripheral Interface (SPI)  
• Inter-Integrated Circuit (I2C)  
Refer to Application Note AN578, “Use of the SSP  
Module in the Multi-Master Environment” (DS00578).  
SSPSR Reg  
SDI/SDA  
SDO  
Shift  
Clock  
bit 0  
13.1 SPI Mode  
Peripheral OE  
This section contains register definitions and operational  
characteristics of the SPI module.  
Control  
Enable  
SS  
The SPI mode allows 8 bits of data to be synchronously  
transmitted and received simultaneously. To accomplish  
communication, typically three pins are used:  
SS  
Edge  
Select  
• Serial Data Out (SDO)  
• Serial Data In (SDI)  
• Serial Clock (SCK)  
2
Clock Select  
Additionally, a fourth pin may be used when in a Slave  
mode of operation:  
SSPM<3:0>  
4
TMR2 Output  
2
• Slave Select (SS)  
Edge  
Note 1: When the SPI is in Slave mode with SS  
pin control enabled (SSPM<3:0> bits of  
the SSPCON register = 0100), the SPI  
module will reset if the SS pin is set to  
VDD.  
Select  
TCY  
Prescaler  
4, 16, 64  
SCK/  
SCL  
TRISB<6>  
2: If the SPI is used in Slave mode with  
CKE = 1, then the SS pin control must be  
enabled.  
3: When the SPI is in Slave mode with SS  
pin control enabled (SSPM<3:0> bits of  
the SSPCON register = 0100), the state  
of the SS pin can affect the state read  
back from the TRISC<4> bit. The  
peripheral OE signal from the SSP  
module into PORTC controls the state that  
is read back from the TRISC<4> bit (see  
Section 17.0  
“Electrical  
Specifications” for information on  
PORTC). If read-write-modify instructions,  
such as BSF, are performed on the  
TRISC register while the SS pin is high,  
this will cause the TRISC<7> bit to be set,  
thus disabling the SDO output.  
© 2007 Microchip Technology Inc.  
DS41262D-page 175  
PIC16F631/677/685/687/689/690  
REGISTER 13-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER(1)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
SMP: SPI Data Input Sample Phase bit  
SPI Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time (Microwire)  
SPI Slave mode:  
SMP must be cleared when SPI is used in Slave mode  
2
I C™ mode:  
This bit must be maintained clear  
bit 6  
CKE: SPI Clock Edge Select bit  
SPI mode, CKP = 0:  
1= Data transmitted on rising edge of SCK (Microwire alternate)  
0= Data transmitted on falling edge of SCK  
SPI mode, CKP = 1:  
1= Data transmitted on falling edge of SCK (Microwire default)  
0= Data transmitted on rising edge of SCK  
2
I C mode:  
This bit must be maintained clear  
2
bit 5  
bit 4  
D/A: DATA/ADDRESS bit (I C mode only)  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
2
P: Stop bit (I C mode only)  
This bit is cleared when the SSP module is disabled, or when the Start bit is detected last.  
SSPEN is cleared.  
1= Indicates that a Stop bit has been detected last (this bit is ‘0’ on Reset)  
0= Stop bit was not detected last  
2
bit 3  
bit 2  
S: Start bit (I C mode only)  
This bit is cleared when the SSP module is disabled, or when the Stop bit is detected last.  
SSPEN is cleared.  
1= Indicates that a Start bit has been detected last (this bit is ‘0’ on Reset)  
0= Start bit was not detected last  
2
R/W: READ/WRITE bit Information (I C mode only)  
This bit holds the R/W bit information following the last address match. This bit is only valid from the address match  
to the next Start bit, Stop bit or ACK bit.  
1= Read  
0= Write  
2
bit 1  
bit 0  
UA: Update Address bit (10-bit I C mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
2
Receive (SPI and I C modes):  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
2
Transmit (I C mode only):  
1= Transmit in progress, SSPBUF is full  
0= Transmit complete, SSPBUF is empty  
Note 1: PIC16F687/PIC16F689/PIC16F690 only.  
DS41262D-page 176  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
REGISTER 13-2: SSPCON: SYNC SERIAL PORT CONTROL REGISTER(1)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
(2)  
(2)  
(2)  
(2)  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
WCOL: Write Collision Detect bit  
1= The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software)  
0= No collision  
SSPOV: Receive Overflow Indicator bit  
In SPI mode:  
1= A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the  
data in SSPSR is lost. Overflow can only occur in Slave mode. The user must read the SSPBUF, even if only  
transmitting data, to avoid setting overflow. In Master mode, the overflow bit is not set since each new recep-  
tion (and transmission) is initiated by writing to the SSPBUF register.  
0= No overflow  
2
In I C™ mode:  
1= A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a “don’t care” in  
Transmit mode. SSPOV must be cleared in software in either mode.  
0= No overflow  
bit 5  
SSPEN: Synchronous Serial Port Enable bit  
In SPI mode:  
1= Enables serial port and configures SCK, SDO and SDI as serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
2
In I C mode:  
1= Enables the serial port and configures the SDA and SCL pins as serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
In both modes, when enabled, these pins must be properly configured as input or output.  
bit 4  
CKP: Clock Polarity Select bit  
In SPI mode:  
1= Idle state for clock is a high level (Microwire default)  
0= Idle state for clock is a low level (Microwire alternate)  
2
In I C mode:  
SCK release control  
1= Enable clock  
0= Holds clock low (clock stretch). (Used to ensure data setup time.)  
bit 3-0  
SSPM<3:0>: Synchronous Serial Port Mode Select bits  
0000= SPI Master mode, clock = FOSC/4  
0001= SPI Master mode, clock = FOSC/16  
0010= SPI Master mode, clock = FOSC/64  
0011= SPI Master mode, clock = TMR2 output/2  
0100= SPI Slave mode, clock = SCK pin. SS pin control enabled.  
0101= SPI Slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin.  
2
0110= I C Slave mode, 7-bit address  
2
0111= I C Slave mode, 10-bit address  
1000= Reserved  
1001= Load SSPMSK register at SSPADD SFR address  
(2)  
1010= Reserved  
2
1011= I C Firmware Controlled Master mode (slave IDLE)  
1100= Reserved  
1101= Reserved  
2
1110= I C Slave mode, 7-bit address with Start and Stop bit interrupts enabled  
2
1111= I C Slave mode, 10-bit address with Start and Stop bit interrupts enabled  
Note 1: PIC16F687/PIC16F689/PIC16F690 only.  
2: When this mode is selected, any reads or writes to the SSPADD SFR address actually accesses the SSPMSK register.  
© 2007 Microchip Technology Inc.  
DS41262D-page 177  
PIC16F631/677/685/687/689/690  
When the application software is expecting to receive  
13.2 Operation  
valid data, the SSPBUF should be read before the next  
byte of data to transfer is written to the SSPBUF. Buffer  
Full bit BF of the SSPSTAT register indicates when  
SSPBUF has been loaded with the received data  
(transmission is complete). When the SSPBUF is read,  
the BF bit is cleared. This data may be irrelevant if the  
SPI is only a transmitter. Generally, the SSP interrupt is  
used to determine when the transmission/reception  
has completed. The SSPBUF must be read and/or  
written. If the interrupt method is not going to be used,  
then software polling can be done to ensure that a write  
collision does not occur. Example 13-1 shows the  
loading of the SSPBUF (SSPSR) for data transmission.  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits (SSPCON<5:0> and SSPSTAT<7:6>).  
These control bits allow the following to be specified:  
• Master mode (SCK is the clock output)  
• Slave mode (SCK is the clock input)  
• Clock Polarity (Idle state of SCK)  
• Data Input Sample Phase (middle or end of data  
output time)  
• Clock Edge (output data on rising/falling edge of  
SCK)  
• Clock Rate (Master mode only)  
The SSPSR is not directly readable or writable and can  
only be accessed by addressing the SSPBUF register.  
Additionally, the SSP Status register (SSPSTAT)  
indicates the various status conditions.  
• Slave Select mode (Slave mode only)  
The SSP consists of a transmit/receive shift register  
(SSPSR) and a buffer register (SSPBUF). The SSPSR  
shifts the data in and out of the device, MSb first. The  
SSPBUF holds the data that was written to the SSPSR  
until the received data is ready. Once the eight bits of  
data have been received, that byte is moved to the  
SSPBUF register. Then, the Buffer Full Status bit BF of  
the SSPSTAT register, and the interrupt flag bit SSPIF,  
are set. This double-buffering of the received data  
(SSPBUF) allows the next byte to start reception before  
reading the data that was just received. Any write to the  
SSPBUF register during transmission/reception of data  
will be ignored and the Write Collision Detect bit,  
WCOL of the SSPCON register, will be set. User  
software must clear the WCOL bit so that it can be  
determined if the following write(s) to the SSPBUF  
register completed successfully.  
EXAMPLE 13-1:  
LOADING THE SSPBUF (SSPSR) REGISTER  
BSF  
BCF  
STATUS,RP0  
STATUS,RP1  
;Bank 1  
;
LOOP  
BTFSS SSPSTAT, BF  
;Has data been received(transmit complete)?  
;No  
;Bank 0  
;WREG reg = contents of SSPBUF  
;Save in user RAM, if data is meaningful  
;W reg = contents of TXDATA  
;New data to xmit  
GOTO  
BCF  
MOVF  
MOVWF  
MOVF  
MOVWF  
LOOP  
STATUS,RP0  
SSPBUF, W  
RXDATA  
TXDATA, W  
SSPBUF  
DS41262D-page 178  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
13.3 Enabling SPI I/O  
13.4 Typical Connection  
To enable the serial port, SSP Enable bit SSPEN of the  
SSPCON register must be set. To reset or reconfigure  
SPI mode, clear the SSPEN bit, re-initialize the  
SSPCON registers and then set the SSPEN bit. This  
configures the SDI, SDO, SCK and SS pins as serial  
port pins. For the pins to behave as the serial port  
function, some must have their data direction bits (in  
the TRISB and TRISC registers) appropriately  
programmed. That is:  
Figure 13-2 shows a typical connection between two  
microcontrollers. The master controller (Processor 1)  
initiates the data transfer by sending the SCK signal.  
Data is shifted out of both shift registers on their  
programmed clock edge and latched on the opposite  
edge of the clock. Both processors should be  
programmed to the same Clock Polarity (CKP), then  
both controllers would send and receive data at the  
same time. Whether the data is meaningful (or dummy  
data) depends on the application software. This leads  
to three scenarios for data transmission:  
• SDI is automatically controlled by the SPI module  
• SDO must have TRISC<7> bit cleared  
• Master sends data – Slave sends dummy data  
• Master sends data – Slave sends data  
• SCK (Master mode) must have TRISB<6> bit  
cleared  
• Master sends dummy data – Slave sends data  
• SCK (Slave mode) must have TRISB<6> bit set  
• SS must have TRISC<6> bit set  
Any serial port function that is not desired may be  
overridden by programming the corresponding data  
direction (TRISB and TRISC) registers to the opposite  
value.  
FIGURE 13-2:  
SPI MASTER/SLAVE CONNECTION  
SPI Master SSPM<3:0> = 00xxb  
SPI Slave SSPM<3:0> = 010xb  
SDI  
SDO  
Serial Input Buffer  
(SSPBUF)  
Serial Input Buffer  
(SSPBUF)  
SDI  
SDO  
Shift Register  
(SSPSR)  
Shift Register  
(SSPSR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCK  
SCK  
Processor 1  
Processor 2  
© 2007 Microchip Technology Inc.  
DS41262D-page 179  
PIC16F631/677/685/687/689/690  
The clock polarity is selected by appropriately  
13.5 Master Mode  
programming the CKP bit of the SSPCON register. This  
then, would give waveforms for SPI communication as  
shown in Figure 13-3, Figure 13-5 and Figure 13-6,  
where the MSB is transmitted first. In Master mode, the  
SPI clock rate (bit rate) is user programmable to be one  
of the following:  
The master can initiate the data transfer at any time  
because it controls the SCK. The master determines  
when the slave (Processor 2, Figure 13-2) is to  
broadcast data by the software protocol.  
In Master mode, the data is transmitted/received as  
soon as the SSPBUF register is written to. If the SPI is  
only going to receive, the SDO output could be  
disabled (programmed as an input). The SSPSR  
register will continue to shift in the signal present on the  
SDI pin at the programmed clock rate. As each byte is  
received, it will be loaded into the SSPBUF register as  
if a normal received byte (interrupts and Status bits  
appropriately set). This could be useful in receiver  
applications as a Line Activity Monitor mode.  
• FOSC/4 (or TCY)  
• FOSC/16 (or 4 • TCY)  
• FOSC/64 (or 16 • TCY)  
• Timer2 output/2 (PIC16F685/PIC16F690 only)  
This allows a maximum data rate (at 40 MHz) of  
10 Mbps.  
Figure 13-3 shows the waveforms for Master mode.  
When the CKE bit is set, the SDO data is valid before  
there is a clock edge on SCK. The change of the input  
sample is shown based on the state of the SMP bit. The  
time when the SSPBUF is loaded with the received  
data is shown.  
FIGURE 13-3:  
SPI MODE WAVEFORM (MASTER MODE)  
Write to  
SSPBUF  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
4 Clock  
Modes  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
SDO  
(CKE = 0)  
bit 6  
bit 6  
bit 2  
bit 2  
bit 5  
bit 5  
bit 4  
bit 4  
bit 1  
bit 1  
bit 0  
bit 0  
bit 7  
bit 7  
bit 3  
bit 3  
SDO  
(CKE = 1)  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SDI  
(SMP = 1)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 1)  
SSPIF  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
DS41262D-page 180  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
even if in the middle of a transmitted byte, and becomes  
a floating output. External pull-up/pull-down resistors  
may be desirable, depending on the application.  
13.6 Slave Mode  
In Slave mode, the data is transmitted and received as  
the external clock pulses appear on SCK. When the  
last bit is latched, the SSPIF interrupt flag bit is set.  
Note 1: When the SPI is in Slave mode with SS  
pin control enabled (SSPCON<3:0> =  
0100), the SPI module will reset if the SS  
pin is set to VDD.  
While in Slave mode, the external clock is supplied by  
the external clock source on the SCK pin. This external  
clock must meet the minimum high and low times as  
specified in the electrical specifications.  
2: If the SPI is used in Slave Mode with CKE  
set, then the SS pin control must be  
enabled.  
While in Sleep mode, the slave can transmit/receive  
data. When a byte is received, the device will wake-up  
from Sleep.  
When the SPI module resets, the bit counter is forced  
to ‘0’. This can be done by either forcing the SS pin to  
a high level or clearing the SSPEN bit.  
13.7 Slave Select Synchronization  
To emulate two-wire communication, the SDO pin can  
be connected to the SDI pin. When the SPI needs to  
operate as a receiver, the SDO pin can be configured  
as an input. This disables transmissions from the SDO.  
The SDI can always be left as an input (SDI function)  
since it cannot create a bus conflict.  
The SS pin allows a Synchronous Slave mode. The SPI  
must be in Slave mode with SS pin control enabled  
(SSPCON<3:0> = 04h). The pin must not be driven low  
for the SS pin to function as an input. The data latch  
must be high. When the SS pin is low, transmission and  
reception are enabled and the SDO pin is driven. When  
the SS pin goes high, the SDO pin is no longer driven,  
FIGURE 13-4:  
SLAVE SYNCHRONIZATION WAVEFORM  
SS  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit 6  
bit 7  
bit 7  
bit 0  
SDO  
bit 7  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
© 2007 Microchip Technology Inc.  
DS41262D-page 181  
PIC16F631/677/685/687/689/690  
FIGURE 13-5:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)  
SS  
Optional  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit 6  
bit 2  
bit 5  
bit 4  
bit 1  
bit 0  
SDO  
bit 7  
bit 3  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
FIGURE 13-6:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)  
SS  
Not Optional  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
Write to  
SSPBUF  
bit 6  
bit 2  
bit 5  
bit 4  
bit 1  
bit 0  
SDO  
bit 7  
bit 3  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
DS41262D-page 182  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
13.8 Sleep Operation  
13.10 Bus Mode Compatibility  
In Master mode, all module clocks are halted and the  
transmission/reception will remain in that state until the  
device wakes from Sleep. After the device returns to  
Normal mode, the module will continue to transmit/  
receive data.  
Table 13-1 shows the compatibility between the  
standard SPI modes and the states of the CKP and  
CKE control bits.  
TABLE 13-1: SPI BUS MODES  
In Slave mode, the SPI Transmit/Receive Shift register  
operates asynchronously to the device. This allows the  
device to be placed in Sleep mode and data to be  
shifted into the SPI Transmit/Receive Shift register.  
When all 8 bits have been received, the SSP interrupt  
flag bit will be set and if enabled, will wake the device  
from Sleep.  
Control Bits State  
Standard SPI Mode  
Terminology  
CKP  
CKE  
0, 0  
0, 1  
1, 0  
1, 1  
0
0
1
1
1
0
1
0
13.9 Effects of a Reset  
There is also a SMP bit which controls when the data is  
sampled.  
A Reset disables the SSP module and terminates the  
current transfer.  
TABLE 13-2: REGISTERS ASSOCIATED WITH SPI OPERATION(1)  
Value on  
POR,  
BOR  
Value on  
all other  
Resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh/8Bh/  
10Bh/18Bh  
INTCON  
PIR1  
GIE  
PEIE  
ADIF  
T0IE  
INTE  
TXIF  
RABIE  
T0IF  
INTF  
RABIF 0000 000x 0000 000x  
0Ch  
RCIF  
SSPIF CCP1IF TMR2IF TMR1IF -000 0000 -000 0000  
xxxx xxxx uuuu uuuu  
SSPM3 SSPM2 SSPM1 SSPM0 0000 0000 0000 0000  
13h  
SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register  
SSPCON WCOL SSPOV SSPEN CKP  
TRISB7 TRISB6 TRISB5 TRISB4  
TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111  
14h  
1111 ----  
1111 ----  
1111 1111  
86h/186h  
87h/187h  
8Ch  
TRISB  
TRISC  
PIE1  
ADIE  
CKE  
RCIE  
D/A  
TXIE  
P
SSPIE CCP1IE TMR2IE TMR1IE -000 0000 -000 0000  
94h  
SSPSTAT  
SMP  
S
R/W  
UA  
BF  
0000 0000 0000 0000  
Legend:  
x= unknown, u= unchanged, – = unimplemented, read as ‘0’. Shaded cells are not used by the SSP in SPI mode.  
Note 1: PIC16F687/PIC16F689/PIC16F690 only.  
© 2007 Microchip Technology Inc.  
DS41262D-page 183  
PIC16F631/677/685/687/689/690  
The SSPCON register allows control of the I2C  
2
13.11 SSP I C Operation  
operation. Four mode selection bits (SSPCON<3:0>)  
The SSP module in I2C mode, fully implements all slave  
functions, except general call support, and provides  
interrupts on Start and Stop bits in hardware to facilitate  
firmware implementations of the master functions. The  
SSP module implements the Standard mode  
specifications, as well as 7-bit and 10-bit addressing.  
allow one of the following I2C modes to be selected:  
• I2C Slave mode (7-bit address)  
• I2C Slave mode (10-bit address)  
• I2C Slave mode (7-bit address), with Start and  
Stop bit interrupts enabled to support Firmware  
Master mode  
• I2C Slave mode (10-bit address), with Start and  
Stop bit interrupts enabled to support Firmware  
Master mode  
• I2C Start and Stop bit interrupts enabled to  
support Firmware Master mode; Slave is idle  
Two pins are used for data transfer. These are the RB6/  
SCK/SCL pin, which is the clock (SCL), and the RB4/  
AN10/SDI/SDA pin, which is the data (SDA).  
The SSP module functions are enabled by setting SSP  
enable bit SSPEN (SSPCON<5>).  
Selection of any I2C mode with the SSPEN bit set  
forces the SCL and SDA pins to be open drain,  
provided these pins are programmed to inputs by  
setting the appropriate TRISB bits. Pull-up resistors  
must be provided externally to the SCL and SDA pins  
for proper operation of the I2C module.  
FIGURE 13-7:  
SSP BLOCK DIAGRAM  
(I2C™ MODE)  
Internal  
Data Bus  
Read  
Write  
RB6/  
SCK/  
SCL  
13.12 Slave Mode  
SSPBUF Reg  
In Slave mode, the SCL and SDA pins must be  
configured as inputs (TRISB<6,4> are set). The SSP  
module will override the input state with the output data  
when required (slave-transmitter).  
Shift  
Clock  
SSPSR Reg  
RB4/  
AN10/  
SDI/SDA  
MSb  
LSb  
When an address is matched, or the data transfer after  
an address match is received, the hardware  
automatically will generate the Acknowledge (ACK)  
pulse, and then load the SSPBUF register with the  
received value currently in the SSPSR register.  
Addr Match  
Match Detect  
SSPMSK Reg  
SSPADD Reg  
There are certain conditions that will cause the SSP  
module not to give this ACK pulse. They include (either  
or both):  
a) The Buffer Full bit BF of the SSPSTAT register  
was set before the transfer was received.  
Set, Reset  
S, P bits  
(SSPSTAT Reg)  
Start and  
Stop bit Detect  
b) The overflow bit SSPOV of the SSPCON  
register was set before the transfer was  
received.  
In this case, the SSPSR register value is not loaded  
into the SSPBUF, but bit SSPIF of the PIR1 register is  
set. Table 13-3 shows the results of when a data  
transfer byte is received, given the status of bits BF and  
SSPOV. The shaded cells show the condition where  
user software did not properly clear the overflow  
condition. Flag bit BF is cleared by reading the  
SSPBUF register, while bit SSPOV is cleared through  
software.  
The SSP module has six registers for the I2C operation,  
which are listed below.  
• SSP Control register (SSPCON)  
• SSP Status register (SSPSTAT)  
• Serial Receive/Transmit Buffer (SSPBUF)  
• SSP Shift register (SSPSR) – Not directly  
accessible  
• SSP Address register (SSPADD)  
• SSP Mask register (SSPMSK)  
The SCL clock input must have a minimum high and low  
for proper operation. For high and low times of the I2C  
specification, as well as the requirements of the SSP  
module, see Section 17.0 “Electrical Specifications”.  
DS41262D-page 184  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
The sequence of events for 10-bit address is as  
follows, with steps 7-9 for slave-transmitter:  
13.12.1 ADDRESSING  
Once the SSP module has been enabled, it waits for a  
Start condition to occur. Following the Start condition,  
the 8-bits are shifted into the SSPSR register. All  
incoming bits are sampled with the rising edge of the  
clock (SCL) line. The value of register SSPSR<7:1> is  
compared to the value of the SSPADD register. The  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match, and the BF  
and SSPOV bits are clear, the following events occur:  
1. Receive first (high) byte of address (bits SSPIF,  
BF and bit UA (SSPSTAT<1>) are set).  
2. Update the SSPADD register with second (low)  
byte of address (clears bit UA and releases the  
SCL line).  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
4. Receive second (low) byte of address (bits  
SSPIF, BF and UA are set).  
a) The SSPSR register value is loaded into the  
SSPBUF register.  
5. Update the SSPADD register with the first (high)  
byte of address; if match releases SCL line, this  
will clear bit UA.  
b) The buffer full bit, BF is set.  
c) An ACK pulse is generated.  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
d) SSP interrupt flag bit, SSPIF of the PIR1 register  
is set (interrupt is generated if enabled) on the  
falling edge of the ninth SCL pulse.  
7. Receive repeated Start condition.  
8. Receive first (high) byte of address (bits SSPIF  
and BF are set).  
In 10-bit Address mode, two address bytes need to be  
received by the slave (Figure 13-8). The five Most  
Significant bits (MSbs) of the first address byte specify  
if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must  
specify a write so the slave device will receive the  
second address byte. For a 10-bit address, the first  
byte would equal ‘1111 0 A9 A8 0’, where A9and  
A8are the two MSbs of the address.  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
TABLE 13-3: DATA TRANSFER RECEIVED BYTE ACTIONS  
Status Bits as Data  
Set bit SSPIF  
(SSP Interrupt occurs  
if enabled)  
Generate ACK  
Transfer is Received  
SSPSR SSPBUF  
Pulse  
BF  
SSPOV  
0
0
0
1
1
Yes  
No  
No  
No  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
1
1
0
Note:  
Shaded cells show the conditions where the user software did not properly clear the overflow condition.  
© 2007 Microchip Technology Inc.  
DS41262D-page 185  
PIC16F631/677/685/687/689/690  
13.12.2 RECEPTION  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT  
register is cleared. The received address is loaded into  
the SSPBUF register.  
When the address byte overflow condition exists, then  
no Acknowledge (ACK) pulse is given. An overflow  
condition is defined as either bit BF of the SSPSTAT  
register is set, or bit SSPOV of the SSPCON register is  
set. This is an error condition due to the user’s firm-  
ware.  
An SSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF of the PIR1 register must be  
cleared in software. The SSPSTAT register is used to  
determine the status of the byte.  
FIGURE 13-8:  
I2C™ WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)  
R/W = 0  
Receiving Address  
A7 A6 A5 A4 A3 A2  
Receiving Data  
Receiving Data  
ACK  
ACK  
9
ACK  
9
SDA  
SCL  
A1  
7
D2 D1 D0  
D4  
D3  
D7 D6 D5 D4 D3 D2 D1 D0  
D7  
1
D6 D5  
1
2
3
4
5
6
8
9
1
2
3
4
5
6
8
2
3
4
5
6
7
8
7
P
S
SSPIF (PIR1<3>)  
Cleared in software  
Bus Master  
terminates  
transfer  
BF (SSPSTAT<0>)  
SSPBUF register is read  
SSPOV (SSPCON<6>)  
Bit SSPOV is set because the SSPBUF register is still full.  
ACK is not sent.  
DS41262D-page 186  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
This register must be initiated prior to setting  
SSPM<3:0> bits to select the I2C Slave mode (7-bit or  
10-bit address).  
13.12.3 SSP MASK REGISTER  
An SSP Mask (SSPMSK) register is available in I2C  
Slave mode as a mask for the value held in the  
SSPSR register during an address comparison  
operation. A zero (‘0’) bit in the SSPMSK register has  
the effect of making the corresponding bit in the  
SSPSR register a ‘don’t care’.  
This register can only be accessed when the appropriate  
mode is selected by bits (SSPM<3:0> of SSPCON).  
The SSP Mask register is active during:  
• 7-bit Address mode: address compare of A<7:1>.  
This register is reset to all ‘1’s upon any Reset  
condition and, therefore, has no effect on standard  
SSP operation until written with a mask value.  
• 10-bit Address mode: address compare of A<7:0>  
only. The SSP mask has no effect during the  
reception of the first (high) byte of the address.  
REGISTER 13-3: SSPMSK: SSP MASK REGISTER(1)  
R/W-1  
MSK7  
R/W-1  
MSK6  
R/W-1  
MSK5  
R/W-1  
MSK4  
R/W-1  
MSK3  
R/W-1  
MSK2  
R/W-1  
MSK1  
R/W-1  
MSK0(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-1  
bit 0  
MSK<7:1>: Mask bits  
1= The received address bit n is compared to SSPADD<n> to detect I2C address match  
0= The received address bit n is not used to detect I2C address match  
MSK<0>: Mask bit for I2C Slave mode, 10-bit Address(2)  
I2C Slave mode, 10-bit Address (SSPM<3:0> = 0111):  
1= The received address bit 0 is compared to SSPADD<0> to detect I2C address match  
0= The received address bit 0 is not used to detect I2C address match  
Note 1: When SSPCON bits SSPM<3:0> = 1001, any reads or writes to the SSPADD SFR address are accessed  
through the SSPMSK register. The SSPEN bit of the SSPCON register should be zero when accessing  
the SSPMSK register.  
2: In all other SSP modes, this bit has no effect.  
© 2007 Microchip Technology Inc.  
DS41262D-page 187  
PIC16F631/677/685/687/689/690  
FIGURE 13-9:  
I2C™ SLAVE MODE TIMING (RECEPTION, 10-BIT ADDRESS)  
DS41262D-page 188  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
An SSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF must be cleared in software, and  
the SSPSTAT register is used to determine the status  
of the byte. Flag bit SSPIF is set on the falling edge of  
the ninth clock pulse.  
13.12.4 TRANSMISSION  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register. The ACK pulse will  
be sent on the ninth bit, and pin RB6/SCK/SCL is held  
low. The transmit data must be loaded into the  
SSPBUF register, which also loads the SSPSR  
register. Then, pin RB6/SCK/SCL should be enabled  
by setting bit CKP (SSPCON<4>). The master must  
monitor the SCL pin prior to asserting another clock  
pulse. The slave devices may be holding off the master  
by stretching the clock. The eight data bits are shifted  
out on the falling edge of the SCL input. This ensures  
that the SDA signal is valid during the SCL high time  
(Figure 13-10).  
As a slave-transmitter, the ACK pulse from the master  
receiver is latched on the rising edge of the ninth SCL  
input pulse. If the SDA line was high (not ACK), then  
the data transfer is complete. When the ACK is latched  
by the slave, the slave logic is reset (resets SSPSTAT  
register) and the slave then monitors for another  
occurrence of the Start bit. If the SDA line was low  
(ACK), the transmit data must be loaded into the  
SSPBUF register, which also loads the SSPSR  
register. Then pin RB6/SCK/SCL should be enabled by  
setting bit CKP.  
FIGURE 13-10:  
I2C™ WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)  
Receiving Address  
R/W = 1  
ACK  
Transmitting Data  
ACK  
9
SDA  
A7 A6 A5 A4 A3 A2 A1  
D7 D6 D5 D4 D3 D2 D1 D0  
SCL  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
S
P
SCL held low  
while CPU  
responds to SSPIF  
Data in  
sampled  
Cleared in software  
SSPIF (PIR1<3>)  
BF (SSPSTAT<0>)  
From SSP Interrupt  
Service Routine  
SSPBUF is written in software  
CKP (SSPCON<4>)  
Set bit after writing to SSPBUF  
(the SSPBUF must be written to  
before the CKP bit can be set)  
© 2007 Microchip Technology Inc.  
DS41262D-page 189  
PIC16F631/677/685/687/689/690  
2
FIGURE 13-11:  
I C™ SLAVE MODE TIMING (TRANSMISSION, 10-BIT ADDRESS)  
DS41262D-page 190  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
13.13 Master Mode  
13.14 Multi-Master Mode  
Master mode of operation is supported in firmware  
using interrupt generation on the detection of the Start  
and Stop conditions. The Stop (P) and Start (S) bits are  
cleared from a Reset or when the SSP module is  
disabled. The Stop (P) and Start (S) bits will toggle  
based on the Start and Stop conditions. Control of the  
I2C bus may be taken when the P bit is set or the bus  
is idle and both the S and P bits are clear.  
In Multi-Master mode, the interrupt generation on the  
detection of the Start and Stop conditions, allows the  
determination of when the bus is free. The Stop (P) and  
Start (S) bits are cleared from a Reset or when the SSP  
module is disabled. The Stop (P) and Start (S) bits will  
toggle based on the Start and Stop conditions. Control  
of the I2C bus may be taken when bit P (SSPSTAT<4>)  
is set, or the bus is idle and both the S and P bits clear.  
When the bus is busy, enabling the SSP Interrupt will  
generate the interrupt when the Stop condition occurs.  
In Master mode, the SCL and SDA lines are  
manipulated  
by  
clearing  
the  
corresponding  
TRISB<6,4> bit(s). The output level is always low,  
irrespective of the value(s) in PORTB<6,4>. So when  
transmitting data, a ‘1’ data bit must have the  
TRISB<4> bit set (input) and a ‘0’ data bit must have  
the TRISB<4> bit cleared (output). The same scenario  
is true for the SCL line with the TRISB<6> bit. Pull-up  
resistors must be provided externally to the SCL and  
SDA pins for proper operation of the I2C module.  
In Multi-Master operation, the SDA line must be  
monitored to see if the signal level is the expected  
output level. This check only needs to be done when a  
high level is output. If a high level is expected and a low  
level is present, the device needs to release the SDA  
and SCL lines (set TRISB<6,4>). There are two stages  
where this arbitration can be lost, these are:  
• Address Transfer  
• Data Transfer  
The following events will cause the SSP Interrupt Flag  
bit, SSPIF, to be set (SSP Interrupt will occur if  
enabled):  
When the slave logic is enabled, the slave continues to  
receive. If arbitration was lost during the address  
transfer stage, communication to the device may be in  
progress. If addressed, an ACK pulse will be generated.  
If arbitration was lost during the data transfer stage, the  
device will need to re-transfer the data at a later time.  
• Start condition  
• Stop condition  
• Data transfer byte transmitted/received  
Master mode of operation can be done with either the  
Slave mode idle (SSPM<3:0> = 1011), or with the  
Slave active. When both Master and Slave modes are  
enabled, the software needs to differentiate the  
source(s) of the interrupt.  
13.14.1 CLOCK SYNCHRONIZATION AND  
THE CKP BIT  
When the CKP bit is cleared, the SCL output is forced  
to ‘0’; however, setting the CKP bit will not assert the  
SCL output low until the SCL output is already sampled  
low. Therefore, the CKP bit will not assert the SCL line  
until an external I2C master device has already  
asserted the SCL line. The SCL output will remain low  
until the CKP bit is set and all other devices on the I2C  
bus have deasserted SCL. This ensures that a write to  
the CKP bit will not violate the minimum high time  
requirement for SCL (see Figure 13-12).  
© 2007 Microchip Technology Inc.  
DS41262D-page 191  
PIC16F631/677/685/687/689/690  
FIGURE 13-12:  
CLOCK SYNCHRONIZATION TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
SDA  
SCL  
DX  
DX-1  
Master device  
asserts clock  
CKP  
Master device  
deasserts clock  
WR  
SSPCON  
TABLE 13-4: REGISTERS ASSOCIATED WITH I2C™ OPERATION(1)  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh/8Bh/  
10Bh/18Bh  
INTCON  
GIE  
PEIE  
ADIF  
T0IE  
INTE  
TXIF  
RABIE  
SSPIF  
T0IF  
INTF  
RABIF  
0000 000x  
0000 000x  
0Ch  
13h  
14h  
86h  
PIR1  
RCIF  
CCP1IF  
TMR2IF  
TMR1IF -000 0000  
-000 0000  
uuuu uuuu  
0000 0000  
1111 ----  
SSPBUF  
SSPCON  
TRISB  
Synchronous Serial Port Receive Buffer/Transmit Register  
xxxx xxxx  
WCOL  
SSPOV  
TRISB6  
SSPEN  
TRISB5  
CKP  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
0000 0000  
1111 ----  
TRISB7  
TRISB4  
93h  
94h  
8Ch  
SSPMSK(2)  
SSPSTAT  
PIE1  
MSK7  
SMP(3)  
MSK6  
CKE(3)  
ADIE  
MSK5  
D/A  
MSK4  
P
MSK3  
S
MSK2  
R/W  
MSK1  
UA  
MSK0  
BF  
1111 1111  
0000 0000  
1111 1111  
0000 0000  
-000 0000  
RCIE  
TXIE  
SSPIE  
CCP1IE  
TMR2IF  
TMR1IF -000 0000  
Legend:  
Note 1:  
2:  
– = Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the SSP module.  
PIC16F687/PIC16F689/PIC16F690 only.  
SSPMSK register (Register 13-3) can be accessed by reading or writing to SSPADD register with bits SSPM<3:0> = 1001.  
See Registers 13-2 and 13-3 for more details.  
3:  
Maintain these bits clear.  
DS41262D-page 192  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
14.0 SPECIAL FEATURES OF THE  
CPU  
The PIC16F631/677/685/687/689/690 have a host of  
features intended to maximize system reliability,  
minimize cost through elimination of external compo-  
nents, provide power saving features and offer code  
protection.  
These features are:  
• Reset  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
• Watchdog Timer (WDT)  
• Oscillator selection  
• Sleep  
• Code protection  
• ID Locations  
• In-Circuit Serial Programming  
The PIC16F631/677/685/687/689/690 have two timers  
that offer necessary delays on power-up. One is the  
Oscillator Start-up Timer (OST), intended to keep the  
chip in Reset until the crystal oscillator is stable. The  
other is the Power-up Timer (PWRT), which provides a  
fixed delay of 64 ms (nominal) on power-up only,  
designed to keep the part in Reset while the power  
supply stabilizes. There is also circuitry to reset the  
device if a brown-out occurs, which can use the Power-  
up Timer to provide at least a 64 ms Reset. With these  
three functions-on-chip, most applications need no  
external Reset circuitry.  
The Sleep mode is designed to offer a very low-current  
Power-down mode. The user can wake-up from Sleep  
through:  
• External Reset  
• Watchdog Timer Wake-up  
• An interrupt  
Several oscillator options are also made available to  
allow the part to fit the application. The INTOSC option  
saves system cost while the LP crystal option saves  
power. A set of Configuration bits are used to select  
various options (see Register 14-2).  
© 2007 Microchip Technology Inc.  
DS41262D-page 193  
PIC16F631/677/685/687/689/690  
14.1 Configuration Bits  
The Configuration bits can be programmed (read as  
0’), or left unprogrammed (read as ‘1’) to select various  
device configurations as shown in Register 14-2.  
These bits are mapped in program memory location  
2007h.  
Note:  
Address 2007h is beyond the user program  
memory space. It belongs to the special  
configuration memory space (2000h-  
3FFFh), which can be accessed only during  
programming. See “PIC12F6XX/16F6XX  
Memory  
Programming  
Specification”  
(DS41204) for more information.  
DS41262D-page 194  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
REGISTER 14-1: CONFIG: CONFIGURATION WORD REGISTER  
Reserved  
bit 13  
Reserved  
FCMEN  
PWRTE  
IESO  
BOREN1(1)  
BOREN0(1)  
CPD(2  
bit 7  
CP(3)  
MCLRE(4)  
WDTE  
FOSC2  
FOSC1  
FOSC0  
bit 0  
bit 6  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
P = Programmable’  
‘0’ = Bit is cleared  
U = Unimplemented  
bit, read as ‘0’  
-n = Value at POR  
x = Bit is unknown  
bit 13-12  
bit 11  
Reserved: Reserved bits. Do Not Use.  
FCMEN: Fail-Safe Clock Monitor Enabled bit  
1= Fail-Safe Clock Monitor is enabled  
0= Fail-Safe Clock Monitor is disabled  
bit 10  
IESO: Internal External Switchover bit  
1= Internal External Switchover mode is enabled  
0= Internal External Switchover mode is disabled  
bit 9-8  
BOREN<1:0>: Brown-out Reset Selection bits(1)  
11= BOR enabled  
10= BOR enabled during operation and disabled in Sleep  
01= BOR controlled by SBOREN bit of the PCON register  
00= BOR disabled  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
CPD: Data Code Protection bit(2)  
1= Data memory code protection is disabled  
0= Data memory code protection is enabled  
CP: Code Protection bit(2)  
1= Program memory code protection is disabled  
0= Program memory code protection is enabled  
MCLRE: MCLR Pin Function Select bit(3)  
1= MCLR pin function is MCLR  
0= MCLR pin function is digital input, MCLR internally tied to VDD  
PWRTE: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
WDTE: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled  
FOSC<2:0>: Oscillator Selection bits  
111=  
110=  
101=  
RC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN  
RCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN  
INTOSC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, I/O function on  
RA5/OSC1/CLKIN  
100=  
INTOSCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on  
RA5/OSC1/CLKIN  
011=  
010=  
001=  
000=  
EC: I/O function on RA4/OSC2/CLKOUT pin, CLKIN on RA5/OSC1/CLKIN  
HS oscillator: High-speed crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN  
XT oscillator: Crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN  
LP oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN  
Note 1:  
Enabling Brown-out Reset does not automatically enable Power-up Timer.  
The entire data EEPROM will be erased when the code protection is turned off.  
The entire program memory will be erased when the code protection is turned off.  
When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled.  
2:  
3:  
4:  
© 2007 Microchip Technology Inc.  
DS41262D-page 195  
PIC16F631/677/685/687/689/690  
They are not affected by a WDT Wake-up since this is  
14.2 Reset  
viewed as the resumption of normal operation. TO and  
PD bits are set or cleared differently in different Reset  
situations, as indicated in Table 14-2. These bits are  
used in software to determine the nature of the Reset.  
See Table 14-4 for a full description of Reset states of  
all registers.  
The PIC16F631/677/685/687/689/690 differentiates  
between various kinds of Reset:  
a) Power-on Reset (POR)  
b) WDT Reset during normal operation  
c) WDT Reset during Sleep  
A simplified block diagram of the On-Chip Reset Circuit  
is shown in Figure 14-1.  
d) MCLR Reset during normal operation  
e) MCLR Reset during Sleep  
f) Brown-out Reset (BOR)  
The MCLR Reset path has a noise filter to detect and  
ignore small pulses. See Section 17.0 “Electrical  
Specifications” for pulse-width specifications.  
Some registers are not affected in any Reset condition;  
their status is unknown on POR and unchanged in any  
other Reset. Most other registers are reset to a “Reset  
state” on:  
• Power-on Reset  
• MCLR Reset  
• MCLR Reset during Sleep  
• WDT Reset  
• Brown-out Reset (BOR)  
FIGURE 14-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
Reset  
MCLR/VPP pin  
Sleep  
WDT  
WDT  
Module  
Time-out  
Reset  
VDD Rise  
Detect  
Power-on Reset  
VDD  
Brown-out(1)  
Reset  
BOREN  
SBOREN  
S
OST/PWRT  
OST  
10-bit Ripple Counter  
Chip_Reset  
R
Q
OSC1/  
CLKI pin  
PWRT  
11-bit Ripple Counter  
LFINTOSC  
Enable PWRT  
Enable OST  
Note 1: Refer to the Configuration Word register (Register 14-1).  
DS41262D-page 196  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
14.2.1  
POWER-ON RESET (POR)  
FIGURE 14-2:  
RECOMMENDED MCLR  
CIRCUIT  
The on-chip POR circuit holds the chip in Reset until VDD  
has reached a high enough level for proper operation. A  
maximum rise time for VDD is required. See  
Section 17.0 “Electrical Specifications” for details. If  
the BOR is enabled, the maximum rise time specification  
does not apply. The BOR circuitry will keep the device in  
Reset until VDD reaches VBOR (see Section 14.2.4  
“Brown-out Reset (BOR)”).  
VDD  
R1  
PIC16F685  
1 kΩ (or greater)  
MCLR  
Note:  
The POR circuit does not produce an  
internal Reset when VDD declines. To  
re-enable the POR, VDD must reach Vss  
for a minimum of 100 μs.  
C1  
0.1 μF  
(optional, not critical)  
When the device starts normal operation (exits the  
Reset condition), device operating parameters (i.e.,  
voltage, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in Reset until the operating  
conditions are met.  
14.2.3  
POWER-UP TIMER (PWRT)  
The Power-up Timer provides a fixed 64 ms (nominal)  
time-out on power-up only, from POR or Brown-out  
Reset. The Power-up Timer operates from the 31 kHz  
LFINTOSC oscillator. For more information, see  
Section 3.5 “Internal Clock Modes”. The chip is kept  
in Reset as long as PWRT is active. The PWRT delay  
allows the VDD to rise to an acceptable level. A  
Configuration bit, PWRTE, can disable (if set) or enable  
(if cleared or programmed) the Power-up Timer. The  
Power-up Timer should be enabled when Brown-out  
Reset is enabled, although it is not required.  
For additional information, refer to Application Note  
AN607, “Power-up Trouble Shooting” (DS00607).  
14.2.2  
MCLR  
PIC16F631/677/685/687/689/690 has a noise filter in  
the MCLR Reset path. The filter will detect and ignore  
small pulses.  
It should be noted that a WDT Reset does not drive  
MCLR pin low.  
The Power-up Timer delay will vary from chip-to-chip  
and vary due to:  
The behavior of the ESD protection on the MCLR pin  
has been altered from early devices of this family.  
Voltages applied to the pin that exceed its specification  
can result in both MCLR Resets and excessive current  
beyond the device specification during the ESD event.  
For this reason, Microchip recommends that the MCLR  
pin no longer be tied directly to VDD. The use of an RC  
network, as shown in Figure 14-2, is suggested.  
• VDD variation  
Temperature variation  
• Process variation  
See DC parameters for details (Section 17.0 “Electrical  
Specifications”).  
An internal MCLR option is enabled by clearing the  
MCLRE bit in the Configuration Word register. When  
MCLRE = 0, the Reset signal to the chip is generated  
internally. When the MCLRE = 1, the RA3/MCLR pin  
becomes an external Reset input. In this mode, the  
RA3/MCLR pin has a weak pull-up to VDD.  
© 2007 Microchip Technology Inc.  
DS41262D-page 197  
PIC16F631/677/685/687/689/690  
On any Reset (Power-on, Brown-out Reset, Watchdog  
Timer, etc.), the chip will remain in Reset until VDD rises  
above VBOR (see Figure 14-3). The Power-up Timer  
will now be invoked, if enabled and will keep the chip in  
Reset an additional 64 ms.  
14.2.4  
BROWN-OUT RESET (BOR)  
The BOREN0 and BOREN1 bits in the Configuration  
Word register select one of four BOR modes. Two  
modes have been added to allow software or hardware  
control of the BOR enable. When BOREN<1:0> = 01,  
the SBOREN bit (PCON<4>) enables/disables the  
BOR allowing it to be controlled in software. By  
selecting BOREN<1:0>, the BOR is automatically  
disabled in Sleep to conserve power and enabled on  
wake-up. In this mode, the SBOREN bit is disabled.  
See Register 14-2 for the Configuration Word  
definition.  
Note:  
The Power-up Timer is enabled by the  
PWRTE bit in the Configuration Word  
register.  
If VDD drops below VBOR while the Power-up Timer is  
running, the chip will go back into a Brown-out Reset  
and the Power-up Timer will be re-initialized. Once VDD  
rises above VBOR, the Power-up Timer will execute a  
64 ms Reset.  
If VDD falls below VBOR for greater than parameter  
(TBOR) (see Section 17.0 “Electrical Specifications”),  
the Brown-out situation will reset the device. This will  
occur regardless of VDD slew rate. A Reset is not insured  
to occur if VDD falls below VBOR for less than parameter  
(TBOR).  
FIGURE 14-3:  
BROWN-OUT SITUATIONS  
VDD  
VBOR  
Internal  
Reset  
(1)  
64 ms  
VDD  
VBOR  
Internal  
Reset  
< 64 ms  
(1)  
64 ms  
VDD  
VBOR  
Internal  
Reset  
(1)  
64 ms  
Note 1: 64 ms delay only if PWRTE bit is programmed to ‘0’.  
DS41262D-page 198  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
14.2.5  
TIME-OUT SEQUENCE  
14.2.6  
POWER CONTROL (PCON)  
REGISTER  
On power-up, the time-out sequence is as follows: first,  
PWRT time-out is invoked after POR has expired, then  
OST is activated after the PWRT time-out has expired.  
The total time-out will vary based on oscillator  
configuration and PWRTE bit status. For example, in  
EC mode with PWRTE bit erased (PWRT disabled),  
there will be no time-out at all. Figures 14-4, 14-5  
and 14-6 depict time-out sequences. The device can  
execute code from the INTOSC while OST is active by  
enabling Two-Speed Start-up or Fail-Safe Monitor (see  
Section 3.7.2 “Two-speed Start-up Sequence” and  
Section 3.8 “Fail-Safe Clock Monitor”).  
The Power Control register PCON (address 8Eh) has  
two Status bits to indicate what type of Reset that last  
occurred.  
Bit 0 is BOR (Brown-out Reset). BOR is unknown on  
Power-on Reset. It must then be set by the user and  
checked on subsequent Resets to see if BOR = 0,  
indicating that a Brown-out has occurred. The BOR  
Status bit is a “don’t care” and is not necessarily  
predictable if the brown-out circuit is disabled  
(BOREN<1:0> = 00 in the Configuration Word  
register).  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire. Then,  
bringing MCLR high will begin execution immediately  
(see Figure 14-5). This is useful for testing purposes or  
to synchronize more than one PIC16F631/677/685/  
687/689/690 device operating in parallel.  
Bit 1 is POR (Power-on Reset). It is a ‘0’ on Power-on  
Reset and unaffected otherwise. The user must write a  
1’ to this bit following a Power-on Reset. On a  
subsequent Reset, if POR is ‘0’, it will indicate that a  
Power-on Reset has occurred (i.e., VDD may have  
gone too low).  
Table 14-5 shows the Reset conditions for some  
special registers, while Table 14-4 shows the Reset  
conditions for all the registers.  
For more information, see Section 4.2.4 “Ultra Low-  
Power Wake-up” and Section 14.2.4 “Brown-out  
Reset (BOR)”.  
TABLE 14-1: TIME-OUT IN VARIOUS SITUATIONS  
Power-up  
Brown-out Reset  
Wake-up from  
Oscillator Configuration  
Sleep  
PWRTE = 0  
PWRTE = 1  
PWRTE = 0  
PWRTE = 1  
XT, HS, LP  
TPWRT +  
1024 • TOSC  
TPWRT +  
1024 • TOSC  
1024 • TOSC  
1024 • TOSC  
1024 • TOSC  
LP, T1OSCIN = 1  
TPWRT  
TPWRT  
TPWRT  
TPWRT  
RC, EC, INTOSC  
TABLE 14-2: STATUS/PCON BITS AND THEIR SIGNIFICANCE  
POR  
BOR  
TO  
PD  
Condition  
0
u
u
u
u
u
x
0
u
u
u
u
1
1
0
0
u
1
1
1
u
0
u
0
Power-on Reset  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during Sleep  
Legend: u= unchanged, x= unknown  
TABLE 14-3: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PCON  
ULPWUE SBOREN  
RPO TO  
Z
POR  
DC  
BOR  
C
--01 --qq  
0001 1xxx  
--0u --uu  
000q quuu  
IRP  
RP1  
PD  
STATUS  
Legend:  
u= unchanged, x= unknown, – = unimplemented bit, reads as ‘0’, q= value depends on condition. Shaded cells are not used by BOR.  
Note 1:  
Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
© 2007 Microchip Technology Inc.  
DS41262D-page 199  
PIC16F631/677/685/687/689/690  
FIGURE 14-4:  
TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 1  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
FIGURE 14-5:  
TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 2  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
FIGURE 14-6:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR WITH VDD)  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
DS41262D-page 200  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
TABLE 14-4: INITIALIZATION CONDITION FOR REGISTER  
Wake-up from Sleep  
through Interrupt  
Wake-up from Sleep  
through WDT Time-out  
MCLR Reset  
WDT Reset  
Brown-out Reset  
Register  
Address  
Power-on Reset  
(1)  
W
xxxx xxxx  
xxxx xxxx  
uuuu uuuu  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
INDF  
00h/80h/  
100h/180h  
TMR0  
PCL  
01h/101h  
xxxx xxxx  
0000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
(3)  
02h/82h/  
PC + 1  
102h/182h  
(4)  
(4)  
STATUS  
FSR  
03h/83h/  
103h/183h  
0001 1xxx  
xxxx xxxx  
000q quuu  
uuuq quuu  
04h/84h/  
uuuu uuuu  
uuuu uuuu  
104h184h  
PORTA  
PORTB  
PORTC  
PCLATH  
05h/105h  
06h/106h  
07h/107h  
--xx xxxx  
xxxx ----  
xxxx xxxx  
---0 0000  
--uu uuuu  
uuuu ----  
uuuu uuuu  
---0 0000  
--uu uuuu  
uuuu ----  
uuuu uuuu  
---u uuuu  
0Ah/8Ah/  
10Ah/18Ah  
(2)  
INTCON  
0Bh/8Bh/  
0000 000x  
0000 000u  
uuuu uuuu  
10Bh/18Bh  
(2)  
PIR1  
0Ch  
0Dh  
0Eh  
-000 0000  
0000 ----  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
-000 0000  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 000x  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
0000 0000  
1111 1111  
--11 1111  
-000 0000  
0000 ----  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 0000  
-000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
0000 000x  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
0000 0000  
1111 1111  
--11 1111  
-uuu uuuu  
(2)  
PIR2  
uuuu ----  
TMR1L  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
TMR1H  
T1CON  
0Fh  
10h  
TMR2  
11h  
T2CON  
12h  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
13h  
14h  
15h  
16h  
17h  
18h  
TXREG  
RCREG  
PWM1CON  
ECCPAS  
ADRESH  
ADCON0  
OPTION_REG  
TRISA  
19h  
1Ah  
1Ch  
1Dh  
1Eh  
1Fh  
81h/181h  
85h/185h  
Legend: u= unchanged, x= unknown, = unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).  
4: See Table 14-5 for Reset value for specific condition.  
5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.  
6: Accessible only when SSPM<3:0> = 1001.  
© 2007 Microchip Technology Inc.  
DS41262D-page 201  
PIC16F631/677/685/687/689/690  
TABLE 14-4: INITIALIZATION CONDITION FOR REGISTER (CONTINUED)  
Wake-up from Sleep  
through Interrupt  
Wake-up from Sleep  
through WDT Time-out  
MCLR Reset  
WDT Reset (Continued)  
Brown-out Reset  
Register  
Address  
Power-on Reset  
(1)  
TRISB  
86h/186h  
87h/187h  
8Ch  
1111 ----  
1111 1111  
-000 0000  
0000 ----  
--01 --0x  
-110 q000  
---0 0000  
1111 1111  
0000 0000  
---- ----  
0000 0000  
--11 -111  
--00 0000  
---0 1000  
0000 0010  
0000 0000  
0000 0000  
01-0 0-00  
xxxx xxxx  
-000 ----  
0000 0000  
0000 0000  
--00 0000  
---- 0000  
1111 ----  
0000 ----  
0000 0000  
0000 -000  
0000 -000  
00-- --00  
1111 1111  
---- 1111  
x--- x000  
---- ----  
---0 0001  
0000 00--  
1111 ----  
1111 1111  
-000 0000  
0000 ----  
uuuu ----  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
--uu --uu  
-uuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uu-u u-uu  
uuuu uuuu  
-uuu ----  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
---- uuuu  
uuuu ----  
uuuu ----  
uuuu uuuu  
uuuu -uuu  
uuuu -uuu  
uu-- --uu  
uuuu uuuu  
---- uuuu  
---- uuuu  
---- ----  
---u uuuu  
uuuu uu--  
TRISC  
PIE1  
PIE2  
8Dh  
1, 5)  
PCON  
8Eh  
--0u --uq  
OSCCON  
OSCTUNE  
PR2  
8Fh  
-110 q000  
---u uuuu  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
--11 -111  
--00 0000  
---0 1000  
0000 0010  
0000 0000  
0000 0000  
01-0 0-00  
uuuu uuuu  
-000 ----  
0000 0000  
0000 0000  
--00 0000  
---- 0000  
1111 ----  
0000 ----  
0000 0000  
0000 -000  
0000 -000  
00-- --10  
1111 1111  
---- 1111  
u--- q000  
---- ----  
---0 0001  
0000 00--  
90h  
92h  
SSPADD  
93h  
(6)  
SSPMSK  
SSPSTAT  
WPUA  
93h  
94h  
95h  
IOCA  
96h  
WDTCON  
TXSTA  
97h  
98h  
SPBRG  
99h  
SPBRGH  
BAUDCTL  
ADRESL  
ADCON1  
EEDAT  
9Ah  
9Bh  
9Eh  
9Fh  
10Ch  
10Dh  
10Eh  
10Fh  
115h  
116h  
118h  
119h  
11Ah  
11Bh  
11Eh  
11Fh  
18Ch  
18Dh  
19Dh  
19EH  
EEADR  
EEDATH  
EEADRH  
WPUB  
IOCB  
VRCON  
CM1CON0  
CM2CON0  
CM2CON1  
ANSEL  
ANSELH  
EECON1  
EECON2  
PSTRCON  
SRCON  
Legend: u= unchanged, x= unknown, = unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).  
4: See Table 14-5 for Reset value for specific condition.  
5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.  
6: Accessible only when SSPM<3:0> = 1001.  
DS41262D-page 202  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
TABLE 14-5: INITIALIZATION CONDITION FOR SPECIAL REGISTERS  
Program Status  
PCON  
Register  
Condition  
Counter  
Register  
Power-on Reset  
000h  
000h  
0001 1xxx  
000u uuuu  
0001 0uuu  
0000 uuuu  
uuu0 0uuu  
0001 1uuu  
uuu1 0uuu  
--01 --0x  
--0u --uu  
--0u --uu  
--0u --uu  
--uu --uu  
--01 --u0  
--uu --uu  
MCLR Reset during normal operation  
MCLR Reset during Sleep  
WDT Reset  
000h  
000h  
WDT Wake-up  
PC + 1  
Brown-out Reset  
000h  
PC + 1(1)  
Interrupt Wake-up from Sleep  
Legend: u= unchanged, x= unknown, = unimplemented bit, reads as ‘0’.  
Note 1: When the wake-up is due to an interrupt and Global Interrupt Enable bit, GIE, is set, the PC is loaded with  
the interrupt vector (0004h) after execution of PC + 1.  
© 2007 Microchip Technology Inc.  
DS41262D-page 203  
PIC16F631/677/685/687/689/690  
When an interrupt is serviced:  
14.3 Interrupts  
• The GIE is cleared to disable any further interrupt.  
• The return address is pushed onto the stack.  
• The PC is loaded with 0004h.  
The PIC16F631/677/685/687/689/690 have multiple  
sources of interrupt:  
• External Interrupt RA2/INT  
For external interrupt events, such as the INT pin,  
PORTA/PORTB change interrupts, the interrupt  
latency will be three or four instruction cycles. The  
exact latency depends upon when the interrupt event  
occurs (see Figure 14-8). The latency is the same for  
one or two-cycle instructions. Once in the Interrupt  
Service Routine, the source(s) of the interrupt can be  
determined by polling the interrupt flag bits. The  
interrupt flag bit(s) must be cleared in software before  
re-enabling interrupts to avoid multiple interrupt  
requests.  
• TMR0 Overflow Interrupt  
• PORTA/PORTB Change Interrupts  
• 2 Comparator Interrupts  
• A/D Interrupt (except PIC16F631)  
• Timer1 Overflow Interrupt  
• Timer2 Match Interrupt (PIC16F685/PIC16F690  
only)  
• EEPROM Data Write Interrupt  
• Fail-Safe Clock Monitor Interrupt  
• Enhanced CCP Interrupt (PIC16F685/PIC16F690  
only)  
• EUSART Receive and Transmit interrupts  
(PIC16F687/PIC16F689/PIC16F690 only)  
Note 1: Individual interrupt flag bits are set,  
regardless of the status of their  
corresponding mask bit or the GIE bit.  
The Interrupt Control register (INTCON) and Peripheral  
Interrupt Request Register 1 (PIR1) record individual  
interrupt requests in flag bits. The INTCON register  
also has individual and global interrupt enable bits.  
2: When an instruction that clears the GIE  
bit is executed, any interrupts that were  
pending for execution in the next cycle  
are ignored. The interrupts, which were  
ignored, are still pending to be serviced  
when the GIE bit is set again.  
A Global Interrupt Enable bit, GIE (INTCON<7>),  
enables (if set) all unmasked interrupts, or disables (if  
cleared) all interrupts. Individual interrupts can be  
disabled through their corresponding enable bits in the  
INTCON, PIE1 and PIE2 registers, respectively. GIE is  
cleared on Reset.  
For additional information on Timer1, Timer2,  
comparators, A/D, data EEPROM, EUSART, SSP or  
Enhanced CCP modules, refer to the respective  
peripheral section.  
The Return from Interrupt instruction, RETFIE, exits  
the interrupt routine, as well as sets the GIE bit, which  
re-enables unmasked interrupts.  
14.3.1  
RA2/INT INTERRUPT  
External interrupt on RA2/INT pin is edge-triggered;  
either rising if the INTEDG bit (OPTION_REG<6>) is  
set, or falling, if the INTEDG bit is clear. When a valid  
edge appears on the RA2/INT pin, the INTF bit  
(INTCON<1>) is set. This interrupt can be disabled by  
clearing the INTE control bit (INTCON<4>). The INTF  
bit must be cleared in software in the Interrupt Service  
Routine before re-enabling this interrupt. The RA2/INT  
interrupt can wake-up the processor from Sleep, if the  
INTE bit was set prior to going into Sleep. The status of  
the GIE bit decides whether or not the processor  
branches to the interrupt vector following wake-up  
(0004h). See Section 14.6 “Power-Down Mode  
(Sleep)” for details on Sleep and Figure 14-10 for  
timing of wake-up from Sleep through RA2/INT  
interrupt.  
The following interrupt flags are contained in the  
INTCON register:  
• INT Pin Interrupt  
• PORTA/PORTB Change Interrupts  
• TMR0 Overflow Interrupt  
The peripheral interrupt flags are contained in the PIR1  
and PIR2 registers. The corresponding interrupt enable  
bits are contained in PIE1 and PIE2 registers.  
The following interrupt flags are contained in the PIR1  
register:  
• A/D Interrupt  
• EUSART Receive and Transmit Interrupts  
• Timer1 Overflow Interrupt  
• Synchronous Serial Port (SSP) Interrupt  
• Enhanced CCP1 Interrupt  
• Timer1 Overflow Interrupt  
• Timer2 Match Interrupt  
Note:  
The ANSEL and CM2CON0 registers  
must be initialized to configure an analog  
channel as a digital input. Pins configured  
as analog inputs will read ‘0’.  
The following interrupt flags are contained in the PIR2  
register:  
• Fail-Safe Clock Monitor Interrupt  
• 2 Comparator Interrupts  
• EEPROM Data Write Interrupt  
DS41262D-page 204  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
14.3.2  
TMR0 INTERRUPT  
14.3.3  
PORTA/PORTB INTERRUPT  
An overflow (FFh 00h) in the TMR0 register will set  
the T0IF (INTCON<2>) bit. The interrupt can be  
enabled/disabled by setting/clearing T0IE (INTCON<5>)  
bit. See Section 5.0 “Timer0 Module” for operation of  
the Timer0 module.  
An input change on PORTA or PORTB change sets the  
RABIF (INTCON<0>) bit. The interrupt can be enabled/  
disabled by setting/clearing the RABIE (INTCON<3>)  
bit. Plus, individual pins can be configured through the  
IOCA or IOCB registers.  
Note:  
If a change on the I/O pin should occur  
when the read operation is being executed  
(start of the Q2 cycle), then the RABIF  
interrupt flag may not get set. See  
Section 4.2.3 “Interrupt-on-change” for  
more information.  
FIGURE 14-7:  
INTERRUPT LOGIC  
IOC-RA0  
IOCA0  
IOC-RA1  
IOCA1  
IOC-RA2  
IOCA2  
IOC-RA3  
IOCA3  
SSPIF  
SSPIE  
IOC-RA4  
IOCA4  
TXIF  
TXIE  
IOC-RA5  
IOCA5  
RCIF  
RCIE  
(1)  
Wake-up (If in Sleep mode)  
IOC-RB4  
IOCB4  
T0IF  
T0IE  
TMR2IF  
TMR2IE  
Interrupt to CPU  
INTF  
INTE  
RABIF  
IOC-RB5  
IOCB5  
TMR1IF  
TMR1IE  
IOC-RB6  
IOCB6  
RABIE  
C1IF  
C1IE  
PEIE  
GIE  
IOC-RB7  
IOCB7  
C2IF  
C2IE  
ADIF  
ADIE  
EEIF  
EEIE  
Note 1: Some peripherals depend upon the system  
clock for operation. Since the system clock is  
suspended during Sleep, these peripherals  
will not wake the part from Sleep. See  
OSFIF  
OSFIE  
CCP1IF  
CCP1IE  
Section 14.6.1 “Wake-up from Sleep”.  
© 2007 Microchip Technology Inc.  
DS41262D-page 205  
PIC16F631/677/685/687/689/690  
FIGURE 14-8:  
INT PIN INTERRUPT TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
(3)  
CLKOUT  
(4)  
INT pin  
(1)  
(1)  
(2)  
(5)  
Interrupt Latency  
INTF flag  
(INTCON<1>)  
GIE bit  
(INTCON<7>)  
INSTRUCTION FLOW  
PC  
PC + 1  
0004h  
0005h  
PC  
Inst (PC)  
PC + 1  
Instruction  
Fetched  
Inst (PC + 1)  
Inst (0004h)  
Inst (0005h)  
Inst (0004h)  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Inst (PC)  
Inst (PC – 1)  
Note 1: INTF flag is sampled here (every Q1).  
2: Asynchronous interrupt latency = 3-4 TCY. Synchronous latency = 3 TCY, where TCY = instruction cycle time. Latency  
is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.  
3: CLKOUT is available only in INTOSC and RC Oscillator modes.  
4: For minimum width of INT pulse, refer to AC specifications in Section 17.0 “Electrical Specifications”.  
5: INTF is enabled to be set any time during the Q4-Q1 cycles.  
TABLE 14-6: SUMMARY OF INTERRUPT REGISTERS  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
C2IE  
ADIF  
C2IF  
T0IE  
RCIE  
C1IE  
RCIF  
C1IF  
INTE  
TXIE  
EEIE  
TXIF  
EEIF  
RABIE  
SSPIE  
T0IF  
INTF  
RABIF  
0000 000x 0000 000x  
CCP1IE TMR2IE TMR1IE -000 0000 -000 0000  
0000 ---- 0000 ----  
CCP1IF TMR2IF TMR1IF -000 0000 -000 0000  
0000 ---- 0000 ----  
PIE2  
OSFIE  
PIR1  
SSPIF  
PIR2  
OSFIF  
Legend:  
x= unknown, u= unchanged, = unimplemented read as ‘0’, q= value depends upon condition.  
Shaded cells are not used by the Interrupt module.  
DS41262D-page 206  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
14.4 Context Saving During Interrupts  
During an interrupt, only the return PC value is saved  
on the stack. Typically, users may wish to save key  
registers during an interrupt (e.g., W and STATUS  
registers). This must be implemented in software.  
Since the upper 16 bytes of all GPR banks are common  
in  
the  
PIC16F631/677/685/687/689/690  
(see  
Figures 2-2 and 2-3), temporary holding registers,  
W_TEMP and STATUS_TEMP, should be placed in  
here. These 16 locations do not require banking and  
therefore, make it easier to context save and restore.  
The same code shown in Example 14-1 can be used  
to:  
• Store the W register  
• Store the STATUS register  
• Execute the ISR code  
• Restore the Status (and Bank Select Bit register)  
• Restore the W register  
Note:  
The  
PIC16F631/677/685/687/689/690  
normally does not require saving the  
PCLATH. However, if computed GOTO’s  
are used in the ISR and the main code, the  
PCLATH must be saved and restored in  
the ISR.  
EXAMPLE 14-1:  
SAVING STATUS AND W REGISTERS IN RAM  
MOVWF W_TEMP  
;Copy W to TEMP register  
SWAPF STATUS,W  
CLRF STATUS  
MOVWF STATUS_TEMP  
;Swap status to be saved into W  
;bank 0, regardless of current bank, Clears IRP,RP1,RP0  
;Save status to bank zero STATUS_TEMP register  
:
:(ISR)  
;Insert user code here  
:
SWAPF STATUS_TEMP,W  
;Swap STATUS_TEMP register into W  
;(sets bank to original state)  
;Move W into STATUS register  
;Swap W_TEMP  
MOVWF STATUS  
SWAPF W_TEMP,F  
SWAPF W_TEMP,W  
;Swap W_TEMP into W  
© 2007 Microchip Technology Inc.  
DS41262D-page 207  
PIC16F631/677/685/687/689/690  
14.5.2  
WDT CONTROL  
14.5 Watchdog Timer (WDT)  
The WDTE bit is located in the Configuration Word  
register. When set, the WDT runs continuously.  
The WDT has the following features:  
• Operates from the LFINTOSC (31 kHz)  
• Contains a 16-bit prescaler  
When the WDTE bit in the Configuration Word register  
is set, the SWDTEN bit of the WDTCON register has no  
effect. If WDTE is clear, then the SWDTEN bit can be  
used to enable and disable the WDT. Setting the bit will  
enable it and clearing the bit will disable it.  
• Shares an 8-bit prescaler with Timer0  
• Time-out period is from 1 ms to 268 seconds  
• Configuration bit and software controlled  
WDT is cleared under certain conditions described in  
Table 14-7.  
The PSA and PS<2:0> bits of the OPTION register  
have the same function as in previous versions of the  
PIC16F631/677/685/687/689/690 Family of microcon-  
trollers. See Section 5.0 “Timer0 Module” for more  
information.  
14.5.1  
WDT OSCILLATOR  
The WDT derives its time base from the 31 kHz  
LFINTOSC. The LTS bit of the OSCCON register does  
not reflect that the LFINTOSC is enabled.  
The value of WDTCON is ‘---0 1000’ on all Resets.  
This gives a nominal time base of 17 ms.  
Note:  
When the Oscillator Start-up Timer (OST)  
is invoked, the WDT is held in Reset,  
because the WDT Ripple Counter is used  
by the OST to perform the oscillator delay  
count. When the OST count has expired,  
the WDT will begin counting (if enabled).  
FIGURE 14-9:  
WATCHDOG TIMER BLOCK DIAGRAM  
0
1
From TMR0 Clock Source  
Prescaler(1)  
16-bit WDT Prescaler  
8
PSA  
PS<2:0>  
To TMR0  
31 kHz  
LFINTOSC Clock  
WDTPS<3:0>  
1
0
PSA  
WDTE from the Configuration Word Register  
SWDTEN from WDTCON  
WDT Time-out  
Note 1: This is the shared Timer0/WDT prescaler. See Section 5.4 “Prescaler” for more information.  
TABLE 14-7: WDT STATUS  
Conditions  
WDT  
WDTE = 0  
Cleared  
CLRWDTCommand  
Oscillator Fail Detected  
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK  
Exit Sleep + System Clock = XT, HS, LP  
Cleared until the end of OST  
DS41262D-page 208  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
REGISTER 14-2: WDTCON: WATCHDOG TIMER CONTROL REGISTER  
U-0  
U-0  
U-0  
R/W-0  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
SWDTEN(1)  
bit 0  
WDTPS3  
WDTPS2  
WDTPS1  
WDTPS0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4-1  
Unimplemented: Read as ‘0’  
WDTPS<3:0>: Watchdog Timer Period Select bits  
Bit Value = Prescale Rate  
0000 = 1:32  
0001 = 1:64  
0010 = 1:128  
0011 = 1:256  
0100 = 1:512 (Reset value)  
0101 = 1:1024  
0110 = 1:2048  
0111 = 1:4096  
1000 = 1:8192  
1001 = 1:16384  
1010 = 1:32768  
1011 = 1:65536  
1100 = reserved  
1101 = reserved  
1110 = reserved  
1111 = reserved  
bit 0  
SWDTEN: Software Enable or Disable the Watchdog Timer bit(1)  
1= WDT is turned on  
0= WDT is turned off (Reset value)  
Note 1: If WDTE Configuration bit = 1, then WDT is always enabled, irrespective of this control bit. If WDTE  
Configuration bit = 0, then it is possible to turn WDT on/off with this control bit.  
TABLE 14-8: SUMMARY OF WATCHDOG TIMER REGISTER  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
(1)  
CONFIG  
CPD  
CP  
MCLRE PWRTE  
T0SE  
WDTE  
PSA  
FOSC2  
PS2  
FOSC1  
PS1  
FOSC0  
PS0  
1111 1111 1111 1111  
OPTION_REG RABPU INTEDG T0CS  
WDTCON  
WDTPS3 WDTPS2 WSTPS1 WDTPS0 SWDTEN ---0 1000 ---0 1000  
Legend:  
Shaded cells are not used by the Watchdog Timer.  
Note 1: See Register 14-1 for operation of all Configuration Word register bits.  
© 2007 Microchip Technology Inc.  
DS41262D-page 209  
PIC16F631/677/685/687/689/690  
When the SLEEPinstruction is being executed, the next  
14.6 Power-Down Mode (Sleep)  
instruction (PC + 1) is prefetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up  
occurs regardless of the state of the GIE bit. If the GIE  
bit is clear (disabled), the device continues execution at  
the instruction after the SLEEPinstruction. If the GIE bit  
is set (enabled), the device executes the instruction  
after the SLEEPinstruction, then branches to the inter-  
rupt address (0004h). In cases where the execution of  
the instruction following SLEEP is not desirable, the  
user should have a NOPafter the SLEEPinstruction.  
The Power-down mode is entered by executing a  
SLEEPinstruction.  
If the Watchdog Timer is enabled:  
• WDT will be cleared but keeps running.  
• PD bit in the STATUS register is cleared.  
• TO bit is set.  
• Oscillator driver is turned off.  
• I/O ports maintain the status they had before  
SLEEPwas executed (driving high, low or high-  
impedance).  
Note:  
If the global interrupts are disabled (GIE is  
cleared), but any interrupt source has both  
its interrupt enable bit and the corresponding  
interrupt flag bits set, the device will  
immediately wake-up from Sleep. The  
SLEEPinstruction is completely executed.  
For lowest current consumption in this mode, all I/O pins  
should be either at VDD or VSS, with no external circuitry  
drawing current from the I/O pin and the comparators  
and CVREF should be disabled. I/O pins that are high-  
impedance inputs should be pulled high or low externally  
to avoid switching currents caused by floating inputs.  
The T0CKI input should also be at VDD or VSS for lowest  
current consumption. The contribution from on-chip pull-  
ups on PORTA should be considered.  
The WDT is cleared when the device wakes up from  
Sleep, regardless of the source of wake-up.  
14.6.2  
WAKE-UP USING INTERRUPTS  
The MCLR pin must be at a logic high level.  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
Note:  
It should be noted that a Reset generated  
by a WDT time-out does not drive MCLR  
pin low.  
• If the interrupt occurs before the execution of a  
SLEEPinstruction, the SLEEPinstruction will  
complete as a NOP. Therefore, the WDT and WDT  
prescaler and postscaler (if enabled) will not be  
cleared, the TO bit will not be set and the PD bit  
will not be cleared.  
14.6.1  
WAKE-UP FROM SLEEP  
The device can wake-up from Sleep through one of the  
following events:  
1. External Reset input on MCLR pin.  
• If the interrupt occurs during or after the execu-  
tion of a SLEEPinstruction, the device will imme-  
diately wake-up from Sleep. The SLEEP  
instruction will be completely executed before the  
wake-up. Therefore, the WDT and WDT prescaler  
and postscaler (if enabled) will be cleared, the TO  
bit will be set and the PD bit will be cleared.  
2. Watchdog Timer Wake-up (if WDT was enabled).  
3. Interrupt from RA2/INT pin, PORTA change or a  
peripheral interrupt.  
The first event will cause a device Reset. The two latter  
events are considered a continuation of program exe-  
cution. The TO and PD bits in the STATUS register can  
be used to determine the cause of device Reset. The  
PD bit, which is set on power-up, is cleared when Sleep  
is invoked. TO bit is cleared if WDT Wake-up occurred.  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
The following peripheral interrupts can wake the device  
from Sleep:  
1. TMR1 interrupt. Timer1 must be operating as an  
asynchronous counter.  
To ensure that the WDT is cleared, a CLRWDTinstruction  
should be executed before a SLEEPinstruction.  
2. ECCP Capture mode interrupt.  
3. A/D conversion (when A/D clock source is FRC).  
4. EEPROM write operation completion.  
5. Comparator output changes state.  
6. Interrupt-on-change.  
7. External Interrupt from INT pin.  
8. EUSART Break detect, I2C slave.  
Other peripherals cannot generate interrupts since  
during Sleep, no on-chip clocks are present.  
DS41262D-page 210  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
FIGURE 14-10:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT(4)  
INT pin  
(2)  
TOST  
INTF flag  
(INTCON<1>)  
Interrupt Latency(3)  
GIE bit  
(INTCON<7>)  
Processor in  
Sleep  
Instruction Flow  
PC  
PC  
PC + 1  
PC + 2  
PC + 2  
PC + 2  
0004h  
0005h  
Instruction  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = Sleep  
Inst(PC – 1)  
Fetched  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Sleep  
Inst(PC + 1)  
Inst(0004h)  
Note 1: XT, HS or LP Oscillator mode assumed.  
2: TOST = 1024 TOSC (drawing not to scale). This delay does not apply to EC and RC Oscillator modes.  
3: GIE = 1assumed. In this case after wake-up, the processor jumps to 0004h. If GIE = 0, execution will continue in-line.  
4: CLKOUT is not available in XT, HS, LP or EC Oscillator modes, but shown here for timing reference.  
This allows customers to manufacture boards with  
14.7 Code Protection  
unprogrammed devices and then program the micro-  
controller just before shipping the product. This also  
allows the most recent firmware or a custom firmware  
to be programmed.  
If the code protection bit(s) have not been  
programmed, the on-chip program memory can be  
read out using ICSPfor verification purposes.  
Note:  
The entire data EEPROM and Flash  
program memory will be erased when the  
code protection is switched from on to off.  
See the “PIC12F6XX/16F6XX Memory  
Programming Specification” (DS41204)  
for more information.  
The device is placed into a Program/Verify mode by  
holding the RA0/AN0/C1IN+/ICSPDAT/ULPWU and  
RA1/AN1/C12IN-/VREF/ICSPCLK pins low, while rais-  
ing the MCLR (VPP) pin from VIL to VIHH. See the  
PIC12F6XX/16F6XX Memory Programming Specifi-  
cation” (DS41204) for more information. RA0 becomes  
the programming data and RA1 becomes the  
programming clock. Both RA0 and RA1 are Schmitt  
Trigger inputs in this mode.  
14.8 ID Locations  
Four memory locations (2000h-2003h) are designated  
as ID locations where the user can store checksum or  
other code identification numbers. These locations are  
not accessible during normal execution but are  
readable and writable during Program/Verify mode.  
Only the Least Significant 7 bits of the ID locations are  
used.  
After Reset, to place the device into Program/Verify  
mode, the Program Counter (PC) is at location 00h. A  
6-bit command is then supplied to the device.  
Depending on the command, 14 bits of program data  
are then supplied to or from the device, depending on  
whether the command was a load or a read. For  
complete details of serial programming, please refer to  
the “PIC12F6XX/16F6XX Memory Programming  
Specification” (DS41204).  
14.9 In-Circuit Serial Programming  
The PIC16F631/677/685/687/689/690 microcontrollers  
can be serially programmed while in the end applica-  
tion circuit. This is simply done with two lines for clock  
and data and three other lines for:  
A typical In-Circuit Serial Programming connection is  
shown in Figure 14-11.  
• power  
• ground  
• programming voltage  
© 2007 Microchip Technology Inc.  
DS41262D-page 211  
PIC16F631/677/685/687/689/690  
FIGURE 14-11:  
TYPICAL IN-CIRCUIT  
SERIAL PROGRAMMING  
CONNECTION  
To Normal  
Connections  
External  
Connector  
Signals  
PIC16F631/677/  
685/687/689/690  
*
+5V  
0V  
VDD  
VSS  
VPP  
RA3/MCLR/VPP  
RA1  
RA0  
CLK  
Data I/O  
*
*
*
To Normal  
Connections  
*
Isolation devices (as required)  
DS41262D-page 212  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
TABLE 15-1: OPCODE FIELD  
15.0 INSTRUCTION SET SUMMARY  
DESCRIPTIONS  
The PIC16F690 instruction set is highly orthogonal and  
is comprised of three basic categories:  
Field  
Description  
f
W
b
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
Byte-oriented operations  
Bit-oriented operations  
Literal and control operations  
Bit address within an 8-bit file register  
Literal field, constant data or label  
k
Each PIC16 instruction is a 14-bit word divided into an  
opcode, which specifies the instruction type and one or  
more operands, which further specify the operation of  
the instruction. The formats for each of the categories  
is presented in Figure 15-1, while the various opcode  
fields are summarized in Table 15-1.  
x
Don’t care location (= 0or 1).  
The assembler will generate code with x = 0.  
It is the recommended form of use for  
compatibility with all Microchip software tools.  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1.  
Table 15-2 lists the instructions recognized by the  
MPASMTM assembler.  
For byte-oriented instructions, ‘f’ represents a file  
register designator and ‘d’ represents a destination  
designator. The file register designator specifies which  
file register is to be used by the instruction.  
PC  
TO  
C
Program Counter  
Time-out bit  
Carry bit  
DC  
Z
Digit carry bit  
Zero bit  
The destination designator specifies where the result of  
the operation is to be placed. If ‘d’ is zero, the result is  
placed in the W register. If ‘d’ is one, the result is placed  
in the file register specified in the instruction.  
PD  
Power-down bit  
FIGURE 15-1:  
GENERAL FORMAT FOR  
INSTRUCTIONS  
For bit-oriented instructions, ‘b’ represents a bit field  
designator, which selects the bit affected by the  
operation, while ‘f’ represents the address of the file in  
which the bit is located.  
Byte-oriented file register operations  
13  
8
7
6
0
For literal and control operations, ‘k’ represents an  
8-bit or 11-bit constant, or literal value.  
OPCODE  
d
f (FILE #)  
d = 0for destination W  
d = 1for destination f  
f = 7-bit file register address  
One instruction cycle consists of four oscillator periods;  
for an oscillator frequency of 4 MHz, this gives a normal  
instruction execution time of 1 μs. All instructions are  
executed within a single instruction cycle, unless a  
conditional test is true, or the program counter is  
changed as a result of an instruction. When this occurs,  
the execution takes two instruction cycles, with the  
second cycle executed as a NOP.  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7
6
0
OPCODE  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
All instruction examples use the format ‘0xhh’ to  
represent a hexadecimal number, where ‘h’ signifies a  
hexadecimal digit.  
Literal and control operations  
General  
13  
8
7
0
0
15.1 Read-Modify-Write Operations  
OPCODE  
k (literal)  
Any instruction that specifies a file register as part of  
the instruction performs a Read-Modify-Write (RMW)  
operation. The register is read, the data is modified,  
and the result is stored according to either the instruc-  
tion, or the destination designator ‘d’. A read operation  
is performed on a register even if the instruction writes  
to that register.  
k = 8-bit immediate value  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
k (literal)  
For example, a CLRF PORTA instruction will read  
PORTA, clear all the data bits, then write the result back  
to PORTA. This example would have the unintended  
consequence of clearing the condition that set the RAIF  
flag.  
© 2007 Microchip Technology Inc.  
DS41262D-page 213  
PIC16F631/677/685/687/689/690  
TABLE 15-2: PIC16F684 INSTRUCTION SET  
14-Bit Opcode  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
DECFSZ  
INCF  
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
f, d  
f, d  
f
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00 0111 dfff ffff C, DC, Z  
1, 2  
1, 2  
2
00 0101 dfff ffff  
00 0001 lfff ffff  
00 0001 0xxx xxxx  
00 1001 dfff ffff  
00 0011 dfff ffff  
00 1011 dfff ffff  
00 1010 dfff ffff  
00 1111 dfff ffff  
00 0100 dfff ffff  
00 1000 dfff ffff  
00 0000 lfff ffff  
00 0000 0xx0 0000  
00 1101 dfff ffff  
00 1100 dfff ffff  
Z
Z
Z
Z
Z
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
1, 2  
1, 2  
1, 2, 3  
1, 2  
1, 2, 3  
1, 2  
1, 2  
Z
Z
Z
Move W to f  
No Operation  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
f, d  
f, d  
f, d  
f, d  
f, d  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Swap nibbles in f  
Exclusive OR W with f  
C
C
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
00 0010 dfff ffff C, DC, Z  
00 1110 dfff ffff  
00 0110 dfff ffff  
Z
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1
1
1 (2)  
1 (2)  
01 00bb bfff ffff  
1, 2  
1, 2  
3
01 01bb bfff ffff  
01 10bb bfff ffff  
01 11bb bfff ffff  
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
k
k
k
k
k
k
Add literal and W  
AND literal with W  
Call Subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11 111x kkkk kkkk C, DC, Z  
11 1001 kkkk kkkk  
10 0kkk kkkk kkkk  
Z
00 0000 0110 0100 TO, PD  
10 1kkk kkkk kkkk  
Inclusive OR literal with W  
Move literal to W  
11 1000 kkkk kkkk  
11 00xx kkkk kkkk  
00 0000 0000 1001  
11 01xx kkkk kkkk  
00 0000 0000 1000  
Z
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into Standby mode  
Subtract Wfrom literal  
Exclusive OR literal with W  
00 0000 0110 0011 TO, PD  
11 110x kkkk kkkk C, DC, Z  
11 1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself (e.g., MOVF GPIO, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an external  
device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if  
assigned to the Timer0 module.  
3: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second  
cycle is executed as a NOP.  
DS41262D-page 214  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
15.2 Instruction Descriptions  
BCF  
Bit Clear f  
ADDLW  
Add literal and W  
Syntax:  
[ label ] BCF f,b  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Operands:  
0 f 127  
0 b 7  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) + k (W)  
C, DC, Z  
Operation:  
0(f<b>)  
Status Affected:  
Description:  
None  
The contents of the W register  
are added to the eight-bit literal ‘k’  
and the result is placed in the  
W register.  
Bit ‘b’ in register ‘f’ is cleared.  
BSF  
Bit Set f  
ADDWF  
Add W and f  
Syntax:  
[ label ] BSF f,b  
Syntax:  
[ label ] ADDWF f,d  
Operands:  
0 f 127  
0 b 7  
Operands:  
0 f 127  
d ∈ [0,1]  
Operation:  
1(f<b>)  
Operation:  
(W) + (f) (destination)  
Status Affected:  
Description:  
None  
Status Affected: C, DC, Z  
Bit ‘b’ in register ‘f’ is set.  
Description:  
Add the contents of the W register  
with register ‘f’. If ‘d’ is ‘0’, the  
result is stored in the W register. If  
‘d’ is ‘1’, the result is stored back  
in register ‘f’.  
BTFSC  
Bit Test f, Skip if Clear  
ANDLW  
AND literal with W  
Syntax:  
[ label ] BTFSC f,b  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Operands:  
0 f 127  
0 b 7  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .AND. (k) (W)  
Operation:  
skip if (f<b>) = 0  
Z
Status Affected: None  
The contents of W register are  
AND’ed with the eight-bit literal  
‘k’. The result is placed in the W  
register.  
Description: If bit ‘b’ in register ‘f’ is ‘1’, the next  
instruction is executed.  
If bit ‘b’ in register ‘f’ is ‘0’, the next  
instruction is discarded, and a NOP  
is executed instead, making this a  
two-cycle instruction.  
ANDWF  
AND W with f  
Syntax:  
[ label ] ANDWF f,d  
Operands:  
0 f 127  
d ∈ [0,1]  
Operation:  
(W) .AND. (f) (destination)  
Status Affected:  
Description:  
Z
AND the W register with register  
‘f’. If ‘d’ is ‘0’, the result is stored in  
the W register. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’.  
© 2007 Microchip Technology Inc.  
DS41262D-page 215  
PIC16F631/677/685/687/689/690  
CLRWDT  
Clear Watchdog Timer  
BTFSS  
Bit Test f, Skip if Set  
Syntax:  
[ label ] CLRWDT  
Syntax:  
[ label ] BTFSS f,b  
Operands:  
Operation:  
None  
Operands:  
0 f 127  
0 b < 7  
00h WDT  
0WDT prescaler,  
1TO  
Operation:  
skip if (f<b>) = 1  
Status Affected: None  
1PD  
Description:  
If bit ‘b’ in register ‘f’ is ‘0’, the next  
instruction is executed.  
Status Affected: TO, PD  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the  
prescaler of the WDT.  
If bit ‘b’ is ‘1’, then the next  
instruction is discarded and a NOP  
is executed instead, making this a  
two-cycle instruction.  
Status bits TO and PD are set.  
CALL  
Call Subroutine  
COMF  
Complement f  
Syntax:  
[ label ] CALL k  
0 k 2047  
Syntax:  
[ label ] COMF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
Operation:  
(f) (destination)  
Status Affected:  
Description:  
Z
Status Affected: None  
The contents of register ‘f’ are  
complemented. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’,  
the result is stored back in  
register ‘f’.  
Description:  
Call Subroutine. First, return  
address (PC + 1) is pushed onto  
the stack. The eleven-bit  
immediate address is loaded into  
PC bits <10:0>. The upper bits of  
the PC are loaded from PCLATH.  
CALLis a two-cycle instruction.  
CLRF  
Clear f  
DECF  
Decrement f  
Syntax:  
[ label ] CLRF  
0 f 127  
f
Syntax:  
[ label ] DECF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
00h (f)  
1Z  
Operation:  
(f) - 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
The contents of register ‘f’ are  
cleared and the Z bit is set.  
Decrement register ‘f’. If ‘d’ is ‘0’,  
the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
CLRW  
Clear W  
Syntax:  
[ label ] CLRW  
Operands:  
Operation:  
None  
00h (W)  
1Z  
Status Affected:  
Description:  
Z
W register is cleared. Zero bit (Z)  
is set.  
DS41262D-page 216  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
DECFSZ  
Decrement f, Skip if 0  
INCFSZ  
Increment f, Skip if 0  
Syntax:  
[ label ] DECFSZ f,d  
Syntax:  
[ label ] INCFSZ f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) - 1 (destination);  
skip if result = 0  
Operation:  
(f) + 1 (destination),  
skip if result = 0  
Status Affected: None  
Status Affected: None  
Description:  
The contents of register ‘f’ are  
Description:  
The contents of register ‘f’ are  
decremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
incremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
If the result is ‘1’, the next  
instruction is executed. If the  
result is ‘0’, then a NOPis  
executed instead, making it a  
two-cycle instruction.  
If the result is ‘1’, the next  
instruction is executed. If the  
result is ‘0’, a NOPis executed  
instead, making it a two-cycle  
instruction.  
GOTO  
Unconditional Branch  
IORLW  
Inclusive OR literal with W  
Syntax:  
[ label ] GOTO k  
0 k 2047  
Syntax:  
[ label ] IORLW k  
0 k 255  
Operands:  
Operation:  
Operands:  
Operation:  
Status Affected:  
Description:  
k PC<10:0>  
PCLATH<4:3> PC<12:11>  
(W) .OR. k (W)  
Z
Status Affected: None  
The contents of the W register are  
OR’ed with the eight-bit literal ‘k’.  
The result is placed in the  
W register.  
Description:  
GOTOis an unconditional branch.  
The eleven-bit immediate value is  
loaded into PC bits <10:0>. The  
upper bits of PC are loaded from  
PCLATH<4:3>. GOTOis a  
two-cycle instruction.  
IORWF  
Inclusive OR W with f  
INCF  
Increment f  
Syntax:  
[ label ] IORWF f,d  
Syntax:  
[ label ] INCF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(W) .OR. (f) (destination)  
Operation:  
(f) + 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Inclusive OR the W register with  
register ‘f’. If ‘d’ is ‘0’, the result is  
placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
© 2007 Microchip Technology Inc.  
DS41262D-page 217  
PIC16F631/677/685/687/689/690  
MOVWF  
Move W to f  
[ label ] MOVWF  
0 f 127  
(W) (f)  
MOVF  
Move f  
Syntax:  
f
Syntax:  
Operands:  
[ label ] MOVF f,d  
Operands:  
Operation:  
Status Affected:  
Description:  
0 f 127  
d [0,1]  
Operation:  
(f) (dest)  
None  
Status Affected:  
Description:  
Z
Move data from W register to  
register ‘f’.  
The contents of register ‘f’ is  
moved to a destination dependent  
upon the status of ‘d’. If d = 0,  
destination is W register. If d = 1,  
the destination is file register ‘f’  
itself. d = 1is useful to test a file  
register since status flag Z is  
affected.  
Words:  
1
1
Cycles:  
Example:  
MOVW  
F
OPTION  
Before Instruction  
OPTION = 0xFF  
Words:  
1
1
W
=
0x4F  
After Instruction  
Cycles:  
Example:  
OPTION = 0x4F  
W
MOVF  
FSR, 0  
=
0x4F  
After Instruction  
W
=
value in FSR  
register  
Z
=
1
MOVLW  
Syntax:  
Move literal to W  
NOP  
No Operation  
[ label ] MOVLW k  
0 k 255  
Syntax:  
[ label ] NOP  
Operands:  
Operation:  
Operands:  
Operation:  
Status Affected:  
Description:  
Words:  
None  
k (W)  
No operation  
Status Affected: None  
None  
Description:  
The eight-bit literal ‘k’ is loaded into  
W register. The “don’t cares” will  
assemble as ‘0’s.  
No operation.  
1
Cycles:  
1
Words:  
1
1
NOP  
Example:  
Cycles:  
Example:  
MOVLW  
0x5A  
After Instruction  
W
=
0x5A  
DS41262D-page 218  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
RETFIE  
Return from Interrupt  
[ label ] RETFIE  
None  
RETLW  
Return with literal in W  
[ label ] RETLW k  
0 k 255  
Syntax:  
Syntax:  
Operands:  
Operation:  
Operands:  
Operation:  
TOS PC,  
1GIE  
k (W);  
TOS PC  
Status Affected:  
Description:  
None  
Status Affected:  
Description:  
None  
Return from Interrupt. Stack is  
POPed and Top-of-Stack (TOS) is  
loaded in the PC. Interrupts are  
enabled by setting Global  
Interrupt Enable bit, GIE  
The W register is loaded with the  
eight-bit literal ‘k’. The program  
counter is loaded from the top of  
the stack (the return address).  
This is a two-cycle instruction.  
(INTCON<7>). This is a two-cycle  
instruction.  
Words:  
1
2
Cycles:  
Example:  
Words:  
1
CALL TABLE;W contains  
table  
Cycles:  
Example:  
2
RETFIE  
;offset value  
TABLE  
;W now has  
;table value  
After Interrupt  
PC = TOS  
GIE =  
1
ADDWF PC ;W = offset  
RETLW k1 ;Begin table  
RETLW k2 ;  
RETLW kn ;End of table  
Before Instruction  
W
=
0x07  
After Instruction  
W
=
value of k8  
RETURN  
Return from Subroutine  
Syntax:  
[ label ] RETURN  
None  
Operands:  
Operation:  
TOS PC  
Status Affected: None  
Description: Return from subroutine. The stack  
is POPed and the top of the stack  
(TOS) is loaded into the program  
counter. This is a two-cycle  
instruction.  
© 2007 Microchip Technology Inc.  
DS41262D-page 219  
PIC16F631/677/685/687/689/690  
RLF  
Rotate Left f through Carry  
SLEEP  
Enter Sleep mode  
[ label ] SLEEP  
None  
Syntax:  
Operands:  
[ label ]  
RLF f,d  
Syntax:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
00h WDT,  
0WDT prescaler,  
1TO,  
Operation:  
See description below  
C
Status Affected:  
Description:  
0PD  
The contents of register ‘f’ are  
rotated one bit to the left through  
the Carry flag. If ‘d’ is ‘0’, the  
result is placed in the W register.  
If ‘d’ is ‘1’, the result is stored  
back in register ‘f’.  
Status Affected:  
Description:  
TO, PD  
The power-down Status bit, PD is  
cleared. Time-out Status bit, TO  
is set. Watchdog Timer and its  
prescaler are cleared.  
The processor is put into Sleep  
mode with the oscillator stopped.  
C
Register f  
Words:  
1
1
Cycles:  
Example:  
RLF  
REG1,0  
Before Instruction  
REG1  
C
=
=
1110 0110  
0
After Instruction  
REG1  
W
C
=
=
=
1110 0110  
1100 1100  
1
SUBLW  
Subtract W from literal  
RRF  
Rotate Right f through Carry  
Syntax:  
[ label ] SUBLW k  
0 k 255  
Syntax:  
[ label ] RRF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
k - (W) → (W)  
Operation:  
See description below  
C
Status Affected: C, DC, Z  
Status Affected:  
Description:  
Description: The W register is subtracted (2’s  
complement method) from the  
eight-bit literal ‘k’. The result is  
placed in the W register.  
The contents of register ‘f’ are  
rotated one bit to the right through  
the Carry flag. If ‘d’ is ‘0’, the  
result is placed in the W register.  
If ‘d’ is ‘1’, the result is placed  
back in register ‘f’.  
C = 0  
W > k  
C = 1  
W k  
DC = 0  
DC = 1  
W<3:0> > k<3:0>  
W<3:0> k<3:0>  
C
Register f  
DS41262D-page 220  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
SUBWF  
Subtract W from f  
XORLW  
Exclusive OR literal with W  
Syntax:  
[ label ] SUBWF f,d  
Syntax:  
[ label ] XORLW k  
0 k 255  
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .XOR. k → (W)  
Z
Operation:  
(f) - (W) → (destination)  
Status Affected: C, DC, Z  
The contents of the W register  
are XOR’ed with the eight-bit  
literal ‘k’. The result is placed in  
the W register.  
Description:  
Subtract (2’s complement method)  
W register from register ‘f’. If ‘d’ is  
0’, the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
C = 0  
W > f  
C = 1  
W f  
DC = 0  
DC = 1  
W<3:0> > f<3:0>  
W<3:0> f<3:0>  
XORWF  
Exclusive OR W with f  
SWAPF  
Swap Nibbles in f  
Syntax:  
[ label ] XORWF f,d  
Syntax:  
[ label ] SWAPF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(W) .XOR. (f) → (destination)  
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
Status Affected:  
Description:  
Z
Status Affected: None  
Exclusive OR the contents of the  
W register with register ‘f’. If ‘d’ is  
0’, the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
Description: The upper and lower nibbles of  
register ‘f’ are exchanged. If ‘d’ is  
0’, the result is placed in the W  
register. If ‘d’ is ‘1’, the result is  
placed in register ‘f’.  
© 2007 Microchip Technology Inc.  
DS41262D-page 221  
PIC16F631/677/685/687/689/690  
NOTES:  
DS41262D-page 222  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
16.1 MPLAB Integrated Development  
Environment Software  
16.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers are supported with a full  
range of hardware and software development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16-bit micro-  
controller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
• A single graphical interface to all debugging tools  
- Simulator  
- MPLAB C18 and MPLAB C30 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- Programmer (sold separately)  
- Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLAB ASM30 Assembler/Linker/Library  
• Simulators  
- MPLAB SIM Software Simulator  
• Emulators  
• Customizable data windows with direct edit of  
contents  
- MPLAB ICE 2000 In-Circuit Emulator  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debugger  
• High-level source code debugging  
• Visual device initializer for easy register  
initialization  
- MPLAB ICD 2  
• Mouse over variable inspection  
• Device Programmers  
• Drag and drop variables from source to watch  
windows  
- PICSTART® Plus Development Programmer  
- MPLAB PM3 Device Programmer  
- PICkit™ 2 Development Programmer  
• Extensive on-line help  
• Integration of select third party tools, such as  
HI-TECH Software C Compilers and IAR  
C Compilers  
• Low-Cost Demonstration and Development  
Boards and Evaluation Kits  
The MPLAB IDE allows you to:  
• Edit your source files (either assembly or C)  
• One touch assemble (or compile) and download  
to PIC MCU emulator and simulator tools  
(automatically updates all project information)  
• Debug using:  
- Source files (assembly or C)  
- Mixed assembly and C  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
© 2007 Microchip Technology Inc.  
DS41262D-page 223  
PIC16F631/677/685/687/689/690  
16.2 MPASM Assembler  
16.5 MPLAB ASM30 Assembler, Linker  
and Librarian  
The MPASM Assembler is a full-featured, universal  
macro assembler for all PIC MCUs.  
MPLAB ASM30 Assembler produces relocatable  
machine code from symbolic assembly language for  
dsPIC30F devices. MPLAB C30 C Compiler uses the  
assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• Support for the entire dsPIC30F instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• User-defined macros to streamline  
assembly code  
• Rich directive set  
• Conditional assembly for multi-purpose  
source files  
• Flexible macro language  
• MPLAB IDE compatibility  
• Directives that allow complete control over the  
assembly process  
16.6 MPLAB SIM Software Simulator  
16.3 MPLAB C18 and MPLAB C30  
C Compilers  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
The MPLAB C18 and MPLAB C30 Code Development  
Systems are complete ANSI  
C
compilers for  
Microchip’s PIC18 and PIC24 families of microcontrol-  
lers and the dsPIC30 and dsPIC33 family of digital sig-  
nal controllers. These compilers provide powerful  
integration capabilities, superior code optimization and  
ease of use not found with other compilers.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C18 and  
MPLAB C30 C Compilers, and the MPASM and  
MPLAB ASM30 Assemblers. The software simulator  
offers the flexibility to develop and debug code outside  
of the hardware laboratory environment, making it an  
excellent, economical software development tool.  
16.4 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
DS41262D-page 224  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
16.7 MPLAB ICE 2000  
High-Performance  
16.9 MPLAB ICD 2 In-Circuit Debugger  
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a  
powerful, low-cost, run-time development tool,  
connecting to the host PC via an RS-232 or high-speed  
In-Circuit Emulator  
The MPLAB ICE 2000 In-Circuit Emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PIC  
microcontrollers. Software control of the MPLAB ICE  
2000 In-Circuit Emulator is advanced by the MPLAB  
Integrated Development Environment, which allows  
editing, building, downloading and source debugging  
from a single environment.  
USB interface. This tool is based on the Flash PIC  
MCUs and can be used to develop for these and other  
PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes  
the in-circuit debugging capability built into the Flash  
devices. This feature, along with Microchip’s In-Circuit  
Serial ProgrammingTM (ICSPTM) protocol, offers cost-  
effective, in-circuit Flash debugging from the graphical  
user interface of the MPLAB Integrated Development  
Environment. This enables a designer to develop and  
debug source code by setting breakpoints, single step-  
ping and watching variables, and CPU status and  
peripheral registers. Running at full speed enables  
testing hardware and applications in real time. MPLAB  
ICD 2 also serves as a development programmer for  
selected PIC devices.  
The MPLAB ICE 2000 is a full-featured emulator  
system with enhanced trace, trigger and data monitor-  
ing features. Interchangeable processor modules allow  
the system to be easily reconfigured for emulation of  
different processors. The architecture of the MPLAB  
ICE 2000 In-Circuit Emulator allows expansion to  
support new PIC microcontrollers.  
The MPLAB ICE 2000 In-Circuit Emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft® Windows® 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
16.10 MPLAB PM3 Device Programmer  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an SD/MMC card for  
file storage and secure data applications.  
16.8 MPLAB REAL ICE In-Circuit  
Emulator System  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC® and MCU devices. It debugs and  
programs PIC® and dsPIC® Flash microcontrollers with  
the easy-to-use, powerful graphical user interface of the  
MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The MPLAB REAL ICE probe is connected to the design  
engineer’s PC using a high-speed USB 2.0 interface and  
is connected to the target with either a connector  
compatible with the popular MPLAB ICD 2 system  
(RJ11) or with the new high speed, noise tolerant, low-  
voltage differential signal (LVDS) interconnection  
(CAT5).  
MPLAB REAL ICE is field upgradeable through future  
firmware downloads in MPLAB IDE. In upcoming  
releases of MPLAB IDE, new devices will be supported,  
and new features will be added, such as software break-  
points and assembly code trace. MPLAB REAL ICE  
offers significant advantages over competitive emulators  
including low-cost, full-speed emulation, real-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
© 2007 Microchip Technology Inc.  
DS41262D-page 225  
PIC16F631/677/685/687/689/690  
16.11 PICSTART Plus Development  
Programmer  
16.13 Demonstration, Development and  
Evaluation Boards  
The PICSTART Plus Development Programmer is an  
easy-to-use, low-cost, prototype programmer. It  
connects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient. The  
PICSTART Plus Development Programmer supports  
most PIC devices in DIP packages up to 40 pins.  
Larger pin count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus Development Programmer is CE  
compliant.  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
16.12 PICkit 2 Development Programmer  
The PICkit™ 2 Development Programmer is a low-cost  
programmer and selected Flash device debugger with  
an easy-to-use interface for programming many of  
Microchip’s baseline, mid-range and PIC18F families of  
Flash memory microcontrollers. The PICkit 2 Starter Kit  
includes a prototyping development board, twelve  
sequential lessons, software and HI-TECH’s PICC™  
Lite C compiler, and is designed to help get up to speed  
quickly using PIC® microcontrollers. The kit provides  
everything needed to program, evaluate and develop  
applications using Microchip’s powerful, mid-range  
Flash memory family of microcontrollers.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart® battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
Check the Microchip web page (www.microchip.com)  
and the latest “Product Selector Guide” (DS00148) for  
the complete list of demonstration, development and  
evaluation kits.  
DS41262D-page 226  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
17.0 ELECTRICAL SPECIFICATIONS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias..........................................................................................................-40° to +125°C  
Storage temperature ........................................................................................................................ -65°C to +150°C  
Voltage on VDD with respect to VSS ................................................................................................... -0.3V to +6.5V  
Voltage on MCLR with respect to Vss ............................................................................................... -0.3V to +13.5V  
Voltage on all other pins with respect to VSS ........................................................................... -0.3V to (VDD + 0.3V)  
Total power dissipation(1) ............................................................................................................................... 800 mW  
Maximum current out of VSS pin ..................................................................................................................... 300 mA  
Maximum current into VDD pin ........................................................................................................................ 250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)............................................................................................................... 20 mA  
Output clamp current, IOK (Vo < 0 or Vo >VDD)......................................................................................................... 20 mA  
Maximum output current sunk by any I/O pin....................................................................................................25 mA  
Maximum output current sourced by any I/O pin .............................................................................................. 25 mA  
Maximum current sunk by PORTA, PORTB and PORTC (combined)............................................................ 200 mA  
Maximum current sourced PORTA, PORTB and PORTC (combined)............................................................ 200 mA  
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - IOH} + {(VDD - VOH) x IOH} + (VOL x IOL).  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
Note:  
Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up.  
Thus, a series resistor of 50-100 Ω should be used when applying a “low” level to the MCLR pin, rather than  
pulling this pin directly to VSS.  
© 2007 Microchip Technology Inc.  
DS41262D-page 227  
PIC16F631/677/685/687/689/690  
FIGURE 17-1:  
PIC16F631/677/685/687/689/690 VOLTAGE-FREQUENCY GRAPH,  
-40°C TA +125°C  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
0
8
10  
20  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
FIGURE 17-2:  
HFINTOSC FREQUENCY ACCURACY OVER DEVICE VDD AND TEMPERATURE  
125  
85  
60  
25  
0
± 5%  
± 2%  
± 1%  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
DS41262D-page 228  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
17.1 DC Characteristics: PIC16F631/677/685/687/689/690-I (Industrial)  
PIC16F631/677/685/687/689/690-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
DC CHARACTERISTICS  
Param  
Sym  
Characteristic  
Min Typ† Max Units  
Conditions  
No.  
VDD  
Supply Voltage  
2.0  
2.0  
3.0  
4.5  
5.5  
5.5  
5.5  
5.5  
V
V
V
V
FOSC < = 8 MHz: HFINTOSC, EC  
FOSC < = 4 MHz  
FOSC < = 10 MHz  
D001  
D001C  
D001D  
FOSC < = 20 MHz  
D002* VDR  
RAM Data Retention  
Voltage(1)  
1.5  
V
Device in Sleep mode  
D003 VPOR  
VDD Start Voltage to  
ensure internal Power-on  
Reset signal  
VSS  
V
See Section 14.2.1 “Power-on Reset  
(POR)” for details.  
D004* SVDD  
VDD Rise Rate to ensure  
internal Power-on Reset  
signal  
0.05  
V/ms See Section 14.2.1 “Power-on Reset  
(POR)” for details.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.  
© 2007 Microchip Technology Inc.  
DS41262D-page 229  
PIC16F631/677/685/687/689/690  
17.2 DC Characteristics: PIC16F631/677/685/687/689/690-I (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
Conditions  
Note  
Param  
No.  
Device Characteristics  
Min  
Typ†  
Max  
Units  
VDD  
(1, 2)  
D010  
D011*  
D012  
D013*  
D014  
D015  
D016*  
D017  
D018  
Supply Current (IDD)  
9
TBD  
TBD  
TBD  
240  
380  
550  
360  
650  
1.1  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
μA  
mA  
μA  
μA  
mA  
mA  
mA  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
4.5  
5.0  
FOSC = 32 kHz  
LP Oscillator mode  
18  
35  
140  
220  
380  
260  
420  
0.8  
130  
215  
360  
220  
375  
0.65  
8
FOSC = 1 MHz  
XT Oscillator mode  
FOSC = 4 MHz  
XT Oscillator mode  
220  
360  
520  
340  
550  
1.0  
FOSC = 1 MHz  
EC Oscillator mode  
FOSC = 4 MHz  
EC Oscillator mode  
20  
FOSC = 31 kHz  
LFINTOSC mode  
16  
40  
31  
65  
340  
500  
0.8  
410  
700  
1.30  
230  
400  
0.63  
2.6  
2.8  
450  
700  
1.2  
FOSC = 4 MHz  
HFINTOSC mode  
650  
950  
1.65  
400  
680  
1.1  
FOSC = 8 MHz  
HFINTOSC mode  
FOSC = 4 MHz  
(3)  
EXTRC mode  
D019  
3.25  
3.35  
FOSC = 20 MHz  
HS Oscillator mode  
Legend:  
TBD = To Be Determined  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from  
rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current  
consumption.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended  
by the formula IR = VDD/2REXT (mA) with REXT in kΩ.  
4: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is  
enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max  
values should be used when calculating total current consumption.  
5: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
DS41262D-page 230  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
17.2 DC Characteristics: PIC16F631/677/685/687/689/690-I (Industrial) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
Conditions  
Param  
No.  
Device Characteristics  
Power-down Base  
Min  
Typ†  
Max  
Units  
VDD  
Note  
D020  
0.15  
0.20  
0.35  
90  
1.2  
1.5  
1.8  
500  
2.2  
4.0  
7.0  
60  
μA  
μA  
μA  
nA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
2.0  
3.0  
5.0  
3.0  
2.0  
3.0  
5.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
3.0  
5.0  
3.0  
5.0  
WDT, BOR, Comparators, VREF and  
T1OSC disabled  
(2)  
Current(IPD)  
-40°C TA +25°C  
(1)  
D021  
1.0  
2.0  
3.0  
42  
WDT Current  
(1)  
D022  
D023  
BOR Current  
85  
122  
45  
(1)  
32  
Comparator Current , both  
comparators enabled  
60  
78  
120  
30  
160  
36  
(1)  
D024  
CVREF Current (high range)  
45  
55  
75  
95  
(1)  
D024a*  
D025  
39  
47  
CVREF Current (low range)  
59  
72  
98  
124  
TBD  
TBD  
TBD  
1.6  
1.9  
TBD  
TBD  
4.0  
4.6  
6.0  
0.30  
0.36  
TBD  
TBD  
T1OSC Current  
(1)  
D026  
A/D Current , no conversion in  
progress  
D027  
VP6 Current  
Legend:  
TBD = To Be Determined  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from  
rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current  
consumption.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended  
by the formula IR = VDD/2REXT (mA) with REXT in kΩ.  
4: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is  
enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max  
values should be used when calculating total current consumption.  
5: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
© 2007 Microchip Technology Inc.  
DS41262D-page 231  
PIC16F631/677/685/687/689/690  
17.3 DC Characteristics: PIC16F631/677/685/687/689/690-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +125°C for extended  
Conditions  
Note  
Param  
No.  
Device Characteristics  
Min  
Typ†  
Max  
Units  
VDD  
(1, 2)  
D010E  
D011E*  
D012E  
D013E*  
D014E  
D015E  
D016E*  
D017E  
D018E  
Supply Current (IDD)  
9
TBD  
TBD  
TBD  
240  
380  
550  
360  
650  
1.1  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
μA  
μA  
μA  
μA  
mA  
μA  
μA  
mA  
μA  
μA  
mA  
mA  
mA  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
4.5  
5.0  
FOSC = 32 kHz  
LP Oscillator mode  
18  
35  
140  
220  
380  
260  
420  
0.8  
FOSC = 1 MHz  
XT Oscillator mode  
FOSC = 4 MHz  
XT Oscillator mode  
130  
215  
360  
220  
375  
0.65  
8
220  
360  
520  
340  
550  
1.0  
FOSC = 1 MHz  
EC Oscillator mode  
FOSC = 4 MHz  
EC Oscillator mode  
20  
FOSC = 31 kHz  
LFINTOSC mode  
16  
40  
31  
65  
340  
500  
0.8  
450  
700  
1.2  
FOSC = 4 MHz  
HFINTOSC mode  
410  
700  
1.30  
230  
400  
0.63  
2.6  
650  
950  
1.65  
400  
680  
1.1  
FOSC = 8 MHz  
HFINTOSC mode  
FOSC = 4 MHz  
(3)  
EXTRC mode  
D019E  
3.25  
3.35  
FOSC = 20 MHz  
HS Oscillator mode  
2.8  
Legend:  
TBD = To Be Determined  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from  
rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current  
consumption.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended  
by the formula IR = VDD/2REXT (mA) with REXT in kΩ.  
4: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is  
enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max  
values should be used when calculating total current consumption.  
5: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
DS41262D-page 232  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
17.3 DC Characteristics: PIC16F631/677/685/687/689/690-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +125°C for extended  
DC CHARACTERISTICS  
Conditions  
Param  
No.  
Device Characteristics  
Min  
Typ†  
Max  
Units  
VDD  
Note  
D020E  
Power-down Base  
Current(IPD)  
0.15  
0.20  
0.35  
90  
1.2  
1.5  
1.8  
500  
2.2  
4.0  
7.0  
60  
μA  
μA  
μA  
nA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
2.0  
3.0  
5.0  
3.0  
2.0  
3.0  
5.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
2.0  
3.0  
5.0  
3.0  
5.0  
3.0  
5.0  
WDT, BOR, Comparators, VREF and  
T1OSC disabled  
(2)  
-40°C TA +25°C  
(1)  
D021E  
1.0  
2.0  
3.0  
42  
WDT Current  
(1)  
D022E  
D023E  
BOR Current  
85  
122  
45  
(1)  
32  
Comparator Current , both  
comparators enabled  
60  
78  
120  
30  
160  
36  
(1)  
D024E  
CVREF Current (high range)  
45  
55  
75  
95  
(1)  
D024AE*  
D025E  
39  
47  
CVREF Current (low range)  
59  
72  
98  
124  
TBD  
TBD  
TBD  
1.6  
1.9  
TBD  
TBD  
4.0  
4.6  
6.0  
0.30  
0.36  
TBD  
TBD  
T1OSC Current  
(1)  
D026E  
D027E  
Legend:  
A/D Current , no conversion in  
progress  
VP6 Current  
TBD = To Be Determined  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from  
rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current  
consumption.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended  
by the formula IR = VDD/2REXT (mA) with REXT in kΩ.  
4: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is  
enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max  
values should be used when calculating total current consumption.  
5: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
© 2007 Microchip Technology Inc.  
DS41262D-page 233  
PIC16F631/677/685/687/689/690  
17.4 DC Characteristics: PIC16F631/677/685/687/689/690-I (Industrial)  
PIC16F631/677/685/687/689/690-E (Extended)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O Port:  
with TTL buffer  
D030  
D030A  
D031  
D032  
D033  
D033A  
Vss  
Vss  
Vss  
VSS  
VSS  
VSS  
0.8  
V
V
V
V
V
V
4.5V VDD 5.5V  
0.15 VDD  
0.2 VDD  
0.2 VDD  
0.3  
2.0V VDD 4.5V  
2.0V VDD 5.5V  
with Schmitt Trigger buffer  
(1)  
MCLR, OSC1 (RC mode)  
OSC1 (XT and LP modes)  
OSC1 (HS mode)  
Input High Voltage  
I/O Ports:  
0.3 VDD  
VIH  
D040  
with TTL buffer  
2.0  
0.25 VDD + 0.8  
0.8 VDD  
0.8 VDD  
1.6  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
V
4.5V VDD 5.5V  
2.0V VDD 4.5V  
2.0V VDD 5.5V  
D040A  
D041  
with Schmitt Trigger buffer  
MCLR  
D042  
D043  
OSC1 (XT and LP modes)  
OSC1 (HS mode)  
D043A  
D043B  
0.7 VDD  
0.9 VDD  
OSC1 (RC mode)  
(Note 1)  
(2)  
IIL  
Input Leakage Current  
D060  
I/O ports  
0.1  
1
μA VSS VPIN VDD,  
Pin at high-impedance  
(3)  
D061  
D063  
MCLR  
0.1  
0.1  
5
5
μA VSS VPIN VDD  
OSC1  
μA VSS VPIN VDD, XT, HS and  
LP oscillator configuration  
D070* IPUR  
VOL  
PORTA Weak Pull-up Current  
50  
250  
400  
0.6  
μA VDD = 5.0V, VPIN = VSS  
(5)  
Output Low Voltage  
D080  
I/O ports  
V
V
IOL = 8.5 mA, VDD = 4.5V (Ind.)  
IOH = -3.0 mA, VDD = 4.5V (Ind.)  
(5)  
VOH  
Output High Voltage  
D090  
I/O ports  
VDD – 0.7  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external  
clock in RC mode.  
2: Negative current is defined as current sourced by the pin.  
3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent  
normal operating conditions. Higher leakage current may be measured at different input voltages.  
4: See Section 10.2.1 “Using the Data EEPROM” for additional information.  
5: Including OSC2 in CLKOUT mode.  
DS41262D-page 234  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
17.4 DC Characteristics: PIC16F631/677/685/687/689/690-I (Industrial)  
PIC16F631/677/685/687/689/690-E (Extended) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
D100  
IULP  
Ultra Low-Power Wake-up  
Current  
200  
nA See Application Note AN879,  
Using the Microchip Ultra  
Low-Power Wake-up Module”  
(DS00879)  
Capacitive Loading Specs on  
Output Pins  
D101* COSC2 OSC2 pin  
15  
50  
pF In XT, HS and LP modes when  
external clock is used to drive  
OSC1  
D101A* CIO  
All I/O pins  
pF  
Data EEPROM Memory  
Byte Endurance  
Byte Endurance  
VDD for Read/Write  
D120  
ED  
100K  
10K  
1M  
100K  
E/W -40°C TA +85°C  
E/W +85°C TA +125°C  
D120A ED  
D121  
VDRW  
VMIN  
5.5  
V
Using EECON1 to read/write  
VMIN = Minimum operating  
voltage  
D122  
D123  
TDEW  
Erase/Write Cycle Time  
Characteristic Retention  
5
6
ms  
TRETD  
40  
Year Provided no other specifications  
are violated  
D124  
TREF  
Number of Total Erase/Write  
Cycles before Refresh  
1M  
10M  
E/W -40°C TA +85°C  
(4)  
Program Flash Memory  
Cell Endurance  
D130  
EP  
10K  
1K  
100K  
10K  
E/W -40°C TA +85°C  
E/W +85°C TA +125°C  
D130A ED  
Cell Endurance  
D131  
VPR  
VDD for Read  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
D132  
D133  
D134  
VPEW  
TPEW  
TRETD  
VDD for Erase/Write  
4.5  
2
5.5  
2.5  
V
Erase/Write cycle time  
Characteristic Retention  
ms  
40  
Year Provided no other specifications  
are violated  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external  
clock in RC mode.  
2: Negative current is defined as current sourced by the pin.  
3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent  
normal operating conditions. Higher leakage current may be measured at different input voltages.  
4: See Section 10.2.1 “Using the Data EEPROM” for additional information.  
5: Including OSC2 in CLKOUT mode.  
© 2007 Microchip Technology Inc.  
DS41262D-page 235  
PIC16F631/677/685/687/689/690  
17.5 Thermal Considerations  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
Sym  
No.  
Characteristic  
Typ  
Units  
Conditions  
20-pin PDIP package  
TH01  
θJA  
Thermal Resistance  
Junction to Ambient  
62.4  
85.2  
108.1  
40  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C
20-pin SOIC package  
20-pin SSOP package  
20-pin QFN 4x4mm package  
20-pin PDIP package  
TH02  
θJC  
Thermal Resistance  
Junction to Case  
28.1  
24.2  
32.2  
2.5  
20-pin SOIC package  
20-pin SSOP package  
20-pin QFN 4x4mm package  
For derated power calculations  
PD = PINTERNAL + PI/O  
TH03  
TH04  
TH05  
TDIE  
PD  
Die Temperature  
Power Dissipation  
150  
W
PINTERNAL Internal Power Dissipation  
W
PINTERNAL = IDD x VDD  
(NOTE 1)  
TH06  
TH07  
PI/O  
I/O Power Dissipation  
Derated Power  
W
W
PI/O = Σ (IOL * VOL) + Σ (IOH * (VDD - VOH))  
PDER = PDMAX (TDIE - TA)/θJA  
(NOTE 2, 3)  
PDER  
Note 1: IDD is current to run the chip alone without driving any load on the output pins.  
2: TA = Ambient Temperature.  
3: Maximum allowable power dissipation is the lower value of either the absolute maximum total power  
dissipation or derated power.  
DS41262D-page 236  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
17.6  
Timing Parameter Symbology  
The timing parameter symbols have been created with  
one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O Port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (High-impedance)  
Low  
Valid  
L
High-impedance  
FIGURE 17-3:  
LOAD CONDITIONS  
Load Condition  
Pin  
CL  
VSS  
Legend: CL  
=
50 pF for all pins  
15 pF for OSC2 output  
© 2007 Microchip Technology Inc.  
DS41262D-page 237  
PIC16F631/677/685/687/689/690  
17.7 AC Characteristics: PIC16F631/677/685/687/689/690 (Industrial, Extended)  
FIGURE 17-4:  
CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
OSC1/CLKIN  
OS02  
OS04  
OS04  
OS03  
OSC2/CLKOUT  
(LP,XT,HS Modes)  
OSC2/CLKOUT  
(CLKOUT Mode)  
TABLE 17-1: CLOCK OSCILLATOR TIMING REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
kHz  
Conditions  
(1)  
OS01  
FOSC  
TOSC  
TCY  
External CLKIN Frequency  
DC  
DC  
DC  
DC  
37  
4
LP Oscillator mode  
MHz XT Oscillator mode  
MHz HS Oscillator mode  
MHz EC Oscillator mode  
20  
20  
4
(1)  
Oscillator Frequency  
32.768  
kHz  
LP Oscillator mode  
0.1  
1
MHz XT Oscillator mode  
MHz HS Oscillator mode  
MHz RC Oscillator mode  
20  
4
DC  
27  
250  
50  
50  
(1)  
OS02  
External CLKIN Period  
μs  
ns  
ns  
ns  
μs  
ns  
ns  
ns  
ns  
μs  
ns  
ns  
ns  
ns  
ns  
LP Oscillator mode  
XT Oscillator mode  
HS Oscillator mode  
EC Oscillator mode  
LP Oscillator mode  
XT Oscillator mode  
HS Oscillator mode  
RC Oscillator mode  
TCY = 4/FOSC  
(1)  
Oscillator Period  
30.5  
10,000  
1,000  
DC  
250  
50  
250  
200  
2
(1)  
OS03  
Instruction Cycle Time  
TCY  
OS04*  
TOSH,  
TOSL  
External CLKIN High,  
External CLKIN Low  
LP oscillator  
100  
20  
0
XT oscillator  
HS oscillator  
OS05*  
TOSR,  
TOSF  
External CLKIN Rise,  
External CLKIN Fall  
LP oscillator  
0
XT oscillator  
0
HS oscillator  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing  
code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current  
consumption. All devices are tested to operate at ‘min’ values with an external clock applied to OSC1 pin. When an  
external clock input is used, the ‘max’ cycle time limit is ‘DC’ (no clock) for all devices.  
DS41262D-page 238  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
TABLE 17-2: OSCILLATOR PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param  
Sym  
No.  
Freq  
Tolerance  
Characteristic  
Min  
Typ†  
Max  
Units  
TOSC Slowest clock  
ms LFINTOSC/64  
Conditions  
OS06  
OS07  
OS08  
TWARM  
Internal Oscillator Switch  
2
(3)  
when running  
TSC  
Fail-Safe Sample Clock  
21  
(1)  
Period  
HFOSC  
Internal Calibrated  
HFINTOSC Frequency  
1%  
2%  
7.92  
7.84  
8.0  
8.0  
8.08  
8.16  
MHz VDD = 3.5V, 25°C  
(2)  
MHz 2.5V VDD 5.5V,  
0°C TA +85°C  
5%  
7.60  
15  
8.0  
31  
8.40  
45  
MHz 2.0V VDD 5.5V,  
-40°C TA +85°C (Ind.),  
-40°C TA +125°C (Ext.)  
OS09*  
OS10*  
LFOSC  
Internal Uncalibrated  
LFINTOSC Frequency  
kHz  
TIOSC ST HFINTOSC Oscillator  
Wake-up from Sleep  
Start-up Time  
5.5  
3.5  
3
12  
7
24  
14  
11  
μs  
μs  
μs  
VDD = 2.0V, -40°C to +85°C  
VDD = 3.0V, -40°C to +85°C  
VDD = 5.0V, -40°C to +85°C  
6
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing  
code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected  
current consumption. All devices are tested to operate at ‘min’ values with an external clock applied to the OSC1 pin.  
When an external clock input is used, the ‘max’ cycle time limit is ‘DC’ (no clock) for all devices.  
2: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as  
possible. 0.1 μF and 0.01 μF values in parallel are recommended.  
3: By design.  
© 2007 Microchip Technology Inc.  
DS41262D-page 239  
PIC16F631/677/685/687/689/690  
FIGURE 17-5:  
CLKOUT AND I/O TIMING  
Cycle  
Write  
Q4  
Fetch  
Q1  
Read  
Q2  
Execute  
Q3  
FOSC  
OS12  
OS11  
OS20  
OS21  
CLKOUT  
OS19  
OS13  
OS18  
OS16  
OS17  
I/O pin  
(Input)  
OS14  
OS15  
I/O pin  
(Output)  
New Value  
Old Value  
OS18, OS19  
TABLE 17-3: CLKOUT AND I/O TIMING PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units  
Conditions  
OS11  
OS12  
OS13  
OS14  
OS15  
OS16  
TOSH2CKL FOSCto CLKOUT(1)  
TOSH2CKH FOSCto CLKOUT(1)  
70  
72  
20  
ns VDD = 5.0V  
ns VDD = 5.0V  
ns  
50  
TCKL2IOV  
CLKOUTto port out valid(1)  
TIOV2CKH Port input valid before CLKOUT(1)  
TOSC + 200 ns  
ns  
TOSH2IOV FOSC(Q1 cycle) to port out valid  
70*  
ns VDD = 5.0V  
ns VDD = 5.0V  
TOSH2IOI  
FOSC(Q2 cycle) to port input invalid  
(I/O in hold time)  
50  
OS17  
OS18  
OS19  
TIOV2OSH Port input valid to FOSC(Q2 cycle)  
20  
ns  
(I/O in setup time)  
TIOR  
TIOF  
Port output rise time(2)  
15  
40  
72  
32  
ns VDD = 2.0V  
VDD = 5.0V  
Port output fall time(2)  
28  
15  
55  
30  
ns VDD = 2.0V  
VDD = 5.0V  
OS20* TINP  
OS21* TRAP  
INT pin input high or low time  
25  
ns  
ns  
PORTA interrupt-on-change new input  
level time  
TCY  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated.  
Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x TOSC.  
2: Includes OSC2 in CLKOUT mode.  
DS41262D-page 240  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
FIGURE 17-6:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND  
POWER-UP TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Start-up Time  
(1)  
Internal Reset  
Watchdog Timer  
(1)  
Reset  
31  
34  
34  
I/O pins  
Note 1:  
Asserted low.  
FIGURE 17-7:  
BROWN-OUT RESET TIMING AND CHARACTERISTICS  
VDD  
VBOR + VHYST  
VBOR  
(Device in Brown-out Reset)  
(Device not in Brown-out Reset)  
37  
Reset  
(due to BOR)  
33*  
*
64 ms delay only if PWRTE bit in the Configuration Word register is programmed to ‘0’.  
© 2007 Microchip Technology Inc.  
DS41262D-page 241  
PIC16F631/677/685/687/689/690  
TABLE 17-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym  
TMCL  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
MCLR Pulse Width (low)  
2
5
μs VDD = 5V, -40°C to +85°C  
μs VDD = 5V  
31  
32  
TWDT  
TOST  
Watchdog Timer Time-out  
Period (No Prescaler)  
10  
10  
17  
17  
25  
30  
ms VDD = 5V, -40°C to +85°C  
ms VDD = 5V  
Oscillation Start-up Timer  
Period(1, 2)  
1024  
TOSC (NOTE 3)  
33*  
34*  
TPWRT Power-up Timer Period  
40  
65  
140  
2.0  
ms  
TIOZ  
I/O High-impedance from  
MCLR Low or Watchdog Timer  
Reset  
μs  
35  
VBOR  
VHYST  
TBOR  
Brown-out Reset Voltage  
2.0  
50  
2.2  
V
(NOTE 4)  
36*  
37*  
Brown-out Reset Hysteresis  
mV  
Brown-out Reset Minimum  
Detection Period  
100  
μs VDD VBOR  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values  
are based on characterization data for that particular oscillator type under standard operating conditions  
with the device executing code. Exceeding these specified limits may result in an unstable oscillator oper-  
ation and/or higher than expected current consumption. All devices are tested to operate at ‘min’ values  
with an external clock applied to the OSC1 pin. When an external clock input is used, the ‘max’ cycle time  
limit is ‘DC’ (no clock) for all devices.  
2: By design.  
3: Period of the slower clock.  
4: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as  
possible. 0.1 μF and 0.01 μF values in parallel are recommended.  
DS41262D-page 242  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
FIGURE 17-8:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
40  
41  
42  
T1CKI  
45  
46  
49  
47  
TMR0 or  
TMR1  
TABLE 17-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
40*  
41*  
42*  
TT0H  
TT0L  
TT0P  
T0CKI High Pulse Width  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
10  
0.5 TCY + 20  
10  
T0CKI Low Pulse Width  
T0CKI Period  
Greater of:  
20 or TCY + 40  
N
ns N = prescale value  
(2, 4, ..., 256)  
45*  
46*  
47*  
TT1H  
TT1L  
T1CKI High Synchronous, No Prescaler  
0.5 TCY + 20  
15  
ns  
ns  
Time  
Synchronous,  
with Prescaler  
Asynchronous  
30  
0.5 TCY + 20  
15  
ns  
ns  
ns  
T1CKI Low Synchronous, No Prescaler  
Time  
Synchronous,  
with Prescaler  
Asynchronous  
30  
ns  
TT1P  
FT1  
T1CKI Input Synchronous  
Period  
Greater of:  
30 or TCY + 40  
N
ns N = prescale value  
(1, 2, 4, 8)  
Asynchronous  
60  
ns  
48  
Timer1 Oscillator Input Frequency Range  
(oscillator enabled by setting bit T1OSCEN)  
32.768  
kHz  
49*  
TCKEZTMR1 Delay from External Clock Edge to Timer  
Increment  
2 TOSC  
7 TOSC  
Timers in Sync  
mode  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
© 2007 Microchip Technology Inc.  
DS41262D-page 243  
PIC16F631/677/685/687/689/690  
FIGURE 17-9:  
CAPTURE/COMPARE/PWM TIMINGS (ECCP)  
CCP1  
(Capture mode)  
CC01  
CC02  
CC03  
Note:  
Refer to Figure 17-3 for load conditions.  
TABLE 17-6: CAPTURE/COMPARE/PWM REQUIREMENTS (ECCP)  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units  
Conditions  
CC01* TccL  
CC02* TccH  
CC03* TccP  
CCP1 Input Low Time  
CCP1 Input High Time  
CCP1 Input Period  
No Prescaler  
0.5TCY + 20  
20  
ns  
ns  
ns  
ns  
With Prescaler  
No Prescaler  
With Prescaler  
0.5TCY + 20  
20  
3TCY + 40  
N
ns N = prescale  
value (1, 4 or  
16)  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
DS41262D-page 244  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
TABLE 17-7: COMPARATOR SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +125°C  
Comparator Specifications  
Param.  
Sym  
Characteristics  
Min  
Typ  
Max  
Units  
Comments  
No.  
CM01  
CM02  
CM03  
VOS  
Input Offset Voltage  
0
5.0  
10  
VDD - 1.5  
mV  
V
VCM  
CMRR  
Input Common Mode Voltage  
Common Mode Rejection  
Ratio  
+55*  
db  
CM04  
CM05  
TRT  
Response Time(1)  
150  
400*  
10*  
ns  
TMC2COV Comparator Mode Change to  
Output Valid  
μs  
*
These parameters are characterized but not tested.  
Note 1: Response time measured with one comparator input at (VDD - 1.5)/2 while the other input transitions from  
VSS to VDD - 1.5V.  
TABLE 17-8: COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
Sym  
No.  
Characteristics  
Min  
Typ†  
Max  
Units  
Comments  
CV01* CLSB  
Step Size(2)  
Absolute Accuracy  
VDD/24  
VDD/32  
V
V
Low Range (VRR = 1)  
High Range (VRR = 0)  
CV02* CACC  
1/4  
1/2  
LSb Low Range (VRR = 1)  
LSb High Range (VRR = 0)  
CV03* CR  
CV04* CST  
Unit Resistor Value (R)  
Settling Time(1)  
2k  
Ω
10  
μs  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
Note 1: Settling time measured while VRR = 1and VR<3:0> transitions from ‘0000’ to ‘1111’.  
2: See Section 8.10 “Comparator Voltage Reference” for more information.  
TABLE 17-9: VOLTAGE (VR) REFERENCE SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
VR Voltage Reference Specifications  
Operating temperature  
-40°C TA +125°C  
Param  
No.  
Symbol  
Characteristics  
VR voltage output  
Min  
Typ  
Max  
Units  
Comments  
VR01  
VR02  
VROUT  
TBD  
0.6  
TBD  
TBD  
V
TCVOUT Voltage drift temperature  
coefficient  
150  
ppm/°C  
VR03  
VR04  
ΔVROUT/ Voltage drift with respect to  
200  
10  
μV/V  
μs  
ΔVDD  
VDD regulation  
TSTABLE Settling Time  
100*  
Legend: TBD = To Be Determined  
These parameters are characterized but not tested.  
*
© 2007 Microchip Technology Inc.  
DS41262D-page 245  
PIC16F631/677/685/687/689/690  
FIGURE 17-10:  
EUSART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
RB7/TX/CK  
pin  
121  
121  
RB5/AN11/RX/DT  
pin  
120  
Refer to Figure 17-3 for load conditions.  
122  
Note:  
TABLE 17-10: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param.  
Symbol  
No.  
Characteristic  
Min  
Max  
Units Conditions  
120 TCKH2DTV SYNC XMIT (Master & Slave)  
Clock high to data-out valid  
40  
ns  
121 TCKRF  
122 TDTRF  
Clock out rise time and fall time (Master mode)  
Data-out rise time and fall time  
20  
20  
ns  
ns  
FIGURE 17-11:  
EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
RC4/C2OUT/TX/CK  
pin  
125  
RC5/RX/DT  
pin  
126  
Note: Refer to Figure 17-3 for load conditions.  
TABLE 17-11: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param.  
No.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
125  
TDTV2CKL SYNC RCV (Master & Slave)  
Data-hold before CK (DT hold time)  
10  
15  
ns  
ns  
126  
TCKL2DTL Data-hold after CK (DT hold time)  
DS41262D-page 246  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
FIGURE 17-12:  
SPI MASTER MODE TIMING (CKE = 0, SMP = 0)  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
bit 6 - - - - - -1  
LSb  
SDO  
SDI  
75, 76  
MSb In  
74  
bit 6 - - - -1  
LSb In  
73  
Note: Refer to Figure 17-3 for load conditions.  
FIGURE 17-13:  
SPI MASTER MODE TIMING (CKE = 1, SMP = 1)  
SS  
81  
SCK  
(CKP = 0)  
71  
72  
79  
78  
73  
SCK  
(CKP = 1)  
80  
LSb  
MSb  
bit 6 - - - - - -1  
SDO  
SDI  
75, 76  
MSb In  
74  
bit 6 - - - -1  
LSb In  
Note: Refer to Figure 17-3 for load conditions.  
© 2007 Microchip Technology Inc.  
DS41262D-page 247  
PIC16F631/677/685/687/689/690  
FIGURE 17-14:  
SPI SLAVE MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
83  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
LSb  
SDO  
SDI  
bit 6 - - - - - -1  
77  
75, 76  
MSb In  
74  
bit 6 - - - -1  
LSb In  
73  
Note: Refer to Figure 17-3 for load conditions.  
FIGURE 17-15:  
SPI SLAVE MODE TIMING (CKE = 1)  
82  
SS  
70  
SCK  
83  
(CKP = 0)  
71  
72  
SCK  
(CKP = 1)  
80  
MSb  
bit 6 - - - - - -1  
LSb  
SDO  
SDI  
75, 76  
77  
MSb In  
74  
bit 6 - - - -1  
LSb In  
Note: Refer to Figure 17-3 for load conditions.  
DS41262D-page 248  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
TABLE 17-12: SPI MODE REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ† Max Units Conditions  
70* TSSL2SCH, SSto SCKor SCKinput  
TCY  
ns  
TSSL2SCL  
71* TSCH  
72* TSCL  
SCK input high time (Slave mode)  
SCK input low time (Slave mode)  
TCY + 20  
TCY + 20  
100  
ns  
ns  
ns  
73* TDIV2SCH, Setup time of SDI data input to SCK edge  
TDIV2SCL  
74* TSCH2DIL, Hold time of SDI data input to SCK edge  
TSCL2DIL  
100  
ns  
75* TDOR  
SDO data output rise time  
3.0-5.5V  
2.0-5.5V  
10  
Tcy  
10  
25  
10  
10  
25  
10  
25  
50  
25  
50  
25  
50  
25  
50  
145  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
76* TDOF  
SDO data output fall time  
77* TSSH2DOZ SSto SDO output high-impedance  
78* TSCR  
SCK output rise time  
(Master mode)  
3.0-5.5V  
2.0-5.5V  
79* TSCF  
SCK output fall time (Master mode)  
80* TSCH2DOV, SDO data output valid after  
TSCL2DOV SCK edge  
3.0-5.5V  
2.0-5.5V  
81* TDOV2SCH, SDO data output setup to SCK edge  
TDOV2SCL  
82* TSSL2DOV SDO data output valid after SSedge  
50  
ns  
ns  
83* TSCH2SSH, SS after SCK edge  
1.5TCY + 40  
TSCL2SSH  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
FIGURE 17-16:  
I2C™ BUS START/STOP BITS TIMING  
SCL  
SDA  
91  
93  
90  
92  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 17-3 for load conditions.  
© 2007 Microchip Technology Inc.  
DS41262D-page 249  
PIC16F631/677/685/687/689/690  
TABLE 17-13: I2C™ BUS START/STOP BITS REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
Min Typ Max Units  
Conditions  
90*  
TSU:STA Start condition  
Setup time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
ns Only relevant for Repeated  
Start condition  
91*  
92*  
93  
THD:STA Start condition  
Hold time  
4000  
600  
ns After this period, the first  
clock pulse is generated  
TSU:STO Stop condition  
Setup time  
4700  
600  
ns  
THD:STO Stop condition  
Hold time  
4000  
600  
ns  
*
These parameters are characterized but not tested.  
FIGURE 17-17:  
I2C™ BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 17-3 for load conditions.  
DS41262D-page 250  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
TABLE 17-14: I2C™ BUS DATA REQUIREMENTS  
Param.  
No.  
Symbol  
Characteristic  
100 kHz mode  
Min  
Max Units  
Conditions  
100*  
THIGH  
Clock high time  
4.0  
μs  
μs  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
0.6  
Device must operate at a  
minimum of 10 MHz  
SSP Module  
1.5TCY  
4.7  
101*  
TLOW  
Clock low time  
100 kHz mode  
μs  
μs  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
SSP Module  
1.3  
Device must operate at a  
minimum of 10 MHz  
1.5TCY  
102*  
103*  
TR  
TF  
SDA and SCL rise 100 kHz mode  
time  
1000  
ns  
ns  
400 kHz mode  
20 + 0.1CB 300  
CB is specified to be from  
10-400 pF  
SDA and SCL fall  
time  
100 kHz mode  
400 kHz mode  
300  
ns  
ns  
20 + 0.1CB 300  
CB is specified to be from  
10-400 pF  
90*  
91*  
TSU:STA Start condition  
setup time  
100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
μs  
μs  
μs  
μs  
ns  
μs  
ns  
ns  
μs  
μs  
ns  
ns  
μs  
μs  
Only relevant for  
Repeated Start condition  
THD:STA Start condition hold 100 kHz mode  
After this period the first  
clock pulse is generated  
time  
400 kHz mode  
106*  
107*  
92*  
THD:DAT Data input hold time 100 kHz mode  
400 kHz mode  
0
0.9  
TSU:DAT Data input setup  
time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
250  
100  
4.7  
0.6  
(Note 2)  
TSU:STO Stop condition  
setup time  
109*  
110*  
TAA  
Output valid from  
clock  
3500  
(Note 1)  
TBUF  
Bus free time  
4.7  
1.3  
Time the bus must be free  
before a new transmission  
can start  
CB  
Bus capacitive loading  
400  
pF  
*
These parameters are characterized but not tested.  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region  
(min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.  
2: A Fast mode (400 kHz) I2C bus device can be used in a Standard mode (100 kHz) I2C bus system, but the  
requirement TSU:DAT 250 ns must then be met. This will automatically be the case if the device does not  
stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it  
must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the  
Standard mode I2C bus specification), before the SCL line is released.  
© 2007 Microchip Technology Inc.  
DS41262D-page 251  
PIC16F631/677/685/687/689/690  
TABLE 17-15: A/D CONVERTER (ADC) CHARACTERISTICS:  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
AD01 NR  
AD02 EIL  
AD03 EDL  
Resolution  
10 bits  
bit  
Integral Error  
1
1
LSb VREF = 5.12V  
Differential Error  
LSb No missing codes to 10 bits  
VREF = 5.12V  
AD04 EOFF Offset Error  
AD04A  
1.5  
1
1
LSb VREF = 5.12V  
LSb (PIC16F677 only)  
LSb VREF = 5.12V  
AD07 EGN Gain Error  
AD06 VREF Reference Voltage(3)  
AD06A  
2.2  
2.5  
VDD  
V
Absolute minimum to ensure 1 LSb  
accuracy  
AD07 VAIN Full-Scale Range  
VSS  
VREF  
10  
V
AD08 ZAIN Recommended  
Impedance of Analog  
Voltage Source  
kΩ  
AD09* IREF  
VREF Input Current(3)  
10  
1000  
50  
μA During VAIN acquisition.  
Based on differential of VHOLD to VAIN.  
μA During A/D conversion cycle  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Total Absolute Error includes integral, differential, offset and gain errors.  
2: The A/D conversion result never decreases with an increase in the input voltage and has no missing  
codes.  
3: ADC VREF is from external VREF or VDD pin, whichever is selected as reference input.  
4: When ADC is off, it will not consume any current other than leakage current. The power-down current  
specification includes any such leakage from the ADC module.  
DS41262D-page 252  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
FIGURE 17-18:  
A/D CONVERSION TIMING (NORMAL MODE)  
BSF ADCON0, GO  
134  
Q4  
1 TCY  
(1)  
(TOSC/2)  
131  
130  
A/D CLK  
9
8
7
6
3
2
1
0
A/D Data  
ADRES  
NEW_DATA  
1 TCY  
OLD_DATA  
ADIF  
GO  
DONE  
Sampling Stopped  
132  
Sample  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
TABLE 17-16: A/D CONVERSION REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param  
No.  
Sym  
Characteristic  
A/D Clock Period  
Min  
Typ†  
Max  
Units  
Conditions  
130  
TAD  
1.5  
μs TOSC-based, VREF 2.5V  
μs TOSC-based, VREF full range  
3.0*  
130  
TAD  
A/D Internal RC  
Oscillator Period  
ADCS<1:0> = 11(RC mode)  
μs At VDD = 2.5V  
3.0*  
2.0*  
6.0  
4.0  
11  
9.0*  
6.0*  
μs At VDD = 5.0V  
131  
132  
TCNV Conversion Time  
(not including  
TAD Set GO bit to new data in A/D Result  
register  
Acquisition Time)(1)  
(2)  
TACQ Acquisition Time  
11.5  
μs  
5*  
μs The minimum time is the amplifier  
settling time. This may be used if the  
“new” input voltage has not changed  
by more than 1 LSb (i.e., 4.1 mV @  
4.096V) from the last sampled  
voltage (as stored on CHOLD).  
134  
TGO  
Q4 to A/D Clock  
Start  
TOSC/2  
If the A/D clock source is selected as  
RC, a time of TCY is added before  
the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: ADRESH and ADRESL registers may be read on the following TCY cycle.  
2: See Table 9-1 for minimum conditions.  
© 2007 Microchip Technology Inc.  
DS41262D-page 253  
PIC16F631/677/685/687/689/690  
FIGURE 17-19:  
A/D CONVERSION TIMING (SLEEP MODE)  
BSF ADCON0, GO  
134  
(1)  
1 TCY  
(TOSC/2 + TCY)  
131  
Q4  
130  
A/D CLK  
A/D Data  
9
8
7
3
2
1
0
6
NEW_DATA  
1 TCY  
OLD_DATA  
ADRES  
ADIF  
GO  
DONE  
Sampling Stopped  
132  
Sample  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
TABLE 17-17: A/D CONVERSION REQUIREMENTS (SLEEP MODE)  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param  
No.  
Sym  
Characteristic  
A/D Internal RC  
Min  
Typ†  
Max Units  
Conditions  
130  
TAD  
ADCS<1:0> = 11(RC mode)  
Oscillator Period  
3.0*  
2.0*  
6.0  
4.0  
11  
9.0*  
6.0*  
μs At VDD = 2.5V  
μs At VDD = 5.0V  
131  
132  
TCNV  
TACQ  
Conversion Time  
(not including  
TAD  
Acquisition Time)(1)  
(2)  
Acquisition Time  
11.5  
μs  
5*  
μs The minimum time is the amplifier  
settling time. This may be used if  
the “new” input voltage has not  
changed by more than 1 LSb (i.e.,  
4.1 mV @ 4.096V) from the last  
sampled voltage (as stored on  
CHOLD).  
134  
TGO  
Q4 to A/D Clock  
Start  
TOSC/2 + TCY  
If the A/D clock source is selected  
as RC, a time of TCY is added  
before the A/D clock starts. This  
allows the SLEEPinstruction to be  
executed.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Table 9-1 for minimum conditions.  
DS41262D-page 254  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
18.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES  
The graphs and tables provided in this section are for design guidance and are not tested.  
In some graphs or tables, the data presented are outside specified operating range (i.e., outside specified VDD  
range). This is for information only and devices are ensured to operate properly only within the specified range.  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein are  
not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.  
“Typical” represents the mean of the distribution at 25°C. “Maximum” or “minimum” represents  
(mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over each temperature range.  
FIGURE 18-1:  
TYPICAL IDD vs. FOSC OVER VDD (EC MODE)  
3.5  
Typical: Statistical Mean @25°C  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
5.5V  
5.0V  
4.0V  
3.0V  
2.0V  
1 MHz  
2 MHz  
4 MHz  
6 MHz  
8 MHz  
10 MHz 12 MHz 14 MHz 16 MHz 18 MHz 20 MHz  
FOSC  
© 2007 Microchip Technology Inc.  
DS41262D-page 255  
PIC16F631/677/685/687/689/690  
FIGURE 18-2:  
MAXIMUM IDD vs. FOSC OVER VDD (EC MODE)  
4.0  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
5.5V  
5.0V  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.0V  
3.0V  
2.0V  
1 MHz  
2 MHz  
4 MHz  
6 MHz  
8 MHz  
10 MHz 12 MHz 14 MHz 16 MHz 18 MHz 20 MHz  
FOSC  
FIGURE 18-3:  
TYPICAL IDD vs. FOSC OVER VDD (HS MODE)  
Typical IDD vs FOSC Over Vdd  
4.0  
Typical: Statistical Mean @25°C  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
4 MHz  
10 MHz  
16 MHz  
20 MHz  
FOSC  
DS41262D-page 256  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
FIGURE 18-4:  
MAXIMUM IDD vs. FOSC OVER VDD (HS MODE)  
5.0  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
4 MHz  
10 MHz  
16 MHz  
20 MHz  
FOSC  
FIGURE 18-5:  
TYPICAL IDD vs. VDD OVER FOSC (XT MODE)  
XT Mode  
900  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
800  
700  
600  
500  
400  
300  
200  
100  
0
4 MHz  
1 MHz  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41262D-page 257  
PIC16F631/677/685/687/689/690  
FIGURE 18-6:  
MAXIMUM IDD vs. VDD OVER FOSC (XT MODE)  
1,400  
1,200  
1,000  
800  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
4 MHz  
1 MHz  
600  
400  
200  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 18-7:  
TYPICAL IDD vs. VDD OVER FOSC (EXTRC MODE)  
800  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
700  
600  
500  
400  
300  
200  
100  
0
4 MHz  
1 MHz  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41262D-page 258  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
FIGURE 18-8:  
MAXIMUM IDD vs. VDD OEVXETRRCFMOoSdCe(EXTRC MODE)  
1,400  
1,200  
1,000  
800  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
4 MHz  
1 MHz  
600  
400  
200  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 18-9:  
IDD vs. VDD OVER FOSC (LFINTOSC MODE, 31 kHz)  
LFINTOSC Mode, 31KHZ  
80  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
70  
60  
50  
40  
30  
20  
10  
0
Maximum  
Typical  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41262D-page 259  
PIC16F631/677/685/687/689/690  
FIGURE 18-10:  
TYPICAL IDD vs. FOSC OVER VDD (HFINTOSC MODE)  
1,600  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
5.5V  
5.0V  
1,400  
1,200  
1,000  
800  
4.0V  
3.0V  
2.0V  
600  
400  
200  
0
125 kHz  
250 kHz  
500 kHz  
1 MHz  
2 MHz  
4 MHz  
8 MHz  
FOSC  
FIGURE 18-11:  
MAXIMUM IDD vs. FOSC OVER VDD (HFINTOSC MODE)  
HFINTOSC  
2,000  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
5.5V  
5.0V  
1,800  
1,600  
1,400  
1,200  
1,000  
800  
4.0V  
3.0V  
600  
2.0V  
400  
200  
0
125 kHz  
250 kHz  
500 kHz  
1 MHz  
2 MHz  
4 MHz  
8 MHz  
FOSC  
DS41262D-page 260  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
FIGURE 18-12:  
TYPICAL IPD vs. VDD (SLETEyPpiMcaOl DE, ALL PERIPHERALS DISABLED)  
0.45  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 18-13:  
MAXIMUM IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED)  
18.0  
Typical: Statistical Mean @25°C  
16.0  
14.0  
12.0  
10.0  
8.0  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
Max. 125°C  
6.0  
4.0  
Max. 85°C  
3.5  
2.0  
0.0  
2.0  
2.5  
3.0  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41262D-page 261  
PIC16F631/677/685/687/689/690  
FIGURE 18-14:  
COMPARATOR IPD vs. VDD (BOTH COMPARATORS ENABLED)  
180  
160  
140  
120  
100  
80  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
Maximum  
Typical  
60  
40  
20  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 18-15:  
BOR IPD vs. VDD OVER TEMPERATURE  
160  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
140  
120  
100  
80  
Maximum  
Typical  
60  
40  
20  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41262D-page 262  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
FIGURE 18-16:  
TYPICAL WDT IPD vs. VDD OVER TEMPERATURE  
Typical  
3.0  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 18-17:  
MAXIMUM WDT IPD vs. VDD OVER TEMPERATURE  
Maximum  
25.0  
20.0  
15.0  
10.0  
5.0  
Max. 125°C  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
Max. 85°C  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41262D-page 263  
PIC16F631/677/685/687/689/690  
FIGURE 18-18:  
WDT PERIOD vs. VDD OVER TEMPERATURE  
30  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
Max. (125°C)  
Max. (85°C)  
Typical  
Minimum  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 18-19:  
WDT PERIOD vs. TEMPERVAdTdU=R5EV OVER VDD (5.0V)  
30  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
Maximum  
Typical  
Minimum  
-40°C  
25°C  
85°C  
125°C  
Temperature (°C)  
DS41262D-page 264  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
FIGURE 18-20:  
CVREF IPD vs. VDD OVERHTigEhMRPaEngReATURE (HIGH RANGE)  
140  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
120  
100  
80  
60  
40  
20  
0
Max. 125°C  
Max. 85°C  
Typical  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 18-21:  
CVREF IPD vs. VDD OVER TEMPERATURE (LOW RANGE)  
180  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
160  
140  
120  
100  
80  
Max. 125°C  
Max. 85°C  
Typical  
60  
40  
20  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41262D-page 265  
PIC16F631/677/685/687/689/690  
FIGURE 18-22:  
VOL vs. IOL OVER TEMPERATURE (VDD = 3.0V)  
(VDD = 3V, -40×C TO 125×C)  
0.8  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Max. 125°C  
Max. 85°C  
Typical 25°C  
Min. -40°C  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
9.5  
10.0  
IOL (mA)  
FIGURE 18-23:  
VOL vs. IOL OVER TEMPERATURE (VDD = 5.0V)  
0.45  
Typical: Statistical Mean @25°C  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
Max. 125°C  
Max. 85°C  
Typ. 25°C  
Min. -40°C  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
9.5  
10.0  
IOL (mA)  
DS41262D-page 266  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
FIGURE 18-24:  
VOH vs. IOH OVER TEMPERATURE (VDD = 3.0V)  
3.5  
3.0  
2.5  
2.0  
1.5  
Max. -40°C  
Typ. 25°C  
Min. 125°C  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
1.0  
0.5  
0.0  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
-4.0  
IOH (mA)  
FIGURE 18-25:  
VOH vs. IOH OVER TEMPERATURE (VDD = 5.0V)  
5.5  
5.0  
4.5  
4.0  
Max. -40°C  
Typ. 25°C  
Min. 125°C  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
3.5  
3.0  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
-4.0  
-4.5  
-5.0  
IOH (mA)  
© 2007 Microchip Technology Inc.  
DS41262D-page 267  
PIC16F631/677/685/687/689/690  
FIGURE 18-26:  
TTL INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE  
1.7  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
Max. -40°C  
Typ. 25°C  
Min. 125°C  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 18-27:  
SCHMITT TRIGGER INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE  
(ST Input, -40×C TO 125×C)  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
VIH Max. 125°C  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
VIH Min. -40°C  
VIL Max. -40°C  
VIL Min. 125°C  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41262D-page 268  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
FIGURE 18-28:  
COMPARATOR RESPONSE TIME (RISING EDGE)  
531  
806  
1000  
900  
800  
700  
Max. 125°C  
Max. 85°C  
VCM = VDD - 1.5V)/2  
V+ input = VCM  
V- input = Transition from VCM + 100MV to VCM - 20MV  
Note:  
600  
500  
400  
300  
200  
100  
Typ. 25°C  
Min. -40°C  
0
2.0  
2.5  
4.0  
5.5  
VDD (V)  
FIGURE 18-29:  
COMPARATOR RESPONSE TIME (FALLING EDGE)  
1000  
900  
800  
700  
Max. 125°C  
Max. 85°C  
VCM = VDD - 1.5V)/2  
600  
500  
400  
300  
200  
100  
0
Note:  
V+ input = VCM  
V- input = Transition from VCM - 100MV to VCM + 20MV  
Typ. 25°C  
Min. -40°C  
2.0  
2.5  
4.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41262D-page 269  
PIC16F631/677/685/687/689/690  
FIGURE 18-30:  
LFINTOSC FREQUENCY vs. VDD OVER TEMPERATURE (31 kHz)  
LFINTOSC 31Khz  
45,000  
40,000  
35,000  
30,000  
25,000  
20,000  
15,000  
10,000  
5,000  
Max. -40°C  
Typ. 25°C  
Min. 85°C  
Min. 125°C  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 18-31:  
ADC CLOCK PERIOD vs. VDD OVER TEMPERATURE  
8
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
125°C  
85°C  
6
4
2
0
25°C  
-40°C  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41262D-page 270  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
FIGURE 18-32:  
TYPICAL HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE  
16  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
14  
85°C  
12  
25°C  
10  
-40°C  
8
6
4
2
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 18-33:  
MAXIMUM HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE  
-40C to +85C  
25  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
20  
15  
10  
5
85°C  
25°C  
-40°C  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41262D-page 271  
PIC16F631/677/685/687/689/690  
FIGURE 18-34:  
MINIMUM HFINTOSC START-UP TIMES vs. VDD OVER TEMPERATURE  
10  
9
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst Case Temp) + 3σ  
(-40°C to 125°C)  
8
7
85°C  
6
25°C  
5
-40°C  
4
3
2
1
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 18-35:  
TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (25°C)  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41262D-page 272  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
FIGURE 18-36:  
TYPICAL HFINTOSC FREQUENCY CHANGE OVER DEVICE VDD (85°C)  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 18-37:  
TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (125°C)  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS41262D-page 273  
PIC16F631/677/685/687/689/690  
FIGURE 18-38:  
TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (-40°C)  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41262D-page 274  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
19.0 PACKAGING INFORMATION  
19.1 Package Marking Information  
20-Lead PDIP  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
PIC16F685-I/P  
0510017  
e
3
20-Lead SOIC (7.50 mm)  
Example  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
PIC16F685-I  
/SO  
e
3
0510017  
YYWWNNN  
20-Lead SSOP  
Example  
XXXXXXXXXXX  
XXXXXXXXXXX  
PIC16F687  
-I/SS  
e
3
YYWWNNN  
0510017  
20-Lead QFN  
Example  
XXXXXX  
XXXXXX  
YWWNNN  
16F690  
-I/ML  
510017  
e
3
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
3
e
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2007 Microchip Technology Inc.  
DS41262D-page 275  
PIC16F631/677/685/687/689/690  
19.2 Package Details  
The following sections give the technical details of the packages.  
20-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
N
E1  
NOTE 1  
1
2
3
D
E
A2  
A
L
c
A1  
b1  
eB  
e
b
Units  
INCHES  
NOM  
20  
Dimension Limits  
MIN  
MAX  
Number of Pins  
Pitch  
N
e
.100 BSC  
Top to Seating Plane  
A
.210  
.195  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.980  
.115  
.008  
.045  
.014  
.130  
.310  
.250  
1.030  
.130  
.010  
.060  
.018  
.325  
.280  
1.060  
.150  
.015  
.070  
.022  
.430  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
b1  
b
Lower Lead Width  
Overall Row Spacing §  
eB  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-019B  
DS41262D-page 276  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
20-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
N
E
E1  
NOTE 1  
1
2
3
e
b
α
h
h
c
φ
A2  
A
L
β
A1  
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
20  
1.27 BSC  
Overall Height  
A
2.65  
Molded Package Thickness  
Standoff §  
A2  
A1  
E
2.05  
0.10  
0.30  
Overall Width  
10.30 BSC  
Molded Package Width  
Overall Length  
E1  
D
h
7.50 BSC  
12.80 BSC  
Chamfer (optional)  
Foot Length  
0.25  
0.40  
0.75  
1.27  
L
Footprint  
L1  
φ
1.40 REF  
Foot Angle  
0°  
0.20  
0.31  
5°  
8°  
Lead Thickness  
Lead Width  
c
0.33  
0.51  
15°  
b
Mold Draft Angle Top  
Mold Draft Angle Bottom  
α
β
5°  
15°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-094B  
© 2007 Microchip Technology Inc.  
DS41262D-page 277  
PIC16F631/677/685/687/689/690  
20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
A2  
A
φ
A1  
L1  
L
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
20  
0.65 BSC  
Overall Height  
Molded Package Thickness  
Standoff  
A
1.75  
2.00  
1.85  
A2  
A1  
E
1.65  
0.05  
7.40  
5.00  
6.90  
0.55  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
7.80  
5.30  
7.20  
0.75  
1.25 REF  
8.20  
5.60  
7.50  
0.95  
E1  
D
L
Footprint  
L1  
c
Lead Thickness  
Foot Angle  
0.09  
0°  
0.25  
8°  
φ
4°  
Lead Width  
b
0.22  
0.38  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-072B  
DS41262D-page 278  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
20-Lead Plastic Quad Flat, No Lead Package (ML) – 4x4x0.9 mm Body [QFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D2  
EXPOSED  
PAD  
e
E2  
E
2
1
b
2
1
K
N
N
NOTE 1  
L
BOTTOM VIEW  
TOP VIEW  
A
A1  
A3  
Units  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
Number of Pins  
N
e
20  
Pitch  
0.50 BSC  
0.90  
Overall Height  
Standoff  
A
0.80  
0.00  
1.00  
0.05  
A1  
A3  
E
0.02  
Contact Thickness  
Overall Width  
0.20 REF  
4.00 BSC  
2.70  
Exposed Pad Width  
Overall Length  
Exposed Pad Length  
Contact Width  
Contact Length  
Contact-to-Exposed Pad  
E2  
D
2.60  
2.80  
4.00 BSC  
2.70  
D2  
b
2.60  
0.18  
0.30  
0.20  
2.80  
0.30  
0.50  
0.25  
L
0.40  
K
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package is saw singulated.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-126B  
© 2007 Microchip Technology Inc.  
DS41262D-page 279  
PIC16F631/677/685/687/689/690  
NOTES:  
DS41262D-page 280  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
APPENDIX A: DATA SHEET  
REVISION HISTORY  
APPENDIX B: MIGRATING FROM  
OTHER PIC®  
DEVICES  
Revision A (March 2005)  
This discusses some of the issues in migrating from  
other PIC devices to the PIC16F6XX Family of devices.  
This is a new data sheet.  
Revision B (May 2006)  
B.1  
PIC16F676 to PIC16F685  
Added 631/677 part numbers; Added pin summary  
tables after pin diagrams; Incorporated Golden  
Chapters.  
TABLE B-1:  
Feature  
FEATURE COMPARISON  
PIC16F676  
PIC16F685  
Max Operating  
Speed  
20 MHz  
20 MHz  
Revision C (July 2006)  
Max Program  
Memory (Words)  
1024  
4096  
Revised Section 4.2.1, ANSEL and ANSELH  
Registers; Register 4-3, ANSEL Analog Select; Added  
Register 4-4, ANSELH Analog Select High; Section  
11.3.2, Revised CCP1<1:0> to DC1B<1:0>; Section  
11.3.7, Number 4 - Revised CCP1 to DC1B; Figure 11-  
5, Revised CCP1 to DC1B; Table 11-4, Revised P1M to  
P1M<1:0>; Section 12.3.1, Revised Paragraph 3;  
Revised Note 2; Revised Figure 12-6 Title.  
SRAM (bytes)  
A/D Resolution  
64  
128  
10-bit  
256  
10-bit  
128  
Data EEPROM  
(Bytes)  
Timers (8/16-bit)  
Oscillator Modes  
Brown-out Reset  
Internal Pull-ups  
1/1  
8
2/1  
8
Revision D (February 2007)  
Y
Y
RA0/1/2/4/5 RA0/1/2/4/5,  
MCLR  
Removed Preliminary status; Changed PICmicro to  
PIC; Replaced Dev. Tool Section; Replaced Package  
Drawings.  
Interrupt-on-change RA0/1/2/3/4/5 RA0/1/2/3/4/5  
Comparator  
ECCP+  
1
N
N
2
Y
Y
Ultra Low-Power  
Wake-up  
Extended WDT  
N
N
Y
Y
Software Control  
Option of WDT/BOR  
INTOSC  
Frequencies  
4 MHz  
N
31 kHz-8 MHz  
Y
Clock Switching  
Note: This device has been designed to perform  
to the parameters of its data sheet. It has  
been tested to an electrical specification  
designed to determine its conformance  
with these parameters. Due to process  
differences in the manufacture of this  
device, this device may have different  
performance characteristics than its earlier  
version. These differences may cause this  
device to perform differently in your  
application than the earlier version of this  
device.  
© 2007 Microchip Technology Inc.  
DS41262D-page 281  
PIC16F631/677/685/687/689/690  
NOTES:  
DS41262D-page 282  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
INDEX  
PIC16F685 ................................................................. 11  
PIC16F687/689 .......................................................... 12  
PIC16F690 ................................................................. 13  
A
A/D  
Specifications............................................ 252, 253, 254  
PWM (Enhanced) ..................................................... 133  
RA0 Pins..................................................................... 64  
RA1 Pins..................................................................... 65  
RA2 Pin ...................................................................... 65  
RA3 Pin ...................................................................... 66  
RA4 Pin ...................................................................... 66  
RA5 Pin ...................................................................... 67  
RB4 Pin ...................................................................... 71  
RB5 Pin ...................................................................... 72  
RB6 Pin ...................................................................... 73  
RB7 Pin ...................................................................... 74  
RC0 and RC1 Pins ..................................................... 77  
RC2 and RC3 Pins ..................................................... 77  
RC4 Pin ...................................................................... 78  
RC5 Pin ...................................................................... 78  
RC6 Pin ...................................................................... 79  
RC7 Pin ...................................................................... 79  
Resonator Operation .................................................. 50  
Absolute Maximum Ratings .............................................. 227  
AC Characteristics  
Industrial and Extended ............................................ 238  
Load Conditions........................................................ 237  
ACK pulse......................................................................... 184  
ADC .................................................................................. 107  
Acquisition Requirements ......................................... 116  
Associated registers.................................................. 118  
Block Diagram........................................................... 107  
Calculating Acquisition Time..................................... 116  
Channel Selection..................................................... 108  
Configuration............................................................. 108  
Configuring Interrupt ................................................. 111  
Conversion Clock...................................................... 108  
Conversion Procedure .............................................. 111  
Internal Sampling Switch (RSS) Impedance.............. 116  
Interrupts................................................................... 109  
Operation .................................................................. 111  
Operation During Sleep ............................................ 111  
Port Configuration..................................................... 108  
Reference Voltage (VREF)......................................... 108  
Result Formatting...................................................... 110  
Source Impedance.................................................... 116  
Special Event Trigger................................................ 111  
Starting an A/D Conversion ...................................... 110  
ADCON0 Register............................................................. 113  
ADCON1 Register............................................................. 114  
ADRESH Register (ADFM = 0)......................................... 115  
ADRESH Register (ADFM = 1)......................................... 115  
ADRESL Register (ADFM = 0).......................................... 115  
ADRESL Register (ADFM = 1).......................................... 115  
Analog Input Connection Considerations.......................... 100  
Analog-to-Digital Converter. See ADC  
2
SSP (I C Mode)........................................................ 184  
SSP (SPI Mode) ....................................................... 175  
Timer1 ........................................................................ 84  
Timer2 ........................................................................ 91  
TMR0/WDT Prescaler ................................................ 81  
Watchdog Timer (WDT)............................................ 208  
Break Character (12-bit) Transmit and Receive ............... 167  
Brown-out Reset (BOR).................................................... 198  
Associated................................................................ 199  
Specifications ........................................................... 242  
Timing and Characteristics....................................... 241  
C
C Compilers  
MPLAB C18.............................................................. 224  
MPLAB C30.............................................................. 224  
Capture Module. See Enhanced Capture/Compare/  
PWM(ECCP)  
ANSEL Register.................................................................. 61  
ANSELH Register ............................................................... 61  
Assembler  
Capture/Compare/PWM (CCP)  
MPASM Assembler................................................... 224  
Associated registers w/ Capture/Compare/PWM ..... 148  
Capture Mode........................................................... 128  
CCPx Pin Configuration............................................ 128  
Compare Mode......................................................... 129  
CCPx Pin Configuration.................................... 129  
Software Interrupt Mode........................... 128, 129  
Special Event Trigger....................................... 129  
Timer1 Mode Selection............................. 128, 129  
Prescaler .................................................................. 128  
PWM Mode............................................................... 130  
Duty Cycle ........................................................ 131  
Effects of Reset................................................ 132  
Example PWM Frequencies and  
B
BAUDCTL Register........................................................... 160  
BF bit................................................................................. 176  
Block Diagrams  
(CCP) Capture Mode Operation ............................... 128  
ADC .......................................................................... 107  
ADC Transfer Function ............................................. 117  
Analog Input Model........................................... 100, 117  
CCP PWM................................................................. 130  
Clock Source............................................................... 47  
Comparator C1 ........................................................... 94  
Comparator C2 ........................................................... 94  
Compare ................................................................... 129  
Crystal Operation........................................................ 50  
EUSART Receive ..................................................... 150  
EUSART Transmit .................................................... 149  
External RC Mode....................................................... 51  
Fail-Safe Clock Monitor (FSCM)................................. 57  
In-Circuit Serial Programming Connections.............. 212  
Interrupt Logic........................................................... 205  
On-Chip Reset Circuit............................................... 196  
PIC16F631.................................................................... 9  
PIC16F677.................................................................. 10  
Resolutions, 20 MHZ................................ 131  
Example PWM Frequencies and  
Resolutions, 8 MHz .................................. 131  
Operation in Sleep Mode.................................. 132  
Setup for Operation .......................................... 132  
System Clock Frequency Changes .................. 132  
PWM Period ............................................................. 131  
Setup for PWM Operation ........................................ 132  
CCPxCON (Enhanced) Register ...................................... 127  
CKE bit ............................................................................. 176  
CKP bit ............................................................................. 177  
© 2007 Microchip Technology Inc.  
DS41262D-page 283  
PIC16F631/677/685/687/689/690  
Clock Accuracy with Asynchronous Operation .................158  
Clock Sources  
Reading .................................................................... 122  
Writing ...................................................................... 122  
Data Memory ...................................................................... 26  
Data/Address bit (D/A)...................................................... 176  
DC Characteristics  
Extended .................................................................. 232  
Extended and Industrial............................................ 234  
Industrial ................................................................... 230  
Industrial and Extended............................................ 229  
Development Support....................................................... 223  
Device Overview................................................................... 9  
External Modes...........................................................49  
EC.......................................................................49  
HS.......................................................................50  
LP........................................................................50  
OST.....................................................................49  
RC.......................................................................51  
XT .......................................................................50  
Internal Modes ............................................................51  
Frequency Selection ...........................................53  
HFINTOSC..........................................................51  
HFINTOSC/LFINTOSC Switch Timing ...............53  
INTOSC ..............................................................51  
INTOSCIO...........................................................51  
LFINTOSC ..........................................................53  
Clock Switching...................................................................55  
CM1CON0 Register ............................................................98  
CM2CON0 Register ............................................................99  
CM2CON1 Register ..........................................................101  
Code Examples  
A/D Conversion.........................................................112  
Assigning Prescaler to Timer0 ....................................82  
Assigning Prescaler to WDT .......................................82  
Changing Between Capture Prescalers....................128  
Indirect Addressing .....................................................44  
Initializing PORTA.......................................................59  
Initializing PORTB.......................................................69  
Initializing PORTC.......................................................76  
Loading the SSPBUF (SSPSR) Register..................178  
Saving STATUS and W Registers in RAM ...............207  
Ultra Low-Power Wake-up Initialization ......................63  
Write Verify ...............................................................125  
Code Protection ................................................................211  
Comparator  
C2OUT as T1 Gate ...................................................101  
Operation ....................................................................93  
Operation During Sleep ..............................................97  
Response Time...........................................................95  
Synchronizing COUT w/Timer1 ................................101  
Comparator Module ............................................................93  
Associated registers..................................................106  
C1 Output State Versus Input Conditions...................95  
Comparator Voltage Reference (CVREF)  
Response Time...........................................................95  
Comparator Voltage Reference (CVREF) ..........................104  
Effects of a Reset........................................................97  
Specifications............................................................245  
Comparators  
E
ECCP. See Enhanced Capture/Compare/PWM  
ECCPAS Register............................................................. 141  
EEADR Register............................................................... 120  
EEADR Registers ............................................................. 119  
EEADRH Registers........................................................... 119  
EECON1 Register..................................................... 119, 121  
EECON2 Register............................................................. 119  
EEDAT Register ............................................................... 120  
EEDATH Register............................................................. 120  
EEPROM Data Memory  
Avoiding Spurious Write ........................................... 125  
Write Verify............................................................... 125  
Effects of Reset  
PWM mode............................................................... 132  
Electrical Specifications.................................................... 227  
Enhanced Capture/Compare/PWM .................................. 127  
Enhanced Capture/Compare/PWM (ECCP)  
Enhanced PWM Mode.............................................. 133  
Auto-Restart ..................................................... 142  
Auto-shutdown.................................................. 141  
Direction Change in Full-Bridge Output Mode.. 139  
Full-Bridge Application...................................... 137  
Full-Bridge Mode .............................................. 137  
Half-Bridge Application..................................... 136  
Half-Bridge Application Examples .................... 143  
Half-Bridge Mode.............................................. 136  
Output Relationships (Active-High and  
Active-Low)............................................... 134  
Output Relationships Diagram.......................... 135  
Programmable Dead Band Delay..................... 143  
Shoot-through Current...................................... 143  
Start-up Considerations.................................... 140  
Specifications ........................................................... 244  
Timer Resources ...................................................... 127  
Enhanced Universal Synchronous Asynchronous  
Receiver Transmitter (EUSART) .............................. 149  
Errata.................................................................................... 8  
EUSART ........................................................................... 149  
Associated Registers  
C2OUT as T1 Gate .....................................................85  
Effects of a Reset........................................................97  
Specifications............................................................245  
Compare Module. See Enhanced Capture/  
Baud Rate Generator ....................................... 161  
Asynchronous Mode................................................. 151  
12-bit Break Transmit and Receive .................. 167  
Associated Registers  
Compare/PWM (ECCP)  
CONFIG Register..............................................................195  
Configuration Bits..............................................................194  
CPU Features ...................................................................193  
Customer Change Notification Service .............................289  
Customer Notification Service...........................................289  
Customer Support.............................................................289  
Receive .................................................... 157  
Transmit.................................................... 153  
Auto-Wake-up on Break ................................... 166  
Baud Rate Generator (BRG) ............................ 161  
Clock Accuracy................................................. 158  
Receiver ........................................................... 154  
Setting up 9-bit Mode with Address Detect ...... 156  
Transmitter ....................................................... 151  
Baud Rate Generator (BRG)  
D
D/A bit ...............................................................................176  
Data EEPROM Memory....................................................119  
Associated Registers ................................................126  
Code Protection ........................................................125  
Auto Baud Rate Detect..................................... 165  
DS41262D-page 284  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
Baud Rate Error, Calculating ............................ 161  
GOTO....................................................................... 217  
INCF ......................................................................... 217  
INCFSZ..................................................................... 217  
IORLW...................................................................... 217  
IORWF...................................................................... 217  
MOVF ....................................................................... 218  
MOVLW.................................................................... 218  
MOVWF.................................................................... 218  
NOP.......................................................................... 218  
RETFIE..................................................................... 219  
RETLW..................................................................... 219  
RETURN................................................................... 219  
RLF........................................................................... 220  
RRF .......................................................................... 220  
SLEEP...................................................................... 220  
SUBLW..................................................................... 220  
SUBWF..................................................................... 221  
SWAPF..................................................................... 221  
XORLW .................................................................... 221  
XORWF .................................................................... 221  
Summary Table ........................................................ 214  
INTCON Register................................................................ 38  
Baud Rates, Asynchronous Modes .................. 162  
Formulas........................................................... 161  
High Baud Rate Select (BRGH Bit) .................. 161  
Synchronous Master Mode....................................... 169  
Associated Registers  
Receive..................................................... 172  
Transmit.................................................... 170  
Reception.......................................................... 171  
Requirements, Synchronous Receive .............. 246  
Requirements, Synchronous Transmission ...... 246  
Timing Diagram, Synchronous Receive ........... 246  
Timing Diagram, Synchronous Transmission ... 246  
Transmission .................................................... 169  
Synchronous Slave Mode......................................... 173  
Associated Registers  
Receive..................................................... 174  
Transmit.................................................... 173  
Reception.......................................................... 174  
Transmission .................................................... 173  
F
2
2
Fail-Safe Clock Monitor....................................................... 57  
Fail-Safe Condition Clearing....................................... 57  
Fail-Safe Detection ..................................................... 57  
Fail-Safe Operation..................................................... 57  
Reset or Wake-up from Sleep..................................... 57  
Firmware Instructions........................................................ 213  
Flash Program Memory .................................................... 119  
Fuses. See Configuration Bits  
Inter-Integrated Circuit (I C). See I C Mode  
Internal Oscillator Block  
INTOSC  
Specifications ................................................... 239  
Internal Sampling Switch (RSS) Impedance ..................... 116  
Internet Address ............................................................... 289  
Interrupts .......................................................................... 204  
ADC.......................................................................... 111  
Associated Registers................................................ 206  
Context Saving ......................................................... 207  
Interrupt-on-Change ................................................... 60  
Interrupt-on-change.................................................... 69  
PORTA/PORTB Interrupt-on-Change ...................... 205  
RA2/INT.................................................................... 204  
TMR0........................................................................ 205  
TMR1.......................................................................... 86  
INTOSC Specifications..................................................... 239  
IOCA Register..................................................................... 62  
IOCB Register..................................................................... 70  
G
General Purpose Register File............................................ 26  
I
2
I C Mode  
Addressing................................................................ 185  
Associated Registers ................................................ 192  
Master Mode............................................................. 191  
Mode Selection ......................................................... 184  
Multi-Master Mode .................................................... 191  
Operation .................................................................. 184  
Reception.................................................................. 186  
Slave Mode  
L
Load Conditions................................................................ 237  
SCL and SDA pins............................................ 184  
Transmission............................................................. 189  
ID Locations...................................................................... 211  
In-Circuit Serial Programming (ICSP)............................... 211  
Indirect Addressing, INDF and FSR registers..................... 44  
Instruction Format............................................................. 213  
Instruction Set................................................................... 213  
ADDLW..................................................................... 215  
ADDWF..................................................................... 215  
ANDLW..................................................................... 215  
ANDWF..................................................................... 215  
BCF........................................................................... 215  
BSF........................................................................... 215  
BTFSC ...................................................................... 215  
BTFSS ...................................................................... 216  
CALL......................................................................... 216  
CLRF......................................................................... 216  
CLRW ....................................................................... 216  
CLRWDT................................................................... 216  
COMF ....................................................................... 216  
DECF ........................................................................ 216  
DECFSZ.................................................................... 217  
M
MCLR ............................................................................... 197  
Internal...................................................................... 197  
Memory Organization ......................................................... 25  
Data............................................................................ 26  
Program...................................................................... 25  
Microchip Internet Web Site.............................................. 289  
Migrating from other PIC Devices..................................... 281  
MPLAB ASM30 Assembler, Linker, Librarian................... 224  
MPLAB ICD 2 In-Circuit Debugger ................................... 225  
MPLAB ICE 2000 High-Performance Universal  
In-Circuit Emulator.................................................... 225  
MPLAB ICE 4000 High-Performance Universal  
In-Circuit Emulator.................................................... 225  
MPLAB Integrated Development Environment Software.. 223  
MPLAB PM3 Device Programmer .................................... 225  
MPLINK Object Linker/MPLIB Object Librarian................ 224  
© 2007 Microchip Technology Inc.  
DS41262D-page 285  
PIC16F631/677/685/687/689/690  
Interrupt-on-change .................................................... 69  
O
Pin Descriptions and Diagrams .................................. 71  
RB4............................................................................. 71  
RB5............................................................................. 72  
RB6............................................................................. 73  
RB7............................................................................. 74  
Registers .................................................................... 69  
PORTB Register................................................................. 69  
PORTC ............................................................................... 76  
Associated registers ................................................... 80  
P1A/P1B/P1C/P1D.See Enhanced Capture/  
Compare/PWM+ (ECCP+) ................................. 76  
RC0 ............................................................................ 77  
RC1 ............................................................................ 77  
RC2 ............................................................................ 77  
RC3 ............................................................................ 77  
RC4 ............................................................................ 78  
RC5 ............................................................................ 78  
RC6 ............................................................................ 79  
RC7 ............................................................................ 79  
Registers .................................................................... 76  
Specifications ........................................................... 240  
PORTC Register................................................................. 76  
Power-Down Mode (Sleep)............................................... 210  
Power-on Reset (POR)..................................................... 197  
Power-up Timer (PWRT) .................................................. 197  
Specifications ........................................................... 242  
Prescaler  
Shared WDT/Timer0................................................... 82  
Switching Prescaler Assignment ................................ 82  
Program Memory................................................................ 25  
Map and Stack...................................................... 25, 26  
Programming, Device Instructions.................................... 213  
PSTRCON Register.......................................................... 145  
Pulse Steering .................................................................. 145  
PWM (ECCP Module)  
Pulse Steering .......................................................... 145  
Steering Synchronization.......................................... 147  
PWM Mode. See Enhanced Capture/Compare/PWM...... 133  
PWMxCON Register......................................................... 144  
OPCODE Field Descriptions.............................................213  
OPTION Register.......................................................... 37, 83  
OSCCON Register..............................................................48  
Oscillator  
Associated registers.............................................. 58, 89  
Oscillator Module ................................................................47  
EC ...............................................................................47  
HFINTOSC..................................................................47  
HS...............................................................................47  
INTOSC ......................................................................47  
INTOSCIO...................................................................47  
LFINTOSC ..................................................................47  
LP................................................................................47  
RC...............................................................................47  
RCIO...........................................................................47  
XT ...............................................................................47  
Oscillator Parameters........................................................239  
Oscillator Specifications....................................................238  
Oscillator Start-up Timer (OST)  
Specifications............................................................242  
Oscillator Switching  
Fail-Safe Clock Monitor...............................................57  
Two-Speed Clock Start-up..........................................55  
OSCTUNE Register ............................................................52  
P
P (Stop) bit ........................................................................176  
P1A/P1B/P1C/P1D.See Enhanced Capture/  
Compare/PWM (ECCP)............................................133  
Packaging .........................................................................275  
Marking .....................................................................275  
PDIP Details..............................................................276  
PCL and PCLATH...............................................................44  
Stack...........................................................................44  
PCON Register ........................................................... 43, 199  
PICkit 2 Development Programmer ..................................226  
PICSTART Plus Development Programmer .....................226  
PIE1 Register......................................................................39  
PIE2 Register......................................................................40  
Pin Diagram ......................................................2, 3, 4, 5, 6, 7  
PIR1 Register......................................................................41  
PIR2 Register......................................................................42  
PORTA  
Additional Pin Functions .............................................60  
ANSEL Register..................................................60  
ANSELH Register ...............................................60  
Interrupt-on-Change............................................60  
Ultra Low-Power Wake-up............................ 60, 63  
Weak Pull-Up......................................................60  
Associated Registers ..................................................68  
Pin Descriptions and Diagrams...................................64  
RA0 .............................................................................64  
RA1 .............................................................................65  
RA2 .............................................................................65  
RA3 .............................................................................66  
RA4 .............................................................................66  
RA5 .............................................................................67  
Registers.....................................................................59  
Specifications............................................................240  
PORTA Register .................................................................59  
PORTB  
R
R/W bit.............................................................................. 176  
RCREG............................................................................. 156  
RCSTA Register ............................................................... 159  
Reader Response............................................................. 290  
Read-Modify-Write Operations ......................................... 213  
Receive Overflow Indicator bit (SSPOV) .......................... 177  
Register  
RCREG Register ...................................................... 165  
Registers  
ADCON0 (ADC Control 0)........................................ 113  
ADCON1 (ADC Control 1)........................................ 114  
ADRESH (ADC Result High) with ADFM = 0) .......... 115  
ADRESH (ADC Result High) with ADFM = 1) .......... 115  
ADRESL (ADC Result Low) with ADFM = 0)............ 115  
ADRESL (ADC Result Low) with ADFM = 1)............ 115  
ANSEL (Analog Select) .............................................. 61  
ANSELH (Analog Select High) ................................... 61  
BAUDCTL (Baud Rate Control)................................ 160  
CCPxCON (Enhanced CCPx Control)...................... 127  
CM1CON0 (C1 Control).............................................. 98  
CM2CON0 (C2 Control).............................................. 99  
CM2CON1 (C2 Control)............................................ 101  
CONFIG (Configuration Word) ................................. 195  
ECCPAS (Enhanced CCP Auto-shutdown Control) . 141  
Additional Pin Functions .............................................69  
Weak Pull-Up......................................................69  
Associated Registers ..................................................75  
DS41262D-page 286  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
EEADR (EEPROM Address) .................................... 120  
SPI Mode.................................................................. 175, 181  
Associated Registers................................................ 183  
Bus Mode Compatibility............................................ 183  
Effects of a Reset ..................................................... 183  
Enabling SPI I/O....................................................... 179  
Master Mode............................................................. 180  
Master/Slave Connection ......................................... 179  
Serial Clock (SCK pin).............................................. 175  
Serial Data In (SDI pin)............................................. 175  
Serial Data Out (SDO pin)........................................ 175  
Slave Select.............................................................. 175  
Slave Select Synchronization................................... 181  
Sleep Operation........................................................ 183  
SPI Clock.................................................................. 180  
Typical Connection................................................... 179  
SRCON Register .............................................................. 103  
SSP  
EECON1 (EEPROM Control 1)................................. 121  
EEDAT (EEPROM Data) .......................................... 120  
EEDATH (EEPROM Data)........................................ 120  
INTCON (Interrupt Control)......................................... 38  
IOCA (Interrupt-on-Change PORTA).......................... 62  
IOCB (Interrupt-on-Change PORTB).......................... 70  
OPTION_REG (OPTION) ..................................... 37, 83  
OSCCON (Oscillator Control) ..................................... 48  
OSCTUNE (Oscillator Tuning).................................... 52  
PCON (Power Control Register)................................. 43  
PCON (Power Control) ............................................. 199  
PIE1 (Peripheral Interrupt Enable 1)........................... 39  
PIE2 (Peripheral Interrupt Enable 2)........................... 40  
PIR1 (Peripheral Interrupt Register 1) ........................ 41  
PIR2 (Peripheral Interrupt Request 2) ........................ 42  
PORTA........................................................................ 59  
PORTB........................................................................ 69  
PORTC ....................................................................... 76  
PSTRCON (Pulse Steering Control)......................... 145  
PWMxCON (Enhanced PWM Control) ..................... 144  
RCSTA (Receive Status and Control)....................... 159  
Reset Values............................................................. 201  
Reset Values (special registers) ............................... 203  
Special Function Register Map  
Overview  
SPI Master/Slave Connection................................... 179  
2
SSP I C Operation ........................................................... 184  
Slave Mode............................................................... 184  
SSP Module  
Clock Synchronization and the CKP Bit ................... 191  
SPI Master Mode...................................................... 180  
SPI Slave Mode........................................................ 181  
SSPBUF ................................................................... 180  
SSPSR ..................................................................... 180  
SSPCON Register ............................................................ 177  
SSPEN bit......................................................................... 177  
SSPM bits......................................................................... 177  
SSPMSK Register ............................................................ 187  
SSPOV bit ........................................................................ 177  
SSPSTAT Register........................................................... 176  
STATUS Register ............................................................... 36  
Synchronous Serial Port Enable bit (SSPEN) .................. 177  
Synchronous Serial Port Mode Select bits (SSPM).......... 177  
Synchronous Serial Port. See SSP  
PIC16F677.......................................................... 28  
PIC16F685.................................................... 27, 29  
PIC16F687/689................................................... 30  
PIC16F690.......................................................... 31  
Special Function Registers ......................................... 26  
Special Register Summary  
Bank 0................................................................. 32  
Bank 1................................................................. 33  
Bank 2................................................................. 34  
Bank 3................................................................. 35  
SRCON (SR Latch Control) ...................................... 103  
SSPCON (Sync Serial Port Control) Register........... 177  
SSPMSK (SSP Mask)............................................... 187  
SSPSTAT (Sync Serial Port Status) Register........... 176  
STATUS...................................................................... 36  
T1CON........................................................................ 88  
T2CON........................................................................ 92  
TRISA (Tri-State PORTA)........................................... 59  
TRISB (Tri-State PORTB)........................................... 70  
TRISC (Tri-State PORTC) .......................................... 76  
TXSTA (Transmit Status and Control) ...................... 158  
VRCON (Voltage Reference Control) ....................... 106  
WDTCON (Watchdog Timer Control) ....................... 209  
WPUA (Weak Pull-Up PORTA) .................................. 62  
WPUB (Weak Pull-up PORTB)................................... 70  
Reset................................................................................. 196  
Revision History................................................................ 281  
T
T1CON Register ................................................................. 88  
T2CON Register ................................................................. 92  
Thermal Considerations.................................................... 236  
Time-out Sequence .......................................................... 199  
Timer0 ................................................................................ 81  
Associated Registers.................................................. 83  
External Clock ............................................................ 82  
Interrupt ...................................................................... 83  
Operation.............................................................. 81, 84  
Specifications ........................................................... 243  
T0CKI ......................................................................... 82  
Timer1 ................................................................................ 84  
Associated registers ................................................... 89  
Asynchronous Counter Mode..................................... 85  
Reading and Writing........................................... 85  
Interrupt ...................................................................... 86  
Modes of Operation.................................................... 84  
Operation During Sleep.............................................. 86  
Oscillator..................................................................... 85  
Prescaler .................................................................... 85  
Specifications ........................................................... 243  
Timer1 Gate  
S
S (Start) bit........................................................................ 176  
Shoot-through Current ...................................................... 143  
Slave Select Synchronization ........................................... 181  
Sleep................................................................................. 210  
Wake-up.................................................................... 210  
Wake-up Using Interrupts ......................................... 210  
SMP bit ............................................................................. 176  
Software Simulator (MPLAB SIM)..................................... 224  
SPBRG ............................................................................. 161  
SPBRGH........................................................................... 161  
Special Event Trigger........................................................ 111  
Special Function Registers ................................................. 26  
Inverting Gate..................................................... 86  
Selecting Source ........................................ 85, 101  
Synchronizing COUT w/Timer1........................ 101  
TMR1H Register......................................................... 84  
TMR1L Register ......................................................... 84  
© 2007 Microchip Technology Inc.  
DS41262D-page 287  
PIC16F631/677/685/687/689/690  
Timer2  
Associated registers....................................................92  
Timers  
Timer1  
T1CON................................................................88  
Timer2  
T2CON................................................................92  
Timing Diagrams  
A/D Conversion.........................................................253  
Timing Parameter Symbology .......................................... 237  
Timing Requirements  
2
I C Bus Data............................................................. 251  
I2C Bus Start/Stop Bits............................................. 250  
SPI Mode.................................................................. 249  
TRISA  
Registers .................................................................... 59  
TRISA Register................................................................... 59  
TRISB  
A/D Conversion (Sleep Mode) ..................................254  
Asynchronous Reception ..........................................156  
Asynchronous Transmission.....................................152  
Asynchronous Transmission (Back to Back) ............152  
Auto Wake-up Bit (WUE) During Normal Operation .166  
Auto Wake-up Bit (WUE) During Sleep ....................167  
Automatic Baud Rate Calculator...............................165  
Brown-out Reset (BOR)............................................241  
Brown-out Reset Situations ......................................198  
CLKOUT and I/O.......................................................240  
Clock Synchronization ..............................................192  
Clock Timing .............................................................238  
Comparator Output .....................................................93  
Enhanced Capture/Compare/PWM (ECCP).............244  
EUSART Synchronous Receive (Master/Slave) .......246  
EUSART Synchronous Transmission  
Registers .................................................................... 69  
TRISB Register................................................................... 70  
TRISC  
Registers .................................................................... 76  
TRISC Register................................................................... 76  
Two-Speed Clock Start-up Mode........................................ 55  
TXREG ............................................................................. 151  
TXSTA Register................................................................ 158  
BRGH Bit .................................................................. 161  
U
UA..................................................................................... 176  
Ultra Low-Power Wake-up.............. 14, 16, 18, 20, 22, 60, 63  
Update Address bit, UA .................................................... 176  
V
Voltage Reference (VR)  
Specifications ........................................................... 245  
Voltage Reference. See Comparator  
Voltage Reference (CVREF)  
Voltage References  
Associated registers ................................................. 106  
VP6 Stabilization ...................................................... 105  
VRCON Register .............................................................. 106  
VREF. SEE ADC Reference Voltage  
(Master/Slave)...................................................246  
Fail-Safe Clock Monitor (FSCM).................................58  
Full-Bridge PWM Output ...........................................138  
Half-Bridge PWM Output .................................. 136, 143  
2
I C Bus Data.............................................................250  
2
I C Bus Start/Stop Bits..............................................249  
2
I C Reception (7-bit Address)...................................186  
2
I C Slave Mode (Transmission, 10-bit Address).......190  
2
I C Slave Mode with SEN = 0 (Reception,  
10-bit Address)..................................................188  
I C Transmission (7-bit Address)..............................189  
W
2
Wake-up on Break............................................................ 166  
Wake-up Using Interrupts................................................. 210  
Watchdog Timer (WDT).................................................... 208  
Associated registers ................................................. 209  
Clock Source ............................................................ 208  
Modes....................................................................... 208  
Period ....................................................................... 208  
Specifications ........................................................... 242  
WCOL bit .......................................................................... 177  
WDTCON Register ........................................................... 209  
WPUA Register................................................................... 62  
WPUB Register................................................................... 70  
Write Collision Detect bit (WCOL) .................................... 177  
WWW Address ................................................................. 289  
WWW, On-Line Support ....................................................... 8  
INT Pin Interrupt........................................................206  
Internal Oscillator Switch Timing.................................54  
PWM Auto-shutdown  
Auto-restart Enabled.........................................142  
Firmware Restart ..............................................142  
PWM Direction Change ............................................139  
PWM Direction Change at Near 100% Duty Cycle ...140  
PWM Output (Active-High)........................................134  
PWM Output (Active-Low) ........................................135  
Reset, WDT, OST and Power-up Timer ...................241  
Send Break Character Sequence .............................168  
Slave Synchronization ..............................................181  
SPI Master Mode (CKE = 1, SMP = 1) .....................247  
SPI Mode (Master Mode)..........................................180  
SPI Mode (Slave Mode with CKE = 0)......................182  
SPI Mode (Slave Mode with CKE = 1)......................182  
SPI Slave Mode (CKE = 0) .......................................248  
SPI Slave Mode (CKE = 1) .......................................248  
Synchronous Reception (Master Mode, SREN) .......172  
Synchronous Transmission.......................................170  
Synchronous Transmission (Through TXEN) ...........170  
Time-out Sequence  
Case 1...............................................................200  
Case 2...............................................................200  
Case 3...............................................................200  
Timer0 and Timer1 External Clock ...........................243  
Timer1 Incrementing Edge..........................................87  
Two Speed Start-up ....................................................56  
Wake-up from Interrupt .............................................211  
DS41262D-page 288  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change  
Notification and follow the registration instructions.  
© 2007 Microchip Technology Inc.  
DS41262D-page 289  
PIC16F631/677/685/687/689/690  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
PIC16F631/677/685/687/689/690  
DS41262D  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS41262D-page 290  
© 2007 Microchip Technology Inc.  
PIC16F631/677/685/687/689/690  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature  
Range  
Package  
Pattern  
a)  
b)  
PIC16F685 - I/ML 301 = Industrial temp., QFN  
package, QTP pattern #301.  
PIC16F689 - I/SO = Industrial temp., SOIC  
package.  
c)  
PIC16F690T - T/E/SS = Extended temp.,  
SSOP package.  
Device:  
PIC16F631(1), PIC16F677(1), PIC16F685(1)  
,
PIC16F687(1), PIC16F689(1), PIC16F690(1)  
VDD range 2.0V to 5.5V  
;
Temperature Range:  
Package:  
I
E
=
=
-40°C to +85°C (Industrial)  
-40°C to +125°C (Extended)  
ML  
P
SO  
SS  
=
=
=
=
QFN (Quad Flat, no lead)  
PDIP  
SOIC  
SSOP  
Note 1:  
T = in tape and reel SSOP, SOIC and  
QFN packages only.  
Pattern:  
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
© 2007 Microchip Technology Inc.  
DS41262D-page 291  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Habour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
12/08/06  
DS41262D-page 292  
© 2007 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY