PIC16F7XISSSQTP [MICROCHIP]

28/40-pin, 8-bit CMOS FLASH Microcontrollers;
PIC16F7XISSSQTP
型号: PIC16F7XISSSQTP
厂家: MICROCHIP    MICROCHIP
描述:

28/40-pin, 8-bit CMOS FLASH Microcontrollers

微控制器
文件: 总174页 (文件大小:4284K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M
PIC16F7X  
Data Sheet  
28/40-pin, 8-bit CMOS FLASH  
Microcontrollers  
2002 Microchip Technology Inc.  
DS30325B  
®
Note the following details of the code protection feature on PICmicro MCUs.  
The PICmicro family meets the specifications contained in the Microchip Data Sheet.  
Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,  
when used in the intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-  
edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.  
The person doing so may be engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as unbreakable.  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of  
our product.  
If you have any further questions about this matter, please contact the local sales office nearest to you.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical com-  
ponents in life support systems is not authorized except with  
express written approval by Microchip. No licenses are con-  
veyed, implicitly or otherwise, under any intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, FilterLab,  
KEELOQ, MPLAB, PIC, PICmicro, PICMASTER, PICSTART,  
PRO MATE, SEEVAL and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, microID,  
microPort, Migratable Memory, MPASM, MPLIB, MPLINK,  
MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select  
Mode and Total Endurance are trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Serialized Quick Term Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2002, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999. The  
Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs and microperipheral  
products. In addition, Microchips quality  
system for the design and manufacture of  
development systems is ISO 9001 certified.  
DS30325B - page ii  
2002 Microchip Technology Inc.  
PIC16F7X  
M
28/40-Pin 8-Bit CMOS FLASH Microcontrollers  
Devices Included in this Data Sheet:  
Peripheral Features:  
Timer0: 8-bit timer/counter with 8-bit prescaler  
PIC16F73  
PIC16F74  
PIC16F76  
PIC16F77  
Timer1: 16-bit timer/counter with prescaler,  
can be incremented during SLEEP via external  
crystal/clock  
High Performance RISC CPU:  
Timer2: 8-bit timer/counter with 8-bit period  
register, prescaler and postscaler  
High performance RISC CPU  
Only 35 single word instructions to learn  
Two Capture, Compare, PWM modules  
- Capture is 16-bit, max. resolution is 12.5 ns  
- Compare is 16-bit, max. resolution is 200 ns  
- PWM max. resolution is 10-bit  
All single cycle instructions except for program  
branches which are two-cycle  
Operating speed: DC - 20 MHz clock input  
DC - 200 ns instruction cycle  
8-bit, up to 8-channel Analog-to-Digital converter  
Up to 8K x 14 words of FLASH Program Memory,  
Up to 368 x 8 bytes of Data Memory (RAM)  
Synchronous Serial Port (SSP) with SPI(Master  
mode) and I2C(Slave)  
Pinout compatible to the PIC16C73B/74B/76/77  
Pinout compatible to the PIC16F873/874/876/877  
Interrupt capability (up to 12 sources)  
Universal Synchronous Asynchronous Receiver  
Transmitter (USART/SCI)  
Parallel Slave Port (PSP), 8-bits wide with  
external RD, WR and CS controls (40/44-pin only)  
Eight level deep hardware stack  
Direct, Indirect and Relative Addressing modes  
Processor read access to program memory  
Brown-out detection circuitry for  
Brown-out Reset (BOR)  
Special Microcontroller Features:  
CMOS Technology:  
Power-on Reset (POR)  
Low power, high speed CMOS FLASH technology  
Fully static design  
Power-up Timer (PWRT) and  
Oscillator Start-up Timer (OST)  
Wide operating voltage range: 2.0V to 5.5V  
High Sink/Source Current: 25 mA  
Industrial temperature range  
Low power consumption:  
Watchdog Timer (WDT) with its own on-chip RC  
oscillator for reliable operation  
Programmable code protection  
Power saving SLEEP mode  
Selectable oscillator options  
- < 2 mA typical @ 5V, 4 MHz  
- 20 µA typical @ 3V, 32 kHz  
- < 1 µA typical standby current  
In-Circuit Serial Programming(ICSP) via two  
pins  
SSP  
Program Memory  
(# Single Word  
Instructions)  
Data  
SRAM  
(Bytes)  
8-bit  
A/D (ch) (PWM)  
CCP  
Timers  
8/16-bit  
Device  
I/O  
Interrupts  
USART  
2
SPI  
I C  
(Master) (Slave)  
PIC16F73  
PIC16F74  
PIC16F76  
PIC16F77  
4096  
4096  
8192  
8192  
192  
192  
368  
368  
22  
33  
22  
33  
11  
12  
11  
12  
5
8
5
8
2
2
2
2
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
2 / 1  
2 / 1  
2 / 1  
2 / 1  
2002 Microchip Technology Inc.  
DS30325B-page 1  
PIC16F7X  
Pin Diagrams  
DIP, SOIC, SSOP  
28  
27  
26  
1
2
3
4
5
6
7
8
9
RB7/PGD  
RB6/PGC  
RB5  
RB4  
RB3/PGM  
RB2  
RB1  
RB0/INT  
VDD  
MCLR/VPP  
RA0/AN0  
RA1/AN1  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
RA5/AN4/SS  
VSS  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
VSS  
10  
11  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
RC4/SDI/SDA  
12  
13  
14  
RC3/SCK/SCL  
MLF  
24  
25  
27 26  
23 22  
21  
28  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
RA5/AN4/SS  
VSS  
1
2
3
4
5
6
7
RB3/PGM  
RB2  
RB1  
RB0/INT  
VDD  
VSS  
20  
19  
18  
17  
16  
15  
PIC16F73  
PIC16F76  
OSC1/CLKI  
OSC2/CLKO  
RC7/RX/DT  
8
9 10 11 1213 14  
PDIP  
MCLR/VPP  
RA0/AN0  
1
2
3
4
5
6
7
8
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
RB7/PGD  
RB6/PGC  
RB5  
RB4  
RB3/PGM  
RB2  
RA1/AN1  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
RA5/AN4/SS  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
VDD  
RB1  
RB0/INT  
VDD  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VSS  
RD7/PSP7  
RD6/PSP6  
RD5/PSP5  
RD4/PSP4  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
VSS  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
RC3/SCK/SCL  
RD0/PSP0  
RC4/SDI/SDA  
RD3/PSP3  
RD2/PSP2  
RD1/PSP1  
DS30325B-page 2  
2002 Microchip Technology Inc.  
PIC16F7X  
Pin Diagrams (Continued)  
PLCC  
RA4/T0CKI  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
RB3/PGM  
RB2  
7
RA5/AN4/SS  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
VDD  
8
RB1  
9
RB0/INT  
VDD  
VSS  
RD7/PSP7  
RD6/PSP6  
RD5/PSP5  
RD4/PSP4  
RC7/RX/DT  
10  
11  
12  
13  
14  
15  
PIC16F77  
PIC16F74  
VSS  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CK1  
NC  
16  
17  
QFP  
NC  
33  
1
2
3
4
5
6
7
8
9
RC7/RX/DT  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
VSS  
VDD  
RB0/INT  
RB1  
RB2  
RB3/PGM  
RC0/T1OSO/T1CKI  
32  
31  
30  
29  
28  
27  
26  
OSC2/CLKOUT  
OSC1/CLKIN  
VSS  
PIC16F77  
PIC16F74  
VDD  
RE2/AN7/CS  
RE1/AN6/WR  
RE0/AN5/RD  
RA5/AN4/SS  
RA4/T0CKI  
25  
24  
23  
10  
11  
2002 Microchip Technology Inc.  
DS30325B-page 3  
PIC16F7X  
Table of Contents  
1.0 Device Overview......................................................................................................................................................................... 5  
2.0 Memory Organization................................................................................................................................................................ 13  
3.0 Reading Program Memory........................................................................................................................................................ 29  
4.0 I/O Ports.................................................................................................................................................................................... 31  
5.0 Timer0 Module.......................................................................................................................................................................... 43  
6.0 Timer1 Module.......................................................................................................................................................................... 47  
7.0 Timer2 Module.......................................................................................................................................................................... 51  
8.0 Capture/Compare/PWM Modules............................................................................................................................................. 53  
9.0 Synchronous Serial Port (SSP) Module.................................................................................................................................... 59  
10.0 Universal Synchronous Asynchronous Receiver Transmitter (USART) ................................................................................... 69  
11.0 Analog-to-Digital Converter (A/D) Module ................................................................................................................................ 83  
12.0 Special Features of the CPU .................................................................................................................................................... 89  
13.0 Instruction Set Summary......................................................................................................................................................... 105  
14.0 Development Support ............................................................................................................................................................. 113  
15.0 Electrical Characteristics......................................................................................................................................................... 119  
16.0 DC and AC Characteristics Graphs and Tables ..................................................................................................................... 141  
17.0 Packaging Information ............................................................................................................................................................ 151  
Appendix A: Revision History ........................................................................................................................................................ 161  
Appendix B: Device Differences .................................................................................................................................................... 161  
Appendix C: Conversion Considerations ....................................................................................................................................... 162  
Index ................................................................................................................................................................................................. 163  
On-Line Support................................................................................................................................................................................ 169  
Reader Response ............................................................................................................................................................................. 170  
PIC16F7X Product Identification System.......................................................................................................................................... 171  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@mail.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150.  
We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchips Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include liter-  
ature number) you are using.  
Customer Notification System  
Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.  
DS30325B-page 4  
2002 Microchip Technology Inc.  
PIC16F7X  
The available features are summarized in Table 1-1.  
Block diagrams of the PIC16F73/76 and PIC16F74/77  
devices are provided in Figure 1-1 and Figure 1-2,  
respectively. The pinouts for these device families are  
listed in Table 1-2 and Table 1-3.  
1.0  
DEVICE OVERVIEW  
This document contains device specific information  
about the following devices:  
PIC16F73  
PIC16F74  
PIC16F76  
PIC16F77  
Additional information may be found in the PICmicro™  
Mid-Range Reference Manual (DS33023), which may  
be obtained from your local Microchip Sales Represen-  
tative or downloaded from the Microchip website. The  
Reference Manual should be considered a complemen-  
tary document to this data sheet, and is highly recom-  
mended reading for a better understanding of the device  
architecture and operation of the peripheral modules.  
PIC16F73/76 devices are available only in 28-pin pack-  
ages, while PIC16F74/77 devices are available in  
40-pin and 44-pin packages. All devices in the  
PIC16F7X family share common architecture, with the  
following differences:  
The PIC16F73 and PIC16F76 have one-half of  
the total on-chip memory of the PIC16F74 and  
PIC16F77  
The 28-pin devices have 3 I/O ports, while the  
40/44-pin devices have 5  
The 28-pin devices have 11 interrupts, while the  
40/44-pin devices have 12  
The 28-pin devices have 5 A/D input channels,  
while the 40/44-pin devices have 8  
The Parallel Slave Port is implemented only on  
the 40/44-pin devices  
TABLE 1-1:  
PIC16F7X DEVICE FEATURES  
Key Features  
PIC16F73  
PIC16F74  
PIC16F76  
PIC16F77  
Operating Frequency  
RESETS (and Delays)  
DC - 20 MHz  
DC - 20 MHz  
DC - 20 MHz  
DC - 20 MHz  
POR, BOR  
POR, BOR  
POR, BOR  
POR, BOR  
(PWRT, OST)  
(PWRT, OST)  
(PWRT, OST)  
(PWRT, OST)  
FLASH Program Memory  
(14-bit words)  
4K  
4K  
8K  
8K  
Data Memory (bytes)  
Interrupts  
192  
192  
368  
368  
11  
12  
11  
12  
I/O Ports  
Ports A,B,C  
Ports A,B,C,D,E  
Ports A,B,C  
Ports A,B,C,D,E  
Timers  
3
3
3
3
Capture/Compare/PWM Modules  
Serial Communications  
Parallel Communications  
8-bit Analog-to-Digital Module  
Instruction Set  
2
SSP, USART  
2
2
SSP, USART  
2
SSP, USART  
PSP  
SSP, USART  
PSP  
5 Input Channels 8 Input Channels 5 Input Channels 8 Input Channels  
35 Instructions  
35 Instructions  
35 Instructions  
35 Instructions  
Packaging  
28-pin DIP  
28-pin SOIC  
28-pin SSOP  
28-pin MLF  
40-pin PDIP  
44-pin PLCC  
44-pin TQFP  
28-pin DIP  
28-pin SOIC  
28-pin SSOP  
28-pin MLF  
40-pin PDIP  
44-pin PLCC  
44-pin TQFP  
2002 Microchip Technology Inc.  
DS30325B-page 5  
PIC16F7X  
FIGURE 1-1:  
PIC16F73 AND PIC16F76 BLOCK DIAGRAM  
13  
8
PORTA  
PORTB  
PORTC  
Data Bus  
Program Counter  
RA0/AN0  
RA1/AN1  
RA2/AN2/  
FLASH  
Program  
Memory  
RAM  
File  
Registers  
8 Level Stack  
(13-bit)  
RA3/AN3/VREF  
RA4/T0CKI  
RA5/AN4/SS  
Program  
Bus  
14  
RAM Addr(1)  
9
RB0/INT  
RB1  
Addr MUX  
Instruction reg  
RB2  
RB3/PGM  
RB4  
RB5  
RB6/PGC  
RB7/PGD  
Indirect  
Addr  
7
Direct Addr  
8
FSR reg  
STATUS reg  
8
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
3
MUX  
Power-up  
Timer  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
RC6/TX/CK  
RC7/RX/DT  
Oscillator  
Instruction  
Decode &  
Control  
Start-up Timer  
ALU  
Power-on  
Reset  
8
Timing  
Generation  
Watchdog  
Timer  
W reg  
OSC1/CLKIN  
OSC2/CLKOUT  
Brown-out  
Reset  
MCLR VDD, VSS  
Timer0  
CCP1  
Timer1  
CCP2  
Timer2  
8-bit A/D  
Synchronous  
Serial Port  
USART  
Device  
Program FLASH  
Data Memory  
PIC16F73  
PIC16F76  
4K  
8K  
192 Bytes  
368 Bytes  
Note 1: Higher order bits are from the STATUS register.  
DS30325B-page 6  
2002 Microchip Technology Inc.  
PIC16F7X  
FIGURE 1-2:  
PIC16F74 AND PIC16F77 BLOCK DIAGRAM  
13  
8
PORTA  
Data Bus  
RAM  
Program Counter  
RA0/AN0  
RA1/AN1  
RA2/AN2  
FLASH  
Program  
Memory  
RA3/AN3/VREF  
RA4/T0CKI  
RA5/AN4/SS  
8 Level Stack  
(13-bit)  
File  
Registers  
Program  
Bus  
14  
RAM Addr(1)  
PORTB  
9
RB0/INT  
RB1  
RB2  
RB3/PGM  
RB4  
Addr MUX  
Instruction reg  
Indirect  
Addr  
7
Direct Addr  
8
RB5  
FSR reg  
RB6/PGC  
RB7/PGD  
STATUS reg  
8
PORTC  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
3
MUX  
Power-up  
Timer  
Oscillator  
Start-up Timer  
Instruction  
Decode &  
Control  
ALU  
RC6/TX/CK  
RC7/RX/DT  
Power-on  
Reset  
8
PORTD  
Timing  
Generation  
Watchdog  
Timer  
W reg  
RD0/PSP0  
RD1/PSP1  
RD2/PSP2  
OSC1/CLKIN  
OSC2/CLKOUT  
Brown-out  
Reset  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
MCLR VDD, VSS  
PORTE  
RE0/AN5/RD  
RE1/AN6/WR  
RE2/AN7/CS  
Timer0  
CCP1  
Timer1  
CCP2  
Timer2  
8-bit A/D  
Synchronous  
Serial Port  
USART  
Parallel Slave Port  
Device  
Program FLASH  
Data Memory  
192 Bytes  
PIC16F74  
PIC16F77  
4K  
8K  
368 Bytes  
Note 1: Higher order bits are from the STATUS register.  
2002 Microchip Technology Inc.  
DS30325B-page 7  
PIC16F7X  
TABLE 1-2:  
PIC16F73 AND PIC16F76 PINOUT DESCRIPTION  
DIP  
SSOP  
SOIC  
Pin#  
MLF  
Pin#  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Description  
(3)  
OSC1/CLKI  
OSC1  
9
6
ST/CMOS  
Oscillator crystal or external clock input.  
I
I
Oscillator crystal input or external clock source input. ST  
buffer when configured in RC mode. Otherwise CMOS.  
External clock source input. Always associated with pin  
function OSC1 (see OSC1/CLKI, OSC2/CLKO pins).  
CLKI  
OSC2/CLKO  
OSC2  
10  
7
Oscillator crystal or clock output.  
O
O
Oscillator crystal output.  
Connects to crystal or resonator in Crystal Oscillator  
mode.  
In RC mode, OSC2 pin outputs CLKO, which has 1/4 the  
frequency of OSC1 and denotes the instruction cycle rate.  
CLKO  
MCLR/VPP  
MCLR  
1
26  
ST  
Master Clear (input) or programming voltage (output).  
Master Clear (Reset) input. This pin is an active low  
RESET to the device.  
I
VPP  
P
Programming voltage input.  
PORTA is a bi-directional I/O port.  
RA0/AN0  
RA0  
2
3
4
5
27  
28  
1
TTL  
TTL  
TTL  
TTL  
I/O  
I
Digital I/O.  
Analog input 0.  
AN0  
RA1/AN1  
RA1  
I/O  
I
Digital I/O.  
Analog input 1.  
AN1  
RA2/AN2  
RA2  
I/O  
I
Digital I/O.  
Analog input 2.  
AN2  
RA3/AN3/VREF  
RA3  
2
I/O  
Digital I/O.  
AN3  
VREF  
I
I
Analog input 3.  
A/D reference voltage input.  
RA4/T0CKI  
RA4  
6
7
4
5
ST  
I/O  
I
Digital I/O Open drain when configured as output.  
Timer0 external clock input.  
T0CKI  
RA5/SS/AN4  
RA5  
TTL  
I/O  
Digital I/O.  
SS  
AN4  
I
I
SPI slave select input.  
Analog input 4.  
Legend:  
I = input  
= Not used  
O = output  
TTL = TTL input  
I/O = input/output  
ST = Schmitt Trigger input  
P = power  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.  
DS30325B-page 8  
2002 Microchip Technology Inc.  
PIC16F7X  
TABLE 1-2:  
PIC16F73 AND PIC16F76 PINOUT DESCRIPTION (CONTINUED)  
DIP  
SSOP  
SOIC  
Pin#  
MLF  
Pin#  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTB is a bi-directional I/O port. PORTB can be software  
programmed for internal weak pull-up on all inputs.  
(1)  
RB0/INT  
RB0  
21  
18  
TTL/ST  
I/O  
I
Digital I/O.  
External interrupt.  
INT  
I/O  
I/O  
RB1  
RB2  
22  
23  
24  
19  
20  
21  
TTL  
TTL  
TTL  
Digital I/O.  
Digital I/O.  
RB3/PGM  
RB3  
I/O  
I/O  
Digital I/O.  
PGM  
Low voltage ICSP programming enable pin.  
I/O  
I/O  
RB4  
RB5  
25  
26  
27  
22  
23  
24  
TTL  
TTL  
Digital I/O.  
Digital I/O.  
(2)  
(2)  
RB6/PGC  
RB6  
TTL/ST  
I/O  
I/O  
Digital I/O.  
PGC  
In-Circuit Debugger and ICSP programming clock.  
RB7/PGD  
RB7  
28  
25  
TTL/ST  
I/O  
I/O  
Digital I/O.  
PGD  
In-Circuit Debugger and ICSP programming data.  
PORTC is a bi-directional I/O port.  
RC0/T1OSO/T1CKI  
RC0  
11  
12  
8
9
ST  
ST  
I/O  
O
I
Digital I/O.  
Timer1 oscillator output.  
Timer1 external clock input.  
T1OSO  
T1CKI  
RC1/T1OSI/CCP2  
RC1  
I/O  
I
Digital I/O.  
Timer1 oscillator input.  
T1OSI  
CCP2  
I/O  
Capture2 input, Compare2 output, PWM2 output.  
RC2/CCP1  
RC2  
13  
14  
10  
11  
ST  
ST  
I/O  
I/O  
Digital I/O.  
CCP1  
Capture1 input/Compare1 output/PWM1 output.  
RC3/SCK/SCL  
RC3  
I/O  
I/O  
I/O  
Digital I/O.  
SCK  
SCL  
Synchronous serial clock input/output for SPI mode.  
Synchronous serial clock input/output for I C mode.  
2
RC4/SDI/SDA  
RC4  
15  
12  
ST  
I/O  
I
I/O  
Digital I/O.  
SDI  
SDA  
SPI data in.  
2
I C data I/O.  
RC5/SDO  
RC5  
16  
17  
13  
14  
ST  
ST  
I/O  
O
Digital I/O.  
SPI data out.  
SDO  
RC6/TX/CK  
RC6  
TX  
CK  
I/O  
O
I/O  
Digital I/O.  
USART asynchronous transmit.  
USART 1 synchronous clock.  
RC7/RX/DT  
18  
15  
ST  
RC7  
RX  
DT  
I/O  
I
I/O  
Digital I/O.  
USART asynchronous receive.  
USART synchronous data.  
VSS  
VDD  
8, 19  
20  
5, 16  
P
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
17  
Legend:  
I = input  
= Not used  
O = output  
TTL = TTL input  
I/O = input/output  
ST = Schmitt Trigger input  
P = power  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.  
2002 Microchip Technology Inc.  
DS30325B-page 9  
PIC16F7X  
TABLE 1-3:  
PIC16F74 AND PIC16F77 PINOUT DESCRIPTION  
DIP  
Pin#  
PLCC  
Pin#  
QFP  
Pin#  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Description  
(4)  
OSC1/CLKI  
OSC1  
13  
14  
30  
ST/CMOS  
Oscillator crystal or external clock input.  
Oscillator crystal input or external clock source input.  
ST buffer when configured in RC mode. Otherwise  
CMOS.  
I
I
CLKI  
External clock source input. Always associated with pin  
function OSC1 (see OSC1/CLKI, OSC2/CLKO pins).  
OSC2/CLKO  
OSC2  
14  
15  
31  
Oscillator crystal or clock output.  
Oscillator crystal output.  
O
O
Connects to crystal or resonator in Crystal Oscillator  
mode.  
In RC mode, OSC2 pin outputs CLKO, which has 1/4  
the frequency of OSC1 and denotes the instruction  
cycle rate.  
CLKO  
MCLR/VPP  
MCLR  
1
2
18  
ST  
Master Clear (input) or programming voltage (output).  
Master Clear (Reset) input. This pin is an active low  
RESET to the device.  
I
VPP  
P
Programming voltage input.  
PORTA is a bi-directional I/O port.  
RA0/AN0  
RA0  
2
3
4
5
3
4
5
6
19  
20  
21  
22  
TTL  
TTL  
TTL  
TTL  
I/O  
I
Digital I/O.  
Analog input 0.  
AN0  
RA1/AN1  
RA1  
I/O  
I
Digital I/O.  
Analog input 1.  
AN1  
RA2/AN2  
RA2  
I/O  
I
Digital I/O.  
Analog input 2.  
AN2  
RA3/AN3/VREF  
RA3  
I/O  
Digital I/O.  
AN3  
VREF  
I
I
Analog input 3.  
A/D reference voltage input.  
RA4/T0CKI  
RA4  
6
7
7
8
23  
24  
ST  
I/O  
I
Digital I/O Open drain when configured as output.  
Timer0 external clock input.  
T0CKI  
RA5/SS/AN4  
RA5  
TTL  
I/O  
Digital I/O.  
SS  
AN4  
I
I
SPI slave select input.  
Analog input 4.  
Legend:  
I = input  
= Not used  
O = output  
TTL = TTL input  
I/O = input/output  
ST = Schmitt Trigger input  
P = power  
Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel  
Slave Port mode (for interfacing to a microprocessor bus).  
4: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.  
DS30325B-page 10  
2002 Microchip Technology Inc.  
PIC16F7X  
TABLE 1-3:  
PIC16F74 AND PIC16F77 PINOUT DESCRIPTION (CONTINUED)  
DIP  
Pin#  
PLCC  
Pin#  
QFP  
Pin#  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTB is a bi-directional I/O port. PORTB can be software  
programmed for internal weak pull-up on all inputs.  
(1)  
RB0/INT  
RB0  
33  
36  
8
TTL/ST  
I/O  
I
Digital I/O.  
External interrupt.  
INT  
I/O  
I/O  
RB1  
RB2  
34  
35  
36  
37  
38  
39  
9
TTL  
TTL  
TTL  
Digital I/O.  
Digital I/O.  
10  
11  
RB3/PGM  
RB3  
I/O  
I/O  
Digital I/O.  
PGM  
Low voltage ICSP programming enable pin.  
I/O  
I/O  
RB4  
RB5  
37  
38  
39  
41  
42  
43  
14  
15  
16  
TTL  
TTL  
Digital I/O.  
Digital I/O.  
(2)  
(2)  
RB6/PGC  
RB6  
TTL/ST  
I/O  
I/O  
Digital I/O.  
PGC  
In-Circuit Debugger and ICSP programming clock.  
RB7/PGD  
RB7  
40  
44  
17  
TTL/ST  
I/O  
I/O  
Digital I/O.  
PGD  
In-Circuit Debugger and ICSP programming data.  
PORTC is a bi-directional I/O port.  
RC0/T1OSO/T1CKI  
RC0  
15  
16  
16  
18  
32  
35  
ST  
ST  
I/O  
O
I
Digital I/O.  
Timer1 oscillator output.  
Timer1 external clock input.  
T1OSO  
T1CKI  
RC1/T1OSI/CCP2  
RC1  
I/O  
I
Digital I/O.  
Timer1 oscillator input.  
T1OSI  
CCP2  
I/O  
Capture2 input, Compare2 output, PWM2 output.  
RC2/CCP1  
RC2  
17  
18  
19  
20  
36  
37  
ST  
ST  
I/O  
I/O  
Digital I/O.  
CCP1  
Capture1 input/Compare1 output/PWM1 output  
RC3/SCK/SCL  
RC3  
I/O  
I/O  
I/O  
Digital I/O  
SCK  
SCL  
Synchronous serial clock input/output for SPI mode.  
Synchronous serial clock input/output for I C mode.  
2
RC4/SDI/SDA  
RC4  
23  
25  
42  
ST  
I/O  
I
I/O  
Digital I/O.  
SDI  
SDA  
SPI data in.  
2
I C data I/O.  
RC5/SDO  
RC5  
24  
25  
26  
27  
43  
44  
ST  
ST  
I/O  
O
Digital I/O.  
SPI data out.  
SDO  
RC6/TX/CK  
RC6  
TX  
CK  
I/O  
O
I/O  
Digital I/O.  
USART asynchronous transmit.  
USART 1 synchronous clock.  
RC7/RX/DT  
26  
29  
1
ST  
RC7  
RX  
DT  
I/O  
I
I/O  
Digital I/O.  
USART asynchronous receive.  
USART synchronous data.  
Legend:  
I = input  
= Not used  
O = output  
TTL = TTL input  
I/O = input/output  
ST = Schmitt Trigger input  
P = power  
Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel  
Slave Port mode (for interfacing to a microprocessor bus).  
4: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.  
2002 Microchip Technology Inc.  
DS30325B-page 11  
PIC16F7X  
TABLE 1-3:  
PIC16F74 AND PIC16F77 PINOUT DESCRIPTION (CONTINUED)  
DIP  
Pin#  
PLCC  
Pin#  
QFP  
Pin#  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTD is a bi-directional I/O port or parallel slave port  
when interfacing to a microprocessor bus.  
(3)  
RD0/PSP0  
RD0  
19  
20  
21  
22  
27  
28  
29  
30  
21  
22  
23  
24  
30  
31  
32  
33  
38  
39  
40  
41  
2
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
I/O  
I/O  
Digital I/O.  
Parallel Slave Port data.  
PSP0  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
RD1/PSP1  
RD1  
I
I/O  
I/O  
Digital I/O.  
Parallel Slave Port data.  
PSP1  
RD2/PSP2  
RD2  
I
I/O  
I/O  
Digital I/O.  
Parallel Slave Port data.  
PSP2  
RD3/PSP3  
RD3  
I/O  
I/O  
Digital I/O.  
Parallel Slave Port data.  
PSP3  
RD4/PSP4  
RD4  
I/O  
I/O  
Digital I/O.  
Parallel Slave Port data.  
PSP4  
RD5/PSP5  
RD5  
3
I/O  
I/O  
Digital I/O.  
Parallel Slave Port data.  
PSP5  
RD6/PSP6  
RD6  
4
I/O  
I/O  
Digital I/O.  
Parallel Slave Port data.  
PSP6  
RD7/PSP7  
RD7  
5
I/O  
I/O  
Digital I/O.  
Parallel Slave Port data.  
PSP7  
PORTE is a bi-directional I/O port.  
(3)  
(3)  
(3)  
RE0/RD/AN5  
RE0  
8
9
9
25  
26  
27  
ST/TTL  
ST/TTL  
ST/TTL  
I/O  
I
I
Digital I/O.  
Read control for parallel slave port .  
Analog input 5.  
RD  
AN5  
RE1/WR/AN6  
RE1  
10  
11  
I/O  
I
I
Digital I/O.  
Write control for parallel slave port .  
Analog input 6.  
WR  
AN6  
RE2/CS/AN7  
RE2  
10  
I/O  
Digital I/O.  
CS  
AN7  
I
I
Chip select control for parallel slave port .  
Analog input 7.  
VSS  
VDD  
NC  
12,31 13,34  
11,32 12,35  
6,29  
7,28  
P
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
1,17,2 12,13,  
8, 40 33, 34  
These pins are not internally connected. These pins should  
be left unconnected.  
Legend:  
I = input  
= Not used  
O = output  
TTL = TTL input  
I/O = input/output  
ST = Schmitt Trigger input  
P = power  
Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel  
Slave Port mode (for interfacing to a microprocessor bus).  
4: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.  
DS30325B-page 12  
2002 Microchip Technology Inc.  
PIC16F7X  
2.2  
Data Memory Organization  
2.0  
MEMORY ORGANIZATION  
The Data Memory is partitioned into multiple banks,  
which contain the General Purpose Registers and the  
Special Function Registers. Bits RP1 (STATUS<6>)  
and RP0 (STATUS<5>) are the bank select bits:  
There are two memory blocks in each of these  
PICmicro® MCUs. The Program Memory and Data  
Memory have separate buses so that concurrent  
access can occur and is detailed in this section. The  
Program Memory can be read internally by user code  
(see Section 3.0).  
RP1:RP0  
Bank  
00  
01  
10  
11  
0
1
2
3
Additional information on device memory may be found  
in the PICmicroMid-Range Reference Manual  
(DS33023).  
2.1  
Program Memory Organization  
Each bank extends up to 7Fh (128 bytes). The lower  
locations of each bank are reserved for the Special  
Function Registers. Above the Special Function Regis-  
ters are General Purpose Registers, implemented as  
static RAM. All implemented banks contain Special  
Function Registers. Some frequently used Special  
Function Registers from one bank may be mirrored in  
another bank for code reduction and quicker access.  
The PIC16F7X devices have a 13-bit program counter  
capable of addressing an 8K word x 14-bit program  
memory space. The PIC16F77/76 devices have  
8K words of FLASH program memory and the  
PIC16F73/74 devices have 4K words. The program  
memory maps for PIC16F7X devices are shown in  
Figure 2-1. Accessing a location above the physically  
implemented address will cause a wraparound.  
2.2.1  
GENERAL PURPOSE REGISTER  
FILE  
The RESET Vector is at 0000h and the Interrupt Vector  
is at 0004h.  
The register file (shown in Figure 2-2 and Figure 2-3)  
can be accessed either directly, or indirectly, through  
the File Select Register FSR.  
FIGURE 2-1:  
PROGRAM MEMORY MAPS AND STACKS FOR PIC16F7X DEVICES  
PIC16F76/77  
PIC16F73/74  
PC<12:0>  
PC<12:0>  
13  
13  
CALL, RETURN  
CALL, RETURN  
RETFIE, RETLW  
RETFIE, RETLW  
Stack Level 1  
Stack Level 2  
Stack Level 1  
Stack Level 2  
Stack Level 8  
Stack Level 8  
RESET Vector  
Interrupt Vector  
0000h  
0000h  
RESET Vector  
Interrupt Vector  
0004h  
0005h  
0004h  
0005h  
Page 0  
Page 0  
On-Chip  
Program  
Memory  
07FFh  
0800h  
07FFh  
0800h  
Page 1  
Page 2  
Page 3  
Page 1  
On-Chip  
Program  
Memory  
0FFFh  
1000h  
0FFFh  
1000h  
Unimplemented  
Read as 0’  
17FFh  
1800h  
1FFFh  
1FFFh  
2002 Microchip Technology Inc.  
DS30325B-page 13  
PIC16F7X  
FIGURE 2-2:  
PIC16F77/76 REGISTER FILE MAP  
File  
Address  
File  
Address  
File  
Address  
File  
Address  
Indirect addr.(*)  
Indirect addr.(*)  
OPTION_REG  
PCL  
Indirect addr.(*)  
80h  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
Indirect addr.(*)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
TMR0  
TMR0  
PCL  
OPTION_REG 81h  
PCL  
STATUS  
FSR  
PCL  
STATUS  
FSR  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
PORTD(1)  
PORTE(1)  
PCLATH  
INTCON  
PIR1  
TRISA  
TRISB  
TRISC  
TRISD(1)  
TRISE(1)  
TRISB  
PORTB  
PCLATH  
INTCON  
PCLATH  
INTCON  
PMCON1  
PCLATH  
INTCON  
PIE1  
PMDATA  
PMADR  
PIR2  
PIE2  
TMR1L  
TMR1H  
T1CON  
TMR2  
PCON  
PMDATH  
PMADRH  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
PR2  
SSPADD  
SSPSTAT  
General  
Purpose  
Register  
General  
Purpose  
Register  
RCSTA  
TXREG  
TXSTA  
16 Bytes  
16 Bytes  
SPBRG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRES  
ADCON0  
ADCON1  
1A0h  
A0h  
General  
Purpose  
Register  
General  
Purpose  
Register  
General  
Purpose  
Register  
General  
Purpose  
Register  
80 Bytes  
80 Bytes  
80 Bytes  
1EFh  
1F0h  
96 Bytes  
EFh  
F0h  
16Fh  
170h  
accesses  
70h - 7Fh  
accesses  
70h-7Fh  
accesses  
70h-7Fh  
17Fh  
1FFh  
7Fh  
FFh  
Bank 3  
Bank 1  
Bank 2  
Bank 0  
Unimplemented data memory locations, read as 0.  
*
Not a physical register.  
Note 1: These registers are not implemented on 28-pin devices.  
DS30325B-page 14  
2002 Microchip Technology Inc.  
PIC16F7X  
FIGURE 2-3:  
PIC16F74/73 REGISTER FILE MAP  
File  
Address  
File  
Address  
File  
Address  
File  
Address  
Indirect addr.(*)  
Indirect addr.(*)  
180h  
OPTION_REG  
181h  
Indirect addr.(*)  
80h  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
Indirect addr.(*)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
TMR0  
PCL  
TMR0  
PCL  
OPTION_REG 81h  
PCL  
STATUS  
FSR  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
PCL  
STATUS  
FSR  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
PORTD(1)  
PORTE(1)  
PCLATH  
INTCON  
PIR1  
TRISA  
TRISB  
TRISC  
TRISD(1)  
TRISE(1)  
TRISB  
PORTB  
PCLATH  
INTCON  
PCLATH  
INTCON  
PMCON1  
PCLATH  
INTCON  
PIE1  
PMDATA  
PMADR  
PIR2  
PIE2  
TMR1L  
TMR1H  
T1CON  
TMR2  
PCON  
PMDATH  
PMADRH  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
PR2  
SSPADD  
SSPSTAT  
RCSTA  
TXREG  
TXSTA  
SPBRG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRES  
ADCON0  
ADCON1  
1A0h  
120h  
A0h  
General  
Purpose  
Register  
General  
Purpose  
Register  
accesses  
20h-7Fh  
accesses  
A0h - FFh  
1EFh  
1F0h  
96 Bytes  
96 Bytes  
16Fh  
170h  
17Fh  
1FFh  
7Fh  
FFh  
Bank 3  
Bank 1  
Bank 2  
Bank 0  
Unimplemented data memory locations, read as 0.  
*
Not a physical register.  
Note 1: These registers are not implemented on 28-pin devices.  
2002 Microchip Technology Inc.  
DS30325B-page 15  
PIC16F7X  
The Special Function Registers can be classified into  
two sets: core (CPU) and peripheral. Those registers  
associated with the core functions are described in  
detail in this section. Those related to the operation of  
the peripheral features are described in detail in the  
peripheral feature section.  
2.2.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers are registers used by  
the CPU and peripheral modules for controlling the  
desired operation of the device. These registers are  
implemented as static RAM. A list of these registers is  
given in Table 2-1.  
TABLE 2-1:  
SPECIAL FUNCTION REGISTER SUMMARY  
Value on:  
POR,  
BOR  
Details  
on page  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 0  
(4)  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register) 0000 0000  
27, 96  
45, 96  
26, 96  
00h  
01h  
TMR0  
PCL  
Timer0 Module Register  
xxxx xxxx  
0000 0000  
(4)  
Program Counter (PC) Least Significant Byte  
02h  
(4)  
STATUS  
IRP  
Indirect Data Memory Address Pointer  
PORTA Data Latch when written: PORTA pins when read  
RP1  
RP0  
TO  
PD  
Z
DC  
C
0001 1xxx  
xxxx xxxx  
19, 96  
27, 96  
03h  
(4)  
FSR  
04h  
05h  
06h  
07h  
PORTA  
PORTB  
PORTC  
PORTD  
--0x 0000  
xxxx xxxx  
xxxx xxxx  
32, 96  
34, 96  
35, 96  
PORTB Data Latch when written: PORTB pins when read  
PORTC Data Latch when written: PORTC pins when read  
PORTD Data Latch when written: PORTD pins when read  
(5)  
xxxx xxxx  
---- -xxx  
---0 0000  
0000 000x  
36, 96  
39, 96  
26, 96  
21, 96  
23, 96  
08h  
(5)  
PORTE  
PCLATH  
INTCON  
RE2  
RE1  
RE0  
09h  
(1,4)  
Write Buffer for the upper 5 bits of the Program Counter  
0Ah  
(4)  
GIE  
PEIE  
ADIF  
TMR0IE  
RCIF  
INTE  
TXIF  
RBIE  
SSPIF  
TMR0IF  
CCP1IF  
INTF  
TMR2IF  
RBIF  
0Bh  
(3)  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
PIR1  
TMR1IF 0000 0000  
PSPIF  
PIR2  
CCP2IF ---- ---0  
xxxx xxxx  
24, 96  
50, 96  
50, 96  
47, 96  
52, 96  
52, 96  
TMR1L  
TMR1H  
T1CON  
TMR2  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000  
Timer2 Module Register  
0000 0000  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRES  
TOUTPS3 TOUTPS2 TOUTPS TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000  
Synchronous Serial Port Receive Buffer/Transmit Register  
xxxx xxxx 64, 68, 96  
WCOL  
SSPOV  
SSPEN  
CKP  
SSPM3  
SSPM2  
SSPM1  
SSPM0 0000 0000  
61, 96  
56, 96  
56, 96  
54, 96  
70, 96  
74, 96  
76, 96  
58, 96  
58, 96  
54, 96  
88, 96  
Capture/Compare/PWM Register1 (LSB)  
Capture/Compare/PWM Register1 (MSB)  
xxxx xxxx  
xxxx xxxx  
CCP1X  
SREN  
CCP1Y  
CREN  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000  
SPEN  
RX9  
FERR  
OERR  
RX9D  
0000 -00x  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
USART Transmit Data Register  
USART Receive Data Register  
Capture/Compare/PWM Register2 (LSB)  
Capture/Compare/PWM Register2 (MSB)  
CCP2X  
CCP2Y  
CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000  
A/D Result Register Byte  
xxxx xxxx  
GO/  
DONE  
1Fh  
ADCON0  
ADCS1 ADCS0  
CHS2  
CHS1  
CHS0  
ADON  
0000 00-0  
83, 96  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as '0', r = reserved.  
Shaded locations are unimplemented, read as 0.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose  
contents are transferred to the upper byte of the program counter during branches (CALLor GOTO).  
2: Other (non power-up) RESETS include external RESET through MCLR and Watchdog Timer Reset.  
3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.  
4: These registers can be addressed from any bank.  
5: PORTD, PORTE, TRISD, and TRISE are not physically implemented on the 28-pin devices, read as 0.  
6: This bit always reads as a 1.  
DS30325B-page 16  
2002 Microchip Technology Inc.  
PIC16F7X  
TABLE 2-1:  
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on:  
POR,  
BOR  
Details  
on page  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 1  
(4)  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register) 0000 0000  
27, 96  
80h  
81h  
OPTION_REG RBPU  
INTEDG  
Program Counters (PC) Least Significant Byte  
IRP RP1 RP0 TO  
Indirect data memory address pointer  
PORTA Data Direction Register  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
1111 1111 20, 44, 96  
(4)  
PCL  
0000 0000  
0001 1xxx  
26, 96  
19, 96  
82h  
(4)  
STATUS  
PD  
Z
DC  
C
83h  
(4)  
FSR  
xxxx xxxx  
--11 1111  
1111 1111  
1111 1111  
1111 1111  
27, 96  
32, 96  
34, 96  
35, 96  
36, 96  
84h  
85h  
86h  
87h  
TRISA  
TRISB  
TRISC  
TRISD  
PORTB Data Direction Register  
PORTC Data Direction Register  
PORTD Data Direction Register  
(5)  
88h  
(5)  
TRISE  
IBF  
OBF  
IBOV  
PSPMODE  
PORTE Data Direction Bits  
0000 -111  
---0 0000  
0000 000x  
38, 96  
21, 96  
23, 96  
89h  
(1,4)  
PCLATH  
INTCON  
Write Buffer for the upper 5 bits of the Program Counter  
8Ah  
(4)  
GIE  
PEIE  
TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
8Bh  
(3)  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
PIE1  
PIE2  
PCON  
ADIE  
RCIE  
TXIE  
SSPIE  
CCP1IE  
TMR2IE  
TMR1IE 0000 0000  
CCP2IE ---- ---0  
22, 96  
24, 97  
25, 97  
PSPIE  
POR  
BOR  
---- --qq  
Unimplemented  
Unimplemented  
Unimplemented  
PR2  
SSPADD  
Timer2 Period Register  
1111 1111  
0000 0000  
52, 97  
68, 97  
2
Synchronous Serial Port (I C mode) Address Register  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
SSPSTAT  
SMP  
CKE  
D/A  
P
S
R/W  
UA  
BF  
0000 0000  
60, 97  
Unimplemented  
Unimplemented  
Unimplemented  
TXSTA  
SPBRG  
CSRC  
TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
0000 -010  
69, 97  
71, 97  
Baud Rate Generator Register  
Unimplemented  
0000 0000  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
ADCON1  
PCFG2  
PCFG1  
PCFG0 -----000  
84, 97  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as '0', r = reserved.  
Shaded locations are unimplemented, read as 0.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose  
contents are transferred to the upper byte of the program counter during branches (CALLor GOTO).  
2: Other (non power-up) RESETS include external RESET through MCLR and Watchdog Timer Reset.  
3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.  
4: These registers can be addressed from any bank.  
5: PORTD, PORTE, TRISD, and TRISE are not physically implemented on the 28-pin devices, read as 0.  
6: This bit always reads as a 1.  
2002 Microchip Technology Inc.  
DS30325B-page 17  
PIC16F7X  
TABLE 2-1:  
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on:  
POR,  
BOR  
Details  
on page  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 2  
(4)  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register) 0000 0000  
27, 96  
45, 96  
26, 96  
100h  
101h  
TMR0  
PCL  
Timer0 Module Register  
xxxx xxxx  
0000 0000  
(4)  
Program Counter (PC) Least Significant Byte  
102h  
(4)  
STATUS  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
0001 1xxx  
19, 96  
103h  
(4)  
FSR  
Indirect Data Memory Address Pointer  
Unimplemented  
xxxx xxxx  
27, 96  
104h  
105h  
106h  
107h  
108h  
109h  
PORTB  
PORTB Data Latch when written: PORTB pins when read  
xxxx xxxx  
34, 96  
Unimplemented  
Unimplemented  
Unimplemented  
(1,4)  
PCLATH  
Write Buffer for the upper 5 bits of the Program Counter  
INTE RBIE TMR0IF INTF RBIF  
---0 0000  
21, 96  
10Ah  
(4)  
INTCON  
PMDATA  
PMADR  
GIE  
PEIE  
TMR0IE  
0000 000x  
23, 96  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
Data Register Low Byte  
Address Register Low Byte  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
29, 97  
29, 97  
29, 97  
PMDATH  
PMADRH  
Data Register High Byte  
Address Register High Byte  
29, 97  
Bank 3  
(4)  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register) 0000 0000  
27, 96  
180h  
181h  
OPTION_REG RBPU  
INTEDG  
Program Counter (PC) Least Significant Byte  
IRP RP1 RP0 TO  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
1111 1111 20, 44, 96  
(4)  
PCL  
0000 0000  
0001 1xxx  
xxxx xxxx  
26, 96  
19, 96  
27, 96  
182h  
(4)  
STATUS  
PD  
Z
DC  
C
183h  
(4)  
FSR  
Indirect Data Memory Address Pointer  
Unimplemented  
184h  
185h  
186h  
187h  
188h  
189h  
34, 96  
TRISB  
PORTB Data Direction Register  
Unimplemented  
1111 1111  
Unimplemented  
Unimplemented  
(1,4)  
Write Buffer for the upper 5 bits of the Program Counter  
PCLATH  
PEIE  
TMR0IE  
---0 0000  
0000 000x  
21, 96  
23, 96  
29, 97  
18Ah  
(4)  
INTCON  
GIE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
RD  
18Bh  
(6)  
18Ch  
18Dh  
18Eh  
18Fh  
PMCON1  
1--- ---0  
Unimplemented  
Reserved maintain clear  
Reserved maintain clear  
0000 0000  
0000 0000  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as '0', r = reserved.  
Shaded locations are unimplemented, read as 0.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose  
contents are transferred to the upper byte of the program counter during branches (CALLor GOTO).  
2: Other (non power-up) RESETS include external RESET through MCLR and Watchdog Timer Reset.  
3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.  
4: These registers can be addressed from any bank.  
5: PORTD, PORTE, TRISD, and TRISE are not physically implemented on the 28-pin devices, read as 0.  
6: This bit always reads as a 1.  
DS30325B-page 18  
2002 Microchip Technology Inc.  
PIC16F7X  
For example, CLRF STATUSwill clear the upper three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
2.2.2.1  
STATUS Register  
The STATUS register contains the arithmetic status of  
the ALU, the RESET status and the bank select bits for  
data memory.  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register, because these instructions do not  
affect the Z, C, or DC bits from the STATUS register.  
For other instructions not affecting any status bits, see  
the "Instruction Set Summary."  
The STATUS register can be the destination for any  
instruction, as with any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC, or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable, therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 1: The C and DC bits operate as a borrow  
and digit borrow bit, respectively, in sub-  
traction. See the SUBLW and SUBWF  
instructions for examples.  
REGISTER 2-1:  
STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
bit 7  
bit 0  
bit 7  
IRP: Register Bank Select bit (used for indirect addressing)  
1= Bank 2, 3 (100h - 1FFh)  
0= Bank 0, 1 (00h - FFh)  
bit 6-5  
RP1:RP0: Register Bank Select bits (used for direct addressing)  
11= Bank 3 (180h - 1FFh)  
10= Bank 2 (100h - 17Fh)  
01= Bank 1 (80h - FFh)  
00= Bank 0 (00h - 7Fh)  
Each bank is 128 bytes  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction, or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWFinstructions)  
1= A carry-out from the 4th low order bit of the result occurred  
0= No carry-out from the 4th low order bit of the result  
C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWFinstructions)  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note: For borrow, the polarity is reversed. A subtraction is executed by adding the twos  
complement of the second operand. For rotate (RRF, RLF) instructions, this bit is  
loaded with either the high or low order bit of the source register.  
Legend:  
R = Readable bit  
- n = Value at POR reset  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
1= Bit is set  
2002 Microchip Technology Inc.  
DS30325B-page 19  
PIC16F7X  
2.2.2.2  
OPTION_REG Register  
Note: To achieve a 1:1 prescaler assignment for  
the TMR0 register, assign the prescaler to  
the Watchdog Timer.  
The OPTION_REG register is a readable and writable  
register, which contains various control bits to configure  
the TMR0 prescaler/WDT postscaler (single assign-  
able register known also as the prescaler), the External  
INT Interrupt, TMR0 and the weak pull-ups on PORTB.  
REGISTER 2-2:  
OPTION_REG REGISTER (ADDRESS 81h, 181h)  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RBPU: PORTB Pull-up Enable bit  
1= PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of RB0/INT pin  
0= Interrupt on falling edge of RB0/INT pin  
T0CS: TMR0 Clock Source Select bit  
1= Transition on RA4/T0CKI pin  
0= Internal instruction cycle clock (CLKOUT)  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on RA4/T0CKI pin  
0= Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS2:PS0: Prescaler Rate Select bits  
Bit Value TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 1  
1 : 2  
1 : 4  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
Legend:  
R = Readable bit  
- n = Value at POR reset  
W = Writable bit  
U = Unimplemented bit, read as 0’  
1= Bit is set  
0= Bit is cleared  
x = Bit is unknown  
DS30325B-page 20  
2002 Microchip Technology Inc.  
PIC16F7X  
2.2.2.3  
INTCON Register  
Note: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
The INTCON register is a readable and writable regis-  
ter, which contains various enable and flag bits for the  
TMR0 register overflow, RB Port change and External  
RB0/INT pin interrupts.  
REGISTER 2-3:  
INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
R/W-0  
INTE  
R/W-0  
RBIE  
R/W-0  
R/W-0  
INTF  
R/W-x  
RBIF  
TMR0IE  
TMR0IF  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
GIE: Global Interrupt Enable bit  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
TMR0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 interrupt  
0= Disables the TMR0 interrupt  
INTE: RB0/INT External Interrupt Enable bit  
1= Enables the RB0/INT external interrupt  
0= Disables the RB0/INT external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
TMR0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INTF: RB0/INT External Interrupt Flag bit  
1= The RB0/INT external interrupt occurred (must be cleared in software)  
0= The RB0/INT external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch  
condition and allow flag bit RBIF to be cleared.  
1= At least one of the RB7:RB4 pins changed state (must be cleared in software)  
0= None of the RB7:RB4 pins have changed state  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
1= Bit is set  
2002 Microchip Technology Inc.  
DS30325B-page 21  
PIC16F7X  
2.2.2.4  
PIE1 Register  
Note: Bit PEIE (INTCON<6>) must be set to  
enable any peripheral interrupt.  
The PIE1 register contains the individual enable bits for  
the peripheral interrupts.  
REGISTER 2-4:  
PIE1 REGISTER (ADDRESS 8Ch)  
R/W-0  
PSPIE(1)  
bit 7  
R/W-0  
ADIE  
R/W-0  
RCIE  
R/W-0  
TXIE  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
R/W-0  
TMR1IE  
bit 0  
CCP1IE  
TMR2IE  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PSPIE(1): Parallel Slave Port Read/Write Interrupt Enable bit  
1= Enables the PSP read/write interrupt  
0= Disables the PSP read/write interrupt  
ADIE: A/D Converter Interrupt Enable bit  
1= Enables the A/D converter interrupt  
0= Disables the A/D converter interrupt  
RCIE: USART Receive Interrupt Enable bit  
1= Enables the USART receive interrupt  
0= Disables the USART receive interrupt  
TXIE: USART Transmit Interrupt Enable bit  
1= Enables the USART transmit interrupt  
0= Disables the USART transmit interrupt  
SSPIE: Synchronous Serial Port Interrupt Enable bit  
1= Enables the SSP interrupt  
0= Disables the SSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0 = Disables the TMR1 overflow interrupt  
Note 1: PSPIE is reserved on 28-pin devices; always maintain this bit clear.  
Legend:  
R = Readable bit  
- n = Value at POR reset  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
1= Bit is set  
DS30325B-page 22  
2002 Microchip Technology Inc.  
PIC16F7X  
2.2.2.5  
PIR1 Register  
Note: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate interrupt  
bits are clear prior to enabling an interrupt.  
The PIR1 register contains the individual flag bits for  
the peripheral interrupts.  
REGISTER 2-5:  
PIR1 REGISTER (ADDRESS 0Ch)  
R/W-0  
R/W-0  
ADIF  
R-0  
R-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
R/W-0  
TMR1IF  
bit 0  
(1)  
PSPIF  
bit 7  
RCIF  
TXIF  
CCP1IF  
TMR2IF  
(1)  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
PSPIF : Parallel Slave Port Read/Write Interrupt Flag bit  
1= A read or a write operation has taken place (must be cleared in software)  
0= No read or write has occurred  
ADIF: A/D Converter Interrupt Flag bit  
1= An A/D conversion is completed (must be cleared in software)  
0= The A/D conversion is not complete  
RCIF: USART Receive Interrupt Flag bit  
1= The USART receive buffer is full  
0= The USART receive buffer is empty  
TXIF: USART Transmit Interrupt Flag bit  
1= The USART transmit buffer is empty  
0= The USART transmit buffer is full  
SSPIF: Synchronous Serial Port (SSP) Interrupt Flag  
1= The SSP interrupt condition has occurred, and must be cleared in software before  
returning from the Interrupt Service Routine. The conditions that will set this bit are:  
SPI  
A transmission/reception has taken place.  
2
I C Slave  
A transmission/reception has taken place.  
2
I C Master  
A transmission/reception has taken place.  
The initiated START condition was completed by the SSP module.  
The initiated STOP condition was completed by the SSP module.  
The initiated Restart condition was completed by the SSP module.  
The initiated Acknowledge condition was completed by the SSP module.  
A START condition occurred while the SSP module was IDLE (multi-master system).  
A STOP condition occurred while the SSP module was IDLE (multi-master system).  
0= No SSP interrupt condition has occurred  
bit 2  
CCP1IF: CCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode  
bit 1  
bit 0  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred (must be cleared in software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed (must be cleared in software)  
0= TMR1 register did not overflow  
Note 1: PSPIF is reserved on 28-pin devices; always maintain this bit clear.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
1= Bit is set  
2002 Microchip Technology Inc.  
DS30325B-page 23  
PIC16F7X  
2.2.2.6  
PIE2 Register  
The PIE2 register contains the individual enable bits for  
the CCP2 peripheral interrupt.  
REGISTER 2-6:  
PIE2 REGISTER (ADDRESS 8Dh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CCP2IE  
bit 0  
bit 7  
bit 7-1  
bit 0  
Unimplemented: Read as '0'  
CCP2IE: CCP2 Interrupt Enable bit  
1= Enables the CCP2 interrupt  
0= Disables the CCP2 interrupt  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
1= Bit is set  
2.2.2.7  
PIR2 Register  
Note: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
The PIR2 register contains the flag bits for the CCP2  
interrupt.  
REGISTER 2-7:  
PIR2 REGISTER (ADDRESS 0Dh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CCP2IF  
bit 0  
bit 7  
bit 7-1  
bit 0  
Unimplemented: Read as '0'  
CCP2IF: CCP2 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
1= Bit is set  
DS30325B-page 24  
2002 Microchip Technology Inc.  
PIC16F7X  
2.2.2.8  
PCON Register  
Note: BOR is unknown on POR. It must be set by  
the user and checked on subsequent  
RESETS to see if BOR is clear, indicating  
a brown-out has occurred. The BOR status  
bit is not predictable if the brown-out circuit  
is disabled (by clearing the BODEN bit in  
the configuration word).  
The Power Control (PCON) register contains flag bits  
to allow differentiation between a Power-on Reset  
(POR), a Brown-out Reset (BOR), a Watchdog Reset  
(WDT) and an external MCLR Reset.  
REGISTER 2-8:  
PCON REGISTER (ADDRESS 8Eh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
POR  
R/W-1  
BOR  
bit 7  
bit 0  
bit 7-2  
bit 1  
Unimplemented: Read as '0'  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0  
BOR: Brown-out Reset Status bit  
1= No Brown-out Reset occurred  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
1= Bit is set  
2002 Microchip Technology Inc.  
DS30325B-page 25  
PIC16F7X  
2.3  
PCL and PCLATH  
Note 1: There are no status bits to indicate stack  
overflow or stack underflow conditions.  
The program counter (PC) is 13 bits wide. The low byte  
comes from the PCL register, which is a readable and  
writable register. The upper bits (PC<12:8>) are not  
readable, but are indirectly writable through the  
PCLATH register. On any RESET, the upper bits of the  
PC will be cleared. Figure 2-4 shows the two situations  
for the loading of the PC. The upper example in the fig-  
ure shows how the PC is loaded on a write to PCL  
(PCLATH<4:0> PCH). The lower example in the fig-  
ure shows how the PC is loaded during a CALLor GOTO  
instruction (PCLATH<4:3> PCH).  
2: There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the  
CALL, RETURN, RETLW and RETFIE  
instructions, or the vectoring to an inter-  
rupt address.  
2.4  
Program Memory Paging  
PIC16F7X devices are capable of addressing a contin-  
uous 8K word block of program memory. The CALLand  
GOTO instructions provide only 11 bits of address to  
allow branching within any 2K program memory page.  
When doing a CALL or GOTO instruction, the upper 2  
bits of the address are provided by PCLATH<4:3>.  
When doing a CALLor GOTOinstruction, the user must  
ensure that the page select bits are programmed so  
that the desired program memory page is addressed. If  
a return from a CALL instruction (or interrupt) is exe-  
cuted, the entire 13-bit PC is popped off the stack.  
Therefore, manipulation of the PCLATH<4:3> bits are  
not required for the RETURNinstructions (which POPs  
the address from the stack).  
FIGURE 2-4:  
LOADING OF PC IN  
DIFFERENT SITUATIONS  
PCH  
PCL  
12  
8
7
0
Instruction with  
PCL as  
Destination  
PC  
8
PCLATH<4:0>  
PCLATH  
5
ALU  
PCH  
12 11 10  
PC  
PCL  
Note: The contents of the PCLATH are  
unchanged after a RETURN or RETFIE  
instruction is executed. The user must  
setup the PCLATH for any subsequent  
CALLSor GOTOS.  
8
7
0
GOTO,CALL  
PCLATH<4:3>  
PCLATH  
11  
2
Opcode <10:0>  
Example 2-1 shows the calling of a subroutine in  
page 1 of the program memory. This example assumes  
that PCLATH is saved and restored by the Interrupt  
Service Routine (if interrupts are used).  
2.3.1  
COMPUTED GOTO  
EXAMPLE 2-1:  
CALL OF A SUBROUTINE  
IN PAGE 1 FROM PAGE 0  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL). When doing a  
table read using a computed GOTO method, care  
should be exercised if the table location crosses a PCL  
memory boundary (each 256 byte block). Refer to the  
ORG  
BCF  
BSF  
0x500  
PCLATH,4  
PCLATH,3 ;Select page 1  
;(800h-FFFh)  
Application Note, Implementing  
a Table Read"  
CALL SUB1_P1 ;Call subroutine in  
:
(AN556).  
;page 1 (800h-FFFh)  
:
ORG  
2.3.2  
STACK  
0x900  
;page 1 (800h-FFFh)  
SUB1_P1  
RETURN  
The PIC16F7X family has an 8-level deep x 13-bit wide  
hardware stack. The stack space is not part of either  
program or data space and the stack pointer is not  
readable or writable. The PC is PUSHed onto the stack  
when a CALL instruction is executed, or an interrupt  
causes a branch. The stack is POPed in the event of a  
RETURN, RETLW or a RETFIE instruction execution.  
PCLATH is not affected by a PUSH or POP operation.  
:
:
:
;called subroutine  
;page 1 (800h-FFFh)  
;return to Call  
;subroutine in page 0  
;(000h-7FFh)  
The stack operates as a circular buffer. This means that  
after the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
DS30325B-page 26  
2002 Microchip Technology Inc.  
PIC16F7X  
EXAMPLE 2-2:  
INDIRECT ADDRESSING  
2.5 Indirect Addressing, INDF and FSR  
Registers  
MOVLW  
MOVWF  
0x20  
;initialize pointer  
;to RAM  
FSR  
The INDF register is not a physical register. Addressing  
the INDF register will cause indirect addressing.  
NEXT  
CLRF  
INCF  
BTFSS  
GOTO  
INDF  
FSR,F  
FSR,4  
NEXT  
;clear INDF register  
;inc pointer  
;all done?  
Indirect addressing is possible by using the INDF reg-  
ister. Any instruction using the INDF register actually  
accesses the register pointed to by the File Select Reg-  
ister, FSR. Reading the INDF register itself indirectly  
(FSR = 0) will read 00h. Writing to the INDF register  
indirectly results in a no operation (although status bits  
may be affected). An effective 9-bit address is obtained  
by concatenating the 8-bit FSR register and the IRP bit  
(STATUS<7>), as shown in Figure 2-5.  
;no clear next  
CONTINUE  
:
;yes continue  
A simple program to clear RAM locations 20h-2Fh  
using indirect addressing is shown in Example 2-2.  
FIGURE 2-5:  
DIRECT/INDIRECT ADDRESSING  
Direct Addressing  
From Opcode  
Indirect Addressing  
7
RP1:RP0  
6
0
0
IRP  
FSR Register  
Bank Select  
Location Select  
Bank Select Location Select  
00  
01  
80h  
10  
100h  
11  
00h  
180h  
Data  
Memory  
(1)  
7Fh  
Bank 0  
FFh  
Bank 1  
17Fh  
Bank 2  
1FFh  
Bank 3  
Note 1: For register file map detail, see Figure 2-2.  
2002 Microchip Technology Inc.  
DS30325B-page 27  
PIC16F7X  
NOTES:  
DS30325B-page 28  
2002 Microchip Technology Inc.  
PIC16F7X  
When interfacing to the program memory block, the  
PMDATH:PMDATA registers form a two-byte word,  
which holds the 14-bit data for reads. The  
PMADRH:PMADR registers form a two-byte word,  
which holds the 13-bit address of the FLASH location  
being accessed. These devices can have up to 8K  
words of program FLASH, with an address range from  
0h to 3FFFh. The unused upper bits in both the  
PMDATH and PMADRH registers are not implemented  
and read as 0s.  
3.0  
READING PROGRAM MEMORY  
The FLASH Program Memory is readable during nor-  
mal operation over the entire VDD range. It is indirectly  
addressed through Special Function Registers (SFR).  
Up to 14-bit numbers can be stored in memory for use  
as calibration parameters, serial numbers, packed 7-bit  
ASCII, etc. Executing a program memory location con-  
taining data that forms an invalid instruction results in a  
NOP.  
There are five SFRs used to read the program and  
memory. These registers are:  
3.1  
PMADR  
PMCON1  
PMDATA  
PMDATH  
PMADR  
The address registers can address up to a maximum of  
8K words of program FLASH.  
When selecting a program address value, the MSByte  
of the address is written to the PMADRH register and  
the LSByte is written to the PMADR register. The upper  
MSbits of PMADRH must always be clear.  
PMADRH  
The program memory allows word reads. Program  
memory access allows for checksum calculation and  
reading calibration tables.  
3.2  
PMCON1 Register  
PMCON1 is the control register for memory accesses.  
The control bit RD initiates read operations. This bit  
cannot be cleared, only set, in software. It is cleared in  
hardware at the completion of the read operation.  
REGISTER 3-1:  
PMCON1 REGISTER (ADDRESS 18Ch)  
R-1  
reserved  
bit 7  
U-0  
U-0  
U-0  
U-x  
U-0  
U-0  
R/S-0  
RD  
bit 0  
bit 7  
Reserved: Read as 1’  
bit 6-1  
bit 0  
Unimplemented: Read as '0'  
RD: Read Control bit  
1= Initiates a FLASH read, RD is cleared in hardware. The RD bit can only be set (not cleared)  
in software.  
0= FLASH read completed  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
1= Bit is set  
2002 Microchip Technology Inc.  
DS30325B-page 29  
PIC16F7X  
3.3  
Reading the FLASH Program  
Memory  
3.4  
Operation During Code Protect  
FLASH program memory has its own code protect  
mechanism. External Read and Write operations by  
programmers are disabled if this mechanism is  
enabled.  
A program memory location may be read by writing two  
bytes of the address to the PMADR and PMADRH reg-  
isters and then setting control bit RD (PMCON1<0>).  
Once the read control bit is set, the microcontroller will  
use the next two instruction cycles to read the data. The  
data is available in the PMDATA and PMDATH regis-  
ters after the second NOPinstruction. Therefore, it can  
be read as two bytes in the following instructions. The  
PMDATA and PMDATH registers will hold this value  
until the next read operation.  
The microcontroller can read and execute instructions  
out of the internal FLASH program memory, regardless  
of the state of the code protect configuration bits.  
EXAMPLE 3-1:  
FLASH PROGRAM READ  
BSF  
BCF  
STATUS, RP1  
STATUS, RP0  
ADDRH, W  
PMADRH  
ADDRL, W  
PMADR  
;
; Bank 2  
;
MOVF  
MOVWF  
MOVF  
MOVWF  
BSF  
; MSByte of Program Address to read  
;
; LSByte of Program Address to read  
; Bank 3 Required  
STATUS, RP0  
Required  
Sequence  
BSF  
NOP  
NOP  
PMCON1, RD  
; EEPROM Read Sequence  
; memory is read in the next two cycles after BSF PMCON1,RD  
;
BCF  
MOVF  
MOVF  
STATUS, RP0  
PMDATA, W  
PMDATH, W  
; Bank 2  
; W = LSByte of Program PMDATA  
; W = MSByte of Program PMDATA  
TABLE 3-1:  
REGISTERS ASSOCIATED WITH PROGRAM FLASH  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
10Dh  
10Fh  
10Ch  
10Eh  
18Ch  
PMADR Address Register Low Byte  
PMADRH  
PMDATA Data Register Low Byte  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1--- ---0 1--- ---0  
Address Register High Byte  
PMDATH  
PMCON1  
Data Register High Byte  
(1)  
RD  
Legend: x= unknown, u= unchanged, r = reserved, -= unimplemented read as '0'. Shaded cells are not used during FLASH access.  
Note 1: This bit always reads as a 1.  
DS30325B-page 30  
2002 Microchip Technology Inc.  
PIC16F7X  
FIGURE 4-1:  
BLOCK DIAGRAM OF  
RA3:RA0 AND RA5 PINS  
4.0  
I/O PORTS  
Some pins for these I/O ports are multiplexed with an  
alternate function for the peripheral features on the  
device. In general, when a peripheral is enabled, that  
pin may not be used as a general purpose I/O pin.  
Data Bus  
D
Q
Q
VDD  
P
WR Port  
CK  
Additional information on I/O ports may be found in the  
PICmicro™  
Mid-Range  
Reference  
Manual,  
Data Latch  
(DS33023).  
I/O pin(1)  
N
D
Q
Q
4.1  
PORTA and the TRISA Register  
PORTA is a 6-bit wide, bi-directional port. The corre-  
sponding data direction register is TRISA. Setting a  
TRISA bit (= 1) will make the corresponding PORTA  
pin an input (i.e., put the corresponding output driver in  
a Hi-Impedance mode). Clearing a TRISA bit (= 0) will  
make the corresponding PORTA pin an output (i.e., put  
the contents of the output latch on the selected pin).  
WR TRIS  
RD TRIS  
RD PORT  
VSS  
Analog  
Input  
CK  
TRIS Latch  
Mode  
TTL  
Input  
Buffer  
Reading the PORTA register reads the status of the  
pins, whereas writing to it will write to the port latch. All  
write operations are read-modify-write operations.  
Therefore, a write to a port implies that the port pins are  
read, the value is modified and then written to the port  
data latch.  
Q
D
EN  
Pin RA4 is multiplexed with the Timer0 module clock  
input to become the RA4/T0CKI pin. The RA4/T0CKI  
pin is a Schmitt Trigger input and an open drain output.  
All other PORTA pins have TTL input levels and full  
CMOS output drivers.  
To A/D Converter  
Note 1: I/O pins have protection diodes to VDD and VSS.  
Other PORTA pins are multiplexed with analog inputs  
and analog VREF input. The operation of each pin is  
selected by clearing/setting the control bits in the  
ADCON1 register (A/D Control Register1).  
FIGURE 4-2:  
BLOCK DIAGRAM OF  
RA4/T0CKI PIN  
Data Bus  
D
Q
Q
Note: On a Power-on Reset, these pins are con-  
figured as analog inputs and read as '0'.  
WR PORT  
CK  
I/O pin(1)  
The TRISA register controls the direction of the RA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set, when using them as analog inputs.  
N
Data Latch  
D
Q
VSS  
WRTRIS  
RD TRIS  
Schmitt  
Trigger  
Input  
Q
CK  
EXAMPLE 4-1:  
INITIALIZING PORTA  
TRIS Latch  
Buffer  
BCF  
STATUS, RP0  
;
BCF  
CLRF  
STATUS, RP1  
PORTA  
; Bank0  
; Initialize PORTA by  
; clearing output  
; data latches  
Q
D
BSF  
STATUS, RP0  
0x06  
ADCON1  
0xCF  
; Select Bank 1  
; Configure all pins  
; as digital inputs  
; Value used to  
; initialize data  
; direction  
MOVLW  
MOVWF  
MOVLW  
EN  
RD PORT  
MOVWF  
TRISA  
; Set RA<3:0> as inputs  
; RA<5:4> as outputs  
; TRISA<7:6>are always  
; read as ’0’.  
TMR0 Clock Input  
Note 1: I/O pin has protection diodes to VSS only.  
2002 Microchip Technology Inc.  
DS30325B-page 31  
PIC16F7X  
TABLE 4-1:  
Name  
PORTA FUNCTIONS  
Bit#  
Buffer  
Function  
RA0/AN0  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
TTL  
TTL  
TTL  
TTL  
ST  
Input/output or analog input.  
Input/output or analog input.  
Input/output or analog input.  
RA1/AN1  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
RA5/SS/AN4  
Input/output or analog input or VREF.  
Input/output or external clock input for Timer0. Output is open drain type.  
Input/output or slave select input for synchronous serial port or analog input.  
TTL  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
TABLE 4-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on: Value on all  
Address Name  
Bit 7 Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other  
RESETS  
--0x 0000 --0u 0000  
--11 1111 --11 1111  
---- -000 ---- -000  
05h  
85h  
9Fh  
PORTA  
TRISA  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
PORTA Data Direction Register  
PCFG2 PCFG1 PCFG0  
ADCON1  
Legend: x= unknown, u= unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.  
Note: When using the SSP module in SPI Slave mode and SS enabled, the A/D converter must be set to one of  
the following modes where PCFG2:PCFG0 = 100, 101, 11x.  
DS30325B-page 32  
2002 Microchip Technology Inc.  
PIC16F7X  
This interrupt can wake the device from SLEEP. The  
user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
4.2  
PORTB and the TRISB Register  
PORTB is an 8-bit wide, bi-directional port. The corre-  
sponding data direction register is TRISB. Setting a  
TRISB bit (= 1) will make the corresponding PORTB  
pin an input (i.e., put the corresponding output driver in  
a Hi-Impedance mode). Clearing a TRISB bit (= 0) will  
make the corresponding PORTB pin an output (i.e., put  
the contents of the output latch on the selected pin).  
a) Any read or write of PORTB. This will end the  
mismatch condition.  
b) Clear flag bit RBIF.  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition and  
allow flag bit RBIF to be cleared.  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is per-  
formed by clearing bit RBPU (OPTION_REG<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are dis-  
abled on a Power-on Reset.  
The interrupt-on-change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt-on-change  
feature. Polling of PORTB is not recommended while  
using the interrupt-on-change feature.  
This interrupt on mismatch feature, together with soft-  
ware configureable pull-ups on these four pins, allow  
easy interface to a keypad and make it possible for  
wake-up on key depression. Refer to the Embedded  
Control Handbook, Implementing Wake-up on Key  
Stroke(AN552).  
FIGURE 4-3:  
BLOCK DIAGRAM OF  
RB3:RB0 PINS  
VDD  
RBPU(2)  
Weak  
Pull-up  
P
Data Latch  
RB0/INT is an external interrupt input pin and is config-  
ured using the INTEDG bit (OPTION_REG<6>).  
Data Bus  
WR Port  
D
Q
I/O  
pin(1)  
RB0/INT is discussed in detail in Section 12.11.1.  
CK  
TRIS Latch  
FIGURE 4-4:  
BLOCK DIAGRAM OF  
RB7:RB4 PINS  
D
Q
TTL  
Input  
Buffer  
WR TRIS  
CK  
VDD  
RBPU(2)  
Weak  
P
Pull-up  
RD TRIS  
RD Port  
RB0/INT  
Data Latch  
Data Bus  
WR Port  
D
Q
Q
D
I/O  
pin(1)  
CK  
TRIS Latch  
EN  
D
Q
WR TRIS  
RD TRIS  
TTL  
Input  
Buffer  
Schmitt Trigger  
Buffer  
RD Port  
CK  
ST  
Buffer  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS  
bit(s) and clear the RBPU bit (OPTION_REG<7>).  
Latch  
Q
Q
D
Four of the PORTB pins (RB7:RB4) have an inter-  
rupt-on-change feature. Only pins configured as inputs  
can cause this interrupt to occur (i.e., any RB7:RB4 pin  
configured as an output is excluded from the inter-  
rupt-on-change comparison). The input pins (of  
RB7:RB4) are compared with the old value latched on  
the last read of PORTB. The mismatchoutputs of  
RB7:RB4 are ORed together to generate the RB Port  
Change Interrupt with flag bit RBIF (INTCON<0>).  
RD Port  
EN  
Q1  
Set RBIF  
D
RD Port  
Q3  
From other  
RB7:RB4 pins  
EN  
RB7:RB6 in Serial Programming mode  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s)  
and clear the RBPU bit (OPTION_REG<7>).  
2002 Microchip Technology Inc.  
DS30325B-page 33  
PIC16F7X  
TABLE 4-3:  
PORTB FUNCTIONS  
Name  
Bit#  
Buffer  
Function  
RB0/INT  
bit0  
TTL/ST(1)  
Input/output pin or external interrupt input. Internal software  
programmable weak pull-up.  
RB1  
RB2  
RB3  
RB4  
bit1  
bit2  
bit3  
bit4  
TTL  
TTL  
TTL  
TTL  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up.  
RB5  
RB6  
RB7  
bit5  
bit6  
bit7  
TTL  
Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up.  
TTL/ST(2)  
TTL/ST(2)  
Input/output pin (with interrupt-on-change).  
Internal software programmable weak pull-up. Serial programming clock.  
Input/output pin (with interrupt-on-change).  
Internal software programmable weak pull-up. Serial programming data.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
TABLE 4-4:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3 Bit 2 Bit 1 Bit 0  
06h, 106h  
86h, 186h  
PORTB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
PS2  
RB1  
PS1  
RB0 xxxx xxxx uuuu uuuu  
TRISB  
PORTB Data Direction Register  
RBPU INTEDG T0CS T0SE PSA  
1111 1111 1111 1111  
81h, 181h  
OPTION_REG  
PS0 1111 1111 1111 1111  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTB.  
DS30325B-page 34  
2002 Microchip Technology Inc.  
PIC16F7X  
FIGURE 4-5:  
PORTC BLOCK DIAGRAM  
(PERIPHERAL OUTPUT  
OVERRIDE)  
4.3  
PORTC and the TRISC Register  
PORTC is an 8-bit wide, bi-directional port. The corre-  
sponding data direction register is TRISC. Setting a  
TRISC bit (= 1) will make the corresponding PORTC  
pin an input (i.e., put the corresponding output driver in  
a Hi-Impedance mode). Clearing a TRISC bit (= 0) will  
make the corresponding PORTC pin an output (i.e., put  
the contents of the output latch on the selected pin).  
Port/Peripheral Select(2)  
Peripheral Data Out  
Data Bus  
VDD  
P
0
1
D
Q
WR Port  
Q
CK  
PORTC is multiplexed with several peripheral functions  
(Table 4-5). PORTC pins have Schmitt Trigger input  
buffers.  
Data Latch  
I/O  
pin(1)  
D
Q
Q
WR TRIS  
RD TRIS  
CK  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an  
output, while other peripherals override the TRIS bit to  
make a pin an input. Since the TRIS bit override is  
in effect while the peripheral is enabled,  
read-modify-write instructions (BSF, BCF, XORWF)  
with TRISC as destination should be avoided. The user  
should refer to the corresponding peripheral section for  
the correct TRIS bit settings, and to Section 13.1 for  
additional information on read-modify-write operations.  
N
TRIS Latch  
VSS  
Schmitt  
Trigger  
Peripheral  
OE(3)  
Q
D
EN  
RD Port  
Peripheral Input  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: Port/Peripheral select signal selects between port data  
and peripheral output.  
3: Peripheral OE (output enable) is only activated if  
peripheral select is active.  
TABLE 4-5:  
Name  
PORTC FUNCTIONS  
Bit# Buffer Type  
Function  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
bit0  
bit1  
ST  
ST  
Input/output port pin or Timer1 oscillator output/Timer1 clock input.  
Input/output port pin or Timer1 oscillator input or Capture2  
input/Compare2 output/PWM2 output.  
RC2/CCP1  
bit2  
bit3  
ST  
ST  
Input/output port pin or Capture1 input/Compare1 output/PWM1 output.  
RC3 can also be the synchronous serial clock for both SPI and I2C  
RC3/SCK/SCL  
modes.  
RC4/SDI/SDA  
RC5/SDO  
bit4  
bit5  
bit6  
ST  
ST  
ST  
RC4 can also be the SPI Data In (SPI mode) or Data I/O (I2C mode).  
Input/output port pin or Synchronous Serial Port data output.  
RC6/TX/CK  
Input/output port pin or USART Asynchronous Transmit or  
Synchronous Clock.  
RC7/RX/DT  
bit7  
ST  
Input/output port pin or USART Asynchronous Receive or  
Synchronous Data.  
Legend: ST = Schmitt Trigger input  
TABLE 4-6:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
07h  
87h  
PORTC RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0 xxxx xxxx uuuu uuuu  
TRISC PORTC Data Direction Register  
1111 1111 1111 1111  
Legend: x= unknown, u= unchanged  
2002 Microchip Technology Inc.  
DS30325B-page 35  
PIC16F7X  
FIGURE 4-6:  
PORTD BLOCK DIAGRAM  
(IN I/O PORT MODE)  
4.4  
PORTD and TRISD Registers  
This section is not applicable to the PIC16F73 or  
PIC16F76.  
Data Bus  
WR Port  
D
Q
PORTD is an 8-bit port with Schmitt Trigger input buff-  
ers. Each pin is individually configureable as an input or  
output.  
I/O pin(1)  
CK  
Data Latch  
PORTD can be configured as an 8-bit wide micro-  
processor port (parallel slave port) by setting control bit  
PSPMODE (TRISE<4>). In this mode, the input buffers  
are TTL.  
D
Q
Schmitt  
Trigger  
Input  
WR TRIS  
RD TRIS  
CK  
TRIS Latch  
Buffer  
Q
D
EN  
RD Port  
Note 1: I/O pins have protection diodes to VDD and VSS.  
TABLE 4-7:  
PORTD FUNCTIONS  
Name  
Bit#  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
Buffer Type  
Function  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
RD0/PSP0  
RD1/PSP1  
RD2/PSP2  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
Input/output port pin or parallel slave port bit0  
Input/output port pin or parallel slave port bit1  
Input/output port pin or parallel slave port bit2  
Input/output port pin or parallel slave port bit3  
Input/output port pin or parallel slave port bit4  
Input/output port pin or parallel slave port bit5  
Input/output port pin or parallel slave port bit6  
Input/output port pin or parallel slave port bit7  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.  
TABLE 4-8:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
RD3  
Bit 2  
Bit 1  
Bit 0  
08h  
88h  
89h  
PORTD  
TRISD  
TRISE  
RD7  
RD6  
RD5  
RD4  
RD2  
RD1  
RD0  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
0000 -111 0000 -111  
PORTD Data Direction Register  
IBF OBF IBOV PSPMODE  
PORTE Data Direction bits  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used by PORTD.  
DS30325B-page 36  
2002 Microchip Technology Inc.  
PIC16F7X  
FIGURE 4-7:  
PORTE BLOCK DIAGRAM  
(IN I/O PORT MODE)  
4.5  
PORTE and TRISE Register  
This section is not applicable to the PIC16F73 or  
PIC16F76.  
Data Bus  
WR Port  
D
Q
PORTE has three pins, RE0/RD/AN5, RE1/WR/AN6  
and RE2/CS/AN7, which are individually configureable  
as inputs or outputs. These pins have Schmitt Trigger  
input buffers.  
I/O pin(1)  
CK  
Data Latch  
D
Q
I/O PORTE becomes control inputs for the micro-  
processor port when bit PSPMODE (TRISE<4>) is set.  
In this mode, the user must make sure that the  
TRISE<2:0> bits are set (pins are configured as digital  
inputs). Ensure ADCON1 is configured for digital I/O. In  
this mode, the input buffers are TTL.  
WR TRIS  
RD TRIS  
Schmitt  
Trigger  
Input  
CK  
TRIS Latch  
Buffer  
Register 4-1 shows the TRISE register, which also con-  
trols the parallel slave port operation.  
Q
D
PORTE pins are multiplexed with analog inputs. When  
selected as an analog input, these pins will read as 0s.  
EN  
TRISE controls the direction of the RE pins, even when  
they are being used as analog inputs. The user must  
make sure to keep the pins configured as inputs when  
using them as analog inputs.  
RD Port  
Note 1: I/O pins have protection diodes to VDD and VSS.  
Note: On a Power-on Reset, these pins are con-  
figured as analog inputs and read as 0.  
2002 Microchip Technology Inc.  
DS30325B-page 37  
PIC16F7X  
REGISTER 4-1:  
TRISE REGISTER (ADDRESS 89h)  
R-0  
IBF  
R-0  
R/W-0  
IBOV  
R/W-0  
U-0  
R/W-1  
Bit2  
R/W-1  
Bit1  
R/W-1  
Bit0  
OBF  
PSPMODE  
bit 7  
bit 0  
bit 7  
Parallel Slave Port Status/Control bits:  
IBF: Input Buffer Full Status bit  
1= A word has been received and is waiting to be read by the CPU  
0= No word has been received  
bit 6  
bit 5  
OBF: Output Buffer Full Status bit  
1= The output buffer still holds a previously written word  
0= The output buffer has been read  
IBOV: Input Buffer Overflow Detect bit (in Microprocessor mode)  
1= A write occurred when a previously input word has not been read  
(must be cleared in software)  
0= No overflow occurred  
bit 4  
PSPMODE: Parallel Slave Port Mode Select bit  
1= Parallel Slave Port mode  
0= General Purpose I/O mode  
bit 3  
bit 2  
Unimplemented: Read as '0'  
PORTE Data Direction bits:  
Bit2: Direction Control bit for pin RE2/CS/AN7  
1= Input  
0= Output  
bit 1  
bit 0  
Bit1: Direction Control bit for pin RE1/WR/AN6  
1= Input  
0= Output  
Bit0: Direction Control bit for pin RE0/RD/AN5  
1= Input  
0= Output  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
1= Bit is set  
DS30325B-page 38  
2002 Microchip Technology Inc.  
PIC16F7X  
TABLE 4-9:  
PORTE FUNCTIONS  
Name  
Bit#  
Buffer Type  
Function  
ST/TTL(1)  
Input/output port pin or read control input in Parallel Slave Port mode or  
analog input.  
RE0/RD/AN5  
bit0  
For RD (PSP mode):  
1= IDLE  
0= Read operation. Contents of PORTD register output to PORTD I/O  
pins (if chip selected).  
Input/output port pin or write control input in Parallel Slave Port mode  
or analog input.  
For WR (PSP mode):  
1= IDLE  
RE1/WR/AN6  
RE2/CS/AN7  
bit1  
bit2  
ST/TTL(1)  
0= Write operation. Value of PORTD I/O pins latched into PORTD  
register (if chip selected).  
ST/TTL(1)  
Input/output port pin or chip select control input in Parallel Slave Port  
mode or analog input.  
For CS (PSP mode):  
1= Device is not selected  
0= Device is selected  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.  
TABLE 4-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Value on:  
POR,  
Value on all  
Addr  
Name  
Bit 7  
Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
other  
BOR  
RESETS  
09h  
89h  
9Fh  
PORTE  
TRISE  
IBF  
RE2  
RE1  
RE0  
---- -xxx  
0000 -111  
---- -uuu  
0000 -111  
---- -000  
OBF IBOV PSPMODE  
PORTE Data Direction bits  
ADCON1  
PCFG2 PCFG1 PCFG0 ---- -000  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by PORTE.  
2002 Microchip Technology Inc.  
DS30325B-page 39  
PIC16F7X  
When either the CS or RD pins are detected high, the  
PORTD outputs are disabled, and the interrupt flag bit  
PSPIF is set on the Q4 clock cycle following the next  
Q2 cycle, indicating that the read is complete. OBF  
remains low until firmware writes new data to PORTD.  
4.6  
Parallel Slave Port  
The Parallel Slave Port (PSP) is not implemented on  
the PIC16F73 or PIC16F76.  
PORTD operates as an 8-bit wide Parallel Slave Port,  
or Microprocessor Port, when control bit PSPMODE  
(TRISE<4>) is set. In Slave mode, it is asynchronously  
readable and writable by an external system using the  
read control input pin RE0/RD, the write control input  
pin RE1/WR, and the chip select control input pin  
RE2/CS.  
When not in PSP mode, the IBF and OBF bits are held  
clear. Flag bit IBOV remains unchanged. The PSPIF bit  
must be cleared by the user in firmware; the interrupt  
can be disabled by clearing the interrupt enable bit  
PSPIE (PIE1<7>).  
The PSP can directly interface to an 8-bit micro-  
processor data bus. The external microprocessor can  
read or write the PORTD latch as an 8-bit latch. Setting  
bit PSPMODE enables port pin RE0/RD to be the RD  
input, RE1/WR to be the WR input and RE2/CS to be  
the CS (chip select) input. For this functionality, the cor-  
responding data direction bits of the TRISE register  
(TRISE<2:0>) must be configured as inputs (i.e., set).  
The A/D port configuration bits PCFG3:PCFG0  
(ADCON1<3:0>) must be set to configure pins  
RE2:RE0 as digital I/O.  
FIGURE 4-8:  
PORTD AND PORTE  
BLOCK DIAGRAM  
(PARALLEL SLAVE PORT)  
Data Bus  
D
Q
WR  
Port  
RDx  
pin  
CK  
TTL  
Q
D
There are actually two 8-bit latches, one for data output  
(external reads) and one for data input (external  
writes). The firmware writes 8-bit data to the PORTD  
output data latch and reads data from the PORTD input  
data latch (note that they have the same address). In  
this mode, the TRISD register is ignored, since the  
external device is controlling the direction of data flow.  
RD  
Port  
EN  
One bit of PORTD  
Set Interrupt Flag  
PSPIF (PIR1<7>)  
An external write to the PSP occurs when the CS and  
WR lines are both detected low. Firmware can read the  
actual data on the PORTD pins during this time. When  
either the CS or WR lines become high (level trig-  
gered), the data on the PORTD pins is latched, and the  
Input Buffer Full (IBF) status flag bit (TRISE<7>) and  
interrupt flag bit PSPIF (PIR1<7>) are set on the Q4  
clock cycle, following the next Q2 cycle to signal the  
write is complete (Figure 4-9). Firmware clears the IBF  
flag by reading the latched PORTD data, and clears the  
PSPIF bit.  
Read  
RD  
CS  
WR  
TTL  
Chip Select  
TTL  
Write  
TTL  
Note: I/O pin has protection diodes to VDD and VSS.  
The Input Buffer Overflow (IBOV) status flag bit  
(TRISE<5>) is set if an external write to the PSP occurs  
while the IBF flag is set from a previous external write.  
The previous PORTD data is overwritten with the new  
data. IBOV is cleared by reading PORTD and clearing  
IBOV.  
A read from the PSP occurs when both the CS and RD  
lines are detected low. The data in the PORTD output  
latch is output to the PORTD pins. The Output Buffer  
Full (OBF) status flag bit (TRISE<6>) is cleared imme-  
diately (Figure 4-10), indicating that the PORTD latch is  
being read, or has been read by the external bus. If  
firmware writes new data to the output latch during this  
time, it is immediately output to the PORTD pins, but  
OBF will remain cleared.  
DS30325B-page 40  
2002 Microchip Technology Inc.  
PIC16F7X  
FIGURE 4-9:  
PARALLEL SLAVE PORT WRITE WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
FIGURE 4-10:  
PARALLEL SLAVE PORT READ WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
TABLE 4-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
08h  
PORTD  
PORTE  
TRISE  
PIR1  
Port data latch when written: Port pins when read  
xxxx xxxx uuuu uuuu  
---- -xxx ---- -uuu  
0000 -111 0000 -111  
09h  
89h  
0Ch  
RE2  
RE1  
RE0  
IBF  
OBF IBOV PSPMODE  
PORTE Data Direction Bits  
(1)  
(1)  
ADIF RCIF  
ADIE RCIE  
TXIF  
TXIE  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
PSPIF  
8Ch  
9Fh  
PIE1  
PSPIE  
ADCON1  
PCFG2 PCFG1 PCFG0 ---- -000 ---- -000  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by the Parallel Slave Port.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.  
2002 Microchip Technology Inc.  
DS30325B-page 41  
PIC16F7X  
NOTES:  
DS30325B-page 42  
2002 Microchip Technology Inc.  
PIC16F7X  
Counter mode is selected by setting bit T0CS  
(OPTION_REG<5>). In Counter mode, Timer0 will  
increment, either on every rising or falling edge of pin  
RA4/T0CKI. The incrementing edge is determined by  
the Timer0 Source Edge Select bit T0SE  
(OPTION_REG<4>). Clearing bit T0SE selects the ris-  
ing edge. Restrictions on the external clock input are  
discussed in detail in Section 5.2.  
5.0  
TIMER0 MODULE  
The Timer0 module timer/counter has the following  
features:  
8-bit timer/counter  
Readable and writable  
8-bit software programmable prescaler  
Internal or external clock select  
Interrupt on overflow from FFh to 00h  
Edge select for external clock  
The prescaler is mutually exclusively shared between  
the Timer0 module and the Watchdog Timer. The pres-  
caler is not readable or writable. Section 5.3 details the  
operation of the prescaler.  
Additional information on the Timer0 module is avail-  
able in the PICmicroMid-Range MCU Family Refer-  
ence Manual (DS33023).  
5.1  
Timer0 Interrupt  
Figure 5-1 is a block diagram of the Timer0 module and  
the prescaler shared with the WDT.  
The TMR0 interrupt is generated when the TMR0 reg-  
ister overflows from FFh to 00h. This overflow sets bit  
TMR0IF (INTCON<2>). The interrupt can be masked  
by clearing bit TMR0IE (INTCON<5>). Bit TMR0IF  
must be cleared in software by the Timer0 module  
Interrupt Service Routine, before re-enabling this inter-  
rupt. The TMR0 interrupt cannot awaken the processor  
from SLEEP, since the timer is shut-off during SLEEP.  
Timer0 operation is controlled through the  
OPTION_REG register (Register 5-1 on the following  
page). Timer mode is selected by clearing bit T0CS  
(OPTION_REG<5>). In Timer mode, the Timer0 mod-  
ule will increment every instruction cycle (without pres-  
caler). If the TMR0 register is written, the increment is  
inhibited for the following two instruction cycles. The  
user can work around this by writing an adjusted value  
to the TMR0 register.  
FIGURE 5-1:  
BLOCK DIAGRAM OF THE TIMER0 MODULE AND PRESCALER  
Data Bus  
CLKOUT (= FOSC/4)  
8
M
U
X
1
0
0
1
M
U
X
RA4/T0CKI  
pin  
SYNC  
2
TMR0 reg  
Cycles  
T0SE  
T0CS  
Set Flag bit TMR0IF  
PSA  
on Overflow  
PRESCALER  
0
1
8-bit Prescaler  
M
U
X
8
Watchdog  
Timer  
8 - to - 1MUX  
PS2:PS0  
PSA  
1
0
WDT Enable bit  
M U X  
PSA  
WDT  
Time-out  
Note: T0CS, T0SE, PSA, PS2:PS0 are (OPTION_REG<5:0>).  
2002 Microchip Technology Inc.  
DS30325B-page 43  
PIC16F7X  
Q4 cycles of the internal phase clocks. Therefore, it is  
necessary for T0CKI to be high for at least 2Tosc (and  
a small RC delay of 20 ns) and low for at least 2Tosc  
(and a small RC delay of 20 ns). Refer to the electrical  
specification of the desired device.  
5.2  
Using Timer0 with an External  
Clock  
When no prescaler is used, the external clock input is  
the same as the prescaler output. The synchronization  
of T0CKI, with the internal phase clocks, is accom-  
plished by sampling the prescaler output on the Q2 and  
REGISTER 5-1:  
OPTION_REG REGISTER  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
RBPU: PORTB Pull-up Enable bit (see Section 2.2.2.2)  
INTEDG: Interrupt Edge Select bit (see Section 2.2.2.2)  
T0CS: TMR0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (CLKOUT)  
bit 4  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
bit 3  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
bit 2-0  
PS2:PS0: Prescaler Rate Select bits  
Bit Value  
TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
Legend:  
R = Readable bit  
W = Writable bit  
1= Bit is set  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
Note: To avoid an unintended device RESET, the instruction sequences shown in  
Example 5-1 and Example 5-2 (page 45) must be executed when changing the pres-  
caler assignment between Timer0 and the WDT. This sequence must be followed  
even if the WDT is disabled.  
DS30325B-page 44  
2002 Microchip Technology Inc.  
PIC16F7X  
however, these lines must be used to set a temporary  
value. The final 1:1 value is then set in lines 10 and 11  
(highlighted). (Line numbers are included in the exam-  
ple for illustrative purposes only, and are not part of the  
actual code.)  
5.3  
Prescaler  
There is only one prescaler available on the microcon-  
troller; it is shared exclusively between the Timer0  
module and the Watchdog Timer. The usage of the  
prescaler is also mutually exclusive: that is, a prescaler  
assignment for the Timer0 module means that there is  
no prescaler for the Watchdog Timer, and vice versa.  
This prescaler is not readable or writable (see  
Figure 5-1).  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g. CLRF1, MOVWF1,  
BSF1,x....etc.) will clear the prescaler. When assigned  
to WDT, a CLRWDT instruction will clear the prescaler  
along with the Watchdog Timer.  
The PSA and PS2:PS0 bits (OPTION_REG<3:0>)  
determine the prescaler assignment and prescale ratio.  
Examples of code for assigning the prescaler assign-  
ment are shown in Example 5-1 and Example 5-2.  
Note that when the prescaler is being assigned to the  
WDT with ratios other than 1:1, lines 2 and 3 (high-  
lighted) are optional. If a prescale ratio of 1:1 is to used,  
Note: Writing to TMR0 when the prescaler is  
assigned to Timer0, will clear the prescaler  
count but will not change the prescaler  
assignment.  
EXAMPLE 5-1:  
CHANGING THE PRESCALER ASSIGNMENT FROM TIMER0 TO WDT  
1) BSF  
STATUS, RP0  
; Bank1  
2) MOVLW  
3) MOVWF  
4) BCF  
5) CLRF  
6) BSF  
7) MOVLW  
8) MOVWF  
9) CLRWDT  
10) MOVLW  
11) MOVWF  
12) BCF  
b’xx0x0xxx’  
; Select clock source and prescale value of  
; other than 1:1  
; Bank0  
; Clear TMR0 and prescaler  
; Bank1  
; Select WDT, do not change prescale value  
OPTION_REG  
STATUS, RP0  
TMR0  
STATUS, RP1  
b’xxxx1xxx’  
OPTION_REG  
; Clears WDT and prescaler  
; Select new prescale value and WDT  
b’xxxx1xxx’  
OPTION_REG  
STATUS, RP0  
; Bank0  
EXAMPLE 5-2:  
CHANGING THE PRESCALER ASSIGNMENT FROM WDT TO TIMER0  
CLRWDT  
BSF  
MOVLW  
MOVWF  
BCF  
; Clear WDT and prescaler  
; Bank1  
; Select TMR0, new prescale  
; value and clock source  
; Bank0  
STATUS, RP0  
b’xxxx0xxx’  
OPTION_REG  
STATUS, RP0  
TABLE 5-1:  
REGISTERS ASSOCIATED WITH TIMER0  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
01h,101h  
TMR0  
Timer0 Module Register  
GIE PEIE TMR0IE INTE  
OPTION_REG RBPU INTEDG T0CS T0SE  
xxxx xxxx uuuu uuuu  
0Bh,8Bh,  
10Bh,18Bh  
INTCON  
RBIE TMR0IF INTF  
PSA PS2 PS1  
RBIF 0000 000x 0000 000u  
PS0 1111 1111 1111 1111  
81h,181h  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as 0. Shaded cells are not used by Timer0.  
2002 Microchip Technology Inc.  
DS30325B-page 45  
PIC16F7X  
NOTES:  
DS30325B-page 46  
2002 Microchip Technology Inc.  
PIC16F7X  
In Timer mode, Timer1 increments every instruction  
cycle. In Counter mode, it increments on every rising  
edge of the external clock input.  
6.0  
TIMER1 MODULE  
The Timer1 module is a 16-bit timer/counter consisting  
of two 8-bit registers (TMR1H and TMR1L), which are  
readable and writable. The TMR1 Register pair  
(TMR1H:TMR1L) increments from 0000h to FFFFh  
and rolls over to 0000h. The TMR1 Interrupt, if enabled,  
is generated on overflow, which is latched in interrupt  
flag bit TMR1IF (PIR1<0>). This interrupt can be  
enabled/disabled by setting/clearing TMR1 interrupt  
enable bit TMR1IE (PIE1<0>).  
Timer1 can be enabled/disabled by setting/clearing  
control bit TMR1ON (T1CON<0>).  
Timer1 also has an internal RESET input. This  
RESET can be generated by either of the two CCP  
modules as the special event trigger (see Sections 8.1  
and 8.2). Register 6-1 shows the Timer1 Control  
register.  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI/CCP2 and RC0/T1OSO/T1CKI  
pins become inputs. That is, the TRISC<1:0> value is  
ignored and these pins read as 0.  
Timer1 can operate in one of two modes:  
As a timer  
As a counter  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>).  
Additional information on timer modules is available in  
the PICmicroMid-Range MCU Family Reference  
Manual (DS33023).  
REGISTER 6-1:  
T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit 0  
bit 7  
bit 7-6  
bit 5-4  
Unimplemented: Read as 0’  
T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3  
bit 2  
T1OSCEN: Timer1 Oscillator Enable Control bit  
1= Oscillator is enabled  
0= Oscillator is shut-off (the oscillator inverter is turned off to eliminate power drain)  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from pin RC0/T1OSO/T1CKI (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
1= Bit is set  
2002 Microchip Technology Inc.  
DS30325B-page 47  
PIC16F7X  
6.1  
Timer1 Operation in Timer Mode  
6.2  
Timer1 Counter Operation  
Timer mode is selected by clearing the TMR1CS  
(T1CON<1>) bit. In this mode, the input clock to the  
timer is FOSC/4. The synchronize control bit T1SYNC  
(T1CON<2>) has no effect, since the internal clock is  
always in sync.  
Timer1 may operate in Asynchronous or Synchronous  
mode, depending on the setting of the TMR1CS bit.  
When Timer1 is being incremented via an external  
source, increments occur on a rising edge. After Timer1  
is enabled in Counter mode, the module must first have  
a falling edge before the counter begins to increment.  
FIGURE 6-1:  
TIMER1 INCREMENTING EDGE  
T1CKI  
(Default high)  
T1CKI  
(Default low)  
Note: Arrows indicate counter increments.  
If T1SYNC is cleared, then the external clock input is  
synchronized with internal phase clocks. The synchro-  
nization is done after the prescaler stage. The pres-  
caler stage is an asynchronous ripple counter.  
6.3  
Timer1 Operation in Synchronized  
Counter Mode  
Counter mode is selected by setting bit TMR1CS. In  
this mode, the timer increments on every rising edge of  
clock input on pin RC1/T1OSI/CCP2, when bit  
T1OSCEN is set, or on pin RC0/T1OSO/T1CKI, when  
bit T1OSCEN is cleared.  
In this configuration, during SLEEP mode, Timer1 will  
not increment even if the external clock is present,  
since the synchronization circuit is shut-off. The  
prescaler, however, will continue to increment.  
FIGURE 6-2:  
TIMER1 BLOCK DIAGRAM  
Set Flag bit  
TMR1IF on  
Overflow  
Synchronized  
0
TMR1  
Clock Input  
TMR1L  
TMR1H  
1
TMR1ON  
On/Off  
T1SYNC  
T1OSC  
(2)  
RC0/T1OSO/T1CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator  
FOSC/4  
Internal  
Clock  
0
(1)  
(2)  
RC1/T1OSI/CCP2  
2
Q Clock  
T1CKPS1:T1CKPS0  
TMR1CS  
Note 1: When the T1OSCEN bit is cleared, the inverter is turned off. This eliminates power drain.  
2: For the PIC16F73/76, the Schmitt Trigger is not implemented in External Clock mode.  
DS30325B-page 48  
2002 Microchip Technology Inc.  
PIC16F7X  
6.4.1  
READING AND WRITING TIMER1 IN  
ASYNCHRONOUS COUNTER MODE  
6.4  
Timer1 Operation in  
Asynchronous Counter Mode  
Reading TMR1H or TMR1L, while the timer is running  
from an external asynchronous clock, will ensure a  
valid read (taken care of in hardware). However, the  
user should keep in mind that reading the 16-bit timer  
in two 8-bit values itself, poses certain problems, since  
the timer may overflow between the reads.  
If control bit T1SYNC (T1CON<2>) is set, the external  
clock input is not synchronized. The timer continues to  
increment asynchronous to the internal phase clocks.  
The timer will continue to run during SLEEP and can  
generate an interrupt on overflow, which will wake-up  
the processor. However, special precautions in soft-  
ware are needed to read/write the timer (Section 6.4.1).  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write conten-  
tion may occur by writing to the timer registers, while  
the register is incrementing. This may produce an  
unpredictable value in the timer register.  
In Asynchronous Counter mode, Timer1 cannot be  
used as a time-base for capture or compare operations.  
Reading the 16-bit value requires some care. The  
example code provided in Example 6-1 and  
Example 6-2 demonstrates how to write to and read  
Timer1 while it is running in Asynchronous mode.  
EXAMPLE 6-1:  
WRITING A 16-BIT FREE-RUNNING TIMER  
; All interrupts are disabled  
CLRF  
TMR1L  
; Clear Low byte, Ensures no rollover into TMR1H  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
HI_BYTE  
TMR1H, F  
LO_BYTE  
TMR1H, F  
; Value to load into TMR1H  
; Write High byte  
; Value to load into TMR1L  
; Write Low byte  
; Re-enable the Interrupt (if required)  
CONTINUE  
; Continue with your code  
EXAMPLE 6-2:  
READING A 16-BIT FREE-RUNNING TIMER  
; All interrupts are disabled  
MOVF  
MOVWF  
MOVF  
MOVWF  
MOVF  
TMR1H, W  
TMPH  
TMR1L, W  
TMPL  
; Read high byte  
; Read low byte  
TMR1H, W  
; Read high byte  
SUBWF  
BTFSC  
GOTO  
TMPH,  
STATUS,Z  
CONTINUE  
W
; Sub 1st read with 2nd read  
; Is result = 0  
; Good 16-bit read  
; TMR1L may have rolled over between the read of the high and low bytes.  
; Reading the high and low bytes now will read a good value.  
MOVF  
MOVWF  
MOVF  
MOVWF  
CONTINUE  
TMR1H, W  
TMPH  
TMR1L, W  
TMPL  
; Read high byte  
; Read low byte  
; Re-enable the Interrupt (if required)  
; Continue with your code  
2002 Microchip Technology Inc.  
DS30325B-page 49  
PIC16F7X  
TABLE 6-1:  
CAPACITOR SELECTION FOR  
THE TIMER1 OSCILLATOR  
6.5  
Timer1 Oscillator  
A crystal oscillator circuit is built-in between pins T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit T1OSCEN (T1CON<3>). The oscilla-  
tor is a low power oscillator rated up to 200 kHz. It will  
continue to run during SLEEP. It is primarily intended  
for use with a 32 kHz crystal. Table 6-1 shows the  
capacitor selection for the Timer1 oscillator.  
Capacitors Used:  
Osc Type Frequency  
OSC1  
OSC2  
LP  
32 kHz  
100 kHz  
200 kHz  
47 pF  
33 pF  
15 pF  
47 pF  
33 pF  
15 pF  
The Timer1 oscillator is identical to the LP oscillator.  
The user must provide a software time delay to ensure  
proper oscillator start-up.  
Capacitor values are for design guidance only.  
These capacitors were tested with the crystals listed  
below for basic start-up and operation. These values  
were not optimized.  
6.6  
Resetting Timer1 using a CCP  
Trigger Output  
Different capacitor values may be required to produce  
acceptable oscillator operation. The user should test  
the performance of the oscillator over the expected  
VDD and temperature range for the application.  
If the CCP1 or CCP2 module is configured in Compare  
mode to generate special event trigger”  
(CCP1M3:CCP1M0 = 1011), this signal will reset  
a
See the notes (below) table for additional information.  
Timer1.  
Commonly Used Crystals:  
Note: The special event triggers from the CCP1  
and CCP2 modules will not set interrupt  
flag bit TMR1IF (PIR1<0>).  
32.768 kHz  
100 kHz  
Epson C-001R32.768K-A  
Epson C-2 100.00 KC-P  
STD XTL 200.000 kHz  
200 kHz  
Timer1 must be configured for either Timer or Synchro-  
nized Counter mode, to take advantage of this feature.  
If Timer1 is running in Asynchronous Counter mode,  
this RESET operation may not work.  
Note 1: Higher capacitance increases the stability  
of the oscillator, but also increases the  
start-up time.  
2: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appro-  
priate values of external components.  
In the event that a write to Timer1 coincides with a spe-  
cial event trigger from CCP1 or CCP2, the write will  
take precedence.  
In this mode of operation, the CCPRxH:CCPRxL regis-  
ter pair effectively becomes the period register for  
Timer1.  
T1CON register is reset to 00h on a Power-on Reset or  
a Brown-out Reset, which shuts off the timer and  
leaves a 1:1 prescale. In all other RESETS, the register  
is unaffected.  
6.7  
Resetting of Timer1 Register Pair  
(TMR1H, TMR1L)  
6.8  
Timer1 Prescaler  
TMR1H and TMR1L registers are not reset to 00h on a  
POR, or any other RESET, except by the CCP1 and  
CCP2 special event triggers.  
The prescaler counter is cleared on writes to the  
TMR1H or TMR1L registers.  
TABLE 6-2:  
REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
(1)  
0Ch  
8Ch  
0Eh  
0Fh  
10h  
PIR1  
PIE1  
PSPIF  
PSPIE  
ADIF  
ADIE  
RCIF  
RCIE  
TXIF  
TXIE  
SSPIF  
SSPIE  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
(1)  
TMR1L Holding register for the Least Significant Byte of the 16-bit TMR1 Register  
TMR1H Holding register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
T1CON  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.  
DS30325B-page 50  
2002 Microchip Technology Inc.  
PIC16F7X  
7.1  
Timer2 Prescaler and Postscaler  
7.0  
TIMER2 MODULE  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
Timer2 is an 8-bit timer with a prescaler and a  
postscaler. It can be used as the PWM time-base for  
the PWM mode of the CCP module(s). The TMR2 reg-  
ister is readable and writable, and is cleared on any  
device RESET.  
a write to the TMR2 register  
a write to the T2CON register  
any device RESET (POR, MCLR Reset, WDT  
Reset or BOR)  
The input clock (FOSC/4) has a prescale option of 1:1,  
1:4  
or  
1:16,  
selected  
by  
control  
bits  
TMR2 is not cleared when T2CON is written.  
T2CKPS1:T2CKPS0 (T2CON<1:0>).  
The Timer2 module has an 8-bit period register, PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register. The PR2 register is  
initialized to FFh upon RESET.  
7.2  
Output of TMR2  
The output of TMR2 (before the postscaler) is fed to the  
SSP module, which optionally uses it to generate shift  
clock.  
The match output of TMR2 goes through a 4-bit  
postscaler (which gives a 1:1 to 1:16 scaling inclusive)  
to generate a TMR2 interrupt (latched in flag bit  
TMR2IF, (PIR1<1>)).  
FIGURE 7-1:  
TIMER2 BLOCK DIAGRAM  
Sets Flag  
TMR2  
Output(1)  
Reset  
bit TMR2IF  
Timer2 can be shut-off by clearing control bit TMR2ON  
(T2CON<2>) to minimize power consumption.  
Prescaler  
TMR2 reg  
FOSC/4  
1:1, 1:4, 1:16  
Register 7-1 shows the Timer2 control register.  
Postscaler  
2
Comparator  
1:1 to 1:16  
Additional information on timer modules is available in  
the PICmicroMid-Range MCU Family Reference  
Manual (DS33023).  
EQ  
T2CKPS1:  
T2CKPS0  
4
PR2 reg  
T2OUTPS3:  
T2OUTPS0  
Note 1: TMR2 register output can be software selected by the  
SSP module as a baud clock.  
2002 Microchip Technology Inc.  
DS30325B-page 51  
PIC16F7X  
REGISTER 7-1:  
T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit 0  
bit 7  
bit 7  
Unimplemented: Read as 0’  
bit 6-3  
TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
0010= 1:3 Postscale  
1111= 1:16 Postscale  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0  
T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
1= Bit is set  
TABLE 7-1:  
REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000 000x 0000 000u  
0Bh,8Bh,  
INTCON  
GIE  
PEIE  
TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
10Bh, 18Bh  
(1)  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
-000 0000 -000 0000  
1111 1111 1111 1111  
0Ch  
8Ch  
11h  
12h  
92h  
PIR1  
PSPIF  
PSPIE  
ADIF  
ADIE  
RCIF  
RCIE  
TXIF  
TXIE  
SSPIF  
CCP1IF TMR2IF TMR1IF  
(1)  
PIE1  
SSPIE CCP1IE TMR2IE TMR1IE  
TMR2  
T2CON  
PR2  
Timer2 Module Register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Timer2 Period Register  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.  
DS30325B-page 52  
2002 Microchip Technology Inc.  
PIC16F7X  
8.2  
CCP2 Module  
8.0  
CAPTURE/COMPARE/PWM  
MODULES  
Capture/Compare/PWM Register1 (CCPR1) is com-  
prised of two 8-bit registers: CCPR1L (low byte) and  
CCPR1H (high byte). The CCP2CON register controls  
the operation of CCP2. The special event trigger is  
generated by a compare match; it will clear both  
TMR1H and TMR1L registers, and start an A/D conver-  
sion (if the A/D module is enabled).  
Each Capture/Compare/PWM (CCP) module contains  
a 16-bit register which can operate as a:  
16-bit Capture register  
16-bit Compare register  
PWM Master/Slave Duty Cycle register  
Additional information on CCP modules is available in  
the PICmicroMid-Range MCU Family Reference  
Manual (DS33023) and in Application Note AN594,  
Using the CCP Modules(DS00594).  
Both the CCP1 and CCP2 modules are identical in  
operation, with the exception being the operation of the  
special event trigger. Table 8-1 and Table 8-2 show the  
resources and interactions of the CCP module(s). In  
the following sections, the operation of a CCP module  
is described with respect to CCP1. CCP2 operates the  
same as CCP1, except where noted.  
TABLE 8-1:  
CCP MODE - TIMER  
RESOURCES REQUIRED  
8.1  
CCP1 Module  
CCP Mode  
Capture  
Compare  
PWM  
Timer Resource  
Capture/Compare/PWM Register1 (CCPR1) is com-  
prised of two 8-bit registers: CCPR1L (low byte) and  
CCPR1H (high byte). The CCP1CON register controls  
the operation of CCP1. The special event trigger is  
generated by a compare match and will clear both  
TMR1H and TMR1L registers.  
Timer1  
Timer1  
Timer2  
TABLE 8-2:  
INTERACTION OF TWO CCP MODULES  
CCPx Mode CCPy Mode  
Interaction  
Capture  
Capture  
Capture  
Same TMR1 time-base.  
Same TMR1 time-base.  
Same TMR1 time-base.  
Compare  
Compare  
PWM  
Compare  
PWM  
The PWMs will have the same frequency and update rate (TMR2 interrupt).  
The rising edges are aligned.  
PWM  
PWM  
Capture  
None.  
None.  
Compare  
2002 Microchip Technology Inc.  
DS30325B-page 53  
PIC16F7X  
REGISTER 8-1:  
CCP1CON REGISTER/CCP2CON REGISTER (ADDRESS: 17h/1Dh)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CCPxX  
CCPxY  
CCPxM3 CCPxM2 CCPxM1 CCPxM0  
bit 0  
bit 7  
Unimplemented: Read as '0'  
bit 7-6  
bit 5-4  
CCPxX:CCPxY: PWM Least Significant bits  
Capture mode:  
Unused  
Compare mode:  
Unused  
PWM mode:  
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.  
bit 3-0  
CCPxM3:CCPxM0: CCPx Mode Select bits  
0000= Capture/Compare/PWM disabled (resets CCPx module)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (CCPxIF bit is set)  
1001= Compare mode, clear output on match (CCPxIF bit is set)  
1010= Compare mode, generate software interrupt on match (CCPxIF bit is set, CCPx pin is  
unaffected)  
1011= Compare mode, trigger special event (CCPxIF bit is set, CCPx pin is unaffected);  
CCP1 clears Timer1; CCP2 clears Timer1 and starts an A/D conversion (if A/D module  
is enabled)  
11xx= PWM mode  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
1= Bit is set  
DS30325B-page 54  
2002 Microchip Technology Inc.  
PIC16F7X  
8.3.4  
CCP PRESCALER  
8.3  
Capture Mode  
There are four prescaler settings, specified by bits  
CCP1M3:CCP1M0. Whenever the CCP module is  
turned off, or the CCP module is not in Capture mode,  
the prescaler counter is cleared. Any RESET will clear  
the prescaler counter.  
In Capture mode, CCPR1H:CCPR1L captures the  
16-bit value of the TMR1 register when an event occurs  
on pin RC2/CCP1. An event is defined as one of the fol-  
lowing and is configured by CCPxCON<3:0>:  
Every falling edge  
Every rising edge  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared, therefore, the first capture may be from  
a non-zero prescaler. Example 8-1 shows the recom-  
mended method for switching between capture pres-  
calers. This example also clears the prescaler counter  
and will not generate the falseinterrupt.  
Every 4th rising edge  
Every 16th rising edge  
An event is selected by control bits CCP1M3:CCP1M0  
(CCP1CON<3:0>). When a capture is made, the inter-  
rupt request flag bit CCP1IF (PIR1<2>) is set. The  
interrupt flag must be cleared in software. If another  
capture occurs before the value in register CCPR1 is  
read, the old captured value is overwritten by the new  
captured value.  
EXAMPLE 8-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
;Turn CCP module off  
CLRF  
CCP1CON  
MOVLW  
NEW_CAPT_PS;Load the W reg with  
;the new prescaler  
8.3.1  
CCP PIN CONFIGURATION  
;move value and CCP ON  
;Load CCP1CON with this  
;value  
In Capture mode, the RC2/CCP1 pin should be config-  
ured as an input by setting the TRISC<2> bit.  
MOVWF  
CCP1CON  
Note: If the RC2/CCP1 pin is configured as an  
output, a write to the port can cause a  
capture condition.  
8.4  
Compare Mode  
In Compare mode, the 16-bit CCPR1 register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the RC2/CCP1 pin is:  
FIGURE 8-1:  
CAPTURE MODE  
OPERATION BLOCK  
DIAGRAM  
Driven high  
Driven low  
Set Flag bit CCP1IF  
(PIR1<2>)  
Prescaler  
Remains unchanged  
÷ 1, 4, 16  
The action on the pin is based on the value of control  
bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the  
same time, interrupt flag bit CCP1IF is set.  
RC2/CCP1  
pin  
CCPR1H  
CCPR1L  
Capture  
Enable  
and  
Edge Detect  
FIGURE 8-2:  
COMPARE MODE  
OPERATION BLOCK  
DIAGRAM  
TMR1H  
TMR1L  
CCP1CON<3:0>  
Qs  
CCP1CON<3:0>  
Mode Select  
8.3.2  
TIMER1 MODE SELECTION  
Set Flag bit CCP1IF  
Timer1 must be running in Timer mode or Synchro-  
nized Counter mode for the CCP module to use the  
capture feature. In Asynchronous Counter mode, the  
capture operation may not work.  
(PIR1<2>)  
CCPR1H CCPR1L  
Comparator  
Q
S
R
Output  
Logic  
Match  
RC2/CCP1  
Pin  
8.3.3  
SOFTWARE INTERRUPT  
TMR1H TMR1L  
TRISC<2>  
Output Enable  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit  
CCP1IE (PIE1<2>) clear to avoid false interrupts and  
should clear the flag bit CCP1IF following any such  
change in operating mode.  
Special Event Trigger  
Special Event Trigger will:  
clear TMR1H and TMR1L registers  
NOT set interrupt flag bit TMR1F (PIR1<0>)  
(for CCP2 only) set the GO/DONE bit (ADCON0<2>)  
2002 Microchip Technology Inc.  
DS30325B-page 55  
PIC16F7X  
8.4.1  
CCP PIN CONFIGURATION  
8.4.4  
SPECIAL EVENT TRIGGER  
The user must configure the RC2/CCP1 pin as an out-  
put by clearing the TRISC<2> bit.  
In this mode, an internal hardware trigger is generated,  
which may be used to initiate an action.  
The special event trigger output of CCP1 resets the  
TMR1 register pair. This allows the CCPR1 register to  
effectively be a 16-bit programmable period register for  
Timer1.  
Note: Clearing the CCP1CON register will force  
the RC2/CCP1 compare output latch to the  
default low level. This is not the PORTC  
I/O data latch.  
The special event trigger output of CCP2 resets the  
TMR1 register pair and starts an A/D conversion (if the  
A/D module is enabled).  
8.4.2  
TIMER1 MODE SELECTION  
Timer1 must be running in Timer mode or Synchro-  
nized Counter mode if the CCP module is using the  
compare feature. In Asynchronous Counter mode, the  
compare operation may not work.  
Note: The special event trigger from the CCP1  
and CCP2 modules will not set interrupt  
flag bit TMR1IF (PIR1<0>).  
8.4.3  
SOFTWARE INTERRUPT MODE  
When Generate Software Interrupt mode is chosen, the  
CCP1 pin is not affected. The CCP1IF or CCP2IF bit is  
set, causing a CCP interrupt (if enabled).  
TABLE 8-3:  
REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF 0000 000x 0000 000u  
(1)  
0Ch  
0Dh  
8Ch  
8Dh  
87h  
0Eh  
0Fh  
10h  
15h  
16h  
17h  
1Bh  
1Ch  
1Dh  
PIR1  
PSPIF  
ADIF  
RCIF  
TXIF  
SSPIF  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP2IF ---- ---0 ---- ---0  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
PIR2  
(1)  
PIE1  
PSPIE  
ADIE  
RCIE  
TXIE  
SSPIE  
PIE2  
CCP2IE ---- ---0 ---- ---0  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
TRISC  
TMR1L  
TMR1H  
T1CON  
PORTC Data Direction Register  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
CCPR1L Capture/Compare/PWM Register1 (LSB)  
CCPR1H Capture/Compare/PWM Register1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCP1CON  
CCP1X  
CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
CCPR2L Capture/Compare/PWM Register2 (LSB)  
CCPR2H Capture/Compare/PWM Register2 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCP2CON  
CCP2X  
CCP2Y CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by Capture and Timer1.  
Note 1: The PSP is not implemented on the PIC16F73/76; always maintain these bits clear.  
DS30325B-page 56  
2002 Microchip Technology Inc.  
PIC16F7X  
8.5.1  
PWM PERIOD  
8.5  
PWM Mode (PWM)  
The PWM period is specified by writing to the PR2  
register. The PWM period can be calculated using the  
following formula:  
In Pulse Width Modulation mode, the CCPx pin pro-  
duces up to a 10-bit resolution PWM output. Since the  
CCP1 pin is multiplexed with the PORTC data latch, the  
TRISC<2> bit must be cleared to make the CCP1 pin  
an output.  
PWM period = [(PR2) + 1] • 4 • TOSC •  
(TMR2 prescale value)  
Note: Clearing the CCP1CON register will force  
the CCP1 PWM output latch to the default  
low level. This is not the PORTC I/O data  
latch.  
PWM frequency is defined as 1 / [PWM period].  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
TMR2 is cleared  
Figure 8-3 shows a simplified block diagram of the  
CCP module in PWM mode.  
The CCP1 pin is set (exception: if PWM duty  
cycle = 0%, the CCP1 pin will not be set)  
For a step-by-step procedure on how to set up the CCP  
module for PWM operation, see Section 8.5.3.  
The PWM duty cycle is latched from CCPR1L into  
CCPR1H  
FIGURE 8-3:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
Note: The Timer2 postscaler (see Section 8.3) is  
not used in the determination of the PWM  
frequency. The postscaler could be used to  
have a servo update rate at a different fre-  
quency than the PWM output.  
CCP1CON<5:4>  
Duty Cycle Registers  
CCPR1L  
8.5.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available. The CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time:  
CCPR1H (Slave)  
Comparator  
R
S
Q
RC2/CCP1  
(1)  
TMR2  
(Note 1)  
PWM duty cycle = (CCPR1L:CCP1CON<5:4>)•  
TOSC (TMR2 prescale value)  
TRISC<2>  
Comparator  
PR2  
Clear Timer,  
CCP1 pin and  
latch D.C.  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPR1H until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPR1H is a read only register.  
Note 1: The 8-bit timer is concatenated with the 2-bit inter-  
nal Q clock or the 2 bits of the prescaler to create the  
10-bit time-base.  
The CCPR1H register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
A PWM output (Figure 8-4) has a time-base (period)  
and a time that the output stays high (duty cycle). The  
frequency of the PWM is the inverse of the period  
(1/period).  
When the CCPR1H and 2-bit latch match TMR2, con-  
catenated with an internal 2-bit Q clock or 2 bits of the  
TMR2 prescaler, the CCP1 pin is cleared.  
FIGURE 8-4:  
PWM OUTPUT  
The maximum PWM resolution (bits) for a given PWM  
frequency is given by the formula:  
TMR2  
RESET  
TMR2  
RESET  
Period  
FOSC  
log( )  
FPWM  
Resolution  
bits  
=
log(2)  
Duty Cycle  
Note: If the PWM duty cycle value is longer than  
the PWM period, the CCP1 pin will not be  
cleared.  
TMR2 = PR2  
TMR2 = Duty Cycle  
TMR2 = PR2  
2002 Microchip Technology Inc.  
DS30325B-page 57  
PIC16F7X  
3. Make the CCP1 pin an output by clearing the  
TRISC<2> bit.  
8.5.3  
SETUP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
4. Set the TMR2 prescale value and enable Timer2  
by writing to T2CON.  
1. Set the PWM period by writing to the PR2 register.  
5. Configure the CCP1 module for PWM operation.  
2. Set the PWM duty cycle by writing to the  
CCPR1L register and CCP1CON<5:4> bits.  
TABLE 8-4:  
EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 20 MHz)  
PWM Frequency  
1.22 kHz  
4.88 kHz  
19.53 kHz  
78.12 kHz  
156.3 kHz  
208.3 kHz  
Timer Prescale (1, 4, 16)  
PR2 Value  
16  
0xFF  
10  
4
1
1
0x3F  
8
1
0x1F  
7
1
0xFF  
10  
0xFF  
10  
0x17  
5.5  
Maximum Resolution (bits)  
TABLE 8-5:  
REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE  
TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
(1)  
0Ch  
0Dh  
8Ch  
8Dh  
87h  
11h  
92h  
12h  
15h  
16h  
17h  
1Bh  
1Ch  
1Dh  
PIR1  
PSPIF  
ADIF  
RCIF  
TXIF  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP2IF ---- ---0 ---- ---0  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
PIR2  
(1)  
PIE1  
PSPIE  
ADIE  
RCIE  
TXIE  
PIE2  
CCP2IE ---- ---0 ---- ---0  
1111 1111 1111 1111  
0000 0000 0000 0000  
1111 1111 1111 1111  
TRISC  
TMR2  
PR2  
PORTC Data Direction Register  
Timer2 Module Register  
Timer2 Module Period Register  
T2CON  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
CCPR1L Capture/Compare/PWM Register1 (LSB)  
CCPR1H Capture/Compare/PWM Register1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCP1CON  
CCP1X CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
CCPR2L Capture/Compare/PWM Register2 (LSB)  
CCPR2H Capture/Compare/PWM Register2 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCP2CON  
CCP2X CCP2Y CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.  
DS30325B-page 58  
2002 Microchip Technology Inc.  
PIC16F7X  
9.2  
SPI Mode  
9.0  
9.1  
SYNCHRONOUS SERIAL PORT  
(SSP) MODULE  
This section contains register definitions and opera-  
tional characteristics of the SPI module. Additional  
information on the SPI module can be found in the  
PICmicroMid-Range MCU Family Reference Man-  
ual (DS33023A).  
SSP Module Overview  
The Synchronous Serial Port (SSP) module is a serial  
interface useful for communicating with other periph-  
eral or microcontroller devices. These peripheral  
devices may be Serial EEPROMs, shift registers, dis-  
play drivers, A/D converters, etc. The SSP module can  
operate in one of two modes:  
SPI mode allows 8 bits of data to be synchronously  
transmitted and received simultaneously. To accom-  
plish communication, typically three pins are used:  
Serial Data Out (SDO) RC5/SDO  
Serial Data In (SDI) RC4/SDI/SDA  
Serial Clock (SCK) RC3/SCK/SCL  
Serial Peripheral Interface (SPI)  
Inter-Integrated Circuit (I2C)  
An overview of I2C operations and additional informa-  
tion on the SSP module can be found in the PICmicro™  
Additionally, a fourth pin may be used when in a Slave  
mode of operation:  
Mid-Range  
(DS33023).  
MCU  
Family  
Reference Manual  
Slave Select (SS) RA5/SS/AN4  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits in the SSPCON register (SSPCON<5:0>)  
and SSPSTAT<7:6>. These control bits allow the fol-  
lowing to be specified:  
Refer to Application Note AN578, Use of the SSP  
Module in the I 2C Multi-Master Environment”  
(DS00578).  
Master mode (SCK is the clock output)  
Slave mode (SCK is the clock input)  
Clock Polarity (IDLE state of SCK)  
Clock edge (output data on rising/falling edge of  
SCK)  
Clock Rate (Master mode only)  
Slave Select mode (Slave mode only)  
2002 Microchip Technology Inc.  
DS30325B-page 59  
PIC16F7X  
REGISTER 9-1:  
SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
bit 7  
SMP: SPI Data Input Sample Phase bit  
SPI Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time (Microwire®)  
SPI Slave mode:  
SMP must be cleared when SPI is used in Slave mode  
I2C mode:  
This bit must be maintained clear  
bit 6  
CKE: SPI Clock Edge Select bit (Figure 9-2, Figure 9-3, and Figure 9-4)  
SPI mode, CKP = 0:  
1= Data transmitted on rising edge of SCK (Microwire® alternate)  
0= Data transmitted on falling edge of SCK  
SPI mode, CKP = 1:  
1= Data transmitted on falling edge of SCK (Microwire® default)  
0= Data transmitted on rising edge of SCK  
I2C mode:  
This bit must be maintained clear  
bit 5  
bit 4  
D/A: Data/Address bit (I2C mode only)  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
P: STOP bit (I2C mode only)  
This bit is cleared when the SSP module is disabled, or when the START bit is detected last.  
SSPEN is cleared.  
1= Indicates that a STOP bit has been detected last (this bit is 0on RESET)  
0= STOP bit was not detected last  
bit 3  
bit 2  
S: START bit (I2C mode only)  
This bit is cleared when the SSP module is disabled, or when the STOP bit is detected last.  
SSPEN is cleared.  
1= Indicates that a START bit has been detected last (this bit is 0on RESET)  
0= START bit was not detected last  
R/W: Read/Write bit Information (I2C mode only)  
This bit holds the R/W bit information following the last address match. This bit is only valid from  
the address match to the next START bit, STOP bit, or ACK bit.  
1= Read  
0 = Write  
bit 1  
bit 0  
UA: Update Address bit (10-bit I2C mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
Receive (SPI and I2C modes):  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
Transmit (I2C mode only):  
1= Transmit in progress, SSPBUF is full  
0= Transmit complete, SSPBUF is empty  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
1= Bit is set  
DS30325B-page 60  
2002 Microchip Technology Inc.  
PIC16F7X  
REGISTER 9-2:  
SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 0  
bit 7  
bit 7  
bit 6  
WCOL: Write Collision Detect bit  
1= The SSPBUF register is written while it is still transmitting the previous word  
(must be cleared in software)  
0= No collision  
SSPOV: Receive Overflow Indicator bit  
In SPI mode:  
1= A new byte is received while the SSPBUF register is still holding the previous data. In case  
of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user  
must read the SSPBUF, even if only transmitting data, to avoid setting overflow. In  
Master mode, the overflow bit is not set since each new reception (and transmission) is  
initiated by writing to the SSPBUF register.  
0= No overflow  
In I2C mode:  
1= A byte is received while the SSPBUF register is still holding the previous byte. SSPOV  
is a dont carein Transmit mode. SSPOV must be cleared in software in either mode.  
0= No overflow  
bit 5  
SSPEN: Synchronous Serial Port Enable bit  
In SPI mode:  
1= Enables serial port and configures SCK, SDO, and SDI as serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
In I2C mode:  
1= Enables the serial port and configures the SDA and SCL pins as serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
In both modes, when enabled, these pins must be properly configured as input or output.  
bit 4  
CKP: Clock Polarity Select bit  
In SPI mode:  
1= IDLE state for clock is a high level (Microwire® default)  
0= IDLE state for clock is a low level (Microwire® alternate)  
In I2C mode:  
SCK release control  
1= Enable clock  
0= Holds clock low (clock stretch). (Used to ensure data setup time.)  
bit 3-0  
SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
0000= SPI Master mode, clock = FOSC/4  
0001= SPI Master mode, clock = FOSC/16  
0010= SPI Master mode, clock = FOSC/64  
0011= SPI Master mode, clock = TMR2 output/2  
0100= SPI Slave mode, clock = SCK pin. SS pin control enabled.  
0101= SPI Slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin.  
0110= I2C Slave mode, 7-bit address  
0111= I2C Slave mode, 10-bit address  
1011= I2C Firmware Controlled Master mode (slave IDLE)  
1110= I2C Slave mode, 7-bit address with START and STOP bit interrupts enabled  
1111= I2C Slave mode, 10-bit address with START and STOP bit interrupts enabled  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
1= Bit is set  
2002 Microchip Technology Inc.  
DS30325B-page 61  
PIC16F7X  
To enable the serial port, SSP enable bit, SSPEN  
(SSPCON<5>) must be set. To reset or reconfigure SPI  
mode, clear bit SSPEN, re-initialize the SSPCON reg-  
ister, and then set bit SSPEN. This configures the SDI,  
SDO, SCK, and SS pins as serial port pins. For the pins  
to behave as the serial port function, they must have  
their data direction bits (in the TRISC register) appro-  
priately programmed. That is:  
FIGURE 9-1:  
SSP BLOCK DIAGRAM  
(SPI MODE)  
Internal  
Data Bus  
Read  
Write  
SSPBUF reg  
SSPSR reg  
SDI must have TRISC<4> set  
SDO must have TRISC<5> cleared  
SCK (Master mode) must have TRISC<3>  
cleared  
Shift  
Clock  
RC4/SDI/SDA  
RC5/SDO  
bit0  
SCK (Slave mode) must have TRISC<3> set  
SS must have TRISA<5> set and ADCON must  
be configured such that RA5 is a digital I/O  
Peripheral OE  
.
Control  
Enable  
SS  
Note 1: When the SPI is in Slave mode with SS pin  
control enabled (SSPCON<3:0> = 0100),  
the SPI module will reset if the SS pin is set  
to VDD.  
RA5/SS/AN4  
Edge  
Select  
2: If the SPI is used in Slave mode with  
CKE = '1', then the SS pin control must be  
enabled.  
2
Clock Select  
SSPM3:SSPM0  
4
3: When the SPI is in Slave mode with SS  
pin control enabled (SSPCON<3:0> =  
0100), the state of the SS pin can affect  
the state read back from the TRISC<5>  
bit. The Peripheral OE signal from the  
SSP module into PORTC controls the  
state that is read back from the  
TRISC<5> bit (see Section 4.3 for infor-  
mation on PORTC). If Read-Modify-Write  
instructions, such as BSF are performed  
on the TRISC register while the SS pin is  
high, this will cause the TRISC<5> bit to  
be set, thus disabling the SDO output.  
TMR2 Output  
2
Edge  
Select  
TCY  
Prescaler  
4, 16, 64  
RC3/SCK/  
SCL  
TRISC<3>  
DS30325B-page 62  
2002 Microchip Technology Inc.  
PIC16F7X  
FIGURE 9-2:  
SPI MODE TIMING, MASTER MODE  
SCK (CKP = 0,  
CKE = 0)  
SCK (CKP = 0,  
CKE = 1)  
SCK (CKP = 1,  
CKE = 0)  
SCK (CKP = 1,  
CKE = 1)  
bit2  
bit7  
bit6  
bit5  
bit3  
bit1  
bit0  
bit4  
SDO  
SDI (SMP = 0)  
bit7  
bit0  
SDI (SMP = 1)  
SSPIF  
bit7  
bit0  
FIGURE 9-3:  
SPI MODE TIMING (SLAVE MODE WITH CKE = 0)  
SS (optional)  
SCK (CKP = 0)  
SCK (CKP = 1)  
bit2  
bit7  
bit6  
bit5  
bit3  
bit1  
bit0  
bit4  
SDO  
SDI (SMP = 0)  
bit7  
bit0  
SSPIF  
FIGURE 9-4:  
SPI MODE TIMING (SLAVE MODE WITH CKE = 1)  
SS  
SCK (CKP = 0)  
SCK (CKP = 1)  
SDO  
bit2  
bit7  
bit6  
bit5  
bit3  
bit1  
bit0  
bit4  
SDI (SMP = 0)  
SSPIF  
bit7  
bit0  
2002 Microchip Technology Inc.  
DS30325B-page 63  
PIC16F7X  
TABLE 9-1:  
REGISTERS ASSOCIATED WITH SPI OPERATION  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh.  
10Bh,18Bh  
INTCON  
PIR1  
GIE  
PEIE TMR0IE INTE RBIE TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
(1)  
0Ch  
PSPIF  
PSPIE  
ADIF  
ADIE  
RCIF  
TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
(1)  
8Ch  
87h  
PIE1  
RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TRISC  
PORTC Data Direction Register  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
13h  
14h  
85h  
94h  
SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register  
SSPCON WCOL  
SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 0000 0000 0000 0000  
TRISA  
PORTA Data Direction Register  
D/A R/W  
--11 1111 --11 1111  
0000 0000 0000 0000  
SSPSTAT  
SMP  
CKE  
P
S
UA  
BF  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by the SSP in SPI mode.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.  
DS30325B-page 64  
2002 Microchip Technology Inc.  
PIC16F7X  
The SSPCON register allows control of the I2C opera-  
tion. Four mode selection bits (SSPCON<3:0>) allow  
one of the following I2C modes to be selected:  
I2C Slave mode (7-bit address)  
I2C Slave mode (10-bit address)  
I2C Slave mode (7-bit address), with START and  
STOP bit interrupts enabled to support Firmware  
Master mode  
2
9.3  
SSP I C Operation  
The SSP module in I2C mode, fully implements all slave  
functions, except general call support, and provides  
interrupts on START and STOP bits in hardware to facil-  
itate firmware implementations of the master functions.  
The SSP module implements the standard mode speci-  
fications as well as 7-bit and 10-bit addressing.  
Two pins are used for data transfer. These are the RC3/  
SCK/SCL pin, which is the clock (SCL), and the RC4/  
SDI/SDA pin, which is the data (SDA). The user must  
configure these pins as inputs or outputs through the  
TRISC<4:3> bits.  
I2C Slave mode (10-bit address), with START and  
STOP bit interrupts enabled to support Firmware  
Master mode  
I2C START and STOP bit interrupts enabled to  
support Firmware Master mode, Slave is IDLE  
The SSP module functions are enabled by setting SSP  
enable bit SSPEN (SSPCON<5>).  
Selection of any I2C mode with the SSPEN bit set,  
forces the SCL and SDA pins to be open drain, pro-  
vided these pins are programmed to inputs by setting  
the appropriate TRISC bits. Pull-up resistors must be  
provided externally to the SCL and SDA pins for proper  
operation of the I2C module.  
Additional information on SSP I2C operation can be  
found in the PICmicroMid-Range MCU Family Ref-  
erence Manual (DS33023A).  
FIGURE 9-5:  
SSP BLOCK DIAGRAM  
(I2C MODE)  
Internal  
Data Bus  
Read  
Write  
SSPBUF reg  
RC3/SCK/SCL  
9.3.1  
SLAVE MODE  
Shift  
In Slave mode, the SCL and SDA pins must be config-  
ured as inputs (TRISC<4:3> set). The SSP module will  
override the input state with the output data when  
required (slave-transmitter).  
Clock  
SSPSR reg  
RC4/  
SDI/  
SDA  
MSb  
LSb  
When an address is matched, or the data transfer after  
an address match is received, the hardware automati-  
cally will generate the Acknowledge (ACK) pulse, and  
then load the SSPBUF register with the received value  
currently in the SSPSR register.  
Addr Match  
Match Detect  
SSPADD reg  
There are certain conditions that will cause the SSP  
module not to give this ACK pulse. They include (either  
or both):  
Set, RESET  
S, P bits  
(SSPSTAT reg)  
START and  
STOP bit Detect  
a) The buffer full bit BF (SSPSTAT<0>) was set  
before the transfer was received.  
The SSP module has five registers for I2C operation.  
These are the:  
b) The overflow bit SSPOV (SSPCON<6>) was set  
before the transfer was received.  
SSP Control Register (SSPCON)  
In this case, the SSPSR register value is not loaded  
into the SSPBUF, but bit SSPIF (PIR1<3>) is set.  
Table 9-2 shows what happens when a data transfer  
byte is received, given the status of bits BF and  
SSPOV. The shaded cells show the condition where  
user software did not properly clear the overflow condi-  
tion. Flag bit BF is cleared by reading the SSPBUF reg-  
ister, while bit SSPOV is cleared through software.  
SSP Status Register (SSPSTAT)  
Serial Receive/Transmit Buffer (SSPBUF)  
SSP Shift Register (SSPSR) - Not directly accessible  
SSP Address Register (SSPADD)  
The SCL clock input must have a minimum high and  
low for proper operation. The high and low times of the  
I2C specification, as well as the requirements of the  
SSP module, are shown in timing parameter #100 and  
parameter #101.  
2002 Microchip Technology Inc.  
DS30325B-page 65  
PIC16F7X  
The sequence of events for 10-bit address is as fol-  
lows, with steps 7 - 9 for slave-transmitter:  
9.3.1.1  
Addressing  
Once the SSP module has been enabled, it waits for a  
START condition to occur. Following the START condi-  
tion, the 8-bits are shifted into the SSPSR register. All  
incoming bits are sampled with the rising edge of the  
clock (SCL) line. The value of register SSPSR<7:1> is  
compared to the value of the SSPADD register. The  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match, and the BF  
and SSPOV bits are clear, the following events occur:  
1. Receive first (high) byte of address (bits SSPIF,  
BF, and bit UA (SSPSTAT<1>) are set).  
2. Update the SSPADD register with second (low)  
byte of address (clears bit UA and releases the  
SCL line).  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
4. Receive second (low) byte of address (bits  
SSPIF, BF, and UA are set).  
a) The SSPSR register value is loaded into the  
SSPBUF register.  
5. Update the SSPADD register with the first (high)  
byte of address, if match releases SCL line, this  
will clear bit UA.  
b) The buffer full bit, BF is set.  
c) An ACK pulse is generated.  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
d) SSP interrupt flag bit, SSPIF (PIR1<3>) is set  
(interrupt is generated if enabled) - on the falling  
edge of the ninth SCL pulse.  
7. Receive Repeated START condition.  
8. Receive first (high) byte of address (bits SSPIF  
and BF are set).  
In 10-bit Address mode, two address bytes need to be  
received by the slave (Figure 9-7). The five Most Sig-  
nificant bits (MSbs) of the first address byte specify if  
this is a 10-bit address. Bit R/W (SSPSTAT<2>) must  
specify a write so the slave device will receive the sec-  
ond address byte. For a 10-bit address, the first byte  
would equal 1111 0 A9 A8 0, where A9and A8are  
the two MSbs of the address.  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
TABLE 9-2:  
DATA TRANSFER RECEIVED BYTE ACTIONS  
Status Bits as Data  
Transfer is Received  
Set bit SSPIF  
Generate ACK  
(SSP Interrupt occurs  
Pulse  
SSPSR SSPBUF  
if enabled)  
BF  
SSPOV  
0
1
1
0
0
0
1
1
Yes  
No  
No  
No  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Note: Shaded cells show the conditions where the user software did not properly clear the overflow condition.  
An SSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF (PIR1<3>) must be cleared in soft-  
ware. The SSPSTAT register is used to determine the  
status of the byte.  
9.3.1.2  
Reception  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT  
register is cleared. The received address is loaded into  
the SSPBUF register.  
When the address byte overflow condition exists, then  
no Acknowledge (ACK) pulse is given. An overflow  
condition is defined as either bit BF (SSPSTAT<0>) is  
set, or bit SSPOV (SSPCON<6>) is set. This is an error  
condition due to the users firmware.  
DS30325B-page 66  
2002 Microchip Technology Inc.  
PIC16F7X  
FIGURE 9-6:  
I2C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)  
R/W=0  
Receiving Address  
A7 A6 A5 A4  
Receiving Data  
Receiving Data  
ACK  
9
ACK  
9
ACK  
9
SDA  
SCL  
A3 A2 A1  
D7 D6 D5 D4 D3 D2  
D0  
8
D7 D6  
D5  
D4 D3  
D2  
D0  
8
D1  
7
D1  
7
3
7
1
2
4
5
4
3
6
5
6
1
2
3
6
1
2
4
8
5
P
S
SSPIF (PIR1<3>)  
Cleared in software  
Bus Master  
terminates  
transfer  
BF (SSPSTAT<0>)  
SSPBUF register is read  
SSPOV (SSPCON<6>)  
Bit SSPOV is set because the SSPBUF register is still full.  
ACK is not sent.  
An SSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF must be cleared in software, and  
the SSPSTAT register is used to determine the status  
of the byte. Flag bit SSPIF is set on the falling edge of  
the ninth clock pulse.  
9.3.1.3  
Transmission  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register. The ACK pulse will  
be sent on the ninth bit, and pin RC3/SCK/SCL is held  
low. The transmit data must be loaded into the  
SSPBUF register, which also loads the SSPSR regis-  
ter. Then, pin RC3/SCK/SCL should be enabled by set-  
ting bit CKP (SSPCON<4>). The master must monitor  
the SCL pin prior to asserting another clock pulse. The  
slave devices may be holding off the master by stretch-  
ing the clock. The eight data bits are shifted out on the  
falling edge of the SCL input. This ensures that the  
SDA signal is valid during the SCL high time (Figure 9-7).  
As a slave-transmitter, the ACK pulse from the master-  
receiver is latched on the rising edge of the ninth SCL  
input pulse. If the SDA line was high (not ACK), then  
the data transfer is complete. When the ACK is latched  
by the slave, the slave logic is reset (resets SSPSTAT  
register) and the slave then monitors for another occur-  
rence of the START bit. If the SDA line was low (ACK),  
the transmit data must be loaded into the SSPBUF reg-  
ister, which also loads the SSPSR register. Then pin  
RC3/SCK/SCL should be enabled by setting bit CKP.  
FIGURE 9-7:  
I2C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)  
Receiving Address  
R/W = 1  
ACK  
Transmitting Data  
ACK  
9
SDA  
A7 A6 A5 A4 A3 A2 A1  
D7 D6 D5 D4 D3 D2 D1 D0  
SCL  
S
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
P
SCL held low  
while CPU  
responds to SSPIF  
Data in  
sampled  
Cleared in software  
SSPIF (PIR1<3>)  
BF (SSPSTAT<0>)  
From SSP Interrupt  
Service Routine  
SSPBUF is written in software  
CKP (SSPCON<4>)  
Set bit after writing to SSPBUF  
(the SSPBUF must be written to  
before the CKP bit can be set)  
2002 Microchip Technology Inc.  
DS30325B-page 67  
PIC16F7X  
9.3.2  
MASTER MODE  
9.3.3  
MULTI-MASTER MODE  
Master mode of operation is supported in firmware  
using interrupt generation on the detection of the  
START and STOP conditions. The STOP (P) and  
START (S) bits are cleared from a RESET or when the  
SSP module is disabled. The STOP (P) and START (S)  
bits will toggle based on the START and STOP condi-  
tions. Control of the I2C bus may be taken when the P  
bit is set, or the bus is IDLE and both the S and P bits  
are clear.  
In Multi-Master mode, the interrupt generation on the  
detection of the START and STOP conditions, allows  
the determination of when the bus is free. The STOP  
(P) and START (S) bits are cleared from a RESET or  
when the SSP module is disabled. The STOP (P) and  
START (S) bits will toggle based on the START and  
STOP conditions. Control of the I2C bus may be taken  
when bit P (SSPSTAT<4>) is set, or the bus is IDLE  
and both the S and P bits clear. When the bus is busy,  
enabling the SSP Interrupt will generate the interrupt  
when the STOP condition occurs.  
In Master mode, the SCL and SDA lines are manipu-  
lated by clearing the corresponding TRISC<4:3> bit(s).  
The output level is always low, irrespective of the  
value(s) in PORTC<4:3>. So when transmitting data, a  
1data bit must have the TRISC<4> bit set (input) and  
a 0data bit must have the TRISC<4> bit cleared (out-  
put). The same scenario is true for the SCL line with the  
TRISC<3> bit. Pull-up resistors must be provided  
externally to the SCL and SDA pins for proper opera-  
tion of the I2C module.  
In Multi-Master operation, the SDA line must be moni-  
tored to see if the signal level is the expected output  
level. This check only needs to be done when a high  
level is output. If a high level is expected and a low level  
is present, the device needs to release the SDA and  
SCL lines (set TRISC<4:3>). There are two stages  
where this arbitration can be lost, these are:  
Address Transfer  
Data Transfer  
The following events will cause SSP Interrupt Flag bit,  
SSPIF, to be set (SSP Interrupt will occur if enabled):  
When the slave logic is enabled, the slave continues to  
receive. If arbitration was lost during the address trans-  
fer stage, communication to the device may be in  
progress. If addressed, an ACK pulse will be gener-  
ated. If arbitration was lost during the data transfer  
stage, the device will need to retransfer the data at a  
later time.  
START condition  
STOP condition  
Data transfer byte transmitted/received  
Master mode of operation can be done with either the  
Slave mode IDLE (SSPM3:SSPM0 = 1011), or with the  
Slave active. When both Master and Slave modes are  
enabled, the software needs to differentiate the  
source(s) of the interrupt.  
TABLE 9-3:  
REGISTERS ASSOCIATED WITH I2C OPERATION  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh,  
INTCON  
GIE  
PEIE TMR0IE INTE  
RBIE TMR0IF INTF  
RBIF  
0000 000x  
0000 000u  
10Bh,18Bh  
(1)  
0Ch  
8Ch  
13h  
93h  
14h  
94h  
87h  
PIR1  
PIE1  
PSPIF  
PSPIE  
ADIF  
ADIE  
RCIF  
RCIE  
TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
(1)  
SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
1111 1111  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
2
SSPADD Synchronous Serial Port (I C mode) Address Register  
SSPCON  
SSPSTAT  
TRISC  
WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0  
(2)  
(2)  
SMP  
CKE  
D/A  
P
S
R/W  
UA  
BF  
PORTC Data Direction Register  
1111 1111  
2
Legend: x= unknown, u= unchanged, -= unimplemented locations read as 0. Shaded cells are not used by SSP module in I C mode.  
Note 1: PSPIF and PSPIE are reserved on the PIC16F73/76; always maintain these bits clear.  
2
2: Maintain these bits clear in I C mode.  
DS30325B-page 68  
2002 Microchip Technology Inc.  
PIC16F7X  
The USART can be configured in the following modes:  
10.0 UNIVERSAL SYNCHRONOUS  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (USART)  
Asynchronous (full duplex)  
Synchronous - Master (half duplex)  
Synchronous - Slave (half duplex)  
The Universal Synchronous Asynchronous Receiver  
Transmitter (USART) module is one of the two serial  
I/O modules. (USART is also known as a Serial Com-  
munications Interface or SCI.) The USART can be con-  
figured as a full duplex asynchronous system that can  
communicate with peripheral devices, such as CRT ter-  
minals and personal computers, or it can be configured  
as a half duplex synchronous system that can commu-  
nicate with peripheral devices, such as A/D or D/A inte-  
grated circuits, serial EEPROMs, etc.  
Bit SPEN (RCSTA<7>) and bits TRISC<7:6> have to  
be set in order to configure pins RC6/TX/CK and  
RC7/RX/DT as the Universal Synchronous Asynchro-  
nous Receiver Transmitter.  
REGISTER 10-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN  
R/W-0  
SYNC  
U-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
TRMT  
bit 7  
bit 0  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Dont care  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit  
1= Transmit enabled  
0= Transmit disabled  
Note: SREN/CREN overrides TXEN in Sync mode.  
bit 4  
SYNC: USART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
bit 3  
bit 2  
Unimplemented: Read as '0'  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: 9th bit of Transmit Data  
Can be parity bit  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
- n = Value at POR reset  
1= Bit is set  
0= Bit is cleared  
x = Bit is unknown  
2002 Microchip Technology Inc.  
DS30325B-page 69  
PIC16F7X  
REGISTER 10-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
U-0  
R-0  
R-0  
R-x  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (configures RC7/RX/DT and RC6/TX/CK pins as serial port pins)  
0= Serial port disabled  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Dont care  
Synchronous mode - Master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode - Slave:  
Dont care  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables continuous receive  
0= Disables continuous receive  
Synchronous mode:  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
bit 2  
Unimplemented: Read as '0'  
FERR: Framing Error bit  
1= Framing error (can be updated by reading RCREG register and receive next valid byte)  
0= No framing error  
bit 1  
bit 0  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: 9th bit of Received Data  
Can be parity bit (parity to be calculated by firmware)  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
1= Bit is set  
DS30325B-page 70  
2002 Microchip Technology Inc.  
PIC16F7X  
It may be advantageous to use the high baud rate  
(BRGH = 1), even for slower baud clocks. This is  
because the FOSC/(16(X + 1)) equation can reduce the  
baud rate error in some cases.  
10.1 USART Baud Rate Generator  
(BRG)  
The BRG supports both the Asynchronous and Syn-  
chronous modes of the USART. It is a dedicated 8-bit  
baud rate generator. The SPBRG register controls the  
period of a free running 8-bit timer. In Asynchronous  
mode, bit BRGH (TXSTA<2>) also controls the baud  
rate. In Synchronous mode, bit BRGH is ignored.  
Table 10-1 shows the formula for computation of the  
baud rate for different USART modes which only apply  
in Master mode (internal clock).  
Writing a new value to the SPBRG register causes the  
BRG timer to be reset (or cleared). This ensures the  
BRG does not wait for a timer overflow before output-  
ting the new baud rate.  
10.1.1  
SAMPLING  
The data on the RC7/RX/DT pin is sampled three times  
by a majority detect circuit to determine if a high or a  
low level is present at the RX pin.  
Given the desired baud rate and FOSC, the nearest  
integer value for the SPBRG register can be calculated  
using the formula in Table 10-1. From this, the error in  
baud rate can be determined.  
TABLE 10-1: BAUD RATE FORMULA  
SYNC  
BRGH = 0 (Low Speed)  
BRGH = 1 (High Speed)  
0
1
(Asynchronous) Baud Rate = FOSC/(64(X+1))  
(Synchronous) Baud Rate = FOSC/(4(X+1))  
Baud Rate = FOSC/(16(X+1))  
N/A  
X = value in SPBRG (0 to 255)  
TABLE 10-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1 Bit 0  
0000 -010 0000 -010  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
98h  
18h  
99h  
TXSTA  
CSRC TX9 TXEN SYNC  
BRGH TRMT TX9D  
FERR OERR RX9D  
RCSTA SPEN RX9 SREN CREN  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented, read as '0'. Shaded cells are not used by the BRG.  
2002 Microchip Technology Inc.  
DS30325B-page 71  
PIC16F7X  
TABLE 10-3: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)  
FOSC = 20 MHz  
FOSC = 16 MHz  
FOSC = 10 MHz  
BAUD  
RATE  
SPBRG  
VALUE  
(DECIMAL)  
SPBRG  
VALUE  
(DECIMAL)  
SPBRG  
VALUE  
(DECIMAL)  
%
%
%
BAUD  
ERROR  
BAUD  
ERROR  
BAUD  
ERROR  
1200  
2400  
1,221  
2,404  
1.73%  
0.16%  
-1.36%  
1.73%  
1.73%  
8.51%  
1.73%  
8.51%  
-9.58%  
25.00%  
255  
129  
32  
15  
7
1,202  
2,404  
0.16%  
0.16%  
0.16%  
0.16%  
-6.99%  
8.51%  
8.51%  
-13.19%  
8.51%  
0.00%  
207  
103  
25  
12  
6
1,202  
2,404  
0.16%  
0.16%  
129  
64  
15  
7
9600  
9,470  
9,615  
9,766  
1.73%  
19,200  
38,400  
57,600  
76,800  
96,000  
115,200  
250,000  
19,531  
39,063  
62,500  
78,125  
104,167  
104,167  
312,500  
19,231  
35,714  
62,500  
83,333  
83,333  
125,000  
250,000  
19,531  
39,063  
52,083  
78,125  
78,125  
78,125  
156,250  
1.73%  
1.73%  
3
4
3
-9.58%  
1.73%  
2
3
2
1
2
2
-18.62%  
-32.18%  
-37.50%  
1
2
1
1
0
0
0
FOSC = 4 MHz  
FOSC = 3.6864 MHz  
FOSC = 3.579545 MHz  
BAUD  
RATE  
SPBRG  
VALUE  
(DECIMAL)  
SPBRG  
VALUE  
(DECIMAL)  
SPBRG  
VALUE  
(DECIMAL)  
%
%
%
BAUD  
ERROR  
BAUD  
ERROR  
BAUD  
ERROR  
300  
300  
0.16%  
0.16%  
207  
51  
25  
6
300  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
-25.00%  
191  
47  
23  
5
301  
1,190  
2,432  
9,322  
18,643  
27,965  
0.23%  
-0.83%  
1.32%  
185  
46  
22  
5
1200  
1,202  
1,200  
2,400  
9,600  
19,200  
28,800  
2400  
2,404  
0.16%  
9600  
8,929  
-6.99%  
8.51%  
-2.90%  
-2.90%  
-27.17%  
19,200  
38,400  
57,600  
76,800  
20,833  
31,250  
62,500  
62,500  
2
2
2
-18.62%  
8.51%  
1
1
1
0
57,600  
0.00%  
0
55,930  
-2.90%  
0
-18.62%  
0
TABLE 10-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)  
FOSC = 20 MHz  
FOSC = 16 MHz  
FOSC = 10 MHz  
BAUD  
RATE  
SPBRG  
VALUE  
(DECIMAL)  
SPBRG  
VALUE  
(DECIMAL)  
SPBRG  
VALUE  
(DECIMAL)  
%
%
%
BAUD  
ERROR  
BAUD  
ERROR  
BAUD  
ERROR  
2400  
9600  
2,441  
9,615  
1.73%  
0.16%  
-1.36%  
1.73%  
-1.36%  
1.73%  
-6.99%  
8.51%  
-16.67%  
4.17%  
255  
64  
32  
15  
10  
7
9,615  
19,231  
37,879  
56,818  
78,125  
96,154  
113,636  
250,000  
312,500  
0.16%  
0.16%  
-1.36%  
-1.36%  
1.73%  
0.16%  
-1.36%  
0.00%  
4.17%  
129  
64  
32  
21  
15  
12  
10  
4
9,615  
19,231  
38,462  
58,824  
76,923  
100,000  
111,111  
250,000  
333,333  
0.16%  
0.16%  
0.16%  
2.12%  
0.16%  
4.17%  
-3.55%  
0.00%  
11.11%  
103  
51  
25  
16  
12  
9
19,200  
38,400  
57,600  
76,800  
96,000  
115,200  
250,000  
300,000  
18,939  
39,063  
56,818  
78,125  
89,286  
125,000  
208,333  
312,500  
6
8
4
3
2
3
2
1
FOSC = 4 MHz  
FOSC = 3.6864 MHz  
FOSC = 3.579545 MHz  
BAUD  
RATE  
(K)  
SPBRG  
VALUE  
(DECIMAL)  
SPBRG  
VALUE  
SPBRG  
VALUE  
%
%
%
BAUD  
ERROR  
BAUD  
ERROR  
BAUD  
ERROR  
(DECIMAL)  
(DECIMAL)  
1200  
2400  
1,202  
2,404  
0.16%  
0.16%  
0.16%  
0.16%  
-6.99%  
8.51%  
8.51%  
-13.19%  
8.51%  
0.00%  
207  
103  
25  
12  
6
1,200  
2,400  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
20.00%  
0.00%  
-7.84%  
191  
95  
23  
11  
5
1,203  
2,406  
0.23%  
0.23%  
185  
92  
22  
11  
5
9600  
9,615  
9,600  
9,727  
1.32%  
19,200  
38,400  
57,600  
76,800  
96,000  
115,200  
250,000  
19,231  
35,714  
62,500  
83,333  
83,333  
125,000  
250,000  
19,200  
38,400  
57,600  
76,800  
115,200  
115,200  
230,400  
18,643  
37,287  
55,930  
74,574  
111,861  
111,861  
223,722  
-2.90%  
-2.90%  
-2.90%  
-2.90%  
16.52%  
-2.90%  
-10.51%  
3
3
3
2
2
2
2
1
1
1
1
1
0
0
0
DS30325B-page 72  
2002 Microchip Technology Inc.  
PIC16F7X  
are set. The TXIF interrupt can be enabled/disabled by  
setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF  
will be set, regardless of the state of enable bit TXIE and  
cannot be cleared in software. It will reset only when new  
data is loaded into the TXREG register. While flag bit  
TXIF indicates the status of the TXREG register, another  
bit TRMT (TXSTA<1>) shows the status of the TSR reg-  
ister. Status bit TRMT is a read only bit, which is set one  
instruction cycle after the TSR register becomes empty,  
and is cleared one instruction cycle after the TSR regis-  
ter is loaded. No interrupt logic is tied to this bit, so the  
user has to poll this bit in order to determine if the TSR  
register is empty.  
10.2 USART Asynchronous Mode  
In this mode, the USART uses standard non-return-to-  
zero (NRZ) format (one START bit, eight or nine data  
bits, and one STOP bit). The most common data format  
is 8-bits. An on-chip, dedicated, 8-bit baud rate gener-  
ator can be used to derive standard baud rate frequen-  
cies from the oscillator. The USART transmits and  
receives the LSb first. The USART’s transmitter and  
receiver are functionally independent, but use the  
same data format and baud rate. The baud rate gener-  
ator produces a clock, either x16 or x64 of the bit shift  
rate, depending on bit BRGH (TXSTA<2>). Parity is not  
supported by the hardware, but can be implemented in  
software (and stored as the ninth data bit). Asynchro-  
nous mode is stopped during SLEEP.  
Note 1: The TSR register is not mapped in data  
memory, so it is not available to the user.  
2: Flag bit TXIF is set when enable bit TXEN  
Asynchronous mode is selected by clearing bit SYNC  
(TXSTA<4>).  
is set. TXIF is cleared by loading TXREG.  
Transmission is enabled by setting enable bit TXEN  
(TXSTA<5>). The actual transmission will not occur until  
the TXREG register has been loaded with data and the  
baud rate generator (BRG) has produced a shift clock  
(Figure 10-2). The transmission can also be started by  
first loading the TXREG register and then setting enable  
bit TXEN. Normally, when transmission is first started,  
the TSR register is empty. At that point, transfer to the  
TXREG register will result in an immediate transfer to  
TSR, resulting in an empty TXREG. A back-to-back  
transfer is thus possible (Figure 10-3). Clearing enable  
bit TXEN during a transmission will cause the transmis-  
sion to be aborted and will reset the transmitter. As a  
result, the RC6/TX/CK pin will revert to hi-impedance.  
The USART Asynchronous module consists of the fol-  
lowing important elements:  
• Baud Rate Generator  
• Sampling Circuit  
• Asynchronous Transmitter  
• Asynchronous Receiver  
10.2.1  
USART ASYNCHRONOUS  
TRANSMITTER  
The USART transmitter block diagram is shown in  
Figure 10-1. The heart of the transmitter is the transmit  
(serial) shift register (TSR). The shift register obtains its  
data from the read/write transmit buffer, TXREG. The  
TXREG register is loaded with data by firmware. The  
TSR register is not loaded until the STOP bit has been  
transmitted from the previous load. As soon as the  
STOP bit is transmitted, the TSR is loaded with new data  
from the TXREG register (if available). Once the TXREG  
register transfers the data to the TSR register, the  
TXREG register is empty. One instruction cycle later,  
flag bit TXIF (PIR1<4>) and flag bit TRMT (TXSTA<1>)  
In order to select 9-bit transmission, transmit bit TX9  
(TXSTA<6>) should be set and the ninth bit should be  
written to TX9D (TXSTA<0>). The ninth bit must be writ-  
ten before writing the 8-bit data to the TXREG register.  
This is because a data write to the TXREG register can  
result in an immediate transfer of the data to the TSR  
register (if the TSR is empty). In such a case, an incor-  
rect ninth data bit may be loaded in the TSR register.  
FIGURE 10-1:  
USART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXREG Register  
TXIF  
TXIE  
8
MSb  
(8)  
LSb  
Pin Buffer  
and Control  
0
• •  
TSR Register  
RC6/TX/CK pin  
Interrupt  
TXEN  
Baud Rate CLK  
SPBRG  
TRMT  
SPEN  
TX9  
TX9D  
Baud Rate Generator  
2002 Microchip Technology Inc.  
DS30325B-page 73  
PIC16F7X  
Steps to follow when setting up an Asynchronous  
Transmission:  
5. Enable the transmission by setting bit TXEN,  
which will also set bit TXIF.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH (Section 10.1).  
7. Load data to the TXREG register (starts  
transmission).  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
8. If using interrupts, ensure that GIE and PEIE in  
the INTCON register are set.  
3. If interrupts are desired, then set enable bit TXIE.  
4. If 9-bit transmission is desired, then set transmit  
bit TX9.  
FIGURE 10-2:  
ASYNCHRONOUS MASTER TRANSMISSION  
Write to TXREG  
Word 1  
BRG Output  
(Shift Clock)  
RC6/TX/CK (pin)  
START Bit  
Bit 0  
Bit 1  
Word 1  
Bit 7/8  
STOP Bit  
TXIF bit  
(Transmit Buffer  
Reg. Empty Flag)  
TRMT bit  
(Transmit Shift  
Word 1  
Transmit Shift Reg  
Reg. Empty Flag)  
FIGURE 10-3:  
ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)  
Write to TXREG  
Word 2  
Word 1  
BRG Output  
(Shift Clock)  
RC6/TX/CK (pin)  
TXIF bit  
(Interrupt Reg. Flag)  
START Bit  
START Bit  
Word 2  
Bit 0  
Bit 1  
Word 1  
Bit 7/8  
Bit 0  
STOP Bit  
TRMT bit  
Word 1  
Transmit Shift Reg.  
Word 2  
Transmit Shift Reg.  
(Transmit Shift  
Reg. Empty Flag)  
Note: This timing diagram shows two consecutive transmissions.  
TABLE 10-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE TMR0IE INTE  
RBIE TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
(1)  
0Ch  
18h  
19h  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
RCSTA  
SREN CREN  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
TXREG USART Transmit Register  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXSTA  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.  
DS30325B-page 74  
2002 Microchip Technology Inc.  
PIC16F7X  
is possible for two bytes of data to be received and  
transferred to the RCREG FIFO and a third byte to  
begin shifting to the RSR register. On the detection of  
the STOP bit of the third byte, if the RCREG register is  
still full, the overrun error bit OERR (RCSTA<1>) will be  
set. The word in the RSR will be lost. The RCREG reg-  
ister can be read twice to retrieve the two bytes in the  
FIFO. Overrun bit OERR has to be cleared in software.  
This is done by resetting the receive logic (CREN is  
cleared and then set). If bit OERR is set, transfers from  
the RSR register to the RCREG register are inhibited  
and no further data will be received, therefore, it is  
essential to clear error bit OERR if it is set. Framing  
error bit FERR (RCSTA<2>) is set if a STOP bit is  
detected as clear. Bit FERR and the 9th receive bit are  
buffered the same way as the receive data. Reading  
the RCREG will load bits RX9D and FERR with new  
values, therefore, it is essential for the user to read the  
RCSTA register before reading RCREG register, in  
order not to lose the old FERR and RX9D information.  
10.2.2  
USART ASYNCHRONOUS  
RECEIVER  
The receiver block diagram is shown in Figure 10-4.  
The data is received on the RC7/RX/DT pin and drives  
the data recovery block. The data recovery block is  
actually a high speed shifter operating at x16 times the  
baud rate, whereas the main receive serial shifter oper-  
ates at the bit rate, or at FOSC.  
Once Asynchronous mode is selected, reception is  
enabled by setting bit CREN (RCSTA<4>).  
The heart of the receiver is the receive (serial) shift reg-  
ister (RSR). After sampling the STOP bit, the received  
data in the RSR is transferred to the RCREG register (if  
it is empty). If the transfer is complete, flag bit RCIF  
(PIR1<5>) is set. The actual interrupt can be enabled/  
disabled by setting/clearing enable bit RCIE  
(PIE1<5>). Flag bit RCIF is a read only bit which is  
cleared by the hardware. It is cleared when the RCREG  
register has been read and is empty. The RCREG is a  
double buffered register (i.e., it is a two deep FIFO). It  
FIGURE 10-4:  
USART RECEIVE BLOCK DIAGRAM  
x64 Baud Rate CLK  
FERR  
OERR  
CREN  
FOSC  
SPBRG  
RSR Register  
LSb  
MSb  
÷64  
or  
÷16  
0
Baud Rate Generator  
1
7
STOP (8)  
START  
• • •  
RC7/RX/DT  
Pin Buffer  
and Control  
Data  
Recovery  
RX9  
RX9D  
SPEN  
RCREG Register  
FIFO  
8
RCIF  
RCIE  
Interrupt  
Data Bus  
2002 Microchip Technology Inc.  
DS30325B-page 75  
PIC16F7X  
FIGURE 10-5:  
ASYNCHRONOUS RECEPTION  
START  
bit  
START  
bit  
START  
bit7/8 STOP bit  
bit  
RX (pin)  
bit0  
bit1  
STOP  
bit  
STOP  
bit  
bit0  
bit7/8  
bit7/8  
Rcv Shift  
Reg  
Rcv Buffer Reg  
Word 2  
RCREG  
Word 1  
RCREG  
Read Rcv  
Buffer reg  
RCREG  
RCIF  
(Interrupt Flag)  
OERR bit  
CREN  
Note: This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word,  
causing the OERR (overrun) bit to be set. An overrun error indicates an error in user firmware.  
Steps to follow when setting up an Asynchronous  
Reception:  
6. Flag bit RCIF will be set when reception is com-  
plete and an interrupt will be generated if enable  
bit RCIE is set.  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH (Section 10.1).  
7. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
8. Read the 8-bit received data by reading the  
RCREG register.  
3. If interrupts are desired, then set enable bit  
RCIE.  
9. If any error occurred, clear the error by clearing  
enable bit CREN.  
4. If 9-bit reception is desired, then set bit RX9.  
5. Enable the reception by setting bit CREN.  
10. If using interrupts, ensure that GIE and PEIE in  
the INTCON register are set.  
TABLE 10-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE TMR0IE INTE  
RBIE TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
(1)  
0Ch  
18h  
1Ah  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
RCSTA  
SREN CREN  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
RCREG USART Receive Register  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXSTA  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76 devices; always maintain these bits clear.  
DS30325B-page 76  
2002 Microchip Technology Inc.  
PIC16F7X  
Clearing enable bit TXEN during a transmission will  
cause the transmission to be aborted and will reset the  
transmitter. The DT and CK pins will revert to hi-  
impedance. If either bit CREN or bit SREN is set during  
a transmission, the transmission is aborted and the DT  
pin reverts to a hi-impedance state (for a reception).  
The CK pin will remain an output if bit CSRC is set  
(internal clock). The transmitter logic, however, is not  
reset, although it is disconnected from the pins. In order  
to reset the transmitter, the user has to clear bit TXEN.  
If bit SREN is set (to interrupt an on-going transmission  
and receive a single word), then after the single word is  
received, bit SREN will be cleared and the serial port  
will revert back to transmitting, since bit TXEN is still  
set. The DT line will immediately switch from Hi-  
impedance Receive mode to transmit and start driving.  
To avoid this, bit TXEN should be cleared.  
10.3 USART Synchronous Master  
Mode  
In Synchronous Master mode, the data is transmitted in  
a half-duplex manner (i.e., transmission and reception  
do not occur at the same time). When transmitting data,  
the reception is inhibited and vice versa. Synchronous  
mode is entered by setting bit SYNC (TXSTA<4>). In  
addition, enable bit SPEN (RCSTA<7>) is set in order  
to configure the RC6/TX/CK and RC7/RX/DT I/O pins  
to CK (clock) and DT (data) lines, respectively. The  
Master mode indicates that the processor transmits the  
master clock on the CK line. The Master mode is  
entered by setting bit CSRC (TXSTA<7>).  
10.3.1  
USART SYNCHRONOUS MASTER  
TRANSMISSION  
In order to select 9-bit transmission, the TX9  
(TXSTA<6>) bit should be set and the ninth bit should  
be written to bit TX9D (TXSTA<0>). The ninth bit must  
be written before writing the 8-bit data to the TXREG  
register. This is because a data write to the TXREG can  
result in an immediate transfer of the data to the TSR  
register (if the TSR is empty). If the TSR was empty and  
the TXREG was written before writing the newTX9D,  
the presentvalue of bit TX9D is loaded.  
The USART transmitter block diagram is shown in  
Figure 10-1. The heart of the transmitter is the transmit  
(serial) shift register (TSR). The shift register obtains its  
data from the read/write transmit buffer register  
TXREG. The TXREG register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREG (if available). Once the  
TXREG register transfers the data to the TSR register  
(occurs in one TCYCLE), the TXREG is empty and inter-  
rupt bit TXIF (PIR1<4>) is set. The interrupt can be  
enabled/disabled by setting/clearing enable bit TXIE  
(PIE1<4>). Flag bit TXIF will be set, regardless of the  
state of enable bit TXIE and cannot be cleared in soft-  
ware. It will reset only when new data is loaded into the  
TXREG register. While flag bit TXIF indicates the status  
of the TXREG register, another bit TRMT (TXSTA<1>)  
shows the status of the TSR register. TRMT is a read  
only bit, which is set when the TSR is empty. No inter-  
rupt logic is tied to this bit, so the user has to poll this  
bit in order to determine if the TSR register is empty.  
The TSR is not mapped in data memory, so it is not  
available to the user.  
Steps to follow when setting up a Synchronous Master  
Transmission:  
1. Initialize the SPBRG register for the appropriate  
baud rate (Section 10.1).  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting bit TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the TXREG  
register.  
8. If using interrupts, ensure that GIE and PEIE in  
the INTCON register are set.  
Transmission is enabled by setting enable bit TXEN  
(TXSTA<5>). The actual transmission will not occur  
until the TXREG register has been loaded with data.  
The first data bit will be shifted out on the next available  
rising edge of the clock on the CK line. Data out is  
stable around the falling edge of the synchronous clock  
(Figure 10-6). The transmission can also be started by  
first loading the TXREG register and then setting bit  
TXEN (Figure 10-7). This is advantageous when slow  
baud rates are selected, since the BRG is kept in  
RESET when bits TXEN, CREN and SREN are clear.  
Setting enable bit TXEN will start the BRG, creating a  
shift clock immediately. Normally, when transmission is  
first started, the TSR register is empty, so a transfer to  
the TXREG register will result in an immediate transfer  
to TSR, resulting in an empty TXREG. Back-to-back  
transfers are possible.  
2002 Microchip Technology Inc.  
DS30325B-page 77  
PIC16F7X  
FIGURE 10-6:  
SYNCHRONOUS TRANSMISSION  
Q1Q2 Q3Q4 Q1Q2Q3Q4Q1 Q2Q3 Q4Q1Q2Q3 Q4Q1Q2Q3Q4  
Q3Q4 Q1Q2 Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4  
RC7/RX/DT  
pin  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
Word 2  
bit 7  
Word 1  
RC6/TX/CK  
pin  
Write to  
TXREG reg  
Write Word 1  
Write Word 2  
TXIF bit  
(Interrupt Flag)  
TRMT  
TRMT bit  
1’  
1’  
TXEN bit  
Note: Sync Master mode; SPBRG = 0. Continuous transmission of two 8-bit words.  
FIGURE 10-7:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RC7/RX/DT pin  
bit0  
bit2  
bit1  
bit6  
bit7  
RC6/TX/CK pin  
Write to  
TXREG reg  
TXIF bit  
TRMT bit  
TXEN bit  
TABLE 10-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE TMR0IE INTE RBIE TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
(1)  
0Ch  
18h  
19h  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
RCSTA  
SREN CREN  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
TXREG USART Transmit Register  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXSTA  
TXEN SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76 devices; always maintain these bits clear.  
DS30325B-page 78  
2002 Microchip Technology Inc.  
PIC16F7X  
receive data. Reading the RCREG register will load bit  
RX9D with a new value, therefore, it is essential for the  
user to read the RCSTA register before reading RCREG,  
in order not to lose the old RX9D information.  
10.3.2  
USART SYNCHRONOUS MASTER  
RECEPTION  
Once synchronous mode is selected, reception is  
enabled by setting either enable bit SREN (RCSTA<5>),  
or enable bit CREN (RCSTA<4>). Data is sampled on  
the RC7/RX/DT pin on the falling edge of the clock. If  
enable bit SREN is set, then only a single word is  
received. If enable bit CREN is set, the reception is con-  
tinuous until CREN is cleared. If both bits are set, CREN  
takes precedence. After clocking the last bit, the  
received data in the Receive Shift Register (RSR) is  
transferred to the RCREG register (if it is empty). When  
the transfer is complete, interrupt flag bit RCIF  
(PIR1<5>) is set. The actual interrupt can be enabled/  
disabled by setting/clearing enable bit RCIE (PIE1<5>).  
Flag bit RCIF is a read only bit, which is reset by the  
hardware. In this case, it is reset when the RCREG reg-  
ister has been read and is empty. The RCREG is a dou-  
ble buffered register (i.e., it is a two deep FIFO). It is  
possible for two bytes of data to be received and trans-  
ferred to the RCREG FIFO and a third byte to begin shift-  
ing into the RSR register. On the clocking of the last bit  
of the third byte, if the RCREG register is still full, then  
overrun error bit OERR (RCSTA<1>) is set. The word in  
the RSR will be lost. The RCREG register can be read  
twice to retrieve the two bytes in the FIFO. Bit OERR has  
to be cleared in software (by clearing bit CREN). If bit  
OERR is set, transfers from the RSR to the RCREG are  
inhibited, so it is essential to clear bit OERR if it is set.  
The ninth receive bit is buffered the same way as the  
Steps to follow when setting up a Synchronous Master  
Reception:  
1. Initialize the SPBRG register for the appropriate  
baud rate (Section 10.1).  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
3. Ensure bits CREN and SREN are clear.  
4. If interrupts are desired, then set enable bit  
RCIE.  
5. If 9-bit reception is desired, then set bit RX9.  
6. If a single reception is required, set bit SREN.  
For continuous reception set bit CREN.  
7. Interrupt flag bit RCIF will be set when reception  
is complete and an interrupt will be generated if  
enable bit RCIE was set.  
8. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read the 8-bit received data by reading the  
RCREG register.  
10. If any error occurred, clear the error by clearing  
bit CREN.  
11. If using interrupts, ensure that GIE and PEIE in  
the INTCON register are set.  
FIGURE 10-8:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2Q3Q4 Q1Q2Q3Q4 Q1 Q2Q3Q4 Q1Q2Q3 Q4Q1 Q2Q3 Q4 Q1Q2 Q3Q4Q1Q2Q3 Q4 Q1Q2 Q3Q4Q1 Q2Q3 Q4 Q1Q2Q3 Q4 Q1Q2 Q3Q4  
RC7/RX/DT pin  
RC6/TX/CK pin  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
Write to  
bit SREN  
SREN bit  
CREN bit  
0’  
0’  
RCIF bit  
(Interrupt)  
Read  
RXREG  
Note: Timing diagram demonstrates Sync Master mode with bit SREN = 1and bit BRG = 0.  
2002 Microchip Technology Inc.  
DS30325B-page 79  
PIC16F7X  
TABLE 10-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Value on  
all other  
RESETS  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE TMR0IE INTE  
RBIE TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
(1)  
0Ch  
18h  
1Ah  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
RCSTA  
SREN CREN  
FERR  
OERR  
RX9D 0000 -00x 0000 -00x  
RCREG USART Receive Register  
0000 0000 0000 0000  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXSTA  
TXEN SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented, read as '0'. Shaded cells are not used for synchronous master reception.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76 devices; always maintain these bits clear.  
Follow these steps when setting up a Synchronous  
Slave Transmission:  
10.4 USART Synchronous Slave Mode  
Synchronous Slave mode differs from the Master  
1. Enable the synchronous slave serial port by set-  
mode, in that the shift clock is supplied externally at the  
ting bits SYNC and SPEN and clearing bit  
RC6/TX/CK pin (instead of being supplied internally in  
Master mode). This allows the device to transfer or  
receive data while in SLEEP mode. Slave mode is  
entered by clearing bit CSRC (TXSTA<7>).  
CSRC.  
2. Clear bits CREN and SREN.  
3. If interrupts are desired, then set enable bit  
TXIE.  
10.4.1  
USART SYNCHRONOUS SLAVE  
TRANSMIT  
4. If 9-bit transmission is desired, then set bit TX9.  
5. Enable the transmission by setting enable bit  
TXEN.  
The operation of the Synchronous Master and Slave  
modes are identical except in the case of the SLEEP  
mode.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the TXREG  
register.  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
8. If using interrupts, ensure that GIE and PEIE in  
the INTCON register are set.  
a) The first word will immediately transfer to the  
TSR register and transmit when the master  
device drives the CK line.  
b) The second word will remain in TXREG register.  
c) Flag bit TXIF will not be set.  
d) When the first word has been shifted out of TSR,  
the TXREG register will transfer the second  
word to the TSR and flag bit TXIF will now be  
set.  
e) If enable bit TXIE is set, the interrupt will wake  
the chip from SLEEP and if the global interrupt  
is enabled, the program will branch to the inter-  
rupt vector (0004h).  
DS30325B-page 80  
2002 Microchip Technology Inc.  
PIC16F7X  
TABLE 10-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE TMR0IE INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
(1)  
0Ch  
18h  
19h  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
RCSTA  
SREN CREN ADDEN FERR  
OERR  
RX9D 0000 000x 0000 000x  
TXREG USART Transmit Register  
0000 0000 0000 0000  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXSTA  
TXEN SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76 devices; always maintain these bits clear.  
Follow these steps when setting up a Synchronous  
Slave Reception:  
10.4.2  
USART SYNCHRONOUS SLAVE  
RECEPTION  
1. Enable the synchronous master serial port by  
setting bits SYNC and SPEN and clearing bit  
CSRC.  
The operation of the Synchronous Master and Slave  
modes is identical, except in the case of the SLEEP  
mode. Bit SREN is a don't carein Slave mode.  
2. If interrupts are desired, set enable bit RCIE.  
3. If 9-bit reception is desired, set bit RX9.  
4. To enable reception, set enable bit CREN.  
If receive is enabled by setting bit CREN prior to the  
SLEEPinstruction, then a word may be received during  
SLEEP. On completely receiving the word, the RSR  
register will transfer the data to the RCREG register  
and if enable bit RCIE bit is set, the interrupt generated  
will wake the chip from SLEEP. If the global interrupt is  
enabled, the program will branch to the interrupt vector  
(0004h).  
5. Flag bit RCIF will be set when reception is com-  
plete and an interrupt will be generated, if  
enable bit RCIE was set.  
6. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
7. Read the 8-bit received data by reading the  
RCREG register.  
8. If any error occurred, clear the error by clearing  
bit CREN.  
9. If using interrupts, ensure that GIE and PEIE in  
the INTCON register are set.  
TABLE 10-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE TMR0IE INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
(1)  
0Ch  
18h  
1Ah  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
RCSTA  
SREN CREN ADDEN FERR  
OERR  
RX9D 0000 000x 0000 000x  
RCREG USART Receive Register  
0000 0000 0000 0000  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXSTA  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
SPBRG Baud Rate Generator Register  
Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous slave reception.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76 devices, always maintain these bits clear.  
2002 Microchip Technology Inc.  
DS30325B-page 81  
PIC16F7X  
NOTES:  
DS30325B-page 82  
2002 Microchip Technology Inc.  
PIC16F7X  
The A/D module has three registers. These registers  
are:  
11.0 ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
A/D Result Register ((ADRES)  
A/D Control Register 0 (ADCON0)  
A/D Control Register 1 ((ADCON1)  
The 8-bit analog-to-digital (A/D) converter module has  
five inputs for the PIC16F73/76 and eight for the  
PIC16F74/77.  
The ADCON0 register, shown in Register 11-1, con-  
trols the operation of the A/D module. The ADCON1  
register, shown in Register 11-2, configures the func-  
tions of the port pins. The port pins can be configured  
as analog inputs (RA3 can also be a voltage reference),  
or as digital I/O.  
The A/D allows conversion of an analog input signal to  
a corresponding 8-bit digital number. The output of the  
sample and hold is the input into the converter, which  
generates the result via successive approximation. The  
analog reference voltage is software selectable to  
either the devices positive supply voltage (VDD), or the  
voltage level on the RA3/AN3/VREF pin.  
Additional information on using the A/D module can be  
found in the PICmicroMid-Range MCU Family Ref-  
erence Manual (DS33023) and in Application Note,  
AN546 (DS00546).  
The A/D converter has a unique feature of being able  
to operate while the device is in SLEEP mode. To oper-  
ate in SLEEP, the A/D conversion clock must be  
derived from the A/Ds internal RC oscillator.  
REGISTER 11-1: ADCON0 REGISTER (ADDRESS 1Fh)  
R/W-0  
ADCS1  
bit 7  
R/W-0  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
U-0  
R/W-0  
ADON  
bit 0  
ADCS0  
GO/DONE  
bit 7-6  
bit 5-3  
ADCS1:ADCS0: A/D Conversion Clock Select bits  
00= FOSC/2  
01= FOSC/8  
10= FOSC/32  
11= FRC (clock derived from the internal A/D module RC oscillator)  
CHS2:CHS0: Analog Channel Select bits  
000= Channel 0 (RA0/AN0)  
001= Channel 1 (RA1/AN1)  
010= Channel 2 (RA2/AN2)  
011= Channel 3 (RA3/AN3)  
100= Channel 4 (RA5/AN4)  
101= Channel 5 (RE0/AN5)(1)  
110= Channel 6 (RE1/AN6)(1)  
111= Channel 7 (RE2/AN7)(1)  
bit 2  
GO/DONE: A/D Conversion Status bit  
If ADON = 1:  
1= A/D conversion in progress (setting this bit starts the A/D conversion)  
0= A/D conversion not in progress (this bit is automatically cleared by hardware when the  
A/D conversion is complete)  
bit 1  
bit 0  
Unimplemented: Read as '0'  
ADON: A/D On bit  
1= A/D converter module is operating  
0= A/D converter module is shut-off and consumes no operating current  
Note 1: A/D channels 5, 6 and 7 are implemented on the PIC16F74/77 only.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
1= Bit is set  
2002 Microchip Technology Inc.  
DS30325B-page 83  
PIC16F7X  
REGISTER 11-2: ADCON1 REGISTER (ADDRESS 9Fh)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
PCFG2  
PCFG1 PCFG0  
bit 0  
bit 7  
bit 7-3  
bit 2-0  
Unimplemented: Read as '0'  
PCFG2:PCFG0: A/D Port Configuration Control bits  
PCFG2:PCFG0 RA0 RA1 RA2 RA5 RA3 RE0(1) RE1(1) RE2(1) VREF  
000  
001  
010  
011  
100  
101  
11x  
A
A
A
A
A
A
D
A
A
A
A
A
A
D
A
A
A
A
D
D
D
A
A
A
A
D
D
D
A
VREF  
A
A
A
D
D
D
D
D
A
A
D
D
D
D
D
A
A
D
D
D
D
D
VDD  
RA3  
VDD  
RA3  
VDD  
RA3  
VDD  
VREF  
A
VREF  
D
A = Analog input  
D = Digital I/O  
Note 1: RE0, RE1 and RE2 are implemented on the PIC16F74/77 only.  
Legend:  
R = Readable bit  
- n = Value at POR reset  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
1= Bit is set  
DS30325B-page 84  
2002 Microchip Technology Inc.  
PIC16F7X  
The following steps should be followed for doing an  
A/D conversion:  
4. Wait for at least an appropriate acquisition  
period.  
5. Start conversion:  
1. Configure the A/D module:  
Set GO/DONE bit (ADCON0)  
Configure analog pins, voltage reference,  
and digital I/O (ADCON1)  
6. Wait for the A/D conversion to complete, by  
either:  
Select A/D conversion clock (ADCON0)  
Turn on A/D module (ADCON0)  
2. Configure the A/D interrupt (if desired):  
Clear ADIF bit  
Polling for the GO/DONE bit to be cleared  
(interrupts disabled)  
OR  
Set ADIE bit  
Waiting for the A/D interrupt  
Set PEIE bit  
7. Read A/D result register (ADRES), and clear bit  
ADIF if required.  
Set GIE bit  
8. For next conversion, go to step 3 or step 4, as  
required.  
3. Select an A/D input channel (ADCON0).  
FIGURE 11-1:  
A/D BLOCK DIAGRAM  
CHS2:CHS0  
111  
(1)  
RE2/AN7  
110  
(1)  
RE1/AN6  
101  
(1)  
RE0/AN5  
100  
RA5/AN4  
VIN  
011  
(Input Voltage)  
RA3/AN3/VREF  
010  
RA2/AN2  
A/D  
Converter  
001  
RA1/AN1  
000  
VDD  
RA0/AN0  
000or  
010or  
100or  
11x  
VREF  
(Reference  
Voltage)  
001or  
011or  
101  
PCFG2:PCFG0  
Note 1: Not available on PIC16F73/76.  
2002 Microchip Technology Inc.  
DS30325B-page 85  
PIC16F7X  
The maximum recommended impedance for ana-  
log sources is 10 k. After the analog input channel is  
selected (changed), the acquisition period must pass  
before the conversion can be started.  
11.1 A/D Acquisition Requirements  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 11-2. The source  
impedance (RS) and the internal sampling switch (RSS)  
impedance directly affect the time required to charge  
the capacitor CHOLD. The sampling switch (RSS)  
impedance varies over the device voltage (VDD), see  
Figure 11-2. The source impedance affects the offset  
voltage at the analog input (due to pin leakage current).  
To calculate the minimum acquisition time, TACQ, see  
the PICmicroMid-Range MCU Family Reference  
Manual (DS33023). In general, however, given a max-  
imum source impedance of 10 kand at a temperature  
of 100°C, TACQ will be no more than 16 µsec.  
FIGURE 11-2:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1k  
RSS  
RS  
CHOLD  
= DAC Capacitance  
= 51.2 pF  
CPIN  
5 pF  
VA  
I leakage  
± 500 nA  
VT = 0.6V  
VSS  
Legend CPIN  
VT  
= input capacitance  
= threshold voltage  
6V  
5V  
VDD 4V  
3V  
= leakage current at the pin due to  
various junctions  
I leakage  
2V  
= interconnect resistance  
= sampling switch  
RIC  
SS  
5 6 7 8 9 10 11  
Sampling Switch  
= sample/hold capacitance (from DAC)  
CHOLD  
(k)  
TABLE 11-1: TAD vs. MAXIMUM DEVICE OPERATING FREQUENCIES (STANDARD DEVICES (C))  
AD Clock Source (TAD)  
ADCS1:ADCS0  
Maximum Device Frequency  
Max.  
Operation  
2TOSC  
8TOSC  
00  
01  
10  
11  
1.25 MHz  
5 MHz  
32TOSC  
RC(1, 2, 3)  
20 MHz  
(Note 1)  
Note 1: The RC source has a typical TAD time of 4 µs but can vary between 2-6 µs.  
2: When the device frequencies are greater than 1 MHz, the RC A/D conversion clock source is only  
recommended for SLEEP operation.  
3: For extended voltage devices (LC), please refer to the Electrical Specifications section.  
DS30325B-page 86  
2002 Microchip Technology Inc.  
PIC16F7X  
Clearing the GO/DONE bit during a conversion will  
abort the current conversion. The ADRES register will  
NOT be changed, and the ADIF flag will not be set.  
11.2 Selecting the A/D Conversion  
Clock  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires 9.0 TAD per 8-bit conversion.  
The source of the A/D conversion clock is software  
selectable. The four possible options for TAD are:  
After the GO/DONE bit is cleared at either the end of a  
conversion, or by firmware, another conversion can be  
initiated by setting the GO/DONE bit. Users must still  
take into account the appropriate acquisition time for  
the application.  
2 TOSC (FOSC/2)  
8 TOSC (FOSC/8)  
11.5 A/D Operation During SLEEP  
32 TOSC (FOSC/32)  
Internal RC oscillator (2-6 µs)  
The A/D module can operate during SLEEP mode. This  
requires that the A/D clock source be set to RC  
(ADCS1:ADCS0 = 11). When the RC clock source is  
selected, the A/D module waits one instruction cycle  
before starting the conversion. This allows the SLEEP  
instruction to be executed, which eliminates all digital  
switching noise from the conversion. When the conver-  
sion is completed, the GO/DONE bit will be cleared,  
and the result loaded into the ADRES register. If the  
A/D interrupt is enabled, the device will wake-up from  
SLEEP. If the A/D interrupt is not enabled, the A/D mod-  
ule will then be turned off, although the ADON bit will  
remain set.  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be selected to ensure a minimum TAD time  
as small as possible, but no less than 1.6 µs.  
11.3 Configuring Analog Port Pins  
The ADCON1, TRISA and TRISE registers control the  
operation of the A/D port pins. The port pins that are  
desired as analog inputs must have their correspond-  
ing TRIS bits set (input). If the TRIS bit is cleared (out-  
put), the digital output level (VOH or VOL) will be  
converted.  
The A/D operation is independent of the state of the  
CHS2:CHS0 bits and the TRIS bits.  
When the A/D clock source is another clock option (not  
RC), a SLEEPinstruction will cause the present conver-  
sion to be aborted and the A/D module to be turned off,  
though the ADON bit will remain set.  
Note 1: When reading the port register, all pins  
configured as analog input channels will  
read as cleared (a low level). Pins config-  
ured as digital inputs will convert an ana-  
log input. Analog levels on a digitally  
configured input will not affect the conver-  
sion accuracy.  
Turning off the A/D places the A/D module in its lowest  
current consumption state.  
Note: For the A/D module to operate in SLEEP,  
the A/D clock source must be set to RC  
(ADCS1:ADCS0 = 11). To perform an A/D  
conversion in SLEEP, ensure the SLEEP  
instruction immediately follows the instruc-  
tion that sets the GO/DONE bit.  
2: Analog levels on any pin that is defined as  
a digital input, but not as an analog input,  
may cause the digital input buffer to con-  
sume current that is out of the devices  
specification.  
11.6 Effects of a RESET  
A device RESET forces all registers to their RESET  
state. The A/D module is disabled and any conversion  
in progress is aborted. All A/D input pins are configured  
as analog inputs.  
11.4 A/D Conversions  
Note: The GO/DONE bit should NOT be set in  
the same instruction that turns on the A/D.  
The ADRES register will contain unknown data after a  
Power-on Reset.  
Setting the GO/DONE bit begins an A/D conversion.  
When the conversion completes, the 8-bit result is  
placed in the ADRES register, the GO/DONE bit is  
cleared, and the ADIF flag (PIR<6>) is set.  
If both the A/D interrupt bit ADIE (PIE1<6>) and the  
peripheral interrupt enable bit PEIE (INTCON<6>) are  
set, the device will wake from SLEEP whenever ADIF  
is set by hardware. In addition, an interrupt will also  
occur if the global interrupt bit GIE (INTCON<7>) is set.  
2002 Microchip Technology Inc.  
DS30325B-page 87  
PIC16F7X  
with minimal software overhead (moving the ADRES to  
the desired location). The appropriate analog input  
channel must be selected and an appropriate acquisi-  
tion time should pass before the special event trigger”  
sets the GO/DONE bit (starts a conversion).  
11.7 Use of the CCP Trigger  
An A/D conversion can be started by the special event  
triggerof the CCP2 module. This requires that the  
CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be pro-  
grammed as 1011and that the A/D module is enabled  
(ADON bit is set). When the trigger occurs, the  
GO/DONE bit will be set, starting the A/D conversion,  
and the Timer1 counter will be reset to zero. Timer1 is  
reset to automatically repeat the A/D acquisition period  
If the A/D module is not enabled (ADON is cleared),  
then the special event triggerwill be ignored by the  
A/D module, but will still reset the Timer1 counter.  
TABLE 11-2: SUMMARY OF A/D REGISTERS  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh,  
INTCON  
GIE  
PEIE TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF 0000 000x 0000 000u  
10Bh, 18Bh  
(1)  
0Ch  
0Dh  
PIR1  
PIR2  
PSPIF  
ADIF  
RCIF  
TXIF  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP2IF ---- ---0 ---- ---0  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
(1)  
8Ch  
8Dh  
1Eh  
PIE1  
PSPIE  
ADIE  
RCIE  
TXIE  
PIE2  
CCP2IE ---- ---0 ---- ---0  
ADRES  
A/D Result Register  
xxxx xxxx uuuu uuuu  
1Fh  
9Fh  
05h  
85h  
ADCON0 ADCS1 ADCS0 CHS2  
CHS1  
CHS0 GO/DONE  
ADON 0000 00-0 0000 00-0  
ADCON1  
PORTA  
TRISA  
PCFG2  
RA2  
PCFG1 PCFG0 ---- -000 ---- -000  
RA5  
RA4  
RA3  
RA1  
RA0  
RE0  
--0x 0000 --0u 0000  
--11 1111 --11 1111  
PORTA Data Direction Register  
(2)  
09h  
89h  
PORTE  
RE2  
RE1  
---- -xxx ---- -uuu  
0000 -111 0000 -111  
(2)  
TRISE  
IBF  
OBF  
IBOV PSPMODE  
PORTE Data Direction Bits  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used for A/D conversion.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.  
2: These registers are reserved on the PIC16F73/76.  
DS30325B-page 88  
2002 Microchip Technology Inc.  
PIC16F7X  
SLEEP mode is designed to offer a very low current  
power-down mode. The user can wake-up from SLEEP  
through external RESET, Watchdog Timer Wake-up, or  
through an interrupt.  
12.0 SPECIAL FEATURES OF THE  
CPU  
These devices have a host of features intended to max-  
imize system reliability, minimize cost through elimina-  
tion of external components, provide power saving  
operating modes and offer code protection. These are:  
Several oscillator options are also made available to  
allow the part to fit the application. The RC oscillator  
option saves system cost while the LP crystal option  
saves power. Configuration bits are used to select the  
desired oscillator mode.  
Oscillator Selection  
RESET  
Additional information on special features is available  
in the PICmicroMid-Range Reference Manual  
(DS33023).  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
Interrupts  
12.1 Configuration Bits  
The configuration bits can be programmed (read as '0'),  
or left unprogrammed (read as '1'), to select various  
device configurations. These bits are mapped in pro-  
gram memory location 2007h.  
Watchdog Timer (WDT)  
SLEEP  
Code Protection  
ID Locations  
The user will note that address 2007h is beyond the  
user program memory space, which can be accessed  
only during programming.  
In-Circuit Serial Programming  
These devices have a Watchdog Timer, which can be  
enabled or disabled, using a configuration bit. It runs off  
its own RC oscillator for added reliability.  
There are two timers that offer necessary delays on  
power-up. One is the Oscillator Start-up Timer (OST),  
intended to keep the chip in RESET until the crystal  
oscillator is stable. The other is the Power-up Timer  
(PWRT), which provides a fixed delay of 72 ms (nomi-  
nal) on power-up only. It is designed to keep the part in  
RESET while the power supply stabilizes, and is  
enabled or disabled, using a configuration bit. With  
these two timers on-chip, most applications need no  
external RESET circuitry.  
2002 Microchip Technology Inc.  
DS30325B-page 89  
PIC16F7X  
REGISTER 12-1: CONFIGURATION WORD (ADDRESS 2007h)(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/P-1  
U-0 R/P-1 R/P-1  
R/P-1  
R/P-1 R/P-1  
BOREN  
CP0 PWRTEN WDTEN FOSC1 FOSC0  
bit0  
bit13  
bit 13-7  
bit 6  
Unimplemented: Read as ‘1’  
BOREN: Brown-out Reset Enable bit  
1 = BOR enabled  
0 = BOR disabled  
bit 5  
bit 4  
Unimplemented: Read as ‘1’  
CP0: FLASH Program Memory Code Protection bit  
1 = Code protection off  
0 = All memory locations code protected  
bit 3  
PWRTEN: Power-up Timer Enable bit  
1 = PWRT disabled  
0 = PWRT enabled  
bit 2  
WDTEN: Watchdog Timer Enable bit  
1 = WDT enabled  
0 = WDT disabled  
bit 1-0  
FOSC1:FOSC0: Oscillator Selection bits  
11 = RC oscillator  
10 = HS oscillator  
01 = XT oscillator  
00 = LP oscillator  
Note 1: The erased (unprogrammed) value of the configuration word is 3FFFh.  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS30325B-page 90  
2002 Microchip Technology Inc.  
PIC16F7X  
FIGURE 12-2:  
EXTERNAL CLOCK INPUT  
OPERATION (HS OSC  
CONFIGURATION)  
12.2 Oscillator Configurations  
12.2.1 OSCILLATOR TYPES  
The PIC16F7X can be operated in four different oscil-  
lator modes. The user can program two configuration  
bits (FOSC1 and FOSC0) to select one of these four  
modes:  
OSC1  
Clock from  
Ext. System  
PIC16F7X  
(HS Mode)  
OSC2  
LP  
XT  
HS  
RC  
Low Power Crystal  
Open  
Crystal/Resonator  
High Speed Crystal/Resonator  
Resistor/Capacitor  
12.2.2  
CRYSTAL OSCILLATOR/CERAMIC  
RESONATORS  
TABLE 12-1: CERAMIC RESONATORS  
(FOR DESIGN GUIDANCE  
ONLY)  
In XT, LP or HS modes, a crystal or ceramic resonator is  
connected to the OSC1/CLKIN and OSC2/CLKOUT  
pins to establish oscillation (Figure 12-1). The  
PIC16F7X oscillator design requires the use of a parallel  
cut crystal. Use of a series cut crystal may give a fre-  
quency out of the crystal manufacturers specifications.  
When in HS mode, the device can accept an external  
clock source to drive the OSC1/CLKIN pin (Figure 12-2).  
See Figure 15-1 or Figure 15-2 (depending on the part  
number and VDD range) for valid external clock  
frequencies.  
Typical Capacitor Values Used:  
Mode  
Freq  
OSC1  
OSC2  
XT  
455 kHz  
2.0 MHz  
4.0 MHz  
56 pF  
47 pF  
33 pF  
56 pF  
47 pF  
33 pF  
HS  
8.0 MHz  
16.0 MHz  
27 pF  
22 pF  
27 pF  
22 pF  
Capacitor values are for design guidance only.  
FIGURE 12-1:  
CRYSTAL/CERAMIC  
RESONATOROPERATION  
(HS, XT OR LP  
These capacitors were tested with the resonators  
listed below for basic start-up and operation. These  
values were not optimized.  
OSC CONFIGURATION)  
Different capacitor values may be required to produce  
acceptable oscillator operation. The user should test  
the performance of the oscillator over the expected  
VDD and temperature range for the application.  
(1)  
C1  
OSC1  
To  
Internal  
Logic  
XTAL  
(3)  
RF  
See the notes at the bottom of page 92 for additional  
information.  
OSC2  
SLEEP  
PIC16F7X  
(2)  
RS  
Resonators Used:  
(1)  
C2  
455 kHz  
2.0 MHz  
4.0 MHz  
8.0 MHz  
16.0 MHz  
Panasonic EFO-A455K04B  
Murata Erie CSA2.00MG  
Murata Erie CSA4.00MG  
Murata Erie CSA8.00MT  
Murata Erie CSA16.00MX  
Note 1: See Table 12-1 and Table 12-2 for recom-  
mended values of C1 and C2.  
2: A series resistor (RS) may be required for AT  
strip cut crystals.  
3: RF varies with the crystal chosen.  
2002 Microchip Technology Inc.  
DS30325B-page 91  
PIC16F7X  
TABLE 12-2: CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
(FOR DESIGN GUIDANCE  
ONLY)  
12.2.3  
RC OSCILLATOR  
For timing insensitive applications, the RCdevice  
option offers additional cost savings. The RC oscillator  
frequency is a function of the supply voltage, the resis-  
tor (REXT) and capacitor (CEXT) values, and the operat-  
ing temperature. In addition to this, the oscillator  
frequency will vary from unit to unit due to normal pro-  
cess parameter variation. Furthermore, the difference  
in lead frame capacitance between package types will  
also affect the oscillation frequency, especially for low  
CEXT values. The user also needs to take into account  
variation due to tolerance of external R and C compo-  
nents used. Figure 12-3 shows how the R/C combina-  
tion is connected to the PIC16F7X.  
Typical Capacitor Values  
Crystal  
Freq  
Tested:  
Osc Type  
C1  
C2  
LP  
XT  
32 kHz  
200 kHz  
200 kHz  
1 MHz  
33 pF  
15 pF  
56 pF  
15 pF  
15 pF  
15 pF  
15 pF  
15 pF  
33 pF  
15 pF  
56 pF  
15 pF  
15 pF  
15 pF  
15 pF  
15 pF  
4 MHz  
HS  
4 MHz  
FIGURE 12-3:  
RC OSCILLATOR MODE  
8 MHz  
VDD  
20 MHz  
Capacitor values are for design guidance only.  
REXT  
Internal  
OSC1  
These capacitors were tested with the crystals listed  
below for basic start-up and operation. These values  
were not optimized.  
Clock  
CEXT  
VSS  
PIC16F7X  
Different capacitor values may be required to produce  
acceptable oscillator operation. The user should test  
the performance of the oscillator over the expected  
VDD and temperature range for the application.  
OSC2/CLKOUT  
FOSC/4  
Recommended values:  
3 kΩ ≤ REXT 100 kΩ  
CEXT > 20pF  
See the notes following this table for additional  
information.  
Crystals Used:  
32 kHz  
200 kHz  
1 MHz  
Epson C-001R32.768K-A  
STD XTL 200.000KHz  
ECS ECS-10-13-1  
4 MHz  
ECS ECS-40-20-1  
8 MHz  
EPSON CA-301 8.000M-C  
EPSON CA-301 20.000M-C  
20 MHz  
Note 1: Higher capacitance increases the stability  
of oscillator, but also increases the start-  
up time.  
2: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
appropriate values of external compo-  
nents.  
3: Rs may be required in HS mode, as well  
as XT mode, to avoid overdriving crystals  
with low drive level specification.  
4: Always verify oscillator performance over  
the VDD and temperature range that is  
expected for the application.  
DS30325B-page 92  
2002 Microchip Technology Inc.  
PIC16F7X  
Some registers are not affected in any RESET condi-  
tion. Their status is unknown on POR and unchanged  
in any other RESET. Most other registers are reset to a  
RESET stateon Power-on Reset (POR), on the  
MCLR and WDT Reset, on MCLR Reset during  
SLEEP, and Brown-out Reset (BOR). They are not  
affected by a WDT Wake-up, which is viewed as the  
resumption of normal operation. The TO and PD bits  
are set or cleared differently in different RESET situa-  
tions, as indicated in Table 12-4. These bits are used in  
software to determine the nature of the RESET. See  
Table 12-6 for a full description of RESET states of all  
registers.  
12.3 RESET  
The PIC16F7X differentiates between various kinds of  
RESET:  
Power-on Reset (POR)  
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
WDT Reset (during normal operation)  
WDT Wake-up (during SLEEP)  
Brown-out Reset (BOR)  
A simplified block diagram of the on-chip RESET circuit  
is shown in Figure 12-4.  
FIGURE 12-4:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
RESET  
MCLR  
SLEEP  
WDT  
WDT  
Module  
Time-out  
Reset  
VDD Rise  
Detect  
VDD  
Power-on Reset  
Brown-out  
Reset  
S
BODEN  
OST/PWRT  
OST  
10-bit Ripple Counter  
Chip_Reset  
R
Q
OSC1  
(1)  
PWRT  
10-bit Ripple Counter  
On-chip  
RC OSC  
Enable PWRT  
Enable OST  
Note 1: This is a separate oscillator from the RC oscillator of the CLKIN pin.  
2002 Microchip Technology Inc.  
DS30325B-page 93  
PIC16F7X  
12.4 MCLR  
12.6 Power-up Timer (PWRT)  
PIC16F7X devices have a noise filter in the MCLR  
Reset path. The filter will detect and ignore small  
pulses.  
The Power-up Timer provides a fixed 72 ms nominal  
time-out on power-up only from the POR. The Power-  
up Timer operates on an internal RC oscillator. The  
chip is kept in RESET as long as the PWRT is active.  
The PWRTs time delay allows VDD to rise to an accept-  
able level. A configuration bit is provided to enable/  
disable the PWRT.  
It should be noted that a WDT Reset does not drive  
MCLR pin low.  
The behavior of the ESD protection on the MCLR pin  
has been altered from previous devices of this family.  
Voltages applied to the pin that exceed its specification  
can result in both MCLR Resets and excessive current  
beyond the device specification during the ESD event.  
For this reason, Microchip recommends that the MCLR  
pin no longer be tied directly to VDD. The use of an RC  
network, as shown in Figure 12-5, is suggested.  
The power-up time delay will vary from chip to chip, due  
to VDD, temperature and process variation. See DC  
parameters for details (TPWRT, parameter #33).  
12.7 Oscillator Start-up Timer (OST)  
The Oscillator Start-up Timer (OST) provides 1024 oscil-  
lator cycles (from OSC1 input) delay after the PWRT  
delay is over (if enabled). This helps to ensure that the  
crystal oscillator or resonator has started and stabilized.  
FIGURE 12-5:  
RECOMMENDED MCLR  
CIRCUIT  
The OST time-out is invoked only for XT, LP and HS  
modes and only on Power-on Reset, or wake-up from  
SLEEP.  
VDD  
PIC16F7X  
R1  
12.8 Brown-out Reset (BOR)  
1 k(or greater)  
The configuration bit, BODEN, can enable or disable  
the Brown-out Reset circuit. If VDD falls below VBOR  
(parameter D005, about 4V) for longer than TBOR  
(parameter #35, about 100 µS), the brown-out situation  
will reset the device. If VDD falls below VBOR for less  
than TBOR, a RESET may not occur.  
MCLR  
C1  
0.1 µF  
(optional, not critical)  
Once the brown-out occurs, the device will remain in  
Brown-out Reset until VDD rises above VBOR. The  
Power-up Timer then keeps the device in RESET for  
TPWRT (parameter #33, about 72 mS). If VDD should fall  
below VBOR during TPWRT, the Brown-out Reset pro-  
cess will restart when VDD rises above VBOR, with the  
Power-up Timer Reset. The Power-up Timer is always  
enabled when the Brown-out Reset circuit is enabled,  
regardless of the state of the PWRT configuration bit.  
12.5 Power-on Reset (POR)  
A Power-on Reset pulse is generated on-chip when  
VDD rise is detected (in the range of 1.2V - 1.7V). To  
take advantage of the POR, tie the MCLR pin to VDD as  
described in Section 12.4. A maximum rise time for  
VDD is specified. See the Electrical Specifications for  
details.  
When the device starts normal operation (exits the  
RESET condition), device operating parameters (volt-  
age, frequency, temperature,...) must be met to ensure  
operation. If these conditions are not met, the device  
must be held in RESET until the operating conditions  
are met. For additional information, refer to Application  
12.9 Time-out Sequence  
On power-up, the time-out sequence is as follows: the  
PWRT delay starts (if enabled) when a POR Reset  
occurs. Then, OST starts counting 1024 oscillator  
cycles when PWRT ends (LP, XT, HS). When the OST  
ends, the device comes out of RESET.  
Note,  
AN607,  
Power-up  
Trouble  
Shooting”  
(DS00607).  
If MCLR is kept low long enough, all delays will expire.  
Bringing MCLR high will begin execution immediately.  
This is useful for testing purposes or to synchronize  
more than one PIC16F7X device operating in parallel.  
Table 12-5 shows the RESET conditions for the  
STATUS, PCON and PC registers, while Table 12-6  
shows the RESET conditions for all the registers.  
DS30325B-page 94  
2002 Microchip Technology Inc.  
PIC16F7X  
if bit BOR cleared, indicating a Brown-out Reset  
occurred. When the Brown-out Reset is disabled, the  
state of the BOR bit is unpredictable.  
12.10 Power Control/Status Register  
(PCON)  
The Power Control/Status Register, PCON, has two  
bits to indicate the type of RESET that last occurred.  
Bit1 is POR (Power-on Reset Status bit). It is cleared on  
a Power-on Reset and unaffected otherwise. The user  
must set this bit following a Power-on Reset.  
Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is  
unknown on a Power-on Reset. It must then be set by  
the user and checked on subsequent RESETS to see  
TABLE 12-3: TIME-OUT IN VARIOUS SITUATIONS  
Power-up  
Wake-up from  
Oscillator Configuration  
Brown-out  
SLEEP  
PWRTE = 0  
72 ms + 1024 TOSC  
72 ms  
PWRTE = 1  
XT, HS, LP  
RC  
1024 TOSC  
72 ms + 1024 TOSC  
72 ms  
1024 TOSC  
TABLE 12-4: STATUS BITS AND THEIR SIGNIFICANCE  
POR  
BOR  
TO  
PD  
Significance  
(PCON<1>) (PCON<0>) (STATUS<4>) (STATUS<3>)  
0
0
0
1
1
1
1
1
x
x
x
0
1
1
1
1
1
0
x
1
0
0
u
1
1
x
0
1
1
0
u
0
Power-on Reset  
Illegal, TO is set on POR  
Illegal, PD is set on POR  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during SLEEP or interrupt wake-up from  
SLEEP  
TABLE 12-5: RESET CONDITION FOR SPECIAL REGISTERS  
Program  
STATUS  
Register  
PCON  
Register  
Condition  
Counter  
Power-on Reset  
000h  
000h  
0001 1xxx  
000u uuuu  
---- --0x  
---- --uu  
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
WDT Reset  
000h  
000h  
0001 0uuu  
0000 1uuu  
uuu0 0uuu  
0001 1uuu  
---- --uu  
---- --uu  
---- --uu  
---- --u0  
WDT Wake-up  
PC + 1  
000h  
Brown-out Reset  
Interrupt wake-up from SLEEP  
PC + 1(1)  
uuu1 0uuu  
---- --uu  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as '0'  
Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
2002 Microchip Technology Inc.  
DS30325B-page 95  
PIC16F7X  
TABLE 12-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS  
Power-on Reset,  
Brown-out Reset  
MCLR Reset,  
WDT Reset  
Wake-up via WDT or  
Interrupt  
Register  
Devices  
W
73  
73  
73  
74  
74  
74  
76  
76  
76  
77  
77  
77  
xxxx xxxx  
N/A  
uuuu uuuu  
N/A  
uuuu uuuu  
N/A  
INDF  
TMR0  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
PCL  
73  
74  
76  
77  
0000h  
0000h  
PC + 1(2)  
STATUS  
FSR  
73  
73  
73  
73  
73  
73  
73  
73  
74  
74  
74  
74  
74  
74  
74  
74  
76  
76  
76  
76  
76  
76  
76  
76  
77  
77  
77  
77  
77  
77  
77  
77  
0001 1xxx  
xxxx xxxx  
--0x 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
---- -xxx  
---0 0000  
000q quuu(3)  
uuuu uuuu  
--0u 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- -uuu  
---0 0000  
uuuq quuu(3)  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- -uuu  
---u uuuu  
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
PCLATH  
INTCON  
PIR1  
73  
73  
73  
74  
74  
74  
76  
76  
76  
77  
77  
77  
0000 000x  
r000 0000  
0000 0000  
0000 000u  
r000 0000  
0000 0000  
uuuu uuuu(1)  
ruuu uuuu(1)  
uuuu uuuu(1)  
PIR2  
73  
73  
73  
73  
73  
73  
73  
73  
73  
73  
73  
73  
73  
73  
73  
73  
73  
73  
73  
73  
73  
73  
73  
73  
73  
73  
73  
74  
74  
74  
74  
74  
74  
74  
74  
74  
74  
74  
74  
74  
74  
74  
74  
74  
74  
74  
74  
74  
74  
74  
74  
74  
74  
74  
76  
76  
76  
76  
76  
76  
76  
76  
76  
76  
76  
76  
76  
76  
76  
76  
76  
76  
76  
76  
76  
76  
76  
76  
76  
76  
76  
77  
77  
77  
77  
77  
77  
77  
77  
77  
77  
77  
77  
77  
77  
77  
77  
77  
77  
77  
77  
77  
77  
77  
77  
77  
77  
77  
---- ---0  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
-000 0000  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 -00x  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
0000 00-0  
1111 1111  
--11 1111  
1111 1111  
1111 1111  
1111 1111  
0000 -111  
r000 0000  
0000 0000  
---- ---0  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
0000 0000  
-000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
0000 -00x  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
0000 00-0  
1111 1111  
--11 1111  
1111 1111  
1111 1111  
1111 1111  
0000 -111  
r000 0000  
0000 0000  
---- ---u(1)  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uu-u  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu -uuu  
ruuu uuuu  
uuuu uuuu  
TMR1L  
TMR1H  
T1CON  
TMR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRES  
ADCON0  
OPTION_REG  
TRISA  
TRISB  
TRISC  
TRISD  
TRISE  
PIE1  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as 0, q= value depends on condition,  
r= reserved, maintain clear  
Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).  
3: See Table 12-5 for RESET value for specific condition.  
DS30325B-page 96  
2002 Microchip Technology Inc.  
PIC16F7X  
TABLE 12-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
Power-on Reset,  
Brown-out Reset  
MCLR Reset,  
WDT Reset  
Wake-up via WDT or  
Interrupt  
Register  
PIE2  
Devices  
73  
73  
73  
73  
73  
73  
73  
73  
73  
73  
73  
73  
73  
74  
74  
74  
74  
74  
74  
74  
74  
74  
74  
74  
74  
74  
76  
76  
76  
76  
76  
76  
76  
76  
76  
76  
76  
76  
76  
77  
77  
77  
77  
77  
77  
77  
77  
77  
77  
77  
77  
77  
---- ---0  
---- --qq  
1111 1111  
--00 0000  
0000 0000  
0000 -010  
0000 0000  
---- -000  
0--- 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
1--- ---0  
---- ---0  
---- --uu  
1111 1111  
--00 0000  
0000 0000  
0000 -010  
0000 0000  
---- -000  
0--- 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
1--- ---0  
---- ---u  
---- --uu  
1111 1111  
--uu uuuu  
uuuu uuuu  
uuuu -uuu  
uuuu uuuu  
---- -uuu  
u--- uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
1--- ---u  
PCON  
PR2  
SSPSTAT  
SSPADD  
TXSTA  
SPBRG  
ADCON1  
PMDATA  
PMADR  
PMDATH  
PMADRH  
PMCON1  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as 0, q= value depends on condition,  
r= reserved, maintain clear  
Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).  
3: See Table 12-5 for RESET value for specific condition.  
FIGURE 12-6:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD THROUGH  
RC NETWORK)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
2002 Microchip Technology Inc.  
DS30325B-page 97  
PIC16F7X  
FIGURE 12-7:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 12-8:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 12-9:  
SLOW RISE TIME (MCLR TIED TO VDD THROUGH RC NETWORK)  
5V  
1V  
VDD  
MCLR  
0V  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
DS30325B-page 98  
2002 Microchip Technology Inc.  
PIC16F7X  
The RB0/INT pin interrupt, the RB port change interrupt  
and the TMR0 overflow interrupt flags are contained in  
the INTCON register.  
12.11 Interrupts  
The PIC16F7X family has up to 12 sources of interrupt.  
The interrupt control register (INTCON) records individ-  
ual interrupt requests in flag bits. It also has individual  
and global interrupt enable bits.  
The peripheral interrupt flags are contained in the Spe-  
cial Function Registers, PIR1 and PIR2. The corre-  
sponding interrupt enable bits are contained in Special  
Function Registers, PIE1 and PIE2, and the peripheral  
interrupt enable bit is contained in Special Function  
Register, INTCON.  
Note: Individual interrupt flag bits are set, regard-  
less of the status of their corresponding  
mask bit or the GIE bit.  
A global interrupt enable bit, GIE (INTCON<7>)  
enables (if set) all unmasked interrupts, or disables (if  
cleared) all interrupts. When bit GIE is enabled and an  
interrupts flag bit and mask bit are set, the interrupt will  
vector immediately. Individual interrupts can be dis-  
abled through their corresponding enable bits in vari-  
ous registers. Individual interrupt bits are set,  
regardless of the status of the GIE bit. The GIE bit is  
cleared on RESET.  
When an interrupt is responded to, the GIE bit is  
cleared to disable any further interrupt, the return  
address is pushed onto the stack and the PC is loaded  
with 0004h. Once in the Interrupt Service Routine, the  
source(s) of the interrupt can be determined by polling  
the interrupt flag bits. The interrupt flag bit(s) must be  
cleared in software before re-enabling interrupts to  
avoid recursive interrupts.  
For external interrupt events, such as the INT pin or  
PORTB change interrupt, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends when the interrupt event occurs, relative to  
the current Q cycle. The latency is the same for one or  
two-cycle instructions. Individual interrupt flag bits are  
set, regardless of the status of their corresponding  
mask bit, PEIE bit, or the GIE bit.  
The return from interruptinstruction, RETFIE, exits  
the interrupt routine, as well as sets the GIE bit, which  
re-enables interrupts.  
FIGURE 12-10:  
INTERRUPT LOGIC  
PSPIF(1)  
PSPIE(1)  
Wake-up (If in SLEEP mode)  
ADIF  
ADIE  
TMR0IF  
TMR0IE  
RCIF  
RCIE  
INTF  
INTE  
Interrupt to CPU  
TXIF  
TXIE  
RBIF  
RBIE  
SSPIF  
SSPIE  
PEIE  
GIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
CCP2IF  
CCP2IE  
Note 1: PSP interrupt is implemented only on PIC16F74/77 devices.  
2002 Microchip Technology Inc.  
DS30325B-page 99  
PIC16F7X  
12.11.1 INT INTERRUPT  
12.12 Context Saving During Interrupts  
External interrupt on the RB0/INT pin is edge triggered,  
either rising, if bit INTEDG (OPTION_REG<6>) is set,  
or falling, if the INTEDG bit is clear. When a valid edge  
appears on the RB0/INT pin, flag bit INTF  
(INTCON<1>) is set. This interrupt can be disabled by  
clearing enable bit INTE (INTCON<4>). Flag bit INTF  
must be cleared in software in the Interrupt Service  
Routine before re-enabling this interrupt. The INT inter-  
rupt can wake-up the processor from SLEEP, if bit INTE  
was set prior to going into SLEEP. The status of global  
interrupt enable bit GIE decides whether or not the pro-  
cessor branches to the interrupt vector following wake-  
up. See Section 12.14 for details on SLEEP mode.  
During an interrupt, only the return PC value is saved  
on the stack. Typically, users may wish to save key reg-  
isters during an interrupt (i.e., W, PCLATH and STA-  
TUS registers). This will have to be implemented in  
software, as shown in Example 12-1.  
For the PIC16F73/74 devices, the register W_TEMP  
must be defined in both banks 0 and 1 and must be  
defined at the same offset from the bank base address  
(i.e., If W_TEMP is defined at 20h in bank 0, it must  
also be defined at A0h in bank 1.). The registers,  
PCLATH_TEMP and STATUS_TEMP, are only defined  
in bank 0.  
Since the upper 16 bytes of each bank are common in  
the PIC16F76/77 devices, temporary holding registers  
W_TEMP, STATUS_TEMP and PCLATH_TEMP  
should be placed in here. These 16 locations dont  
require banking and, therefore, make it easier for con-  
text save and restore. The same code shown in  
Example 12-1 can be used.  
12.11.2 TMR0 INTERRUPT  
An overflow (FFh 00h) in the TMR0 register will set  
flag bit TMR0IF (INTCON<2>). The interrupt can be  
enabled/disabled by setting/clearing enable bit  
TMR0IE (INTCON<5>). (Section 5.0)  
12.11.3 PORTB INTCON CHANGE  
An input change on PORTB<7:4> sets flag bit RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit RBIE (INTCON<4>), see  
Section 4.2.  
EXAMPLE 12-1:  
SAVING STATUS, W, AND PCLATH REGISTERS IN RAM  
MOVWF  
SWAPF  
CLRF  
MOVWF  
MOVF  
MOVWF  
CLRF  
:
W_TEMP  
STATUS,W  
STATUS  
STATUS_TEMP  
PCLATH, W  
PCLATH_TEMP  
PCLATH  
;Copy W to TEMP register  
;Swap status to be saved into W  
;bank 0, regardless of current bank, Clears IRP,RP1,RP0  
;Save status to bank zero STATUS_TEMP register  
;Only required if using pages 1, 2 and/or 3  
;Save PCLATH into W  
;Page zero, regardless of current page  
:(ISR)  
:
;Insert user code here  
MOVF  
MOVWF  
SWAPF  
PCLATH_TEMP, W  
PCLATH  
STATUS_TEMP,W  
;Restore PCLATH  
;Move W into PCLATH  
;Swap STATUS_TEMP register into W  
;(sets bank to original state)  
;Move W into STATUS register  
;Swap W_TEMP  
MOVWF  
SWAPF  
SWAPF  
STATUS  
W_TEMP,F  
W_TEMP,W  
;Swap W_TEMP into W  
DS30325B-page 100  
2002 Microchip Technology Inc.  
PIC16F7X  
WDT time-out period values may be found in the Elec-  
trical Specifications section under parameter #31. Val-  
ues for the WDT prescaler (actually a postscaler, but  
shared with the Timer0 prescaler) may be assigned  
using the OPTION_REG register.  
12.13 Watchdog Timer (WDT)  
The Watchdog Timer is a free running on-chip RC oscil-  
lator, which does not require any external components.  
This RC oscillator is separate from the RC oscillator of  
the OSC1/CLKIN pin. That means that the WDT will  
run, even if the clock on the OSC1/CLKIN and OSC2/  
CLKOUT pins of the device has been stopped, for  
example, by execution of a SLEEPinstruction.  
Note 1: The CLRWDT and SLEEP instructions  
clear the WDT and the postscaler, if  
assigned to the WDT, and prevent it from  
timing out and generating  
RESET condition.  
a device  
During normal operation, a WDT time-out generates a  
device RESET (Watchdog Timer Reset). If the device is  
in SLEEP mode, a WDT time-out causes the device to  
wake-up and continue with normal operation (Watch-  
dog Timer Wake-up). The TO bit in the STATUS regis-  
ter will be cleared upon a Watchdog Timer time-out.  
2: When a CLRWDT instruction is executed  
and the prescaler is assigned to the WDT,  
the prescaler count will be cleared, but  
the prescaler assignment is not changed.  
The WDT can be permanently disabled by clearing  
configuration bit, WDTE (Section 12.1).  
FIGURE 12-11:  
WATCHDOG TIMER BLOCK DIAGRAM  
From TMR0 Clock Source  
(Figure 5-1)  
0
Postscaler  
M
1
U
WDT Timer  
X
8
8 - to - 1 MUX  
PS2:PS0  
PSA  
WDT  
Enable Bit  
To TMR0 (Figure 5-1)  
0
1
MUX  
PSA  
WDT  
Time-out  
Note: PSA and PS2:PS0 are bits in the OPTION_REG register.  
TABLE 12-7: SUMMARY OF WATCHDOG TIMER REGISTERS  
Address  
Name  
Bit 7  
(1)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
PWRTE(1) WDTE  
PSA PS2  
Bit 2  
Bit 1  
Bit 0  
2007h  
Config. bits  
BODEN(1)  
INTEDG  
CP0  
FOSC1  
PS1  
FOSC0  
PS0  
81h,181h  
OPTION_REG RBPU  
T0CS  
T0SE  
Legend: Shaded cells are not used by the Watchdog Timer.  
Note 1: See Register 12-1 for operation of these bits.  
2002 Microchip Technology Inc.  
DS30325B-page 101  
PIC16F7X  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is pre-fetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up  
occurs, regardless of the state of the GIE bit. If the GIE  
bit is clear (disabled), the device continues execution at  
the instruction after the SLEEPinstruction. If the GIE bit  
is set (enabled), the device executes the instruction  
after the SLEEP instruction and then branches to the  
interrupt address (0004h). In cases where the execu-  
tion of the instruction following SLEEP is not desirable,  
the user should have a NOPafter the SLEEPinstruction.  
12.14 Power-down Mode (SLEEP)  
Power-down mode is entered by executing a SLEEP  
instruction.  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the PD bit (STATUS<3>) is cleared, the  
TO (STATUS<4>) bit is set, and the oscillator driver is  
turned off. The I/O ports maintain the status they had  
before the SLEEP instruction was executed (driving  
high, low, or hi-impedance).  
For lowest current consumption in this mode, place all  
I/O pins at either VDD or VSS, ensure no external cir-  
cuitry is drawing current from the I/O pin, power-down  
the A/D and disable external clocks. Pull all I/O pins  
that are hi-impedance inputs, high or low externally, to  
avoid switching currents caused by floating inputs. The  
T0CKI input should also be at VDD or VSS for lowest  
current consumption. The contribution from on-chip  
pull-ups on PORTB should also be considered.  
12.14.2 WAKE-UP USING INTERRUPTS  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
If the interrupt occurs before the execution of a  
SLEEPinstruction, the SLEEPinstruction will com-  
plete as a NOP. Therefore, the WDT and WDT  
postscaler will not be cleared, the TO bit will not  
be set and PD bits will not be cleared.  
The MCLR pin must be at a logic high level (VIHMC).  
12.14.1 WAKE-UP FROM SLEEP  
If the interrupt occurs during or after the execu-  
tion of a SLEEPinstruction, the device will imme-  
diately wake-up from SLEEP. The SLEEP  
instruction will be completely executed before the  
wake-up. Therefore, the WDT and WDT  
postscaler will be cleared, the TO bit will be set  
and the PD bit will be cleared.  
The device can wake-up from SLEEP through one of  
the following events:  
1. External RESET input on MCLR pin.  
2. Watchdog Timer wake-up (if WDT was  
enabled).  
3. Interrupt from INT pin, RB port change or a  
Peripheral Interrupt.  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
External MCLR Reset will cause a device RESET. All  
other events are considered a continuation of program  
execution and cause a "wake-up". The TO and PD bits  
in the STATUS register can be used to determine the  
cause of device RESET. The PD bit, which is set on  
power-up, is cleared when SLEEP is invoked. The TO  
bit is cleared if a WDT time-out occurred and caused  
wake-up.  
To ensure that the WDT is cleared, a CLRWDTinstruc-  
tion should be executed before a SLEEPinstruction.  
The following peripheral interrupts can wake the device  
from SLEEP:  
1. PSP read or write (PIC16F74/77 only).  
2. TMR1 interrupt. Timer1 must be operating as  
an asynchronous counter.  
3. CCP Capture mode interrupt.  
4. Special event trigger (Timer1 in Asynchronous  
mode, using an external clock).  
5. SSP (START/STOP) bit detect interrupt.  
6. SSP transmit or receive in Slave mode  
(SPI/I2C).  
7. USART RX or TX (Synchronous Slave mode).  
8. A/D conversion (when A/D clock source is RC).  
Other peripherals cannot generate interrupts, since  
during SLEEP, no on-chip clocks are present.  
DS30325B-page 102  
2002 Microchip Technology Inc.  
PIC16F7X  
FIGURE 12-12:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
(2)  
TOST  
CLKOUT(4)  
INT pin  
INTF Flag  
Interrupt Latency  
(INTCON<1>)  
(Note 2)  
GIE bit  
Processor in  
SLEEP  
(INTCON<7>)  
INSTRUCTION FLOW  
PC  
PC  
PC+1  
PC+2  
PC+2  
PC + 2  
0004h  
0005h  
Instruction  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = SLEEP  
Fetched  
Instruction  
Executed  
Dummy cycle  
Dummy cycle  
SLEEP  
Inst(PC + 1)  
Inst(PC - 1)  
Inst(0004h)  
Note 1: XT, HS or LP oscillator mode assumed.  
2: TOST = 1024 TOSC (drawing not to scale) This delay will not be there for RC osc mode.  
3: GIE = 1assumed. In this case after wake- up, the processor jumps to the interrupt routine.  
If GIE = 0, execution will continue in-line.  
4: CLKOUT is not available in these osc modes, but shown here for timing reference.  
For general information of serial programming, please  
refer to the In-Circuit Serial Programming (ICSP)  
Guide (DS30277). For specific details on programming  
commands and operations for the PIC16F7X devices,  
please refer to the latest version of the PIC16F7X  
FLASH Program Memory Programming Specification  
(DS30324).  
12.15 Program Verification/Code  
Protection  
If the code protection bit(s) have not been pro-  
grammed, the on-chip program memory can be read  
out for verification purposes.  
12.16 ID Locations  
Four memory locations (2000h - 2003h) are designated  
as ID locations, where the user can store checksum or  
other code identification numbers. These locations are  
not accessible during normal execution, but are read-  
able and writable during program/verify. It is recom-  
mended that only the 4 Least Significant bits of the ID  
location are used.  
FIGURE 12-13:  
TYPICAL IN-CIRCUIT  
SERIAL PROGRAMMING  
CONNECTION  
To Normal  
Connections  
12.17 In-Circuit Serial Programming  
External  
Connector  
Signals  
*
PIC16F7X  
PIC16F7X microcontrollers can be serially pro-  
grammed while in the end application circuit. This is  
simply done, with two lines for clock and data and three  
other lines for power, ground, and the programming  
voltage (see Figure 12-13 for an example). This allows  
customers to manufacture boards with unprogrammed  
devices, and then program the microcontroller just  
before shipping the product. This also allows the most  
recent firmware or a custom firmware to be pro-  
grammed.  
+5V  
0V  
VDD  
VSS  
VPP  
MCLR/VPP  
RB6  
RB7  
CLK  
Data I/O  
*
*
*
VDD  
To Normal  
Connections  
* Isolation devices (as required).  
2002 Microchip Technology Inc.  
DS30325B-page 103  
PIC16F7X  
NOTES:  
DS30325B-page 104  
2002 Microchip Technology Inc.  
PIC16F7X  
For example, a clrf PORTBinstruction will read  
PORTB, clear all the data bits, then write the result  
back to PORTB. This example would have the unin-  
tended result that the condition that sets the RBIF flag  
would be cleared for pins configured as inputs and  
using the PORTB interrupt-on-change feature.  
13.0 INSTRUCTION SET SUMMARY  
The PIC16 instruction set is highly orthogonal and is  
comprised of three basic categories:  
Byte-oriented operations  
Bit-oriented operations  
Literal and control operations  
TABLE 13-1: OPCODE FIELD  
DESCRIPTIONS  
Each PIC16 instruction is a 14-bit word divided into an  
opcode, which specifies the instruction type and one or  
more operands, which further specify the operation of  
the instruction. The formats for each of the categories  
are presented in Figure 13-1, while the various opcode  
fields are summarized in Table 13-1.  
Field  
Description  
f
W
b
k
x
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
Bit address within an 8-bit file register  
Literal field, constant data or label  
Table 13-2 lists the instructions recognized by the  
MPASMTM Assembler. A complete description of each  
instruction is also available in the PICmicroMid-  
Range Reference Manual (DS33023).  
Don't care location (= 0or 1).  
The assembler will generate code with x = 0.  
It is the recommended form of use for  
compatibility with all Microchip software tools.  
For byte-oriented instructions, frepresents a file reg-  
ister designator and drepresents a destination desig-  
nator. The file register designator specifies which file  
register is to be used by the instruction.  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1.  
The destination designator specifies where the result of  
the operation is to be placed. If dis zero, the result is  
placed in the W register. If dis one, the result is placed  
in the file register specified in the instruction.  
PC  
TO  
PD  
Program Counter  
Time-out bit  
Power-down bit  
For bit-oriented instructions, brepresents a bit field  
designator, which selects the bit affected by the opera-  
tion, while frepresents the address of the file in which  
the bit is located.  
FIGURE 13-1:  
GENERAL FORMAT FOR  
INSTRUCTIONS  
Byte-oriented file register operations  
13  
For literal and control operations, krepresents an  
eight- or eleven-bit constant or literal value  
8
7
6
0
OPCODE  
d
f (FILE #)  
One instruction cycle consists of four oscillator periods;  
for an oscillator frequency of 4 MHz, this gives a normal  
instruction execution time of 1 µs. All instructions are  
executed within a single instruction cycle, unless a con-  
ditional test is true, or the program counter is changed  
as a result of an instruction. When this occurs, the exe-  
cution takes two instruction cycles, with the second  
cycle executed as a NOP.  
d = 0 for destination W  
d = 1 for destination f  
f = 7-bit file register address  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7
6
0
OPCODE  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
Note: To maintain upward compatibility with  
future PIC16F7X products, do not use the  
OPTIONand TRISinstructions.  
Literal and control operations  
All instruction examples use the format 0xhhto repre-  
sent a hexadecimal number, where hsignifies a hexa-  
decimal digit.  
General  
13  
8
7
0
0
OPCODE  
k (literal)  
13.1 READ-MODIFY-WRITE  
OPERATIONS  
k = 8-bit immediate value  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
Any instruction that specifies a file register as part of  
the instruction performs a Read-Modify-Write (R-M-W)  
operation. The register is read, the data is modified,  
and the result is stored according to either the instruc-  
tion, or the destination designator d. A read operation  
is performed on a register even if the instruction writes  
to that register.  
k (literal)  
2002 Microchip Technology Inc.  
DS30325B-page 105  
PIC16F7X  
TABLE 13-2: PIC16F7X INSTRUCTION SET  
14-Bit Opcode  
Mnemonic,  
Description  
Operands  
Status  
Affected  
Cycles  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
f, d  
f, d  
f
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00 0111 dfff ffff C,DC,Z  
1,2  
1,2  
2
00 0101 dfff ffff  
00 0001 lfff ffff  
00 0001 0xxx xxxx  
00 1001 dfff ffff  
00 0011 dfff ffff  
00 1011 dfff ffff  
00 1010 dfff ffff  
00 1111 dfff ffff  
00 0100 dfff ffff  
00 1000 dfff ffff  
00 0000 lfff ffff  
00 0000 0xx0 0000  
00 1101 dfff ffff  
00 1100 dfff ffff  
Z
Z
Z
Z
Z
-
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
1,2  
1,2  
1,2,3  
1,2  
1,2,3  
1,2  
1,2  
DECFSZ  
INCF  
Z
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
Z
Z
Move W to f  
No Operation  
-
f, d  
f, d  
f, d  
f, d  
f, d  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Swap nibbles in f  
Exclusive OR W with f  
C
C
1,2  
1,2  
1,2  
1,2  
1,2  
00 0010 dfff ffff C,DC,Z  
00 1110 dfff ffff  
00 0110 dfff ffff  
Z
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1
1
1 (2)  
1 (2)  
01 00bb bfff ffff  
1,2  
1,2  
3
01 01bb bfff ffff  
01 10bb bfff ffff  
01 11bb bfff ffff  
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
-
k
k
k
-
k
-
-
k
k
Add literal and W  
AND literal with W  
Call subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11 111x kkkk kkkk C,DC,Z  
11 1001 kkkk kkkk  
10 0kkk kkkk kkkk  
00 0000 0110 0100  
10 1kkk kkkk kkkk  
11 1000 kkkk kkkk  
11 00xx kkkk kkkk  
00 0000 0000 1001  
11 01xx kkkk kkkk  
00 0000 0000 1000  
00 0000 0110 0011  
Z
TO,PD  
Z
Inclusive OR literal with W  
Move literal to W  
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into Standby mode  
Subtract W from literal  
Exclusive OR literal with W  
TO,PD  
11 110x kkkk kkkk C,DC,Z  
11 1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself ( e.g., MOVF PORTB, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is 1for a pin configured as input and is driven low by an external  
device, the data will be written back with a 0.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if  
assigned to the Timer0 module.  
3: If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
Note: Additional information on the mid-range instruction set is available in the PICmicroMid-Range MCU  
Family Reference Manual (DS33023).  
DS30325B-page 106  
2002 Microchip Technology Inc.  
PIC16F7X  
13.2 Instruction Descriptions  
ADDLW  
Add Literal and W  
BCF  
Bit Clear f  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Syntax:  
[ label ] BCF f,b  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
0 f 127  
0 b 7  
(W) + k (W)  
C, DC, Z  
Operation:  
0 (f<b>)  
Status Affected:  
Description:  
None  
The contents of the W register  
are added to the eight-bit literal k’  
and the result is placed in the W  
register.  
Bit 'b' in register 'f' is cleared.  
BSF  
Bit Set f  
ADDWF  
Add W and f  
Syntax:  
[ label ] BSF f,b  
Syntax:  
[ label ] ADDWF f,d  
Operands:  
0 f 127  
0 b 7  
Operands:  
0 f 127  
d ∈ [0,1]  
Operation:  
1 (f<b>)  
Operation:  
(W) + (f) (destination)  
Status Affected:  
Description:  
None  
Status Affected: C, DC, Z  
Bit 'b' in register 'f' is set.  
Description:  
Add the contents of the W register  
with register f. If dis 0, the result  
is stored in the W register. If dis  
1, the result is stored back in  
register f.  
BTFSS  
Bit Test f, Skip if Set  
ANDLW  
AND Literal with W  
Syntax:  
[ label ] BTFSS f,b  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Operands:  
0 f 127  
0 b < 7  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .AND. (k) (W)  
Operation:  
skip if (f<b>) = 1  
Z
Status Affected: None  
The contents of W register are  
ANDed with the eight-bit literal  
'k'. The result is placed in the W  
register.  
Description:  
If bit 'b' in register 'f' is '0', the next  
instruction is executed.  
If bit 'b' is '1', then the next instruc-  
tion is discarded and a NOPis  
executed instead, making this a  
2TCY instruction.  
BTFSC  
Bit Test, Skip if Clear  
ANDWF  
AND W with f  
Syntax:  
[ label ] BTFSC f,b  
Syntax:  
[ label ] ANDWF f,d  
Operands:  
0 f 127  
0 b 7  
Operands:  
0 f 127  
d ∈ [0,1]  
Operation:  
skip if (f<b>) = 0  
Operation:  
(W) .AND. (f) (destination)  
Status Affected: None  
Status Affected:  
Description:  
Z
Description: If bit 'b' in register 'f' is '1', the next  
AND the W register with register  
'f'. If 'd' is 0, the result is stored in  
the W register. If 'd' is 1, the result  
is stored back in register 'f'.  
instruction is executed.  
If bit 'b', in register 'f', is '0', the  
next instruction is discarded, and  
a NOPis executed instead, making  
this a 2TCY instruction.  
2002 Microchip Technology Inc.  
DS30325B-page 107  
PIC16F7X  
CALL  
Call Subroutine  
CLRWDT  
Clear Watchdog Timer  
Syntax:  
[ label ] CALL  
0 k 2047  
k
Syntax:  
[ label ] CLRWDT  
Operands:  
Operation:  
Operands:  
Operation:  
None  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
00h WDT  
0 WDT prescaler,  
1 TO  
1 PD  
Status Affected: None  
Status Affected: TO, PD  
Description:  
Call Subroutine. First, return  
address (PC+1) is pushed onto  
the stack. The eleven-bit immedi-  
ate address is loaded into PC bits  
<10:0>. The upper bits of the PC  
are loaded from PCLATH. CALLis  
a two-cycle instruction.  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the  
prescaler of the WDT. Status bits  
TO and PD are set.  
CLRF  
Clear f  
COMF  
Complement f  
Syntax:  
[ label ] CLRF  
0 f 127  
f
Syntax:  
[ label ] COMF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
00h (f)  
1 Z  
Operation:  
(f) (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
The contents of register fare  
cleared and the Z bit is set.  
The contents of register fare  
complemented. If dis 0, the  
result is stored in W. If dis 1, the  
result is stored back in register f.  
CLRW  
Clear W  
DECF  
Decrement f  
Syntax:  
[ label ] CLRW  
Syntax:  
[ label ] DECF f,d  
Operands:  
Operation:  
None  
Operands:  
0 f 127  
d [0,1]  
00h (W)  
1 Z  
Operation:  
(f) - 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
W register is cleared. Zero bit (Z)  
is set.  
Decrement register f. If dis 0,  
the result is stored in the W  
register. If dis 1, the result is  
stored back in register f.  
DS30325B-page 108  
2002 Microchip Technology Inc.  
PIC16F7X  
DECFSZ  
Decrement f, Skip if 0  
INCFSZ  
Increment f, Skip if 0  
Syntax:  
[ label ] DECFSZ f,d  
Syntax:  
[ label ] INCFSZ f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) - 1 (destination);  
skip if result = 0  
Operation:  
(f) + 1 (destination),  
skip if result = 0  
Status Affected: None  
Status Affected: None  
Description:  
The contents of register fare  
Description:  
The contents of register fare  
decremented. If dis 0, the result  
is placed in the W register. If dis  
1, the result is placed back in  
register f.  
incremented. If dis 0, the result is  
placed in the W register. If dis 1,  
the result is placed back in  
register f.  
If the result is 1, the next instruc-  
tion is executed. If the result is 0,  
then a NOPis executed instead,  
making it a 2TCY instruction.  
If the result is 1, the next instruc-  
tion is executed. If the result is 0,  
a NOPis executed instead, making  
it a 2TCY instruction.  
GOTO  
Unconditional Branch  
IORLW  
Inclusive OR Literal with W  
Syntax:  
[ label ] GOTO k  
0 k 2047  
Syntax:  
[ label ] IORLW k  
0 k 255  
Operands:  
Operation:  
Operands:  
Operation:  
Status Affected:  
Description:  
k PC<10:0>  
PCLATH<4:3> PC<12:11>  
(W) .OR. k (W)  
Z
Status Affected: None  
The contents of the W register are  
ORed with the eight-bit literal 'k'.  
The result is placed in the W  
register.  
Description:  
GOTOis an unconditional branch.  
The eleven-bit immediate value is  
loaded into PC bits <10:0>. The  
upper bits of PC are loaded from  
PCLATH<4:3>. GOTOis a two-  
cycle instruction.  
IORWF  
Inclusive OR W with f  
INCF  
Increment f  
Syntax:  
[ label ] IORWF f,d  
Syntax:  
[ label ] INCF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(W) .OR. (f) (destination)  
Operation:  
(f) + 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Inclusive OR the W register with  
register 'f'. If 'd' is 0, the result is  
placed in the W register. If 'd' is 1,  
the result is placed back in  
register 'f'.  
The contents of register fare  
incremented. If dis 0, the result  
is placed in the W register. If dis  
1, the result is placed back in  
register f.  
2002 Microchip Technology Inc.  
DS30325B-page 109  
PIC16F7X  
MOVF  
Move f  
NOP  
No Operation  
Syntax:  
[ label ] MOVF f,d  
Syntax:  
[ label ] NOP  
None  
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
No operation  
Operation:  
(f) (destination)  
Status Affected: None  
Status Affected:  
Description:  
Z
Description:  
No operation.  
The contents of register f are  
moved to a destination dependant  
upon the status of d. If d = 0,  
destination is W register. If d = 1,  
the destination is file register f itself.  
d = 1 is useful to test a file register,  
since status flag Z is affected.  
MOVLW  
Move Literal to W  
RETFIE  
Return from Interrupt  
Syntax:  
[ label ] MOVLW k  
0 k 255  
k (W)  
Syntax:  
[ label ] RETFIE  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
Operation:  
None  
TOS PC,  
1 GIE  
None  
Status Affected: None  
The eight-bit literal kis loaded  
into W register. The dont cares  
will assemble as 0s.  
MOVWF  
Move W to f  
RETLW  
Return with Literal in W  
Syntax:  
[ label ] MOVWF  
0 f 127  
(W) (f)  
f
Syntax:  
[ label ] RETLW  
0 k 255  
k
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
Operation:  
k (W);  
TOS PC  
None  
Status Affected: None  
Description:  
Move data from W register to  
register 'f'.  
The W register is loaded with the  
eight-bit literal 'k'. The program  
counter is loaded from the top of  
the stack (the return address).  
This is a two-cycle instruction.  
DS30325B-page 110  
2002 Microchip Technology Inc.  
PIC16F7X  
RLF  
Rotate Left f through Carry  
SLEEP  
Syntax:  
[ label ] RLF f,d  
Syntax:  
[ label ] SLEEP  
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
None  
00h WDT,  
0 WDT prescaler,  
1 TO,  
Operation:  
See description below  
C
Status Affected:  
Description:  
0 PD  
The contents of register fare rotated  
one bit to the left through the Carry  
Flag. If dis 0, the result is placed in  
the W register. If dis 1, the result is  
stored back in register f.  
Status Affected:  
Description:  
TO, PD  
The power-down status bit, PD is  
cleared. Time-out status bit, TO  
is set. Watchdog Timer and its  
prescaler are cleared.  
C
Register f  
The processor is put into SLEEP  
mode with the oscillator stopped.  
RETURN  
Return from Subroutine  
SUBLW  
Subtract W from Literal  
Syntax:  
[ label ] RETURN  
None  
Syntax:  
[ label ] SUBLW k  
0 k 255  
Operands:  
Operation:  
Operands:  
Operation:  
TOS PC  
k - (W) → (W)  
Status Affected: None  
Status Affected: C, DC, Z  
Description:  
Return from subroutine. The stack  
Description:  
The W register is subtracted (2s  
is POPed and the top of the stack  
(TOS) is loaded into the program  
counter. This is a two-cycle  
instruction.  
complement method) from the  
eight-bit literal 'k'. The result is  
placed in the W register.  
RRF  
Rotate Right f through Carry  
SUBWF  
Subtract W from f  
Syntax:  
[ label ] RRF f,d  
Syntax:  
[ label ] SUBWF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
See description below  
C
Operation:  
(f) - (W) → (destination)  
Status Affected:  
Description:  
Status Affected: C, DC, Z  
The contents of register fare  
rotated one bit to the right through  
the Carry Flag. If dis 0, the result  
is placed in the W register. If dis  
1, the result is placed back in  
register f.  
Description: Subtract (2s complement method)  
W register from register 'f'. If 'd' is 0,  
the result is stored in the W  
register. If 'd' is 1, the result is  
stored back in register 'f'.  
C
Register f  
2002 Microchip Technology Inc.  
DS30325B-page 111  
PIC16F7X  
SWAPF  
Swap Nibbles in f  
XORWF  
Exclusive OR W with f  
Syntax:  
[ label ] SWAPF f,d  
Syntax:  
[ label ] XORWF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
Operation:  
(W) .XOR. (f) → (destination)  
Status Affected:  
Description:  
Z
Status Affected: None  
Exclusive OR the contents of the  
W register with register 'f'. If 'd' is  
0, the result is stored in the W  
register. If 'd' is 1, the result is  
stored back in register 'f'.  
Description:  
The upper and lower nibbles of  
register fare exchanged. If dis  
0, the result is placed in the W  
register. If dis 1, the result is  
placed in register f.  
XORLW  
Exclusive OR Literal with W  
Syntax:  
[ label ] XORLW k  
0 k 255  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .XOR. k → (W)  
Z
The contents of the W register  
are XORed with the eight-bit  
literal 'k'. The result is placed in  
the W register.  
DS30325B-page 112  
2002 Microchip Technology Inc.  
PIC16F7X  
The MPLAB IDE allows you to:  
14.0 DEVELOPMENT SUPPORT  
Edit your source files (either assembly or C)  
The PICmicro® microcontrollers are supported with a  
full range of hardware and software development tools:  
One touch assemble (or compile) and download  
to PICmicro emulator and simulator tools (auto-  
matically updates all project information)  
Integrated Development Environment  
- MPLAB® IDE Software  
Debug using:  
- source files  
Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
- absolute listing file  
- machine code  
- MPLAB C17 and MPLAB C18 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
The ability to use MPLAB IDE with multiple debugging  
tools allows users to easily switch from the cost-  
effective simulator to a full-featured emulator with  
minimal retraining.  
Simulators  
- MPLAB SIM Software Simulator  
Emulators  
14.2 MPASM Assembler  
- MPLAB ICE 2000 In-Circuit Emulator  
- ICEPICIn-Circuit Emulator  
In-Circuit Debugger  
The MPASM assembler is a full-featured universal  
macro assembler for all PICmicro MCUs.  
- MPLAB ICD  
The MPASM assembler has a command line interface  
and a Windows shell. It can be used as a stand-alone  
application on a Windows 3.x or greater system, or it  
can be used through MPLAB IDE. The MPASM assem-  
bler generates relocatable object files for the MPLINK  
object linker, Intel® standard HEX files, MAP files to  
detail memory usage and symbol reference, an abso-  
lute LST file that contains source lines and generated  
machine code, and a COD file for debugging.  
Device Programmers  
- PRO MATE® II Universal Device Programmer  
- PICSTART® Plus Entry-Level Development  
Programmer  
Low Cost Demonstration Boards  
- PICDEMTM 1 Demonstration Board  
- PICDEM 2 Demonstration Board  
- PICDEM 3 Demonstration Board  
- PICDEM 17 Demonstration Board  
- KEELOQ® Demonstration Board  
The MPASM assembler features include:  
Integration into MPLAB IDE projects.  
User-defined macros to streamline assembly  
code.  
14.1 MPLAB Integrated Development  
Environment Software  
Conditional assembly for multi-purpose source  
files.  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8-bit microcon-  
troller market. The MPLAB IDE is a Windows®-based  
application that contains:  
Directives that allow complete control over the  
assembly process.  
14.3 MPLAB C17 and MPLAB C18  
C Compilers  
An interface to debugging tools  
- simulator  
The MPLAB C17 and MPLAB C18 Code Development  
Systems are complete ANSI Ccompilers for  
Microchips PIC17CXXX and PIC18CXXX family of  
microcontrollers, respectively. These compilers provide  
powerful integration capabilities and ease of use not  
found with other compilers.  
- programmer (sold separately)  
- emulator (sold separately)  
- in-circuit debugger (sold separately)  
A full-featured editor  
A project manager  
For easier source level debugging, the compilers pro-  
vide symbol information that is compatible with the  
MPLAB IDE memory display.  
Customizable toolbar and key mapping  
A status bar  
On-line help  
2002 Microchip Technology Inc.  
DS30325B-page 113  
PIC16F7X  
14.4 MPLINK Object Linker/  
MPLIB Object Librarian  
14.6 MPLAB ICE High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
The MPLINK object linker combines relocatable  
objects created by the MPASM assembler and the  
MPLAB C17 and MPLAB C18 C compilers. It can also  
link relocatable objects from pre-compiled libraries,  
using directives from a linker script.  
The MPLAB ICE universal in-circuit emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PICmicro  
microcontrollers (MCUs). Software control of the  
MPLAB ICE in-circuit emulator is provided by the  
MPLAB Integrated Development Environment (IDE),  
which allows editing, building, downloading and source  
debugging from a single environment.  
The MPLIB object librarian is a librarian for pre-  
compiled code to be used with the MPLINK object  
linker. When a routine from a library is called from  
another source file, only the modules that contain that  
routine will be linked in with the application. This allows  
large libraries to be used efficiently in many different  
applications. The MPLIB object librarian manages the  
creation and modification of library files.  
The MPLAB ICE 2000 is a full-featured emulator sys-  
tem with enhanced trace, trigger and data monitoring  
features. Interchangeable processor modules allow the  
system to be easily reconfigured for emulation of differ-  
ent processors. The universal architecture of the  
MPLAB ICE in-circuit emulator allows expansion to  
support new PICmicro microcontrollers.  
The MPLINK object linker features include:  
Integration with MPASM assembler and MPLAB  
C17 and MPLAB C18 C compilers.  
The MPLAB ICE in-circuit emulator system has been  
designed as a real-time emulation system, with  
advanced features that are generally found on more  
expensive development tools. The PC platform and  
Microsoft® Windows environment were chosen to best  
make these features available to you, the end user.  
Allows all memory areas to be defined as sections  
to provide link-time flexibility.  
The MPLIB object librarian features include:  
Easier linking because single libraries can be  
included instead of many smaller files.  
Helps keep code maintainable by grouping  
related modules together.  
14.7 ICEPIC In-Circuit Emulator  
Allows libraries to be created and modules to be  
added, listed, replaced, deleted or extracted.  
The ICEPIC low cost, in-circuit emulator is a solution  
for the Microchip Technology PIC16C5X, PIC16C6X,  
PIC16C7X and PIC16CXXX families of 8-bit One-  
Time-Programmable (OTP) microcontrollers. The mod-  
ular system can support different subsets of PIC16C5X  
or PIC16CXXX products through the use of inter-  
changeable personality modules, or daughter boards.  
The emulator is capable of emulating without target  
application circuitry being present.  
14.5 MPLAB SIM Software Simulator  
The MPLAB SIM software simulator allows code devel-  
opment in a PC-hosted environment by simulating the  
PICmicro series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file, or user-defined key press, to any of the pins. The  
execution can be performed in single step, execute  
until break, or trace mode.  
The MPLAB SIM simulator fully supports symbolic debug-  
ging using the MPLAB C17 and the MPLAB C18 C com-  
pilers and the MPASM assembler. The software simulator  
offers the flexibility to develop and debug code outside of  
the laboratory environment, making it an excellent multi-  
project software development tool.  
DS30325B-page 114  
2002 Microchip Technology Inc.  
PIC16F7X  
14.8 MPLAB ICD In-Circuit Debugger  
14.11 PICDEM 1 Low Cost PICmicro  
Demonstration Board  
Microchips In-Circuit Debugger, MPLAB ICD, is a pow-  
erful, low cost, run-time development tool. This tool is  
based on the FLASH PICmicro MCUs and can be used  
to develop for this and other PICmicro microcontrollers.  
The MPLAB ICD utilizes the in-circuit debugging capa-  
bility built into the FLASH devices. This feature, along  
with Microchips In-Circuit Serial ProgrammingTM proto-  
col, offers cost-effective in-circuit FLASH debugging  
from the graphical user interface of the MPLAB  
Integrated Development Environment. This enables a  
designer to develop and debug source code by watch-  
ing variables, single-stepping and setting break points.  
Running at full speed enables testing hardware in real-  
time.  
The PICDEM 1 demonstration board is a simple board  
which demonstrates the capabilities of several of  
Microchips microcontrollers. The microcontrollers sup-  
ported are: PIC16C5X (PIC16C54 to PIC16C58A),  
PIC16C61, PIC16C62X, PIC16C71, PIC16C8X,  
PIC17C42, PIC17C43 and PIC17C44. All necessary  
hardware and software is included to run basic demo  
programs. The user can program the sample microcon-  
trollers provided with the PICDEM 1 demonstration  
board on a PRO MATE II device programmer, or a  
PICSTART Plus development programmer, and easily  
test firmware. The user can also connect the  
PICDEM 1 demonstration board to the MPLAB ICE in-  
circuit emulator and download the firmware to the emu-  
lator for testing. A prototype area is available for the  
user to build some additional hardware and connect it  
to the microcontroller socket(s). Some of the features  
include an RS-232 interface, a potentiometer for simu-  
lated analog input, push button switches and eight  
LEDs connected to PORTB.  
14.9 PRO MATE II Universal Device  
Programmer  
The PRO MATE II universal device programmer is a  
full-featured programmer, capable of operating in  
stand-alone mode, as well as PC-hosted mode. The  
PRO MATE II device programmer is CE compliant.  
The PRO MATE II device programmer has program-  
mable VDD and VPP supplies, which allow it to verify  
programmed memory at VDD min and VDD max for max-  
imum reliability. It has an LCD display for instructions  
and error messages, keys to enter commands and a  
modular detachable socket assembly to support various  
package types. In stand-alone mode, the PRO MATE II  
device programmer can read, verify, or program  
PICmicro devices. It can also set code protection in this  
mode.  
14.12 PICDEM 2 Low Cost PIC16CXX  
Demonstration Board  
The PICDEM 2 demonstration board is a simple dem-  
onstration board that supports the PIC16C62,  
PIC16C64, PIC16C65, PIC16C73 and PIC16C74  
microcontrollers. All the necessary hardware and soft-  
ware is included to run the basic demonstration pro-  
grams. The user can program the sample  
microcontrollers provided with the PICDEM 2 demon-  
stration board on a PRO MATE II device programmer,  
or a PICSTART Plus development programmer, and  
easily test firmware. The MPLAB ICE in-circuit emula-  
tor may also be used with the PICDEM 2 demonstration  
board to test firmware. A prototype area has been pro-  
vided to the user for adding additional hardware and  
connecting it to the microcontroller socket(s). Some of  
the features include a RS-232 interface, push button  
switches, a potentiometer for simulated analog input, a  
serial EEPROM to demonstrate usage of the I2CTM bus  
and separate headers for connection to an LCD  
module and a keypad.  
14.10 PICSTART Plus Entry Level  
Development Programmer  
The PICSTART Plus development programmer is an  
easy-to-use, low cost, prototype programmer. It con-  
nects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient.  
The PICSTART Plus development programmer sup-  
ports all PICmicro devices with up to 40 pins. Larger pin  
count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus development programmer is CE  
compliant.  
2002 Microchip Technology Inc.  
DS30325B-page 115  
PIC16F7X  
14.13 PICDEM 3 Low Cost PIC16CXXX  
Demonstration Board  
14.14 PICDEM 17 Demonstration Board  
The PICDEM 17 demonstration board is an evaluation  
board that demonstrates the capabilities of several  
Microchip microcontrollers, including PIC17C752,  
PIC17C756A, PIC17C762 and PIC17C766. All neces-  
sary hardware is included to run basic demo programs,  
which are supplied on a 3.5-inch disk. A programmed  
sample is included and the user may erase it and  
program it with the other sample programs using the  
PRO MATE II device programmer, or the PICSTART  
Plus development programmer, and easily debug and  
test the sample code. In addition, the PICDEM 17 dem-  
onstration board supports downloading of programs to  
and executing out of external FLASH memory on board.  
The PICDEM 17 demonstration board is also usable  
with the MPLAB ICE in-circuit emulator, or the  
PICMASTER emulator and all of the sample programs  
can be run and modified using either emulator. Addition-  
ally, a generous prototype area is available for user  
hardware.  
The PICDEM 3 demonstration board is a simple dem-  
onstration board that supports the PIC16C923 and  
PIC16C924 in the PLCC package. It will also support  
future 44-pin PLCC microcontrollers with an LCD Mod-  
ule. All the necessary hardware and software is  
included to run the basic demonstration programs. The  
user can program the sample microcontrollers pro-  
vided with the PICDEM 3 demonstration board on a  
PRO MATE II device programmer, or a PICSTART Plus  
development programmer with an adapter socket, and  
easily test firmware. The MPLAB ICE in-circuit emula-  
tor may also be used with the PICDEM 3 demonstration  
board to test firmware. A prototype area has been pro-  
vided to the user for adding hardware and connecting it  
to the microcontroller socket(s). Some of the features  
include a RS-232 interface, push button switches, a  
potentiometer for simulated analog input, a thermistor  
and separate headers for connection to an external  
LCD module and a keypad. Also provided on the  
PICDEM 3 demonstration board is a LCD panel, with 4  
commons and 12 segments, that is capable of display-  
ing time, temperature and day of the week. The  
PICDEM 3 demonstration board provides an additional  
RS-232 interface and Windows software for showing  
the demultiplexed LCD signals on a PC. A simple serial  
interface allows the user to construct a hardware  
demultiplexer for the LCD signals.  
14.15 KEELOQ Evaluation and  
Programming Tools  
KEELOQ evaluation and programming tools support  
Microchips HCS Secure Data Products. The HCS eval-  
uation kit includes a LCD display to show changing  
codes, a decoder to decode transmissions and a pro-  
gramming interface to program test transmitters.  
DS30325B-page 116  
2002 Microchip Technology Inc.  
PIC16F7X  
TABLE 14-1: DEVELOPMENT TOOLS FROM MICROCHIP  
0 1 5 2 P M C  
X X X C R M F  
H C S X X X  
X X C 9 3  
/ X X C 2 5  
/ X X C 2 4  
X X X F 8 C 1 P I  
X X C 8 2 C 1 P I  
X 7 X 7 C 1 C I P  
X 4 1 7 C I C P  
X 9 X 6 C 1 C I P  
X 8 X 6 F 1 C I P  
X 8 1 6 C I C P  
X 7 X 6 C 1 C I P  
X 7 1 6 C I C P  
X 6 2 1 6 C I F P  
X
X X C 6 C 1 P I  
X 6 1 6 C I C P  
X 5 1 6 C I C P  
0 0 1 4 C I 0 P  
X
X X C 2 C 1 P I  
s o l T e o r a w f t S o s r o t a u l E m e r u b g e g D s m e a r m o g P r r  
s t K l a i E d v n a s d r a B o o m D e  
2002 Microchip Technology Inc.  
DS30325B-page 117  
PIC16F7X  
NOTES:  
DS30325B-page 118  
2002 Microchip Technology Inc.  
PIC16F7X  
15.0 ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
Ambient temperature under bias.................................................................................................................-55 to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD, MCLR. and RA4) ......................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ............................................................................................................ -0.3 to +6.5V  
Voltage on MCLR with respect to VSS (Note 2) ..............................................................................................0 to +13.5V  
Voltage on RA4 with respect to Vss...................................................................................................................0 to +12V  
Total power dissipation (Note 1) ...............................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)..................................................................................................................... 20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) ............................................................................................................. 20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by PORTA, PORTB, and PORTE (combined) (Note 3)...................................................200 mA  
Maximum current sourced by PORTA, PORTB, and PORTE (combined) (Note 3)..............................................200 mA  
Maximum current sunk by PORTC and PORTD (combined) (Note 3) .................................................................200 mA  
Maximum current sourced by PORTC and PORTD (combined) (Note 3) ............................................................200 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD - VOH) x IOH} + (VOl x IOL)  
2: Voltage spikes at the MCLR pin may cause latchup. A series resistor of greater than 1 kshould be used  
to pull MCLR to VDD, rather than tying the pin directly to VDD.  
3: PORTD and PORTE are not implemented on the PIC16F73/76 devices.  
NOTICE: Stresses above those listed under Absolute Maximum Ratingsmay cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
2002 Microchip Technology Inc.  
DS30325B-page 119  
PIC16F7X  
FIGURE 15-1:  
PIC16F7X VOLTAGE-FREQUENCY GRAPH  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
16 MHz  
20 MHz  
Frequency  
FIGURE 15-2:  
PIC16LF7X VOLTAGE-FREQUENCY GRAPH  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
4 MHz  
10 MHz  
Frequency  
FMAX = (12 MHz/V) (VDDAPPMIN - 2.5V) + 4 MHz  
Note 1: VDDAPPMIN is the minimum voltage of the PICmicro® device in the application.  
Note 2: FMAX has a maximum frequency of 10 MHz.  
DS30325B-page 120  
2002 Microchip Technology Inc.  
PIC16F7X  
15.1 DC Characteristics: PIC16F73/74/76/77 (Industrial, Extended)  
PIC16LF73/74/76/77 (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
PIC16LF73/74/76/77  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
PIC16F73/74/76/77  
(Industrial, Extended)  
Param  
Sym  
No.  
Characteristic  
Min Typ† Max Units  
Conditions  
VDD  
Supply Voltage  
PIC16LF7X 2.5  
D001  
5.5  
5.5  
5.5  
V
V
V
A/D in use, -40°C to +85°C  
A/D in use, 0°C to +85°C  
A/D not used, -40°C to +85°C  
2.2  
2.0  
D001  
D001A  
PIC16F7X 4.0  
-
-
5.5  
5.5  
V
V
All configurations  
BOR enabled (Note 7)  
VBOR*  
D002* VDR  
RAM Data Retention  
Voltage (Note 1)  
-
-
1.5  
-
V
D003 VPOR VDD Start Voltage to  
ensure internal Power-on  
Reset signal  
VSS  
-
V
See section on Power-on Reset for details  
D004* SVDD VDD Rise Rate to ensure  
internal Power-on Reset  
signal  
0.05  
-
-
V/ms See section on Power-on Reset for details  
D005 VBOR Brown-out Reset Voltage 3.65  
4.0 4.35  
V
BODEN bit in configuration word enabled  
Legend: Shading of rows is to assist in readability of of the table.  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from-rail to-rail; all I/O pins tri-stated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from character-  
ization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.  
2002 Microchip Technology Inc.  
DS30325B-page 121  
PIC16F7X  
15.1 DC Characteristics: PIC16F73/74/76/77 (Industrial, Extended)  
PIC16LF73/74/76/77 (Industrial) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
PIC16LF73/74/76/77  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
PIC16F73/74/76/77  
(Industrial, Extended)  
Param  
Sym  
No.  
Characteristic  
Min TypMax Units  
Conditions  
IDD  
Supply Current (Notes 2, 5)  
D010  
PIC16LF7X  
0.4 2.0  
mA XT, RC osc configuration  
FOSC = 4 MHz, VDD = 3.0V (Note 4)  
µA LP osc configuration  
D010A  
20  
48  
FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
D010  
D013  
PIC16F7X  
-
0.9  
5.2  
4
mA XT, RC osc configuration  
FOSC = 4 MHz, VDD = 5.5V (Note 4)  
mA HS osc configuration  
15  
FOSC = 20 MHz, VDD = 5.5V  
D015* IBOR Brown-out  
Reset Current (Note 6)  
Power-down Current (Notes 3, 5)  
25 200  
µA BOR enabled, VDD = 5.0V  
D020  
IPD  
PIC16LF7X  
2.0  
0.1  
30  
5
µA VDD = 3.0V, WDT enabled, -40°C to +85°C  
µA VDD = 3.0V, WDT disabled, -40°C to +85°C  
D021  
D020  
D021  
D021A  
PIC16F7X  
5.0  
0.1  
10.5 57  
1.5 42  
25 200  
42  
19  
µA VDD = 4.0V, WDT enabled, -40°C to +85°C  
µA VDD = 4.0V, WDT disabled, -40°C to +85°C  
µA VDD = 4.0V, WDT enabled, -40°C to +125°C  
µA VDD = 4.0V, WDT disabled, -40°C to +125°C  
D023* IBOR Brown-out  
Reset Current (Note 6)  
Legend: Shading of rows is to assist in readability of of the table.  
µA BOR enabled, VDD = 5.0V  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from-rail to-rail; all I/O pins tri-stated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from character-  
ization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.  
DS30325B-page 122  
2002 Microchip Technology Inc.  
PIC16F7X  
15.2 DC Characteristics: PIC16F73/74/76/77 (Industrial, Extended)  
PIC16LF73/74/76/77 (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Operating voltage VDD range as described in DC Specification,  
Section 15.1.  
DC CHARACTERISTICS  
Param  
Sym  
Characteristic  
Min  
TypMax Units  
Conditions  
No.  
VIL  
Input Low Voltage  
I/O ports:  
D030  
D030A  
D031  
with TTL buffer  
VSS  
VSS  
VSS  
0.15VDD  
0.8V  
V
V
V
For entire VDD range  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
0.2VDD  
D032  
D033  
MCLR, OSC1 (in RC mode)  
OSC1 (in XT and LP mode)  
OSC1 (in HS mode)  
Input High Voltage  
I/O ports:  
VSS  
VSS  
VSS  
0.2VDD  
0.3V  
V
V
V
(Note 1)  
0.3VDD  
VIH  
D040  
with TTL buffer  
2.0  
VDD  
VDD  
V
V
4.5V VDD 5.5V  
D040A  
0.25VDD  
+ 0.8V  
For entire VDD range  
D041  
with Schmitt Trigger buffer  
0.8VDD  
VDD  
V
For entire VDD range  
D042  
MCLR  
0.8VDD  
1.6V  
VDD  
VDD  
VDD  
VDD  
400  
V
V
V
V
D042A  
OSC1 (in XT and LP mode)  
OSC1 (in HS mode)  
OSC1 (in RC mode)  
0.7VDD  
0.9VDD  
50  
D043  
D070  
(Note 1)  
IPURB PORTB Weak Pull-up Current  
IIL  
250  
µA VDD = 5V, VPIN = VSS  
Input Leakage Current (Notes 2, 3)  
D060  
I/O ports  
±1  
µA Vss VPIN VDD, pin at  
hi-impedance  
D061  
D063  
MCLR, RA4/T0CKI  
OSC1  
±5  
±5  
µA Vss VPIN VDD  
µA Vss VPIN VDD, XT, HS and LP  
osc configuration  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16F7X be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
2002 Microchip Technology Inc.  
DS30325B-page 123  
PIC16F7X  
15.2 DC Characteristics: PIC16F73/74/76/77 (Industrial, Extended)  
PIC16LF73/74/76/77 (Industrial) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
DC CHARACTERISTICS  
Param  
Operating voltage VDD range as described in DC Specification,  
Section 15.1.  
Sym  
Characteristic  
Min  
TypMax Units  
Conditions  
No.  
VOL  
Output Low Voltage  
D080  
D083  
I/O ports  
0.6  
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +125°C  
IOL = 1.6 mA, VDD = 4.5V,  
-40°C to +125°C  
IOL = 1.2 mA, VDD = 4.5V,  
-40°C to +125°C  
OSC2/CLKOUT (RC osc config)  
0.6  
0.6  
V
V
VOH  
Output High Voltage  
D090  
D092  
I/O ports (Note 3)  
VDD - 0.7  
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +125°C  
OSC2/CLKOUT (RC osc config) VDD - 0.7  
VDD - 0.7  
V
V
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +125°C  
IOH = -1.0 mA, VDD = 4.5V,  
-40°C to +125°C  
D150* VOD Open Drain High Voltage  
12  
15  
V
RA4 pin  
Capacitive Loading Specs on Output Pins  
D100  
COSC2 OSC2 pin  
pF In XT, HS and LP modes when  
external clock is used to drive  
OSC1  
D101  
D102  
CIO  
CB  
All I/O pins and OSC2  
(in RC mode)  
50  
pF  
SCL, SDA in I2C mode  
Program FLASH Memory  
Endurance  
400  
pF  
D130  
D131  
EP  
100  
2.0  
1000  
E/W 25°C at 5V  
VPR  
VDD for Read  
5.5  
V
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16F7X be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
DS30325B-page 124  
2002 Microchip Technology Inc.  
PIC16F7X  
15.3 Timing Parameter Symbology  
The timing parameter symbols have been created  
using one of the following formats:  
1. TppS2ppS  
2. TppS  
T
3. TCC:ST  
4. Ts  
(I2C specifications only)  
(I2C specifications only)  
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
I2C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
TCC:ST (I2C specifications only)  
CC  
HD  
ST  
DAT  
STA  
Hold  
SU  
Setup  
DATA input hold  
START condition  
STO  
STOP condition  
FIGURE 15-3:  
LOAD CONDITIONS  
Load Condition 1  
VDD/2  
Load Condition 2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL = 464Ω  
CL = 50 pF  
15 pF  
for all pins except OSC2, but including PORTD and PORTE outputs as ports  
for OSC2 output  
Note: PORTD and PORTE are not implemented on the PIC16F73/76 devices.  
2002 Microchip Technology Inc.  
DS30325B-page 125  
PIC16F7X  
FIGURE 15-4:  
EXTERNAL CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
4
Q1  
OSC1  
1
3
4
3
2
CLKOUT  
TABLE 15-1: EXTERNAL CLOCK TIMING REQUIREMENTS  
Parameter  
Symbol  
Characteristic  
Min Typ†  
Max  
Units  
Conditions  
No.  
FOSC  
External CLKIN Frequency  
(Note 1)  
DC  
DC  
DC  
DC  
0.1  
1
20  
32  
4
MHz XT osc mode  
MHz HS osc mode  
kHz LP osc mode  
MHz RC osc mode  
MHz XT osc mode  
Oscillator Frequency  
(Note 1)  
4
4
5
20  
200  
MHz HS osc mode  
kHz LP osc mode  
1
TOSC  
External CLKIN Period  
(Note 1)  
1000  
50  
ns XT osc mode  
ns HS osc mode  
ms LP osc mode  
ns RC osc mode  
ns XT osc mode  
ns HS osc mode  
ms LP osc mode  
ns TCY = 4/FOSC  
5
Oscillator Period  
(Note 1)  
250  
250  
50  
10,000  
250  
5
2
3
TCY  
Instruction Cycle Time  
(Note 1)  
200  
TCY  
DC  
TosL,  
TosH  
External Clock in (OSC1)  
High or Low Time  
500  
2.5  
15  
25  
50  
15  
ns XT oscillator  
ms LP oscillator  
ns HS oscillator  
ns XT oscillator  
ns LP oscillator  
ns HS oscillator  
4
TosR,  
TosF  
External Clock in (OSC1)  
Rise or Fall Time  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions, with  
the device executing code. Exceeding these specified limits may result in an unstable oscillator operation  
and/or higher than expected current consumption. All devices are tested to operate at "min." values with an  
external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "max." cycle time  
limit is "DC" (no clock) for all devices.  
DS30325B-page 126  
2002 Microchip Technology Inc.  
PIC16F7X  
FIGURE 15-5:  
CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKOUT  
13  
14  
12  
18  
19  
16  
I/O Pin  
(Input)  
15  
17  
I/O Pin  
(Output)  
New Value  
Old Value  
20, 21  
Note: Refer to Figure 15-3 for load conditions.  
TABLE 15-2: CLKOUT AND I/O TIMING REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
10*  
11*  
12*  
13*  
14*  
15*  
16*  
17*  
18*  
TosH2ckL OSC1to CLKOUT↓  
TosH2ckH OSC1to CLKOUT↑  
75  
75  
35  
35  
200  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
ns  
200  
TckR  
TckF  
CLKOUT rise time  
CLKOUT fall time  
100  
100  
TckL2ioV CLKOUTto Port out valid  
TioV2ckH Port in valid before CLKOUT↑  
0.5TCY + 20  
TOSC + 200  
TckH2ioI  
Port in hold after CLKOUT↑  
0
TosH2ioV OSC1(Q1 cycle) to Port out valid  
100  
255  
TosH2ioI  
OSC1(Q2 cycle) to  
Port input invalid (I/O in  
hold time)  
Standard (F)  
100  
200  
ns  
Extended (LF)  
ns  
19*  
20*  
TioV2osH Port input valid to OSC1(I/O in setup time)  
0
10  
10  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TioR  
Port output rise time  
Port output fall time  
INT pin high or low time  
Standard (F)  
Extended (LF)  
Standard (F)  
Extended (LF)  
145  
40  
21*  
TioF  
145  
22††* Tinp  
23††* Trbp  
TCY  
TCY  
RB7:RB4 change INT high or low time  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
†† These parameters are asynchronous events, not related to any internal clock edges.  
Note 1: Measurements are taken in RC mode, where CLKOUT output is 4 x TOSC.  
2002 Microchip Technology Inc.  
DS30325B-page 127  
PIC16F7X  
FIGURE 15-6:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND  
POWER-UP TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
Reset  
31  
34  
34  
I/O Pins  
Note: Refer to Figure 15-3 for load conditions.  
FIGURE 15-7:  
BROWN-OUT RESET TIMING  
VBOR  
VDD  
35  
TABLE 15-3: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,  
AND BROWN-OUT RESET REQUIREMENTS  
Parameter  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
No.  
30  
TmcL  
MCLR Pulse Width (low)  
2
7
µs  
VDD = 5V, -40°C to +85°C  
31*  
TWDT  
Watchdog Timer Time-out Period  
(No Prescaler)  
18  
33  
ms VDD = 5V, -40°C to +85°C  
32  
TOST  
Oscillation Start-up Timer Period  
Power-up Timer Period  
1024 TOSC  
72  
TOSC = OSC1 period  
33*  
TPWRT  
28  
132  
ms VDD = 5V, -40°C to +85°C  
µs  
34  
TIOZ  
I/O Hi-Impedance from MCLR Low  
or Watchdog Timer Reset  
2.1  
35  
TBOR  
Brown-out Reset Pulse Width  
100  
µs  
VDD VBOR (D005)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
DS30325B-page 128  
2002 Microchip Technology Inc.  
PIC16F7X  
FIGURE 15-8:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
RA4/T0CKI  
41  
40  
42  
RC0/T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or TMR1  
Note: Refer to Figure 15-3 for load conditions.  
TABLE 15-4: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
T0CKI High Pulse Width  
Min  
TypMax Units  
Conditions  
40* Tt0H  
41* Tt0L  
42* Tt0P  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5TCY + 20  
10  
ns Must also meet  
parameter 42  
ns  
T0CKI Low Pulse Width  
T0CKI Period  
0.5TCY + 20  
10  
ns Must also meet  
parameter 42  
ns  
ns  
TCY + 40  
Greater of:  
20 or TCY + 40  
N
ns N = prescale value  
(2, 4, ..., 256)  
45* Tt1H  
46* Tt1L  
47* Tt1P  
T1CKI High Time Synchronous, Prescaler = 1  
0.5TCY + 20  
ns Must also meet  
parameter 47  
Synchronous,  
Standard(F)  
15  
ns  
ns  
ns  
ns  
Prescaler = 2,4,8  
Extended(LF)  
25  
Asynchronous Standard(F)  
Extended(LF)  
30  
50  
T1CKI Low Time Synchronous, Prescaler = 1  
0.5TCY + 20  
ns Must also meet  
parameter 47  
Synchronous,  
Standard(F)  
15  
25  
30  
50  
ns  
ns  
ns  
ns  
Prescaler = 2,4,8  
Extended(LF)  
Asynchronous Standard(F)  
Extended(LF)  
T1CKI Input  
Period  
Synchronous  
Standard(F)  
Greater of:  
30 or TCY + 40  
N
ns N = prescale value  
(1, 2, 4, 8)  
Extended(LF)  
Greater of:  
50 or TCY + 40  
N
N = prescale value  
(1, 2, 4, 8)  
Asynchronous Standard(F)  
Extended(LF)  
60  
100  
DC  
ns  
ns  
Ft1  
Timer1 Oscillator Input Frequency Range  
(oscillator enabled by setting bit T1OSCEN)  
200  
kHz  
48  
TCKEZtmr1 Delay from External Clock Edge to Timer Increment  
These parameters are characterized but not tested.  
2 TOSC  
7 TOSC  
*
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
2002 Microchip Technology Inc.  
DS30325B-page 129  
PIC16F7X  
FIGURE 15-9:  
CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)  
RC1/T1OSI/CCP2  
and RC2/CCP1  
(Capture Mode)  
50  
51  
52  
RC1/T1OSI/CCP2  
and RC2/CCP1  
(Compare or PWM Mode)  
53  
54  
Note: Refer to Figure 15-3 for load conditions.  
TABLE 15-5: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)  
Param  
Symbol  
Characteristic  
Min  
TypMax Units Conditions  
No.  
50* TccL  
CCP1 and CCP2 No Prescaler  
input low time  
0.5TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
Standard(F)  
10  
With Prescaler  
Extended(LF)  
20  
0.5TCY + 20  
10  
51* TccH  
CCP1 and CCP2 No Prescaler  
input high time  
Standard(F)  
With Prescaler  
Extended(LF)  
20  
52* TccP  
53* TccR  
CCP1 and CCP2 input period  
3TCY + 40  
N
ns N = prescale  
value (1,4 or 16)  
CCP1 and CCP2 output rise time Standard(F)  
Extended(LF)  
10  
25  
10  
25  
25  
50  
25  
45  
ns  
ns  
ns  
ns  
54* TccF  
CCP1 and CCP2 output fall time Standard(F)  
Extended(LF)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
DS30325B-page 130  
2002 Microchip Technology Inc.  
PIC16F7X  
FIGURE 15-10:  
PARALLEL SLAVE PORT TIMING (PIC16F74/77 DEVICES ONLY)  
RE2/CS  
RE0/RD  
RE1/WR  
65  
RD7:RD0  
62  
64  
63  
Note: Refer to Figure 15-3 for load conditions.  
TABLE 15-6: PARALLEL SLAVE PORT REQUIREMENTS (PIC16F74/77 DEVICES ONLY)  
Parameter  
Symbol  
Characteristic  
Min TypMax Units  
Conditions  
No.  
62  
TdtV2wrH Data in valid before WRor CS(setup time)  
20  
25  
ns  
ns Extended range  
only  
63*  
64  
TwrH2dtI WRor CSto data in invalid  
Standard(F)  
20  
ns  
ns  
(hold time)  
Extended(LF) 35  
TrdL2dtV RDand CSto data out valid  
TrdH2dtI RDor CSto data out invalid  
80  
90  
ns  
ns Extended range  
only  
65  
10  
30  
ns  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
2002 Microchip Technology Inc.  
DS30325B-page 131  
PIC16F7X  
FIGURE 15-11:  
SPI MASTER MODE TIMING (CKE = 0, SMP = 0)  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
Bit6 - - - - - -1  
Bit6 - - - -1  
LSb  
SDO  
SDI  
75, 76  
MSb In  
74  
LSb In  
73  
Note: Refer to Figure 15-3 for load conditions.  
FIGURE 15-12:  
SPI MASTER MODE TIMING (CKE = 1, SMP = 1)  
SS  
81  
SCK  
(CKP = 0)  
71  
72  
79  
78  
73  
SCK  
(CKP = 1)  
80  
LSb  
MSb  
Bit6 - - - - - -1  
Bit6 - - - -1  
SDO  
SDI  
75, 76  
MSb In  
74  
LSb In  
Note: Refer to Figure 15-3 for load conditions.  
DS30325B-page 132  
2002 Microchip Technology Inc.  
PIC16F7X  
FIGURE 15-13:  
SPI SLAVE MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
83  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
LSb  
SDO  
SDI  
Bit6 - - - - - -1  
Bit6 - - - -1  
77  
75, 76  
MSb In  
74  
LSb In  
73  
Note: Refer to Figure 15-3 for load conditions.  
FIGURE 15-14:  
SPI SLAVE MODE TIMING (CKE = 1)  
82  
SS  
70  
SCK  
83  
(CKP = 0)  
71  
72  
SCK  
(CKP = 1)  
80  
MSb  
Bit6 - - - - - -1  
Bit6 - - - -1  
LSb  
SDO  
SDI  
75, 76  
77  
MSb In  
74  
LSb In  
Note: Refer to Figure 15-3 for load conditions.  
2002 Microchip Technology Inc.  
DS30325B-page 133  
PIC16F7X  
TABLE 15-7: SPI MODE REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
Min  
TypMax Units Conditions  
70* TssL2scH, SSto SCKor SCKinput  
TCY  
ns  
TssL2scL  
71* TscH  
72* TscL  
SCK input high time (Slave mode)  
SCK input low time (Slave mode)  
TCY + 20  
TCY + 20  
100  
ns  
ns  
ns  
73* TdiV2scH, Setup time of SDI data input to SCK edge  
TdiV2scL  
74* TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
100  
ns  
75* TdoR  
SDO data output rise time  
Standard(F)  
Extended(LF)  
10  
25  
25  
50  
ns  
ns  
76* TdoF  
SDO data output fall time  
10  
25  
50  
ns  
ns  
77* TssH2doZ SSto SDO output hi-impedance  
10  
78* TscR  
SCK output rise time  
(Master mode)  
Standard(F)  
Extended(LF)  
10  
25  
25  
50  
ns  
ns  
79* TscF  
SCK output fall time (Master mode)  
10  
25  
ns  
80* TscH2doV, SDO data output valid after  
TscL2doV SCK edge  
Standard(F)  
Extended(LF)  
50  
145  
ns  
ns  
81* TdoV2scH, SDO data output setup to SCK edge  
TdoV2scL  
Tcy  
ns  
82* TssL2doV SDO data output valid after SSedge  
50  
ns  
ns  
83* TscH2ssH, SS after SCK edge  
1.5TCY + 40  
TscL2ssH  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
FIGURE 15-15:  
I2C BUS START/STOP BITS TIMING  
SCL  
SDA  
91  
93  
90  
92  
STOP  
Condition  
START  
Condition  
Note: Refer to Figure 15-3 for load conditions.  
DS30325B-page 134  
2002 Microchip Technology Inc.  
PIC16F7X  
TABLE 15-8: I2C BUS START/STOP BITS REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min Typ Max Units  
Conditions  
No.  
90*  
TSU:STA START condition 100 kHz mode  
Setup time 400 kHz mode  
THD:STA START condition 100 kHz mode  
4700  
600  
ns Only relevant for Repeated  
START condition  
91*  
92*  
93  
4000  
600  
ns After this period, the first clock  
pulse is generated  
Hold time  
TSU:STO STOP condition  
Setup time  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
ns  
THD:STO STOP condition  
Hold time  
4000  
600  
ns  
*
These parameters are characterized but not tested.  
FIGURE 15-16:  
I2C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 15-3 for load conditions.  
2002 Microchip Technology Inc.  
DS30325B-page 135  
PIC16F7X  
TABLE 15-9: I2C BUS DATA REQUIREMENTS  
Param.  
No.  
Symbol  
Characteristic  
100 kHz mode  
Min  
Max Units  
Conditions  
100*  
THIGH  
Clock high time  
4.0  
µs  
µs  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
0.6  
Device must operate at a  
minimum of 10 MHz  
SSP Module  
1.5TCY  
4.7  
101*  
TLOW  
Clock low time  
100 kHz mode  
µs  
µs  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
1.3  
Device must operate at a  
minimum of 10 MHz  
SSP Module  
1.5TCY  
102*  
103*  
90*  
TR  
TF  
SDA and SCL rise 100 kHz mode  
1000  
ns  
ns  
time  
400 kHz mode  
20 + 0.1CB 300  
CB is specified to be from  
10 - 400 pF  
SDA and SCL fall  
time  
100 kHz mode  
400 kHz mode  
300  
ns  
ns  
20 + 0.1CB 300  
CB is specified to be from  
10 - 400 pF  
TSU:STA  
THD:STA  
START condition  
setup time  
100 kHz mode  
400 kHz mode  
4.7  
0.6  
µs  
µs  
Only relevant for  
Repeated START  
condition  
91*  
106*  
107*  
92*  
START condition  
hold time  
100 kHz mode  
400 kHz mode  
4.0  
0.6  
0
µs  
µs  
ns  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
µs  
µs  
After this period the first  
clock pulse is generated  
THD:DAT Data input hold time 100 kHz mode  
400 kHz mode  
0
0.9  
TSU:DAT  
TSU:STO  
TAA  
Data input setup  
time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
250  
100  
4.7  
0.6  
(Note 2)  
STOP condition  
setup time  
109*  
110*  
Output valid from  
clock  
3500  
(Note 1)  
TBUF  
Bus free time  
4.7  
1.3  
Time the bus must be free  
before a new transmission  
can start  
CB  
Bus capacitive loading  
400  
pF  
*
These parameters are characterized but not tested.  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region  
(min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.  
2: A Fast mode (400 kHz) I2C bus device can be used in a Standard mode (100 kHz) I2C bus system, but the  
requirement TSU:DAT 250 ns must then be met. This will automatically be the case if the device does not  
stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it  
must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the  
Standard mode I2C bus specification), before the SCL line is released.  
DS30325B-page 136  
2002 Microchip Technology Inc.  
PIC16F7X  
FIGURE 15-17:  
USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
RC6/TX/CK  
pin  
121  
121  
RC7/RX/DT  
pin  
120  
122  
Note: Refer to Figure 15-3 for load conditions.  
TABLE 15-10: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min TypMax Units Conditions  
No.  
120  
TckH2dtV SYNC XMIT (MASTER &  
SLAVE)  
Standard(F)  
80  
100  
45  
ns  
ns  
ns  
ns  
ns  
ns  
Clock high to data out valid  
Extended(LF)  
121  
122  
Tckrf  
Tdtrf  
Clock out rise time and fall Standard(F)  
time (Master mode)  
Extended(LF)  
50  
Data out rise time and fall Standard(F)  
time  
45  
Extended(LF)  
50  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
FIGURE 15-18:  
USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
RC6/TX/CK  
pin  
125  
RC7/RX/DT  
pin  
126  
Note: Refer to Figure 15-3 for load conditions.  
TABLE 15-11: USART SYNCHRONOUS RECEIVE REQUIREMENTS  
Parameter  
Symbol  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
No.  
125  
TdtV2ckL SYNC RCV (MASTER & SLAVE)  
Data setup before CK(DT setup time)  
15  
15  
ns  
ns  
126  
TckL2dtl  
Data hold after CK(DT hold time)  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
2002 Microchip Technology Inc.  
DS30325B-page 137  
PIC16F7X  
TABLE 15-12: A/D CONVERTER CHARACTERISTICS: PIC16F7X (INDUSTRIAL, EXTENDED)  
PIC16LF7X (INDUSTRIAL)  
Param  
No.  
Sym  
Characteristic  
Resolution PIC16F7X  
Min  
Typ†  
Max  
Units  
Conditions  
A01 NR  
8 bits  
bit VREF = VDD = 5.12V,  
VSS VAIN VREF  
PIC16LF7X  
A02 EABS Total absolute error  
8 bits  
< ±1  
bit VREF = VDD = 2.2V  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
A03 EIL  
A04 EDL  
A05 EFS  
A06 EOFF  
Integral linearity error  
Differential linearity error  
Full scale error  
< ±1  
< ±1  
< ±1  
< ±1  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
Offset error  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
A10  
Monotonicity (Note 3)  
guaranteed  
VSS VAIN VREF  
A20 VREF  
Reference voltage  
2.5  
2.2  
5.5  
5.5  
V
V
-40°C to +125°C  
0°C to +125°C  
A25 VAIN  
A30 ZAIN  
Analog input voltage  
VSS - 0.3  
VREF + 0.3  
10.0  
V
Recommended impedance of  
analog voltage source  
kΩ  
A40 IAD  
A/D conversion PIC16F7X  
180  
90  
µA Average current  
consumption when A/D  
is on (Note 1).  
current (VDD)  
PIC16LF7X  
µA  
A50 IREF  
VREF input current (Note 2)  
N/A  
±5  
500  
µA During VAIN acquisition.  
µA During A/D Conversion  
cycle.  
*
These parameters are characterized but not tested.  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current  
spec includes any such leakage from the A/D module.  
2: VREF current is from the RA3 pin or the VDD pin, whichever is selected as a reference input.  
3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.  
DS30325B-page 138  
2002 Microchip Technology Inc.  
PIC16F7X  
FIGURE 15-19:  
A/D CONVERSION TIMING  
BSF ADCON0, GO  
134  
1 TCY  
(TOSC/2)(1)  
131  
130  
Q4  
132  
A/D CLK  
7
6
5
4
3
2
1
0
A/D DATA  
NEW_DATA  
DONE  
OLD_DATA  
ADRES  
ADIF  
GO  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEPinstruction  
to be executed.  
TABLE 15-13: A/D CONVERSION REQUIREMENTS  
Param  
Sym  
Characteristic  
Min  
TypMax Units  
Conditions  
No.  
130 TAD A/D clock period  
PIC16F7X  
1.6  
2.0  
µs TOSC based, VREF 3.0V  
PIC16LF7X  
µs TOSC based,  
2.0V VREF 5.5V  
PIC16F7X  
2.0  
3.0  
9
4.0  
6.0  
6.0  
9.0  
9
µs A/D RC mode  
µs A/D RC mode  
TAD  
PIC16LF7X  
131 TCNV Conversion time (not including  
S/H time) (Note 1)  
132 TACQ Acquisition time  
5*  
µs The minimum time is the  
amplifier settling time. This  
may be used if the newinput  
voltage has not changed by  
more than 1 LSb (i.e.,  
20.0 mV @ 5.12V) from the  
last sampled voltage (as  
stated on CHOLD).  
134 TGO Q4 to A/D clock start  
TOSC/2  
If the A/D clock source is  
selected as RC, a time of TCY  
is added before the A/D clock  
starts. This allows the SLEEP  
instruction to be executed.  
*
These parameters are characterized but not tested.  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 11.1 for minimum conditions.  
2002 Microchip Technology Inc.  
DS30325B-page 139  
PIC16F7X  
NOTES:  
DS30325B-page 140  
2002 Microchip Technology Inc.  
PIC16F7X  
16.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein are  
not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified oper-  
ating range (e.g., outside specified power supply range) and therefore, outside the warranted range.  
“Typical” represents the mean of the distribution at 25°C. “Maximum” or “minimum” represents (mean + 3σ) or (mean - 3σ)  
respectively, where σ is a standard deviation, over the whole temperature range.  
FIGURE 16-1:  
TYPICAL IDD vs. FOSC OVER VDD (HS MODE)  
6
Typical: statistical mean @ 25°C  
5
4
3
2
1
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean – 3σ (-40°C to 125°C)  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0
4
6
8
10  
12  
14  
16  
18  
20  
FOSC (M Hz)  
FIGURE 16-2:  
MAXIMUM IDD vs. FOSC OVER VDD (HS MODE)  
8
7
6
5
4
3
2
1
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean – 3σ (-40°C to 125°C)  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0
4
6
8
10  
12  
14  
16  
18  
20  
FOSC (M Hz)  
2002 Microchip Technology Inc.  
DS30325B-page 141  
PIC16F7X  
FIGURE 16-3:  
TYPICAL IDD vs. FOSC OVER VDD (XT MODE)  
0.9  
Typical: statistical mean @ 25°C  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean – 3σ (-40°C to 125°C)  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
FOSC (MHz)  
FIGURE 16-4:  
MAXIMUM IDD vs. FOSC OVER VDD (XT MODE)  
1.2  
Typical: statistical mean @ 25°C  
1.0  
0.8  
0.6  
0.4  
0.2  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean – 3σ (-40°C to 125°C)  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
FOSC (MHz)  
DS30325B-page 142  
2002 Microchip Technology Inc.  
PIC16F7X  
FIGURE 16-5:  
TYPICAL IDD vs. FOSC OVER VDD (LP MODE)  
55  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean – 3σ (-40°C to 125°C)  
50  
45  
40  
35  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
30  
25  
20  
3.0V  
2.5V  
2.0V  
15  
10  
30  
40  
50  
60  
70  
80  
90  
100  
FOSC (kHz)  
FIGURE 16-6:  
MAXIMUM IDD vs. FOSC OVER VDD (LP MODE)  
100  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean – 3σ (-40°C to 125°C)  
5.5V  
5.0V  
90  
80  
70  
4.5V  
4.0V  
60  
50  
40  
30  
3.5V  
3.0V  
2.5V  
2.0V  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FOSC (kHz)  
2002 Microchip Technology Inc.  
DS30325B-page 143  
PIC16F7X  
FIGURE 16-7:  
AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R  
(RC MODE, C = 20 pF, 25°C)  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Operation above 4 MHz is not recomended  
10 k  
100 kΩ  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-8:  
AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R  
(RC MODE, C = 100 pF, 25°C)  
5.0  
Operation above 4 MHz is not recomended  
4.0  
3.0  
2.0  
1.0  
5.1 kΩ  
10 kΩ  
100 kΩ  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS30325B-page 144  
2002 Microchip Technology Inc.  
PIC16F7X  
FIGURE 16-9:  
AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R  
(RC MODE, C = 300 pF, 25°C)  
300  
250  
200  
150  
100  
50  
3.3 k  
5.1 k  
10 k  
100 k  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-10:  
IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED)  
100  
Max 125°C  
10  
Max 85°C  
1
Typ 25°C  
0.1  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean – 3σ (-40°C to 125°C)  
0.01  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2002 Microchip Technology Inc.  
DS30325B-page 145  
PIC16F7X  
FIGURE 16-11:  
IBOR vs. VDD OVER TEMPERATURE  
1,000  
Max (125˚C)  
Typ (25˚C)  
Device in  
SLEEP  
Indeterminant  
State  
Device in  
RESET  
100  
Note: Device current in RESET  
depends on Oscillator mode,  
frequency and circuit.  
Max (125˚C)  
Typ (25˚C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
10  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
DD (V)  
FIGURE 16-12:  
TYPICAL AND MAXIMUM IWDT vs. VDD OVER TEMPERATURE  
100  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean 3σ (-40°C to 125°C)  
Max (125˚C)  
Typ (25˚C)  
10  
1
0.1  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
DD (V)  
DS30325B-page 146  
2002 Microchip Technology Inc.  
PIC16F7X  
FIGURE 16-13:  
TYPICAL, MINIMUM AND MAXIMUM WDT PERIOD vs. VDD (-40°C TO 125°C)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean – 3σ (-40°C to 125°C)  
Max  
(125°C)  
Typ  
(25°C)  
Min  
(-40°C)  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-14:  
AVERAGE WDT PERIOD vs. VDD OVER TEMPERATURE (-40°C TO 125°C)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean – 3σ (-40°C to 125°C)  
125°C  
85°C  
25°C  
-40°C  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2002 Microchip Technology Inc.  
DS30325B-page 147  
PIC16F7X  
FIGURE 16-15:  
TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO 125°C)  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
Max  
Typ (25°C)  
Min  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean – 3σ (-40°C to 125°C)  
1.5  
1.0  
0.5  
0.0  
0
5
10  
15  
20  
25  
IOH (-mA)  
FIGURE 16-16:  
TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 3V, -40°C TO 125°C)  
3.5  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean – 3σ (-40°C to 125°C)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Max  
Typ (25°C)  
Min  
0.0  
0
5
10  
15  
20  
25  
IOH (-mA)  
DS30325B-page 148  
2002 Microchip Technology Inc.  
PIC16F7X  
FIGURE 16-17:  
TYPICAL, MINIMUM AND MAXIMUM VOL vs. IOL (VDD = 5V, -40°C TO 125°C)  
1.0  
0.9  
Max (125°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean – 3σ (-40°C to 125°C)  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Max (85°C)  
Typ (25°C)  
Min (-40°C)  
0
5
10  
15  
20  
25  
IOL (-mA)  
FIGURE 16-18:  
TYPICAL, MINIMUM AND MAXIMUM VOL vs. IOL (VDD = 3V, -40°C TO 125°C)  
3.0  
Max (125°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean – 3σ (-40°C to 125°C)  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Max (85°C)  
Typ (25°C)  
Min (-40°C)  
0
5
10  
15  
20  
25  
IOL (-mA)  
2002 Microchip Technology Inc.  
DS30325B-page 149  
PIC16F7X  
FIGURE 16-19:  
MINIMUM AND MAXIMUM VIN vs. VDD, (TTL INPUT, -40°C TO 125°C)  
1.5  
1.4  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean – 3σ (-40°C to 125°C)  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
VTH Max (-40°C)  
VTH Typ (25°C)  
VTH Min (125°C)  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-20:  
MINIMUM AND MAXIMUM VIN vs. VDD (ST INPUT, -40°C TO 125°C)  
4.0  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to 125°C)  
Minimum: mean – 3σ (-40°C to 125°C)  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIH Max (125°C)  
VIH Min (-40°C)  
VIL Max (-40°C)  
VIL Min (125°C)  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS30325B-page 150  
2002 Microchip Technology Inc.  
PIC16F7X  
17.0 PACKAGING INFORMATION  
17.1 Package Marking Information  
28-Lead PDIP (Skinny DIP)  
Example  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
PIC16F77-I/SP  
YYWWNNN  
0210017  
28-Lead SOIC  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
PIC16F76-I/SO  
0210017  
YYWWNNN  
28-Lead SSOP  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
PIC16F73  
-I/SS  
YYWWNNN  
0210017  
28-Lead MLF  
Example  
1
1
XXXXXXXX  
XXXXXXXX  
PIC16F73  
-I/ML  
YYWWNNN  
0210017  
Legend: XX...X Customer specific information*  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard PICmicro device marking consists of Microchip part number, year code, week code, and  
traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check  
with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP  
price.  
2002 Microchip Technology Inc.  
DS30325B-page 151  
PIC16F7X  
Package Marking Information (Cont’d)  
40-Lead PDIP  
Example  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
YYWWNNN  
PIC16F77-I/P  
0210017  
44-Lead TQFP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC16F77  
-I/PT  
0210017  
44-Lead PLCC  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC16F77  
-I/L  
0210017  
DS30325B-page 152  
2002 Microchip Technology Inc.  
PIC16F7X  
17.2 Package Details  
The following sections give the technical details of the packages.  
28-Lead Skinny Plastic Dual In-line (SP) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
L
A
c
B1  
β
A1  
eB  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
28  
MAX  
n
p
Number of Pins  
Pitch  
28  
.100  
.150  
.130  
2.54  
3.81  
3.30  
Top to Seating Plane  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A
A2  
A1  
E
.140  
.160  
3.56  
4.06  
.125  
.015  
.300  
.275  
1.345  
.125  
.008  
.040  
.016  
.320  
.135  
3.18  
0.38  
7.62  
6.99  
34.16  
3.18  
0.20  
1.02  
3.43  
.310  
.285  
1.365  
.130  
.012  
.053  
.019  
.350  
10  
.325  
.295  
1.385  
.135  
.015  
.065  
.022  
.430  
15  
7.87  
7.24  
8.26  
7.49  
35.18  
3.43  
0.38  
1.65  
0.56  
10.92  
15  
E1  
D
34.67  
3.30  
Tip to Seating Plane  
Lead Thickness  
L
c
0.29  
Upper Lead Width  
B1  
B
1.33  
Lower Lead Width  
0.41  
8.13  
5
0.48  
8.89  
10  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
5
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-095  
Drawing No. C04-070  
2002 Microchip Technology Inc.  
DS30325B-page 153  
PIC16F7X  
28-Lead Plastic Small Outline (SO) – Wide, 300 mil (SOIC)  
E
E1  
p
D
B
2
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
28  
28  
.050  
.099  
.091  
.008  
.407  
.295  
.704  
.020  
.033  
4
1.27  
2.50  
2.31  
0.20  
10.34  
7.49  
17.87  
0.50  
0.84  
4
Overall Height  
A
.093  
.104  
2.36  
2.64  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.088  
.004  
.394  
.288  
.695  
.010  
.016  
0
.094  
.012  
.420  
.299  
.712  
.029  
.050  
8
2.24  
0.10  
10.01  
7.32  
17.65  
0.25  
0.41  
0
2.39  
0.30  
10.67  
7.59  
18.08  
0.74  
1.27  
8
§
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle Top  
c
Lead Thickness  
Lead Width  
.009  
.014  
0
.011  
.017  
12  
.013  
.020  
15  
0.23  
0.36  
0
0.28  
0.42  
12  
0.33  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-013  
Drawing No. C04-052  
DS30325B-page 154  
2002 Microchip Technology Inc.  
PIC16F7X  
28-Lead Plastic Shrink Small Outline (SS) – 209 mil, 5.30 mm (SSOP)  
E
E1  
p
D
B
2
n
1
α
A
c
A2  
A1  
φ
L
β
Units  
INCHES  
NOM  
MILLIMETERS*  
NOM MAX  
Dimension Limits  
MIN  
MAX  
MIN  
n
p
Number of Pins  
Pitch  
28  
28  
.026  
.073  
.068  
.006  
.309  
.207  
.402  
.030  
.007  
4
0.65  
1.85  
1.73  
0.15  
7.85  
5.25  
10.20  
0.75  
0.18  
101.60  
0.32  
5
Overall Height  
A
.068  
.078  
1.73  
1.98  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.064  
.002  
.299  
.201  
.396  
.022  
.004  
0
.072  
.010  
.319  
.212  
.407  
.037  
.010  
8
1.63  
0.05  
7.59  
5.11  
10.06  
0.56  
0.10  
0.00  
0.25  
0
1.83  
0.25  
8.10  
5.38  
10.34  
0.94  
0.25  
203.20  
0.38  
10  
§
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Foot Length  
L
c
Lead Thickness  
Foot Angle  
φ
Lead Width  
B
α
β
.010  
0
.013  
5
.015  
10  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-150  
Drawing No. C04-073  
2002 Microchip Technology Inc.  
DS30325B-page 155  
PIC16F7X  
28-Lead Plastic Micro Leadframe Package (MF) 6x6 mm Body (MLF)  
EXPOSED  
METAL  
E
E1  
PADS  
Q
D1  
D
D2  
p
2
1
B
n
R
E2  
BOTTOM VIEW  
CH x 45  
L
TOP VIEW  
α
A2  
A
A1  
A3  
Units  
Dimension Limits  
INCHES  
NOM  
MILLIMETERS*  
NOM  
MIN  
MAX  
MIN  
MAX  
n
Number of Pins  
Pitch  
28  
28  
p
.026 BSC  
.033  
0.65 BSC  
0.85  
Overall Height  
A
A2  
A1  
A3  
E
.039  
1.00  
Molded Package Thickness  
Standoff  
.026  
.031  
.002  
0.65  
0.80  
0.05  
.000  
.140  
.0004  
0.00  
0.01  
0.20 REF.  
Base Thickness  
Overall Width  
.008 REF.  
.236 BSC  
.226 BSC  
6.00 BSC  
5.75 BSC  
Molded Package Width  
Exposed Pad Width  
Overall Length  
E1  
E2  
D
.146  
.152  
3.55  
3.70  
3.85  
.236 BSC  
.226 BSC  
6.00 BSC  
5.75 BSC  
Molded Package Length  
Exposed Pad Length  
Lead Width  
D1  
D2  
B
.140  
.009  
.020  
.005  
.012  
.009  
.146  
.152  
.014  
.030  
.010  
.026  
.024  
12  
3.55  
0.23  
0.50  
0.13  
0.30  
0.24  
3.70  
3.85  
0.35  
0.75  
0.23  
0.65  
0.60  
12  
.011  
.024  
.007  
.016  
.017  
0.28  
0.60  
0.17  
0.40  
0.42  
Lead Length  
L
Tie Bar Width  
R
Tie Bar Length  
Q
Chamfer  
CH  
α
Mold Draft Angle Top  
*Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.  
JEDEC equivalent: pending  
Drawing No. C04-114  
DS30325B-page 156  
2002 Microchip Technology Inc.  
PIC16F7X  
28-Lead Plastic Micro Leadframe Package (MF) 6x6 mm Body (MLF) (Continued)  
M
B
L
M
p
PACKAGE  
EDGE  
SOLDER  
MASK  
Units  
INCHES  
NOM  
MILLIMETERS*  
NOM  
Dimension Limits  
p
MIN  
MAX  
MIN  
MAX  
Pitch  
.026 BSC  
.011  
0.65 BSC  
0.28  
Pad Width  
B
L
.009  
.014  
0.23  
0.35  
Pad Length  
.020  
.005  
.024  
.030  
.006  
0.50  
0.13  
0.60  
0.75  
0.15  
Pad to Solder Mask  
M
*Controlling Parameter  
Drawing No. C04-2114  
2002 Microchip Technology Inc.  
DS30325B-page 157  
PIC16F7X  
40-Lead Plastic Dual In-line (P) – 600 mil (PDIP)  
E1  
D
2
α
n
1
E
A2  
A
L
c
B1  
B
β
A1  
p
eB  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
40  
MAX  
n
p
Number of Pins  
Pitch  
40  
.100  
.175  
.150  
2.54  
Top to Seating Plane  
A
.160  
.190  
.160  
4.06  
3.56  
4.45  
3.81  
4.83  
4.06  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.140  
.015  
.595  
.530  
2.045  
.120  
.008  
.030  
.014  
.620  
5
0.38  
15.11  
13.46  
51.94  
3.05  
0.20  
0.76  
0.36  
15.75  
5
.600  
.545  
2.058  
.130  
.012  
.050  
.018  
.650  
10  
.625  
.560  
2.065  
.135  
.015  
.070  
.022  
.680  
15  
15.24  
13.84  
52.26  
3.30  
0.29  
1.27  
0.46  
16.51  
10  
15.88  
14.22  
52.45  
3.43  
0.38  
1.78  
0.56  
17.27  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
§
eB  
α
β
Mold Draft Angle Bottom  
* Controlling Parameter  
§ Significant Characteristic  
5
10  
15  
5
10  
15  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-011  
Drawing No. C04-016  
DS30325B-page 158  
2002 Microchip Technology Inc.  
PIC16F7X  
44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)  
E
E1  
#leads=n1  
p
D1  
D
2
1
B
n
°
CH x 45  
α
A
c
φ
β
A1  
A2  
L
(F)  
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
44  
MAX  
n
p
Number of Pins  
Pitch  
44  
.031  
11  
0.80  
11  
Pins per Side  
Overall Height  
n1  
A
.039  
.037  
.002  
.018  
.043  
.039  
.004  
.024  
.039  
3.5  
.047  
1.00  
0.95  
1.10  
1.00  
0.10  
0.60  
1.20  
Molded Package Thickness  
Standoff  
A2  
A1  
L
(F)  
φ
.041  
.006  
.030  
1.05  
0.15  
0.75  
§
0.05  
0.45  
1.00  
0
Foot Length  
Footprint (Reference)  
Foot Angle  
0
.463  
.463  
.390  
.390  
.004  
.012  
.025  
5
7
.482  
.482  
.398  
.398  
.008  
.017  
.045  
15  
3.5  
12.00  
12.00  
10.00  
10.00  
0.15  
0.38  
0.89  
10  
7
12.25  
12.25  
10.10  
10.10  
0.20  
0.44  
1.14  
15  
Overall Width  
E
D
.472  
.472  
.394  
.394  
.006  
.015  
.035  
10  
11.75  
11.75  
9.90  
9.90  
0.09  
0.30  
0.64  
5
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
E1  
D1  
c
Lead Width  
B
CH  
α
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-026  
Drawing No. C04-076  
2002 Microchip Technology Inc.  
DS30325B-page 159  
PIC16F7X  
44-Lead Plastic Leaded Chip Carrier (L) – Square (PLCC)  
E
E1  
#leads=n1  
D
D1  
n 1 2  
CH2 x 45°  
CH1 x 45°  
α
A3  
A2  
A
35°  
B1  
B
c
A1  
β
p
E2  
D2  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
44  
MAX  
n
p
Number of Pins  
Pitch  
44  
.050  
11  
1.27  
11  
Pins per Side  
Overall Height  
n1  
A
.165  
.145  
.020  
.024  
.040  
.000  
.685  
.685  
.650  
.650  
.590  
.590  
.008  
.026  
.013  
0
.173  
.153  
.028  
.029  
.045  
.005  
.690  
.690  
.653  
.653  
.620  
.620  
.011  
.029  
.020  
5
.180  
4.19  
3.68  
0.51  
0.61  
1.02  
0.00  
17.40  
17.40  
16.51  
16.51  
14.99  
14.99  
0.20  
0.66  
0.33  
0
4.39  
3.87  
0.71  
0.74  
1.14  
0.13  
17.53  
17.53  
16.59  
16.59  
15.75  
15.75  
0.27  
0.74  
0.51  
5
4.57  
Molded Package Thickness  
Standoff  
A2  
A1  
A3  
CH1  
CH2  
E
.160  
.035  
.034  
.050  
.010  
.695  
.695  
.656  
.656  
.630  
.630  
.013  
.032  
.021  
10  
4.06  
0.89  
0.86  
1.27  
0.25  
17.65  
17.65  
16.66  
16.66  
16.00  
16.00  
0.33  
0.81  
0.53  
10  
§
Side 1 Chamfer Height  
Corner Chamfer 1  
Corner Chamfer (others)  
Overall Width  
Overall Length  
D
Molded Package Width  
Molded Package Length  
Footprint Width  
E1  
D1  
E2  
D2  
c
Footprint Length  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
B1  
B
α
β
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-047  
Drawing No. C04-048  
DS30325B-page 160  
2002 Microchip Technology Inc.  
PIC16F7X  
APPENDIX A: REVISION HISTORY  
APPENDIX B: DEVICE  
DIFFERENCES  
Version  
Date  
Revision Description  
The differences between the devices in this data sheet  
are listed in Table B-1.  
A
2000 This is a new data sheet. How-  
ever, these devices are similar to  
the PIC16C7X devices found in  
the PIC16C7X Data Sheet  
(DS30390) or the PIC16F87X  
devices (DS30292).  
B
2001 Final data sheet. Includes device  
characterization data. Addition of  
extended temperature devices.  
Addition of 28-pin MLF package.  
Minor typographic revisions  
throughout.  
TABLE B-1:  
DEVICE DIFFERENCES  
Difference  
PIC16F73  
PIC16F74  
PIC16F76  
PIC16F77  
FLASH Program Memory  
(14-bit words)  
4K  
4K  
8K  
8K  
Data Memory (bytes)  
I/O Ports  
192  
3
192  
5
368  
3
368  
5
A/D  
5 channels,  
8 bits  
8 channels,  
8 bits  
5 channels,  
8 bits  
8 channels,  
8 bits  
Parallel Slave Port  
Interrupt Sources  
Packages  
no  
11  
yes  
12  
no  
11  
yes  
12  
28-pin PDIP  
28-pin SOIC  
28-pin SSOP  
28-pin MLF  
40-pin PDIP  
44-pin TQFP  
44-pin PLCC  
28-pin PDIP  
28-pin SOIC  
28-pin SSOP  
28-pin MLF  
40-pin PDIP  
44-pin TQFP  
44-pin PLCC  
2002 Microchip Technology Inc.  
DS30325B-page 161  
PIC16F7X  
APPENDIX C: CONVERSION  
CONSIDERATIONS  
Considerations for converting from previous versions  
of devices to the ones listed in this data sheet are listed  
in Table C-1.  
TABLE C-1:  
CONVERSION CONSIDERATIONS  
PIC16C7X  
Characteristic  
PIC16F87X  
PIC16F7X  
Pins  
28/40  
3
28/40  
3
28/40  
3
Timers  
Interrupts  
Communication  
11 or 12  
13 or 14  
11 or 12  
PSP, USART, SSP  
(SPI, I2C Slave)  
PSP, USART, SSP  
PSP, USART, SSP  
(SPI, I2C Slave)  
(SPI, I2C Master/Slave)  
Frequency  
A/D  
20 MHz  
20 MHz  
10-bit  
2
20 MHz  
8-bit  
2
8-bit  
CCP  
2
Program Memory  
4K, 8K EPROM  
4K, 8K FLASH  
4K, 8K FLASH  
(1,000 E/W cycles)  
(100 E/W cycles typical)  
RAM  
192, 368 bytes  
192, 368 bytes  
128, 256 bytes  
192, 368 bytes  
EEPROM Data  
Other  
None  
None  
In-Circuit Debugger,  
Low Voltage Programming  
DS30325B-page 162  
2002 Microchip Technology Inc.  
PIC16F7X  
INDEX  
PORTD (In I/O Port Mode) ........................................ 36  
PORTD and PORTE (Parallel Slave Port) ................ 40  
PORTE (In I/O Port Mode) ........................................ 37  
PWM Mode ............................................................... 57  
RC Oscillator Mode ................................................... 92  
Recommended MCLR Circuit ................................... 94  
Reset Circuit .............................................................. 93  
A
A/D  
A/D Conversion Status (GO/DONE Bit) ..................... 83  
Acquisition Requirements .......................................... 86  
ADCON0 Register ..................................................... 83  
ADCON1 Register ..................................................... 83  
ADRES Register ........................................................ 83  
Analog Port Pins ...................................... 8, 10, 12, 39  
Analog-to-Digital Converter ....................................... 83  
Associated Registers ................................................. 88  
Configuring Analog Port Pins .................................... 87  
Configuring the Interrupt ............................................ 85  
Configuring the Module ............................................. 85  
Conversion Clock ...................................................... 87  
Conversion Requirements ....................................... 139  
Conversions ............................................................... 87  
Converter Characteristics ........................................ 138  
Effects of a RESET .................................................... 87  
Faster Conversion - Lower Resolution  
2
SSP (I C Mode) ........................................................ 65  
SSP (SPI Mode) ........................................................ 62  
Timer0/WDT Prescaler .............................................. 43  
Timer1 ....................................................................... 48  
Timer2 ....................................................................... 51  
Typical In-Circuit Serial Programming  
Connection .............................................. 103  
USART  
Receive ............................................................. 75  
USART Transmit ....................................................... 73  
Watchdog Timer (WDT) .......................................... 101  
BOR. See Brown-out Reset  
BRGH bit ........................................................................... 71  
Brown-out Reset (BOR) ..........................89, 93, 94, 95, 96  
Trade-off .................................................... 87  
Internal Sampling Switch (Rss) Impedance ............... 86  
Operation During SLEEP ........................................... 87  
Source Impedance .................................................... 86  
Using the CCP Trigger .............................................. 88  
Absolute Maximum Ratings ............................................. 119  
ACK Pulse .................................................................. 65, 66  
ADCON0 Register ............................................................. 83  
GO/DONE Bit ............................................................ 83  
ADCON1 Register ............................................................. 83  
ADRES Register ................................................................ 83  
Analog Port Pins. See A/D  
C
Capture/Compare/PWM (CCP)  
Associated Registers ..........................................56, 58  
Capture Mode ........................................................... 55  
Prescaler ........................................................... 55  
CCP Pin Configuration ........................................55, 56  
CCP1  
RC2/CCP1 Pin ..............................................9, 11  
CCP2  
RC1/T1OSI/CCP2 Pin ...................................9, 11  
Compare Mode ......................................................... 55  
Software Interrupt Mode .................................... 56  
Special Trigger Output ...................................... 56  
Timer1 Mode Selection ..................................... 56  
Example PWM Frequencies and Resolutions ........... 58  
Interaction of Two CCP Modules .............................. 53  
PWM Duty Cycle ....................................................... 57  
PWM Mode ............................................................... 57  
PWM Period .............................................................. 57  
Setup for PWM Operation ......................................... 58  
Special Event Trigger and A/D Conversions ............. 56  
Timer Resources ....................................................... 53  
CCP1 Module .................................................................... 53  
CCP2 Module .................................................................... 53  
CCPR1H Register ............................................................. 53  
CCPR1L Register .............................................................. 53  
CCPxM<3:0> bits .............................................................. 54  
CCPxX and CCPxY bits .................................................... 54  
CKE bit .............................................................................. 60  
CKP bit .............................................................................. 61  
Code Examples  
Application Notes  
AN552 (Implementing Wake-up on Key Strokes  
Using PIC16F7X) ...................................... 33  
AN556 (Implementing a Table Read) ........................ 26  
2
AN578 (Use of the SSP Module in the I C  
Multi-Master Environment) ........................ 59  
AN607 (Power-up Trouble Shooting) ........................ 94  
Assembler  
MPASM Assembler ................................................. 113  
B
Banking, Data Memory ...................................................... 13  
BF bit ................................................................................. 60  
Block Diagrams  
A/D ............................................................................. 85  
Analog Input Model .................................................... 86  
Capture Mode Operation ........................................... 55  
Compare .................................................................... 55  
Crystal/Ceramic Resonator Operation (HS, XT  
or LP Osc Configuration) ........................... 91  
External Clock Input Operation  
(HS Osc Configuration) ............................. 91  
Interrupt Logic ............................................................ 99  
PIC16F73 and PIC16F76 ............................................ 6  
PIC16F74 and PIC16F77 ............................................ 7  
PORTA  
RA3:RA0 and RA5 Port Pins ............................. 31  
RA4/T0CKI Pin .................................................. 31  
PORTB  
RB3:RB0 Port Pins ............................................ 33  
RB7:RB4 Port Pins ............................................ 33  
PORTC (Peripheral Output Override) ........................ 35  
Call of a Subroutine in Page 1 from Page 0 .............. 26  
Changing Between Capture Prescalers .................... 55  
Changing Prescaler Assignment to Timer0 ............... 45  
Changing Prescaler Assignment to WDT .................. 45  
FLASH Program Read .............................................. 30  
Indirect Addressing ................................................... 27  
Initializing PORTA ..................................................... 31  
Reading a 16-bit Free-Running Timer ....................... 49  
Saving STATUS, W, and PCLATH Registers  
in RAM .................................................... 100  
Writing a 16-bit Free-Running Timer ......................... 49  
2002 Microchip Technology Inc.  
DS30325B-page 163  
PIC16F7X  
Code Protection ........................................................ 89, 103  
Computed GOTO ...............................................................26  
Configuration Bits ..............................................................89  
Continuous Receive Enable (CREN Bit) ............................70  
Conversion Considerations ..............................................162  
CLRWDT ................................................................. 108  
COMF ...................................................................... 108  
DECF ....................................................................... 108  
DECFSZ .................................................................. 109  
GOTO ...................................................................... 109  
INCF ........................................................................ 109  
INCFSZ ................................................................... 109  
IORLW ..................................................................... 109  
IORWF .................................................................... 109  
MOVF ...................................................................... 110  
MOVLW ................................................................... 110  
MOVWF ................................................................... 110  
NOP ......................................................................... 110  
RETFIE .................................................................... 110  
RETLW .................................................................... 110  
RETURN ................................................................. 111  
RLF .......................................................................... 111  
RRF ......................................................................... 111  
SLEEP ..................................................................... 111  
SUBLW .................................................................... 111  
SUBWF ................................................................... 111  
SWAPF .................................................................... 112  
XORLW ................................................................... 112  
XORWF ................................................................... 112  
Summary Table ....................................................... 106  
INT Interrupt (RB0/INT). See Interrupt Sources  
D
D/A bit ................................................................................60  
Data Memory .....................................................................13  
Bank Select (RP1:RP0 bits) .......................................13  
General Purpose Registers .......................................13  
Register File Map, PIC16F74/73 ...............................15  
Register File Map, PIC16F77/76 ...............................14  
Special Function Registers ........................................16  
Data/Address bit (D/A) .......................................................60  
DC and AC Characteristics  
Graphs and Tables ..................................................141  
DC Characteristics ...........................................................121  
Development Support ......................................................113  
Device Differences ...........................................................161  
Device Overview ..................................................................5  
Features .......................................................................5  
Direct Addressing ..............................................................27  
E
Electrical Characteristics .................................................119  
Errata ...................................................................................4  
External Clock Input (RA4/T0CKI). See Timer0  
INTCON Register .............................................................. 21  
GIE bit ....................................................................... 21  
INTE bit ..................................................................... 21  
INTF bit ...................................................................... 21  
RBIF bit ...............................................................21, 33  
TMR0IE bit ................................................................ 21  
External Interrupt Input (RB0/INT). See Interrupt Sources  
F
Firmware Instructions ......................................................105  
FSR Register .....................................................................27  
2
2
Inter-Integrated Circuit (I C). See I C Mode  
Interrupt Sources .........................................................89, 99  
Interrupt-on-Change (RB7:RB4) ................................ 33  
RB0/INT Pin, External ..................................9, 11, 100  
TMR0 Overflow ....................................................... 100  
USART Receive/Transmit Complete ......................... 69  
Interrupts  
I
I/O Ports .............................................................................31  
2
I C Mode  
Addressing .................................................................66  
Associated Registers .................................................68  
Master Mode ..............................................................68  
Mode Selection ..........................................................65  
Multi-Master Mode .....................................................68  
Operation ...................................................................65  
Reception ...................................................................66  
Slave Mode  
Synchronous Serial Port Interrupt ............................. 23  
Interrupts, Context Saving During ................................... 100  
Interrupts, Enable bits  
Global Interrupt Enable (GIE bit) .........................21, 99  
Interrupt-on-Change (RB7:RB4) Enable (RBIE bit) . 100  
RB0/INT Enable (INTE bit) ........................................ 21  
TMR0 Overflow Enable (TMR0IE bit) ........................ 21  
Interrupts, Flag bits  
SCL and SDA pins .............................................65  
Transmission .............................................................67  
ICEPIC In-Circuit Emulator ..............................................114  
ID Locations .....................................................................103  
In-Circuit Serial Programming (ICSP) ..............................103  
INDF Register ....................................................................27  
Indirect Addressing ............................................................27  
FSR Register .............................................................13  
Instruction Format ............................................................105  
Instruction Set ..................................................................105  
ADDLW ....................................................................107  
ADDWF ....................................................................107  
ANDLW ....................................................................107  
ANDWF ....................................................................107  
BCF ..........................................................................107  
BSF ..........................................................................107  
BTFSC .....................................................................107  
BTFSS .....................................................................107  
CALL ........................................................................108  
CLRF .......................................................................108  
CLRW ......................................................................108  
Interrupt-on Change (RB7:RB4) Flag  
(RBIF bit) ................................................... 21  
Interrupt-on-Change (RB7:RB4) Flag  
(RBIF bit) ....................................21, 33, 100  
RB0/INT Flag (INTF bit) ............................................ 21  
TMR0 Overflow Flag (TMR0IF bit) .......................... 100  
K
KEELOQ Evaluation and Programming Tools ................... 116  
L
Load Conditions .............................................................. 125  
Loading of PC .................................................................... 26  
DS30325B-page 164  
2002 Microchip Technology Inc.  
PIC16F7X  
PICSTART Plus Entry Level  
M
Development Programmer ...................................... 115  
PIE1 Register .................................................................... 22  
PIE2 Register .................................................................... 24  
Pinout Descriptions  
PIC16F73/PIC16F76 ...............................................89  
PIC16F74/PIC16F77 ...........................................1012  
PIR1 Register .................................................................... 23  
PIR2 Register .................................................................... 24  
PMADR Register ............................................................... 29  
PMADRH Register ............................................................ 29  
POP ................................................................................... 26  
POR. See Power-on Reset  
PORTA ..........................................................................8, 10  
Analog Port Pins ...................................................8, 10  
Associated Registers ................................................ 32  
PORTA Register ....................................................... 31  
RA4/T0CKI Pin ......................................................8, 10  
RA5/SS/AN4 Pin ...................................................8, 10  
TRISA Register ......................................................... 31  
PORTA Register ................................................................ 31  
PORTB ..........................................................................9, 11  
Associated Registers ................................................ 34  
PORTB Register ....................................................... 33  
Pull-up Enable (RBPU bit) ......................................... 20  
RB0/INT Edge Select (INTEDG bit) .......................... 20  
RB0/INT Pin, External .................................. 9, 11, 100  
RB7:RB4 Interrupt-on-Change ................................ 100  
RB7:RB4 Interrupt-on-Change Enable  
Master Clear (MCLR) .................................................... 8, 10  
MCLR Reset, Normal Operation ...................93, 95, 96  
MCLR Reset, SLEEP ...................................93, 95, 96  
Operation and ESD Protection .................................. 94  
MCLR/VPP Pin ..................................................................... 8  
MCLR/VPP Pin ................................................................... 10  
Memory Organization ........................................................ 13  
Data Memory ............................................................. 13  
Program Memory ....................................................... 13  
Program Memory and Stack Maps ............................ 13  
MPLAB C17 and MPLAB C18 C Compilers .................... 113  
MPLAB ICD In-Circuit Debugger ..................................... 115  
MPLAB ICE High Performance Universal In-Circuit  
Emulator with MPLAB IDE ....................................... 114  
MPLAB Integrated Development  
Environment Software ............................................. 113  
MPLINK Object Linker/MPLIB Object Librarian ............... 114  
O
OPCODE Field Descriptions ............................................ 105  
OPTION_REG Register ..................................................... 20  
INTEDG bit ................................................................ 20  
PS2:PS0 bits ............................................................. 20  
PSA bit ....................................................................... 20  
RBPU bit .................................................................... 20  
T0CS bit ..................................................................... 20  
T0SE bit ..................................................................... 20  
OSC1/CLKI Pin ............................................................. 8, 10  
OSC2/CLKO Pin ........................................................... 8, 10  
Oscillator Configuration ..................................................... 89  
Oscillator Configurations .................................................... 91  
Crystal Oscillator/Ceramic Resonators ...................... 91  
HS ....................................................................... 91, 95  
LP ....................................................................... 91, 95  
RC ................................................................91, 92, 95  
XT ....................................................................... 91, 95  
Oscillator, WDT ................................................................ 101  
(RBIE bit) ................................................ 100  
RB7:RB4 Interrupt-on-Change Flag  
(RBIF bit) .................................... 21, 33, 100  
TRISB Register ......................................................... 33  
PORTB Register ................................................................ 33  
PORTC ..........................................................................9, 11  
Associated Registers ................................................ 35  
PORTC Register ....................................................... 35  
RC0/T1OSO/T1CKI Pin ........................................9, 11  
RC1/T1OSI/CCP2 Pin ...........................................9, 11  
RC2/CCP1 Pin ......................................................9, 11  
RC3/SCK/SCL Pin ................................................9, 11  
RC4/SDI/SDA Pin .................................................9, 11  
RC5/SDO Pin ........................................................9, 11  
RC6/TX/CK Pin .............................................. 9, 11, 70  
RC7/RX/DT Pin ....................................... 9, 11, 70, 71  
TRISC Register ......................................................... 35  
PORTC Register ............................................................... 35  
PORTD .............................................................................. 12  
Associated Registers ................................................ 36  
Parallel Slave Port (PSP) Function ........................... 36  
PORTD Register ....................................................... 36  
TRISD Register ......................................................... 36  
PORTD Register ............................................................... 36  
PORTE .............................................................................. 12  
Analog Port Pins .................................................12, 39  
Associated Registers ................................................ 39  
Input Buffer Full Status (IBF bit) ................................ 38  
Input Buffer Overflow (IBOV bit) ................................ 38  
PORTE Register ....................................................... 37  
PSP Mode Select (PSPMODE bit) ......................36, 37  
RE0/RD/AN5 Pin .................................................12, 39  
RE1/WR/AN6 Pin ................................................12, 39  
RE2/CS/AN7 Pin .................................................12, 39  
TRISE Register ......................................................... 37  
P
P (STOP) bit ...................................................................... 60  
Packaging ........................................................................ 151  
Paging, Program Memory .................................................. 26  
Parallel Slave Port  
Associated Registers ................................................. 41  
Parallel Slave Port (PSP) ............................................ 36, 40  
RE0/RD/AN5 Pin ................................................ 12, 39  
RE1/WR/AN6 Pin ............................................... 12, 39  
RE2/CS/AN7 Pin ................................................ 12, 39  
Select (PSPMODE bit) ....................................... 36, 37  
PCFG0 bit .......................................................................... 84  
PCFG1 bit .......................................................................... 84  
PCFG2 bit .......................................................................... 84  
PCL Register ..................................................................... 26  
PCLATH Register .............................................................. 26  
PCON Register ........................................................... 25, 95  
POR Bit ...................................................................... 25  
PICDEM 1 Low Cost PICmicro  
Demonstration Board ............................................... 115  
PICDEM 17 Demonstration Board ................................... 116  
PICDEM 2 Low Cost PIC16CXX  
Demonstration Board ............................................... 115  
PICDEM 3 Low Cost PIC16CXXX  
Demonstration Board ............................................... 116  
2002 Microchip Technology Inc.  
DS30325B-page 165  
PIC16F7X  
PORTE Register ................................................................37  
Postscaler, WDT  
RCSTA Register  
CREN bit ................................................................... 70  
Assignment (PSA bit) .................................................20  
Rate Select (PS2:PS0 bits) ........................................20  
Power-down Mode. See SLEEP  
OERR bit ................................................................... 70  
SPEN bit .................................................................... 69  
SREN bit .................................................................... 70  
RD0/PSP0 Pin ................................................................... 12  
RD1/PSP1 Pin ................................................................... 12  
RD2/PSP2 Pin ................................................................... 12  
RD3/PSP3 Pin ................................................................... 12  
RD4/PSP4 Pin ................................................................... 12  
RD5/PSP5 Pin ................................................................... 12  
RD6/PSP6 Pin ................................................................... 12  
RD7/PSP7 Pin ................................................................... 12  
RE0/RD/AN5 Pin ............................................................... 12  
RE1/WR/AN6 Pin .............................................................. 12  
RE2/CS/AN7 Pin ............................................................... 12  
Read-Modify-Write Operations ........................................ 105  
Receive Overflow Indicator bit (SSPOV) ........................... 61  
Register File ...................................................................... 13  
Registers  
Power-on Reset (POR) ..................................89, 93, 95, 96  
Oscillator Start-up Timer (OST) .......................... 89, 94  
POR Status (POR bit) ................................................25  
Power Control (PCON) Register ................................95  
Power-down (PD bit) ..................................................93  
Power-up Timer (PWRT) .................................... 89, 94  
Time-out (TO bit) ................................................ 19, 93  
PR2 Register .....................................................................51  
Prescaler, Timer0  
Assignment (PSA bit) .................................................20  
Rate Select (PS2:PS0 bits) ........................................20  
PRO MATE II Universal Device Programmer ..................115  
Program Counter  
RESET Conditions .....................................................95  
Program Memory ...............................................................29  
Associated Registers .................................................30  
Interrupt Vector ..........................................................13  
Memory and Stack Maps ...........................................13  
Operation During Code Protect .................................30  
Organization ..............................................................13  
Paging ........................................................................26  
PMADR Register .......................................................29  
PMADRH Register .....................................................29  
Reading FLASH .........................................................30  
Reading, PMADR Register ........................................29  
Reading, PMADRH Register .....................................29  
Reading, PMCON1 Register ......................................29  
Reading, PMDATA Register ......................................29  
Reading, PMDATH Register ......................................29  
RESET Vector ...........................................................13  
Program Verification ........................................................103  
Programming Pin (VPP) ................................................ 8, 10  
Programming, Device Instructions ...................................105  
PUSH .................................................................................26  
ADCON0 (A/D Control 0) .......................................... 83  
ADCON0 (A/D Control 0) Register ............................ 83  
ADCON1 (A/D Control 1) .......................................... 83  
ADCON1 (A/D Control 1) Register ............................ 84  
ADRES (A/D Result) ................................................. 83  
CCP1CON/CCP2CON (CCP Control) Registers ...... 54  
Configuration Word Register ..................................... 90  
Initialization Conditions (table) ............................9697  
INTCON (Interrupt Control) ....................................... 21  
INTCON (Interrupt Control) Register ......................... 21  
OPTION_REG ........................................................... 20  
OPTION_REG Register ......................................20, 44  
PCON (Power Control) .............................................. 25  
PCON (Power Control) Register ............................... 25  
PIE1 (Peripheral Interrupt Enable 1) ......................... 22  
PIE1 (Peripheral Interrupt Enable 1) Register ........... 22  
PIE2 (Peripheral Interrupt Enable 2) ......................... 24  
PIE2 (Peripheral Interrupt Enable 2) Register ........... 24  
PIR1 (Peripheral Interrupt Request 1) ....................... 23  
PIR1 (Peripheral Interrupt Request 1) Register ........ 23  
PIR2 (Peripheral Interrupt Request 2) ....................... 24  
PIR2 (Peripheral Interrupt Request 2) Register ........ 24  
PMCON1 (Program Memory Control 1)  
R
R/W bit ..................................................................60, 66, 67  
RA0/AN0 Pin ................................................................. 8, 10  
RA1/AN1 Pin ................................................................. 8, 10  
RA2/AN2 Pin ................................................................. 8, 10  
RA3/AN3/VREF Pin ....................................................... 8, 10  
RA4/T0CKI Pin ............................................................. 8, 10  
RA5/SS/AN4 Pin ........................................................... 8, 10  
RAM. See Data Memory  
RB0/INT Pin .................................................................. 9, 11  
RB1 Pin ......................................................................... 9, 11  
RB2 Pin ......................................................................... 9, 11  
RB3/PGM Pin ............................................................... 9, 11  
RB4 Pin ......................................................................... 9, 11  
RB5 Pin ......................................................................... 9, 11  
RB6/PGC Pin ................................................................ 9, 11  
RB7/PGD Pin ................................................................ 9, 11  
RC0/T1OSO/T1CKI Pin ................................................ 9, 11  
RC1/T1OSI/CCP2 Pin .................................................. 9, 11  
RC2/CCP1 Pin .............................................................. 9, 11  
RC3/SCK/SCL Pin ........................................................ 9, 11  
RC4/SDI/SDA Pin ......................................................... 9, 11  
RC5/SDO Pin ................................................................ 9, 11  
RC6/TX/CK Pin ............................................................. 9, 11  
RC7/RX/DT Pin ............................................................. 9, 11  
Register ..................................................... 29  
RCSTA (Receive Status and Control) Register ......... 70  
Special Function, Summary ................................1618  
SSPCON (Sync Serial Port Control) Register ........... 61  
SSPSTAT (Sync Serial Port Status) Register ........... 60  
STATUS Register ...................................................... 19  
T1CON (Timer 1 Control) Register ............................ 47  
T2CON (Timer2 Control) Register ............................. 52  
TRISE Register ......................................................... 38  
TXSTA (Transmit Status and Control) Register ........ 69  
RESET ........................................................................89, 93  
Brown-out Reset (BOR). See Brown-out Reset (BOR)  
MCLR Reset. See MCLR  
Power-on Reset (POR). See Power-on Reset (POR)  
RESET Conditions for All Registers .......................... 96  
RESET Conditions for PCON Register ..................... 95  
RESET Conditions for Program Counter ................... 95  
RESET Conditions for STATUS Register .................. 95  
RESET  
WDT Reset. See Watchdog Timer (WDT)  
Revision History .............................................................. 161  
DS30325B-page 166  
2002 Microchip Technology Inc.  
PIC16F7X  
Timer1 ............................................................................... 47  
Associated Registers ................................................ 50  
Asynchronous Counter Mode .................................... 49  
Capacitor Selection ................................................... 50  
Counter Operation ..................................................... 48  
Operation in Timer Mode .......................................... 48  
Oscillator ................................................................... 50  
Prescaler ................................................................... 50  
RC0/T1OSO/T1CKI Pin ........................................9, 11  
RC1/T1OSI/CCP2 Pin ...........................................9, 11  
Resetting of Timer1 Registers ................................... 50  
Resetting Timer1 using a CCP Trigger Output ......... 50  
Synchronized Counter Mode ..................................... 48  
TMR1H Register ....................................................... 49  
TMR1L Register ........................................................ 49  
Timer2 ............................................................................... 51  
Associated Registers ................................................ 52  
Output ....................................................................... 51  
Postscaler ................................................................. 51  
Prescaler ................................................................... 51  
Prescaler and Postscaler .......................................... 51  
Timing Diagrams  
S
S (START) bit .................................................................... 60  
SCI. See USART  
SCL .................................................................................... 65  
Serial Communication Interface. See USART  
SLEEP ................................................................89, 93, 102  
SMP bit .............................................................................. 60  
Software Simulator (MPLAB SIM) ................................... 114  
Special Features of the CPU ............................................. 89  
Special Function Registers ...................................16, 1618  
Speed, Operating ................................................................. 1  
SPI Mode ........................................................................... 59  
Associated Registers ................................................. 64  
Serial Clock (SCK pin) ............................................... 59  
Serial Data In (SDI pin) .............................................. 59  
Serial Data Out (SDO pin) ......................................... 59  
Slave Select ............................................................... 59  
SSP  
Overview  
RA5/SS/AN4 Pin ................................................... 8, 10  
RC3/SCK/SCL Pin ................................................ 9, 11  
RC4/SDI/SDA Pin ................................................. 9, 11  
RC5/SDO Pin ....................................................... 9, 11  
A/D Conversion ....................................................... 139  
Brown-out Reset ..................................................... 128  
Capture/Compare/PWM (CCP1 and CCP2) ........... 130  
CLKOUT and I/O ..................................................... 127  
External Clock ......................................................... 126  
2
SSP I C Operation ............................................................. 65  
Slave Mode ................................................................ 65  
SSPEN bit .......................................................................... 61  
SSPIF bit ............................................................................ 23  
SSPM<3:0> bits ................................................................. 61  
SSPOV bit .......................................................................... 61  
Stack .................................................................................. 26  
Overflows ................................................................... 26  
Underflow .................................................................. 26  
STATUS Register  
DC Bit ........................................................................ 19  
IRP Bit ....................................................................... 19  
PD Bit ........................................................................ 93  
TO Bit ................................................................. 19, 93  
Z Bit ........................................................................... 19  
Synchronous Serial Port Enable bit (SSPEN) ................... 61  
Synchronous Serial Port Interrupt bit (SSPIF) ................... 23  
Synchronous Serial Port Mode Select bits  
2
I C Bus Data ........................................................... 135  
2
I C Bus START/STOP bits ...................................... 134  
2
I C Reception (7-bit Address) ................................... 67  
2
I C Transmission (7-bit Address) .............................. 67  
Parallel Slave Port ................................................... 131  
Parallel Slave Port Read Waveforms ........................ 41  
Parallel Slave Port Write Waveforms ........................ 41  
Power-up Timer ....................................................... 128  
PWM Output .............................................................. 57  
RESET .................................................................... 128  
Slow Rise Time (MCLR Tied to VDD Through  
RC Network) ............................................. 98  
SPI Master Mode (CKE = 0, SMP = 0) .................... 132  
SPI Master Mode (CKE = 1, SMP = 1) .................... 132  
SPI Mode (Master Mode) .......................................... 63  
SPI Mode (Slave Mode with CKE = 0) ...................... 63  
SPI Mode (Slave Mode with CKE = 1) ...................... 63  
SPI Slave Mode (CKE = 0) ...................................... 133  
SPI Slave Mode (CKE = 1) ...................................... 133  
Start-up Timer ......................................................... 128  
Time-out Sequence on Power-up (MCLR Not  
(SSPM<3:0>) ............................................................. 61  
Synchronous Serial Port. See SSP  
T
T1CKPS0 bit ...................................................................... 47  
T1CKPS1 bit ...................................................................... 47  
T1OSCEN bit ..................................................................... 47  
T1SYNC bit ........................................................................ 47  
T2CKPS0 bit ...................................................................... 52  
T2CKPS1 bit ...................................................................... 52  
TAD ..................................................................................... 87  
Time-out Sequence ........................................................... 94  
Timer0 ................................................................................ 43  
Associated Registers ................................................. 45  
Clock Source Edge Select (T0SE bit) ........................ 20  
Clock Source Select (T0CS bit) ................................. 20  
External Clock ........................................................... 44  
Interrupt ..................................................................... 43  
Overflow Enable (TMR0IE bit) ................................... 21  
Overflow Flag (TMR0IF bit) ..................................... 100  
Overflow Interrupt .................................................... 100  
Prescaler ................................................................... 45  
RA4/T0CKI Pin, External Clock ............................ 8, 10  
T0CKI ........................................................................ 44  
Tied to VDD)  
Case 1 ............................................................... 98  
Case 2 ............................................................... 98  
Time-out Sequence on Power-up (MCLR Tied to Vdd  
Through RC Network) ............................... 97  
Timer0 ..................................................................... 129  
Timer1 ..................................................................... 129  
USART Asynchronous Master Transmission ............ 74  
USART Asynchronous Master Transmission  
(Back to Back) ........................................... 74  
USART Asynchronous Reception ............................. 76  
USART Synchronous Receive (Master/Slave) ........ 137  
USART Synchronous Reception  
(Master Mode, SREN) ............................... 79  
USART Synchronous Transmission .......................... 78  
USART Synchronous Transmission  
(Master/Slave) ......................................... 137  
2002 Microchip Technology Inc.  
DS30325B-page 167  
PIC16F7X  
USART Synchronous Transmission  
Baud Rate Generator (BRG) ..................................... 71  
Baud Rate Formula ........................................... 71  
Baud Rates, Asynchronous Mode  
(Through TXEN) ........................................78  
Wake-up from SLEEP via Interrupt ..........................103  
Watchdog Timer ......................................................128  
Timing Parameter Symbology .........................................125  
Timing Requirements  
(BRGH = 0) ....................................... 72  
Baud Rates, Asynchronous Mode  
(BRGH = 1) ....................................... 72  
Capture/Compare/PWM (CCP1 and CCP2) ............130  
CLKOUT and I/O .....................................................127  
External Clock ..........................................................126  
Sampling ........................................................... 71  
Mode Select (SYNC Bit) ............................................ 69  
Overrun Error (OERR Bit) ......................................... 70  
RC6/TX/CK Pin .....................................................9, 11  
RC7/RX/DT Pin .....................................................9, 11  
Serial Port Enable (SPEN Bit) ................................... 69  
Single Receive Enable (SREN Bit) ............................ 70  
Synchronous Master Mode ....................................... 77  
Synchronous Master Reception ................................ 79  
Associated Registers ........................................ 80  
Synchronous Master Transmission ........................... 77  
Associated Registers ........................................ 78  
Synchronous Slave Mode ......................................... 80  
Synchronous Slave Reception .................................. 81  
Associated Registers ........................................ 81  
Synchronous Slave Transmission ............................. 80  
Associated Registers ........................................ 81  
Transmit Data, 9th Bit (TX9D) ................................... 69  
Transmit Enable (TXEN bit) ...................................... 69  
Transmit Enable, Nine-bit (TX9 bit) ........................... 69  
Transmit Shift Register Status (TRMT bit) ................ 69  
2
I C Bus Data ............................................................136  
I2C Bus START/STOP Bits .....................................135  
Parallel Slave Port ...................................................131  
RESET, Watchdog Timer, Oscillator  
Start-up Timer, Power-up Timer  
and Brown-out Reset ...............................128  
SPI Mode .................................................................134  
Timer0 and Timer1 External Clock ..........................129  
USART Synchronous Receive .................................137  
USART Synchronous Transmission ........................137  
TMR1CS bit .......................................................................47  
TMR1ON bit .......................................................................47  
TMR2ON bit .......................................................................52  
TOUTPS<3:0> bits ............................................................52  
TRISA Register ..................................................................31  
TRISB Register ..................................................................33  
TRISC Register ..................................................................35  
TRISD Register ..................................................................36  
TRISE Register ..................................................................37  
IBF Bit ........................................................................38  
IBOV Bit .....................................................................38  
PSPMODE bit ..................................................... 36, 37  
TXSTA Register  
W
Wake-up from SLEEP ...............................................89, 102  
Interrupts .............................................................95, 96  
MCLR Reset .............................................................. 96  
WDT Reset ................................................................ 96  
Wake-up Using Interrupts ................................................ 102  
Watchdog Timer (WDT) ............................................89, 101  
Associated Registers ............................................... 101  
Enable (WDTE Bit) .................................................. 101  
Postscaler. See Postscaler, WDT  
Programming Considerations .................................. 101  
RC Oscillator ........................................................... 101  
Time-out Period ....................................................... 101  
WDT Reset, Normal Operation ....................93, 95, 96  
WDT Reset, SLEEP .....................................93, 95, 96  
WCOL bit ........................................................................... 61  
Write Collision Detect bit (WCOL) ..................................... 61  
WWW, On-Line Support ...................................................... 4  
SYNC bit ....................................................................69  
TRMT bit ....................................................................69  
TX9 bit .......................................................................69  
TX9D bit .....................................................................69  
TXEN bit ....................................................................69  
U
UA ......................................................................................60  
Universal Synchronous Asynchronous  
Receiver Transmitter. See USART  
Update Address bit, UA .....................................................60  
USART ...............................................................................69  
Asynchronous Mode ..................................................73  
Asynchronous Receiver .............................................75  
Asynchronous Reception ...........................................76  
Associated Registers .........................................76  
Asynchronous Transmission  
Associated Registers .........................................74  
Asynchronous Transmitter .........................................73  
DS30325B-page 168  
2002 Microchip Technology Inc.  
PIC16F7X  
Systems Information and Upgrade Hot Line  
ON-LINE SUPPORT  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip's development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
Microchip provides on-line support on the Microchip  
World Wide Web (WWW) site.  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape or Microsoft  
Explorer. Files are also available for FTP download  
from our FTP site.  
1-800-755-2345 for U.S. and most of Canada, and  
1-480-792-7302 for the rest of the world.  
ConnectingtotheMicrochipInternetWebSite  
013001  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
ftp://ftp.microchip.com  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User’s Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
• Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
• Conferences for products, Development Systems,  
technical information and more  
• Listing of seminars and events  
2002 Microchip Technology Inc.  
DS30325B-page 169  
PIC16F7X  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS30325B  
Device:  
PIC16F7X  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS30325B-page 170  
2002 Microchip Technology Inc.  
PIC16F7X  
PIC16F7X PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature Package  
Range  
Pattern  
a)  
b)  
c)  
PIC16F77-I/P 301 = Industrial temp., PDIP  
package, normal VDD limits, QTP pattern #301.  
PIC16LF76-I/SO = Industrial temp., SOIC  
package, Extended VDD limits.  
PIC16F74-E/P = Extended temp., PDIP  
package, normal VDD limits.  
Device  
PIC16F7X(1), PIC16F7XT(1); VDD range 4.0V to 5.5V  
PIC16LF7X(1), PIC16LF7XT(1); VDD range 2.0V to 5.5V  
Temperature Range  
Package  
I
E
=
=
-40°C to +85°C (Industrial)  
-40°C to +125°C (Extended)  
Note 1:  
2:  
F
= CMOS FLASH  
LF = Low Power CMOS FLASH  
ML  
PT  
SO  
SP  
P
L
SS  
=
=
=
=
=
=
=
MLF (Micro Lead Frame)  
TQFP (Thin Quad Flatpack)  
T
= in tape and reel - SOIC, PLCC,  
SSOP, TQFP packages only.  
SOIC  
Skinny Plastic DIP  
PDIP  
PLCC  
SSOP  
Pattern  
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2002 Microchip Technology Inc.  
DS30325B-page 171  
M
WORLDWIDE SALES AND SERVICE  
Japan  
AMERICAS  
ASIA/PACIFIC  
Microchip Technology Japan K.K.  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Microchip Technology Australia Pty Ltd  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
Australia  
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755  
Korea  
Rocky Mountain  
China - Beijing  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-7456  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Beijing Liaison Office  
Unit 915  
Bei Hai Wan Tai Bldg.  
Atlanta  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
Singapore  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
#07-02 Prime Centre  
Singapore, 188980  
Tel: 65-334-8870 Fax: 65-334-8850  
Taiwan  
Microchip Technology Taiwan  
11F-3, No. 207  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 770-640-0034 Fax: 770-640-0307  
China - Chengdu  
Boston  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Chengdu Liaison Office  
Rm. 2401, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
Chengdu 610016, China  
Tel: 86-28-6766200 Fax: 86-28-6766599  
China - Fuzhou  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Fuzhou Liaison Office  
Unit 28F, World Trade Plaza  
No. 71 Wusi Road  
Fuzhou 350001, China  
Tel: 86-591-7503506 Fax: 86-591-7503521  
China - Shanghai  
Microchip Technology Consulting (Shanghai)  
Co., Ltd.  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
China - Shenzhen  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Shenzhen Liaison Office  
Rm. 1315, 13/F, Shenzhen Kerry Centre,  
Renminnan Lu  
Shenzhen 518001, China  
Tel: 86-755-2350361 Fax: 86-755-2366086  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
Chicago  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
Tel: 972-818-7423 Fax: 972-818-2924  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
EUROPE  
Denmark  
Microchip Technology Nordic ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Detroit  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Kokomo  
France  
2767 S. Albright Road  
Kokomo, Indiana 46902  
Tel: 765-864-8360 Fax: 765-864-8387  
Los Angeles  
Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
Germany  
New York  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Microchip Technology GmbH  
Gustav-Heinemann Ring 125  
D-81739 Munich, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Tel: 631-273-5305 Fax: 631-273-5335  
San Jose  
Hong Kong  
Italy  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Microchip Technology Hongkong Ltd.  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200 Fax: 852-2401-3431  
Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Tel: 408-436-7950 Fax: 408-436-7955  
Toronto  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
India  
Microchip Technology Inc.  
India Liaison Office  
United Kingdom  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
01/18/02  
DS30325B-page 172  
2002 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY