PIC16F876ATI/ML [MICROCHIP]

28/40-pin Enhanced FLASH Microcontrollers; 40分之28引脚增强型闪存微控制器
PIC16F876ATI/ML
型号: PIC16F876ATI/ML
厂家: MICROCHIP    MICROCHIP
描述:

28/40-pin Enhanced FLASH Microcontrollers
40分之28引脚增强型闪存微控制器

闪存 微控制器
文件: 总234页 (文件大小:4127K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16F87XA  
Data Sheet  
28/40/44-Pin Enhanced Flash  
Microcontrollers  
2003 Microchip Technology Inc.  
DS39582B  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical  
components in life support systems is not authorized except  
with express written approval by Microchip. No licenses are  
conveyed, implicitly or otherwise, under any intellectual  
property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE and PowerSmart are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
AmpLab, FilterLab, microID, MXDEV, MXLAB, PICMASTER,  
SEEVAL and The Embedded Control Solutions Company are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Application Maestro, dsPICDEM, dsPICDEM.net, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,  
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,  
PICkit, PICDEM, PICDEM.net, PowerCal, PowerInfo,  
PowerMate, PowerTool, rfLAB, rfPIC, Select Mode,  
SmartSensor, SmartShunt, SmartTel and Total Endurance are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2003, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999  
and Mountain View, California in March 2002.  
The Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals,  
non-volatile memory and analog products. In  
addition, Microchip’s quality system for the  
design and manufacture of development  
systems is ISO 9001 certified.  
DS39582B-page ii  
2003 Microchip Technology Inc.  
PIC16F87XA  
28/40/44-Pin Enhanced Flash Microcontrollers  
Devices Included in this Data Sheet:  
Analog Features:  
• 10-bit, up to 8-channel Analog-to-Digital  
Converter (A/D)  
• PIC16F873A  
• PIC16F874A  
• PIC16F876A  
• PIC16F877A  
• Brown-out Reset (BOR)  
• Analog Comparator module with:  
- Two analog comparators  
High-Performance RISC CPU:  
• Only 35 single-word instructions to learn  
- Programmable on-chip voltage reference  
(VREF) module  
• All single-cycle instructions except for program  
branches, which are two-cycle  
- Programmable input multiplexing from device  
inputs and internal voltage reference  
• Operating speed: DC – 20 MHz clock input  
DC – 200 ns instruction cycle  
- Comparator outputs are externally accessible  
• Up to 8K x 14 words of Flash Program Memory,  
Up to 368 x 8 bytes of Data Memory (RAM),  
Up to 256 x 8 bytes of EEPROM Data Memory  
Special Microcontroller Features:  
• 100,000 erase/write cycle Enhanced Flash  
program memory typical  
• Pinout compatible to other 28-pin or 40/44-pin  
PIC16CXXX and PIC16FXXX microcontrollers  
• 1,000,000 erase/write cycle Data EEPROM  
memory typical  
Peripheral Features:  
• Data EEPROM Retention > 40 years  
• Timer0: 8-bit timer/counter with 8-bit prescaler  
• Self-reprogrammable under software control  
• Timer1: 16-bit timer/counter with prescaler,  
can be incremented during Sleep via external  
crystal/clock  
• In-Circuit Serial Programming™ (ICSP™)  
via two pins  
• Single-supply 5V In-Circuit Serial Programming  
• Timer2: 8-bit timer/counter with 8-bit period  
register, prescaler and postscaler  
• Watchdog Timer (WDT) with its own on-chip RC  
oscillator for reliable operation  
• Two Capture, Compare, PWM modules  
- Capture is 16-bit, max. resolution is 12.5 ns  
- Compare is 16-bit, max. resolution is 200 ns  
- PWM max. resolution is 10-bit  
• Programmable code protection  
• Power saving Sleep mode  
• Selectable oscillator options  
• In-Circuit Debug (ICD) via two pins  
• Synchronous Serial Port (SSP) with SPI™  
(Master mode) and I2C™ (Master/Slave)  
CMOS Technology:  
• Universal Synchronous Asynchronous Receiver  
Transmitter (USART/SCI) with 9-bit address  
detection  
• Low-power, high-speed Flash/EEPROM  
technology  
• Parallel Slave Port (PSP) – 8 bits wide with  
external RD, WR and CS controls (40/44-pin only)  
• Fully static design  
• Wide operating voltage range (2.0V to 5.5V)  
• Commercial and Industrial temperature ranges  
• Low-power consumption  
• Brown-out detection circuitry for  
Brown-out Reset (BOR)  
Program Memory  
Data  
MSSP  
EEPROM  
(Bytes)  
10-bit  
A/D (ch) (PWM)  
CCP  
Timers  
8/16-bit  
Device  
SRAM  
I/O  
USART  
Comparators  
# Single Word  
Instructions  
Master  
Bytes  
SPI  
(Bytes)  
2
I C  
PIC16F873A 7.2K  
PIC16F874A 7.2K  
PIC16F876A 14.3K  
PIC16F877A 14.3K  
4096  
4096  
8192  
8192  
192  
192  
368  
368  
128  
128  
256  
256  
22  
33  
22  
33  
5
8
5
8
2
2
2
2
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
2/1  
2/1  
2/1  
2/1  
2
2
2
2
2003 Microchip Technology Inc.  
DS39582B-page 1  
PIC16F87XA  
Pin Diagrams  
28-Pin PDIP, SOIC, SSOP  
28  
27  
26  
1
2
3
4
5
6
7
8
9
RB7/PGD  
RB6/PGC  
RB5  
RB4  
RB3/PGM  
RB2  
RB1  
RB0/INT  
VDD  
MCLR/VPP  
RA0/AN0  
RA1/AN1  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
RA2/AN2/VREF-/CVREF  
RA3/AN3/VREF+  
RA4/T0CKI/C1OUT  
RA5/AN4/SS/C2OUT  
VSS  
OSC1/CLKI  
OSC2/CLKO  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
VSS  
10  
11  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
RC4/SDI/SDA  
12  
13  
14  
RC3/SCK/SCL  
28-Pin QFN  
1
2
3
4
5
6
7
21  
20  
19  
18  
17  
16  
15  
RA2/AN2/VREF-/CVREF  
RA3/AN3/VREF+  
RA4/T0CKI/C1OUT  
RA5/AN4/SS/C2OUT  
VSS  
RB3/PGM  
RB2  
RB1  
RB0/INT  
VDD  
PIC16F873A  
PIC16F876A  
VSS  
OSC1/CLKI  
OSC2/CLKO  
RC7/RX/DT  
44-Pin QFN  
OSC2/CLKO  
OSC1/CLKI  
VSS  
RC7/RX/DT  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
VSS  
1
2
3
4
5
6
7
8
9
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
VSS  
VDD  
PIC16F874A  
PIC16F877A  
VDD  
RE2/CS/AN7  
RE1/WR/AN6  
RE0/RD/AN5  
RA5/AN4/SS/C2OUT  
RA4/T0CKI/C1OUT  
VDD  
VDD  
RB0/INT  
RB1  
10  
11  
RB2  
DS39582B-page 2  
2003 Microchip Technology Inc.  
PIC16F87XA  
Pin Diagrams (Continued)  
40-Pin PDIP  
MCLR/VPP  
RA0/AN0  
1
2
3
4
5
6
7
8
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
RB7/PGD  
RB6/PGC  
RB5  
RB4  
RB3/PGM  
RB2  
RA1/AN1  
RA2/AN2/VREF-/CVREF  
RA3/AN3/VREF+  
RA4/T0CKI/C1OUT  
RA5/AN4/SS/C2OUT  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
VDD  
VSS  
OSC1/CLKI  
OSC2/CLKO  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
RB1  
RB0/INT  
VDD  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VSS  
RD7/PSP7  
RD6/PSP6  
RD5/PSP5  
RD4/PSP4  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
27  
26  
25  
24  
23  
22  
21  
RC3/SCK/SCL  
RD0/PSP0  
RC4/SDI/SDA  
RD3/PSP3  
RD1/PSP1  
RD2/PSP2  
44-Pin PLCC  
RA4/T0CKI/C1OUT  
RA5/AN4/SS/C2OUT  
RE0/RD/AN5  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
RB3/PGM  
RB2  
7
8
RB1  
9
RE1/WR/AN6  
RB0/INT  
VDD  
VSS  
RD7/PSP7  
RD6/PSP6  
RD5/PSP5  
RD4/PSP4  
RC7/RX/DT  
10  
11  
12  
13  
14  
15  
RE2/CS/AN7  
PIC16F874A  
PIC16F877A  
VDD  
VSS  
OSC1/CLKI  
OSC2/CLKO  
RC0/T1OSO/T1CK1  
NC  
16  
17  
44-Pin TQFP  
NC  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
RC7/RX/DT  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
VSS  
VDD  
RB0/INT  
RB1  
RB2  
RB3/PGM  
1
2
3
4
5
6
7
8
RC0/T1OSO/T1CKI  
OSC2/CLKO  
OSC1/CLKI  
VSS  
PIC16F874A  
PIC16F877A  
VDD  
RE2/CS/AN7  
RE1/WR/AN6  
RE0/RD/AN5  
RA5/AN4/SS/C2OUT  
RA4/T0CKI/C1OUT  
9
10  
11  
2003 Microchip Technology Inc.  
DS39582B-page 3  
PIC16F87XA  
Table of Contents  
1.0 Device Overview......................................................................................................................................................................... 5  
2.0 Memory Organization................................................................................................................................................................ 15  
3.0 Data EEPROM and Flash Program Memory ............................................................................................................................ 33  
4.0 I/O Ports.................................................................................................................................................................................... 41  
5.0 Timer0 Module.......................................................................................................................................................................... 53  
6.0 Timer1 Module.......................................................................................................................................................................... 57  
7.0 Timer2 Module.......................................................................................................................................................................... 61  
8.0 Capture/Compare/PWM Modules............................................................................................................................................. 63  
9.0 Master Synchronous Serial Port (MSSP) Module..................................................................................................................... 71  
10.0 Addressable Universal Synchronous Asynchronous Receiver Transmitter (USART) ............................................................ 111  
11.0 Analog-to-Digital Converter (A/D) Module .............................................................................................................................. 127  
12.0 Comparator Module ................................................................................................................................................................ 135  
13.0 Comparator Voltage Reference Module ................................................................................................................................. 141  
14.0 Special Features of the CPU .................................................................................................................................................. 143  
15.0 Instruction Set Summary......................................................................................................................................................... 159  
16.0 Development Support ............................................................................................................................................................. 167  
17.0 Electrical Characteristics......................................................................................................................................................... 173  
18.0 DC and AC Characteristics Graphs and Tables ..................................................................................................................... 197  
19.0 Packaging Information ............................................................................................................................................................ 209  
Appendix A: Revision History............................................................................................................................................................ 219  
Appendix B: Device Differences........................................................................................................................................................ 219  
Appendix C:Conversion Considerations........................................................................................................................................... 220  
Index ................................................................................................................................................................................................. 221  
On-Line Support................................................................................................................................................................................ 229  
Systems Information and Upgrade Hot Line ..................................................................................................................................... 229  
Reader Response ............................................................................................................................................................................. 230  
PIC16F87XA Product Identification System...................................................................................................................................... 231  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@mail.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150.  
We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
• Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
• The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include liter-  
ature number) you are using.  
Customer Notification System  
Register on our Web site at www.microchip.com/cn to receive the most current information on all of our products.  
DS39582B-page 4  
2003 Microchip Technology Inc.  
PIC16F87XA  
The available features are summarized in Table 1-1.  
Block diagrams of the PIC16F873A/876A and  
PIC16F874A/877A devices are provided in Figure 1-1  
and Figure 1-2, respectively. The pinouts for these  
device families are listed in Table 1-2 and Table 1-3.  
Additional information may be found in the PICmicro®  
Mid-Range Reference Manual (DS33023), which may  
be obtained from your local Microchip Sales Represen-  
tative or downloaded from the Microchip web site. The  
Reference Manual should be considered a complemen-  
tary document to this data sheet and is highly recom-  
mended reading for a better understanding of the device  
architecture and operation of the peripheral modules.  
1.0  
DEVICE OVERVIEW  
This document contains device specific information  
about the following devices:  
• PIC16F873A  
• PIC16F874A  
• PIC16F876A  
• PIC16F877A  
PIC16F873A/876A devices are available only in 28-pin  
packages, while PIC16F874A/877A devices are avail-  
able in 40-pin and 44-pin packages. All devices in the  
PIC16F87XA family share common architecture with  
the following differences:  
• The PIC16F873A and PIC16F874A have one-half  
of the total on-chip memory of the PIC16F876A  
and PIC16F877A  
• The 28-pin devices have three I/O ports, while the  
40/44-pin devices have five  
• The 28-pin devices have fourteen interrupts, while  
the 40/44-pin devices have fifteen  
• The 28-pin devices have five A/D input channels,  
while the 40/44-pin devices have eight  
• The Parallel Slave Port is implemented only on  
the 40/44-pin devices  
TABLE 1-1:  
PIC16F87XA DEVICE FEATURES  
Key Features  
PIC16F873A  
PIC16F874A  
PIC16F876A  
PIC16F877A  
Operating Frequency  
Resets (and Delays)  
DC – 20 MHz  
DC – 20 MHz  
DC – 20 MHz  
DC – 20 MHz  
POR, BOR  
POR, BOR  
POR, BOR  
POR, BOR  
(PWRT, OST)  
(PWRT, OST)  
(PWRT, OST)  
(PWRT, OST)  
Flash Program Memory  
(14-bit words)  
4K  
4K  
8K  
8K  
Data Memory (bytes)  
EEPROM Data Memory (bytes)  
Interrupts  
192  
192  
368  
368  
128  
128  
256  
256  
14  
15  
14  
15  
I/O Ports  
Ports A, B, C  
Ports A, B, C, D, E  
Ports A, B, C  
Ports A, B, C, D, E  
Timers  
3
3
3
3
Capture/Compare/PWM modules  
Serial Communications  
Parallel Communications  
10-bit Analog-to-Digital Module  
Analog Comparators  
Instruction Set  
2
2
2
2
MSSP, USART  
MSSP, USART  
PSP  
MSSP, USART  
MSSP, USART  
PSP  
5 input channels  
2
8 input channels  
2
5 input channels  
2
8 input channels  
2
35 Instructions  
35 Instructions  
35 Instructions  
35 Instructions  
Packages  
28-pin PDIP  
28-pin SOIC  
28-pin SSOP  
28-pin QFN  
40-pin PDIP  
44-pin PLCC  
44-pin TQFP  
44-pin QFN  
28-pin PDIP  
28-pin SOIC  
28-pin SSOP  
28-pin QFN  
40-pin PDIP  
44-pin PLCC  
44-pin TQFP  
44-pin QFN  
2003 Microchip Technology Inc.  
DS39582B-page 5  
PIC16F87XA  
FIGURE 1-1:  
PIC16F873A/876A BLOCK DIAGRAM  
8
13  
PORTA  
Data Bus  
Program Counter  
RA0/AN0  
RA1/AN1  
Flash  
RA2/AN2/VREF-/CVREF  
RA3/AN3/VREF+  
RA4/T0CKI/C1OUT  
RA5/AN4/SS/C2OUT  
Program  
Memory  
RAM  
File  
Registers  
8 Level Stack  
(13-bit)  
Program  
Bus  
14  
RAM Addr(1)  
9
Addr MUX  
Instruction reg  
PORTB  
Indirect  
Addr  
7
Direct Addr  
8
RB0/INT  
RB1  
RB2  
FSR reg  
RB3/PGM  
RB4  
RB5  
Status reg  
8
RB6/PGC  
RB7/PGD  
3
MUX  
Power-up  
Timer  
Oscillator  
Instruction  
Decode &  
Control  
Start-up Timer  
ALU  
Power-on  
Reset  
8
PORTC  
Watchdog  
Timer  
Timing  
Generation  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
W reg  
Brown-out  
Reset  
OSC1/CLKI  
OSC2/CLKO  
In-Circuit  
Debugger  
RC6/TX/CK  
RC7/RX/DT  
Low-Voltage  
Programming  
VDD, VSS  
Timer2  
MCLR  
Timer0  
Timer1  
10-bit A/D  
USART  
Voltage  
Reference  
Synchronous  
Serial Port  
Data EEPROM  
Comparator  
CCP1,2  
Device  
Program Flash  
Data Memory  
Data EEPROM  
PIC16F873A  
PIC16F876A  
4K words  
8K words  
192 Bytes  
368 Bytes  
128 Bytes  
256 Bytes  
Note 1: Higher order bits are from the Status register.  
DS39582B-page 6  
2003 Microchip Technology Inc.  
PIC16F87XA  
FIGURE 1-2:  
PIC16F874A/877A BLOCK DIAGRAM  
13  
8
PORTA  
Data Bus  
Program Counter  
RA0/AN0  
Flash  
RA1/AN1  
Program  
Memory  
RA2/AN2/VREF-/CVREF  
RA3/AN3/VREF+  
RA4/T0CKI/C1OUT  
RA5/AN4/SS/C2OUT  
RAM  
File  
Registers  
8 Level Stack  
(13-bit)  
Program  
Bus  
14  
PORTB  
RAM Addr(1)  
9
RB0/INT  
RB1  
RB2  
RB3/PGM  
RB4  
Addr MUX  
Instruction reg  
Indirect  
Addr  
7
Direct Addr  
8
RB5  
FSR reg  
RB6/PGC  
RB7/PGD  
Status reg  
8
PORTC  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
3
MUX  
Power-up  
Timer  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
RC6/TX/CK  
RC7/RX/DT  
Oscillator  
Instruction  
Decode &  
Control  
Start-up Timer  
ALU  
Power-on  
Reset  
8
Timing  
Generation  
Watchdog  
Timer  
W reg  
PORTD  
OSC1/CLKI  
OSC2/CLKO  
Brown-out  
Reset  
RD0/PSP0  
RD1/PSP1  
RD2/PSP2  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
In-Circuit  
Debugger  
Low-Voltage  
Programming  
PORTE  
MCLR VDD, VSS  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
Parallel  
Slave Port  
Timer2  
Timer0  
Timer1  
10-bit A/D  
USART  
Voltage  
Reference  
Synchronous  
Serial Port  
Data EEPROM  
Comparator  
CCP1,2  
Device  
Program Flash  
Data Memory  
Data EEPROM  
PIC16F874A  
PIC16F877A  
4K words  
8K words  
192 Bytes  
368 Bytes  
128 Bytes  
256 Bytes  
Note 1: Higher order bits are from the Status register.  
2003 Microchip Technology Inc.  
DS39582B-page 7  
PIC16F87XA  
TABLE 1-2:  
PIC16F873A/876A PINOUT DESCRIPTION  
PDIP, SOIC, QFN  
SSOP Pin# Pin#  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Description  
(3)  
6
OSC1/CLKI  
OSC1  
9
10  
1
ST/CMOS  
Oscillator crystal or external clock input.  
I
I
Oscillator crystal input or external clock source input. ST  
buffer when configured in RC mode; otherwise CMOS.  
External clock source input. Always associated with pin  
function OSC1 (see OSC1/CLKI, OSC2/CLKO pins).  
CLKI  
OSC2/CLKO  
OSC2  
7
Oscillator crystal or clock output.  
O
O
Oscillator crystal output. Connects to crystal or resonator  
in Crystal Oscillator mode.  
In RC mode, OSC2 pin outputs CLKO, which has 1/4 the  
frequency of OSC1 and denotes the instruction cycle rate.  
CLKO  
MCLR/VPP  
MCLR  
26  
ST  
Master Clear (input) or programming voltage (output).  
Master Clear (Reset) input. This pin is an active low Reset  
to the device.  
I
VPP  
P
Programming voltage input.  
PORTA is a bidirectional I/O port.  
RA0/AN0  
RA0  
2
3
4
27  
28  
1
TTL  
TTL  
TTL  
I/O  
I
Digital I/O.  
Analog input 0.  
AN0  
RA1/AN1  
RA1  
I/O  
I
Digital I/O.  
Analog input 1.  
AN1  
RA2/AN2/VREF-/  
CVREF  
I/O  
Digital I/O.  
RA2  
AN2  
VREF-  
I
I
O
Analog input 2.  
A/D reference voltage (Low) input.  
Comparator VREF output.  
CVREF  
RA3/AN3/VREF+  
RA3  
5
6
7
2
3
4
TTL  
ST  
I/O  
I
I
Digital I/O.  
Analog input 3.  
A/D reference voltage (High) input.  
AN3  
VREF+  
RA4/T0CKI/C1OUT  
RA4  
I/O  
I
O
Digital I/O – Open-drain when configured as output.  
Timer0 external clock input.  
Comparator 1 output.  
T0CKI  
C1OUT  
RA5/AN4/SS/C2OUT  
TTL  
RA5  
I/O  
Digital I/O.  
AN4  
SS  
C2OUT  
I
I
O
Analog input 4.  
SPI slave select input.  
Comparator 2 output.  
Legend:  
I = input  
— = Not used  
O = output  
TTL = TTL input  
I/O = input/output  
ST = Schmitt Trigger input  
P = power  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.  
DS39582B-page 8  
2003 Microchip Technology Inc.  
PIC16F87XA  
TABLE 1-2:  
PIC16F873A/876A PINOUT DESCRIPTION (CONTINUED)  
PDIP, SOIC, QFN  
SSOP Pin# Pin#  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTB is a bidirectional I/O port. PORTB can be software  
programmed for internal weak pull-ups on all inputs.  
(1)  
21  
18  
TTL/ST  
RB0/INT  
RB0  
I/O  
I
Digital I/O.  
External interrupt.  
INT  
22  
23  
24  
19  
20  
21  
I/O  
I/O  
TTL  
TTL  
TTL  
RB1  
RB2  
Digital I/O.  
Digital I/O.  
RB3/PGM  
RB3  
I/O  
I
Digital I/O.  
PGM  
Low-voltage (single-supply) ICSP programming enable pin.  
25  
26  
27  
22  
23  
24  
I/O  
I/O  
TTL  
TTL  
RB4  
RB5  
Digital I/O.  
Digital I/O.  
(2)  
(2)  
TTL/ST  
RB6/PGC  
RB6  
I/O  
I
Digital I/O.  
PGC  
In-circuit debugger and ICSP programming clock.  
28  
25  
TTL/ST  
RB7/PGD  
RB7  
I/O  
I/O  
Digital I/O.  
PGD  
In-circuit debugger and ICSP programming data.  
PORTC is a bidirectional I/O port.  
11  
12  
8
9
ST  
ST  
RC0/T1OSO/T1CKI  
RC0  
I/O  
O
I
Digital I/O.  
Timer1 oscillator output.  
Timer1 external clock input.  
T1OSO  
T1CKI  
RC1/T1OSI/CCP2  
RC1  
I/O  
I
Digital I/O.  
Timer1 oscillator input.  
T1OSI  
CCP2  
I/O  
Capture2 input, Compare2 output, PWM2 output.  
13  
14  
10  
11  
ST  
ST  
RC2/CCP1  
RC2  
I/O  
I/O  
Digital I/O.  
CCP1  
Capture1 input, Compare1 output, PWM1 output.  
RC3/SCK/SCL  
RC3  
I/O  
I/O  
I/O  
Digital I/O.  
SCK  
SCL  
Synchronous serial clock input/output for SPI mode.  
Synchronous serial clock input/output for I C mode.  
2
15  
12  
ST  
RC4/SDI/SDA  
RC4  
I/O  
I
Digital I/O.  
SPI data in.  
SDI  
2
SDA  
I/O  
I C data I/O.  
16  
17  
13  
14  
ST  
ST  
RC5/SDO  
RC5  
I/O  
O
Digital I/O.  
SPI data out.  
SDO  
RC6/TX/CK  
RC6  
TX  
CK  
I/O  
O
I/O  
Digital I/O.  
USART asynchronous transmit.  
USART1 synchronous clock.  
18  
15  
ST  
RC7/RX/DT  
RC7  
RX  
DT  
I/O  
I
I/O  
Digital I/O.  
USART asynchronous receive.  
USART synchronous data.  
VSS  
VDD  
8, 19  
20  
5, 6  
17  
P
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
P = power  
Legend:  
I = input  
— = Not used  
O = output  
TTL = TTL input  
I/O = input/output  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.  
2003 Microchip Technology Inc.  
DS39582B-page 9  
PIC16F87XA  
TABLE 1-3:  
PIC16F874A/877A PINOUT DESCRIPTION  
PDIP PLCC TQFP QFN  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Description  
Pin#  
Pin# Pin#  
Pin#  
(4)  
OSC1/CLKI  
OSC1  
Oscillator crystal or external clock input.  
Oscillator crystal input or external clock source  
input. ST buffer when configured in RC mode;  
otherwise CMOS.  
13  
14  
30  
32  
ST/CMOS  
I
I
CLKI  
External clock source input. Always associated  
with pin function OSC1 (see OSC1/CLKI,  
OSC2/CLKO pins).  
OSC2/CLKO  
OSC2  
14  
15  
31  
33  
18  
Oscillator crystal or clock output.  
Oscillator crystal output.  
O
O
Connects to crystal or resonator in Crystal  
Oscillator mode.  
In RC mode, OSC2 pin outputs CLKO, which  
has 1/4 the frequency of OSC1 and denotes the  
instruction cycle rate.  
CLKO  
MCLR/VPP  
MCLR  
1
2
18  
ST  
Master Clear (input) or programming voltage (output).  
Master Clear (Reset) input. This pin is an active  
low Reset to the device.  
I
VPP  
P
Programming voltage input.  
PORTA is a bidirectional I/O port.  
RA0/AN0  
RA0  
2
3
4
3
4
5
19  
20  
21  
19  
20  
21  
TTL  
TTL  
TTL  
I/O  
I
Digital I/O.  
Analog input 0.  
AN0  
RA1/AN1  
RA1  
I/O  
I
Digital I/O.  
Analog input 1.  
AN1  
RA2/AN2/VREF-/CVREF  
RA2  
I/O  
Digital I/O.  
AN2  
VREF-  
CVREF  
I
I
O
Analog input 2.  
A/D reference voltage (Low) input.  
Comparator VREF output.  
RA3/AN3/VREF+  
RA3  
5
6
6
7
22  
23  
22  
23  
TTL  
ST  
I/O  
I
I
Digital I/O.  
Analog input 3.  
A/D reference voltage (High) input.  
AN3  
VREF+  
RA4/T0CKI/C1OUT  
RA4  
I/O  
Digital I/O – Open-drain when configured as  
output.  
T0CKI  
C1OUT  
I
O
Timer0 external clock input.  
Comparator 1 output.  
RA5/AN4/SS/C2OUT  
7
8
24  
24  
TTL  
RA5  
I/O  
Digital I/O.  
AN4  
SS  
C2OUT  
I
I
O
Analog input 4.  
SPI slave select input.  
Comparator 2 output.  
Legend:  
I = input  
— = Not used  
O = output  
TTL = TTL input  
I/O = input/output  
ST = Schmitt Trigger input  
P = power  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.  
DS39582B-page 10  
2003 Microchip Technology Inc.  
PIC16F87XA  
TABLE 1-3:  
PIC16F874A/877A PINOUT DESCRIPTION (CONTINUED)  
PDIP PLCC TQFP QFN  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Description  
Pin#  
Pin# Pin#  
Pin#  
PORTB is a bidirectional I/O port. PORTB can be  
software programmed for internal weak pull-up on all  
inputs.  
(1)  
9
RB0/INT  
RB0  
33  
36  
8
TTL/ST  
I/O  
I
Digital I/O.  
External interrupt.  
INT  
10  
11  
12  
I/O  
I/O  
RB1  
RB2  
34  
35  
36  
37  
38  
39  
9
TTL  
TTL  
TTL  
Digital I/O.  
Digital I/O.  
10  
11  
RB3/PGM  
RB3  
I/O  
I
Digital I/O.  
PGM  
Low-voltage ICSP programming enable pin.  
14  
15  
16  
I/O  
I/O  
RB4  
RB5  
37  
38  
39  
41  
42  
43  
14  
15  
16  
TTL  
TTL  
Digital I/O.  
Digital I/O.  
(2)  
(2)  
RB6/PGC  
RB6  
TTL/ST  
I/O  
I
Digital I/O.  
PGC  
In-circuit debugger and ICSP programming clock.  
17  
RB7/PGD  
RB7  
40  
44  
17  
TTL/ST  
I/O  
I/O  
Digital I/O.  
PGD  
In-circuit debugger and ICSP programming data.  
Legend:  
I = input  
— = Not used  
O = output  
TTL = TTL input  
I/O = input/output  
ST = Schmitt Trigger input  
P = power  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.  
2003 Microchip Technology Inc.  
DS39582B-page 11  
PIC16F87XA  
TABLE 1-3:  
PIC16F874A/877A PINOUT DESCRIPTION (CONTINUED)  
PDIP PLCC TQFP QFN  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Description  
Pin#  
Pin# Pin#  
Pin#  
PORTC is a bidirectional I/O port.  
RC0/T1OSO/T1CKI  
RC0  
15  
16  
18  
32  
35  
34  
ST  
ST  
I/O  
O
I
Digital I/O.  
Timer1 oscillator output.  
Timer1 external clock input.  
T1OSO  
T1CKI  
RC1/T1OSI/CCP2  
RC1  
16  
35  
I/O  
I
Digital I/O.  
Timer1 oscillator input.  
T1OSI  
CCP2  
I/O  
Capture2 input, Compare2 output, PWM2 output.  
RC2/CCP1  
RC2  
17  
18  
19  
20  
36  
37  
36  
37  
ST  
ST  
I/O  
I/O  
Digital I/O.  
CCP1  
Capture1 input, Compare1 output, PWM1 output.  
RC3/SCK/SCL  
RC3  
I/O  
I/O  
Digital I/O.  
SCK  
Synchronous serial clock input/output for SPI  
mode.  
Synchronous serial clock input/output for I C  
2
SCL  
I/O  
mode.  
RC4/SDI/SDA  
RC4  
23  
25  
42  
42  
ST  
I/O  
I
I/O  
Digital I/O.  
SDI  
SDA  
SPI data in.  
2
I C data I/O.  
RC5/SDO  
RC5  
24  
25  
26  
27  
43  
44  
43  
44  
ST  
ST  
I/O  
O
Digital I/O.  
SPI data out.  
SDO  
RC6/TX/CK  
RC6  
TX  
CK  
I/O  
O
I/O  
Digital I/O.  
USART asynchronous transmit.  
USART1 synchronous clock.  
RC7/RX/DT  
RC7  
26  
29  
1
1
ST  
I/O  
I
I/O  
Digital I/O.  
USART asynchronous receive.  
USART synchronous data.  
RX  
DT  
Legend:  
I = input  
— = Not used  
O = output  
TTL = TTL input  
I/O = input/output  
ST = Schmitt Trigger input  
P = power  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.  
DS39582B-page 12  
2003 Microchip Technology Inc.  
PIC16F87XA  
TABLE 1-3:  
PIC16F874A/877A PINOUT DESCRIPTION (CONTINUED)  
PDIP PLCC TQFP QFN  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Description  
Pin#  
Pin# Pin#  
Pin#  
PORTD is a bidirectional I/O port or Parallel Slave  
Port when interfacing to a microprocessor bus.  
(3)  
RD0/PSP0  
RD0  
19  
20  
21  
22  
27  
28  
29  
30  
21  
22  
23  
24  
30  
31  
32  
33  
38  
39  
40  
41  
2
38  
39  
40  
41  
2
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
I/O  
I/O  
Digital I/O.  
Parallel Slave Port data.  
PSP0  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
RD1/PSP1  
RD1  
I/O  
I/O  
Digital I/O.  
Parallel Slave Port data.  
PSP1  
RD2/PSP2  
RD2  
I/O  
I/O  
Digital I/O.  
Parallel Slave Port data.  
PSP2  
RD3/PSP3  
RD3  
I/O  
I/O  
Digital I/O.  
Parallel Slave Port data.  
PSP3  
RD4/PSP4  
RD4  
I/O  
I/O  
Digital I/O.  
Parallel Slave Port data.  
PSP4  
RD5/PSP5  
RD5  
3
3
I/O  
I/O  
Digital I/O.  
Parallel Slave Port data.  
PSP5  
RD6/PSP6  
RD6  
4
4
I/O  
I/O  
Digital I/O.  
Parallel Slave Port data.  
PSP6  
RD7/PSP7  
RD7  
5
5
I/O  
I/O  
Digital I/O.  
Parallel Slave Port data.  
PSP7  
PORTE is a bidirectional I/O port.  
(3)  
(3)  
(3)  
RE0/RD/AN5  
RE0  
8
9
9
25  
26  
27  
25  
26  
27  
ST/TTL  
ST/TTL  
ST/TTL  
I/O  
I
I
Digital I/O.  
Read control for Parallel Slave Port.  
Analog input 5.  
RD  
AN5  
RE1/WR/AN6  
RE1  
10  
11  
I/O  
I
I
Digital I/O.  
Write control for Parallel Slave Port.  
Analog input 6.  
WR  
AN6  
RE2/CS/AN7  
RE2  
10  
I/O  
Digital I/O.  
CS  
AN7  
I
I
Chip select control for Parallel Slave Port.  
Analog input 7.  
VSS  
VDD  
NC  
12, 31 13, 34 6, 29 6, 30,  
31  
P
Ground reference for logic and I/O pins.  
11, 32 12, 35 7, 28  
7, 8,  
P
Positive supply for logic and I/O pins.  
28, 29  
1, 17, 12,13,  
28, 40 33, 34  
13  
These pins are not internally connected. These pins  
should be left unconnected.  
Legend:  
I = input  
— = Not used  
O = output  
TTL = TTL input  
I/O = input/output  
ST = Schmitt Trigger input  
P = power  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.  
2003 Microchip Technology Inc.  
DS39582B-page 13  
PIC16F87XA  
NOTES:  
DS39582B-page 14  
2003 Microchip Technology Inc.  
PIC16F87XA  
2.1  
Program Memory Organization  
2.0  
MEMORY ORGANIZATION  
The PIC16F87XA devices have a 13-bit program  
counter capable of addressing an 8K word x 14 bit  
program memory space. The PIC16F876A/877A  
devices have 8K words x 14 bits of Flash program  
memory, while PIC16F873A/874A devices have  
4K words x 14 bits. Accessing a location above the  
There are three memory blocks in each of the  
PIC16F87XA devices. The program memory and data  
memory have separate buses so that concurrent  
access can occur and is detailed in this section. The  
EEPROM data memory block is detailed in Section 3.0  
“Data EEPROM and Flash Program Memory”.  
physically implemented address will cause  
wraparound.  
a
Additional information on device memory may be found  
in the PICmicro® Mid-Range MCU Family Reference  
Manual (DS33023).  
The Reset vector is at 0000h and the interrupt vector is  
at 0004h.  
FIGURE 2-2:  
PIC16F873A/874A  
PROGRAM MEMORY MAP  
AND STACK  
FIGURE 2-1:  
PIC16F876A/877A  
PROGRAM MEMORY MAP  
AND STACK  
PC<12:0>  
13  
PC<12:0>  
13  
CALL, RETURN  
RETFIE, RETLW  
CALL, RETURN  
RETFIE, RETLW  
Stack Level 1  
Stack Level 2  
Stack Level 1  
Stack Level 2  
Stack Level 8  
Stack Level 8  
Reset Vector  
0000h  
Reset Vector  
0000h  
Interrupt Vector  
Page 0  
0004h  
0005h  
Interrupt Vector  
Page 0  
0004h  
0005h  
On-Chip  
Program  
Memory  
07FFh  
0800h  
07FFh  
0800h  
Page 1  
Page 1  
On-Chip  
Program  
Memory  
0FFFh  
1000h  
0FFFh  
1000h  
Page 2  
Page 3  
17FFh  
1800h  
1FFFh  
1FFFh  
2003 Microchip Technology Inc.  
DS39582B-page 15  
PIC16F87XA  
Each bank extends up to 7Fh (128 bytes). The lower  
locations of each bank are reserved for the Special  
Function Registers. Above the Special Function Regis-  
ters are General Purpose Registers, implemented as  
static RAM. All implemented banks contain Special  
Function Registers. Some frequently used Special  
Function Registers from one bank may be mirrored in  
another bank for code reduction and quicker access.  
2.2  
Data Memory Organization  
The data memory is partitioned into multiple banks  
which contain the General Purpose Registers and the  
Special Function Registers. Bits RP1 (Status<6>) and  
RP0 (Status<5>) are the bank select bits.  
RP1:RP0  
Bank  
Note:  
The EEPROM data memory description can  
be found in Section 3.0 “Data EEPROM  
and Flash Program Memory” of this data  
sheet.  
00  
01  
10  
11  
0
1
2
3
2.2.1  
GENERAL PURPOSE REGISTER  
FILE  
The register file can be accessed either directly, or  
indirectly, through the File Select Register (FSR).  
DS39582B-page 16  
2003 Microchip Technology Inc.  
PIC16F87XA  
FIGURE 2-3:  
PIC16F876A/877A REGISTER FILE MAP  
File  
Address  
File  
Address  
File  
Address  
File  
Address  
Indirect addr.(*)  
Indirect addr.(*)  
OPTION_REG  
Indirect addr.(*)  
Indirect addr.(*)  
OPTION_REG  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
TMR0  
PCL  
TMR0  
PCL  
PCL  
STATUS  
PCL  
STATUS  
STATUS  
FSR  
STATUS  
FSR  
FSR  
FSR  
TRISA  
TRISB  
TRISC  
TRISD(1)  
TRISE(1)  
PCLATH  
INTCON  
PIE1  
PORTA  
PORTB  
PORTC  
PORTD(1)  
PORTE(1)  
PCLATH  
INTCON  
PIR1  
TRISB  
PORTB  
PCLATH  
INTCON  
EECON1  
EECON2  
Reserved(2)  
Reserved(2)  
PCLATH  
INTCON  
EEDATA  
EEADR  
PIE2  
PIR2  
TMR1L  
PCON  
EEDATH  
EEADRH  
TMR1H  
T1CON  
TMR2  
SSPCON2  
PR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
SSPADD  
SSPSTAT  
General  
Purpose  
Register  
General  
Purpose  
Register  
TXSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRESH  
SPBRG  
16 Bytes  
16 Bytes  
CMCON  
CVRCON  
ADRESL  
ADCON1  
ADCON0  
1A0h  
A0h  
General  
Purpose  
Register  
General  
Purpose  
Register  
General  
Purpose  
Register  
General  
Purpose  
Register  
80 Bytes  
80 Bytes  
80 Bytes  
1EFh  
1F0h  
96 Bytes  
EFh  
F0h  
16Fh  
170h  
accesses  
70h - 7Fh  
accesses  
70h-7Fh  
accesses  
70h-7Fh  
17Fh  
1FFh  
7Fh  
FFh  
Bank 3  
Bank 1  
Bank 2  
Bank 0  
Unimplemented data memory locations, read as ‘0’.  
*
Not a physical register.  
Note 1: These registers are not implemented on the PIC16F876A.  
2: These registers are reserved; maintain these registers clear.  
2003 Microchip Technology Inc.  
DS39582B-page 17  
PIC16F87XA  
FIGURE 2-4:  
PIC16F873A/874A REGISTER FILE MAP  
File  
Address  
File  
Address  
File  
Address  
File  
Address  
Indirect addr.(*)  
Indirect addr.(*)  
OPTION_REG  
PCL  
Indirect addr.(*)  
Indirect addr.(*)  
OPTION_REG  
PCL  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
TMR0  
PCL  
TMR0  
PCL  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
PORTD(1)  
PORTE(1)  
PCLATH  
INTCON  
PIR1  
TRISA  
TRISB  
PORTB  
TRISB  
TRISC  
TRISD(1)  
TRISE(1)  
PCLATH  
INTCON  
PIE1  
PCLATH  
INTCON  
PCLATH  
INTCON  
EEDATA  
EEADR  
EECON1  
EECON2  
Reserved(2)  
Reserved(2)  
PIR2  
PIE2  
TMR1L  
TMR1H  
T1CON  
TMR2  
PCON  
EEDATH  
EEADRH  
SSPCON2  
PR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRESH  
SSPADD  
SSPSTAT  
TXSTA  
SPBRG  
CMCON  
CVRCON  
ADRESL  
ADCON1  
ADCON0  
1A0h  
120h  
A0h  
General  
Purpose  
Register  
General  
Purpose  
Register  
accesses  
20h-7Fh  
accesses  
A0h - FFh  
1EFh  
1F0h  
96 Bytes  
96 Bytes  
16Fh  
170h  
17Fh  
1FFh  
7Fh  
FFh  
Bank 3  
Bank 1  
Bank 2  
Bank 0  
Unimplemented data memory locations, read as ‘0’.  
*
Not a physical register.  
Note 1: These registers are not implemented on the PIC16F873A.  
2: These registers are reserved; maintain these registers clear.  
DS39582B-page 18  
2003 Microchip Technology Inc.  
PIC16F87XA  
The Special Function Registers can be classified into  
two sets: core (CPU) and peripheral. Those registers  
associated with the core functions are described in  
detail in this section. Those related to the operation of  
the peripheral features are described in detail in the  
peripheral features section.  
2.2.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers are registers used by  
the CPU and peripheral modules for controlling the  
desired operation of the device. These registers are  
implemented as static RAM. A list of these registers is  
given in Table 2-1.  
TABLE 2-1:  
SPECIAL FUNCTION REGISTER SUMMARY  
Value on: Details  
POR, BOR on page:  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 0  
(3)  
00h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register) 0000 0000 31, 150  
01h  
TMR0  
Timer0 Module Register  
xxxx xxxx 55, 150  
0000 0000 30, 150  
0001 1xxx 22, 150  
xxxx xxxx 31, 150  
--0x 0000 43, 150  
xxxx xxxx 45, 150  
xxxx xxxx 47, 150  
xxxx xxxx 48, 150  
---- -xxx 49, 150  
---0 0000 30, 150  
0000 000x 24, 150  
(3)  
02h  
PCL  
Program Counter (PC) Least Significant Byte  
(3)  
03h  
STATUS  
FSR  
IRP  
Indirect Data Memory Address Pointer  
PORTA Data Latch when written: PORTA pins when read  
RP1  
RP0  
TO  
PD  
Z
DC  
C
(3)  
04h  
05h  
06h  
07h  
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
PCLATH  
INTCON  
PIR1  
PORTB Data Latch when written: PORTB pins when read  
PORTC Data Latch when written: PORTC pins when read  
PORTD Data Latch when written: PORTD pins when read  
(4)  
08h  
(4)  
09h  
RE2  
RE1  
RE0  
(1,3)  
0Ah  
Write Buffer for the upper 5 bits of the Program Counter  
(3)  
0Bh  
GIE  
PSPIF  
PEIE  
ADIF  
CMIF  
TMR0IE  
RCIF  
INTE  
TXIF  
EEIF  
RBIE  
SSPIF  
BCLIF  
TMR0IF  
CCP1IF  
INTF  
RBIF  
(3)  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
TMR2IF TMR1IF 0000 0000 26, 150  
PIR2  
CCP2IF -0-0 0--0 28, 150  
xxxx xxxx 60, 150  
TMR1L  
TMR1H  
T1CON  
TMR2  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx 60, 150  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 57, 150  
0000 0000 62, 150  
Timer2 Module Register  
T2CON  
SSPBUF  
SSPCON  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 61, 150  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL SSPOV SSPEN CKP SSPM3  
xxxx xxxx 79, 150  
SSPM2  
SSPM1  
SSPM0 0000 0000 82, 82,  
150  
15h  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
Capture/Compare/PWM Register 1 (LSB)  
Capture/Compare/PWM Register 1 (MSB)  
xxxx xxxx 63, 150  
xxxx xxxx 63, 150  
16h  
17h  
CCP1X  
SREN  
CCP1Y  
CREN  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 64, 150  
18h  
SPEN  
RX9  
ADDEN  
FERR  
OERR  
RX9D 0000 000x 112, 150  
0000 0000 118, 150  
0000 0000 118, 150  
xxxx xxxx 63, 150  
19h  
TXREG  
USART Transmit Data Register  
USART Receive Data Register  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRESH  
ADCON0  
Capture/Compare/PWM Register 2 (LSB)  
Capture/Compare/PWM Register 2 (MSB)  
xxxx xxxx 63, 150  
CCP2X  
A/D Result Register High Byte  
ADCS1 ADCS0 CHS2  
CCP2Y  
CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000 64, 150  
xxxx xxxx 133, 150  
CHS1  
CHS0  
GO/DONE  
ADON 0000 00-0 127, 150  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1:  
The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose  
contents are transferred to the upper byte of the program counter.  
2:  
3:  
4:  
5:  
Bits PSPIE and PSPIF are reserved on PIC16F873A/876A devices; always maintain these bits clear.  
These registers can be addressed from any bank.  
PORTD, PORTE, TRISD and TRISE are not implemented on PIC16F873A/876A devices, read as ‘0’.  
Bit 4 of EEADRH implemented only on the PIC16F876A/877A devices.  
2003 Microchip Technology Inc.  
DS39582B-page 19  
PIC16F87XA  
TABLE 2-1:  
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on: Details  
POR, BOR on page:  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 1  
(3)  
80h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register) 0000 0000 31, 150  
81h  
OPTION_REG RBPU  
INTEDG  
Program Counter (PC) Least Significant Byte  
IRP RP1 RP0 TO  
Indirect Data Memory Address Pointer  
PORTA Data Direction Register  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
1111 1111 23, 150  
0000 0000 30, 150  
0001 1xxx 22, 150  
xxxx xxxx 31, 150  
--11 1111 43, 150  
1111 1111 45, 150  
1111 1111 47, 150  
1111 1111 48, 151  
0000 -111 50, 151  
---0 0000 30, 150  
0000 000x 24, 150  
(3)  
82h  
PCL  
(3)  
83h  
STATUS  
FSR  
PD  
Z
DC  
C
(3)  
84h  
85h  
86h  
87h  
TRISA  
TRISB  
TRISC  
TRISD  
TRISE  
PCLATH  
INTCON  
PIE1  
PORTB Data Direction Register  
PORTC Data Direction Register  
PORTD Data Direction Register  
(4)  
88h  
(4)  
89h  
IBF  
OBF  
IBOV  
PSPMODE  
PORTE Data Direction bits  
(1,3)  
8Ah  
Write Buffer for the upper 5 bits of the Program Counter  
(3)  
8Bh  
GIE  
PSPIE  
PEIE  
ADIE  
CMIE  
TMR0IE  
RCIE  
INTE  
TXIE  
EEIE  
RBIE  
SSPIE  
BCLIE  
TMR0IF  
CCP1IE  
INTF  
RBIF  
(2)  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
TMR2IE TMR1IE 0000 0000 25, 151  
PIE2  
CCP2IE -0-0 0--0 27, 151  
PCON  
POR  
BOR  
SEN  
BF  
---- --qq 29, 151  
Unimplemented  
Unimplemented  
SSPCON2  
PR2  
GCEN ACKSTAT ACKDT  
ACKEN  
RCEN  
PEN  
R/W  
RSEN  
UA  
0000 0000 83, 151  
1111 1111 62, 151  
0000 0000 79, 151  
0000 0000 79, 151  
Timer2 Period Register  
2
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
Legend:  
SSPADD  
SSPSTAT  
Synchronous Serial Port (I C mode) Address Register  
SMP  
CKE  
D/A  
P
S
Unimplemented  
Unimplemented  
Unimplemented  
TXSTA  
SPBRG  
CSRC  
TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D 0000 -010 111, 151  
0000 0000 113, 151  
Baud Rate Generator Register  
Unimplemented  
Unimplemented  
CMCON  
CVRCON  
ADRESL  
ADCON1  
C2OUT  
CVREN  
C1OUT  
CVROE  
C2INV  
CVRR  
C1INV  
CIS  
CM2  
CM1  
CM0  
0000 0111 135, 151  
CVR3  
CVR2  
CVR1  
CVR0 000- 0000 141, 151  
xxxx xxxx 133, 151  
A/D Result Register Low Byte  
ADFM ADCS2  
PCFG3  
PCFG2  
PCFG1  
PCFG0 00--0000 128, 151  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1:  
The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose  
contents are transferred to the upper byte of the program counter.  
2:  
3:  
4:  
5:  
Bits PSPIE and PSPIF are reserved on PIC16F873A/876A devices; always maintain these bits clear.  
These registers can be addressed from any bank.  
PORTD, PORTE, TRISD and TRISE are not implemented on PIC16F873A/876A devices, read as ‘0’.  
Bit 4 of EEADRH implemented only on the PIC16F876A/877A devices.  
DS39582B-page 20  
2003 Microchip Technology Inc.  
PIC16F87XA  
TABLE 2-1:  
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on: Details  
POR, BOR on page:  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 2  
(3)  
100h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register) 0000 0000 31, 150  
101h  
TMR0  
PCL  
Timer0 Module Register  
xxxx xxxx 55, 150  
0000 0000 30, 150  
0001 1xxx 22, 150  
xxxx xxxx 31, 150  
(3)  
102h  
Program Counter’s (PC) Least Significant Byte  
(3)  
103h  
STATUS  
FSR  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
(3)  
104h  
Indirect Data Memory Address Pointer  
Unimplemented  
105h  
106h  
107h  
108h  
109h  
PORTB  
PORTB Data Latch when written: PORTB pins when read  
xxxx xxxx 45, 150  
Unimplemented  
Unimplemented  
Unimplemented  
(1,3)  
10Ah  
PCLATH  
INTCON  
EEDATA  
EEADR  
EEDATH  
EEADRH  
Write Buffer for the upper 5 bits of the Program Counter  
INTE RBIE TMR0IF INTF RBIF  
---0 0000 30, 150  
0000 000x 24, 150  
xxxx xxxx 39, 151  
xxxx xxxx 39, 151  
--xx xxxx 39, 151  
---- xxxx 39, 151  
(3)  
10Bh  
GIE  
PEIE  
TMR0IE  
10Ch  
10Dh  
10Eh  
10Fh  
EEPROM Data Register Low Byte  
EEPROM Address Register Low Byte  
EEPROM Data Register High Byte  
(5)  
EEPROM Address Register High Byte  
Bank 3  
(3)  
180h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register) 0000 0000 31, 150  
181h  
OPTION_REG RBPU  
INTEDG  
Program Counter (PC) Least Significant Byte  
IRP RP1 RP0 TO  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
1111 1111 23, 150  
0000 0000 30, 150  
0001 1xxx 22, 150  
xxxx xxxx 31, 150  
(3)  
182h  
PCL  
(3)  
183h  
STATUS  
FSR  
PD  
Z
DC  
C
(3)  
184h  
Indirect Data Memory Address Pointer  
Unimplemented  
185h  
186h  
187h  
188h  
189h  
TRISB  
PORTB Data Direction Register  
Unimplemented  
1111 1111 45, 150  
Unimplemented  
Unimplemented  
(1,3)  
18Ah  
PCLATH  
INTCON  
EECON1  
EECON2  
PEIE  
TMR0IE  
Write Buffer for the upper 5 bits of the Program Counter  
---0 0000 30, 150  
0000 000x 24, 150  
x--- x000 34, 151  
---- ---- 39, 151  
(3)  
18Bh  
GIE  
INTE  
RBIE  
TMR0IF  
WREN  
INTF  
WR  
RBIF  
RD  
18Ch  
EEPGD  
WRERR  
18Dh  
EEPROM Control Register 2 (not a physical register)  
Reserved; maintain clear  
18Eh  
0000 0000  
0000 0000  
18Fh  
Reserved; maintain clear  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1:  
The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose  
contents are transferred to the upper byte of the program counter.  
2:  
3:  
4:  
5:  
Bits PSPIE and PSPIF are reserved on PIC16F873A/876A devices; always maintain these bits clear.  
These registers can be addressed from any bank.  
PORTD, PORTE, TRISD and TRISE are not implemented on PIC16F873A/876A devices, read as ‘0’.  
Bit 4 of EEADRH implemented only on the PIC16F876A/877A devices.  
2003 Microchip Technology Inc.  
DS39582B-page 21  
PIC16F87XA  
For example, CLRF STATUS, will clear the upper three  
bits and set the Z bit. This leaves the Status register as  
000u u1uu(where u= unchanged).  
2.2.2.1  
Status Register  
The Status register contains the arithmetic status of the  
ALU, the Reset status and the bank select bits for data  
memory.  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
Status register because these instructions do not affect  
the Z, C or DC bits from the Status register. For other  
instructions not affecting any status bits, see  
Section 15.0 “Instruction Set Summary”.  
The Status register can be the destination for any  
instruction, as with any other register. If the Status reg-  
ister is the destination for an instruction that affects the  
Z, DC or C bits, then the write to these three bits is dis-  
abled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable, therefore, the result of an instruction with the  
Status register as destination may be different than  
intended.  
Note:  
The C and DC bits operate as a borrow  
and digit borrow bit, respectively, in sub-  
traction. See the SUBLW and SUBWF  
instructions for examples.  
REGISTER 2-1:  
STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
bit 7  
bit 0  
bit 7  
IRP: Register Bank Select bit (used for indirect addressing)  
1= Bank 2, 3 (100h-1FFh)  
0= Bank 0, 1 (00h-FFh)  
bit 6-5  
RP1:RP0: Register Bank Select bits (used for direct addressing)  
11= Bank 3 (180h-1FFh)  
10= Bank 2 (100h-17Fh)  
01= Bank 1 (80h-FFh)  
00= Bank 0 (00h-7Fh)  
Each bank is 128 bytes.  
bit 4  
bit 3  
bit 2  
bit 1  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions)  
(for borrow, the polarity is reversed)  
1= A carry-out from the 4th low order bit of the result occurred  
0= No carry-out from the 4th low order bit of the result  
bit 0  
C: Carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions)  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note:  
For borrow, the polarity is reversed. A subtraction is executed by adding the two’s  
complement of the second operand. For rotate (RRF, RLF) instructions, this bit is  
loaded with either the high, or low order bit of the source register.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39582B-page 22  
2003 Microchip Technology Inc.  
PIC16F87XA  
2.2.2.2  
OPTION_REG Register  
Note:  
To achieve a 1:1 prescaler assignment for  
the TMR0 register, assign the prescaler to  
the Watchdog Timer.  
The OPTION_REG Register is a readable and writable  
register, which contains various control bits to configure  
the TMR0 prescaler/WDT postscaler (single assign-  
able register known also as the prescaler), the external  
INT interrupt, TMR0 and the weak pull-ups on PORTB.  
REGISTER 2-2:  
OPTION_REG REGISTER (ADDRESS 81h, 181h)  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RBPU: PORTB Pull-up Enable bit  
1= PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of RB0/INT pin  
0= Interrupt on falling edge of RB0/INT pin  
T0CS: TMR0 Clock Source Select bit  
1= Transition on RA4/T0CKI pin  
0= Internal instruction cycle clock (CLKO)  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on RA4/T0CKI pin  
0= Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS2:PS0: Prescaler Rate Select bits  
Bit Value TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
Note:  
When using Low-Voltage ICSP Programming (LVP) and the pull-ups on PORTB are  
enabled, bit 3 in the TRISB register must be cleared to disable the pull-up on RB3  
and ensure the proper operation of the device  
2003 Microchip Technology Inc.  
DS39582B-page 23  
PIC16F87XA  
2.2.2.3  
INTCON Register  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs regardless of the state of its  
corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). Usersoftware  
should ensure the appropriate interrupt flag  
bits are clear prior to enabling an interrupt.  
The INTCON register is a readable and writable regis-  
ter, which contains various enable and flag bits for the  
TMR0 register overflow, RB port change and external  
RB0/INT pin interrupts.  
REGISTER 2-3:  
INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
R/W-0  
INTE  
R/W-0  
RBIE  
R/W-0  
R/W-0  
INTF  
R/W-x  
RBIF  
TMR0IE  
TMR0IF  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
GIE: Global Interrupt Enable bit  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
TMR0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 interrupt  
0= Disables the TMR0 interrupt  
INTE: RB0/INT External Interrupt Enable bit  
1= Enables the RB0/INT external interrupt  
0= Disables the RB0/INT external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
TMR0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INTF: RB0/INT External Interrupt Flag bit  
1= The RB0/INT external interrupt occurred (must be cleared in software)  
0= The RB0/INT external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1= At least one of the RB7:RB4 pins changed state; a mismatch condition will continue to set  
the bit. Reading PORTB will end the mismatch condition and allow the bit to be cleared  
(must be cleared in software).  
0= None of the RB7:RB4 pins have changed state  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39582B-page 24  
2003 Microchip Technology Inc.  
PIC16F87XA  
2.2.2.4  
PIE1 Register  
Note:  
Bit PEIE (INTCON<6>) must be set to  
enable any peripheral interrupt.  
The PIE1 register contains the individual enable bits for  
the peripheral interrupts.  
REGISTER 2-4:  
PIE1 REGISTER (ADDRESS 8Ch)  
R/W-0  
PSPIE(1)  
bit 7  
R/W-0  
ADIE  
R/W-0  
RCIE  
R/W-0  
TXIE  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
R/W-0  
CCP1IE TMR2IE TMR1IE  
bit 0  
bit 7  
PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit(1)  
1= Enables the PSP read/write interrupt  
0= Disables the PSP read/write interrupt  
Note 1: PSPIE is reserved on PIC16F873A/876A devices; always maintain this bit clear.  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
ADIE: A/D Converter Interrupt Enable bit  
1= Enables the A/D converter interrupt  
0= Disables the A/D converter interrupt  
RCIE: USART Receive Interrupt Enable bit  
1= Enables the USART receive interrupt  
0= Disables the USART receive interrupt  
TXIE: USART Transmit Interrupt Enable bit  
1= Enables the USART transmit interrupt  
0= Disables the USART transmit interrupt  
SSPIE: Synchronous Serial Port Interrupt Enable bit  
1= Enables the SSP interrupt  
0= Disables the SSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003 Microchip Technology Inc.  
DS39582B-page 25  
PIC16F87XA  
2.2.2.5  
PIR1 Register  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs regardless of the state of its  
corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). Usersoftware  
should ensure the appropriate interrupt bits  
are clear prior to enabling an interrupt.  
The PIR1 register contains the individual flag bits for  
the peripheral interrupts.  
REGISTER 2-5:  
PIR1 REGISTER (ADDRESS 0Ch)  
R/W-0  
PSPIF(1)  
bit 7  
R/W-0  
ADIF  
R-0  
R-0  
TXIF  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
R/W-0  
RCIF  
CCP1IF  
TMR2IF  
TMR1IF  
bit 0  
bit 7  
PSPIF: Parallel Slave Port Read/Write Interrupt Flag bit(1)  
1= A read or a write operation has taken place (must be cleared in software)  
0= No read or write has occurred  
Note 1: PSPIF is reserved on PIC16F873A/876A devices; always maintain this bit clear.  
bit 6  
bit 5  
bit 4  
bit 3  
ADIF: A/D Converter Interrupt Flag bit  
1= An A/D conversion completed  
0= The A/D conversion is not complete  
RCIF: USART Receive Interrupt Flag bit  
1= The USART receive buffer is full  
0= The USART receive buffer is empty  
TXIF: USART Transmit Interrupt Flag bit  
1= The USART transmit buffer is empty  
0= The USART transmit buffer is full  
SSPIF: Synchronous Serial Port (SSP) Interrupt Flag bit  
1= The SSP interrupt condition has occurred and must be cleared in software before returning  
from the Interrupt Service Routine. The conditions that will set this bit are:  
• SPI – A transmission/reception has taken place.  
I2C Slave – A transmission/reception has taken place.  
• I2C Master  
- A transmission/reception has taken place.  
- The initiated Start condition was completed by the SSP module.  
- The initiated Stop condition was completed by the SSP module.  
- The initiated Restart condition was completed by the SSP module.  
- The initiated Acknowledge condition was completed by the SSP module.  
- A Start condition occurred while the SSP module was Idle (multi-master system).  
- A Stop condition occurred while the SSP module was Idle (multi-master system).  
0= No SSP interrupt condition has occurred  
bit 2  
CCP1IF: CCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode.  
bit 1  
bit 0  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred (must be cleared in software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed (must be cleared in software)  
0= TMR1 register did not overflow  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39582B-page 26  
2003 Microchip Technology Inc.  
PIC16F87XA  
2.2.2.6  
PIE2 Register  
Note:  
Bit PEIE (INTCON<6>) must be set to  
enable any peripheral interrupt.  
The PIE2 register contains the individual enable bits for  
the CCP2 peripheral interrupt, the SSP bus collision  
interrupt, EEPROM write operation interrupt and the  
comparator interrupt.  
REGISTER 2-6:  
PIE2 REGISTER (ADDRESS 8Dh)  
U-0  
R/W-0  
CMIE  
U-0  
R/W-0  
EEIE  
R/W-0  
BCLIE  
U-0  
U-0  
R/W-0  
CCP2IE  
bit 0  
bit 7  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
CMIE: Comparator Interrupt Enable bit  
1= Enables the comparator interrupt  
0= Disable the comparator interrupt  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
EEIE: EEPROM Write Operation Interrupt Enable bit  
1= Enable EEPROM write interrupt  
0= Disable EEPROM write interrupt  
bit 3  
BCLIE: Bus Collision Interrupt Enable bit  
1= Enable bus collision interrupt  
0= Disable bus collision interrupt  
bit 2-1  
bit 0  
Unimplemented: Read as ‘0’  
CCP2IE: CCP2 Interrupt Enable bit  
1= Enables the CCP2 interrupt  
0= Disables the CCP2 interrupt  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003 Microchip Technology Inc.  
DS39582B-page 27  
PIC16F87XA  
2.2.2.7  
PIR2 Register  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User  
software should ensure the appropriate  
interrupt flag bits are clear prior to  
enabling an interrupt.  
The PIR2 register contains the flag bits for the CCP2  
interrupt, the SSP bus collision interrupt, EEPROM  
write operation interrupt and the comparator interrupt.  
REGISTER 2-7:  
PIR2 REGISTER (ADDRESS 0Dh)  
U-0  
R/W-0  
CMIF  
U-0  
R/W-0  
EEIF  
R/W-0  
BCLIF  
U-0  
U-0  
R/W-0  
CCP2IF  
bit 0  
bit 7  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
CMIF: Comparator Interrupt Flag bit  
1= The comparator input has changed (must be cleared in software)  
0= The comparator input has not changed  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
EEIF: EEPROM Write Operation Interrupt Flag bit  
1= The write operation completed (must be cleared in software)  
0= The write operation is not complete or has not been started  
bit 3  
BCLIF: Bus Collision Interrupt Flag bit  
1= A bus collision has occurred in the SSP when configured for I2C Master mode  
0= No bus collision has occurred  
bit 2-1  
bit 0  
Unimplemented: Read as ‘0’  
CCP2IF: CCP2 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39582B-page 28  
2003 Microchip Technology Inc.  
PIC16F87XA  
2.2.2.8  
PCON Register  
Note:  
BOR is unknown on Power-on Reset. It  
must be set by the user and checked on  
subsequent Resets to see if BOR is clear,  
indicating a brown-out has occurred. The  
BOR status bit is a “don’t care” and is not  
predictable if the brown-out circuit is dis-  
abled (by clearing the BODEN bit in the  
configuration word).  
The Power Control (PCON) register contains flag bits  
to allow differentiation between a Power-on Reset  
(POR), a Brown-out Reset (BOR), a Watchdog Reset  
(WDT) and an external MCLR Reset.  
REGISTER 2-8:  
PCON REGISTER (ADDRESS 8Eh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
POR  
R/W-1  
BOR  
bit 7  
bit 0  
bit 7-2  
bit 1  
Unimplemented: Read as ‘0’  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0  
BOR: Brown-out Reset Status bit  
1= No Brown-out Reset occurred  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003 Microchip Technology Inc.  
DS39582B-page 29  
PIC16F87XA  
2.3  
PCL and PCLATH  
Note 1: There are no status bits to indicate stack  
overflow or stack underflow conditions.  
The Program Counter (PC) is 13 bits wide. The low  
byte comes from the PCL register which is a readable  
and writable register. The upper bits (PC<12:8>) are  
not readable, but are indirectly writable through the  
PCLATH register. On any Reset, the upper bits of the  
PC will be cleared. Figure 2-5 shows the two situations  
for the loading of the PC. The upper example in the  
figure shows how the PC is loaded on a write to PCL  
(PCLATH<4:0> PCH). The lower example in the  
figure shows how the PC is loaded during a CALL or  
GOTOinstruction (PCLATH<4:3> PCH).  
2: There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the CALL,  
RETURN, RETLWand RETFIEinstructions  
or the vectoring to an interrupt address.  
2.4  
Program Memory Paging  
All PIC16F87XA devices are capable of addressing a  
continuous 8K word block of program memory. The  
CALL and GOTO instructions provide only 11 bits of  
address to allow branching within any 2K program  
memory page. When doing a CALLor GOTOinstruction,  
the upper 2 bits of the address are provided by  
PCLATH<4:3>. When doing a CALL or GOTO instruc-  
tion, the user must ensure that the page select bits are  
programmed so that the desired program memory  
page is addressed. If a return from a CALLinstruction  
(or interrupt) is executed, the entire 13-bit PC is popped  
off the stack. Therefore, manipulation of the  
PCLATH<4:3> bits is not required for the RETURN  
instructions (which POPs the address from the stack).  
FIGURE 2-5:  
LOADING OF PC IN  
DIFFERENT SITUATIONS  
PCH  
PCL  
12  
8
7
0
Instruction with  
PCL as  
Destination  
PC  
8
PCLATH<4:0>  
PCLATH  
5
ALU  
Note:  
The contents of the PCLATH register are  
unchanged after a RETURN or RETFIE  
instruction is executed. The user must  
rewrite the contents of the PCLATH regis-  
ter for any subsequent subroutine calls or  
GOTOinstructions.  
PCH  
12 11 10  
PC  
PCL  
8
7
0
GOTO,CALL  
PCLATH<4:3>  
PCLATH  
11  
2
Opcode <10:0>  
Example 2-1 shows the calling of a subroutine in  
page 1 of the program memory. This example assumes  
that PCLATH is saved and restored by the Interrupt  
Service Routine (if interrupts are used).  
2.3.1  
COMPUTED GOTO  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL). When doing a  
table read using a computed GOTO method, care  
should be exercised if the table location crosses a PCL  
memory boundary (each 256-byte block). Refer to the  
application note, AN556, “Implementing a Table Read”  
(DS00556).  
EXAMPLE 2-1:  
CALL OF A SUBROUTINE  
IN PAGE 1 FROM PAGE 0  
ORG 0x500  
BCF PCLATH,4  
BSF PCLATH,3 ;Select page 1  
;(800h-FFFh)  
CALL SUB1_P1 ;Call subroutine in  
:
:
;page 1 (800h-FFFh)  
2.3.2  
STACK  
The PIC16F87XA family has an 8-level deep x 13-bit  
wide hardware stack. The stack space is not part of  
either program or data space and the stack pointer is not  
readable or writable. The PC is PUSHed onto the stack  
when a CALL instruction is executed, or an interrupt  
causes a branch. The stack is POP’ed in the event of a  
RETURN, RETLW or a RETFIE instruction execution.  
PCLATH is not affected by a PUSH or POP operation.  
ORG 0x900  
;page 1 (800h-FFFh)  
SUB1_P1  
:
;called subroutine  
;page 1 (800h-FFFh)  
:
RETURN  
;return to  
;Call subroutine  
;in page 0  
;(000h-7FFh)  
The stack operates as a circular buffer. This means that  
after the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
DS39582B-page 30  
2003 Microchip Technology Inc.  
PIC16F87XA  
A simple program to clear RAM locations 20h-2Fh  
using indirect addressing is shown in Example 2-2.  
2.5  
Indirect Addressing, INDF and  
FSR Registers  
The INDF register is not a physical register. Addressing  
the INDF register will cause indirect addressing.  
EXAMPLE 2-2:  
INDIRECT ADDRESSING  
MOVLW 0x20  
MOVWF FSR  
;initialize pointer  
;to RAM  
;clear INDF register  
;inc pointer  
;all done?  
;no clear next  
Indirect addressing is possible by using the INDF reg-  
ister. Any instruction using the INDF register actually  
accesses the register pointed to by the File Select Reg-  
ister, FSR. Reading the INDF register itself, indirectly  
(FSR = 0) will read 00h. Writing to the INDF register  
indirectly results in a no operation (although status bits  
may be affected). An effective 9-bit address is obtained  
by concatenating the 8-bit FSR register and the IRP bit  
(Status<7>) as shown in Figure 2-6.  
NEXT  
CLRF INDF  
INCF FSR,F  
BTFSS FSR,4  
GOTO NEXT  
CONTINUE  
:
;yes continue  
FIGURE 2-6:  
DIRECT/INDIRECT ADDRESSING  
Direct Addressing  
From Opcode  
Indirect Addressing  
7
RP1:RP0  
6
0
0
IRP  
FSR Register  
Bank Select  
Location Select  
Bank Select Location Select  
00  
01  
80h  
10  
100h  
11  
00h  
180h  
Data  
Memory  
(1)  
7Fh  
Bank 0  
FFh  
Bank 1  
17Fh  
Bank 2  
1FFh  
Bank 3  
Note 1: For register file map detail, see Figure 2-3.  
2003 Microchip Technology Inc.  
DS39582B-page 31  
PIC16F87XA  
NOTES:  
DS39582B-page 32  
2003 Microchip Technology Inc.  
PIC16F87XA  
3.1  
EEADR and EEADRH  
3.0  
DATA EEPROM AND FLASH  
PROGRAM MEMORY  
The EEADRH:EEADR register pair can address up to  
a maximum of 256 bytes of data EEPROM or up to a  
maximum of 8K words of program EEPROM. When  
selecting a data address value, only the LSByte of the  
address is written to the EEADR register. When select-  
ing a program address value, the MSByte of the  
address is written to the EEADRH register and the  
LSByte is written to the EEADR register.  
The data EEPROM and Flash program memory is read-  
able and writable during normal operation (over the full  
VDD range). This memory is not directly mapped in the  
register file space. Instead, it is indirectly addressed  
through the Special Function Registers. There are six  
SFRs used to read and write this memory:  
• EECON1  
• EECON2  
• EEDATA  
• EEDATH  
• EEADR  
If the device contains less memory than the full address  
reach of the address register pair, the Most Significant  
bits of the registers are not implemented. For example,  
if the device has 128 bytes of data EEPROM, the Most  
Significant bit of EEADR is not implemented on access  
to data EEPROM.  
• EEADRH  
When interfacing to the data memory block, EEDATA  
holds the 8-bit data for read/write and EEADR holds the  
address of the EEPROM location being accessed.  
These devices have 128 or 256 bytes of data EEPROM  
(depending on the device), with an address range from  
00h to FFh. On devices with 128 bytes, addresses from  
80h to FFh are unimplemented and will wraparound to  
the beginning of data EEPROM memory. When writing  
to unimplemented locations, the on-chip charge pump  
will be turned off.  
3.2  
EECON1 and EECON2 Registers  
EECON1 is the control register for memory accesses.  
Control bit, EEPGD, determines if the access will be a  
program or data memory access. When clear, as it is  
when reset, any subsequent operations will operate on  
the data memory. When set, any subsequent  
operations will operate on the program memory.  
Control bits, RD and WR, initiate read and write or  
erase, respectively. These bits cannot be cleared, only  
set, in software. They are cleared in hardware at com-  
pletion of the read or write operation. The inability to  
clear the WR bit in software prevents the accidental,  
premature termination of a write operation.  
When interfacing the program memory block, the  
EEDATA and EEDATH registers form a two-byte word  
that holds the 14-bit data for read/write and the EEADR  
and EEADRH registers form a two-byte word that holds  
the 13-bit address of the program memory location  
being accessed. These devices have 4 or 8K words of  
program Flash, with an address range from 0000h to  
0FFFh for the PIC16F873A/874A and 0000h to 1FFFh  
for the PIC16F876A/877A. Addresses above the range  
of the respective device will wraparound to the  
beginning of program memory.  
The WREN bit, when set, will allow a write or erase  
operation. On power-up, the WREN bit is clear. The  
WRERR bit is set when a write (or erase) operation is  
interrupted by a MCLR or a WDT Time-out Reset dur-  
ing normal operation. In these situations, following  
Reset, the user can check the WRERR bit and rewrite  
the location. The data and address will be unchanged  
in the EEDATA and EEADR registers.  
The EEPROM data memory allows single-byte read and  
write. The Flash program memory allows single-word  
reads and four-word block writes. Program memory  
write operations automatically perform an erase-before-  
write on blocks of four words. A byte write in data  
EEPROM memory automatically erases the location  
and writes the new data (erase-before-write).  
Interrupt flag bit, EEIF in the PIR2 register, is set when  
the write is complete. It must be cleared in software.  
EECON2 is not a physical register. Reading EECON2  
will read all ‘0’s. The EECON2 register is used  
exclusively in the EEPROM write sequence.  
The write time is controlled by an on-chip timer. The  
write/erase voltages are generated by an on-chip  
charge pump, rated to operate over the voltage range  
of the device for byte or word operations.  
Note:  
The self-programming mechanism for Flash  
program memory has been changed. On  
previous PIC16F87X devices, Flash pro-  
gramming was done in single-word erase/  
write cycles. The newer PIC18F87XA  
When the device is code-protected, the CPU may  
continue to read and write the data EEPROM memory.  
Depending on the settings of the write-protect bits, the  
device may or may not be able to write certain blocks  
of the program memory; however, reads of the program  
memory are allowed. When code-protected, the device  
programmer can no longer access data or program  
memory; this does NOT inhibit internal reads or writes.  
devices use  
a four-word erase/write  
cycle. See Section 3.6 “Writing to Flash  
Program Memory” for more information.  
2003 Microchip Technology Inc.  
DS39582B-page 33  
PIC16F87XA  
REGISTER 3-1:  
EECON1 REGISTER (ADDRESS 18Ch)  
R/W-x  
EEPGD  
bit 7  
U-0  
U-0  
U-0  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
WRERR  
bit 0  
bit 7  
EEPGD: Program/Data EEPROM Select bit  
1= Accesses program memory  
0= Accesses data memory  
Reads ‘0’ after a POR; this bit cannot be changed while a write operation is in progress.  
bit 6-4  
bit 3  
Unimplemented: Read as ‘0’  
WRERR: EEPROM Error Flag bit  
1= A write operation is prematurely terminated (any MCLR or any WDT Reset during normal  
operation)  
0= The write operation completed  
bit 2  
bit 1  
WREN: EEPROM Write Enable bit  
1= Allows write cycles  
0= Inhibits write to the EEPROM  
WR: Write Control bit  
1= Initiates a write cycle. The bit is cleared by hardware once write is complete. The WR bit  
can only be set (not cleared) in software.  
0= Write cycle to the EEPROM is complete  
bit 0  
RD: Read Control bit  
1= Initiates an EEPROM read; RD is cleared in hardware. The RD bit can only be set (not  
cleared) in software.  
0= Does not initiate an EEPROM read  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39582B-page 34  
2003 Microchip Technology Inc.  
PIC16F87XA  
The steps to write to EEPROM data memory are:  
3.3  
Reading Data EEPROM Memory  
1. If step 10 is not implemented, check the WR bit  
to see if a write is in progress.  
To read a data memory location, the user must write the  
address to the EEADR register, clear the EEPGD con-  
trol bit (EECON1<7>) and then set control bit RD  
(EECON1<0>). The data is available in the very next  
cycle in the EEDATA register; therefore, it can be read  
in the next instruction (see Example 3-1). EEDATA will  
hold this value until another read or until it is written to  
by the user (during a write operation).  
2. Write the address to EEADR. Make sure that the  
address is not larger than the memory size of  
the device.  
3. Write the 8-bit data value to be programmed in  
the EEDATA register.  
4. Clear the EEPGD bit to point to EEPROM data  
memory.  
The steps to reading the EEPROM data memory are:  
5. Set the WREN bit to enable program operations.  
6. Disable interrupts (if enabled).  
1. Write the address to EEADR. Make sure that the  
address is not larger than the memory size of  
the device.  
7. Execute the special five instruction sequence:  
2. Clear the EEPGD bit to point to EEPROM data  
memory.  
• Write 55h to EECON2 in two steps (first  
to W, then to EECON2)  
3. Set the RD bit to start the read operation.  
4. Read the data from the EEDATA register.  
• Write AAh to EECON2 in two steps (first  
to W, then to EECON2)  
• Set the WR bit  
EXAMPLE 3-1:  
DATA EEPROM READ  
8. Enable interrupts (if using interrupts).  
BSF  
BCF  
MOVF  
MOVWF  
BSF  
STATUS,RP1  
STATUS,RP0  
DATA_EE_ADDR,W ; Data Memory  
EEADR  
STATUS,RP0  
EECON1,EEPGD  
;
9. Clear the WREN bit to disable program  
operations.  
; Bank 2  
10. At the completion of the write cycle, the WR bit  
is cleared and the EEIF interrupt flag bit is set.  
(EEIF must be cleared by firmware.) If step 1 is  
not implemented, then firmware should check  
for EEIF to be set, or WR to clear, to indicate the  
end of the program cycle.  
; Address to read  
; Bank 3  
; Point to Data  
; memory  
; EE Read  
; Bank 2  
BCF  
BSF  
BCF  
MOVF  
EECON1,RD  
STATUS,RP0  
EEDATA,W  
; W = EEDATA  
EXAMPLE 3-2:  
DATA EEPROM WRITE  
BSF  
BSF  
STATUS,RP1  
STATUS,RP0  
;
3.4  
Writing to Data EEPROM Memory  
BTFSC EECON1,WR  
;Wait for write  
;to complete  
;Bank 2  
To write an EEPROM data location, the user must first  
write the address to the EEADR register and the data to  
the EEDATA register. Then the user must follow a  
specific write sequence to initiate the write for each byte.  
GOTO  
BCF  
$-1  
STATUS, RP0  
MOVF  
DATA_EE_ADDR,W ;Data Memory  
;Address to write  
DATA_EE_DATA,W ;Data Memory Value  
MOVWF EEADR  
MOVF  
MOVWF EEDATA  
The write will not initiate if the write sequence is not  
exactly followed (write 55h to EECON2, write AAh to  
EECON2, then set WR bit) for each byte. We strongly  
recommend that interrupts be disabled during this  
code segment (see Example 3-2).  
;to write  
;Bank 3  
;Point to DATA  
;memory  
;Enable writes  
BSF  
BCF  
STATUS,RP0  
EECON1,EEPGD  
EECON1,WREN  
INTCON,GIE  
BSF  
BCF  
Additionally, the WREN bit in EECON1 must be set to  
enable write. This mechanism prevents accidental  
writes to data EEPROM due to errant (unexpected)  
code execution (i.e., lost programs). The user should  
keep the WREN bit clear at all times, except when  
updating EEPROM. The WREN bit is not cleared  
by hardware  
;Disable INTs.  
;
;Write 55h  
;
;Write AAh  
;Set WR bit to  
;begin write  
;Enable INTs.  
;Disable writes  
MOVLW 55h  
MOVWF EECON2  
MOVLW AAh  
MOVWF EECON2  
BSF  
EECON1,WR  
BSF  
BCF  
INTCON,GIE  
EECON1,WREN  
After a write sequence has been initiated, clearing the  
WREN bit will not affect this write cycle. The WR bit will  
be inhibited from being set unless the WREN bit is set.  
At the completion of the write cycle, the WR bit is  
cleared in hardware and the EE Write Complete  
Interrupt Flag bit (EEIF) is set. The user can either  
enable this interrupt or poll this bit. EEIF must be  
cleared by software.  
2003 Microchip Technology Inc.  
DS39582B-page 35  
PIC16F87XA  
ing the “BSF EECON1,RD” instruction to be ignored.  
The data is available in the very next cycle in the  
EEDATA and EEDATH registers; therefore, it can be  
read as two bytes in the following instructions. EEDATA  
and EEDATH registers will hold this value until another  
read or until it is written to by the user (during a write  
operation).  
3.5  
Reading Flash Program Memory  
To read a program memory location, the user must write  
two bytes of the address to the EEADR and EEADRH  
registers, set the EEPGD control bit (EECON1<7>) and  
then set control bit RD (EECON1<0>). Once the read  
control bit is set, the program memory Flash controller  
will use the next two instruction cycles to read the data.  
This causes these two instructions immediately follow-  
EXAMPLE 3-3:  
FLASH PROGRAM READ  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
STATUS, RP1  
STATUS, RP0  
MS_PROG_EE_ADDR  
EEADRH  
LS_PROG_EE_ADDR  
EEADR  
STATUS, RP0  
EECON1, EEPGD  
EECON1, RD  
;
; Bank 2  
;
; MS Byte of Program Address to read  
;
; LS Byte of Program Address to read  
; Bank 3  
; Point to PROGRAM memory  
; EE Read  
BSF  
BSF  
;
;
NOP  
NOP  
; Any instructions here are ignored as program  
; memory is read in second cycle after BSF EECON1,RD  
BCF  
STATUS, RP0  
EEDATA, W  
DATAL  
EEDATH, W  
DATAH  
; Bank 2  
; W = LS Byte of Program EEDATA  
;
; W = MS Byte of Program EEDATA  
;
MOVF  
MOVWF  
MOVF  
MOVWF  
DS39582B-page 36  
2003 Microchip Technology Inc.  
PIC16F87XA  
To transfer data from the buffer registers to the program  
memory, the EEADR and EEADRH must point to the last  
location in the four-word block (EEADR<1:0> = 11).  
Then the following sequence of events must be  
executed:  
3.6  
Writing to Flash Program Memory  
Flash program memory may only be written to if the  
destination address is in a segment of memory that is  
not write-protected, as defined in bits WRT1:WRT0 of  
the device configuration word (Register 14-1). Flash  
program memory must be written in four-word blocks. A  
block consists of four words with sequential addresses,  
with a lower boundary defined by an address, where  
EEADR<1:0> = 00. At the same time, all block writes to  
program memory are done as erase and write opera-  
tions. The write operation is edge-aligned and cannot  
occur across boundaries.  
1. Set the EEPGD control bit (EECON1<7>).  
2. Write 55h, then AAh, to EECON2 (Flash  
programming sequence).  
3. Set control bit WR (EECON1<1>) to begin the  
write operation.  
The user must follow the same specific sequence to ini-  
tiate the write for each word in the program block, writ-  
ing each program word in sequence (00,01,10,11).  
When the write is performed on the last word  
(EEADR<1:0> = 11), the block of four words are  
automatically erased and the contents of the buffer  
registers are written into the program memory.  
To write program data, it must first be loaded into the  
buffer registers (see Figure 3-1). This is accomplished  
by first writing the destination address to EEADR and  
EEADRH and then writing the data to EEDATA and  
EEDATH. After the address and data have been set up,  
then the following sequence of events must be  
executed:  
After the “BSF EECON1,WR” instruction, the processor  
requires two cycles to set up the erase/write operation.  
The user must place two NOPinstructions after the WR  
bit is set. Since data is being written to buffer registers,  
the writing of the first three words of the block appears  
to occur immediately. The processor will halt internal  
operations for the typical 4 ms, only during the cycle in  
which the erase takes place (i.e., the last word of the  
four-word block). This is not Sleep mode as the clocks  
and peripherals will continue to run. After the write  
cycle, the processor will resume operation with the third  
instruction after the EECON1 write instruction. If the  
sequence is performed to any other location, the action  
is ignored.  
1. Set the EEPGD control bit (EECON1<7>).  
2. Write 55h, then AAh, to EECON2 (Flash  
programming sequence).  
3. Set the WR control bit (EECON1<1>).  
All four buffer register locations MUST be written to with  
correct data. If only one, two or three words are being  
written to in the block of four words, then a read from  
the program memory location(s) not being written to  
must be performed. This takes the data from the pro-  
gram location(s) not being written and loads it into the  
EEDATA and EEDATH registers. Then the sequence of  
events to transfer data to the buffer registers must be  
executed.  
FIGURE 3-1:  
BLOCK WRITES TO FLASH PROGRAM MEMORY  
7
5
0
0 7  
Four words of  
Flash are erased,  
then all buffers  
are transferred  
to Flash  
EEDATH  
6
EEDATA  
8
automatically  
after this word  
is written  
First word of block  
to be written  
14  
14  
14  
14  
EEADR<1:0> = 00  
EEADR<1:0> = 10  
Buffer Register  
EEADR<1:0> = 01  
Buffer Register  
EEADR<1:0> = 11  
Buffer Register  
Buffer Register  
Program Memory  
2003 Microchip Technology Inc.  
DS39582B-page 37  
PIC16F87XA  
An example of the complete four-word write sequence  
is shown in Example 3-4. The initial address is loaded  
into the EEADRH:EEADR register pair; the four words  
of data are loaded using indirect addressing.  
EXAMPLE 3-4:  
WRITING TO FLASH PROGRAM MEMORY  
; This write routine assumes the following:  
;
; 1. A valid starting address (the least significant bits = ‘00’)is loaded in ADDRH:ADDRL  
; 2. The 8 bytes of data are loaded, starting at the address in DATADDR  
; 3. ADDRH, ADDRL and DATADDR are all located in shared data memory 0x70 - 0x7f  
;
BSF  
BCF  
STATUS,RP1  
STATUS,RP0  
ADDRH,W  
EEADRH  
ADDRL,W  
EEADR  
DATAADDR,W  
FSR  
INDF,W  
EEDATA  
FSR,F  
INDF,W  
EEDATH  
;
; Bank 2  
; Load initial address  
;
;
MOVF  
MOVWF  
MOVF  
MOVWF  
MOVF  
MOVWF  
MOVF  
MOVWF  
INCF  
MOVF  
MOVWF  
INCF  
BSF  
BSF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
;
; Load initial data address  
;
; Load first data byte into lower  
;
; Next byte  
; Load second data byte into upper  
;
;
; Bank 3  
; Point to program memory  
; Enable writes  
; Disable interrupts (if using)  
; Start of required write sequence:  
; Write 55h  
LOOP  
FSR,F  
STATUS,RP0  
EECON1,EEPGD  
EECON1,WREN  
INTCON,GIE  
55h  
EECON2  
AAh  
EECON2  
EECON1,WR  
;
; Write AAh  
; Set WR bit to begin write  
; Any instructions here are ignored as processor  
; halts to begin write sequence  
; processor will stop here and wait for write complete  
; after write processor continues with 3rd instruction  
; Disable writes  
; Enable interrupts (if using)  
; Bank 2  
; Increment address  
; Check if lower two bits of address are ‘00’  
; Indicates when four words have been programmed  
;
; Exit if more than four words,  
; Continue if less than four words  
NOP  
NOP  
BCF  
BSF  
BCF  
INCF  
MOVF  
ANDLW  
XORLW  
BTFSC  
GOTO  
EECON1,WREN  
INTCON,GIE  
STATUS,RP0  
EEADR,F  
EEADR,W  
0x03  
0x03  
STATUS,Z  
LOOP  
DS39582B-page 38  
2003 Microchip Technology Inc.  
PIC16F87XA  
3.7  
Protection Against Spurious Write  
3.8  
Operation During Code-Protect  
There are conditions when the device should not write  
to the data EEPROM or Flash program memory. To  
protect against spurious writes, various mechanisms  
have been built-in. On power-up, WREN is cleared.  
Also, the Power-up Timer (72 ms duration) prevents an  
EEPROM write.  
When the data EEPROM is code-protected, the micro-  
controller can read and write to the EEPROM normally.  
However, all external access to the EEPROM is  
disabled. External write access to the program memory  
is also disabled.  
When program memory is code-protected, the microcon-  
troller can read and write to program memory normally,  
as well as execute instructions. Writes by the device may  
be selectively inhibited to regions of the memory depend-  
ing on the setting of bits WR1:WR0 of the configuration  
word (see Section 14.1 “Configuration Bits” for addi-  
tional information). External access to the memory is also  
disabled.  
The write initiate sequence and the WREN bit together  
help prevent an accidental write during brown-out,  
power glitch or software malfunction.  
TABLE 3-1:  
REGISTERS/BITS ASSOCIATED WITH DATA EEPROM AND  
FLASH PROGRAM MEMORIES  
Value on  
Power-on  
Reset  
Value on  
all other  
Resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
10Ch  
10Dh  
10Eh  
10Fh  
18Ch  
18Dh  
0Dh  
EEDATA EEPROM/Flash Data Register Low Byte  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx ---0 q000  
xxxx xxxx ---- ----  
x--- x000 ---0 q000  
---- ---- ---- ----  
EEADR  
EEPROM/Flash Address Register Low Byte  
EEDATH  
EEADRH  
EEPROM/Flash Data Register High Byte  
EEPROM/Flash Address Register High Byte  
EECON1 EEPGD  
WRERR WREN  
WR  
RD  
EECON2 EEPROM Control Register 2 (not a physical register)  
PIR2  
PIE2  
CMIF  
CMIE  
EEIF  
EEIE  
BCLIF  
BCLIE  
CCP2IF -0-0 0--0 -0-0 0--0  
CCP2IE -0-0 0--0 -0-0 0--0  
8Dh  
Legend:  
x= unknown, u= unchanged, -= unimplemented, read as ‘0’, q= value depends upon condition.  
Shaded cells are not used by data EEPROM or Flash program memory.  
2003 Microchip Technology Inc.  
DS39582B-page 39  
PIC16F87XA  
NOTES:  
DS39582B-page 40  
2003 Microchip Technology Inc.  
PIC16F87XA  
EXAMPLE 4-1:  
INITIALIZING PORTA  
4.0  
I/O PORTS  
BCF  
STATUS, RP0  
STATUS, RP1 ; Bank0  
PORTA ; Initialize PORTA by  
;
Some pins for these I/O ports are multiplexed with an  
alternate function for the peripheral features on the  
device. In general, when a peripheral is enabled, that  
pin may not be used as a general purpose I/O pin.  
BCF  
CLRF  
; clearing output  
; data latches  
BSF  
STATUS, RP0 ; Select Bank 1  
Additional information on I/O ports may be found in the  
PICmicro™ Mid-Range Reference Manual (DS33023).  
MOVLW  
MOVWF  
MOVLW  
0x06  
; Configure all pins  
ADCON1  
0xCF  
; as digital inputs  
; Value used to  
4.1  
PORTA and the TRISA Register  
; initialize data  
; direction  
PORTA is a 6-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISA. Setting a  
TRISA bit (= 1) will make the corresponding PORTA pin  
an input (i.e., put the corresponding output driver in a  
High-Impedance mode). Clearing a TRISA bit (= 0) will  
make the corresponding PORTA pin an output (i.e., put  
the contents of the output latch on the selected pin).  
MOVWF  
TRISA  
; Set RA<3:0> as inputs  
; RA<5:4> as outputs  
; TRISA<7:6>are always  
; read as '0'.  
FIGURE 4-1:  
BLOCK DIAGRAM OF  
RA3:RA0 PINS  
Reading the PORTA register reads the status of the  
pins, whereas writing to it will write to the port latch. All  
write operations are read-modify-write operations.  
Therefore, a write to a port implies that the port pins are  
read, the value is modified and then written to the port  
data latch.  
Data Latch  
Data  
Bus  
D
Q
VDD  
WR  
PORTA  
Q
CK  
I/O pin(1)  
P
Pin RA4 is multiplexed with the Timer0 module clock  
input to become the RA4/T0CKI pin. The RA4/T0CKI  
pin is a Schmitt Trigger input and an open-drain output.  
All other PORTA pins have TTL input levels and full  
CMOS output drivers.  
TRIS Latch  
N
D
Q
WR  
TRISA  
VSS  
Analog  
Input  
Q
CK  
Other PORTA pins are multiplexed with analog inputs  
and the analog VREF input for both the A/D converters  
and the comparators. The operation of each pin is  
selected by clearing/setting the appropriate control bits  
in the ADCON1 and/or CMCON registers.  
Mode  
RD  
TRISA  
TTL  
Note:  
On a Power-on Reset, these pins are con-  
figured as analog inputs and read as ‘0’.  
The comparators are in the off (digital)  
state.  
Input  
Buffer  
Q
D
The TRISA register controls the direction of the port  
pins even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
EN  
RD PORTA  
To A/D Converter or Comparator  
Note 1: I/O pins have protection diodes to VDD and VSS.  
2003 Microchip Technology Inc.  
DS39582B-page 41  
PIC16F87XA  
FIGURE 4-2:  
BLOCK DIAGRAM OF RA4/T0CKI PIN  
CMCON<2:0> = x01or 011  
C1OUT  
Data Latch  
Data Bus  
1
0
D
Q
(1)  
I/O pin  
N
WR PORTA  
CK  
Q
TRIS Latch  
VSS  
D
Q
WR TRISA  
RD TRISA  
Schmitt  
Trigger  
Input  
Q
CK  
Buffer  
Q
D
EN  
RD PORTA  
TMR0 Clock Input  
Note 1: I/O pin has protection diodes to VSS only.  
FIGURE 4-3:  
BLOCK DIAGRAM OF RA5 PIN  
CMCON<2:0> = 011or 101  
C2OUT  
Data Latch  
VDD  
P
Data Bus  
1
0
D
Q
WR PORTA  
CK  
Q
TRIS Latch  
(1)  
N
I/O pin  
D
Q
Analog  
IIP Mode  
WR TRISA  
RD TRISA  
Q
CK  
VSS  
TTL  
Input  
Buffer  
Q
D
EN  
RD PORTA  
A/D Converter or SS Input  
Note 1: I/O pin has protection diodes to VDD and VSS.  
DS39582B-page 42  
2003 Microchip Technology Inc.  
PIC16F87XA  
TABLE 4-1:  
Name  
PORTA FUNCTIONS  
Bit#  
Buffer  
Function  
RA0/AN0  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
TTL Input/output or analog input.  
TTL Input/output or analog input.  
RA1/AN1  
RA2/AN2/VREF-/CVREF  
RA3/AN3/VREF+  
RA4/T0CKI/C1OUT  
TTL Input/output or analog input or VREF- or CVREF.  
TTL Input/output or analog input or VREF+.  
ST  
Input/output or external clock input for Timer0 or comparator output.  
Output is open-drain type.  
RA5/AN4/SS/C2OUT  
bit 5  
TTL Input/output or analog input or slave select input for synchronous serial  
port or comparator output.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
TABLE 4-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RA0  
CM0  
05h  
PORTA  
TRISA  
RA5  
RA4  
RA3  
RA2  
RA1  
--0x 0000 --0u 0000  
--11 1111 --11 1111  
0000 0111 0000 0111  
85h  
PORTA Data Direction Register  
9Ch  
CMCON  
C2OUT C1OUT C2INV  
C1INV  
CIS  
CM2  
CM1  
9Dh  
CVRCON CVREN CVROE CVRR  
ADCON1 ADFM ADCS2  
CVR3  
CVR2  
CVR1  
CVR0 000- 0000 000- 0000  
9Fh  
PCFG3 PCFG2 PCFG1 PCFG0 00-- 0000 00-- 0000  
Legend:  
x= unknown, u= unchanged, -= unimplemented locations read as ‘0’. Shaded cells are not used by PORTA.  
Note:  
When using the SSP module in SPI Slave mode and SS enabled, the A/D converter must be set to one of  
the following modes, where PCFG3:PCFG0 = 0100, 0101, 011x, 1101, 1110, 1111.  
2003 Microchip Technology Inc.  
DS39582B-page 43  
PIC16F87XA  
This interrupt can wake the device from Sleep. The  
user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
4.2  
PORTB and the TRISB Register  
PORTB is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISB. Setting a  
TRISB bit (= 1) will make the corresponding PORTB  
pin an input (i.e., put the corresponding output driver in  
a High-Impedance mode). Clearing a TRISB bit (= 0)  
will make the corresponding PORTB pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
a) Any read or write of PORTB. This will end the  
mismatch condition.  
b) Clear flag bit RBIF.  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition and  
allow flag bit RBIF to be cleared.  
Three pins of PORTB are multiplexed with the In-Circuit  
Debugger and Low-Voltage Programming function:  
RB3/PGM, RB6/PGC and RB7/PGD. The alternate  
functions of these pins are described in Section 14.0  
“Special Features of the CPU”.  
The interrupt-on-change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt-on-change  
feature. Polling of PORTB is not recommended while  
using the interrupt-on-change feature.  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is per-  
formed by clearing bit RBPU (OPTION_REG<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are  
disabled on a Power-on Reset.  
This interrupt-on-mismatch feature, together with soft-  
ware configurable pull-ups on these four pins, allow  
easy interface to a keypad and make it possible for  
wake-up on key depression. Refer to the application  
note, AN552, “Implementing Wake-up on Key Stroke”  
(DS00552).  
FIGURE 4-4:  
BLOCK DIAGRAM OF  
RB3:RB0 PINS  
RB0/INT is an external interrupt input pin and is  
configured using the INTEDG bit (OPTION_REG<6>).  
VDD  
RB0/INT is discussed in detail in Section 14.11.1 “INT  
Interrupt”.  
RBPU(2)  
Weak  
P
Pull-up  
Data Latch  
Data Bus  
WR Port  
FIGURE 4-5:  
BLOCK DIAGRAM OF  
RB7:RB4 PINS  
D
Q
I/O pin(1)  
CK  
TRIS Latch  
VDD  
RBPU(2)  
Weak  
P
D
Q
Pull-up  
TTL  
Input  
Buffer  
Data Latch  
WR TRIS  
Data Bus  
WR Port  
CK  
D
Q
I/O pin(1)  
CK  
TRIS Latch  
RD TRIS  
RD Port  
D
Q
Q
D
WR TRIS  
RD TRIS  
TTL  
CK  
EN  
Input  
Buffer  
ST  
Buffer  
RB0/INT  
RB3/PGM  
Latch  
Schmitt Trigger  
Buffer  
RD Port  
Q
Q
D
RD Port  
Note 1: I/O pins have diode protection to VDD and VSS.  
EN  
Q1  
Set RBIF  
2: To enable weak pull-ups, set the appropriate TRIS  
bit(s) and clear the RBPU bit (OPTION_REG<7>).  
D
Four of the PORTB pins, RB7:RB4, have an interrupt-  
on-change feature. Only pins configured as inputs can  
cause this interrupt to occur (i.e., any RB7:RB4 pin  
configured as an output is excluded from the interrupt-  
on-change comparison). The input pins (of RB7:RB4)  
are compared with the old value latched on the last  
read of PORTB. The “mismatch” outputs of RB7:RB4  
are OR’ed together to generate the RB port change  
interrupt with flag bit RBIF (INTCON<0>).  
RD Port  
Q3  
From other  
RB7:RB4 pins  
EN  
RB7:RB6  
In Serial Programming Mode  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS  
bit(s) and clear the RBPU bit (OPTION_REG<7>).  
DS39582B-page 44  
2003 Microchip Technology Inc.  
PIC16F87XA  
TABLE 4-3:  
Name  
PORTB FUNCTIONS  
Bit#  
Buffer  
Function  
RB0/INT  
bit 0  
TTL/ST(1)  
Input/output pin or external interrupt input. Internal software programmable  
weak pull-up.  
RB1  
bit 1  
bit 2  
bit 3  
TTL  
TTL  
TTL  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
RB2  
RB3/PGM(3)  
Input/output pin or programming pin in LVP mode. Internal software  
programmable weak pull-up.  
RB4  
bit 4  
bit 5  
bit 6  
bit 7  
TTL  
Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up.  
RB5  
TTL  
Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up.  
RB6/PGC  
RB7/PGD  
TTL/ST(2)  
TTL/ST(2)  
Input/output pin (with interrupt-on-change) or in-circuit debugger pin.  
Internal software programmable weak pull-up. Serial programming clock.  
Input/output pin (with interrupt-on-change) or in-circuit debugger pin.  
Internal software programmable weak pull-up. Serial programming data.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode or in-circuit debugger.  
3: Low-Voltage ICSP Programming (LVP) is enabled by default which disables the RB3 I/O function. LVP  
must be disabled to enable RB3 as an I/O pin and allow maximum compatibility to the other 28-pin and  
40-pin mid-range devices.  
TABLE 4-4:  
Address  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
06h, 106h PORTB  
86h, 186h TRISB  
RB7  
RB6  
RB5  
RB4 RB3 RB2 RB1 RB0 xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
PORTB Data Direction Register  
81h, 181h OPTION_REG RBPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 1111 1111 1111 1111  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTB.  
2003 Microchip Technology Inc.  
DS39582B-page 45  
PIC16F87XA  
FIGURE 4-7:  
PORTC BLOCK DIAGRAM  
(PERIPHERAL OUTPUT  
OVERRIDE) RC<4:3>  
4.3  
PORTC and the TRISC Register  
PORTC is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISC. Setting a  
TRISC bit (= 1) will make the corresponding PORTC  
pin an input (i.e., put the corresponding output driver in  
a High-Impedance mode). Clearing a TRISC bit (= 0)  
will make the corresponding PORTC pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
Port/Peripheral Select(2)  
Peripheral Data Out  
Data Bus  
0
VDD  
D
Q
P
WR Port  
1
PORTC is multiplexed with several peripheral functions  
(Table 4-5). PORTC pins have Schmitt Trigger input  
buffers.  
When the I2C module is enabled, the PORTC<4:3>  
pins can be configured with normal I2C levels, or with  
SMBus levels, by using the CKE bit (SSPSTAT<6>).  
Q
CK  
Data Latch  
I/O  
pin(1)  
D
Q
Q
WR TRIS  
RD TRIS  
CK  
N
TRIS Latch  
VSS  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an  
output, while other peripherals override the TRIS bit to  
make a pin an input. Since the TRIS bit override is in  
effect while the peripheral is enabled, read-modify-  
write instructions (BSF, BCF, XORWF) with TRISC as the  
destination, should be avoided. The user should refer  
to the corresponding peripheral section for the correct  
TRIS bit settings.  
Schmitt  
Trigger  
Peripheral  
OE(3)  
Q
D
Schmitt  
Trigger  
with  
SMBus  
Levels  
EN  
RD Port  
0
1
SSP Input  
CKE  
SSPSTAT<6>  
FIGURE 4-6:  
PORTC BLOCK DIAGRAM  
(PERIPHERAL OUTPUT  
OVERRIDE) RC<2:0>,  
RC<7:5>  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: Port/Peripheral Select signal selects between port data  
and peripheral output.  
3: Peripheral OE (Output Enable) is only activated if  
Peripheral Select is active.  
Port/Peripheral Select(2)  
Peripheral Data Out  
Data Bus  
VDD  
P
0
1
D
Q
Q
WR Port  
CK  
Data Latch  
I/O  
D
Q
Q
pin(1)  
WR TRIS  
RD TRIS  
CK  
N
TRIS Latch  
VSS  
Schmitt  
Trigger  
Peripheral  
OE(3)  
Q
D
EN  
RD Port  
Peripheral Input  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: Port/Peripheral Select signal selects between port  
data and peripheral output.  
3: Peripheral OE (Output Enable) is only activated if  
Peripheral Select is active.  
DS39582B-page 46  
2003 Microchip Technology Inc.  
PIC16F87XA  
TABLE 4-5:  
Name  
PORTC FUNCTIONS  
Bit# Buffer Type  
Function  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
bit 0  
bit 1  
ST  
ST  
Input/output port pin or Timer1 oscillator output/Timer1 clock input.  
Input/output port pin or Timer1 oscillator input or Capture2 input/  
Compare2 output/PWM2 output.  
RC2/CCP1  
bit 2  
bit 3  
ST  
ST  
Input/output port pin or Capture1 input/Compare1 output/  
PWM1 output.  
RC3/SCK/SCL  
RC3 can also be the synchronous serial clock for both SPI and  
I2C modes.  
RC4/SDI/SDA  
RC5/SDO  
bit 4  
bit 5  
bit 6  
ST  
ST  
ST  
RC4 can also be the SPI data in (SPI mode) or data I/O (I2C mode).  
Input/output port pin or Synchronous Serial Port data output.  
RC6/TX/CK  
Input/output port pin or USART asynchronous transmit or  
synchronous clock.  
RC7/RX/DT  
bit 7  
ST  
Input/output port pin or USART asynchronous receive or  
synchronous data.  
Legend: ST = Schmitt Trigger input  
TABLE 4-6:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on  
Value on:  
POR, BOR  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
07h  
87h  
PORTC RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0 xxxx xxxx uuuu uuuu  
TRISC PORTC Data Direction Register  
1111 1111 1111 1111  
Legend: x= unknown, u= unchanged  
2003 Microchip Technology Inc.  
DS39582B-page 47  
PIC16F87XA  
FIGURE 4-8:  
PORTD BLOCK DIAGRAM  
(IN I/O PORT MODE)  
4.4  
PORTD and TRISD Registers  
Note:  
PORTD and TRISD are not implemented  
on the 28-pin devices.  
Data  
Bus  
Data Latch  
D
Q
PORTD is an 8-bit port with Schmitt Trigger input  
buffers. Each pin is individually configurable as an input  
or output.  
I/O pin(1)  
WR  
Port  
CK  
TRIS Latch  
PORTD can be configured as an 8-bit wide  
microprocessor port (Parallel Slave Port) by setting  
control bit, PSPMODE (TRISE<4>). In this mode, the  
input buffers are TTL.  
D
Q
WR  
TRIS  
Schmitt  
Trigger  
Input  
CK  
Buffer  
RD  
TRIS  
Q
D
EN  
RD Port  
Note 1: I/O pins have protection diodes to VDD and VSS.  
TABLE 4-7:  
Name  
PORTD FUNCTIONS  
Bit#  
Buffer Type  
Function  
RD0/PSP0  
RD1/PSP1  
RD2/PSP2  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
bit 0  
bit 1  
bit2  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
Input/output port pin or Parallel Slave Port bit 0.  
Input/output port pin or Parallel Slave Port bit 1.  
Input/output port pin or Parallel Slave Port bit 2.  
Input/output port pin or Parallel Slave Port bit 3.  
Input/output port pin or Parallel Slave Port bit 4.  
Input/output port pin or Parallel Slave Port bit 5.  
Input/output port pin or Parallel Slave Port bit 6.  
Input/output port pin or Parallel Slave Port bit 7.  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.  
TABLE 4-8:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Address Name Bit 7 Bit 6 Bit 5  
Bit 4  
Bit 3  
RD3  
Bit 2  
Bit 1  
Bit 0  
08h  
88h  
89h  
PORTD RD7 RD6 RD5  
RD4  
RD2  
RD1  
RD0 xxxx xxxx uuuu uuuu  
TRISD PORTD Data Direction Register  
TRISE IBF OBF IBOV PSPMODE  
1111 1111 1111 1111  
PORTE Data Direction Bits 0000 -111 0000 -111  
Legend: x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used by PORTD.  
DS39582B-page 48  
2003 Microchip Technology Inc.  
PIC16F87XA  
FIGURE 4-9:  
PORTE BLOCK DIAGRAM  
(IN I/O PORT MODE)  
4.5  
PORTE and TRISE Register  
Note:  
PORTE and TRISE are not implemented  
on the 28-pin devices.  
Data  
Bus  
Data Latch  
D
Q
PORTE has three pins (RE0/RD/AN5, RE1/WR/AN6  
and RE2/CS/AN7) which are individually configurable  
as inputs or outputs. These pins have Schmitt Trigger  
input buffers.  
WR  
I/O pin(1)  
Port  
CK  
TRIS Latch  
The PORTE pins become the I/O control inputs for the  
microprocessor port when bit PSPMODE (TRISE<4>) is  
set. In this mode, the user must make certain that the  
TRISE<2:0> bits are set and that the pins are configured  
as digital inputs. Also, ensure that ADCON1 is config-  
ured for digital I/O. In this mode, the input buffers are  
TTL.  
D
Q
WR  
TRIS  
Schmitt  
Trigger  
Input  
CK  
Buffer  
RD  
TRIS  
Register 4-1 shows the TRISE register which also  
controls the Parallel Slave Port operation.  
Q
D
PORTE pins are multiplexed with analog inputs. When  
selected for analog input, these pins will read as ‘0’s.  
EN  
TRISE controls the direction of the RE pins, even when  
they are being used as analog inputs. The user must  
make sure to keep the pins configured as inputs when  
using them as analog inputs.  
RD Port  
Note 1: I/O pins have protection diodes to VDD and VSS.  
Note:  
On a Power-on Reset, these pins are  
configured as analog inputs and read as ‘0’.  
TABLE 4-9:  
Name  
PORTE FUNCTIONS  
Bit# Buffer Type  
Function  
I/O port pin or read control input in Parallel Slave Port mode or analog input:  
RD  
1 = Idle  
RE0/RD/AN5  
bit 0  
ST/TTL(1)  
0 = Read operation. Contents of PORTD register are output to PORTD  
I/O pins (if chip selected).  
I/O port pin or write control input in Parallel Slave Port mode or analog input:  
WR  
1= Idle  
RE1/WR/AN6 bit 1  
ST/TTL(1)  
ST/TTL(1)  
0= Write operation. Value of PORTD I/O pins is latched into PORTD  
register (if chip selected).  
I/O port pin or chip select control input in Parallel Slave Port mode or analog input:  
CS  
RE2/CS/AN7  
bit 2  
1= Device is not selected  
0= Device is selected  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.  
2003 Microchip Technology Inc.  
DS39582B-page 49  
PIC16F87XA  
TABLE 4-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
09h  
PORTE  
TRISE  
RE2  
RE1  
RE0  
---- -xxx ---- -uuu  
0000 -111 0000 -111  
89h  
IBF  
OBF  
IBOV PSPMODE  
PORTE Data Direction bits  
9Fh  
ADCON1 ADFM ADCS2  
PCFG3 PCFG2 PCFG1 PCFG0 00-- 0000 00-- 0000  
Legend:  
x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used by PORTE.  
REGISTER 4-1:  
TRISE REGISTER (ADDRESS 89h)  
R-0  
IBF  
R-0  
R/W-0  
IBOV  
R/W-0  
U-0  
R/W-1  
Bit 2  
R/W-1  
Bit 1  
R/W-1  
Bit 0  
OBF  
PSPMODE  
bit 7  
bit 0  
Parallel Slave Port Status/Control Bits:  
bit 7  
bit 6  
bit 5  
IBF: Input Buffer Full Status bit  
1= A word has been received and is waiting to be read by the CPU  
0= No word has been received  
OBF: Output Buffer Full Status bit  
1= The output buffer still holds a previously written word  
0= The output buffer has been read  
IBOV: Input Buffer Overflow Detect bit (in Microprocessor mode)  
1= A write occurred when a previously input word has not been read (must be cleared in  
software)  
0= No overflow occurred  
bit 4  
PSPMODE: Parallel Slave Port Mode Select bit  
1= PORTD functions in Parallel Slave Port mode  
0= PORTD functions in general purpose I/O mode  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
PORTE Data Direction Bits:  
Bit 2: Direction Control bit for pin RE2/CS/AN7  
1= Input  
0= Output  
bit 1  
bit 0  
Bit 1: Direction Control bit for pin RE1/WR/AN6  
1= Input  
0= Output  
Bit 0: Direction Control bit for pin RE0/RD/AN5  
1= Input  
0= Output  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39582B-page 50  
2003 Microchip Technology Inc.  
PIC16F87XA  
When not in PSP mode, the IBF and OBF bits are held  
clear. However, if flag bit IBOV was previously set, it  
must be cleared in firmware.  
4.6  
Parallel Slave Port  
The Parallel Slave Port (PSP) is not implemented on  
the PIC16F873A or PIC16F876A.  
An interrupt is generated and latched into flag bit  
PSPIF when a read or write operation is completed.  
PSPIF must be cleared by the user in firmware and the  
interrupt can be disabled by clearing the interrupt  
enable bit PSPIE (PIE1<7>).  
PORTD operates as an 8-bit wide Parallel Slave Port,  
or microprocessor port, when control bit PSPMODE  
(TRISE<4>) is set. In Slave mode, it is asynchronously  
readable and writable by the external world through RD  
control input pin, RE0/RD/AN5, and WR control input  
pin, RE1/WR/AN6.  
FIGURE 4-10:  
PORTD AND PORTE  
BLOCK DIAGRAM  
The PSP can directly interface to an 8-bit  
microprocessor data bus. The external microprocessor  
can read or write the PORTD latch as an 8-bit latch.  
Setting bit PSPMODE enables port pin RE0/RD/AN5 to  
be the RD input, RE1/WR/AN6 to be the WR input and  
RE2/CS/AN7 to be the CS (Chip Select) input. For this  
functionality, the corresponding data direction bits of  
the TRISE register (TRISE<2:0>) must be configured  
as inputs (set). The A/D port configuration bits,  
PCFG3:PCFG0 (ADCON1<3:0>), must be set to  
configure pins RE2:RE0 as digital I/O.  
(PARALLEL SLAVE PORT)  
Data Bus  
D
Q
WR  
Port  
RDx pin  
CK  
TTL  
Q
D
There are actually two 8-bit latches: one for data output  
and one for data input. The user writes 8-bit data to the  
PORTD data latch and reads data from the port pin  
latch (note that they have the same address). In this  
mode, the TRISD register is ignored since the external  
device is controlling the direction of data flow.  
RD Port  
EN  
One bit of PORTD  
Set Interrupt Flag  
PSPIF (PIR1<7>)  
A write to the PSP occurs when both the CS and WR  
lines are first detected low. When either the CS or WR  
lines become high (level triggered), the Input Buffer Full  
(IBF) status flag bit (TRISE<7>) is set on the Q4 clock  
cycle, following the next Q2 cycle, to signal the write is  
complete (Figure 4-11). The interrupt flag bit, PSPIF  
(PIR1<7>), is also set on the same Q4 clock cycle. IBF  
can only be cleared by reading the PORTD input latch.  
The Input Buffer Overflow (IBOV) status flag bit  
(TRISE<5>) is set if a second write to the PSP is  
attempted when the previous byte has not been read  
out of the buffer.  
Read  
TTL  
Chip Select  
TTL  
RD  
CS  
WR  
Write  
TTL  
Note 1: I/O pins have protection diodes to VDD and VSS.  
A read from the PSP occurs when both the CS and RD  
lines are first detected low. The Output Buffer Full  
(OBF) status flag bit (TRISE<6>) is cleared  
immediately (Figure 4-12), indicating that the PORTD  
latch is waiting to be read by the external bus. When  
either the CS or RD pin becomes high (level triggered),  
the interrupt flag bit PSPIF is set on the Q4 clock cycle,  
following the next Q2 cycle, indicating that the read is  
complete. OBF remains low until data is written to  
PORTD by the user firmware.  
2003 Microchip Technology Inc.  
DS39582B-page 51  
PIC16F87XA  
FIGURE 4-11:  
PARALLEL SLAVE PORT WRITE WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
FIGURE 4-12:  
PARALLEL SLAVE PORT READ WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
TABLE 4-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
08h  
PORTD  
PORTE  
TRISE  
PIR1  
Port Data Latch when written; Port pins when read  
xxxx xxxx uuuu uuuu  
---- -xxx ---- -uuu  
0000 -111 0000 -111  
09h  
IBF  
RE2  
RE1  
RE0  
89h  
OBF  
ADIF  
ADIE  
IBOV PSPMODE  
PORTE Data Direction bits  
(1)  
(1)  
0Ch  
PSPIF  
PSPIE  
RCIF  
RCIE  
TXIF  
TXIE  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
PCFG3 PCFG2 PCFG1 PCFG0 00-- 0000 00-- 0000  
8Ch  
PIE1  
9Fh  
ADCON1  
ADFM ADCS2  
Legend:  
x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used by the Parallel Slave Port.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F873A/876A; always maintain these bits clear.  
DS39582B-page 52  
2003 Microchip Technology Inc.  
PIC16F87XA  
Counter mode is selected by setting bit T0CS  
(OPTION_REG<5>). In Counter mode, Timer0 will  
increment either on every rising or falling edge of pin  
RA4/T0CKI. The incrementing edge is determined by  
the Timer0 Source Edge Select bit, T0SE  
(OPTION_REG<4>). Clearing bit T0SE selects the ris-  
ing edge. Restrictions on the external clock input are  
discussed in detail in Section 5.2 “Using Timer0 with  
an External Clock”.  
5.0  
TIMER0 MODULE  
The Timer0 module timer/counter has the following  
features:  
• 8-bit timer/counter  
• Readable and writable  
• 8-bit software programmable prescaler  
• Internal or external clock select  
• Interrupt on overflow from FFh to 00h  
• Edge select for external clock  
The prescaler is mutually exclusively shared between  
the Timer0 module and the Watchdog Timer. The  
prescaler is not readable or writable. Section 5.3  
“Prescaler” details the operation of the prescaler.  
Figure 5-1 is a block diagram of the Timer0 module and  
the prescaler shared with the WDT.  
Additional information on the Timer0 module is  
available in the PICmicro® Mid-Range MCU Family  
Reference Manual (DS33023).  
5.1  
Timer0 Interrupt  
The TMR0 interrupt is generated when the TMR0  
register overflows from FFh to 00h. This overflow sets  
bit TMR0IF (INTCON<2>). The interrupt can be  
masked by clearing bit TMR0IE (INTCON<5>). Bit  
TMR0IF must be cleared in software by the Timer0  
module Interrupt Service Routine before re-enabling  
this interrupt. The TMR0 interrupt cannot awaken the  
processor from Sleep since the timer is shut-off during  
Sleep.  
Timer mode is selected by clearing bit T0CS  
(OPTION_REG<5>). In Timer mode, the Timer0  
module will increment every instruction cycle (without  
prescaler). If the TMR0 register is written, the incre-  
ment is inhibited for the following two instruction cycles.  
The user can work around this by writing an adjusted  
value to the TMR0 register.  
FIGURE 5-1:  
BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
CLKO (= FOSC/4)  
Data Bus  
8
M
U
X
1
0
0
1
M
U
X
RA4/T0CKI  
pin  
Sync  
2
Cycles  
TMR0 Reg  
T0SE  
T0CS  
Set Flag bit TMR0IF  
PSA  
on Overflow  
PRESCALER  
0
1
8-bit Prescaler  
M
U
X
Watchdog  
Timer  
8
8-to-1 MUX  
PS2:PS0  
PSA  
1
0
WDT Enable bit  
MUX  
PSA  
WDT  
Time-out  
Note: T0CS, T0SE, PSA, PS2:PS0 are (OPTION_REG<5:0>).  
2003 Microchip Technology Inc.  
DS39582B-page 53  
PIC16F87XA  
Timer0 module means that there is no prescaler for the  
Watchdog Timer and vice versa. This prescaler is not  
readable or writable (see Figure 5-1).  
5.2  
Using Timer0 with an External  
Clock  
When no prescaler is used, the external clock input is  
the same as the prescaler output. The synchronization  
of T0CKI with the internal phase clocks is accom-  
plished by sampling the prescaler output on the Q2 and  
Q4 cycles of the internal phase clocks. Therefore, it is  
necessary for T0CKI to be high for at least 2 TOSC (and  
a small RC delay of 20 ns) and low for at least 2 TOSC  
(and a small RC delay of 20 ns). Refer to the electrical  
specification of the desired device.  
The PSA and PS2:PS0 bits (OPTION_REG<3:0>)  
determine the prescaler assignment and prescale ratio.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g., CLRF1,MOVWF1,  
BSF1,x....etc.) will clear the prescaler. When assigned  
to WDT, a CLRWDT instruction will clear the prescaler  
along with the Watchdog Timer. The prescaler is not  
readable or writable.  
Note:  
Writing to TMR0 when the prescaler is  
assigned to Timer0 will clear the prescaler  
count, but will not change the prescaler  
assignment.  
5.3  
Prescaler  
There is only one prescaler available which is mutually  
exclusively shared between the Timer0 module and the  
Watchdog Timer. A prescaler assignment for the  
REGISTER 5-1:  
OPTION_REG REGISTER  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
RBPU  
INTEDG  
T0CS: TMR0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (CLKO)  
bit 4  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
bit 3  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
bit 2-0  
PS2:PS0: Prescaler Rate Select bits  
Bit Value TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
Note:  
To avoid an unintended device Reset, the instruction sequence shown in the  
PICmicro® Mid-Range MCU Family Reference Manual (DS33023) must be exe-  
cuted when changing the prescaler assignment from Timer0 to the WDT. This  
sequence must be followed even if the WDT is disabled.  
DS39582B-page 54  
2003 Microchip Technology Inc.  
PIC16F87XA  
TABLE 5-1:  
REGISTERS ASSOCIATED WITH TIMER0  
Value on  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4 Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
01h,101h  
TMR0  
INTCON  
Timer0 Module Register  
xxxx xxxx uuuu uuuu  
0Bh,8Bh,  
GIE PEIE TMR0IE INTE RBIE TMR0IF INTF RBIF 0000 000x 0000 000u  
10Bh,18Bh  
81h,181h  
OPTION_REG RBPU INTEDG  
T0CS  
T0SE PSA  
PS2  
PS1  
PS0 1111 1111 1111 1111  
Legend:  
x= unknown, u= unchanged, -= unimplemented locations read as ‘0’. Shaded cells are not used by Timer0.  
2003 Microchip Technology Inc.  
DS39582B-page 55  
PIC16F87XA  
NOTES:  
DS39582B-page 56  
2003 Microchip Technology Inc.  
PIC16F87XA  
In Timer mode, Timer1 increments every instruction  
cycle. In Counter mode, it increments on every rising  
edge of the external clock input.  
6.0  
TIMER1 MODULE  
The Timer1 module is a 16-bit timer/counter consisting  
of two 8-bit registers (TMR1H and TMR1L) which are  
readable and writable. The TMR1 register pair  
(TMR1H:TMR1L) increments from 0000h to FFFFh  
and rolls over to 0000h. The TMR1 interrupt, if enabled,  
is generated on overflow which is latched in interrupt  
flag bit, TMR1IF (PIR1<0>). This interrupt can be  
enabled/disabled by setting/clearing TMR1 interrupt  
enable bit, TMR1IE (PIE1<0>).  
Timer1 can be enabled/disabled by setting/clearing  
control bit, TMR1ON (T1CON<0>).  
Timer1 also has an internal “Reset input”. This Reset  
can be generated by either of the two CCP modules  
(Section 8.0 “Capture/Compare/PWM Modules”).  
Register 6-1 shows the Timer1 Control register.  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI/CCP2 and RC0/T1OSO/T1CKI  
pins become inputs. That is, the TRISC<1:0> value is  
ignored and these pins read as ‘0’.  
Timer1 can operate in one of two modes:  
• As a Timer  
• As a Counter  
Additional information on timer modules is available in  
the PICmicro® Mid-Range MCU Family Reference  
Manual (DS33023).  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>).  
REGISTER 6-1:  
T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit 0  
bit 7  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:8 prescale value  
10= 1:4 prescale value  
01= 1:2 prescale value  
00= 1:1 prescale value  
bit 3  
bit 2  
T1OSCEN: Timer1 Oscillator Enable Control bit  
1= Oscillator is enabled  
0= Oscillator is shut-off (the oscillator inverter is turned off to eliminate power drain)  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
When TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from pin RC0/T1OSO/T1CKI (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003 Microchip Technology Inc.  
DS39582B-page 57  
PIC16F87XA  
6.1  
Timer1 Operation in Timer Mode  
6.2  
Timer1 Counter Operation  
Timer mode is selected by clearing the TMR1CS  
(T1CON<1>) bit. In this mode, the input clock to the  
timer is FOSC/4. The synchronize control bit, T1SYNC  
(T1CON<2>), has no effect since the internal clock is  
always in sync.  
Timer1 may operate in either a Synchronous, or an  
Asynchronous mode, depending on the setting of the  
TMR1CS bit.  
When Timer1 is being incremented via an external  
source, increments occur on a rising edge. After Timer1  
is enabled in Counter mode, the module must first have  
a falling edge before the counter begins to increment.  
FIGURE 6-1:  
TIMER1 INCREMENTING EDGE  
T1CKI  
(Default High)  
T1CKI  
(Default Low)  
Note: Arrows indicate counter increments.  
If T1SYNC is cleared, then the external clock input is  
synchronized with internal phase clocks. The synchro-  
nization is done after the prescaler stage. The  
prescaler stage is an asynchronous ripple counter.  
6.3  
Timer1 Operation in Synchronized  
Counter Mode  
Counter mode is selected by setting bit TMR1CS. In  
this mode, the timer increments on every rising edge of  
clock input on pin RC1/T1OSI/CCP2 when bit  
T1OSCEN is set, or on pin RC0/T1OSO/T1CKI when  
bit T1OSCEN is cleared.  
In this configuration, during Sleep mode, Timer1 will not  
increment even if the external clock is present since the  
synchronization circuit is shut-off. The prescaler,  
however, will continue to increment.  
FIGURE 6-2:  
TIMER1 BLOCK DIAGRAM  
Set Flag bit  
TMR1IF on  
Overflow  
Synchronized  
0
TMR1  
Clock Input  
TMR1L  
TMR1H  
1
TMR1ON  
On/Off  
T1SYNC  
T1OSC  
RC0/T1OSO/T1CKI  
1
Synchronize  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
FOSC/4  
Internal  
Clock  
det  
0
(1)  
(2)  
Oscillator  
RC1/T1OSI/CCP2  
2
Q Clock  
T1CKPS1:T1CKPS0  
TMR1CS  
Note 1: When the T1OSCEN bit is cleared, the inverter is turned off. This eliminates power drain.  
DS39582B-page 58  
2003 Microchip Technology Inc.  
PIC16F87XA  
TABLE 6-1:  
CAPACITOR SELECTION FOR  
THE TIMER1 OSCILLATOR  
6.4  
Timer1 Operation in  
Asynchronous Counter Mode  
Osc Type  
Freq.  
C1  
C2  
If control bit T1SYNC (T1CON<2>) is set, the external  
clock input is not synchronized. The timer continues to  
increment asynchronous to the internal phase clocks.  
The timer will continue to run during Sleep and can  
generate an interrupt-on-overflow which will wake-up  
the processor. However, special precautions in  
software are needed to read/write the timer.  
LP  
32 kHz  
100 kHz  
200 kHz  
33 pF  
15 pF  
15 pF  
33 pF  
15 pF  
15 pF  
These values are for design guidance only.  
Crystals Tested:  
In Asynchronous Counter mode, Timer1 cannot be  
used as a time base for capture or compare operations.  
32.768 kHz Epson C-001R32.768K-A ± 20 PPM  
100 kHz  
200 kHz  
Epson C-2 100.00 KC-P ± 20 PPM  
STD XTL 200.000 kHz ± 20 PPM  
6.4.1  
READING AND WRITING TIMER1 IN  
ASYNCHRONOUS COUNTER MODE  
Note 1: Higher capacitance increases the stability  
of oscillator but also increases the start-up  
time.  
Reading TMR1H or TMR1L while the timer is running  
from an external asynchronous clock will ensure a valid  
read (taken care of in hardware). However, the user  
should keep in mind that reading the 16-bit timer in two  
8-bit values itself, poses certain problems, since the  
timer may overflow between the reads.  
2: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
appropriate values of external  
components.  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write conten-  
tion may occur by writing to the timer registers while the  
register is incrementing. This may produce an  
unpredictable value in the timer register.  
6.6  
Resetting Timer1 Using a CCP  
Trigger Output  
If the CCP1 or CCP2 module is configured in Compare  
mode to generate “special event trigger”  
(CCP1M3:CCP1M0 = 1011), this signal will reset  
Reading the 16-bit value requires some care.  
Examples 12-2 and 12-3 in the PICmicro® Mid-Range  
MCU Family Reference Manual (DS33023) show how  
to read and write Timer1 when it is running in  
Asynchronous mode.  
a
Timer1.  
Note:  
The special event triggers from the CCP1  
and CCP2 modules will not set interrupt  
flag bit, TMR1IF (PIR1<0>).  
6.5  
Timer1 Oscillator  
A crystal oscillator circuit is built-in between pins T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit, T1OSCEN (T1CON<3>). The oscil-  
lator is a low-power oscillator, rated up to 200 kHz. It  
will continue to run during Sleep. It is primarily intended  
for use with a 32 kHz crystal. Table 6-1 shows the  
capacitor selection for the Timer1 oscillator.  
Timer1 must be configured for either Timer or Synchro-  
nized Counter mode to take advantage of this feature.  
If Timer1 is running in Asynchronous Counter mode,  
this Reset operation may not work.  
In the event that a write to Timer1 coincides with a  
special event trigger from CCP1 or CCP2, the write will  
take precedence.  
The Timer1 oscillator is identical to the LP oscillator.  
The user must provide a software time delay to ensure  
proper oscillator start-up.  
In this mode of operation, the CCPRxH:CCPRxL regis-  
ter pair effectively becomes the period register for  
Timer1.  
2003 Microchip Technology Inc.  
DS39582B-page 59  
PIC16F87XA  
6.7  
Resetting of Timer1 Register Pair  
(TMR1H, TMR1L)  
6.8  
Timer1 Prescaler  
The prescaler counter is cleared on writes to the  
TMR1H or TMR1L registers.  
TMR1H and TMR1L registers are not reset to 00h on a  
POR, or any other Reset, except by the CCP1 and  
CCP2 special event triggers.  
T1CON register is reset to 00h on a Power-on Reset,  
or a Brown-out Reset, which shuts off the timer and  
leaves a 1:1 prescale. In all other Resets, the register  
is unaffected.  
TABLE 6-2:  
REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
0Bh,8Bh,  
INTCON  
GIE  
PEIE TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF 0000 000x 0000 000u  
10Bh, 18Bh  
(1)  
0Ch  
PIR1  
PIE1  
PSPIF  
PSPIE  
ADIF  
ADIE  
RCIF  
RCIE  
TXIF  
TXIE  
SSPIF  
SSPIE  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
(1)  
8Ch  
0Eh  
TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
0Fh  
10h  
T1CON  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
Legend:  
x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used by the Timer1 module.  
Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.  
DS39582B-page 60  
2003 Microchip Technology Inc.  
PIC16F87XA  
Register 7-1 shows the Timer2 Control register.  
7.0  
TIMER2 MODULE  
Additional information on timer modules is available in  
the PICmicro® Mid-Range MCU Family Reference  
Manual (DS33023).  
Timer2 is an 8-bit timer with a prescaler and a  
postscaler. It can be used as the PWM time base for the  
PWM mode of the CCP module(s). The TMR2 register  
is readable and writable and is cleared on any device  
Reset.  
FIGURE 7-1:  
TIMER2 BLOCK DIAGRAM  
Sets Flag  
bit TMR2IF  
The input clock (FOSC/4) has a prescale option of  
1:1, 1:4 or 1:16, selected by control bits  
T2CKPS1:T2CKPS0 (T2CON<1:0>).  
TMR2  
Output(1)  
Reset  
Prescaler  
1:1, 1:4, 1:16  
TMR2 Reg  
FOSC/4  
The Timer2 module has an 8-bit period register, PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register. The PR2 register is  
initialized to FFh upon Reset.  
Postscaler  
1:1 to 1:16  
2
Comparator  
EQ  
T2CKPS1:  
T2CKPS0  
4
PR2 Reg  
The match output of TMR2 goes through a 4-bit  
postscaler (which gives a 1:1 to 1:16 scaling inclusive)  
to generate a TMR2 interrupt (latched in flag bit,  
TMR2IF (PIR1<1>)).  
T2OUTPS3:  
T2OUTPS0  
Note 1: TMR2 register output can be software selected by the  
SSP module as a baud clock.  
Timer2 can be shut-off by clearing control bit, TMR2ON  
(T2CON<2>), to minimize power consumption.  
REGISTER 7-1:  
T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit 0  
bit 7  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3  
TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits  
0000= 1:1 postscale  
0001= 1:2 postscale  
0010= 1:3 postscale  
1111= 1:16 postscale  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0  
T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003 Microchip Technology Inc.  
DS39582B-page 61  
PIC16F87XA  
7.1  
Timer2 Prescaler and Postscaler  
7.2  
Output of TMR2  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
The output of TMR2 (before the postscaler) is fed to the  
SSP module, which optionally uses it to generate the  
shift clock.  
• a write to the TMR2 register  
• a write to the T2CON register  
• any device Reset (POR, MCLR Reset, WDT  
Reset or BOR)  
TMR2 is not cleared when T2CON is written.  
TABLE 7-1:  
REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
0Bh, 8Bh, INTCON  
10Bh, 18Bh  
GIE  
PEIE  
TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF 0000 000x 0000 000u  
(1)  
0Ch  
PIR1  
PIE1  
PSPIF  
PSPIE  
ADIF  
ADIE  
RCIF  
RCIE  
TXIF  
TXIE  
SSPIF  
SSPIE  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
0000 0000 0000 0000  
(1)  
8Ch  
11h  
TMR2 Timer2 Module’s Register  
12h  
T2CON  
PR2  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
92h  
Timer2 Period Register 1111 1111 1111 1111  
Legend:  
x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used by the Timer2 module.  
Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.  
DS39582B-page 62  
2003 Microchip Technology Inc.  
PIC16F87XA  
CCP2 Module:  
8.0  
CAPTURE/COMPARE/PWM  
MODULES  
Capture/Compare/PWM Register 2 (CCPR2) is com-  
prised of two 8-bit registers: CCPR2L (low byte) and  
CCPR2H (high byte). The CCP2CON register controls  
the operation of CCP2. The special event trigger is  
generated by a compare match and will reset Timer1  
and start an A/D conversion (if the A/D module is  
enabled).  
Each Capture/Compare/PWM (CCP) module contains  
a 16-bit register which can operate as a:  
• 16-bit Capture register  
• 16-bit Compare register  
• PWM Master/Slave Duty Cycle register  
Additional information on CCP modules is available in  
the PICmicro® Mid-Range MCU Family Reference  
Manual (DS33023) and in application note AN594,  
“Using the CCP Module(s)” (DS00594).  
Both the CCP1 and CCP2 modules are identical in  
operation, with the exception being the operation of the  
special event trigger. Table 8-1 and Table 8-2 show the  
resources and interactions of the CCP module(s). In  
the following sections, the operation of a CCP module  
is described with respect to CCP1. CCP2 operates the  
same as CCP1 except where noted.  
TABLE 8-1:  
CCP MODE – TIMER  
RESOURCES REQUIRED  
CCP Mode  
Timer Resource  
CCP1 Module:  
Capture/Compare/PWM Register 1 (CCPR1) is com-  
prised of two 8-bit registers: CCPR1L (low byte) and  
CCPR1H (high byte). The CCP1CON register controls  
the operation of CCP1. The special event trigger is  
generated by a compare match and will reset Timer1.  
Capture  
Compare  
PWM  
Timer1  
Timer1  
Timer2  
TABLE 8-2:  
INTERACTION OF TWO CCP MODULES  
CCPx Mode CCPy Mode  
Interaction  
Capture  
Capture  
Compare  
PWM  
Capture  
Same TMR1 time base  
Compare The compare should be configured for the special event trigger which clears TMR1  
Compare The compare(s) should be configured for the special event trigger which clears TMR1  
PWM  
The PWMs will have the same frequency and update rate (TMR2 interrupt)  
None  
PWM  
Capture  
PWM  
Compare None  
2003 Microchip Technology Inc.  
DS39582B-page 63  
PIC16F87XA  
REGISTER 8-1:  
CCP1CON REGISTER/CCP2CON REGISTER (ADDRESS 17h/1Dh)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CCPxX  
CCPxY  
CCPxM3  
CCPxM2 CCPxM1 CCPxM0  
bit 0  
bit 7  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
CCPxX:CCPxY: PWM Least Significant bits  
Capture mode:  
Unused.  
Compare mode:  
Unused.  
PWM mode:  
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.  
bit 3-0  
CCPxM3:CCPxM0: CCPx Mode Select bits  
0000= Capture/Compare/PWM disabled (resets CCPx module)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (CCPxIF bit is set)  
1001= Compare mode, clear output on match (CCPxIF bit is set)  
1010= Compare mode, generate software interrupt on match (CCPxIF bit is set, CCPx pin is  
unaffected)  
1011= Compare mode, trigger special event (CCPxIF bit is set, CCPx pin is unaffected); CCP1  
resets TMR1; CCP2 resets TMR1 and starts an A/D conversion (if A/D module is  
enabled)  
11xx= PWM mode  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39582B-page 64  
2003 Microchip Technology Inc.  
PIC16F87XA  
8.1.2  
TIMER1 MODE SELECTION  
8.1  
Capture Mode  
Timer1 must be running in Timer mode, or Synchro-  
nized Counter mode, for the CCP module to use the  
capture feature. In Asynchronous Counter mode, the  
capture operation may not work.  
In Capture mode, CCPR1H:CCPR1L captures the  
16-bit value of the TMR1 register when an event occurs  
on pin RC2/CCP1. An event is defined as one of the  
following:  
• Every falling edge  
• Every rising edge  
8.1.3  
SOFTWARE INTERRUPT  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit  
CCP1IE (PIE1<2>) clear to avoid false interrupts and  
should clear the flag bit, CCP1IF, following any such  
change in operating mode.  
• Every 4th rising edge  
• Every 16th rising edge  
The type of event is configured by control bits,  
CCP1M3:CCP1M0 (CCPxCON<3:0>). When a cap-  
ture is made, the interrupt request flag bit, CCP1IF  
(PIR1<2>), is set. The interrupt flag must be cleared in  
software. If another capture occurs before the value in  
register CCPR1 is read, the old captured value is  
overwritten by the new value.  
8.1.4  
CCP PRESCALER  
There are four prescaler settings, specified by bits  
CCP1M3:CCP1M0. Whenever the CCP module is  
turned off, or the CCP module is not in Capture mode,  
the prescaler counter is cleared. Any Reset will clear  
the prescaler counter.  
8.1.1  
CCP PIN CONFIGURATION  
In Capture mode, the RC2/CCP1 pin should be  
configured as an input by setting the TRISC<2> bit.  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared, therefore, the first capture may be from  
a non-zero prescaler. Example 8-1 shows the recom-  
mended method for switching between capture  
prescalers. This example also clears the prescaler  
counter and will not generate the “false” interrupt.  
Note:  
If the RC2/CCP1 pin is configured as an  
output, a write to the port can cause a  
Capture condition.  
FIGURE 8-1:  
CAPTURE MODE  
OPERATION BLOCK  
DIAGRAM  
EXAMPLE 8-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
; Turn CCP module off  
CLRF  
CCP1CON  
Set Flag bit CCP1IF  
(PIR1<2>)  
MOVLW  
NEW_CAPT_PS ; Load the W reg with  
; the new prescaler  
Prescaler  
÷ 1, 4, 16  
; move value and CCP ON  
; Load CCP1CON with this  
; value  
RC2/CCP1  
pin  
CCPR1H  
CCPR1L  
MOVWF  
CCP1CON  
Capture  
Enable  
and  
Edge Detect  
TMR1H  
TMR1L  
CCP1CON<3:0>  
Qs  
2003 Microchip Technology Inc.  
DS39582B-page 65  
PIC16F87XA  
8.2.2  
TIMER1 MODE SELECTION  
8.2  
Compare Mode  
Timer1 must be running in Timer mode, or Synchro-  
nized Counter mode, if the CCP module is using the  
compare feature. In Asynchronous Counter mode, the  
compare operation may not work.  
In Compare mode, the 16-bit CCPR1 register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the RC2/CCP1 pin is:  
• Driven high  
• Driven low  
8.2.3  
SOFTWARE INTERRUPT MODE  
• Remains unchanged  
When Generate Software Interrupt mode is chosen, the  
CCP1 pin is not affected. The CCPIF bit is set, causing  
a CCP interrupt (if enabled).  
The action on the pin is based on the value of control  
bits, CCP1M3:CCP1M0 (CCP1CON<3:0>). At the  
same time, interrupt flag bit CCP1IF is set.  
8.2.4  
SPECIAL EVENT TRIGGER  
FIGURE 8-2:  
COMPARE MODE  
OPERATION BLOCK  
DIAGRAM  
In this mode, an internal hardware trigger is generated  
which may be used to initiate an action.  
The special event trigger output of CCP1 resets the  
TMR1 register pair. This allows the CCPR1 register to  
effectively be a 16-bit programmable period register for  
Timer1.  
Special event trigger will:  
reset Timer1, but not set interrupt flag bit TMR1IF (PIR1<0>)  
and set bit GO/DONE (ADCON0<2>).  
Special Event Trigger  
The special event trigger output of CCP2 resets the  
TMR1 register pair and starts an A/D conversion (if the  
A/D module is enabled).  
Set Flag bit CCP1IF  
(PIR1<2>)  
RC2/CCP1  
pin  
CCPR1H CCPR1L  
Note:  
The special event trigger from the CCP1  
and CCP2 modules will not set interrupt  
flag bit TMR1IF (PIR1<0>).  
Q
S
R
Output  
Logic  
Comparator  
Match  
TRISC<2>  
Output Enable  
TMR1H TMR1L  
CCP1CON<3:0>  
Mode Select  
8.2.1  
CCP PIN CONFIGURATION  
The user must configure the RC2/CCP1 pin as an  
output by clearing the TRISC<2> bit.  
Note:  
Clearing the CCP1CON register will force  
the RC2/CCP1 compare output latch to  
the default low level. This is not the  
PORTC I/O data latch.  
DS39582B-page 66  
2003 Microchip Technology Inc.  
PIC16F87XA  
8.3.1  
PWM PERIOD  
8.3  
PWM Mode (PWM)  
The PWM period is specified by writing to the PR2  
register. The PWM period can be calculated using the  
following formula:  
In Pulse Width Modulation mode, the CCPx pin  
produces up to a 10-bit resolution PWM output. Since  
the CCP1 pin is multiplexed with the PORTC data latch,  
the TRISC<2> bit must be cleared to make the CCP1  
pin an output.  
PWM Period = [(PR2) + 1] • 4 • TOSC •  
(TMR2 Prescale Value)  
PWM frequency is defined as 1/[PWM period].  
Note:  
Clearing the CCP1CON register will force  
the CCP1 PWM output latch to the default  
low level. This is not the PORTC I/O data  
latch.  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
• TMR2 is cleared  
Figure 8-3 shows a simplified block diagram of the  
CCP module in PWM mode.  
• The CCP1 pin is set (exception: if PWM duty  
cycle = 0%, the CCP1 pin will not be set)  
For a step-by-step procedure on how to set up the CCP  
module for PWM operation, see Section 8.3.3 “Setup  
for PWM Operation”.  
• The PWM duty cycle is latched from CCPR1L into  
CCPR1H  
Note:  
The Timer2 postscaler (see Section 7.1  
“Timer2 Prescaler and Postscaler”) is  
not used in the determination of the PWM  
frequency. The postscaler could be used  
to have a servo update rate at a different  
frequency than the PWM output.  
FIGURE 8-3:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
CCP1CON<5:4>  
Duty Cycle Registers  
CCPR1L  
8.3.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available. The CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time:  
CCPR1H (Slave)  
Comparator  
RC2/CCP1  
Q
R
S
(Note 1)  
TMR2  
PWM Duty Cycle =(CCPR1L:CCP1CON<5:4>)•  
TOSC • (TMR2 Prescale Value)  
TRISC<2>  
Comparator  
PR2  
Clear Timer,  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPR1H until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPR1H is a read-only register.  
CCP1 pin and  
latch D.C.  
Note 1: The 8-bit timer is concatenated with 2-bit internal Q  
clock, or 2 bits of the prescaler, to create 10-bit time  
base.  
The CCPR1H register and a 2-bit internal latch are  
used to double-buffer the PWM duty cycle. This  
double-buffering is essential for glitch-free PWM  
operation.  
A PWM output (Figure 8-4) has a time base (period)  
and a time that the output stays high (duty cycle). The  
frequency of the PWM is the inverse of the period  
(1/period).  
When the CCPR1H and 2-bit latch match TMR2,  
concatenated with an internal 2-bit Q clock or 2 bits of  
the TMR2 prescaler, the CCP1 pin is cleared.  
FIGURE 8-4:  
PWM OUTPUT  
The maximum PWM resolution (bits) for a given PWM  
frequency is given by the following formula.  
Period  
EQUATION 8-1:  
FOSC  
FPWM  
log(2)  
Duty Cycle  
log( )  
Resolution =  
bits  
TMR2 = PR2  
TMR2 = Duty Cycle  
Note:  
If the PWM duty cycle value is longer than  
the PWM period, the CCP1 pin will not be  
cleared.  
TMR2 = PR2  
2003 Microchip Technology Inc.  
DS39582B-page 67  
PIC16F87XA  
8.3.3  
SETUP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
1. Set the PWM period by writing to the PR2 register.  
2. Set the PWM duty cycle by writing to the  
CCPR1L register and CCP1CON<5:4> bits.  
3. Make the CCP1 pin an output by clearing the  
TRISC<2> bit.  
4. Set the TMR2 prescale value and enable Timer2  
by writing to T2CON.  
5. Configure the CCP1 module for PWM operation.  
TABLE 8-3:  
EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz  
PWM Frequency  
1.22 kHz 4.88 kHz 19.53 kHz  
78.12kHz  
156.3 kHz 208.3 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
0xFFh  
10  
4
1
1
0x3Fh  
8
1
0x1Fh  
7
1
0xFFh  
10  
0xFFh  
10  
0x17h  
5.5  
Maximum Resolution (bits)  
TABLE 8-4:  
REGISTERS ASSOCIATED WITH CAPTURE, COMPARE AND TIMER1  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh,  
INTCON  
GIE  
PEIE  
TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF 0000 000x 0000 000u  
10Bh, 18Bh  
(1)  
0Ch  
0Dh  
8Ch  
8Dh  
87h  
PIR1  
PSPIF  
ADIF  
RCIF  
TXIF  
SSPIF  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP2IF ---- ---0 ---- ---0  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
PIR2  
(1)  
PIE1  
PSPIE  
ADIE  
RCIE  
TXIE  
SSPIE  
PIE2  
CCP2IE ---- ---0 ---- ---0  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
TRISC  
TMR1L  
TMR1H  
T1CON  
PORTC Data Direction Register  
0Eh  
0Fh  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
10h  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
15h  
CCPR1L Capture/Compare/PWM Register 1 (LSB)  
CCPR1H Capture/Compare/PWM Register 1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
16h  
17h  
CCP1CON  
CCP1X  
CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
1Bh  
1Ch  
1Dh  
Legend:  
CCPR2L Capture/Compare/PWM Register 2 (LSB)  
CCPR2H Capture/Compare/PWM Register 2 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCP2CON  
CCP2X  
CCP2Y CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000 --00 0000  
x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used by Capture and Timer1.  
Note 1: The PSP is not implemented on 28-pin devices; always maintain these bits clear.  
DS39582B-page 68  
2003 Microchip Technology Inc.  
PIC16F87XA  
TABLE 8-5:  
REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Value on  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
0Bh,8Bh,  
INTCON  
GIE  
PEIE  
TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF 0000 000x0000 000u  
10Bh, 18Bh  
(1)  
0Ch  
0Dh  
8Ch  
8Dh  
87h  
PIR1  
PSPIF  
ADIF  
RCIF  
TXIF  
SSPIF  
CCP1IF TMR2IF TMR1IF 0000 00000000 0000  
CCP2IF ---- ---0---- ---0  
CCP1IE TMR2IE TMR1IE 0000 00000000 0000  
PIR2  
(1)  
PIE1  
PSPIE  
ADIE  
RCIE  
TXIE  
SSPIE  
PIE2  
CCP2IE ---- ---0---- ---0  
1111 11111111 1111  
0000 00000000 0000  
1111 11111111 1111  
TRISC  
TMR2  
PR2  
PORTC Data Direction Register  
Timer2 Module’s Register  
11h  
92h  
Timer2 Module’s Period Register  
12h  
T2CON  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000-000 0000  
15h  
CCPR1L Capture/Compare/PWM Register 1 (LSB)  
CCPR1H Capture/Compare/PWM Register 1 (MSB)  
xxxx xxxxuuuu uuuu  
xxxx xxxxuuuu uuuu  
16h  
17h  
CCP1CON  
CCP1X  
CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000--00 0000  
1Bh  
1Ch  
1Dh  
Legend:  
CCPR2L Capture/Compare/PWM Register 2 (LSB)  
CCPR2H Capture/Compare/PWM Register 2 (MSB)  
xxxx xxxxuuuu uuuu  
xxxx xxxxuuuu uuuu  
CCP2CON  
CCP2X  
CCP2Y CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000--00 0000  
x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used by PWM and Timer2.  
Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.  
2003 Microchip Technology Inc.  
DS39582B-page 69  
PIC16F87XA  
NOTES:  
DS39582B-page 70  
2003 Microchip Technology Inc.  
PIC16F87XA  
FIGURE 9-1:  
MSSP BLOCK DIAGRAM  
(SPI MODE)  
9.0  
9.1  
MASTER SYNCHRONOUS  
SERIAL PORT (MSSP)  
MODULE  
Internal  
Data Bus  
Read  
Write  
Master SSP (MSSP) Module  
Overview  
SSPBUF reg  
SSPSR reg  
The Master Synchronous Serial Port (MSSP) module is  
a serial interface, useful for communicating with other  
peripheral or microcontroller devices. These peripheral  
devices may be serial EEPROMs, shift registers,  
display drivers, A/D converters, etc. The MSSP module  
can operate in one of two modes:  
RC4/SDI/SDA  
RC5/SDO  
Shift  
Clock  
bit0  
• Serial Peripheral Interface (SPI)  
• Inter-Integrated Circuit (I2C)  
- Full Master mode  
Peripheral OE  
Control  
Enable  
SS  
- Slave mode (with general address call)  
The I2C interface supports the following modes in  
hardware:  
RA5/AN4/  
SS/C2OUT  
Edge  
Select  
• Master mode  
• Multi-Master mode  
• Slave mode  
2
Clock Select  
SSPM3:SSPM0  
9.2  
Control Registers  
SMP:CKE  
2
4
TMR2 Output  
(
)
2
The MSSP module has three associated registers.  
These include a status register (SSPSTAT) and two  
control registers (SSPCON and SSPCON2). The use  
of these registers and their individual configuration bits  
differ significantly, depending on whether the MSSP  
module is operated in SPI or I2C mode.  
Edge  
Select  
TOSC  
Prescaler  
4, 16, 64  
RC3/SCK/SCL  
Data to TX/RX in SSPSR  
TRIS bit  
Additional details are provided under the individual  
sections.  
Note:  
When the SPI is in Slave mode with SS pin  
control enabled (SSPCON<3:0> = 0100),  
the state of the SS pin can affect the state  
read back from the TRISC<5> bit. The  
Peripheral OE signal from the SSP mod-  
ule in PORTC controls the state that is  
read back from the TRISC<5> bit (see  
Section 4.3 “PORTC and the TRISC  
Register” for information on PORTC). If  
Read-Modify-Write instructions, such as  
BSF, are performed on the TRISC register  
while the SS pin is high, this will cause the  
TRISC<5> bit to be set, thus disabling the  
SDO output.  
9.3  
SPI Mode  
The SPI mode allows 8 bits of data to be synchronously  
transmitted and received simultaneously. All four  
modes of SPI are supported. To accomplish  
communication, typically three pins are used:  
• Serial Data Out (SDO) – RC5/SDO  
• Serial Data In (SDI) – RC4/SDI/SDA  
• Serial Clock (SCK) – RC3/SCK/SCL  
Additionally, a fourth pin may be used when in a Slave  
mode of operation:  
• Slave Select (SS) – RA5/AN4/SS/C2OUT  
Figure 9-1 shows the block diagram of the MSSP  
module when operating in SPI mode.  
2003 Microchip Technology Inc.  
DS39582B-page 71  
PIC16F87XA  
SSPSR is the shift register used for shifting data in or  
out. SSPBUF is the buffer register to which data bytes  
are written to or read from.  
9.3.1  
REGISTERS  
The MSSP module has four registers for SPI mode  
operation. These are:  
In receive operations, SSPSR and SSPBUF together  
create a double-buffered receiver. When SSPSR  
receives a complete byte, it is transferred to SSPBUF  
and the SSPIF interrupt is set.  
• MSSP Control Register (SSPCON)  
• MSSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer Register  
(SSPBUF)  
During transmission, the SSPBUF is not double-  
buffered. A write to SSPBUF will write to both SSPBUF  
and SSPSR.  
• MSSP Shift Register (SSPSR) – Not directly  
accessible  
SSPCON and SSPSTAT are the control and status  
registers in SPI mode operation. The SSPCON regis-  
ter is readable and writable. The lower six bits of the  
SSPSTAT are read-only. The upper two bits of the  
SSPSTAT are read/write.  
REGISTER 9-1:  
SSPSTAT: MSSP STATUS REGISTER (SPI MODE) (ADDRESS 94h)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
bit 7  
SMP: Sample bit  
SPI Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
SPI Slave mode:  
SMP must be cleared when SPI is used in Slave mode.  
bit 6  
CKE: SPI Clock Select bit  
1= Transmit occurs on transition from active to Idle clock state  
0= Transmit occurs on transition from Idle to active clock state  
Note:  
Polarity of clock state is set by the CKP bit (SSPCON1<4>).  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
D/A: Data/Address bit  
Used in I2C mode only.  
P: Stop bit  
Used in I2C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.  
S: Start bit  
Used in I2C mode only.  
R/W: Read/Write bit information  
Used in I2C mode only.  
UA: Update Address bit  
Used in I2C mode only.  
BF: Buffer Full Status bit (Receive mode only)  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39582B-page 72  
2003 Microchip Technology Inc.  
PIC16F87XA  
REGISTER 9-2:  
SSPCON1: MSSP CONTROL REGISTER 1 (SPI MODE) (ADDRESS 14h)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
bit 7  
bit 6  
WCOL: Write Collision Detect bit (Transmit mode only)  
1= The SSPBUF register is written while it is still transmitting the previous word. (Must be  
cleared in software.)  
0= No collision  
SSPOV: Receive Overflow Indicator bit  
SPI Slave mode:  
1= A new byte is received while the SSPBUF register is still holding the previous data. In case  
of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user  
must read the SSPBUF, even if only transmitting data, to avoid setting overflow. (Must be  
cleared in software.)  
0= No overflow  
Note:  
In Master mode, the overflow bit is not set, since each new reception (and  
transmission) is initiated by writing to the SSPBUF register.  
bit 5  
SSPEN: Synchronous Serial Port Enable bit  
1= Enables serial port and configures SCK, SDO, SDI, and SS as serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
Note:  
When enabled, these pins must be properly configured as input or output.  
bit 4  
CKP: Clock Polarity Select bit  
1= Idle state for clock is a high level  
0= Idle state for clock is a low level  
bit 3-0  
SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
0101= SPI Slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin.  
0100= SPI Slave mode, clock = SCK pin. SS pin control enabled.  
0011= SPI Master mode, clock = TMR2 output/2  
0010= SPI Master mode, clock = FOSC/64  
0001= SPI Master mode, clock = FOSC/16  
0000= SPI Master mode, clock = FOSC/4  
Note:  
Bit combinations not specifically listed here are either reserved or implemented in  
I2C mode only.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003 Microchip Technology Inc.  
DS39582B-page 73  
PIC16F87XA  
SSPBUF register during transmission/reception of data  
will be ignored and the write collision detect bit, WCOL  
(SSPCON<7>), will be set. User software must clear  
the WCOL bit so that it can be determined if the follow-  
ing write(s) to the SSPBUF register completed  
successfully.  
9.3.2  
OPERATION  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits (SSPCON<5:0> and SSPSTAT<7:6>).  
These control bits allow the following to be specified:  
• Master mode (SCK is the clock output)  
• Slave mode (SCK is the clock input)  
• Clock Polarity (Idle state of SCK)  
When the application software is expecting to receive  
valid data, the SSPBUF should be read before the next  
byte of data to transfer is written to the SSPBUF. Buffer  
Full bit, BF (SSPSTAT<0>), indicates when SSPBUF  
has been loaded with the received data (transmission  
is complete). When the SSPBUF is read, the BF bit is  
cleared. This data may be irrelevant if the SPI is only a  
transmitter. Generally, the MSSP interrupt is used to  
determine when the transmission/reception has com-  
pleted. The SSPBUF must be read and/or written. If the  
interrupt method is not going to be used, then software  
polling can be done to ensure that a write collision does  
not occur. Example 9-1 shows the loading of the  
SSPBUF (SSPSR) for data transmission.  
• Data Input Sample Phase (middle or end of data  
output time)  
• Clock Edge (output data on rising/falling edge of  
SCK)  
• Clock Rate (Master mode only)  
• Slave Select mode (Slave mode only)  
The MSSP consists of a transmit/receive shift register  
(SSPSR) and a buffer register (SSPBUF). The SSPSR  
shifts the data in and out of the device, MSb first. The  
SSPBUF holds the data that was written to the SSPSR  
until the received data is ready. Once the eight bits of  
data have been received, that byte is moved to the  
SSPBUF register. Then, the Buffer Full detect bit, BF  
(SSPSTAT<0>), and the interrupt flag bit, SSPIF, are  
set. This double-buffering of the received data  
(SSPBUF) allows the next byte to start reception before  
reading the data that was just received. Any write to the  
The SSPSR is not directly readable or writable and can  
only be accessed by addressing the SSPBUF register.  
Additionally, the MSSP Status register (SSPSTAT)  
indicates the various status conditions.  
EXAMPLE 9-1:  
LOADING THE SSPBUF (SSPSR) REGISTER  
LOOP BTFSS SSPSTAT, BF  
;Has data been received(transmit complete)?  
BRA  
LOOP  
;No  
MOVF  
SSPBUF, W  
;WREG reg = contents of SSPBUF  
MOVWF RXDATA  
;Save in user RAM, if data is meaningful  
MOVF  
MOVWF SSPBUF  
TXDATA, W  
;W reg = contents of TXDATA  
;New data to xmit  
DS39582B-page 74  
2003 Microchip Technology Inc.  
PIC16F87XA  
9.3.3  
ENABLING SPI I/O  
9.3.4  
TYPICAL CONNECTION  
To enable the serial port, SSP Enable bit, SSPEN  
(SSPCON<5>), must be set. To reset or reconfigure  
SPI mode, clear the SSPEN bit, re-initialize the  
SSPCON registers and then set the SSPEN bit. This  
configures the SDI, SDO, SCK and SS pins as serial  
port pins. For the pins to behave as the serial port func-  
tion, some must have their data direction bits (in the  
TRIS register) appropriately programmed. That is:  
Figure 9-2 shows a typical connection between two  
microcontrollers. The master controller (Processor 1)  
initiates the data transfer by sending the SCK signal.  
Data is shifted out of both shift registers on their  
programmed clock edge and latched on the opposite  
edge of the clock. Both processors should be  
programmed to the same Clock Polarity (CKP), then  
both controllers would send and receive data at the  
same time. Whether the data is meaningful (or dummy  
data) depends on the application software. This leads  
to three scenarios for data transmission:  
• SDI is automatically controlled by the SPI module  
• SDO must have TRISC<5> bit cleared  
• SCK (Master mode) must have TRISC<3> bit  
cleared  
• Master sends data – Slave sends dummy data  
• Master sends data – Slave sends data  
• SCK (Slave mode) must have TRISC<3> bit set  
• SS must have TRISC<4> bit set  
• Master sends dummy data – Slave sends data  
Any serial port function that is not desired may be  
overridden by programming the corresponding data  
direction (TRIS) register to the opposite value.  
FIGURE 9-2:  
SPI MASTER/SLAVE CONNECTION  
SPI Master SSPM3:SSPM0 = 00xxb  
SPI Slave SSPM3:SSPM0 = 010xb  
SDO  
SDI  
Serial Input Buffer  
(SSPBUF)  
Serial Input Buffer  
(SSPBUF)  
SDI  
SDO  
Shift Register  
(SSPSR)  
Shift Register  
(SSPSR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCK  
SCK  
PROCESSOR 1  
PROCESSOR 2  
2003 Microchip Technology Inc.  
DS39582B-page 75  
PIC16F87XA  
Figure 9-3, Figure 9-5 and Figure 9-6, where the MSB  
is transmitted first. In Master mode, the SPI clock rate  
(bit rate) is user programmable to be one of the  
following:  
9.3.5  
MASTER MODE  
The master can initiate the data transfer at any time  
because it controls the SCK. The master determines  
when the slave (Processor 2, Figure 9-2) is to  
broadcast data by the software protocol.  
• FOSC/4 (or TCY)  
• FOSC/16 (or 4 • TCY)  
• FOSC/64 (or 16 • TCY)  
• Timer2 output/2  
In Master mode, the data is transmitted/received as  
soon as the SSPBUF register is written to. If the SPI is  
only going to receive, the SDO output could be  
disabled (programmed as an input). The SSPSR  
register will continue to shift in the signal present on the  
SDI pin at the programmed clock rate. As each byte is  
received, it will be loaded into the SSPBUF register as  
if a normal received byte (interrupts and status bits  
appropriately set). This could be useful in receiver  
applications as a “Line Activity Monitor” mode.  
This allows a maximum data rate (at 40 MHz) of  
10.00 Mbps.  
Figure 9-3 shows the waveforms for Master mode.  
When the CKE bit is set, the SDO data is valid before  
there is a clock edge on SCK. The change of the input  
sample is shown based on the state of the SMP bit. The  
time when the SSPBUF is loaded with the received  
data is shown.  
The clock polarity is selected by appropriately program-  
ming the CKP bit (SSPCON<4>). This then, would give  
waveforms for SPI communication as shown in  
FIGURE 9-3:  
SPI MODE WAVEFORM (MASTER MODE)  
Write to  
SSPBUF  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
4 Clock  
Modes  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
SDO  
(CKE = 0)  
bit 6  
bit 6  
bit 2  
bit 2  
bit 5  
bit 5  
bit 4  
bit 4  
bit 1  
bit 1  
bit 0  
bit 0  
bit 7  
bit 7  
bit 3  
bit 3  
SDO  
(CKE = 1)  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SDI  
(SMP = 1)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 1)  
SSPIF  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
DS39582B-page 76  
2003 Microchip Technology Inc.  
PIC16F87XA  
the SS pin goes high, the SDO pin is no longer driven  
even if in the middle of a transmitted byte and becomes  
a floating output. External pull-up/pull-down resistors  
may be desirable, depending on the application.  
9.3.6  
SLAVE MODE  
In Slave mode, the data is transmitted and received as  
the external clock pulses appear on SCK. When the  
last bit is latched, the SSPIF interrupt flag bit is set.  
Note 1: When the SPI is in Slave mode with SS pin  
control enabled (SSPCON<3:0> = 0100),  
the SPI module will reset if the SS pin is set  
to VDD.  
While in Slave mode, the external clock is supplied by  
the external clock source on the SCK pin. This external  
clock must meet the minimum high and low times as  
specified in the electrical specifications.  
2: If the SPI is used in Slave Mode with CKE  
set, then the SS pin control must be  
enabled.  
While in Sleep mode, the slave can transmit/receive  
data. When a byte is received, the device will wake-up  
from Sleep.  
When the SPI module resets, the bit counter is forced  
to ‘0’. This can be done by either forcing the SS pin to  
a high level or clearing the SSPEN bit.  
9.3.7  
SLAVE SELECT  
SYNCHRONIZATION  
The SS pin allows a Synchronous Slave mode. The  
SPI must be in Slave mode with SS pin control enabled  
(SSPCON<3:0> = 04h). The pin must not be driven low  
for the SS pin to function as an input. The data latch  
must be high. When the SS pin is low, transmission and  
reception are enabled and the SDO pin is driven. When  
To emulate two-wire communication, the SDO pin can  
be connected to the SDI pin. When the SPI needs to  
operate as a receiver, the SDO pin can be configured  
as an input. This disables transmissions from the SDO.  
The SDI can always be left as an input (SDI function)  
since it cannot create a bus conflict.  
FIGURE 9-4:  
SLAVE SYNCHRONIZATION WAVEFORM  
SS  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit 6  
bit 7  
bit 7  
bit 0  
SDO  
bit 7  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
2003 Microchip Technology Inc.  
DS39582B-page 77  
PIC16F87XA  
FIGURE 9-5:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)  
SS  
Optional  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit 6  
bit 2  
bit 5  
bit 4  
bit 1  
bit 0  
SDO  
bit 7  
bit 3  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
FIGURE 9-6:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)  
SS  
Not Optional  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
Write to  
SSPBUF  
bit 6  
bit 2  
bit 5  
bit 4  
bit 1  
bit 0  
SDO  
bit 7  
bit 3  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
DS39582B-page 78  
2003 Microchip Technology Inc.  
PIC16F87XA  
9.3.8  
SLEEP OPERATION  
9.3.10  
BUS MODE COMPATIBILITY  
In Master mode, all module clocks are halted and the  
transmission/reception will remain in that state until the  
device wakes from Sleep. After the device returns to  
normal mode, the module will continue to transmit/  
receive data.  
Table 9-1 shows the compatibility between the  
standard SPI modes and the states of the CKP and  
CKE control bits.  
TABLE 9-1:  
SPI BUS MODES  
In Slave mode, the SPI Transmit/Receive Shift register  
operates asynchronously to the device. This allows the  
device to be placed in Sleep mode and data to be  
shifted into the SPI Transmit/Receive Shift register.  
When all 8 bits have been received, the MSSP interrupt  
flag bit will be set and if enabled, will wake the device  
from Sleep.  
Control Bits State  
Standard SPI Mode  
Terminology  
CKP  
CKE  
0, 0  
0, 1  
1, 0  
1, 1  
0
0
1
1
1
0
1
0
9.3.9  
EFFECTS OF A RESET  
There is also a SMP bit which controls when the data is  
sampled.  
A Reset disables the MSSP module and terminates the  
current transfer.  
TABLE 9-2:  
Name  
REGISTERS ASSOCIATED WITH SPI OPERATION  
Value on  
Value on  
POR, BOR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
INTCON  
GIE/  
GIEH  
PEIE/ TMR0IE INT0IE  
GIEL  
RBIE  
TMR0IF INT0IF  
RBIF 0000 000x 0000 000u  
PIR1  
PSPIF(1) ADIF  
PSPIE(1) ADIE  
RCIF  
RCIE  
TXIF  
TXIE  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
1111 1111 1111 1111  
PIE1  
TRISC  
PORTC Data Direction Register  
SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register  
SSPCON WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 0000 0000 0000 0000  
PORTA Data Direction Register  
CKE D/A  
xxxx xxxx uuuu uuuu  
TRISA  
--11 1111 --11 1111  
0000 0000 0000 0000  
SSPSTAT  
SMP  
P
S
R/W  
UA  
BF  
Legend: x= unknown, u= unchanged, -= unimplemented, read as ‘0’.  
Shaded cells are not used by the MSSP in SPI mode.  
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on 28-pin devices; always maintain these bits clear.  
2003 Microchip Technology Inc.  
DS39582B-page 79  
PIC16F87XA  
2
9.4.1  
REGISTERS  
9.4  
I C Mode  
The MSSP module has six registers for I2C operation.  
These are:  
The MSSP module in I2C mode fully implements all  
master and slave functions (including general call sup-  
port) and provides interrupts on Start and Stop bits in  
hardware to determine a free bus (multi-master func-  
tion). The MSSP module implements the standard  
mode specifications, as well as 7-bit and 10-bit  
addressing.  
• MSSP Control Register (SSPCON)  
• MSSP Control Register 2 (SSPCON2)  
• MSSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer Register  
(SSPBUF)  
Two pins are used for data transfer:  
• MSSP Shift Register (SSPSR) – Not directly  
accessible  
• Serial clock (SCL) – RC3/SCK/SCL  
• Serial data (SDA) – RC4/SDI/SDA  
• MSSP Address Register (SSPADD)  
The user must configure these pins as inputs or outputs  
through the TRISC<4:3> bits.  
SSPCON, SSPCON2 and SSPSTAT are the control  
and status registers in I2C mode operation. The  
SSPCON and SSPCON2 registers are readable and  
writable. The lower six bits of the SSPSTAT are  
read-only. The upper two bits of the SSPSTAT are  
read/write.  
FIGURE 9-7:  
MSSP BLOCK DIAGRAM  
(I2C MODE)  
Internal  
Data Bus  
SSPSR is the shift register used for shifting data in or  
out. SSPBUF is the buffer register to which data bytes  
are written to or read from.  
Read  
Write  
SSPADD register holds the slave device address  
when the SSP is configured in I2C Slave mode. When  
the SSP is configured in Master mode, the lower  
seven bits of SSPADD act as the baud rate generator  
reload value.  
SSPBUF reg  
RC3/SCK/SCL  
Shift  
Clock  
SSPSR reg  
In receive operations, SSPSR and SSPBUF together  
create a double-buffered receiver. When SSPSR  
receives a complete byte, it is transferred to SSPBUF  
and the SSPIF interrupt is set.  
RC4/SDI/  
SDA  
MSb  
LSb  
Addr Match  
Match Detect  
SSPADD reg  
During transmission, the SSPBUF is not double-  
buffered. A write to SSPBUF will write to both SSPBUF  
and SSPSR.  
Set, Reset  
S, P bits  
(SSPSTAT reg)  
Start and  
Stop bit Detect  
DS39582B-page 80  
2003 Microchip Technology Inc.  
PIC16F87XA  
REGISTER 9-3:  
SSPSTAT: MSSP STATUS REGISTER (I2C MODE) (ADDRESS 94h)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
SMP: Slew Rate Control bit  
In Master or Slave mode:  
1= Slew rate control disabled for standard speed mode (100 kHz and 1 MHz)  
0= Slew rate control enabled for high-speed mode (400 kHz)  
CKE: SMBus Select bit  
In Master or Slave mode:  
1= Enable SMBus specific inputs  
0= Disable SMBus specific inputs  
D/A: Data/Address bit  
In Master mode:  
Reserved.  
In Slave mode:  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
bit 4  
bit 3  
P: Stop bit  
1= Indicates that a Stop bit has been detected last  
0= Stop bit was not detected last  
Note:  
This bit is cleared on Reset and when SSPEN is cleared.  
S: Start bit  
1= Indicates that a Start bit has been detected last  
0= Start bit was not detected last  
Note:  
This bit is cleared on Reset and when SSPEN is cleared.  
bit 2  
R/W: Read/Write bit information (I2C mode only)  
In Slave mode:  
1= Read  
0= Write  
Note:  
This bit holds the R/W bit information following the last address match. This bit is  
only valid from the address match to the next Start bit, Stop bit or not ACK bit.  
In Master mode:  
1= Transmit is in progress  
0= Transmit is not in progress  
Note:  
ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is  
in Idle mode.  
bit 1  
bit 0  
UA: Update Address (10-bit Slave mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
In Transmit mode:  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
In Receive mode:  
1= Data Transmit in progress (does not include the ACK and Stop bits), SSPBUF is full  
0= Data Transmit complete (does not include the ACK and Stop bits), SSPBUF is empty  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003 Microchip Technology Inc.  
DS39582B-page 81  
PIC16F87XA  
REGISTER 9-4:  
SSPCON1: MSSP CONTROL REGISTER 1 (I2C MODE) (ADDRESS 14h)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
bit 7  
WCOL: Write Collision Detect bit  
In Master Transmit mode:  
1= A write to the SSPBUF register was attempted while the I2C conditions were not valid for  
a transmission to be started. (Must be cleared in software.)  
0= No collision  
In Slave Transmit mode:  
1= The SSPBUF register is written while it is still transmitting the previous word. (Must be  
cleared in software.)  
0= No collision  
In Receive mode (Master or Slave modes):  
This is a “don’t care” bit.  
bit 6  
SSPOV: Receive Overflow Indicator bit  
In Receive mode:  
1= A byte is received while the SSPBUF register is still holding the previous byte. (Must be  
cleared in software.)  
0= No overflow  
In Transmit mode:  
This is a “don’t care” bit in Transmit mode.  
bit 5  
bit 4  
SSPEN: Synchronous Serial Port Enable bit  
1= Enables the serial port and configures the SDA and SCL pins as the serial port pins  
0= Disables the serial port and configures these pins as I/O port pins  
Note:  
When enabled, the SDA and SCL pins must be properly configured as input or output.  
CKP: SCK Release Control bit  
In Slave mode:  
1= Release clock  
0= Holds clock low (clock stretch). (Used to ensure data setup time.)  
In Master mode:  
Unused in this mode.  
bit 3-0  
SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
1111= I2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled  
1110= I2C Slave mode, 7-bit address with Start and Stop bit interrupts enabled  
1011= I2C Firmware Controlled Master mode (Slave Idle)  
1000= I2C Master mode, clock = FOSC/(4 * (SSPADD + 1))  
0111= I2C Slave mode, 10-bit address  
0110= I2C Slave mode, 7-bit address  
Note:  
Bit combinations not specifically listed here are either reserved or implemented in  
SPI mode only.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39582B-page 82  
2003 Microchip Technology Inc.  
PIC16F87XA  
REGISTER 9-5:  
SSPCON2: MSSP CONTROL REGISTER 2 (I2C MODE) (ADDRESS 91h)  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RCEN  
R/W-0  
PEN  
R/W-0  
RSEN  
R/W-0  
SEN  
ACKSTAT  
ACKDT  
ACKEN  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
GCEN: General Call Enable bit (Slave mode only)  
1= Enable interrupt when a general call address (0000h) is received in the SSPSR  
0= General call address disabled  
ACKSTAT: Acknowledge Status bit (Master Transmit mode only)  
1= Acknowledge was not received from slave  
0= Acknowledge was received from slave  
ACKDT: Acknowledge Data bit (Master Receive mode only)  
1= Not Acknowledge  
0= Acknowledge  
Note:  
Value that will be transmitted when the user initiates an Acknowledge sequence at  
the end of a receive.  
bit 4  
ACKEN: Acknowledge Sequence Enable bit (Master Receive mode only)  
1= Initiate Acknowledge sequence on SDA and SCL pins and transmit ACKDT data bit.  
Automatically cleared by hardware.  
0= Acknowledge sequence Idle  
bit 3  
bit 2  
bit 1  
bit 0  
RCEN: Receive Enable bit (Master mode only)  
1= Enables Receive mode for I2C  
0= Receive Idle  
PEN: Stop Condition Enable bit (Master mode only)  
1= Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Stop condition Idle  
RSEN: Repeated Start Condition Enabled bit (Master mode only)  
1= Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Repeated Start condition Idle  
SEN: Start Condition Enabled/Stretch Enabled bit  
In Master mode:  
1= Initiate Start condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Start condition Idle  
In Slave mode:  
1= Clock stretching is enabled for both slave transmit and slave receive (stretch enabled)  
0= Clock stretching is enabled for slave transmit only (PIC16F87X compatibility)  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
Note:  
For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I2C module is not in the Idle mode,  
this bit may not be set (no spooling) and the SSPBUF may not be written (or writes  
to the SSPBUF are disabled).  
2003 Microchip Technology Inc.  
DS39582B-page 83  
PIC16F87XA  
9.4.2  
OPERATION  
9.4.3.1  
Addressing  
The MSSP module functions are enabled by setting  
MSSP Enable bit, SSPEN (SSPCON<5>).  
The SSPCON register allows control of the I2C opera-  
tion. Four mode selection bits (SSPCON<3:0>) allow  
one of the following I2C modes to be selected:  
• I2C Master mode, clock = OSC/4 (SSPADD + 1)  
• I2C Slave mode (7-bit address)  
• I2C Slave mode (10-bit address)  
Once the MSSP module has been enabled, it waits for  
a Start condition to occur. Following the Start condition,  
the 8 bits are shifted into the SSPSR register. All incom-  
ing bits are sampled with the rising edge of the clock  
(SCL) line. The value of register SSPSR<7:1> is com-  
pared to the value of the SSPADD register. The  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match, and the BF  
and SSPOV bits are clear, the following events occur:  
• I2C Slave mode (7-bit address) with Start and  
Stop bit interrupts enabled  
• I2C Slave mode (10-bit address) with Start and  
Stop bit interrupts enabled  
• I2C Firmware Controlled Master mode, slave is  
Idle  
Selection of any I2C mode, with the SSPEN bit set,  
forces the SCL and SDA pins to be open-drain, pro-  
vided these pins are programmed to inputs by setting  
the appropriate TRISC bits. To ensure proper operation  
of the module, pull-up resistors must be provided  
externally to the SCL and SDA pins.  
1. The SSPSR register value is loaded into the  
SSPBUF register.  
2. The Buffer Full bit, BF, is set.  
3. An ACK pulse is generated.  
4. MSSP Interrupt Flag bit, SSPIF (PIR1<3>), is  
set (interrupt is generated if enabled) on the  
falling edge of the ninth SCL pulse.  
In 10-bit Address mode, two address bytes need to be  
received by the slave. The five Most Significant bits  
(MSbs) of the first address byte specify if this is a 10-bit  
address. Bit R/W (SSPSTAT<2>) must specify a write  
so the slave device will receive the second address  
byte. For a 10-bit address, the first byte would equal  
11110 A9 A8 0’, where ‘A9’ and ‘A8’ are the two  
MSbs of the address. The sequence of events for  
10-bit address is as follows, with steps 7 through 9 for  
the slave-transmitter:  
9.4.3  
SLAVE MODE  
In Slave mode, the SCL and SDA pins must be config-  
ured as inputs (TRISC<4:3> set). The MSSP module  
will override the input state with the output data when  
required (slave-transmitter).  
The I2C Slave mode hardware will always generate an  
interrupt on an address match. Through the mode  
select bits, the user can also choose to interrupt on  
Start and Stop bits  
1. Receive first (high) byte of address (bits SSPIF,  
BF and bit UA (SSPSTAT<1>) are set).  
2. Update the SSPADD register with second (low)  
byte of address (clears bit UA and releases the  
SCL line).  
When an address is matched, or the data transfer after  
an address match is received, the hardware automati-  
cally will generate the Acknowledge (ACK) pulse and  
load the SSPBUF register with the received value  
currently in the SSPSR register.  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
4. Receive second (low) byte of address (bits  
SSPIF, BF and UA are set).  
5. Update the SSPADD register with the first (high)  
byte of address. If match releases SCL line, this  
will clear bit UA.  
Any combination of the following conditions will cause  
the MSSP module not to give this ACK pulse:  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
• The buffer full bit, BF (SSPSTAT<0>), was set  
before the transfer was received.  
7. Receive Repeated Start condition.  
• The overflow bit, SSPOV (SSPCON<6>), was set  
before the transfer was received.  
8. Receive first (high) byte of address (bits SSPIF  
and BF are set).  
In this case, the SSPSR register value is not loaded  
into the SSPBUF, but bit SSPIF (PIR1<3>) is set. The  
BF bit is cleared by reading the SSPBUF register, while  
bit SSPOV is cleared through software.  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
The SCL clock input must have a minimum high and  
low for proper operation. The high and low times of the  
I2C specification, as well as the requirement of the  
MSSP module, are shown in timing parameter #100  
and parameter #101.  
DS39582B-page 84  
2003 Microchip Technology Inc.  
PIC16F87XA  
9.4.3.2  
Reception  
9.4.3.3  
Transmission  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT  
register is cleared. The received address is loaded into  
the SSPBUF register and the SDA line is held low  
(ACK).  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is loaded  
into the SSPBUF register. The ACK pulse will be sent on  
the ninth bit and pin RC3/SCK/SCL is held low regard-  
less of SEN (see Section 9.4.4 “Clock Stretching” for  
more detail). By stretching the clock, the master will be  
unable to assert another clock pulse until the slave is  
done preparing the transmit data. The transmit data  
must be loaded into the SSPBUF register, which also  
loads the SSPSR register. Then pin RC3/SCK/SCL  
should be enabled by setting bit CKP (SSPCON<4>).  
The eight data bits are shifted out on the falling edge of  
the SCL input. This ensures that the SDA signal is valid  
during the SCL high time (Figure 9-9).  
When the address byte overflow condition exists, then  
the No Acknowledge (ACK) pulse is given. An overflow  
condition is defined as either bit BF (SSPSTAT<0>) is  
set or bit SSPOV (SSPCON<6>) is set.  
An MSSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF (PIR1<3>) must be cleared in soft-  
ware. The SSPSTAT register is used to determine the  
status of the byte.  
If SEN is enabled (SSPCON<0> = 1), RC3/SCK/SCL  
will be held low (clock stretch) following each data trans-  
fer. The clock must be released by setting bit CKP  
(SSPCON<4>). See Section 9.4.4 “Clock Stretching”  
for more detail.  
The ACK pulse from the master-receiver is latched on  
the rising edge of the ninth SCL input pulse. If the SDA  
line is high (not ACK), then the data transfer is com-  
plete. In this case, when the ACK is latched by the  
slave, the slave logic is reset (resets SSPSTAT regis-  
ter) and the slave monitors for another occurrence of  
the Start bit. If the SDA line was low (ACK), the next  
transmit data must be loaded into the SSPBUF register.  
Again, pin RC3/SCK/SCL must be enabled by setting  
bit CKP.  
An MSSP interrupt is generated for each data transfer  
byte. The SSPIF bit must be cleared in software and  
the SSPSTAT register is used to determine the status  
of the byte. The SSPIF bit is set on the falling edge of  
the ninth clock pulse.  
2003 Microchip Technology Inc.  
DS39582B-page 85  
PIC16F87XA  
2
FIGURE 9-8:  
I C SLAVE MODE TIMING WITH SEN = 0 (RECEPTION, 7-BIT ADDRESS)  
DS39582B-page 86  
2003 Microchip Technology Inc.  
PIC16F87XA  
2
FIGURE 9-9:  
I C SLAVE MODE TIMING (TRANSMISSION, 7-BIT ADDRESS)  
2003 Microchip Technology Inc.  
DS39582B-page 87  
PIC16F87XA  
FIGURE 9-10:  
I2C SLAVE MODE TIMING WITH SEN = 0 (RECEPTION, 10-BIT ADDRESS)  
DS39582B-page 88  
2003 Microchip Technology Inc.  
PIC16F87XA  
2
FIGURE 9-11:  
I C SLAVE MODE TIMING (TRANSMISSION, 10-BIT ADDRESS)  
2003 Microchip Technology Inc.  
DS39582B-page 89  
PIC16F87XA  
9.4.4  
CLOCK STRETCHING  
9.4.4.3  
Clock Stretching for 7-bit Slave  
Transmit Mode  
Both 7 and 10-bit Slave modes implement automatic  
clock stretching during a transmit sequence.  
7-bit Slave Transmit mode implements clock stretching  
by clearing the CKP bit after the falling edge of the ninth  
clock, if the BF bit is clear. This occurs regardless of the  
state of the SEN bit.  
The SEN bit (SSPCON2<0>) allows clock stretching to  
be enabled during receives. Setting SEN will cause  
the SCL pin to be held low at the end of each data  
receive sequence.  
The user’s ISR must set the CKP bit before transmis-  
sion is allowed to continue. By holding the SCL line  
low, the user has time to service the ISR and load the  
contents of the SSPBUF before the master device can  
initiate another transmit sequence (see Figure 9-9).  
9.4.4.1  
Clock Stretching for 7-bit Slave  
Receive Mode (SEN = 1)  
In 7-bit Slave Receive mode, on the falling edge of the  
ninth clock at the end of the ACK sequence, if the BF  
bit is set, the CKP bit in the SSPCON register is  
automatically cleared, forcing the SCL output to be  
held low. The CKP bit being cleared to ‘0’ will assert  
the SCL line low. The CKP bit must be set in the user’s  
ISR before reception is allowed to continue. By holding  
the SCL line low, the user has time to service the ISR  
and read the contents of the SSPBUF before the  
master device can initiate another receive sequence.  
This will prevent buffer overruns from occurring (see  
Figure 9-13).  
Note 1: If the user loads the contents of SSPBUF,  
setting the BF bit before the falling edge of  
the ninth clock, the CKP bit will not be  
cleared and clock stretching will not occur.  
2: The CKP bit can be set in software  
regardless of the state of the BF bit.  
9.4.4.4  
Clock Stretching for 10-bit Slave  
Transmit Mode  
In 10-bit Slave Transmit mode, clock stretching is con-  
trolled during the first two address sequences by the  
state of the UA bit, just as it is in 10-bit Slave Receive  
mode. The first two addresses are followed by a third  
address sequence, which contains the high order bits  
of the 10-bit address and the R/W bit set to ‘1’. After  
the third address sequence is performed, the UA bit is  
not set, the module is now configured in Transmit  
mode and clock stretching is controlled by the BF flag  
as in 7-bit Slave Transmit mode (see Figure 9-11).  
Note 1: If the user reads the contents of the  
SSPBUF before the falling edge of the  
ninth clock, thus clearing the BF bit, the  
CKP bit will not be cleared and clock  
stretching will not occur.  
2: The CKP bit can be set in software  
regardless of the state of the BF bit. The  
user should be careful to clear the BF bit  
in the ISR before the next receive  
sequence in order to prevent an overflow  
condition.  
9.4.4.2  
Clock Stretching for 10-bit Slave  
Receive Mode (SEN = 1)  
In 10-bit Slave Receive mode, during the address  
sequence, clock stretching automatically takes place  
but CKP is not cleared. During this time, if the UA bit is  
set after the ninth clock, clock stretching is initiated.  
The UA bit is set after receiving the upper byte of the  
10-bit address and following the receive of the second  
byte of the 10-bit address, with the R/W bit cleared to  
0’. The release of the clock line occurs upon updating  
SSPADD. Clock stretching will occur on each data  
receive sequence as described in 7-bit mode.  
Note:  
If the user polls the UA bit and clears it by  
updating the SSPADD register before the  
falling edge of the ninth clock occurs and if  
the user hasn’t cleared the BF bit by read-  
ing the SSPBUF register before that time,  
then the CKP bit will still NOT be asserted  
low. Clock stretching, on the basis of the  
state of the BF bit, only occurs during a  
data sequence, not an address sequence.  
DS39582B-page 90  
2003 Microchip Technology Inc.  
PIC16F87XA  
9.4.4.5  
Clock Synchronization and the  
CKP Bit  
When the CKP bit is cleared, the SCL output is forced  
to ‘0’; however, setting the CKP bit will not assert the  
SCL output low until the SCL output is already sampled  
low. Therefore, the CKP bit will not assert the SCL line  
until an external I2C master device has already  
asserted the SCL line. The SCL output will remain low  
until the CKP bit is set and all other devices on the I2C  
bus have deasserted SCL. This ensures that a write to  
the CKP bit will not violate the minimum high time  
requirement for SCL (see Figure 9-12).  
FIGURE 9-12:  
CLOCK SYNCHRONIZATION TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
SDA  
SCL  
DX  
DX-1  
Master device  
asserts clock  
CKP  
Master device  
deasserts clock  
WR  
SSPCON  
2003 Microchip Technology Inc.  
DS39582B-page 91  
PIC16F87XA  
2
FIGURE 9-13:  
I C SLAVE MODE TIMING WITH SEN = 1 (RECEPTION, 7-BIT ADDRESS)  
DS39582B-page 92  
2003 Microchip Technology Inc.  
PIC16F87XA  
FIGURE 9-14:  
I2C SLAVE MODE TIMING SEN = 1 (RECEPTION, 10-BIT ADDRESS)  
2003 Microchip Technology Inc.  
DS39582B-page 93  
PIC16F87XA  
If the general call address matches, the SSPSR is  
transferred to the SSPBUF, the BF flag bit is set (eighth  
bit) and on the falling edge of the ninth bit (ACK bit), the  
SSPIF interrupt flag bit is set.  
9.4.5  
GENERAL CALL ADDRESS  
SUPPORT  
The addressing procedure for the I2C bus is such that  
the first byte after the Start condition usually determines  
which device will be the slave addressed by the master.  
The exception is the general call address which can  
address all devices. When this address is used, all  
devices should, in theory, respond with an Acknowledge.  
When the interrupt is serviced, the source for the inter-  
rupt can be checked by reading the contents of the  
SSPBUF. The value can be used to determine if the  
address was device specific or a general call address.  
In 10-bit mode, the SSPADD is required to be updated  
for the second half of the address to match and the UA  
bit is set (SSPSTAT<1>). If the general call address is  
sampled when the GCEN bit is set, while the slave is  
configured in 10-bit Address mode, then the second  
half of the address is not necessary, the UA bit will not  
be set and the slave will begin receiving data after the  
Acknowledge (Figure 9-15).  
The general call address is one of eight addresses  
reserved for specific purposes by the I2C protocol. It  
consists of all ‘0’s with R/W = 0.  
The general call address is recognized when the Gen-  
eral Call Enable bit (GCEN) is enabled (SSPCON2<7>  
set). Following a Start bit detect, 8 bits are shifted into  
the SSPSR and the address is compared against the  
SSPADD. It is also compared to the general call  
address and fixed in hardware.  
FIGURE 9-15:  
SLAVE MODE GENERAL CALL ADDRESS SEQUENCE  
(7 OR 10-BIT ADDRESS MODE)  
Address is compared to general call address.  
After ACK, set interrupt.  
Receiving Data  
D5 D4 D3 D2 D1  
ACK  
R/W = 0  
General Call Address  
ACK  
SDA  
SCL  
D7 D6  
D0  
8
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
9
S
SSPIF  
BF (SSPSTAT<0>)  
Cleared in software  
SSPBUF is read  
SSPOV (SSPCON<6>)  
GCEN (SSPCON2<7>)  
0’  
1’  
DS39582B-page 94  
2003 Microchip Technology Inc.  
PIC16F87XA  
9.4.6  
MASTER MODE  
Note:  
The MSSP module, when configured in  
I2C Master mode, does not allow queueing  
of events. For instance, the user is not  
allowed to initiate a Start condition and  
immediately write the SSPBUF register to  
initiate transmission before the Start condi-  
tion is complete. In this case, the SSPBUF  
will not be written to and the WCOL bit will  
be set, indicating that a write to the  
SSPBUF did not occur.  
Master mode is enabled by setting and clearing the  
appropriate SSPM bits in SSPCON and by setting the  
SSPEN bit. In Master mode, the SCL and SDA lines  
are manipulated by the MSSP hardware.  
Master mode of operation is supported by interrupt  
generation on the detection of the Start and Stop con-  
ditions. The Stop (P) and Start (S) bits are cleared from  
a Reset or when the MSSP module is disabled. Control  
of the I2C bus may be taken when the P bit is set or the  
bus is Idle, with both the S and P bits clear.  
The following events will cause SSP Interrupt Flag bit,  
SSPIF, to be set (SSP interrupt if enabled):  
In Firmware Controlled Master mode, user code  
conducts all I2C bus operations based on Start and  
Stop bit conditions.  
• Start condition  
• Stop condition  
Once Master mode is enabled, the user has six  
options.  
• Data transfer byte transmitted/received  
• Acknowledge transmit  
• Repeated Start  
1. Assert a Start condition on SDA and SCL.  
2. Assert a Repeated Start condition on SDA and  
SCL.  
3. Write to the SSPBUF register, initiating  
transmission of data/address.  
4. Configure the I2C port to receive data.  
5. Generate an Acknowledge condition at the end  
of a received byte of data.  
6. Generate a Stop condition on SDA and SCL.  
2
FIGURE 9-16:  
MSSP BLOCK DIAGRAM (I C MASTER MODE)  
Internal  
Data Bus  
SSPM3:SSPM0  
SSPADD<6:0>  
Read  
Write  
SSPBUF  
SSPSR  
Baud  
Rate  
Generator  
SDA  
Shift  
Clock  
SDA In  
MSb  
LSb  
Start bit, Stop bit,  
Acknowledge  
Generate  
SCL  
Start bit Detect  
Stop bit Detect  
Write Collision Detect  
Clock Arbitration  
State Counter for  
end of XMIT/RCV  
SCL In  
Bus Collision  
Set/Reset, S, P, WCOL (SSPSTAT)  
Set SSPIF, BCLIF  
Reset ACKSTAT, PEN (SSPCON2)  
2003 Microchip Technology Inc.  
DS39582B-page 95  
PIC16F87XA  
I2C Master Mode Operation  
A typical transmit sequence would go as follows:  
9.4.6.1  
1. The user generates a Start condition by setting  
the Start Enable bit, SEN (SSPCON2<0>).  
The master device generates all of the serial clock  
pulses and the Start and Stop conditions. A transfer is  
ended with a Stop condition or with a Repeated Start  
condition. Since the Repeated Start condition is also  
the beginning of the next serial transfer, the I2C bus will  
not be released.  
2. SSPIF is set. The MSSP module will wait the  
required Start time before any other operation  
takes place.  
3. The user loads the SSPBUF with the slave  
address to transmit.  
In Master Transmitter mode, serial data is output  
through SDA while SCL outputs the serial clock. The  
first byte transmitted contains the slave address of the  
receiving device (7 bits) and the Read/Write (R/W) bit.  
In this case, the R/W bit will be logic ‘0’. Serial data is  
transmitted 8 bits at a time. After each byte is transmit-  
ted, an Acknowledge bit is received. Start and Stop  
conditions are output to indicate the beginning and the  
end of a serial transfer.  
4. Address is shifted out the SDA pin until all 8 bits  
are transmitted.  
5. The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPCON2 register (SSPCON2<6>).  
6. The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
In Master Receive mode, the first byte transmitted con-  
tains the slave address of the transmitting device  
(7 bits) and the R/W bit. In this case, the R/W bit will be  
logic ‘1’. Thus, the first byte transmitted is a 7-bit slave  
address followed by a ‘1’ to indicate the receive bit.  
Serial data is received via SDA while SCL outputs the  
serial clock. Serial data is received 8 bits at a time. After  
each byte is received, an Acknowledge bit is transmit-  
ted. Start and Stop conditions indicate the beginning  
and end of transmission.  
7. The user loads the SSPBUF with eight bits of  
data.  
8. Data is shifted out the SDA pin until all 8 bits are  
transmitted.  
9. The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPCON2 register (SSPCON2<6>).  
10. The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
The baud rate generator used for the SPI mode opera-  
tion is used to set the SCL clock frequency for either  
100 kHz, 400 kHz or 1 MHz I2C operation. See  
Section 9.4.7 “Baud Rate Generator” for more detail.  
11. The user generates a Stop condition by setting  
the Stop Enable bit, PEN (SSPCON2<2>).  
12. Interrupt is generated once the Stop condition is  
complete.  
DS39582B-page 96  
2003 Microchip Technology Inc.  
PIC16F87XA  
Once the given operation is complete (i.e., transmis-  
sion of the last data bit is followed by ACK), the internal  
clock will automatically stop counting and the SCL pin  
will remain in its last state.  
9.4.7  
BAUD RATE GENERATOR  
In I2C Master mode, the Baud Rate Generator (BRG)  
reload value is placed in the lower 7 bits of the  
SSPADD register (Figure 9-17). When a write occurs to  
SSPBUF, the Baud Rate Generator will automatically  
begin counting. The BRG counts down to 0 and stops  
until another reload has taken place. The BRG count is  
decremented twice per instruction cycle (TCY) on the  
Q2 and Q4 clocks. In I2C Master mode, the BRG is  
reloaded automatically.  
Table 9-3 demonstrates clock rates based on  
instruction cycles and the BRG value loaded into  
SSPADD.  
FIGURE 9-17:  
BAUD RATE GENERATOR BLOCK DIAGRAM  
SSPM3:SSPM0  
SSPADD<6:0>  
SSPM3:SSPM0  
SCL  
Reload  
Control  
Reload  
BRG Down Counter  
CLKO  
FOSC/4  
TABLE 9-3:  
I2C CLOCK RATE W/BRG  
FSCL  
FCY  
FCY*2  
BRG Value  
(2 Rollovers of BRG)  
10 MHz  
10 MHz  
10 MHz  
4 MHz  
4 MHz  
4 MHz  
1 MHz  
1 MHz  
1 MHz  
20 MHz  
20 MHz  
20 MHz  
8 MHz  
8 MHz  
8 MHz  
2 MHz  
2 MHz  
2 MHz  
19h  
20h  
3Fh  
0Ah  
0Dh  
28h  
03h  
0Ah  
00h  
400 kHz(1)  
312.5 kHz  
100 kHz  
400 kHz(1)  
308 kHz  
100 kHz  
333 kHz(1)  
100 kHz  
1 MHz(1)  
Note 1: The I2C interface does not conform to the 400 kHz I2C specification (which applies to rates greater than  
100 kHz) in all details, but may be used with care where higher rates are required by the application.  
2003 Microchip Technology Inc.  
DS39582B-page 97  
PIC16F87XA  
SCL pin is sampled high, the Baud Rate Generator is  
reloaded with the contents of SSPADD<6:0> and  
begins counting. This ensures that the SCL high time  
will always be at least one BRG rollover count, in the  
event that the clock is held low by an external device  
(Figure 9-17).  
9.4.7.1  
Clock Arbitration  
Clock arbitration occurs when the master, during any  
receive, transmit or Repeated Start/Stop condition,  
deasserts the SCL pin (SCL allowed to float high).  
When the SCL pin is allowed to float high, the Baud  
Rate Generator (BRG) is suspended from counting  
until the SCL pin is actually sampled high. When the  
FIGURE 9-18:  
BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION  
SDA  
DX  
DX-1  
SCL allowed to transition high  
SCL deasserted but slave holds  
SCL low (clock arbitration)  
SCL  
BRG decrements on  
Q2 and Q4 cycles  
BRG  
Value  
03h  
02h  
01h  
00h (hold off)  
03h  
02h  
SCL is sampled high, reload takes  
place and BRG starts its count  
BRG  
Reload  
DS39582B-page 98  
2003 Microchip Technology Inc.  
PIC16F87XA  
9.4.8  
I2C MASTER MODE START  
CONDITION TIMING  
9.4.8.1  
WCOL Status Flag  
If the user writes the SSPBUF when a Start sequence  
is in progress, the WCOL is set and the contents of the  
buffer are unchanged (the write doesn’t occur).  
To initiate a Start condition, the user sets the Start con-  
dition enable bit, SEN (SSPCON2<0>). If the SDA and  
SCL pins are sampled high, the Baud Rate Generator  
is reloaded with the contents of SSPADD<6:0> and  
starts its count. If SCL and SDA are both sampled high  
when the Baud Rate Generator times out (TBRG), the  
SDA pin is driven low. The action of the SDA being  
driven low, while SCL is high, is the Start condition and  
causes the S bit (SSPSTAT<3>) to be set. Following  
this, the Baud Rate Generator is reloaded with the con-  
tents of SSPADD<6:0> and resumes its count. When  
the Baud Rate Generator times out (TBRG), the SEN bit  
(SSPCON2<0>) will be automatically cleared by hard-  
ware, the Baud Rate Generator is suspended, leaving  
the SDA line held low and the Start condition is  
complete.  
Note:  
Because queueing of events is not  
allowed, writing to the lower 5 bits of  
SSPCON2 is disabled until the Start  
condition is complete.  
Note:  
If at the beginning of the Start condition,  
the SDA and SCL pins are already sam-  
pled low, or if during the Start condition, the  
SCL line is sampled low before the SDA  
line is driven low, a bus collision occurs,  
the Bus Collision Interrupt Flag (BCLIF) is  
set, the Start condition is aborted and the  
I2C module is reset into its Idle state.  
FIGURE 9-19:  
FIRST START BIT TIMING  
Set S bit (SSPSTAT<3>)  
At completion of Start bit,  
Write to SEN bit occurs here  
SDA = 1,  
SCL = 1  
hardware clears SEN bit  
and sets SSPIF bit  
TBRG  
TBRG  
Write to SSPBUF occurs here  
1st Bit  
2nd Bit  
SDA  
TBRG  
SCL  
TBRG  
S
2003 Microchip Technology Inc.  
DS39582B-page 99  
PIC16F87XA  
I2C MASTER MODE REPEATED  
START CONDITION TIMING  
Immediately following the SSPIF bit getting set, the user  
may write the SSPBUF with the 7-bit address in 7-bit  
mode or the default first address in 10-bit mode. After  
the first eight bits are transmitted and an ACK is  
received, the user may then transmit an additional eight  
bits of address (10-bit mode) or eight bits of data (7-bit  
mode).  
9.4.9  
A Repeated Start condition occurs when the RSEN bit  
(SSPCON2<1>) is programmed high and the I2C logic  
module is in the Idle state. When the RSEN bit is set,  
the SCL pin is asserted low. When the SCL pin is sam-  
pled low, the Baud Rate Generator is loaded with the  
contents of SSPADD<5:0> and begins counting. The  
SDA pin is released (brought high) for one Baud Rate  
Generator count (TBRG). When the Baud Rate Genera-  
tor times out, if SDA is sampled high, the SCL pin will  
be deasserted (brought high). When SCL is sampled  
high, the Baud Rate Generator is reloaded with the  
contents of SSPADD<6:0> and begins counting. SDA  
and SCL must be sampled high for one TBRG. This  
action is then followed by assertion of the SDA pin  
(SDA = 0) for one TBRG while SCL is high. Following  
this, the RSEN bit (SSPCON2<1>) will be automatically  
cleared and the Baud Rate Generator will not be  
reloaded, leaving the SDA pin held low. As soon as a  
Start condition is detected on the SDA and SCL pins,  
the S bit (SSPSTAT<3>) will be set. The SSPIF bit will  
notbesetuntiltheBaudRateGeneratorhastimedout.  
9.4.9.1  
WCOL Status Flag  
If the user writes the SSPBUF when a Repeated Start  
sequence is in progress, the WCOL is set and the con-  
tents of the buffer are unchanged (the write doesn’t  
occur).  
Note:  
Because queueing of events is not  
allowed, writing of the lower 5 bits of  
SSPCON2 is disabled until the Repeated  
Start condition is complete.  
Note 1: If RSEN is programmed while any other  
event is in progress, it will not take effect.  
2: A bus collision during the Repeated Start  
condition occurs if:  
• SDA is sampled low when SCL goes  
from low to high.  
• SCL goes low before SDA is  
asserted low. This may indicate that  
another master is attempting to  
transmit a data ‘1’.  
FIGURE 9-20:  
REPEAT START CONDITION WAVEFORM  
Set S (SSPSTAT<3>)  
Write to SSPCON2  
occurs here,  
SDA = 1,  
SCL (no change)  
SDA = 1,  
SCL = 1  
At completion of Start bit,  
hardware clears RSEN bit  
and sets SSPIF  
TBRG  
TBRG  
TBRG  
1st Bit  
SDA  
Write to SSPBUF occurs here  
TBRG  
Falling edge of ninth clock,  
end of Xmit  
SCL  
TBRG  
Sr = Repeated Start  
DS39582B-page 100  
2003 Microchip Technology Inc.  
PIC16F87XA  
9.4.10  
I2C MASTER MODE  
TRANSMISSION  
9.4.10.3  
ACKSTAT Status Flag  
In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is  
cleared when the slave has sent an Acknowledge  
(ACK = 0) and is set when the slave does Not Acknowl-  
edge (ACK = 1). A slave sends an Acknowledge when  
it has recognized its address (including a general call)  
or when the slave has properly received its data.  
Transmission of a data byte, a 7-bit address or the  
other half of a 10-bit address is accomplished by simply  
writing a value to the SSPBUF register. This action will  
set the Buffer Full flag bit, BF, and allow the Baud Rate  
Generator to begin counting and start the next trans-  
mission. Each bit of address/data will be shifted out  
onto the SDA pin after the falling edge of SCL is  
asserted (see data hold time specification, parameter  
#106). SCL is held low for one Baud Rate Generator  
rollover count (TBRG). Data should be valid before SCL  
is released high (see data setup time specification,  
parameter #107). When the SCL pin is released high, it  
is held that way for TBRG. The data on the SDA pin  
must remain stable for that duration and some hold  
time after the next falling edge of SCL. After the eighth  
bit is shifted out (the falling edge of the eighth clock),  
the BF flag is cleared and the master releases SDA.  
This allows the slave device being addressed to  
respond with an ACK bit during the ninth bit time, if an  
address match occurred or if data was received prop-  
erly. The status of ACK is written into the ACKDT bit on  
the falling edge of the ninth clock. If the master receives  
an Acknowledge, the Acknowledge Status bit,  
ACKSTAT, is cleared. If not, the bit is set. After the ninth  
clock, the SSPIF bit is set and the master clock (Baud  
Rate Generator) is suspended until the next data byte  
is loaded into the SSPBUF, leaving SCL low and SDA  
unchanged (Figure 9-21).  
9.4.11  
I2C MASTER MODE RECEPTION  
Master mode reception is enabled by programming the  
Receive Enable bit, RCEN (SSPCON2<3>).  
Note:  
The MSSP module must be in an Idle state  
before the RCEN bit is set or the RCEN bit  
will be disregarded.  
The Baud Rate Generator begins counting and on each  
rollover, the state of the SCL pin changes (high to low/  
low to high) and data is shifted into the SSPSR. After the  
falling edge of the eighth clock, the receive enable flag  
is automatically cleared, the contents of the SSPSR are  
loaded into the SSPBUF, the BF flag bit is set, the  
SSPIF flag bit is set and the Baud Rate Generator is  
suspended from counting, holding SCL low. The MSSP  
is now in Idle state, awaiting the next command. When  
the buffer is read by the CPU, the BF flag bit is automat-  
ically cleared. The user can then send an Acknowledge  
bit at the end of reception by setting the Acknowledge  
Sequence Enable bit, ACKEN (SSPCON2<4>).  
9.4.11.1  
BF Status Flag  
After the write to the SSPBUF, each bit of address will  
be shifted out on the falling edge of SCL, until all seven  
address bits and the R/W bit are completed. On the fall-  
ing edge of the eighth clock, the master will deassert  
the SDA pin, allowing the slave to respond with an  
Acknowledge. On the falling edge of the ninth clock, the  
master will sample the SDA pin to see if the address  
was recognized by a slave. The status of the ACK bit is  
loaded into the ACKSTAT status bit (SSPCON2<6>).  
Following the falling edge of the ninth clock transmis-  
sion of the address, the SSPIF is set, the BF flag is  
cleared and the Baud Rate Generator is turned off until  
another write to the SSPBUF takes place, holding SCL  
low and allowing SDA to float.  
In receive operation, the BF bit is set when an address  
or data byte is loaded into SSPBUF from SSPSR. It is  
cleared when the SSPBUF register is read.  
9.4.11.2  
SSPOV Status Flag  
In receive operation, the SSPOV bit is set when 8 bits  
are received into the SSPSR and the BF flag bit is  
already set from a previous reception.  
9.4.11.3  
WCOL Status Flag  
If the user writes the SSPBUF when a receive is  
already in progress (i.e., SSPSR is still shifting in a data  
byte), the WCOL bit is set and the contents of the buffer  
are unchanged (the write doesn’t occur).  
9.4.10.1  
BF Status Flag  
In Transmit mode, the BF bit (SSPSTAT<0>) is set  
when the CPU writes to SSPBUF and is cleared when  
all eight bits are shifted out.  
9.4.10.2  
WCOL Status Flag  
If the user writes the SSPBUF when a transmit is  
already in progress (i.e., SSPSR is still shifting out a  
data byte), the WCOL is set and the contents of the  
buffer are unchanged (the write doesn’t occur).  
WCOL must be cleared in software.  
2003 Microchip Technology Inc.  
DS39582B-page 101  
PIC16F87XA  
2
FIGURE 9-21:  
I C MASTER MODE WAVEFORM (TRANSMISSION, 7 OR 10-BIT ADDRESS)  
DS39582B-page 102  
2003 Microchip Technology Inc.  
PIC16F87XA  
2
FIGURE 9-22:  
I C MASTER MODE WAVEFORM (RECEPTION, 7-BIT ADDRESS)  
2003 Microchip Technology Inc.  
DS39582B-page 103  
PIC16F87XA  
9.4.12  
ACKNOWLEDGE SEQUENCE  
TIMING  
9.4.13  
STOP CONDITION TIMING  
A Stop bit is asserted on the SDA pin at the end of a  
receive/transmit by setting the Stop Sequence Enable  
bit, PEN (SSPCON2<2>). At the end of a receive/  
transmit, the SCL line is held low after the falling edge  
of the ninth clock. When the PEN bit is set, the master  
will assert the SDA line low. When the SDA line is sam-  
pled low, the Baud Rate Generator is reloaded and  
counts down to 0. When the Baud Rate Generator  
times out, the SCL pin will be brought high and one  
TBRG (Baud Rate Generator rollover count) later, the  
SDA pin will be deasserted. When the SDA pin is sam-  
pled high while SCL is high, the P bit (SSPSTAT<4>) is  
set. A TBRG later, the PEN bit is cleared and the SSPIF  
bit is set (Figure 9-24).  
An Acknowledge sequence is enabled by setting the  
Acknowledge Sequence Enable bit, ACKEN  
(SSPCON2<4>). When this bit is set, the SCL pin is  
pulled low and the contents of the Acknowledge data bit  
are presented on the SDA pin. If the user wishes to gen-  
erate an Acknowledge, then the ACKDT bit should be  
cleared. If not, the user should set the ACKDT bit before  
starting an Acknowledge sequence. The Baud Rate  
Generator then counts for one rollover period (TBRG)  
and the SCL pin is deasserted (pulled high). When the  
SCL pin is sampled high (clock arbitration), the Baud  
Rate Generator counts for TBRG. The SCL pin is then  
pulled low. Following this, the ACKEN bit is automatically  
cleared, the baud rate generator is turned off and the  
MSSP module then goes into Idle mode (Figure 9-23).  
9.4.13.1  
WCOL Status Flag  
If the user writes the SSPBUF when a Stop sequence  
is in progress, then the WCOL bit is set and the con-  
tents of the buffer are unchanged (the write doesn’t  
occur).  
9.4.12.1  
WCOL Status Flag  
If the user writes the SSPBUF when an Acknowledge  
sequence is in progress, then WCOL is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
FIGURE 9-23:  
ACKNOWLEDGE SEQUENCE WAVEFORM  
Acknowledge sequence starts here,  
write to SSPCON2  
ACKEN automatically cleared  
ACKEN = 1, ACKDT = 0  
TBRG  
TBRG  
SDA  
SCL  
D0  
ACK  
8
9
SSPIF  
Cleared in  
software  
Set SSPIF at the end  
of receive  
Cleared in  
software  
Set SSPIF at the end  
of Acknowledge sequence  
Note: TBRG = one Baud Rate Generator period.  
FIGURE 9-24:  
STOP CONDITION RECEIVE OR TRANSMIT MODE  
SCL = 1for TBRG, followed by SDA = 1for TBRG  
after SDA sampled high. P bit (SSPSTAT<4>) is set.  
Write to SSPCON2,  
set PEN  
Falling edge of  
9th clock  
PEN bit (SSPCON2<2>) is cleared by  
hardware and the SSPIF bit is set  
TBRG  
SCL  
ACK  
SDA  
P
TBRG  
TBRG  
TBRG  
SCL brought high after TBRG  
SDA asserted low before rising edge of clock  
to setup Stop condition  
Note: TBRG = one Baud Rate Generator period.  
DS39582B-page 104  
2003 Microchip Technology Inc.  
PIC16F87XA  
9.4.14  
SLEEP OPERATION  
9.4.17  
MULTI -MASTER COMMUNICATION,  
BUS COLLISION AND BUS  
ARBITRATION  
While in Sleep mode, the I2C module can receive  
addresses or data and when an address match or com-  
plete byte transfer occurs, wake the processor from  
Sleep (if the MSSP interrupt is enabled).  
Multi-Master mode support is achieved by bus arbitra-  
tion. When the master outputs address/data bits onto  
the SDA pin, arbitration takes place when the master  
outputs a ‘1’ on SDA by letting SDA float high and  
another master asserts a ‘0’. When the SCL pin floats  
high, data should be stable. If the expected data on  
SDA is a ‘1’ and the data sampled on the SDA pin = 0,  
then a bus collision has taken place. The master will set  
the Bus Collision Interrupt Flag, BCLIF, and reset the  
I2C port to its Idle state (Figure 9-25).  
9.4.15  
EFFECT OF A RESET  
A Reset disables the MSSP module and terminates the  
current transfer.  
9.4.16  
MULTI-MASTER MODE  
In Multi-Master mode, the interrupt generation on the  
detection of the Start and Stop conditions allows the  
determination of when the bus is free. The Stop (P) and  
Start (S) bits are cleared from a Reset or when the  
MSSP module is disabled. Control of the I2C bus may  
be taken when the P bit (SSPSTAT<4>) is set, or the  
bus is Idle, with both the S and P bits clear. When the  
bus is busy, enabling the SSP interrupt will generate  
the interrupt when the Stop condition occurs.  
If a transmit was in progress when the bus collision  
occurred, the transmission is halted, the BF flag is  
cleared, the SDA and SCL lines are deasserted and the  
SSPBUF can be written to. When the user services the  
bus collision Interrupt Service Routine and if the I2C  
bus is free, the user can resume communication by  
asserting a Start condition.  
In multi-master operation, the SDA line must be  
monitored for arbitration to see if the signal level is at  
the expected output level. This check is performed in  
hardware with the result placed in the BCLIF bit.  
If a Start, Repeated Start, Stop or Acknowledge condition  
was in progress when the bus collision occurred, the con-  
dition is aborted, the SDA and SCL lines are deasserted  
and the respective control bits in the SSPCON2 register  
are cleared. When the user services the bus collision  
Interrupt Service Routine and if the I2C bus is free, the  
user can resume communication by asserting a Start  
condition.  
The states where arbitration can be lost are:  
• Address Transfer  
• Data Transfer  
• A Start Condition  
The Master will continue to monitor the SDA and SCL  
pins. If a Stop condition occurs, the SSPIF bit will be set.  
• A Repeated Start Condition  
• An Acknowledge Condition  
A write to the SSPBUF will start the transmission of  
data at the first data bit regardless of where the  
transmitter left off when the bus collision occurred.  
In Multi-Master mode, the interrupt generation on the  
detection of Start and Stop conditions allows the determi-  
nation of when the bus is free. Control of the I2C bus can  
be taken when the P bit is set in the SSPSTAT register or  
the bus is Idle and the S and P bits are cleared.  
FIGURE 9-25:  
BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE  
SDA line pulled low  
by another source  
Data changes  
while SCL = 0  
Sample SDA. While SCL is high,  
data doesn’t match what is driven  
by the master. Bus collision has occurred.  
SDA released  
by master  
SDA  
SCL  
Set bus collision  
interrupt (BCLIF)  
BCLIF  
2003 Microchip Technology Inc.  
DS39582B-page 105  
PIC16F87XA  
If the SDA pin is sampled low during this count, the  
BRG is reset and the SDA line is asserted early  
(Figure 9-28). If, however, a ‘1’ is sampled on the SDA  
pin, the SDA pin is asserted low at the end of the BRG  
count. The Baud Rate Generator is then reloaded and  
counts down to 0 and during this time, if the SCL pin is  
sampled as ‘0’, a bus collision does not occur. At the  
end of the BRG count, the SCL pin is asserted low.  
9.4.17.1  
Bus Collision During a Start  
Condition  
During a Start condition, a bus collision occurs if:  
a) SDA or SCL are sampled low at the beginning of  
the Start condition (Figure 9-26).  
b) SCL is sampled low before SDA is asserted low  
(Figure 9-27).  
During a Start condition, both the SDA and the SCL  
pins are monitored.  
Note:  
The reason that bus collision is not a factor  
during a Start condition is that no two bus  
masters can assert a Start condition at the  
exact same time. Therefore, one master  
will always assert SDA before the other.  
This condition does not cause a bus colli-  
sion because the two masters must be  
allowed to arbitrate the first address fol-  
lowing the Start condition. If the address is  
the same, arbitration must be allowed to  
continue into the data portion, Repeated  
Start or Stop conditions.  
If the SDA pin is already low, or the SCL pin is already  
low, then all of the following occur:  
• the Start condition is aborted,  
• the BCLIF flag is set and  
• the MSSP module is reset to its Idle state  
(Figure 9-26).  
The Start condition begins with the SDA and SCL pins  
deasserted. When the SDA pin is sampled high, the  
Baud Rate Generator is loaded from SSPADD<6:0>  
and counts down to 0. If the SCL pin is sampled low  
while SDA is high, a bus collision occurs because it is  
assumed that another master is attempting to drive a  
data ‘1’ during the Start condition.  
FIGURE 9-26:  
BUS COLLISION DURING START CONDITION (SDA ONLY)  
SDA goes low before the SEN bit is set.  
Set BCLIF,  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
SDA  
SCL  
SEN  
Set SEN, enable Start  
condition if SDA = 1, SCL = 1  
SEN cleared automatically because of bus collision.  
SSP module reset into Idle state.  
SDA sampled low before  
Start condition. Set BCLIF.  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
BCLIF  
SSPIF and BCLIF are  
cleared in software  
S
SSPIF  
SSPIF and BCLIF are  
cleared in software  
DS39582B-page 106  
2003 Microchip Technology Inc.  
PIC16F87XA  
FIGURE 9-27:  
BUS COLLISION DURING START CONDITION (SCL = 0)  
SDA = 0, SCL = 1  
TBRG  
TBRG  
SDA  
SCL  
Set SEN, enable Start  
sequence if SDA = 1, SCL = 1  
SCL = 0before SDA = 0,  
bus collision occurs. Set BCLIF.  
SEN  
SCL = 0before BRG time-out,  
bus collision occurs. Set BCLIF.  
BCLIF  
Interrupt cleared  
in software  
S
0’  
0’  
0’  
SSPIF  
0’  
FIGURE 9-28:  
BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION  
SDA = 0, SCL = 1  
Set S  
Set SSPIF  
Less than TBRG  
TBRG  
SDA pulled low by other master.  
Reset BRG and assert SDA.  
SDA  
SCL  
S
SCL pulled low after BRG  
time-out  
SEN  
Set SEN, enable Start  
sequence if SDA = 1, SCL = 1  
BCLIF  
0’  
S
SSPIF  
SDA = 0, SCL = 1,  
set SSPIF  
Interrupts cleared  
in software  
2003 Microchip Technology Inc.  
DS39582B-page 107  
PIC16F87XA  
reloaded and begins counting. If SDA goes from high to  
low before the BRG times out, no bus collision occurs  
because no two masters can assert SDA at exactly the  
same time.  
9.4.17.2  
Bus Collision During a Repeated  
Start Condition  
During a Repeated Start condition, a bus collision  
occurs if:  
If SCL goes from high to low before the BRG times out  
and SDA has not already been asserted, a bus collision  
occurs. In this case, another master is attempting to  
transmit a data ‘1’ during the Repeated Start condition  
(Figure 9-30).  
a) A low level is sampled on SDA when SCL goes  
from low level to high level.  
b) SCL goes low before SDA is asserted low,  
indicating that another master is attempting to  
transmit a data ‘1’.  
If at the end of the BRG time-out, both SCL and SDA  
are still high, the SDA pin is driven low and the BRG is  
reloaded and begins counting. At the end of the count,  
regardless of the status of the SCL pin, the SCL pin is  
driven low and the Repeated Start condition is  
complete.  
When the user deasserts SDA and the pin is allowed to  
float high, the BRG is loaded with SSPADD<6:0> and  
counts down to 0. The SCL pin is then deasserted and  
when sampled high, the SDA pin is sampled.  
If SDA is low, a bus collision has occurred (i.e., another  
master is attempting to transmit a data ‘0’, see  
Figure 9-29). If SDA is sampled high, the BRG is  
FIGURE 9-29:  
BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)  
SDA  
SCL  
Sample SDA when SCL goes high.  
If SDA = 0, set BCLIF and release SDA and SCL.  
RSEN  
BCLIF  
Cleared in software  
S
0’  
SSPIF  
0’  
FIGURE 9-30:  
BUS COLLISION DURING REPEATED START CONDITION (CASE 2)  
TBRG  
TBRG  
SDA  
SCL  
SCL goes low before SDA,  
BCLIF  
RSEN  
set BCLIF. Release SDA and SCL.  
Interrupt cleared  
in software  
0’  
S
SSPIF  
DS39582B-page 108  
2003 Microchip Technology Inc.  
PIC16F87XA  
The Stop condition begins with SDA asserted low.  
When SDA is sampled low, the SCL pin is allowed to  
float. When the pin is sampled high (clock arbitration),  
the Baud Rate Generator is loaded with SSPADD<6:0>  
and counts down to 0. After the BRG times out, SDA is  
sampled. If SDA is sampled low, a bus collision has  
occurred. This is due to another master attempting to  
drive a data ‘0’ (Figure 9-31). If the SCL pin is sampled  
low before SDA is allowed to float high, a bus collision  
occurs. This is another case of another master  
attempting to drive a data ‘0’ (Figure 9-32).  
9.4.17.3  
Bus Collision During a Stop  
Condition  
Bus collision occurs during a Stop condition if:  
a) After the SDA pin has been deasserted and  
allowed to float high, SDA is sampled low after  
the BRG has timed out.  
b) After the SCL pin is deasserted, SCL is sampled  
low before SDA goes high.  
FIGURE 9-31:  
BUS COLLISION DURING A STOP CONDITION (CASE 1)  
SDA sampled  
TBRG  
TBRG  
TBRG  
low after TBRG,  
set BCLIF  
SDA  
SDA asserted low  
SCL  
PEN  
BCLIF  
P
0’  
0’  
SSPIF  
FIGURE 9-32:  
BUS COLLISION DURING A STOP CONDITION (CASE 2)  
TBRG  
TBRG  
TBRG  
SDA  
SCL goes low before SDA goes high,  
set BCLIF  
Assert SDA  
SCL  
PEN  
BCLIF  
P
0’  
0’  
SSPIF  
2003 Microchip Technology Inc.  
DS39582B-page 109  
PIC16F87XA  
NOTES:  
DS39582B-page 110  
2003 Microchip Technology Inc.  
PIC16F87XA  
The USART can be configured in the following modes:  
10.0 ADDRESSABLE UNIVERSAL  
SYNCHRONOUS  
• Asynchronous (full-duplex)  
• Synchronous – Master (half-duplex)  
• Synchronous – Slave (half-duplex)  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (USART)  
Bit SPEN (RCSTA<7>) and bits TRISC<7:6> have to be  
set in order to configure pins RC6/TX/CK and RC7/RX/DT  
as the Universal Synchronous Asynchronous Receiver  
Transmitter.  
The Universal Synchronous Asynchronous Receiver  
Transmitter (USART) module is one of the two serial  
I/O modules. (USART is also known as a Serial  
Communications Interface or SCI.) The USART can be  
configured as a full-duplex asynchronous system that  
can communicate with peripheral devices, such as  
CRT terminals and personal computers, or it can be  
configured as a half-duplex synchronous system that  
can communicate with peripheral devices, such as A/D  
or D/A integrated circuits, serial EEPROMs, etc.  
The USART module also has a multi-processor  
communication capability using 9-bit address detection.  
REGISTER 10-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN  
R/W-0  
SYNC  
U-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
TRMT  
bit 7  
bit 0  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit  
1= Transmit enabled  
0= Transmit disabled  
Note:  
SREN/CREN overrides TXEN in Sync mode.  
bit 4  
SYNC: USART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode.  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: 9th bit of Transmit Data, can be Parity bit  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003 Microchip Technology Inc.  
DS39582B-page 111  
PIC16F87XA  
REGISTER 10-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (configures RC7/RX/DT and RC6/TX/CK pins as serial port pins)  
0= Serial port disabled  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode – Master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode – Slave:  
Don’t care.  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables continuous receive  
0= Disables continuous receive  
Synchronous mode:  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enables address detection, enables interrupt and load of the receive buffer when RSR<8>  
is set  
0= Disables address detection, all bytes are received and ninth bit can be used as parity bit  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be updated by reading RCREG register and receive next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: 9th bit of Received Data (can be parity bit but must be calculated by user firmware)  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS39582B-page 112  
2003 Microchip Technology Inc.  
PIC16F87XA  
It may be advantageous to use the high baud rate  
(BRGH = 1) even for slower baud clocks. This is  
because the FOSC/(16 (X + 1)) equation can reduce the  
baud rate error in some cases.  
10.1 USART Baud Rate Generator  
(BRG)  
The BRG supports both the Asynchronous and Syn-  
chronous modes of the USART. It is a dedicated 8-bit  
baud rate generator. The SPBRG register controls the  
period of a free running 8-bit timer. In Asynchronous  
mode, bit BRGH (TXSTA<2>) also controls the baud  
rate. In Synchronous mode, bit BRGH is ignored.  
Table 10-1 shows the formula for computation of the  
baud rate for different USART modes which only apply  
in Master mode (internal clock).  
Writing a new value to the SPBRG register causes the  
BRG timer to be reset (or cleared). This ensures the  
BRG does not wait for a timer overflow before  
outputting the new baud rate.  
10.1.1  
SAMPLING  
The data on the RC7/RX/DT pin is sampled three times  
by a majority detect circuit to determine if a high or a  
low level is present at the RX pin.  
Given the desired baud rate and FOSC, the nearest  
integer value for the SPBRG register can be calculated  
using the formula in Table 10-1. From this, the error in  
baud rate can be determined.  
TABLE 10-1: BAUD RATE FORMULA  
SYNC  
BRGH = 0 (Low Speed)  
BRGH = 1 (High Speed)  
0
1
(Asynchronous) Baud Rate = FOSC/(64 (X + 1))  
(Synchronous) Baud Rate = FOSC/(4 (X + 1))  
Baud Rate = FOSC/(16 (X + 1))  
N/A  
Legend: X = value in SPBRG (0 to 255)  
TABLE 10-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
98h  
18h  
99h  
TXSTA  
RCSTA  
CSRC TX9 TXEN SYNC  
BRGH TRMT TX9D 0000 -010 0000 -010  
SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 0000 000x 0000 000x  
0000 0000 0000 0000  
SPBRG Baud Rate Generator Register  
Legend: x = unknown, -= unimplemented, read as ‘0’. Shaded cells are not used by the BRG.  
2003 Microchip Technology Inc.  
DS39582B-page 113  
PIC16F87XA  
TABLE 10-3: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)  
FOSC = 20 MHz  
FOSC = 16 MHz  
FOSC = 10 MHz  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
SPBRG  
%
%
%
value  
KBAUD  
ERROR  
KBAUD  
ERROR  
KBAUD ERROR  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
-
-
-
255  
129  
31  
15  
9
-
-
-
207  
103  
25  
12  
8
-
-
-
129  
64  
15  
7
1.221  
1.75  
0.17  
1.73  
1.72  
8.51  
3.34  
8.51  
-
1.202  
0.17  
0.17  
0.16  
0.16  
3.55  
6.29  
8.51  
-
1.202  
0.17  
0.17  
1.73  
1.72  
8.51  
6.99  
9.58  
-
2.4  
2.404  
2.404  
2.404  
9.6  
9.766  
9.615  
9.766  
19.2  
28.8  
33.6  
57.6  
HIGH  
LOW  
19.531  
31.250  
34.722  
62.500  
1.221  
19.231  
27.778  
35.714  
62.500  
0.977  
19.531  
31.250  
31.250  
52.083  
0.610  
4
8
6
4
4
3
2
255  
0
255  
0
255  
0
312.500  
-
250.000  
-
156.250  
-
FOSC = 4 MHz  
FOSC = 3.6864 MHz  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
(decimal)  
%
%
ERROR  
ERROR  
KBAUD  
(decimal)  
KBAUD  
0.3  
1.2  
0.300  
1.202  
2.404  
8.929  
20.833  
31.250  
-
0
207  
51  
25  
6
0.3  
1.2  
0
0
0
0
0
0
-
191  
47  
23  
5
0.17  
0.17  
6.99  
8.51  
8.51  
-
2.4  
2.4  
9.6  
9.6  
19.2  
28.8  
33.6  
57.6  
HIGH  
LOW  
2
19.2  
28.8  
-
2
1
1
-
-
62.500  
0.244  
62.500  
8.51  
-
0
57.6  
0.225  
57.6  
0
-
0
255  
0
255  
0
-
-
TABLE 10-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)  
FOSC = 20 MHz  
FOSC = 16 MHz  
FOSC = 10 MHz  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
%
%
%
KBAUD  
ERROR  
KBAUD  
ERROR  
KBAUD  
ERROR  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2.4  
-
-
-
-
-
-
2.441  
9.615  
19.531  
28.409  
32.895  
56.818  
2.441  
625.000  
1.71  
0.16  
1.72  
1.36  
2.10  
1.36  
-
255  
64  
31  
21  
18  
10  
255  
0
9.6  
9.615  
19.231  
29.070  
33.784  
59.524  
4.883  
1250.000  
0.16  
0.16  
0.94  
0.55  
3.34  
-
129  
64  
42  
36  
20  
255  
0
9.615  
19.231  
29.412  
33.333  
58.824  
3.906  
1000.000  
0.16  
0.16  
2.13  
0.79  
2.13  
-
103  
51  
33  
29  
16  
255  
0
19.2  
28.8  
33.6  
57.6  
HIGH  
LOW  
-
-
FOSC = 4 MHz  
FOSC = 3.6864 MHz  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
%
%
ERROR  
ERROR  
KBAUD  
(decimal) KBAUD  
(decimal)  
0.3  
1.2  
-
-
-
207  
103  
25  
12  
8
-
-
-
191  
95  
23  
11  
7
1.202  
0.17  
0.17  
0.16  
0.16  
3.55  
6.29  
8.51  
-
1.2  
0
2.4  
2.404  
2.4  
0
9.6  
9.615  
9.6  
0
19.2  
28.8  
33.6  
57.6  
HIGH  
LOW  
19.231  
27.798  
35.714  
62.500  
0.977  
19.2  
28.8  
32.9  
57.6  
0.9  
0
0
6
2.04  
6
3
0
-
3
255  
0
255  
0
250.000  
-
230.4  
-
DS39582B-page 114  
2003 Microchip Technology Inc.  
PIC16F87XA  
enabled/disabled by setting/clearing enable bit, TXIE  
(PIE1<4>). Flag bit TXIF will be set regardless of the  
state of enable bit TXIE and cannot be cleared in soft-  
ware. It will reset only when new data is loaded into the  
TXREG register. While flag bit TXIF indicates the status  
of the TXREG register, another bit, TRMT (TXSTA<1>),  
shows the status of the TSR register. Status bit TRMT  
is a read-only bit which is set when the TSR register is  
empty. No interrupt logic is tied to this bit so the user  
has to poll this bit in order to determine if the TSR  
register is empty.  
10.2 USART Asynchronous Mode  
In this mode, the USART uses standard Non-Return-  
to-Zero (NRZ) format (one Start bit, eight or nine data  
bits and one Stop bit). The most common data format  
is 8 bits. An on-chip, dedicated, 8-bit Baud Rate  
Generator can be used to derive standard baud rate  
frequencies from the oscillator. The USART transmits  
and receives the LSb first. The transmitter and receiver  
are functionally independent but use the same data  
format and baud rate. The baud rate generator  
produces a clock, either x16 or x64 of the bit shift rate,  
depending on bit BRGH (TXSTA<2>). Parity is not  
supported by the hardware but can be implemented in  
software (and stored as the ninth data bit).  
Asynchronous mode is stopped during Sleep.  
Note 1: The TSR register is not mapped in data  
memory so it is not available to the user.  
2: Flag bit TXIF is set when enable bit TXEN  
is set. TXIF is cleared by loading TXREG.  
Asynchronous mode is selected by clearing bit SYNC  
(TXSTA<4>).  
Transmission is enabled by setting enable bit, TXEN  
(TXSTA<5>). The actual transmission will not occur  
until the TXREG register has been loaded with data  
and the Baud Rate Generator (BRG) has produced a  
shift clock (Figure 10-2). The transmission can also be  
started by first loading the TXREG register and then  
setting enable bit TXEN. Normally, when transmission  
is first started, the TSR register is empty. At that point,  
transfer to the TXREG register will result in an immedi-  
ate transfer to TSR, resulting in an empty TXREG. A  
back-to-back transfer is thus possible (Figure 10-3).  
Clearing enable bit TXEN during a transmission will  
cause the transmission to be aborted and will reset the  
transmitter. As a result, the RC6/TX/CK pin will revert  
to high-impedance.  
The USART Asynchronous module consists of the  
following important elements:  
• Baud Rate Generator  
• Sampling Circuit  
• Asynchronous Transmitter  
• Asynchronous Receiver  
10.2.1  
USART ASYNCHRONOUS  
TRANSMITTER  
The USART transmitter block diagram is shown in  
Figure 10-1. The heart of the transmitter is the Transmit  
(Serial) Shift Register (TSR). The shift register obtains  
its data from the Read/Write Transmit Buffer, TXREG.  
The TXREG register is loaded with data in software.  
The TSR register is not loaded until the Stop bit has  
been transmitted from the previous load. As soon as  
the Stop bit is transmitted, the TSR is loaded with new  
data from the TXREG register (if available). Once the  
TXREG register transfers the data to the TSR register  
(occurs in one TCY), the TXREG register is empty and  
flag bit, TXIF (PIR1<4>), is set. This interrupt can be  
In order to select 9-bit transmission, transmit bit TX9  
(TXSTA<6>) should be set and the ninth bit should be  
written to TX9D (TXSTA<0>). The ninth bit must be  
written before writing the 8-bit data to the TXREG reg-  
ister. This is because a data write to the TXREG regis-  
ter can result in an immediate transfer of the data to the  
TSR register (if the TSR is empty). In such a case, an  
incorrect ninth data bit may be loaded in the TSR  
register.  
FIGURE 10-1:  
USART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXIF  
TXREG Register  
8
TXIE  
MSb  
(8)  
LSb  
Pin Buffer  
and Control  
0
• •  
TSR Register  
RC6/TX/CK pin  
Interrupt  
TXEN  
Baud Rate CLK  
SPBRG  
TRMT  
SPEN  
TX9  
TX9D  
Baud Rate Generator  
2003 Microchip Technology Inc.  
DS39582B-page 115  
PIC16F87XA  
When setting up an Asynchronous Transmission,  
follow these steps:  
5. Enable the transmission by setting bit TXEN,  
which will also set bit TXIF.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high-speed baud rate is desired,  
set bit BRGH (Section 10.1 “USART Baud  
Rate Generator (BRG)”).  
7. Load data to the TXREG register (starts  
transmission).  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
8. If using interrupts, ensure that GIE and PEIE  
(bits 7 and 6) of the INTCON register are set.  
3. If interrupts are desired, then set enable bit TXIE.  
4. If 9-bit transmission is desired, then set transmit  
bit TX9.  
FIGURE 10-2:  
ASYNCHRONOUS MASTER TRANSMISSION  
Write to TXREG  
Word 1  
BRG Output  
(Shift Clock)  
RC6/TX/CK (pin)  
Start Bit  
Bit 0  
Bit 1  
Word 1  
Bit 7/8  
Stop Bit  
TXIF bit  
(Transmit Buffer  
Reg. Empty Flag)  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
FIGURE 10-3:  
ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)  
Write to TXREG  
Word 2  
Start Bit  
Word 1  
BRG Output  
(Shift Clock)  
RC6/TX/CK (pin)  
Start Bit  
Word 2  
Bit 0  
Bit 1  
Word 1  
Bit 7/8  
Bit 0  
Stop Bit  
TXIF bit  
(Interrupt Reg. Flag)  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
Word 1  
Transmit Shift Reg.  
Word 2  
Transmit Shift Reg.  
Note:  
This timing diagram shows two consecutive transmissions.  
TABLE 10-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE TMR0IE INTE  
RBIE TMR0IF  
INTF  
R0IF  
0000 000x 0000 000u  
(1)  
0Ch  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
18h  
RCSTA  
SREN CREN  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
19h  
TXREG USART Transmit Register  
(1)  
8Ch  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
98h  
TXSTA  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
99h  
SPBRG Baud Rate Generator Register  
Legend:  
x= unknown, -= unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous transmission.  
Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.  
DS39582B-page 116  
2003 Microchip Technology Inc.  
PIC16F87XA  
is possible for two bytes of data to be received and  
transferred to the RCREG FIFO and a third byte to  
begin shifting to the RSR register. On the detection of  
the Stop bit of the third byte, if the RCREG register is  
still full, the Overrun Error bit, OERR (RCSTA<1>), will  
be set. The word in the RSR will be lost. The RCREG  
register can be read twice to retrieve the two bytes in  
the FIFO. Overrun bit OERR has to be cleared in soft-  
ware. This is done by resetting the receive logic (CREN  
is cleared and then set). If bit OERR is set, transfers  
from the RSR register to the RCREG register are inhib-  
ited and no further data will be received. It is, therefore,  
essential to clear error bit OERR if it is set. Framing  
error bit, FERR (RCSTA<2>), is set if a Stop bit is  
detected as clear. Bit FERR and the 9th receive bit are  
buffered the same way as the receive data. Reading  
the RCREG will load bits RX9D and FERR with new  
values, therefore, it is essential for the user to read the  
RCSTA register before reading the RCREG register in  
order not to lose the old FERR and RX9D information.  
10.2.2  
USART ASYNCHRONOUS  
RECEIVER  
The receiver block diagram is shown in Figure 10-4.  
The data is received on the RC7/RX/DT pin and drives  
the data recovery block. The data recovery block is  
actually a high-speed shifter, operating at x16 times the  
baud rate; whereas the main receive serial shifter  
operates at the bit rate or at FOSC.  
Once Asynchronous mode is selected, reception is  
enabled by setting bit CREN (RCSTA<4>).  
The heart of the receiver is the Receive (Serial) Shift  
Register (RSR). After sampling the Stop bit, the  
received data in the RSR is transferred to the RCREG  
register (if it is empty). If the transfer is complete, flag  
bit, RCIF (PIR1<5>), is set. The actual interrupt can be  
enabled/disabled by setting/clearing enable bit, RCIE  
(PIE1<5>). Flag bit RCIF is a read-only bit which is  
cleared by the hardware. It is cleared when the RCREG  
register has been read and is empty. The RCREG is a  
double-buffered register (i.e., it is a two-deep FIFO). It  
FIGURE 10-4:  
USART RECEIVE BLOCK DIAGRAM  
x64 Baud Rate CLK  
FERR  
OERR  
CREN  
FOSC  
SPBRG  
÷64  
or  
÷16  
RSR Register  
LSb  
Start  
MSb  
Stop  
Baud Rate Generator  
1
7
0
(8)  
• • •  
RC7/RX/DT  
Pin Buffer  
and Control  
Data  
Recovery  
RX9  
RX9D RCREG Register  
SPEN  
FIFO  
8
RCIF  
RCIE  
Interrupt  
Data Bus  
2003 Microchip Technology Inc.  
DS39582B-page 117  
PIC16F87XA  
FIGURE 10-5:  
ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RX (pin)  
bit 0 bit 1  
Stop  
bit  
Stop  
bit  
bit 7/8 Stop  
bit  
bit 0  
bit 7/8  
bit 7/8  
Rcv Shift  
Reg  
Rcv Buffer Reg  
Word 2  
RCREG  
Word 1  
RCREG  
Read Rcv  
Buffer Reg  
RCREG  
RCIF  
(Interrupt Flag)  
OERR bit  
CREN  
Note: This timing diagram shows three words appearing on the RX input. The RCREG (Receive Buffer) is read after the third word,  
causing the OERR (Overrun Error) bit to be set.  
When setting up an Asynchronous Reception, follow  
these steps:  
6. Flag bit RCIF will be set when reception is com-  
plete and an interrupt will be generated if enable  
bit RCIE is set.  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high-speed baud rate is desired,  
set bit BRGH (Section 10.1 “USART Baud  
Rate Generator (BRG)”).  
7. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
8. Read the 8-bit received data by reading the  
RCREG register.  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
9. If any error occurred, clear the error by clearing  
enable bit CREN.  
3. If interrupts are desired, then set enable bit  
RCIE.  
10. If using interrupts, ensure that GIE and PEIE  
(bits 7 and 6) of the INTCON register are set.  
4. If 9-bit reception is desired, then set bit RX9.  
5. Enable the reception by setting bit CREN.  
TABLE 10-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE  
TMR0IE INTE  
RBIE TMR0IF  
INTF  
R0IF  
0000 000x 0000 000u  
(1)  
0Ch  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
18h  
RCSTA  
SREN CREN  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
1Ah  
RCREG USART Receive Register  
(1)  
8Ch  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
98h  
TXSTA  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
99h  
SPBRG Baud Rate Generator Register  
Legend:  
x= unknown, -= unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous reception.  
Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.  
DS39582B-page 118  
2003 Microchip Technology Inc.  
PIC16F87XA  
• Flag bit RCIF will be set when reception is  
complete, and an interrupt will be generated if  
enable bit RCIE was set.  
10.2.3  
SETTING UP 9-BIT MODE WITH  
ADDRESS DETECT  
When setting up an Asynchronous Reception with  
address detect enabled:  
• Read the RCSTA register to get the ninth bit and  
determine if any error occurred during reception.  
• Initialize the SPBRG register for the appropriate  
baud rate. If a high-speed baud rate is desired,  
set bit BRGH.  
• Read the 8-bit received data by reading the  
RCREG register to determine if the device is  
being addressed.  
• Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
• If any error occurred, clear the error by clearing  
enable bit CREN.  
• If interrupts are desired, then set enable bit RCIE.  
• Set bit RX9 to enable 9-bit reception.  
• If the device has been addressed, clear the  
ADDEN bit to allow data bytes and address bytes  
to be read into the receive buffer and interrupt the  
CPU.  
• Set ADDEN to enable address detect.  
• Enable the reception by setting enable bit CREN.  
FIGURE 10-6:  
USART RECEIVE BLOCK DIAGRAM  
x64 Baud Rate CLK  
FERR  
OERR  
CREN  
FOSC  
SPBRG  
÷ 64  
or  
÷ 16  
RSR Register  
• • •  
LSb  
MSb  
Stop (8)  
7
1
0
Start  
Baud Rate Generator  
RC7/RX/DT  
Pin Buffer  
and Control  
Data  
Recovery  
RX9  
8
SPEN  
RX9  
Enable  
Load of  
ADDEN  
Receive  
Buffer  
RX9  
ADDEN  
RSR<8>  
8
RX9D  
RCREG Register  
FIFO  
8
RCIF  
RCIE  
Interrupt  
Data Bus  
2003 Microchip Technology Inc.  
DS39582B-page 119  
PIC16F87XA  
FIGURE 10-7:  
ASYNCHRONOUS RECEPTION WITH ADDRESS DETECT  
Start  
bit  
Start  
bit  
RC7/RX/DT  
(pin)  
bit 0 bit 1  
Stop  
bit  
bit 8 Stop  
bit  
bit 0  
bit 8  
Load RSR  
Read  
Word 1  
RCREG  
Bit 8 = 0, Data Byte  
Bit 8 = 1, Address Byte  
RCIF  
Note: This timing diagram shows a data byte followed by an address byte. The data byte is not read into the RCREG (Receive Buffer)  
because ADDEN = 1.  
FIGURE 10-8:  
ASYNCHRONOUS RECEPTION WITH ADDRESS BYTE FIRST  
Start  
bit  
Start  
bit  
RC7/RX/DT  
(pin)  
bit 0 bit 1  
Stop  
bit  
bit 8 Stop  
bit  
bit 0  
bit 8  
Load RSR  
Read  
Word 1  
RCREG  
Bit 8 = 1, Address Byte  
Bit 8 = 0, Data Byte  
RCIF  
Note: This timing diagram shows a data byte followed by an address byte. The data byte is not read into the RCREG (Receive Buffer)  
because ADDEN was not updated and still = 0.  
TABLE 10-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
0Bh, 8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE TMR0IE INTE  
RBIE TMR0IF  
INTF  
R0IF  
0000 000x 0000 000u  
(1)  
0Ch  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
18h  
RCSTA  
SREN CREN ADDEN FERR  
OERR  
RX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
1Ah  
RCREG USART Receive Register  
(1)  
8Ch  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
98h  
TXSTA  
TXEN SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
99h  
SPBRG Baud Rate Generator Register  
Legend:  
x= unknown, -= unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous reception.  
Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.  
DS39582B-page 120  
2003 Microchip Technology Inc.  
PIC16F87XA  
Clearing enable bit TXEN during a transmission will  
cause the transmission to be aborted and will reset the  
transmitter. The DT and CK pins will revert to high-  
impedance. If either bit CREN or bit SREN is set during  
a transmission, the transmission is aborted and the DT  
pin reverts to a high-impedance state (for a reception).  
The CK pin will remain an output if bit CSRC is set  
(internal clock). The transmitter logic, however, is not  
reset, although it is disconnected from the pins. In order  
to reset the transmitter, the user has to clear bit TXEN.  
If bit SREN is set (to interrupt an on-going transmission  
and receive a single word), then after the single word is  
received, bit SREN will be cleared and the serial port  
will revert back to transmitting since bit TXEN is still set.  
The DT line will immediately switch from High-  
Impedance Receive mode to transmit and start driving.  
To avoid this, bit TXEN should be cleared.  
10.3 USART Synchronous  
Master Mode  
In Synchronous Master mode, the data is transmitted in  
a half-duplex manner (i.e., transmission and reception  
do not occur at the same time). When transmitting data,  
the reception is inhibited and vice versa. Synchronous  
mode is entered by setting bit, SYNC (TXSTA<4>). In  
addition, enable bit, SPEN (RCSTA<7>), is set in order  
to configure the RC6/TX/CK and RC7/RX/DT I/O pins  
to CK (clock) and DT (data) lines, respectively. The  
Master mode indicates that the processor transmits the  
master clock on the CK line. The Master mode is  
entered by setting bit, CSRC (TXSTA<7>).  
10.3.1  
USART SYNCHRONOUS MASTER  
TRANSMISSION  
The USART transmitter block diagram is shown in  
Figure 10-6. The heart of the transmitter is the Transmit  
(Serial) Shift Register (TSR). The shift register obtains  
its data from the Read/Write Transmit Buffer register,  
TXREG. The TXREG register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREG (if available). Once the  
TXREG register transfers the data to the TSR register  
(occurs in one TCYCLE), the TXREG is empty and inter-  
rupt bit, TXIF (PIR1<4>), is set. The interrupt can be  
enabled/disabled by setting/clearing enable bit TXIE  
(PIE1<4>). Flag bit TXIF will be set regardless of the  
state of enable bit TXIE and cannot be cleared in soft-  
ware. It will reset only when new data is loaded into the  
TXREG register. While flag bit TXIF indicates the status  
of the TXREG register, another bit, TRMT (TXSTA<1>),  
shows the status of the TSR register. TRMT is a read-  
only bit which is set when the TSR is empty. No inter-  
rupt logic is tied to this bit so the user has to poll this bit  
in order to determine if the TSR register is empty. The  
TSR is not mapped in data memory so it is not available  
to the user.  
In order to select 9-bit transmission, the TX9  
(TXSTA<6>) bit should be set and the ninth bit should  
be written to bit TX9D (TXSTA<0>). The ninth bit must  
be written before writing the 8-bit data to the TXREG  
register. This is because a data write to the TXREG can  
result in an immediate transfer of the data to the TSR  
register (if the TSR is empty). If the TSR was empty and  
the TXREG was written before writing the “new” TX9D,  
the “present” value of bit TX9D is loaded.  
Steps to follow when setting up a Synchronous Master  
Transmission:  
1. Initialize the SPBRG register for the appropriate  
baud rate (Section 10.1 “USART Baud Rate  
Generator (BRG)”).  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting bit TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the TXREG  
register.  
Transmission is enabled by setting enable bit, TXEN  
(TXSTA<5>). The actual transmission will not occur  
until the TXREG register has been loaded with data.  
The first data bit will be shifted out on the next available  
rising edge of the clock on the CK line. Data out is  
stable around the falling edge of the synchronous clock  
(Figure 10-9). The transmission can also be started by  
first loading the TXREG register and then setting bit  
TXEN (Figure 10-10). This is advantageous when slow  
baud rates are selected since the BRG is kept in Reset  
when bits TXEN, CREN and SREN are clear. Setting  
enable bit TXEN will start the BRG, creating a shift  
clock immediately. Normally, when transmission is first  
started, the TSR register is empty so a transfer to the  
TXREG register will result in an immediate transfer to  
TSR, resulting in an empty TXREG. Back-to-back  
transfers are possible.  
8. If using interrupts, ensure that GIE and PEIE  
(bits 7 and 6) of the INTCON register are set.  
2003 Microchip Technology Inc.  
DS39582B-page 121  
PIC16F87XA  
TABLE 10-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE TMR0IE INTE  
RBIE TMR0IF  
INTF  
R0IF  
0000 000x 0000 000u  
(1)  
0Ch  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
18h  
RCSTA  
SREN CREN  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
19h  
TXREG USART Transmit Register  
(1)  
8Ch  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
98h  
TXSTA  
TXEN SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
99h  
SPBRG Baud Rate Generator Register  
Legend:  
x= unknown, -= unimplemented, read as ‘0’. Shaded cells are not used for synchronous master transmission.  
Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.  
FIGURE 10-9:  
SYNCHRONOUS TRANSMISSION  
Q1Q2 Q3 Q4 Q1Q2 Q3 Q4Q1Q2Q3 Q4Q1Q2Q3 Q4Q1 Q2 Q3 Q4  
Q3 Q4 Q1Q2 Q3Q4 Q1Q2Q3Q4 Q1Q2Q3 Q4Q1 Q2Q3Q4 Q1Q2Q3 Q4Q1Q2Q3 Q4  
RC7/RX/DT  
pin  
bit 0  
bit 1  
Word 1  
bit 2  
bit 7  
bit 0  
bit 1  
Word 2  
bit 7  
RC6/TX/CK  
pin  
Write to  
TXREG reg  
Write Word 1  
Write Word 2  
TXIF bit  
(Interrupt Flag)  
TRMT bit  
TXEN bit  
1’  
1’  
Note: Sync Master mode; SPBRG = 0. Continuous transmission of two 8-bit words.  
FIGURE 10-10:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RC7/RX/DT pin  
bit 0  
bit 2  
bit 1  
bit 6  
bit 7  
RC6/TX/CK pin  
Write to  
TXREG Reg  
TXIF bit  
TRMT bit  
TXEN bit  
DS39582B-page 122  
2003 Microchip Technology Inc.  
PIC16F87XA  
data. Reading the RCREG register will load bit RX9D  
with a new value, therefore, it is essential for the user  
to read the RCSTA register before reading RCREG in  
order not to lose the old RX9D information.  
10.3.2  
USART SYNCHRONOUS MASTER  
RECEPTION  
Once Synchronous mode is selected, reception is  
enabled by setting either enable bit, SREN  
(RCSTA<5>), or enable bit, CREN (RCSTA<4>). Data  
is sampled on the RC7/RX/DT pin on the falling edge of  
the clock. If enable bit SREN is set, then only a single  
word is received. If enable bit CREN is set, the recep-  
tion is continuous until CREN is cleared. If both bits are  
set, CREN takes precedence. After clocking the last bit,  
the received data in the Receive Shift Register (RSR)  
is transferred to the RCREG register (if it is empty).  
When the transfer is complete, interrupt flag bit, RCIF  
(PIR1<5>), is set. The actual interrupt can be enabled/  
disabled by setting/clearing enable bit, RCIE  
(PIE1<5>). Flag bit RCIF is a read-only bit which is  
reset by the hardware. In this case, it is reset when the  
RCREG register has been read and is empty. The  
RCREG is a double-buffered register (i.e., it is a two-  
deep FIFO). It is possible for two bytes of data to be  
received and transferred to the RCREG FIFO and a  
third byte to begin shifting into the RSR register. On the  
clocking of the last bit of the third byte, if the RCREG  
register is still full, then Overrun Error bit, OERR  
(RCSTA<1>), is set. The word in the RSR will be lost.  
The RCREG register can be read twice to retrieve the  
two bytes in the FIFO. Bit OERR has to be cleared in  
software (by clearing bit CREN). If bit OERR is set,  
transfers from the RSR to the RCREG are inhibited so  
it is essential to clear bit OERR if it is set. The ninth  
receive bit is buffered the same way as the receive  
When setting up a Synchronous Master Reception:  
1. Initialize the SPBRG register for the appropriate  
baud rate (Section 10.1 “USART Baud Rate  
Generator (BRG)”).  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
3. Ensure bits CREN and SREN are clear.  
4. If interrupts are desired, then set enable bit  
RCIE.  
5. If 9-bit reception is desired, then set bit RX9.  
6. If a single reception is required, set bit SREN.  
For continuous reception, set bit CREN.  
7. Interrupt flag bit RCIF will be set when reception  
is complete and an interrupt will be generated if  
enable bit RCIE was set.  
8. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read the 8-bit received data by reading the  
RCREG register.  
10. If any error occurred, clear the error by clearing  
bit CREN.  
11. If using interrupts, ensure that GIE and PEIE  
(bits 7 and 6) of the INTCON register are set.  
TABLE 10-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE TMR0IE INTE  
RBIE TMR0IF  
INTF  
R0IF  
0000 000x 0000 000u  
(1)  
0Ch  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
18h  
RCSTA  
SREN CREN  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
1Ah  
RCREG USART Receive Register  
(1)  
8Ch  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
98h  
TXSTA  
TXEN SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
99h  
SPBRG Baud Rate Generator Register  
Legend:  
x= unknown, -= unimplemented, read as ‘0’. Shaded cells are not used for synchronous master reception.  
Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.  
2003 Microchip Technology Inc.  
DS39582B-page 123  
PIC16F87XA  
FIGURE 10-11:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2Q3 Q4Q1Q2Q3 Q4Q1Q2Q3 Q4 Q1Q2 Q3Q4Q1Q2Q3 Q4 Q1 Q2Q3 Q4Q1Q2 Q3Q4 Q1 Q2Q3Q4Q1Q2Q3 Q4 Q1Q2 Q3Q4 Q1 Q2Q3Q4  
RC7/RX/DT  
pin  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
RC6/TX/CK  
pin  
Write to  
bit SREN  
SREN bit  
CREN bit  
0’  
0’  
RCIF bit  
(Interrupt)  
Read  
RXREG  
Note: Timing diagram demonstrates Sync Master mode with bit SREN = 1and bit BRG = 0.  
When setting up a Synchronous Slave Transmission,  
follow these steps:  
10.4 USART Synchronous Slave Mode  
Synchronous Slave mode differs from the Master mode  
in the fact that the shift clock is supplied externally at  
the RC6/TX/CK pin (instead of being supplied internally  
in Master mode). This allows the device to transfer or  
receive data while in Sleep mode. Slave mode is  
entered by clearing bit, CSRC (TXSTA<7>).  
1. Enable the synchronous slave serial port by set-  
ting bits SYNC and SPEN and clearing bit  
CSRC.  
2. Clear bits CREN and SREN.  
3. If interrupts are desired, then set enable bit  
TXIE.  
10.4.1  
USART SYNCHRONOUS SLAVE  
TRANSMIT  
4. If 9-bit transmission is desired, then set bit TX9.  
5. Enable the transmission by setting enable bit  
TXEN.  
The operation of the Synchronous Master and Slave  
modes is identical, except in the case of the Sleep mode.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
7. Start transmission by loading data to the TXREG  
register.  
a) The first word will immediately transfer to the  
TSR register and transmit.  
8. If using interrupts, ensure that GIE and PEIE  
(bits 7 and 6) of the INTCON register are set.  
b) The second word will remain in TXREG register.  
c) Flag bit TXIF will not be set.  
d) When the first word has been shifted out of TSR,  
the TXREG register will transfer the second word  
to the TSR and flag bit TXIF will now be set.  
e) If enable bit TXIE is set, the interrupt will wake  
the chip from Sleep and if the global interrupt is  
enabled, the program will branch to the interrupt  
vector (0004h).  
DS39582B-page 124  
2003 Microchip Technology Inc.  
PIC16F87XA  
TABLE 10-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE TMR0IE INTE  
RBIE  
TMR0IF  
INTF  
R0IF  
0000 000x 0000 000u  
(1)  
0Ch  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
18h  
RCSTA  
SREN CREN ADDEN FERR  
OERR  
RX9D 0000 000x 0000 000x  
19h  
TXREG USART Transmit Register  
0000 0000 0000 0000  
(1)  
8Ch  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
98h  
TXSTA  
TXEN SYNC  
BRGH  
TRMT  
TX9D 0000 -010 0000 -010  
99h  
SPBRG Baud Rate Generator Register  
0000 0000 0000 0000  
Legend:  
x= unknown, -= unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave transmission.  
Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices; always maintain these bits clear.  
When setting up a Synchronous Slave Reception,  
follow these steps:  
10.4.2  
USART SYNCHRONOUS SLAVE  
RECEPTION  
1. Enable the synchronous master serial port by  
setting bits SYNC and SPEN and clearing bit  
CSRC.  
The operation of the Synchronous Master and Slave  
modes is identical, except in the case of the Sleep  
mode. Bit SREN is a “don't care” in Slave mode.  
2. If interrupts are desired, set enable bit RCIE.  
3. If 9-bit reception is desired, set bit RX9.  
4. To enable reception, set enable bit CREN.  
If receive is enabled by setting bit CREN prior to the  
SLEEPinstruction, then a word may be received during  
Sleep. On completely receiving the word, the RSR reg-  
ister will transfer the data to the RCREG register and if  
enable bit RCIE bit is set, the interrupt generated will  
wake the chip from Sleep. If the global interrupt is  
enabled, the program will branch to the interrupt vector  
(0004h).  
5. Flag bit RCIF will be set when reception is  
complete and an interrupt will be generated if  
enable bit RCIE was set.  
6. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
7. Read the 8-bit received data by reading the  
RCREG register.  
8. If any error occurred, clear the error by clearing  
bit CREN.  
9. If using interrupts, ensure that GIE and PEIE  
(bits 7 and 6) of the INTCON register are set.  
TABLE 10-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE TMR0IE INTE  
RBIE  
TMR0IF  
INTF  
R0IF  
0000 000x 0000 000u  
(1)  
0Ch  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
18h  
RCSTA  
SREN CREN ADDEN FERR  
OERR  
RX9D 0000 000x 0000 000x  
1Ah  
RCREG USART Receive Register  
0000 0000 0000 0000  
(1)  
8Ch  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
98h  
TXSTA  
TXEN SYNC  
BRGH  
TRMT  
TX9D 0000 -010 0000 -010  
99h  
SPBRG Baud Rate Generator Register  
0000 0000 0000 0000  
Legend:  
x= unknown, -= unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave reception.  
Note 1: Bits PSPIE and PSPIF are reserved on 28-pin devices, always maintain these bits clear.  
2003 Microchip Technology Inc.  
DS39582B-page 125  
PIC16F87XA  
NOTES:  
DS39582B-page 126  
2003 Microchip Technology Inc.  
PIC16F87XA  
The A/D module has four registers. These registers are:  
11.0 ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
• A/D Result High Register (ADRESH)  
• A/D Result Low Register (ADRESL)  
• A/D Control Register 0 (ADCON0)  
• A/D Control Register 1 (ADCON1)  
The Analog-to-Digital (A/D) Converter module has five  
inputs for the 28-pin devices and eight for the 40/44-pin  
devices.  
The ADCON0 register, shown in Register 11-1, con-  
trols the operation of the A/D module. The ADCON1  
register, shown in Register 11-2, configures the func-  
tions of the port pins. The port pins can be configured  
as analog inputs (RA3 can also be the voltage  
reference) or as digital I/O.  
The conversion of an analog input signal results in a  
corresponding 10-bit digital number. The A/D module  
has high and low-voltage reference input that is soft-  
ware selectable to some combination of VDD, VSS, RA2  
or RA3.  
The A/D converter has a unique feature of being able  
to operate while the device is in Sleep mode. To  
operate in Sleep, the A/D clock must be derived from  
the A/D’s internal RC oscillator.  
Additional information on using the A/D module can be  
found in the PICmicro® Mid-Range MCU Family  
Reference Manual (DS33023).  
REGISTER 11-1: ADCON0 REGISTER (ADDRESS 1Fh)  
R/W-0  
R/W-0  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
U-0  
R/W-0  
ADON  
ADCS1  
ADCS0  
GO/DONE  
bit 7  
bit 0  
bit 7-6 ADCS1:ADCS0: A/D Conversion Clock Select bits (ADCON0 bits in bold)  
ADCON1  
<ADCS2> <ADCS1:ADCS0>  
ADCON0  
Clock Conversion  
0
0
0
0
1
1
1
1
00  
01  
10  
11  
00  
01  
10  
11  
FOSC/2  
FOSC/8  
FOSC/32  
FRC (clock derived from the internal A/D RC oscillator)  
FOSC/4  
FOSC/16  
FOSC/64  
FRC (clock derived from the internal A/D RC oscillator)  
bit 5-3 CHS2:CHS0: Analog Channel Select bits  
000= Channel 0 (AN0)  
001= Channel 1 (AN1)  
010= Channel 2 (AN2)  
011= Channel 3 (AN3)  
100= Channel 4 (AN4)  
101= Channel 5 (AN5)  
110= Channel 6 (AN6)  
111= Channel 7 (AN7)  
Note:  
The PIC16F873A/876A devices only implement A/D channels 0 through 4; the  
unimplemented selections are reserved. Do not select any unimplemented  
channels with these devices.  
bit 2  
GO/DONE: A/D Conversion Status bit  
When ADON = 1:  
1= A/D conversion in progress (setting this bit starts the A/D conversion which is automatically  
cleared by hardware when the A/D conversion is complete)  
0= A/D conversion not in progress  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
ADON: A/D On bit  
1= A/D converter module is powered up  
0= A/D converter module is shut-off and consumes no operating current  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003 Microchip Technology Inc.  
DS39582B-page 127  
PIC16F87XA  
REGISTER 11-2: ADCON1 REGISTER (ADDRESS 9Fh)  
R/W-0  
ADFM  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG0  
bit 0  
ADCS2  
PCFG3  
PCFG2  
PCFG1  
bit 7  
bit 7  
bit 6  
ADFM: A/D Result Format Select bit  
1= Right justified. Six (6) Most Significant bits of ADRESH are read as ‘0’.  
0= Left justified. Six (6) Least Significant bits of ADRESL are read as ‘0’.  
ADCS2: A/D Conversion Clock Select bit (ADCON1 bits in shaded area and in bold)  
ADCON1  
<ADCS2> <ADCS1:ADCS0>  
ADCON0  
Clock Conversion  
0
0
0
0
1
1
1
1
00  
01  
10  
11  
00  
01  
10  
11  
FOSC/2  
FOSC/8  
FOSC/32  
FRC (clock derived from the internal A/D RC oscillator)  
FOSC/4  
FOSC/16  
FOSC/64  
FRC (clock derived from the internal A/D RC oscillator)  
bit 5-4 Unimplemented: Read as ‘0’  
bit 3-0 PCFG3:PCFG0: A/D Port Configuration Control bits  
PCFG  
<3:0>  
AN7 AN6 AN5 AN4  
AN3  
AN2  
AN1 AN0 VREF+ VREF- C/R  
0000  
0001  
0010  
0011  
0100  
0101  
011x  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
A
A
D
D
D
D
D
A
D
D
D
D
D
D
D
A
A
D
D
D
D
D
A
D
D
D
D
D
D
D
A
A
D
D
D
D
D
A
A
A
A
D
D
D
D
A
A
A
A
D
D
D
A
A
A
A
A
D
D
D
A
VREF+  
A
A
A
A
A
D
D
D
A
A
A
A
A
A
D
A
A
A
A
A
A
D
D
A
A
A
A
A
A
D
A
A
A
A
A
A
A
A
VDD  
AN3  
VDD  
AN3  
VDD  
AN3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
8/0  
7/1  
5/0  
4/1  
3/0  
2/1  
0/0  
6/2  
6/0  
5/1  
4/2  
3/2  
2/2  
1/0  
1/2  
VREF+  
A
VREF+  
D
VREF+ VREF-  
AN3  
VDD  
AN3  
AN3  
AN3  
AN3  
VDD  
AN3  
AN2  
VSS  
VSS  
AN2  
AN2  
AN2  
VSS  
AN2  
A
A
A
VREF+  
VREF+ VREF-  
VREF+ VREF-  
VREF+ VREF-  
D
D
VREF+ VREF-  
A = Analog input D = Digital I/O  
C/R = # of analog input channels/# of A/D voltage references  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
Note:  
On any device Reset, the port pins that are multiplexed with analog functions (ANx)  
are forced to be an analog input.  
DS39582B-page 128  
2003 Microchip Technology Inc.  
PIC16F87XA  
The ADRESH:ADRESL registers contain the 10-bit  
result of the A/D conversion. When the A/D conversion  
is complete, the result is loaded into this A/D Result  
register pair, the GO/DONE bit (ADCON0<2>) is cleared  
and the A/D interrupt flag bit ADIF is set. The block  
diagram of the A/D module is shown in Figure 11-1.  
2. Configure A/D interrupt (if desired):  
• Clear ADIF bit  
• Set ADIE bit  
• Set PEIE bit  
• Set GIE bit  
3. Wait the required acquisition time.  
4. Start conversion:  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the con-  
version is started. The analog input channels must  
have their corresponding TRIS bits selected as inputs.  
• Set GO/DONE bit (ADCON0)  
5. Wait for A/D conversion to complete by either:  
• Polling for the GO/DONE bit to be cleared  
(interrupts disabled); OR  
To determine sample time, see Section 11.1 “A/D  
Acquisition Requirements”. After this acquisition  
time has elapsed, the A/D conversion can be started.  
• Waiting for the A/D interrupt  
6. Read  
A/D  
Result  
register  
pair  
To do an A/D Conversion, follow these steps:  
1. Configure the A/D module:  
(ADRESH:ADRESL), clear bit ADIF if required.  
7. For the next conversion, go to step 1 or step 2  
as required. The A/D conversion time per bit is  
defined as TAD.  
• Configure analog pins/voltage reference and  
digital I/O (ADCON1)  
• Select A/D input channel (ADCON0)  
• Select A/D conversion clock (ADCON0)  
• Turn on A/D module (ADCON0)  
FIGURE 11-1:  
A/D BLOCK DIAGRAM  
CHS2:CHS0  
111  
(1)  
RE2/AN7  
110  
(1)  
RE1/AN6  
101  
(1)  
RE0/AN5  
100  
RA5/AN4  
VAIN  
011  
(Input Voltage)  
RA3/AN3/VREF+  
A/D  
Converter  
010  
RA2/AN2/VREF-  
001  
VDD  
RA1/AN1  
000  
RA0/AN0  
VREF+  
(Reference  
Voltage)  
PCFG3:PCFG0  
VREF-  
(Reference  
Voltage)  
VSS  
PCFG3:PCFG0  
Note 1: Not available on 28-pin devices.  
2003 Microchip Technology Inc.  
DS39582B-page 129  
PIC16F87XA  
decreased. After the analog input channel is selected  
(changed), this acquisition must be done before the  
conversion can be started.  
11.1 A/D Acquisition Requirements  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 11-2. The source  
impedance (RS) and the internal sampling switch  
impedance (RSS) directly affect the time required to  
charge the capacitor CHOLD. The sampling switch  
(RSS) impedance varies over the device voltage (VDD);  
see Figure 11-2. The maximum recommended  
impedance for analog sources is 2.5 k. As the  
impedance is decreased, the acquisition time may be  
To calculate the minimum acquisition time,  
Equation 11-1 may be used. This equation assumes  
that 1/2 LSb error is used (1024 steps for the A/D). The  
1/2 LSb error is the maximum error allowed for the A/D  
to meet its specified resolution.  
To calculate the minimum acquisition time, TACQ, see  
the PICmicro® Mid-Range MCU Family Reference  
Manual (DS33023).  
EQUATION 11-1: ACQUISITION TIME  
TACQ  
= Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient  
= TAMP + TC + TCOFF  
= 2 µs + TC + [(Temperature – 25°C)(0.05 µs/°C)]  
= CHOLD (RIC + RSS + RS) In(1/2047)  
= - 120 pF (1 k+ 7 k+ 10 k) In(0.0004885)  
= 16.47 µs  
= 2 µs + 16.47 µs + [(50°C – 25°C)(0.05 µs/°C)  
= 19.72 µs  
TC  
TACQ  
Note 1: The reference voltage (VREF) has no effect on the equation since it cancels itself out.  
2: The charge holding capacitor (CHOLD) is not discharged after each conversion.  
3: The maximum recommended impedance for analog sources is 2.5 k. This is required to meet the pin  
leakage specification.  
FIGURE 11-2:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1K  
RSS  
RS  
CHOLD  
= DAC Capacitance  
= 120 pF  
CPIN  
5 pF  
VA  
ILEAKAGE  
± 500 nA  
VT = 0.6V  
VSS  
Legend: CPIN  
= input capacitance  
= threshold voltage  
6V  
5V  
VT  
ILEAKAGE = leakage current at the pin due to  
VDD 4V  
3V  
various junctions  
= interconnect resistance  
= sampling switch  
2V  
RIC  
SS  
CHOLD  
= sample/hold capacitance (from DAC)  
5 6 7 8 9 10 11  
Sampling Switch  
(k)  
DS39582B-page 130  
2003 Microchip Technology Inc.  
PIC16F87XA  
11.2 Selecting the A/D Conversion  
Clock  
11.3 Configuring Analog Port Pins  
The ADCON1 and TRIS registers control the operation  
of the A/D port pins. The port pins that are desired as  
analog inputs must have their corresponding TRIS bits  
set (input). If the TRIS bit is cleared (output), the digital  
output level (VOH or VOL) will be converted.  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires a minimum 12 TAD per 10-bit  
conversion. The source of the A/D conversion clock is  
software selected. The seven possible options for TAD  
are:  
The A/D operation is independent of the state of the  
CHS2:CHS0 bits and the TRIS bits.  
• 2 TOSC  
• 4 TOSC  
Note 1: When reading the port register, any pin  
configured as an analog input channel will  
read as cleared (a low level). Pins config-  
ured as digital inputs will convert an analog  
input. Analog levels on a digitally config-  
ured input will not affect the conversion  
accuracy.  
• 8 TOSC  
• 16 TOSC  
• 32 TOSC  
• 64 TOSC  
• Internal A/D module RC oscillator (2-6 µs)  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be selected to ensure a minimum TAD time  
of 1.6 µs.  
2: Analog levels on any pin that is defined as  
a digital input (including the AN7:AN0  
pins) may cause the input buffer to con-  
sume current that is out of the device  
specifications.  
Table 11-1 shows the resultant TAD times derived from  
the device operating frequencies and the A/D clock  
source selected.  
TABLE 11-1: TAD vs. MAXIMUM DEVICE OPERATING FREQUENCIES (STANDARD DEVICES (F))  
AD Clock Source (TAD)  
Maximum Device Frequency  
Operation  
ADCS2:ADCS1:ADCS0  
2 TOSC  
4 TOSC  
000  
100  
001  
101  
010  
110  
x11  
1.25 MHz  
2.5 MHz  
5 MHz  
8 TOSC  
16 TOSC  
32 TOSC  
64 TOSC  
RC(1, 2, 3)  
10 MHz  
20 MHz  
20 MHz  
(Note 1)  
Note 1: The RC source has a typical TAD time of 4 µs but can vary between 2-6 µs.  
2: When the device frequencies are greater than 1 MHz, the RC A/D conversion clock source is only  
recommended for Sleep operation.  
3: For extended voltage devices (LF), please refer to Section 17.0 “Electrical Characteristics”.  
2003 Microchip Technology Inc.  
DS39582B-page 131  
PIC16F87XA  
is aborted, the next acquisition on the selected channel  
is automatically started. The GO/DONE bit can then be  
set to start the conversion.  
11.4 A/D Conversions  
Clearing the GO/DONE bit during a conversion will  
abort the current conversion. The A/D Result register  
pair will NOT be updated with the partially completed  
A/D conversion sample. That is, the ADRESH:ADRESL  
registers will continue to contain the value of the last  
completed conversion (or the last value written to the  
ADRESH:ADRESL registers). After the A/D conversion  
In Figure 11-3, after the GO bit is set, the first time  
segmenthasaminimumofTCY andamaximumofTAD.  
Note:  
The GO/DONE bit should NOT be set in  
the same instruction that turns on the A/D.  
FIGURE 11-3:  
A/D CONVERSION TAD CYCLES  
TCY to TAD  
TAD1 TAD2  
b9  
TAD4 TAD5  
b7 b6  
T
AD  
8
TAD9 TAD10 TAD11  
TAD3  
b8  
TAD6  
b5  
TAD7  
b4  
b3  
b2  
b1  
b0  
Conversion starts  
Holding capacitor is disconnected from analog input (typically 100 ns)  
Set GO bit  
ADRES is loaded  
GO bit is cleared  
ADIF bit is set  
Holding capacitor is connected to analog input  
Format Select bit (ADFM) controls this justification.  
Figure 11-4 shows the operation of the A/D result  
justification. The extra bits are loaded with ‘0’s. When  
an A/D result will not overwrite these locations (A/D dis-  
able), these registers may be used as two general  
purpose 8-bit registers.  
11.4.1  
A/D RESULT REGISTERS  
The ADRESH:ADRESL register pair is the location  
where the 10-bit A/D result is loaded at the completion  
of the A/D conversion. This register pair is 16 bits wide.  
The A/D module gives the flexibility to left or right justify  
the 10-bit result in the 16-bit result register. The A/D  
FIGURE 11-4:  
A/D RESULT JUSTIFICATION  
10-bit Result  
ADFM = 0  
ADFM = 1  
0
7
7
2 1 0 7  
0 7 6 5  
0
0000 00  
0000 00  
ADRESH  
ADRESL  
ADRESH  
ADRESL  
10-bit Result  
10-bit Result  
Left Justified  
Right Justified  
DS39582B-page 132  
2003 Microchip Technology Inc.  
PIC16F87XA  
11.5 A/D Operation During Sleep  
Note:  
For the A/D module to operate in Sleep,  
the A/D clock source must be set to RC  
(ADCS1:ADCS0 = 11). To allow the con-  
version to occur during Sleep, ensure the  
SLEEPinstruction immediately follows the  
instruction that sets the GO/DONE bit.  
The A/D module can operate during Sleep mode. This  
requires that the A/D clock source be set to RC  
(ADCS1:ADCS0 = 11). When the RC clock source is  
selected, the A/D module waits one instruction cycle  
before starting the conversion. This allows the SLEEP  
instruction to be executed which eliminates all digital  
switching noise from the conversion. When the conver-  
sion is completed, the GO/DONE bit will be cleared and  
the result loaded into the ADRES register. If the A/D  
interrupt is enabled, the device will wake-up from  
Sleep. If the A/D interrupt is not enabled, the A/D mod-  
ule will then be turned off, although the ADON bit will  
remain set.  
11.6 Effects of a Reset  
A device Reset forces all registers to their Reset state.  
This forces the A/D module to be turned off and any  
conversion is aborted. All A/D input pins are configured  
as analog inputs.  
The value that is in the ADRESH:ADRESL registers is  
not modified for  
a
Power-on Reset. The  
When the A/D clock source is another clock option (not  
RC), a SLEEPinstruction will cause the present conver-  
sion to be aborted and the A/D module to be turned off,  
though the ADON bit will remain set.  
ADRESH:ADRESL registers will contain unknown data  
after a Power-on Reset.  
Turning off the A/D places the A/D module in its lowest  
current consumption state.  
TABLE 11-2: REGISTERS/BITS ASSOCIATED WITH A/D  
Value on  
POR, BOR MCLR, WDT  
Value on  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh,  
INTCON  
GIE  
PEIE TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
10Bh,18Bh  
(1)  
0Ch  
8Ch  
1Eh  
9Eh  
1Fh  
9Fh  
85h  
05h  
PIR1  
PIE1  
PSPIF  
PSPIE  
ADIF  
ADIE  
RCIF  
RCIE  
TXIF  
TXIE  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
(1)  
ADRESH A/D Result Register High Byte  
ADRESL A/D Result Register Low Byte  
ADCON0 ADCS1 ADCS0 CHS2  
xxxx xxxx uuuu uuuu  
CHS1  
CHS0 GO/DONE  
PCFG3 PCFG2  
ADON 0000 00-0 0000 00-0  
ADCON1 ADFM ADCS2  
PCFG1 PCFG0 00-- 0000 00-- 0000  
TRISA  
PORTA  
TRISE  
PORTE  
PORTA Data Direction Register  
PORTA Data Latch when written: PORTA pins when read  
--11 1111 --11 1111  
--0x 0000 --0u 0000  
0000 -111 0000 -111  
---- -xxx ---- -uuu  
(1)  
89h  
IBF  
OBF  
IBOV PSPMODE  
PORTE Data Direction bits  
RE2 RE1 RE0  
(1)  
09h  
Legend:  
x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used for A/D conversion.  
Note 1: These registers are not available on 28-pin devices.  
2003 Microchip Technology Inc.  
DS39582B-page 133  
PIC16F87XA  
NOTES:  
DS39582B-page 134  
2003 Microchip Technology Inc.  
PIC16F87XA  
The CMCON register (Register 12-1) controls the com-  
parator input and output multiplexers. A block diagram  
of the various comparator configurations is shown in  
Figure 12-1.  
12.0 COMPARATOR MODULE  
The comparator module contains two analog compara-  
tors. The inputs to the comparators are multiplexed  
with I/O port pins RA0 through RA3, while the outputs  
are multiplexed to pins RA4 and RA5. The on-chip volt-  
age reference (Section 13.0 “Comparator Voltage  
Reference Module”) can also be an input to the  
comparators.  
REGISTER 12-1: CMCON REGISTER  
R-0  
R-0  
R/W-0  
C2INV  
R/W-0  
C1INV  
R/W-0  
CIS  
R/W-1  
CM2  
R/W-1  
CM1  
R/W-1  
CM0  
C2OUT  
C1OUT  
bit 7  
bit 0  
bit 7  
C2OUT: Comparator 2 Output bit  
When C2INV = 0:  
1= C2 VIN+ > C2 VIN-  
0= C2 VIN+ < C2 VIN-  
When C2INV = 1:  
1= C2 VIN+ < C2 VIN-  
0= C2 VIN+ > C2 VIN-  
bit 6  
C1OUT: Comparator 1 Output bit  
When C1INV = 0:  
1= C1 VIN+ > C1 VIN-  
0= C1 VIN+ < C1 VIN-  
When C1INV = 1:  
1= C1 VIN+ < C1 VIN-  
0= C1 VIN+ > C1 VIN-  
bit 5  
bit 4  
bit 3  
C2INV: Comparator 2 Output Inversion bit  
1= C2 output inverted  
0= C2 output not inverted  
C1INV: Comparator 1 Output Inversion bit  
1= C1 output inverted  
0= C1 output not inverted  
CIS: Comparator Input Switch bit  
When CM2:CM0 = 110:  
1= C1 VIN- connects to RA3/AN3  
C2 VIN- connects to RA2/AN2  
0= C1 VIN- connects to RA0/AN0  
C2 VIN- connects to RA1/AN1  
bit 2  
CM2:CM0: Comparator Mode bits  
Figure 12-1 shows the Comparator modes and CM2:CM0 bit settings.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2003 Microchip Technology Inc.  
DS39582B-page 135  
PIC16F87XA  
mode is changed, the comparator output level may not  
be valid for the specified mode change delay shown in  
Section 17.0 “Electrical Characteristics”.  
12.1 Comparator Configuration  
There are eight modes of operation for the compara-  
tors. The CMCON register is used to select these  
modes. Figure 12-1 shows the eight possible modes.  
The TRISA register controls the data direction of the  
comparator pins for each mode. If the Comparator  
Note:  
Comparator interrupts should be disabled  
during Comparator mode change.  
Otherwise, a false interrupt may occur.  
a
FIGURE 12-1:  
COMPARATOR I/O OPERATING MODES  
Comparators Reset  
Comparators Off (POR Default Value)  
CM2:CM0 = 000  
CM2:CM0 = 111  
A
D
VIN-  
VIN-  
RA0/AN0  
RA0/AN0  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
C1  
C2  
C1  
C2  
VIN+  
VIN+  
A
D
RA3/AN3  
RA3/AN3  
A
D
VIN-  
VIN-  
RA1/AN1  
RA1/AN1  
VIN+  
VIN+  
A
D
RA2/AN2  
RA2/AN2  
Two Independent Comparators with Outputs  
CM2:CM0 = 011  
Two Independent Comparators  
CM2:CM0 = 010  
A
VIN-  
A
VIN-  
RA0/AN0  
RA3/AN3  
RA0/AN0  
RA3/AN3  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
A
C1OUT  
C2OUT  
C1  
C2  
VIN+  
A
RA4/T0CKI/C1OUT  
A
A
VIN-  
A
A
VIN-  
RA1/AN1  
RA2/AN2  
RA1/AN1  
RA2/AN2  
VIN+  
VIN+  
RA5/AN4/SS/C2OUT  
Two Common Reference Comparators  
Two Common Reference Comparators with Outputs  
CM2:CM0 = 100  
CM2:CM0 = 101  
A
A
VIN-  
VIN-  
RA0/AN0  
RA3/AN3  
RA0/AN0  
RA3/AN3  
C1OUT  
C2OUT  
C1OUT  
C1  
C2  
C1  
C2  
VIN+  
VIN+  
A
A
RA4/T0CKI/C1OUT  
A
D
VIN-  
RA1/AN1  
RA2/AN2  
A
VIN-  
VIN+  
RA1/AN1  
C2OUT  
VIN+  
D
RA2/AN2  
RA5/AN4/SS/C2OUT  
Four Inputs Multiplexed to Two Comparators  
One Independent Comparator with Output  
CM2:CM0 = 110  
CM2:CM0 = 001  
A
A
A
VIN-  
RA0/AN0  
RA0/AN0  
RA3/AN3  
CIS = 0  
CIS = 1  
VIN-  
A
C1OUT  
C1  
VIN+  
RA3/AN3  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
RA4/T0CKI/C1OUT  
A
A
RA1/AN1  
RA2/AN2  
VIN-  
CIS = 0  
CIS = 1  
VIN+  
D
D
VIN-  
RA1/AN1  
RA2/AN2  
Off (Read as ‘0’)  
C2  
VIN+  
CVREF  
From Comparator  
VREF Module  
A = Analog Input, port reads zeros always. D = Digital Input. CIS (CMCON<3>) is the Comparator Input Switch.  
DS39582B-page 136  
2003 Microchip Technology Inc.  
PIC16F87XA  
12.3.2  
INTERNAL REFERENCE SIGNAL  
12.2 Comparator Operation  
The comparator module also allows the selection of an  
internally generated voltage reference for the compara-  
tors. Section 13.0 “Comparator Voltage Reference  
Module” contains a detailed description of the Compar-  
ator Voltage Reference module that provides this signal.  
The internal reference signal is used when comparators  
are in mode, CM<2:0> = 110 (Figure 12-1). In this  
mode, the internal voltage reference is applied to the  
VIN+ pin of both comparators.  
A single comparator is shown in Figure 12-2 along with  
the relationship between the analog input levels and  
the digital output. When the analog input at VIN+ is less  
than the analog input VIN-, the output of the comparator  
is a digital low level. When the analog input at VIN+ is  
greater than the analog input VIN-, the output of the  
comparator is a digital high level. The shaded areas of  
the output of the comparator in Figure 12-2 represent  
the uncertainty due to input offsets and response time.  
12.4 Comparator Response Time  
12.3 Comparator Reference  
Response time is the minimum time, after selecting a  
new reference voltage or input source, before the com-  
parator output has a valid level. If the internal reference  
is changed, the maximum delay of the internal voltage  
reference must be considered when using the compar-  
ator outputs. Otherwise, the maximum delay of the  
comparators should be used (Section 17.0 “Electrical  
Characteristics”).  
An external or internal reference signal may be used  
depending on the comparator operating mode. The  
analog signal present at VIN- is compared to the signal  
at VIN+ and the digital output of the comparator is  
adjusted accordingly (Figure 12-2).  
FIGURE 12-2:  
SINGLE COMPARATOR  
12.5 Comparator Outputs  
VIN+  
VIN-  
+
Output  
The comparator outputs are read through the CMCON  
register. These bits are read-only. The comparator  
outputs may also be directly output to the RA4 and RA5  
I/O pins. When enabled, multiplexors in the output path  
of the RA4 and RA5 pins will switch and the output of  
each pin will be the unsynchronized output of the com-  
parator. The uncertainty of each of the comparators is  
related to the input offset voltage and the response time  
given in the specifications. Figure 12-3 shows the  
comparator output block diagram.  
VIN-  
VIN+  
The TRISA bits will still function as an output enable/  
disable for the RA4 and RA5 pins while in this mode.  
Output  
The polarity of the comparator outputs can be changed  
using the C2INV and C1INV bits (CMCON<4:5>).  
Note 1: When reading the Port register, all pins  
configured as analog inputs will read as a  
0’. Pins configured as digital inputs will  
convert an analog input according to the  
Schmitt Trigger input specification.  
12.3.1  
EXTERNAL REFERENCE SIGNAL  
When external voltage references are used, the  
comparator module can be configured to have the com-  
parators operate from the same or different reference  
sources. However, threshold detector applications may  
require the same reference. The reference signal must  
be between VSS and VDD and can be applied to either  
pin of the comparator(s).  
2: Analog levels on any pin defined as a dig-  
ital input may cause the input buffer to  
consume more current than is specified.  
3: RA4 is an open collector I/O pin. When  
used as an output, a pull-up resistor is  
required.  
2003 Microchip Technology Inc.  
DS39582B-page 137  
PIC16F87XA  
FIGURE 12-3:  
COMPARATOR OUTPUT BLOCK DIAGRAM  
Port Pins  
MULTIPLEX  
+
-
CxINV  
To RA4 or  
RA5 Pin  
Bus  
Data  
Q
D
Read CMCON  
EN  
Q
Set  
CMIF  
bit  
D
From  
Other  
Comparator  
EN  
CL  
Read CMCON  
Reset  
12.6 Comparator Interrupts  
Note:  
If a change in the CMCON register  
(C1OUT or C2OUT) should occur when a  
read operation is being executed (start of  
the Q2 cycle), then the CMIF (PIR  
registers) interrupt flag may not get set.  
The comparator interrupt flag is set whenever there is  
a change in the output value of either comparator.  
Software will need to maintain information about the  
status of the output bits, as read from CMCON<7:6>, to  
determine the actual change that occurred. The CMIF  
bit (PIR registers) is the Comparator Interrupt Flag. The  
CMIF bit must be reset by clearing it (‘0’). Since it is  
also possible to write a ‘1’ to this register, a simulated  
interrupt may be initiated.  
The user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
a) Any read or write of CMCON will end the  
mismatch condition.  
b) Clear flag bit CMIF.  
The CMIE bit (PIE registers) and the PEIE bit (INTCON  
register) must be set to enable the interrupt. In addition,  
the GIE bit must also be set. If any of these bits are  
clear, the interrupt is not enabled, though the CMIF bit  
will still be set if an interrupt condition occurs.  
A mismatch condition will continue to set flag bit CMIF.  
Reading CMCON will end the mismatch condition and  
allow flag bit CMIF to be cleared.  
DS39582B-page 138  
2003 Microchip Technology Inc.  
PIC16F87XA  
12.7 Comparator Operation During  
Sleep  
12.9 Analog Input Connection  
Considerations  
When a comparator is active and the device is placed  
in Sleep mode, the comparator remains active and the  
interrupt is functional if enabled. This interrupt will  
wake-up the device from Sleep mode when enabled.  
While the comparator is powered up, higher Sleep  
currents than shown in the power-down current  
specification will occur. Each operational comparator  
will consume additional current as shown in the com-  
parator specifications. To minimize power consumption  
while in Sleep mode, turn off the comparators,  
CM<2:0> = 111, before entering Sleep. If the device  
wakes up from Sleep, the contents of the CMCON  
register are not affected.  
A simplified circuit for an analog input is shown in  
Figure 12-4. Since the analog pins are connected to a  
digital output, they have reverse biased diodes to VDD  
and VSS. The analog input, therefore, must be between  
VSS and VDD. If the input voltage deviates from this  
range by more than 0.6V in either direction, one of the  
diodes is forward biased and a latch-up condition may  
occur. A maximum source impedance of 10 kis rec-  
ommended for the analog sources. Any external com-  
ponent connected to an analog input pin, such as a  
capacitor or a Zener diode, should have very little  
leakage current.  
12.8 Effects of a Reset  
A device Reset forces the CMCON register to its Reset  
state, causing the comparator module to be in the  
Comparator Off mode, CM<2:0> = 111. This ensures  
compatibility to the PIC16F87X devices.  
FIGURE 12-4:  
ANALOG INPUT MODEL  
VDD  
VT = 0.6 V  
RIC  
RS < 10K  
AIN  
ILEAKAGE  
±500 nA  
CPIN  
5 pF  
VA  
VT = 0.6 V  
VSS  
Legend: CPIN  
=
Input Capacitance  
VT  
= Threshold Voltage  
ILEAKAGE = Leakage Current at the pin due to various junctions  
RIC  
RS  
VA  
=
=
=
Interconnect Resistance  
Source Impedance  
Analog Voltage  
2003 Microchip Technology Inc.  
DS39582B-page 139  
PIC16F87XA  
TABLE 12-1: REGISTERS ASSOCIATED WITH COMPARATOR MODULE  
Value on  
all other  
Resets  
Value on  
POR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
9Ch  
9Dh  
CMCON  
C2OUT C1OUT C2INV C1INV  
CIS  
CM2  
CM1  
CVR1  
INTIF  
CM0  
CVR0  
RBIF  
0000 0111 0000 0111  
000- 0000 000- 0000  
0000 000x 0000 000u  
CVRCON CVREN CVROE CVRR  
CVR3  
CVR2  
0Bh, 8Bh, INTCON  
10Bh,18Bh  
GIE/  
GIEH  
PEIE/ TMR0IE INTIE  
GIEL  
RBIE TMR0IF  
0Dh  
PIR2  
CMIF  
CMIE  
BCLIF  
BCLIE  
RA3  
LVDIF TMR3IF CCP2IF -0-- 0000 -0-- 0000  
LVDIE TMR3IE CCP2IE -0-- 0000 -0-- 0000  
8Dh  
PIE2  
05h  
PORTA  
TRISA  
RA5  
RA4  
RA2  
RA1  
RA0  
--0x 0000 --0u 0000  
--11 1111 --11 1111  
85h  
PORTA Data Direction Register  
Legend:  
x= unknown, u= unchanged, - = unimplemented, read as ‘0’. Shaded cells are unused by the comparator module.  
DS39582B-page 140  
2003 Microchip Technology Inc.  
PIC16F87XA  
supply voltage (also referred to as CVRSRC) comes  
directly from VDD. It should be noted, however, that the  
voltage at the top of the ladder is CVRSRC – VSAT,  
where VSAT is the saturation voltage of the power  
switch transistor. This reference will only be as  
accurate as the values of CVRSRC and VSAT.  
13.0 COMPARATOR VOLTAGE  
REFERENCE MODULE  
The Comparator Voltage Reference Generator is a  
16-tap resistor ladder network that provides a fixed  
voltage reference when the comparators are in mode  
110. A programmable register controls the function of  
the reference generator. Register 13-1 lists the bit  
functions of the CVRCON register.  
The output of the reference generator may be con-  
nected to the RA2/AN2/VREF-/CVREF pin. This can be  
used as a simple D/A function by the user if a very high-  
impedance load is used. The primary purpose of this  
function is to provide a test path for testing the  
reference generator function.  
As shown in Figure 13-1, the resistor ladder is seg-  
mented to provide two ranges of CVREF values and has  
a power-down function to conserve power when the  
reference is not being used. The comparator reference  
REGISTER 13-1: CVRCON CONTROL REGISTER (ADDRESS 9Dh)  
R/W-0  
R/W-0  
R/W-0  
CVRR  
U-0  
R/W-0  
CVR3  
R/W-0  
CVR2  
R/W-0  
CVR1  
R/W-0  
CVR0  
CVREN  
CVROE  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
CVREN: Comparator Voltage Reference Enable bit  
1= CVREF circuit powered on  
0= CVREF circuit powered down  
CVROE: Comparator VREF Output Enable bit  
1= CVREF voltage level is output on RA2/AN2/VREF-/CVREF pin  
0= CVREF voltage level is disconnected from RA2/AN2/VREF-/CVREF pin  
CVRR: Comparator VREF Range Selection bit  
1= 0 to 0.75 CVRSRC, with CVRSRC/24 step size  
0= 0.25 CVRSRC to 0.75 CVRSRC, with CVRSRC/32 step size  
bit 4  
Unimplemented: Read as ‘0’  
bit 3-0  
CVR3:CVR0: Comparator VREF Value Selection bits 0 VR3:VR0 15  
When CVRR = 1:  
CVREF = (VR<3:0>/ 24) (CVRSRC)  
When CVRR = 0:  
CVREF = 1/4 (CVRSRC) + (VR3:VR0/ 32) (CVRSRC)  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2003 Microchip Technology Inc.  
DS39582B-page 141  
PIC16F87XA  
FIGURE 13-1:  
COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM  
VDD  
16 Stages  
CVREN  
R
R
R
R
8R  
8R  
CVRR  
RA2/AN2/VREF-/CVREF  
CVROE  
CVR3  
CVREF  
Input to  
Comparator  
CVR2  
CVR1  
CVR0  
16:1 Analog MUX  
TABLE 13-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE  
Value on  
all other  
Resets  
Value on  
POR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
9Dh  
9Ch  
CVRCON CVREN CVROE CVRR  
CVR3 CVR2 CVR1 CVR0 000- 0000 000- 0000  
CM2 CM1 CM0 0000 0111 0000 0111  
CMCON C2OUT C1OUT C2INV C1INV CIS  
Legend: x= unknown, u= unchanged, - = unimplemented, read as ‘0’.  
Shaded cells are not used with the comparator voltage reference.  
DS39582B-page 142  
2003 Microchip Technology Inc.  
PIC16F87XA  
Sleep mode is designed to offer a very low current  
power-down mode. The user can wake-up from Sleep  
through external Reset, Watchdog Timer wake-up or  
through an interrupt.  
14.0 SPECIAL FEATURES OF THE  
CPU  
All PIC16F87XA devices have a host of features  
intended to maximize system reliability, minimize cost  
through elimination of external components, provide  
power saving operating modes and offer code  
protection. These are:  
Several oscillator options are also made available to  
allow the part to fit the application. The RC oscillator  
option saves system cost while the LP crystal option  
saves power. A set of configuration bits is used to  
select various options.  
• Oscillator Selection  
• Reset  
Additional information on special features is available  
in the PICmicro® Mid-Range MCU Family Reference  
Manual (DS33023).  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
14.1 Configuration Bits  
The configuration bits can be programmed (read as ‘0’),  
or left unprogrammed (read as ‘1’) to select various  
device configurations. The erased or unprogrammed  
value of the Configuration Word register is 3FFFh.  
These bits are mapped in program memory location  
2007h.  
• Watchdog Timer (WDT)  
• Sleep  
• Code Protection  
• ID Locations  
• In-Circuit Serial Programming  
• Low-Voltage In-Circuit Serial Programming  
• In-Circuit Debugger  
It is important to note that address 2007h is beyond the  
user program memory space which can be accessed  
only during programming.  
PIC16F87XA devices have a Watchdog Timer which  
can be shut-off only through configuration bits. It runs  
off its own RC oscillator for added reliability.  
There are two timers that offer necessary delays on  
power-up. One is the Oscillator Start-up Timer (OST),  
intended to keep the chip in Reset until the crystal oscil-  
lator is stable. The other is the Power-up Timer  
(PWRT), which provides a fixed delay of 72 ms (nomi-  
nal) on power-up only. It is designed to keep the part in  
Reset while the power supply stabilizes. With these two  
timers on-chip, most applications need no external  
Reset circuitry.  
2003 Microchip Technology Inc.  
DS39582B-page 143  
PIC16F87XA  
REGISTER 14-1: CONFIGURATION WORD (ADDRESS 2007h)(1)  
R/P-1 U-0  
R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1  
DEBUG WRT1 WRT0 CPD LVP BOREN  
U-0 U-0  
R/P-1  
R/P-1  
R/P-1 R/P-1  
CP  
PWRTEN WDTEN FOSC1 FOSC0  
bit0  
bit 13  
bit 13  
CP: Flash Program Memory Code Protection bit  
1= Code protection off  
0= All program memory code-protected  
bit 12  
bit 11  
Unimplemented: Read as ‘1’  
DEBUG: In-Circuit Debugger Mode bit  
1= In-Circuit Debugger disabled, RB6 and RB7 are general purpose I/O pins  
0= In-Circuit Debugger enabled, RB6 and RB7 are dedicated to the debugger  
bit 10-9  
WRT1:WRT0 Flash Program Memory Write Enable bits  
For PIC16F876A/877A:  
11= Write protection off; all program memory may be written to by EECON control  
10= 0000h to 00FFh write-protected; 0100h to 1FFFh may be written to by EECON control  
01= 0000h to 07FFh write-protected; 0800h to 1FFFh may be written to by EECON control  
00= 0000h to 0FFFh write-protected; 1000h to 1FFFh may be written to by EECON control  
For PIC16F873A/874A:  
11= Write protection off; all program memory may be written to by EECON control  
10= 0000h to 00FFh write-protected; 0100h to 0FFFh may be written to by EECON control  
01= 0000h to 03FFh write-protected; 0400h to 0FFFh may be written to by EECON control  
00= 0000h to 07FFh write-protected; 0800h to 0FFFh may be written to by EECON control  
bit 8  
bit 7  
bit 6  
CPD: Data EEPROM Memory Code Protection bit  
1= Data EEPROM code protection off  
0= Data EEPROM code-protected  
LVP: Low-Voltage (Single-Supply) In-Circuit Serial Programming Enable bit  
1= RB3/PGM pin has PGM function; low-voltage programming enabled  
0= RB3 is digital I/O, HV on MCLR must be used for programming  
BOREN: Brown-out Reset Enable bit  
1= BOR enabled  
0= BOR disabled  
bit 5-4  
bit 3  
Unimplemented: Read as ‘1’  
PWRTEN: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
bit 2  
WDTEN: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled  
bit 1-0  
FOSC1:FOSC0: Oscillator Selection bits  
11= RC oscillator  
10= HS oscillator  
01= XT oscillator  
00= LP oscillator  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
Note 1: The erased (unprogrammed) value of the Configuration Word is 3FFFh.  
DS39582B-page 144  
2003 Microchip Technology Inc.  
PIC16F87XA  
FIGURE 14-2:  
EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR  
LP OSC CONFIGURATION)  
14.2 Oscillator Configurations  
14.2.1 OSCILLATOR TYPES  
The PIC16F87XA can be operated in four different  
oscillator modes. The user can program two configura-  
tion bits (FOSC1 and FOSC0) to select one of these four  
modes:  
OSC1  
Clock from  
Ext. System  
PIC16F87XA  
OSC2  
• LP  
• XT  
• HS  
• RC  
Low-Power Crystal  
Open  
Crystal/Resonator  
High-Speed Crystal/Resonator  
Resistor/Capacitor  
14.2.2  
CRYSTAL OSCILLATOR/CERAMIC  
RESONATORS  
TABLE 14-1: CERAMIC RESONATORS  
Ranges Tested:  
In XT, LP or HS modes, a crystal or ceramic resonator  
is connected to the OSC1/CLKI and OSC2/CLKO pins  
to establish oscillation (Figure 14-1). The PIC16F87XA  
oscillator design requires the use of a parallel cut crys-  
tal. Use of a series cut crystal may give a frequency out  
of the crystal manufacturer’s specifications. When in  
XT, LP or HS modes, the device can have an external  
clock source to drive the OSC1/CLKI pin (Figure 14-2).  
Mode  
Freq.  
OSC1  
OSC2  
XT  
455 kHz  
2.0 MHz  
4.0 MHz  
68-100 pF  
15-68 pF  
15-68 pF  
68-100 pF  
15-68 pF  
15-68 pF  
HS  
8.0 MHz  
16.0 MHz  
10-68 pF  
10-22 pF  
10-68 pF  
10-22 pF  
These values are for design guidance only.  
See notes following Table 14-2.  
FIGURE 14-1:  
CRYSTAL/CERAMIC  
RESONATOROPERATION  
(HS, XT OR LP  
Resonators Used:  
2.0 MHz  
4.0 MHz  
8.0 MHz  
Murata Erie CSA2.00MG  
Murata Erie CSA4.00MG  
Murata Erie CSA8.00MT  
0.5%  
0.5%  
0.5%  
0.5%  
OSC CONFIGURATION)  
(1)  
C1  
OSC1  
To  
16.0 MHz Murata Erie CSA16.00MX  
Internal  
Logic  
All resonators used did not have built-in capacitors.  
XTAL  
(3)  
RF  
OSC2  
Sleep  
PIC16F87XA  
(2)  
R
s
(1)  
C2  
Note 1: See Table 14-1 and Table 14-2 for recommended  
values of C1 and C2.  
2: A series resistor (R ) may be required for AT  
s
strip cut crystals.  
3: RF varies with the crystal chosen.  
2003 Microchip Technology Inc.  
DS39582B-page 145  
PIC16F87XA  
TABLE 14-2: CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
14.2.3  
RC OSCILLATOR  
For timing insensitive applications, the “RC” device  
option offers additional cost savings. The RC oscillator  
frequency is a function of the supply voltage, the  
resistor (REXT) and capacitor (CEXT) values and the  
operating temperature. In addition to this, the oscillator  
frequency will vary from unit to unit due to normal pro-  
cess parameter variation. Furthermore, the difference  
in lead frame capacitance between package types will  
also affect the oscillation frequency, especially for low  
CEXT values. The user also needs to take into account  
variation due to tolerance of external R and C  
components used. Figure 14-3 shows how the R/C  
combination is connected to the PIC16F87XA.  
Crystal  
Freq.  
Cap. Range Cap. Range  
Osc Type  
C1  
C2  
LP  
32 kHz  
200 kHz  
200 kHz  
1 MHz  
33 pF  
15 pF  
33 pF  
15 pF  
XT  
HS  
47-68 pF  
15 pF  
47-68 pF  
15 pF  
4 MHz  
15 pF  
15 pF  
4 MHz  
15 pF  
15 pF  
8 MHz  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
20 MHz  
These values are for design guidance only.  
See notes following this table.  
FIGURE 14-3:  
RC OSCILLATOR MODE  
VDD  
Crystals Used  
REXT  
32 kHz  
200 kHz  
1 MHz  
4 MHz  
8 MHz  
Epson C-001R32.768K-A  
STD XTL 200.000KHz  
ECS ECS-10-13-1  
± 20 PPM  
± 20 PPM  
± 50 PPM  
± 50 PPM  
± 30 PPM  
Internal  
OSC1  
Clock  
CEXT  
VSS  
PIC16F87XA  
ECS ECS-40-20-1  
EPSON CA-301 8.000M-C  
OSC2/CLKO  
FOSC/4  
20 MHz EPSON CA-301 20.000M-C ± 30 PPM  
Recommended values: 3 kΩ ≤ REXT 100 kΩ  
CEXT > 20 pF  
Note 1: Higher capacitance increases the stability  
of oscillator but also increases the start-up  
time.  
2: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
appropriate  
values  
of  
external  
components.  
3: Rs may be required in HS mode, as well  
as XT mode, to avoid overdriving crystals  
with low drive level specification.  
4: When migrating from other PICmicro®  
devices, oscillator performance should be  
verified.  
DS39582B-page 146  
2003 Microchip Technology Inc.  
PIC16F87XA  
state” on Power-on Reset (POR), on the MCLR and  
WDT Reset, on MCLR Reset during Sleep and Brown-  
out Reset (BOR). They are not affected by a WDT  
wake-up which is viewed as the resumption of normal  
operation. The TO and PD bits are set or cleared differ-  
ently in different Reset situations as indicated in  
Table 14-4. These bits are used in software to deter-  
mine the nature of the Reset. See Table 14-6 for a full  
description of Reset states of all registers.  
14.3 Reset  
The PIC16F87XA differentiates between various kinds  
of Reset:  
• Power-on Reset (POR)  
• MCLR Reset during normal operation  
• MCLR Reset during Sleep  
• WDT Reset (during normal operation)  
• WDT Wake-up (during Sleep)  
• Brown-out Reset (BOR)  
A simplified block diagram of the on-chip Reset circuit  
is shown in Figure 14-4.  
Some registers are not affected in any Reset condition.  
Their status is unknown on POR and unchanged in any  
other Reset. Most other registers are reset to a “Reset  
FIGURE 14-4:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
Reset  
MCLR  
Sleep  
WDT  
WDT  
Module  
Time-out  
Reset  
VDD Rise  
Detect  
Power-on Reset  
VDD  
Brown-out  
Reset  
S
BODEN  
OST/PWRT  
OST  
Chip_Reset  
10-bit Ripple Counter  
R
Q
OSC1  
(1)  
On-chip  
RC OSC  
PWRT  
10-bit Ripple Counter  
Enable PWRT  
Enable OST  
Note 1: This is a separate oscillator from the RC oscillator of the CLKI pin.  
2003 Microchip Technology Inc.  
DS39582B-page 147  
PIC16F87XA  
14.4 MCLR  
14.6 Power-up Timer (PWRT)  
PIC16F87XA devices have a noise filter in the MCLR  
Reset path. The filter will detect and ignore small  
pulses.  
The Power-up Timer provides a fixed 72 ms nominal  
time-out on power-up only from the POR. The Power-  
up Timer operates on an internal RC oscillator. The  
chip is kept in Reset as long as the PWRT is active. The  
PWRT’s time delay allows VDD to rise to an acceptable  
level. A configuration bit is provided to enable or  
disable the PWRT.  
It should be noted that a WDT Reset does not drive  
MCLR pin low.  
The behavior of the ESD protection on the MCLR pin  
differs from previous devices of this family. Voltages  
applied to the pin that exceed its specification can  
result in both Resets and current consumption outside  
of device specification during the Reset event. For this  
reason, Microchip recommends that the MCLR pin no  
longer be tied directly to VDD. The use of an RCR  
network, as shown in Figure 14-5, is suggested.  
The power-up time delay will vary from chip to chip due  
to VDD, temperature and process variation. See  
Section 17.0 “Electrical Characteristics” for details  
(TPWRT, parameter #33).  
14.7 Oscillator Start-up Timer (OST)  
The Oscillator Start-up Timer (OST) provides a delay of  
1024 oscillator cycles (from OSC1 input) after the  
PWRT delay is over (if PWRT is enabled). This helps to  
ensure that the crystal oscillator or resonator has  
started and stabilized.  
FIGURE 14-5:  
RECOMMENDED MCLR  
CIRCUIT  
VDD  
PIC16F87XA  
The OST time-out is invoked only for XT, LP and HS  
modes and only on Power-on Reset or wake-up from  
Sleep.  
(1)  
R1  
MCLR  
(2)  
R2  
14.8 Brown-out Reset (BOR)  
C1  
The configuration bit, BODEN, can enable or disable  
the Brown-out Reset circuit. If VDD falls below VBOR  
(parameter D005, about 4V) for longer than TBOR  
(parameter #35, about 100 µS), the brown-out situation  
will reset the device. If VDD falls below VBOR for less  
than TBOR, a Reset may not occur.  
Note 1: R1 < 40 kis recommended to make  
sure that the voltage drop across R does  
not violate the device’s electrical  
specification.  
Once the brown-out occurs, the device will remain in  
Brown-out Reset until VDD rises above VBOR. The  
Power-up Timer then keeps the device in Reset for  
TPWRT (parameter #33, about 72 mS). If VDD should  
fall below VBOR during TPWRT, the Brown-out Reset  
process will restart when VDD rises above VBOR with  
the Power-up Timer Reset. The Power-up Timer is  
always enabled when the Brown-out Reset circuit is  
enabled, regardless of the state of the PWRT  
configuration bit.  
2: R2 > than 1K will limit any current  
flowing into MCLR from the external  
capacitor C, in the event of MCLR/VPP  
breakdown due to Electrostatic  
Discharge (ESD) or Electrical  
Overstress (EOS).  
14.5 Power-on Reset (POR)  
A Power-on Reset pulse is generated on-chip when  
VDD rise is detected (in the range of 1.2V-1.7V). To take  
advantage of the POR, tie the MCLR pin to VDD  
through an RC network, as described in Section 14.4  
“MCLR”. A maximum rise time for VDD is specified.  
See Section 17.0 “Electrical Characteristics” for  
details.  
14.9 Time-out Sequence  
On power-up, the time-out sequence is as follows: the  
PWRT delay starts (if enabled) when a POR Reset  
occurs. Then, OST starts counting 1024 oscillator  
cycles when PWRT ends (LP, XT, HS). When the OST  
ends, the device comes out of Reset.  
When the device starts normal operation (exits the  
Reset condition), device operating parameters (volt-  
age, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in Reset until the operating condi-  
tions are met. Brown-out Reset may be used to meet  
the start-up conditions. For additional information, refer  
to application note, AN607, Power-up Trouble  
Shooting” (DS00607).  
If MCLR is kept low long enough, the time-outs will  
expire. Bringing MCLR high will begin execution  
immediately. This is useful for testing purposes or to  
synchronize more than one PIC16F87XA device  
operating in parallel.  
Table 14-5 shows the Reset conditions for the Status,  
PCON and PC registers, while Table 14-6 shows the  
Reset conditions for all the registers.  
DS39582B-page 148  
2003 Microchip Technology Inc.  
PIC16F87XA  
When the Brown-out Reset is disabled, the state of the  
BOR bit is unpredictable and is, therefore, not valid at  
any time.  
14.10 Power Control/Status Register  
(PCON)  
The Power Control/Status Register, PCON, has up to  
two bits depending upon the device.  
Bit 1 is the Power-on Reset Status bit, POR. It is  
cleared on a Power-on Reset and unaffected other-  
wise. The user must set this bit following a Power-on  
Reset.  
Bit 0 is the Brown-out Reset Status bit, BOR. The BOR  
bit is unknown on a Power-on Reset. It must then be set  
by the user and checked on subsequent Resets to see if  
it has been cleared, indicating that a BOR has occurred.  
TABLE 14-3: TIME-OUT IN VARIOUS SITUATIONS  
Power-up  
Wake-up from  
Oscillator Configuration  
Brown-out  
Sleep  
PWRTE = 0  
PWRTE = 1  
XT, HS, LP  
RC  
72 ms + 1024 TOSC  
72 ms  
1024 TOSC  
72 ms + 1024 TOSC  
72 ms  
1024 TOSC  
TABLE 14-4: STATUS BITS AND THEIR SIGNIFICANCE  
POR  
BOR  
TO  
PD  
Condition  
0
0
0
1
1
1
1
1
x
x
x
0
1
1
1
1
1
0
x
1
0
0
u
1
1
x
0
1
1
0
u
0
Power-on Reset  
Illegal, TO is set on POR  
Illegal, PD is set on POR  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during Sleep or Interrupt Wake-up from Sleep  
Legend: x= don’t care, u = unchanged  
TABLE 14-5: RESET CONDITIONS FOR SPECIAL REGISTERS  
Program  
Counter  
Status  
Register  
PCON  
Register  
Condition  
Power-on Reset  
000h  
000h  
0001 1xxx  
000u uuuu  
0001 0uuu  
0000 1uuu  
uuu0 0uuu  
0001 1uuu  
uuu1 0uuu  
---- --0x  
---- --uu  
---- --uu  
---- --uu  
---- --uu  
---- --u0  
---- --uu  
MCLR Reset during normal operation  
MCLR Reset during Sleep  
WDT Reset  
000h  
000h  
WDT Wake-up  
PC + 1  
Brown-out Reset  
000h  
PC + 1(1)  
Interrupt Wake-up from Sleep  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’  
Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
2003 Microchip Technology Inc.  
DS39582B-page 149  
PIC16F87XA  
TABLE 14-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS  
Power-on Reset,  
Brown-out Reset  
MCLR Resets,  
WDT Reset  
Wake-up via WDT or  
Interrupt  
Register  
Devices  
W
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
xxxx xxxx  
N/A  
uuuu uuuu  
N/A  
uuuu uuuu  
N/A  
INDF  
TMR0  
xxxx xxxx  
0000 0000  
0001 1xxx  
xxxx xxxx  
--0x 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
---- -xxx  
---0 0000  
0000 000x  
r000 0000  
0000 0000  
-0-0 0--0  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
-000 0000  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 000x  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
0000 00-0  
1111 1111  
--11 1111  
1111 1111  
1111 1111  
uuuu uuuu  
0000 0000  
000q quuu(3)  
uuuu uuuu  
--0u 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- -uuu  
---0 0000  
0000 000u  
r000 0000  
0000 0000  
-0-0 0--0  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
0000 0000  
-000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
0000 000x  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
0000 00-0  
1111 1111  
--11 1111  
1111 1111  
1111 1111  
uuuu uuuu  
PC + 1(2)  
PCL  
STATUS  
FSR  
uuuq quuu(3)  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- -uuu  
---u uuuu  
uuuu uuuu(1)  
ruuu uuuu(1)  
uuuu uuuu(1)  
-u-u u--u(1)  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uu-u  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
PCLATH  
INTCON  
PIR1  
PIR2  
TMR1L  
TMR1H  
T1CON  
TMR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRESH  
ADCON0  
OPTION_REG  
TRISA  
TRISB  
TRISC  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition,  
r= reserved, maintain clear. Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
3: See Table 14-5 for Reset value for specific condition.  
DS39582B-page 150  
2003 Microchip Technology Inc.  
PIC16F87XA  
TABLE 14-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
Power-on Reset,  
Brown-out Reset  
MCLR Resets,  
WDT Reset  
Wake-up via WDT or  
Interrupt  
Register  
Devices  
TRISD  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 974 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
73A 74A 76A 77A  
1111 1111  
0000 -111  
r000 0000  
0000 0000  
-0-0 0--0  
---- --qq  
0000 0000  
1111 1111  
0000 0000  
--00 0000  
0000 -010  
0000 0000  
0000 0111  
000- 0000  
xxxx xxxx  
00-- 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
x--- x000  
---- ----  
1111 1111  
0000 -111  
r000 0000  
0000 0000  
-0-0 0--0  
---- --uu  
0000 0000  
1111 1111  
0000 0000  
--00 0000  
0000 -010  
0000 0000  
0000 0111  
000- 0000  
uuuu uuuu  
00-- 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
u--- u000  
---- ----  
uuuu uuuu  
uuuu -uuu  
ruuu uuuu  
uuuu uuuu  
-u-u u--u  
---- --uu  
uuuu uuuu  
1111 1111  
uuuu uuuu  
--uu uuuu  
uuuu -uuu  
uuuu uuuu  
uuuu uuuu  
uuu- uuuu  
uuuu uuuu  
uu-- uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
u--- uuuu  
---- ----  
TRISE  
PIE1  
PIE2  
PCON  
SSPCON2  
PR2  
SSPADD  
SSPSTAT  
TXSTA  
SPBRG  
CMCON  
CVRCON  
ADRESL  
ADCON1  
EEDATA  
EEADR  
EEDATH  
EEADRH  
EECON1  
EECON2  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition,  
r= reserved, maintain clear. Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
3: See Table 14-5 for Reset value for specific condition.  
FIGURE 14-6:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD VIA RC NETWORK)  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
2003 Microchip Technology Inc.  
DS39582B-page 151  
PIC16F87XA  
FIGURE 14-7:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
FIGURE 14-8:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
FIGURE 14-9:  
SLOW RISE TIME (MCLR TIED TO VDD VIA RC NETWORK)  
5V  
1V  
VDD  
0V  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
TOST  
OST Time-out  
Internal Reset  
DS39582B-page 152  
2003 Microchip Technology Inc.  
PIC16F87XA  
The RB0/INT pin interrupt, the RB port change interrupt  
and the TMR0 overflow interrupt flags are contained in  
the INTCON register.  
14.11 Interrupts  
The PIC16F87XA family has up to 15 sources of  
interrupt. The Interrupt Control register (INTCON)  
records individual interrupt requests in flag bits. It also  
has individual and global interrupt enable bits.  
The peripheral interrupt flags are contained in the  
Special Function Registers, PIR1 and PIR2. The  
corresponding interrupt enable bits are contained in  
Special Function Registers, PIE1 and PIE2, and the  
peripheral interrupt enable bit is contained in Special  
Function Register, INTCON.  
Note:  
Individual interrupt flag bits are set regard-  
less of the status of their corresponding  
mask bit or the GIE bit.  
A global interrupt enable bit, GIE (INTCON<7>),  
enables (if set) all unmasked interrupts or disables (if  
cleared) all interrupts. When bit GIE is enabled and an  
interrupt’s flag bit and mask bit are set, the interrupt will  
vector immediately. Individual interrupts can be  
disabled through their corresponding enable bits in  
various registers. Individual interrupt bits are set  
regardless of the status of the GIE bit. The GIE bit is  
cleared on Reset.  
When an interrupt is responded to, the GIE bit is  
cleared to disable any further interrupt, the return  
address is pushed onto the stack and the PC is loaded  
with 0004h. Once in the Interrupt Service Routine, the  
source(s) of the interrupt can be determined by polling  
the interrupt flag bits. The interrupt flag bit(s) must be  
cleared in software before re-enabling interrupts to  
avoid recursive interrupts.  
For external interrupt events, such as the INT pin or  
PORTB change interrupt, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends when the interrupt event occurs. The latency  
is the same for one or two-cycle instructions. Individual  
interrupt flag bits are set regardless of the status of their  
corresponding mask bit, PEIE bit or GIE bit.  
The “return from interrupt” instruction, RETFIE, exits  
the interrupt routine, as well as sets the GIE bit, which  
re-enables interrupts.  
FIGURE 14-10:  
INTERRUPT LOGIC  
EEIF  
EEIE  
PSPIF(1)  
PSPIE(1)  
ADIF  
ADIE  
Wake-up (If in Sleep mode)  
TMR0IF  
TMR0IE  
RCIF  
RCIE  
INTF  
INTE  
TXIF  
TXIE  
Interrupt to CPU  
RBIF  
RBIE  
SSPIF  
SSPIE  
PEIE  
GIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
CCP2IF  
CCP2IE  
BCLIF  
BCLIE  
CMIF  
CMIE  
Note 1: PSP interrupt is implemented only on PIC16F874A/877A devices.  
2003 Microchip Technology Inc.  
DS39582B-page 153  
PIC16F87XA  
14.11.1 INT INTERRUPT  
14.12 Context Saving During Interrupts  
External interrupt on the RB0/INT pin is edge triggered,  
either rising if bit INTEDG (OPTION_REG<6>) is set or  
falling if the INTEDG bit is clear. When a valid edge  
appears on the RB0/INT pin, flag bit, INTF  
(INTCON<1>), is set. This interrupt can be disabled by  
clearing enable bit, INTE (INTCON<4>). Flag bit INTF  
must be cleared in software in the Interrupt Service  
Routine before re-enabling this interrupt. The INT  
interrupt can wake-up the processor from Sleep if bit  
INTE was set prior to going into Sleep. The status of  
global interrupt enable bit, GIE, decides whether or not  
the processor branches to the interrupt vector following  
wake-up. See Section 14.14 “Power-down Mode  
(Sleep)” for details on Sleep mode.  
During an interrupt, only the return PC value is saved  
on the stack. Typically, users may wish to save key reg-  
isters during an interrupt (i.e., W register and Status  
register). This will have to be implemented in software.  
For the PIC16F873A/874A devices, the register  
W_TEMP must be defined in both Banks 0 and 1 and  
must be defined at the same offset from the bank base  
address (i.e., If W_TEMP is defined at 0x20 in Bank 0,  
it must also be defined at 0xA0 in Bank 1). The regis-  
ters, PCLATH_TEMP and STATUS_TEMP, are only  
defined in Bank 0.  
Since the upper 16 bytes of each bank are common in  
the PIC16F876A/877A devices, temporary holding reg-  
isters, W_TEMP, STATUS_TEMP and PCLATH_TEMP,  
should be placed in here. These 16 locations don’t  
require banking and therefore, make it easier for con-  
text save and restore. The same code shown in  
Example 14-1 can be used.  
14.11.2 TMR0 INTERRUPT  
An overflow (FFh 00h) in the TMR0 register will set  
flag bit, TMR0IF (INTCON<2>). The interrupt can be  
enabled/disabled by setting/clearing enable bit,  
TMR0IE (INTCON<5>). See Section 5.0 “Timer0  
Module”.  
14.11.3 PORTB INTCON CHANGE  
An input change on PORTB<7:4> sets flag bit, RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit, RBIE (INTCON<4>). See  
Section 4.2 “PORTB and the TRISB Register”.  
EXAMPLE 14-1:  
SAVING STATUS, W AND PCLATH REGISTERS IN RAM  
MOVWF  
SWAPF  
CLRF  
MOVWF  
MOVF  
MOVWF  
CLRF  
:
W_TEMP  
STATUS,W  
STATUS  
STATUS_TEMP  
PCLATH, W  
PCLATH_TEMP  
PCLATH  
;Copy W to TEMP register  
;Swap status to be saved into W  
;bank 0, regardless of current bank, Clears IRP,RP1,RP0  
;Save status to bank zero STATUS_TEMP register  
;Only required if using pages 1, 2 and/or 3  
;Save PCLATH into W  
;Page zero, regardless of current page  
:(ISR)  
:
;(Insert user code here)  
MOVF  
MOVWF  
SWAPF  
PCLATH_TEMP, W  
PCLATH  
STATUS_TEMP,W  
;Restore PCLATH  
;Move W into PCLATH  
;Swap STATUS_TEMP register into W  
;(sets bank to original state)  
;Move W into STATUS register  
;Swap W_TEMP  
MOVWF  
SWAPF  
SWAPF  
STATUS  
W_TEMP,F  
W_TEMP,W  
;Swap W_TEMP into W  
DS39582B-page 154  
2003 Microchip Technology Inc.  
PIC16F87XA  
WDT time-out period values may be found in  
Section 17.0 “Electrical Characteristics” under  
parameter #31. Values for the WDT prescaler (actually  
a postscaler but shared with the Timer0 prescaler) may  
be assigned using the OPTION_REG register.  
14.13 Watchdog Timer (WDT)  
The Watchdog Timer is a free running, on-chip RC  
oscillator which does not require any external  
components. This RC oscillator is separate from the  
RC oscillator of the OSC1/CLKI pin. That means that  
the WDT will run even if the clock on the OSC1/CLKI  
and OSC2/CLKO pins of the device has been stopped,  
for example, by execution of a SLEEPinstruction.  
Note 1: The CLRWDT and SLEEP instructions  
clear the WDT and the postscaler, if  
assigned to the WDT and prevent it from  
timing out and generating a device Reset  
condition.  
During normal operation, a WDT time-out generates a  
device Reset (Watchdog Timer Reset). If the device is  
in Sleep mode, a WDT time-out causes the device to  
wake-up and continue with normal operation (Watch-  
dog Timer Wake-up). The TO bit in the Status register  
will be cleared upon a Watchdog Timer time-out.  
2: When a CLRWDT instruction is executed  
and the prescaler is assigned to the WDT,  
the prescaler count will be cleared but the  
prescaler assignment is not changed.  
The WDT can be permanently disabled by clearing  
configuration bit, WDTE (Section 14.1 “Configuration  
Bits”).  
FIGURE 14-11:  
WATCHDOG TIMER BLOCK DIAGRAM  
From TMR0 Clock Source  
(Figure 5-1)  
0
Postscaler  
8
M
1
U
WDT Timer  
X
8-to-1 MUX  
PS2:PS0  
PSA  
WDT  
Enable Bit  
To TMR0 (Figure 5-1)  
0
1
MUX  
PSA  
WDT  
Time-out  
Note:  
PSA and PS2:PS0 are bits in the OPTION_REG register.  
TABLE 14-7: SUMMARY OF WATCHDOG TIMER REGISTERS  
Address  
Name  
Bit 7  
(1)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
2007h  
Config. bits  
BODEN(1)  
INTEDG  
CP1  
CP0  
PWRTE(1)  
PSA  
WDTE  
PS2  
FOSC1  
PS1  
FOSC0  
PS0  
81h, 181h OPTION_REG RBPU  
T0CS  
T0SE  
Legend: Shaded cells are not used by the Watchdog Timer.  
Note 1: See Register 14-1 for operation of these bits.  
2003 Microchip Technology Inc.  
DS39582B-page 155  
PIC16F87XA  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is prefetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction and then branches to the inter-  
rupt address (0004h). In cases where the execution of  
the instruction following SLEEP is not desirable, the  
user should have a NOPafter the SLEEPinstruction.  
14.14 Power-down Mode (Sleep)  
Power-down mode is entered by executing a SLEEP  
instruction.  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the PD bit (Status<3>) is cleared, the  
TO (Status<4>) bit is set and the oscillator driver is  
turned off. The I/O ports maintain the status they had  
before the SLEEP instruction was executed (driving  
high, low or high-impedance).  
For lowest current consumption in this mode, place all  
I/O pins at either VDD or VSS, ensure no external  
circuitry is drawing current from the I/O pin, power-  
down the A/D and disable external clocks. Pull all I/O  
pins that are high-impedance inputs, high or low  
externally, to avoid switching currents caused by  
floating inputs. The T0CKI input should also be at VDD  
or VSS for lowest current consumption. The  
contribution from on-chip pull-ups on PORTB should  
also be considered.  
14.14.2 WAKE-UP USING INTERRUPTS  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
• If the interrupt occurs before the execution of a  
SLEEPinstruction, the SLEEPinstruction will  
complete as a NOP. Therefore, the WDT and WDT  
postscaler will not be cleared, the TO bit will not  
be set and PD bits will not be cleared.  
The MCLR pin must be at a logic high level (VIHMC).  
14.14.1 WAKE-UP FROM SLEEP  
• If the interrupt occurs during or after the  
execution of a SLEEPinstruction, the device will  
immediately wake-up from Sleep. The SLEEP  
instruction will be completely executed before the  
wake-up. Therefore, the WDT and WDT  
postscaler will be cleared, the TO bit will be set  
and the PD bit will be cleared.  
The device can wake-up from Sleep through one of the  
following events:  
1. External Reset input on MCLR pin.  
2. Watchdog Timer wake-up (if WDT was enabled).  
3. Interrupt from INT pin, RB port change or  
peripheral interrupt.  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
External MCLR Reset will cause a device Reset. All other  
events are considered a continuation of program execu-  
tion and cause a “wake-up”. The TO and PD bits in the  
Status register can be used to determine the cause of  
device Reset. The PD bit, which is set on power-up, is  
cleared when Sleep is invoked. The TO bit is cleared if a  
WDT time-out occurred and caused wake-up.  
To ensure that the WDT is cleared, a CLRWDT  
instruction should be executed before a SLEEP  
instruction.  
The following peripheral interrupts can wake the device  
from Sleep:  
1. PSP read or write (PIC16F874/877 only).  
2. TMR1 interrupt. Timer1 must be operating as an  
asynchronous counter.  
3. CCP Capture mode interrupt.  
4. Special event trigger (Timer1 in Asynchronous  
mode using an external clock).  
5. SSP (Start/Stop) bit detect interrupt.  
6. SSP transmit or receive in Slave mode (SPI/I2C).  
7. USART RX or TX (Synchronous Slave mode).  
8. A/D conversion (when A/D clock source is RC).  
9. EEPROM write operation completion.  
10. Comparator output changes state.  
Other peripherals cannot generate interrupts since  
during Sleep, no on-chip clocks are present.  
DS39582B-page 156  
2003 Microchip Technology Inc.  
PIC16F87XA  
FIGURE 14-12:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
(2)  
CLKO(4)  
TOST  
INT pin  
INTF Flag  
(INTCON<1>)  
Interrupt Latency(2)  
GIE bit  
(INTCON<7>)  
Processor in  
Sleep  
INSTRUCTION FLOW  
PC  
PC  
PC+1  
PC+2  
PC+2  
PC + 2  
0004h  
0005h  
Instruction  
Fetched  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = Sleep  
Instruction  
Executed  
Dummy cycle  
Dummy cycle  
Sleep  
Inst(PC + 1)  
Inst(PC - 1)  
Inst(0004h)  
Note 1: XT, HS or LP Oscillator mode assumed.  
2: TOST = 1024 TOSC (drawing not to scale). This delay will not be there for RC Oscillator mode.  
3: GIE = 1assumed. In this case, after wake- up, the processor jumps to the interrupt routine.  
If GIE = 0, execution will continue in-line.  
4: CLKO is not available in these oscillator modes but shown here for timing reference.  
14.15 In-Circuit Debugger  
14.16 Program Verification/Code  
Protection  
When the DEBUG bit in the configuration word is pro-  
grammed to a ‘0’, the in-circuit debugger functionality is  
enabled. This function allows simple debugging  
functions when used with MPLAB® ICD. When the  
microcontroller has this feature enabled, some of the  
resources are not available for general use. Table 14-8  
shows which features are consumed by the  
background debugger.  
If the code protection bit(s) have not been  
programmed, the on-chip program memory can be  
read out for verification purposes.  
14.17 ID Locations  
Four memory locations (2000h-2003h) are designated  
as ID locations, where the user can store checksum or  
other code identification numbers. These locations are  
not accessible during normal execution but are  
readable and writable during program/verify. It is  
recommended that only the 4 Least Significant bits of  
the ID location are used.  
TABLE 14-8: DEBUGGER RESOURCES  
I/O pins  
RB6, RB7  
1 level  
Stack  
Program Memory  
Address 0000h must be NOP  
Last 100h words  
Data Memory  
0x070 (0x0F0, 0x170, 0x1F0)  
0x1EB-0x1EF  
To use the in-circuit debugger function of the microcon-  
troller, the design must implement In-Circuit Serial Pro-  
gramming connections to MCLR/VPP, VDD, GND, RB7  
and RB6. This will interface to the in-circuit debugger  
module available from Microchip or one of the third  
party development tool companies.  
2003 Microchip Technology Inc.  
DS39582B-page 157  
PIC16F87XA  
14.18 In-Circuit Serial Programming  
Note 1: The High-Voltage Programming mode is  
always available, regardless of the state  
of the LVP bit, by applying VIHH to the  
MCLR pin.  
PIC16F87XA microcontrollers can be serially pro-  
grammed while in the end application circuit. This is  
simply done with two lines for clock and data and three  
other lines for power, ground and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom  
firmware to be programmed.  
2: While in Low-Voltage ICSP mode, the  
RB3 pin can no longer be used as a  
general purpose I/O pin.  
3: When using Low-Voltage ICSP Program-  
ming (LVP) and the pull-ups on PORTB  
are enabled, bit 3 in the TRISB register  
must be cleared to disable the pull-up on  
RB3 and ensure the proper operation of  
the device.  
When using ICSP, the part must be supplied at 4.5V to  
5.5V if a bulk erase will be executed. This includes  
reprogramming of the code-protect, both from an on  
state to an off state. For all other cases of ICSP, the part  
may be programmed at the normal operating voltages.  
This means calibration values, unique user IDs or user  
code can be reprogrammed or added.  
4: RB3 should not be allowed to float if LVP  
is enabled. An external pull-down device  
should be used to default the device to  
normal operating mode. If RB3 floats  
high, the PIC16F87XA device will enter  
Programming mode.  
For complete details of serial programming, please  
refer to the “PIC16F87XA Flash Memory Programming  
Specification” (DS39589).  
5: LVP mode is enabled by default on all  
devices shipped from Microchip. It can be  
disabled by clearing the LVP bit in the  
CONFIG register.  
14.19 Low-Voltage (Single-Supply)  
ICSP Programming  
6: Disabling LVP will provide maximum  
compatibility to other PIC16CXXX  
devices.  
The LVP bit of the configuration word enables low-  
voltage ICSP programming. This mode allows the  
microcontroller to be programmed via ICSP using a  
VDD source in the operating voltage range. This only  
means that VPP does not have to be brought to VIHH but  
can instead be left at the normal operating voltage. In  
this mode, the RB3/PGM pin is dedicated to the pro-  
gramming function and ceases to be a general purpose  
I/O pin. During programming, VDD is applied to the  
MCLR pin. To enter Programming mode, VDD must be  
applied to the RB3/PGM provided the LVP bit is set.  
The LVP bit defaults to on (‘1’) from the factory.  
If Low-Voltage Programming mode is not used, the LVP  
bit can be programmed to a ‘0’ and RB3/PGM becomes  
a digital I/O pin. However, the LVP bit may only be pro-  
grammed when programming is entered with VIHH on  
MCLR. The LVP bit can only be charged when using  
high voltage on MCLR.  
It should be noted, that once the LVP bit is programmed  
to ‘0’, only the High-Voltage Programming mode is  
available and only High-Voltage Programming mode  
can be used to program the device.  
When using low-voltage ICSP, the part must be supplied  
at 4.5V to 5.5V if a bulk erase will be executed. This  
includes reprogramming of the code-protect bits from an  
on state to an off state. For all other cases of low-voltage  
ICSP, the part may be programmed at the normal oper-  
ating voltage. This means calibration values, unique  
user IDs or user code can be reprogrammed or added.  
DS39582B-page 158  
2003 Microchip Technology Inc.  
PIC16F87XA  
For example, a “CLRF PORTB” instruction will read  
PORTB, clear all the data bits, then write the result  
back to PORTB. This example would have the unin-  
tended result that the condition that sets the RBIF flag  
would be cleared.  
15.0 INSTRUCTION SET SUMMARY  
The PIC16 instruction set is highly orthogonal and is  
comprised of three basic categories:  
Byte-oriented operations  
Bit-oriented operations  
TABLE 15-1: OPCODE FIELD  
DESCRIPTIONS  
Literal and control operations  
Each PIC16 instruction is a 14-bit word divided into an  
opcode which specifies the instruction type and one or  
more operands which further specify the operation of  
the instruction. The formats for each of the categories  
is presented in Figure 15-1, while the various opcode  
fields are summarized in Table 15-1.  
Field  
Description  
f
W
b
k
x
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
Bit address within an 8-bit file register  
Literal field, constant data or label  
Table 15-2 lists the instructions recognized by the  
MPASM™ Assembler. A complete description of each  
instruction is also available in the PICmicro® Mid-Range  
MCU Family Reference Manual (DS33023).  
Don't care location (= 0or 1).  
The assembler will generate code with x = 0.  
It is the recommended form of use for  
compatibility with all Microchip software tools.  
For byte-oriented instructions, ‘f’ represents a file  
register designator and ‘d’ represents a destination  
designator. The file register designator specifies which  
file register is to be used by the instruction.  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1.  
PC  
TO  
PD  
Program Counter  
Time-out bit  
The destination designator specifies where the result of  
the operation is to be placed. If ‘d’ is zero, the result is  
placed in the W register. If ‘d’ is one, the result is placed  
in the file register specified in the instruction.  
Power-down bit  
FIGURE 15-1:  
GENERAL FORMAT FOR  
INSTRUCTIONS  
For bit-oriented instructions, ‘b’ represents a bit field  
designator which selects the bit affected by the opera-  
tion, while ‘f’ represents the address of the file in which  
the bit is located.  
Byte-oriented file register operations  
13  
8
7
6
0
For literal and control operations, ‘k’ represents an  
eight or eleven-bit constant or literal value  
OPCODE  
d
f (FILE #)  
d = 0for destination W  
d = 1for destination f  
f = 7-bit file register address  
One instruction cycle consists of four oscillator periods;  
for an oscillator frequency of 4 MHz, this gives a normal  
instruction execution time of 1 µs. All instructions are  
executed within a single instruction cycle, unless a  
conditional test is true, or the program counter is  
changed as a result of an instruction. When this occurs,  
the execution takes two instruction cycles with the  
second cycle executed as a NOP.  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7
6
0
OPCODE  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
Note:  
To maintain upward compatibility with  
future PIC16F87XA products, do not use  
the OPTIONand TRISinstructions.  
Literal and control operations  
General  
All instruction examples use the format ‘0xhh’ to  
represent a hexadecimal number, where ‘h’ signifies a  
hexadecimal digit.  
13  
8
7
0
0
OPCODE  
k (literal)  
k = 8-bit immediate value  
15.1 READ-MODIFY-WRITE  
OPERATIONS  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
Any instruction that specifies a file register as part of  
the instruction performs a Read-Modify-Write (R-M-W)  
operation. The register is read, the data is modified,  
and the result is stored according to either the instruc-  
tion or the destination designator ‘d’. A read operation  
is performed on a register even if the instruction writes  
to that register.  
k (literal)  
2003 Microchip Technology Inc.  
DS39582B-page 159  
PIC16F87XA  
TABLE 15-2: PIC16F87XA INSTRUCTION SET  
14-Bit Opcode  
Mnemonic,  
Description  
Operands  
Status  
Affected  
Cycles  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
f, d  
f, d  
f
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00 0111 dfff ffff C,DC,Z  
1,2  
1,2  
2
00 0101 dfff ffff  
00 0001 lfff ffff  
00 0001 0xxx xxxx  
00 1001 dfff ffff  
00 0011 dfff ffff  
00 1011 dfff ffff  
00 1010 dfff ffff  
00 1111 dfff ffff  
00 0100 dfff ffff  
00 1000 dfff ffff  
00 0000 lfff ffff  
00 0000 0xx0 0000  
00 1101 dfff ffff  
00 1100 dfff ffff  
Z
Z
Z
Z
Z
-
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
1,2  
1,2  
1,2,3  
1,2  
1,2,3  
1,2  
1,2  
DECFSZ  
INCF  
Z
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
Z
Z
Move W to f  
No Operation  
-
f, d  
f, d  
f, d  
f, d  
f, d  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Swap nibbles in f  
Exclusive OR W with f  
C
C
1,2  
1,2  
1,2  
1,2  
1,2  
00 0010 dfff ffff C,DC,Z  
00 1110 dfff ffff  
00 0110 dfff ffff  
Z
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1
1
1 (2)  
1 (2)  
01 00bb bfff ffff  
1,2  
1,2  
3
01 01bb bfff ffff  
01 10bb bfff ffff  
01 11bb bfff ffff  
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
-
k
k
k
-
k
-
-
k
k
Add Literal and W  
AND Literal with W  
Call Subroutine  
Clear Watchdog Timer  
Go to Address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11 111x kkkk kkkk C,DC,Z  
11 1001 kkkk kkkk  
10 0kkk kkkk kkkk  
00 0000 0110 0100  
10 1kkk kkkk kkkk  
11 1000 kkkk kkkk  
11 00xx kkkk kkkk  
00 0000 0000 1001  
11 01xx kkkk kkkk  
00 0000 0000 1000  
00 0000 0110 0011  
Z
TO,PD  
Z
Inclusive OR Literal with W  
Move Literal to W  
Return from Interrupt  
Return with Literal in W  
Return from Subroutine  
Go into Standby mode  
Subtract W from Literal  
Exclusive OR Literal with W  
TO,PD  
11 110x kkkk kkkk C,DC,Z  
11 1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself ( e.g., MOVF PORTB, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an external  
device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if  
assigned to the Timer0 module.  
3: If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
Note:  
Additional information on the mid-range instruction set is available in the PICmicro® Mid-Range MCU  
Family Reference Manual (DS33023).  
DS39582B-page 160  
2003 Microchip Technology Inc.  
PIC16F87XA  
15.2 Instruction Descriptions  
ADDLW  
Add Literal and W  
BCF  
Bit Clear f  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Syntax:  
[ label ] BCF f,b  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
0 f 127  
0 b 7  
(W) + k (W)  
C, DC, Z  
Operation:  
0 (f<b>)  
Status Affected:  
Description:  
None  
The contents of the W register  
are added to the eight-bit literal ‘k’  
and the result is placed in the W  
register.  
Bit ‘b’ in register ‘f’ is cleared.  
BSF  
Bit Set f  
ADDWF  
Add W and f  
Syntax:  
[ label ] BSF f,b  
Syntax:  
[ label ] ADDWF f,d  
Operands:  
0 f 127  
0 b 7  
Operands:  
0 f 127  
d ∈ [0,1]  
Operation:  
1 (f<b>)  
Operation:  
(W) + (f) (destination)  
Status Affected:  
Description:  
None  
Status Affected: C, DC, Z  
Bit ‘b’ in register ‘f’ is set.  
Description:  
Add the contents of the W register  
with register ‘f’. If ‘d’ is ‘0’, the  
result is stored in the W register. If  
‘d’ is ‘1’, the result is stored back  
in register ‘f’.  
BTFSS  
Bit Test f, Skip if Set  
ANDLW  
AND Literal with W  
Syntax:  
[ label ] BTFSS f,b  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Operands:  
0 f 127  
0 b < 7  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .AND. (k) (W)  
Operation:  
skip if (f<b>) = 1  
Z
Status Affected: None  
The contents of W register are  
AND’ed with the eight-bit literal  
‘k’. The result is placed in the W  
register.  
Description:  
If bit ‘b’ in register ‘f’ is ‘0’, the next  
instruction is executed.  
If bit ‘b’ is ‘1’, then the next instruc-  
tion is discarded and a NOPis  
executed instead, making this a  
2 TCY instruction.  
BTFSC  
Bit Test, Skip if Clear  
ANDWF  
AND W with f  
Syntax:  
[ label ] BTFSC f,b  
Syntax:  
[ label ] ANDWF f,d  
Operands:  
0 f 127  
0 b 7  
Operands:  
0 f 127  
d ∈ [0,1]  
Operation:  
skip if (f<b>) = 0  
Operation:  
(W) .AND. (f) (destination)  
Status Affected: None  
Status Affected:  
Description:  
Z
Description: If bit ‘b’ in register ‘f’ is ‘1’, the next  
AND the W register with register  
‘f’. If ‘d’ is ‘0’, the result is stored in  
the W register. If ‘d’ is ‘1’, the  
instruction is executed.  
If bit ‘b’ in register ‘f’ is ‘0’, the next  
instruction is discarded and a NOP  
is executed instead, making this a  
2 TCY instruction.  
result is stored back in register ‘f’.  
2003 Microchip Technology Inc.  
DS39582B-page 161  
PIC16F87XA  
CALL  
Call Subroutine  
CLRWDT  
Clear Watchdog Timer  
Syntax:  
[ label ] CALL k  
0 k 2047  
Syntax:  
[ label ] CLRWDT  
Operands:  
Operation:  
Operands:  
Operation:  
None  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
00h WDT  
0 WDT prescaler,  
1 TO  
1 PD  
Status Affected: None  
Status Affected: TO, PD  
Description:  
Call Subroutine. First, return  
address (PC+1) is pushed onto  
the stack. The eleven-bit  
immediate address is loaded into  
PC bits <10:0>. The upper bits of  
the PC are loaded from PCLATH.  
CALLis a two-cycle instruction.  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the  
prescaler of the WDT. Status bits,  
TO and PD, are set.  
CLRF  
Clear f  
COMF  
Complement f  
Syntax:  
[ label ] CLRF  
0 f 127  
f
Syntax:  
[ label ] COMF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
00h (f)  
1 Z  
Operation:  
(f) (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
The contents of register ‘f’ are  
cleared and the Z bit is set.  
The contents of register ‘f’ are  
complemented. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’,  
the result is stored back in  
register ‘f’.  
DECF  
Decrement f  
CLRW  
Clear W  
Syntax:  
[ label ] DECF f,d  
Syntax:  
[ label ] CLRW  
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
None  
00h (W)  
1 Z  
Operation:  
(f) - 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Decrement register ‘f’. If ‘d’ is ‘0’,  
the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
W register is cleared. Zero bit (Z)  
is set.  
DS39582B-page 162  
2003 Microchip Technology Inc.  
PIC16F87XA  
DECFSZ  
Decrement f, Skip if 0  
INCFSZ  
Increment f, Skip if 0  
Syntax:  
[ label ] DECFSZ f,d  
Syntax:  
[ label ] INCFSZ f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) - 1 (destination);  
skip if result = 0  
Operation:  
(f) + 1 (destination),  
skip if result = 0  
Status Affected: None  
Status Affected: None  
Description:  
The contents of register ‘f’ are  
Description:  
The contents of register ‘f’ are  
decremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
incremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
If the result is ‘1’, the next instruc-  
tion is executed. If the result is ‘0’,  
then a NOPis executed instead,  
making it a 2 TCY instruction.  
If the result is ‘1’, the next instruc-  
tion is executed. If the result is ‘0’,  
a NOPis executed instead, making  
it a 2 TCY instruction.  
GOTO  
Unconditional Branch  
IORLW  
Inclusive OR Literal with W  
Syntax:  
[ label ] GOTO k  
0 k 2047  
Syntax:  
[ label ] IORLW k  
0 k 255  
Operands:  
Operation:  
Operands:  
Operation:  
Status Affected:  
Description:  
k PC<10:0>  
PCLATH<4:3> PC<12:11>  
(W) .OR. k (W)  
Z
Status Affected: None  
The contents of the W register are  
OR’ed with the eight-bit literal ‘k’.  
The result is placed in the W  
register.  
Description:  
GOTOis an unconditional branch.  
The eleven-bit immediate value is  
loaded into PC bits <10:0>. The  
upper bits of PC are loaded from  
PCLATH<4:3>. GOTOis a  
two-cycle instruction.  
IORWF  
Inclusive OR W with f  
INCF  
Increment f  
Syntax:  
[ label ] IORWF f,d  
Syntax:  
[ label ] INCF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(W) .OR. (f) (destination)  
Operation:  
(f) + 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Inclusive OR the W register with  
register ‘f’. If ‘d’ is ‘0’, the result is  
placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
2003 Microchip Technology Inc.  
DS39582B-page 163  
PIC16F87XA  
RLF  
Rotate Left f through Carry  
SLEEP  
Syntax:  
[ label ] RLF f,d  
Syntax:  
[ label ] SLEEP  
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
None  
00h WDT,  
0 WDT prescaler,  
1 TO,  
Operation:  
See description below  
C
Status Affected:  
Description:  
0 PD  
The contents of register ‘f’ are  
Status Affected:  
Description:  
TO, PD  
rotated one bit to the left through the  
Carry flag. If ‘d’ is ‘0’, the result is  
placed in the W register. If ‘d’ is ‘1’,  
the result is stored back in register ‘f’.  
The power-down status bit, PD,  
is cleared. Time-out status bit,  
TO, is set. Watchdog Timer and  
its prescaler are cleared.  
C
Register f  
The processor is put into Sleep  
mode with the oscillator stopped.  
RETURN  
Return from Subroutine  
SUBLW  
Subtract W from Literal  
Syntax:  
[ label ] RETURN  
None  
Syntax:  
[ label ] SUBLW k  
0 k 255  
Operands:  
Operation:  
Operands:  
Operation:  
TOS PC  
k - (W) → (W)  
Status Affected: None  
Status Affected: C, DC, Z  
Description:  
Return from subroutine. The stack  
Description:  
The W register is subtracted (2’s  
is POPed and the top of the stack  
(TOS) is loaded into the program  
counter. This is a two-cycle  
instruction.  
complement method) from the  
eight-bit literal ‘k’. The result is  
placed in the W register.  
RRF  
Rotate Right f through Carry  
SUBWF  
Subtract W from f  
Syntax:  
[ label ] RRF f,d  
Syntax:  
[ label ] SUBWF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
See description below  
C
Operation:  
(f) - (W) → (destination)  
Status Affected:  
Description:  
Status  
Affected:  
C, DC, Z  
The contents of register ‘f’ are  
rotated one bit to the right through  
the Carry flag. If ‘d’ is ‘0’, the  
result is placed in the W register.  
If ‘d’ is ‘1’, the result is placed  
back in register ‘f’.  
Description:  
Subtract (2’s complement method)  
W register from register ‘f’. If ‘d’ is  
0’, the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
C
Register f  
DS39582B-page 164  
2003 Microchip Technology Inc.  
PIC16F87XA  
SWAPF  
Swap Nibbles in f  
XORWF  
Exclusive OR W with f  
Syntax:  
[ label ] SWAPF f,d  
Syntax:  
[ label ] XORWF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
Operation:  
(W) .XOR. (f) → (destination)  
Status Affected:  
Description:  
Z
Status Affected: None  
Exclusive OR the contents of the  
W register with register ‘f’. If ‘d’ is  
0’, the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
Description:  
The upper and lower nibbles of  
register ‘f’ are exchanged. If ‘d’ is  
0’, the result is placed in the W  
register. If ‘d’ is ‘1’, the result is  
placed in register ‘f’.  
XORLW  
Exclusive OR Literal with W  
Syntax:  
[ label ] XORLW k  
0 k 255  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .XOR. k → (W)  
Z
The contents of the W register  
are XOR’ed with the eight-bit  
literal ‘k’. The result is placed in  
the W register.  
2003 Microchip Technology Inc.  
DS39582B-page 165  
PIC16F87XA  
NOTES:  
DS39582B-page 166  
2003 Microchip Technology Inc.  
PIC16F87XA  
16.1 MPLAB Integrated Development  
Environment Software  
16.0 DEVELOPMENT SUPPORT  
The PICmicro® microcontrollers are supported with a  
full range of hardware and software development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16-bit micro-  
controller market. The MPLAB IDE is a Windows®  
based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
• An interface to debugging tools  
- simulator  
- MPLAB C17 and MPLAB C18 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- programmer (sold separately)  
- emulator (sold separately)  
- in-circuit debugger (sold separately)  
• A full-featured editor with color coded context  
• A multiple project manager  
- MPLAB C30 C Compiler  
- MPLAB ASM30 Assembler/Linker/Library  
• Simulators  
• Customizable data windows with direct edit of  
contents  
- MPLAB SIM Software Simulator  
- MPLAB dsPIC30 Software Simulator  
• Emulators  
• High level source code debugging  
• Mouse over variable inspection  
• Extensive on-line help  
- MPLAB ICE 2000 In-Circuit Emulator  
- MPLAB ICE 4000 In-Circuit Emulator  
• In-Circuit Debugger  
The MPLAB IDE allows you to:  
• Edit your source files (either assembly or C)  
- MPLAB ICD 2  
• One touch assemble (or compile) and download  
to PICmicro emulator and simulator tools  
(automatically updates all project information)  
• Device Programmers  
- PRO MATE® II Universal Device Programmer  
- PICSTART® Plus Development Programmer  
• Low Cost Demonstration Boards  
- PICDEMTM 1 Demonstration Board  
- PICDEM.netTM Demonstration Board  
- PICDEM 2 Plus Demonstration Board  
- PICDEM 3 Demonstration Board  
- PICDEM 4 Demonstration Board  
- PICDEM 17 Demonstration Board  
- PICDEM 18R Demonstration Board  
- PICDEM LIN Demonstration Board  
- PICDEM USB Demonstration Board  
• Evaluation Kits  
• Debug using:  
- source files (assembly or C)  
- absolute listing file (mixed assembly and C)  
- machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost effective  
simulators, through low cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increasing flexibility  
and power.  
16.2 MPASM Assembler  
®
- KEELOQ  
The MPASM assembler is a full-featured, universal  
macro assembler for all PICmicro MCUs.  
- PICDEM MSC  
- microID®  
- CAN  
The MPASM assembler generates relocatable object  
files for the MPLINK object linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol ref-  
erence, absolute LST files that contain source lines and  
generated machine code and COFF files for  
debugging.  
- PowerSmart®  
- Analog  
The MPASM assembler features include:  
• Integration into MPLAB IDE projects  
• User defined macros to streamline assembly code  
• Conditional assembly for multi-purpose source  
files  
• Directives that allow complete control over the  
assembly process  
2003 Microchip Technology Inc.  
DS39582B-page167  
PIC16F87XA  
16.3 MPLAB C17 and MPLAB C18  
C Compilers  
16.6 MPLAB ASM30 Assembler, Linker,  
and Librarian  
The MPLAB C17 and MPLAB C18 Code Development  
MPLAB ASM30 assembler produces relocatable  
machine code from symbolic assembly language for  
dsPIC30F devices. MPLAB C30 compiler uses the  
assembler to produce it’s object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
Systems are complete ANSI  
C
compilers for  
Microchip’s PIC17CXXX and PIC18CXXX family of  
microcontrollers. These compilers provide powerful  
integration capabilities, superior code optimization and  
ease of use not found with other compilers.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
• Support for the entire dsPIC30F instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
16.4 MPLINK Object Linker/  
MPLIB Object Librarian  
• Rich directive set  
The MPLINK object linker combines relocatable  
objects created by the MPASM assembler and the  
MPLAB C17 and MPLAB C18 C compilers. It can link  
relocatable objects from precompiled libraries, using  
directives from a linker script.  
• Flexible macro language  
• MPLAB IDE compatibility  
16.7 MPLAB SIM Software Simulator  
The MPLAB SIM software simulator allows code devel-  
opment in a PC hosted environment by simulating the  
PICmicro series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file, or user defined key press, to any pin. The execu-  
tion can be performed in Single-Step, Execute Until  
Break, or Trace mode.  
The MPLIB object librarian manages the creation and  
modification of library files of pre-compiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The MPLAB SIM simulator fully supports symbolic  
debugging using the MPLAB C17 and MPLAB C18  
C Compilers, as well as the MPASM assembler. The  
software simulator offers the flexibility to develop and  
debug code outside of the laboratory environment,  
making it an excellent, economical software  
development tool.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
16.5 MPLAB C30 C Compiler  
16.8 MPLAB SIM30 Software Simulator  
The MPLAB C30 C compiler is a full-featured, ANSI  
compliant, optimizing compiler that translates standard  
ANSI C programs into dsPIC30F assembly language  
source. The compiler also supports many command-  
line options and language extensions to take full  
advantage of the dsPIC30F device hardware capabili-  
ties, and afford fine control of the compiler code  
generator.  
The MPLAB SIM30 software simulator allows code  
development in a PC hosted environment by simulating  
the dsPIC30F series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file, or user defined key press, to any of the pins.  
The MPLAB SIM30 simulator fully supports symbolic  
debugging using the MPLAB C30 C Compiler and  
MPLAB ASM30 assembler. The simulator runs in either  
a Command Line mode for automated tasks, or from  
MPLAB IDE. This high speed simulator is designed to  
debug, analyze and optimize time intensive DSP  
routines.  
MPLAB C30 is distributed with a complete ANSI C  
standard library. All library functions have been vali-  
dated and conform to the ANSI C library standard. The  
library includes functions for string manipulation,  
dynamic memory allocation, data conversion, time-  
keeping, and math functions (trigonometric, exponen-  
tial and hyperbolic). The compiler provides symbolic  
information for high level source debugging with the  
MPLAB IDE.  
DS39582B-page 168  
2003 Microchip Technology Inc.  
PIC16F87XA  
16.9 MPLAB ICE 2000  
High Performance Universal  
16.11 MPLAB ICD 2 In-Circuit Debugger  
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a  
powerful, low-cost, run-time development tool,  
connecting to the host PC via an RS-232 or high-speed  
USB interface. This tool is based on the Flash  
PICmicro MCUs and can be used to develop for these  
and other PICmicro microcontrollers. The MPLAB  
ICD 2 utilizes the in-circuit debugging capability built  
into the Flash devices. This feature, along with  
In-Circuit Emulator  
The MPLAB ICE 2000 universal in-circuit emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for  
PICmicro microcontrollers. Software control of the  
MPLAB ICE 2000 in-circuit emulator is advanced by  
the MPLAB Integrated Development Environment,  
which allows editing, building, downloading and source  
debugging from a single environment.  
Microchip’s In-Circuit Serial ProgrammingTM (ICSPTM  
)
protocol, offers cost effective in-circuit Flash debugging  
from the graphical user interface of the MPLAB Inte-  
grated Development Environment. This enables a  
designer to develop and debug source code by setting  
breakpoints, single-stepping and watching variables,  
CPU status and peripheral registers. Running at full  
speed enables testing hardware and applications in  
real-time. MPLAB ICD 2 also serves as a development  
programmer for selected PICmicro devices.  
The MPLAB ICE 2000 is a full-featured emulator sys-  
tem with enhanced trace, trigger and data monitoring  
features. Interchangeable processor modules allow the  
system to be easily reconfigured for emulation of differ-  
ent processors. The universal architecture of the  
MPLAB ICE in-circuit emulator allows expansion to  
support new PICmicro microcontrollers.  
The MPLAB ICE 2000 in-circuit emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft® Windows 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
16.12 PRO MATE II Universal Device  
Programmer  
The PRO MATE II is a universal, CE compliant device  
programmer with programmable voltage verification at  
VDDMIN and VDDMAX for maximum reliability. It features  
an LCD display for instructions and error messages  
and a modular detachable socket assembly to support  
various package types. In Stand-Alone mode, the  
PRO MATE II device programmer can read, verify, and  
program PICmicro devices without a PC connection. It  
can also set code protection in this mode.  
16.10 MPLAB ICE 4000  
High Performance Universal  
In-Circuit Emulator  
The MPLAB ICE 4000 universal in-circuit emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for high-  
end PICmicro microcontrollers. Software control of the  
MPLAB ICE in-circuit emulator is provided by the  
MPLAB Integrated Development Environment, which  
allows editing, building, downloading and source  
debugging from a single environment.  
16.13 PICSTART Plus Development  
Programmer  
The PICSTART Plus development programmer is an  
easy-to-use, low-cost, prototype programmer. It con-  
nects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient. The  
PICSTART Plus development programmer supports  
most PICmicro devices up to 40 pins. Larger pin count  
devices, such as the PIC16C92X and PIC17C76X,  
may be supported with an adapter socket. The  
PICSTART Plus development programmer is CE  
compliant.  
The MPLAB ICD 4000 is a premium emulator system,  
providing the features of MPLAB ICE 2000, but with  
increased emulation memory and high speed perfor-  
mance for dsPIC30F and PIC18XXXX devices. Its  
advanced emulator features include complex triggering  
and timing, up to 2 Mb of emulation memory, and the  
ability to view variables in real-time.  
The MPLAB ICE 4000 in-circuit emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft Windows 32-bit operating system were cho-  
sen to best make these features available in a simple,  
unified application.  
2003 Microchip Technology Inc.  
DS39582B-page169  
PIC16F87XA  
16.14 PICDEM 1 PICmicro  
Demonstration Board  
16.17 PICDEM 3 PIC16C92X  
Demonstration Board  
The PICDEM 1 demonstration board demonstrates the  
capabilities of the PIC16C5X (PIC16C54 to  
PIC16C58A), PIC16C61, PIC16C62X, PIC16C71,  
PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All  
necessary hardware and software is included to run  
basic demo programs. The sample microcontrollers  
provided with the PICDEM 1 demonstration board can  
be programmed with a PRO MATE II device program-  
mer, or a PICSTART Plus development programmer.  
The PICDEM 1 demonstration board can be connected  
to the MPLAB ICE in-circuit emulator for testing. A pro-  
totype area extends the circuitry for additional applica-  
tion components. Features include an RS-232  
interface, a potentiometer for simulated analog input,  
push button switches and eight LEDs.  
The PICDEM 3 demonstration board supports the  
PIC16C923 and PIC16C924 in the PLCC package. All  
the necessary hardware and software is included to run  
the demonstration programs.  
16.18 PICDEM 4 8/14/18-Pin  
Demonstration Board  
The PICDEM 4 can be used to demonstrate the capa-  
bilities of the 8, 14, and 18-pin PIC16XXXX and  
PIC18XXXX MCUs, including the PIC16F818/819,  
PIC16F87/88, PIC16F62XA and the PIC18F1320 fam-  
ily of microcontrollers. PICDEM 4 is intended to show-  
case the many features of these low pin count parts,  
including LIN and Motor Control using ECCP. Special  
provisions are made for low power operation with the  
supercapacitor circuit, and jumpers allow on-board  
hardware to be disabled to eliminate current draw in  
this mode. Included on the demo board are provisions  
for Crystal, RC or Canned Oscillator modes, a five volt  
regulator for use with a nine volt wall adapter or battery,  
DB-9 RS-232 interface, ICD connector for program-  
ming via ICSP and development with MPLAB ICD 2,  
2x16 liquid crystal display, PCB footprints for H-Bridge  
motor driver, LIN transceiver and EEPROM. Also  
included are: header for expansion, eight LEDs, four  
potentiometers, three push buttons and a prototyping  
area. Included with the kit is a PIC16F627A and a  
PIC18F1320. Tutorial firmware is included along with  
the User’s Guide.  
16.15 PICDEM.net Internet/Ethernet  
Demonstration Board  
The PICDEM.net demonstration board is an Internet/  
Ethernet demonstration board using the PIC18F452  
microcontroller and TCP/IP firmware. The board  
supports any 40-pin DIP device that conforms to the  
standard pinout used by the PIC16F877 or  
PIC18C452. This kit features a user friendly TCP/IP  
stack, web server with HTML, a 24L256 Serial  
EEPROM for Xmodem download to web pages into  
Serial EEPROM, ICSP/MPLAB ICD 2 interface con-  
nector, an Ethernet interface, RS-232 interface, and a  
16 x 2 LCD display. Also included is the book and  
CD-ROM “TCP/IP Lean, Web Servers for Embedded  
Systems,” by Jeremy Bentham.  
16.19 PICDEM 17 Demonstration Board  
The PICDEM 17 demonstration board is an evaluation  
board that demonstrates the capabilities of several  
Microchip microcontrollers, including PIC17C752,  
PIC17C756A, PIC17C762 and PIC17C766. A pro-  
grammed sample is included. The PRO MATE II device  
programmer, or the PICSTART Plus development pro-  
grammer, can be used to reprogram the device for user  
tailored application development. The PICDEM 17  
demonstration board supports program download and  
execution from external on-board Flash memory. A  
generous prototype area is available for user hardware  
expansion.  
16.16 PICDEM 2 Plus  
Demonstration Board  
The PICDEM 2 Plus demonstration board supports  
many 18-, 28-, and 40-pin microcontrollers, including  
PIC16F87X and PIC18FXX2 devices. All the neces-  
sary hardware and software is included to run the dem-  
onstration programs. The sample microcontrollers  
provided with the PICDEM 2 demonstration board can  
be programmed with a PRO MATE II device program-  
mer, PICSTART Plus development programmer, or  
MPLAB ICD 2 with a Universal Programmer Adapter.  
The MPLAB ICD 2 and MPLAB ICE in-circuit emulators  
may also be used with the PICDEM 2 demonstration  
board to test firmware. A prototype area extends the  
circuitry for additional application components. Some  
of the features include an RS-232 interface, a 2 x 16  
LCD display, a piezo speaker, an on-board temperature  
sensor, four LEDs, and sample PIC18F452 and  
PIC16F877 Flash microcontrollers.  
DS39582B-page 170  
2003 Microchip Technology Inc.  
PIC16F87XA  
16.20 PICDEM 18R PIC18C601/801  
Demonstration Board  
16.23 PICDEM USB PIC16C7X5  
Demonstration Board  
The PICDEM 18R demonstration board serves to assist  
development of the PIC18C601/801 family of Microchip  
microcontrollers. It provides hardware implementation  
of both 8-bit Multiplexed/Demultiplexed and 16-bit  
Memory modes. The board includes 2 Mb external  
Flash memory and 128 Kb SRAM memory, as well as  
serial EEPROM, allowing access to the wide range of  
memory types supported by the PIC18C601/801.  
The PICDEM USB Demonstration Board shows off the  
capabilities of the PIC16C745 and PIC16C765 USB  
microcontrollers. This board provides the basis for  
future USB products.  
16.24 Evaluation and  
Programming Tools  
In addition to the PICDEM series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
for these products.  
16.21 PICDEM LIN PIC16C43X  
Demonstration Board  
• KEELOQ evaluation and programming tools for  
Microchip’s HCS Secure Data Products  
The powerful LIN hardware and software kit includes a  
series of boards and three PICmicro microcontrollers.  
The small footprint PIC16C432 and PIC16C433 are  
used as slaves in the LIN communication and feature  
on-board LIN transceivers. A PIC16F874 Flash micro-  
controller serves as the master. All three microcontrol-  
lers are programmed with firmware to provide LIN bus  
communication.  
• CAN developers kit for automotive network  
applications  
• Analog design boards and filter design software  
• PowerSmart battery charging evaluation/  
calibration kits  
• IrDA® development kit  
• microID development and rfLabTM development  
software  
16.22 PICkitTM 1 Flash Starter Kit  
• SEEVAL® designer kit for memory evaluation and  
endurance calculations  
A complete “development system in a box”, the PICkit  
Flash Starter Kit includes a convenient multi-section  
board for programming, evaluation and development of  
8/14-pin Flash PIC® microcontrollers. Powered via  
USB, the board operates under a simple Windows GUI.  
The PICkit 1 Starter Kit includes the user's guide (on  
CD ROM), PICkit 1 tutorial software and code for vari-  
ous applications. Also included are MPLAB® IDE (Inte-  
grated Development Environment) software, software  
and hardware “Tips 'n Tricks for 8-pin Flash PIC®  
Microcontrollers” Handbook and a USB Interface  
Cable. Supports all current 8/14-pin Flash PIC  
microcontrollers, as well as many future planned  
devices.  
• PICDEM MSC demo boards for Switching mode  
power supply, high power IR driver, delta sigma  
ADC, and flow rate sensor  
Check the Microchip web page and the latest Product  
Line Card for the complete list of demonstration and  
evaluation kits.  
2003 Microchip Technology Inc.  
DS39582B-page171  
PIC16F87XA  
NOTES:  
DS39582B-page 172  
2003 Microchip Technology Inc.  
PIC16F87XA  
17.0 ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
Ambient temperature under bias.................................................................................................................-55 to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD, MCLR. and RA4) ......................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ............................................................................................................ -0.3 to +7.5V  
Voltage on MCLR with respect to VSS (Note 2) .................................................................................................0 to +14V  
Voltage on RA4 with respect to Vss..................................................................................................................0 to +8.5V  
Total power dissipation (Note 1) ...............................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)..................................................................................................................... 20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) ............................................................................................................. 20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by PORTA, PORTB and PORTE (combined) (Note 3)....................................................200 mA  
Maximum current sourced by PORTA, PORTB and PORTE (combined) (Note 3)...............................................200 mA  
Maximum current sunk by PORTC and PORTD (combined) (Note 3) .................................................................200 mA  
Maximum current sourced by PORTC and PORTD (combined) (Note 3) ............................................................200 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD - VOH) x IOH} + (VOl x IOL)  
2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up.  
Thus, a series resistor of 50-100should be used when applying a “low” level to the MCLR pin rather than  
pulling this pin directly to VSS.  
3: PORTD and PORTE are not implemented on PIC16F873A/876A devices.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
2003 Microchip Technology Inc.  
DS39582B-page 173  
PIC16F87XA  
FIGURE 17-1:  
PIC16F87XA VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL, EXTENDED)  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
PIC16F87XA  
3.5V  
3.0V  
2.5V  
2.0V  
20 MHz  
Frequency  
FIGURE 17-2:  
PIC16LF87XA VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
6.0V  
5.5V  
5.0V  
4.5V  
PIC16LF87XA  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
4 MHz  
10 MHz  
Frequency  
FMAX = (6.0 MHz/V) (VDDAPPMIN – 2.0V) + 4 MHz  
Note 1: VDDAPPMIN is the minimum voltage of the PICmicro® device in the application.  
Note 2: FMAX has a maximum frequency of 10 MHz.  
DS39582B-page 174  
2003 Microchip Technology Inc.  
PIC16F87XA  
17.1 DC Characteristics: PIC16F873A/874A/876A/877A (Industrial, Extended)  
PIC16LF873A/874A/876A/877A (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
PIC16LF873A/874A/876A/877A  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
PIC16F873A/874A/876A/877A  
(Industrial, Extended)  
Param  
No.  
Characteristic/  
Symbol  
Min  
Typ† Max Units  
Conditions  
Device  
VDD  
Supply Voltage  
D001  
16LF87XA  
2.0  
5.5  
V
All configurations  
(DC to 10 MHz)  
D001  
D001A  
D002  
16F87XA  
4.0  
VBOR  
5.5  
5.5  
V
V
V
All configurations  
BOR enabled, FMAX = 14 MHz(7)  
VDR  
RAM Data Retention  
1.5  
Voltage(1)  
D003  
D004  
D005  
VPOR  
VDD Start Voltage to  
ensure internal Power-on  
Reset signal  
VSS  
V
See Section 14.5 “Power-on  
Reset (POR)” for details  
SVDD  
VBOR  
VDD Rise Rate to ensure 0.05  
internal Power-on Reset  
signal  
V/ms See Section 14.5 “Power-on  
Reset (POR)” for details  
Brown-out Reset  
Voltage  
3.65  
4.0  
4.35  
V
BODEN bit in configuration word  
enabled  
Legend: Rows with standard voltage device data only are shaded for improved readability.  
Data in “Typ” column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O  
pin loading, switching rate, oscillator type, internal code execution pattern and temperature, also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be  
estimated by the formula Ir = VDD/2REXT (mA) with REXT in k.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from  
characterization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.  
2003 Microchip Technology Inc.  
DS39582B-page 175  
PIC16F87XA  
17.1 DC Characteristics: PIC16F873A/874A/876A/877A (Industrial, Extended)  
PIC16LF873A/874A/876A/877A (Industrial) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
PIC16LF873A/874A/876A/877A  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
PIC16F873A/874A/876A/877A  
(Industrial, Extended)  
Param  
No.  
Characteristic/  
Symbol  
Min  
Typ† Max Units  
Conditions  
Device  
IDD  
Supply Current(2,5)  
D010  
16LF87XA  
0.6  
1.6  
20  
2.0  
4
mA XT, RC osc configurations,  
FOSC = 4 MHz, VDD = 3.0V  
D010  
16F87XA  
mA XT, RC osc configurations,  
FOSC = 4 MHz, VDD = 5.5V  
D010A  
16LF87XA  
35  
µA LP osc configuration,  
FOSC = 32 kHz, VDD = 3.0V,  
WDT disabled  
D013  
D015  
16F87XA  
7
15  
mA HS osc configuration,  
FOSC = 20 MHz, VDD = 5.5V  
IBOR  
Brown-out  
Reset Current(6)  
85  
200  
µA BOR enabled, VDD = 5.0V  
Legend: Rows with standard voltage device data only are shaded for improved readability.  
Data in “Typ” column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O  
pin loading, switching rate, oscillator type, internal code execution pattern and temperature, also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be  
estimated by the formula Ir = VDD/2REXT (mA) with REXT in k.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from  
characterization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.  
DS39582B-page 176  
2003 Microchip Technology Inc.  
PIC16F87XA  
17.1 DC Characteristics: PIC16F873A/874A/876A/877A (Industrial, Extended)  
PIC16LF873A/874A/876A/877A (Industrial) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
PIC16LF873A/874A/876A/877A  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
PIC16F873A/874A/876A/877A  
(Industrial, Extended)  
Param  
No.  
Characteristic/  
Symbol  
Min  
Typ† Max Units  
Conditions  
Device  
IPD  
Power-down Current(3,5)  
D020  
16LF87XA  
7.5  
30  
µA VDD = 3.0V, WDT enabled,  
-40°C to +85°C  
µA VDD = 4.0V, WDT enabled,  
-40°C to +85°C  
µA VDD = 4.0V, WDT enabled,  
-40°C to +125°C (extended)  
D020  
16F87XA  
10.5  
42  
60  
D021  
D021  
16LF87XA  
16F87XA  
0.9  
1.5  
5
µA VDD = 3.0V, WDT disabled,  
0°C to +70°C  
µA VDD = 4.0V, WDT disabled,  
-40°C to +85°C  
µA VDD = 4.0V, WDT disabled,  
-40°C to +125°C (extended)  
16  
20  
D021A  
D021A  
D023  
16LF87XA  
16F87XA  
0.9  
1.5  
85  
5
µA VDD = 3.0V, WDT disabled,  
-40°C to +85°C  
µA VDD = 4.0V, WDT disabled,  
-40°C to +85°C  
19  
IBOR  
Brown-out  
200  
µA BOR enabled, VDD = 5.0V  
Reset Current(6)  
Legend: Rows with standard voltage device data only are shaded for improved readability.  
Data in “Typ” column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O  
pin loading, switching rate, oscillator type, internal code execution pattern and temperature, also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be  
estimated by the formula Ir = VDD/2REXT (mA) with REXT in k.  
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from  
characterization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.  
2003 Microchip Technology Inc.  
DS39582B-page 177  
PIC16F87XA  
17.2 DC Characteristics: PIC16F873A/874A/876A/877A (Industrial, Extended)  
PIC16LF873A/874A/876A/877A (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for extended  
Operating voltage VDD range as described in DC specification  
(Section 17.1)  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
VIL  
Input Low Voltage  
I/O ports:  
with TTL buffer  
D030  
D030A  
D031  
D032  
D033  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
0.15 VDD  
V
V
V
V
V
V
For entire VDD range  
0.8V  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
MCLR, OSC1 (in RC mode)  
OSC1 (in XT and LP modes)  
OSC1 (in HS mode)  
Ports RC3 and RC4:  
with Schmitt Trigger buffer  
with SMBus  
0.2 VDD  
0.2 VDD  
0.3V  
(Note 1)  
0.3 VDD  
D034  
VSS  
-0.5  
0.3 VDD  
0.6  
V
V
For entire VDD range  
For VDD = 4.5 to 5.5V  
D034A  
VIH  
Input High Voltage  
I/O ports:  
D040  
with TTL buffer  
2.0  
VDD  
VDD  
V
V
4.5V VDD 5.5V  
D040A  
0.25 VDD  
+ 0.8V  
For entire VDD range  
D041  
D042  
D042A  
with Schmitt Trigger buffer  
MCLR  
0.8 VDD  
0.8 VDD  
1.6V  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
For entire VDD range  
OSC1 (in XT and LP modes)  
OSC1 (in HS mode)  
OSC1 (in RC mode)  
Ports RC3 and RC4:  
with Schmitt Trigger buffer  
with SMBus  
(Note 1)  
0.7 VDD  
0.9 VDD  
D043  
D044  
D044A  
D070  
0.7 VDD  
1.4  
VDD  
5.5  
V
V
For entire VDD range  
For VDD = 4.5 to 5.5V  
IPURB  
IIL  
PORTB Weak Pull-up Current  
50  
250  
400  
µA VDD = 5V, VPIN = VSS,  
-40°C TO +85°C  
Input Leakage Current(2, 3)  
D060  
I/O ports  
1
µA VSS VPIN VDD,  
pin at high-impedance  
D061  
D063  
MCLR, RA4/T0CKI  
OSC1  
5
5
µA VSS VPIN VDD  
µA VSS VPIN VDD, XT, HS  
and LP osc configuration  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PIC16F87XA be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
DS39582B-page 178  
2003 Microchip Technology Inc.  
PIC16F87XA  
17.2 DC Characteristics: PIC16F873A/874A/876A/877A (Industrial, Extended)  
PIC16LF873A/874A/876A/877A (Industrial) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
DC CHARACTERISTICS  
Operating voltage VDD range as described in DC specification  
(Section 17.1)  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
VOL  
VOH  
Output Low Voltage  
D080  
D083  
I/O ports  
0.6  
0.6  
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
OSC2/CLKO (RC osc config)  
IOL = 1.6 mA, VDD = 4.5V,  
-40°C to +85°C  
Output High Voltage  
D090  
D092  
I/O ports(3)  
VDD – 0.7  
VDD – 0.7  
V
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
OSC2/CLKO (RC osc config)  
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +85°C  
RA4 pin  
D150* VOD  
Open-Drain High Voltage  
8.5  
Capacitive Loading Specs on  
Output Pins  
D100  
COSC2 OSC2 pin  
15  
pF In XT, HS and LP modes when  
external clock is used to drive  
OSC1  
D101  
D102  
CIO  
CB  
All I/O pins and OSC2 (RC mode)  
SCL, SDA (I2C mode)  
50  
400  
pF  
pF  
Data EEPROM Memory  
Endurance  
D120  
D121  
ED  
100K  
VMIN  
1M  
E/W -40°C to +85°C  
VDRW  
VDD for read/write  
5.5  
V
Using EECON to read/write,  
VMIN = min. operating voltage  
D122  
TDEW  
Erase/write cycle time  
Program Flash Memory  
Endurance  
4
8
ms  
D130  
D131  
D132A  
EP  
10K  
VMIN  
VMIN  
100K  
E/W -40°C to +85°C  
V
V
VPR  
VDD for read  
5.5  
5.5  
VMIN = min. operating voltage  
VDD for erase/write  
Using EECON to read/write,  
VMIN = min. operating voltage  
D133  
TPEW  
Erase/Write cycle time  
4
8
ms  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PIC16F87XA be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
2003 Microchip Technology Inc.  
DS39582B-page 179  
PIC16F87XA  
TABLE 17-1: COMPARATOR SPECIFICATIONS  
Operating Conditions: 3.0V < VDD < 5.5V, -40°C < TA < +85°C (unless otherwise stated)  
4.0V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated)  
Param  
No.  
Sym  
Characteristics  
Input Offset Voltage  
Min  
Typ  
Max  
Units  
Comments  
D300  
VIOFF  
0
± 5.0  
± 10  
VDD – 1.5  
mV  
V
D301  
D302  
VICM  
Input Common Mode Voltage*  
Common Mode Rejection Ratio*  
Response Time*(1)  
-
-
CMRR  
TRESP  
55  
dB  
300  
300A  
150  
400  
600  
ns  
ns  
PIC16F87XA  
PIC16LF87XA  
301  
TMC2OV Comparator Mode Change to  
Output Valid*  
10  
µs  
*
These parameters are characterized but not tested.  
Note 1: Response time measured with one comparator input at (VDD – 1.5)/2 while the other input transitions from  
VSS to VDD.  
TABLE 17-2: VOLTAGE REFERENCE SPECIFICATIONS  
Operating Conditions: 3.0V < VDD < 5.5V, -40°C < TA < +85°C (unless otherwise stated)  
4.0V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated)  
Spec  
No.  
Sym  
Characteristics  
Resolution  
Min  
Typ  
Max  
Units  
Comments  
D310  
VRES  
VDD/24  
VDD/32  
LSb  
D311  
VRAA  
Absolute Accuracy  
1/2  
1/2  
LSb Low Range (VRR = 1)  
LSb High Range (VRR = 0)  
D312  
310  
VRUR  
TSET  
Unit Resistor Value (R)*  
Settling Time*(1)  
2k  
10  
µs  
*
These parameters are characterized but not tested.  
Note 1: Settling time measured while VRR = 1and VR<3:0> transitions from ‘0000’ to ‘1111’.  
DS39582B-page 180  
2003 Microchip Technology Inc.  
PIC16F87XA  
17.3 Timing Parameter Symbology  
The timing parameter symbols have been created  
following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
3. TCC:ST  
4. Ts  
(I2C specifications only)  
(I2C specifications only)  
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKO  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (High-impedance)  
Low  
Valid  
L
High-impedance  
I2C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
TCC:ST (I2C specifications only)  
CC  
HD  
ST  
DAT  
STA  
Hold  
SU  
Setup  
Data input hold  
Start condition  
STO  
Stop condition  
FIGURE 17-3:  
LOAD CONDITIONS  
Load Condition 1  
VDD/2  
Load Condition 2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL = 464Ω  
CL = 50 pF for all pins except OSC2, but including PORTD and PORTE outputs as ports,  
15 pF for OSC2 output  
Note: PORTD and PORTE are not implemented on PIC16F873A/876A devices.  
2003 Microchip Technology Inc.  
DS39582B-page 181  
PIC16F87XA  
FIGURE 17-4:  
EXTERNAL CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
4
Q1  
OSC1  
CLKO  
1
3
4
3
2
TABLE 17-3: EXTERNAL CLOCK TIMING REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
No.  
FOSC  
External CLKI Frequency  
(Note 1)  
DC  
DC  
DC  
DC  
0.1  
1
20  
32  
4
MHz XT and RC Osc mode  
MHz HS Osc mode  
kHz LP Osc mode  
Oscillator Frequency  
(Note 1)  
MHz RC Osc mode  
MHz XT Osc mode  
4
4
5
20  
200  
MHz HS Osc mode  
kHz LP Osc mode  
1
TOSC  
External CLKI Period  
(Note 1)  
1000  
50  
ns XT and RC Osc mode  
ns HS Osc mode  
µs LP Osc mode  
ns RC Osc mode  
µs XT Osc mode  
ns HS Osc mode  
ns HS Osc mode  
µs LP Osc mode  
ns TCY = 4/FOSC  
5
Oscillator Period  
(Note 1)  
250  
250  
100  
50  
1
250  
250  
31.25  
200  
2
3
TCY  
Instruction Cycle Time  
(Note 1)  
TCY  
DC  
TOSL,  
TOSH  
External Clock in (OSC1) High or 100  
Low Time  
25  
50  
15  
ns XT oscillator  
µs LP oscillator  
ns HS oscillator  
ns XT oscillator  
ns LP oscillator  
ns HS oscillator  
2.5  
15  
4
TOSR,  
TOSF  
External Clock in (OSC1) Rise or  
Fall Time  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are  
based on characterization data for that particular oscillator type, under standard operating conditions, with  
the device executing code. Exceeding these specified limits may result in an unstable oscillator operation  
and/or higher than expected current consumption. All devices are tested to operate at “min.” values with an  
external clock applied to the OSC1/CLKI pin. When an external clock input is used, the “max.” cycle time  
limit is “DC” (no clock) for all devices.  
DS39582B-page 182  
2003 Microchip Technology Inc.  
PIC16F87XA  
FIGURE 17-5:  
CLKO AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKO  
13  
14  
12  
16  
18  
19  
I/O pin  
(Input)  
15  
17  
I/O pin  
(Output)  
New Value  
Old Value  
20, 21  
Note: Refer to Figure 17-3 for load conditions.  
TABLE 17-4: CLKO AND I/O TIMING REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
10*  
TOSH2CKL OSC1 to CLKO ↓  
TOSH2CKH OSC1 to CLKO ↑  
75  
75  
35  
35  
100  
10  
10  
200  
200  
100  
100  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
11*  
12*  
13*  
14*  
15*  
16*  
17*  
18*  
TCKR  
TCKF  
CLKO Rise Time  
CLKO Fall Time  
TCKL2IOV CLKO to Port Out Valid  
0.5 TCY + 20 ns (Note 1)  
TIOV2CKH Port In Valid before CLKO ↑  
TOSC + 200  
ns (Note 1)  
TCKH2IOI Port In Hold after CLKO ↑  
0
ns (Note 1)  
TOSH2IOV OSC1 (Q1 cycle) to Port Out Valid  
TOSH2IOI OSC1 (Q2 cycle) to Port Input Standard (F)  
255  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
100  
200  
0
Invalid (I/O in hold time)  
Extended (LF)  
19*  
20*  
TIOV2OSH Port Input Valid to OSC1 (I/O in setup time)  
TIOR  
Port Output Rise Time  
Port Output Fall Time  
INT pin High or Low Time  
Standard (F)  
Extended (LF)  
Standard (F)  
Extended (LF)  
40  
145  
40  
145  
21*  
TIOF  
22††*  
23††*  
TINP  
TCY  
TCY  
TRBP  
RB7:RB4 Change INT High or Low Time  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
†† These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC mode where CLKO output is 4 x TOSC.  
2003 Microchip Technology Inc.  
DS39582B-page 183  
PIC16F87XA  
FIGURE 17-6:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
31  
34  
34  
I/O pins  
Note: Refer to Figure 17-3 for load conditions.  
FIGURE 17-7:  
BROWN-OUT RESET TIMING  
VBOR  
VDD  
35  
TABLE 17-5: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
30  
TMCL  
TWDT  
MCLR Pulse Width (low)  
2
7
µs  
VDD = 5V, -40°C to +85°C  
31*  
Watchdog Timer Time-out Period  
(no prescaler)  
18  
33  
ms VDD = 5V, -40°C to +85°C  
32  
TOST  
Oscillation Start-up Timer Period  
Power-up Timer Period  
1024 TOSC  
72  
TOSC = OSC1 period  
33*  
TPWRT  
28  
132  
ms VDD = 5V, -40°C to +85°C  
34  
TIOZ  
I/O High-Impedance from MCLR Low  
or Watchdog Timer Reset  
2.1  
µs  
35  
TBOR  
Brown-out Reset Pulse Width  
100  
µs  
VDD VBOR (D005)  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
DS39582B-page 184  
2003 Microchip Technology Inc.  
PIC16F87XA  
FIGURE 17-8:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
RA4/T0CKI  
41  
40  
42  
RC0/T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or TMR1  
Note: Refer to Figure 17-3 for load conditions.  
TABLE 17-6: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
No.  
Symbol  
TT0H  
Characteristic  
T0CKI High Pulse Width  
Min  
Typ† Max Units  
Conditions  
40*  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5 TCY + 20  
10  
ns Must also meet  
parameter 42  
ns Must also meet  
ns  
41*  
42*  
TT0L  
TT0P  
T0CKI Low Pulse Width  
T0CKI Period  
0.5 TCY + 20  
10  
parameter 42  
ns  
ns  
TCY + 40  
Greater of:  
20 or TCY + 40  
N
ns N = prescale value  
(2, 4,..., 256)  
45*  
46*  
47*  
TT1H  
TT1L  
TT1P  
T1CKI High  
Time  
Synchronous, Prescaler = 1  
0.5 TCY + 20  
ns Must also meet  
parameter 47  
Synchronous,  
Prescaler = 2, 4, 8  
Standard(F)  
Extended(LF)  
Standard(F)  
Extended(LF)  
15  
ns  
ns  
ns  
ns  
25  
Asynchronous  
30  
50  
T1CKI Low Time Synchronous, Prescaler = 1  
0.5 TCY + 20  
ns Must also meet  
parameter 47  
Synchronous,  
Prescaler = 2, 4, 8  
Standard(F)  
Extended(LF)  
Standard(F)  
Extended(LF)  
Standard(F)  
15  
25  
30  
50  
ns  
ns  
ns  
ns  
Asynchronous  
Synchronous  
T1CKI Input  
Period  
Greater of:  
30 or TCY + 40  
N
ns N = prescale value  
(1, 2, 4, 8)  
Extended(LF)  
Greater of:  
50 or TCY + 40  
N
N = prescale value  
(1, 2, 4, 8)  
Asynchronous  
Standard(F)  
60  
100  
DC  
ns  
ns  
Extended(LF)  
FT1  
Timer1 Oscillator Input Frequency Range  
(oscillator enabled by setting bit T1OSCEN)  
200  
kHz  
48  
TCKEZTMR1 Delay from External Clock Edge to Timer Increment  
2 TOSC  
7 TOSC  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
2003 Microchip Technology Inc.  
DS39582B-page 185  
PIC16F87XA  
FIGURE 17-9:  
CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)  
RC1/T1OSI/CCP2  
and RC2/CCP1  
(Capture Mode)  
50  
51  
52  
RC1/T1OSI/CCP2  
and RC2/CCP1  
(Compare or PWM Mode)  
53  
54  
Note: Refer to Figure 17-3 for load conditions.  
TABLE 17-7: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)  
Param  
No.  
Symbol  
Characteristic  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
Min  
Typ† Max Units  
Conditions  
50*  
TCCL  
CCP1 and CCP2  
Input Low Time  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
Standard(F)  
10  
Extended(LF)  
20  
51*  
TCCH  
CCP1 and CCP2  
Input High Time  
0.5 TCY + 20  
Standard(F)  
10  
20  
Extended(LF)  
52*  
53*  
TCCP  
TCCR  
CCP1 and CCP2 Input Period  
3 TCY + 40  
N
ns N = prescale value  
(1, 4 or 16)  
CCP1 and CCP2 Output Rise Time  
Standard(F)  
Extended(LF)  
Standard(F)  
Extended(LF)  
10  
25  
10  
25  
25  
50  
25  
45  
ns  
ns  
ns  
ns  
54*  
TCCF  
CCP1 and CCP2 Output Fall Time  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
DS39582B-page 186  
2003 Microchip Technology Inc.  
PIC16F87XA  
FIGURE 17-10:  
PARALLEL SLAVE PORT TIMING (PIC16F874A/877A ONLY)  
RE2/CS  
RE0/RD  
RE1/WR  
65  
RD7:RD0  
62  
64  
63  
Note: Refer to Figure 17-3 for load conditions.  
TABLE 17-8: PARALLEL SLAVE PORT REQUIREMENTS (PIC16F874A/877A ONLY)  
Param  
No.  
Symbol  
Characteristic  
Min Typ† Max Units Conditions  
62  
TDTV2WRH  
TWRH2DTI  
Data In Valid before WR or CS (setup time)  
20  
20  
35  
10  
80  
30  
ns  
ns  
ns  
ns  
ns  
63*  
WR or CS to Data–in Invalid  
(hold time)  
Standard(F)  
Extended(LF)  
64  
65  
TRDL2DTV  
TRDH2DTI  
RD and CS to Data–out Valid  
RD or CS to Data–out Invalid  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
2003 Microchip Technology Inc.  
DS39582B-page 187  
PIC16F87XA  
FIGURE 17-11:  
SPI MASTER MODE TIMING (CKE = 0, SMP = 0)  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
Bit 6 - - - - - -1  
MSb  
LSb  
SDO  
SDI  
75, 76  
MSb In  
74  
Bit 6 - - - -1  
LSb In  
73  
Note: Refer to Figure 17-3 for load conditions.  
FIGURE 17-12:  
SPI MASTER MODE TIMING (CKE = 1, SMP = 1)  
SS  
81  
SCK  
(CKP = 0)  
71  
72  
79  
78  
73  
SCK  
(CKP = 1)  
80  
Bit 6 - - - - - -1  
LSb  
MSb  
SDO  
SDI  
75, 76  
MSb In  
74  
Bit 6 - - - -1  
LSb In  
Note: Refer to Figure 17-3 for load conditions.  
DS39582B-page 188  
2003 Microchip Technology Inc.  
PIC16F87XA  
FIGURE 17-13:  
SPI SLAVE MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
83  
71  
72  
78  
79  
79  
78  
SCK  
(CKP = 1)  
80  
MSb  
LSb  
Bit 6 - - - - - -1  
SDO  
SDI  
77  
75, 76  
MSb In  
74  
LSb In  
Bit 6 - - - -1  
73  
Note: Refer to Figure 17-3 for load conditions.  
FIGURE 17-14:  
SPI SLAVE MODE TIMING (CKE = 1)  
82  
SS  
70  
SCK  
83  
(CKP = 0)  
71  
72  
SCK  
(CKP = 1)  
80  
MSb  
LSb  
Bit 6 - - - - - -1  
SDO  
SDI  
75, 76  
77  
MSb In  
74  
Bit 6 - - - -1  
LSb In  
Note: Refer to Figure 17-3 for load conditions.  
2003 Microchip Technology Inc.  
DS39582B-page 189  
PIC16F87XA  
TABLE 17-9: SPI MODE REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ†  
Max Units Conditions  
70*  
TSSL2SCH,  
TSSL2SCL  
SS to SCK or SCK Input  
TCY  
ns  
71*  
72*  
73*  
TSCH  
TSCL  
SCK Input High Time (Slave mode)  
SCK Input Low Time (Slave mode)  
Setup Time of SDI Data Input to SCK Edge  
TCY + 20  
TCY + 20  
100  
ns  
ns  
ns  
TDIV2SCH,  
TDIV2SCL  
74*  
75*  
TSCH2DIL,  
TSCL2DIL  
Hold Time of SDI Data Input to SCK Edge  
100  
ns  
TDOR  
SDO Data Output Rise Time  
Standard(F)  
10  
25  
25  
50  
ns  
ns  
Extended(LF)  
76*  
77*  
78*  
TDOF  
SDO Data Output Fall Time  
10  
25  
50  
ns  
ns  
TSSH2DOZ  
TSCR  
SS to SDO Output High-Impedance  
10  
SCK Output Rise Time  
(Master mode)  
Standard(F)  
Extended(LF)  
10  
25  
25  
50  
ns  
ns  
79*  
80*  
TSCF  
SCK Output Fall Time (Master mode)  
10  
25  
ns  
ns  
TSCH2DOV,  
TSCL2DOV  
SDO Data Output Valid after  
SCK Edge  
Standard(F)  
Extended(LF)  
50  
145  
81*  
TDOV2SCH, SDO Data Output Setup to SCK Edge  
TDOV2SCL  
TCY  
ns  
82*  
83*  
TSSL2DOV  
SDO Data Output Valid after SS Edge  
SS after SCK Edge  
50  
ns  
ns  
TSCH2SSH,  
TSCL2SSH  
1.5 TCY + 40  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
FIGURE 17-15:  
I2C BUS START/STOP BITS TIMING  
SCL  
SDA  
93  
91  
90  
92  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 17-3 for load conditions.  
DS39582B-page 190  
2003 Microchip Technology Inc.  
PIC16F87XA  
TABLE 17-10: I2C BUS START/STOP BITS REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ Max Units  
Conditions  
90  
TSU:STA  
Start condition  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
ns  
ns  
ns  
ns  
Only relevant for Repeated Start  
condition  
Setup time  
91  
92  
93  
THD:STA  
TSU:STO  
THD:STO  
Start condition  
Hold time  
4000  
600  
After this period, the first clock pulse  
is generated  
Stop condition  
Setup time  
4700  
600  
Stop condition  
Hold time  
4000  
600  
FIGURE 17-16:  
I2C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 17-3 for load conditions.  
2003 Microchip Technology Inc.  
DS39582B-page 191  
PIC16F87XA  
TABLE 17-11: I2C BUS DATA REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Max  
Units  
Conditions  
100  
THIGH  
Clock High Time  
Clock Low Time  
100 kHz mode  
4.0  
0.6  
µs  
µs  
400 kHz mode  
SSP Module  
0.5 TCY  
4.7  
101  
TLOW  
100 kHz mode  
400 kHz mode  
SSP Module  
µs  
µs  
1.3  
0.5 TCY  
102  
103  
TR  
TF  
SDA and SCL Rise  
Time  
100 kHz mode  
400 kHz mode  
1000  
300  
ns  
ns  
20 + 0.1 CB  
Cb is specified to be from 10 to  
400 pF  
SDA and SCL Fall  
Time  
100 kHz mode  
400 kHz mode  
300  
300  
ns  
ns  
20 + 0.1 CB  
CB is specified to be from 10 to  
400 pF  
90  
TSU:STA  
THD:STA  
THD:DAT  
TSU:DAT  
TSU:STO  
TAA  
Start Condition Setup 100 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
µs  
µs  
µs  
µs  
ns  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
µs  
µs  
pF  
Only relevant for Repeated Start  
condition  
Time  
400 kHz mode  
91  
Start Condition Hold  
Time  
100 kHz mode  
400 kHz mode  
After this period, the first clock  
pulse is generated  
106  
107  
92  
Data Input Hold Time 100 kHz mode  
400 kHz mode  
0
0.9  
Data Input Setup Time 100 kHz mode  
400 kHz mode  
250  
100  
4.7  
0.6  
(Note 2)  
Stop Condition Setup 100 kHz mode  
Time  
400 kHz mode  
109  
110  
Output Valid from  
Clock  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
3500  
(Note 1)  
TBUF  
Bus Free Time  
4.7  
1.3  
Time the bus must be free before  
a new transmission can start  
CB  
Bus Capacitive Loading  
400  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns)  
of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.  
2
2
2: A fast mode (400 kHz) I C bus device can be used in a standard mode (100 kHz) I C bus system, but the requirement  
that, TSU:DAT 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW  
period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit  
2
to the SDA line, TR MAX. + TSU:DAT = 1000 + 250 = 1250 ns (according to the standard mode I C bus specification),  
before the SCL line is released.  
DS39582B-page 192  
2003 Microchip Technology Inc.  
PIC16F87XA  
FIGURE 17-17:  
USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
RC6/TX/CK  
pin  
121  
121  
RC7/RX/DT  
pin  
120  
122  
Note: Refer to Figure 17-3 for load conditions.  
TABLE 17-12: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min Typ† Max Units Conditions  
No.  
120  
TCKH2DTV SYNC XMIT (MASTER & SLAVE)  
Clock High to Data Out Valid  
Standard(F)  
80  
100  
45  
ns  
ns  
ns  
ns  
ns  
ns  
Extended(LF)  
121  
122  
TCKRF  
TDTRF  
Clock Out Rise Time and Fall Time Standard(F)  
(Master mode)  
Extended(LF)  
50  
Data Out Rise Time and Fall Time  
Standard(F)  
45  
Extended(LF)  
50  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
FIGURE 17-18:  
USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
RC6/TX/CK  
pin  
125  
RC7/RX/DT  
pin  
126  
Note: Refer to Figure 17-3 for load conditions.  
TABLE 17-13: USART SYNCHRONOUS RECEIVE REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
No.  
125  
TDTV2CKL SYNC RCV (MASTER & SLAVE)  
Data Setup before CK (DT setup time)  
15  
15  
ns  
ns  
126  
TCKL2DTL  
Data Hold after CK (DT hold time)  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
2003 Microchip Technology Inc.  
DS39582B-page 193  
PIC16F87XA  
TABLE 17-14: A/D CONVERTER CHARACTERISTICS:PIC16F873A/874A/876A/877A (INDUSTRIAL)  
PIC16LF873A/874A/876A/877A (INDUSTRIAL)  
Param  
No.  
Sym  
NR  
Characteristic  
Resolution  
Min  
Typ†  
Max  
10-bits  
< ± 1  
< ± 1  
< ± 2  
< ± 1  
Units  
Conditions  
A01  
bit VREF = VDD = 5.12V,  
VSS VAIN VREF  
A03  
A04  
A06  
A07  
EIL  
Integral Linearity Error  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
EDL  
Differential Linearity Error  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
EOFF Offset Error  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
EGN  
Gain Error  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
(3)  
A10  
A20  
A21  
A22  
A25  
A30  
Monotonicity  
2.0  
guaranteed  
V
V
V
V
VSS VAIN VREF  
VREF Reference Voltage (VREF+ – VREF-)  
VREF+ Reference Voltage High  
VDD + 0.3  
AVDD + 0.3V  
VREF+ – 2.0V  
VREF + 0.3V  
2.5  
AVDD – 2.5V  
AVSS – 0.3V  
VSS – 0.3V  
VREF- Reference Voltage Low  
VAIN  
ZAIN  
Analog Input Voltage  
Recommended Impedance of  
Analog Voltage Source  
k(Note 4)  
A40  
A50  
IAD  
A/D Conversion  
Current (VDD)  
PIC16F87XA  
PIC16LF87XA  
220  
90  
µA Average current  
consumption when A/D is  
on (Note 1)  
µA  
IREF  
VREF Input Current (Note 2)  
5
µA During VAIN acquisition.  
Based on differential of  
VHOLD to VAIN to charge  
CHOLD, see Section 11.1  
“A/D Acquisition  
Requirements”.  
µA During A/D conversion  
cycle  
150  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec  
includes any such leakage from the A/D module.  
2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.  
3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.  
4: Maximum allowed impedance for analog voltage source is 10 kΩ. This requires higher acquisition time.  
DS39582B-page 194  
2003 Microchip Technology Inc.  
PIC16F87XA  
FIGURE 17-19:  
A/D CONVERSION TIMING  
BSFADCON0,GO  
1 TCY  
(1)  
(TOSC/2)  
131  
130  
Q4  
132  
A/D CLK  
. . .  
. . .  
9
8
7
2
1
0
A/D DATA  
NEW_DATA  
OLD_DATA  
ADRES  
ADIF  
GO  
DONE  
Sampling Stopped  
SAMPLE  
Note: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP  
instruction to be executed.  
TABLE 17-15: A/D CONVERSION REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
130  
TAD  
A/D Clock Period PIC16F87XA  
1.6  
3.0  
2.0  
3.0  
µs TOSC based, VREF 3.0V  
µs TOSC based, VREF 2.0V  
µs A/D RC mode  
µs A/D RC mode  
TAD  
PIC16LF87XA  
PIC16F87XA  
PIC16LF87XA  
4.0  
6.0  
6.0  
9.0  
12  
131  
132  
TCNV  
TACQ  
Conversion Time (not including S/H time)  
(Note 1)  
Acquisition Time  
(Note 2)  
40  
µs  
10*  
µs The minimum time is the  
amplifier settling time. This may  
be used if the “new” input volt-  
age has not changed by more  
than 1 LSb (i.e., 20.0 mV @  
5.12V) from the last sampled  
voltage (as stated on CHOLD).  
134  
TGO  
Q4 to A/D Clock Start  
TOSC/2 §  
If the A/D clock source is  
selected as RC, a time of TCY is  
added before the A/D clock  
starts. This allows the SLEEP  
instruction to be executed.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
§
This specification ensured by design.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 11.1 “A/D Acquisition Requirements” for minimum conditions.  
2003 Microchip Technology Inc.  
DS39582B-page 195  
PIC16F87XA  
NOTES:  
DS39582B-page 196  
2003 Microchip Technology Inc.  
PIC16F87XA  
18.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.  
“Typical” represents the mean of the distribution at 25°C. “Maximum” or “minimum” represents (mean + 3σ) or (mean – 3σ)  
respectively, where σ is a standard deviation, over the whole temperature range.  
FIGURE 18-1:  
TYPICAL IDD vs. FOSC OVER VDD (HS MODE)  
7
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
6
5
4
3
2
1
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0
4
6
8
10  
12  
14  
16  
18  
20  
FOSC (MHz)  
FIGURE 18-2:  
MAXIMUM IDD vs. FOSC OVER VDD (HS MODE)  
8
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
7
6
5
4
3
2
1
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0
4
6
8
10  
12  
14  
16  
18  
20  
FOSC (MHz)  
2003 Microchip Technology Inc.  
DS39582B-page 197  
PIC16F87XA  
FIGURE 18-3:  
TYPICAL IDD vs. FOSC OVER VDD (XT MODE)  
1.8  
Typical:  
statistical mean @ 25°C  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.0  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
FOSC (MHz)  
FIGURE 18-4:  
MAXIMUM IDD vs. FOSC OVER VDD (XT MODE)  
2.5  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
2.0  
1.5  
1.0  
0.5  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.0  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
FOSC (MHz)  
DS39582B-page 198  
2003 Microchip Technology Inc.  
PIC16F87XA  
FIGURE 18-5:  
TYPICAL IDD vs. FOSC OVER VDD (LP MODE)  
70  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
60  
50  
40  
30  
20  
10  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0
20  
30  
40  
50  
60  
70  
80  
90  
100  
FOSC (kHz)  
FIGURE 18-6:  
MAXIMUM IDD vs. FOSC OVER VDD (LP MODE)  
120  
Typical:  
statistical mean @ 25°C  
5.5V  
5.0V  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
100  
80  
60  
40  
20  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0
20  
30  
40  
50  
60  
70  
80  
90  
100  
FOSC (kHz)  
2003 Microchip Technology Inc.  
DS39582B-page 199  
PIC16F87XA  
FIGURE 18-7:  
AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R (RC MODE, C = 20 pF, +25°C)  
4.5  
Operation above 4 MHz is not recommended  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.1 kOhm  
10 kOhm  
100 kOhm  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
(V)  
DD  
FIGURE 18-8:  
AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R  
(RC MODE, C = 100 pF, +25°C)  
2.5  
2.0  
1.5  
1.0  
0.5  
3.3 kOhm  
5.1 kOhm  
10 kOhm  
100 kOhm  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS39582B-page 200  
2003 Microchip Technology Inc.  
PIC16F87XA  
FIGURE 18-9:  
AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R  
(RC MODE, C = 300 pF, +25°C)  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
3.3 kOhm  
5.1 kOhm  
10 kOhm  
100 kOhm  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 18-10:  
IPD vs. VDD, -40°C TO +125°C (SLEEP MODE, ALL PERIPHERALS DISABLED)  
100  
Max (125°C)  
Max (85°C)  
10  
1
0.1  
0.01  
Typ (25°C)  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
0.001  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2003 Microchip Technology Inc.  
DS39582B-page 201  
PIC16F87XA  
FIGURE 18-11:  
TYPICAL AND MAXIMUM ITMR1 vs. VDD OVER TEMPERATURE (-10°C TO +70°C,  
TIMER1 WITH OSCILLATOR, XTAL = 32 kHz, C1 AND C2 = 47 pF)  
14  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-10°C to +70°C)  
Minimum: mean – 3σ (-10°C to +70°C)  
12  
10  
8
Max (+70°C)  
Typ (+25°C)  
Typ (25C)  
6
4
2
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 18-12:  
TYPICAL AND MAXIMUM IWDT vs. VDD OVER TEMPERATURE (WDT ENABLED)  
100  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
Max (+125°C)  
10  
Max (+85°C)  
Typ (+25°C)  
1
0.1  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS39582B-page 202  
2003 Microchip Technology Inc.  
PIC16F87XA  
FIGURE 18-13:  
IBOR vs. VDD OVER TEMPERATURE  
1,000  
Max (125°C)  
Typ (25°C)  
Device in  
Sleep  
Indeterminant  
State  
Device in  
Reset  
100  
Note: Device current in Reset  
depends on oscillator mode,  
frequency and circuit.  
Max (125°C)  
Typ (25°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
10  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 18-14:  
TYPICAL, MINIMUM AND MAXIMUM WDT PERIOD vs. VDD (-40°C TO +125°C)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
Max  
(125°C)  
Typ  
(25°C)  
Min  
(-40°C)  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2003 Microchip Technology Inc.  
DS39582B-page 203  
PIC16F87XA  
FIGURE 18-15:  
AVERAGE WDT PERIOD vs. VDD OVER TEMPERATURE (-40°C TO +125°C)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
125°C  
85°C  
25°C  
-40°C  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 18-16:  
TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO +125°C)  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
Max  
Typ (25°C)  
Min  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
1.5  
1.0  
0.5  
0.0  
0
5
10  
15  
20  
25  
IOH (-mA)  
DS39582B-page 204  
2003 Microchip Technology Inc.  
PIC16F87XA  
FIGURE 18-17:  
TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 3V, -40°C TO +125°C)  
3.5  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Max  
Typ (25°C)  
Min  
0.0  
0
5
10  
15  
20  
25  
IOH (-mA)  
FIGURE 18-18:  
TYPICAL, MINIMUM AND MAXIMUM VOL vs. IOL (VDD = 5V, -40°C TO +125°C)  
1.0  
0.9  
Max (125°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Max (85°C)  
Typ (25°C)  
Min (-40°C)  
0
5
10  
15  
20  
25  
IOL (-mA)  
2003 Microchip Technology Inc.  
DS39582B-page 205  
PIC16F87XA  
FIGURE 18-19:  
TYPICAL, MINIMUM AND MAXIMUM VOL vs. IOL (VDD = 3V, -40°C TO +125°C)  
3.0  
Max (125°C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Max (85°C)  
Typ (25°C)  
Min (-40°C)  
0
5
10  
15  
20  
25  
IOL (-mA)  
FIGURE 18-20:  
MINIMUM AND MAXIMUM VIN vs. VDD (TTL INPUT, -40°C TO +125°C)  
1.5  
1.4  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
VTH Max (-40°C)  
VTH Typ (25°C)  
V
TH Min (125°C)  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS39582B-page 206  
2003 Microchip Technology Inc.  
PIC16F87XA  
FIGURE 18-21:  
MINIMUM AND MAXIMUM VIN vs. VDD (ST INPUT, -40°C TO +125°C)  
4.0  
Typical: statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIH Max (125°C)  
VIH Min (-40°C)  
VIL Max (-40°C)  
VIL Min (125°C)  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 18-22:  
MINIMUM AND MAXIMUM VIN vs. VDD (I2C INPUT, -40°C TO +125°C)  
3.5  
VIH Max  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Minimum: mean – 3σ (-40°C to +125°C)  
VIL Max  
VMax  
VIH Min  
VIL Min  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2003 Microchip Technology Inc.  
DS39582B-page 207  
PIC16F87XA  
FIGURE 18-23:  
A/D NONLINEARITY vs. VREFH (VDD = VREFH, -40°C TO +125°C)  
4
3.5  
3
-40°C  
+25°C  
25C  
2.5  
2
+85°C  
85C  
1.5  
1
0.5  
0
+125°C  
125C  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD and VREFH (V)  
FIGURE 18-24:  
A/D NONLINEARITY vs. VREFH (VDD = 5V, -40°C TO +125°C)  
3
2.5  
2
1.5  
1
Max (-40°C to +125°C)  
)  
Typ (+25°C)  
0.5  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VREFH (V)  
DS39582B-page 208  
2003 Microchip Technology Inc.  
PIC16F87XA  
19.0 PACKAGING INFORMATION  
19.1 Package Marking Information  
40-Lead PDIP  
Example  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
PIC16F877A/P  
0310017  
YYWWNNN  
44-Lead TQFP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC16F877A  
/PT  
0310017  
44-Lead PLCC  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC16F877A  
-20/L  
0310017  
Legend: XX...X Customer specific information*  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard PICmicro device marking consists of Microchip part number, year code, week code, and  
traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check  
with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP  
price.  
2003 Microchip Technology Inc.  
DS39582B-page 209  
PIC16F87XA  
Package Marking Information (Cont’d)  
44-Lead QFN  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC16F877A  
-I/ML  
0310017  
28-Lead PDIP (Skinny DIP)  
Example  
PIC16F876A/SP  
0310017  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
28-Lead SOIC  
Example  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
PIC16F876A/SO  
0310017  
YYWWNNN  
28-Lead SSOP  
Example  
PIC16F876A/  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
SS  
YYWWNNN  
0310017  
28-Lead QFN  
Example  
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
16F873A  
-I/ML  
0310017  
DS39582B-page 210  
2003 Microchip Technology Inc.  
PIC16F87XA  
40-Lead Plastic Dual In-line (P) – 600 mil (PDIP)  
E1  
D
2
α
n
1
E
A2  
L
A
c
B1  
B
β
A1  
p
eB  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
40  
40  
.100  
.175  
.150  
2.54  
4.45  
3.81  
Top to Seating Plane  
A
.160  
.190  
.160  
4.06  
4.83  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.140  
.015  
.595  
.530  
2.045  
.120  
.008  
.030  
.014  
.620  
5
3.56  
0.38  
15.11  
13.46  
51.94  
3.05  
0.20  
0.76  
0.36  
15.75  
5
4.06  
.600  
.545  
2.058  
.130  
.012  
.050  
.018  
.650  
10  
.625  
.560  
2.065  
.135  
.015  
.070  
.022  
.680  
15  
15.24  
13.84  
52.26  
3.30  
0.29  
1.27  
0.46  
16.51  
10  
15.88  
14.22  
52.45  
3.43  
0.38  
1.78  
0.56  
17.27  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
§
eB  
α
β
Mold Draft Angle Bottom  
* Controlling Parameter  
§ Significant Characteristic  
5
10  
15  
5
10  
15  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-011  
Drawing No. C04-016  
2003 Microchip Technology Inc.  
DS39582B-page 211  
PIC16F87XA  
44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)  
E
E1  
#leads=n1  
p
D1  
D
2
1
B
n
°
CH x 45  
α
A
c
φ
β
A1  
A2  
L
(F)  
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
44  
MAX  
n
p
Number of Pins  
Pitch  
44  
.031  
11  
0.80  
11  
Pins per Side  
Overall Height  
n1  
A
.039  
.037  
.002  
.018  
.043  
.039  
.004  
.024  
.039  
3.5  
.047  
1.00  
0.95  
1.10  
1.00  
0.10  
0.60  
1.20  
Molded Package Thickness  
Standoff  
A2  
A1  
L
(F)  
φ
.041  
.006  
.030  
1.05  
0.15  
0.75  
§
0.05  
0.45  
1.00  
0
Foot Length  
Footprint (Reference)  
Foot Angle  
0
.463  
.463  
.390  
.390  
.004  
.012  
.025  
5
7
.482  
.482  
.398  
.398  
.008  
.017  
.045  
15  
3.5  
12.00  
12.00  
10.00  
10.00  
0.15  
0.38  
0.89  
10  
7
12.25  
12.25  
10.10  
10.10  
0.20  
0.44  
1.14  
15  
Overall Width  
E
D
.472  
.472  
.394  
.394  
.006  
.015  
.035  
10  
11.75  
11.75  
9.90  
9.90  
0.09  
0.30  
0.64  
5
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
E1  
D1  
c
Lead Width  
B
CH  
α
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-026  
Drawing No. C04-076  
DS39582B-page 212  
2003 Microchip Technology Inc.  
PIC16F87XA  
44-Lead Plastic Leaded Chip Carrier (L) – Square (PLCC)  
E
E1  
#leads=n1  
D
D1  
n 1 2  
CH2 x 45°  
CH1 x 45°  
α
A3  
A2  
A
35°  
B1  
B
c
A1  
β
p
E2  
D2  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
44  
44  
.050  
11  
1.27  
11  
Pins per Side  
Overall Height  
n1  
A
.165  
.145  
.020  
.024  
.040  
.000  
.685  
.685  
.650  
.650  
.590  
.590  
.008  
.026  
.013  
0
.173  
.153  
.028  
.029  
.045  
.005  
.690  
.690  
.653  
.653  
.620  
.620  
.011  
.029  
.020  
5
.180  
4.19  
3.68  
0.51  
0.61  
1.02  
0.00  
17.40  
17.40  
16.51  
16.51  
14.99  
14.99  
0.20  
0.66  
0.33  
0
4.39  
3.87  
0.71  
0.74  
1.14  
0.13  
17.53  
17.53  
16.59  
16.59  
15.75  
15.75  
0.27  
0.74  
0.51  
5
4.57  
Molded Package Thickness  
Standoff  
A2  
A1  
A3  
CH1  
CH2  
E
.160  
.035  
.034  
.050  
.010  
.695  
.695  
.656  
.656  
.630  
.630  
.013  
.032  
.021  
10  
4.06  
0.89  
0.86  
1.27  
0.25  
17.65  
17.65  
16.66  
16.66  
16.00  
16.00  
0.33  
0.81  
0.53  
10  
§
Side 1 Chamfer Height  
Corner Chamfer 1  
Corner Chamfer (others)  
Overall Width  
Overall Length  
D
Molded Package Width  
Molded Package Length  
Footprint Width  
E1  
D1  
E2  
D2  
c
Footprint Length  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
B1  
B
α
β
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-047  
Drawing No. C04-048  
2003 Microchip Technology Inc.  
DS39582B-page 213  
PIC16F87XA  
44-Lead Plastic Quad Flat No Lead Package (ML) 8x8 mm Body (QFN)  
EXPOSED  
E
METAL  
PAD  
p
D
D2  
2
1
B
n
PIN 1  
INDEX ON  
OPTIONAL PIN 1  
INDEX ON  
TOP MARKING  
E2  
L
EXPOSED PAD  
TOP VIEW  
BOTTOM VIEW  
A
A1  
A3  
Units  
INCHES  
MILLIMETERS*  
NOM  
Dimension Limits  
MIN  
NOM  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
44  
44  
.026 BSC  
.035  
0.65 BSC  
Overall Height  
Standoff  
A
A1  
A3  
E
.031  
.000  
.039  
0.80  
0.90  
0.02  
1.00  
.001  
.002  
0
0.05  
Base Thickness  
Overall Width  
Exposed Pad Width  
Overall Length  
Exposed Pad Length  
Lead Width  
.010 REF  
.315 BSC  
.268  
0.25 REF  
8.00 BSC  
6.80  
E2  
D
.262  
.274  
6.65  
6.95  
.315 BSC  
.268  
8.00 BSC  
6.80  
D2  
B
.262  
.012  
.014  
.274  
.013  
.018  
6.65  
0.30  
0.35  
6.95  
0.35  
0.45  
.013  
0.33  
Lead Length  
L
.016  
0.40  
*Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed .010" (0.254mm) per side.  
JEDEC equivalent: M0-220  
Drawing No. C04-103  
DS39582B-page 214  
2003 Microchip Technology Inc.  
PIC16F87XA  
28-Lead Skinny Plastic Dual In-line (SP) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
B1  
β
A1  
eB  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
28  
28  
.100  
.150  
.130  
2.54  
3.81  
3.30  
Top to Seating Plane  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A
A2  
A1  
E
.140  
.160  
3.56  
4.06  
.125  
.015  
.300  
.275  
1.345  
.125  
.008  
.040  
.016  
.320  
.135  
3.18  
0.38  
7.62  
6.99  
34.16  
3.18  
0.20  
1.02  
0.41  
8.13  
5
3.43  
.310  
.285  
1.365  
.130  
.012  
.053  
.019  
.350  
10  
.325  
.295  
1.385  
.135  
.015  
.065  
.022  
.430  
15  
7.87  
7.24  
34.67  
3.30  
0.29  
1.33  
0.48  
8.89  
10  
8.26  
7.49  
35.18  
3.43  
0.38  
1.65  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
5
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-095  
Drawing No. C04-070  
2003 Microchip Technology Inc.  
DS39582B-page 215  
PIC16F87XA  
28-Lead Plastic Small Outline (SO) – Wide, 300 mil (SOIC)  
E
E1  
p
D
B
2
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
28  
28  
.050  
.099  
.091  
.008  
.407  
.295  
.704  
.020  
.033  
4
1.27  
2.50  
2.31  
0.20  
10.34  
7.49  
17.87  
0.50  
0.84  
4
Overall Height  
A
.093  
.104  
2.36  
2.64  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.088  
.004  
.394  
.288  
.695  
.010  
.016  
0
.094  
.012  
.420  
.299  
.712  
.029  
.050  
8
2.24  
0.10  
10.01  
7.32  
17.65  
0.25  
0.41  
0
2.39  
0.30  
10.67  
7.59  
18.08  
0.74  
1.27  
8
§
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle Top  
c
Lead Thickness  
Lead Width  
.009  
.014  
0
.011  
.017  
12  
.013  
.020  
15  
0.23  
0.36  
0
0.28  
0.42  
12  
0.33  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-013  
Drawing No. C04-052  
DS39582B-page 216  
2003 Microchip Technology Inc.  
PIC16F87XA  
28-Lead Plastic Shrink Small Outline (SS) – 209 mil, 5.30 mm (SSOP)  
E
E1  
p
D
B
2
1
n
α
A
c
A2  
A1  
φ
L
β
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
28  
MAX  
n
p
Number of Pins  
Pitch  
28  
.026  
.073  
.068  
.006  
.309  
.207  
.402  
.030  
.007  
4
0.65  
Overall Height  
A
.068  
.064  
.002  
.299  
.201  
.396  
.022  
.004  
0
.078  
1.73  
1.63  
1.85  
1.73  
0.15  
7.85  
5.25  
10.20  
0.75  
0.18  
101.60  
0.32  
5
1.98  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.072  
.010  
.319  
.212  
.407  
.037  
.010  
8
1.83  
0.25  
8.10  
5.38  
10.34  
0.94  
0.25  
203.20  
0.38  
10  
§
0.05  
7.59  
5.11  
10.06  
0.56  
0.10  
0.00  
0.25  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Foot Length  
L
c
Lead Thickness  
Foot Angle  
φ
Lead Width  
B
α
β
.010  
0
.013  
5
.015  
10  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-150  
Drawing No. C04-073  
2003 Microchip Technology Inc.  
DS39582B-page 217  
PIC16F87XA  
28-Lead Plastic Quad Flat No Lead Package (ML) 6x6 mm Body, Punch Singulated (QFN)  
EXPOSED  
METAL  
PADS  
E
E1  
Q
D1  
D
D2  
p
2
1
B
n
R
E2  
BOTTOM VIEW  
CH X 45°  
L
TOP VIEW  
α
A2  
A
A1  
A3  
Units  
INCHES  
NOM  
MILLIMETERS*  
NOM  
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
28  
28  
.026 BSC  
.033  
0.65 BSC  
0.85  
Overall Height  
A
.039  
1.00  
Molded Package Thickness  
Standoff  
A2  
A1  
A3  
E
.026  
.031  
.002  
0.65  
0.80  
0.05  
.000  
.140  
.0004  
0.00  
0.01  
0.20 REF  
6.00 BSC  
5.75 BSC  
3.70  
Base Thickness  
Overall Width  
.008 REF  
.236 BSC  
.226 BSC  
.146  
Molded Package Width  
Exposed Pad Width  
Overall Length  
E1  
E2  
D
.152  
3.55  
3.85  
.236 BSC  
.226 BSC  
.146  
6.00 BSC  
5.75 BSC  
3.70  
Molded Package Length  
Exposed Pad Length  
Lead Width  
D1  
D2  
B
.140  
.009  
.020  
.005  
.012  
.009  
.152  
.014  
.030  
.010  
.026  
.024  
12°  
3.55  
0.23  
0.50  
0.13  
0.30  
0.24  
3.85  
0.35  
0.75  
0.23  
0.65  
0.60  
12°  
.011  
0.28  
Lead Length  
L
.024  
0.60  
Tie Bar Width  
R
.007  
0.17  
Q
Tie Bar Length  
.016  
0.40  
Chamfer  
CH  
α
.017  
0.42  
Mold Draft Angle Top  
*Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed .010" (0.254mm) per side.  
JEDEC equivalent: mMO-220  
Drawing No. C04-114  
DS39582B-page 218  
2003 Microchip Technology Inc.  
PIC16F87XA  
APPENDIX A: REVISION HISTORY  
Revision A (November 2001)  
APPENDIX B: DEVICE  
DIFFERENCES  
The differences between the devices in this data sheet  
are listed in Table B-1.  
Original data sheet for PIC16F87XA devices. The  
devices presented are enhanced versions of the  
PIC16F87X microcontrollers discussed in the  
PIC16F87X Data Sheet” (DS30292).  
Revision B (October 2003)  
This revision includes the DC and AC Characteristics  
Graphs and Tables. The Electrical Specifications in  
Section 17.0 “Electrical Characteristics” have been  
updated and there have been minor corrections to the  
data sheet text.  
TABLE B-1:  
DIFFERENCES BETWEEN DEVICES IN THE PIC16F87XA FAMILY  
PIC16F873A  
PIC16F874A  
PIC16F876A  
PIC16F877A  
Flash Program Memory  
(14-bit words)  
4K  
4K  
8K  
8K  
Data Memory (bytes)  
EEPROM Data Memory (bytes)  
Interrupts  
192  
128  
192  
128  
368  
256  
368  
256  
15  
14  
15  
14  
I/O Ports  
Ports A, B, C  
MSSP, USART  
No  
Ports A, B, C, D, E  
MSSP, USART  
Yes  
Ports A, B, C  
MSSP, USART  
No  
Ports A, B, C, D, E  
MSSP, USART  
Yes  
Serial Communications  
Parallel Slave Port  
10-bit Analog-to-Digital Module  
Packages  
5 input channels  
8 input channels  
5 input channels 8 input channels  
28-pin PDIP  
28-pin SOIC  
28-pin SSOP  
28-pin QFN  
40-pin PDIP  
44-pin PLCC  
44-pin TQFP  
44-pin QFN  
28-pin PDIP  
28-pin SOIC  
28-pin SSOP  
28-pin QFN  
40-pin PDIP  
44-pin PLCC  
44-pin TQFP  
44-pin QFN  
2003 Microchip Technology Inc.  
DS39582B-page 219  
PIC16F87XA  
APPENDIX C: CONVERSION  
CONSIDERATIONS  
Considerations for converting from previous versions  
of devices to the ones listed in this data sheet are listed  
in Table C-1.  
TABLE C-1:  
CONVERSION CONSIDERATIONS  
Characteristic  
PIC16C7X  
PIC16F87X  
PIC16F87XA  
Pins  
28/40  
3
28/40  
3
28/40  
3
Timers  
Interrupts  
Communication  
11 or 12  
13 or 14  
14 or 15  
PSP, USART, SSP  
(SPI, I2C Slave)  
PSP, USART, SSP  
PSP, USART, SSP  
(SPI, I2C Master/Slave)  
(SPI, I2C Master/Slave)  
Frequency  
Voltage  
A/D  
20 MHz  
20 MHz  
20 MHz  
2.5V-5.5V  
2.2V-5.5V  
2.0V-5.5V  
8-bit,  
10-bit,  
10-bit,  
4 conversion clock selects  
4 conversion clock selects  
7 conversion clock selects  
CCP  
2
2
2
2
Comparator  
Comparator Voltage  
Reference  
Yes  
Program Memory  
4K, 8K EPROM  
4K, 8K Flash  
(Erase/Write on  
single-word)  
4K, 8K Flash  
(Erase/Write on  
four-word blocks)  
RAM  
192, 368 bytes  
None  
192, 368 bytes  
128, 256 bytes  
192, 368 bytes  
128, 256 bytes  
On/Off  
EEPROM Data  
Code Protection  
On/Off  
Segmented, starting at end  
of program memory  
Program Memory  
Write Protection  
On/Off  
Segmented, starting at  
beginning of  
program memory  
Other  
In-Circuit Debugger,  
Low-Voltage Programming  
In-Circuit Debugger,  
Low-Voltage Programming  
DS39582B-page 220  
2003 Microchip Technology Inc.  
PIC16F87XA  
INDEX  
Interrupt Logic .......................................................... 153  
MSSP (I C Mode) ...................................................... 80  
A
2
A/D ................................................................................... 127  
Acquisition Requirements ........................................ 130  
ADCON0 Register .................................................... 127  
ADCON1 Register .................................................... 127  
ADIF Bit .................................................................... 129  
ADRESH Register .................................................... 127  
ADRESL Register .................................................... 127  
Analog Port Pins .................................................. 49, 51  
Associated Registers and Bits ................................. 133  
Calculating Acquisition Time .................................... 130  
Configuring Analog Port Pins ................................... 131  
Configuring the Interrupt .......................................... 129  
Configuring the Module ............................................ 129  
Conversion Clock ..................................................... 131  
Conversions ............................................................. 132  
Converter Characteristics ........................................ 194  
Effects of a Reset ..................................................... 133  
GO/DONE Bit ........................................................... 129  
Internal Sampling Switch (Rss) Impedance ............. 130  
Operation During Sleep ........................................... 133  
Result Registers ....................................................... 132  
Source Impedance ................................................... 130  
A/D Conversion Requirements ......................................... 195  
Absolute Maximum Ratings ............................................. 173  
ACKSTAT ......................................................................... 101  
ADCON0 Register .............................................................. 19  
ADCON1 Register .............................................................. 20  
Addressable Universal Synchronous Asynchronous  
Receiver Transmitter. See USART.  
MSSP (SPI Mode) ..................................................... 71  
On-Chip Reset Circuit .............................................. 147  
PIC16F873A/PIC16F876A Architecture ...................... 6  
PIC16F874A/PIC16F877A Architecture ...................... 7  
PORTC  
Peripheral Output Override  
(RC2:0, RC7:5) Pins .................................. 46  
Peripheral Output Override (RC4:3) Pins .......... 46  
PORTD (in I/O Port Mode) ......................................... 48  
PORTD and PORTE (Parallel Slave Port) ................. 51  
PORTE (In I/O Port Mode) ......................................... 49  
RA3:RA0 Pins ............................................................ 41  
RA4/T0CKI Pin .......................................................... 42  
RA5 Pin ..................................................................... 42  
RB3:RB0 Pins ............................................................ 44  
RB7:RB4 Pins ............................................................ 44  
RC Oscillator Mode .................................................. 146  
Recommended MCLR Circuit .................................. 148  
Simplified PWM Mode ............................................... 67  
Timer0/WDT Prescaler .............................................. 53  
Timer1 ....................................................................... 58  
Timer2 ....................................................................... 61  
USART Receive ................................................117, 119  
USART Transmit ...................................................... 115  
Watchdog Timer ...................................................... 155  
BOR. See Brown-out Reset.  
BRG. See Baud Rate Generator.  
BRGH Bit ......................................................................... 113  
Brown-out Reset (BOR) .................... 143, 147, 148, 149, 150  
BOR Status (BOR Bit) ............................................... 29  
Bus Collision During a Repeated Start Condition ............ 108  
Bus Collision During a Start Condition ............................. 106  
Bus Collision During a Stop Condition ............................. 109  
Bus Collision Interrupt Flag bit, BCLIF ............................... 28  
ADRESH Register .............................................................. 19  
ADRESL Register .............................................................. 20  
Analog-to-Digital Converter. See A/D.  
Application Notes  
AN552 (Implementing Wake-up  
on Key Stroke) ................................................... 44  
AN556 (Implementing a Table Read) ........................ 30  
Assembler  
MPASM Assembler .................................................. 167  
Asynchronous Reception  
C
C Compilers  
MPLAB C17 ............................................................. 168  
MPLAB C18 ............................................................. 168  
MPLAB C30 ............................................................. 168  
Capture/Compare/PWM (CCP) ......................................... 63  
Associated Registers  
Associated Registers ....................................... 118, 120  
Asynchronous Transmission  
Associated Registers ............................................... 116  
Capture, Compare and Timer1 .......................... 68  
PWM and Timer2 ............................................... 69  
Capture Mode ............................................................ 65  
CCP1IF .............................................................. 65  
Prescaler ........................................................... 65  
CCP Timer Resources ............................................... 63  
Compare  
B
Banking, Data Memory ................................................. 16, 22  
Baud Rate Generator ......................................................... 97  
Associated Registers ............................................... 113  
BCLIF ................................................................................. 28  
BF ..................................................................................... 101  
Block Diagrams  
Special Event Trigger Output of CCP1 .............. 66  
Special Event Trigger Output of CCP2 .............. 66  
Compare Mode .......................................................... 66  
Software Interrupt Mode .................................... 66  
Special Event Trigger ........................................ 66  
Interaction of Two CCP Modules (table) .................... 63  
PWM Mode ................................................................ 67  
Duty Cycle ......................................................... 67  
Example Frequencies/Resolutions (table) ......... 68  
PWM Period ...................................................... 67  
Special Event Trigger and A/D Conversions ............. 66  
A/D ........................................................................... 129  
Analog Input Model .......................................... 130, 139  
Baud Rate Generator ................................................. 97  
Capture Mode Operation ........................................... 65  
Comparator I/O Operating Modes ............................ 136  
Comparator Output .................................................. 138  
Comparator Voltage Reference ............................... 142  
Compare Mode Operation ......................................... 66  
Crystal/Ceramic Resonator Operation  
(HS, XT or LP Osc Configuration) .................... 145  
External Clock Input Operation  
(HS, XT or LP Osc Configuration) .................... 145  
2003 Microchip Technology Inc.  
DS39582B-page 221  
PIC16F87XA  
Capture/Compare/PWM Requirements  
Data EEPROM Memory  
(CCP1 and CCP2) ....................................................186  
CCP. See Capture/Compare/PWM.  
Associated Registers ................................................. 39  
EEADR Register ........................................................ 33  
EEADRH Register ..................................................... 33  
EECON1 Register ...................................................... 33  
EECON2 Register ...................................................... 33  
Operation During Code-Protect ................................. 39  
Protection Against Spurious Writes ........................... 39  
Reading ..................................................................... 35  
Write Complete Flag Bit (EEIF) ................................. 33  
Writing ........................................................................ 35  
Data Memory ..................................................................... 16  
Bank Select (RP1:RP0 Bits) .................................16, 22  
General Purpose Registers ....................................... 16  
Register File Map ..................................................17, 18  
Special Function Registers ........................................ 19  
DC and AC Characteristics Graphs and Tables .............. 197  
DC Characteristics ....................................................175179  
Demonstration Boards  
PICDEM 1 ................................................................ 170  
PICDEM 17 .............................................................. 170  
PICDEM 18R PIC18C601/801 ................................. 171  
PICDEM 2 Plus ........................................................ 170  
PICDEM 3 PIC16C92X ............................................ 170  
PICDEM 4 ................................................................ 170  
PICDEM LIN PIC16C43X ........................................ 171  
PICDEM USB PIC16C7X5 ...................................... 171  
PICDEM.net Internet/Ethernet ................................. 170  
Development Support ...................................................... 167  
Device Differences ........................................................... 219  
Device Overview .................................................................. 5  
Direct Addressing ............................................................... 31  
CCP1CON Register ...........................................................19  
CCP2CON Register ...........................................................19  
CCPR1H Register ........................................................ 19, 63  
CCPR1L Register ......................................................... 19, 63  
CCPR2H Register ........................................................ 19, 63  
CCPR2L Register ......................................................... 19, 63  
CCPxM0 Bit ........................................................................64  
CCPxM1 Bit ........................................................................64  
CCPxM2 Bit ........................................................................64  
CCPxM3 Bit ........................................................................64  
CCPxX Bit ..........................................................................64  
CCPxY Bit ..........................................................................64  
CLKO and I/O Timing Requirements ...............................183  
CMCON Register ...............................................................20  
Code Examples  
Call of a Subroutine in Page 1 from Page 0 ...............30  
Indirect Addressing ....................................................31  
Initializing PORTA ......................................................41  
Loading the SSPBUF (SSPSR) Register ...................74  
Reading Data EEPROM .............................................35  
Reading Flash Program Memory ...............................36  
Saving Status, W and PCLATH Registers  
in RAM ............................................................154  
Writing to Data EEPROM ...........................................35  
Writing to Flash Program Memory .............................38  
Code Protection ....................................................... 143, 157  
Comparator Module .........................................................135  
Analog Input Connection  
Considerations .................................................139  
Associated Registers ...............................................140  
Configuration ............................................................136  
Effects of a Reset .....................................................139  
Interrupts ..................................................................138  
Operation .................................................................137  
Operation During Sleep ............................................139  
Outputs .....................................................................137  
Reference .................................................................137  
Response Time ........................................................137  
Comparator Specifications ...............................................180  
Comparator Voltage Reference .......................................141  
Associated Registers ...............................................142  
Computed GOTO ...............................................................30  
Configuration Bits .............................................................143  
Configuration Word ..........................................................144  
Conversion Considerations ..............................................220  
CVRCON Register .............................................................20  
E
EEADR Register ...........................................................21, 33  
EEADRH Register .........................................................21, 33  
EECON1 Register .........................................................21, 33  
EECON2 Register .........................................................21, 33  
EEDATA Register .............................................................. 21  
EEDATH Register .............................................................. 21  
Electrical Characteristics .................................................. 173  
Errata ................................................................................... 4  
Evaluation and Programming Tools ................................. 171  
External Clock Timing Requirements ............................... 182  
External Interrupt Input (RB0/INT). See Interrupt Sources.  
External Reference Signal ............................................... 137  
F
Firmware Instructions ....................................................... 159  
Flash Program Memory  
D
Associated Registers ................................................. 39  
EECON1 Register ...................................................... 33  
EECON2 Register ...................................................... 33  
Reading ..................................................................... 36  
Writing ........................................................................ 37  
FSR Register ..........................................................19, 20, 31  
Data EEPROM and Flash Program Memory  
EEADR Register ........................................................33  
EEADRH Register ......................................................33  
EECON1 Register ......................................................33  
EECON2 Register ......................................................33  
EEDATA Register ......................................................33  
EEDATH Register ......................................................33  
G
General Call Address Support ........................................... 94  
DS39582B-page 222  
2003 Microchip Technology Inc.  
PIC16F87XA  
RRF ......................................................................... 164  
SLEEP ..................................................................... 164  
SUBLW .................................................................... 164  
SUBWF .................................................................... 164  
SWAPF .................................................................... 165  
XORLW ................................................................... 165  
XORWF ................................................................... 165  
Summary Table ....................................................... 160  
INT Interrupt (RB0/INT). See Interrupt Sources.  
I
I/O Ports ............................................................................. 41  
I2C Bus Data Requirements ............................................ 192  
2
I C Bus Start/Stop Bits Requirements ............................. 191  
2
I C Mode  
Registers .................................................................... 80  
2
I C Mode ............................................................................ 80  
ACK Pulse ............................................................ 84, 85  
Acknowledge Sequence Timing ............................... 104  
Baud Rate Generator ................................................. 97  
Bus Collision  
INTCON Register ............................................................... 24  
GIE Bit ....................................................................... 24  
INTE Bit ..................................................................... 24  
INTF Bit ..................................................................... 24  
PEIE Bit ..................................................................... 24  
RBIE Bit ..................................................................... 24  
RBIF Bit ................................................................24, 44  
TMR0IE Bit ................................................................ 24  
TMR0IF Bit ................................................................. 24  
Repeated Start Condition ................................. 108  
Start Condition ................................................. 106  
Stop Condition ................................................. 109  
Clock Arbitration ......................................................... 98  
Effect of a Reset ...................................................... 105  
General Call Address Support ................................... 94  
Master Mode .............................................................. 95  
Operation ........................................................... 96  
Repeated Start Timing ..................................... 100  
Master Mode Reception ........................................... 101  
Master Mode Start Condition ..................................... 99  
Master Mode Transmission ...................................... 101  
Multi-Master Communication, Bus Collision  
2
Inter-Integrated Circuit. See I C.  
Internal Reference Signal ................................................ 137  
Internal Sampling Switch (Rss) Impedance ..................... 130  
Interrupt Sources ......................................................143, 153  
Interrupt-on-Change (RB7:RB4) ................................ 44  
RB0/INT Pin, External .....................................9, 11, 154  
TMR0 Overflow ........................................................ 154  
USART Receive/Transmit Complete ....................... 111  
Interrupts  
Bus Collision Interrupt ................................................ 28  
Synchronous Serial Port Interrupt .............................. 26  
Interrupts, Context Saving During .................................... 154  
Interrupts, Enable Bits  
and Arbitration .................................................. 105  
Multi-Master Mode ................................................... 105  
Read/Write Bit Information (R/W Bit) ................... 84, 85  
Serial Clock (RC3/SCK/SCL) ..................................... 85  
Slave Mode ................................................................ 84  
Addressing ......................................................... 84  
Reception ........................................................... 85  
Transmission ...................................................... 85  
Sleep Operation ....................................................... 105  
Stop Condition Timing .............................................. 104  
ID Locations ............................................................. 143, 157  
In-Circuit Debugger .................................................. 143, 157  
Resources ................................................................ 157  
In-Circuit Serial Programming (ICSP) ...................... 143, 158  
INDF Register .........................................................19, 20, 31  
Indirect Addressing ............................................................ 31  
FSR Register ............................................................. 16  
Instruction Format ............................................................ 159  
Instruction Set .................................................................. 159  
ADDLW .................................................................... 161  
ADDWF .................................................................... 161  
ANDLW .................................................................... 161  
ANDWF .................................................................... 161  
BCF .......................................................................... 161  
BSF .......................................................................... 161  
BTFSC ..................................................................... 161  
BTFSS ..................................................................... 161  
CALL ........................................................................ 162  
CLRF ........................................................................ 162  
CLRW ...................................................................... 162  
CLRWDT .................................................................. 162  
COMF ...................................................................... 162  
DECF ....................................................................... 162  
DECFSZ ................................................................... 163  
GOTO ...................................................................... 163  
INCF ......................................................................... 163  
INCFSZ .................................................................... 163  
IORLW ..................................................................... 163  
IORWF ..................................................................... 163  
RETURN .................................................................. 164  
RLF .......................................................................... 164  
Global Interrupt Enable (GIE Bit) ........................24, 153  
Interrupt-on-Change (RB7:RB4)  
Enable (RBIE Bit) .......................................24, 154  
Peripheral Interrupt Enable (PEIE Bit) ....................... 24  
RB0/INT Enable (INTE Bit) ........................................ 24  
TMR0 Overflow Enable (TMR0IE Bit) ........................ 24  
Interrupts, Flag Bits  
Interrupt-on-Change (RB7:RB4) Flag  
(RBIF Bit) ..............................................24, 44, 154  
RB0/INT Flag (INTF Bit) ............................................ 24  
TMR0 Overflow Flag (TMR0IF Bit) .....................24, 154  
L
Loading of PC .................................................................... 30  
Low-Voltage ICSP Programming ..................................... 158  
Low-Voltage In-Circuit Serial Programming ..................... 143  
M
Master Clear (MCLR) ........................................................... 8  
MCLR Reset, Normal Operation ...............147, 149, 150  
MCLR Reset, Sleep ..................................147, 149, 150  
Master Synchronous Serial Port (MSSP). See MSSP.  
MCLR ............................................................................... 148  
MCLR/VPP ......................................................................... 10  
Memory Organization ........................................................ 15  
Data EEPROM Memory ............................................. 33  
Data Memory ............................................................. 16  
Flash Program Memory ............................................. 33  
Program Memory ....................................................... 15  
MPLAB ASM30 Assembler, Linker, Librarian .................. 168  
MPLAB ICD 2 In-Circuit Debugger .................................. 169  
MPLAB ICE 2000 High-Performance Universal  
In-Circuit Emulator ................................................... 169  
2003 Microchip Technology Inc.  
DS39582B-page 223  
PIC16F87XA  
MPLAB ICE 4000 High-Performance Universal  
In-Circuit Emulator ...................................................169  
MPLAB Integrated Development  
PICSTART Plus Development Programmer .................... 169  
PIE1 Register ................................................................20, 25  
PIE2 Register ................................................................20, 27  
Pinout Descriptions  
PIC16F873A/PIC16F876A ........................................... 8  
PIR1 Register ...............................................................19, 26  
PIR2 Register ...............................................................19, 28  
POP ................................................................................... 30  
POR. See Power-on Reset.  
Environment Software ..............................................167  
MPLINK Object Linker/MPLIB Object Librarian ...............168  
MSSP .................................................................................71  
2
2
I C Mode. See I C.  
SPI Mode ...................................................................71  
SPI Mode. See SPI.  
MSSP Module  
PORTA ...........................................................................8, 10  
Associated Registers ................................................. 43  
Functions ................................................................... 43  
PORTA Register ...................................................19, 41  
TRISA Register .......................................................... 41  
PORTB ...........................................................................9, 11  
Associated Registers ................................................. 45  
Functions ................................................................... 45  
PORTB Register ...................................................19, 44  
Pull-up Enable (RBPU Bit) ......................................... 23  
RB0/INT Edge Select (INTEDG Bit) .......................... 23  
RB0/INT Pin, External .....................................9, 11, 154  
RB7:RB4 Interrupt-on-Change ................................ 154  
RB7:RB4 Interrupt-on-Change Enable  
Clock Stretching .........................................................90  
Clock Synchronization and the CKP Bit .....................91  
Control Registers (General) .......................................71  
Operation ...................................................................84  
Overview ....................................................................71  
SPI Master Mode .......................................................76  
SPI Slave Mode .........................................................77  
SSPBUF .....................................................................76  
SSPSR .......................................................................76  
Multi-Master Mode ...........................................................105  
O
Opcode Field Descriptions ...............................................159  
OPTION_REG Register .....................................................23  
INTEDG Bit ................................................................23  
PS2:PS0 Bits ..............................................................23  
PSA Bit .......................................................................23  
RBPU Bit ....................................................................23  
T0CS Bit .....................................................................23  
T0SE Bit .....................................................................23  
OSC1/CLKI Pin .............................................................. 8, 10  
OSC2/CLKO Pin ............................................................ 8, 10  
Oscillator Configuration  
HS .................................................................... 145, 149  
LP ..................................................................... 145, 149  
RC ............................................................ 145, 146, 149  
XT ..................................................................... 145, 149  
Oscillator Selection ..........................................................143  
Oscillator Start-up Timer (OST) ............................... 143, 148  
Oscillator, WDT ................................................................155  
Oscillators  
(RBIE Bit) ....................................................24, 154  
RB7:RB4 Interrupt-on-Change Flag  
(RBIF Bit) ..............................................24, 44, 154  
TRISB Register .....................................................21, 44  
PORTB Register ................................................................ 21  
PORTC ...........................................................................9, 12  
Associated Registers ................................................. 47  
Functions ................................................................... 47  
PORTC Register ...................................................19, 46  
RC3/SCK/SCL Pin ..................................................... 85  
RC6/TX/CK Pin ........................................................ 112  
RC7/RX/DT Pin .................................................112, 113  
TRISC Register ...................................................46, 111  
PORTD .........................................................................13, 51  
Associated Registers ................................................. 48  
Functions ................................................................... 48  
Parallel Slave Port (PSP) Function ............................ 48  
PORTD Register ...................................................19, 48  
TRISD Register .......................................................... 48  
PORTE .............................................................................. 13  
Analog Port Pins ...................................................49, 51  
Associated Registers ................................................. 50  
Functions ................................................................... 49  
Input Buffer Full Status (IBF Bit) ................................ 50  
Input Buffer Overflow (IBOV Bit) ................................ 50  
Output Buffer Full Status (OBF Bit) ........................... 50  
PORTE Register ...................................................19, 49  
PSP Mode Select (PSPMODE Bit) ...........48, 49, 50, 51  
RE0/RD/AN5 Pin ..................................................49, 51  
RE1/WR/AN6 Pin ..................................................49, 51  
RE2/CS/AN7 Pin ...................................................49, 51  
TRISE Register .......................................................... 49  
Postscaler, WDT  
Capacitor Selection ..................................................146  
Ceramic Resonator Selection ..................................145  
Crystal and Ceramic Resonators .............................145  
RC ............................................................................146  
P
Package Information  
Marking ....................................................................209  
Packaging Information .....................................................209  
Paging, Program Memory ..................................................30  
Parallel Slave Port (PSP) ....................................... 13, 48, 51  
Associated Registers .................................................52  
RE0/RD/AN5 Pin .................................................. 49, 51  
RE1/WR/AN6 Pin ................................................. 49, 51  
RE2/CS/AN7 Pin .................................................. 49, 51  
Select (PSPMODE Bit) ..............................48, 49, 50, 51  
Parallel Slave Port Requirements  
(PIC16F874A/ 877A Only) .......................................187  
PCL Register .......................................................... 19, 20, 30  
PCLATH Register ................................................... 19, 20, 30  
PCON Register .................................................... 20, 29, 149  
BOR Bit ......................................................................29  
POR Bit ......................................................................29  
PIC16F87XA Product Identification System .....................231  
PICkit 1 Flash Starter Kit ..................................................171  
Assignment (PSA Bit) ................................................ 23  
Rate Select (PS2:PS0 Bits) ....................................... 23  
Power-down Mode. See Sleep.  
Power-on Reset (POR) ..................... 143, 147, 148, 149, 150  
POR Status (POR Bit) ............................................... 29  
Power Control (PCON) Register .............................. 149  
Power-down (PD Bit) ..........................................22, 147  
Power-up Timer (PWRT) ......................................... 143  
Time-out (TO Bit) ................................................22, 147  
DS39582B-page 224  
2003 Microchip Technology Inc.  
PIC16F87XA  
Power-up Timer (PWRT) .................................................. 148  
PR2 Register ................................................................ 20, 61  
Prescaler, Timer0  
Assignment (PSA Bit) ................................................ 23  
Rate Select (PS2:PS0 Bits) ....................................... 23  
PRO MATE II Universal Device Programmer .................. 169  
Program Counter  
Reset Conditions ...................................................... 149  
Program Memory ............................................................... 15  
Interrupt Vector .......................................................... 15  
Paging ........................................................................ 30  
Program Memory Map and Stack  
RE0/RD/AN5 Pin ............................................................... 13  
RE1/WR/AN6 Pin ............................................................... 13  
RE2/CS/AN7 Pin ................................................................ 13  
Read-Modify-Write Operations ........................................ 159  
Register File ....................................................................... 16  
Register File Map (PIC16F873A/874A) ............................. 18  
Register File Map (PIC16F876A/877A) ............................. 17  
Registers  
ADCON0 (A/D Control 0) ......................................... 127  
ADCON1 (A/D Control 1) ......................................... 128  
CCP1CON/CCP2CON (CCP Control 1  
and CCP Control 2) ........................................... 64  
CMCON (Comparator Control) ................................ 135  
CVRCON (Comparator Voltage  
(PIC16F873A/874A) ........................................... 15  
Program Memory Map and Stack  
(PIC16F876A/877A) ........................................... 15  
Reset Vector .............................................................. 15  
Program Verification ......................................................... 157  
Programming Pin (VPP) ........................................................ 8  
Programming, Device Instructions ................................... 159  
PSP. See Parallel Slave Port.  
Pulse Width Modulation. See Capture/Compare/PWM,  
PWM Mode.  
PUSH ................................................................................. 30  
Reference Control) .......................................... 141  
EECON1 (EEPROM Control 1) ................................. 34  
FSR ........................................................................... 31  
INTCON ..................................................................... 24  
OPTION_REG ......................................................23, 54  
PCON (Power Control) .............................................. 29  
PIE1 (Peripheral Interrupt Enable 1) .......................... 25  
PIE2 (Peripheral Interrupt Enable 2) .......................... 27  
PIR1 (Peripheral Interrupt Request 1) ....................... 26  
PIR2 (Peripheral Interrupt Request 2) ....................... 28  
RCSTA (Receive Status and Control) ..................... 112  
Special Function, Summary ....................................... 19  
R
RA0/AN0 Pin .................................................................. 8, 10  
RA1/AN1 Pin .................................................................. 8, 10  
RA2/AN2/VREF-/CVREF Pin ............................................ 8, 10  
RA3/AN3/VREF+ Pin ....................................................... 8, 10  
RA4/T0CKI/C1OUT Pin .................................................. 8, 10  
RA5/AN4/SS/C2OUT Pin ............................................... 8, 10  
RAM. See Data Memory.  
2
SSPCON (MSSP Control 1, I C Mode) ..................... 82  
SSPCON (MSSP Control 1, SPI Mode) ..................... 73  
2
SSPCON2 (MSSP Control 2, I C Mode) ................... 83  
2
SSPSTAT (MSSP Status, I C Mode) ........................ 81  
SSPSTAT (MSSP Status, SPI Mode) ........................ 72  
Status ........................................................................ 22  
T1CON (Timer1 Control) ........................................... 57  
T2CON (Timer2 Control) ........................................... 61  
TRISE Register .......................................................... 50  
TXSTA (Transmit Status and Control) ..................... 111  
Reset ........................................................................143, 147  
Brown-out Reset (BOR). See Brown-out Reset (BOR).  
MCLR Reset. See MCLR.  
RB0/INT Pin ................................................................... 9, 11  
RB1 Pin .......................................................................... 9, 11  
RB2 Pin .......................................................................... 9, 11  
RB3/PGM Pin ................................................................. 9, 11  
RB4 Pin .......................................................................... 9, 11  
RB5 Pin .......................................................................... 9, 11  
RB6/PGC Pin ................................................................. 9, 11  
RB7/PGD Pin ................................................................. 9, 11  
RC0/T1OSO/T1CKI Pin ................................................. 9, 12  
RC1/T1OSI/CCP2 Pin .................................................... 9, 12  
RC2/CCP1 Pin ............................................................... 9, 12  
RC3/SCK/SCL Pin ......................................................... 9, 12  
RC4/SDI/SDA Pin .......................................................... 9, 12  
RC5/SDO Pin ................................................................. 9, 12  
RC6/TX/CK Pin .............................................................. 9, 12  
RC7/RX/DT Pin .............................................................. 9, 12  
RCREG Register ................................................................ 19  
RCSTA Register ................................................................. 19  
ADDEN Bit ............................................................... 112  
CREN Bit .................................................................. 112  
FERR Bit .................................................................. 112  
OERR Bit ................................................................. 112  
RX9 Bit ..................................................................... 112  
RX9D Bit .................................................................. 112  
SPEN Bit .......................................................... 111, 112  
SREN Bit .................................................................. 112  
RD0/PSP0 Pin .................................................................... 13  
RD1/PSP1 Pin .................................................................... 13  
RD2/PSP2 Pin .................................................................... 13  
RD3/PSP3 Pin .................................................................... 13  
RD4/PSP4 Pin .................................................................... 13  
RD5/PSP5 Pin .................................................................... 13  
RD6/PSP6 Pin .................................................................... 13  
RD7/PSP7 Pin .................................................................... 13  
Power-on Reset (POR). See Power-on Reset (POR).  
Reset Conditions for PCON Register ...................... 149  
Reset Conditions for Program Counter .................... 149  
Reset Conditions for Status Register ....................... 149  
WDT Reset. See Watchdog Timer (WDT).  
Reset, Watchdog Timer, Oscillator Start-up Timer,  
Power-up Timer and Brown-out Reset  
Requirements .......................................................... 184  
Revision History ............................................................... 219  
S
SCI. See USART.  
SCK ................................................................................... 71  
SDI ..................................................................................... 71  
SDO ................................................................................... 71  
Serial Clock, SCK .............................................................. 71  
Serial Communication Interface. See USART.  
Serial Data In, SDI ............................................................. 71  
Serial Data Out, SDO ........................................................ 71  
Serial Peripheral Interface. See SPI.  
Slave Select Synchronization ............................................ 77  
Slave Select, SS ................................................................ 71  
Sleep .................................................................143, 147, 156  
Software Simulator (MPLAB SIM) ................................... 168  
Software Simulator (MPLAB SIM30) ............................... 168  
SPBRG Register ................................................................ 20  
Special Features of the CPU ........................................... 143  
2003 Microchip Technology Inc.  
DS39582B-page 225  
PIC16F87XA  
Special Function Registers ................................................19  
Special Function Registers (SFRs) ....................................19  
Speed, Operating .................................................................1  
SPI Mode ..................................................................... 71, 77  
Associated Registers .................................................79  
Bus Mode Compatibility .............................................79  
Effects of a Reset .......................................................79  
Enabling SPI I/O .........................................................75  
Master Mode ..............................................................76  
Master/Slave Connection ...........................................75  
Serial Clock ................................................................71  
Serial Data In .............................................................71  
Serial Data Out ...........................................................71  
Slave Select ...............................................................71  
Slave Select Synchronization .....................................77  
Sleep Operation .........................................................79  
SPI Clock ...................................................................76  
Typical Connection .....................................................75  
SPI Mode Requirements ..................................................190  
SS ......................................................................................71  
SSP  
SPI Master/Slave Connection ....................................75  
SSPADD Register ..............................................................20  
SSPBUF Register ..............................................................19  
SSPCON Register ..............................................................19  
SSPCON2 Register ............................................................20  
SSPIF .................................................................................26  
SSPOV .............................................................................101  
SSPSTAT Register ............................................................20  
R/W Bit ................................................................. 84, 85  
Stack ..................................................................................30  
Overflows ...................................................................30  
Underflow ...................................................................30  
Status Register  
Timer0 ................................................................................ 53  
Associated Registers ................................................. 55  
Clock Source Edge Select (T0SE Bit) ....................... 23  
Clock Source Select (T0CS Bit) ................................. 23  
External Clock ............................................................ 54  
Interrupt ..................................................................... 53  
Overflow Enable (TMR0IE Bit) ................................... 24  
Overflow Flag (TMR0IF Bit) ................................24, 154  
Overflow Interrupt .................................................... 154  
Prescaler .................................................................... 54  
T0CKI ......................................................................... 54  
Timer0 and Timer1 External Clock Requirements ........... 185  
Timer1 ................................................................................ 57  
Associated Registers ................................................. 60  
Asynchronous Counter Mode .................................... 59  
Reading and Writing to ...................................... 59  
Counter Operation ..................................................... 58  
Operation in Timer Mode ........................................... 58  
Oscillator .................................................................... 59  
Capacitor Selection ............................................ 59  
Prescaler .................................................................... 60  
Resetting of Timer1 Registers ................................... 60  
Resetting Timer1 Using a CCP Trigger Output ......... 59  
Synchronized Counter Mode ..................................... 58  
TMR1H ...................................................................... 59  
TMR1L ....................................................................... 59  
Timer2 ................................................................................ 61  
Associated Registers ................................................. 62  
Output ........................................................................ 62  
Postscaler .................................................................. 61  
Prescaler .................................................................... 61  
Prescaler and Postscaler ........................................... 62  
Timing Diagrams  
A/D Conversion ........................................................ 195  
Acknowledge Sequence .......................................... 104  
Asynchronous Master Transmission ........................ 116  
Asynchronous Master Transmission  
(Back to Back) ................................................. 116  
Asynchronous Reception ......................................... 118  
Asynchronous Reception with  
C Bit ...........................................................................22  
DC Bit .........................................................................22  
IRP Bit ........................................................................22  
PD Bit ................................................................. 22, 147  
RP1:RP0 Bits .............................................................22  
TO Bit ................................................................. 22, 147  
Z Bit ............................................................................22  
Synchronous Master Reception  
Address Byte First ........................................... 120  
Asynchronous Reception with  
Associated Registers ...............................................123  
Synchronous Master Transmission  
Associated Registers ...............................................122  
Synchronous Serial Port Interrupt ......................................26  
Synchronous Slave Reception  
Address Detect ................................................ 120  
Baud Rate Generator with Clock Arbitration .............. 98  
BRG Reset Due to SDA Arbitration During  
Start Condition ................................................. 107  
Brown-out Reset ...................................................... 184  
Bus Collision During a Repeated  
Associated Registers ...............................................125  
Synchronous Slave Transmission  
Start Condition (Case 1) .................................. 108  
Bus Collision During Repeated  
Associated Registers ...............................................125  
Start Condition (Case 2) .................................. 108  
Bus Collision During Start Condition  
T
T1CKPS0 Bit ......................................................................57  
T1CKPS1 Bit ......................................................................57  
T1CON Register .................................................................19  
T1OSCEN Bit .....................................................................57  
T1SYNC Bit ........................................................................57  
T2CKPS0 Bit ......................................................................61  
T2CKPS1 Bit ......................................................................61  
T2CON Register .................................................................19  
TAD ...................................................................................131  
Time-out Sequence ..........................................................148  
(SCL = 0) ......................................................... 107  
Bus Collision During Start Condition  
(SDA Only) ....................................................... 106  
Bus Collision During Stop Condition  
(Case 1) ........................................................... 109  
Bus Collision During Stop Condition  
(Case 2) ........................................................... 109  
Bus Collision for Transmit and Acknowledge .......... 105  
Capture/Compare/PWM (CCP1 and CCP2) ............ 186  
CLKO and I/O .......................................................... 183  
Clock Synchronization ............................................... 91  
External Clock .......................................................... 182  
First Start Bit .............................................................. 99  
DS39582B-page 226  
2003 Microchip Technology Inc.  
PIC16F87XA  
2
I C Bus Data ............................................................ 191  
TRISB Register .................................................................. 20  
TRISC Register .................................................................. 20  
TRISD Register .................................................................. 20  
TRISE Register .................................................................. 20  
IBF Bit ........................................................................ 50  
IBOV Bit ..................................................................... 50  
OBF Bit ...................................................................... 50  
PSPMODE Bit ........................................... 48, 49, 50, 51  
TXREG Register ................................................................ 19  
TXSTA Register ................................................................. 20  
BRGH Bit ................................................................. 111  
CSRC Bit ................................................................. 111  
SYNC Bit ................................................................. 111  
TRMT Bit .................................................................. 111  
TX9 Bit ..................................................................... 111  
TX9D Bit .................................................................. 111  
TXEN Bit .................................................................. 111  
2
I C Bus Start/Stop Bits ............................................. 190  
2
I C Master Mode (Reception, 7-bit Address) ........... 103  
2
I C Master Mode (Transmission,  
7 or 10-bit Address) ......................................... 102  
2
I C Slave Mode (Transmission, 10-bit Address) ........ 89  
2
I C Slave Mode (Transmission, 7-bit Address) .......... 87  
2
I C Slave Mode with SEN = 1 (Reception,  
10-bit Address) ................................................... 93  
2
I C Slave Mode with SEN = 0 (Reception,  
10-bit Address) ................................................... 88  
2
I C Slave Mode with SEN = 0 (Reception,  
7-bit Address) ..................................................... 86  
2
I C Slave Mode with SEN = 1 (Reception,  
7-bit Address) ..................................................... 92  
Parallel Slave Port (PIC16F874A/877A Only) .......... 187  
Parallel Slave Port (PSP) Read ................................. 52  
Parallel Slave Port (PSP) Write ................................. 52  
Repeat Start Condition ............................................. 100  
Reset, Watchdog Timer, Start-up Timer  
and Power-up Timer ........................................ 184  
Slave Mode General Call Address Sequence  
(7 or 10-bit Address Mode) ................................ 94  
Slave Synchronization ............................................... 77  
Slow Rise Time (MCLR Tied to VDD via  
U
USART ............................................................................. 111  
Address Detect Enable (ADDEN Bit) ....................... 112  
Asynchronous Mode ................................................ 115  
Asynchronous Receive (9-bit Mode) ........................ 119  
Asynchronous Receive with Address Detect.  
See Asynchronous Receive (9-bit Mode).  
Asynchronous Receiver ........................................... 117  
Asynchronous Reception ......................................... 118  
Asynchronous Transmitter ....................................... 115  
Baud Rate Generator (BRG) ................................... 113  
Baud Rate Formula ......................................... 113  
Baud Rates, Asynchronous Mode  
RC Network) .................................................... 152  
SPI Master Mode (CKE = 0, SMP = 0) .................... 188  
SPI Master Mode (CKE = 1, SMP = 1) .................... 188  
SPI Mode (Master Mode) ........................................... 76  
SPI Mode (Slave Mode with CKE = 0) ....................... 78  
SPI Mode (Slave Mode with CKE = 1) ....................... 78  
SPI Slave Mode (CKE = 0) ...................................... 189  
SPI Slave Mode (CKE = 1) ...................................... 189  
Stop Condition Receive or Transmit Mode .............. 104  
Synchronous Reception  
(BRGH = 0) .............................................. 114  
Baud Rates, Asynchronous Mode  
(BRGH = 1) .............................................. 114  
High Baud Rate Select (BRGH Bit) ................. 111  
Sampling .......................................................... 113  
Clock Source Select (CSRC Bit) .............................. 111  
Continuous Receive Enable (CREN Bit) .................. 112  
Framing Error (FERR Bit) ........................................ 112  
Mode Select (SYNC Bit) .......................................... 111  
Overrun Error (OERR Bit) ........................................ 112  
Receive Data, 9th Bit (RX9D Bit) ............................. 112  
Receive Enable, 9-bit (RX9 Bit) ............................... 112  
Serial Port Enable (SPEN Bit) ..........................111, 112  
Single Receive Enable (SREN Bit) .......................... 112  
Synchronous Master Mode ...................................... 121  
Synchronous Master Reception ............................... 123  
Synchronous Master Transmission ......................... 121  
Synchronous Slave Mode ........................................ 124  
Synchronous Slave Reception ................................. 125  
Synchronous Slave Transmit ................................... 124  
Transmit Data, 9th Bit (TX9D) ................................. 111  
Transmit Enable (TXEN Bit) .................................... 111  
Transmit Enable, 9-bit (TX9 Bit) .............................. 111  
Transmit Shift Register Status (TRMT Bit) .............. 111  
USART Synchronous Receive Requirements ................. 193  
(Master Mode, SREN) ...................................... 124  
Synchronous Transmission ...................................... 122  
Synchronous Transmission (Through TXEN) .......... 122  
Time-out Sequence on Power-up  
(MCLR Not Tied to VDD)  
Case 1 .............................................................. 152  
Case 2 .............................................................. 152  
Time-out Sequence on Power-up (MCLR Tied  
to VDD via RC Network) ................................... 151  
Timer0 and Timer1 External Clock .......................... 185  
USART Synchronous Receive  
(Master/Slave) .................................................. 193  
USART Synchronous Transmission  
(Master/Slave) .................................................. 193  
Wake-up from Sleep via Interrupt ............................ 157  
Timing Parameter Symbology .......................................... 181  
TMR0 Register ................................................................... 19  
TMR1CS Bit ....................................................................... 57  
TMR1H Register ................................................................ 19  
TMR1L Register ................................................................. 19  
TMR1ON Bit ....................................................................... 57  
TMR2 Register ................................................................... 19  
TMR2ON Bit ....................................................................... 61  
TMRO Register .................................................................. 21  
TOUTPS0 Bit ..................................................................... 61  
TOUTPS1 Bit ..................................................................... 61  
TOUTPS2 Bit ..................................................................... 61  
TOUTPS3 Bit ..................................................................... 61  
TRISA Register .................................................................. 20  
V
VDD Pin ...........................................................................9, 13  
Voltage Reference Specifications .................................... 180  
VSS Pin ...........................................................................9, 13  
2003 Microchip Technology Inc.  
DS39582B-page 227  
PIC16F87XA  
W
Wake-up from Sleep ................................................ 143, 156  
Interrupts .......................................................... 149, 150  
MCLR Reset .............................................................150  
WDT Reset ...............................................................150  
Wake-up Using Interrupts ................................................156  
Watchdog Timer  
Register Summary ...................................................155  
Watchdog Timer (WDT) ........................................... 143, 155  
Enable (WDTE Bit) ...................................................155  
Postscaler. See Postscaler, WDT.  
Programming Considerations ...................................155  
RC Oscillator ............................................................155  
Time-out Period ........................................................155  
WDT Reset, Normal Operation ................ 147, 149, 150  
WDT Reset, Sleep ................................... 147, 149, 150  
WCOL ................................................................ 99, 101, 104  
WCOL Status Flag .............................................................99  
WWW, On-Line Support .......................................................4  
DS39582B-page 228  
2003 Microchip Technology Inc.  
PIC16F87XA  
ON-LINE SUPPORT  
SYSTEMS INFORMATION AND  
UPGRADE HOT LINE  
Microchip provides on-line support on the Microchip  
World Wide Web site.  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip's development systems software products.  
Plus, this line provides information on how customers  
can receive the most current upgrade kits. The Hot Line  
Numbers are:  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape® or Microsoft®  
Internet Explorer. Files are also available for FTP  
download from our FTP site.  
1-800-755-2345 for U.S. and most of Canada, and  
1-480-792-7302 for the rest of the world.  
Connecting to the Microchip Internet  
Web Site  
042003  
The Microchip web site is available at the following  
URL:  
www.microchip.com  
The file transfer site is available by using an FTP  
service to connect to:  
ftp://ftp.microchip.com  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User's Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
• Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
• Conferences for products, Development Systems,  
technical information and more  
• Listing of seminars and events  
2003 Microchip Technology Inc.  
DS39582B-page 229  
PIC16F87XA  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
PIC16F87XA  
DS39582B  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS39582B-page 230  
2003 Microchip Technology Inc.  
PIC16F87XA  
PIC16F87XA PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature Package  
Range  
Pattern  
a) PIC16F873A-I/P 301  
package, normal VDD limits, QTP pattern #301.  
b) PIC16LF876A-I/SO Industrial temp., SOIC  
= Industrial temp., PDIP  
=
package, Extended VDD limits.  
c) PIC16F877A-I/P = Industrial temp., PDIP package,  
10 MHz, normal VDD limits.  
Device  
PIC16F87XA(1), PIC16F87XAT(2); VDD range 4.0V to 5.5V  
PIC16LF87XA(1), PIC16LF87XAT(2); VDD range 2.0V to 5.5V  
Temperature Range  
Package  
I
=
-40°C to +85°C (Industrial)  
ML  
PT  
SO  
SP  
P
=
=
=
=
=
=
=
QFN (Metal Lead Frame)  
TQFP (Thin Quad Flatpack)  
SOIC  
Skinny Plastic DIP  
PDIP  
L
S
PLCC  
SSOP  
Note 1:  
2:  
F
= CMOS Flash  
LF = Low-Power CMOS Flash  
T
= in tape and reel - SOIC, PLCC,  
TQFP packages only  
2003 Microchip Technology Inc.  
DS39582B-page 231  
WORLDWIDE SALES AND SERVICE  
Korea  
AMERICAS  
ASIA/PACIFIC  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
Tel: 82-2-554-7200 Fax: 82-2-558-5932 or  
82-2-558-5934  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Australia  
Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Singapore  
200 Middle Road  
#07-02 Prime Centre  
Singapore, 188980  
Tel: 65-6334-8870 Fax: 65-6334-8850  
China - Beijing  
Unit 915  
Bei Hai Wan Tai Bldg.  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100  
Fax: 86-10-85282104  
Atlanta  
3780 Mansell Road, Suite 130  
Alpharetta, GA 30022  
Tel: 770-640-0034  
Fax: 770-640-0307  
Taiwan  
Kaohsiung Branch  
30F - 1 No. 8  
Min Chuan 2nd Road  
Kaohsiung 806, Taiwan  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Boston  
China - Chengdu  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848  
Fax: 978-692-3821  
Rm. 2401-2402, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
Chengdu 610016, China  
Tel: 86-28-86766200  
Taiwan  
Taiwan Branch  
11F-3, No. 207  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Chicago  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 630-285-0071  
Fax: 630-285-0075  
Fax: 86-28-86766599  
China - Fuzhou  
Unit 28F, World Trade Plaza  
No. 71 Wusi Road  
Dallas  
Fuzhou 350001, China  
Tel: 86-591-7503506  
Fax: 86-591-7503521  
EUROPE  
Austria  
Durisolstrasse 2  
A-4600 Wels  
Austria  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
Denmark  
Regus Business Centre  
Lautrup hoj 1-3  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Hong Kong SAR  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Detroit  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250  
China - Shanghai  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Tel: 86-21-6275-5700  
Fax: 86-21-6275-5060  
China - Shenzhen  
Rm. 1812, 18/F, Building A, United Plaza  
No. 5022 Binhe Road, Futian District  
Shenzhen 518033, China  
Tel: 86-755-82901380  
Fax: 86-755-8295-1393  
China - Shunde  
Fax: 248-538-2260  
Ballerup DK-2750 Denmark  
Tel: 45-4420-9895 Fax: 45-4420-9910  
Kokomo  
France  
2767 S. Albright Road  
Kokomo, IN 46902  
Tel: 765-864-8360  
Fax: 765-864-8387  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Los Angeles  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888  
Fax: 949-263-1338  
Germany  
Steinheilstrasse 10  
D-85737 Ismaning, Germany  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Phoenix  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966  
Fax: 480-792-4338  
Room 401, Hongjian Building  
No. 2 Fengxiangnan Road, Ronggui Town  
Shunde City, Guangdong 528303, China  
Tel: 86-765-8395507 Fax: 86-765-8395571  
Italy  
Via Quasimodo, 12  
20025 Legnano (MI)  
Milan, Italy  
China - Qingdao  
Rm. B505A, Fullhope Plaza,  
No. 12 Hong Kong Central Rd.  
Qingdao 266071, China  
Tel: 86-532-5027355 Fax: 86-532-5027205  
San Jose  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Netherlands  
P. A. De Biesbosch 14  
NL-5152 SC Drunen, Netherlands  
Tel: 31-416-690399  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950  
Fax: 408-436-7955  
India  
Toronto  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
Japan  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699  
Fax: 31-416-690340  
United Kingdom  
505 Eskdale Road  
Winnersh Triangle  
Fax: 905-673-6509  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
07/28/03  
DS39582B-page 232  
2003 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY