PIC16F87X-10EPQ [MICROCHIP]

28/40-Pin 8-Bit CMOS FLASH Microcontrollers; 40分之28引脚8位CMOS闪存微控制器
PIC16F87X-10EPQ
型号: PIC16F87X-10EPQ
厂家: MICROCHIP    MICROCHIP
描述:

28/40-Pin 8-Bit CMOS FLASH Microcontrollers
40分之28引脚8位CMOS闪存微控制器

闪存 微控制器
文件: 总218页 (文件大小:2308K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16F87X  
28/40-Pin 8-Bit CMOS FLASH Microcontrollers  
Devices Included in this Data Sheet:  
Pin Diagram  
PDIP  
• PIC16F873  
• PIC16F874  
• PIC16F876  
• PIC16F877  
MCLR/VPP  
RA0/AN0  
1
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
RB7/PGD  
RB6/PGC  
2
Microcontroller Core Features:  
RA1/AN1  
RA2/AN2/VREF-  
3
RB5  
4
RB4  
• High performance RISC CPU  
RA3/AN3/VREF+  
RA4/T0CKI  
RB3/PGM  
RB2  
5
6
• Only 35 single word instructions to learn  
RA5/AN4/SS  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
VDD  
7
RB1  
• All single cycle instructions except for program  
branches which are two cycle  
8
RB0/INT  
VDD  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VSS  
• Operating speed: DC - 20 MHz clock input  
DC - 200 ns instruction cycle  
RD7/PSP7  
RD6/PSP6  
RD5/PSP5  
VSS  
• Up to 8K x 14 words of FLASH Program Memory,  
Up to 368 x 8 bytes of Data Memory (RAM)  
Up to 256 x 8 bytes of EEPROM Data Memory  
OSC1/CLKIN  
OSC2/CLKOUT  
RD4/PSP4  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
27  
26  
25  
24  
23  
22  
21  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
• Pinout compatible to the PIC16C73B/74B/76/77  
• Interrupt capability (up to 14 sources)  
• Eight level deep hardware stack  
RC3/SCK/SCL  
RD0/PSP0  
RC4/SDI/SDA  
RD3/PSP3  
RD1/PSP1  
RD2/PSP2  
• Direct, indirect and relative addressing modes  
• Power-on Reset (POR)  
• Power-up Timer (PWRT) and  
Oscillator Start-up Timer (OST)  
Peripheral Features:  
• Watchdog Timer (WDT) with its own on-chip RC  
oscillator for reliable operation  
• Timer0: 8-bit timer/counter with 8-bit prescaler  
• Timer1: 16-bit timer/counter with prescaler,  
can be incremented during SLEEP via external  
crystal/clock  
• Programmable code protection  
• Power saving SLEEP mode  
• Selectable oscillator options  
• Timer2: 8-bit timer/counter with 8-bit period  
register, prescaler and postscaler  
• Low power, high speed CMOS FLASH/EEPROM  
technology  
• Two Capture, Compare, PWM modules  
- Capture is 16-bit, max. resolution is 12.5 ns  
- Compare is 16-bit, max. resolution is 200 ns  
- PWM max. resolution is 10-bit  
• Fully static design  
• In-Circuit Serial Programming(ICSP)via two  
pins  
• Single 5V In-Circuit Serial Programming capability  
• In-Circuit Debugging via two pins  
• 10-bit multi-channel Analog-to-Digital converter  
• Synchronous Serial Port (SSP) with SPI (Master  
mode) and I2C(Master/Slave)  
• Processor read/write access to program memory  
• Wide operating voltage range: 2.0V to 5.5V  
• High Sink/Source Current: 25 mA  
• Universal Synchronous Asynchronous Receiver  
Transmitter (USART/SCI) with 9-bit address  
detection  
• Commercial, Industrial and Extended temperature  
ranges  
• Parallel Slave Port (PSP) 8-bits wide, with  
external RD, WR and CS controls (40/44-pin only)  
• Low-power consumption:  
• Brown-out detection circuitry for  
Brown-out Reset (BOR)  
- < 0.6 mA typical @ 3V, 4 MHz  
- 20 A typical @ 3V, 32 kHz  
- < 1 A typical standby current  
1998-2013 Microchip Technology Inc.  
DS30292D-page 1  
PIC16F87X  
Pin Diagrams  
PDIP, SOIC  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
RB7/PGD  
RB6/PGC  
RB5  
RB4  
RB3/PGM  
RB2  
RB1  
RB0/INT  
VDD  
MCLR/VPP  
RA0/AN0  
RA1/AN1  
2
3
4
5
6
7
8
9
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
RA5/AN4/SS  
VSS  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
VSS  
10  
11  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
RC4/SDI/SDA  
12  
13  
14  
RC3/SCK/SCL  
PLCC  
RA4/T0CKI  
RA5/AN4/SS  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
VDD  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
RB3/PGM  
RB2  
7
8
RB1  
9
RB0/INT  
VDD  
VSS  
RD7/PSP7  
RD6/PSP6  
RD5/PSP5  
RD4/PSP4  
RC7/RX/DT  
10  
11  
12  
13  
14  
15  
16  
17  
PIC16F877  
PIC16F874  
VSS  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CK1  
NC  
QFP  
NC  
33  
1
2
3
4
5
6
7
8
RC7/RX/DT  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
VSS  
VDD  
RB0/INT  
RB1  
RB2  
RB3/PGM  
RC0/T1OSO/T1CKI  
32  
31  
30  
29  
28  
27  
26  
OSC2/CLKOUT  
OSC1/CLKIN  
VSS  
PIC16F877  
PIC16F874  
VDD  
RE2/AN7/CS  
RE1/AN6/WR  
RE0/AN5/RD  
RA5/AN4/SS  
RA4/T0CKI  
9
10  
11  
25  
24  
23  
DS30292D-page 2  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
Key Features  
PIC® MCU Mid-Range Reference  
Manual (DS33023)  
PIC16F873  
PIC16F874  
PIC16F876  
PIC16F877  
Operating Frequency  
RESETS (and Delays)  
DC - 20 MHz  
DC - 20 MHz  
DC - 20 MHz  
DC - 20 MHz  
POR, BOR  
POR, BOR  
POR, BOR  
POR, BOR  
(PWRT, OST)  
(PWRT, OST)  
(PWRT, OST)  
(PWRT, OST)  
FLASH Program Memory  
(14-bit words)  
4K  
4K  
8K  
8K  
Data Memory (bytes)  
EEPROM Data Memory  
Interrupts  
192  
192  
368  
368  
128  
128  
256  
256  
13  
14  
13  
14  
I/O Ports  
Ports A,B,C  
Ports A,B,C,D,E  
Ports A,B,C  
Ports A,B,C,D,E  
Timers  
3
3
3
3
Capture/Compare/PWM Modules  
Serial Communications  
Parallel Communications  
10-bit Analog-to-Digital Module  
Instruction Set  
2
MSSP, USART  
2
2
MSSP, USART  
2
MSSP, USART  
PSP  
MSSP, USART  
PSP  
5 input channels 8 input channels 5 input channels 8 input channels  
35 instructions  
35 instructions  
35 instructions  
35 instructions  
1998-2013 Microchip Technology Inc.  
DS30292D-page 3  
PIC16F87X  
Table of Contents  
1.0 Device Overview ................................................................................................................................................... 5  
2.0 Memory Organization.......................................................................................................................................... 11  
3.0 I/O Ports.............................................................................................................................................................. 29  
4.0 Data EEPROM and FLASH Program Memory.................................................................................................... 41  
5.0 Timer0 Module .................................................................................................................................................... 47  
6.0 Timer1 Module .................................................................................................................................................... 51  
7.0 Timer2 Module .................................................................................................................................................... 55  
8.0 Capture/Compare/PWM Modules ....................................................................................................................... 57  
9.0 Master Synchronous Serial Port (MSSP) Module............................................................................................... 65  
10.0 Addressable Universal Synchronous Asynchronous Receiver Transmitter (USART) ........................................ 95  
11.0 Analog-to-Digital Converter (A/D) Module......................................................................................................... 111  
12.0 Special Features of the CPU............................................................................................................................. 119  
13.0 Instruction Set Summary................................................................................................................................... 135  
14.0 Development Support ....................................................................................................................................... 143  
15.0 Electrical Characteristics................................................................................................................................... 149  
16.0 DC and AC Characteristics Graphs and Tables................................................................................................ 177  
17.0 Packaging Information ...................................................................................................................................... 189  
Appendix A: Revision History .................................................................................................................................... 197  
Appendix B: Device Differences ................................................................................................................................ 197  
Appendix C: Conversion Considerations ................................................................................................................... 198  
Index .......................................................................................................................................................................... 199  
On-Line Support......................................................................................................................................................... 207  
Reader Response ...................................................................................................................................................... 208  
PIC16F87X Product Identification System................................................................................................................. 209  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@mail.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150.  
We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include liter-  
ature number) you are using.  
Customer Notification System  
Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.  
DS30292D-page 4  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
There are four devices (PIC16F873, PIC16F874,  
PIC16F876 and PIC16F877) covered by this data  
sheet. The PIC16F876/873 devices come in 28-pin  
packages and the PIC16F877/874 devices come in  
40-pin packages. The Parallel Slave Port is not  
implemented on the 28-pin devices.  
1.0  
DEVICE OVERVIEW  
This document contains device specific information.  
Additional information may be found in the PIC® MCU  
Mid-Range Reference Manual (DS33023), which may  
be obtained from your local Microchip Sales Represen-  
tative or downloaded from the Microchip website. The  
Reference Manual should be considered a complemen-  
tary document to this data sheet, and is highly recom-  
mended reading for a better understanding of the device  
architecture and operation of the peripheral modules.  
The following device block diagrams are sorted by pin  
number; 28-pin for Figure 1-1 and 40-pin for Figure 1-2.  
The 28-pin and 40-pin pinouts are listed in Table 1-1  
and Table 1-2, respectively.  
FIGURE 1-1:  
PIC16F873 AND PIC16F876 BLOCK DIAGRAM  
Program  
FLASH  
Data  
EEPROM  
Device  
Data Memory  
PIC16F873  
PIC16F876  
4K  
8K  
192 Bytes  
368 Bytes  
128 Bytes  
256 Bytes  
8
13  
PORTA  
PORTB  
Data Bus  
Program Counter  
RA0/AN0  
RA1/AN1  
FLASH  
Program  
Memory  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
RAM  
File  
Registers  
8 Level Stack  
(13-bit)  
RA5/AN4/SS  
Program  
Bus  
14  
RAM Addr(1)  
9
RB0/INT  
RB1  
RB2  
RB3/PGM  
RB4  
Addr MUX  
Instruction reg  
Indirect  
Addr  
7
Direct Addr  
8
RB5  
FSR reg  
RB6/PGC  
RB7/PGD  
STATUS reg  
8
PORTC  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
3
MUX  
Power-up  
Timer  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
RC6/TX/CK  
RC7/RX/DT  
Oscillator  
Instruction  
Decode &  
Control  
Start-up Timer  
ALU  
Power-on  
Reset  
8
Watchdog  
Timer  
Timing  
Generation  
W reg  
Brown-out  
Reset  
OSC1/CLKIN  
OSC2/CLKOUT  
In-Circuit  
Debugger  
Low Voltage  
Programming  
VDD, VSS  
Timer2  
MCLR  
Timer0  
Timer1  
10-bit A/D  
Synchronous  
Serial Port  
Data EEPROM  
USART  
CCP1,2  
Note 1: Higher order bits are from the STATUS register.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 5  
PIC16F87X  
FIGURE 1-2:  
PIC16F874 AND PIC16F877 BLOCK DIAGRAM  
Program  
FLASH  
Data  
EEPROM  
Device  
Data Memory  
PIC16F874  
PIC16F877  
4K  
8K  
192 Bytes  
368 Bytes  
128 Bytes  
256 Bytes  
13  
8
PORTA  
Data Bus  
RAM  
Program Counter  
FLASH  
RA0/AN0  
RA1/AN1  
Program  
Memory  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
8 Level Stack  
(13-bit)  
File  
Registers  
RA5/AN4/SS  
Program  
Bus  
14  
PORTB  
RAM Addr(1)  
9
RB0/INT  
RB1  
RB2  
RB3/PGM  
RB4  
Addr MUX  
Instruction reg  
Indirect  
Addr  
7
Direct Addr  
8
RB5  
FSR reg  
RB6/PGC  
RB7/PGD  
STATUS reg  
8
PORTC  
PORTD  
PORTE  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
3
MUX  
Power-up  
Timer  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
Oscillator  
Start-up Timer  
Instruction  
Decode &  
Control  
ALU  
Power-on  
Reset  
RC6/TX/CK  
8
RC7/RX/DT  
Timing  
Generation  
Watchdog  
Timer  
W reg  
OSC1/CLKIN  
OSC2/CLKOUT  
Brown-out  
Reset  
RD0/PSP0  
RD1/PSP1  
RD2/PSP2  
In-Circuit  
Debugger  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
Low-Voltage  
Programming  
Parallel Slave Port  
MCLR VDD, VSS  
RE0/AN5/RD  
RE1/AN6/WR  
RE2/AN7/CS  
Timer0  
Timer1  
Timer2  
10-bit A/D  
USART  
Synchronous  
Serial Port  
Data EEPROM  
CCP1,2  
Note 1: Higher order bits are from the STATUS register.  
DS30292D-page 6  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
TABLE 1-1:  
PIC16F873 AND PIC16F876 PINOUT DESCRIPTION  
DIP  
Pin#  
SOIC  
Pin#  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Description  
(3)  
OSC1/CLKIN  
9
9
I
ST/CMOS  
Oscillator crystal input/external clock source input.  
OSC2/CLKOUT  
10  
10  
O
Oscillator crystal output. Connects to crystal or resonator in  
crystal oscillator mode. In RC mode, the OSC2 pin outputs  
CLKOUT which has 1/4 the frequency of OSC1, and denotes  
the instruction cycle rate.  
MCLR/VPP  
1
1
I/P  
ST  
Master Clear (Reset) input or programming voltage input. This  
pin is an active low RESET to the device.  
PORTA is a bi-directional I/O port.  
RA0 can also be analog input0.  
RA1 can also be analog input1.  
RA0/AN0  
2
3
4
2
3
4
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
RA1/AN1  
RA2/AN2/VREF-  
RA2 can also be analog input2 or negative analog  
reference voltage.  
RA3/AN3/VREF+  
RA4/T0CKI  
5
6
7
5
6
7
I/O  
I/O  
I/O  
TTL  
ST  
RA3 can also be analog input3 or positive analog  
reference voltage.  
RA4 can also be the clock input to the Timer0  
module. Output is open drain type.  
RA5/SS/AN4  
TTL  
RA5 can also be analog input4 or the slave select  
for the synchronous serial port.  
PORTB is a bi-directional I/O port. PORTB can be software  
programmed for internal weak pull-up on all inputs.  
(1)  
RB0/INT  
RB1  
21  
22  
23  
24  
25  
26  
27  
21  
22  
23  
24  
25  
26  
27  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL/ST  
TTL  
RB0 can also be the external interrupt pin.  
RB2  
TTL  
RB3/PGM  
RB4  
TTL  
RB3 can also be the low voltage programming input.  
Interrupt-on-change pin.  
TTL  
RB5  
TTL  
Interrupt-on-change pin.  
(2)  
RB6/PGC  
TTL/ST  
Interrupt-on-change pin or In-Circuit Debugger pin. Serial  
programming clock.  
(2)  
RB7/PGD  
28  
28  
I/O  
TTL/ST  
Interrupt-on-change pin or In-Circuit Debugger pin. Serial  
programming data.  
PORTC is a bi-directional I/O port.  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
11  
12  
13  
14  
15  
11  
12  
13  
14  
15  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
RC0 can also be the Timer1 oscillator output or Timer1  
clock input.  
RC1 can also be the Timer1 oscillator input or Capture2  
input/Compare2 output/PWM2 output.  
RC2 can also be the Capture1 input/Compare1 output/  
PWM1 output.  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC3 can also be the synchronous serial clock input/output  
2
for both SPI and I C modes.  
RC4 can also be the SPI Data In (SPI mode) or  
2
data I/O (I C mode).  
RC5/SDO  
16  
17  
16  
17  
I/O  
I/O  
ST  
ST  
RC5 can also be the SPI Data Out (SPI mode).  
RC6/TX/CK  
RC6 can also be the USART Asynchronous Transmit or  
Synchronous Clock.  
RC7/RX/DT  
18  
18  
I/O  
ST  
RC7 can also be the USART Asynchronous Receive or  
Synchronous Data.  
VSS  
8, 19  
20  
8, 19  
20  
P
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
VDD  
Legend: I = input  
O = output  
— = Not used  
I/O = input/output  
TTL = TTL input  
P = power  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 7  
PIC16F87X  
TABLE 1-2:  
PIC16F874 AND PIC16F877 PINOUT DESCRIPTION  
DIP  
Pin#  
PLCC  
Pin#  
QFP  
Pin#  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Description  
(4)  
OSC1/CLKIN  
13  
14  
14  
15  
30  
31  
I
ST/CMOS  
Oscillator crystal input/external clock source input.  
OSC2/CLKOUT  
O
Oscillator crystal output. Connects to crystal or resonator  
in crystal oscillator mode. In RC mode, OSC2 pin outputs  
CLKOUT which has 1/4 the frequency of OSC1, and  
denotes the instruction cycle rate.  
MCLR/VPP  
1
2
18  
I/P  
ST  
Master Clear (Reset) input or programming voltage input.  
This pin is an active low RESET to the device.  
PORTA is a bi-directional I/O port.  
RA0 can also be analog input0.  
RA1 can also be analog input1.  
RA0/AN0  
2
3
4
3
4
5
19  
20  
21  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
RA1/AN1  
RA2/AN2/VREF-  
RA2 can also be analog input2 or negative  
analog reference voltage.  
RA3/AN3/VREF+  
RA4/T0CKI  
5
6
7
6
7
8
22  
23  
24  
I/O  
I/O  
I/O  
TTL  
ST  
RA3 can also be analog input3 or positive  
analog reference voltage.  
RA4 can also be the clock input to the Timer0 timer/  
counter. Output is open drain type.  
RA5/SS/AN4  
TTL  
RA5 can also be analog input4 or the slave select for  
the synchronous serial port.  
PORTB is a bi-directional I/O port. PORTB can be soft-  
ware programmed for internal weak pull-up on all inputs.  
(1)  
RB0/INT  
RB1  
33  
34  
35  
36  
37  
38  
39  
36  
37  
38  
39  
41  
42  
43  
8
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL/ST  
TTL  
RB0 can also be the external interrupt pin.  
9
RB2  
10  
11  
14  
15  
16  
TTL  
RB3/PGM  
RB4  
TTL  
RB3 can also be the low voltage programming input.  
Interrupt-on-change pin.  
TTL  
RB5  
TTL  
Interrupt-on-change pin.  
(2)  
RB6/PGC  
TTL/ST  
Interrupt-on-change pin or In-Circuit Debugger pin.  
Serial programming clock.  
(2)  
RB7/PGD  
40  
44  
17  
I/O  
TTL/ST  
Interrupt-on-change pin or In-Circuit Debugger pin.  
Serial programming data.  
Legend: I = input  
O = output  
— = Not used  
I/O = input/output  
TTL = TTL input  
P = power  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel  
Slave Port mode (for interfacing to a microprocessor bus).  
4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.  
DS30292D-page 8  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
TABLE 1-2:  
PIC16F874 AND PIC16F877 PINOUT DESCRIPTION (CONTINUED)  
DIP  
Pin#  
PLCC  
Pin#  
QFP  
Pin#  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTC is a bi-directional I/O port.  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
RC2/CCP1  
15  
16  
17  
18  
23  
16  
18  
19  
20  
25  
32  
35  
36  
37  
42  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
RC0 can also be the Timer1 oscillator output or a  
Timer1 clock input.  
RC1 can also be the Timer1 oscillator input or  
Capture2 input/Compare2 output/PWM2 output.  
RC2 can also be the Capture1 input/Compare1  
output/PWM1 output.  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC3 can also be the synchronous serial clock input/  
2
output for both SPI and I C modes.  
RC4 can also be the SPI Data In (SPI mode) or  
2
data I/O (I C mode).  
RC5/SDO  
24  
25  
26  
27  
43  
44  
I/O  
I/O  
ST  
ST  
RC5 can also be the SPI Data Out (SPI mode).  
RC6/TX/CK  
RC6 can also be the USART Asynchronous Transmit  
or Synchronous Clock.  
RC7/RX/DT  
26  
29  
1
I/O  
ST  
RC7 can also be the USART Asynchronous Receive  
or Synchronous Data.  
PORTD is a bi-directional I/O port or parallel slave port  
when interfacing to a microprocessor bus.  
(3)  
RD0/PSP0  
RD1/PSP1  
RD2/PSP2  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
19  
20  
21  
22  
27  
28  
29  
30  
21  
22  
23  
24  
30  
31  
32  
33  
38  
39  
40  
41  
2
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
3
4
5
PORTE is a bi-directional I/O port.  
(3)  
(3)  
(3)  
RE0/RD/AN5  
RE1/WR/AN6  
RE2/CS/AN7  
8
9
9
25  
26  
27  
I/O  
I/O  
I/O  
ST/TTL  
ST/TTL  
ST/TTL  
RE0 can also be read control for the parallel slave  
port, or analog input5.  
10  
11  
RE1 can also be write control for the parallel slave  
port, or analog input6.  
10  
RE2 can also be select control for the parallel slave  
port, or analog input7.  
VSS  
VDD  
NC  
12,31  
11,32  
13,34  
12,35  
6,29  
7,28  
P
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
1,17,28, 12,13,  
40 33,34  
These pins are not internally connected. These pins  
should be left unconnected.  
Legend: I = input  
O = output  
— = Not used  
I/O = input/output  
TTL = TTL input  
P = power  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel  
Slave Port mode (for interfacing to a microprocessor bus).  
4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 9  
PIC16F87X  
NOTES:  
DS30292D-page 10  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
2.1  
Program Memory Organization  
2.0  
MEMORY ORGANIZATION  
The PIC16F87X devices have a 13-bit program counter  
capable of addressing an 8K x 14 program memory  
space. The PIC16F877/876 devices have 8K x 14  
words of FLASH program memory, and the  
PIC16F873/874 devices have 4K x 14. Accessing a  
location above the physically implemented address will  
cause a wraparound.  
There are three memory blocks in each of the  
PIC16F87X MCUs. The Program Memory and Data  
Memory have separate buses so that concurrent  
access can occur and is detailed in this section. The  
EEPROM data memory block is detailed in Section 4.0.  
Additional information on device memory may be found  
in the PIC® MCU Mid-Range Reference Manual,  
(DS33023).  
The RESET vector is at 0000h and the interrupt vector  
is at 0004h.  
FIGURE 2-1:  
PIC16F877/876 PROGRAM  
MEMORY MAP AND  
STACK  
FIGURE 2-2:  
PIC16F874/873 PROGRAM  
MEMORY MAP AND  
STACK  
PC<12:0>  
13  
PC<12:0>  
13  
CALL, RETURN  
RETFIE, RETLW  
CALL, RETURN  
RETFIE, RETLW  
Stack Level 1  
Stack Level 2  
Stack Level 1  
Stack Level 2  
Stack Level 8  
Stack Level 8  
RESET Vector  
0000h  
RESET Vector  
0000h  
Interrupt Vector  
Page 0  
0004h  
0005h  
Interrupt Vector  
Page 0  
0004h  
0005h  
On-Chip  
Program  
Memory  
07FFh  
0800h  
07FFh  
0800h  
Page 1  
Page 1  
On-Chip  
Program  
Memory  
0FFFh  
1000h  
0FFFh  
1000h  
Page 2  
Page 3  
17FFh  
1800h  
1FFFh  
1FFFh  
1998-2013 Microchip Technology Inc.  
DS30292D-page 11  
PIC16F87X  
Each bank extends up to 7Fh (128 bytes). The lower  
locations of each bank are reserved for the Special  
Function Registers. Above the Special Function Regis-  
ters are General Purpose Registers, implemented as  
static RAM. All implemented banks contain Special  
Function Registers. Some frequently used Special  
Function Registers from one bank may be mirrored in  
another bank for code reduction and quicker access.  
2.2  
Data Memory Organization  
The data memory is partitioned into multiple banks  
which contain the General Purpose Registers and the  
Special Function Registers. Bits RP1 (STATUS<6>)  
and RP0 (STATUS<5>) are the bank select bits.  
RP1:RP0  
Bank  
Note: EEPROM Data Memory description can be  
found in Section 4.0 of this data sheet.  
00  
01  
10  
11  
0
1
2
3
2.2.1  
GENERAL PURPOSE REGISTER  
FILE  
The register file can be accessed either directly, or indi-  
rectly through the File Select Register (FSR).  
DS30292D-page 12  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
FIGURE 2-3:  
PIC16F877/876 REGISTER FILE MAP  
File  
Address  
File  
Address  
File  
Address  
File  
Address  
Indirect addr.(*)  
Indirect addr.(*)  
180h  
OPTION_REG  
181h  
Indirect addr.(*)  
Indirect addr.(*)  
OPTION_REG  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
TMR0  
PCL  
TMR0  
PCL  
PCL  
STATUS  
FSR  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
PCL  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
PORTD(1)  
PORTE(1)  
PCLATH  
INTCON  
PIR1  
TRISA  
TRISB  
TRISC  
TRISD(1)  
TRISE(1)  
PCLATH  
INTCON  
PIE1  
TRISB  
PORTB  
PCLATH  
INTCON  
EECON1  
EECON2  
Reserved(2)  
Reserved(2)  
PCLATH  
INTCON  
EEDATA  
EEADR  
PIE2  
PIR2  
TMR1L  
PCON  
EEDATH  
EEADRH  
TMR1H  
T1CON  
TMR2  
SSPCON2  
PR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
SSPADD  
SSPSTAT  
General  
Purpose  
Register  
General  
Purpose  
Register  
TXSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRESH  
SPBRG  
16 Bytes  
16 Bytes  
ADRESL  
ADCON1  
ADCON0  
1A0h  
A0h  
General  
Purpose  
Register  
General  
Purpose  
Register  
General  
Purpose  
Register  
General  
Purpose  
Register  
80 Bytes  
80 Bytes  
80 Bytes  
1EFh  
1F0h  
96 Bytes  
EFh  
F0h  
16Fh  
170h  
accesses  
70h - 7Fh  
accesses  
70h-7Fh  
accesses  
70h-7Fh  
17Fh  
1FFh  
7Fh  
FFh  
Bank 3  
Bank 1  
Bank 2  
Bank 0  
Unimplemented data memory locations, read as '0'.  
* Not a physical register.  
Note 1: These registers are not implemented on the PIC16F876.  
2: These registers are reserved, maintain these registers clear.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 13  
PIC16F87X  
FIGURE 2-4:  
PIC16F874/873 REGISTER FILE MAP  
File  
Address  
File  
Address  
File  
Address  
File  
Address  
Indirect addr.(*)  
Indirect addr.(*)  
OPTION_REG  
PCL  
Indirect addr.(*)  
Indirect addr.(*)  
OPTION_REG  
PCL  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
TMR0  
PCL  
TMR0  
PCL  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
PORTD(1)  
PORTE(1)  
PCLATH  
INTCON  
PIR1  
TRISA  
TRISB  
PORTB  
TRISB  
TRISC  
TRISD(1)  
TRISE(1)  
PCLATH  
INTCON  
PIE1  
PCLATH  
INTCON  
PCLATH  
INTCON  
EEDATA  
EEADR  
EECON1  
EECON2  
Reserved(2)  
Reserved(2)  
PIR2  
PIE2  
TMR1L  
TMR1H  
T1CON  
TMR2  
PCON  
EEDATH  
EEADRH  
SSPCON2  
PR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRESH  
SSPADD  
SSPSTAT  
TXSTA  
SPBRG  
ADRESL  
ADCON1  
ADCON0  
1A0h  
120h  
A0h  
General  
Purpose  
Register  
General  
Purpose  
Register  
accesses  
20h-7Fh  
accesses  
A0h - FFh  
1EFh  
1F0h  
96 Bytes  
96 Bytes  
16Fh  
170h  
17Fh  
1FFh  
7Fh  
FFh  
Bank 3  
Bank 1  
Bank 2  
Bank 0  
Unimplemented data memory locations, read as '0'.  
* Not a physical register.  
Note 1: These registers are not implemented on the PIC16F873.  
2: These registers are reserved, maintain these registers clear.  
DS30292D-page 14  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
The Special Function Registers can be classified into  
two sets: core (CPU) and peripheral. Those registers  
associated with the core functions are described in  
detail in this section. Those related to the operation of  
the peripheral features are described in detail in the  
peripheral features section.  
2.2.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers are registers used by  
the CPU and peripheral modules for controlling the  
desired operation of the device. These registers are  
implemented as static RAM. A list of these registers is  
given in Table 2-1.  
TABLE 2-1:  
SPECIAL FUNCTION REGISTER SUMMARY  
Value on:  
POR,  
Details  
on  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BOR  
page:  
Bank 0  
00h(3)  
01h  
02h(3)  
03h(3)  
04h(3)  
05h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 Module Register  
0000 0000  
xxxx xxxx  
0000 0000  
0001 1xxx  
xxxx xxxx  
--0x 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
---- -xxx  
---0 0000  
0000 000x  
27  
47  
26  
18  
27  
29  
31  
33  
35  
36  
26  
20  
22  
24  
52  
52  
51  
55  
55  
TMR0  
PCL  
Program Counter (PC) Least Significant Byte  
STATUS  
FSR  
IRP  
Indirect Data Memory Address Pointer  
PORTA Data Latch when written: PORTA pins when read  
RP1  
RP0  
TO  
PD  
Z
DC  
C
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
PCLATH  
INTCON  
PIR1  
06h  
PORTB Data Latch when written: PORTB pins when read  
PORTC Data Latch when written: PORTC pins when read  
PORTD Data Latch when written: PORTD pins when read  
07h  
08h(4)  
09h(4)  
0Ah(1,3)  
0Bh(3)  
0Ch  
RE2  
RE1  
RE0  
Write Buffer for the upper 5 bits of the Program Counter  
GIE  
PSPIF(3)  
PEIE  
ADIF  
(5)  
T0IE  
RCIF  
INTE  
TXIF  
EEIF  
RBIE  
SSPIF  
BCLIF  
T0IF  
CCP1IF  
INTF  
TMR2IF  
RBIF  
TMR1IF 0000 0000  
CCP2IF -r-0 0--0  
xxxx xxxx  
0Dh  
PIR2  
0Eh  
TMR1L  
TMR1H  
T1CON  
TMR2  
Holding register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding register for the Most Significant Byte of the 16-bit TMR1 Register  
0Fh  
xxxx xxxx  
10h  
T1CKPS1 T1CKPS0 T1OSCEN  
T1SYNC  
TMR1CS TMR1ON --00 0000  
11h  
Timer2 Module Register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0  
Synchronous Serial Port Receive Buffer/Transmit Register  
0000 0000  
12h  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRESH  
ADCON0  
TMR2ON T2CKPS1 T2CKPS0 -000 0000  
xxxx xxxx 70, 73  
13h  
14h  
WCOL  
SSPOV  
SSPEN  
CKP  
SSPM3  
SSPM2  
SSPM1  
SSPM0 0000 0000  
67  
57  
15h  
Capture/Compare/PWM Register1 (LSB)  
Capture/Compare/PWM Register1 (MSB)  
xxxx xxxx  
xxxx xxxx  
16h  
57  
17h  
CCP1X  
SREN  
CCP1Y  
CREN  
CCP1M3  
ADDEN  
CCP1M2  
FERR  
CCP1M1 CCP1M0 --00 0000  
58  
18h  
SPEN  
RX9  
OERR  
RX9D  
0000 000x  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
96  
19h  
USART Transmit Data Register  
USART Receive Data Register  
99  
1Ah  
101  
57  
1Bh  
Capture/Compare/PWM Register2 (LSB)  
Capture/Compare/PWM Register2 (MSB)  
1Ch  
57  
1Dh  
CCP2X  
A/D Result Register High Byte  
ADCS1 ADCS0 CHS2  
CCP2Y  
CCP2M3  
CHS0  
CCP2M2  
CCP2M1 CCP2M0 --00 0000  
58  
1Eh  
xxxx xxxx  
116  
111  
1Fh  
CHS1  
GO/DONE  
ADON  
0000 00-0  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as '0', r = reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose  
contents are transferred to the upper byte of the program counter.  
2: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.  
3: These registers can be addressed from any bank.  
4: PORTD, PORTE, TRISD, and TRISE are not physically implemented on PIC16F873/876 devices; read as ‘0’.  
5: PIR2<6> and PIE2<6> are reserved on these devices; always maintain these bits clear.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 15  
PIC16F87X  
TABLE 2-1:  
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on:  
POR,  
Details  
on  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BOR  
page:  
Bank 1  
80h(3)  
81h  
82h(3)  
83h(3)  
84h(3)  
85h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
0000 0000  
1111 1111  
0000 0000  
0001 1xxx  
xxxx xxxx  
--11 1111  
1111 1111  
1111 1111  
1111 1111  
0000 -111  
---0 0000  
0000 000x  
27  
19  
26  
18  
27  
29  
31  
33  
35  
37  
26  
20  
21  
23  
25  
68  
55  
OPTION_REG  
PCL  
RBPU  
Program Counter (PC) Least Significant Byte  
IRP RP1 RP0 TO  
Indirect Data Memory Address Pointer  
PORTA Data Direction Register  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
STATUS  
FSR  
PD  
Z
DC  
C
TRISA  
TRISB  
TRISC  
TRISD  
TRISE  
PCLATH  
INTCON  
PIE1  
86h  
PORTB Data Direction Register  
PORTC Data Direction Register  
PORTD Data Direction Register  
87h  
88h(4)  
89h(4)  
8Ah(1,3)  
8Bh(3)  
8Ch  
IBF  
OBF  
IBOV  
PSPMODE  
PORTE Data Direction Bits  
Write Buffer for the upper 5 bits of the Program Counter  
GIE  
PSPIE(2)  
PEIE  
ADIE  
(5)  
T0IE  
RCIE  
INTE  
TXIE  
EEIE  
RBIE  
SSPIE  
BCLIE  
T0IF  
CCP1IE  
INTF  
TMR2IE  
RBIF  
TMR1IE 0000 0000  
CCP2IE -r-0 0--0  
8Dh  
PIE2  
8Eh  
PCON  
POR  
BOR  
SEN  
BF  
---- --qq  
8Fh  
Unimplemented  
Unimplemented  
90h  
91h  
SSPCON2  
PR2  
GCEN  
ACKSTAT  
ACKDT  
ACKEN  
RCEN  
PEN  
R/W  
RSEN  
UA  
0000 0000  
1111 1111  
92h  
Timer2 Period Register  
Synchronous Serial Port (I2C mode) Address Register  
93h  
SSPADD  
SSPSTAT  
0000 0000 73, 74  
94h  
SMP  
CKE  
D/A  
P
S
0000 0000  
66  
95h  
Unimplemented  
Unimplemented  
Unimplemented  
96h  
97h  
98h  
TXSTA  
SPBRG  
CSRC  
TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
0000 -010  
95  
97  
99h  
Baud Rate Generator Register  
Unimplemented  
0000 0000  
9Ah  
9Bh  
Unimplemented  
9Ch  
Unimplemented  
9Dh  
Unimplemented  
9Eh  
ADRESL  
ADCON1  
A/D Result Register Low Byte  
xxxx xxxx  
116  
112  
9Fh  
ADFM  
PCFG3  
PCFG2  
PCFG1  
PCFG0 0---0000  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as '0', r = reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose  
contents are transferred to the upper byte of the program counter.  
2: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.  
3: These registers can be addressed from any bank.  
4: PORTD, PORTE, TRISD, and TRISE are not physically implemented on PIC16F873/876 devices; read as ‘0’.  
5: PIR2<6> and PIE2<6> are reserved on these devices; always maintain these bits clear.  
DS30292D-page 16  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
TABLE 2-1:  
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on:  
POR,  
Details  
on  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BOR  
page:  
Bank 2  
100h(3)  
101h  
102h(3)  
103h(3)  
104h(3)  
105h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 Module Register  
0000 0000  
xxxx xxxx  
0000 0000  
0001 1xxx  
xxxx xxxx  
27  
47  
26  
18  
27  
31  
26  
20  
41  
41  
41  
41  
TMR0  
PCL  
STATUS  
FSR  
Program Counter's (PC) Least Significant Byte  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address Pointer  
Unimplemented  
106h  
PORTB  
PORTB Data Latch when written: PORTB pins when read  
xxxx xxxx  
107h  
Unimplemented  
Unimplemented  
Unimplemented  
108h  
109h  
10Ah(1,3) PCLATH  
Write Buffer for the upper 5 bits of the Program Counter  
INTE RBIE T0IF INTF RBIF  
---0 0000  
0000 000x  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
10Bh(3)  
10Ch  
10Dh  
10Eh  
INTCON  
EEDATA  
EEADR  
GIE  
PEIE  
T0IE  
EEPROM Data Register Low Byte  
EEPROM Address Register Low Byte  
EEDATH  
EEADRH  
EEPROM Data Register High Byte  
EEPROM Address Register High Byte  
10Fh  
Bank 3  
180h(3)  
181h  
182h(3)  
183h(3)  
184h(3)  
185h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
0000 0000  
1111 1111  
0000 0000  
0001 1xxx  
xxxx xxxx  
27  
19  
26  
18  
27  
31  
26  
20  
OPTION_REG  
RBPU  
Program Counter (PC) Least Significant Byte  
IRP RP1 RP0 TO  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
PCL  
STATUS  
FSR  
PD  
Z
DC  
C
Indirect Data Memory Address Pointer  
Unimplemented  
186h  
TRISB  
PORTB Data Direction Register  
Unimplemented  
1111 1111  
187h  
188h  
Unimplemented  
189h  
Unimplemented  
18Ah(1,3) PCLATH  
18Bh(3)  
PEIE  
T0IE  
Write Buffer for the upper 5 bits of the Program Counter  
---0 0000  
0000 000x  
INTCON  
EECON1  
EECON2  
GIE  
INTE  
RBIE  
T0IF  
INTF  
WR  
RBIF  
RD  
18Ch  
EEPGD  
WRERR  
WREN  
x--- x000 41, 42  
18Dh  
EEPROM Control Register2 (not a physical register)  
Reserved maintain clear  
---- ----  
0000 0000  
0000 0000  
41  
18Eh  
18Fh  
Reserved maintain clear  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as '0', r = reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose  
contents are transferred to the upper byte of the program counter.  
2: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.  
3: These registers can be addressed from any bank.  
4: PORTD, PORTE, TRISD, and TRISE are not physically implemented on PIC16F873/876 devices; read as ‘0’.  
5: PIR2<6> and PIE2<6> are reserved on these devices; always maintain these bits clear.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 17  
PIC16F87X  
For example, CLRF STATUSwill clear the upper three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
2.2.2.1  
STATUS Register  
The STATUS register contains the arithmetic status of  
the ALU, the RESET status and the bank select bits for  
data memory.  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register, because these instructions do not  
affect the Z, C or DC bits from the STATUS register. For  
other instructions not affecting any status bits, see the  
“Instruction Set Summary."  
The STATUS register can be the destination for any  
instruction, as with any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable, therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note: The C and DC bits operate as a borrow  
and digit borrow bit, respectively, in sub-  
traction. See the SUBLW and SUBWF  
instructions for examples.  
REGISTER 2-1:  
STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
bit 7  
bit 0  
bit 7  
IRP: Register Bank Select bit (used for indirect addressing)  
1= Bank 2, 3 (100h - 1FFh)  
0= Bank 0, 1 (00h - FFh)  
bit 6-5  
RP1:RP0: Register Bank Select bits (used for direct addressing)  
11= Bank 3 (180h - 1FFh)  
10= Bank 2 (100h - 17Fh)  
01= Bank 1 (80h - FFh)  
00= Bank 0 (00h - 7Fh)  
Each bank is 128 bytes  
bit 4  
bit 3  
bit 2  
bit 1  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction, or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions)  
(for borrow, the polarity is reversed)  
1= A carry-out from the 4th low order bit of the result occurred  
0= No carry-out from the 4th low order bit of the result  
bit 0  
C: Carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions)  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note:  
For borrow, the polarity is reversed. A subtraction is executed by adding the two’s  
complement of the second operand. For rotate (RRF, RLF) instructions, this bit is  
loaded with either the high, or low order bit of the source register.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30292D-page 18  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
2.2.2.2  
OPTION_REG Register  
Note: To achieve a 1:1 prescaler assignment for  
the TMR0 register, assign the prescaler to  
the Watchdog Timer.  
The OPTION_REG Register is a readable and writable  
register, which contains various control bits to configure  
the TMR0 prescaler/WDT postscaler (single assign-  
able register known also as the prescaler), the External  
INT Interrupt, TMR0 and the weak pull-ups on PORTB.  
REGISTER 2-2:  
OPTION_REG REGISTER (ADDRESS 81h, 181h)  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RBPU: PORTB Pull-up Enable bit  
1= PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of RB0/INT pin  
0= Interrupt on falling edge of RB0/INT pin  
T0CS: TMR0 Clock Source Select bit  
1= Transition on RA4/T0CKI pin  
0= Internal instruction cycle clock (CLKOUT)  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on RA4/T0CKI pin  
0= Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS2:PS0: Prescaler Rate Select bits  
Bit Value TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 1  
1 : 2  
1 : 4  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
Note: When using low voltage ICSP programming (LVP) and the pull-ups on PORTB are enabled, bit 3  
in the TRISB register must be cleared to disable the pull-up on RB3 and ensure the proper oper-  
ation of the device  
1998-2013 Microchip Technology Inc.  
DS30292D-page 19  
PIC16F87X  
2.2.2.3  
INTCON Register  
Note: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
The INTCON Register is a readable and writable regis-  
ter, which contains various enable and flag bits for the  
TMR0 register overflow, RB Port change and External  
RB0/INT pin interrupts.  
REGISTER 2-3:  
INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
RBIE  
R/W-0  
T0IF  
R/W-0  
INTF  
R/W-x  
RBIF  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
GIE: Global Interrupt Enable bit  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
T0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 interrupt  
0= Disables the TMR0 interrupt  
INTE: RB0/INT External Interrupt Enable bit  
1= Enables the RB0/INT external interrupt  
0= Disables the RB0/INT external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
T0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INTF: RB0/INT External Interrupt Flag bit  
1= The RB0/INT external interrupt occurred (must be cleared in software)  
0= The RB0/INT external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1= At least one of the RB7:RB4 pins changed state; a mismatch condition will continue to set  
the bit. Reading PORTB will end the mismatch condition and allow the bit to be cleared  
(must be cleared in software).  
0= None of the RB7:RB4 pins have changed state  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30292D-page 20  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
2.2.2.4  
PIE1 Register  
The PIE1 register contains the individual enable bits for  
the peripheral interrupts.  
Note: Bit PEIE (INTCON<6>) must be set to  
enable any peripheral interrupt.  
REGISTER 2-4:  
PIE1 REGISTER (ADDRESS 8Ch)  
R/W-0  
PSPIE(1)  
bit 7  
R/W-0  
ADIE  
R/W-0  
RCIE  
R/W-0  
TXIE  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
R/W-0  
CCP1IE TMR2IE TMR1IE  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PSPIE(1): Parallel Slave Port Read/Write Interrupt Enable bit  
1= Enables the PSP read/write interrupt  
0= Disables the PSP read/write interrupt  
ADIE: A/D Converter Interrupt Enable bit  
1= Enables the A/D converter interrupt  
0= Disables the A/D converter interrupt  
RCIE: USART Receive Interrupt Enable bit  
1= Enables the USART receive interrupt  
0= Disables the USART receive interrupt  
TXIE: USART Transmit Interrupt Enable bit  
1= Enables the USART transmit interrupt  
0= Disables the USART transmit interrupt  
SSPIE: Synchronous Serial Port Interrupt Enable bit  
1= Enables the SSP interrupt  
0= Disables the SSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
Note 1: PSPIE is reserved on PIC16F873/876 devices; always maintain this bit clear.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
1998-2013 Microchip Technology Inc.  
DS30292D-page 21  
PIC16F87X  
2.2.2.5  
PIR1 Register  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate interrupt  
bits are clear prior to enabling an interrupt.  
The PIR1 register contains the individual flag bits for  
the peripheral interrupts.  
REGISTER 2-5:  
PIR1 REGISTER (ADDRESS 0Ch)  
R/W-0  
PSPIF(1)  
bit 7  
R/W-0  
ADIF  
R-0  
R-0  
TXIF  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
R/W-0  
RCIF  
CCP1IF  
TMR2IF  
TMR1IF  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
PSPIF(1): Parallel Slave Port Read/Write Interrupt Flag bit  
1= A read or a write operation has taken place (must be cleared in software)  
0= No read or write has occurred  
ADIF: A/D Converter Interrupt Flag bit  
1= An A/D conversion completed  
0= The A/D conversion is not complete  
RCIF: USART Receive Interrupt Flag bit  
1= The USART receive buffer is full  
0= The USART receive buffer is empty  
TXIF: USART Transmit Interrupt Flag bit  
1= The USART transmit buffer is empty  
0= The USART transmit buffer is full  
SSPIF: Synchronous Serial Port (SSP) Interrupt Flag  
1= The SSP interrupt condition has occurred, and must be cleared in software before returning  
from the Interrupt Service Routine. The conditions that will set this bit are:  
• SPI  
- A transmission/reception has taken place.  
I2C Slave  
- A transmission/reception has taken place.  
• I2C Master  
- A transmission/reception has taken place.  
- The initiated START condition was completed by the SSP module.  
- The initiated STOP condition was completed by the SSP module.  
- The initiated Restart condition was completed by the SSP module.  
- The initiated Acknowledge condition was completed by the SSP module.  
- A START condition occurred while the SSP module was idle (Multi-Master system).  
- A STOP condition occurred while the SSP module was idle (Multi-Master system).  
0= No SSP interrupt condition has occurred.  
bit 2  
CCP1IF: CCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode  
bit 1  
bit 0  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred (must be cleared in software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed (must be cleared in software)  
0= TMR1 register did not overflow  
Note 1: PSPIF is reserved on PIC16F873/876 devices; always maintain this bit clear.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30292D-page 22  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
2.2.2.6  
PIE2 Register  
The PIE2 register contains the individual enable bits for  
the CCP2 peripheral interrupt, the SSP bus collision  
interrupt, and the EEPROM write operation interrupt.  
REGISTER 2-6:  
PIE2 REGISTER (ADDRESS 8Dh)  
U-0  
R/W-0  
U-0  
R/W-0  
EEIE  
R/W-0  
BCLIE  
U-0  
U-0  
R/W-0  
CCP2IE  
bit 0  
Reserved  
bit 7  
bit 7  
bit 6  
bit 5  
bit 4  
Unimplemented: Read as '0'  
Reserved: Always maintain this bit clear  
Unimplemented: Read as '0'  
EEIE: EEPROM Write Operation Interrupt Enable  
1= Enable EE Write Interrupt  
0= Disable EE Write Interrupt  
bit 3  
BCLIE: Bus Collision Interrupt Enable  
1= Enable Bus Collision Interrupt  
0= Disable Bus Collision Interrupt  
bit 2-1  
bit 0  
Unimplemented: Read as '0'  
CCP2IE: CCP2 Interrupt Enable bit  
1= Enables the CCP2 interrupt  
0= Disables the CCP2 interrupt  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
1998-2013 Microchip Technology Inc.  
DS30292D-page 23  
PIC16F87X  
.
2.2.2.7  
PIR2 Register  
Note: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
The PIR2 register contains the flag bits for the CCP2  
interrupt, the SSP bus collision interrupt and the  
EEPROM write operation interrupt.  
REGISTER 2-7:  
PIR2 REGISTER (ADDRESS 0Dh)  
U-0  
R/W-0  
U-0  
R/W-0  
EEIF  
R/W-0  
BCLIF  
U-0  
U-0  
R/W-0  
CCP2IF  
bit 0  
Reserved  
bit 7  
bit 7  
bit 6  
bit 5  
bit 4  
Unimplemented: Read as '0'  
Reserved: Always maintain this bit clear  
Unimplemented: Read as '0'  
EEIF: EEPROM Write Operation Interrupt Flag bit  
1= The write operation completed (must be cleared in software)  
0= The write operation is not complete or has not been started  
bit 3  
BCLIF: Bus Collision Interrupt Flag bit  
1= A bus collision has occurred in the SSP, when configured for I2C Master mode  
0= No bus collision has occurred  
bit 2-1  
bit 0  
Unimplemented: Read as '0'  
CCP2IF: CCP2 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30292D-page 24  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
2.2.2.8  
PCON Register  
Note: BOR is unknown on POR. It must be set by  
the user and checked on subsequent  
RESETS to see if BOR is clear, indicating  
a brown-out has occurred. The BOR status  
bit is a “don’t care” and is not predictable if  
the brown-out circuit is disabled (by clear-  
ing the BODEN bit in the configuration  
word).  
The Power Control (PCON) Register contains flag bits  
to allow differentiation between a Power-on Reset  
(POR), a Brown-out Reset (BOR), a Watchdog Reset  
(WDT), and an external MCLR Reset.  
REGISTER 2-8:  
PCON REGISTER (ADDRESS 8Eh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
POR  
R/W-1  
BOR  
bit 7  
bit 0  
bit 7-2  
bit 1  
Unimplemented: Read as '0'  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0  
BOR: Brown-out Reset Status bit  
1= No Brown-out Reset occurred  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
1998-2013 Microchip Technology Inc.  
DS30292D-page 25  
PIC16F87X  
2.3  
PCL and PCLATH  
Note 1: There are no status bits to indicate stack  
overflow or stack underflow conditions.  
The program counter (PC) is 13-bits wide. The low byte  
comes from the PCL register, which is a readable and  
writable register. The upper bits (PC<12:8>) are not  
readable, but are indirectly writable through the  
PCLATH register. On any RESET, the upper bits of the  
PC will be cleared. Figure 2-5 shows the two situations  
for the loading of the PC. The upper example in the fig-  
ure shows how the PC is loaded on a write to PCL  
(PCLATH<4:0> PCH). The lower example in the fig-  
ure shows how the PC is loaded during a CALLor GOTO  
instruction (PCLATH<4:3> PCH).  
2: There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the  
CALL, RETURN, RETLW and RETFIE  
instructions, or the vectoring to an inter-  
rupt address.  
2.4  
Program Memory Paging  
All PIC16F87X devices are capable of addressing a  
continuous 8K word block of program memory. The  
CALL and GOTO instructions provide only 11 bits of  
address to allow branching within any 2K program  
memory page. When doing a CALLor GOTOinstruction,  
the upper 2 bits of the address are provided by  
PCLATH<4:3>. When doing a CALL or GOTO instruc-  
tion, the user must ensure that the page select bits are  
programmed so that the desired program memory  
page is addressed. If a return from a CALLinstruction  
(or interrupt) is executed, the entire 13-bit PC is popped  
off the stack. Therefore, manipulation of the  
PCLATH<4:3> bits is not required for the return instruc-  
tions (which POPs the address from the stack).  
FIGURE 2-5:  
LOADING OF PC IN  
DIFFERENT SITUATIONS  
PCH  
PCL  
12  
8
7
0
Instruction with  
PCL as  
Destination  
PC  
8
PCLATH<4:0>  
PCLATH  
5
ALU  
PCH  
12 11 10  
PC  
PCL  
Note: The contents of the PCLATH register are  
unchanged after a RETURN or RETFIE  
instruction is executed. The user must  
rewrite the contents of the PCLATH regis-  
ter for any subsequent subroutine calls or  
GOTOinstructions.  
8
7
0
GOTO,CALL  
PCLATH<4:3>  
PCLATH  
11  
2
Opcode <10:0>  
Example 2-1 shows the calling of a subroutine in  
page 1 of the program memory. This example assumes  
that PCLATH is saved and restored by the Interrupt  
Service Routine (if interrupts are used).  
2.3.1  
COMPUTED GOTO  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL). When doing a  
table read using a computed GOTO method, care  
should be exercised if the table location crosses a PCL  
memory boundary (each 256 byte block). Refer to the  
EXAMPLE 2-1:  
CALL OF A SUBROUTINE  
IN PAGE 1 FROM PAGE 0  
ORG 0x500  
BCF PCLATH,4  
BSF PCLATH,3 ;Select page 1  
;(800h-FFFh)  
CALL SUB1_P1 ;Call subroutine in  
application note, “Implementing  
(AN556).  
a Table Read"  
:
:
;page 1 (800h-FFFh)  
;page 1 (800h-FFFh)  
2.3.2  
STACK  
The PIC16F87X family has an 8-level deep x 13-bit wide  
hardware stack. The stack space is not part of either pro-  
gram or data space and the stack pointer is not readable  
or writable. The PC is PUSHed onto the stack when a  
CALL instruction is executed, or an interrupt causes a  
branch. The stack is POPed in the event of a  
RETURN,RETLW or a RETFIE instruction execution.  
PCLATH is not affected by a PUSH or POP operation.  
ORG 0x900  
SUB1_P1  
:
;called subroutine  
;page 1 (800h-FFFh)  
:
RETURN  
;return to  
;Call subroutine  
;in page 0  
;(000h-7FFh)  
The stack operates as a circular buffer. This means that  
after the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
DS30292D-page 26  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
A simple program to clear RAM locations 20h-2Fh  
using indirect addressing is shown in Example 2-2.  
2.5  
Indirect Addressing, INDF and  
FSR Registers  
The INDF register is not a physical register. Addressing  
the INDF register will cause indirect addressing.  
EXAMPLE 2-2:  
INDIRECT ADDRESSING  
MOVLW 0x20  
MOVWF FSR  
;initialize pointer  
;to RAM  
;clear INDF register  
;inc pointer  
;all done?  
;no clear next  
Indirect addressing is possible by using the INDF reg-  
ister. Any instruction using the INDF register actually  
accesses the register pointed to by the File Select Reg-  
ister, FSR. Reading the INDF register itself, indirectly  
(FSR = '0') will read 00h. Writing to the INDF register  
indirectly results in a no operation (although status bits  
may be affected). An effective 9-bit address is obtained  
by concatenating the 8-bit FSR register and the IRP bit  
(STATUS<7>), as shown in Figure 2-6.  
NEXT  
CLRF INDF  
INCF FSR,F  
BTFSS FSR,4  
GOTO NEXT  
CONTINUE  
:
;yes continue  
FIGURE 2-6:  
DIRECT/INDIRECT ADDRESSING  
Direct Addressing  
From Opcode  
Indirect Addressing  
7
RP1:RP0  
6
0
0
IRP  
FSR register  
Bank Select  
Location Select  
Bank Select Location Select  
00  
01  
80h  
10  
100h  
11  
00h  
180h  
Data  
Memory  
(1)  
7Fh  
Bank 0  
FFh  
Bank 1  
17Fh  
Bank 2  
1FFh  
Bank 3  
Note 1: For register file map detail, see Figure 2-3.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 27  
PIC16F87X  
NOTES:  
DS30292D-page 28  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
FIGURE 3-1:  
BLOCK DIAGRAM OF  
RA3:RA0 AND RA5 PINS  
3.0  
I/O PORTS  
Some pins for these I/O ports are multiplexed with an  
alternate function for the peripheral features on the  
device. In general, when a peripheral is enabled, that  
pin may not be used as a general purpose I/O pin.  
Data Latch  
Data  
Bus  
D
Q
VDD  
WR  
Additional information on I/O ports may be found in the  
PIC® MCU Mid-Range Reference Manual, (DS33023).  
Port  
Q
CK  
I/O pin(1)  
P
TRIS Latch  
3.1  
PORTA and the TRISA Register  
N
D
Q
PORTA is a 6-bit wide, bi-directional port. The corre-  
sponding data direction register is TRISA. Setting a  
TRISA bit (= 1) will make the corresponding PORTA pin  
an input (i.e., put the corresponding output driver in a  
Hi-Impedance mode). Clearing a TRISA bit (= 0) will  
make the corresponding PORTA pin an output (i.e., put  
the contents of the output latch on the selected pin).  
WR  
TRIS  
VSS  
Analog  
Input  
Q
CK  
Mode  
RD  
TRIS  
Reading the PORTA register reads the status of the  
pins, whereas writing to it will write to the port latch. All  
write operations are read-modify-write operations.  
Therefore, a write to a port implies that the port pins are  
read, the value is modified and then written to the port  
data latch.  
TTL  
Input  
Buffer  
Q
D
EN  
Pin RA4 is multiplexed with the Timer0 module clock  
input to become the RA4/T0CKI pin. The RA4/T0CKI  
pin is a Schmitt Trigger input and an open drain output.  
All other PORTA pins have TTL input levels and full  
CMOS output drivers.  
RD Port  
To A/D Converter  
Note 1: I/O pins have protection diodes to VDD and VSS.  
Other PORTA pins are multiplexed with analog inputs  
and analog VREF input. The operation of each pin is  
selected by clearing/setting the control bits in the  
ADCON1 register (A/D Control Register1).  
FIGURE 3-2:  
BLOCK DIAGRAM OF  
RA4/T0CKI PIN  
Note: On a Power-on Reset, these pins are con-  
Data  
Bus  
Data Latch  
figured as analog inputs and read as '0'.  
D
Q
The TRISA register controls the direction of the RA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
WR  
Port  
Q
CK  
I/O pin(1)  
N
TRIS Latch  
D
Q
VSS  
EXAMPLE 3-1:  
INITIALIZING PORTA  
WR  
TRIS  
Schmitt  
Trigger  
Input  
Q
CK  
BCF  
STATUS, RP0  
;
BCF  
STATUS, RP1 ; Bank0  
CLRF  
PORTA  
; Initialize PORTA by  
; clearing output  
; data latches  
Buffer  
RD  
TRIS  
BSF  
STATUS, RP0 ; Select Bank 1  
MOVLW  
MOVWF  
MOVLW  
0x06  
ADCON1  
0xCF  
; Configure all pins  
; as digital inputs  
; Value used to  
Q
D
; initialize data  
; direction  
; Set RA<3:0> as inputs  
; RA<5:4> as outputs  
; TRISA<7:6>are always  
; read as '0'.  
EN  
RD Port  
MOVWF  
TRISA  
TMR0 Clock Input  
Note 1: I/O pin has protection diodes to VSS only.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 29  
PIC16F87X  
TABLE 3-1:  
Name  
PORTA FUNCTIONS  
Bit#  
Buffer  
Function  
RA0/AN0  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
TTL  
TTL  
TTL  
TTL  
ST  
Input/output or analog input.  
Input/output or analog input.  
Input/output or analog input.  
RA1/AN1  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
RA5/SS/AN4  
Input/output or analog input or VREF.  
Input/output or external clock input for Timer0. Output is open drain type.  
Input/output or slave select input for synchronous serial port or analog input.  
TTL  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
TABLE 3-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on: Value on all  
Address Name  
Bit 7 Bit 6 Bit 5 Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other  
RESETS  
--0x 0000 --0u 0000  
--11 1111 --11 1111  
--0- 0000 --0- 0000  
05h  
85h  
9Fh  
PORTA  
TRISA  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
PORTA Data Direction Register  
PCFG3 PCFG2 PCFG1 PCFG0  
ADCON1 ADFM  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'.  
Shaded cells are not used by PORTA.  
Note: When using the SSP module in SPI Slave mode and SS enabled, the A/D converter must be set to one of  
the following modes, where PCFG3:PCFG0 = 0100,0101, 011x, 1101, 1110, 1111.  
DS30292D-page 30  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
This interrupt can wake the device from SLEEP. The  
user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
3.2  
PORTB and the TRISB Register  
PORTB is an 8-bit wide, bi-directional port. The corre-  
sponding data direction register is TRISB. Setting a  
TRISB bit (= 1) will make the corresponding PORTB pin  
an input (i.e., put the corresponding output driver in a  
Hi-Impedance mode). Clearing a TRISB bit (= 0) will  
make the corresponding PORTB pin an output (i.e., put  
the contents of the output latch on the selected pin).  
a) Any read or write of PORTB. This will end the  
mismatch condition.  
b) Clear flag bit RBIF.  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition and  
allow flag bit RBIF to be cleared.  
Three pins of PORTB are multiplexed with the Low  
Voltage Programming function: RB3/PGM, RB6/PGC  
and RB7/PGD. The alternate functions of these pins  
are described in the Special Features Section.  
The interrupt-on-change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt-on-change  
feature. Polling of PORTB is not recommended while  
using the interrupt-on-change feature.  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is per-  
formed by clearing bit RBPU (OPTION_REG<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are dis-  
abled on a Power-on Reset.  
This interrupt-on-mismatch feature, together with soft-  
ware configureable pull-ups on these four pins, allow  
easy interface to a keypad and make it possible for  
wake-up on key depression. Refer to the Embedded  
Control Handbook, “Implementing Wake-up on Key  
Strokes” (AN552).  
FIGURE 3-3:  
BLOCK DIAGRAM OF  
RB3:RB0 PINS  
RB0/INT is an external interrupt input pin and is config-  
ured using the INTEDG bit (OPTION_REG<6>).  
VDD  
RBPU(2)  
Weak  
RB0/INT is discussed in detail in Section 12.10.1.  
P
Pull-up  
Data Latch  
Data Bus  
WR Port  
FIGURE 3-4:  
BLOCK DIAGRAM OF  
RB7:RB4 PINS  
D
Q
I/O  
pin(1)  
CK  
TRIS Latch  
VDD  
RBPU(2)  
Weak  
P
D
Q
Pull-up  
TTL  
Input  
Buffer  
Data Latch  
WR TRIS  
Data Bus  
WR Port  
CK  
D
Q
I/O  
pin(1)  
CK  
TRIS Latch  
RD TRIS  
RD Port  
D
Q
Q
D
WR TRIS  
RD TRIS  
TTL  
CK  
EN  
Input  
Buffer  
ST  
Buffer  
RB0/INT  
RB3/PGM  
Latch  
Schmitt Trigger  
Buffer  
RD Port  
Q
Q
D
RD Port  
Note 1: I/O pins have diode protection to VDD and VSS.  
EN  
Q1  
Set RBIF  
2: To enable weak pull-ups, set the appropriate TRIS  
bit(s) and clear the RBPU bit (OPTION_REG<7>).  
D
Four of the PORTB pins, RB7:RB4, have an interrupt-  
on-change feature. Only pins configured as inputs can  
cause this interrupt to occur (i.e., any RB7:RB4 pin  
configured as an output is excluded from the interrupt-  
on-change comparison). The input pins (of RB7:RB4)  
are compared with the old value latched on the last  
read of PORTB. The “mismatch” outputs of RB7:RB4  
are OR’ed together to generate the RB Port Change  
Interrupt with flag bit RBIF (INTCON<0>).  
RD Port  
Q3  
From other  
RB7:RB4 pins  
EN  
RB7:RB6  
In Serial Programming Mode  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS  
bit(s) and clear the RBPU bit (OPTION_REG<7>).  
1998-2013 Microchip Technology Inc.  
DS30292D-page 31  
PIC16F87X  
TABLE 3-3:  
PORTB FUNCTIONS  
Name  
Bit#  
Buffer  
Function  
RB0/INT  
bit0  
TTL/ST(1)  
Input/output pin or external interrupt input. Internal software  
programmable weak pull-up.  
RB1  
bit1  
bit2  
bit3  
TTL  
TTL  
TTL  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
RB2  
RB3/PGM(3)  
Input/output pin or programming pin in LVP mode. Internal software  
programmable weak pull-up.  
RB4  
bit4  
bit5  
bit6  
bit7  
TTL  
Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up.  
RB5  
TTL  
Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up.  
RB6/PGC  
RB7/PGD  
TTL/ST(2)  
TTL/ST(2)  
Input/output pin (with interrupt-on-change) or In-Circuit Debugger pin.  
Internal software programmable weak pull-up. Serial programming clock.  
Input/output pin (with interrupt-on-change) or In-Circuit Debugger pin.  
Internal software programmable weak pull-up. Serial programming data.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
3: Low Voltage ICSP Programming (LVP) is enabled by default, which disables the RB3 I/O function. LVP  
must be disabled to enable RB3 as an I/O pin and allow maximum compatibility to the other 28-pin and  
40-pin mid-range devices.  
TABLE 3-4:  
Address  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on: Value on  
Name  
Bit 7  
Bit 6  
Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
POR,  
BOR  
all other  
RESETS  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
1111 1111 1111 1111  
06h, 106h PORTB  
86h, 186h TRISB  
RB7  
RB6  
RB5  
RB4 RB3 RB2 RB1 RB0  
PORTB Data Direction Register  
81h, 181h OPTION_REG RBPU INTEDG T0CS T0SE PSA PS2 PS1 PS0  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTB.  
DS30292D-page 32  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
FIGURE 3-6:  
PORTC BLOCK DIAGRAM  
(PERIPHERAL OUTPUT  
OVERRIDE) RC<4:3>  
3.3  
PORTC and the TRISC Register  
PORTC is an 8-bit wide, bi-directional port. The corre-  
sponding data direction register is TRISC. Setting a  
TRISC bit (= 1) will make the corresponding PORTC  
pin an input (i.e., put the corresponding output driver in  
a Hi-Impedance mode). Clearing a TRISC bit (= 0) will  
make the corresponding PORTC pin an output (i.e., put  
the contents of the output latch on the selected pin).  
Port/Peripheral Select(2)  
Peripheral Data Out  
Data Bus  
0
VDD  
D
Q
P
I/O  
WR  
Port  
pin(1)  
1
PORTC is multiplexed with several peripheral functions  
(Table 3-5). PORTC pins have Schmitt Trigger input  
buffers.  
When the I2C module is enabled, the PORTC<4:3>  
pins can be configured with normal I2C levels, or with  
SMBus levels by using the CKE bit (SSPSTAT<6>).  
Q
CK  
Data Latch  
D
Q
Q
WR  
TRIS  
CK  
N
TRIS Latch  
Vss  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an out-  
put, while other peripherals override the TRIS bit to  
make a pin an input. Since the TRIS bit override is in  
effect while the peripheral is enabled, read-modify-  
write instructions (BSF, BCF, XORWF) with TRISC as  
destination, should be avoided. The user should refer  
to the corresponding peripheral section for the correct  
TRIS bit settings.  
RD  
TRIS  
Schmitt  
Trigger  
Peripheral  
OE(3)  
Q
D
Schmitt  
Trigger  
EN  
with  
RD  
Port  
SMBus  
levels  
0
SSPl Input  
1
CKE  
SSPSTAT<6>  
FIGURE 3-5:  
PORTC BLOCK DIAGRAM  
(PERIPHERAL OUTPUT  
OVERRIDE) RC<2:0>,  
RC<7:5>  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: Port/Peripheral select signal selects between port data  
and peripheral output.  
3: Peripheral OE (output enable) is only activated if  
peripheral select is active.  
Port/Peripheral Select(2)  
Peripheral Data Out  
Data Bus  
VDD  
P
0
1
D
Q
Q
I/O  
WR  
pin(1)  
Port  
CK  
Data Latch  
D
Q
Q
WR  
TRIS  
CK  
N
TRIS Latch  
VSS  
RD  
TRIS  
Schmitt  
Trigger  
Peripheral  
OE(3)  
Q
D
EN  
RD  
Port  
Peripheral Input  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: Port/Peripheral select signal selects between port  
data and peripheral output.  
3: Peripheral OE (output enable) is only activated if  
peripheral select is active.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 33  
PIC16F87X  
TABLE 3-5:  
PORTC FUNCTIONS  
Name  
Bit# Buffer Type  
Function  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
bit0  
bit1  
ST  
ST  
Input/output port pin or Timer1 oscillator output/Timer1 clock input.  
Input/output port pin or Timer1 oscillator input or Capture2 input/  
Compare2 output/PWM2 output.  
RC2/CCP1  
bit2  
bit3  
ST  
ST  
Input/output port pin or Capture1 input/Compare1 output/  
PWM1 output.  
RC3/SCK/SCL  
RC3 can also be the synchronous serial clock for both SPI  
and I2C modes.  
RC4/SDI/SDA  
RC5/SDO  
bit4  
bit5  
bit6  
ST  
ST  
ST  
RC4 can also be the SPI Data In (SPI mode) or data I/O (I2C mode).  
Input/output port pin or Synchronous Serial Port data output.  
RC6/TX/CK  
Input/output port pin or USART Asynchronous Transmit or  
Synchronous Clock.  
RC7/RX/DT  
bit7  
ST  
Input/output port pin or USART Asynchronous Receive or  
Synchronous Data.  
Legend: ST = Schmitt Trigger input  
TABLE 3-6:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on: Value on all  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other  
RESETS  
xxxx xxxx  
1111 1111  
uuuu uuuu  
1111 1111  
07h  
87h  
PORTC RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
TRISC PORTC Data Direction Register  
Legend: x= unknown, u= unchanged  
DS30292D-page 34  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
FIGURE 3-7:  
PORTD BLOCK DIAGRAM  
(IN I/O PORT MODE)  
3.4  
PORTD and TRISD Registers  
PORTD and TRISD are not implemented on the  
PIC16F873 or PIC16F876.  
I/O pin(1)  
Data  
Bus  
Data Latch  
D
Q
PORTD is an 8-bit port with Schmitt Trigger input buff-  
ers. Each pin is individually configureable as an input or  
output.  
WR  
Port  
CK  
TRIS Latch  
PORTD can be configured as an 8-bit wide micropro-  
cessor port (parallel slave port) by setting control bit  
PSPMODE (TRISE<4>). In this mode, the input buffers  
are TTL.  
D
Q
WR  
TRIS  
Schmitt  
Trigger  
Input  
CK  
Buffer  
RD  
TRIS  
Q
D
EN  
RD Port  
Note 1: I/O pins have protection diodes to VDD and VSS.  
TABLE 3-7:  
Name  
PORTD FUNCTIONS  
Bit#  
Buffer Type  
Function  
RD0/PSP0  
RD1/PSP1  
RD2/PSP2  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
Input/output port pin or parallel slave port bit0.  
Input/output port pin or parallel slave port bit1.  
Input/output port pin or parallel slave port bit2.  
Input/output port pin or parallel slave port bit3.  
Input/output port pin or parallel slave port bit4.  
Input/output port pin or parallel slave port bit5.  
Input/output port pin or parallel slave port bit6.  
Input/output port pin or parallel slave port bit7.  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.  
TABLE 3-8:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Value on: Value on  
Address Name Bit 7 Bit 6 Bit 5  
Bit 4  
Bit 3  
RD3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
all other  
RESETS  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
0000 -111 0000 -111  
08h  
88h  
89h  
PORTD RD7 RD6 RD5  
RD4  
RD2  
RD1  
RD0  
TRISD  
TRISE  
PORTD Data Direction Register  
IBF OBF IBOV PSPMODE  
PORTE Data Direction Bits  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by PORTD.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 35  
PIC16F87X  
FIGURE 3-8:  
PORTE BLOCK DIAGRAM  
(IN I/O PORT MODE)  
3.5  
PORTE and TRISE Register  
PORTE and TRISE are not implemented on the  
PIC16F873 or PIC16F876.  
I/O pin(1)  
Data  
Bus  
Data Latch  
PORTE has three pins (RE0/RD/AN5, RE1/WR/AN6,  
and RE2/CS/AN7) which are individually configureable  
as inputs or outputs. These pins have Schmitt Trigger  
input buffers.  
D
Q
WR  
Port  
CK  
TRIS Latch  
The PORTE pins become the I/O control inputs for the  
microprocessor port when bit PSPMODE (TRISE<4>) is  
set. In this mode, the user must make certain that the  
TRISE<2:0> bits are set, and that the pins are configured  
as digital inputs. Also ensure that ADCON1 is configured  
for digital I/O. In this mode, the input buffers are TTL.  
D
Q
WR  
TRIS  
Schmitt  
Trigger  
Input  
CK  
Buffer  
RD  
TRIS  
Register 3-1 shows the TRISE register, which also con-  
trols the parallel slave port operation.  
PORTE pins are multiplexed with analog inputs. When  
selected for analog input, these pins will read as '0's.  
Q
D
TRISE controls the direction of the RE pins, even when  
they are being used as analog inputs. The user must  
make sure to keep the pins configured as inputs when  
using them as analog inputs.  
EN  
RD Port  
Note 1: I/O pins have protection diodes to VDD and VSS.  
Note: On a Power-on Reset, these pins are con-  
figured as analog inputs, and read as ‘0’.  
TABLE 3-9:  
Name  
PORTE FUNCTIONS  
Bit# Buffer Type  
Function  
I/O port pin or read control input in Parallel Slave Port mode or analog input:  
RD  
RE0/RD/AN5  
bit0  
ST/TTL(1) 1 = Idle  
0 = Read operation. Contents of PORTD register are output to PORTD  
I/O pins (if chip selected)  
I/O port pin or write control input in Parallel Slave Port mode or analog input:  
WR  
RE1/WR/AN6 bit1  
ST/TTL(1) 1= Idle  
0= Write operation. Value of PORTD I/O pins is latched into PORTD  
register (if chip selected)  
I/O port pin or chip select control input in Parallel Slave Port mode or analog input:  
CS  
RE2/CS/AN7  
bit2  
ST/TTL(1)  
1= Device is not selected  
0= Device is selected  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.  
TABLE 3-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Value on  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
RESETS  
09h  
89h  
9Fh  
PORTE  
TRISE  
OBF  
RE2  
RE1  
RE0  
---- -xxx ---- -uuu  
IBF  
IBOV PSPMODE  
PORTE Data Direction Bits 0000 -111 0000 -111  
ADCON1 ADFM  
PCFG3 PCFG2 PCFG1 PCFG0 --0- 0000 --0- 0000  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by PORTE.  
DS30292D-page 36  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
REGISTER 3-1:  
TRISE REGISTER (ADDRESS 89h)  
R-0  
IBF  
R-0  
R/W-0  
IBOV  
R/W-0  
U-0  
R/W-1  
Bit2  
R/W-1  
Bit1  
R/W-1  
Bit0  
OBF  
PSPMODE  
bit 7  
bit 0  
Parallel Slave Port Status/Control Bits:  
bit 7  
bit 6  
bit 5  
IBF: Input Buffer Full Status bit  
1= A word has been received and is waiting to be read by the CPU  
0= No word has been received  
OBF: Output Buffer Full Status bit  
1= The output buffer still holds a previously written word  
0= The output buffer has been read  
IBOV: Input Buffer Overflow Detect bit (in Microprocessor mode)  
1= A write occurred when a previously input word has not been read (must be cleared in  
software)  
0= No overflow occurred  
bit 4  
PSPMODE: Parallel Slave Port Mode Select bit  
1= PORTD functions in Parallel Slave Port mode  
0= PORTD functions in general purpose I/O mode  
bit 3  
bit 2  
Unimplemented: Read as '0'  
PORTE Data Direction Bits:  
Bit2: Direction Control bit for pin RE2/CS/AN7  
1= Input  
0= Output  
bit 1  
bit 0  
Bit1: Direction Control bit for pin RE1/WR/AN6  
1= Input  
0= Output  
Bit0: Direction Control bit for pin RE0/RD/AN5  
1= Input  
0= Output  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
1998-2013 Microchip Technology Inc.  
DS30292D-page 37  
PIC16F87X  
When not in PSP mode, the IBF and OBF bits are held  
clear. However, if flag bit IBOV was previously set, it  
must be cleared in firmware.  
3.6  
Parallel Slave Port  
The Parallel Slave Port (PSP) is not implemented on  
the PIC16F873 or PIC16F876.  
An interrupt is generated and latched into flag bit  
PSPIF when a read or write operation is completed.  
PSPIF must be cleared by the user in firmware and the  
interrupt can be disabled by clearing the interrupt  
enable bit PSPIE (PIE1<7>).  
PORTD operates as an 8-bit wide Parallel Slave Port or  
microprocessor port, when control bit PSPMODE  
(TRISE<4>) is set. In Slave mode, it is asynchronously  
readable and writable by the external world through RD  
control input pin RE0/RD and WR control input pin  
RE1/WR.  
FIGURE 3-9:  
PORTD AND PORTE  
BLOCK DIAGRAM  
(PARALLEL SLAVE  
PORT)  
The PSP can directly interface to an 8-bit microproces-  
sor data bus. The external microprocessor can read or  
write the PORTD latch as an 8-bit latch. Setting bit  
PSPMODE enables port pin RE0/RD to be the RD  
input, RE1/WR to be the WR input and RE2/CS to be  
the CS (chip select) input. For this functionality, the cor-  
responding data direction bits of the TRISE register  
(TRISE<2:0>) must be configured as inputs (set). The  
Data Bus  
D
Q
WR  
Port  
RDx  
pin  
CK  
A/D  
port  
configuration  
bits  
PCFG3:PCFG0  
(ADCON1<3:0>) must be set to configure pins  
RE2:RE0 as digital I/O.  
TTL  
Q
D
There are actually two 8-bit latches: one for data out-  
put, and one for data input. The user writes 8-bit data  
to the PORTD data latch and reads data from the port  
pin latch (note that they have the same address). In this  
mode, the TRISD register is ignored, since the external  
device is controlling the direction of data flow.  
RD  
Port  
EN  
One bit of PORTD  
Set Interrupt Flag  
PSPIF(PIR1<7>)  
A write to the PSP occurs when both the CS and WR  
lines are first detected low. When either the CS or WR  
lines become high (level triggered), the Input Buffer Full  
(IBF) status flag bit (TRISE<7>) is set on the Q4 clock  
cycle, following the next Q2 cycle, to signal the write is  
complete (Figure 3-10). The interrupt flag bit PSPIF  
(PIR1<7>) is also set on the same Q4 clock cycle. IBF  
can only be cleared by reading the PORTD input latch.  
The Input Buffer Overflow (IBOV) status flag bit  
(TRISE<5>) is set if a second write to the PSP is  
attempted when the previous byte has not been read  
out of the buffer.  
Read  
TTL  
RD  
CS  
WR  
Chip Select  
TTL  
Write  
TTL  
Note 1: I/O pins have protection diodes to VDD and VSS.  
A read from the PSP occurs when both the CS and RD  
lines are first detected low. The Output Buffer Full  
(OBF) status flag bit (TRISE<6>) is cleared immedi-  
ately (Figure 3-11), indicating that the PORTD latch is  
waiting to be read by the external bus. When either the  
CS or RD pin becomes high (level triggered), the inter-  
rupt flag bit PSPIF is set on the Q4 clock cycle, follow-  
ing the next Q2 cycle, indicating that the read is  
complete. OBF remains low until data is written to  
PORTD by the user firmware.  
DS30292D-page 38  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
FIGURE 3-10:  
PARALLEL SLAVE PORT WRITE WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
FIGURE 3-11:  
PARALLEL SLAVE PORT READ WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
TABLE 3-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT  
Value on  
all other  
RESETS  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
08h  
09h  
89h  
0Ch  
8Ch  
9Fh  
PORTD  
PORTE  
TRISE  
PIR1  
Port Data Latch when written: Port pins when read  
xxxx xxxx uuuu uuuu  
---- -xxx ---- -uuu  
0000 -111 0000 -111  
IBF  
RE2  
RE1  
RE0  
OBF IBOV PSPMODE  
PORTE Data Direction Bits  
(1)  
(1)  
PSPIF  
PSPIE  
ADIF RCIF  
ADIE RCIE  
TXIF  
TXIE  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
PCFG3 PCFG2 PCFG1 PCFG0 --0- 0000 --0- 0000  
PIE1  
ADCON1  
ADFM  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by the Parallel Slave Port.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F873/876; always maintain these bits clear.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 39  
PIC16F87X  
NOTES:  
DS30292D-page 40  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
The EEPROM data memory allows byte read and write  
operations without interfering with the normal operation  
of the microcontroller. When interfacing to EEPROM  
data memory, the EEADR register holds the address to  
be accessed. Depending on the operation, the EEDATA  
register holds the data to be written, or the data read, at  
the address in EEADR. The PIC16F873/874 devices  
have 128 bytes of EEPROM data memory and there-  
fore, require that the MSb of EEADR remain clear. The  
EEPROM data memory on these devices do not wrap  
around to 0, i.e., 0x80 in the EEADR does not map to  
0x00. The PIC16F876/877 devices have 256 bytes of  
EEPROM data memory and therefore, uses all 8-bits of  
the EEADR.  
4.0  
DATA EEPROM AND FLASH  
PROGRAM MEMORY  
The Data EEPROM and FLASH Program Memory are  
readable and writable during normal operation over the  
entire VDD range. These operations take place on a sin-  
gle byte for Data EEPROM memory and a single word  
for Program memory. A write operation causes an  
erase-then-write operation to take place on the speci-  
fied byte or word. A bulk erase operation may not be  
issued from user code (which includes removing code  
protection).  
Access to program memory allows for checksum calcu-  
lation. The values written to program memory do not  
need to be valid instructions. Therefore, up to 14-bit  
numbers can be stored in memory for use as calibra-  
tion parameters, serial numbers, packed 7-bit ASCII,  
etc. Executing a program memory location containing  
data that form an invalid instruction, results in the exe-  
cution of a NOPinstruction.  
The FLASH program memory allows non-intrusive  
read access, but write operations cause the device to  
stop executing instructions, until the write completes.  
When interfacing to the program memory, the  
EEADRH:EEADR registers form a two-byte word,  
which holds the 13-bit address of the memory location  
being accessed. The register combination of  
EEDATH:EEDATA holds the 14-bit data for writes, or  
reflects the value of program memory after a read oper-  
ation. Just as in EEPROM data memory accesses, the  
value of the EEADRH:EEADR registers must be within  
the valid range of program memory, depending on the  
device: 0000h to 1FFFh for the PIC16F873/874, or  
0000h to 3FFFh for the PIC16F876/877. Addresses  
outside of this range do not wrap around to 0000h (i.e.,  
4000h does not map to 0000h on the PIC16F877).  
The EEPROM Data memory is rated for high erase/  
write cycles (specification D120). The FLASH program  
memory is rated much lower (specification D130),  
because EEPROM data memory can be used to store  
frequently updated values. An on-chip timer controls  
the write time and it will vary with voltage and tempera-  
ture, as well as from chip to chip. Please refer to the  
specifications for exact limits (specifications D122 and  
D133).  
A byte or word write automatically erases the location  
and writes the new value (erase before write). Writing  
to EEPROM data memory does not impact the opera-  
tion of the device. Writing to program memory will  
cease the execution of instructions until the write is  
complete. The program memory cannot be accessed  
during the write. During the write operation, the oscilla-  
tor continues to run, the peripherals continue to func-  
tion and interrupt events will be detected and  
essentially “queued” until the write is complete. When  
the write completes, the next instruction in the pipeline  
is executed and the branch to the interrupt vector will  
take place, if the interrupt is enabled and occurred dur-  
ing the write.  
4.1  
EECON1 and EECON2 Registers  
The EECON1 register is the control register for config-  
uring and initiating the access. The EECON2 register is  
not a physically implemented register, but is used  
exclusively in the memory write sequence to prevent  
inadvertent writes.  
There are many bits used to control the read and write  
operations to EEPROM data and FLASH program  
memory. The EEPGD bit determines if the access will  
be a program or data memory access. When clear, any  
subsequent operations will work on the EEPROM data  
memory. When set, all subsequent operations will  
operate in the program memory.  
Read and write access to both memories take place  
indirectly through a set of Special Function Registers  
(SFR). The six SFRs used are:  
Read operations only use one additional bit, RD, which  
initiates the read operation from the desired memory  
location. Once this bit is set, the value of the desired  
memory location will be available in the data registers.  
This bit cannot be cleared by firmware. It is automati-  
cally cleared at the end of the read operation. For  
EEPROM data memory reads, the data will be avail-  
able in the EEDATA register in the very next instruction  
cycle after the RD bit is set. For program memory  
reads, the data will be loaded into the  
EEDATH:EEDATA registers, following the second  
instruction after the RD bit is set.  
• EEDATA  
• EEDATH  
• EEADR  
• EEADRH  
• EECON1  
• EECON2  
1998-2013 Microchip Technology Inc.  
DS30292D-page 41  
PIC16F87X  
Write operations have two control bits, WR and WREN,  
and two status bits, WRERR and EEIF. The WREN bit  
is used to enable or disable the write operation. When  
WREN is clear, the write operation will be disabled.  
Therefore, the WREN bit must be set before executing  
a write operation. The WR bit is used to initiate the write  
operation. It also is automatically cleared at the end of  
the write operation. The interrupt flag EEIF is used to  
determine when the memory write completes. This flag  
must be cleared in software before setting the WR bit.  
For EEPROM data memory, once the WREN bit and  
the WR bit have been set, the desired memory address  
in EEADR will be erased, followed by a write of the data  
in EEDATA. This operation takes place in parallel with  
the microcontroller continuing to execute normally.  
When the write is complete, the EEIF flag bit will be set.  
For program memory, once the WREN bit and the WR  
bit have been set, the microcontroller will cease to exe-  
cute instructions. The desired memory location pointed  
to by EEADRH:EEADR will be erased. Then, the data  
value in EEDATH:EEDATA will be programmed. When  
complete, the EEIF flag bit will be set and the microcon-  
troller will continue to execute code.  
The WRERR bit is used to indicate when the  
PIC16F87X device has been reset during a write oper-  
ation. WRERR should be cleared after Power-on  
Reset. Thereafter, it should be checked on any other  
RESET. The WRERR bit is set when a write operation  
is interrupted by a MCLR Reset, or a WDT Time-out  
Reset, during normal operation. In these situations, fol-  
lowing a RESET, the user should check the WRERR bit  
and rewrite the memory location, if set. The contents of  
the data registers, address registers and EEPGD bit  
are not affected by either MCLR Reset, or WDT Time-  
out Reset, during normal operation.  
REGISTER 4-1:  
EECON1 REGISTER (ADDRESS 18Ch)  
R/W-x  
U-0  
U-0  
U-0  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
EEPGD  
WRERR  
bit 7  
bit 0  
bit 7  
EEPGD: Program/Data EEPROM Select bit  
1= Accesses program memory  
0= Accesses data memory  
(This bit cannot be changed while a read or write operation is in progress)  
bit 6-4  
bit 3  
Unimplemented: Read as '0'  
WRERR: EEPROM Error Flag bit  
1= A write operation is prematurely terminated  
(any MCLR Reset or any WDT Reset during normal operation)  
0= The write operation completed  
bit 2  
bit 1  
WREN: EEPROM Write Enable bit  
1= Allows write cycles  
0= Inhibits write to the EEPROM  
WR: Write Control bit  
1= Initiates a write cycle. (The bit is cleared by hardware once write is complete. The WR bit  
can only be set (not cleared) in software.)  
0= Write cycle to the EEPROM is complete  
bit 0  
RD: Read Control bit  
1= Initiates an EEPROM read. (RD is cleared in hardware. The RD bit can only be set (not  
cleared) in software.)  
0= Does not initiate an EEPROM read  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30292D-page 42  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
The steps to write to EEPROM data memory are:  
4.2  
Reading the EEPROM Data  
Memory  
1. If step 10 is not implemented, check the WR bit  
to see if a write is in progress.  
Reading EEPROM data memory only requires that the  
desired address to access be written to the EEADR  
register and clear the EEPGD bit. After the RD bit is set,  
data will be available in the EEDATA register on the  
very next instruction cycle. EEDATA will hold this value  
until another read operation is initiated or until it is writ-  
ten by firmware.  
2. Write the address to EEADR. Make sure that the  
address is not larger than the memory size of  
the PIC16F87X device.  
3. Write the 8-bit data value to be programmed in  
the EEDATA register.  
4. Clear the EEPGD bit to point to EEPROM data  
memory.  
The steps to reading the EEPROM data memory are:  
5. Set the WREN bit to enable program operations.  
6. Disable interrupts (if enabled).  
1. Write the address to EEDATA. Make sure that  
the address is not larger than the memory size  
of the PIC16F87X device.  
7. Execute the special five instruction sequence:  
• Write 55h to EECON2 in two steps (first to W,  
then to EECON2)  
2. Clear the EEPGD bit to point to EEPROM data  
memory.  
• Write AAh to EECON2 in two steps (first to  
W, then to EECON2)  
3. Set the RD bit to start the read operation.  
4. Read the data from the EEDATA register.  
• Set the WR bit  
8. Enable interrupts (if using interrupts).  
EXAMPLE 4-1:  
EEPROM DATA READ  
9. Clear the WREN bit to disable program opera-  
tions.  
BSF  
BCF  
STATUS, RP1  
STATUS, RP0  
ADDR, W  
;
;Bank 2  
;Write address  
;to read from  
;Bank 3  
MOVF  
MOVWF EEADR  
BSF  
BCF  
BSF  
BCF  
10. At the completion of the write cycle, the WR bit  
is cleared and the EEIF interrupt flag bit is set.  
(EEIF must be cleared by firmware.) If step 1 is  
not implemented, then firmware should check  
for EEIF to be set, or WR to clear, to indicate the  
end of the program cycle.  
STATUS, RP0  
EECON1, EEPGD ;Point to Data memory  
EECON1, RD  
STATUS, RP0  
;Start read operation  
;Bank 2  
MOVF  
EEDATA, W  
;W = EEDATA  
EXAMPLE 4-2:  
EEPROM DATA WRITE  
BSF  
BSF  
STATUS, RP1  
STATUS, RP0  
;
;Bank 3  
;Wait for  
;write to finish  
;Bank 2  
;Address to  
;write to  
;Data to  
;write  
;Bank 3  
4.3  
Writing to the EEPROM Data  
Memory  
BTFSC EECON1, WR  
GOTO  
BCF  
MOVF  
MOVWF EEADR  
MOVF  
MOVWF EEDATA  
BSF  
BCF  
BSF  
$-1  
STATUS, RP0  
ADDR, W  
There are many steps in writing to the EEPROM data  
memory. Both address and data values must be written  
to the SFRs. The EEPGD bit must be cleared, and the  
WREN bit must be set, to enable writes. The WREN bit  
should be kept clear at all times, except when writing to  
the EEPROM data. The WR bit can only be set if the  
WREN bit was set in a previous operation, i.e., they  
both cannot be set in the same operation. The WREN  
bit should then be cleared by firmware after the write.  
Clearing the WREN bit before the write actually com-  
pletes will not terminate the write in progress.  
VALUE, W  
STATUS, RP0  
EECON1, EEPGD ;Point to Data memory  
EECON1, WREN ;Enable writes  
;Only disable interrupts  
BCF  
INTCON, GIE  
;if already enabled,  
;otherwise discard  
;Write 55h to  
;EECON2  
;Write AAh to  
MOVLW 0x55  
MOVWF EECON2  
MOVLW 0xAA  
MOVWF EECON2  
BSF  
BSF  
BCF  
Writes to EEPROM data memory must also be pref-  
aced with a special sequence of instructions, that pre-  
vent inadvertent write operations. This is a sequence of  
five instructions that must be executed without interrup-  
tions. The firmware should verify that a write is not in  
progress, before starting another cycle.  
;EECON2  
EECON1, WR  
;Start write operation  
;Only enable interrupts  
;if using interrupts,  
;otherwise discard  
INTCON, GIE  
EECON1, WREN ;Disable writes  
1998-2013 Microchip Technology Inc.  
DS30292D-page 43  
PIC16F87X  
4.4  
Reading the FLASH Program  
Memory  
4.5  
Writing to the FLASH Program  
Memory  
Reading FLASH program memory is much like that of  
EEPROM data memory, only two NOPinstructions must  
be inserted after the RD bit is set. These two instruction  
cycles that the NOP instructions execute, will be used  
by the microcontroller to read the data out of program  
Writing to FLASH program memory is unique, in that  
the microcontroller does not execute instructions while  
programming is taking place. The oscillator continues  
to run and all peripherals continue to operate and  
queue interrupts, if enabled. Once the write operation  
completes (specification D133), the processor begins  
executing code from where it left off. The other impor-  
tant difference when writing to FLASH program mem-  
ory, is that the WRT configuration bit, when clear,  
prevents any writes to program memory (see Table 4-1).  
memory  
and  
insert  
the  
value  
into  
the  
EEDATH:EEDATA registers. Data will be available fol-  
lowing the second NOP instruction. EEDATH and  
EEDATA will hold their value until another read opera-  
tion is initiated, or until they are written by firmware.  
The steps to reading the FLASH program memory are:  
Just like EEPROM data memory, there are many steps  
in writing to the FLASH program memory. Both address  
and data values must be written to the SFRs. The  
EEPGD bit must be set, and the WREN bit must be set  
to enable writes. The WREN bit should be kept clear at  
all times, except when writing to the FLASH Program  
memory. The WR bit can only be set if the WREN bit  
was set in a previous operation, i.e., they both cannot  
be set in the same operation. The WREN bit should  
then be cleared by firmware after the write. Clearing the  
WREN bit before the write actually completes will not  
terminate the write in progress.  
1. Write the address to EEADRH:EEADR. Make  
sure that the address is not larger than the mem-  
ory size of the PIC16F87X device.  
2. Set the EEPGD bit to point to FLASH program  
memory.  
3. Set the RD bit to start the read operation.  
4. Execute two NOPinstructions to allow the micro-  
controller to read out of program memory.  
5. Read the data from the EEDATH:EEDATA  
registers.  
Writes to program memory must also be prefaced with  
a special sequence of instructions that prevent inad-  
vertent write operations. This is a sequence of five  
instructions that must be executed without interruption  
for each byte written. These instructions must then be  
followed by two NOPinstructions to allow the microcon-  
troller to setup for the write operation. Once the write is  
complete, the execution of instructions starts with the  
instruction after the second NOP.  
EXAMPLE 4-3:  
FLASH PROGRAM READ  
BSF  
STATUS, RP1  
;
;Bank 2  
;Write the  
;address bytes  
;for the desired  
;address to read  
;Bank 3  
BCF  
MOVF  
STATUS, RP0  
ADDRL, W  
MOVWF EEADR  
MOVF  
ADDRH,W  
MOVWF EEADRH  
BSF  
BSF  
BSF  
NOP  
NOP  
BCF  
MOVF  
STATUS, RP0  
EECON1, EEPGD ;Point to Program memory  
EECON1, RD  
The steps to write to program memory are:  
;Start read operation  
;Required two NOPs  
;
;Bank 2  
;DATAL = EEDATA  
1. Write the address to EEADRH:EEADR. Make  
sure that the address is not larger than the mem-  
ory size of the PIC16F87X device.  
STATUS, RP0  
EEDATA, W  
2. Write the 14-bit data value to be programmed in  
the EEDATH:EEDATA registers.  
MOVWF DATAL  
;
MOVF  
EEDATH,W  
;DATAH = EEDATH  
;
MOVWF DATAH  
3. Set the EEPGD bit to point to FLASH program  
memory.  
4. Set the WREN bit to enable program operations.  
5. Disable interrupts (if enabled).  
6. Execute the special five instruction sequence:  
• Write 55h to EECON2 in two steps (first to W,  
then to EECON2)  
• Write AAh to EECON2 in two steps (first to W,  
then to EECON2)  
• Set the WR bit  
7. Execute two NOPinstructions to allow the micro-  
controller to setup for write operation.  
8. Enable interrupts (if using interrupts).  
9. Clear the WREN bit to disable program  
operations.  
DS30292D-page 44  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
At the completion of the write cycle, the WR bit is  
cleared and the EEIF interrupt flag bit is set. (EEIF  
must be cleared by firmware.) Since the microcontroller  
does not execute instructions during the write cycle, the  
firmware does not necessarily have to check either  
EEIF, or WR, to determine if the write had finished.  
4.7  
Protection Against Spurious  
Writes  
There are conditions when the device may not want to  
write to the EEPROM data memory or FLASH program  
memory. To protect against these spurious write condi-  
tions, various mechanisms have been built into the  
PIC16F87X devices. On power-up, the WREN bit is  
cleared and the Power-up Timer (if enabled) prevents  
writes.  
EXAMPLE 4-4:  
FLASH PROGRAM WRITE  
BSF  
BCF  
MOVF  
STATUS, RP1  
STATUS, RP0  
ADDRL, W  
;
;Bank 2  
;Write address  
The write initiate sequence, and the WREN bit  
together, help prevent any accidental writes during  
brown-out, power glitches, or firmware malfunction.  
MOVWF EEADR  
;of desired  
MOVF  
MOVWF EEADRH  
ADDRH, W  
;program memory  
;location  
MOVF  
MOVWF EEDATA  
VALUEL, W  
;Write value to  
;program at  
4.8  
Operation While Code Protected  
MOVF  
MOVWF EEDATH  
BSF  
BSF  
BSF  
VALUEH, W  
;desired memory  
;location  
;Bank 3  
The PIC16F87X devices have two code protect mecha-  
nisms, one bit for EEPROM data memory and two bits for  
FLASH program memory. Data can be read and written  
to the EEPROM data memory, regardless of the state of  
the code protection bit, CPD. When code protection is  
enabled and CPD cleared, external access via ICSP is  
disabled, regardless of the state of the program memory  
code protect bits. This prevents the contents of EEPROM  
data memory from being read out of the device.  
STATUS, RP0  
EECON1, EEPGD ;Point to Program memory  
EECON1, WREN ;Enable writes  
;Only disable interrupts  
BCF  
INTCON, GIE  
;if already enabled,  
;otherwise discard  
;Write 55h to  
;EECON2  
;Write AAh to  
MOVLW 0x55  
MOVWF EECON2  
MOVLW 0xAA  
MOVWF EECON2  
BSF  
NOP  
NOP  
The state of the program memory code protect bits,  
CP0 and CP1, do not affect the execution of instruc-  
tions out of program memory. The PIC16F87X devices  
can always read the values in program memory,  
regardless of the state of the code protect bits. How-  
ever, the state of the code protect bits and the WRT bit  
will have different effects on writing to program mem-  
ory. Table 4-1 shows the effect of the code protect bits  
and the WRT bit on program memory.  
;EECON2  
EECON1, WR  
;Start write operation  
;Two NOPs to allow micro  
;to setup for write  
;Only enable interrupts  
;if using interrupts,  
;otherwise discard  
BSF  
BCF  
INTCON, GIE  
EECON1, WREN ;Disable writes  
Once code protection has been enabled for either  
EEPROM data memory or FLASH program memory,  
only a full erase of the entire device will disable code  
protection.  
4.6  
Write Verify  
The PIC16F87X devices do not automatically verify the  
value written during a write operation. Depending on  
the application, good programming practice may dic-  
tate that the value written to memory be verified against  
the original value. This should be used in applications  
where excessive writes can stress bits near the speci-  
fied endurance limits.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 45  
PIC16F87X  
4.9  
FLASH Program Memory Write  
Protection  
The configuration word contains a bit that write protects  
the FLASH program memory, called WRT. This bit can  
only be accessed when programming the PIC16F87X  
device via ICSP. Once write protection is enabled, only  
an erase of the entire device will disable it. When  
enabled, write protection prevents any writes to FLASH  
program memory. Write protection does not affect pro-  
gram memory reads.  
TABLE 4-1:  
READ/WRITE STATE OF INTERNAL FLASH PROGRAM MEMORY  
Configuration Bits  
Internal  
Read  
Internal  
Write  
Memory Location  
ICSP Read  
ICSP Write  
CP1  
CP0  
WRT  
0
0
0
0
0
1
1
1
1
1
1
0
1
1
1
1
0
0
0
0
1
1
x
0
0
1
1
0
0
1
1
0
1
All program memory  
Unprotected areas  
Protected areas  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
Yes  
No  
No  
No  
Yes  
No  
No  
Yes  
No  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
Unprotected areas  
Protected areas  
Yes  
No  
Unprotected areas  
Protected areas  
Yes  
No  
Unprotected areas  
Protected areas  
Yes  
No  
All program memory  
All program memory  
Yes  
Yes  
TABLE 4-2:  
REGISTERS ASSOCIATED WITH DATA EEPROM/PROGRAM FLASH  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh,  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
10Bh, 18Bh  
10Dh  
10Fh  
10Ch  
10Eh  
18Ch  
18Dh  
8Dh  
EEADR  
EEPROM Address Register, Low Byte  
EEPROM Address, High Byte  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
x--- x000 x--- u000  
EEADRH  
EEDATA EEPROM Data Register, Low Byte  
EEDATH  
EEPROM Data Register, High Byte  
WRERR WREN  
EECON1 EEPGD  
WR  
RD  
EECON2 EEPROM Control Register2 (not a physical register)  
PIE2  
PIR2  
(1)  
(1)  
EEIE  
EEIF  
BCLIE  
BCLIF  
CCP2IE  
CCP2IF  
-r-0 0--0 -r-0 0--0  
-r-0 0--0 -r-0 0--0  
0Dh  
Legend: x= unknown, u= unchanged, r= reserved, -= unimplemented, read as '0'.  
Shaded cells are not used during FLASH/EEPROM access.  
Note 1: These bits are reserved; always maintain these bits clear.  
DS30292D-page 46  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
Counter mode is selected by setting bit T0CS  
(OPTION_REG<5>). In Counter mode, Timer0 will  
increment either on every rising, or falling edge of pin  
RA4/T0CKI. The incrementing edge is determined by  
the Timer0 Source Edge Select bit, T0SE  
(OPTION_REG<4>). Clearing bit T0SE selects the ris-  
ing edge. Restrictions on the external clock input are  
discussed in detail in Section 5.2.  
5.0  
TIMER0 MODULE  
The Timer0 module timer/counter has the following fea-  
tures:  
• 8-bit timer/counter  
• Readable and writable  
• 8-bit software programmable prescaler  
• Internal or external clock select  
• Interrupt on overflow from FFh to 00h  
• Edge select for external clock  
The prescaler is mutually exclusively shared between  
the Timer0 module and the Watchdog Timer. The pres-  
caler is not readable or writable. Section 5.3 details the  
operation of the prescaler.  
Figure 5-1 is a block diagram of the Timer0 module and  
the prescaler shared with the WDT.  
5.1  
Timer0 Interrupt  
Additional information on the Timer0 module is avail-  
able in the PIC® MCU Mid-Range Family Reference  
Manual (DS33023).  
The TMR0 interrupt is generated when the TMR0 reg-  
ister overflows from FFh to 00h. This overflow sets bit  
T0IF (INTCON<2>). The interrupt can be masked by  
clearing bit T0IE (INTCON<5>). Bit T0IF must be  
cleared in software by the Timer0 module Interrupt Ser-  
vice Routine before re-enabling this interrupt. The  
TMR0 interrupt cannot awaken the processor from  
SLEEP, since the timer is shut-off during SLEEP.  
Timer mode is selected by clearing bit T0CS  
(OPTION_REG<5>). In Timer mode, the Timer0 mod-  
ule will increment every instruction cycle (without pres-  
caler). If the TMR0 register is written, the increment is  
inhibited for the following two instruction cycles. The  
user can work around this by writing an adjusted value  
to the TMR0 register.  
FIGURE 5-1:  
BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
Data Bus  
CLKOUT (= FOSC/4)  
8
M
U
X
1
0
0
1
M
U
X
RA4/T0CKI  
pin  
SYNC  
2
TMR0 Reg  
Cycles  
T0SE  
T0CS  
Set Flag Bit T0IF  
on Overflow  
PSA  
PRESCALER  
0
1
8-bit Prescaler  
M
U
X
Watchdog  
Timer  
8
8 - to - 1MUX  
PS2:PS0  
PSA  
1
0
WDT Enable bit  
M U X  
PSA  
WDT  
Time-out  
Note: T0CS, T0SE, PSA, PS2:PS0 are (OPTION_REG<5:0>).  
1998-2013 Microchip Technology Inc.  
DS30292D-page 47  
PIC16F87X  
Timer0 module means that there is no prescaler for the  
Watchdog Timer, and vice-versa. This prescaler is not  
readable or writable (see Figure 5-1).  
5.2  
Using Timer0 with an External  
Clock  
When no prescaler is used, the external clock input is  
the same as the prescaler output. The synchronization  
of T0CKI with the internal phase clocks is accom-  
plished by sampling the prescaler output on the Q2 and  
Q4 cycles of the internal phase clocks. Therefore, it is  
necessary for T0CKI to be high for at least 2Tosc (and  
a small RC delay of 20 ns) and low for at least 2Tosc  
(and a small RC delay of 20 ns). Refer to the electrical  
specification of the desired device.  
The PSA and PS2:PS0 bits (OPTION_REG<3:0>)  
determine the prescaler assignment and prescale ratio.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g. CLRF1, MOVWF1,  
BSF1,x....etc.) will clear the prescaler. When assigned  
to WDT, a CLRWDT instruction will clear the prescaler  
along with the Watchdog Timer. The prescaler is not  
readable or writable.  
Note: Writing to TMR0, when the prescaler is  
assigned to Timer0, will clear the prescaler  
count, but will not change the prescaler  
assignment.  
5.3  
Prescaler  
There is only one prescaler available, which is mutually  
exclusively shared between the Timer0 module and the  
Watchdog Timer. A prescaler assignment for the  
REGISTER 5-1:  
OPTION_REG REGISTER  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
RBPU  
INTEDG  
T0CS: TMR0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (CLKOUT)  
bit 4  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
bit 3  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
bit 2-0  
PS2:PS0: Prescaler Rate Select bits  
Bit Value TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
Note: To avoid an unintended device RESET, the instruction sequence shown in the PIC® MCU Mid-Range Fam-  
ily Reference Manual (DS33023) must be executed when changing the prescaler assignment from Timer0  
to the WDT. This sequence must be followed even if the WDT is disabled.  
DS30292D-page 48  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
TABLE 5-1:  
REGISTERS ASSOCIATED WITH TIMER0  
Value on: Value on  
Address  
Name  
Bit 7  
Bit 6  
Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
POR,  
BOR  
all other  
RESETS  
xxxx xxxx uuuu uuuu  
0000 000x 0000 000u  
01h,101h  
TMR0  
INTCON  
Timer0 Module’s Register  
GIE PEIE T0IE INTE RBIE T0IF INTF RBIF  
0Bh,8Bh,  
10Bh,18Bh  
1111 1111 1111 1111  
81h,181h  
OPTION_REG RBPU INTEDG T0CS T0SE PSA PS2 PS1  
PS0  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'.  
Shaded cells are not used by Timer0.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 49  
PIC16F87X  
NOTES:  
DS30292D-page 50  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
In Timer mode, Timer1 increments every instruction  
cycle. In Counter mode, it increments on every rising  
edge of the external clock input.  
6.0  
TIMER1 MODULE  
The Timer1 module is a 16-bit timer/counter consisting  
of two 8-bit registers (TMR1H and TMR1L), which are  
readable and writable. The TMR1 Register pair  
(TMR1H:TMR1L) increments from 0000h to FFFFh  
and rolls over to 0000h. The TMR1 Interrupt, if enabled,  
is generated on overflow, which is latched in interrupt  
flag bit TMR1IF (PIR1<0>). This interrupt can be  
enabled/disabled by setting/clearing TMR1 interrupt  
enable bit TMR1IE (PIE1<0>).  
Timer1 can be enabled/disabled by setting/clearing  
control bit TMR1ON (T1CON<0>).  
Timer1 also has an internal “RESET input”. This  
RESET can be generated by either of the two CCP  
modules (Section 8.0). Register 6-1 shows the Timer1  
control register.  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI/CCP2 and RC0/T1OSO/T1CKI  
pins become inputs. That is, the TRISC<1:0> value is  
ignored, and these pins read as ‘0’.  
Timer1 can operate in one of two modes:  
• As a timer  
• As a counter  
Additional information on timer modules is available in  
the PIC® MCU Mid-Range Family Reference Manual  
(DS33023).  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>).  
REGISTER 6-1:  
T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit 0  
bit 7  
bit 7-6  
bit 5-4  
Unimplemented: Read as '0'  
T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3  
bit 2  
T1OSCEN: Timer1 Oscillator Enable Control bit  
1= Oscillator is enabled  
0= Oscillator is shut-off (the oscillator inverter is turned off to eliminate power drain)  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
When TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from pin RC0/T1OSO/T1CKI (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
1998-2013 Microchip Technology Inc.  
DS30292D-page 51  
PIC16F87X  
6.1  
Timer1 Operation in Timer Mode  
6.2  
Timer1 Counter Operation  
Timer mode is selected by clearing the TMR1CS  
(T1CON<1>) bit. In this mode, the input clock to the  
timer is FOSC/4. The synchronize control bit T1SYNC  
(T1CON<2>) has no effect, since the internal clock is  
always in sync.  
Timer1 may operate in either a Synchronous, or an  
Asynchronous mode, depending on the setting of the  
TMR1CS bit.  
When Timer1 is being incremented via an external  
source, increments occur on a rising edge. After Timer1  
is enabled in Counter mode, the module must first have  
a falling edge before the counter begins to increment.  
FIGURE 6-1:  
TIMER1 INCREMENTING EDGE  
T1CKI  
(Default High)  
T1CKI  
(Default Low)  
Note: Arrows indicate counter increments.  
If T1SYNC is cleared, then the external clock input is  
synchronized with internal phase clocks. The synchro-  
nization is done after the prescaler stage. The  
prescaler stage is an asynchronous ripple-counter.  
6.3  
Timer1 Operation in Synchronized  
Counter Mode  
Counter mode is selected by setting bit TMR1CS. In  
this mode, the timer increments on every rising edge of  
clock input on pin RC1/T1OSI/CCP2, when bit  
T1OSCEN is set, or on pin RC0/T1OSO/T1CKI, when  
bit T1OSCEN is cleared.  
In this configuration, during SLEEP mode, Timer1 will  
not increment even if the external clock is present,  
since the synchronization circuit is shut-off. The  
prescaler, however, will continue to increment.  
FIGURE 6-2:  
TIMER1 BLOCK DIAGRAM  
Set Flag bit  
TMR1IF on  
Overflow  
Synchronized  
0
TMR1  
Clock Input  
TMR1L  
TMR1H  
1
TMR1ON  
On/Off  
T1SYNC  
T1OSC  
RC0/T1OSO/T1CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
FOSC/4  
Internal  
Clock  
0
(1)  
(2)  
Oscillator  
RC1/T1OSI/CCP2  
2
Q Clock  
T1CKPS1:T1CKPS0  
TMR1CS  
Note 1: When the T1OSCEN bit is cleared, the inverter is turned off. This eliminates power drain.  
DS30292D-page 52  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
TABLE 6-1:  
CAPACITOR SELECTION FOR  
THE TIMER1 OSCILLATOR  
6.4  
Timer1 Operation in  
Asynchronous Counter Mode  
If control bit T1SYNC (T1CON<2>) is set, the external  
clock input is not synchronized. The timer continues to  
increment asynchronous to the internal phase clocks.  
The timer will continue to run during SLEEP and can  
generate an interrupt-on-overflow, which will wake-up  
the processor. However, special precautions in soft-  
ware are needed to read/write the timer (Section 6.4.1).  
Osc Type  
Freq.  
C1  
C2  
LP  
32 kHz  
100 kHz  
200 kHz  
33 pF  
15 pF  
15 pF  
33 pF  
15 pF  
15 pF  
These values are for design guidance only.  
Crystals Tested:  
In Asynchronous Counter mode, Timer1 cannot be  
used as a time-base for capture or compare opera-  
tions.  
32.768 kHz Epson C-001R32.768K-A ± 20 PPM  
100 kHz  
200 kHz  
Epson C-2 100.00 KC-P ± 20 PPM  
STD XTL 200.000 kHz ± 20 PPM  
6.4.1  
READING AND WRITING TIMER1 IN  
ASYNCHRONOUS COUNTER  
MODE  
Note 1: Higher capacitance increases the stability  
of oscillator, but also increases the start-up  
time.  
2: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appro-  
priate values of external components.  
Reading TMR1H or TMR1L while the timer is running  
from an external asynchronous clock, will guarantee a  
valid read (taken care of in hardware). However, the  
user should keep in mind that reading the 16-bit timer  
in two 8-bit values itself, poses certain problems, since  
the timer may overflow between the reads.  
6.6  
Resetting Timer1 using a CCP  
Trigger Output  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write conten-  
tion may occur by writing to the timer registers, while  
the register is incrementing. This may produce an  
unpredictable value in the timer register.  
If the CCP1 or CCP2 module is configured in Compare  
mode to generate “special event trigger”  
(CCP1M3:CCP1M0 = 1011), this signal will reset  
a
Timer1.  
Note: The special event triggers from the CCP1  
and CCP2 modules will not set interrupt  
flag bit TMR1IF (PIR1<0>).  
Reading the 16-bit value requires some care. Exam-  
ples 12-2 and 12-3 in the PIC® MCU Mid-Range Family  
Reference Manual (DS33023) show how to read and  
write Timer1 when it is running in Asynchronous mode.  
Timer1 must be configured for either Timer or Synchro-  
nized Counter mode to take advantage of this feature.  
If Timer1 is running in Asynchronous Counter mode,  
this RESET operation may not work.  
6.5  
Timer1 Oscillator  
A crystal oscillator circuit is built-in between pins T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit T1OSCEN (T1CON<3>). The oscilla-  
tor is a low power oscillator, rated up to 200 kHz. It will  
continue to run during SLEEP. It is primarily intended  
for use with a 32 kHz crystal. Table 6-1 shows the  
capacitor selection for the Timer1 oscillator.  
In the event that a write to Timer1 coincides with a spe-  
cial event trigger from CCP1 or CCP2, the write will  
take precedence.  
In this mode of operation, the CCPRxH:CCPRxL regis-  
ter pair effectively becomes the period register for  
Timer1.  
The Timer1 oscillator is identical to the LP oscillator.  
The user must provide a software time delay to ensure  
proper oscillator start-up.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 53  
PIC16F87X  
6.7  
Resetting of Timer1 Register Pair  
(TMR1H, TMR1L)  
6.8  
Timer1 Prescaler  
The prescaler counter is cleared on writes to the  
TMR1H or TMR1L registers.  
TMR1H and TMR1L registers are not reset to 00h on a  
POR, or any other RESET, except by the CCP1 and  
CCP2 special event triggers.  
T1CON register is reset to 00h on a Power-on Reset,  
or a Brown-out Reset, which shuts off the timer and  
leaves a 1:1 prescale. In all other RESETS, the register  
is unaffected.  
TABLE 6-2:  
REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh,  
10Bh, 18Bh  
0000 000x 0000 000u  
INTCON  
GIE  
PEIE  
ADIF  
ADIE  
T0IE  
RCIF  
RCIE  
INTE  
TXIF  
TXIE  
RBIE  
SSPIF  
SSPIE  
T0IF  
INTF  
RBIF  
0Ch  
PIR1  
PSPIF(1)  
PSPIE(1)  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
0000 0000 0000 0000  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
--00 0000 --uu uuuu  
8Ch  
PIE1  
0Eh  
TMR1L  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
0Fh  
TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
T1CON T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.  
10h  
Legend:  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F873/876; always maintain these bits clear.  
DS30292D-page 54  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
Register 7-1 shows the Timer2 control register.  
7.0  
TIMER2 MODULE  
Additional information on timer modules is available in  
the PIC® MCU Mid-Range Family Reference Manual  
(DS33023).  
Timer2 is an 8-bit timer with a prescaler and a  
postscaler. It can be used as the PWM time-base for  
the PWM mode of the CCP module(s). The TMR2 reg-  
ister is readable and writable, and is cleared on any  
device RESET.  
FIGURE 7-1:  
TIMER2 BLOCK DIAGRAM  
Sets Flag  
bit TMR2IF  
The input clock (FOSC/4) has a prescale option of 1:1,  
TMR2  
Output(1)  
RESET  
1:4,  
or  
1:16,  
selected  
by  
control  
bits  
T2CKPS1:T2CKPS0 (T2CON<1:0>).  
Prescaler  
1:1, 1:4, 1:16  
TMR2 Reg  
FOSC/4  
The Timer2 module has an 8-bit period register, PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register. The PR2 register is  
initialized to FFh upon RESET.  
Postscaler  
1:1 to 1:16  
2
Comparator  
EQ  
T2CKPS1:  
T2CKPS0  
4
PR2 Reg  
T2OUTPS3:  
T2OUTPS0  
The match output of TMR2 goes through a 4-bit  
postscaler (which gives a 1:1 to 1:16 scaling inclusive)  
to generate a TMR2 interrupt (latched in flag bit  
TMR2IF, (PIR1<1>)).  
Note 1:TMR2 register output can be software selected by the  
SSP module as a baud clock.  
Timer2 can be shut-off by clearing control bit TMR2ON  
(T2CON<2>), to minimize power consumption.  
REGISTER 7-1:  
T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit 0  
bit 7  
bit 7  
Unimplemented: Read as '0'  
bit 6-3  
TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
0010= 1:3 Postscale  
1111= 1:16 Postscale  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0  
T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
1998-2013 Microchip Technology Inc.  
DS30292D-page 55  
PIC16F87X  
7.1  
Timer2 Prescaler and Postscaler  
7.2  
Output of TMR2  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
The output of TMR2 (before the postscaler) is fed to the  
SSP module, which optionally uses it to generate shift  
clock.  
• a write to the TMR2 register  
• a write to the T2CON register  
• any device RESET (POR, MCLR Reset, WDT  
Reset, or BOR)  
TMR2 is not cleared when T2CON is written.  
TABLE 7-1:  
REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh,  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
10Bh,18Bh  
0Ch  
PIR1  
PSPIF(1)  
PSPIE(1)  
ADIF  
ADIE  
RCIF  
RCIE  
TXIF  
TXIE  
SSPIF  
SSPIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF 0000 0000 0000 0000  
TMR1IE 0000 0000 0000 0000  
0000 0000 0000 0000  
8Ch  
PIE1  
11h  
TMR2  
T2CON  
PR2  
Timer2 Module’s Register  
12h  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
92h  
Timer2 Period Register  
1111 1111 1111 1111  
Legend:  
x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F873/876; always maintain these bits clear.  
DS30292D-page 56  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
CCP2 Module:  
8.0  
CAPTURE/COMPARE/PWM  
MODULES  
Capture/Compare/PWM Register2 (CCPR2) is com-  
prised of two 8-bit registers: CCPR2L (low byte) and  
CCPR2H (high byte). The CCP2CON register controls  
the operation of CCP2. The special event trigger is  
generated by a compare match and will reset Timer1  
and start an A/D conversion (if the A/D module is  
enabled).  
Each Capture/Compare/PWM (CCP) module contains  
a 16-bit register which can operate as a:  
• 16-bit Capture register  
• 16-bit Compare register  
• PWM Master/Slave Duty Cycle register  
Additional information on CCP modules is available in  
the PIC® MCU Mid-Range Family Reference Manual  
(DS33023) and in application note AN594, “Using the  
CCP Modules” (DS00594).  
Both the CCP1 and CCP2 modules are identical in  
operation, with the exception being the operation of the  
special event trigger. Table 8-1 and Table 8-2 show the  
resources and interactions of the CCP module(s). In  
the following sections, the operation of a CCP module  
is described with respect to CCP1. CCP2 operates the  
same as CCP1, except where noted.  
TABLE 8-1:  
CCP MODE - TIMER  
RESOURCES REQUIRED  
CCP1 Module:  
CCP Mode  
Capture  
Compare  
PWM  
Timer Resource  
Capture/Compare/PWM Register1 (CCPR1) is com-  
prised of two 8-bit registers: CCPR1L (low byte) and  
CCPR1H (high byte). The CCP1CON register controls  
the operation of CCP1. The special event trigger is  
generated by a compare match and will reset Timer1.  
Timer1  
Timer1  
Timer2  
TABLE 8-2:  
INTERACTION OF TWO CCP MODULES  
CCPx Mode CCPy Mode  
Interaction  
Capture  
Capture  
Compare  
PWM  
Capture  
Same TMR1 time-base  
Compare The compare should be configured for the special event trigger, which clears TMR1  
Compare The compare(s) should be configured for the special event trigger, which clears TMR1  
PWM  
The PWMs will have the same frequency and update rate (TMR2 interrupt)  
None  
PWM  
Capture  
PWM  
Compare None  
1998-2013 Microchip Technology Inc.  
DS30292D-page 57  
PIC16F87X  
REGISTER 8-1:  
CCP1CON REGISTER/CCP2CON REGISTER (ADDRESS: 17h/1Dh)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CCPxX  
CCPxY  
CCPxM3  
CCPxM2 CCPxM1 CCPxM0  
bit 0  
bit 7  
bit 7-6  
bit 5-4  
Unimplemented: Read as '0'  
CCPxX:CCPxY: PWM Least Significant bits  
Capture mode:  
Unused  
Compare mode:  
Unused  
PWM mode:  
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.  
bit 3-0  
CCPxM3:CCPxM0: CCPx Mode Select bits  
0000= Capture/Compare/PWM disabled (resets CCPx module)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (CCPxIF bit is set)  
1001= Compare mode, clear output on match (CCPxIF bit is set)  
1010= Compare mode, generate software interrupt on match (CCPxIF bit is set, CCPx pin is  
unaffected)  
1011= Compare mode, trigger special event (CCPxIF bit is set, CCPx pin is unaffected); CCP1  
resets TMR1; CCP2 resets TMR1 and starts an A/D conversion (if A/D module is  
enabled)  
11xx= PWM mode  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30292D-page 58  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
8.1.2  
TIMER1 MODE SELECTION  
8.1  
Capture Mode  
Timer1 must be running in Timer mode, or Synchro-  
nized Counter mode, for the CCP module to use the  
capture feature. In Asynchronous Counter mode, the  
capture operation may not work.  
In Capture mode, CCPR1H:CCPR1L captures the  
16-bit value of the TMR1 register when an event occurs  
on pin RC2/CCP1. An event is defined as one of the fol-  
lowing:  
• Every falling edge  
• Every rising edge  
8.1.3  
SOFTWARE INTERRUPT  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit  
CCP1IE (PIE1<2>) clear to avoid false interrupts and  
should clear the flag bit CCP1IF, following any such  
change in operating mode.  
• Every 4th rising edge  
• Every 16th rising edge  
The type of event is configured by control bits  
CCP1M3:CCP1M0 (CCPxCON<3:0>). When a cap-  
ture is made, the interrupt request flag bit CCP1IF  
(PIR1<2>) is set. The interrupt flag must be cleared in  
software. If another capture occurs before the value in  
register CCPR1 is read, the old captured value is over-  
written by the new value.  
8.1.4  
CCP PRESCALER  
There are four prescaler settings, specified by bits  
CCP1M3:CCP1M0. Whenever the CCP module is  
turned off, or the CCP module is not in Capture mode,  
the prescaler counter is cleared. Any RESET will clear  
the prescaler counter.  
8.1.1  
CCP PIN CONFIGURATION  
In Capture mode, the RC2/CCP1 pin should be config-  
ured as an input by setting the TRISC<2> bit.  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared, therefore, the first capture may be from  
a non-zero prescaler. Example 8-1 shows the recom-  
mended method for switching between capture pres-  
calers. This example also clears the prescaler counter  
and will not generate the “false” interrupt.  
Note: If the RC2/CCP1 pin is configured as an  
output, a write to the port can cause a cap-  
ture condition.  
FIGURE 8-1:  
CAPTURE MODE  
OPERATION BLOCK  
DIAGRAM  
EXAMPLE 8-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
; Turn CCP module off  
Set Flag bit CCP1IF  
(PIR1<2>)  
RC2/CCP1  
pin  
CLRF  
CCP1CON  
Prescaler  
MOVLW  
NEW_CAPT_PS ; Load the W reg with  
; the new prescaler  
1, 4, 16  
CCPR1H  
CCPR1L  
; move value and CCP ON  
MOVWF  
CCP1CON  
; Load CCP1CON with this  
; value  
Capture  
Enable  
and  
edge detect  
TMR1H  
TMR1L  
CCP1CON<3:0>  
Qs  
1998-2013 Microchip Technology Inc.  
DS30292D-page 59  
PIC16F87X  
8.2.2  
TIMER1 MODE SELECTION  
8.2  
Compare Mode  
Timer1 must be running in Timer mode, or Synchro-  
nized Counter mode, if the CCP module is using the  
compare feature. In Asynchronous Counter mode, the  
compare operation may not work.  
In Compare mode, the 16-bit CCPR1 register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the RC2/CCP1 pin is:  
• Driven high  
• Driven low  
8.2.3  
SOFTWARE INTERRUPT MODE  
• Remains unchanged  
When Generate Software Interrupt mode is chosen, the  
CCP1 pin is not affected. The CCPIF bit is set, causing  
a CCP interrupt (if enabled).  
The action on the pin is based on the value of control  
bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the  
same time, interrupt flag bit CCP1IF is set.  
8.2.4  
SPECIAL EVENT TRIGGER  
FIGURE 8-2:  
COMPARE MODE  
OPERATION BLOCK  
DIAGRAM  
In this mode, an internal hardware trigger is generated,  
which may be used to initiate an action.  
The special event trigger output of CCP1 resets the  
TMR1 register pair. This allows the CCPR1 register to  
effectively be a 16-bit programmable period register for  
Timer1.  
Special event trigger will:  
reset Timer1, but not set interrupt flag bit TMR1IF (PIR1<0>),  
and set bit GO/DONE (ADCON0<2>).  
Special Event Trigger  
The special event trigger output of CCP2 resets the  
TMR1 register pair and starts an A/D conversion (if the  
A/D module is enabled).  
Set Flag bit CCP1IF  
(PIR1<2>)  
RC2/CCP1  
pin  
CCPR1H CCPR1L  
Note: The special event trigger from the  
CCP1and CCP2 modules will not set inter-  
rupt flag bit TMR1IF (PIR1<0>).  
Q
S
R
Output  
Logic  
Comparator  
Match  
TRISC<2>  
Output Enable  
TMR1H TMR1L  
CCP1CON<3:0>  
Mode Select  
8.2.1  
CCP PIN CONFIGURATION  
The user must configure the RC2/CCP1 pin as an out-  
put by clearing the TRISC<2> bit.  
Note: Clearing the CCP1CON register will force  
the RC2/CCP1 compare output latch to the  
default low level. This is not the PORTC I/O  
data latch.  
DS30292D-page 60  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
8.3.1  
PWM PERIOD  
8.3  
PWM Mode (PWM)  
The PWM period is specified by writing to the PR2 reg-  
ister. The PWM period can be calculated using the fol-  
lowing formula:  
In Pulse Width Modulation mode, the CCPx pin pro-  
duces up to a 10-bit resolution PWM output. Since the  
CCP1 pin is multiplexed with the PORTC data latch,  
the TRISC<2> bit must be cleared to make the CCP1  
pin an output.  
PWM period = [(PR2) + 1] • 4 • TOSC •  
(TMR2 prescale value)  
Note: Clearing the CCP1CON register will force  
the CCP1 PWM output latch to the default  
low level. This is not the PORTC I/O data  
latch.  
PWM frequency is defined as 1 / [PWM period].  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
• TMR2 is cleared  
Figure 8-3 shows a simplified block diagram of the  
CCP module in PWM mode.  
• The CCP1 pin is set (exception: if PWM duty  
cycle = 0%, the CCP1 pin will not be set)  
For a step-by-step procedure on how to set up the CCP  
module for PWM operation, see Section 8.3.3.  
• The PWM duty cycle is latched from CCPR1L into  
CCPR1H  
FIGURE 8-3:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
Note: The Timer2 postscaler (see Section 7.1) is  
not used in the determination of the PWM  
frequency. The postscaler could be used  
to have a servo update rate at a different  
frequency than the PWM output.  
CCP1CON<5:4>  
Duty Cycle Registers  
CCPR1L  
8.3.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available. The CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time:  
CCPR1H (Slave)  
Comparator  
RC2/CCP1  
Q
R
S
(Note 1)  
TMR2  
PWM duty cycle =(CCPR1L:CCP1CON<5:4>) •  
TOSC • (TMR2 prescale value)  
TRISC<2>  
Comparator  
PR2  
Clear Timer,  
CCP1 pin and  
latch D.C.  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPR1H until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPR1H is a read-only register.  
Note 1: The 8-bit timer is concatenated with 2-bit internal Q  
clock, or 2 bits of the prescaler, to create 10-bit time-  
base.  
The CCPR1H register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitch-free PWM operation.  
A PWM output (Figure 8-4) has a time-base (period)  
and a time that the output stays high (duty cycle). The  
frequency of the PWM is the inverse of the period  
(1/period).  
When the CCPR1H and 2-bit latch match TMR2, con-  
catenated with an internal 2-bit Q clock, or 2 bits of the  
TMR2 prescaler, the CCP1 pin is cleared.  
FIGURE 8-4:  
PWM OUTPUT  
The maximum PWM resolution (bits) for a given PWM  
frequency is given by the formula:  
Period  
FOSC  
log( )  
FPWM  
Resolution  
bits  
=
Duty Cycle  
log(2)  
TMR2 = PR2  
Note: If the PWM duty cycle value is longer than  
the PWM period, the CCP1 pin will not be  
cleared.  
TMR2 = Duty Cycle  
TMR2 = PR2  
1998-2013 Microchip Technology Inc.  
DS30292D-page 61  
PIC16F87X  
3. Make the CCP1 pin an output by clearing the  
TRISC<2> bit.  
8.3.3  
SETUP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
4. Set the TMR2 prescale value and enable Timer2  
by writing to T2CON.  
1. Set the PWM period by writing to the PR2  
register.  
5. Configure the CCP1 module for PWM operation.  
2. Set the PWM duty cycle by writing to the  
CCPR1L register and CCP1CON<5:4> bits.  
TABLE 8-3:  
EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz  
PWM Frequency  
1.22 kHz 4.88 kHz 19.53 kHz  
78.12kHz  
156.3 kHz 208.3 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
0xFFh  
10  
4
1
1
0x3Fh  
8
1
0x1Fh  
7
1
0xFFh  
10  
0xFFh  
10  
0x17h  
5.5  
Maximum Resolution (bits)  
TABLE 8-4:  
REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1  
Value on:  
Value on  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
all other  
RESETS  
0Bh,8Bh,  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF 0000 000x 0000 000u  
10Bh, 18Bh  
(1)  
0Ch  
0Dh  
8Ch  
8Dh  
87h  
0Eh  
0Fh  
10h  
15h  
16h  
17h  
1Bh  
1Ch  
1Dh  
PIR1  
PSPIF  
ADIF  
RCIF  
TXIF  
SSPIF  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP2IF ---- ---0 ---- ---0  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
PIR2  
(1)  
PIE1  
PSPIE  
ADIE  
RCIE  
TXIE  
SSPIE  
PIE2  
CCP2IE ---- ---0 ---- ---0  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
TRISC  
TMR1L  
TMR1H  
T1CON  
PORTC Data Direction Register  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
CCPR1L Capture/Compare/PWM Register1 (LSB)  
CCPR1H Capture/Compare/PWM Register1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCP1CON  
CCP1X  
CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
CCPR2L Capture/Compare/PWM Register2 (LSB)  
CCPR2H Capture/Compare/PWM Register2 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCP2CON  
CCP2X  
CCP2Y CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by Capture and Timer1.  
Note 1: The PSP is not implemented on the PIC16F873/876; always maintain these bits clear.  
DS30292D-page 62  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
TABLE 8-5:  
REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Value on: Value on  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
all other  
RESETS  
0Bh,8Bh,  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
10Bh, 18Bh  
(1)  
0Ch  
0Dh  
8Ch  
8Dh  
87h  
11h  
92h  
12h  
15h  
16h  
17h  
1Bh  
1Ch  
1Dh  
PIR1  
PSPIF  
ADIF  
RCIF  
TXIF  
SSPIF  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP2IF ---- ---0 ---- ---0  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
PIR2  
(1)  
PIE1  
PSPIE  
ADIE  
RCIE  
TXIE  
SSPIE  
PIE2  
CCP2IE ---- ---0 ---- ---0  
1111 1111 1111 1111  
TRISC  
TMR2  
PR2  
PORTC Data Direction Register  
Timer2 Module’s Register  
0000 0000 0000 0000  
Timer2 Module’s Period Register  
1111 1111 1111 1111  
T2CON  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
CCPR1L Capture/Compare/PWM Register1 (LSB)  
CCPR1H Capture/Compare/PWM Register1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCP1CON  
CCP1X  
CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
CCPR2L Capture/Compare/PWM Register2 (LSB)  
CCPR2H Capture/Compare/PWM Register2 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCP2CON  
CCP2X  
CCP2Y CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F873/876; always maintain these bits clear.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 63  
PIC16F87X  
NOTES:  
DS30292D-page 64  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
9.0  
MASTER SYNCHRONOUS  
SERIAL PORT (MSSP)  
MODULE  
The Master Synchronous Serial Port (MSSP) module is  
a serial interface, useful for communicating with other  
peripheral or microcontroller devices. These peripheral  
devices may be serial EEPROMs, shift registers, dis-  
play drivers, A/D converters, etc. The MSSP module  
can operate in one of two modes:  
• Serial Peripheral Interface (SPI)  
• Inter-Integrated Circuit (I2C)  
Figure 9-1 shows a block diagram for the SPI mode,  
while Figure 9-5 and Figure 9-9 show the block dia-  
grams for the two different I2C modes of operation.  
The Application Note AN734, “Using the PIC® MCU  
SSP for Slave I2CTM Communication” describes the  
slave operation of the MSSP module on the  
PIC16F87X devices. AN735, “Using the PIC® MCU  
MSSP Module for I2CTM Communications” describes  
the master operation of the MSSP module on the  
PIC16F87X devices.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 65  
PIC16F87X  
REGISTER 9-1:  
SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS: 94h)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
bit 7  
SMP: Sample bit  
SPI Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
SPI Slave mode:  
SMP must be cleared when SPI is used in slave mode  
2
In I C Master or Slave mode:  
1 = Slew rate control disabled for standard speed mode (100 kHz and 1 MHz)  
0 = Slew rate control enabled for high speed mode (400 kHz)  
bit 6  
CKE: SPI Clock Edge Select (Figure 9-2, Figure 9-3 and Figure 9-4)  
SPI mode:  
For CKP = 0  
1= Data transmitted on rising edge of SCK  
0= Data transmitted on falling edge of SCK  
For CKP = 1  
1= Data transmitted on falling edge of SCK  
0= Data transmitted on rising edge of SCK  
2
In I C Master or Slave mode:  
1= Input levels conform to SMBus spec  
2
0= Input levels conform to I C specs  
2
bit 5  
bit 4  
D/A: Data/Address bit (I C mode only)  
1 = Indicates that the last byte received or transmitted was data  
0 = Indicates that the last byte received or transmitted was address  
P: STOP bit  
2
(I C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)  
1= Indicates that a STOP bit has been detected last (this bit is '0' on RESET)  
0= STOP bit was not detected last  
bit 3  
bit 2  
S: START bit  
2
(I C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)  
1= Indicates that a START bit has been detected last (this bit is '0' on RESET)  
0= START bit was not detected last  
2
R/W: Read/Write bit Information (I C mode only)  
This bit holds the R/W bit information following the last address match. This bit is only valid from the  
address match to the next START bit, STOP bit or not ACK bit.  
2
In I C Slave mode:  
1= Read  
0= Write  
2
In I C Master mode:  
1= Transmit is in progress  
0= Transmit is not in progress  
Logical OR of this bit with SEN, RSEN, PEN, RCEN, or ACKEN will indicate if the MSSP is in IDLE mode.  
2
bit 1  
bit  
UA: Update Address (10-bit I C mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
2
Receive (SPI and I C modes):  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
2
Transmit (I C mode only):  
1= Data transmit in progress (does not include the ACK and STOP bits), SSPBUF is full  
0= Data transmit complete (does not include the ACK and STOP bits), SSPBUF is empty  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30292D-page 66  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
REGISTER 9-2:  
SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
bit 7  
WCOL: Write Collision Detect bit  
Master mode:  
1= A write to SSPBUF was attempted while the I2C conditions were not valid  
0= No collision  
Slave mode:  
1= SSPBUF register is written while still transmitting the previous word (must be cleared in  
software)  
0= No collision  
bit 6  
SSPOV: Receive Overflow Indicator bit  
In SPI mode:  
1= A new byte is received while SSPBUF holds previous data. Data in SSPSR is lost on overflow. In Slave  
mode, the user must read the SSPBUF, even if only transmitting data, to avoid overflows. In Master  
mode, the overflow bit is not set, since each operation is initiated by writing to the SSPBUF register.  
(Must be cleared in software.)  
0= No overflow  
2
In I C mode:  
1= A byte is received while the SSPBUF is holding the previous byte. SSPOV is a "don’t care" in Transmit  
mode. (Must be cleared in software.)  
0= No overflow  
bit 5  
SSPEN: Synchronous Serial Port Enable bit  
In SPI mode,  
When enabled, these pins must be properly configured as input or output  
1= Enables serial port and configures SCK, SDO, SDI, and SS as the source of the serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
2
In I C mode,  
When enabled, these pins must be properly configured as input or output  
1= Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
bit 4  
CKP: Clock Polarity Select bit  
In SPI mode:  
1= Idle state for clock is a high level  
0= Idle state for clock is a low level  
2
In I C Slave mode:  
SCK release control  
1= Enable clock  
0= Holds clock low (clock stretch). (Used to ensure data setup time.)  
2
In I C Master mode:  
Unused in this mode  
bit 3-0  
SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
0000= SPI Master mode, clock = FOSC/4  
0001= SPI Master mode, clock = FOSC/16  
0010= SPI Master mode, clock = FOSC/64  
0011= SPI Master mode, clock = TMR2 output/2  
0100= SPI Slave mode, clock = SCK pin. SS pin control enabled.  
0101= SPI Slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin.  
2
0110= I C Slave mode, 7-bit address  
2
0111= I C Slave mode, 10-bit address  
2
1000= I C Master mode, clock = FOSC / (4 * (SSPADD+1))  
2
1011= I C Firmware Controlled Master mode (slave idle)  
2
1110= I C Firmware Controlled Master mode, 7-bit address with START and STOP bit interrupts enabled  
2
1111= I C Firmware Controlled Master mode, 10-bit address with START and STOP bit interrupts enabled  
1001, 1010, 1100, 1101= Reserved  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
1998-2013 Microchip Technology Inc.  
DS30292D-page 67  
PIC16F87X  
REGISTER 9-3:  
SSPCON2: SYNC SERIAL PORT CONTROL REGISTER2 (ADDRESS 91h)  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RCEN  
R/W-0  
PEN  
R/W-0  
RSEN  
R/W-0  
SEN  
ACKSTAT ACKDT  
ACKEN  
bit 7  
bit 0  
bit 7  
bit 6  
GCEN: General Call Enable bit (In I2C Slave mode only)  
1= Enable interrupt when a general call address (0000h) is received in the SSPSR  
0= General call address disabled  
ACKSTAT: Acknowledge Status bit (In I2C Master mode only)  
In Master Transmit mode:  
1= Acknowledge was not received from slave  
0= Acknowledge was received from slave  
bit 5  
bit 4  
ACKDT: Acknowledge Data bit (In I2C Master mode only)  
In Master Receive mode:  
Value that will be transmitted when the user initiates an Acknowledge sequence at the  
end of a receive.  
1= Not Acknowledge  
0= Acknowledge  
ACKEN: Acknowledge Sequence Enable bit (In I2C Master mode only)  
In Master Receive mode:  
1= Initiate Acknowledge sequence on SDA and SCL pins and transmit ACKDT data bit.  
Automatically cleared by hardware.  
0= Acknowledge sequence idle  
bit 3  
bit 2  
RCEN: Receive Enable bit (In I2C Master mode only)  
1= Enables Receive mode for I2C  
0= Receive idle  
PEN: STOP Condition Enable bit (In I2C Master mode only)  
SCK Release Control:  
1= Initiate STOP condition on SDA and SCL pins. Automatically cleared by hardware.  
0= STOP condition idle  
bit 1  
bit 0  
RSEN: Repeated START Condition Enable bit (In I2C Master mode only)  
1= Initiate Repeated START condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Repeated START condition idle  
SEN: START Condition Enable bit (In I2C Master mode only)  
1= Initiate START condition on SDA and SCL pins. Automatically cleared by hardware.  
0= START condition idle  
Note:  
For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I2C module is not in the IDLE  
mode, this bit may not be set (no spooling), and the SSPBUF may not be written (or  
writes to the SSPBUF are disabled).  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30292D-page 68  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
Any serial port function that is not desired may be  
overridden by programming the corresponding data  
direction (TRIS) register to the opposite value.  
9.1  
SPI Mode  
The SPI mode allows 8 bits of data to be synchronously  
transmitted and received simultaneously. All four  
modes of SPI are supported. To accomplish communi-  
cation, typically three pins are used:  
FIGURE 9-1:  
MSSP BLOCK DIAGRAM  
(SPI MODE)  
• Serial Data Out (SDO)  
• Serial Data In (SDI)  
• Serial Clock (SCK)  
Internal  
Data Bus  
Read  
Write  
Additionally, a fourth pin may be used when in a Slave  
mode of operation:  
SSPBUF Reg  
• Slave Select (SS)  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits (SSPCON<5:0> and SSPSTAT<7:6>).  
These control bits allow the following to be specified:  
SSPSR Reg  
Shift  
Clock  
SDI  
bit0  
• Master mode (SCK is the clock output)  
• Slave mode (SCK is the clock input)  
• Clock Polarity (Idle state of SCK)  
SDO  
• Data input sample phase  
(middle or end of data output time)  
Control  
Enable  
SS  
• Clock edge  
(output data on rising/falling edge of SCK)  
SS  
Edge  
Select  
• Clock Rate (Master mode only)  
2
• Slave Select mode (Slave mode only)  
Clock Select  
Figure 9-4 shows the block diagram of the MSSP mod-  
ule when in SPI mode.  
SSPM3:SSPM0  
SMP:CKE  
To enable the serial port, MSSP Enable bit, SSPEN  
(SSPCON<5>) must be set. To reset or reconfigure SPI  
mode, clear bit SSPEN, re-initialize the SSPCON reg-  
isters, and then set bit SSPEN. This configures the  
SDI, SDO, SCK and SS pins as serial port pins. For the  
pins to behave as the serial port function, some must  
have their data direction bits (in the TRIS register)  
appropriately programmed. That is:  
4
TMR2 Output  
2
2
Edge  
Select  
TOSC  
Prescaler  
4, 16, 64  
SCK  
Data to TX/RX in SSPSR  
Data Direction bit  
• SDI is automatically controlled by the SPI module  
• SDO must have TRISC<5> cleared  
• SCK (Master mode) must have TRISC<3>  
cleared  
• SCK (Slave mode) must have TRISC<3> set  
• SS must have TRISA<5> set and register  
ADCON1 (see Section 11.0: A/D Module) must be  
set in a way that pin RA5 is configured as a digital  
I/O  
1998-2013 Microchip Technology Inc.  
DS30292D-page 69  
PIC16F87X  
Figure 9-6, Figure 9-8 and Figure 9-9, where the MSb is  
transmitted first. In Master mode, the SPI clock rate (bit  
rate) is user programmable to be one of the following:  
9.1.1  
MASTER MODE  
The master can initiate the data transfer at any time  
because it controls the SCK. The master determines  
when the slave (Processor 2, Figure 9-5) is to broad-  
cast data by the software protocol.  
• FOSC/4 (or TCY)  
• FOSC/16 (or 4 • TCY)  
• FOSC/64 (or 16 • TCY)  
• Timer2 output/2  
In Master mode, the data is transmitted/received as  
soon as the SSPBUF register is written to. If the SPI  
module is only going to receive, the SDO output could  
be disabled (programmed as an input). The SSPSR  
register will continue to shift in the signal present on the  
SDI pin at the programmed clock rate. As each byte is  
received, it will be loaded into the SSPBUF register as  
if a normal received byte (interrupts and status bits  
appropriately set). This could be useful in receiver  
applications as a “line activity monitor”.  
This allows a maximum bit clock frequency (at 20 MHz)  
of 5.0 MHz.  
Figure 9-6 shows the waveforms for Master mode.  
When CKE = 1, the SDO data is valid before there is a  
clock edge on SCK. The change of the input sample is  
shown based on the state of the SMP bit. The time  
when the SSPBUF is loaded with the received data is  
shown.  
The clock polarity is selected by appropriately program-  
ming bit CKP (SSPCON<4>). This then, would give  
waveforms for SPI communication as shown in  
FIGURE 9-2:  
SPI MODE TIMING, MASTER MODE  
SCK (CKP = 0,  
CKE = 0)  
SCK (CKP = 0,  
CKE = 1)  
SCK (CKP = 1,  
CKE = 0)  
SCK (CKP = 1,  
CKE = 1)  
bit2  
bit7  
bit6  
bit5  
bit3  
bit1  
bit0  
bit4  
SDO  
SDI (SMP = 0)  
bit7  
bit0  
SDI (SMP = 1)  
SSPIF  
bit7  
bit0  
DS30292D-page 70  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
While in SLEEP mode, the slave can transmit/receive  
data. When a byte is received, the device will wake-up  
from SLEEP.  
9.1.2  
SLAVE MODE  
In Slave mode, the data is transmitted and received as  
the external clock pulses appear on SCK. When the last  
bit is latched, the interrupt flag bit SSPIF (PIR1<3>) is set.  
Note 1: When the SPI module is in Slave  
mode with SS pin control enabled  
(SSPCON<3:0> = 0100), the SPI module  
will reset if the SS pin is set to VDD.  
While in Slave mode, the external clock is supplied by  
the external clock source on the SCK pin. This external  
clock must meet the minimum high and low times as  
specified in the electrical specifications.  
2: If the SPI is used in Slave mode with  
CKE = '1', then SS pin control must be  
enabled.  
FIGURE 9-3:  
SPI MODE TIMING (SLAVE MODE WITH CKE = 0)  
SS (optional)  
SCK (CKP = 0)  
SCK (CKP = 1)  
bit2  
bit7  
bit6  
bit5  
bit3  
bit1  
bit0  
bit4  
SDO  
SDI (SMP = 0)  
bit7  
bit0  
SSPIF  
FIGURE 9-4:  
SPI MODE TIMING (SLAVE MODE WITH CKE = 1)  
SS  
SCK (CKP = 0)  
SCK (CKP = 1)  
SDO  
bit2  
bit7  
bit6  
bit5  
bit3  
bit1  
bit0  
bit4  
SDI (SMP = 0)  
SSPIF  
bit7  
bit0  
1998-2013 Microchip Technology Inc.  
DS30292D-page 71  
PIC16F87X  
TABLE 9-1:  
REGISTERS ASSOCIATED WITH SPI OPERATION  
Value on:  
POR, BOR MCLR, WDT  
Value on:  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
(1)  
0Ch  
8Ch  
13h  
14h  
PIR1  
PIE1  
PSPIF  
PSPIE  
ADIF  
ADIE  
RCIF  
RCIE  
TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
(1)  
SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register  
xxxx xxxx uuuu uuuu  
WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 0000 0000 0000 0000  
SMP CKE D/A R/W UA BF 0000 0000 0000 0000  
SSPCON  
SSPSTAT  
94h  
P
S
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by the SSP in SPI mode.  
Note 1: These bits are reserved on PCI16F873/876 devices; always maintain these bits clear.  
DS30292D-page 72  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
The SSPCON register allows control of the I2C opera-  
tion. Four mode selection bits (SSPCON<3:0>) allow  
one of the following I2C modes to be selected:  
• I2C Slave mode (7-bit address)  
• I2C Slave mode (10-bit address)  
• I2C Master mode, clock = OSC/4 (SSPADD +1)  
• I2C firmware modes (provided for compatibility to  
other mid-range products)  
Before selecting any I2C mode, the SCL and SDA pins  
must be programmed to inputs by setting the appropri-  
ate TRIS bits. Selecting an I2C mode by setting the  
SSPEN bit, enables the SCL and SDA pins to be used  
as the clock and data lines in I2C mode. Pull-up resis-  
tors must be provided externally to the SCL and SDA  
pins for the proper operation of the I2C module.  
2
9.2  
MSSP I C Operation  
The MSSP module in I2C mode, fully implements all  
master and slave functions (including general call sup-  
port) and provides interrupts on START and STOP bits in  
hardware, to determine a free bus (multi-master func-  
tion). The MSSP module implements the standard mode  
specifications, as well as 7-bit and 10-bit addressing.  
Refer to Application Note AN578, "Use of the SSP  
Module in the I 2C Multi-Master Environment."  
A "glitch" filter is on the SCL and SDA pins when the pin  
is an input. This filter operates in both the 100 kHz and  
400 kHz modes. In the 100 kHz mode, when these pins  
are an output, there is a slew rate control of the pin that  
is independent of device frequency.  
FIGURE 9-5:  
I2C SLAVE MODE BLOCK  
DIAGRAM  
The CKE bit (SSPSTAT<6:7>) sets the levels of the  
SDA and SCL pins in either Master or Slave mode.  
When CKE = 1, the levels will conform to the SMBus  
specification. When CKE = 0, the levels will conform to  
the I2C specification.  
Internal  
Data Bus  
Read  
Write  
The SSPSTAT register gives the status of the data  
transfer. This information includes detection of a  
START (S) or STOP (P) bit, specifies if the received  
byte was data or address, if the next byte is the com-  
pletion of 10-bit address, and if this will be a read or  
write data transfer.  
SSPBUF Reg  
SCL  
SDA  
Shift  
Clock  
SSPSR Reg  
SSPBUF is the register to which the transfer data is  
written to, or read from. The SSPSR register shifts the  
data in or out of the device. In receive operations, the  
SSPBUF and SSPSR create a doubled buffered  
receiver. This allows reception of the next byte to begin  
before reading the last byte of received data. When the  
complete byte is received, it is transferred to the  
SSPBUF register and flag bit SSPIF is set. If another  
complete byte is received before the SSPBUF register  
is read, a receiver overflow has occurred and bit  
SSPOV (SSPCON<6>) is set and the byte in the  
SSPSR is lost.  
MSb  
LSb  
Addr Match  
Match Detect  
SSPADD Reg  
START and  
Set, Reset  
S, P bits  
(SSPSTAT Reg)  
STOP bit Detect  
Two pins are used for data transfer. These are the SCL  
pin, which is the clock, and the SDA pin, which is the  
data. The SDA and SCL pins are automatically config-  
ured when the I2C mode is enabled. The SSP module  
functions are enabled by setting SSP Enable bit  
SSPEN (SSPCON<5>).  
The SSPADD register holds the slave address. In  
10-bit mode, the user needs to write the high byte of the  
address (1111 0 A9 A8 0). Following the high byte  
address match, the low byte of the address needs to be  
loaded (A7:A0).  
The MSSP module has six registers for I2C operation.  
They are the:  
• SSP Control Register (SSPCON)  
• SSP Control Register2 (SSPCON2)  
• SSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer (SSPBUF)  
• SSP Shift Register (SSPSR) - Not directly  
accessible  
• SSP Address Register (SSPADD)  
1998-2013 Microchip Technology Inc.  
DS30292D-page 73  
PIC16F87X  
For a 10-bit address, the first byte would equal  
1111 0 A9 A8 0’, where A9and A8are the two MSbs  
of the address. The sequence of events for a 10-bit  
address is as follows, with steps 7-9 for slave-transmitter:  
9.2.1  
SLAVE MODE  
In Slave mode, the SCL and SDA pins must be config-  
ured as inputs. The MSSP module will override the  
input state with the output data, when required (slave-  
transmitter).  
1. Receive first (high) byte of Address (bits SSPIF,  
BF and UA (SSPSTAT<1>) are set).  
When an address is matched, or the data transfer after  
an address match is received, the hardware automati-  
cally will generate the Acknowledge (ACK) pulse, and  
then load the SSPBUF register with the received value  
currently in the SSPSR register.  
2. Update the SSPADD register with the second  
(low) byte of Address (clears bit UA and  
releases the SCL line).  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
There are certain conditions that will cause the MSSP  
module not to give this ACK pulse. These are if either  
(or both):  
4. Receive second (low) byte of Address (bits  
SSPIF, BF and UA are set).  
5. Update the SSPADD register with the first (high)  
byte of Address. This will clear bit UA and  
release the SCL line.  
a) The buffer full bit BF (SSPSTAT<0>) was set  
before the transfer was received.  
b) The overflow bit SSPOV (SSPCON<6>) was set  
before the transfer was received.  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
If the BF bit is set, the SSPSR register value is not  
loaded into the SSPBUF, but bit SSPIF and SSPOV are  
set. Table 9-2 shows what happens when a data trans-  
fer byte is received, given the status of bits BF and  
SSPOV. The shaded cells show the condition where  
user software did not properly clear the overflow condi-  
tion. Flag bit BF is cleared by reading the SSPBUF reg-  
ister, while bit SSPOV is cleared through software.  
7. Receive Repeated Start condition.  
8. Receive first (high) byte of Address (bits SSPIF  
and BF are set).  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
Note: Following the Repeated START condition  
(step 7) in 10-bit mode, the user only  
needs to match the first 7-bit address. The  
user does not update the SSPADD for the  
second half of the address.  
The SCL clock input must have a minimum high and  
low time for proper operation. The high and low times  
of the I2C specification, as well as the requirement of  
the MSSP module, is shown in timing parameter #100  
and parameter #101 of the electrical specifications.  
9.2.1.2  
Slave Reception  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT  
register is cleared. The received address is loaded into  
the SSPBUF register.  
9.2.1.1  
Addressing  
Once the MSSP module has been enabled, it waits for  
a START condition to occur. Following the START con-  
dition, the 8-bits are shifted into the SSPSR register. All  
incoming bits are sampled with the rising edge of the  
clock (SCL) line. The value of register SSPSR<7:1> is  
compared to the value of the SSPADD register. The  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match, and the BF  
and SSPOV bits are clear, the following events occur:  
When the address byte overflow condition exists, then  
no Acknowledge (ACK) pulse is given. An overflow  
condition is defined as either bit BF (SSPSTAT<0>) is  
set, or bit SSPOV (SSPCON<6>) is set. This is an error  
condition due to user firmware.  
An SSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF (PIR1<3>) must be cleared in soft-  
ware. The SSPSTAT register is used to determine the  
status of the received byte.  
a) The SSPSR register value is loaded into the  
SSPBUF register on the falling edge of the 8th  
SCL pulse.  
Note: The SSPBUF will be loaded if the SSPOV  
bit is set and the BF flag is cleared. If a  
read of the SSPBUF was performed, but  
the user did not clear the state of the  
SSPOV bit before the next receive  
occurred, the ACK is not sent and the  
SSPBUF is updated.  
b) The buffer full bit, BF, is set on the falling edge  
of the 8th SCL pulse.  
c) An ACK pulse is generated.  
d) SSP interrupt flag bit, SSPIF (PIR1<3>), is set  
(interrupt is generated if enabled) on the falling  
edge of the 9th SCL pulse.  
In 10-bit address mode, two address bytes need to be  
received by the slave. The five Most Significant bits  
(MSbs) of the first address byte specify if this is a 10-bit  
address. Bit R/W (SSPSTAT<2>) must specify a write so  
the slave device will receive the second address byte.  
DS30292D-page 74  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
TABLE 9-2:  
DATA TRANSFER RECEIVED BYTE ACTIONS  
Status Bits as Data  
Transfer is Received  
Set bit SSPIF  
(SSP Interrupt occurs  
if enabled)  
Generate ACK  
Pulse  
SSPSR SSPBUF  
BF  
SSPOV  
0
1
1
0
0
0
1
1
Yes  
No  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Note: Shaded cells show the conditions where the user software did not properly clear the overflow condition.  
An SSP interrupt is generated for each data transfer  
byte. The SSPIF flag bit must be cleared in software  
and the SSPSTAT register is used to determine the sta-  
tus of the byte transfer. The SSPIF flag bit is set on the  
falling edge of the ninth clock pulse.  
9.2.1.3  
Slave Transmission  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register. The ACK pulse will  
be sent on the ninth bit, and the SCL pin is held low.  
The transmit data must be loaded into the SSPBUF  
register, which also loads the SSPSR register. Then,  
the SCL pin should be enabled by setting bit CKP  
(SSPCON<4>). The master must monitor the SCL pin  
prior to asserting another clock pulse. The slave  
devices may be holding off the master by stretching the  
clock. The eight data bits are shifted out on the falling  
edge of the SCL input. This ensures that the SDA sig-  
nal is valid during the SCL high time (Figure 9-7).  
As a slave-transmitter, the ACK pulse from the master  
receiver is latched on the rising edge of the ninth SCL  
input pulse. If the SDA line is high (not ACK), then the  
data transfer is complete. When the not ACK is latched  
by the slave, the slave logic is reset and the slave then  
monitors for another occurrence of the START bit. If the  
SDA line was low (ACK), the transmit data must be  
loaded into the SSPBUF register, which also loads the  
SSPSR register. Then the SCL pin should be enabled  
by setting the CKP bit.  
FIGURE 9-6:  
I2C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)  
R/W=0  
ACK  
Not  
ACK  
Receiving Address  
A7 A6 A5 A4  
Receiving Data  
Receiving Data  
ACK  
9
SDA  
A3 A2 A1  
D7 D6 D5 D4 D3 D2  
D0  
8
D7 D6  
D5  
D4 D3  
D2  
D0  
8
D1  
7
D1  
7
3
9
7
1
2
4
5
4
3
6
9
5
6
1
2
3
6
1
2
4
8
5
P
SCL  
S
SSPIF  
Bus Master  
Terminates  
Transfer  
BF (SSPSTAT<0>)  
Cleared in software  
SSPBUF register is read  
SSPOV (SSPCON<6>)  
Bit SSPOV is set because the SSPBUF register is still full.  
ACK is not sent.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 75  
PIC16F87X  
FIGURE 9-7:  
I2C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)  
R/W = 0  
R/W = 1  
Receiving Address  
Transmitting Data Not ACK  
ACK  
SDA  
A7 A6 A5 A4 A3 A2 A1  
D7 D6 D5 D4 D3 D2 D1 D0  
SCL  
S
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
P
SCL held low  
while CPU  
responds to SSPIF  
Data in  
sampled  
SSPIF  
BF (SSPSTAT<0>)  
Cleared in software  
SSPBUF is written in software  
From SSP Interrupt  
Service Routine  
CKP (SSPCON<4>)  
Set bit after writing to SSPBUF  
(the SSPBUF must be written to,  
before the CKP bit can be set)  
If the general call address matches, the SSPSR is  
transferred to the SSPBUF, the BF flag is set (eighth  
bit), and on the falling edge of the ninth bit (ACK bit),  
the SSPIF flag is set.  
9.2.2  
GENERAL CALL ADDRESS  
SUPPORT  
The addressing procedure for the I2C bus is such that  
the first byte after the START condition usually deter-  
mines which device will be the slave addressed by the  
master. The exception is the general call address, which  
can address all devices. When this address is used, all  
devices should, in theory, respond with an acknowledge.  
When the interrupt is serviced, the source for the inter-  
rupt can be checked by reading the contents of the  
SSPBUF to determine if the address was device spe-  
cific, or a general call address.  
In 10-bit mode, the SSPADD is required to be updated  
for the second half of the address to match, and the UA  
bit is set (SSPSTAT<1>). If the general call address is  
sampled when GCEN is set, while the slave is config-  
ured in 10-bit address mode, then the second half of  
the address is not necessary, the UA bit will not be set,  
and the slave will begin receiving data after the  
Acknowledge (Figure 9-8).  
The general call address is one of eight addresses  
reserved for specific purposes by the I2C protocol. It  
consists of all 0’s with R/W = 0.  
The general call address is recognized when the Gen-  
eral Call Enable bit (GCEN) is enabled (SSPCON2<7>  
is set). Following a START bit detect, 8 bits are shifted  
into SSPSR and the address is compared against  
SSPADD. It is also compared to the general call  
address and fixed in hardware.  
FIGURE 9-8:  
SLAVE MODE GENERAL CALL ADDRESS SEQUENCE (7 OR 10-BIT MODE)  
Address is compared to General Call Address  
after ACK, set interrupt flag  
Receiving data  
D5 D4 D3 D2 D1  
ACK  
R/W = 0  
ACK  
General Call Address  
SDA  
SCL  
D7 D6  
D0  
8
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
9
S
SSPIF  
BF  
(SSPSTAT<0>)  
Cleared in software  
SSPBUF is read  
'0'  
'1'  
SSPOV  
(SSPCON<6>)  
GCEN  
(SSPCON2<7>)  
DS30292D-page 76  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
9.2.3  
SLEEP OPERATION  
9.2.4  
EFFECTS OF A RESET  
While in SLEEP mode, the I2C module can receive  
addresses or data. When an address match or com-  
plete byte transfer occurs, wake the processor from  
SLEEP (if the SSP interrupt is enabled).  
A RESET disables the SSP module and terminates the  
current transfer.  
TABLE 9-3:  
REGISTERS ASSOCIATED WITH I2C OPERATION  
Value on:  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
PEIE  
ADIF  
Bit 5  
T0IE  
RCIF  
Bit 4  
INTE  
TXIF  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
MCLR,  
WDT  
0Bh, 8Bh, INTCON  
10Bh,18Bh  
GIE  
RBIE  
T0IF  
INTF  
RBIF 0000 000x 0000 000u  
(1)  
0Ch  
PIR1  
PSPIF  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
(1)  
8Ch  
0Dh  
8Dh  
13h  
14h  
91h  
PIE1  
PSPIE  
ADIE  
(2)  
RCIE  
TXIE  
EEIF  
EEIE  
PIR2  
BCLIF  
BCLIE  
CCP2IF -r-0 0--0 -r-0 0--0  
CCP2IE -r-0 0--0 -r-0 0--0  
xxxx xxxx uuuu uuuu  
PIE2  
(2)  
SSPBUF  
SSPCON  
SSPCON2  
Synchronous Serial Port Receive Buffer/Transmit Register  
WCOL  
GCEN  
SSPOV  
SSPEN  
CKP SSPM3 SSPM2 SSPM1 SSPM0 0000 0000 0000 0000  
ACKSTAT ACKDT ACKEN RCEN  
PEN  
RSEN  
SEN  
0000 0000 0000 0000  
0000 0000 0000 0000  
2
93h  
94h  
SSPADD  
SSPSTAT  
I C Slave Address/Master Baud Rate Register  
SMP CKE D/A  
P
S
R/W  
UA  
BF  
0000 0000 0000 0000  
2
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by the SSP in I C mode.  
Note 1: These bits are reserved on PIC16F873/876 devices; always maintain these bits clear.  
2: These bits are reserved on these devices; always maintain these bits clear.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 77  
PIC16F87X  
The following events will cause the SSP Interrupt Flag  
bit, SSPIF, to be set (an SSP interrupt will occur if  
enabled):  
9.2.5  
MASTER MODE  
Master mode of operation is supported by interrupt  
generation on the detection of the START and STOP  
conditions. The STOP (P) and START (S) bits are  
cleared from a RESET, or when the MSSP module is  
disabled. Control of the I2C bus may be taken when the  
P bit is set, or the bus is idle, with both the S and P bits  
clear.  
• START condition  
• STOP condition  
• Data transfer byte transmitted/received  
• Acknowledge transmit  
• Repeated START  
In Master mode, the SCL and SDA lines are manipu-  
lated by the MSSP hardware.  
2
FIGURE 9-9:  
SSP BLOCK DIAGRAM (I C MASTER MODE)  
Internal  
Data Bus  
SSPM3:SSPM0,  
SSPADD<6:0>  
Read  
Write  
SSPBUF  
SSPSR  
Baud  
Rate  
Generator  
SDA  
Shift  
Clock  
SDA in  
MSb  
LSb  
START bit, STOP bit,  
Acknowledge  
Generate  
SCL  
START bit Detect,  
STOP bit Detect  
Write Collision Detect  
Clock Arbitration  
State Counter for  
end of XMIT/RCV  
SCL in  
Bus Collision  
Set/Reset, S, P, WCOL (SSPSTAT)  
Set SSPIF, BCLIF  
Reset ACKSTAT, PEN (SSPCON2)  
In Multi-Master operation, the SDA line must be moni-  
tored for arbitration to see if the signal level is the  
expected output level. This check is performed in hard-  
ware, with the result placed in the BCLIF bit.  
9.2.6  
MULTI-MASTER MODE  
In Multi-Master mode, the interrupt generation on the  
detection of the START and STOP conditions allows  
the determination of when the bus is free. The STOP  
(P) and START (S) bits are cleared from a RESET or  
when the MSSP module is disabled. Control of the I2C  
bus may be taken when bit P (SSPSTAT<4>) is set, or  
the bus is idle with both the S and P bits clear. When  
the bus is busy, enabling the SSP Interrupt will gener-  
ate the interrupt when the STOP condition occurs.  
The states where arbitration can be lost are:  
• Address Transfer  
• Data Transfer  
• A START Condition  
• A Repeated START Condition  
• An Acknowledge Condition  
DS30292D-page 78  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
I2C MASTER MODE SUPPORT  
SSPBUF. Once the given operation is complete (i.e.,  
transmission of the last data bit is followed by ACK), the  
internal clock will automatically stop counting and the  
SCL pin will remain in its last state.  
9.2.7  
Master mode is enabled by setting and clearing the  
appropriate SSPM bits in SSPCON and by setting the  
SSPEN bit. Once Master mode is enabled, the user  
has six options:  
A typical transmit sequence would go as follows:  
a) User generates a START condition by setting  
the START enable bit (SEN) in SSPCON2.  
• Assert a START condition on SDA and SCL.  
• Assert a Repeated START condition on SDA and  
SCL.  
b) SSPIF is set. The module will wait the required  
start time before any other operation takes place.  
• Write to the SSPBUF register initiating transmis-  
sion of data/address.  
c) User loads SSPBUF with address to transmit.  
d) Address is shifted out the SDA pin until all 8 bits  
are transmitted.  
• Generate a STOP condition on SDA and SCL.  
• Configure the I2C port to receive data.  
e) MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPCON2 register (SSPCON2<6>).  
• Generate an Acknowledge condition at the end of  
a received byte of data.  
Note: The MSSP Module, when configured in I2C  
Master mode, does not allow queueing of  
events. For instance, the user is not  
allowed to initiate a START condition and  
immediately write the SSPBUF register to  
initiate transmission before the START  
condition is complete. In this case, the  
SSPBUF will not be written to and the  
WCOL bit will be set, indicating that a write  
to the SSPBUF did not occur.  
f) MSSP module generates an interrupt at the end  
of the ninth clock cycle by setting SSPIF.  
g) User loads SSPBUF with eight bits of data.  
h) DATA is shifted out the SDA pin until all 8 bits are  
transmitted.  
i) MSSP module shifts in the ACK bit from the  
slave device, and writes its value into the  
SSPCON2 register (SSPCON2<6>).  
j) MSSP module generates an interrupt at the end  
of the ninth clock cycle by setting the SSPIF bit.  
9.2.7.1  
I2C Master Mode Operation  
k) User generates a STOP condition by setting the  
STOP enable bit, PEN, in SSPCON2.  
The master device generates all of the serial clock  
pulses and the START and STOP conditions. A trans-  
fer is ended with a STOP condition or with a Repeated  
START condition. Since the Repeated START condi-  
tion is also the beginning of the next serial transfer, the  
I2C bus will not be released.  
l) Interrupt is generated once the STOP condition  
is complete.  
9.2.8  
BAUD RATE GENERATOR  
In I2C Master mode, the reload value for the BRG is  
located in the lower 7 bits of the SSPADD register  
(Figure 9-10). When the BRG is loaded with this value,  
the BRG counts down to 0 and stops until another reload  
has taken place. The BRG count is decremented twice  
per instruction cycle (TCY), on the Q2 and Q4 clock.  
In I2C Master mode, the BRG is reloaded automatically. If  
clock arbitration is taking place, the BRG will be reloaded  
when the SCL pin is sampled high (Figure 9-11).  
In Master Transmitter mode, serial data is output through  
SDA, while SCL outputs the serial clock. The first byte  
transmitted contains the slave address of the receiving  
device (7 bits) and the Read/Write (R/W) bit. In this case,  
the R/W bit will be logic '0'. Serial data is transmitted 8 bits  
at a time. After each byte is transmitted, an Acknowledge  
bit is received. START and STOP conditions are output  
to indicate the beginning and the end of a serial transfer.  
In Master Receive mode, the first byte transmitted con-  
tains the slave address of the transmitting device  
(7 bits) and the R/W bit. In this case, the R/W bit will be  
logic '1'. Thus, the first byte transmitted is a 7-bit slave  
address followed by a '1' to indicate receive bit. Serial  
data is received via SDA, while SCL outputs the serial  
clock. Serial data is received 8 bits at a time. After each  
byte is received, an Acknowledge bit is transmitted.  
START and STOP conditions indicate the beginning  
and end of transmission.  
Note: Baud Rate = FOSC / (4 * (SSPADD + 1) )  
FIGURE 9-10:  
BAUD RATE GENERATOR  
BLOCK DIAGRAM  
SSPM3:SSPM0  
SSPADD<6:0>  
SSPM3:SSPM0  
SCL  
Reload  
Reload  
The baud rate generator used for SPI mode operation  
is now used to set the SCL clock frequency for either  
100 kHz, 400 kHz, or 1 MHz I2C operation. The baud  
rate generator reload value is contained in the lower 7  
bits of the SSPADD register. The baud rate generator  
will automatically begin counting on a write to the  
Control  
FOSC/4  
BRG Down Counter  
CLKOUT  
1998-2013 Microchip Technology Inc.  
DS30292D-page 79  
PIC16F87X  
FIGURE 9-11:  
BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION  
SDA  
DX  
DX-1  
SCL de-asserted but slave holds  
SCL low (clock arbitration)  
SCL allowed to transition high  
SCL  
BRG decrements  
(on Q2 and Q4 cycles)  
BRG  
Value  
03h  
02h  
01h  
00h (hold off)  
03h  
02h  
SCL is sampled high, reload takes  
place, and BRG starts its count  
BRG  
Reload  
9.2.9  
I2C MASTER MODE START  
CONDITION TIMING  
Note: If, at the beginning of START condition, the  
SDA and SCL pins are already sampled  
low, or if during the START condition the  
SCL line is sampled low before the SDA  
line is driven low, a bus collision occurs,  
the Bus Collision Interrupt Flag (BCLIF) is  
set, the START condition is aborted, and  
the I2C module is reset into its IDLE state.  
To initiate a START condition, the user sets the START  
condition enable bit, SEN (SSPCON2<0>). If the SDA  
and SCL pins are sampled high, the baud rate genera-  
tor is reloaded with the contents of SSPADD<6:0> and  
starts its count. If SCL and SDA are both sampled high  
when the baud rate generator times out (TBRG), the  
SDA pin is driven low. The action of the SDA being  
driven low while SCL is high is the START condition,  
and causes the S bit (SSPSTAT<3>) to be set. Follow-  
ing this, the baud rate generator is reloaded with the  
contents of SSPADD<6:0> and resumes its count.  
When the baud rate generator times out (TBRG), the  
SEN bit (SSPCON2<0>) will be automatically cleared  
by hardware. The baud rate generator is suspended,  
leaving the SDA line held low, and the START condition  
is complete.  
9.2.9.1  
WCOL Status Flag  
If the user writes the SSPBUF when a START  
sequence is in progress, then WCOL is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
Note: Because queueing of events is not  
allowed, writing to the lower 5 bits of  
SSPCON2 is disabled until the START  
condition is complete.  
FIGURE 9-12:  
FIRST START BIT TIMING  
Set S bit (SSPSTAT<3>)  
Write to SEN bit occurs here  
SDA = 1,  
At completion of START bit,  
Hardware clears SEN bit  
and sets SSPIF bit  
SCL = 1  
TBRG  
TBRG  
Write to SSPBUF occurs here  
2nd Bit  
1st Bit  
SDA  
TBRG  
SCL  
TBRG  
S
DS30292D-page 80  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
I2C MASTER MODE REPEATED  
START CONDITION TIMING  
Immediately following the SSPIF bit getting set, the  
user may write the SSPBUF with the 7-bit address in  
7-bit mode, or the default first address in 10-bit mode.  
After the first eight bits are transmitted and an ACK is  
received, the user may then transmit an additional eight  
bits of address (10-bit mode), or eight bits of data (7-bit  
mode).  
9.2.10  
A Repeated START condition occurs when the RSEN  
bit (SSPCON2<1>) is programmed high and the I2C  
module is in the IDLE state. When the RSEN bit is set,  
the SCL pin is asserted low. When the SCL pin is sam-  
pled low, the baud rate generator is loaded with the  
contents of SSPADD<6:0> and begins counting. The  
SDA pin is released (brought high) for one baud rate  
generator count (TBRG). When the baud rate generator  
times out, if SDA is sampled high, the SCL pin will be  
de-asserted (brought high). When SCL is sampled high  
the baud rate generator is reloaded with the contents of  
SSPADD<6:0> and begins counting. SDA and SCL  
must be sampled high for one TBRG. This action is then  
followed by assertion of the SDA pin (SDA is low) for  
one TBRG, while SCL is high. Following this, the RSEN  
bit in the SSPCON2 register will be automatically  
cleared and the baud rate generator will not be  
reloaded, leaving the SDA pin held low. As soon as a  
START condition is detected on the SDA and SCL pins,  
the S bit (SSPSTAT<3>) will be set. The SSPIF bit will  
notbesetuntilthebaudrategeneratorhastimedout.  
9.2.10.1  
WCOL Status Flag  
If the user writes the SSPBUF when a Repeated  
START sequence is in progress, then WCOL is set and  
the contents of the buffer are unchanged (the write  
doesn’t occur).  
Note: Because queueing of events is not  
allowed, writing of the lower 5 bits of  
SSPCON2 is disabled until the Repeated  
START condition is complete.  
Note 1: If RSEN is programmed while any other  
event is in progress, it will not take effect.  
2: A bus collision during the Repeated  
START condition occurs if:  
SDA is sampled low when SCL  
goes from low to high.  
SCL goes low before SDA is  
asserted low. This may indicate that  
another master is attempting to  
transmit a data "1".  
FIGURE 9-13:  
REPEAT START CONDITION WAVEFORM  
Set S (SSPSTAT<3>)  
Write to SSPCON2  
SDA = 1,  
SCL = 1  
occurs here  
At completion of START bit,  
hardware clears RSEN bit  
and sets SSPIF  
SDA = 1,  
SCL (no change)  
TBRG TBRG  
TBRG  
1st bit  
SDA  
Write to SSPBUF occurs here  
Falling edge of ninth clock  
End of Xmit  
TBRG  
SCL  
TBRG  
Sr = Repeated START  
1998-2013 Microchip Technology Inc.  
DS30292D-page 81  
PIC16F87X  
9.2.11  
I2C MASTER MODE  
TRANSMISSION  
9.2.11.1  
BF Status Flag  
In Transmit mode, the BF bit (SSPSTAT<0>) is set  
when the CPU writes to SSPBUF and is cleared when  
all 8 bits are shifted out.  
Transmission of a data byte, a 7-bit address, or either  
half of a 10-bit address, is accomplished by simply writ-  
ing a value to SSPBUF register. This action will set the  
Buffer Full flag (BF) and allow the baud rate generator  
to begin counting and start the next transmission. Each  
bit of address/data will be shifted out onto the SDA pin  
after the falling edge of SCL is asserted (see data hold  
time spec). SCL is held low for one baud rate generator  
rollover count (TBRG). Data should be valid before SCL  
is released high (see data setup time spec). When the  
SCL pin is released high, it is held that way for TBRG.  
The data on the SDA pin must remain stable for that  
duration and some hold time after the next falling edge  
of SCL. After the eighth bit is shifted out (the falling  
edge of the eighth clock), the BF flag is cleared and the  
master releases SDA allowing the slave device being  
addressed to respond with an ACK bit during the ninth  
bit time, if an address match occurs or if data was  
received properly. The status of ACK is read into the  
ACKDT on the falling edge of the ninth clock. If the  
master receives an Acknowledge, the Acknowledge  
Status bit (ACKSTAT) is cleared. If not, the bit is set.  
After the ninth clock, the SSPIF is set and the master  
clock (baud rate generator) is suspended until the next  
data byte is loaded into the SSPBUF, leaving SCL low  
and SDA unchanged (Figure 9-14).  
9.2.11.2  
WCOL Status Flag  
If the user writes the SSPBUF when a transmit is  
already in progress (i.e., SSPSR is still shifting out a  
data byte), then WCOL is set and the contents of the  
buffer are unchanged (the write doesn’t occur).  
WCOL must be cleared in software.  
9.2.11.3  
ACKSTAT Status Flag  
In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is  
cleared when the slave has sent an Acknowledge  
(ACK = 0), and is set when the slave does not Acknowl-  
edge (ACK = 1). A slave sends an Acknowledge when  
it has recognized its address (including a general call),  
or when the slave has properly received its data.  
After the write to the SSPBUF, each bit of address will  
be shifted out on the falling edge of SCL, until all seven  
address bits and the R/W bit are completed. On the fall-  
ing edge of the eighth clock, the master will de-assert  
the SDA pin, allowing the slave to respond with an  
Acknowledge. On the falling edge of the ninth clock, the  
master will sample the SDA pin to see if the address  
was recognized by a slave. The status of the ACK bit is  
loaded into the ACKSTAT status bit (SSPCON2<6>).  
Following the falling edge of the ninth clock transmis-  
sion of the address, the SSPIF is set, the BF flag is  
cleared, and the baud rate generator is turned off until  
another write to the SSPBUF takes place, holding SCL  
low and allowing SDA to float.  
DS30292D-page 82  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
2
FIGURE 9-14:  
I C MASTER MODE TIMING (TRANSMISSION, 7 OR 10-BIT ADDRESS)  
1998-2013 Microchip Technology Inc.  
DS30292D-page 83  
PIC16F87X  
9.2.12  
I2C MASTER MODE RECEPTION  
9.2.12.1  
BF Status Flag  
In receive operation, BF is set when an address or data  
byte is loaded into SSPBUF from SSPSR. It is cleared  
when SSPBUF is read.  
Master mode reception is enabled by programming the  
Receive Enable bit, RCEN (SSPCON2<3>).  
Note: The SSP module must be in an IDLE state  
before the RCEN bit is set, or the RCEN bit  
will be disregarded.  
9.2.12.2  
SSPOV Status Flag  
In receive operation, SSPOV is set when 8 bits are  
received into the SSPSR, and the BF flag is already set  
from a previous reception.  
The baud rate generator begins counting, and on each  
rollover, the state of the SCL pin changes (high to low/  
low to high), and data is shifted into the SSPSR. After  
the falling edge of the eighth clock, the receive enable  
flag is automatically cleared, the contents of the  
SSPSR are loaded into the SSPBUF, the BF flag is set,  
the SSPIF is set, and the baud rate generator is sus-  
pended from counting, holding SCL low. The SSP is  
now in IDLE state, awaiting the next command. When  
the buffer is read by the CPU, the BF flag is automati-  
cally cleared. The user can then send an Acknowledge  
bit at the end of reception, by setting the Acknowledge  
Sequence Enable bit, ACKEN (SSPCON2<4>).  
9.2.12.3  
WCOL Status Flag  
If the user writes the SSPBUF when a receive is  
already in progress (i.e., SSPSR is still shifting in a data  
byte), then WCOL is set and the contents of the buffer  
are unchanged (the write doesn’t occur).  
DS30292D-page 84  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
2
FIGURE 9-15:  
I C MASTER MODE TIMING (RECEPTION, 7-BIT ADDRESS)  
1998-2013 Microchip Technology Inc.  
DS30292D-page 85  
PIC16F87X  
rate generator counts for TBRG. The SCL pin is then  
pulled low. Following this, the ACKEN bit is automati-  
cally cleared, the baud rate generator is turned off,  
and the SSP module then goes into IDLE mode  
(Figure 9-16).  
9.2.13  
ACKNOWLEDGE SEQUENCE  
TIMING  
An Acknowledge sequence is enabled by setting the  
Acknowledge Sequence Enable bit, ACKEN  
(SSPCON2<4>). When this bit is set, the SCL pin is  
pulled low and the contents of the Acknowledge data bit  
is presented on the SDA pin. If the user wishes to gen-  
erate an Acknowledge, the ACKDT bit should be  
cleared. If not, the user should set the ACKDT bit  
before starting an Acknowledge sequence. The baud  
rate generator then counts for one rollover period  
(TBRG), and the SCL pin is de-asserted high. When the  
SCL pin is sampled high (clock arbitration), the baud  
9.2.13.1  
WCOL Status Flag  
If the user writes the SSPBUF when an Acknowledge  
sequence is in progress, the WCOL is set and the con-  
tents of the buffer are unchanged (the write doesn’t  
occur).  
FIGURE 9-16:  
ACKNOWLEDGE SEQUENCE WAVEFORM  
Acknowledge sequence starts here,  
Write to SSPCON2  
ACKEN automatically cleared  
ACKEN = 1, ACKDT = 0  
TBRG  
TBRG  
SDA  
SCL  
D0  
ACK  
8
9
SSPIF  
Cleared in  
software  
Set SSPIF at the end  
of receive  
Cleared in  
software  
Set SSPIF at the end  
of Acknowledge sequence  
Note: TBRG = one baud rate generator period.  
DS30292D-page 86  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
while SCL is high, the P bit (SSPSTAT<4>) is set. A  
TBRG later, the PEN bit is cleared and the SSPIF bit is  
set (Figure 9-17).  
9.2.14  
STOP CONDITION TIMING  
A STOP bit is asserted on the SDA pin at the end of a  
receive/transmit by setting the Stop Sequence Enable  
bit, PEN (SSPCON2<2>). At the end of a receive/  
transmit, the SCL line is held low after the falling edge  
of the ninth clock. When the PEN bit is set, the master  
will assert the SDA line low. When the SDA line is sam-  
pled low, the baud rate generator is reloaded and  
counts down to 0. When the baud rate generator times  
out, the SCL pin will be brought high, and one TBRG  
(baud rate generator rollover count) later, the SDA pin  
will be de-asserted. When the SDA pin is sampled high  
Whenever the firmware decides to take control of the  
bus, it will first determine if the bus is busy by checking  
the S and P bits in the SSPSTAT register. If the bus is  
busy, then the CPU can be interrupted (notified) when  
a STOP bit is detected (i.e., bus is free).  
9.2.14.1  
WCOL Status Flag  
If the user writes the SSPBUF when a STOP sequence  
is in progress, then WCOL is set and the contents of the  
buffer are unchanged (the write doesn’t occur).  
FIGURE 9-17:  
STOP CONDITION RECEIVE OR TRANSMIT MODE  
SCL = 1 for TBRG, followed by SDA = 1 for TBRG  
after SDA sampled high. P bit (SSPSTAT<4>) is set.  
Write to SSPCON2  
Set PEN  
PEN bit (SSPCON2<2>) is cleared by  
hardware and the SSPIF bit is set  
Falling edge of  
9th clock  
TBRG  
TBRG  
SCL  
ACK  
SDA  
P
TBRG  
TBRG  
SCL brought high after TBRG  
SDA asserted low before rising edge of clock  
to setup STOP condition  
Note: TBRG = one baud rate generator period.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 87  
PIC16F87X  
9.2.15  
CLOCK ARBITRATION  
9.2.16  
SLEEP OPERATION  
Clock arbitration occurs when the master, during any  
receive, transmit, or Repeated START/STOP condi-  
tion, de-asserts the SCL pin (SCL allowed to float high).  
When the SCL pin is allowed to float high, the baud rate  
generator (BRG) is suspended from counting until the  
SCL pin is actually sampled high. When the SCL pin is  
sampled high, the baud rate generator is reloaded with  
the contents of SSPADD<6:0> and begins counting.  
This ensures that the SCL high time will always be at  
least one BRG rollover count in the event that the clock  
is held low by an external device (Figure 9-18).  
While in SLEEP mode, the I2C module can receive  
addresses or data, and when an address match or  
complete byte transfer occurs, wake the processor  
from SLEEP (if the SSP interrupt is enabled).  
9.2.17  
EFFECTS OF A RESET  
A RESET disables the SSP module and terminates the  
current transfer.  
FIGURE 9-18:  
CLOCK ARBITRATION TIMING IN MASTER TRANSMIT MODE  
BRG overflow,  
Release SCL,  
If SCL = 1, Load BRG with  
BRG overflow occurs,  
Release SCL, Slave device holds SCL low  
SSPADD<6:0>, and start count  
to measure high time interval  
SCL = 1, BRG starts counting  
clock high interval  
SCL  
SCL line sampled once every machine cycle (TOSC 4).  
Hold off BRG until SCL is sampled high.  
SDA  
TBRG  
TBRG  
TBRG  
DS30292D-page 88  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
If a START, Repeated START, STOP, or Acknowledge  
condition was in progress when the bus collision  
occurred, the condition is aborted, the SDA and SCL  
lines are de-asserted, and the respective control bits in  
the SSPCON2 register are cleared. When the user ser-  
vices the bus collision Interrupt Service Routine, and if  
the I2C bus is free, the user can resume communication  
by asserting a START condition.  
9.2.18  
MULTI -MASTER  
COMMUNICATION,  
BUS COLLISION, AND  
BUS ARBITRATION  
Multi-Master mode support is achieved by bus arbitra-  
tion. When the master outputs address/data bits onto  
the SDA pin, arbitration takes place when the master  
outputs a '1' on SDA, by letting SDA float high and  
another master asserts a '0'. When the SCL pin floats  
high, data should be stable. If the expected data on  
SDA is a '1' and the data sampled on the SDA pin = '0',  
a bus collision has taken place. The master will set the  
Bus Collision Interrupt Flag, BCLIF and reset the I2C  
port to its IDLE state (Figure 9-19).  
The master will continue to monitor the SDA and SCL  
pins and if a STOP condition occurs, the SSPIF bit will  
be set.  
A write to the SSPBUF will start the transmission of  
data at the first data bit, regardless of where the trans-  
mitter left off when the bus collision occurred.  
In Multi-Master mode, the interrupt generation on the  
detection of START and STOP conditions allows the  
determination of when the bus is free. Control of the I2C  
bus can be taken when the P bit is set in the SSPSTAT  
register, or the bus is idle and the S and P bits are  
cleared.  
If a transmit was in progress when the bus collision  
occurred, the transmission is halted, the BF flag is  
cleared, the SDA and SCL lines are de-asserted, and  
the SSPBUF can be written to. When the user services  
the bus collision Interrupt Service Routine, and if the  
I2C bus is free, the user can resume communication by  
asserting a START condition.  
FIGURE 9-19:  
BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE  
Sample SDA. While SCL is high,  
data doesn’t match what is driven  
by the master.  
SDA line pulled low  
by another source  
Data changes  
while SCL = 0  
Bus collision has occurred.  
SDA released  
by master  
SDA  
SCL  
Set bus collision  
interrupt  
BCLIF  
1998-2013 Microchip Technology Inc.  
DS30292D-page 89  
PIC16F87X  
If the SDA pin is sampled low during this count, the  
BRG is reset and the SDA line is asserted early  
(Figure 9-22). If, however, a '1' is sampled on the SDA  
pin, the SDA pin is asserted low at the end of the BRG  
count. The baud rate generator is then reloaded and  
counts down to 0. During this time, if the SCL pins are  
sampled as '0', a bus collision does not occur. At the  
end of the BRG count, the SCL pin is asserted low.  
9.2.18.1  
Bus Collision During a START  
Condition  
During a START condition, a bus collision occurs if:  
a) SDA or SCL are sampled low at the beginning of  
the START condition (Figure 9-20).  
b) SCL is sampled low before SDA is asserted low  
(Figure 9-21).  
During a START condition, both the SDA and the SCL  
pins are monitored. If either the SDA pin or the SCL pin  
is already low, then these events all occur:  
Note: The reason that bus collision is not a factor  
during a START condition is that no two  
bus masters can assert a START condition  
at the exact same time. Therefore, one  
master will always assert SDA before the  
other. This condition does not cause a bus  
collision, because the two masters must be  
allowed to arbitrate the first address follow-  
ing the START condition. If the address is  
the same, arbitration must be allowed to  
continue into the data portion, Repeated  
START, or STOP conditions.  
• the START condition is aborted,  
• and the BCLIF flag is set,  
• and the SSP module is reset to its IDLE state  
(Figure 9-20).  
The START condition begins with the SDA and SCL  
pins de-asserted. When the SDA pin is sampled high,  
the baud rate generator is loaded from SSPADD<6:0>  
and counts down to 0. If the SCL pin is sampled low  
while SDA is high, a bus collision occurs, because it is  
assumed that another master is attempting to drive a  
data '1' during the START condition.  
FIGURE 9-20:  
BUS COLLISION DURING START CONDITION (SDA ONLY)  
SDA goes low before the SEN bit is set.  
Set BCLIF,  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
SDA  
SCL  
SEN  
Set SEN, enable START  
condition if SDA = 1, SCL = 1  
SEN cleared automatically because of bus collision.  
SSP module reset into IDLE state.  
SDA sampled low before  
START condition.  
Set BCLIF.  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
BCLIF  
SSPIF and BCLIF are  
cleared in software  
S
SSPIF  
SSPIF and BCLIF are  
cleared in software  
DS30292D-page 90  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
FIGURE 9-21:  
BUS COLLISION DURING START CONDITION (SCL = 0)  
SDA = 0, SCL = 1  
TBRG  
TBRG  
SDA  
Set SEN, enable START  
sequence if SDA = 1, SCL = 1  
SCL  
SEN  
SCL = 0 before SDA = 0,  
Bus collision occurs, Set BCLIF  
SCL = 0 before BRG time-out,  
Bus collision occurs, Set BCLIF  
BCLIF  
Interrupts cleared  
in software  
S
'0'  
'0'  
'0'  
'0'  
SSPIF  
FIGURE 9-22:  
BRG RESET DUE TO SDA COLLISION DURING START CONDITION  
SDA = 0, SCL = 1  
Set S  
Set SSPIF  
Less than TBRG  
TBRG  
SDA pulled low by other master.  
Reset BRG and assert SDA.  
SDA  
SCL  
s
SCL pulled low after BRG  
Time-out  
SEN  
Set SEN, enable START  
sequence if SDA = 1, SCL = 1  
'0'  
BCLIF  
S
SSPIF  
Interrupts cleared  
in software  
SDA = 0, SCL = 1  
Set SSPIF  
1998-2013 Microchip Technology Inc.  
DS30292D-page 91  
PIC16F87X  
SDA is sampled high, the BRG is reloaded and begins  
counting. If SDA goes from high to low before the BRG  
times out, no bus collision occurs, because no two  
masters can assert SDA at exactly the same time.  
9.2.18.2  
Bus Collision During a Repeated  
START Condition  
During a Repeated START condition, a bus collision  
occurs if:  
If, however, SCL goes from high to low before the BRG  
times out and SDA has not already been asserted, a  
bus collision occurs. In this case, another master is  
attempting to transmit a data’1’ during the Repeated  
START condition.  
a) A low level is sampled on SDA when SCL goes  
from low level to high level.  
b) SCL goes low before SDA is asserted low, indi-  
cating that another master is attempting to trans-  
mit a data ’1’.  
If at the end of the BRG time-out, both SCL and SDA  
are still high, the SDA pin is driven low, the BRG is  
reloaded and begins counting. At the end of the count,  
regardless of the status of the SCL pin, the SCL pin is  
driven low and the Repeated START condition is  
complete (Figure 9-23).  
When the user de-asserts SDA and the pin is allowed  
to float high, the BRG is loaded with SSPADD<6:0>  
and counts down to 0. The SCL pin is then de-asserted,  
and when sampled high, the SDA pin is sampled. If  
SDA is low, a bus collision has occurred (i.e., another  
master is attempting to transmit a data’0’). If, however,  
FIGURE 9-23:  
BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)  
SDA  
SCL  
Sample SDA when SCL goes high.  
If SDA = 0, set BCLIF and release SDA and SCL.  
RSEN  
BCLIF  
Cleared in software  
'0'  
'0'  
'0'  
S
'0'  
SSPIF  
FIGURE 9-24:  
BUS COLLISION DURING REPEATED START CONDITION (CASE 2)  
TBRG  
TBRG  
SDA  
SCL  
SCL goes low before SDA,  
Set BCLIF. Release SDA and SCL.  
BCLIF  
RSEN  
Interrupt cleared  
in software  
'0'  
'0'  
'0'  
'0'  
S
SSPIF  
DS30292D-page 92  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
The STOP condition begins with SDA asserted low.  
When SDA is sampled low, the SCL pin is allowed to  
float. When the pin is sampled high (clock arbitration),  
the baud rate generator is loaded with SSPADD<6:0>  
and counts down to 0. After the BRG times out, SDA is  
sampled. If SDA is sampled low, a bus collision has  
occurred. This is due to another master attempting to  
drive a data '0'. If the SCL pin is sampled low before  
SDA is allowed to float high, a bus collision occurs. This  
is a case of another master attempting to drive a data  
'0' (Figure 9-25).  
9.2.18.3  
Bus Collision During a STOP  
Condition  
Bus collision occurs during a STOP condition if:  
a) After the SDA pin has been de-asserted and  
allowed to float high, SDA is sampled low after  
the BRG has timed out.  
b) After the SCL pin is de-asserted, SCL is sam-  
pled low before SDA goes high.  
FIGURE 9-25:  
BUS COLLISION DURING A STOP CONDITION (CASE 1)  
SDA sampled  
low after TBRG,  
Set BCLIF  
TBRG  
TBRG  
TBRG  
SDA  
SDA asserted low  
SCL  
PEN  
BCLIF  
P
'0'  
'0'  
'0'  
'0'  
SSPIF  
FIGURE 9-26:  
BUS COLLISION DURING A STOP CONDITION (CASE 2)  
TBRG  
TBRG  
TBRG  
SDA  
SCL  
SCL goes low before SDA goes high,  
Set BCLIF  
Assert SDA  
PEN  
BCLIF  
P
'0'  
'0'  
SSPIF  
1998-2013 Microchip Technology Inc.  
DS30292D-page 93  
PIC16F87X  
example, with a supply voltage of VDD = 5V±10% and  
VOL max = 0.4V at 3 mA, Rpmin = (5.5-0.4)/0.003 = 1.7 k  
VDD as a function of Rp is shown in Figure 9-27. The  
desired noise margin of 0.1VDD for the low level limits  
the maximum value of Rs. Series resistors are optional  
and used to improve ESD susceptibility.  
9.3  
Connection Considerations for  
I C Bus  
2
For standard-mode I2C bus devices, the values of  
resistors Rp and Rs in Figure 9-27 depend on the fol-  
lowing parameters:  
• Supply voltage  
The bus capacitance is the total capacitance of wire,  
connections, and pins. This capacitance limits the max-  
imum value of Rp due to the specified rise time  
(Figure 9-27).  
• Bus capacitance  
• Number of connected devices  
(input current + leakage current)  
The SMP bit is the slew rate control enabled bit. This bit  
is in the SSPSTAT register, and controls the slew rate  
of the I/O pins when in I2C mode (master or slave).  
The supply voltage limits the minimum value of resistor  
Rp, due to the specified minimum sink current of 3 mA at  
VOL max = 0.4V, for the specified output stages. For  
FIGURE 9-27:  
SAMPLE DEVICE CONFIGURATION FOR I2C BUS  
VDD + 10%  
DEVICE  
R
R
p
p
R
R
s
s
SDA  
SCL  
C =10 - 400 pF  
b
2
Note: I C devices with input levels related to VDD must have one common supply line to which the pull-up resistor is also  
connected.  
DS30292D-page 94  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
The USART can be configured in the following modes:  
10.0 ADDRESSABLE UNIVERSAL  
SYNCHRONOUS  
• Asynchronous (full duplex)  
• Synchronous - Master (half duplex)  
• Synchronous - Slave (half duplex)  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (USART)  
Bit SPEN (RCSTA<7>) and bits TRISC<7:6> have to  
be set in order to configure pins RC6/TX/CK and  
RC7/RX/DT as the Universal Synchronous Asynchro-  
nous Receiver Transmitter.  
The Universal Synchronous Asynchronous Receiver  
Transmitter (USART) module is one of the two serial  
I/O modules. (USART is also known as a Serial Com-  
munications Interface or SCI.) The USART can be con-  
figured as a full duplex asynchronous system that can  
communicate with peripheral devices such as CRT ter-  
minals and personal computers, or it can be configured  
as a half duplex synchronous system that can commu-  
nicate with peripheral devices such as A/D or D/A inte-  
grated circuits, serial EEPROMs etc.  
The USART module also has a multi-processor com-  
munication capability using 9-bit address detection.  
REGISTER 10-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN  
R/W-0  
SYNC  
U-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
TRMT  
bit 7  
bit 0  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit  
1= Transmit enabled  
0= Transmit disabled  
Note: SREN/CREN overrides TXEN in SYNC mode.  
bit 4  
SYNC: USART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
bit 3  
bit 2  
Unimplemented: Read as '0'  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: 9th bit of Transmit Data, can be parity bit  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
1998-2013 Microchip Technology Inc.  
DS30292D-page 95  
PIC16F87X  
REGISTER 10-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (configures RC7/RX/DT and RC6/TX/CK pins as serial port pins)  
0= Serial port disabled  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care  
Synchronous mode - master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode - slave:  
Don’t care  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables continuous receive  
0= Disables continuous receive  
Synchronous mode:  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enables address detection, enables interrupt and load of the receive buffer when  
RSR<8> is set  
0= Disables address detection, all bytes are received, and ninth bit can be used as parity bit  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be updated by reading RCREG register and receive next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: 9th bit of Received Data (can be parity bit, but must be calculated by user firmware)  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30292D-page 96  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
It may be advantageous to use the high baud rate  
(BRGH = 1), even for slower baud clocks. This is  
because the FOSC/(16(X + 1)) equation can reduce the  
baud rate error in some cases.  
10.1 USART Baud Rate Generator  
(BRG)  
The BRG supports both the Asynchronous and Syn-  
chronous modes of the USART. It is a dedicated 8-bit  
baud rate generator. The SPBRG register controls the  
period of a free running 8-bit timer. In Asynchronous  
mode, bit BRGH (TXSTA<2>) also controls the baud  
rate. In Synchronous mode, bit BRGH is ignored.  
Table 10-1 shows the formula for computation of the  
baud rate for different USART modes which only apply  
in Master mode (internal clock).  
Writing a new value to the SPBRG register causes the  
BRG timer to be reset (or cleared). This ensures the  
BRG does not wait for a timer overflow before output-  
ting the new baud rate.  
10.1.1  
SAMPLING  
The data on the RC7/RX/DT pin is sampled three times  
by a majority detect circuit to determine if a high or a  
low level is present at the RX pin.  
Given the desired baud rate and FOSC, the nearest  
integer value for the SPBRG register can be calculated  
using the formula in Table 10-1. From this, the error in  
baud rate can be determined.  
TABLE 10-1: BAUD RATE FORMULA  
SYNC  
BRGH = 0 (Low Speed)  
BRGH = 1 (High Speed)  
0
1
(Asynchronous) Baud Rate = FOSC/(64(X+1))  
(Synchronous) Baud Rate = FOSC/(4(X+1))  
Baud Rate = FOSC/(16(X+1))  
N/A  
X = value in SPBRG (0 to 255)  
TABLE 10-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
98h  
TXSTA  
RCSTA  
SPBRG  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SYNC  
BRGH  
FERR  
TRMT TX9D 0000 -010 0000 -010  
OERR RX9D 0000 000x 0000 000x  
0000 0000 0000 0000  
18h  
99h  
SREN CREN  
ADDEN  
Baud Rate Generator Register  
Legend: x = unknown, -= unimplemented, read as '0'. Shaded cells are not used by the BRG.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 97  
PIC16F87X  
TABLE 10-3: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)  
FOSC = 20 MHz  
FOSC = 16 MHz  
FOSC = 10 MHz  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
SPBRG  
%
%
%
value  
KBAUD  
ERROR  
KBAUD  
ERROR  
KBAUD ERROR  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
-
-
-
255  
129  
31  
15  
9
-
-
-
207  
103  
25  
12  
8
-
-
-
129  
64  
15  
7
1.221  
1.75  
0.17  
1.73  
1.72  
8.51  
3.34  
8.51  
-
1.202  
0.17  
0.17  
0.16  
0.16  
3.55  
6.29  
8.51  
-
1.202  
0.17  
0.17  
1.73  
1.72  
8.51  
6.99  
9.58  
-
2.4  
2.404  
2.404  
2.404  
9.6  
9.766  
9.615  
9.766  
19.2  
28.8  
33.6  
57.6  
HIGH  
LOW  
19.531  
31.250  
34.722  
62.500  
1.221  
19.231  
27.778  
35.714  
62.500  
0.977  
19.531  
31.250  
31.250  
52.083  
0.610  
4
8
6
4
4
3
2
255  
0
255  
0
255  
0
312.500  
-
250.000  
-
156.250  
-
FOSC = 4 MHz  
FOSC = 3.6864 MHz  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
(decimal)  
%
%
ERROR  
ERROR  
KBAUD  
(decimal)  
KBAUD  
0.3  
1.2  
0.300  
1.202  
2.404  
8.929  
20.833  
31.250  
-
0
207  
51  
25  
6
0.3  
1.2  
0
0
0
0
0
0
-
191  
47  
23  
5
0.17  
0.17  
6.99  
8.51  
8.51  
-
2.4  
2.4  
9.6  
9.6  
19.2  
28.8  
33.6  
57.6  
HIGH  
LOW  
2
19.2  
28.8  
-
2
1
1
-
-
62.500  
0.244  
62.500  
8.51  
-
0
57.6  
0.225  
57.6  
0
-
0
255  
0
255  
0
-
-
TABLE 10-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)  
FOSC = 20 MHz  
FOSC = 16 MHz  
FOSC = 10 MHz  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
%
%
%
KBAUD  
ERROR  
KBAUD  
ERROR  
KBAUD  
ERROR  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2.4  
-
-
-
-
-
-
2.441  
9.615  
19.531  
28.409  
32.895  
56.818  
2.441  
625.000  
1.71  
0.16  
1.72  
1.36  
2.10  
1.36  
-
255  
64  
31  
21  
18  
10  
255  
0
9.6  
9.615  
19.231  
29.070  
33.784  
59.524  
4.883  
1250.000  
0.16  
0.16  
0.94  
0.55  
3.34  
-
129  
64  
42  
36  
20  
255  
0
9.615  
19.231  
29.412  
33.333  
58.824  
3.906  
1000.000  
0.16  
0.16  
2.13  
0.79  
2.13  
-
103  
51  
33  
29  
16  
255  
0
19.2  
28.8  
33.6  
57.6  
HIGH  
LOW  
-
-
FOSC = 4 MHz  
FOSC = 3.6864 MHz  
BAUD  
RATE  
(K)  
SPBRG  
value  
SPBRG  
value  
%
%
ERROR  
ERROR  
KBAUD  
(decimal) KBAUD  
(decimal)  
0.3  
1.2  
-
-
-
207  
103  
25  
12  
8
-
-
-
191  
95  
23  
11  
7
1.202  
0.17  
0.17  
0.16  
0.16  
3.55  
6.29  
8.51  
-
1.2  
0
2.4  
2.404  
2.4  
0
9.6  
9.615  
9.6  
0
19.2  
28.8  
33.6  
57.6  
HIGH  
LOW  
19.231  
27.798  
35.714  
62.500  
0.977  
19.2  
28.8  
32.9  
57.6  
0.9  
0
0
6
2.04  
6
3
0
-
3
255  
0
255  
0
250.000  
-
230.4  
-
DS30292D-page 98  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
enabled/disabled by setting/clearing enable bit TXIE  
( PIE1<4>). Flag bit TXIF will be set, regardless of the  
state of enable bit TXIE and cannot be cleared in soft-  
ware. It will reset only when new data is loaded into the  
TXREG register. While flag bit TXIF indicates the status  
of the TXREG register, another bit TRMT (TXSTA<1>)  
shows the status of the TSR register. Status bit TRMT  
is a read only bit, which is set when the TSR register is  
empty. No interrupt logic is tied to this bit, so the user  
has to poll this bit in order to determine if the TSR reg-  
ister is empty.  
10.2 USART Asynchronous Mode  
In this mode, the USART uses standard non-return-to-  
zero (NRZ) format (one START bit, eight or nine data  
bits, and one STOP bit). The most common data format  
is 8-bits. An on-chip, dedicated, 8-bit baud rate gener-  
ator can be used to derive standard baud rate frequen-  
cies from the oscillator. The USART transmits and  
receives the LSb first. The transmitter and receiver are  
functionally independent, but use the same data format  
and baud rate. The baud rate generator produces a  
clock, either x16 or x64 of the bit shift rate, depending  
on bit BRGH (TXSTA<2>). Parity is not supported by  
the hardware, but can be implemented in software (and  
stored as the ninth data bit). Asynchronous mode is  
stopped during SLEEP.  
Note 1: The TSR register is not mapped in data  
memory, so it is not available to the user.  
2: Flag bit TXIF is set when enable bit TXEN  
is set. TXIF is cleared by loading TXREG.  
Asynchronous mode is selected by clearing bit SYNC  
(TXSTA<4>).  
Transmission is enabled by setting enable bit TXEN  
(TXSTA<5>). The actual transmission will not occur  
until the TXREG register has been loaded with data  
and the baud rate generator (BRG) has produced a  
shift clock (Figure 10-2). The transmission can also be  
started by first loading the TXREG register and then  
setting enable bit TXEN. Normally, when transmission  
is first started, the TSR register is empty. At that point,  
transfer to the TXREG register will result in an immedi-  
ate transfer to TSR, resulting in an empty TXREG. A  
back-to-back transfer is thus possible (Figure 10-3).  
Clearing enable bit TXEN during a transmission will  
cause the transmission to be aborted and will reset the  
transmitter. As a result, the RC6/TX/CK pin will revert  
to hi-impedance.  
The USART Asynchronous module consists of the fol-  
lowing important elements:  
• Baud Rate Generator  
• Sampling Circuit  
• Asynchronous Transmitter  
• Asynchronous Receiver  
10.2.1  
USART ASYNCHRONOUS  
TRANSMITTER  
The USART transmitter block diagram is shown in  
Figure 10-1. The heart of the transmitter is the transmit  
(serial) shift register (TSR). The shift register obtains its  
data from the read/write transmit buffer, TXREG. The  
TXREG register is loaded with data in software. The  
TSR register is not loaded until the STOP bit has been  
transmitted from the previous load. As soon as the  
STOP bit is transmitted, the TSR is loaded with new  
data from the TXREG register (if available). Once the  
TXREG register transfers the data to the TSR register  
(occurs in one TCY), the TXREG register is empty and  
flag bit TXIF (PIR1<4>) is set. This interrupt can be  
In order to select 9-bit transmission, transmit bit TX9  
(TXSTA<6>) should be set and the ninth bit should be  
written to TX9D (TXSTA<0>). The ninth bit must be  
written before writing the 8-bit data to the TXREG reg-  
ister. This is because a data write to the TXREG regis-  
ter can result in an immediate transfer of the data to the  
TSR register (if the TSR is empty). In such a case, an  
incorrect ninth data bit may be loaded in the TSR  
register.  
FIGURE 10-1:  
USART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXIF  
TXREG Register  
8
TXIE  
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
  
TSR Register  
RC6/TX/CK pin  
Interrupt  
TXEN  
Baud Rate CLK  
SPBRG  
TRMT  
SPEN  
TX9  
Baud Rate Generator  
TX9D  
1998-2013 Microchip Technology Inc.  
DS30292D-page 99  
PIC16F87X  
When setting up an Asynchronous Transmission,  
follow these steps:  
5. Enable the transmission by setting bit TXEN,  
which will also set bit TXIF.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH (Section 10.1).  
7. Load data to the TXREG register (starts trans-  
mission).  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
8. If using interrupts, ensure that GIE and PEIE  
(bits 7 and 6) of the INTCON register are set.  
3. If interrupts are desired, then set enable bit  
TXIE.  
4. If 9-bit transmission is desired, then set transmit  
bit TX9.  
FIGURE 10-2:  
ASYNCHRONOUS MASTER TRANSMISSION  
Write to TXREG  
Word 1  
BRG Output  
(Shift Clock)  
RC6/TX/CK (pin)  
START Bit  
Bit 0  
Bit 1  
Word 1  
Bit 7/8  
STOP Bit  
TXIF bit  
(Transmit Buffer  
Reg. Empty Flag)  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
FIGURE 10-3:  
ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)  
Write to TXREG  
Word 2  
Word 1  
BRG Output  
(Shift Clock)  
RC6/TX/CK (pin)  
START Bit  
START Bit  
Word 2  
Bit 0  
Bit 1  
Word 1  
Bit 7/8  
Bit 0  
STOP Bit  
TXIF bit  
(Interrupt Reg. Flag)  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
Word 1  
Transmit Shift Reg.  
Word 2  
Transmit Shift Reg.  
Note:  
This timing diagram shows two consecutive transmissions.  
TABLE 10-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE  
T0IE  
INTE  
TXIF  
RBIE  
T0IF  
INTF  
R0IF  
0000 000x 0000 000u  
(1)  
0Ch  
18h  
19h  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
RCSTA  
SREN CREN  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
TXREG USART Transmit Register  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXSTA  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission.  
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F873/876; always maintain these bits clear.  
DS30292D-page 100  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
is possible for two bytes of data to be received and  
transferred to the RCREG FIFO and a third byte to  
begin shifting to the RSR register. On the detection of  
the STOP bit of the third byte, if the RCREG register is  
still full, the overrun error bit OERR (RCSTA<1>) will be  
set. The word in the RSR will be lost. The RCREG reg-  
ister can be read twice to retrieve the two bytes in the  
FIFO. Overrun bit OERR has to be cleared in software.  
This is done by resetting the receive logic (CREN is  
cleared and then set). If bit OERR is set, transfers from  
the RSR register to the RCREG register are inhibited,  
and no further data will be received. It is therefore,  
essential to clear error bit OERR if it is set. Framing  
error bit FERR (RCSTA<2>) is set if a STOP bit is  
detected as clear. Bit FERR and the 9th receive bit are  
buffered the same way as the receive data. Reading  
the RCREG will load bits RX9D and FERR with new  
values, therefore, it is essential for the user to read the  
RCSTA register before reading the RCREG register in  
order not to lose the old FERR and RX9D information.  
10.2.2  
USART ASYNCHRONOUS  
RECEIVER  
The receiver block diagram is shown in Figure 10-4.  
The data is received on the RC7/RX/DT pin and drives  
the data recovery block. The data recovery block is  
actually a high speed shifter, operating at x16 times the  
baud rate; whereas, the main receive serial shifter  
operates at the bit rate or at FOSC.  
Once Asynchronous mode is selected, reception is  
enabled by setting bit CREN (RCSTA<4>).  
The heart of the receiver is the receive (serial) shift reg-  
ister (RSR). After sampling the STOP bit, the received  
data in the RSR is transferred to the RCREG register (if  
it is empty). If the transfer is complete, flag bit RCIF  
(PIR1<5>) is set. The actual interrupt can be enabled/  
disabled by setting/clearing enable bit RCIE  
(PIE1<5>). Flag bit RCIF is a read only bit, which is  
cleared by the hardware. It is cleared when the RCREG  
register has been read and is empty. The RCREG is a  
double buffered register (i.e., it is a two deep FIFO). It  
FIGURE 10-4:  
USART RECEIVE BLOCK DIAGRAM  
x64 Baud Rate CLK  
FERR  
OERR  
CREN  
FOSC  
SPBRG  
64  
or  
16  
RSR Register  
MSb  
LSb  
START  
Baud Rate Generator  
7
1
0
STOP (8)  
  
RC7/RX/DT  
Pin Buffer  
and Control  
Data  
Recovery  
RX9  
RX9D RCREG Register  
SPEN  
FIFO  
8
RCIF  
RCIE  
Interrupt  
Data Bus  
1998-2013 Microchip Technology Inc.  
DS30292D-page 101  
PIC16F87X  
FIGURE 10-5:  
ASYNCHRONOUS RECEPTION  
START  
bit  
START  
bit  
START  
bit7/8 STOP bit  
bit  
RX (pin)  
bit0  
bit1  
STOP  
bit  
STOP  
bit  
bit0  
bit7/8  
bit7/8  
Rcv Shift  
Reg  
Rcv Buffer Reg  
Word 2  
RCREG  
Word 1  
RCREG  
Read Rcv  
Buffer Reg  
RCREG  
RCIF  
(Interrupt Flag)  
OERR bit  
CREN  
Note: This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word,  
causing the OERR (overrun) bit to be set.  
When setting up an Asynchronous Reception, follow  
these steps:  
6. Flag bit RCIF will be set when reception is com-  
plete and an interrupt will be generated if enable  
bit RCIE is set.  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH (Section 10.1).  
7. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
8. Read the 8-bit received data by reading the  
RCREG register.  
3. If interrupts are desired, then set enable bit  
RCIE.  
9. If any error occurred, clear the error by clearing  
enable bit CREN.  
4. If 9-bit reception is desired, then set bit RX9.  
5. Enable the reception by setting bit CREN.  
10. If using interrupts, ensure that GIE and PEIE  
(bits 7 and 6) of the INTCON register are set.  
TABLE 10-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE  
T0IE  
INTE  
TXIF  
RBIE  
T0IF  
INTF  
R0IF  
0000 000x 0000 000u  
(1)  
0Ch  
18h  
1Ah  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
SSPIF CCP1IF TMR2IF TMR1IF  
FERR OERR RX9D  
0000 0000 0000 0000  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 -010 0000 -010  
0000 0000 0000 0000  
RCSTA  
SREN CREN  
RCREG USART Receive Register  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE SSPIE CCP1IE TMR2IE TMR1IE  
SYNC BRGH TRMT TX9D  
TXSTA  
TXEN  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.  
Note 1: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.  
DS30292D-page 102  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
• Flag bit RCIF will be set when reception is com-  
plete, and an interrupt will be generated if enable  
bit RCIE was set.  
10.2.3  
SETTING UP 9-BIT MODE WITH  
ADDRESS DETECT  
When setting up an Asynchronous Reception with  
Address Detect Enabled:  
• Read the RCSTA register to get the ninth bit and  
determine if any error occurred during reception.  
• Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired, set  
bit BRGH.  
• Read the 8-bit received data by reading the  
RCREG register, to determine if the device is  
being addressed.  
• Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
• If any error occurred, clear the error by clearing  
enable bit CREN.  
• If interrupts are desired, then set enable bit RCIE.  
• Set bit RX9 to enable 9-bit reception.  
• If the device has been addressed, clear the  
ADDEN bit to allow data bytes and address bytes  
to be read into the receive buffer, and interrupt the  
CPU.  
• Set ADDEN to enable address detect.  
• Enable the reception by setting enable bit CREN.  
FIGURE 10-6:  
USART RECEIVE BLOCK DIAGRAM  
x64 Baud Rate CLK  
FERR  
OERR  
CREN  
FOSC  
SPBRG  
64  
or  
16  
RSR Register  
MSb  
LSb  
0
Baud Rate Generator  
7
1
STOP (8)  
START  
  
RC7/RX/DT  
Pin Buffer  
and Control  
Data  
Recovery  
RX9  
8
SPEN  
RX9  
Enable  
Load of  
ADDEN  
Receive  
Buffer  
RX9  
ADDEN  
RSR<8>  
8
RX9D  
RCREG Register  
FIFO  
8
RCIF  
RCIE  
Interrupt  
Data Bus  
1998-2013 Microchip Technology Inc.  
DS30292D-page 103  
PIC16F87X  
FIGURE 10-7:  
ASYNCHRONOUS RECEPTION WITH ADDRESS DETECT  
START  
bit  
START  
bit8 STOP bit  
bit  
RC7/RX/DT (pin)  
bit0  
bit1  
STOP  
bit  
bit0  
bit8  
Load RSR  
Read  
Word 1  
RCREG  
Bit8 = 0, Data Byte  
Bit8 = 1, Address Byte  
RCIF  
Note:  
This timing diagram shows a data byte followed by an address byte. The data byte is not read into the RCREG (receive buffer)  
because ADDEN = 1.  
FIGURE 10-8:  
ASYNCHRONOUS RECEPTION WITH ADDRESS BYTE FIRST  
START  
bit  
START  
bit  
RC7/RX/DT (pin)  
bit0  
bit1  
STOP  
bit  
bit8 STOP  
bit  
bit0  
bit8  
Load RSR  
Read  
Word 1  
RCREG  
Bit8 = 1, Address Byte  
Bit8 = 0, Data Byte  
RCIF  
Note:  
This timing diagram shows a data byte followed by an address byte. The data byte is not read into the RCREG (receive buffer)  
because ADDEN was not updated and still = 0.  
TABLE 10-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on:  
POR,  
BOR  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE  
T0IE  
INTE  
TXIF  
RBIE  
T0IF  
INTF  
R0IF  
0000 000x 0000 000u  
(1)  
0Ch  
18h  
1Ah  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
RCSTA  
SREN CREN ADDEN FERR  
OERR  
RX9D 0000 000x 0000 000x  
RCREG USART Receive Register  
0000 0000 0000 0000  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXSTA  
TXEN SYNC  
BRGH  
TRMT  
TX9D 0000 -010 0000 -010  
SPBRG Baud Rate Generator Register  
0000 0000 0000 0000  
Legend: x= unknown, -= unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.  
Note 1: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.  
DS30292D-page 104  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
Clearing enable bit TXEN during a transmission will  
cause the transmission to be aborted and will reset the  
transmitter. The DT and CK pins will revert to hi-  
impedance. If either bit CREN or bit SREN is set during  
a transmission, the transmission is aborted and the DT  
pin reverts to a hi-impedance state (for a reception).  
The CK pin will remain an output if bit CSRC is set  
(internal clock). The transmitter logic, however, is not  
reset, although it is disconnected from the pins. In order  
to reset the transmitter, the user has to clear bit TXEN.  
If bit SREN is set (to interrupt an on-going transmission  
and receive a single word), then after the single word is  
received, bit SREN will be cleared and the serial port  
will revert back to transmitting, since bit TXEN is still  
set. The DT line will immediately switch from hi-  
impedance Receive mode to transmit and start driving.  
To avoid this, bit TXEN should be cleared.  
10.3 USART Synchronous  
Master Mode  
In Synchronous Master mode, the data is transmitted in  
a half-duplex manner (i.e., transmission and reception  
do not occur at the same time). When transmitting data,  
the reception is inhibited and vice versa. Synchronous  
mode is entered by setting bit SYNC (TXSTA<4>). In  
addition, enable bit SPEN (RCSTA<7>) is set in order  
to configure the RC6/TX/CK and RC7/RX/DT I/O pins  
to CK (clock) and DT (data) lines, respectively. The  
Master mode indicates that the processor transmits the  
master clock on the CK line. The Master mode is  
entered by setting bit CSRC (TXSTA<7>).  
10.3.1  
USART SYNCHRONOUS MASTER  
TRANSMISSION  
In order to select 9-bit transmission, the TX9  
(TXSTA<6>) bit should be set and the ninth bit should  
be written to bit TX9D (TXSTA<0>). The ninth bit must  
be written before writing the 8-bit data to the TXREG  
register. This is because a data write to the TXREG can  
result in an immediate transfer of the data to the TSR  
register (if the TSR is empty). If the TSR was empty and  
the TXREG was written before writing the “new” TX9D,  
the “present” value of bit TX9D is loaded.  
The USART transmitter block diagram is shown in  
Figure 10-6. The heart of the transmitter is the transmit  
(serial) shift register (TSR). The shift register obtains its  
data from the read/write transmit buffer register  
TXREG. The TXREG register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREG (if available). Once the  
TXREG register transfers the data to the TSR register  
(occurs in one Tcycle), the TXREG is empty and inter-  
rupt bit TXIF (PIR1<4>) is set. The interrupt can be  
enabled/disabled by setting/clearing enable bit TXIE  
(PIE1<4>). Flag bit TXIF will be set, regardless of the  
state of enable bit TXIE and cannot be cleared in soft-  
ware. It will reset only when new data is loaded into the  
TXREG register. While flag bit TXIF indicates the status  
of the TXREG register, another bit TRMT (TXSTA<1>)  
shows the status of the TSR register. TRMT is a read  
only bit which is set when the TSR is empty. No inter-  
rupt logic is tied to this bit, so the user has to poll this  
bit in order to determine if the TSR register is empty.  
The TSR is not mapped in data memory, so it is not  
available to the user.  
Steps to follow when setting up a Synchronous Master  
Transmission:  
1. Initialize the SPBRG register for the appropriate  
baud rate (Section 10.1).  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting bit TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the TXREG  
register.  
8. If using interrupts, ensure that GIE and PEIE  
(bits 7 and 6) of the INTCON register are set.  
Transmission is enabled by setting enable bit TXEN  
(TXSTA<5>). The actual transmission will not occur  
until the TXREG register has been loaded with data.  
The first data bit will be shifted out on the next available  
rising edge of the clock on the CK line. Data out is sta-  
ble around the falling edge of the synchronous clock  
(Figure 10-9). The transmission can also be started by  
first loading the TXREG register and then setting bit  
TXEN (Figure 10-10). This is advantageous when slow  
baud rates are selected, since the BRG is kept in  
RESET when bits TXEN, CREN and SREN are clear.  
Setting enable bit TXEN will start the BRG, creating a  
shift clock immediately. Normally, when transmission is  
first started, the TSR register is empty, so a transfer to  
the TXREG register will result in an immediate transfer  
to TSR, resulting in an empty TXREG. Back-to-back  
transfers are possible.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 105  
PIC16F87X  
TABLE 10-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Value on:  
POR,  
Value on all  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
other  
BOR  
RESETS  
0Bh, 8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
R0IF  
0000 000x 0000 000u  
(1)  
0Ch  
18h  
19h  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF SSPIF CCP1IF TMR2IF TMR1IF  
FERR OERR RX9D  
0000 0000 0000 0000  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 -010 0000 -010  
0000 0000 0000 0000  
RCSTA  
SREN CREN  
TXREG USART Transmit Register  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE  
TXEN SYNC BRGH TRMT TX9D  
TXSTA  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.  
Note 1: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.  
FIGURE 10-9:  
SYNCHRONOUS TRANSMISSION  
Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4  
Q3Q4 Q1Q2 Q3Q4 Q1Q2Q3Q4 Q1Q2Q3Q4Q1Q2Q3 Q4Q1Q2Q3Q4Q1 Q2Q3 Q4  
RC7/RX/DT pin  
RC6/TX/CK pin  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
Word 2  
bit 7  
Word 1  
Write to  
TXREG reg  
Write Word1  
Write Word2  
TXIF bit  
(Interrupt Flag)  
TRMT bit  
'1'  
'1'  
TXEN bit  
Note: Sync Master mode; SPBRG = '0'. Continuous transmission of two 8-bit words.  
FIGURE 10-10:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RC7/RX/DT pin  
bit0  
bit2  
bit1  
bit6  
bit7  
RC6/TX/CK pin  
Write to  
TXREG Reg  
TXIF bit  
TRMT bit  
TXEN bit  
DS30292D-page 106  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
receive bit is buffered the same way as the receive  
data. Reading the RCREG register will load bit RX9D  
with a new value, therefore, it is essential for the user  
to read the RCSTA register before reading RCREG in  
order not to lose the old RX9D information.  
10.3.2  
USART SYNCHRONOUS MASTER  
RECEPTION  
Once synchronous mode is selected, reception is  
enabled by setting either enable bit SREN  
(RCSTA<5>), or enable bit CREN (RCSTA<4>). Data is  
sampled on the RC7/RX/DT pin on the falling edge of  
the clock. If enable bit SREN is set, then only a single  
word is received. If enable bit CREN is set, the recep-  
tion is continuous until CREN is cleared. If both bits are  
set, CREN takes precedence. After clocking the last bit,  
the received data in the Receive Shift Register (RSR)  
is transferred to the RCREG register (if it is empty).  
When the transfer is complete, interrupt flag bit RCIF  
(PIR1<5>) is set. The actual interrupt can be enabled/  
disabled by setting/clearing enable bit RCIE  
(PIE1<5>). Flag bit RCIF is a read only bit, which is  
reset by the hardware. In this case, it is reset when the  
RCREG register has been read and is empty. The  
RCREG is a double buffered register (i.e., it is a two  
deep FIFO). It is possible for two bytes of data to be  
received and transferred to the RCREG FIFO and a  
third byte to begin shifting into the RSR register. On the  
clocking of the last bit of the third byte, if the RCREG  
register is still full, then overrun error bit OERR  
(RCSTA<1>) is set. The word in the RSR will be lost.  
The RCREG register can be read twice to retrieve the  
two bytes in the FIFO. Bit OERR has to be cleared in  
software (by clearing bit CREN). If bit OERR is set,  
transfers from the RSR to the RCREG are inhibited, so  
it is essential to clear bit OERR if it is set. The ninth  
When setting up a Synchronous Master Reception:  
1. Initialize the SPBRG register for the appropriate  
baud rate (Section 10.1).  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
3. Ensure bits CREN and SREN are clear.  
4. If interrupts are desired, then set enable bit  
RCIE.  
5. If 9-bit reception is desired, then set bit RX9.  
6. If a single reception is required, set bit SREN.  
For continuous reception, set bit CREN.  
7. Interrupt flag bit RCIF will be set when reception  
is complete and an interrupt will be generated if  
enable bit RCIE was set.  
8. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read the 8-bit received data by reading the  
RCREG register.  
10. If any error occurred, clear the error by clearing  
bit CREN.  
11. If using interrupts, ensure that GIE and PEIE  
(bits 7 and 6) of the INTCON register are set.  
TABLE 10-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Value on:  
POR,  
BOR  
Value on all  
other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
R0IF  
0000 000x 0000 000u  
(1)  
0Ch  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
TXIF SSPIF CCP1IF TMR2IF TMR1IF  
FERR OERR RX9D  
0000 0000 0000 0000  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
18h  
1Ah  
8Ch  
98h  
99h  
RCSTA  
SREN CREN  
RCREG USART Receive Register  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXSTA  
TXEN SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
0000 0000 0000 0000  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, -= unimplemented, read as '0'. Shaded cells are not used for synchronous master reception.  
Note 1: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 107  
PIC16F87X  
FIGURE 10-11:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2Q3Q4 Q1Q2Q3Q4 Q1 Q2Q3Q4 Q1Q2Q3 Q4Q1 Q2Q3 Q4 Q1Q2 Q3Q4Q1Q2Q3 Q4 Q1Q2 Q3Q4Q1 Q2Q3 Q4 Q1Q2Q3 Q4 Q1Q2 Q3Q4  
bit0 bit1 bit2 bit3 bit4 bit5 bit6 bit7  
RC7/RX/DT pin  
RC6/TX/CK pin  
Write to  
bit SREN  
SREN bit  
CREN bit  
'0'  
'0'  
RCIF bit  
(Interrupt)  
Read  
RXREG  
Note: Timing diagram demonstrates SYNC Master mode with bit SREN = '1' and bit BRG = '0'.  
e) If enable bit TXIE is set, the interrupt will wake  
the chip from SLEEP and if the global interrupt  
is enabled, the program will branch to the inter-  
rupt vector (0004h).  
10.4 USART Synchronous Slave Mode  
Synchronous Slave mode differs from the Master mode  
in the fact that the shift clock is supplied externally at  
the RC6/TX/CK pin (instead of being supplied internally  
in Master mode). This allows the device to transfer or  
receive data while in SLEEP mode. Slave mode is  
entered by clearing bit CSRC (TXSTA<7>).  
When setting up a Synchronous Slave Transmission,  
follow these steps:  
1. Enable the synchronous slave serial port by set-  
ting bits SYNC and SPEN and clearing bit  
CSRC.  
10.4.1  
USART SYNCHRONOUS SLAVE  
TRANSMIT  
2. Clear bits CREN and SREN.  
3. If interrupts are desired, then set enable bit  
TXIE.  
The operation of the Synchronous Master and Slave  
modes is identical, except in the case of the SLEEP mode.  
4. If 9-bit transmission is desired, then set bit TX9.  
If two words are written to the TXREG and then the  
5. Enable the transmission by setting enable bit  
TXEN.  
SLEEPinstruction is executed, the following will occur:  
a) The first word will immediately transfer to the  
TSR register and transmit.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
b) The second word will remain in TXREG register.  
c) Flag bit TXIF will not be set.  
7. Start transmission by loading data to the TXREG  
register.  
d) When the first word has been shifted out of TSR,  
the TXREG register will transfer the second word  
to the TSR and flag bit TXIF will now be set.  
8. If using interrupts, ensure that GIE and PEIE  
(bits 7 and 6) of the INTCON register are set.  
TABLE 10-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Value on all  
other  
RESETS  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE  
T0IE  
INTE  
TXIF  
RBIE  
T0IF  
INTF  
R0IF  
0000 000x 0000 000u  
(1)  
0Ch  
18h  
19h  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
RCSTA  
SREN CREN ADDEN FERR  
OERR  
RX9D 0000 000x 0000 000x  
TXREG USART Transmit Register  
0000 0000 0000 0000  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXSTA  
TXEN SYNC  
BRGH  
TRMT  
TX9D 0000 -010 0000 -010  
SPBRG Baud Rate Generator Register  
0000 0000 0000 0000  
Legend: x= unknown, -= unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.  
Note 1: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.  
DS30292D-page 108  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
2. If interrupts are desired, set enable bit RCIE.  
3. If 9-bit reception is desired, set bit RX9.  
4. To enable reception, set enable bit CREN.  
10.4.2  
USART SYNCHRONOUS SLAVE  
RECEPTION  
The operation of the Synchronous Master and Slave  
modes is identical, except in the case of the SLEEP  
mode. Bit SREN is a “don't care” in Slave mode.  
5. Flag bit RCIF will be set when reception is com-  
plete and an interrupt will be generated, if  
enable bit RCIE was set.  
If receive is enabled by setting bit CREN prior to the  
SLEEPinstruction, then a word may be received during  
SLEEP. On completely receiving the word, the RSR  
register will transfer the data to the RCREG register  
and if enable bit RCIE bit is set, the interrupt generated  
will wake the chip from SLEEP. If the global interrupt is  
enabled, the program will branch to the interrupt vector  
(0004h).  
6. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
7. Read the 8-bit received data by reading the  
RCREG register.  
8. If any error occurred, clear the error by clearing  
bit CREN.  
9. If using interrupts, ensure that GIE and PEIE  
(bits 7 and 6) of the INTCON register are set.  
When setting up a Synchronous Slave Reception, fol-  
low these steps:  
1. Enable the synchronous master serial port by  
setting bits SYNC and SPEN and clearing bit  
CSRC.  
TABLE 10-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Value on:  
POR,  
BOR  
Value on all  
other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh, INTCON  
10Bh,18Bh  
GIE  
PEIE  
T0IE  
INTE  
TXIF  
RBIE  
T0IF  
INTF  
R0IF  
0000 000x 0000 000u  
(1)  
0Ch  
18h  
1Ah  
8Ch  
98h  
99h  
PIR1  
PSPIF  
SPEN  
ADIF  
RX9  
RCIF  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
RCSTA  
SREN CREN ADDEN FERR  
OERR  
RX9D 0000 000x 0000 000x  
RCREG USART Receive Register  
0000 0000 0000 0000  
(1)  
PIE1  
PSPIE  
CSRC  
ADIE  
TX9  
RCIE  
TXIE  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXSTA  
TXEN SYNC  
BRGH  
TRMT  
TX9D 0000 -010 0000 -010  
SPBRG Baud Rate Generator Register  
0000 0000 0000 0000  
Legend: x= unknown, -= unimplemented, read as '0'. Shaded cells are not used for synchronous slave reception.  
Note 1: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices, always maintain these bits clear.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 109  
PIC16F87X  
NOTES:  
DS30292D-page 110  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
The A/D module has four registers. These registers  
are:  
11.0 ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
• A/D Result High Register (ADRESH)  
• A/D Result Low Register (ADRESL)  
• A/D Control Register0 (ADCON0)  
• A/D Control Register1 (ADCON1)  
The Analog-to-Digital (A/D) Converter module has five  
inputs for the 28-pin devices and eight for the other  
devices.  
The analog input charges a sample and hold capacitor.  
The output of the sample and hold capacitor is the input  
into the converter. The converter then generates a dig-  
ital result of this analog level via successive approxima-  
tion. The A/D conversion of the analog input signal  
results in a corresponding 10-bit digital number. The  
A/D module has high and low voltage reference input  
that is software selectable to some combination of VDD,  
VSS, RA2, or RA3.  
The ADCON0 register, shown in Register 11-1, con-  
trols the operation of the A/D module. The ADCON1  
register, shown in Register 11-2, configures the func-  
tions of the port pins. The port pins can be configured  
as analog inputs (RA3 can also be the voltage refer-  
ence), or as digital I/O.  
Additional information on using the A/D module can be  
found in the PIC® MCU Mid-Range Family Reference  
Manual (DS33023).  
The A/D converter has a unique feature of being able  
to operate while the device is in SLEEP mode. To oper-  
ate in SLEEP, the A/D clock must be derived from the  
A/D’s internal RC oscillator.  
REGISTER 11-1: ADCON0 REGISTER (ADDRESS: 1Fh)  
R/W-0  
R/W-0  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
U-0  
R/W-0  
ADON  
ADCS1  
ADCS0  
GO/DONE  
bit 7  
bit 0  
bit 7-6  
bit 5-3  
ADCS1:ADCS0: A/D Conversion Clock Select bits  
00= FOSC/2  
01= FOSC/8  
10= FOSC/32  
11= FRC (clock derived from the internal A/D module RC oscillator)  
CHS2:CHS0: Analog Channel Select bits  
000= channel 0, (RA0/AN0)  
001= channel 1, (RA1/AN1)  
010= channel 2, (RA2/AN2)  
011= channel 3, (RA3/AN3)  
100= channel 4, (RA5/AN4)  
(1)  
101= channel 5, (RE0/AN5)  
110= channel 6, (RE1/AN6)  
111= channel 7, (RE2/AN7)  
(1)  
(1)  
bit 2  
GO/DONE: A/D Conversion Status bit  
If ADON = 1:  
1= A/D conversion in progress (setting this bit starts the A/D conversion)  
0= A/D conversion not in progress (this bit is automatically cleared by hardware when the A/D  
conversion is complete)  
bit 1  
bit 0  
Unimplemented: Read as '0'  
ADON: A/D On bit  
1= A/D converter module is operating  
0= A/D converter module is shut-off and consumes no operating current  
Note 1: These channels are not available on PIC16F873/876 devices.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
1998-2013 Microchip Technology Inc.  
DS30292D-page 111  
PIC16F87X  
REGISTER 11-2: ADCON1 REGISTER (ADDRESS 9Fh)  
U-0  
U-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADFM  
PCFG3  
PCFG2  
PCFG1  
PCFG0  
bit 7  
bit 0  
bit 7  
ADFM: A/D Result Format Select bit  
1= Right justified. 6 Most Significant bits of ADRESH are read as ‘0’.  
0= Left justified. 6 Least Significant bits of ADRESL are read as ‘0’.  
bit 6-4  
bit 3-0  
Unimplemented: Read as '0'  
PCFG3:PCFG0: A/D Port Configuration Control bits:  
(1)  
(1)  
(1)  
PCFG3: AN7  
PCFG0  
AN6  
AN5  
AN4  
RA5  
AN3  
RA3  
AN2  
RA2  
AN1  
RA1  
AN0  
RA0  
CHAN/  
Refs  
VREF+ VREF-  
(2)  
RE2  
RE1  
RE0  
0000  
0001  
0010  
0011  
0100  
0101  
011x  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
A
A
D
D
D
D
D
A
D
D
D
D
D
D
D
A
A
D
D
D
D
D
A
D
D
D
D
D
D
D
A
A
D
D
D
D
D
A
A
A
A
D
D
D
D
A
A
A
A
D
D
D
A
A
A
A
A
D
D
D
A
VREF+  
A
A
A
A
A
D
D
D
A
A
A
A
A
A
D
A
A
A
A
A
A
D
D
A
A
A
A
A
A
D
A
A
A
A
A
A
A
A
VDD  
RA3  
VDD  
RA3  
VDD  
RA3  
VDD  
RA3  
VDD  
RA3  
RA3  
RA3  
RA3  
VDD  
RA3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
RA2  
VSS  
VSS  
RA2  
RA2  
RA2  
VSS  
RA2  
8/0  
7/1  
5/0  
4/1  
3/0  
2/1  
0/0  
6/2  
6/0  
5/1  
4/2  
3/2  
2/2  
1/0  
1/2  
VREF+  
A
VREF+  
D
VREF+ VREF-  
A
A
A
VREF+  
VREF+ VREF-  
VREF+ VREF-  
VREF+ VREF-  
D
D
VREF+ VREF-  
A = Analog input  
D = Digital I/O  
Note 1: These channels are not available on PIC16F873/876 devices.  
2: This column indicates the number of analog channels available as A/D inputs and  
the number of analog channels used as voltage reference inputs.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR  
’0’ = Bit is cleared  
x = Bit is unknown  
The ADRESH:ADRESL registers contain the 10-bit  
result of the A/D conversion. When the A/D conversion  
is complete, the result is loaded into this A/D result reg-  
ister pair, the GO/DONE bit (ADCON0<2>) is cleared  
and the A/D interrupt flag bit ADIF is set. The block dia-  
gram of the A/D module is shown in Figure 11-1.  
To determine sample time, see Section 11.1. After this  
acquisition time has elapsed, the A/D conversion can  
be started.  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the con-  
version is started. The analog input channels must  
have their corresponding TRIS bits selected as inputs.  
DS30292D-page 112  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
These steps should be followed for doing an A/D  
Conversion:  
3. Wait the required acquisition time.  
4. Start conversion:  
1. Configure the A/D module:  
• Set GO/DONE bit (ADCON0)  
5. Wait for A/D conversion to complete, by either:  
• Configure analog pins/voltage reference and  
digital I/O (ADCON1)  
• Polling for the GO/DONE bit to be cleared  
(with interrupts enabled); OR  
• Select A/D input channel (ADCON0)  
• Select A/D conversion clock (ADCON0)  
• Turn on A/D module (ADCON0)  
2. Configure A/D interrupt (if desired):  
• Clear ADIF bit  
• Waiting for the A/D interrupt  
6. Read  
A/D  
result  
register  
pair  
(ADRESH:ADRESL), clear bit ADIF if required.  
7. For the next conversion, go to step 1 or step 2,  
as required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2TAD is  
required before the next acquisition starts.  
• Set ADIE bit  
• Set PEIE bit  
• Set GIE bit  
FIGURE 11-1:  
A/D BLOCK DIAGRAM  
CHS2:CHS0  
111  
(1)  
RE2/AN7  
110  
(1)  
RE1/AN6  
101  
(1)  
RE0/AN5  
100  
RA5/AN4  
VAIN  
011  
(Input Voltage)  
RA3/AN3/VREF+  
010  
RA2/AN2/VREF-  
A/D  
Converter  
001  
RA1/AN1  
000  
VDD  
RA0/AN0  
VREF+  
(Reference  
Voltage)  
PCFG3:PCFG0  
VREF-  
(Reference  
Voltage)  
VSS  
PCFG3:PCFG0  
Note 1: Not available on PIC16F873/876 devices.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 113  
PIC16F87X  
After the analog input channel is selected (changed),  
this acquisition must be done before the conversion  
can be started.  
11.1 A/D Acquisition Requirements  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 11-2. The source  
impedance (RS) and the internal sampling switch (RSS)  
impedance directly affect the time required to charge  
the capacitor CHOLD. The sampling switch (RSS)  
impedance varies over the device voltage (VDD), see  
Figure 11-2. The maximum recommended imped-  
ance for analog sources is 10 k. As the impedance  
is decreased, the acquisition time may be decreased.  
To calculate the minimum acquisition time,  
Equation 11-1 may be used. This equation assumes  
that 1/2 LSb error is used (1024 steps for the A/D). The  
1/2 LSb error is the maximum error allowed for the A/D  
to meet its specified resolution.  
To calculate the minimum acquisition time, TACQ, see  
the PIC® MCU Mid-Range Reference Manual  
(DS33023).  
EQUATION 11-1: ACQUISITION TIME  
TACQ  
= Amplifier Settling Time +  
Hold Capacitor Charging Time +  
Temperature Coefficient  
= TAMP + TC + TCOFF  
= 2s + TC + [(Temperature -25°C)(0.05s/°C)]  
= CHOLD (RIC + RSS + RS) In(1/2047)  
= - 120pF (1k+ 7k+ 10k) In(0.0004885)  
= 16.47s  
TC  
TACQ  
= 2s + 16.47s + [(50°C -25C)(0.05s/C)  
= 19.72s  
Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.  
2: The charge holding capacitor (CHOLD) is not discharged after each conversion.  
3: The maximum recommended impedance for analog sources is 10 k. This is required to meet the pin leak-  
age specification.  
4: After a conversion has completed, a 2.0TAD delay must complete before acquisition can begin again.  
During this time, the holding capacitor is not connected to the selected A/D input channel.  
FIGURE 11-2:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1k  
RSS  
RS  
CHOLD  
= DAC capacitance  
= 120 pF  
CPIN  
5 pF  
VA  
I LEAKAGE  
± 500 nA  
VT = 0.6V  
VSS  
Legend CPIN  
VT  
= input capacitance  
= threshold voltage  
6V  
5V  
I LEAKAGE = leakage current at the pin due to  
VDD 4V  
3V  
various junctions  
2V  
RIC  
SS  
= interconnect resistance  
= sampling switch  
CHOLD  
= sample/hold capacitance (from DAC)  
5 6 7 8 9 1011  
Sampling Switch  
(k)  
DS30292D-page 114  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be selected to ensure a minimum TAD time  
of 1.6 s.  
11.2 Selecting the A/D Conversion  
Clock  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires a minimum 12TAD per 10-bit  
conversion. The source of the A/D conversion clock is  
software selected. The four possible options for TAD  
are:  
Table 11-1 shows the resultant TAD times derived from  
the device operating frequencies and the A/D clock  
source selected.  
• 2TOSC  
• 8TOSC  
• 32TOSC  
• Internal A/D module RC oscillator (2-6 s)  
TABLE 11-1: TAD vs. MAXIMUM DEVICE OPERATING FREQUENCIES (STANDARD DEVICES (C))  
AD Clock Source (TAD)  
ADCS1:ADCS0  
Maximum Device Frequency  
Max.  
Operation  
2TOSC  
8TOSC  
00  
01  
10  
11  
1.25 MHz  
5 MHz  
32TOSC  
RC(1, 2, 3)  
20 MHz  
(Note 1)  
Note 1: The RC source has a typical TAD time of 4 s, but can vary between 2-6 s.  
2: When the device frequencies are greater than 1 MHz, the RC A/D conversion clock source is only recom-  
mended for SLEEP operation.  
3: For extended voltage devices (LC), please refer to the Electrical Characteristics (Sections 15.1 and 15.2).  
11.3 Configuring Analog Port Pins  
The ADCON1 and TRIS registers control the operation  
of the A/D port pins. The port pins that are desired as  
analog inputs must have their corresponding TRIS bits  
set (input). If the TRIS bit is cleared (output), the digital  
output level (VOH or VOL) will be converted.  
The A/D operation is independent of the state of the  
CHS2:CHS0 bits and the TRIS bits.  
Note 1: When reading the port register, any pin  
configured as an analog input channel will  
read as cleared (a low level). Pins config-  
ured as digital inputs will convert an ana-  
log input. Analog levels on a digitally  
configured input will not affect the conver-  
sion accuracy.  
2: Analog levels on any pin that is defined as  
a digital input (including the AN7:AN0  
pins), may cause the input buffer to con-  
sume current that is out of the device  
specifications.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 115  
PIC16F87X  
acquisition is started. After this 2TAD wait, acquisition  
on the selected channel is automatically started. The  
GO/DONE bit can then be set to start the conversion.  
11.4 A/D Conversions  
Clearing the GO/DONE bit during a conversion will  
abort the current conversion. The A/D result register  
pair will NOT be updated with the partially completed  
A/D conversion sample. That is, the ADRESH:ADRESL  
registers will continue to contain the value of the last  
completed conversion (or the last value written to the  
ADRESH:ADRESL registers). After the A/D conversion  
is aborted, a 2TAD wait is required before the next  
In Figure 11-3, after the GO bit is set, the first time seg-  
ment has a minimum of TCY and a maximum of TAD.  
Note: The GO/DONE bit should NOT be set in  
the same instruction that turns on the A/D.  
FIGURE 11-3:  
A/D CONVERSION TAD CYCLES  
TCY to TAD  
TAD1 TAD2 TAD3  
T
AD  
4
TAD6  
b5  
T
AD  
7
T
AD  
8
T
AD  
9
TAD10 TAD11  
b1 b0  
TAD5  
b6  
b9  
b8  
b7  
b4  
b3  
b2  
Conversion starts  
Holding capacitor is disconnected from analog input (typically 100 ns)  
Set GO bit  
ADRES is loaded  
GO bit is cleared  
ADIF bit is set  
Holding capacitor is connected to analog input  
Format Select bit (ADFM) controls this justification.  
Figure 11-4 shows the operation of the A/D result justi-  
fication. The extra bits are loaded with ’0’s’. When an  
A/D result will not overwrite these locations (A/D dis-  
able), these registers may be used as two general  
purpose 8-bit registers.  
11.4.1  
A/D RESULT REGISTERS  
The ADRESH:ADRESL register pair is the location  
where the 10-bit A/D result is loaded at the completion  
of the A/D conversion. This register pair is 16-bits wide.  
The A/D module gives the flexibility to left or right justify  
the 10-bit result in the 16-bit result register. The A/D  
FIGURE 11-4:  
A/D RESULT JUSTIFICATION  
10-bit Result  
ADFM = 0  
ADFM = 1  
0
7
7
2 1 0 7  
0 7 6 5  
0
0000 00  
0000 00  
ADRESH  
ADRESL  
ADRESH  
ADRESL  
10-bit Result  
10-bit Result  
Left Justified  
Right Justified  
DS30292D-page 116  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
Turning off the A/D places the A/D module in its lowest  
current consumption state.  
11.5 A/D Operation During SLEEP  
The A/D module can operate during SLEEP mode. This  
requires that the A/D clock source be set to RC  
(ADCS1:ADCS0 = 11). When the RC clock source is  
selected, the A/D module waits one instruction cycle  
before starting the conversion. This allows the SLEEP  
instruction to be executed, which eliminates all digital  
switching noise from the conversion. When the conver-  
sion is completed, the GO/DONE bit will be cleared and  
the result loaded into the ADRES register. If the A/D  
interrupt is enabled, the device will wake-up from  
SLEEP. If the A/D interrupt is not enabled, the A/D  
module will then be turned off, although the ADON bit  
will remain set.  
Note: For the A/D module to operate in SLEEP,  
the A/D clock source must be set to RC  
(ADCS1:ADCS0 = 11). To allow the con-  
version to occur during SLEEP, ensure the  
SLEEPinstruction immediately follows the  
instruction that sets the GO/DONE bit.  
11.6 Effects of a RESET  
A device RESET forces all registers to their RESET  
state. This forces the A/D module to be turned off, and  
any conversion is aborted. All A/D input pins are con-  
figured as analog inputs.  
When the A/D clock source is another clock option (not  
RC), a SLEEPinstruction will cause the present conver-  
sion to be aborted and the A/D module to be turned off,  
though the ADON bit will remain set.  
The value that is in the ADRESH:ADRESL registers is  
not modified for  
a
Power-on Reset. The  
ADRESH:ADRESL registers will contain unknown data  
after a Power-on Reset.  
TABLE 11-2: REGISTERS/BITS ASSOCIATED WITH A/D  
Value on  
POR,  
BOR  
Value on  
MCLR,  
WDT  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh,8Bh,  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
10Bh,18Bh  
(1)  
0Ch  
8Ch  
1Eh  
9Eh  
1Fh  
9Fh  
85h  
05h  
PIR1  
PIE1  
PSPIF  
PSPIE  
ADIF  
ADIE  
RCIF  
RCIE  
TXIF  
TXIE  
SSPIF  
SSPIE  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
(1)  
ADRESH A/D Result Register High Byte  
ADRESL A/D Result Register Low Byte  
ADCON0 ADCS1 ADCS0 CHS2  
xxxx xxxx uuuu uuuu  
CHS1  
CHS0 GO/DONE  
PCFG3 PCFG2  
ADON 0000 00-0 0000 00-0  
ADCON1  
TRISA  
ADFM  
PCFG1 PCFG0 --0-0000 --0- 0000  
PORTA Data Direction Register  
PORTA Data Latch when written: PORTA pins when read  
--11 1111 --11 1111  
PORTA  
TRISE  
--0x 0000 --0u 0000  
0000 -111 0000 -111  
---- -xxx ---- -uuu  
(1)  
89h  
IBF  
OBF  
IBOV PSPMODE  
PORTE Data Direction bits  
RE2 RE1 RE0  
(1)  
09h  
PORTE  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used for A/D conversion.  
Note 1: These registers/bits are not available on the 28-pin devices.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 117  
PIC16F87X  
NOTES:  
DS30292D-page 118  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
SLEEP mode is designed to offer a very low current  
Power-down mode. The user can wake-up from  
SLEEP through external RESET, Watchdog Timer  
Wake-up, or through an interrupt.  
12.0 SPECIAL FEATURES OF THE  
CPU  
All PIC16F87X devices have a host of features  
intended to maximize system reliability, minimize cost  
through elimination of external components, provide  
power saving operating modes and offer code protec-  
tion. These are:  
Several oscillator options are also made available to  
allow the part to fit the application. The RC oscillator  
option saves system cost while the LP crystal option  
saves power. A set of configuration bits is used to  
select various options.  
• Oscillator Selection  
• RESET  
Additional information on special features is available  
in the PIC® MCU Mid-Range Reference Manual,  
(DS33023).  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
12.1 Configuration Bits  
The configuration bits can be programmed (read as '0'),  
or left unprogrammed (read as '1'), to select various  
device configurations. The erased, or unprogrammed  
value of the configuration word is 3FFFh. These bits  
are mapped in program memory location 2007h.  
• Watchdog Timer (WDT)  
• SLEEP  
• Code Protection  
• ID Locations  
It is important to note that address 2007h is beyond the  
user program memory space, which can be accessed  
only during programming.  
• In-Circuit Serial Programming  
• Low Voltage In-Circuit Serial Programming  
• In-Circuit Debugger  
PIC16F87X devices have a Watchdog Timer, which  
can be shut-off only through configuration bits. It runs  
off its own RC oscillator for added reliability.  
There are two timers that offer necessary delays on  
power-up. One is the Oscillator Start-up Timer (OST),  
intended to keep the chip in RESET until the crystal  
oscillator is stable. The other is the Power-up Timer  
(PWRT), which provides a fixed delay of 72 ms (nomi-  
nal) on power-up only. It is designed to keep the part in  
RESET while the power supply stabilizes. With these  
two timers on-chip, most applications need no external  
RESET circuitry.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 119  
PIC16F87X  
REGISTER 12-1: CONFIGURATION WORD (ADDRESS 2007h)(1)  
CP1  
CP0  
DEBUG  
WRT  
CPD  
LVP  
BODEN  
CP1  
CP0  
PWRTE  
WDTE  
F0SC1  
F0SC0  
bit0  
bit13  
(2)  
bit 13-12,  
bit 5-4  
CP1:CP0: FLASH Program Memory Code Protection bits  
11= Code protection off  
10= 1F00h to 1FFFh code protected (PIC16F877, 876)  
10= 0F00h to 0FFFh code protected (PIC16F874, 873)  
01= 1000h to 1FFFh code protected (PIC16F877, 876)  
01= 0800h to 0FFFh code protected (PIC16F874, 873)  
00= 0000h to 1FFFh code protected (PIC16F877, 876)  
00= 0000h to 0FFFh code protected (PIC16F874, 873)  
bit 11  
DEBUG: In-Circuit Debugger Mode  
1= In-Circuit Debugger disabled, RB6 and RB7 are general purpose I/O pins  
0= In-Circuit Debugger enabled, RB6 and RB7 are dedicated to the debugger.  
bit 10  
bit 9  
Unimplemented: Read as ‘1’  
WRT: FLASH Program Memory Write Enable  
1= Unprotected program memory may be written to by EECON control  
0= Unprotected program memory may not be written to by EECON control  
bit 8  
bit 7  
bit 6  
bit 3  
bit 2  
bit 1-0  
CPD: Data EE Memory Code Protection  
1= Code protection off  
0= Data EEPROM memory code protected  
LVP: Low Voltage In-Circuit Serial Programming Enable bit  
1= RB3/PGM pin has PGM function, low voltage programming enabled  
0= RB3 is digital I/O, HV on MCLR must be used for programming  
(3)  
BODEN: Brown-out Reset Enable bit  
1= BOR enabled  
0= BOR disabled  
(3)  
PWRTE: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
WDTE: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled  
FOSC1:FOSC0: Oscillator Selection bits  
11= RC oscillator  
10= HS oscillator  
01= XT oscillator  
00= LP oscillator  
Note 1: The erased (unprogrammed) value of the configuration word is 3FFFh.  
2: All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed.  
3: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT), regardless of the value of bit PWRTE.  
Ensure the Power-up Timer is enabled any time Brown-out Reset is enabled.  
DS30292D-page 120  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
FIGURE 12-2:  
EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR  
LP OSC  
12.2 Oscillator Configurations  
12.2.1 OSCILLATOR TYPES  
CONFIGURATION)  
The PIC16F87X can be operated in four different oscil-  
lator modes. The user can program two configuration  
bits (FOSC1 and FOSC0) to select one of these four  
modes:  
OSC1  
Clock from  
Ext. System  
• LP  
• XT  
• HS  
• RC  
Low Power Crystal  
PIC16F87X  
OSC2  
Crystal/Resonator  
Open  
High Speed Crystal/Resonator  
Resistor/Capacitor  
12.2.2  
CRYSTAL OSCILLATOR/CERAMIC  
RESONATORS  
In XT, LP or HS modes, a crystal or ceramic resonator  
is connected to the OSC1/CLKIN and OSC2/CLKOUT  
pins to establish oscillation (Figure 12-1). The  
PIC16F87X oscillator design requires the use of a par-  
allel cut crystal. Use of a series cut crystal may give a  
frequency out of the crystal manufacturers specifica-  
tions. When in XT, LP or HS modes, the device can  
have an external clock source to drive the OSC1/  
CLKIN pin (Figure 12-2).  
TABLE 12-1: CERAMIC RESONATORS  
Ranges Tested:  
Mode  
Freq.  
OSC1  
OSC2  
XT  
455 kHz  
2.0 MHz  
4.0 MHz  
68 - 100 pF 68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
15 - 68 pF  
15 - 68 pF  
HS  
8.0 MHz  
16.0 MHz  
10 - 68 pF  
10 - 22 pF  
10 - 68 pF  
10 - 22 pF  
FIGURE 12-1:  
CRYSTAL/CERAMIC  
RESONATOROPERATION  
(HS, XT OR LP  
These values are for design guidance only.  
See notes following Table 12-2.  
Resonators Used:  
OSC CONFIGURATION)  
455 kHz Panasonic EFO-A455K04B  
0.3%  
(1)  
C1  
OSC1  
2.0 MHz  
4.0 MHz  
8.0 MHz  
Murata Erie CSA2.00MG  
Murata Erie CSA4.00MG  
Murata Erie CSA8.00MT  
0.5%  
0.5%  
0.5%  
0.5%  
To  
Internal  
Logic  
XTAL  
(3)  
RF  
OSC2  
16.0 MHz Murata Erie CSA16.00MX  
SLEEP  
PIC16F87X  
(2)  
R
All resonators used did not have built-in capacitors.  
s
(1)  
C2  
Note 1: See Table 12-1 and Table 12-2 for recom-  
mended values of C1 and C2.  
2: A series resistor (R ) may be required for AT  
s
strip cut crystals.  
3: RF varies with the crystal chosen.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 121  
PIC16F87X  
TABLE 12-2: CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
12.2.3  
RC OSCILLATOR  
For timing insensitive applications, the “RC” device  
option offers additional cost savings. The RC oscillator  
frequency is a function of the supply voltage, the resis-  
tor (REXT) and capacitor (CEXT) values, and the operat-  
ing temperature. In addition to this, the oscillator  
frequency will vary from unit to unit due to normal pro-  
cess parameter variation. Furthermore, the difference  
in lead frame capacitance between package types will  
also affect the oscillation frequency, especially for low  
CEXT values. The user also needs to take into account  
variation due to tolerance of external R and C compo-  
nents used. Figure 12-3 shows how the R/C combina-  
tion is connected to the PIC16F87X.  
Crystal  
Freq.  
Cap. Range Cap. Range  
Osc Type  
C1  
C2  
LP  
32 kHz  
200 kHz  
200 kHz  
1 MHz  
33 pF  
15 pF  
33 pF  
15 pF  
XT  
HS  
47-68 pF  
15 pF  
47-68 pF  
15 pF  
4 MHz  
15 pF  
15 pF  
4 MHz  
15 pF  
15 pF  
8 MHz  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
20 MHz  
FIGURE 12-3:  
RC OSCILLATOR MODE  
These values are for design guidance only.  
See notes following this table.  
VDD  
Crystals Used  
32 kHz  
200 kHz  
1 MHz  
4 MHz  
8 MHz  
Epson C-001R32.768K-A  
STD XTL 200.000KHz  
ECS ECS-10-13-1  
± 20 PPM  
± 20 PPM  
± 50 PPM  
± 50 PPM  
REXT  
Internal  
OSC1  
Clock  
CEXT  
VSS  
PIC16F87X  
ECS ECS-40-20-1  
EPSON CA-301 8.000M-C ± 30 PPM  
OSC2/CLKOUT  
FOSC/4  
Recommended values:  
20 MHz EPSON CA-301 20.000M- ± 30 PPM  
C
3 k  REXT 100 k  
CEXT > 20pF  
Note 1: Higher capacitance increases the stability  
of oscillator, but also increases the start-  
up time.  
2: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appro-  
priate values of external components.  
3: Rs may be required in HS mode, as well  
as XT mode, to avoid overdriving crystals  
with low drive level specification.  
4: When migrating from other PIC® MCU  
devices, oscillator performance should be  
verified.  
DS30292D-page 122  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
SLEEP, and Brown-out Reset (BOR). They are not  
affected by a WDT Wake-up, which is viewed as the  
resumption of normal operation. The TO and PD bits  
are set or cleared differently in different RESET situa-  
tions as indicated in Table 12-4. These bits are used in  
software to determine the nature of the RESET. See  
Table 12-6 for a full description of RESET states of all  
registers.  
12.3 RESET  
The PIC16F87X differentiates between various kinds of  
RESET:  
• Power-on Reset (POR)  
• MCLR Reset during normal operation  
• MCLR Reset during SLEEP  
• WDT Reset (during normal operation)  
• WDT Wake-up (during SLEEP)  
• Brown-out Reset (BOR)  
A simplified block diagram of the On-Chip Reset Circuit  
is shown in Figure 12-4.  
These devices have a MCLR noise filter in the MCLR  
Reset path. The filter will detect and ignore small  
pulses.  
Some registers are not affected in any RESET condi-  
tion. Their status is unknown on POR and unchanged  
in any other RESET. Most other registers are reset to a  
“RESET state” on Power-on Reset (POR), on the  
MCLR and WDT Reset, on MCLR Reset during  
It should be noted that a WDT Reset does not drive  
MCLR pin low.  
FIGURE 12-4:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
Reset  
MCLR  
SLEEP  
WDT  
WDT  
Module  
Time-out  
Reset  
VDD Rise  
Detect  
Power-on Reset  
VDD  
Brown-out  
Reset  
S
BODEN  
OST/PWRT  
OST  
Chip_Reset  
10-bit Ripple Counter  
R
Q
OSC1  
(1)  
On-chip  
RC OSC  
PWRT  
10-bit Ripple Counter  
Enable PWRT  
Enable OST  
Note 1: This is a separate oscillator from the RC oscillator of the CLKIN pin.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 123  
PIC16F87X  
12.4 Power-On Reset (POR)  
12.7 Brown-out Reset (BOR)  
A Power-on Reset pulse is generated on-chip when  
VDD rise is detected (in the range of 1.2V - 1.7V). To  
take advantage of the POR, tie the MCLR pin directly  
(or through a resistor) to VDD. This will eliminate  
external RC components usually needed to create a  
Power-on Reset. A maximum rise time for VDD is spec-  
ified. See Electrical Specifications for details.  
The configuration bit, BODEN, can enable or disable  
the Brown-out Reset circuit. If VDD falls below VBOR  
(parameter D005, about 4V) for longer than TBOR  
(parameter #35, about 100S), the brown-out situation  
will reset the device. If VDD falls below VBOR for less  
than TBOR, a RESET may not occur.  
Once the brown-out occurs, the device will remain in  
Brown-out Reset until VDD rises above VBOR. The  
Power-up Timer then keeps the device in RESET for  
TPWRT (parameter #33, about 72mS). If VDD should fall  
below VBOR during TPWRT, the Brown-out Reset pro-  
cess will restart when VDD rises above VBOR with the  
Power-up Timer Reset. The Power-up Timer is always  
enabled when the Brown-out Reset circuit is enabled,  
regardless of the state of the PWRT configuration bit.  
When the device starts normal operation (exits the  
RESET condition), device operating parameters (volt-  
age, frequency, temperature,...) must be met to ensure  
operation. If these conditions are not met, the device  
must be held in RESET until the operating conditions  
are met. Brown-out Reset may be used to meet the  
start-up conditions. For additional information, refer to  
Application Note, AN007, “Power-up Trouble Shoot-  
ing”, (DS00007).  
12.8 Time-out Sequence  
12.5 Power-up Timer (PWRT)  
On power-up, the time-out sequence is as follows: The  
PWRT delay starts (if enabled) when a POR Reset  
occurs. Then OST starts counting 1024 oscillator  
cycles when PWRT ends (LP, XT, HS). When the OST  
ends, the device comes out of RESET.  
The Power-up Timer provides a fixed 72 ms nominal  
time-out on power-up only from the POR. The Power-  
up Timer operates on an internal RC oscillator. The  
chip is kept in RESET as long as the PWRT is active.  
The PWRT’s time delay allows VDD to rise to an accept-  
able level. A configuration bit is provided to enable/dis-  
able the PWRT.  
If MCLR is kept low long enough, the time-outs will  
expire. Bringing MCLR high will begin execution imme-  
diately. This is useful for testing purposes or to synchro-  
nize more than one PIC16F87X device operating in  
parallel.  
The power-up time delay will vary from chip to chip due  
to VDD, temperature and process variation. See DC  
parameters for details (TPWRT, parameter #33).  
Table 12-5 shows the RESET conditions for the STA-  
TUS, PCON and PC registers, while Table 12-6 shows  
the RESET conditions for all the registers.  
12.6 Oscillator Start-up Timer (OST)  
The Oscillator Start-up Timer (OST) provides a delay of  
1024 oscillator cycles (from OSC1 input) after the  
PWRT delay is over (if PWRT is enabled). This helps to  
ensure that the crystal oscillator or resonator has  
started and stabilized.  
12.9 Power Control/Status Register  
(PCON)  
The Power Control/Status Register, PCON, has up to  
two bits depending upon the device.  
The OST time-out is invoked only for XT, LP and HS  
modes and only on Power-on Reset or Wake-up from  
SLEEP.  
Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is  
unknown on a Power-on Reset. It must then be set by  
the user and checked on subsequent RESETS to see if  
bit BOR cleared, indicating a BOR occurred. When the  
Brown-out Reset is disabled, the state of the BOR bit is  
unpredictable and is, therefore, not valid at any time.  
Bit1 is POR (Power-on Reset Status bit). It is cleared on  
a Power-on Reset and unaffected otherwise. The user  
must set this bit following a Power-on Reset.  
TABLE 12-3: TIME-OUT IN VARIOUS SITUATIONS  
Power-up  
Wake-up from  
Oscillator Configuration  
Brown-out  
SLEEP  
PWRTE = 0  
PWRTE = 1  
XT, HS, LP  
RC  
72 ms + 1024TOSC  
72 ms  
1024TOSC  
72 ms + 1024TOSC  
72 ms  
1024TOSC  
DS30292D-page 124  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
TABLE 12-4: STATUS BITS AND THEIR SIGNIFICANCE  
POR  
BOR  
TO  
PD  
0
0
0
1
1
1
1
1
x
x
x
0
1
1
1
1
1
0
x
1
0
0
u
1
1
x
0
1
1
0
u
0
Power-on Reset  
Illegal, TO is set on POR  
Illegal, PD is set on POR  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during SLEEP or interrupt wake-up from SLEEP  
Legend: x= don’t care, u = unchanged  
TABLE 12-5: RESET CONDITION FOR SPECIAL REGISTERS  
Program  
STATUS  
Register  
PCON  
Register  
Condition  
Counter  
Power-on Reset  
000h  
000h  
0001 1xxx  
000u uuuu  
0001 0uuu  
0000 1uuu  
uuu0 0uuu  
0001 1uuu  
uuu1 0uuu  
---- --0x  
---- --uu  
---- --uu  
---- --uu  
---- --uu  
---- --u0  
---- --uu  
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
WDT Reset  
000h  
000h  
WDT Wake-up  
PC + 1  
Brown-out Reset  
000h  
PC + 1(1)  
Interrupt wake-up from SLEEP  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as '0'  
Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
1998-2013 Microchip Technology Inc.  
DS30292D-page 125  
PIC16F87X  
TABLE 12-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS  
Power-on Reset,  
Brown-out Reset  
MCLR Resets,  
WDT Reset  
Wake-up via WDT or  
Interrupt  
Register  
Devices  
W
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
xxxx xxxx  
N/A  
uuuu uuuu  
N/A  
uuuu uuuu  
N/A  
INDF  
TMR0  
xxxx xxxx  
0000h  
uuuu uuuu  
0000h  
uuuu uuuu  
PC + 1(2)  
PCL  
STATUS  
FSR  
0001 1xxx  
xxxx xxxx  
--0x 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
---- -xxx  
---0 0000  
0000 000x  
r000 0000  
0000 0000  
-r-0 0--0  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
-000 0000  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 000x  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
0000 00-0  
1111 1111  
--11 1111  
1111 1111  
1111 1111  
1111 1111  
0000 -111  
r000 0000  
0000 0000  
000q quuu(3)  
uuuu uuuu  
--0u 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- -uuu  
---0 0000  
0000 000u  
r000 0000  
0000 0000  
-r-0 0--0  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
0000 0000  
-000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
0000 000x  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
0000 00-0  
1111 1111  
--11 1111  
1111 1111  
1111 1111  
1111 1111  
0000 -111  
r000 0000  
0000 0000  
uuuq quuu(3)  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- -uuu  
---u uuuu  
uuuu uuuu(1)  
ruuu uuuu(1)  
uuuu uuuu(1)  
-r-u u--u(1)  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uu-u  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu -uuu  
ruuu uuuu  
uuuu uuuu  
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
PCLATH  
INTCON  
PIR1  
PIR2  
TMR1L  
TMR1H  
T1CON  
TMR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRESH  
ADCON0  
OPTION_REG  
TRISA  
TRISB  
TRISC  
TRISD  
TRISE  
PIE1  
Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', q= value depends on condition,  
r= reserved, maintain clear  
Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
3: See Table 12-5 for RESET value for specific condition.  
DS30292D-page 126  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
TABLE 12-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
Power-on Reset,  
Brown-out Reset  
MCLR Resets,  
WDT Reset  
Wake-up via WDT or  
Interrupt  
Register  
PIE2  
Devices  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
873 874 876 877  
-r-0 0--0  
---- --qq  
1111 1111  
0000 0000  
--00 0000  
0000 -010  
0000 0000  
xxxx xxxx  
0--- 0000  
0--- 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
x--- x000  
---- ----  
-r-0 0--0  
---- --uu  
1111 1111  
0000 0000  
--00 0000  
0000 -010  
0000 0000  
uuuu uuuu  
0--- 0000  
0--- 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
u--- u000  
---- ----  
-r-u u--u  
---- --uu  
1111 1111  
uuuu uuuu  
--uu uuuu  
uuuu -uuu  
uuuu uuuu  
uuuu uuuu  
u--- uuuu  
u--- uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
u--- uuuu  
---- ----  
PCON  
PR2  
SSPADD  
SSPSTAT  
TXSTA  
SPBRG  
ADRESL  
ADCON1  
EEDATA  
EEADR  
EEDATH  
EEADRH  
EECON1  
EECON2  
Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', q= value depends on condition,  
r= reserved, maintain clear  
Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
3: See Table 12-5 for RESET value for specific condition.  
FIGURE 12-5:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
1998-2013 Microchip Technology Inc.  
DS30292D-page 127  
PIC16F87X  
FIGURE 12-6:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 12-7:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 12-8:  
SLOW RISE TIME (MCLR TIED TO VDD)  
5V  
1V  
VDD  
MCLR  
0V  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
DS30292D-page 128  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
The RB0/INT pin interrupt, the RB port change inter-  
rupt, and the TMR0 overflow interrupt flags are con-  
tained in the INTCON register.  
12.10 Interrupts  
The PIC16F87X family has up to 14 sources of inter-  
rupt. The interrupt control register (INTCON) records  
individual interrupt requests in flag bits. It also has indi-  
vidual and global interrupt enable bits.  
The peripheral interrupt flags are contained in the spe-  
cial function registers, PIR1 and PIR2. The correspond-  
ing interrupt enable bits are contained in special  
function registers, PIE1 and PIE2, and the peripheral  
interrupt enable bit is contained in special function reg-  
ister INTCON.  
Note: Individual interrupt flag bits are set, regard-  
less of the status of their corresponding  
mask bit, or the GIE bit.  
A global interrupt enable bit, GIE (INTCON<7>)  
enables (if set) all unmasked interrupts, or disables (if  
cleared) all interrupts. When bit GIE is enabled, and an  
interrupt’s flag bit and mask bit are set, the interrupt will  
vector immediately. Individual interrupts can be dis-  
abled through their corresponding enable bits in vari-  
ous registers. Individual interrupt bits are set,  
regardless of the status of the GIE bit. The GIE bit is  
cleared on RESET.  
When an interrupt is responded to, the GIE bit is  
cleared to disable any further interrupt, the return  
address is pushed onto the stack and the PC is loaded  
with 0004h. Once in the Interrupt Service Routine, the  
source(s) of the interrupt can be determined by polling  
the interrupt flag bits. The interrupt flag bit(s) must be  
cleared in software before re-enabling interrupts to  
avoid recursive interrupts.  
For external interrupt events, such as the INT pin or  
PORTB change interrupt, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends when the interrupt event occurs. The latency  
is the same for one or two-cycle instructions. Individual  
interrupt flag bits are set, regardless of the status of  
their corresponding mask bit, PEIE bit, or GIE bit.  
The “return from interrupt” instruction, RETFIE, exits  
the interrupt routine, as well as sets the GIE bit, which  
re-enables interrupts.  
FIGURE 12-9:  
INTERRUPT LOGIC  
EEIF  
EEIE  
PSPIF  
PSPIE  
Wake-up (If in SLEEP mode)  
ADIF  
ADIE  
T0IF  
T0IE  
INTF  
INTE  
RCIF  
RCIE  
Interrupt to CPU  
TXIF  
TXIE  
RBIF  
RBIE  
SSPIF  
SSPIE  
PEIE  
GIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF  
TMR1IE  
CCP2IF  
CCP2IE  
BCLIF  
BCLIE  
The following table shows which devices have which interrupts.  
Device  
T0IF INTF RBIF PSPIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF EEIF BCLIF CCP2IF  
PIC16F876/873 Yes Yes Yes  
PIC16F877/874 Yes Yes Yes  
Yes  
Yes  
Yes Yes  
Yes Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
1998-2013 Microchip Technology Inc.  
DS30292D-page 129  
PIC16F87X  
12.10.1 INT INTERRUPT  
12.11 Context Saving During Interrupts  
External interrupt on the RB0/INT pin is edge triggered,  
either rising, if bit INTEDG (OPTION_REG<6>) is set,  
or falling, if the INTEDG bit is clear. When a valid edge  
appears on the RB0/INT pin, flag bit INTF  
(INTCON<1>) is set. This interrupt can be disabled by  
clearing enable bit INTE (INTCON<4>). Flag bit INTF  
must be cleared in software in the Interrupt Service  
Routine before re-enabling this interrupt. The INT inter-  
rupt can wake-up the processor from SLEEP, if bit INTE  
was set prior to going into SLEEP. The status of global  
interrupt enable bit, GIE, decides whether or not the  
processor branches to the interrupt vector following  
wake-up. See Section 12.13 for details on SLEEP  
mode.  
During an interrupt, only the return PC value is saved  
on the stack. Typically, users may wish to save key reg-  
isters during an interrupt, (i.e., W register and STATUS  
register). This will have to be implemented in software.  
For the PIC16F873/874 devices, the register W_TEMP  
must be defined in both banks 0 and 1 and must be  
defined at the same offset from the bank base address  
(i.e., If W_TEMP is defined at 0x20 in bank 0, it must  
also be defined at 0xA0 in bank 1). The registers,  
PCLATH_TEMP and STATUS_TEMP, are only defined  
in bank 0.  
Since the upper 16 bytes of each bank are common in  
the PIC16F876/877 devices, temporary holding regis-  
ters W_TEMP, STATUS_TEMP, and PCLATH_TEMP  
should be placed in here. These 16 locations don’t  
require banking and therefore, make it easier for con-  
text save and restore. The same code shown in  
Example 12-1 can be used.  
12.10.2 TMR0 INTERRUPT  
An overflow (FFh 00h) in the TMR0 register will set  
flag bit T0IF (INTCON<2>). The interrupt can be  
enabled/disabled by setting/clearing enable bit T0IE  
(INTCON<5>) (Section 5.0).  
12.10.3 PORTB INTCON CHANGE  
An input change on PORTB<7:4> sets flag bit RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit RBIE (INTCON<4>)  
(Section 3.2).  
EXAMPLE 12-1:  
SAVING STATUS, W, AND PCLATH REGISTERS IN RAM  
MOVWF  
SWAPF  
CLRF  
MOVWF  
MOVF  
MOVWF  
CLRF  
:
W_TEMP  
STATUS,W  
STATUS  
STATUS_TEMP  
PCLATH, W  
PCLATH_TEMP  
PCLATH  
;Copy W to TEMP register  
;Swap status to be saved into W  
;bank 0, regardless of current bank, Clears IRP,RP1,RP0  
;Save status to bank zero STATUS_TEMP register  
;Only required if using pages 1, 2 and/or 3  
;Save PCLATH into W  
;Page zero, regardless of current page  
:(ISR)  
:
;(Insert user code here)  
MOVF  
MOVWF  
SWAPF  
PCLATH_TEMP, W  
PCLATH  
STATUS_TEMP,W  
;Restore PCLATH  
;Move W into PCLATH  
;Swap STATUS_TEMP register into W  
;(sets bank to original state)  
;Move W into STATUS register  
;Swap W_TEMP  
MOVWF  
SWAPF  
SWAPF  
STATUS  
W_TEMP,F  
W_TEMP,W  
;Swap W_TEMP into W  
DS30292D-page 130  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
WDT time-out period values may be found in the Elec-  
trical Specifications section under parameter #31. Val-  
ues for the WDT prescaler (actually a postscaler, but  
shared with the Timer0 prescaler) may be assigned  
using the OPTION_REG register.  
12.12 Watchdog Timer (WDT)  
The Watchdog Timer is a free running on-chip RC oscil-  
lator which does not require any external components.  
This RC oscillator is separate from the RC oscillator of  
the OSC1/CLKIN pin. That means that the WDT will  
run, even if the clock on the OSC1/CLKIN and OSC2/  
CLKOUT pins of the device has been stopped, for  
example, by execution of a SLEEPinstruction.  
Note 1: The CLRWDT and SLEEP instructions  
clear the WDT and the postscaler, if  
assigned to the WDT, and prevent it from  
timing out and generating  
RESET condition.  
a device  
During normal operation, a WDT time-out generates a  
device RESET (Watchdog Timer Reset). If the device is  
in SLEEP mode, a WDT time-out causes the device to  
wake-up and continue with normal operation (Watch-  
dog Timer Wake-up). The TO bit in the STATUS regis-  
ter will be cleared upon a Watchdog Timer time-out.  
2: When a CLRWDT instruction is executed  
and the prescaler is assigned to the WDT,  
the prescaler count will be cleared, but  
the prescaler assignment is not changed.  
The WDT can be permanently disabled by clearing  
configuration bit WDTE (Section 12.1).  
FIGURE 12-10:  
WATCHDOG TIMER BLOCK DIAGRAM  
From TMR0 Clock Source  
(Figure 5-1)  
0
Postscaler  
M
1
U
WDT Timer  
X
8
8 - to - 1 MUX  
PS2:PS0  
PSA  
WDT  
Enable Bit  
To TMR0 (Figure 5-1)  
0
1
MUX  
PSA  
WDT  
Time-out  
Note:  
PSA and PS2:PS0 are bits in the OPTION_REG register.  
TABLE 12-7: SUMMARY OF WATCHDOG TIMER REGISTERS  
Address  
Name  
Bit 7  
(1)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
2007h  
Config. bits  
BODEN(1)  
INTEDG  
CP1  
CP0  
PWRTE(1)  
PSA  
WDTE  
PS2  
FOSC1  
PS1  
FOSC0  
PS0  
81h,181h OPTION_REG RBPU  
T0CS  
T0SE  
Legend: Shaded cells are not used by the Watchdog Timer.  
Note 1: See Register 12-1 for operation of these bits.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 131  
PIC16F87X  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is pre-fetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction and then branches to the inter-  
rupt address (0004h). In cases where the execution of  
the instruction following SLEEP is not desirable, the  
user should have a NOPafter the SLEEPinstruction.  
12.13 Power-down Mode (SLEEP)  
Power-down mode is entered by executing a SLEEP  
instruction.  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the PD bit (STATUS<3>) is cleared, the  
TO (STATUS<4>) bit is set, and the oscillator driver is  
turned off. The I/O ports maintain the status they had  
before the SLEEP instruction was executed (driving  
high, low, or hi-impedance).  
For lowest current consumption in this mode, place all  
I/O pins at either VDD or VSS, ensure no external cir-  
cuitry is drawing current from the I/O pin, power-down  
the A/D and disable external clocks. Pull all I/O pins  
that are hi-impedance inputs, high or low externally, to  
avoid switching currents caused by floating inputs. The  
T0CKI input should also be at VDD or VSS for lowest  
current consumption. The contribution from on-chip  
pull-ups on PORTB should also be considered.  
12.13.2 WAKE-UP USING INTERRUPTS  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
• If the interrupt occurs before the execution of a  
SLEEPinstruction, the SLEEPinstruction will com-  
plete as a NOP. Therefore, the WDT and WDT  
postscaler will not be cleared, the TO bit will not  
be set and PD bits will not be cleared.  
The MCLR pin must be at a logic high level (VIHMC).  
12.13.1 WAKE-UP FROM SLEEP  
• If the interrupt occurs during or after the execu-  
tion of a SLEEPinstruction, the device will imme-  
diately wake-up from SLEEP. The SLEEP  
instruction will be completely executed before the  
wake-up. Therefore, the WDT and WDT  
postscaler will be cleared, the TO bit will be set  
and the PD bit will be cleared.  
The device can wake-up from SLEEP through one of  
the following events:  
1. External RESET input on MCLR pin.  
2. Watchdog Timer Wake-up (if WDT was  
enabled).  
3. Interrupt from INT pin, RB port change or  
peripheral interrupt.  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
External MCLR Reset will cause a device RESET. All  
other events are considered a continuation of program  
execution and cause a “wake-up”. The TO and PD bits  
in the STATUS register can be used to determine the  
cause of device RESET. The PD bit, which is set on  
power-up, is cleared when SLEEPis invoked. The TO  
bit is cleared if a WDT time-out occurred and caused  
wake-up.  
To ensure that the WDT is cleared, a CLRWDTinstruc-  
tion should be executed before a SLEEPinstruction.  
The following peripheral interrupts can wake the device  
from SLEEP:  
1. PSP read or write (PIC16F874/877 only).  
2. TMR1 interrupt. Timer1 must be operating as an  
asynchronous counter.  
3. CCP Capture mode interrupt.  
4. Special event trigger (Timer1 in Asynchronous  
mode using an external clock).  
5. SSP (START/STOP) bit detect interrupt.  
6. SSP transmit or receive in Slave mode  
(SPI/I2C).  
7. USART RX or TX (Synchronous Slave mode).  
8. A/D conversion (when A/D clock source is RC).  
9. EEPROM write operation completion  
Other peripherals cannot generate interrupts since dur-  
ing SLEEP, no on-chip clocks are present.  
DS30292D-page 132  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
FIGURE 12-11:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
(2)  
TOST  
CLKOUT(4)  
INT pin  
INTF Flag  
Interrupt Latency(2)  
(INTCON<1>)  
GIE bit  
Processor in  
SLEEP  
(INTCON<7>)  
INSTRUCTION FLOW  
PC  
PC  
PC+1  
PC+2  
PC+2  
PC + 2  
0004h  
0005h  
Instruction  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = SLEEP  
Fetched  
Instruction  
Executed  
Dummy cycle  
Dummy cycle  
SLEEP  
Inst(PC + 1)  
Inst(PC - 1)  
Inst(0004h)  
Note 1: XT, HS or LP oscillator mode assumed.  
2: TOST = 1024TOSC (drawing not to scale) This delay will not be there for RC osc mode.  
3: GIE = '1' assumed. In this case, after wake- up, the processor jumps to the interrupt routine.  
If GIE = '0', execution will continue in-line.  
4: CLKOUT is not available in these osc modes, but shown here for timing reference.  
12.14 In-Circuit Debugger  
12.15 Program Verification/Code  
Protection  
When the DEBUG bit in the configuration word is pro-  
grammed to a '0', the In-Circuit Debugger functionality  
is enabled. This function allows simple debugging func-  
tions when used with MPLAB® ICD. When the micro-  
controller has this feature enabled, some of the  
resources are not available for general use. Table 12-8  
shows which features are consumed by the back-  
ground debugger.  
If the code protection bit(s) have not been pro-  
grammed, the on-chip program memory can be read  
out for verification purposes.  
12.16 ID Locations  
Four memory locations (2000h - 2003h) are designated  
as ID locations, where the user can store checksum or  
other code identification numbers. These locations are  
not accessible during normal execution, but are read-  
able and writable during program/verify. It is recom-  
mended that only the 4 Least Significant bits of the ID  
location are used.  
TABLE 12-8: DEBUGGER RESOURCES  
I/O pins  
RB6, RB7  
1 level  
Stack  
Program Memory  
Address 0000h must be NOP  
Last 100h words  
Data Memory  
0x070 (0x0F0, 0x170, 0x1F0)  
0x1EB - 0x1EF  
To use the In-Circuit Debugger function of the micro-  
controller, the design must implement In-Circuit Serial  
Programming connections to MCLR/VPP, VDD, GND,  
RB7 and RB6. This will interface to the In-Circuit  
Debugger module available from Microchip, or one of  
the third party development tool companies.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 133  
PIC16F87X  
12.17 In-Circuit Serial Programming  
Note 1: The High Voltage Programming mode is  
always available, regardless of the state  
of the LVP bit, by applying VIHH to the  
MCLR pin.  
PIC16F87X microcontrollers can be serially pro-  
grammed while in the end application circuit. This is  
simply done with two lines for clock and data and three  
other lines for power, ground, and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices, and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware, or a custom firm-  
ware to be programmed.  
2: While in Low Voltage ICSP mode, the  
RB3 pin can no longer be used as a gen-  
eral purpose I/O pin.  
3: When using low voltage ICSP program-  
ming (LVP) and the pull-ups on PORTB  
are enabled, bit 3 in the TRISB register  
must be cleared to disable the pull-up on  
RB3 and ensure the proper operation of  
the device.  
When using ICSP, the part must be supplied at 4.5V to  
5.5V, if a bulk erase will be executed. This includes  
reprogramming of the code protect, both from an on-  
state to off-state. For all other cases of ICSP, the part  
may be programmed at the normal operating voltages.  
This means calibration values, unique user IDs, or user  
code can be reprogrammed or added.  
4: RB3 should not be allowed to float if LVP  
is enabled. An external pull-down device  
should be used to default the device to  
normal operating mode. If RB3 floats  
high, the PIC16F87X device will enter  
Programming mode.  
For complete details of serial programming, please  
refer to the EEPROM Memory Programming Specifica-  
tion for the PIC16F87X (DS39025).  
5: LVP mode is enabled by default on all  
devices shipped from Microchip. It can be  
disabled by clearing the LVP bit in the  
CONFIG register.  
12.18 Low Voltage ICSP Programming  
The LVP bit of the configuration word enables low volt-  
age ICSP programming. This mode allows the micro-  
controller to be programmed via ICSP using a VDD  
source in the operating voltage range. This only means  
that VPP does not have to be brought to VIHH, but can  
instead be left at the normal operating voltage. In this  
mode, the RB3/PGM pin is dedicated to the program-  
ming function and ceases to be a general purpose I/O  
pin. During programming, VDD is applied to the MCLR  
pin. To enter Programming mode, VDD must be applied  
to the RB3/PGM, provided the LVP bit is set. The LVP  
bit defaults to on (‘1’) from the factory.  
6: Disabling LVP will provide maximum com-  
patibility to other PIC16CXXX devices.  
If Low Voltage Programming mode is not used, the LVP  
bit can be programmed to a '0' and RB3/PGM becomes  
a digital I/O pin. However, the LVP bit may only be pro-  
grammed when programming is entered with VIHH on  
MCLR. The LVP bit can only be charged when using  
high voltage on MCLR.  
It should be noted, that once the LVP bit is programmed  
to 0, only the High Voltage Programming mode is avail-  
able and only High Voltage Programming mode can be  
used to program the device.  
When using low voltage ICSP, the part must be supplied  
at 4.5V to 5.5V, if a bulk erase will be executed. This  
includes reprogramming of the code protect bits from an  
on-state to off-state. For all other cases of low voltage  
ICSP, the part may be programmed at the normal oper-  
ating voltage. This means calibration values, unique  
user IDs, or user code can be reprogrammed or added.  
DS30292D-page 134  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
All instructions are executed within one single instruc-  
tion cycle, unless a conditional test is true or the pro-  
gram counter is changed as a result of an instruction.  
In this case, the execution takes two instruction cycles  
with the second cycle executed as a NOP. One instruc-  
tion cycle consists of four oscillator periods. Thus, for  
an oscillator frequency of 4 MHz, the normal instruction  
execution time is 1 s. If a conditional test is true, or the  
program counter is changed as a result of an instruc-  
tion, the instruction execution time is 2 s.  
13.0 INSTRUCTION SET SUMMARY  
Each PIC16F87X instruction is a 14-bit word, divided  
into an OPCODE which specifies the instruction type  
and one or more operands which further specify the  
operation of the instruction. The PIC16F87X instruction  
set summary in Table 13-2 lists byte-oriented, bit-ori-  
ented, and literal and control operations. Table 13-1  
shows the opcode field descriptions.  
For byte-oriented instructions, 'f' represents a file reg-  
ister designator and 'd' represents a destination desig-  
nator. The file register designator specifies which file  
register is to be used by the instruction.  
Table 13-2 lists the instructions recognized by the  
MPASMTM assembler.  
Figure 13-1 shows the general formats that the instruc-  
tions can have.  
The destination designator specifies where the result of  
the operation is to be placed. If 'd' is zero, the result is  
placed in the W register. If 'd' is one, the result is placed  
in the file register specified in the instruction.  
Note: To maintain upward compatibility with  
future PIC16F87X products, do not use the  
OPTIONand TRISinstructions.  
For bit-oriented instructions, 'b' represents a bit field  
designator which selects the number of the bit affected  
by the operation, while 'f' represents the address of the  
file in which the bit is located.  
All examples use the following format to represent a  
hexadecimal number:  
0xhh  
For literal and control operations, 'k' represents an  
where h signifies a hexadecimal digit.  
eight or eleven bit constant or literal value.  
FIGURE 13-1:  
GENERAL FORMAT FOR  
INSTRUCTIONS  
TABLE 13-1: OPCODE FIELD  
DESCRIPTIONS  
Byte-oriented file register operations  
13  
8
7
6
0
Field  
Description  
OPCODE  
d
f (FILE #)  
f
W
b
k
x
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
d = 0 for destination W  
d = 1 for destination f  
f = 7-bit file register address  
Bit address within an 8-bit file register  
Literal field, constant data or label  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7
6
0
Don't care location (= 0or 1).  
The assembler will generate code with x = 0.  
It is the recommended form of use for  
compatibility with all Microchip software tools.  
OPCODE  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1.  
Literal and control operations  
General  
PC  
TO  
PD  
Program Counter  
Time-out bit  
13  
8
7
0
0
OPCODE  
k (literal)  
Power-down bit  
k = 8-bit immediate value  
The instruction set is highly orthogonal and is grouped  
into three basic categories:  
CALL and GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
Byte-oriented operations  
Bit-oriented operations  
k (literal)  
Literal and control operations  
A description of each instruction is available in the PIC®  
MCU Mid-Range Reference Manual, (DS33023).  
1998-2013 Microchip Technology Inc.  
DS30292D-page 135  
PIC16F87X  
TABLE 13-2: PIC16F87X INSTRUCTION SET  
14-Bit Opcode  
Mnemonic,  
Description  
Operands  
Status  
Affected  
Cycles  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
f, d  
f, d  
f
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00 0111 dfff ffff C,DC,Z  
1,2  
1,2  
2
00 0101 dfff ffff  
00 0001 lfff ffff  
00 0001 0xxx xxxx  
00 1001 dfff ffff  
00 0011 dfff ffff  
00 1011 dfff ffff  
00 1010 dfff ffff  
00 1111 dfff ffff  
00 0100 dfff ffff  
00 1000 dfff ffff  
00 0000 lfff ffff  
00 0000 0xx0 0000  
00 1101 dfff ffff  
00 1100 dfff ffff  
Z
Z
Z
Z
Z
-
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
1,2  
1,2  
1,2,3  
1,2  
1,2,3  
1,2  
1,2  
DECFSZ  
INCF  
Z
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
Z
Z
Move W to f  
No Operation  
-
f, d  
f, d  
f, d  
f, d  
f, d  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Swap nibbles in f  
Exclusive OR W with f  
C
C
1,2  
1,2  
1,2  
1,2  
1,2  
00 0010 dfff ffff C,DC,Z  
00 1110 dfff ffff  
00 0110 dfff ffff  
Z
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1
1
1 (2)  
1 (2)  
01 00bb bfff ffff  
1,2  
1,2  
3
01 01bb bfff ffff  
01 10bb bfff ffff  
01 11bb bfff ffff  
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
-
k
k
k
-
k
-
-
k
k
Add literal and W  
AND literal with W  
Call subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11 111x kkkk kkkk C,DC,Z  
11 1001 kkkk kkkk  
10 0kkk kkkk kkkk  
00 0000 0110 0100  
10 1kkk kkkk kkkk  
11 1000 kkkk kkkk  
11 00xx kkkk kkkk  
00 0000 0000 1001  
11 01xx kkkk kkkk  
00 0000 0000 1000  
00 0000 0110 0011  
Z
TO,PD  
Z
Inclusive OR literal with W  
Move literal to W  
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into standby mode  
Subtract W from literal  
Exclusive OR literal with W  
TO,PD  
11 110x kkkk kkkk C,DC,Z  
11 1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself ( e.g., MOVF PORTB, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external  
device, the data will be written back with a '0'.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if  
assigned to the Timer0 module.  
3: If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
Note: Additional information on the mid-range instruction set is available in the PIC® MCU Mid-Range Family Ref-  
erence Manual (DS33023).  
DS30292D-page 136  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
13.1 Instruction Descriptions  
ADDLW  
Add Literal and W  
BCF  
Bit Clear f  
Syntax:  
[label] ADDLW  
0 k 255  
k
Syntax:  
[label] BCF f,b  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
0 f 127  
0 b 7  
(W) + k (W)  
C, DC, Z  
Operation:  
0 (f<b>)  
Status Affected:  
Description:  
None  
The contents of the W register  
are added to the eight bit literal 'k'  
and the result is placed in the W  
register.  
Bit 'b' in register 'f' is cleared.  
BSF  
Bit Set f  
ADDWF  
Add W and f  
Syntax:  
[label] BSF f,b  
Syntax:  
[label] ADDWF f,d  
Operands:  
0 f 127  
0 b 7  
Operands:  
0 f 127  
d   
Operation:  
1 (f<b>)  
Operation:  
(W) + (f) (destination)  
Status Affected:  
Description:  
None  
Status Affected: C, DC, Z  
Bit 'b' in register 'f' is set.  
Description:  
Add the contents of the W register  
with register 'f'. If 'd' is 0, the result  
is stored in the W register. If 'd' is  
1, the result is stored back in  
register 'f'.  
BTFSS  
Bit Test f, Skip if Set  
ANDLW  
AND Literal with W  
Syntax:  
[label] BTFSS f,b  
Syntax:  
[label] ANDLW  
0 k 255  
k
Operands:  
0 f 127  
0 b < 7  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .AND. (k) (W)  
Operation:  
skip if (f<b>) = 1  
Z
Status Affected: None  
The contents of W register are  
AND’ed with the eight bit literal  
'k'. The result is placed in the W  
register.  
Description:  
If bit 'b' in register 'f' is '0', the next  
instruction is executed.  
If bit 'b' is '1', then the next instruc-  
tion is discarded and a NOPis  
executed instead, making this a  
2TCY instruction.  
BTFSC  
Bit Test, Skip if Clear  
ANDWF  
AND W with f  
Syntax:  
[label] BTFSC f,b  
Syntax:  
[label] ANDWF f,d  
Operands:  
0 f 127  
0 b 7  
Operands:  
0 f 127  
d   
Operation:  
skip if (f<b>) = 0  
Operation:  
(W) .AND. (f) (destination)  
Status Affected: None  
Status Affected:  
Description:  
Z
Description: If bit 'b' in register 'f' is '1', the next  
AND the W register with register  
'f'. If 'd' is 0, the result is stored in  
the W register. If 'd' is 1, the result  
is stored back in register 'f'.  
instruction is executed.  
If bit 'b', in register 'f', is '0', the  
next instruction is discarded, and  
a NOPis executed instead, making  
this a 2TCY instruction.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 137  
PIC16F87X  
CALL  
Call Subroutine  
CLRWDT  
Clear Watchdog Timer  
Syntax:  
[ label ] CALL k  
0 k 2047  
Syntax:  
[ label ] CLRWDT  
Operands:  
Operation:  
Operands:  
Operation:  
None  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
00h WDT  
0 WDT prescaler,  
1 TO  
1 PD  
Status Affected: None  
Status Affected: TO, PD  
Description:  
Call Subroutine. First, return  
address (PC+1) is pushed onto  
the stack. The eleven-bit immedi-  
ate address is loaded into PC bits  
<10:0>. The upper bits of the PC  
are loaded from PCLATH. CALLis  
a two-cycle instruction.  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets  
the prescaler of the WDT. Status  
bits TO and PD are set.  
CLRF  
Clear f  
COMF  
Complement f  
Syntax:  
[label] CLRF  
0 f 127  
f
Syntax:  
[ label ] COMF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
00h (f)  
1 Z  
Operation:  
(f) (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
The contents of register 'f' are  
cleared and the Z bit is set.  
The contents of register 'f' are  
complemented. If 'd' is 0, the  
result is stored in W. If 'd' is 1, the  
result is stored back in register 'f'.  
CLRW  
Clear W  
DECF  
Decrement f  
Syntax:  
[ label ] CLRW  
Syntax:  
[label] DECF f,d  
Operands:  
Operation:  
None  
Operands:  
0 f 127  
d [0,1]  
00h (W)  
1 Z  
Operation:  
(f) - 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
W register is cleared. Zero bit (Z)  
is set.  
Decrement register 'f'. If 'd' is 0,  
the result is stored in the W  
register. If 'd' is 1, the result is  
stored back in register 'f'.  
DS30292D-page 138  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
DECFSZ  
Decrement f, Skip if 0  
INCFSZ  
Increment f, Skip if 0  
Syntax:  
[ label ] DECFSZ f,d  
Syntax:  
[ label ] INCFSZ f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) - 1 (destination);  
Operation:  
(f) + 1 (destination),  
skip if result = 0  
skip if result = 0  
Status Affected: None  
Status Affected: None  
Description:  
The contents of register 'f' are  
Description:  
The contents of register 'f' are  
decremented. If 'd' is 0, the result  
is placed in the W register. If 'd' is  
1, the result is placed back in  
register 'f'.  
incremented. If 'd' is 0, the result is  
placed in the W register. If 'd' is 1,  
the result is placed back in  
register 'f'.  
If the result is 1, the next instruc-  
tion is executed. If the result is 0,  
then a NOPis executed instead  
making it a 2TCY instruction.  
If the result is 1, the next instruc-  
tion is executed. If the result is 0,  
a NOPis executed instead, making  
it a 2TCY instruction.  
GOTO  
Unconditional Branch  
IORLW  
Inclusive OR Literal with W  
Syntax:  
[ label ] GOTO k  
0 k 2047  
Syntax:  
[ label ] IORLW k  
0 k 255  
Operands:  
Operation:  
Operands:  
Operation:  
Status Affected:  
Description:  
k PC<10:0>  
PCLATH<4:3> PC<12:11>  
(W) .OR. k (W)  
Z
Status Affected: None  
The contents of the W register are  
OR’ed with the eight bit literal 'k'.  
The result is placed in the W  
register.  
Description:  
GOTOis an unconditional branch.  
The eleven-bit immediate value is  
loaded into PC bits <10:0>. The  
upper bits of PC are loaded from  
PCLATH<4:3>. GOTOis a two-  
cycle instruction.  
IORWF  
Inclusive OR W with f  
INCF  
Increment f  
Syntax:  
[ label ] IORWF f,d  
Syntax:  
[ label ] INCF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(W) .OR. (f) (destination)  
Operation:  
(f) + 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Inclusive OR the W register with  
register 'f'. If 'd' is 0 the result is  
placed in the W register. If 'd' is 1  
the result is placed back in  
register 'f'.  
The contents of register 'f' are  
incremented. If 'd' is 0, the result  
is placed in the W register. If 'd' is  
1, the result is placed back in  
register 'f'.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 139  
PIC16F87X  
MOVF  
Move f  
NOP  
No Operation  
Syntax:  
[ label ] MOVF f,d  
Syntax:  
[ label ] NOP  
None  
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
No operation  
Operation:  
(f) (destination)  
Status Affected: None  
Status Affected:  
Description:  
Z
Description:  
No operation.  
The contents of register f are  
moved to a destination dependant  
upon the status of d. If d = 0,  
destination is W register. If d = 1,  
the destination is file register f itself.  
d = 1 is useful to test a file register,  
since status flag Z is affected.  
MOVLW  
Move Literal to W  
RETFIE  
Return from Interrupt  
Syntax:  
[ label ] MOVLW k  
0 k 255  
k (W)  
Syntax:  
[ label ] RETFIE  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
Operation:  
None  
TOS PC,  
1 GIE  
None  
Status Affected: None  
The eight bit literal 'k' is loaded  
into W register. The don’t cares  
will assemble as 0’s.  
MOVWF  
Move W to f  
RETLW  
Return with Literal in W  
Syntax:  
[ label ] MOVWF  
0 f 127  
(W) (f)  
f
Syntax:  
[ label ] RETLW k  
0 k 255  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
Operation:  
k (W);  
TOS PC  
None  
Status Affected: None  
Move data from W register to  
register 'f'.  
Description: The W register is loaded with the  
eight bit literal 'k'. The program  
counter is loaded from the top of  
the stack (the return address).  
This is a two-cycle instruction.  
DS30292D-page 140  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
RLF  
Rotate Left f through Carry  
SLEEP  
Syntax:  
[ label ] RLF f,d  
Syntax:  
[ label ] SLEEP  
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
None  
00h WDT,  
0 WDT prescaler,  
1 TO,  
Operation:  
See description below  
C
Status Affected:  
Description:  
0 PD  
The contents of register 'f' are rotated  
one bit to the left through the Carry  
Flag. If 'd' is 0, the result is placed in  
the W register. If 'd' is 1, the result is  
stored back in register 'f'.  
Status Affected:  
Description:  
TO, PD  
The power-down status bit, PD is  
cleared. Time-out status bit, TO  
is set. Watchdog Timer and its  
prescaler are cleared.  
C
Register f  
The processor is put into SLEEP  
mode with the oscillator stopped.  
RETURN  
Return from Subroutine  
SUBLW  
Subtract W from Literal  
Syntax:  
[ label ] RETURN  
None  
Syntax:  
[ label ] SUBLW k  
0 k 255  
Operands:  
Operation:  
Operands:  
Operation:  
TOS PC  
k - (W) W)  
Status Affected: None  
Status Affected: C, DC, Z  
Description:  
Return from subroutine. The stack  
Description:  
The W register is subtracted (2’s  
is POPed and the top of the stack  
(TOS) is loaded into the program  
counter. This is a two-cycle  
instruction.  
complement method) from the  
eight-bit literal 'k'. The result is  
placed in the W register.  
RRF  
Rotate Right f through Carry  
SUBWF  
Subtract W from f  
Syntax:  
[ label ] RRF f,d  
Syntax:  
[ label ] SUBWF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
See description below  
C
Operation:  
(f) - (W) destination)  
Status Affected:  
Description:  
Status  
Affected:  
C, DC, Z  
The contents of register 'f' are  
rotated one bit to the right through  
the Carry Flag. If 'd' is 0, the result  
is placed in the W register. If 'd' is  
1, the result is placed back in  
register 'f'.  
Description:  
Subtract (2’s complement method)  
W register from register 'f'. If 'd' is 0,  
the result is stored in the W  
register. If 'd' is 1, the result is  
stored back in register 'f'.  
C
Register f  
1998-2013 Microchip Technology Inc.  
DS30292D-page 141  
PIC16F87X  
SWAPF  
Swap Nibbles in f  
XORWF  
Exclusive OR W with f  
Syntax:  
[ label ] SWAPF f,d  
Syntax:  
[label] XORWF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
Operation:  
(W) .XOR. (f) destination)  
Status Affected:  
Description:  
Z
Status Affected: None  
Exclusive OR the contents of the  
W register with register 'f'. If 'd' is  
0, the result is stored in the W  
register. If 'd' is 1, the result is  
stored back in register 'f'.  
Description:  
The upper and lower nibbles of  
register 'f' are exchanged. If 'd' is  
0, the result is placed in the W  
register. If 'd' is 1, the result is  
placed in register 'f'.  
XORLW  
Exclusive OR Literal with W  
Syntax:  
[label] XORLW k  
0 k 255  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .XOR. k W)  
Z
The contents of the W register  
are XOR’ed with the eight-bit lit-  
eral 'k'. The result is placed in  
the W register.  
DS30292D-page 142  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
The MPLAB IDE allows you to:  
14.0 DEVELOPMENT SUPPORT  
• Edit your source files (either assembly or ‘C’)  
The PIC® microcontrollers are supported with a full  
range of hardware and software development tools:  
• One touch assemble (or compile) and download  
to PIC MCU emulator and simulator tools (auto-  
matically updates all project information)  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Debug using:  
- source files  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
- absolute listing file  
- machine code  
- MPLAB C17 and MPLAB C18 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
The ability to use MPLAB IDE with multiple debugging  
tools allows users to easily switch from the cost-  
effective simulator to a full-featured emulator with  
minimal retraining.  
• Simulators  
- MPLAB SIM Software Simulator  
• Emulators  
14.2 MPASM Assembler  
- MPLAB ICE 2000 In-Circuit Emulator  
- ICEPIC™ In-Circuit Emulator  
• In-Circuit Debugger  
The MPASM assembler is a full-featured universal  
macro assembler for all PIC® MCUs.  
- MPLAB ICD for PIC16F87X  
• Device Programmers  
- PRO MATE® II Universal Device Programmer  
- PICSTART® Plus Entry-Level Development  
Programmer  
The MPASM assembler has a command line interface  
and a Windows shell. It can be used as a stand-alone  
application on a Windows 3.x or greater system, or it  
can be used through MPLAB IDE. The MPASM assem-  
bler generates relocatable object files for the MPLINK  
object linker, Intel® standard HEX files, MAP files to  
detail memory usage and symbol reference, an abso-  
lute LST file that contains source lines and generated  
machine code, and a COD file for debugging.  
• Low Cost Demonstration Boards  
- PICDEMTM 1 Demonstration Board  
- PICDEM 2 Demonstration Board  
- PICDEM 3 Demonstration Board  
- PICDEM 17 Demonstration Board  
- KEELOQ® Demonstration Board  
The MPASM assembler features include:  
• Integration into MPLAB IDE projects.  
• User-defined macros to streamline assembly  
code.  
14.1 MPLAB Integrated Development  
Environment Software  
• Conditional assembly for multi-purpose source  
files.  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8-bit microcon-  
troller market. The MPLAB IDE is a Windows®-based  
application that contains:  
• Directives that allow complete control over the  
assembly process.  
14.3 MPLAB C17 and MPLAB C18  
C Compilers  
• An interface to debugging tools  
- simulator  
The MPLAB C17 and MPLAB C18 Code Development  
Systems are complete ANSI ‘C’ compilers for  
Microchip’s PIC17CXXX and PIC18CXXX family of  
microcontrollers, respectively. These compilers provide  
powerful integration capabilities and ease of use not  
found with other compilers.  
- programmer (sold separately)  
- emulator (sold separately)  
- in-circuit debugger (sold separately)  
• A full-featured editor  
• A project manager  
For easier source level debugging, the compilers pro-  
vide symbol information that is compatible with the  
MPLAB IDE memory display.  
• Customizable toolbar and key mapping  
• A status bar  
• On-line help  
1998-2013 Microchip Technology Inc.  
DS30292D-page 143  
PIC16F87X  
14.4 MPLINK Object Linker/  
MPLIB Object Librarian  
14.6 MPLAB ICE High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
The MPLINK object linker combines relocatable  
objects created by the MPASM assembler and the  
MPLAB C17 and MPLAB C18 C compilers. It can also  
link relocatable objects from pre-compiled libraries,  
using directives from a linker script.  
The MPLAB ICE universal in-circuit emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PIC MCU  
microcontrollers (MCUs). Software control of the  
MPLAB ICE in-circuit emulator is provided by the  
MPLAB Integrated Development Environment (IDE),  
which allows editing, building, downloading and source  
debugging from a single environment.  
The MPLIB object librarian is a librarian for pre-  
compiled code to be used with the MPLINK object  
linker. When a routine from a library is called from  
another source file, only the modules that contain that  
routine will be linked in with the application. This allows  
large libraries to be used efficiently in many different  
applications. The MPLIB object librarian manages the  
creation and modification of library files.  
The MPLAB ICE 2000 is a full-featured emulator sys-  
tem with enhanced trace, trigger and data monitoring  
features. Interchangeable processor modules allow the  
system to be easily reconfigured for emulation of differ-  
ent processors. The universal architecture of the  
MPLAB ICE in-circuit emulator allows expansion to  
support new PIC microcontrollers.  
The MPLINK object linker features include:  
• Integration with MPASM assembler and MPLAB  
C17 and MPLAB C18 C compilers.  
The MPLAB ICE in-circuit emulator system has been  
designed as a real-time emulation system, with  
advanced features that are generally found on more  
expensive development tools. The PC platform and  
Microsoft® Windows environment were chosen to best  
make these features available to you, the end user.  
• Allows all memory areas to be defined as sections  
to provide link-time flexibility.  
The MPLIB object librarian features include:  
• Easier linking because single libraries can be  
included instead of many smaller files.  
• Helps keep code maintainable by grouping  
related modules together.  
14.7 ICEPIC In-Circuit Emulator  
• Allows libraries to be created and modules to be  
added, listed, replaced, deleted or extracted.  
The ICEPIC low cost, in-circuit emulator is a solution  
for the Microchip Technology PIC16C5X, PIC16C6X,  
PIC16C7X and PIC16CXXX families of 8-bit One-  
Time-Programmable (OTP) microcontrollers. The mod-  
ular system can support different subsets of PIC16C5X  
or PIC16CXXX products through the use of inter-  
changeable personality modules, or daughter boards.  
The emulator is capable of emulating without target  
application circuitry being present.  
14.5 MPLAB SIM Software Simulator  
The MPLAB SIM software simulator allows code devel-  
opment in a PC-hosted environment by simulating the  
PIC MCU series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file, or user-defined key press, to any of the pins. The  
execution can be performed in single step, execute  
until break, or trace mode.  
The MPLAB SIM simulator fully supports symbolic debug-  
ging using the MPLAB C17 and the MPLAB C18 C com-  
pilers and the MPASM assembler. The software simulator  
offers the flexibility to develop and debug code outside of  
the laboratory environment, making it an excellent multi-  
project software development tool.  
DS30292D-page 144  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
14.8 MPLAB ICD In-Circuit Debugger  
14.11 PICDEM 1 Low Cost PIC MCU  
Demonstration Board  
Microchip's In-Circuit Debugger, MPLAB ICD, is a pow-  
erful, low cost, run-time development tool. This tool is  
based on the FLASH PIC16F87X and can be used to  
develop for this and other PIC microcontrollers from the  
PIC16CXXX family. The MPLAB ICD utilizes the in-cir-  
cuit debugging capability built into the PIC16F87X. This  
The PICDEM 1 demonstration board is a simple board  
which demonstrates the capabilities of several of  
Microchip’s microcontrollers. The microcontrollers sup-  
ported are: PIC16C5X (PIC16C54 to PIC16C58A),  
PIC16C61, PIC16C62X, PIC16C71, PIC16C8X,  
PIC17C42, PIC17C43 and PIC17C44. All necessary  
hardware and software is included to run basic demo  
programs. The user can program the sample microcon-  
trollers provided with the PICDEM 1 demonstration  
board on a PRO MATE II device programmer, or a  
PICSTART Plus development programmer, and easily  
test firmware. The user can also connect the  
PICDEM 1 demonstration board to the MPLAB ICE in-  
circuit emulator and download the firmware to the emu-  
lator for testing. A prototype area is available for the  
user to build some additional hardware and connect it  
to the microcontroller socket(s). Some of the features  
include an RS-232 interface, a potentiometer for simu-  
lated analog input, push button switches and eight  
LEDs connected to PORTB.  
feature, along with Microchip's  
In-Circuit Serial  
ProgrammingTM protocol, offers cost-effective in-circuit  
FLASH debugging from the graphical user interface of  
the MPLAB Integrated Development Environment. This  
enables a designer to develop and debug source code  
by watching variables, single-stepping and setting  
break points. Running at full speed enables testing  
hardware in real-time.  
14.9 PRO MATE II Universal Device  
Programmer  
The PRO MATE II universal device programmer is a  
full-featured programmer, capable of operating in  
stand-alone mode, as well as PC-hosted mode. The  
PRO MATE II device programmer is CE compliant.  
The PRO MATE II device programmer has program-  
mable VDD and VPP supplies, which allow it to verify  
programmed memory at VDD min and VDD max for max-  
imum reliability. It has an LCD display for instructions  
and error messages, keys to enter commands and a  
modular detachable socket assembly to support various  
package types. In stand-alone mode, the PRO MATE II  
device programmer can read, verify, or program PIC  
devices. It can also set code protection in this mode.  
14.12 PICDEM 2 Low Cost PIC16CXX  
Demonstration Board  
The PICDEM 2 demonstration board is a simple dem-  
onstration board that supports the PIC16C62,  
PIC16C64, PIC16C65, PIC16C73 and PIC16C74  
microcontrollers. All the necessary hardware and soft-  
ware is included to run the basic demonstration pro-  
grams. The user can program the sample  
microcontrollers provided with the PICDEM 2 demon-  
stration board on a PRO MATE II device programmer,  
or a PICSTART Plus development programmer, and  
easily test firmware. The MPLAB ICE in-circuit emula-  
tor may also be used with the PICDEM 2 demonstration  
board to test firmware. A prototype area has been pro-  
vided to the user for adding additional hardware and  
connecting it to the microcontroller socket(s). Some of  
the features include a RS-232 interface, push button  
switches, a potentiometer for simulated analog input, a  
serial EEPROM to demonstrate usage of the I2CTM bus  
and separate headers for connection to an LCD  
module and a keypad.  
14.10 PICSTART Plus Entry Level  
Development Programmer  
The PICSTART Plus development programmer is an  
easy-to-use, low cost, prototype programmer. It con-  
nects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient.  
The PICSTART Plus development programmer sup-  
ports all PIC devices with up to 40 pins. Larger pin  
count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus development programmer is CE  
compliant.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 145  
PIC16F87X  
14.13 PICDEM 3 Low Cost PIC16CXXX  
Demonstration Board  
14.14 PICDEM 17 Demonstration Board  
The PICDEM 17 demonstration board is an evaluation  
board that demonstrates the capabilities of several  
Microchip microcontrollers, including PIC17C752,  
PIC17C756A, PIC17C762 and PIC17C766. All neces-  
sary hardware is included to run basic demo programs,  
which are supplied on a 3.5-inch disk. A programmed  
sample is included and the user may erase it and  
program it with the other sample programs using the  
PRO MATE II device programmer, or the PICSTART  
Plus development programmer, and easily debug and  
test the sample code. In addition, the PICDEM 17 dem-  
onstration board supports downloading of programs to  
and executing out of external FLASH memory on board.  
The PICDEM 17 demonstration board is also usable  
with the MPLAB ICE in-circuit emulator, or the  
PICMASTER emulator and all of the sample programs  
can be run and modified using either emulator. Addition-  
ally, a generous prototype area is available for user  
hardware.  
The PICDEM 3 demonstration board is a simple dem-  
onstration board that supports the PIC16C923 and  
PIC16C924 in the PLCC package. It will also support  
future 44-pin PLCC microcontrollers with an LCD Mod-  
ule. All the necessary hardware and software is  
included to run the basic demonstration programs. The  
user can program the sample microcontrollers pro-  
vided with the PICDEM 3 demonstration board on a  
PRO MATE II device programmer, or a PICSTART Plus  
development programmer with an adapter socket, and  
easily test firmware. The MPLAB ICE in-circuit emula-  
tor may also be used with the PICDEM 3 demonstration  
board to test firmware. A prototype area has been pro-  
vided to the user for adding hardware and connecting it  
to the microcontroller socket(s). Some of the features  
include a RS-232 interface, push button switches, a  
potentiometer for simulated analog input, a thermistor  
and separate headers for connection to an external  
LCD module and a keypad. Also provided on the  
PICDEM 3 demonstration board is a LCD panel, with 4  
commons and 12 segments, that is capable of display-  
ing time, temperature and day of the week. The  
PICDEM 3 demonstration board provides an additional  
RS-232 interface and Windows software for showing  
the demultiplexed LCD signals on a PC. A simple serial  
interface allows the user to construct a hardware  
demultiplexer for the LCD signals.  
14.15 KEELOQ Evaluation and  
Programming Tools  
KEELOQ evaluation and programming tools support  
Microchip’s HCS Secure Data Products. The HCS eval-  
uation kit includes a LCD display to show changing  
codes, a decoder to decode transmissions and a pro-  
gramming interface to program test transmitters.  
DS30292D-page 146  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
TABLE 14-1: DEVELOPMENT TOOLS FROM MICROCHIP  
0 1 5 2 P M C  
X X X C R M F  
H C S X X X  
X X C 9 3  
/ X X C 2 5  
/ X X C 2 4  
X X C 8 2 C 1 P I  
X 7 X 7 C 1 C I P  
X 4 1 7 C I C P  
X 9 X 6 C 1 C I P  
X 8 X 6 F 1 C I P  
X 8 1 6 C I C P  
X 7 X 6 C 1 C I P  
X 7 1 6 C I C P  
X 6 2 1 6 C I F P  
X X X C 6 C 1 P I  
X 6 1 6 C I C P  
X 5 1 6 C I C P  
0 0 1 4 C I 0 P  
X X X C 2 C 1 P I  
s o l T e o r a w f t S o s r o t a u l E m r e g g u b D e s r e m m a o g P r r  
s t K l a i E d v n a s d r a B o o m D e  
1998-2013 Microchip Technology Inc.  
DS30292D-page 147  
PIC16F87X  
NOTES:  
DS30292D-page 148  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
15.0 ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
Ambient temperature under bias.................................................................................................................-55 to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD, MCLR. and RA4) ....................................... -0.3 V to (VDD + 0.3 V)  
Voltage on VDD with respect to VSS ........................................................................................................... -0.3 to +7.5 V  
Voltage on MCLR with respect to VSS (Note 2) ................................................................................................0 to +14 V  
Voltage on RA4 with respect to Vss.................................................................................................................0 to +8.5 V  
Total power dissipation (Note 1) ..............................................................................................................................1.0 W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) 20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk byPORTA, PORTB, and PORTE (combined) (Note 3)...................................................200 mA  
Maximum current sourced by PORTA, PORTB, and PORTE (combined) (Note 3)..............................................200 mA  
Maximum current sunk by PORTC and PORTD (combined) (Note 3) .................................................................200 mA  
Maximum current sourced by PORTC and PORTD (combined) (Note 3) ............................................................200 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD - VOH) x IOH} + (VOl x IOL)  
2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up.  
Thus, a series resistor of 50-100should be used when applying a “low” level to the MCLR pin, rather than  
pulling this pin directly to VSS.  
3: PORTD and PORTE are not implemented on PIC16F873/876 devices.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 149  
PIC16F87X  
FIGURE 15-1:  
PIC16F87X-20 VOLTAGE-FREQUENCY GRAPH  
(COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES ONLY)  
6.0 V  
5.5 V  
5.0 V  
4.5 V  
4.0 V  
3.5 V  
3.0 V  
2.5 V  
2.0 V  
16 MHz  
20 MHz  
Frequency  
FIGURE 15-2:  
PIC16LF87X-04 VOLTAGE-FREQUENCY GRAPH  
(COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES ONLY)  
6.0 V  
5.5 V  
5.0 V  
4.5 V  
4.0 V  
3.5 V  
3.0 V  
2.5 V  
2.0 V  
4 MHz  
10 MHz  
Frequency  
FMAX = (6.0 MHz/V) (VDDAPPMIN - 2.0 V) + 4 MHz  
Note 1: VDDAPPMIN is the minimum voltage of the PIC® device in the application.  
Note 2: FMAX has a maximum frequency of 10MHz.  
DS30292D-page 150  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
FIGURE 15-3:  
PIC16F87X-04VOLTAGE-FREQUENCYGRAPH(ALLTEMPERATURERANGES)  
6.0 V  
5.5 V  
5.0 V  
PIC16F87X-04  
4.5 V  
4.0 V  
3.5 V  
3.0 V  
2.5 V  
2.0 V  
4 MHz  
Frequency  
FIGURE 15-4:  
PIC16F87X-10 VOLTAGE-FREQUENCY GRAPH  
(EXTENDED TEMPERATURE RANGE ONLY)  
6.0 V  
5.5 V  
5.0 V  
PIC16F87X-10  
4.5 V  
4.0 V  
3.5 V  
3.0 V  
2.5 V  
2.0 V  
10 MHz  
Frequency  
1998-2013 Microchip Technology Inc.  
DS30292D-page 151  
PIC16F87X  
15.1 DC Characteristics: PIC16F873/874/876/877-04 (Commercial, Industrial)  
PIC16F873/874/876/877-20 (Commercial, Industrial)  
PIC16LF873/874/876/877-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF873/874/876/877-04  
Operating temperature -40°C TA +85°C for industrial  
(Commercial, Industrial)  
0°C TA +70°C for commercial  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
0°C TA +70°C for commercial  
PIC16F873/874/876/877-04  
PIC16F873/874/876/877-20  
(Commercial, Industrial)  
Param Symbol  
No.  
Characteristic/  
Min  
Typ† Max Units  
Conditions  
Device  
VDD  
Supply Voltage  
D001  
16LF87X  
2.0  
5.5  
V
LP, XT, RC osc configuration  
(DC to 4 MHz)  
D001  
16F87X  
4.0  
4.5  
5.5  
5.5  
5.5  
V
V
V
V
LP, XT, RC osc configuration  
HS osc configuration  
BOR enabled, FMAX = 14 MHz(7)  
D001A  
VBOR  
D002  
D003  
VDR  
RAM Data Retention  
Voltage(1)  
1.5  
VPOR VDD Start Voltage to  
ensure internal Power-on  
Reset signal  
VSS  
V
See section on Power-on Reset for  
details  
D004  
D005  
SVDD VDD Rise Rate to ensure 0.05  
internal Power-on Reset  
signal  
V/ms See section on Power-on Reset for  
details  
VBOR Brown-out Reset  
3.7  
4.0  
4.35  
V
BODEN bit in configuration word  
enabled  
Voltage  
Legend: Rows with standard voltage device data only are shaded for improved readability.  
Data in “Typ” column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance  
only, and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading, switching rate, oscillator type, internal code execution pattern and temperature also have an impact  
on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 A to the specification. This value is from charac-  
terization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.  
DS30292D-page 152  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
15.1 DC Characteristics: PIC16F873/874/876/877-04 (Commercial, Industrial)  
PIC16F873/874/876/877-20 (Commercial, Industrial)  
PIC16LF873/874/876/877-04 (Commercial, Industrial)  
(Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
0°C TA +70°C for commercial  
PIC16LF873/874/876/877-04  
(Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
0°C TA +70°C for commercial  
PIC16F873/874/876/877-04  
PIC16F873/874/876/877-20  
(Commercial, Industrial)  
Param Symbol  
No.  
Characteristic/  
Min  
Typ† Max Units  
Conditions  
Device  
IDD  
Supply Current(2,5)  
D010  
16LF87X  
0.6  
1.6  
20  
2.0  
4
mA XT, RC osc configuration  
FOSC = 4 MHz, VDD = 3.0V  
D010  
16F87X  
mA RC osc configurations  
FOSC = 4 MHz, VDD = 5.5V  
D010A  
16LF87X  
35  
A LP osc configuration  
FOSC = 32 kHz, VDD = 3.0V,  
WDT disabled  
D013  
16F87X  
7
15  
mA HS osc configuration,  
FOSC = 20 MHz, VDD = 5.5V  
D015  
IBOR Brown-out  
Reset Current(6)  
85  
200  
A BOR enabled, VDD = 5.0V  
Legend: Rows with standard voltage device data only are shaded for improved readability.  
Data in “Typ” column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance  
only, and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading, switching rate, oscillator type, internal code execution pattern and temperature also have an impact  
on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 A to the specification. This value is from charac-  
terization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 153  
PIC16F87X  
15.1 DC Characteristics: PIC16F873/874/876/877-04 (Commercial, Industrial)  
PIC16F873/874/876/877-20 (Commercial, Industrial)  
PIC16LF873/874/876/877-04 (Commercial, Industrial)  
(Continued)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF873/874/876/877-04  
Operating temperature -40°C TA +85°C for industrial  
(Commercial, Industrial)  
0°C TA +70°C for commercial  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
0°C TA +70°C for commercial  
PIC16F873/874/876/877-04  
PIC16F873/874/876/877-20  
(Commercial, Industrial)  
Param Symbol  
No.  
Characteristic/  
Min  
Typ† Max Units  
Conditions  
Device  
IPD  
Power-down Current(3,5)  
D020  
16LF87X  
7.5  
10.5  
0.9  
1.5  
0.9  
1.5  
85  
30  
42  
5
A VDD = 3.0V, WDT enabled,  
-40C to +85C  
D020  
D021  
D021  
D021A  
D021A  
D023  
16F87X  
16LF87X  
16F87X  
16LF87X  
16F87X  
A VDD = 4.0V, WDT enabled,  
-40C to +85C  
A VDD = 3.0V, WDT enabled,  
0C to +70C  
16  
5
A VDD = 4.0V, WDT enabled,  
-40C to +85C  
A VDD = 3.0V, WDT enabled,  
-40C to +85C  
19  
200  
A VDD = 4.0V, WDT enabled,  
-40C to +85C  
IBOR Brown-out  
Reset Current(6)  
A BOR enabled, VDD = 5.0V  
Legend: Rows with standard voltage device data only are shaded for improved readability.  
Data in “Typ” column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance  
only, and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading, switching rate, oscillator type, internal code execution pattern and temperature also have an impact  
on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 A to the specification. This value is from charac-  
terization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.  
DS30292D-page 154  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
15.2 DC Characteristics: PIC16F873/874/876/877-04 (Commercial, Industrial)  
PIC16F873/874/876/877-20 (Commercial, Industrial)  
PIC16LF873/874/876/877-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
0°C TA +70°C for commercial  
DC CHARACTERISTICS  
Operating voltage VDD range as described in DC specification  
(Section 15.1)  
Param  
Sym  
No.  
Characteristic  
Min  
Typ† Max Units  
Conditions  
VIL  
Input Low Voltage  
I/O ports  
with TTL buffer  
D030  
D030A  
D031  
D032  
D033  
Vss  
Vss  
Vss  
VSS  
VSS  
0.15VDD  
0.8V  
0.2VDD  
0.2VDD  
0.3VDD  
V
V
V
V
V
For entire VDD range  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
MCLR, OSC1 (in RC mode)  
OSC1 (in XT, HS and LP)  
Ports RC3 and RC4  
(Note 1)  
D034  
D034A  
with Schmitt Trigger buffer  
with SMBus  
Vss  
-0.5  
0.3VDD  
0.6  
V
V
For entire VDD range  
for VDD = 4.5 to 5.5V  
VIH Input High Voltage  
I/O ports  
D040  
D040A  
with TTL buffer  
2.0  
VDD  
VDD  
V
V
4.5V VDD 5.5V  
For entire VDD range  
0.25VDD  
+ 0.8V  
0.8VDD  
0.8VDD  
0.7VDD  
0.9VDD  
D041  
D042  
D042A  
D043  
with Schmitt Trigger buffer  
MCLR  
OSC1 (XT, HS and LP)  
OSC1 (in RC mode)  
Ports RC3 and RC4  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
For entire VDD range  
(Note 1)  
D044  
D044A  
D070  
with Schmitt Trigger buffer  
with SMBus  
IPURB PORTB Weak Pull-up Current  
0.7VDD  
1.4  
50  
250  
VDD  
5.5  
400  
V
V
For entire VDD range  
for VDD = 4.5 to 5.5V  
A VDD = 5V, VPIN = VSS,  
-40°C TO +85°C  
Input Leakage Current(2, 3)  
IIL  
D060  
I/O ports  
1  
A Vss VPIN VDD,  
Pin at hi-impedance  
D061  
D063  
MCLR, RA4/T0CKI  
OSC1  
5  
5  
A Vss VPIN VDD  
A Vss VPIN VDD, XT, HS  
and LP osc configuration  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16F87X be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 155  
PIC16F87X  
15.2 DC Characteristics: PIC16F873/874/876/877-04 (Commercial, Industrial)  
PIC16F873/874/876/877-20 (Commercial, Industrial)  
PIC16LF873/874/876/877-04 (Commercial, Industrial)  
(Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
DC CHARACTERISTICS  
0°C TA +70°C for commercial  
Operating voltage VDD range as described in DC specification  
(Section 15.1)  
Param  
Sym  
No.  
Characteristic  
Min  
Typ† Max Units  
Conditions  
VOL Output Low Voltage  
D080  
D083  
I/O ports  
0.6  
0.6  
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40C to +85C  
IOL = 1.6 mA, VDD = 4.5V,  
-40C to +85C  
OSC2/CLKOUT (RC osc config)  
VOH Output High Voltage  
D090  
D092  
D150*  
I/O ports(3)  
VDD - 0.7  
V
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40C to +85C  
IOH = -1.3 mA, VDD = 4.5V,  
-40C to +85C  
OSC2/CLKOUT (RC osc config) VDD - 0.7  
VOD Open-Drain High Voltage  
Capacitive Loading Specs on  
Output Pins  
8.5  
RA4 pin  
D100  
COSC2 OSC2 pin  
15  
pF In XT, HS and LP modes when  
external clock is used to drive  
OSC1  
D101  
D102  
CIO All I/O pins and OSC2 (RC mode)  
CB  
50  
400  
pF  
pF  
SCL, SDA (I2C mode)  
Data EEPROM Memory  
Endurance  
D120  
D121  
ED  
100K  
VMIN  
5.5  
E/W 25C at 5V  
V
VDRW VDD for read/write  
Using EECON to read/write  
VMIN = min. operating voltage  
D122  
TDEW Erase/write cycle time  
4
8
ms  
Program FLASH Memory  
D130  
D131  
D132A  
EP  
VPR VDD for read  
VDD for erase/write  
Endurance  
1000  
VMIN  
VMIN  
5.5  
5.5  
E/W 25C at 5V  
V
V
VMIN = min operating voltage  
Using EECON to read/write,  
VMIN = min. operating voltage  
D133  
TPEW Erase/Write cycle time  
4
8
ms  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16F87X be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
DS30292D-page 156  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
15.3 DC Characteristics: PIC16F873/874/876/877-04 (Extended)  
PIC16F873/874/876/877-10 (Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +125°C  
PIC16F873/874/876/877-04  
PIC16F873/874/876/877-20  
(Extended)  
Param Symbol  
No.  
Characteristic/  
Min  
Typ† Max Units  
Conditions  
Device  
VDD  
Supply Voltage  
D001  
4.0  
4.5  
5.5  
5.5  
5.5  
V
V
V
V
LP, XT, RC osc configuration  
HS osc configuration  
BOR enabled, FMAX = 10 MHz(7)  
D001A  
D001A  
D002  
VBOR  
VDR  
RAM Data Retention  
Voltage(1)  
1.5  
D003  
D004  
VPOR VDD Start Voltage to  
ensure internal Power-on  
Reset signal  
VSS  
V
See section on Power-on Reset for  
details  
SVDD VDD Rise Rate to ensure 0.05  
internal Power-on Reset  
signal  
V/ms See section on Power-on Reset for  
details  
D005  
VBOR Brown-out Reset  
3.7  
4.0  
4.35  
V
BODEN bit in configuration word  
enabled  
Voltage  
Data is “Typ” column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance  
only, and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading, switching rate, oscillator type, internal code execution pattern and temperature also have an impact  
on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be  
estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 A to the specification. This value is from  
characterization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 157  
PIC16F87X  
15.3 DC Characteristics: PIC16F873/874/876/877-04 (Extended)  
PIC16F873/874/876/877-10 (Extended) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +125°C  
PIC16F873/874/876/877-04  
PIC16F873/874/876/877-20  
(Extended)  
Param Symbol  
No.  
Characteristic/  
Min  
Typ† Max Units  
Conditions  
Device  
IDD  
Supply Current(2,5)  
D010  
1.6  
7
4
mA RC osc configurations  
FOSC = 4 MHz, VDD = 5.5V  
D013  
15  
mA HS osc configuration,  
FOSC = 10 MHz, VDD = 5.5V  
D015  
IBOR Brown-out  
85  
200  
A BOR enabled, VDD = 5.0V  
Reset Current(6)  
IPD  
Power-down Current(3,5)  
D020A  
D021B  
D023  
10.5  
1.5  
85  
60  
30  
A VDD = 4.0V, WDT enabled  
A VDD = 4.0V, WDT disabled  
A BOR enabled, VDD = 5.0V  
IBOR Brown-out  
Reset Current(6)  
200  
Data is “Typ” column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance  
only, and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading, switching rate, oscillator type, internal code execution pattern and temperature also have an impact  
on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be  
estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
5: Timer1 oscillator (when enabled) adds approximately 20 A to the specification. This value is from  
characterization and is for design guidance only. This is not tested.  
6: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.  
DS30292D-page 158  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
15.4 DC Characteristics: PIC16F873/874/876/877-04 (Extended)  
PIC16F873/874/876/877-10 (Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +125°C  
Operating voltage VDD range as described in DC specification  
(Section 15.1)  
DC CHARACTERISTICS  
Param  
Sym  
No.  
Characteristic  
Min  
Typ† Max Units  
Conditions  
VIL Input Low Voltage  
I/O ports  
with TTL buffer  
D030  
D030A  
D031  
D032  
D033  
Vss  
Vss  
Vss  
VSS  
VSS  
0.15VDD  
0.8V  
0.2VDD  
0.2VDD  
0.3VDD  
V
V
V
V
V
For entire VDD range  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
MCLR, OSC1 (in RC mode)  
OSC1 (in XT, HS and LP)  
Ports RC3 and RC4  
(Note 1)  
D034  
D034A  
with Schmitt Trigger buffer  
with SMBus  
Vss  
-0.5  
0.3VDD  
0.6  
V
V
For entire VDD range  
for VDD = 4.5 to 5.5V  
VIH Input High Voltage  
I/O ports  
D040  
D040A  
with TTL buffer  
2.0  
VDD  
VDD  
V
V
4.5V VDD 5.5V  
For entire VDD range  
0.25VDD  
+ 0.8V  
0.8VDD  
0.8VDD  
0.7VDD  
0.9VDD  
D041  
D042  
D042A  
D043  
with Schmitt Trigger buffer  
MCLR  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
For entire VDD range  
OSC1 (XT, HS and LP)  
OSC1 (in RC mode)  
Ports RC3 and RC4  
with Schmitt Trigger buffer  
with SMBus  
(Note 1)  
D044  
D044A  
0.7VDD  
1.4  
VDD  
5.5  
V
V
For entire VDD range  
for VDD = 4.5 to 5.5V  
D070A IPURB PORTB Weak Pull-up Current  
50  
250  
400  
A VDD = 5V, VPIN = VSS,  
Input Leakage Current(2, 3)  
IIL  
D060  
I/O ports  
-
-
1  
A Vss VPIN VDD,  
Pin at hi-impedance  
D061  
D063  
MCLR, RA4/T0CKI  
OSC1  
-
-
-
-
5  
5  
A Vss VPIN VDD  
A Vss VPIN VDD, XT, HS  
and LP osc configuration  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16F87X be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 159  
PIC16F87X  
15.4 DC Characteristics: PIC16F873/874/876/877-04 (Extended)  
PIC16F873/874/876/877-10 (Extended) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +125°C  
Operating voltage VDD range as described in DC specification  
(Section 15.1)  
DC CHARACTERISTICS  
Param  
Sym  
No.  
Characteristic  
Min  
Typ† Max Units  
Conditions  
VOL Output Low Voltage  
I/O ports  
OSC2/CLKOUT (RC osc config)  
VOH Output High Voltage  
D080A  
D083A  
0.6  
0.6  
V
V
IOL = 7.0 mA, VDD = 4.5V  
IOL = 1.2 mA, VDD = 4.5V  
D090A  
D092A  
D150*  
I/O ports(3)  
VDD - 0.7  
8.5  
V
V
V
IOH = -2.5 mA, VDD = 4.5V  
IOH = -1.0 mA, VDD = 4.5V  
RA4 pin  
OSC2/CLKOUT (RC osc config) VDD - 0.7  
VOD Open Drain High Voltage  
Capacitive Loading Specs on Output Pins  
D100  
COSC2 OSC2 pin  
15  
pF In XT, HS and LP modes when  
external clock is used to drive  
OSC1  
D101  
D102  
CIO All I/O pins and OSC2 (RC mode)  
CB SCL, SDA (I2C mode)  
Data EEPROM Memory  
ED Endurance  
50  
400  
pF  
pF  
D120  
D121  
100K  
VMIN  
5.5  
E/W 25C at 5V  
V
VDRW VDD for read/write  
Using EECON to read/write  
VMIN = min. operating voltage  
D122  
TDEW Erase/write cycle time  
Program FLASH Memory  
EP Endurance  
4
8
ms  
D130  
D131  
D132A  
1000  
VMIN  
VMIN  
5.5  
5.5  
E/W 25C at 5V  
V
V
VPR VDD for read  
VMIN = min operating voltage  
Using EECON to read/write,  
VMIN = min. operating voltage  
VDD for erase/write  
D133  
TPEW Erase/Write cycle time  
4
8
ms  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16F87X be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
DS30292D-page 160  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
15.5 Timing Parameter Symbology  
The timing parameter symbols have been created fol-  
lowing one of the following formats:  
1. TppS2ppS  
2. TppS  
T
3. TCC:ST  
4. Ts  
(I2C specifications only)  
(I2C specifications only)  
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
I2C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
TCC:ST (I2C specifications only)  
CC  
HD  
ST  
DAT  
STA  
Hold  
SU  
Setup  
DATA input hold  
START condition  
STO  
STOP condition  
FIGURE 15-5:  
LOAD CONDITIONS  
Load Condition 1  
VDD/2  
Load Condition 2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL = 464   
CL = 50 pF for all pins except OSC2, but including PORTD and PORTE outputs as ports,  
15 pF for OSC2 output  
Note: PORTD and PORTE are not implemented on PIC16F873/876 devices.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 161  
PIC16F87X  
FIGURE 15-6:  
EXTERNAL CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
4
Q1  
OSC1  
1
3
4
3
2
CLKOUT  
TABLE 15-1: EXTERNAL CLOCK TIMING REQUIREMENTS  
Parameter  
Sym  
Characteristic  
Min Typ†  
Max  
Units  
Conditions  
No.  
FOSC External CLKIN Frequency  
DC  
DC  
DC  
DC  
DC  
DC  
0.1  
4
4
4
MHz XT and RC osc mode  
MHz HS osc mode (-04)  
MHz HS osc mode (-10)  
MHz HS osc mode (-20)  
kHz LP osc mode  
(Note 1)  
10  
20  
200  
4
Oscillator Frequency  
(Note 1)  
MHz RC osc mode  
4
MHz XT osc mode  
10  
MHz HS osc mode (-10)  
4
5
20  
200  
MHz HS osc mode (-20)  
kHz LP osc mode  
1
TOSC External CLKIN Period  
250  
250  
100  
50  
TCY  
ns XT and RC osc mode  
ns HS osc mode (-04)  
ns HS osc mode (-10)  
ns HS osc mode (-20)  
s LP osc mode  
(Note 1)  
5
Oscillator Period  
(Note 1)  
250  
250  
250  
100  
50  
ns RC osc mode  
10,000  
ns XT osc mode  
ns HS osc mode (-04)  
ns HS osc mode (-10)  
ns HS osc mode (-20)  
s LP osc mode  
250  
250  
5
2
3
TCY Instruction Cycle Time  
200  
DC  
ns TCY = 4/FOSC  
(Note 1)  
TosL, External Clock in (OSC1) High or 100  
TosH Low Time  
25  
50  
15  
ns XT oscillator  
s LP oscillator  
ns HS oscillator  
ns XT oscillator  
ns LP oscillator  
ns HS oscillator  
2.5  
15  
4
TosR, External Clock in (OSC1) Rise or  
TosF Fall Time  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions, with  
the device executing code. Exceeding these specified limits may result in an unstable oscillator operation  
and/or higher than expected current consumption. All devices are tested to operate at "min." values with an  
external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "max." cycle time  
limit is "DC" (no clock) for all devices.  
DS30292D-page 162  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
FIGURE 15-7:  
CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKOUT  
13  
14  
12  
16  
18  
19  
I/O Pin  
(Input)  
15  
17  
I/O Pin  
(Output)  
New Value  
Old Value  
20, 21  
Note: Refer to Figure 15-5 for load conditions.  
TABLE 15-2: CLKOUT AND I/O TIMING REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
10*  
11*  
TosH2ckL OSC1to CLKOUT  
75  
75  
200  
200  
ns (Note 1)  
ns (Note 1)  
TosH2ck OSC1to CLKOUT  
H
12*  
13*  
14*  
15*  
16*  
17*  
TckR  
TckF  
CLKOUT rise time  
CLKOUT fall time  
35  
35  
100  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
ns  
100  
TckL2ioV CLKOUT to Port out valid  
TioV2ckH Port in valid before CLKOUT   
TckH2ioI Port in hold after CLKOUT   
0.5TCY + 20  
TOSC + 200  
0
TosH2ioV OSC1(Q1 cycle) to  
100  
255  
Port out valid  
18*  
TosH2ioI OSC1(Q2 cycle) to  
Port input invalid (I/O in  
hold time)  
Standard (F)  
Extended (LF)  
100  
200  
ns  
ns  
19*  
20*  
TioV2osH Port input valid to OSC1(I/O in setup time)  
0
10  
10  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TioR  
Port output rise time  
Port output fall time  
INT pin high or low time  
Standard (F)  
Extended (LF)  
Standard (F)  
Extended (LF)  
145  
40  
21*  
TioF  
145  
22††*  
23††*  
Tinp  
Trbp  
TCY  
TCY  
RB7:RB4 change INT high or low time  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
†† These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x TOSC.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 163  
PIC16F87X  
FIGURE 15-8:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
31  
34  
34  
I/O Pins  
Note: Refer to Figure 15-5 for load conditions.  
FIGURE 15-9:  
BROWN-OUT RESET TIMING  
VBOR  
VDD  
35  
TABLE 15-3: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,  
AND BROWN-OUT RESET REQUIREMENTS  
Parameter  
Symbol  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
No.  
30  
TmcL MCLR Pulse Width (low)  
2
7
s  
VDD = 5V, -40°C to +85°C  
31*  
Twdt  
Tost  
Watchdog Timer Time-out Period  
(No Prescaler)  
18  
33  
ms VDD = 5V, -40°C to +85°C  
32  
Oscillation Start-up Timer Period  
1024 TOSC  
72  
TOSC = OSC1 period  
33*  
Tpwrt Power-up Timer Period  
28  
132  
ms VDD = 5V, -40°C to +85°C  
34  
TIOZ  
I/O Hi-impedance from MCLR Low  
2.1  
s  
or Watchdog Timer Reset  
35  
TBOR  
Brown-out Reset pulse width  
100  
s  
VDD VBOR (D005)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
DS30292D-page 164  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
FIGURE 15-10:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
RA4/T0CKI  
41  
40  
42  
RC0/T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note: Refer to Figure 15-5 for load conditions.  
TABLE 15-4: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
T0CKI High Pulse Width  
Min  
Typ† Max Units  
Conditions  
40*  
Tt0H  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5TCY + 20  
ns Must also meet  
parameter 42  
10  
ns  
41*  
42*  
Tt0L  
Tt0P  
T0CKI Low Pulse Width  
T0CKI Period  
0.5TCY + 20  
ns Must also meet  
parameter 42  
10  
ns  
ns  
TCY + 40  
Greater of:  
20 or TCY + 40  
ns N = prescale value  
(2, 4,..., 256)  
N
45*  
46*  
47*  
Tt1H  
Tt1L  
Tt1P  
T1CKI High Time Synchronous, Prescaler = 1  
0.5TCY + 20  
ns Must also meet  
parameter 47  
Synchronous,  
Prescaler = 2,4,8  
Standard(F)  
Extended(LF)  
Standard(F)  
Extended(LF)  
15  
ns  
ns  
ns  
ns  
25  
Asynchronous  
30  
50  
T1CKI Low Time Synchronous, Prescaler = 1  
0.5TCY + 20  
ns Must also meet  
parameter 47  
Synchronous,  
Prescaler = 2,4,8  
Standard(F)  
Extended(LF)  
Standard(F)  
Extended(LF)  
Standard(F)  
15  
ns  
ns  
ns  
ns  
25  
Asynchronous  
30  
50  
T1CKI input  
period  
Synchronous  
Greater of:  
30 OR TCY + 40  
ns N = prescale value  
(1, 2, 4, 8)  
N
Extended(LF)  
Greater of:  
50 OR TCY + 40  
N = prescale value  
(1, 2, 4, 8)  
N
60  
Asynchronous  
Standard(F)  
ns  
ns  
Extended(LF)  
100  
DC  
Ft1  
Timer1 oscillator input frequency range  
200 kHz  
(oscillator enabled by setting bit T1OSCEN)  
48  
*
TCKEZtmr1 Delay from external clock edge to timer increment  
These parameters are characterized but not tested.  
2TOSC  
7TOSC  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 165  
PIC16F87X  
FIGURE 15-11:  
CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)  
RC1/T1OSI/CCP2  
and RC2/CCP1  
(Capture Mode)  
50  
51  
52  
RC1/T1OSI/CCP2  
and RC2/CCP1  
(Compare or PWM Mode)  
53  
Note: Refer to Figure 15-5 for load conditions.  
54  
TABLE 15-5: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units  
Conditions  
50*  
TccL CCP1 and CCP2 No Prescaler  
input low time  
0.5TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
Standard(F)  
10  
With Prescaler  
Extended(LF)  
20  
0.5TCY + 20  
10  
51*  
TccH CCP1 and CCP2 No Prescaler  
input high time  
Standard(F)  
With Prescaler  
Extended(LF)  
20  
52*  
53*  
TccP CCP1 and CCP2 input period  
3TCY + 40  
N
ns N = prescale  
value (1, 4 or 16)  
TccR CCP1 and CCP2 output rise time Standard(F)  
Extended(LF)  
10  
25  
10  
25  
25  
50  
25  
45  
ns  
ns  
ns  
ns  
54*  
*
TccF CCP1 and CCP2 output fall time  
Standard(F)  
Extended(LF)  
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
DS30292D-page 166  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
FIGURE 15-12:  
PARALLEL SLAVE PORT TIMING (PIC16F874/877 ONLY)  
RE2/CS  
RE0/RD  
RE1/WR  
65  
RD7:RD0  
62  
64  
63  
Note: Refer to Figure 15-5 for load conditions.  
TABLE 15-6: PARALLEL SLAVE PORT REQUIREMENTS (PIC16F874/877 ONLY)  
Parameter  
Symbol  
Characteristic  
Min Typ† Max Units Conditions  
No.  
62  
TdtV2wrH Data in valid before WRor CS(setup time)  
20  
25  
ns  
ns Extended  
Range Only  
63*  
64  
TwrH2dtI WRor CSto data–in invalid (hold time) Standard(F)  
Extended(LF)  
20  
35  
ns  
ns  
TrdL2dtV RDand CSto data–out valid  
80  
90  
ns  
ns Extended  
Range Only  
65  
TrdH2dtI RDor CSto data–out invalid  
10  
30  
ns  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 167  
PIC16F87X  
FIGURE 15-13:  
SPI MASTER MODE TIMING (CKE = 0, SMP = 0)  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
BIT6 - - - - - -1  
MSb  
LSb  
SDO  
SDI  
75, 76  
MSb IN  
74  
BIT6 - - - -1  
LSb IN  
73  
Note: Refer to Figure 15-5 for load conditions.  
FIGURE 15-14:  
SPI MASTER MODE TIMING (CKE = 1, SMP = 1)  
SS  
81  
SCK  
(CKP = 0)  
71  
72  
79  
78  
73  
SCK  
(CKP = 1)  
80  
LSb  
MSb  
BIT6 - - - - - -1  
BIT6 - - - -1  
SDO  
SDI  
75, 76  
MSb IN  
74  
LSb IN  
Note: Refer to Figure 15-5 for load conditions.  
DS30292D-page 168  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
FIGURE 15-15:  
SPI SLAVE MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
83  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
BIT6 - - - - - -1  
LSb  
SDO  
SDI  
77  
75, 76  
MSb IN  
74  
BIT6 - - - -1  
LSb IN  
73  
Note: Refer to Figure 15-5 for load conditions.  
FIGURE 15-16:  
SPI SLAVE MODE TIMING (CKE = 1)  
82  
SS  
70  
SCK  
83  
(CKP = 0)  
71  
72  
SCK  
(CKP = 1)  
80  
MSb  
BIT6 - - - - - -1  
BIT6 - - - -1  
LSb  
SDO  
SDI  
75, 76  
77  
MSb IN  
74  
LSb IN  
Note: Refer to Figure 15-5 for load conditions.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 169  
PIC16F87X  
TABLE 15-7: SPI MODE REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ†  
Max Units Conditions  
70*  
TssL2scH, SSto SCKor SCKinput  
Tcy  
ns  
TssL2scL  
71*  
72*  
73*  
TscH  
TscL  
SCK input high time (Slave mode)  
SCK input low time (Slave mode)  
TCY + 20  
TCY + 20  
100  
ns  
ns  
ns  
TdiV2scH, Setup time of SDI data input to SCK edge  
TdiV2scL  
74*  
75*  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
100  
ns  
TdoR  
SDO data output rise time  
Standard(F)  
10  
25  
25  
50  
ns  
ns  
Extended(LF)  
76*  
77*  
78*  
TdoF  
SDO data output fall time  
10  
25  
50  
ns  
ns  
TssH2doZ SSto SDO output hi-impedance  
10  
TscR  
SCK output rise time (Master mode) Standard(F)  
Extended(LF)  
10  
25  
25  
50  
ns  
ns  
79*  
80*  
TscF  
SCK output fall time (Master mode)  
10  
25  
ns  
ns  
TscH2doV, SDO data output valid after SCK  
TscL2doV edge  
Standard(F)  
Extended(LF)  
50  
145  
81*  
TdoV2scH, SDO data output setup to SCK edge  
TdoV2scL  
Tcy  
ns  
82*  
83*  
TssL2doV SDO data output valid after SSedge  
50  
ns  
ns  
TscH2ssH, SS after SCK edge  
1.5TCY + 40  
TscL2ssH  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
FIGURE 15-17:  
I2C BUS START/STOP BITS TIMING  
SCL  
93  
91  
90  
92  
SDA  
STOP  
Condition  
START  
Condition  
Note: Refer to Figure 15-5 for load conditions.  
DS30292D-page 170  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
TABLE 15-8: I2C BUS START/STOP BITS REQUIREMENTS  
Parameter  
Symbol  
Characteristic  
Min Typ Max Units  
Conditions  
No.  
90  
Tsu:sta  
START condition  
Setup time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
ns  
ns  
ns  
ns  
Only relevant for Repeated  
START condition  
91  
92  
93  
Thd:sta START condition  
Hold time  
4000  
600  
After this period, the first clock  
pulse is generated  
Tsu:sto  
STOP condition  
Setup time  
4700  
600  
Thd:sto STOP condition  
Hold time  
4000  
600  
FIGURE 15-18:  
I2C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 15-5 for load conditions.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 171  
PIC16F87X  
TABLE 15-9: I2C BUS DATA REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
100 kHz mode  
Min  
4.0  
0.6  
Max  
Units  
s  
Conditions  
100  
Thigh  
Clock high time  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
s  
Device must operate at a  
minimum of 10 MHz  
SSP Module  
0.5TCY  
4.7  
101  
Tlow  
Clock low time  
100 kHz mode  
s  
s  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
1.3  
Device must operate at a  
minimum of 10 MHz  
SSP Module  
0.5TCY  
102  
103  
Tr  
Tf  
SDA and SCL rise  
time  
100 kHz mode  
400 kHz mode  
1000  
300  
ns  
ns  
20 + 0.1Cb  
Cb is specified to be from  
10 to 400 pF  
SDA and SCL fall time 100 kHz mode  
400 kHz mode  
300  
300  
ns  
ns  
20 + 0.1Cb  
Cb is specified to be from  
10 to 400 pF  
90  
91  
Tsu:sta  
START condition  
setup time  
100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
s  
s  
s  
s  
ns  
s  
ns  
ns  
s  
s  
ns  
ns  
s  
s  
Only relevant for Repeated  
START condition  
Thd:sta START condition hold 100 kHz mode  
After this period, the first clock  
pulse is generated  
time  
400 kHz mode  
106  
107  
92  
Thd:dat Data input hold time  
100 kHz mode  
400 kHz mode  
0
0.9  
Tsu:dat Data input setup time 100 kHz mode  
400 kHz mode  
250  
100  
4.7  
0.6  
(Note 2)  
Tsu:sto STOP condition setup 100 kHz mode  
time  
400 kHz mode  
109  
110  
Taa  
Output valid from  
clock  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
3500  
(Note 1)  
Tbuf  
Bus free time  
4.7  
1.3  
Time the bus must be free  
before a new transmission  
can start  
Cb  
Bus capacitive loading  
400  
pF  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of  
the falling edge of SCL to avoid unintended generation of START or STOP conditions.  
2
2
2: A fast mode (400 kHz) I C bus device can be used in a standard mode (100 kHz) I C bus system, but the requirement that  
Tsu:dat 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the  
SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line  
2
TR max.+ Tsu:dat = 1000 + 250 = 1250 ns (according to the standard mode I C bus specification) before the SCL line is  
released.  
DS30292D-page 172  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
FIGURE 15-19:  
USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
RC6/TX/CK  
Pin  
121  
121  
RC7/RX/DT  
Pin  
120  
122  
Note: Refer to Figure 15-5 for load conditions.  
TABLE 15-10: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units Conditions  
120  
TckH2dtV SYNC XMIT (MASTER &  
SLAVE)  
Standard(F)  
80  
100  
45  
ns  
ns  
ns  
ns  
ns  
ns  
Clock high to data out valid  
Extended(LF)  
121  
122  
Tckrf  
Tdtrf  
Clock out rise time and fall time Standard(F)  
(Master mode)  
Extended(LF)  
50  
Data out rise time and fall time Standard(F)  
Extended(LF)  
45  
50  
Data in “Typ” column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
FIGURE 15-20:  
USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
RC6/TX/CK  
125  
pin  
RC7/RX/DT  
pin  
126  
Note: Refer to Figure 15-5 for load conditions.  
TABLE 15-11: USART SYNCHRONOUS RECEIVE REQUIREMENTS  
Parameter  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
No.  
125  
TdtV2ckL SYNC RCV (MASTER & SLAVE)  
Data setup before CK (DT setup  
time)  
15  
15  
ns  
ns  
126  
TckL2dtl Data hold after CK (DT hold time)  
Data in “Typ” column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 173  
PIC16F87X  
TABLE 15-12: PIC16F87X-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)  
PIC16F87X-10 (EXTENDED)  
PIC16F87X-20 (COMMERCIAL, INDUSTRIAL)  
PIC16LF87X-04 (COMMERCIAL, INDUSTRIAL)  
Param  
No.  
Sym  
NR  
Characteristic  
Resolution  
Integral linearity error  
Min  
Typ†  
Max  
10-bits  
< ± 1  
< ± 1  
< ± 2  
< ± 1  
Units  
Conditions  
A01  
bit  
VREF = VDD = 5.12V,  
VSS VAIN VREF  
A03  
A04  
A06  
A07  
EIL  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
EDL Differential linearity error  
EOFF Offset error  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
EGN Gain error  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
(3)  
A10  
A20  
Monotonicity  
guaranteed  
V
VSS VAIN VREF  
VREF Reference voltage (VREF+ - VREF-)  
2.0  
VDD + 0.3  
Absolute minimum electrical  
spec. To ensure 10-bit  
accuracy.  
A21 VREF+ Reference voltage High  
AVDD - 2.5V  
AVSS - 0.3V  
VSS - 0.3 V  
AVDD + 0.3V  
VREF+ - 2.0V  
VREF + 0.3 V  
10.0  
V
V
A22  
A25  
A30  
VREF- Reference voltage low  
VAIN Analog input voltage  
V
ZAIN Recommended impedance of  
analog voltage source  
k  
A40  
A50  
IAD  
A/D conversion  
current (VDD)  
Standard  
Extended  
10  
220  
90  
A Average current consumption  
when A/D is on (Note 1)  
A  
IREF VREF input current (Note 2)  
1000  
A During VAIN acquisition.  
Based on differential of VHOLD  
to VAIN to charge CHOLD, see  
Section 11.1.  
10  
A During A/D Conversion cycle  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current.  
The power-down current spec includes any such leakage from the A/D module.  
2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.  
3: The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes.  
DS30292D-page 174  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
FIGURE 15-21:  
A/D CONVERSION TIMING  
BSF ADCON0, GO  
1 TCY  
(1)  
(TOSC/2)  
131  
130  
Q4  
132  
A/D CLK  
  
  
9
8
7
2
1
0
A/D DATA  
NEW_DATA  
DONE  
OLD_DATA  
ADRES  
ADIF  
GO  
SAMPLING STOPPED  
SAMPLE  
Note: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP  
instruction to be executed.  
TABLE 15-13: A/D CONVERSION REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
130  
TAD A/D clock period  
Standard(F)  
Extended(LF)  
Standard(F)  
Extended(LF)  
1.6  
3.0  
2.0  
3.0  
s TOSC based, VREF 3.0V  
s TOSC based, VREF 2.0V  
s A/D RC mode  
s A/D RC mode  
TAD  
4.0  
6.0  
6.0  
9.0  
12  
131  
132  
TCNV Conversion time (not including S/H time)  
(Note 1)  
TACQ Acquisition time  
(Note 2)  
40  
s  
10*  
s The minimum time is the  
amplifier settling time. This may  
be used if the "new" input volt-  
age has not changed by more  
than 1 LSb (i.e., 20.0 mV @  
5.12V) from the last sampled  
voltage (as stated on CHOLD).  
134  
TGO Q4 to A/D clock start  
TOSC/2 §  
If the A/D clock source is  
selected as RC, a time of TCY is  
added before the A/D clock  
starts. This allows the SLEEP  
instruction to be executed.  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
§
This specification ensured by design.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 11.1 for minimum conditions.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 175  
PIC16F87X  
NOTES:  
DS30292D-page 176  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
16.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES  
The graphs and tables provided in this section are for design guidance and are not tested.  
In some graphs or tables, the data presented is outside specified operating range (i.e., outside specified VDD range).  
This is for information only and devices are ensured to operate properly only within the specified range.  
The data presented in this section is a statistical summary of data collected on units from different lots over a period  
of time and matrix samples. 'Typical' represents the mean of the distribution at 25C. 'max' or 'min' represents  
(mean + 3) or (mean - 3) respectively, where is standard deviation, over the whole temperature range.  
FIGURE 16-1:  
TYPICAL IDD vs. FOSC OVER VDD (HS MODE)  
7
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
6
5
4
3
2
1
0
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
4
6
8
10  
12  
F OSC (M H z )  
14  
16  
18  
20  
FIGURE 16-2:  
MAXIMUM IDD vs. FOSC OVER VDD (HS MODE)  
8
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
7
6
5
4
3
2
1
0
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
4
6
8
10  
12  
(M Hz )  
14  
16  
18  
20  
F
O SC  
1998-2013 Microchip Technology Inc.  
DS30292D-page 177  
PIC16F87X  
FIGURE 16-3:  
TYPICAL IDD vs. FOSC OVER VDD (XT MODE)  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
FOSC (MHz)  
FIGURE 16-4:  
MAXIMUM IDD vs. FOSC OVER VDD (LP MODE)  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
FOSC (MHz)  
DS30292D-page 178  
© 1998-2013 Microchip Technology Inc.  
PIC16F87X  
FIGURE 16-5:  
TYPICAL IDD vs. FOSC OVER VDD (LP MODE)  
90  
80  
70  
60  
50  
40  
30  
20  
10  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0
20  
30  
40  
50  
60  
70  
80  
90  
100  
OSC  
F
(kHz)  
FIGURE 16-6:  
MAXIMUM IDD vs. FOSC OVER VDD (XT MODE)  
120  
110  
100  
90  
5.5V  
5.0V  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
80  
4.5V  
70  
4.0V  
60  
3.5V  
3.0V  
50  
40  
2.5V  
2.0V  
30  
20  
10  
0
20  
30  
40  
50  
60  
70  
80  
90  
100  
OSC  
F
(kHz)  
1998-2013 Microchip Technology Inc.  
DS30292D-page 179  
PIC16F87X  
FIGURE 16-7:  
AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R  
(RC MODE, C = 20 pF, 25C)  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
3.3k  
5.1k  
10k  
100k  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-8:  
AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R  
(RC MODE, C = 100 pF, 25C)  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
3.3k  
5.1k  
10k  
100k  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS30292D-page 180  
© 1998-2013 Microchip Technology Inc.  
PIC16F87X  
FIGURE 16-9:  
AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R  
(RC MODE, C = 300 pF, 25C)  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
3.3k  
5.1k  
10k  
100k  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-10:  
IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED)  
100.00  
Typical: statistical mean @ 25°C  
Maximum: mean + 3(-40°C to 125°C)  
Minimum: mean – 3(-40°C to 125°C)  
Max (125C)  
Max (85C)  
10.00  
1.00  
0.10  
Typ (25C)  
0.01  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
1998-2013 Microchip Technology Inc.  
DS30292D-page 181  
PIC16F87X  
FIGURE 16-11:  
IBOR vs. VDD OVER TEMPERATURE  
1.2  
Note: Device current in RESET  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
depends on oscillator mode,  
frequency and circuit.  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Max Reset  
Indeterminate  
State  
Typ Reset (25C)  
Device in Sleep  
Device in Reset  
Max Sleep  
Typ Sleep (25C)  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-12:  
TYPICAL AND MAXIMUMITMR1 vs. VDD OVER TEMPERATURE  
(-10C TO 70C, TIMER1 WITH OSCILLATOR, XTAL=32 kHZ, C1 AND C2=50 pF)  
90  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
80  
70  
60  
50  
40  
30  
20  
10  
0
Max  
Typ (25C)  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS30292D-page 182  
© 1998-2013 Microchip Technology Inc.  
PIC16F87X  
FIGURE 16-13:  
TYPICAL AND MAXIMUM IWDT vs. VDD OVER TEMPERATURE  
14  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
12  
10  
8
Max (85C)  
Typ (25C)  
6
4
2
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-14:  
TYPICAL, MINIMUM AND MAXIMUM WDT PERIOD vs. VDD (-40C TO 125C)  
60  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
50  
40  
30  
20  
10  
Max (125C)  
Typ (25C)  
Min (-40C)  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
(V)  
DD  
1998-2013 Microchip Technology Inc.  
DS30292D-page 183  
PIC16F87X  
FIGURE 16-15:  
AVERAGE WDT PERIOD vs. VDD OVER TEMPERATURE (-40C TO 125C)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
125C  
85C  
25C  
-40C  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-16:  
TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD=5V, -40C TO 125C)  
5.0  
4.5  
4.0  
3.5  
3.0  
Max (-40C)  
Typ (25C)  
Min (125C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
2.5  
2.0  
0
5
10  
15  
20  
25  
IOH (-mA)  
DS30292D-page 184  
© 1998-2013 Microchip Technology Inc.  
PIC16F87X  
FIGURE 16-17:  
TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD=3V, -40C TO 125C)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Max (-40C)  
Typ (25C)  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
Min (125C)  
0.0  
0
5
10  
15  
20  
25  
IOH (-mA)  
FIGURE 16-18:  
TYPICAL, MINIMUM AND MAXIMUM VOL vs. IOL (VDD=5V, -40C TO 125C)  
2.0  
1.8  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Max (125C)  
Typ (25C)  
Min (-40C)  
0
5
10  
15  
20  
25  
IOL (-mA)  
1998-2013 Microchip Technology Inc.  
DS30292D-page 185  
PIC16F87X  
FIGURE 16-19:  
TYPICAL, MINIMUM AND MAXIMUM VOL vs. IOL (VDD=3V, -40C TO 125C)  
3.0  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Max (125C)  
Typ (25C)  
Min (-40C)  
0
5
10  
15  
20  
25  
IOL (-mA)  
FIGURE 16-20:  
MINIMUM AND MAXIMUM VIN vs. VDD, (TTL INPUT, -40C TO 125C)  
1.8  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Max (-40C)  
Min (125C)  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS30292D-page 186  
© 1998-2013 Microchip Technology Inc.  
PIC16F87X  
FIGURE 16-21:  
MINIMUM AND MAXIMUM VIN vs. VDD (ST INPUT, -40C TO 125C)  
4.5  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Max High (125C)  
Min High (-40C)  
Max Low (125C)  
Min Low (-40C)  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 16-22:  
MINIMUM AND MAXIMUM VIN vs. VDD (I2C INPUT, -40C TO 125C)  
3.5  
Typical: statistical mean @ 25°C  
Maximum: mean + 3s (-40°C to 125°C)  
Minimum: mean – 3s (-40°C to 125°C)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Max High (125C)  
Min High (-40C)  
Max Low (125C)  
Min Low (25C)  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
1998-2013 Microchip Technology Inc.  
DS30292D-page 187  
PIC16F87X  
NOTES:  
DS30292D-page 188  
© 1998-2013 Microchip Technology Inc.  
PIC16F87X  
17.0 PACKAGING INFORMATION  
17.1 Package Marking Information  
28-Lead PDIP (Skinny DIP)  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
PIC16F876-20/SP  
0117HAT  
YYWWNNN  
28-Lead SOIC  
Example  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
PIC16F876-04/SO  
YYWWNNN  
0110SAA  
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
3
e
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 189  
PIC16F87X  
Package Marking Information (Cont’d)  
40-Lead PDIP  
Example  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
PIC16F877-04/P  
0112SAA  
YYWWNNN  
44-Lead TQFP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC16F877  
-04/PT  
0111HAT  
44-Lead MQFP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC16F877  
-20/PQ  
0104SAT  
44-Lead PLCC  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
PIC16F877  
-20/L  
YYWWNNN  
0103SAT  
DS30292D-page 190  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
28-Lead Skinny Plastic Dual In-line (SP) – 300 mil (PDIP)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located  
at http://www.microchip.com/packaging  
E1  
D
2
n
1
E
A2  
L
A
c
B1  
A1  
eB  
B
p
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
28  
MAX  
n
p
Number of Pins  
Pitch  
28  
.100  
.150  
.130  
2.54  
3.81  
3.30  
Top to Seating Plane  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A
A2  
A1  
E
.140  
.160  
3.56  
4.06  
.125  
.015  
.300  
.275  
1.345  
.125  
.008  
.040  
.016  
.320  
.135  
3.18  
0.38  
7.62  
6.99  
34.16  
3.18  
0.20  
1.02  
3.43  
.310  
.285  
1.365  
.130  
.012  
.053  
.019  
.350  
10  
.325  
.295  
1.385  
.135  
.015  
.065  
.022  
.430  
15  
7.87  
7.24  
8.26  
7.49  
35.18  
3.43  
0.38  
1.65  
0.56  
10.92  
15  
E1  
D
34.67  
3.30  
Tip to Seating Plane  
Lead Thickness  
L
c
0.29  
Upper Lead Width  
B1  
B
1.33  
Lower Lead Width  
0.41  
8.13  
5
0.48  
8.89  
10  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
5
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-095  
Drawing No. C04-070  
1998-2013 Microchip Technology Inc.  
DS30292D-page 191  
PIC16F87X  
28-Lead Plastic Small Outline (SO) – Wide, 300 mil (SOIC)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located  
at http://www.microchip.com/packaging  
E
E1  
p
D
B
2
n
1
h
45  
c
A2  
A
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
28  
28  
.050  
.099  
.091  
.008  
.407  
.295  
.704  
.020  
.033  
4
1.27  
2.50  
2.31  
0.20  
10.34  
7.49  
17.87  
0.50  
0.84  
4
Overall Height  
A
.093  
.104  
2.36  
2.64  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.088  
.004  
.394  
.288  
.695  
.010  
.016  
0
.094  
.012  
.420  
.299  
.712  
.029  
.050  
8
2.24  
0.10  
10.01  
7.32  
17.65  
0.25  
0.41  
0
2.39  
0.30  
10.67  
7.59  
18.08  
0.74  
1.27  
8
§
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
Foot Angle Top  
c
Lead Thickness  
Lead Width  
.009  
.014  
0
.011  
.017  
12  
.013  
.020  
15  
0.23  
0.36  
0
0.28  
0.42  
12  
0.33  
0.51  
15  
B
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-013  
Drawing No. C04-052  
DS30292D-page 192  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
40-Lead Plastic Dual In-line (P) – 600 mil (PDIP)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located  
at http://www.microchip.com/packaging  
E1  
D
2
n
1
E
A2  
A
L
c
B1  
B
A1  
p
eB  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
40  
MAX  
n
p
Number of Pins  
Pitch  
40  
.100  
.175  
.150  
2.54  
Top to Seating Plane  
A
.160  
.190  
.160  
4.06  
3.56  
4.45  
3.81  
4.83  
4.06  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.140  
.015  
.595  
.530  
2.045  
.120  
.008  
.030  
.014  
.620  
5
0.38  
15.11  
13.46  
51.94  
3.05  
0.20  
0.76  
0.36  
15.75  
5
.600  
.545  
2.058  
.130  
.012  
.050  
.018  
.650  
10  
.625  
.560  
2.065  
.135  
.015  
.070  
.022  
.680  
15  
15.24  
13.84  
52.26  
3.30  
0.29  
1.27  
0.46  
16.51  
10  
15.88  
14.22  
52.45  
3.43  
0.38  
1.78  
0.56  
17.27  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
§
eB  
Mold Draft Angle Bottom  
* Controlling Parameter  
§ Significant Characteristic  
5
10  
15  
5
10  
15  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-011  
Drawing No. C04-016  
1998-2013 Microchip Technology Inc.  
DS30292D-page 193  
PIC16F87X  
44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located  
at http://www.microchip.com/packaging  
E
E1  
#leads=n1  
p
D1  
D
2
1
B
n
CH x 45  
A
c
A1  
A2  
L
(F)  
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
44  
MAX  
n
p
Number of Pins  
Pitch  
44  
.031  
11  
0.80  
11  
Pins per Side  
Overall Height  
n1  
A
.039  
.037  
.002  
.018  
.043  
.039  
.004  
.024  
.039  
3.5  
.047  
1.00  
0.95  
1.10  
1.00  
0.10  
0.60  
1.20  
Molded Package Thickness  
Standoff  
A2  
A1  
L
(F)  
.041  
.006  
.030  
1.05  
0.15  
0.75  
§
0.05  
0.45  
1.00  
0
Foot Length  
Footprint (Reference)  
Foot Angle  
0
.463  
.463  
.390  
.390  
.004  
.012  
.025  
5
7
.482  
.482  
.398  
.398  
.008  
.017  
.045  
15  
3.5  
12.00  
12.00  
10.00  
10.00  
0.15  
0.38  
0.89  
10  
7
12.25  
12.25  
10.10  
10.10  
0.20  
0.44  
1.14  
15  
Overall Width  
E
D
.472  
.472  
.394  
.394  
.006  
.015  
.035  
10  
11.75  
11.75  
9.90  
9.90  
0.09  
0.30  
0.64  
5
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
E1  
D1  
c
Lead Width  
B
CH  
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-026  
Drawing No. C04-076  
DS30292D-page 194  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
44-Lead Plastic Metric Quad Flatpack (PQ) 10x10x2 mm Body, 1.6/0.15 mm Lead Form (MQFP)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located  
at http://www.microchip.com/packaging  
E
E1  
#leads=n1  
p
D1  
D
2
1
B
c
n
CH x 45  
A1  
A
(F)  
L
A2  
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
44  
MAX  
n
p
Number of Pins  
Pitch  
44  
.031  
11  
0.80  
11  
Pins per Side  
Overall Height  
n1  
A
.079  
.077  
.002  
.029  
.086  
.080  
.006  
.035  
.063  
3.5  
.093  
2.00  
1.95  
2.18  
2.03  
0.15  
0.88  
1.60  
3.5  
2.35  
Molded Package Thickness  
Standoff  
A2  
A1  
L
(F)  
.083  
.010  
.041  
2.10  
0.25  
1.03  
§
0.05  
0.73  
Foot Length  
Footprint (Reference)  
Foot Angle  
0
.510  
.510  
.390  
.390  
.005  
.012  
.025  
5
7
.530  
.530  
.398  
.398  
.009  
.018  
.045  
15  
0
12.95  
12.95  
9.90  
9.90  
0.13  
0.30  
0.64  
5
7
13.45  
13.45  
10.10  
10.10  
0.23  
0.45  
1.14  
15  
Overall Width  
E
D
.520  
.520  
.394  
.394  
.007  
.015  
.035  
10  
13.20  
13.20  
10.00  
10.00  
0.18  
0.38  
0.89  
10  
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
E1  
D1  
c
Lead Width  
B
CH  
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-022  
Drawing No. C04-071  
1998-2013 Microchip Technology Inc.  
DS30292D-page 195  
PIC16F87X  
44-Lead Plastic Leaded Chip Carrier (L) – Square (PLCC)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located  
at http://www.microchip.com/packaging  
E
E1  
#leads=n1  
D
D1  
n 1 2  
CH2 x 45  
CH1 x 45  
A3  
A2  
A
35  
B1  
B
c
A1  
p
E2  
D2  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
44  
MAX  
n
p
Number of Pins  
Pitch  
44  
.050  
11  
1.27  
11  
Pins per Side  
Overall Height  
n1  
A
.165  
.145  
.020  
.024  
.040  
.000  
.685  
.685  
.650  
.650  
.590  
.590  
.008  
.026  
.013  
0
.173  
.153  
.028  
.029  
.045  
.005  
.690  
.690  
.653  
.653  
.620  
.620  
.011  
.029  
.020  
5
.180  
4.19  
3.68  
0.51  
0.61  
1.02  
0.00  
17.40  
17.40  
16.51  
16.51  
14.99  
14.99  
0.20  
0.66  
0.33  
0
4.39  
3.87  
0.71  
0.74  
1.14  
0.13  
17.53  
17.53  
16.59  
16.59  
15.75  
15.75  
0.27  
0.74  
0.51  
5
4.57  
Molded Package Thickness  
Standoff  
A2  
A1  
A3  
CH1  
CH2  
E
.160  
.035  
.034  
.050  
.010  
.695  
.695  
.656  
.656  
.630  
.630  
.013  
.032  
.021  
10  
4.06  
0.89  
0.86  
1.27  
0.25  
17.65  
17.65  
16.66  
16.66  
16.00  
16.00  
0.33  
0.81  
0.53  
10  
§
Side 1 Chamfer Height  
Corner Chamfer 1  
Corner Chamfer (others)  
Overall Width  
Overall Length  
D
Molded Package Width  
Molded Package Length  
Footprint Width  
E1  
D1  
E2  
D2  
c
Footprint Length  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
B1  
B
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-047  
Drawing No. C04-048  
DS30292D-page 196  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
APPENDIX A: REVISION HISTORY  
APPENDIX B: DEVICE  
DIFFERENCES  
Version  
Date  
Revision Description  
The differences between the devices in this data sheet  
are listed in Table B-1.  
A
1998  
This is a new data sheet.  
However, these devices are  
similar to the PIC16C7X  
devices found in the  
TABLE B-1:  
DEVICE DIFFERENCES  
PIC16C7X Data Sheet  
(DS30390). Data Memory  
Map for PIC16F873/874,  
moved ADFM bit from  
Difference  
PIC16F876/873  
PIC16F877/874  
A/D  
5 channels,  
10-bits  
8 channels,  
10-bits  
ADCON1<5> to ADCON1<7>.  
B
C
1999  
2000  
FLASH EEPROM access  
information.  
Parallel  
no  
yes  
DC characteristics updated.  
DC performance graphs  
added.  
Slave Port  
Packages  
28-pin PDIP,  
28-pin windowed  
CERDIP, 28-pin  
SOIC  
40-pin PDIP,  
44-pin TQFP,  
44-pin MQFP,  
44-pin PLCC  
D
2013  
Added a note to each package  
drawing.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 197  
PIC16F87X  
APPENDIX C: CONVERSION  
CONSIDERATIONS  
Considerations for converting from previous versions  
of devices to the ones listed in this data sheet are listed  
in Table C-1.  
TABLE C-1:  
Characteristic  
CONVERSION  
CONSIDERATIONS  
PIC16C7X  
PIC16F87X  
Pins  
Timers  
28/40  
3
28/40  
3
Interrupts  
11 or 12  
13 or 14  
Communication  
PSP, USART,  
SSP (SPI, I2C  
Slave)  
PSP, USART,  
SSP (SPI, I2C  
Master/Slave)  
Frequency  
Voltage  
A/D  
20 MHz  
2.5V - 5.5V  
8-bit  
20 MHz  
2.0V - 5.5V  
10-bit  
CCP  
2
2
Program  
Memory  
4K, 8K  
EPROM  
4K, 8K  
FLASH  
RAM  
EEPROM data  
Other  
192, 368  
bytes  
192, 368  
bytes  
None  
128, 256  
bytes  
In-Circuit  
Debugger,  
Low Voltage  
Programming  
DS30292D-page 198  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
INDEX  
PIC16F874/PIC16F877 ............................................... 6  
PORTA  
RA3:RA0 and RA5 Pins ..................................... 29  
RA4/T0CKI Pin .................................................. 29  
PORTB  
RB3:RB0 Port Pins ............................................ 31  
RB7:RB4 Port Pins ............................................ 31  
PORTC  
A
A/D ................................................................................... 111  
Acquisition Requirements ........................................ 114  
ADCON0 Register .................................................... 111  
ADCON1 Register .................................................... 112  
ADIF bit .................................................................... 112  
Analog Input Model Block Diagram .......................... 114  
Analog Port Pins .......................................7, 8, 9, 36, 38  
Associated Registers and Bits ................................. 117  
Block Diagram .......................................................... 113  
Calculating Acquisition Time .................................... 114  
Configuring Analog Port Pins ................................... 115  
Configuring the Interrupt .......................................... 113  
Configuring the Module ............................................ 113  
Conversion Clock ..................................................... 115  
Conversions ............................................................. 116  
Delays ...................................................................... 114  
Effects of a RESET .................................................. 117  
GO/DONE bit ........................................................... 112  
Internal Sampling Switch (Rss) Impedence ............. 114  
Operation During SLEEP ......................................... 117  
Result Registers ....................................................... 116  
Sampling Requirements ........................................... 114  
Source Impedence ................................................... 114  
Time Delays ............................................................. 114  
Absolute Maximum Ratings ............................................. 149  
ACK .................................................................................... 74  
Acknowledge Data bit ........................................................ 68  
Acknowledge Pulse ............................................................ 74  
Acknowledge Sequence Enable bit .................................... 68  
Acknowledge Status bit ...................................................... 68  
ADRES Register ........................................................ 15, 111  
Analog Port Pins. See A/D  
Peripheral Output Override (RC 0:2, 5:7) .......... 33  
Peripheral Output Override (RC 3:4) ................. 33  
PORTD ...................................................................... 35  
PORTD and PORTE (Parallel Slave Port) ................. 38  
PORTE ...................................................................... 36  
PWM Mode ................................................................ 61  
RESET Circuit .......................................................... 123  
2
SSP (I C Mode) ......................................................... 73  
SSP (SPI Mode) ........................................................ 69  
Timer0/WDT Prescaler .............................................. 47  
Timer1 ....................................................................... 52  
Timer2 ....................................................................... 55  
USART Asynchronous Receive ............................... 101  
USART Asynchronous Receive (9-bit Mode) .......... 103  
USART Transmit ........................................................ 99  
Watchdog Timer ...................................................... 131  
BOR. See Brown-out Reset  
BRG ................................................................................... 79  
BRGH bit ............................................................................ 97  
Brown-out Reset (BOR) ............................ 119, 123, 125, 126  
BOR Status (BOR Bit) ............................................... 25  
Buffer Full bit, BF ............................................................... 74  
Bus Arbitration ................................................................... 89  
Bus Collision Section ......................................................... 89  
Bus Collision During a Repeated START Condition .......... 92  
Bus Collision During a START Condition .......................... 90  
Bus Collision During a STOP Condition ............................ 93  
Bus Collision Interrupt Flag bit, BCLIF ............................... 24  
Analog-to-Digital Converter. See A/D  
Application Notes  
AN552 (Implementing Wake-up on Key Strokes  
Using PIC16CXXX) .................................... 31  
AN556 (Implementing a Table Read) ........................ 26  
AN578 (Use of the SSP Module in the I2C  
C
Capture/Compare/PWM (CCP) ......................................... 57  
Associated Registers  
Multi-Master Environment) ......................... 73  
Capture, Compare and Timer1 .......................... 62  
PWM and Timer2 ............................................... 63  
Capture Mode ............................................................ 59  
Block Diagram ................................................... 59  
CCP1CON Register ........................................... 58  
CCP1IF .............................................................. 59  
Prescaler ........................................................... 59  
CCP Timer Resources ............................................... 57  
CCP1  
RC2/CCP1 Pin ..................................................7, 9  
CCP2  
RC1/T1OSI/CCP2 Pin ......................................7, 9  
Compare  
Special Trigger Output of CCP1 ........................ 60  
Special Trigger Output of CCP2 ........................ 60  
Compare Mode .......................................................... 60  
Block Diagram ................................................... 60  
Software Interrupt Mode .................................... 60  
Special Event Trigger ........................................ 60  
Interaction of Two CCP Modules (table) .................... 57  
Architecture  
PIC16F873/PIC16F876 Block Diagram ....................... 5  
PIC16F874/PIC16F877 Block Diagram ....................... 6  
Assembler  
MPASM Assembler .................................................. 143  
B
Banking, Data Memory ................................................. 12, 18  
Baud Rate Generator ......................................................... 79  
BCLIF ................................................................................. 24  
BF ............................................................................74, 82, 84  
Block Diagrams  
A/D ........................................................................... 113  
A/D Converter .......................................................... 113  
Analog Input Model .................................................. 114  
Baud Rate Generator ................................................. 79  
Capture Mode ............................................................ 59  
Compare Mode .......................................................... 60  
2
I C Master Mode ........................................................ 78  
2
I C Module ................................................................. 73  
2
I C Slave Mode .......................................................... 73  
Interrupt Logic .......................................................... 129  
PIC16F873/PIC16F876 ................................................ 5  
1998-2013 Microchip Technology Inc.  
DS30292D-page 199  
PIC16F87X  
PWM Mode ................................................................61  
Block Diagram ....................................................61  
Duty Cycle ..........................................................61  
Example Frequencies/Resolutions (Table) ........62  
PWM Period .......................................................61  
Special Event Trigger and A/D Conversions ..............60  
CCP. See Capture/Compare/PWM  
E
Electrical Characteristics .................................................. 149  
Errata ................................................................................... 4  
External Clock Input (RA4/T0CKI). See Timer0  
External Interrupt Input (RB0/INT). See Interrupt Sources  
F
CCP1CON ..........................................................................17  
CCP2CON ..........................................................................17  
CCPR1H Register .................................................. 15, 17, 57  
CCPR1L Register ......................................................... 17, 57  
CCPR2H Register ........................................................ 15, 17  
CCPR2L Register ......................................................... 15, 17  
CCPxM0 bit ........................................................................58  
CCPxM1 bit ........................................................................58  
CCPxM2 bit ........................................................................58  
CCPxM3 bit ........................................................................58  
CCPxX bit ...........................................................................58  
CCPxY bit ...........................................................................58  
CKE ....................................................................................66  
CKP ....................................................................................67  
Clock Polarity Select bit, CKP ............................................67  
Code Examples  
Call of a Subroutine in Page 1 from Page 0 ...............26  
EEPROM Data Read .................................................43  
EEPROM Data Write ..................................................43  
FLASH Program Read ...............................................44  
FLASH Program Write ...............................................45  
Indirect Addressing ....................................................27  
Initializing PORTA ......................................................29  
Saving STATUS, W and PCLATH Registers ...........130  
Code Protected Operation  
Firmware Instructions ....................................................... 135  
FLASH Program Memory ................................................... 41  
Associated Registers ................................................. 46  
Code Protection ......................................................... 45  
Configuration Bits and Read/Write State ................... 46  
Reading ..................................................................... 44  
Special Function Registers ........................................ 41  
Spurious Write Protection .......................................... 45  
Write Protection ......................................................... 46  
Write Verify ................................................................ 45  
Writing to .................................................................... 44  
FSR Register ....................................................15, 16, 17, 27  
G
General Call Address Sequence ........................................ 76  
General Call Address Support ........................................... 76  
General Call Enable bit ...................................................... 68  
I
I/O Ports ............................................................................. 29  
2
I C ...................................................................................... 73  
2
I C Bus  
Connection Considerations ........................................ 94  
Sample Device Configuration .................................... 94  
I C Master Mode Reception ............................................... 84  
I C Master Mode Repeated START Condition .................. 81  
I C Mode Selection ............................................................ 73  
2
2
Data EEPROM and FLASH Program Memory ...........45  
Code Protection ....................................................... 119, 133  
Computed GOTO ...............................................................26  
Configuration Bits .............................................................119  
Configuration Word ..........................................................120  
Conversion Considerations ..............................................198  
2
2
I C Module  
Acknowledge Sequence Timing ................................ 86  
Addressing ................................................................. 74  
Associated Registers ................................................. 77  
Baud Rate Generator ................................................. 79  
Block Diagram ........................................................... 78  
BRG Block Diagram ................................................... 79  
BRG Reset due to SDA Collision ............................... 91  
BRG Timing ............................................................... 80  
Bus Arbitration ........................................................... 89  
Bus Collision .............................................................. 89  
Acknowledge ..................................................... 89  
Repeated START Condition .............................. 92  
Repeated START Condition Timing  
D
D/A .....................................................................................66  
Data EEPROM ...................................................................41  
Associated Registers .................................................46  
Code Protection .........................................................45  
Reading ......................................................................43  
Special Functions Registers .......................................41  
Spurious Write Protection ..........................................45  
Write Verify .................................................................45  
Writing to ....................................................................43  
Data Memory ......................................................................12  
Bank Select (RP1:RP0 Bits) ................................. 12, 18  
General Purpose Registers ........................................12  
Register File Map ................................................. 13, 14  
Special Function Registers ........................................15  
Data/Address bit, D/A .........................................................66  
DC and AC Characteristics Graphs and Tables ...............177  
DC Characteristics  
(Case1) .............................................. 92  
Repeated START Condition Timing  
(Case2) .............................................. 92  
START Condition ............................................... 90  
START Condition Timing ..............................90, 91  
STOP Condition ................................................. 93  
STOP Condition Timing (Case1) ....................... 93  
STOP Condition Timing (Case2) ....................... 93  
Transmit Timing ................................................. 89  
Bus Collision Timing .................................................. 89  
Clock Arbitration ........................................................ 88  
Clock Arbitration Timing (Master Transmit) ............... 88  
Conditions to not give ACK Pulse .............................. 74  
General Call Address Support ................................... 76  
Master Mode .............................................................. 78  
Master Mode 7-bit Reception Timing ......................... 85  
Master Mode Block Diagram ..................................... 78  
Commercial and Industrial ............................... 152156  
Extended .......................................................... 157160  
Development Support ......................................................143  
Device Differences ...........................................................197  
Device Overview ..................................................................5  
Direct Addressing ...............................................................27  
DS30292D-page 200  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
Master Mode Operation ............................................. 79  
Master Mode START Condition ................................. 80  
Master Mode Transmission ........................................ 82  
Master Mode Transmit Sequence .............................. 79  
Multi-Master Communication ..................................... 89  
Multi-master Mode ..................................................... 78  
Operation ................................................................... 73  
Repeat START Condition Timing ............................... 81  
Slave Mode ................................................................ 74  
Block Diagram .................................................... 73  
Slave Reception ......................................................... 74  
Slave Transmission .................................................... 75  
SSPBUF ..................................................................... 73  
STOP Condition Receive or Transmit Timing ............ 87  
STOP Condition Timing ............................................. 87  
Waveforms for 7-bit Reception .................................. 75  
Waveforms for 7-bit Transmission ............................. 76  
INT Interrupt (RB0/INT). See Interrupt Sources  
INTCON ............................................................................. 17  
INTCON Register ............................................................... 20  
GIE Bit ....................................................................... 20  
INTE Bit ..................................................................... 20  
INTF Bit ..................................................................... 20  
PEIE Bit ..................................................................... 20  
RBIE Bit ..................................................................... 20  
RBIF Bit ................................................................20, 31  
T0IE Bit ...................................................................... 20  
T0IF Bit ...................................................................... 20  
2
Inter-Integrated Circuit (I C) .............................................. 65  
Internal Sampling Switch (Rss) Impedence ..................... 114  
Interrupt Sources ......................................................119, 129  
Block Diagram ......................................................... 129  
Interrupt-on-Change (RB7:RB4 ) ............................... 31  
RB0/INT Pin, External .......................................7, 8, 130  
TMR0 Overflow ........................................................ 130  
USART Receive/Transmit Complete ......................... 95  
Interrupts  
2
I C Module Address Register, SSPADD ............................ 73  
I C Slave Mode .................................................................. 74  
2
ICEPIC In-Circuit Emulator .............................................. 144  
ID Locations ............................................................. 119, 133  
In-Circuit Serial Programming (ICSP) ...................... 119, 134  
INDF ................................................................................... 17  
INDF Register .........................................................15, 16, 27  
Indirect Addressing ............................................................ 27  
FSR Register ............................................................. 12  
Instruction Format ............................................................ 135  
Instruction Set .................................................................. 135  
ADDLW .................................................................... 137  
ADDWF .................................................................... 137  
ANDLW .................................................................... 137  
ANDWF .................................................................... 137  
BCF .......................................................................... 137  
BSF .......................................................................... 137  
BTFSC ..................................................................... 137  
BTFSS ..................................................................... 137  
CALL ........................................................................ 138  
CLRF ........................................................................ 138  
CLRW ...................................................................... 138  
CLRWDT .................................................................. 138  
COMF ...................................................................... 138  
DECF ....................................................................... 138  
DECFSZ ................................................................... 139  
GOTO ...................................................................... 139  
INCF ......................................................................... 139  
INCFSZ .................................................................... 139  
IORLW ..................................................................... 139  
IORWF ..................................................................... 139  
MOVF ....................................................................... 140  
MOVLW ................................................................... 140  
MOVWF ................................................................... 140  
NOP ......................................................................... 140  
RETFIE .................................................................... 140  
RETLW .................................................................... 140  
RETURN .................................................................. 141  
RLF .......................................................................... 141  
RRF .......................................................................... 141  
SLEEP ..................................................................... 141  
SUBLW .................................................................... 141  
SUBWF .................................................................... 141  
SWAPF .................................................................... 142  
XORLW .................................................................... 142  
XORWF .................................................................... 142  
Summary Table ........................................................ 136  
Bus Collision Interrupt ................................................ 24  
Synchronous Serial Port Interrupt .............................. 22  
Interrupts, Context Saving During .................................... 130  
Interrupts, Enable Bits  
Global Interrupt Enable (GIE Bit) ........................20, 129  
Interrupt-on-Change (RB7:RB4) Enable  
(RBIE Bit) ................................................. 130  
Interrupt-on-Change (RB7:RB4) Enable  
(RBIE Bit) ................................................... 20  
Peripheral Interrupt Enable (PEIE Bit) ....................... 20  
RB0/INT Enable (INTE Bit) ........................................ 20  
TMR0 Overflow Enable (T0IE Bit) ............................. 20  
Interrupts, Flag Bits  
Interrupt-on-Change (RB7:RB4) Flag  
(RBIF Bit) ................................................. 130  
Interrupt-on-Change (RB7:RB4) Flag  
(RBIF Bit) ..............................................20, 31  
RB0/INT Flag (INTF Bit) ............................................ 20  
TMR0 Overflow Flag (T0IF Bit) ...........................20, 130  
K
KEELOQ Evaluation and Programming Tools ................... 146  
L
Loading of PC .................................................................... 26  
M
Master Clear (MCLR) ........................................................7, 8  
MCLR Reset, Normal Operation ...............123, 125, 126  
MCLR Reset, SLEEP ................................123, 125, 126  
Memory Organization  
Data Memory ............................................................. 12  
Program Memory ....................................................... 11  
MPLAB C17 and MPLAB C18 C Compilers .................... 143  
MPLAB ICD In-Circuit Debugger ..................................... 145  
MPLAB ICE High Performance Universal In-Circuit  
Emulator with MPLAB IDE ............................................... 144  
MPLAB Integrated Development Environment Software . 143  
MPLINK Object Linker/MPLIB Object Librarian ............... 144  
Multi-Master Communication ............................................. 89  
Multi-Master Mode ............................................................. 78  
1998-2013 Microchip Technology Inc.  
DS30292D-page 201  
PIC16F87X  
PORTA .......................................................................7, 8, 17  
Analog Port Pins .......................................................7, 8  
Associated Registers ................................................. 30  
Block Diagram  
O
On-Line Support ...............................................................207  
OPCODE Field Descriptions ............................................135  
OPTION_REG Register ............................................... 19, 48  
INTEDG Bit ................................................................19  
PS2:PS0 Bits ..............................................................19  
PSA Bit .......................................................................19  
T0CS Bit .....................................................................19  
T0SE Bit .....................................................................19  
OSC1/CLKIN Pin .............................................................. 7, 8  
OSC2/CLKOUT Pin .......................................................... 7, 8  
Oscillator Configuration ....................................................119  
HS .................................................................... 121, 124  
LP ..................................................................... 121, 124  
RC ............................................................ 121, 122, 124  
XT ..................................................................... 121, 124  
Oscillator, WDT ................................................................131  
Oscillators  
RA3:RA0 and RA5 Pins ..................................... 29  
RA4/T0CKI Pin .................................................. 29  
Initialization ................................................................ 29  
PORTA Register ...................................................15, 29  
RA3  
RA0 and RA5 Port Pins ..................................... 29  
RA4/T0CKI Pin .........................................................7, 8  
RA5/SS/AN4 Pin .......................................................7, 8  
TRISA Register .......................................................... 29  
PORTB .......................................................................7, 8, 17  
Associated Registers ................................................. 32  
Block Diagram  
RB3:RB0 Port Pins ............................................ 31  
RB7:RB4 Port Pins ............................................ 31  
PORTB Register ...................................................15, 31  
RB0/INT Edge Select (INTEDG Bit) .......................... 19  
RB0/INT Pin, External .......................................7, 8, 130  
RB7:RB4 Interrupt on Change ................................. 130  
RB7:RB4 Interrupt on Change Enable  
(RBIE Bit) ................................................. 130  
RB7:RB4 Interrupt on Change Flag  
(RBIF Bit) ................................................. 130  
RB7:RB4 Interrupt-on-Change Enable  
Capacitor Selection ..................................................122  
Crystal and Ceramic Resonators .............................121  
RC ............................................................................122  
P
P (STOP bit) .......................................................................66  
Package Marking Information ..........................................189  
Packaging Information .....................................................189  
Paging, Program Memory ............................................ 11, 26  
Parallel Slave Port (PSP) ......................................... 9, 35, 38  
Associated Registers .................................................39  
Block Diagram ............................................................38  
RE0/RD/AN5 Pin .............................................. 9, 36, 38  
RE1/WR/AN6 Pin ............................................. 9, 36, 38  
RE2/CS/AN7 Pin .............................................. 9, 36, 38  
Read Waveforms .......................................................39  
Select (PSPMODE Bit) ..............................35, 36, 37, 38  
Write Waveforms ........................................................39  
PCL Register .......................................................... 15, 16, 26  
PCLATH Register ..............................................15, 16, 17, 26  
PCON Register .......................................................... 25, 124  
BOR Bit ......................................................................25  
POR Bit ......................................................................25  
PIC16F876 Pinout Description .............................................7  
PIC16F87X Product Identification System .......................209  
PICDEM 1 Low Cost PIC MCU  
Demonstration Board ...................................................145  
PICDEM 17 Demonstration Board ...................................146  
PICDEM 2 Low Cost PIC16CXX  
Demonstration Board ...................................................145  
PICDEM 3 Low Cost PIC16CXXX  
Demonstration Board ...................................................146  
PICSTART Plus Entry Level  
Development Programmer ...........................................145  
PIE1 Register .....................................................................21  
PIE2 Register .....................................................................23  
Pinout Descriptions  
(RBIE Bit) ................................................... 20  
RB7:RB4 Interrupt-on-Change Flag  
(RBIF Bit) ..............................................20, 31  
TRISB Register .....................................................17, 31  
PORTC .......................................................................7, 9, 17  
Associated Registers ................................................. 34  
Block Diagrams  
Peripheral Output Override  
(RC 0:2, 5:7) ...................................... 33  
Peripheral Output Override  
(RC 3:4) ............................................. 33  
PORTC Register ...................................................15, 33  
RC0/T1OSO/T1CKI Pin ............................................7, 9  
RC1/T1OSI/CCP2 Pin ..............................................7, 9  
RC2/CCP1 Pin ..........................................................7, 9  
RC3/SCK/SCL Pin ....................................................7, 9  
RC4/SDI/SDA Pin .....................................................7, 9  
RC5/SDO Pin ............................................................7, 9  
RC6/TX/CK Pin ...................................................7, 9, 96  
RC7/RX/DT Pin .............................................7, 9, 96, 97  
TRISC Register .....................................................33, 95  
PORTD .....................................................................9, 17, 38  
Associated Registers ................................................. 35  
Block Diagram ........................................................... 35  
Parallel Slave Port (PSP) Function ............................ 35  
PORTD Register ...................................................15, 35  
TRISD Register .......................................................... 35  
PIC16F873/PIC16F876 ................................................7  
PIC16F874/PIC16F877 ................................................8  
PIR1 Register .....................................................................22  
PIR2 Register .....................................................................24  
POP ....................................................................................26  
POR. See Power-on Reset  
DS30292D-page 202  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
PORTE ........................................................................... 9, 17  
Analog Port Pins ...............................................9, 36, 38  
Associated Registers ................................................. 36  
Block Diagram ............................................................ 36  
Input Buffer Full Status (IBF Bit) ................................ 37  
Input Buffer Overflow (IBOV Bit) ................................ 37  
Output Buffer Full Status (OBF Bit) ............................ 37  
PORTE Register .................................................. 15, 36  
PSP Mode Select (PSPMODE Bit) ...........35, 36, 37, 38  
RE0/RD/AN5 Pin ...............................................9, 36, 38  
RE1/WR/AN6 Pin ..............................................9, 36, 38  
RE2/CS/AN7 Pin ...............................................9, 36, 38  
TRISE Register .......................................................... 36  
Postscaler, WDT  
Registers  
ADCON0 (A/D Control 0) ......................................... 111  
ADCON1 (A/D Control 1) ......................................... 112  
CCP1CON (CCP Control 1) ....................................... 58  
EECON2 .................................................................... 41  
FSR ........................................................................... 27  
INTCON ..................................................................... 20  
OPTION_REG ......................................................19, 48  
PCON (Power Control) .............................................. 25  
PIE1 (Peripheral Interrupt Enable 1) .......................... 21  
PIE2 (Peripheral Interrupt Enable 2) .......................... 23  
PIR1 (Peripheral Interrupt Request 1) ....................... 22  
PIR2 (Peripheral Interrupt Request 2) ....................... 24  
RCSTA (Receive Status and Control) ....................... 96  
Special Function, Summary ....................................... 15  
SSPCON2 (Sync Serial Port Control 2) ..................... 68  
STATUS .................................................................... 18  
T1CON (Timer1 Control) ........................................... 51  
T2CON (Timer 2 Control)  
Assignment (PSA Bit) ................................................ 19  
Rate Select (PS2:PS0 Bits) ....................................... 19  
Power-down Mode. See SLEEP  
Power-on Reset (POR) .....................119, 123, 124, 125, 126  
Oscillator Start-up Timer (OST) ....................... 119, 124  
POR Status (POR Bit) ................................................ 25  
Power Control (PCON) Register .............................. 124  
Power-down (PD Bit) ......................................... 18, 123  
Power-up Timer (PWRT) ................................. 119, 124  
Time-out (TO Bit) ............................................... 18, 123  
Time-out Sequence on Power-up .................... 127, 128  
PR2 Register ................................................................ 16, 55  
Prescaler, Timer0  
Timer2  
T2CON Register ........................................ 55  
TRISE ........................................................................ 37  
TXSTA (Transmit Status and Control) ....................... 95  
Repeated START Condition Enable bit ............................. 68  
RESET ......................................................................119, 123  
Block Diagram ......................................................... 123  
MCLR Reset. See MCLR  
Assignment (PSA Bit) ................................................ 19  
Rate Select (PS2:PS0 Bits) ....................................... 19  
PRO MATE II Universal Device Programmer .................. 145  
Program Counter  
RESET  
Brown-out Reset (BOR). See Brown-out Reset (BOR)  
Power-on Reset (POR). See Power-on Reset (POR)  
RESET Conditions for PCON Register .................... 125  
RESET Conditions for Program Counter ................. 125  
RESET Conditions for STATUS Register ................ 125  
WDT Reset. See Watchdog Timer (WDT)  
RESET Conditions ................................................... 125  
Program Memory ............................................................... 11  
Interrupt Vector .......................................................... 11  
Paging .................................................................. 11, 26  
Program Memory Map ............................................... 11  
RESET Vector ............................................................ 11  
Program Verification ......................................................... 133  
Programming Pin (VPP) .................................................... 7, 8  
Programming, Device Instructions ................................... 135  
PSP. See Parallel Slave Port. ............................................ 38  
Pulse Width Modulation.SeeCapture/Compare/PWM,  
PWM Mode.  
Revision History ............................................................... 197  
S
S (START bit) .................................................................... 66  
Sales and Support ........................................................... 209  
SCI. See USART  
SCK ................................................................................... 69  
SCL .................................................................................... 74  
SDA ................................................................................... 74  
SDI ..................................................................................... 69  
SDO ................................................................................... 69  
Serial Clock, SCK .............................................................. 69  
Serial Clock, SCL ............................................................... 74  
Serial Communication Interface. See USART  
Serial Data Address, SDA ................................................. 74  
Serial Data In, SDI ............................................................. 69  
Serial Data Out, SDO ........................................................ 69  
Slave Select, SS ................................................................ 69  
SLEEP ..............................................................119, 123, 132  
SMP ................................................................................... 66  
Software Simulator (MPLAB SIM) ................................... 144  
SPBRG Register ................................................................ 16  
Special Features of the CPU ........................................... 119  
Special Function Registers ................................................ 15  
Special Function Registers (SFRs) .................................... 15  
Data EEPROM and FLASH Program Memory .......... 41  
Speed, Operating ................................................................. 1  
PUSH ................................................................................. 26  
R
R/W .................................................................................... 66  
R/W bit ............................................................................... 74  
R/W bit ............................................................................... 74  
RAM. See Data Memory  
RCREG .............................................................................. 17  
RCSTA Register ........................................................... 17, 96  
ADDEN Bit ................................................................. 96  
CREN Bit .................................................................... 96  
FERR Bit .................................................................... 96  
OERR Bit ................................................................... 96  
RX9 Bit ....................................................................... 96  
RX9D Bit .................................................................... 96  
SPEN Bit .............................................................. 95, 96  
SREN Bit .................................................................... 96  
Read/Write bit, R/W ........................................................... 66  
Reader Response ............................................................ 208  
Receive Enable bit ............................................................. 68  
Receive Overflow Indicator bit, SSPOV ............................. 67  
Register File ....................................................................... 12  
Register File Map ......................................................... 13, 14  
1998-2013 Microchip Technology Inc.  
DS30292D-page 203  
PIC16F87X  
SPI  
Synchronous Serial Port .................................................... 65  
Synchronous Serial Port Enable bit, SSPEN ..................... 67  
Synchronous Serial Port Interrupt ...................................... 22  
Synchronous Serial Port Mode Select bits,  
Master Mode ..............................................................70  
Master Mode Timing ..................................................70  
Serial Clock ................................................................69  
Serial Data In .............................................................69  
Serial Data Out ...........................................................69  
Serial Peripheral Interface (SPI) ................................65  
Slave Mode Timing ....................................................71  
Slave Mode Timing Diagram ......................................71  
Slave Select ...............................................................69  
SPI Clock ...................................................................70  
SPI Mode ...................................................................69  
SPI Clock Edge Select, CKE ..............................................66  
SPI Data Input Sample Phase Select, SMP .......................66  
SPI Mode  
SSPM3:SSPM0 ............................................................. 67  
T
T1CKPS0 bit ...................................................................... 51  
T1CKPS1 bit ...................................................................... 51  
T1CON ............................................................................... 17  
T1CON Register ................................................................ 17  
T1OSCEN bit ..................................................................... 51  
T1SYNC bit ........................................................................ 51  
T2CKPS0 bit ...................................................................... 55  
T2CKPS1 bit ...................................................................... 55  
T2CON Register ...........................................................17, 55  
TAD ................................................................................... 115  
Time-out Sequence ......................................................... 124  
Timer0 ................................................................................ 47  
Associated Registers ................................................. 49  
Clock Source Edge Select (T0SE Bit) ....................... 19  
Clock Source Select (T0CS Bit) ................................. 19  
External Clock ............................................................ 48  
Interrupt ..................................................................... 47  
Overflow Enable (T0IE Bit) ........................................ 20  
Overflow Flag (T0IF Bit) ......................................20, 130  
Overflow Interrupt .................................................... 130  
Prescaler .................................................................... 48  
RA4/T0CKI Pin, External Clock ................................7, 8  
T0CKI ......................................................................... 48  
WDT Prescaler Block Diagram .................................. 47  
Timer1 ................................................................................ 51  
Associated Registers ................................................. 54  
Asynchronous Counter Mode .................................... 53  
Reading and Writing to ...................................... 53  
Block Diagram ........................................................... 52  
Counter Operation ..................................................... 52  
Operation in Timer Mode ........................................... 52  
Oscillator .................................................................... 53  
Capacitor Selection ............................................ 53  
Prescaler .................................................................... 54  
RC0/T1OSO/T1CKI Pin ............................................7, 9  
RC1/T1OSI/CCP2 Pin ..............................................7, 9  
Resetting of Timer1 Registers ................................... 54  
Resetting Timer1 using a CCP Trigger Output .......... 53  
Synchronized Counter Mode ..................................... 52  
T1CON ....................................................................... 51  
T1CON Register ........................................................ 51  
TMR1H ...................................................................... 53  
TMR1L ....................................................................... 53  
Timer2 ................................................................................ 55  
Associated Registers ................................................. 56  
Block Diagram ........................................................... 55  
Output ........................................................................ 56  
Postscaler .................................................................. 55  
Prescaler .................................................................... 55  
T2CON ....................................................................... 55  
Timing Diagrams  
Associated Registers .................................................72  
SPI Module  
Slave Mode ................................................................71  
SS ......................................................................................69  
SSP ....................................................................................65  
Block Diagram (SPI Mode) .........................................69  
RA5/SS/AN4 Pin ...................................................... 7, 8  
RC3/SCK/SCL Pin ................................................... 7, 9  
RC4/SDI/SDA Pin .................................................... 7, 9  
RC5/SDO Pin ........................................................... 7, 9  
SPI Mode ...................................................................69  
SSPADD .............................................................. 73, 74  
SSPBUF ............................................................... 70, 73  
SSPCON2 ..................................................................68  
SSPSR ................................................................. 70, 74  
SSPSTAT ...................................................................73  
2
SSP I C  
2
SSP I C Operation .....................................................73  
SSP Module  
SPI Master Mode .......................................................70  
SPI Slave Mode .........................................................71  
SSPCON1 Register ....................................................73  
SSP Overflow Detect bit, SSPOV ......................................74  
SSPADD Register ..............................................................16  
SSPBUF ................................................................. 17, 73, 74  
SSPBUF Register ..............................................................15  
SSPCON Register ..............................................................15  
SSPCON1 ..........................................................................73  
SSPCON2 Register ............................................................68  
SSPEN ...............................................................................67  
SSPIF ........................................................................... 22, 74  
SSPM3:SSPM0 ..................................................................67  
SSPOV ................................................................... 67, 74, 84  
SSPSTAT ...........................................................................73  
SSPSTAT Register ............................................................16  
Stack ..................................................................................26  
Overflows ...................................................................26  
Underflow ...................................................................26  
START bit (S) .....................................................................66  
START Condition Enable bit ..............................................68  
STATUS Register ...............................................................18  
C Bit ...........................................................................18  
DC Bit .........................................................................18  
IRP Bit ........................................................................18  
PD Bit ................................................................. 18, 123  
RP1:RP0 Bits .............................................................18  
TO Bit ................................................................. 18, 123  
Z Bit ............................................................................18  
STOP bit (P) .......................................................................66  
STOP Condition Enable bit ................................................68  
A/D Conversion ........................................................ 175  
Acknowledge Sequence Timing ................................ 86  
Baud Rate Generator with Clock Arbitration .............. 80  
BRG Reset Due to SDA Collision .............................. 91  
Brown-out Reset ...................................................... 164  
Bus Collision  
START Condition Timing ................................... 90  
DS30292D-page 204  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
Bus Collision During a Repeated  
START Condition (Case 1) ........................ 92  
Bus Collision During a Repeated  
START Condition (Case2) ......................... 92  
Bus Collision During a START  
Condition (SCL = 0) ................................... 91  
TXSTA Register ................................................................. 95  
BRGH Bit ................................................................... 95  
CSRC Bit ................................................................... 95  
SYNC Bit ................................................................... 95  
TRMT Bit .................................................................... 95  
TX9 Bit ....................................................................... 95  
TX9D Bit .................................................................... 95  
TXEN Bit .................................................................... 95  
Bus Collision During a STOP Condition ..................... 93  
Bus Collision for Transmit and Acknowledge ............. 89  
Capture/Compare/PWM ........................................... 166  
CLKOUT and I/O ...................................................... 163  
U
2
UA ...................................................................................... 66  
Universal Synchronous Asynchronous Receiver  
Transmitter. See USART  
I C Bus Data ............................................................ 171  
2
I C Bus START/STOP bits ...................................... 170  
2
I C Master Mode First START Bit Timing .................. 80  
2
Update Address, UA .......................................................... 66  
USART ............................................................................... 95  
Address Detect Enable (ADDEN Bit) ......................... 96  
Asynchronous Mode .................................................. 99  
Asynchronous Receive ............................................ 101  
Associated Registers ....................................... 102  
Block Diagram ................................................. 101  
Asynchronous Receive (9-bit Mode) ........................ 103  
Associated Registers ....................................... 104  
Block Diagram ................................................. 103  
Timing Diagram ............................................... 104  
Asynchronous Receive with Address Detect.  
I C Master Mode Reception Timing ........................... 85  
2
I C Master Mode Transmission Timing ...................... 83  
Master Mode Transmit Clock Arbitration .................... 88  
Power-up Timer ....................................................... 164  
Repeat START Condition .......................................... 81  
RESET ..................................................................... 164  
SPI Master Mode ....................................................... 70  
SPI Slave Mode (CKE = 1) ........................................ 71  
SPI Slave Mode Timing (CKE = 0) ............................. 71  
Start-up Timer .......................................................... 164  
STOP Condition Receive or Transmit ........................ 87  
Time-out Sequence on Power-up .................... 127, 128  
Timer0 ...................................................................... 165  
Timer1 ...................................................................... 165  
USART Asynchronous Master Transmission ........... 100  
USART Asynchronous Reception ............................ 102  
USART Synchronous Receive ................................. 173  
USART Synchronous Reception .............................. 108  
USART Synchronous Transmission ................ 106, 173  
USART, Asynchronous Reception ........................... 104  
Wake-up from SLEEP via Interrupt .......................... 133  
Watchdog Timer ....................................................... 164  
TMR0 ................................................................................. 17  
TMR0 Register ................................................................... 15  
TMR1CS bit ........................................................................ 51  
TMR1H ............................................................................... 17  
TMR1H Register ................................................................ 15  
TMR1L ............................................................................... 17  
TMR1L Register ................................................................. 15  
TMR1ON bit ....................................................................... 51  
TMR2 ................................................................................. 17  
TMR2 Register ................................................................... 15  
TMR2ON bit ....................................................................... 55  
TOUTPS0 bit ...................................................................... 55  
TOUTPS1 bit ...................................................................... 55  
TOUTPS2 bit ...................................................................... 55  
TOUTPS3 bit ...................................................................... 55  
TRISA Register .................................................................. 16  
TRISB Register .................................................................. 16  
TRISC Register .................................................................. 16  
TRISD Register .................................................................. 16  
TRISE Register .......................................................16, 36, 37  
IBF Bit ........................................................................ 37  
IBOV Bit ..................................................................... 37  
OBF Bit ...................................................................... 37  
PSPMODE Bit ...........................................35, 36, 37, 38  
TXREG ............................................................................... 17  
SeeAsynchronous Receive (9-bit Mode).  
Asynchronous Reception ......................................... 102  
Asynchronous Transmitter ......................................... 99  
Baud Rate Generator (BRG) ..................................... 97  
Baud Rate Formula ........................................... 97  
Baud Rates, Asynchronous Mode (BRGH=0) ... 98  
High Baud Rate Select (BRGH Bit) ................... 95  
Sampling ............................................................ 97  
Clock Source Select (CSRC Bit) ................................ 95  
Continuous Receive Enable (CREN Bit) .................... 96  
Framing Error (FERR Bit) .......................................... 96  
Mode Select (SYNC Bit) ............................................ 95  
Overrun Error (OERR Bit) .......................................... 96  
RC6/TX/CK Pin .........................................................7, 9  
RC7/RX/DT Pin .........................................................7, 9  
RCSTA Register ........................................................ 96  
Receive Data, 9th bit (RX9D Bit) ............................... 96  
Receive Enable, 9-bit (RX9 Bit) ................................. 96  
Serial Port Enable (SPEN Bit) ..............................95, 96  
Single Receive Enable (SREN Bit) ............................ 96  
Synchronous Master Mode ...................................... 105  
Synchronous Master Reception ............................... 107  
Associated Registers ....................................... 107  
Synchronous Master Transmission ......................... 105  
Associated Registers ....................................... 106  
Synchronous Slave Mode ........................................ 108  
Synchronous Slave Reception ................................. 109  
Associated Registers ....................................... 109  
Synchronous Slave Transmit ................................... 108  
Associated Registers ....................................... 108  
Transmit Block Diagram ............................................ 99  
Transmit Data, 9th Bit (TX9D) ................................... 95  
Transmit Enable (TXEN Bit) ...................................... 95  
Transmit Enable, Nine-bit (TX9 Bit) ........................... 95  
Transmit Shift Register Status (TRMT Bit) ................ 95  
TXSTA Register ......................................................... 95  
1998-2013 Microchip Technology Inc.  
DS30292D-page 205  
PIC16F87X  
W
Wake-up from SLEEP .............................................. 119, 132  
Interrupts .......................................................... 125, 126  
MCLR Reset .............................................................126  
Timing Diagram ........................................................133  
WDT Reset ...............................................................126  
Watchdog Timer (WDT) ........................................... 119, 131  
Block Diagram ..........................................................131  
Enable (WDTE Bit) ...................................................131  
Postscaler. See Postscaler, WDT  
Programming Considerations ...................................131  
RC Oscillator ............................................................131  
Time-out Period ........................................................131  
WDT Reset, Normal Operation ................ 123, 125, 126  
WDT Reset, SLEEP ................................. 123, 125, 126  
Waveform for General Call Address Sequence .................76  
WCOL ................................................... 67, 80, 82, 84, 86, 87  
WCOL Status Flag .............................................................80  
Write Collision Detect bit, WCOL .......................................67  
Write Verify  
Data EEPROM and FLASH Program Memory ...........45  
WWW, On-Line Support .......................................................4  
DS30292D-page 206  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
ON-LINE SUPPORT  
Microchip provides on-line support on the Microchip  
World Wide Web (WWW) site.  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape or Microsoft  
Explorer. Files are also available for FTP download  
from our FTP site.  
ConnectingtotheMicrochipInternetWebSite  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
ftp://ftp.microchip.com  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User's Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
• Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
• Conferences for products, Development Systems,  
technical information and more  
• Listing of seminars and events  
1998-2013 Microchip Technology Inc.  
DS30292D-page 207  
PIC16F87X  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS30292D  
Device:  
PIC16F87X  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS30292D-page 208  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
PIC16F87X PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature Package  
Range  
Pattern  
a)  
PIC16F877 - 20/P 301 = Commercial temp.,  
PDIP package, 4 MHz, normal VDD limits, QTP  
pattern #301.  
b)  
c)  
PIC16LF876 - 04I/SO = Industrial temp., SOIC  
package, 200 kHz, Extended VDD limits.  
PIC16F877 - 10E/P = Extended temp., PDIP  
package, 10MHz, normal VDD limits.  
Device  
PIC16F87X(1), PIC16F87XT(2); VDD range 4.0V to 5.5V  
PIC16LF87X(1), PIC16LF87XT(2 ); VDD range 2.0V to 5.5V  
Frequency Range  
Temperature Range  
Package  
04  
10  
20  
=
=
=
4 MHz  
10 MHz  
20 MHz  
blank =  
I
E
0C to +70C (Commercial)  
-40C to +85C (Industrial)  
-40C to +125C (Extended)  
=
=
Note 1:  
2:  
F
= CMOS FLASH  
PQ  
PT  
SO  
SP  
P
=
=
=
=
=
=
MQFP (Metric PQFP)  
TQFP (Thin Quad Flatpack)  
SOIC  
Skinny plastic DIP  
PDIP  
LF = Low Power CMOS FLASH  
T
= in tape and reel - SOIC, PLCC,  
MQFP, TQFP packages only.  
L
PLCC  
* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of  
each oscillator type.  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
1998-2013 Microchip Technology Inc.  
DS30292D-page 209  
PIC16F87X  
NOTES:  
DS30292D-page 210  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
NOTES:  
1998-2013 Microchip Technology Inc.  
DS30292D-page 211  
PIC16F87X  
NOTES:  
DS30292D-page 212  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
NOTES:  
1998-2013 Microchip Technology Inc.  
DS30292D-page 213  
PIC16F87X  
NOTES:  
DS30292D-page 214  
1998-2013 Microchip Technology Inc.  
PIC16F87X  
NOTES:  
1998-2013 Microchip Technology Inc.  
DS30292D-page 215  
PIC16F87X  
DS30292D-page 216  
1998-2013 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, PIC logo, rfPIC, SST, SST Logo, SuperFlash  
and UNI/O are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
32  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MTP, SEEVAL and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
Analog-for-the-Digital Age, Application Maestro, BodyCom,  
chipKIT, chipKIT logo, CodeGuard, dsPICDEM,  
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O,  
Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA  
and Z-Scale are trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
GestIC and ULPP are registered trademarks of Microchip  
Technology Germany II GmbH & Co. & KG, a subsidiary of  
Microchip Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 1998-2013, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 9781620769294  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
1998-2013 Microchip Technology Inc.  
DS30292D-page 217  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Korea - Seoul  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7828  
Fax: 886-7-330-9305  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
11/29/12  
DS30292D-page 218  
1998-2013 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY